

Lecture Notes in Computer Science 4011
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

York Sure John Domingue (Eds.)

The Semantic Web:
Research
and Applications

3rd European Semantic Web Conference, ESWC 2006
Budva, Montenegro, June 11-14, 2006
Proceedings

13

Volume Editors

York Sure
University of Karlsruhe
Institute AIFB
Englerstr. 11, 76131 Karlsruhe, Germany
E-mail: sure@aifb.uni-karlsruhe.de

John Domingue
The Open University
Knowledge Media Institute
Milton Keynes MK7 6AA, UK
E-mail: J.B.Domingue@open.ac.uk

Library of Congress Control Number: 2006925964

CR Subject Classification (1998): H.4, H.3, C.2, H.5, I.2, K.4, D.2

LNCS Sublibrary: SL 3 – Information Systems and Application, incl. Internet/Web
and HCI

ISSN 0302-9743
ISBN-10 3-540-34544-2 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-34544-2 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2006
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11762256 06/3142 5 4 3 2 1 0

Preface

This volume contains the main proceedings of the 3rd Annual European Se-
mantic Web Conference (ESWC 2006) held in Budva, Montenegro, June 11-14,
2006. ESWC 2006 showcased the latest results in research and application of Se-
mantic Web technologies – moving us closer to the vision of creating a machine
interpretable web.

Following the success of the previous conferences, this year we witnessed a sig-
nificant increase in submissions. Specifically, we received 181 papers – an increase
of 22% over last year. Our review process consisted of three phases. First, each
submission was evaluated by at least three members of the Programme Com-
mittee. Second, papers and associated reviews were meta reviewed by members
of the Senior Programme Committee. In this second phase the meta reviewers
led discussions between reviewers and produced an acceptance recommendation.
In the last phase, on the basis of the reviews and associated meta review rec-
ommendations, the final selections were made jointly by the Programme Chair
and the General Chair. Although this process required substantial efforts from
the members of the Programme Committees, it ensured that only papers of the
highest quality were accepted. The final acceptance of 48 papers for publication
and presentation at the conference out of the 181 submissions resulted in an
acceptance rate of 26%.

The conference represented research from all over Europe and additionally
attracted papers from outside of Europe. Accepted papers came primarily from
Germany, Italy, UK, The Netherlands, Spain, Austria, USA, Belgium, China, the
Czech Republic, Ireland, and Serbia and Montenegro. The international scientific
Programme Committees consisted of members coming from 23 countries spread
all over the world including such far away places as Australia and Brazil.

The selected papers cover the following topics:

– Ontology Alignment, Engineering, Evaluation, Evolution and Learning
– Rules and Reasoning
– Searching and Querying
– Semantic Annotation
– Semantic Web Mining and Personalisation
– Semantic Web Services
– Semantic Wiki and Blogging
– Trust and Policies

Each year the popularity of specific research themes as calculated by the
number of accepted papers varies. This year the most popular area was Ontol-
ogy Management incorporating Alignment, Engineering, Evaluation, Evolution
and Learning (35%), followed by Rules and Reasoning (13%) and Semantic An-
notation (13%). New and upcoming topics in comparison to ESWC 2005, were

VI Preface

Semantic Wiki and Blogging as well as Trust and Policies which together form
10% of the accepted papers.

Invited talks inevitably enrich the scientific programme. Our invited speakers
all have the envious amalgamation of a heavyweight research profile combined
with the ability to deliver engaging talks. Frank van Harmelen argued in his talk
“Where Does It Break? or: Why the Semantic Web Is Not Just ‘Research as
Usual’ ” that instead of being (simply) a technological challenge, the Semantic
Web forces us to rethink the foundations of many subfields of computer science.
Eduard Hovy outlined in his talk “Toward Large-Scale Shallow Semantics for
Higher-Quality NLP”how one defines large-scale shallow semantic representation
systems and contents adequate for NLP applications, and how one can create
the corpus of shallow semantic representation structures that would be required
to train machine learning algorithms. Anthony Jameson described in his talk
“Usability and the Semantic Web” the difficulties which arise when users with
little or no relevant training try to formulate knowledge (e.g., with ontology
editors or annotation tools) in a fashion amenable to exploitation by semantic
web technologies; or attempt to leverage semantic information while querying or
browsing. The abstracts of the invited talks are included in this volume.

Besides the main technical sessions the conference also featured poster and
demo sessions (68 submissions), 7 tutorials (out of 11 submitted proposals), 8
workshops (out of 17 submitted proposals), and a special industry-oriented event
providing European commerce an opportunity to become even more familiar with
semantic web technologies.

A number of European funded project meetings were co-located with ESWC
2006. A doctoral symposium organised by the Knowledge Web Network of Ex-
cellence provided a forum for the best young researchers in Europe to present
their research. We additionally incorporated a showcase, in conjunction with the
poster and demo session, for new European Commission 6th Framework Pro-
gramme projects, in the area of the Semantic Web, to indicate the directions
which European Semantic Web research will take over the next 3-4 years.

ESWC 2006 was sponsored by ESSI (formerly SDK), a group of four Eu-
ropean Commission 6th Framework Programme projects known as SEKT, DIP,
Knowledge Web and ASG. Collectively these projects aim to improve world-wide
research and standardisation in the areas of the Semantic Web and Semantic
Web Systems. The conference also received invaluable sponsorship from Onto-
Text, iSOCO, LUISA, AKT, and OASIS. Their help was greatly appreciated. We
are grateful to Springer for agreeing to publish the proceedings in its Lecture
Notes in Computer Science series. We also thank the Zakon Group for providing
the open source conference management system OpenConf.

We would like to thank all members of the Programme Committees and the
additional reviewers for their tremendous and at the same time very timely efforts
in reviewing the submissions. All members of the Organisation Committee were
very dedicated to their tasks and deserve our special gratitude. We are thankful
to Liliana Cabral (Workshop Chair), Michael Stollberg (Tutorial Chair), Holger
Wache (Poster and Demo Chair), Valentina Tamma (Publicity Chair), Oscar

Preface VII

Corcho (Sponsor Chair), Marko Grobelnik and Tina Anžič (Local Organisers),
Christen Ensor and Ilona Zaremba (Conference Administration), and Damian
Dadswell (Webmaster). Alain Leger spent considerable effort in organising the
industry event. Jens Hartmann did an amazing job in ensuring that the online
submission and reviewing process was smooth, secure and reliable. We offer
many thanks to Tom Heath who co-ordinated the application of Semantic Web
technologies to the ESWC, thus making the conference itself a showcase and
giving us all a chance to “eat our own dogfood”.

We are confident that ESWC 2006 proved to be a highly thrilling event
and once again showed the high levels of motivation, dedication, creativity and
performance of the Semantic Web community, and we sincerely hope that all
attendees found the conference enjoyable and stimulating.

April 2006 York Sure
John Domingue

Conference Organisation

General Chair John Domingue (The Open University, UK)
Programme Chair York Sure (Universität Karlsruhe (TH), Germany)
Workshop Chair Liliana Cabral (The Open University, UK)
Tutorial Chair Michael Stollberg (Universität Innsbruck, Austria)
Poster/Demo Chair Holger Wache (Vrije Univ. Amsterdam, Netherlands)
Industrial Event Alain Leger (France Telecom, France)
Publicity Chair Valentina Tamma (Univ. of Liverpool, UK)
Sponsor Chair Oscar Corcho (University of Manchester, UK)
Local Organisation Marko Grobelnik (Jožef Stefan Institute, Slovenia)

Tina Anžič (Jožef Stefan Institute, Slovenia)
Conference Admin. Christen Ensor (DERI Galway, Ireland)

Ilona Zaremba (DERI Galway, Ireland)
Webmaster Damian Dadswell (The Open University, UK)
Online Submissions Jens Hartmann (Univ. Karlsruhe (TH), Germany)
Semantic Techn. Co-ord. Tom Heath (The Open University, UK)

Senior Programme Committee

Richard Benjamins (iSOCO, Spain)
Jeremy J. Carroll (Hewlett Packard, UK)
Hamish Cunningham (University of Sheffield, UK)
John Davies (BT, UK)
Jérôme Euzenat (INRIA Rhône-Alpes, France)
Boi Faltings (École Polytechnique Fédérale de Lausanne (EPFL), Switzerland)
Enrico Franconi (Free University of Bozen-Bolzano, Italy)
Carole Goble (University of Manchester, UK)
Nicola Guarino (CNR, Italy)
Frank van Harmelen (Vrije Universiteit Amsterdam, Netherlands)
Ian Horrocks (University of Manchester, UK)
Maurizio Lenzerini (Università di Roma “La Sapienza”, Italy)
John Mylopoulos (University of Toronto, Canada)
Dimitris Plexousakis (University of Crete, Greece)
Guus Schreiber (Vrije Universiteit Amsterdam, Netherlands)
Amit Sheth (University of Georgia and Semagix, USA)
Steffen Staab (Universität Koblenz-Landau, Germany)
Rudi Studer (Universität Karlsruhe (TH), Germany)
Katia Sycara (Carnegie Mellon University, USA)

X Organisation

Programme Committee

Andreas Abecker (FZI Karlsruhe, Germany)
Dean Allemang (TopQuadrant Inc., USA)
Jürgen Angele (Ontoprise, Germany)
Anupriya Ankolekar (Universität Karlsruhe (TH), Germany)
Sean Bechhofer (University of Manchester, UK)
Abraham Bernstein (Universität Zürich, Switzerland)
Walter Binder (École Polytechnique Fédérale de Lausanne (EPFL), Switzerland)
Kalina Bontcheva (University of Sheffield, UK)
Paolo Bouquet (Università di Trento, Italy)
Jeen Broekstra (Technical University Eindhoven and Aduna, Netherlands)
Jos de Bruijn (DERI Innsbruck, Austria)
François Bry (Ludwig Maximilians Universität München (LMU), Germany)
Paul Buitelaar (DFKI Saarbrücken, Germany)
Christoph Bussler (Cisco Systems, Inc., USA)
Liliana Cabral (Open University, UK)
Nigel Collier (National Institute of Informatics, Japan)
Oscar Corcho (University of Manchester, UK)
Isabel Cruz (University Illinois at Chicago, USA)
Grit Denker (SRI International, USA)
Jörg Diederich (Universität Hannover and L3S, Germany)
Ying Ding (Universität Innsbruck, Austria)
Martin Dzbor (Open University, UK)
Andreas Eberhart (Hewlett Packard, Germany)
Fabien Gandon (INRIA Sophia-Antipolis, France)
Aldo Gangemi (CNR, Italy)
Mari Georges (ILOG, France)
Fausto Giunchiglia (University of Trento, Italy)
Christine Golbreich (Université de Rennes, France)
Asunción Gómez-Pérez (Universidad Politecnica de Madrid, Spain)
Marko Grobelnik (Jožef Stefan Institute, Slovenia)
Volker Haarslev (Concordia University, Canada)
Axel Hahn (Universität Oldenburg, Germany)
Siegfried Handschuh (DERI Galway, Ireland)
Jeff Heflin (Lehigh University, USA)
Nicola Henze (Universität Hannover, Germany)
Martin Hepp (Universität Innsbruck, Austria)
Pascal Hitzler (Universität Karlsruhe (TH), Germany)
Masahiro Hori (Kansai University, Japan)
Herman ter Horst (Philips Research, Netherlands)
Andreas Hotho (Universität Kassel, Germany)
Jane Hunter (University of Queensland, Australia)
Eero Hyvönen (Helsinki University of Technology (TKK), Finland)
Vangelis Karkaletsis (NCSR Demokritos, Greece)

Organisation XI

Vipul Kashyap (Clinical Informatics R&D, Partners Healthcare System, USA)
Atanas Kiryakov (Ontotext Lab, Sirma Group Corp, Bulgaria)
Matthias Klusch (DFKI Saarbrücken, Germany)
Manolis Koubarakis (National and Kapodistrian University of Athens, Greece)
Ruben Lara (Tecnologia, Informacion y Finanzas, Spain)
Alain Leger (France Telecom, France)
Alexander Löser (IBM Research, USA)
Mihhail Matskin (Royal Institute of Technology (KTH) Stockholm, Sweden)
Diana Maynard (University of Sheffield, UK)
Brian McBride (Hewlett Packard, UK)
Vibhu Mittal (Google Research, USA)
Riichiro Mizoguchi (Osaka University, Japan)
Dunja Mladenic (Jožef Stefan Institute, Slovenia)
Ralf Moeller (Technische Universität Hamburg, Germany)
Boris Motik (University of Manchester, UK)
Enrico Motta (The Open University, UK)
Wolfgang Nejdl (Universität Hannover and L3S, Germany)
Leo Obrst (MITRE, USA)
Daniel Olmedilla (Universität Hannover and L3S, Germany)
Jeff Z. Pan (University of Aberdeen, UK)
Elena Paslaru Bontas (Freie Universität (FU) Berlin, Germany)
Terry Payne (University of Southampton, UK)
Paulo Pinheiro da Silva (University of Texas at El Paso, USA)
H. Sofia Pinto (Technical University of Lisbon, Portugal)
Marco Pistore (Università di Trento, Italy)
Aleksander Pivk (Jožef Stefan Institute, Slovenia)
Chris Preist (HP Labs, UK)
Jinghai Rao (Carnegie Mellon University, USA)
Ulrich Reimer (Universität Konstanz and FHS St. Gallen, Switzerland)
Marie-Christine Rousset (Université Grenoble, France)
Stefan Schlobach (Vrije Universiteit Amsterdam, Netherlands)
Daniel Schwabe (PUC-Rio, Brazil)
Michael Sintek (DFKI Kaiserslautern, Germany)
Derek Sleeman (University of Aberdeen, UK)
Kavitha Srinivas (IBM T. J. Watson Research Center, USA)
Ljiljana Stojanovic (FZI Karlsruhe, Germany)
Michael Stollberg (DERI Innsbruck, Austria)
Heiner Stuckenschmidt (Universität Mannheim, Germany)
Gerd Stumme (Universität Kassel, Germany)
Vojtech Svatek (University of Economics, the Czech Republic)
Marko Tadic (University of Zagreb, Croatia)
Hideaki Takeda (National Institute of Informatics, Japan)
Valentina Tamma (University of Liverpool, UK)
Sergio Tessaris (Free University of Bozen-Bolzano, Italy)
Robert Tolksdorf (Freie Universität (FU) Berlin, Germany)

XII Organisation

Paolo Traverso (Automated Reasoning Systems Division at ITC/IRST, Italy)
Raphaël Troncy (CWI Amsterdam, Netherlands)
Ubbo Visser (Universität Bremen, Germany)
Holger Wache (Vrije Universiteit Amsterdam, Netherlands)
Krzysztof W↪ecel (Poznan University of Economics, Poland)
Steve Willmott (Universidad Politécnica de Cataluňa, Spain)
Michael Wooldridge (University of Liverpool, UK)

Additional Referees

Gunnar AAstrand
Grimnes

Sudhir Agarwal
Alessandro Agostini
Paolo Avesani
Sabine Bergler
Petr Berka
Piergiorgio Bertoli
Ian Blacoe
Janez Brank
Steve Cayzer
Xi Deng
Yu Ding
Martin Dvorak
Marc Ehrig
Daniel Elenius
Michael Erdmann
Achille Fokoue
Blaž Fortuna
David Fowler
Marjolein van Gendt
Chiara Ghidini
Rafael González Cabero
Yuanbo Guo
Peter Haase
Conor Hayes
Sven Helmer
Duncan Hull
Sebastian Hübner
Luigi Iannone
Antoine Isaac

Robert Jäschke
Zoi Kaoudi
Alissa Kaplunova
Atila Kaya
Aaron Kershenbaum
Christoph Kiefer
Malte Kiesel
Tim Klinger
Stasinos

Konstantopoulos
Leila Kosseim
Markus Krötzsch
Reto Krummenacher
Joey Lam
Hangen Langer
Freddy Lecue
Kevin Lee
Peter Ljubic
Mika Maier-Collin
Véronique Malaisé
Annapaola Marconi
David Martin
Iris Miliaraki
Knud Moeller
Meenakshi Nagarajan
Claudia Niederee
Barry Norton
Blaž Novak
Eyal Oren
Hsueh-Ieng Pai
Ignazio Palmisano

Zhengxiang Pan
Joel Plisson
Abir Qasem
Quentin Reul
Marco Ronchetti
Marta Sabou
Leonardo Salayandia
Christoph Schmitz
Thorsten Scholz
Edith Schonberg
Luciano Serafini
Thamar Solorio
Luca Spalazzi
Rodolfo Stecher
Heiko Stoermer
Umberto Straccia
Maria del Carmen

Suárez-Figueroa
Martin Szomszor
Edward Thomas
Michele Trainotti
Giovanni Tummarello
Daniele Turi
Jiri Vomlel
Peter Vorburger
Yimin Wang
Michael Wessel
Huiyong Xiao
Jianhan Zhu
Floriano Zini

Organisation XIII

Sponsors

Table of Contents

Invited Talks

Where Does It Break? or: Why the Semantic Web Is Not Just
“Research as Usual”

Frank van Harmelen . 1

Toward Large-Scale Shallow Semantics for Higher-Quality NLP
Eduard Hovy . 2

Usability and the Semantic Web
Anthony Jameson . 3

Ontology Alignment

Matching Hierarchical Classifications with Attributes
Luciano Serafini, Stefano Zanobini, Simone Sceffer,
Paolo Bouquet . 4

An Iterative Algorithm for Ontology Mapping Capable of Using
Training Data

Andreas Heß . 19

Community-Driven Ontology Matching
Anna V. Zhdanova, Pavel Shvaiko . 34

Reconciling Concepts and Relations in Heterogeneous Ontologies
Chiara Ghidini, Luciano Serafini . 50

Empirical Merging of Ontologies — A Proposal of Universal Uncertainty
Representation Framework

Vı́t Nováček, Pavel Smrž . 65

Ontology Engineering

Encoding Classifications into Lightweight Ontologies
Fausto Giunchiglia, Maurizio Marchese, Ilya Zaihrayeu 80

A Method to Convert Thesauri to SKOS
Mark van Assem, Véronique Malaisé, Alistair Miles,
Guus Schreiber . 95

XVI Table of Contents

Ontology Engineering Revisited: An Iterative Case Study
Christoph Tempich, H. Sofia Pinto, Steffen Staab 110

Ontology Evaluation

Towards a Complete OWL Ontology Benchmark
Li Ma, Yang Yang, Zhaoming Qiu, Guotong Xie, Yue Pan,
Shengping Liu . 125

Modelling Ontology Evaluation and Validation
Aldo Gangemi, Carola Catenacci, Massimiliano Ciaramita,
Jos Lehmann . 140

Benchmark Suites for Improving the RDF(S) Importers and Exporters
of Ontology Development Tools

Raúl Garćıa-Castro, Asunción Gómez-Pérez . 155

Ontology Evolution

Repairing Unsatisfiable Concepts in OWL Ontologies
Aditya Kalyanpur, Bijan Parsia, Evren Sirin,
Bernardo Cuenca-Grau . 170

Winnowing Ontologies Based on Application Use
Harith Alani, Stephen Harris, Ben O’Neil . 185

Resolving Inconsistencies in Evolving Ontologies
Peter Plessers, Olga De Troyer . 200

Ontology Learning

Automatic Extraction of Hierarchical Relations from Text
Ting Wang, Yaoyong Li, Kalina Bontcheva, Hamish Cunningham,
Ji Wang . 215

An Infrastructure for Acquiring High Quality Semantic Metadata
Yuangui Lei, Marta Sabou, Vanessa Lopez, Jianhan Zhu,
Victoria Uren, Enrico Motta . 230

Extracting Instances of Relations from Web Documents Using
Redundancy

Viktor de Boer, Maarten van Someren, Bob J. Wielinga 245

Table of Contents XVII

Rules and Reasoning

Toward Multi-viewpoint Reasoning with OWL Ontologies
Heiner Stuckenschmidt . 259

Effective Integration of Declarative Rules with External Evaluations for
Semantic-Web Reasoning

Thomas Eiter, Giovambattista Ianni, Roman Schindlauer,
Hans Tompits . 273

Variable-Strength Conditional Preferences for Ranking Objects in
Ontologies

Thomas Lukasiewicz, Jörg Schellhase . 288

A Metamodel and UML Profile for Rule-Extended OWL DL Ontologies
Saartje Brockmans, Peter Haase, Pascal Hitzler, Rudi Studer 303

Visual Ontology Cleaning: Cognitive Principles and Applicability
Joaqúın Borrego-Dı́az, Antonia M. Chávez-González 317

Rules with Contextually Scoped Negation
Axel Polleres, Cristina Feier, Andreas Harth . 332

Searching and Querying

Beagle++: Semantically Enhanced Searching and Ranking on the
Desktop

Paul-Alexandru Chirita, Stefania Costache, Wolfgang Nejdl,
Raluca Paiu . 348

RDFBroker: A Signature-Based High-Performance RDF Store
Michael Sintek, Malte Kiesel . 363

Towards Distributed Information Retrieval in the Semantic Web: Query
Reformulation Using the oMAP Framework

Umberto Straccia, Raphaël Troncy . 378

PowerAqua: Fishing the Semantic Web
Vanessa Lopez, Enrico Motta, Victoria Uren . 393

Information Retrieval in Folksonomies: Search and Ranking
Andreas Hotho, Robert Jäschke, Christoph Schmitz,
Gerd Stumme . 411

XVIII Table of Contents

Semantic Annotation

DEMO - Design Environment for Metadata Ontologies
Jens Hartmann, Elena Paslaru Bontas, Raúl Palma,
Asunción Gómez-Pérez . 427

An Environment for Semi-automatic Annotation of Ontological
Knowledge with Linguistic Content

Maria Teresa Pazienza, Armando Stellato . 442

Turning the Mouse into a Semantic Device: The seMouse Experience
Jon Iturrioz, Sergio F. Anzuola, Oscar Dı́az . 457

Managing Information Quality in e-Science Using Semantic Web
Technology

Alun Preece, Binling Jin, Edoardo Pignotti, Paolo Missier,
Suzanne Embury, David Stead, Al Brown . 472

Annotated RDF
Octavian Udrea, Diego Reforgiato Recupero, V.S. Subrahmanian 487

A Multilingual/Multimedia Lexicon Model for Ontologies
Paul Buitelaar, Michael Sintek, Malte Kiesel . 502

Semantic Web Mining and Personalisation

Semantic Network Analysis of Ontologies
Bettina Hoser, Andreas Hotho, Robert Jäschke, Christoph Schmitz,
Gerd Stumme . 514

Content Aggregation on Knowledge Bases Using Graph Clustering
Christoph Schmitz, Andreas Hotho, Robert Jäschke, Gerd Stumme . . . 530

Dynamic Assembly of Personalized Learning Content on the
Semantic Web

Jelena Jovanović, Dragan Gašević, Vladan Devedžić 545

Interactive Ontology-Based User Knowledge Acquisition: A Case Study
Lora Aroyo, Ronald Denaux, Vania Dimitrova, Michael Pye 560

Semantic Web Services

Matching Semantic Service Descriptions with Local Closed-World
Reasoning

Stephan Grimm, Boris Motik, Chris Preist . 575

Table of Contents XIX

The Web Service Modeling Language WSML: An Overview
Jos de Bruijn, Holger Lausen, Axel Polleres, Dieter Fensel 590

On the Semantics of Functional Descriptions of Web Services
Uwe Keller, Holger Lausen, Michael Stollberg . 605

A Minimalist Approach to Semantic Annotations for Web Processes
Compositions

Marco Pistore, Luca Spalazzi, Paolo Traverso . 620

Protocol Mediation for Adaptation in Semantic Web Services
Stuart K.Williams, Steven A. Battle, Javier Esplugas Cuadrado 635

Semantic Wiki and Blogging

Ideas and Improvements for Semantic Wikis
Jochen Fischer, Zeno Gantner, Steffen Rendle, Manuel Stritt,
Lars Schmidt-Thieme . 650

WikiFactory: An Ontology-Based Application for Creating
Domain-Oriented Wikis

Angelo Di Iorio, Valentina Presutti, Fabio Vitali 664

Using Semantics to Enhance the Blogging Experience
Knud Möller, Uldis Bojārs, John G. Breslin . 679

Trust and Policies

WSTO: A Classification-Based Ontology for Managing Trust
in Semantic Web Services

Stefania Galizia . 697

Semantic Web Policies - A Discussion of Requirements and Research
Issues

Piero A. Bonatti, Claudiu Duma, Norbert Fuchs, Wolfgang Nejdl,
Daniel Olmedilla, Joachim Peer, Nahid Shahmehri 712

Author Index . 725

Where Does It Break? or: Why the Semantic Web Is Not
Just “Research as Usual”

Frank van Harmelen

Vrije Universiteit Amsterdam
The Netherlands

http://www.cs.vu.nl/∼frankh/

Abstract. Work on the Semantic Web is all too often phrased as a technolog-
ical challenge: how to improve the precision of search engines, how to person-
alise web-sites, how to integrate weakly-structured data-sources, etc. This sug-
gests that we will be able to realise the Semantic Web by merely applying (and
at most refining) the results that are already available from many branches of
Computer Science. I will argue in this talk that instead of (just) a technological
challenge, the Semantic Web forces us to rethink the foundations of many sub-
fields of Computer Science. This is certainly true for my own field (Knowledge
Representation), where the challenge of the Semantic Web continues to break
many often silently held and shared assumptions underlying decades of research.
With some caution, I claim that this is also true for other fields, such as Machine
Learning, Natural Language Processing, Databases, and others. For each of these
fields, I will try to identify silently held assumptions which are no longer true on
the Semantic Web, prompting a radical rethink of many past results from these
fields.

Y. Sure and J. Domingue (Eds.): ESWC 2006, LNCS 4011, p. 1, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Toward Large-Scale Shallow Semantics
for Higher-Quality NLP

Eduard Hovy

Information Sciences Institute
University of Southern California

http://www.isi.edu/natural-language/people/hovy/bio.html

Abstract. Building on the successes of the past decade’s work on statistical
methods, there are signs that continued quality improvement for QA, summariza-
tion, information extraction, and possibly even machine translation require more-
elaborate and possibly even (shallow) semantic representations of text meaning.
But how can one define a large-scale shallow semantic representation system and
contents adequate for NLP applications, and how can one create the corpus of
shallow semantic representation structures that would be required to train ma-
chine learning algorithms? This talk addresses the components required (includ-
ing a symbol definition ontology and a corpus of (shallow) meaning representa-
tions) and the resources and methods one needs to build them (including existing
ontologies, human annotation procedures, and a verification methodology). To
illustrate these aspects, several existing and recent projects and applicable re-
sources are described, and a research programme for the near future is outlined.
Should NLP be willing to face this challenge, we may in the not-too-distant future
find ourselves working with a whole new order of knowledge, namely (shallow)
and doing so in increasing collaboration (after a 40-years separation) with spe-
cialists from the Knowledge Representation and reasoning community.

Y. Sure and J. Domingue (Eds.): ESWC 2006, LNCS 4011, p. 2, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Usability and the Semantic Web

Anthony Jameson

DFKI – German Research Center for Artificial Intelligence
and International University in Germany
http://dfki.de/˜jameson/

Abstract. In addition to its technical implications, the semantic web vision gives
rise to some challenges concerning usability and interface design. What difficul-
ties can arise when persons with little or no relevant training try to (a) formulate
knowledge (e.g., with ontology editors or annotation tools) in such a way that
it can be exploited by semantic web technologies; or (b) leverage semantic in-
formation while querying or browsing? What strategies have been applied in an
effort to overcome these difficulties, and what are the main open issues that re-
main? This talk will address these questions, referring to examples and results
from a variety of research efforts, including the project SemIPort, which con-
cerns semantic methods and tools for information portals, and Halo 2, in which
tools have been developed and evaluated that enable scientists to formalize and
query college-level scientific knowledge.

Y. Sure and J. Domingue (Eds.): ESWC 2006, LNCS 4011, p. 3, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Matching Hierarchical Classifications with Attributes

L. Serafini2, S. Zanobini1, S. Sceffer2, and P. Bouquet1

1 Dept. of Information and Communication Technology, University of Trento, via Sommarive,
14, 38050 Trento, Italy

2 ITC–IRST, via Sommarive, 15, 38050 Trento, Italy
simsce@libero.it, serafini@itc.it, zanobini@dit.unitn.it

Abstract. Hierarchical Classifications with Attributes are tree-like structures
used for organizing/classifying data. Due to the exponential growth and distri-
bution of information across the network, and to the fact that such information is
usually clustered by means of this kind of structures, we assist nowadays to an
increasing interest in finding techniques to define mappings among such struc-
tures. In this paper, we propose a new algorithm for discovering mappings across
hierarchical classifications, which faces the matching problem as a problem of
deducing relations between sets of logical terms representing the meaning of hi-
erarchical classification nodes.

1 Introduction

Hierarchical Classifications with attributes (HCAs) are tree-like structures with the ex-
plicit purpose of organizing/classifying some kind of data (such as documents, records
in a database, goods, activities, services). Examples are: web directories (see e.g. the
GoogleTM Directory or the Yahoo!TMDirectory), content management tools and por-
tals, service registry, marketplaces, PC’s file systems. Four very simple examples of
such structures are depicted in Figure 1. In particular, consider the leftmost one: it has
4 nodes, labeled with the words IMAGES, TUSCANY, BEACH, MOUNTAIN. The nodes are
connected by means of three edges, which are in turn labeled with ‘subSet’. Finally,
the node IMAGES is associated with an attribute [size = ‘large‘]. As an example, the
structure could be used for classifying the pictures taken during a vacation in Tuscany.

Due to the exponential growth and distribution of information across the network,
and to the fact that such information is usually clustered by means of this kind of struc-
tures, we assist nowadays to an increasing interest in finding techniques to define map-
pings among such structures, namely a set of point-to-point relations between their
nodes, in order to maximize the process of information retrieval. A lot of techniques
for (semi-)automatically computing mappings have been proposed (see as an example
[1, 2, 3, 4, 5]). Such methods associate to each pair of nodes occurring in two different
HCAs a real number in [0,1], called structural similarity. As an example, consider the
HCAs depicted in Figure 1-a: a matching technique could compute a structural similar-
ity n between the two nodes MOUNTAIN.

Despite mappings are defined between HCA nodes, they obviously express relations
between the semantics of HCA nodes. In our example, this means that the meanings of
the two nodes MOUNTAIN – which we call overall semantics – are n–related. Our claim

Y. Sure and J. Domingue (Eds.): ESWC 2006, LNCS 4011, pp. 4–18, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Matching Hierarchical Classifications with Attributes 5

TUSCANY

MOUNTAINBEACH

ITALY

BEACH MOUNTAIN

less general than

FLORENCE

TUSCANY

FLORENCE

ITALY

equivalent to

[size=’large’]
IMAGES

[size=’large’]
IMAGES

[size=’large’]
IMAGES

[size=’large’]
IMAGES

subSet

subSetsubSet subSet

subSet

subSet

subSet subSet

subSetsubSetsubSetsubSet

BEACH BEACH

a b

Fig. 1. Two simple pairs of Hierarchical Classifications with Attributes

is that such overall semantics of the nodes, which we can intuitively describe as ‘Large
size images of Mountains in Tuscany’ and ‘Large size images of Mountains in Italy’
for left and right node respectively, is mainly implicit and it is the result of composing
at least two further semantic (in this case, explicit) levels.

The first one, which we call structural semantics, is provided by the structure. This
semantics says, as an example, that the node TUSCANY is a child of the node IMAGES,
that the node ITALY has two children and so on, and that the node IMAGES is associated
with an attribute [size = ‘large‘]. It further says that the arcs should be interpreted
as ‘subSet’, as the set of documents that can be classified under the node TUSCANY is a
subset of the set of documents that can be classified under the node IMAGES. We want
to notice that the relation ‘subSet’ refers to the documents contained into the nodes and
not to the concepts expressed by the labels, as no one would say that the concept ‘Italy’
is a subset of the concept ‘Images’1. Anyway, this semantic level is not enough in order
to decide for the right interpretation of the node: as an example, both ‘large size images
of Italy of mountains’ (interpretation A) and ‘large size images of mountains of Italy’
(interpretation B) have the same probability to be the ‘right’ interpretation of the node
MOUNTAIN of the most left hand HCA of Figure 1.

In order to decide for the right one, we need a further semantic level, which we call
external semantics. This semantics, provided by the labels, relies on the knowledge
associated to English words as ‘Images’, ‘Tuscany’, ‘Florence’ and ‘Mountain’. We
want to notice that such knowledge is shared by the community of English speakers and
that is independent from their occurrence in the HCA. As an example, we know that the
‘images’ can depict physical objects, that the ‘mountains’ are physical objects and that
‘Tuscany’ is a spatial region where mountains occurs. Given this knowledge, we can
decide for the interpretation ‘large size images of mountains of Italy’ (interpretation
B) as the right one, and discard the other, ‘large size images of Italy of mountains’
(interpretation A), as wrong.

As the mappings express relations between the overall semantics of HCA nodes, and,
in turn, such semantics strictly depends on these two semantic levels, a trivial conse-
quence is that, in order to determine the ‘right’ relation holding between two nodes,
we need to take into account both structural and external semantics. E.g., consider the
two HCAs depicted in Figure 1-a. Intuitively, the relation between the nodes MOUNTAIN
is ‘less general than’, as the documents contained into the leftmost node, intuitively
‘large size images of Tuscan Mountains’, are a subset of the images contained into the

1 This distinction, in our opinion, is fundamental, as this is why this kind of structures cannot
be considered ontologies. Indeed, an ontology describes the relations between the concepts, as
the Hierarchical Classification describes the relations between sets of documents.

6 L. Serafini et al.

rightmost node, intuitively ‘large size images of Italian Mountains’2. Consider now the
two HCAs depicted in Figure 1-b. These HCAs are pairwise isomorphic to the ones
depicted in Figure 1-a, as we simple substitute the label ‘mountain’ with the label ‘Flo-
rence’. In this sense, these HCAs have (pairwise) the same structural semantics as the
HCAs of Figure 1-a. But the relation between the nodes FLORENCE, corresponding to
the nodes MOUNTAIN, is different, namely ‘equivalent’, as the documents contained into
the leftmost node, intuitively ‘large size images of Florence in Tuscany’ are the same of
the documents contained into the rightmost node, intuitively ‘large size images of Flo-
rence in Italy’. In particular, the different relation is due to a different external semantics:
Indeed, in this second case, external semantics provides that ‘images’ can depict phys-
ical objects, that ‘Florence’ is a physical object, and in particular a city, located both in
‘Tuscany’ and in ‘Italy’ (there is only one Florence in Italy and Tuscany).

The paper has the main goal of defining a procedure for matching Hierarchical Clas-
sifications with Attributes. In particular, the approach (i) makes explicit the (implicit)
overall meaning of each HCA node in a Description Logics term, taking into account
both structural and external semantics, and (ii) computes the relation between nodes
comparing such DL terms. The paper goes as follows: Section 2 will formally define
the matching problem for Hierarchical Classifications with Attributes, Section 3 will
describe our approach, Section 4 will provide the algorithm description, and finally
Section 5 will show the results of testing the algorithm on real examples.

2 The Problem

First of all, we introduce the notion of Hierarchical Classification with Attributes, whose
four very trivial examples are depicted in Figure 1. In this paper we assume labels are
English noun phrases. Let N be the set of such expression3. A HCA can be defined as
follows:

Definition 1 (Hierarchical Classification with Attributes). Let A = {〈a, b〉 | a, b ∈
N} be the set of all the possible pairs of strings in N (the set of attributes), where
N = {a | a ∈ 〈a, b〉, 〈a, b〉 ∈ A} is the set of attribute names and V = {b | b ∈
〈a, b〉, 〈a, b〉 ∈ A} is the set of attribute values. A Hierarchical Classification with At-
tributes G = 〈K, E, lk, la〉 is a 4-tuple, where K is a set of nodes, E is a set of arcs and
〈K, E〉 is a rooted tree. Furthermore, lk : K → N is a function from nodes to N (the
labels of the nodes), and la : K → {2A∪∅} (the possibly empty set of node attributes).

A Hierarchical Classification with Attributes can be intuitively described as a rooted
tree where each node is associated with a natural language label and a (possibly empty)
set of attributes. In this version of the algorithm we use a simplified definition of at-
tribute as pairs name/value.

2 When we say the documents contained in some node, we intend the documents potentially
contained into the node. See [6] for a discussion on that.

3 Examples of English noun phrases are single common words, as ‘images’ and ‘Tuscany’, com-
plex words, as ‘United States’, expressions containing conjunctions, as ‘big and small images’.
This set is very difficult (perhaps impossible) to be formalized. In the following, we assume
such a set as a primitive element.

Matching Hierarchical Classifications with Attributes 7

Furthermore, let M be the set of all the possible overall meanings that the nodes
of an HCA G = 〈K, E, lk, la〉 can express, and let Υ : K → M be a function that
associates to each node of the HCA its overall meaning.

The definition of a mapping, namely a set of point-to-point relations between pairs
of nodes of two distinct HCAs, represents the matching problem standard solution. As
we defined a mapping as a set of relations between the overall semantics of the nodes,
let � = {	,
,≡,⊥} (where ⊥ means ‘disjoint’) be the set of symbols expressing
relations between meanings. A mapping can be formally defined as follows:

Definition 2 (Mapping). A mapping M between two HCAs G = 〈K, E, lk, la〉 and
G′ = 〈K ′, E′, l′K , l′a〉 is a set of mapping elements 〈m, n, R〉 where m is a node in K ,
n is a node in K ′ and R is a semantic relation in � holding between Υ (m) and Υ (n).

3 Our Approach

A direct application of Definitions 1 and 2 suggest that a method for computing a map-
ping expressing relations between node overall semantics should be based, at least, on
the following two steps:

Semantic Elicitation: the process for approximating the ideal function Υ ;
Semantic Comparison: the process of finding mappings by comparing the Υ values.

As we have to handle machine–readable objects, we need to employ a concrete
means to represent the range of the Υ function, i.e. the set of meanings. In this pa-
per, we represent such meanings using Description Logic [7]. Let S = 〈T, R〉 be a
signature for a DL language, where T is a set of primitive concepts and R is a set of
primitive roles. Let L = 〈C,O〉 be a DL T–Box, where C is the set of concepts which
can be defined by means of the signature S, and O a (possibly empty) set of axioms
defined over C. L represents the range of the function Υ , namely the set of all the overall
meanings possibly expressed by HCA nodes.

In Section 1, we said that the overall meaning of a semantic graph node is the result
of the composition of two different levels of semantics: external and internal. [8, 9]
claim that the external semantics is given at least by the following knowledge sources:

Lexical knowledge: Such knowledge allows us to determine the (set of) concept(s)
denoted by a word. E.g., the word ‘Florence’ can be used to denote at least two
different concepts, namely ‘a city in central Italy on the Arno’ and ’a town in
northeast South Carolina’. Conversely, it can be used to recognize that two dif-
ferent words may refer to the same concept. E.g. the words ‘image’ and ‘picture’
can denote the same concept ‘a visual representation (of an object or scene or per-
son or abstraction) produced on a surface’, i.e. they are synonyms. Formally, let
m be the set of words occurring in N (the set of meaningful expressions). A lex-
icon L : m → 2T∪R is a function which associates each word to a set of primi-
tive concepts or roles belonging to the signature of a T–Box L. Hereafter, we use
Florence#1 to indicate the first concept possibly denoted by the word ‘Florence’.

Ontological/World knowledge: This knowledge concerns the relations holding be-
tween primitive concepts. For example, the fact that there is a PartOf relation

8 L. Serafini et al.

between the concepts Florence#1, as ‘a city in central Italy on the Arno’, and
Italy#1, as ‘a republic in southern Europe on the Italian Peninsula’, i.e. that ‘Flo-
rence is part of Italy’. We formally define the ontological knowledge as the set of
axioms of a T–Box L (namely O).

On the other hand, the internal semantics is provided by node arrangement into the
HCA. E.g., consider the node FLORENCE of the rightmost graph of Figure 1. Since the
HCA is a tree, the internal semantics of the node is represented by the fact that the
node IMAGES is the root and that the node FLORENCE lies in the path IMAGES/ITALY/
FLORENCE. Furthermore, it says that an attribute [size = ‘large‘] is associated with
the node IMAGES. Finally, it says that the node FLORENCE (possibly) contains a subset
of the documents (possibly) contained in the node ITALY, which in turn (possibly)
contains a subset of the documents (possibly) contained in the node IMAGES.

During the semantic elicitation step, the two semantic levels will be combined, as
shown in Section 4.1, in order to obtain the overall meaning of the nodes. Going on
with our example, the intuitive meaning of the node FLORENCE, ‘large size images of
Florence in Italy’, will be approximated with the following DL term:

Image#2 ∃size#1.large#1 ∃about#1.(Florence#1 ∃PartOf.Italy#1) (1)

where Image#2 represents the concept ‘a visual representation (of an object or scene
or person or abstraction) produced on a surface’, size#1 the concept ‘the physical mag-
nitude of something (how big it is)’, Florence#1 the concept ‘a city in central Italy on
the Arno’, and so on.

Finally, the semantic comparison step (Section 4.2) determines the relation hold-
ing between two nodes by comparing their meanings (formalized during the semantic
elicitation step). For this task, we rely on existent techniques for determining possible
entailment between concepts. As an example, imagine that during the semantic elic-
itation step we determine the following overall semantics for the node FLORENCE of
rightmost HCA of Figure 1-b:

Image#2 ∃size#1.large#1 ∃about#1.(Florence#1 ∃PartOf.Tuscany#1)(2)

During the semantic comparison step, we check if it holds that O |= (1) ≡ (2)4.
From this fact, we can conclude that the relation between the nodes FLORENCE of HCAs
of Figure 1 is ‘equivalent’.

4 Algorithm Description

In this section, we describe a possible implementation of the two main steps described
in the previous section. In this implementation, the lexicon L is represented by WORD-
NET5. Both terms T and roles R of the signature S are the synsets of WORDNET. R

4 Of course, this is true only if the ontology provides that Florence#1 � ∃PartOf.Tuscany#1
and Florence#1 � ∃PartOf.Italy#1.

5 WORDNET [10] is a well-known lexical/ontological repository containing the set of concepts
denoted by words (called synsets, i.e. set of synonyms), and a small set of relations (e.g. IsA
and PartOf) holding between senses.

Matching Hierarchical Classifications with Attributes 9

contains also two predefined roles: IsA and PartOf. The set of concepts C is the set of
all the allowed expressions built on signature S. The ontology O is composed both by
the IsA and PartOf relations defined in WORDNET and by a further ad hoc ontology.

Furthermore, we define focus of a node n the part of the structural semantics which
we take into account in order to build the overall meaning of n6. Formally:

Definition 3 (Focus of a node). The focus of a node n of a HCA G is the HCA F (n) =
〈K ′, E′, l′k, l′a〉, such that: (i) K ′ contains the nodes of the path from the root of G to
n; (ii) for each k ∈ K ′, K ′ contains all its attributes too; (iii) all the other elements of
F (n) are the restriction of the corresponding component of G on K ′.

Now we can describe the implementation of the two main steps of the algorithm, namely
semantic elicitation and semantic comparison.

4.1 Semantic Elicitation

The semantic elicitation process has the main aim of approximating the meaning of
each node of a HCA, namely it is an implementation of the function Υ . If applied to the
node FLORENCE of the rightmost HCA of Figure 1-b, it should generate a representa-
tion of the intuitive meaning ‘large size images of Florence in Italy’. In particular, we
apply the following three sub-steps: (i) we build the node local meaning, i.e. the mean-
ing of the node taken in isolation (intuitively represented, for nodes IMAGES, ITALY
and FLORENCE by ‘large size images’, ‘Italy’ and ‘Florence’), (ii) we discover possible
relations between the local meanings (e.g. a possible relation between the meanings of
‘large size images’ and ‘florence’ is that the images are ‘about’ Florence), and (iii) we
combine them, in order to obtain the global meaning, namely the meaning of the node
in the HCA (intuitively represented by ‘large size images about Florence in Italy’). In
the following sections we provide a description of them, and an example on how they
operate on the node FLORENCE of the rightmost HCA of Figure 1-b.

1. Building the local meaning. In this phase, we consider separately each node of an
HCA and, for each of them (with its set of attributes), we generate a DL description in
C which approximates all possible meanings of the node. Imagine that we consider a
labeled node with n attributes: The local interpretation of the node is generated starting
from the following pattern: label∃attName1.filler1 . . .∃attNamen.fillern, where
label is the label of the node, and attNamej and fillerj are the attribute name and
the filler of the jth attribute respectively. In particular, we consider the attribute name
as a role and the attribute filler as a range of a DL term. We obtain the space of all
the possible interpretations of a node by substituting the words occurring in the pattern
(namely the labels of the node, and of the attributes) with each concept possibly denoted
by the words themselves w.r.t. lexicon L. Of course, a label, an attribute name or a filler
can contain a word not present in the lexicon. In this case, we consider the string itself as
a concept. As an example, if we find the word ‘frtye’ in a label, the resulting concept will

6 Other possible definitions can be provided. In [8] we define focus of a node n the set of nodes
occurring in the path from root to n, and their respective children. In the extreme case, we can
consider all the nodes of the HCA.

10 L. Serafini et al.

be frtye#1. Obviously no relation of synonymy will be found for this concept, except
for concepts denoted by the same string. Furthermore, the current implementation can
handle also more complicated cases than single words. In particular, any English noun
phrase occurring in the label, in the attribute name or in the filler can be treated. In order
to do that, we use a dedicated natural language parser for individuating the syntactic
category and the part of speech of the words. The description of such parser is out of
the scope of this paper. Details can be found in [11]. Going on our example, as our
lexicon provides 7 concepts for the word ‘Images’, 5 for ‘size’, 8 for ‘large’, 1 for
‘Italy’ and 2 for ‘Florence’, the space of all the possible interpretations for the nodes
IMAGES, ITALY and FLORENCE of rightmost schema of Figure 1-b is the following:

Table 1. Set of all the possible local interpretations

i(IMAGES) i(ITALY) i(FLORENCE)
Image#1� ∃size#1.large#1 Italy#1 Florence#1
Image#2� ∃size#1.large#1 Florence#2
. . .
Image#7� ∃size#5.large#8

Of course, not all the concepts denoted by words have to be considered in order to
compose the node meaning, as some role or concept couldn’t be the right one w.r.t. that
node in that HCA. E.g., the concept Florence#2 (‘a town in northeast South Carolina’),
possibly denoted by the word ‘Florence’, is probably wrong in order to represent the
meaning of the node FLORENCE (as the Florence we are talking about seems to be the
Florence in Italy). The next phase has the aim of discarding such useless concepts.

First of all, we try to discover semantic relations holding between the concepts as-
sociated to nodes, accessing ontology O. In the following, we assume to have a black
box function R : T × T → R which takes as input two concepts and returns the role
holding between them7. In particular, we search for the relations tieing two different
kinds of elements:

Attribute Roles: Consider the node IMAGES, where an attribute occurs. In the previous
phase, we build the set of all the possible interpretations for this node (i(IMAGES)).
In this step, we access ontology O for determining if it explicitly supports one
(or more) of these possible interpretations. As an example, we can discover that
R(Image#2, large#1) = size#1, namely that the second interpretation of Table 1
is supported by the ontology.

Structural Roles: In this step we search for semantic relations relating concepts be-
longing to different nodes. In particular, as a focus represents the set of nodes to
take into account in order to build the meaning of a node, we search for relations
holding between concepts of nodes occurring in the same focus. As an example,

7 The description of this methodology for extracting relations between concepts is out of the
scope of this paper. A detailed description can be founded in [11]. As an example of how this
procedure works, imagine that the ontology O contains the following axioms: Image#2 �
∃about#1.Entity#1 and Florence#1 � Entity#1. Then, R(Image#2, Florence#1) =
about#1.

Matching Hierarchical Classifications with Attributes 11

consider node FLORENCE. As the node IMAGES occurs in the focus of FLORENCE,
we search for a relation holding between the concepts denoted by the word ‘Image’
and the concepts denoted by the word ‘Florence’. In this case we find the following
relation:R(Image#2, Florence#1) = about#1.

Table 2 shows the set of relations we find w.r.t. the focus of node FLORENCE. For the
relations we use the notation 〈Image#2, large#1, size#1〉 for indicating the relation
R(Image#2, large#1) = size#1 discovered by function R.

Table 2. Set of relations

1 〈Image#2, large#1, size#1〉
2 〈Image#2, Italy#1, about#1〉
3 〈Image#2, Florence#1, about#1〉
4 〈Image#2, Florence#2, about#1〉
5 〈Florence#1, Italy#1, PartOf〉

Then, filtering step is performed by applying the following rules to each concept
extracted in the previous phases.

Weak rule: A concept c associated to a word w occurring in a node n can be removed
if c it is not involved in any relation and exists another concept c′ (different from c)
associated to w in n which is involved in some relation.

Strong rule: A concept c associated to a word w occurring in a node n can be removed
if c it is not involved in any IsA or PartOf relation and exists another concept c′

(different from c) associated to w in n which is involved in some IsA or PartOf
relation.

An example of the application of the first rule is the following. In Table 2 we find
that the concept Image#2 is involved in relations 1–4, while the concepts Image#1,
Image#3, . . . , Image#7 are not involved in any relation. From this fact, we can guess
that the ‘right’ concept expressed by the word ‘Image’ in this node is Image#2, and
the other ones can be discarded. The second rule says something stronger, as a concept
can be discarded even if involved in some relation. The idea is that we consider IsA and
PartOf relations be strongest than the other ones. As an example, consider the relations
4 and 5. Because of we find a relation PartOf between the concepts Florence#1 and the
concept Italy#1 (relation 5), we can discard the concept Florence#2 also if involved
in a about#1 relation (axiom 4). The consequence of this step is to reduce the space
of possible interpretations of a node, discarding any interpretation involving discarded
concepts. The concepts are considered accessing top-down the hierarchy. Obviously, as
these are heuristic rules, mistakes can be performed. Following Table shows the current
interpretations for the nodes IMAGES, ITALY and FLORENCE8.

8 Note that a node can have more than one possible interpretation. When this happens, all the
interpretations are kept (ambiguity partially solved). Formally, an interpretation of a node n
with more than one possible interpretation is encoded as the disjunction (�) of all the possible
interpretations occurring in the i(n) set.

12 L. Serafini et al.

i(IMAGES) i(ITALY) i(FLORENCE)
Image#2 ∃size#1.large#1 Italy#1 Florence#1

2. Determining the relations between nodes. In this phase, we try to find relations
tieing different nodes. To this end, we take into account the subset of the previously
extracted relations (see Table 2), and in particular the set of relations holding between
concepts belonging to different nodes. Going on our example, we take into account
relations 2–5.

As for concepts, not all the relations are the right ones for expressing the node mean-
ings. In order to individuate the ‘right’ ones, first of all we discard the relations in-
volving discarded concepts, as they refer to no longer existent concepts. The following
Table shows the current set of relations.

1 〈Image#2, large#1, size#1〉
2 〈Image#2, Italy#1, about#1〉
3 〈Image#2, Florence#1, about#1〉
5 〈Florence#1, Italy#1, PartOf〉

Then we cluster this set in homogeneous triples 〈M, N, r〉, where M and N are nodes and
r is a role in R. In particular, a relation 〈C#j, D#k, R#t〉 belongs to the triple 〈M, N, r〉
if C#j is present in I(M) (the local interpretation of M), D#k is present in I(N) (the
local interpretation of N) and R#t = r. Let T be such a set of triples: it represents the
relations between nodes, that we call edges. As the meaning of a node n is determined
by its focus, in order to build its meaning, we need to take into account the set of edges
relating nodes occurring in the focus. Concerning the node FLORENCE, the edges we are
interested in are depicted in the following Table:

1 〈IMAGES, ITALY, about#1〉
2 〈IMAGES, FLORENCE, about#1〉
3 〈FLORENCE, ITALY, PartOf〉

Of course, such set can be ambiguous. E.g., may happen that we have two different
edges between the same pair of nodes, or that two nodes are mutually in relation, and
so on. Formally, let n be a node, F its focus, TF the set of edges restricted to F and
G = 〈F, TF 〉 the graph obtained by combining the set F of nodes and the set TF of
edges. We define G not ambiguous if (i) it is acyclic, (ii) don’t exist two edges between
the same two nodes and (iii) each node has at most one entering edge. In our example, G
results ambiguous: indeed, node ITALY has two entering edges: from IMAGES (edge 1)
and from FLORENCE (edge 3)9. Let Γ ⊆ 2G be the set of all the possible unambiguous
sets of graphs. As the presence of edges 1 and 3 creates the ambiguity, Γ contains the
graphs 〈F, 〈1, 2〉〉, 〈F, 〈2, 3〉〉, 〈F, 〈1〉〉, 〈F, 〈2〉〉, 〈F, ∅〉. In order to choose the graph

9 Intuitively, it means that the node ITALY, and consequently the concept it denotes, intuitively
‘Italy’, cannot be considered a modifier of two different concepts, namely ‘Florence’ (Flo-
rence is part of Italy) and ‘Images’ (images about Italy). Intuitively, we need to decide for the
ambiguity between ‘images about Italy in Florence’ and ‘images about Florence in Italy’.

Matching Hierarchical Classifications with Attributes 13

representing the set of ‘right’ relations between nodes, we apply the two following
heuristics rules:

Edges Maximization: Such rule prefers graph(s) with larger set of edges. Intuitively,
it selects the set which better connect the nodes in the HCA. In our example, the
rule prefers the graphs 〈F, 〈1, 2〉〉 and 〈F, 〈2, 3〉〉 of Γ ;

Path Minimization: Such rule prefers graph(s) minimizing the number of paths repre-
senting a node coverage over F. As an example, the rule prefers the graph 〈F, 〈2, 3〉〉
of Γ , as can be defined a node coverage using the single path (IMAGES

about#1−→
FLORENCE

PartOf−→ ITALY)10.

By applying these rules, we can determine that the graph representing the right set of re-
lations between the nodes occurring in the focus of the node FLORENCE is 〈F, 〈2, 3〉〉11.

3. Composing the meaning. In the last step, local meanings are combined by means
of the edges in order to obtain the global meaning of a node. Formally, it can be defined
as follows:

Definition 4 (Global Meaning). Let n be a node in a HCA, F the focus of n and G =
〈F, T 〉 a unambiguous graph. Furthermore, let Π the minimal set of paths representing
a coverage of G. The global meaning g(n) for the node n is the following DL term:

π∈Π I(π0) φ(Rπ0,π1)(I(π1) φ(Rπ1,π2)(I(π2) . . .) . . .)

where I(Y) is the local meaning of the node Y , πj is the jth elements of the path π (a
node of the HCA), Rπk,πj is the relation between the kth and jth node in π provided by
T and φ(r) is ∅ if r = IsA, ‘∃r.’ otherwise.

Essentially, we define the global meaning of a node as the conjunction () of all the
meanings recursively build on the paths of the coverage. In our example, where G
contains the single coverage:

IMAGES
about#1−→ FLORENCE

PartOf−→ ITALY

the following term (3) represents the global meaning for node FLORENCE:

Image#2 � ∃size#1.large#1 � ∃about#1.(Florence#1� ∃PartOf.Italy#1) (3)

4.2 Semantic Comparison

The second macro–step of the algorithm consists in computing the relations holding
between nodes comparing their meanings via logical reasoning. In this phase we ex-
ploit well–known techniques12, and in particular we use RACER DL reasoner (see
http://www.sts.tu-harburg.de/∼r.f.moeller/racer).

10 As an example, the other graph, namely 〈F, 〈1, 2〉〉, should be represented by the following

two paths: IMAGES
about#1−→ FLORENCE and IMAGES

about#1−→ ITALY.
11 When ambiguity arises anyway, we perform a random choice.
12 Reasoning complexity is directly related to the Description Logic degree we use for encoding

the meaning. In this paper we use the ALC fragment of DL, which guarantees decidability.

14 L. Serafini et al.

Imagine semantic elicitation step has been completed for each node occurring in the
two different HCAs H = 〈K, E, lk, la〉 and H ′ = 〈K ′, E′, l′k, l′a〉. Then we perform
the following reasoning problems for each pair of nodes k ∈ K and k′ ∈ K ′ (remember
that the function g() returns the DL terms approximating the node meanings):

Entailment problem Semantic Relation

O |= (g(k) g(k′)) 	 ⊥ ⊥
O |= g(k) ≡ g(k′) ≡
O |= g(k) 	 g(k′) 	
O |= g(k)
 g(k′)

otherwise ∗

Ontological knowledge O can be used in order to improve reasoning process. In case
no relation is founded, we return the generic relation ∗, that we interpret as possible
intersection or compatibility.

E.g, suppose that we want to find the relation holding between the nodes FLORENCE
of leftmost and rightmost HCA of Figure 1-b respectively. The semantic elicitation step
produces the description (3) for node FLORENCE of the rightmost HCA of Figure 1-b.
Now, imagine that we apply the same process to the node FLORENCE of the leftmost
HCA of Figure 1-b. We obtain the following DL term:

Image#2 � ∃size#1.large#1 � ∃about#1.(Florence#1� ∃PartOf.Tuscany#1) (4)

Moreover, imagine that the ontologyO provides the following axioms13: Florence#1 	
∃PartOf.Italy#1 (Florence is part of Italy), Florence#1 	 ∃PartOf.Tuscany#1 (Flo-
rence is part of Tuscany) and Tuscany#1 	 ∃PartOf.Italy#1 (Tuscany is part of Italy).
We can easily state that O |= (3) ≡ (4) holds. So, we can conclude that the semantic
relation between the nodes FLORENCE of leftmost and rightmost HCAs of Figure 1-b
respectively is ‘equivalent’ (‘≡’).

We want to notice that the same process we describe, when applied to the nodes
MOUNTAIN of Figure 1-a, gives different results. Indeed, consider the following global
meanings associated to the nodes MOUNTAIN of leftmost and rightmost HCA respec-
tively:

Image#2 � ∃size#1.large#1 � ∃about#1.(Mountain#1� ∃located#1.Tuscany#1) (5)

Image#2� ∃size#1.large#1 � ∃about#1.(Mountain#1� ∃located#1.Italy#1) (6)

As before, imagine that the ontologyO provides the following axioms: Florence#1 	
∃PartOf.Italy#1, Florence#1 	 ∃PartOf.Tuscany#1 Tuscany#1 	 ∃PartOf.Italy#1
We can state that O |= (5) 	 (6) holds14. So, we can conclude that the semantic
relation between the nodes MOUNTAIN of leftmost and rightmost HCAs of Figure 1-a
respectively is ‘less general than’ (‘	’).

13 All these axioms are derived from WORDNET.
14 The conclusion strictly doesn’t hold. In the current version of the algorithm, we use the fol-

lowing meta-rule: if A � ∃PartOf.B then A � B, namely that we treat the ‘part of’ relation
as an ’is a’ relation.

Matching Hierarchical Classifications with Attributes 15

5 Testing the Algorithm

The algorithm have been intensively tested on two tasks, driven from the 2nd interna-
tional ontology alignment competition15. The first task consists in trying to align a bib-
liography ontology against many others ontologies, some related, some others not. The
second task consists on aligning subsets of the three biggest web directories available
on line, namely Google, Yahoo and Looksmart. We use both as lexical and ontological
knowledge WORDNET. No ad hoc ontology has been used.

Before introducing the results, we have to formally define the notion of correct result.
Let A and B two nodes in two different HCs, and 〈A, B, R〉 the mapping determined by
the algorithm. This is strongly correct if in the Golden standard is present a mapping
〈A′, B′, R′〉 such that A = A′, B = B′ and R = R′, and is weakly correct if A = A′,
B = B′ and R′ → R16. As measure of accuracy for the algorithm results, we use the
standard Precision, Recall and F-Measure17.

Matching The Benchmark. The task consists in aligning a reference ontology against
51 other ontologies (hereafter target ontologies). The reference ontology is based on one
of the first EON Ontology Alignment Contest, and it has been improved by comprising
a number of circular relations that were missing from the previous test. The domain of
the reference ontology is the Bibliographic references, and represents a subjective view
of what must be a bibliographic ontology. It contains 33 named classes. The target on-
tologies represent a sort of alteration of the reference ontology. In particular, there are
5 categories of alteration: (i) names of entities can be replaced by random strings, syn-
onyms, names with different conventions, strings in another language than English; (ii)
comments can be suppressed or translated in another language; (iii) specialization hier-
archy can be suppressed, expansed or flattened; (v) classes can be expanded, (namely
replaced by several classes) or flattened18. On the whole, the target ontologies contains
2,044 named classes. Beside the reference and the target ontologies, a golden standard
have been proposed. The algorithm performs all the comparisons in 10 minutes, using
a common laptop, namely a Toshiba A60-122 with the following characteristics: CPU
Intel Pentium 4 3.06 GHz, 704 MB RAM, HD 30 GB (4500 RPM), OS Microsoft Win-
dows XP SP2. The following Table reports Average Precision, Recall and F-Measure:

Precision Recall F-Measure

Strong 0.48 0.48 0.47
Weak 0.66 0.64 0.64

15 The testing results can be obtained at http://www.stefanozanobini.net/.
16 That is the Golden Standard result must imply the algorithm result. As an example, if the

relation present in the Golden standard is ≡, than both � or
 relations are weakly correct,
whereas if the relation present in the Golden standard is �, than
 relation is incorrect. Note
that both these conditions of correctness are stronger than the standard one, which states that
a mapping 〈A, B, R〉 is correct if in the Golden standard is present a mapping 〈A′, B′, R′〉 such
that A = A′, B = B′.

17 The F-measure is usually defined as F = 2 ∗ (Recall×Precision)
(Recall+Precision) .

18 See http://oaei.inrialpes.fr/2005/ for a detailed description of the alterations.

16 L. Serafini et al.

Matching Web Directories. The task consists in evaluating the performances of the
algorithm on matching real world HCs. The evaluation dataset has been extracted from
Google, Yahoo and Looksmart web directories, and consists in 2,265 sub-tasks, where
each sub-task is represented by a pair of subsets of the mentioned web directories.
Each single subset is represented as an OWL ontology, where classification relations
are modeled as OWL subClassOf relations. In the following, we call source and target
the first and the second ontology of each sub-task respectively. The set of sources has on
the whole 14,845 concepts, while the set of targets has on the whole 20,066 concepts.
The algorithm performs all the comparison in 18 minutes, using the same machine as
the previous task. As no golden standard has been provided, the algorithm accuracy has
been manually verified. Due to time reasons, only a random 3% of the sub-tasks have
been verified. The following Table reports Precision, Recall and F-Measure:

Precision Recall F-Measure

Strong 0.65 0.55 0.55
Weak 0.72 0.62 0.61

6 Related Work

The algorithm faces the problem of matching HCs deducing relations between logical
terms approximating the meaning of the nodes. Under this respect, to the best of our
knowledge, there are no other works to which we can compare ours. Standard graph
matching techniques (for a survey, see [12]), essentially rely on finding isomorphisms
between graphs or sub-graphs. Of course, as in real world applications graph represen-
tations present an high degree of heterogeneity, we can’t expect to individuate a perfect
match between them. So, methods for computing similarity between pairs of elements
have been proposed (see as an example [1, 2, 3, 4, 5]). In particular, such methods com-
pute structural similarity, usually expressed by a real number in [0,1], across all the
pairs of nodes occurring in different graphs. Essentially, such structural similarity takes
into account only on what we call structural semantics, and, essentially, such methods
present the drawbacks we show in Section 1.

Recently, approaches which combines graph matching techniques with lexical knowl-
edge have been proposed. The most relevant, in our opinion, are CUPID [13], a com-
pletely automatic algorithm for schema matching, and MOMIS [14], a set of semi–
automatic tools for information integration of (semi)structured data sources. Both
approaches exploit lexical information in order to increase the node similarity. But, as
they essentially rely on standard graph matching techniques, taking into account only
structural semantics, they also partially present the same drawbacks. As an example, in
case of equivalent nodes occurring in completely different structures, and completely
unrelated nodes that belong to isomorphic structures, the matches fail.

On the other hand, the task of translating some natural language expression into
a formal expression is partially shared with the NL community. As an example, [15]
proposes a method for building schemas starting from NL statements. The problem is
essentially the other way round with respect to the ours, with the main difference that
rely essentially on syntactical (grammatical) structure, and not on semantic relations,
as we do. [16] proposes a method for interpreting schema elements (with particular

Matching Hierarchical Classifications with Attributes 17

emphasis on Web directories). But they essentially analyzes the documents contained
on the schemas, as we analyzes the schema.

The problem of individuating the right concept expressed by some word is commonly
known as word sense disambiguation (see [17] for a survey). We face a similar problem
in the filtering step. The heuristics we use are essentially different from the most of that
procedures, as they are based on the notion of conceptual distance among concepts (see
[18] and [19]), which in turn rely on standard graph matching techniques.

7 Conclusions

In this paper we presented a new approach for matching hierarchical classifications with
attributes. The algorithm is essentially an improvement of that one presented in [8],
and of its extension in [20]. In particular, we extend the algorithm in order to (i) treat
node attributes, (ii) encode the meaning using a more powerful language (Description
Logics vs Propositional Logics), and (iii) allow complicate node labels (Noun Phrases
expressions vs simple words).

We want to stress that the main algorithm novelty consists in not considering a HC
as a (semantically) homogeneous structure. Indeed, its semantic is the result of merg-
ing at least two further different semantic levels: structural semantics (represented by
the backbone of the structure and by the interpretation of the arcs) and external seman-
tics (represented by the interpretations of the labels and by the relations between the
concepts).

Finally, we want to notice that the approach we describe can be ‘easily’ extended in
order to treat, in principle, any graph-like domain representation.

References

1. Zhang, K., Wang, J.T.L., Shasha, D.: On the editing distance between undirected acyclic
graphs and related problems. In Galil, Z., Ukkonen, E., eds.: Proceedings of the 6th Annual
Symposium on Combinatorial Pattern Matching. Volume 937., Espoo, Finland, Springer-
Verlag, Berlin (1995) 395–407

2. Pelillo, M., Siddiqi, K., Zucker, S.W.: Matching hierarchical structures using association
graphs. Lecture Notes in Computer Science 1407 (1998)

3. Milo, T., Zohar, S.: Using schema matching to simplify heterogeneous data translation. In:
Proc. 24th Int. Conf. Very Large Data Bases, VLDB. (1998) 122–133

4. Carroll, J., HP: Matching rdf graphs. In: Proc. in the first International Semantic Web
Conference - ISWC 2002. (2002) 5–15

5. Euzenat, J., Valtchev, P.: An integrativive proximity measure for ontology alignment. Pro-
ceedings of the workshop on Semantic Integration (2003)

6. Benerecetti, M., Bouquet, P., Zanobini, S.: Soundness of schema matching methods. In
Proc. of second European Semantic Web Conference (ESWC 2005). Volume 3532 of LNCS.,
Heraklion, Crete, Greece, Springer (2005) ISBN 3-540-26124-9.

7. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P., eds.: The De-
scription Logic Handbook. Theory, Implementation and Applications. Cambridge University
Press (2003)

18 L. Serafini et al.

8. Bouquet, P., Serafini, L., Zanobini, S.: Semantic coordination: a new approach and an appli-
cation. In Proc. of The Semantic Web – 2nd international semantic web conference (ISWC
2003). Volume 2870 of LNCS., Sanibel Island, Fla., USA (2003)

9. Bouquet, P., Serafini, L., Zanobini, S.: Coordinating semantic peers. In Proced. of AIMSA-
2004, Artificial Intelligence: Methodology, Systems, and Applications. Volume 3192 of
LNAI., Varna, Bulgaria (2004)

10. Fellbaum, C., ed.: WordNet: An Electronic Lexical Database. The MIT Press, Cambridge,
US (1998)

11. Sceffer, S., Serafini, L., Zanobini, S.: Semantic coordination of hierarchical clas-
sifications with attributes. Technical Report 706, DIT, University of Trento (2004)
http://eprints.biblio.unitn.it/archive/00000706/.

12. Bunke, H.: Graph matching: Theoretical foundations, algorithms, and applications. In: Pro-
ceedings of Vision Interface 2000, Montreal. (2000) 82–88

13. Madhavan, J., Bernstein, P.A., Rahm, E.: Generic schema matching with cupid. In: The
VLDB Journal. (2001) 49–58

14. Bergamaschi, S., Castano, S., Vincini, M.: Semantic integration of semistructured and struc-
tured data sources. SIGMOD Record 28(1) (1999) 54–59

15. Woods, W.: Conceptual indexing: A better way to organize knowledge. Technical Report
TR-97-61, Sun Microsystems Laboratories (1997)

16. Kavalec, M., Svatek, V.: Information extraction and ontology learning guided by web direc-
tory. In: ECAI Workshop on NLP and ML for ontology engineering, Lyon (2002)

17. Ide, N., Veronis, J.: Introduction to the special issue on word sense disambiguation: the state
of the art. Comput. Linguist. 24(1) (1998) 2–40

18. Agirre, E., Rigau, G.: Word sense disambiguation using conceptual density. In: Proceedings
of COLING-96, Copenhagen, Danmark (1996) 16–22

19. Resnik, P.: Using information content to evaluate semantic similarity in a taxonomy. In:
IJCAI. (1995) 448–453

20. Giunchiglia, F., Shvaiko, P., Yatskevich, M.: S-Match: an algorithm and an implementation
of semantic matching. In: Proceedings of ESWS. (2004) 61–75

An Iterative Algorithm for Ontology Mapping
Capable of Using Training Data

Andreas Heß

Vrije Universiteit Amsterdam
University College Dublin

andreas@few.vu.nl

Abstract. We present a new iterative algorithm for ontology mapping
where we combine standard string distance metrics with a structural
similarity measure that is based on a vector representation. After all
pairwise similarities between concepts have been calculated we apply
well-known graph algorithms to obtain an optimal matching. Our algo-
rithm is also capable of using existing mappings to a third ontology as
training data to improve accuracy. We compare the performance of our
algorithm with the performance of other alignment algorithms and show
that our algorithm can compete well against the current state-of-the-art.

1 Introduction

In this paper, we present an iterative algorithm1 for ontology mapping that is
based on established string distance metrics that have been discussed in litera-
ture and on a structural similarity measure that is based on a vector represen-
tation of the relations between entities. Furthermore, we show how we can use
a given mapping to a third ontology as training data or background knowledge
to improve mapping accuracy.

The remainder of this paper is structured as follows: We start with a formal
problem formulation in section 2. We continue with a short discussion of related
work (section 3). Then, we present our algorithm in detail in section 4. We
discuss various parameters and design choices in section 5. Finally, we evaluate
the performance of different configurations of our algorithm and show that we
can compete well against the current state-of-the-art (see section 6) before we
conclude in section 7.

2 Problem Formulation

In various approaches such as [12], the schema mapping problem is cast as a
graph matching problem. We follow that notion and treat the entities that we

1 An implementation of our algorithm called dam2 is available at
http://www.few.vu.nl/∼andreas/projects/dam2/

Y. Sure and J. Domingue (Eds.): ESWC 2006, LNCS 4011, pp. 19–33, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

20 A. Heß

are trying to match as nodes in a graph.2 Therefore, we use the words “node”,
“vertex” and “entity” synonymously.

We define the mapping problem as identifying pairs of vertices from two edge-
labelled directed graphs. Vertices represent entities in the ontology (i.e. classes
and properties). The arcs denote relations between these entities, and the labels
signify the kind of relation, e.g. “subclass of”, “domain” or “range”.

Definition 1. Let G = (V, A) and G′ = (V ′, A′) be two directed graphs with V
and V ′ as their set of vertices and A and A′ as their set of arcs. We define two
partial functions as:

map : V ⇀ V ′ map′ : V ′ ⇀ V

The ontology alignment problem formally consists of finding a number of map-
pings v′ = map(v) for as many v ∈ V, v′ ∈ V ′ as possible. We restrict ourselves to
finding mappings for classes and properties only. We define the sets of classes and
properties as subsets of V resp. V ′ and only map classes to classes and properties
to properties. Furthermore, we restrict the mapping function to being injective
(but not necessarily surjective), i.e. we restrict ourselves to one-to-one-mappings.

We split the problem into two parts: First, we define a similarity function:

Definition 2. To measure the similarity between vertices from G and G′, we
define two similarity functions as:

sim : V × V ′ → [0, 1] sim′ : V ′ × V → [0, 1]

We make use of different similarity functions that we denote with indices. We
use this similarity function to compute all pairwise similarities between all v ∈ V
and v′ ∈ V ′. Section 4 describes this step in detail.

The second part of the problem is to convert these pairwise similarities into
mappings. We treat the pairwise similarities as a bipartite graph B = (V +V ′, E)
with the entities from V and V ′ as nodes and a weighted edge where the similarity
between two entities sim(v, v′) > 0. The problem of obtaining the map-relation
is then equivalent to the problem of finding a matching in this bipartite graph.
We do in general not require that sim(v, v′) = sim′(v′, v). In that case, the
edges in the bipartite graph B are directed and the weights are not symmetric.
Section 4.5 describes the application of two well-known graph-algorithms to this
problem.

3 Related Work

While many approaches have been proposed for schema matching in the past
(e.g. Cupid [11]), dedicated algorithms for ontology matching are newer. Among
2 The paper mentioned, [12], but also newer algorithms such as [9] make use of derived

graphs or alternative representations such as the pairwise connectivity graph and the
similarity propagation graph in [12] or a bipartite graph representation of RDF as
in [9]. We do not use such derived graphs in our approach.

An Iterative Algorithm for Ontology Mapping 21

these are for example QOM [2] (which is optimised for speed) and OLA [4], which
combines a variety of different similarity measures. A very recent development
is the Falcon algorithm [9] that has been shown to perform very well.

The level of competition that came along with these different approaches has
led to ontology alignment contests. Such contests have taken place at the Infor-
mation Interpretation and Integration Conference (I3CON) in 2003, the Third
International Workshop on Evaluation of Ontology Based Tools in 2004 [15] and
at the Third International Conference on Knowledge Capture (K-CAP 2005) [5].
In section 6, we will compare our own algorithm to those presented at the latter
event.

Following [14], we refer to similarity measures that are based on inherent char-
acteristics of an entity as intrinsic, where as all structural similarity measures
that are based on relations to other entities are referred to as extrinsic. Most
mapping algorithms adhere to a simple structure: an initial calculation of an
intrinsic similarity measure is followed by an iterative calculation of an extrinsic
measure before finally the mappings are derived from the pairwise similarities.
Ehrig and Staab discuss this structure in greater detail in [2]. Our algorithm
adheres to this common structure, too. However, there are two features which
make it distinct from other algorithms that we are aware of. The first point
where our algorithm differs from others is the way how the extrinsic similarity
is computed. In a variety of approaches, extrinsic similarity is basically just the
propagated intrinsic similarity of the neighbouring entities. In our approach, we
compute extrinsic similarity by using a feature vector. Section 4.2 describes the
details.

The second important feature is the way how the similarities are transformed
into mappings. While Melnik et al. in [12] propose to compute either a stable
marriage or the maximum weighted matching in a bipartite graph to find a
good mapping, it seems that most newer ontology mapping algorithms do not
do this (e.g. Ehrig and Staab use a simple greedy approach in [2]). In section 4.5
we describe how these two well-known graph algorithms can be used, and an
empirical evaluation (see section 6) shows that it increases the performance of
the mapping algorithm.

4 The Algorithm

4.1 Computing Intrinsic Similarity

In our implementation, we use distance metrics from the well-known Second-
String library3 as intrinsic similarity measures.

We also experimented with a similarity measure based on WordNet.4 We used
a similarity metric based on Euzenat’s implementation in the OWL alignment
API [3]. We decided, however, not to use it in the current setup. Preliminary
experiments suggested that on many datasets no or only a marginal improvement

3 http://secondstring.sourceforge.net/, see also [1]
4 http://wordnet.princeton.edu/

22 A. Heß

can be achieved. This small benefit is, however, contrasted by a much greater
computational effort. It may be possible to overcome these limitations by using
a more sophisticated algorithm for computing a semantic similarity based on
WordNet. This is, however, deferred to future work.

We use URIs, labels, comments and text from individuals and property values
as text sources. We conducted experiments with the Jaro-Winkler metric [16]
and a version of Levenshtein edit distance [10] that is scaled to the range [0, 1]
for comparing labels and local names. We used a soft-token metric with Jaro-
Winkler resp. scaled Levenshtein edit distance as the base string distance metric
for comparing comments and instance data. To determine the overall intrinsic
similarity between two concepts, we use the maximum of these metrics. To avoid
overemphasising small similarities, we disregard similarities that are smaller than
a threshold of 0.4 and map similarities greater than 0.4 to the full range [0, 1].

4.2 Computing Extrinsic Similarity

The main difference between our approach and existing schema matching algo-
rithms is the way how the extrinsic similarity is computed. In many previous
approaches extrinsic or structural similarity is propagated through a graph struc-
ture that is determined by the schema or ontology.

In our approach, we use an extrinsic feature vector de(v) for each entity that
captures the relationship between this and other entities and then compute the
similarities between these vector representations. The intuition behind using this
vector representation is analogous to the assumption that the propagation-based
methods make: Two nodes are similar if they are related to similar nodes.

To formally define the extrinsic feature vector, we first have to introduce a
function that computes all entities that are connected to an entity v by a relation
l. We consider for example subsumption and domain and range of properties as
relations.

Definition 3. We define a function from the set of vertices and the set of labels
L to the power set of vertices so that for a given vertex the function finds all
vertices adjacent through an arc with a given label:

rel : V × L → 2V

Let G = (V, A) be a digraph with the set of vertices V and labelled arcs A as a
set of ordered triples (v, w, l) ∈ V × V × L. Then we define:

rel(v, l) = {x|v, x ∈ V ∧ (v, x, l) ∈ A}

The definition of rel′ : V ′ × L → 2V ′
is analogous.

Next, as an intermediate step to our extrinsic feature vector function, we define a
dynamic intrinsic feature vector function that is basically a vector representation
of all similarities between an entity v and all entities v′ ∈ V ′. “Intrinsic” means
that these features are inherent to an entity. “Dynamic” means that their value
can change as we get more information about that entity, and can thus make

An Iterative Algorithm for Ontology Mapping 23

a better prediction about the similarities between this and other entities. Note
that the dynamic intrinsic features are typically what we want to compute. In
particular, this means that the dynamic intrinsic features are initially unknown.

Definition 4. We define a dynamic intrinsic feature vector function as a func-
tion of an entity:

di : V → R|V ′|

Analogous to the matrix representation of a graph, we impose an arbitrary total
order on V ′ and denote the first element of V ′ as v′0 and the subsequent elements
as v′n for all n < |V ′|. Then we define di as follows:

di(v) = [sim(v, v′0), sim(v, v′1), . . . , sim(v, v′|V ′|−1)]

Dynamic extrinsic features are dynamic intrinsic features of related entities:

Definition 5. We define a dynamic extrinsic feature vector function as a func-
tion of an entity.

de : V → R|V ′|

Assuming a commutative and associative operator ⊕ on Rd and a function rel as
per definition 3, we define de(v) as some combination ⊕ of the dynamic intrinsic
features di(x) (see definition 4) of all related entities x ∈ rel(v).

de(v) =
⊕

x∈rel(v)

di(x)

The exact definition of the combination operator ⊕ is arbitrary. We use an
additive operator in our experiments.

Note that the elements in de(v) are based on the relations of v ∈ V , but
correspond to vertices in V ′. In order to compute an extrinsic similarity between
v and some v′, we have to define an extrinsic feature vector for v′ that is based
on the relations of v′ ∈ V ′.

Definition 6. We define an extrinsic feature vector function as a function of
an entity:

de′ : V ′ → R|V ′|

Based on the total order on V ′ from definition 4, we define that each element i
in de′ is 1, if v′i ∈ rel(v′) and 0 otherwise.

Given definitions 5 and 6 we can now easily define an extrinsic similarity
simext(v, v′) based on the similarity between the vectors de(v) and de′(v′). A
common similarity measure for two vectors is the dot product, but it is usually
better to normalise the similarity measure using the well-known cosine, Dice,
Jaccard or overlap coefficients, which are widely used in information retrieval.
The similarities based on the extrinsic feature vectors are not symmetric. Since
the feature vector is based on the best mapping for each concept, the fact that
v maps to v′ does not necessarily mean that the best mapping for v′ is v, if the
overall similarity sim(v, v′) is greater than the similarity of v to all other x′ ∈ V ′

but less than the similarity sim(v′, x) of v′ to some x ∈ V .

24 A. Heß

Algorithm 1. Iterative Similarity Calculation
for v ∈ V do

diint(v) ← [simint(v, v′
0), simint(v, v′

1), . . . , simint(v, v′
|V ′|−1)]

end for
/* Initially, use intrinsic similarity only */
de(v) ← x∈rel(v) diint(x)
for a fixed number of iterations do

for v ∈ V do
diext(v) ← [simext(v, v′

0), simext(v, v′
1), . . . , simext(v, v′

|V ′|−1)]
/* Combine intrinsic and extrinsic similarity */
di(v) ← diint(v)⊗ diext(v)

end for
de(v) ← x∈rel(v) di(x)

end for
return ∀v ∈ V : di(v)

4.3 Iterative Algorithm

Algorithm 1 formally specifies the iterative method of calculating the overall
similarity. We are not restricted to computing sim(v, v′), calculating sim(v′, v) is
analogous. Recall that because of the way we the extrinsic similarity is defined
they are not necessarily equal.

4.4 Using Training Data

It is quite straightforward to use a previously known mapping to a third ontol-
ogy to improve mapping accuracy. We assume a third ontology V ′′ and known
mappings of the form (v′, v′′) with v′ ∈ V ′ and v′′ ∈ V ′′. We compute the
pairwise similarities between all v ∈ V and both v′′ ∈ V ′′ and v′ ∈ V ′ as in
algorithm 1. Then, for each pair (v′, v′′) we assume the maximum5 of sim(v, v′)
and sim(v, v′′) as the joint similarity and substitute the similarity values in the
mapping algorithm with the joint similarity. Let v′′ be the entity that is mapped
to v′ as by the background knowledge. Then, we substitute the assignments of
di in algorithm 1 with:

di(v) ← [max(sim(v, v′0), sim(v, v′′0)), . . . ,max(sim(v, v′|V ′|−1), sim(v, v′′|V ′|−1))]

Note that this replacement takes places for both the intrinsic and the extrinsic
similarity and therefore the subscript has been omitted.

It is of course in principle also possible to use more than one known mapping
as training data, but for our experiments we restricted ourselves to cases with a
known mapping to just one other ontology. Furthermore, it would be possible to
replace the entire similarity function with the output of a machine learning al-
gorithm. In fact, algorithm 1 is very similar to the supervised learning algorithm
that we presented in [8] and could be seen as a generalisation thereof.
5 Other ways of defining the joint similarity, for example using the average, are think-

able. Using the maximum is like using a nearest-neighbour classifier.

An Iterative Algorithm for Ontology Mapping 25

4.5 Postprocessing Steps

Once we have computed the overall similarities, we have to compute the actual
one-to-one mapping. This is the problem of finding a matching in a bipartite
graph. A bipartite graph B = (V + V ′, E) is a graph where the nodes can be
split in two groups such that every edge connects two nodes from both partitions.
Every similarity that has been calculated in the previous step corresponds to a
weighted edge in such a bipartite graph.6 A matching M in a graph is a set of
edges such that no node is incident to more than one edge. In our setting this
corresponds to a one-to-one mapping: For every entity in one ontology we want
to find one entity in the other ontology. M is called maximum-weighted, if there
is no other matching where the sum of all edge weights in the matching is bigger.
M is called a stable marriage, if there are no nodes v ∈ V and v′ ∈ V ′ such that
the edge between v and v′ in B is not in M , but has a higher weight than the
edges in M that are incident in v and v′.

Gale and Shapley have shown in [6] that for bipartite graphs where the two
partitions are of the same size a stable marriage always exists and presented an
algorithm for finding such a matching. Because the number of vertices in V and
V ′ is not necessarily equal in our case (if the two ontologies are of different size),
a perfect match (in the graph-theoretic sense) is not always possible. It is there-
fore necessary to modify the termination criterion of the original Gale/Shapley
algorithm slightly in a way that is equivalent to adding pseudo nodes and edges
with weight zero to the bipartite graph.

Melnik et al. in [12] propose to compute either a stable marriage or the max-
imum weighted matching to find a good mapping. We compared the two appro-
aches empirically on our data. We used an off-the-shelf implementation of James
Munkres’ algorithm [13] (also referred to as the Hungarian algorithm) to com-
pute maximum-weighted matchings. As opposed to the Gale/Shapley algorithm,
Munkres’ algorithm is not suited for graphs with directed edges and asymmetric
weights. Due to the way the extrinsic similarity is computed, the edge weights are
not necessarily symmetric in our case, but it is of course straightforward to create
a graph with undirected edges and symmetric weights simply by addition.

5 Parameters

Our matching algorithm as presented in this paper has various parameters.
In this section, we discuss various options and design choices. The experiments

in section 6 show empirically the influence of the parameter settings on the overall
performance.

5.1 Structure

Depending on the expressiveness of the underlying ontology language, several
relations between classes or properties are defined. We considered super- and
6 Note that this bipartite graph must not be confused with the graph interpretation

of the two ontologies! We use a bipartite graph only to determine the final matching
once the pairwise similarities have been calculated.

26 A. Heß

subclass-relations, super- and subproperties, defined properties for a class, do-
main and range of a property and siblings of classes and properties as possible
relations. We performed preliminary experiments on three different combinations
of those features: First, we used all available relations. Second, we used all rela-
tions except for siblings, and third, we used the subsumption relation only. These
experiments have shown that the second setup consistently performed best. In
our final evaluation (see next section), we call this configuration “dublin2”7.

5.2 Number of Iterations

As in our experiments with iterative ensemble classification, we decided to use
a fixed number of iterations as termination criterion for reasons of simplicity,
and because it is not proven that the algorithm converges. Preliminary empiri-
cal experiments suggested that the algorithm is not very sensitive to the exact
number of iterations. We set the number of iterations to five, the same as in our
earlier work on web service annotation [8].

5.3 Inference

When mapping rich ontologies, it is sometimes possible to exploit knowledge
drawn from the ontologies itself to impose constraints on the mappings or to
infer mappings. Although we believe that for some mapping tasks exploiting
such knowledge could increase the mapping accuracy, such an approach is out
of scope of this thesis. We restrict ourselves to using the information obtained
through the iterative relational algorithm to compute the final mappings. The
set of ontologies we used for evaluating our algorithm does not have a very rich
structure, so in comparison with other algorithms that may use such inference,
our algorithm has no disadvantage.

5.4 Post-processing

As discussed above, we have to consider at least two ways of creating a map-
ping from the acquired similarities, if we demand a one-to-one mapping. We
can compute either a stable marriage or a maximum weighted matching. In our
empirical experiments, we tried both approaches. In the graphs and tables pre-
senting our results we denote configurations that use the Gale/Shapley algorithm
(as opposed to a maximum weighted matching) with the letter “g”.

We also tried both possible answers to the question when the post-processing
step should be applied. We denote the configurations where we applied the post-
processing step also in between iterations with the letter “e”. In the other exper-
iments, the post-processing step (i.e. applying the Gale/Shapley or Hungarian
algorithm) was only performed after the iteration phase of the algorithm has
been completed.

7 The OAEI 2005 contest lists our results as “dublin”, we keep the name here.

An Iterative Algorithm for Ontology Mapping 27

5.5 Intrinsic Similarity

We already discussed the way we compute the intrinsic similarity between two
concepts above in section 4.1. However, we could plug an arbitrary string distance
metric in our framework. A great variety of string distance metrics – established
algorithms as well as ad-hoc measures – is available off-the-shelf in libraries such
as the already mentioned SecondString. As mentioned above, we considered the
Jaro-Winkler and Levenshtein metrics. Preliminary experiments have shown that
with our data, a scaled version of the Levenshtein metric works generally better
than Jaro-Winkler. Therefore, we decided to use only the scaled Levenshtein
metric in our final experiments. We set the threshold for the soft-token metric
to 0.9, i.e. two tokens that have a string similarity greater or equal than 0.9
are considered the same. The suitability of different string distance metrics for
several tasks has been extensively discussed in literature, e.g. [1].

5.6 Thresholds

In order to avoid spurious mappings it makes sense to use a minimum similarity
threshold. In the ontology mapping scenario, it is not guaranteed that for some
concept in one ontology a concept in another ontology actually exists. In these
cases, not making a prediction is the correct answer. But also in other cases it is
in several scenarios useful not to make a prediction at all rather than making a
bad prediction. For example, consider a semi-automated setting where a human
annotator has to review suggestions made by the algorithm.

For the precision/recall-graphs, we varied the threshold between 0 and 1 in
steps of 0.05. When comparing the different configurations of our algorithm and
for comparison with the algorithms from the OAEI 2005 contest we used a zero
threshold.

6 Evaluation

We evaluated our algorithm on the benchmark ontologies from the 2005 Ontol-
ogy Alignment Evaluation Initiative (OAEI 2005, [5]). Most of the benchmark
ontologies consist of versions of a base ontology, where different aspects have
been changed. For most of the following tests, we concentrate on six interesting
ontologies: In two cases (ontologies 205 and 206 from the test suite), all names
and labels have been replaced with synonyms or foreign words, and in four cases,
independently developed “real-world” ontologies that describe the same domain
have been used (301-304).

We tested various configurations of our algorithm and compared the results
from these different setups against each other as well as against the published re-
sults from the other participants of the contest. The experiments were conducted
in order to answer the five basic (groups of) questions:

1. Do we get any benefit from the extrinsic features as opposed to using the
intrinsic similarity only?

28 A. Heß

2. Is it better to compute the maximum weighted matching or is a stable mar-
riage more important? Should we apply this step only after all similarities
are computed, or also between iterations?

3. What threshold is optimal?
4. How does our algorithm perform compared to other algorithms in literature?

What are the strengths and weaknesses?
5. What is the benefit of using known mappings as training data?

It is important to note that in most of the experiments the difference in
performance between the different configurations was quite low, although there
are visible trends. However, what the experiments clearly show is that the overall
accuracy of ontology mapping is based largely on the initial intrinsic (lexical)
mapping. Unfortunately, because it is rarely published what the contributions of
the lexical and structural similarities are, it is difficult to compare the strengths
and weaknesses to other algorithms. Space restrictions prevent us to present all
our results here. For a more detailed discussion, the reader is referred to [7].

6.1 Extrinsic vs. Intrinsic Features

The first question is of course the most crucial one: Is the way how we use
the additional relational information, that differs from other methods known
in literature, useful? Does it work? To answer this question, we compared the
“dublin10” setup with the “dublin2e0” and “dublin20” setup. The “dublin10”
setup uses only intrinsic features, “dublin20” and “dublin2e0” use extrinsic fea-
tures (in five iterations) as well. Both setups compute a maximum-weighted
matching, the “dublin2e” configuration also enforces one-to-one mappings in
between iterations.

205 206 301 302 303 304
0.4

0.5

0.6

0.7

0.8

0.9

dublin1g0

dublin10

dublin2g0

dublin20

dublin2e0

F
1

Fig. 1. Comparison of different configurations of our algorithm

An Iterative Algorithm for Ontology Mapping 29

The results in figure 1 (note that the scale starts with 0.4 to emphasise the
difference between configurations) show that on four ontologies the configuration
that uses extrinsic features performs better or equal than the configuration with
only the intrinsic features. However, in two of the “real-world” ontologies, using
the extrinsic features affects the performance in a negative way. The reason for
this is that the ontologies 303 and 304 are structurally different from the base
ontology and our algorithm is mislead by this structural difference. In that case,
any attempt to make predictions based on the structure must fail. The other
four ontologies, especially 205 and 206, are structurally quite similar to the base
ontology. Here using the extrinsic features helps.

We conclude from these results that using relational features can improve
the performance, but only if the ontologies that are to be matched are not
structurally different. This is not only true for our approach. For example, in [9],
the authors make the same observation for the Falcon algorithm.

6.2 Stable Marriage vs. Maximum-Weighted Matching

As far as we are aware, most other current algorithms do not explicitly compute
stable marriages or maximum-weighted matchings to determine a one-to-one
mapping. The Similarity Flooding algorithm [12] is a notable exception. We
compared configurations that use a stable marriage with configurations with a
maximum-weighted matching. The “dublin2g0” and “dublin1g0” configurations
use the Gale/Shapley algorithm to compute a stable marriage while “dublin20”
and “dublin10” computes a maximum-weighted matching. Both configurations
use no threshold. The “dublin1g0” and “dublin10” configurations do not use
extrinsic features. Figure 1 clearly shows that it is better to compute a maximum-
weighted matching. This setup outperforms the stable-marriage configuration in
almost all cases, sometimes drastically.

In the “dublin2e0” setup, a maximum-weighted matching is applied also in
between iterations, where as for “dublin2g0” and “dublin20” the Gale/Shapley
resp. the Hungarian algorithm is only applied after the last iteration. This con-
figuration can therefore not directly be compared with “dublin2g0”, but in com-
parison with “dublin20” it becomes clear that enforcing a one-to-one-mapping
also in between iterations is better than doing so after the last iteration only.

6.3 Threshold

To find out what value for the threshold is best, we took a closer look at on-
tologies 205 and 303. Figure 2 shows the relation between the threshold and the
precision, recall and F1 measures on ontologies 205 resp. 303. Note that vary-
ing the threshold has a quite different effect on the two ontologies. In ontology
205, recall drops faster than precision increases. The maximum F1 is reached
at a threshold of 0.05. In ontology 303, precision and recall at threshold 0 are
lower than in ontology 205. When raising the threshold, recall drops only slightly
while precision increases rather quickly. Maximum F1 is reached at a threshold
between 0.7 and 0.85. We have to conclude that the best cut-off value for our

30 A. Heß

Fig. 2. Relation between threshold and precision, recall and F1 for ontologies 205 (left)
and 303 (right)

mapping algorithm depends strongly on the dataset. On the “real world” ontolo-
gies 301–304 the threshold is higher, while for the artificial benchmark ontologies
the best F1 is reached at a very low threshold.

6.4 Comparison with Other Algorithms

To evaluate our own method, we compared our results against the published
results from the 2005 Ontology Alignment Evaluation Initiative ([5]).

The algorithm that performed best in the 2005 contest was the Falcon algo-
rithm [9] by the Southeast University of Nanjin. Falcon uses a bipartite graph
representation of an RDF graph to compute structural similarity.

Our own algorithm can, however, compete well with the “FOAM” algorithm
developed in Karlsruhe and the “OLA” algorithm. “Edna” is simple algorithm
that is based on edit distance of the labels and was included by the organisers of
the contest as a baseline. Our algorithm in the “dublin20” setting as submitted
to the organisers of the OAEI 2005 performs second best after Falcon. From
the 2004 algorithms, the algorithm developed at Stanford has a higher average
precision, but a lower average recall than ours. These results are in greater detail
presented in [5]. Figure 3 shows the F1 score. To aggregate the results of the
individual tests, the organisers of the contest calculated the precision and recall
over all mappings of all test.

6.5 Using Training Data

To test the effect of background knowledge on the performance of the alignment,
we conducted experiments where we used a given mapping from the target ontol-
ogy to a third (background) ontology. It is clear that we can expect the biggest
improvement in accuracy if the background ontology is very similar to the source
ontology. Vice versa, if the source ontology is very dissimilar, we cannot expect
an improvement. Our experiments confirmed this intuition. We noticed that in
the worst case using background knowledge does not improve the performance

An Iterative Algorithm for Ontology Mapping 31

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

falcon

dublin20

foam

ola

edna

omap

cms

ctxMatch2-1

F
1

Fig. 3. Overall F1 of the OAEI 2005 alignments

205 206 301 302 303 304

0.4

0.5

0.6

0.7

0.8

0.9

dublin10

amsterdam10

amsterdam10b

dublin2e0

amsterdam2e0

amsterdam2e0b

F
1

Fig. 4. Performance (F1) of setup with training data compared to normal setup

at all or could even negatively affect the performance slightly. If the right back-
ground mapping is selected, however, the performance can be increased by quite
a lot. In figure 4, the experiments with training data are denoted as “amster-
dam10”8 for an experiment with intrinsic similarity only and as “amsterdam2e0”
for an experiment using extrinsic similarity as well. When testing ontology 205,
we used 206 as background ontology and vice versa, for 301 we used 302 as
background and vice versa, and for 303 we used 304 and vice versa.

Clearly, the performance on ontologies 205 and 206 are examples for the worst
case. The reason for that becomes clear if we look at the performance of the map-
ping from ontology 205 to 206, i.e. when mapping to the background ontology
only instead of the reference ontology 101. For comparison, we include these

8 This part of the research was carried out in Amsterdam, hence this name for the
algorithm.

32 A. Heß

results in the diagram and denote this configuration as “amsterdam10b ” resp.
“amsterdam2e0b”. From these results, we can also see that the improvement of
using training data in the 30x ontologies is not only due to the fact that map-
pings between 301 and 302 resp. 303 and 304 are easy. Rather, the combined
approach of using background knowledge outperforms both the simple mapping
between the source and the reference ontology and also between the source and
the background ontology. We conclude that using known mappings as training
data can generally improve the results, but that the algorithm can also be misled,
if the background ontology is too different from the source ontology.

7 Conclusion

We have presented a new method for ontology mapping that uses established
string distance metrics and an extrinsic feature representation as known from
relational learning algorithms. We treat the results of the similarity computa-
tion as a bipartite graph and use well-known algorithms from graph theory to
compute an optimal one-to-one mapping. With an empirical evaluation, we have
shown that our basic ideas work, and that our algorithm can compete with other
approaches. Furthermore, we have shown how our algorithm can be used in a
supervised way in order to exploit background knowledge.

In the more detailed comparison in [7] we have shown that each algorithm
has specific strengths and weaknesses. Therefore, we believe that there is a great
potential for a combination of some of our ideas with methods used by others.
We ignore some valuable information that comes from the ontologies, because
we do not do any logical reasoning or inference. On the other hand, some of the
methods proposed here, for example the post-processing steps, could be useful
in conjunction with other base algorithms as well.

Acknowledgments. Most of the research presented in this paper was done when
the author was at University College Dublin and was supported by grants from
Science Foundation Ireland and the US Office of Naval Research. The author
would like to thank Nicholas Kushmerick for valuable feedback and support.

References

1. William W. Cohen, Pradeep Ravikumar, and Stephen E. Fienberg. A comparison
of string distance metrics for name-matching tasks. In Proceedings of the IJCAI-03
Workshop on Information Integration on the Web (IIWeb-03), pages 73–78, 2003.

2. Marc Ehrig and Steffen Staab. QOM – quick ontology mapping. In 3rd Interna-
tional Semantic Web Conference, Hiroshima, Japan, 2004.

3. Jérôme Euzenat. An API for ontology alignment. In 3rd International Semantic
Web Conference, Hiroshima, Japan, 2004.

4. Jérôme Euzenat, David Loup, Mohamed Touzani, and Petko Valtchev. Ontology
alignment with OLA. In York Sure, Oscar Corcho, Jérôme Euzenat, and Todd
Hughes, editors, Proceedings of the 3rd International Workshop on Evaluation of
Ontology based Tools (EON), Hiroshima, Japan, 2004.

An Iterative Algorithm for Ontology Mapping 33

5. Jérôme Euzenat, Heiner Stuckenschmidt, and Mikalai Yatskevich. Introduction to
the ontology alignment evaluation 2005. In K-CAP 2005 Integrating Ontologies
Workshop, Banff, Alberta, Canada, 2005.

6. David Gale and Lloyd Stowell Shapley. College admissions and the stability of
marriage. American Mathematical Monthly, 1962.

7. Andreas Heß. Supervised and Unsupervised Ensemble Learning for the Semantic
Web. PhD thesis, School of Computer Science and Informatics, University College
Dublin, Dublin, Ireland, 2005.

8. Andreas Heß and Nicholas Kushmerick. Iterative ensemble classification for re-
lational data: A case study of semantic web services. In Proceedings of the 15th
European Conference on Machine Learning, Pisa, Italy, 2004.

9. Wei Hu, Ningsheng Jian, Yuzhong Qu, and Qanbing Wang. GMO: A graph match-
ing for ontologies. In K-CAP 2005 Integrating Ontologies Workshop, Banff, Al-
berta, Canada, 2005.

10. Vladimir I. Levenshtein. Binary codes capable of correcting deletions, insertions,
and reversals. Doklady Akademii Nauk SSSR, 163(4):845–848, 1965. In Russian.
English Translation in Soviet Physics Doklady, 10(8) p. 707–710, 1966.

11. Jayant Madhavan, Philip A. Bernstein, and Erhard Rahm. Generic Schema Match-
ing with Cupid. In Proceedings of the 27th International Conference on Very Large
Databases, pages 129–138, Rome, Italy, 2001.

12. S. Melnik, H. Molina-Garcia, and E. Rahm. Similariy flooding: A versatile graph
matching algorithm. In Int. Conference on Data Engineering (ICDE), 2002.

13. James Munkres. Algorithms for the assignment and transportation problems.
SIAP, 5(1):32–38, 1957.

14. Jennifer Neville and David Jensen. Iterative classification in relational data. In
AAAI Workshop Statistical Relational Learning, 2000.

15. York Sure, Oscar Corcho, Jérôme Euzenat, and Todd Hughes, editors. 3rd Int.
Workshop on Evaluation of Ontology based Tools (EON), Hiroshima, Japan, 2004.

16. William E. Winkler and Yves Thibaudeau. An application of the Fellegi-Sunter
model of record linkage to the 1990 U.S. decennial census. Technical report, U.S.
Bureau of the Census, Washington, D.C., 1991. Statistical Research Report Series
RR91/09.

Community-Driven Ontology Matching

Anna V. Zhdanova1,2 and Pavel Shvaiko3

1 CCSR, University of Surrey, Guildford, UK
2 DERI, University of Innsbruck, Innsbruck, Austria

a.zhdanova@surrey.ac.uk
3 DIT, University of Trento, Povo, Trento, Italy

pavel@dit.unitn.it

Abstract. We extend the notion of ontology matching to community-driven on-
tology matching. Primarily, the idea is to enable Web communities to establish
and reuse ontology mappings in order to achieve, within those communities, an
adequate and timely domain representation, facilitated knowledge exchange, etc.
Secondarily, the matching community is provided with the new practice, which is
a public alignment reuse. Specifically, we present an approach to construction of a
community-driven ontology matching system and discuss its implementation. An
analysis of the system usage indicates that our strategy is promising. In particu-
lar, the results obtained justify feasibility and usefulness of the community-driven
ontology mappings’ acquisition and sharing.

1 Introduction

Matching is a plausible solution to the semantic heterogeneity problem in many appli-
cations, such as schema/ontology integration, query answering, agent communication,
web services discovery, etc. It takes two ontologies, each consisting of a set of discrete
entities (e.g., classes, properties) as input and produces as output the relationships (e.g.,
equivalence, subsumption) holding between these entities [22, 19, 7]. Heterogeneity is
typically reduced in two steps: (i) match two ontologies, thereby determining the align-
ment (mappings) and (ii) execute the alignment according to an application needs (e.g.,
query answering). In this paper, we focus only on the first step, and in particular, on one
of the promising directions in matching, which is the alignment reuse.

A rationale behind the alignment reuse is that many ontologies to be matched are
similar to already matched ontologies, especially if they are describing the same ap-
plication domain [21, 22]. Eventually, once an alignment has been determined, it can
be saved, and further reused as any other data on the Web. Thus, a (large) repository
of mappings has a potential to increase the effectiveness of matching systems by pro-
viding yet another source of domain specific knowledge. Unlike previous works, e.g.,
of COMA++ [1], which followed a private alignment reuse approach (where access to
the system is limited to individual users, who usually do not know each other, hence,
they do not communicate with each other); we propose a public approach, where any
agent, namely Internet user (most importantly communities of users, opposed to indi-
vidual users) or potentially programs, can match ontologies, save the alignments such
that these are available to any other agents’ reuse. Thus, enabling the cross-fertilization

Y. Sure and J. Domingue (Eds.): ESWC 2006, LNCS 4011, pp. 34–49, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Community-Driven Ontology Matching 35

between the participating parties and help achieving the goals of these parties coopera-
tively. We call this approach a community-driven ontology matching.

Reuse of mappings created by different users, however, implies resolving, among
others, such challenges as the appropriateness of mappings when using them in the new
applications and trust issues. For instance, questions like ”What kind of alignment do I
need (e.g., partial vs. complete)?”, ”Can I use this mapping in my application context
(e.g., biology, chemistry)?” appear. The answers to such questions substantially depend
on who uses the mappings, when, and in which scenarios. In the proposed approach,
we address these issues by involving communities in construction and sharing of the
(subjective) alignments.

There are two contributions of the paper. The first one includes a community-driven
ontology matching approach, its implementation, and usage analysis. Thus, primarily, it
enables the Web communities with the facilitated knowledge exchange, a more compre-
hensive and up-to-date domain representation, and so on. Secondarily, it provides the
matching community with the new practice, which is a public alignment reuse. The sec-
ond contribution includes an analysis of the existing ontology matching systems from
the community-driven ontology matching perspective. Thus, it estimates their potential
for the reuse in the community-driven matching scenarios.

The rest of the paper is structured as follows. In Section 2, we briefly introduce
the ontology matching problem. Community-driven ontology matching is presented in
Section 3, while its implementation is addressed in Section 4. Results of the prototype
usage are reported in Section 5. Section 6 discusses state of the art matching systems
from the community-driven ontology matching perspective. Finally, Section 7 contains
some conclusions and outline of the future work.

2 Ontology Matching

Following [10, 22], we define a mapping element (mapping) as a 5-uple: 〈id, e, e′, n, R〉,
where id is a unique identifier of the given mapping element; e and e′ are the entities
(e.g., classes, properties) of the first and the second ontology respectively; n is a con-
fidence measure in the [0,1] range holding for the correspondence between the entities
e and e′; R is a relation (e.g., equivalence, subsumption) holding between the entities e
and e′. An alignment is a set of mapping elements. The matching operation determines
the alignment for a pair of input ontologies.

Figure 1 shows two parts of ontologies describing an academic department. For ex-
ample, according to some matching algorithm based on linguistic and structure analy-
sis, the confidence measure (for the fact that the equivalence relation holds) between

Fig. 1. Two simple ontologies and the alignment

36 A.V. Zhdanova and P. Shvaiko

entities with labels Research Associate in ontology on the left, and Researcher in on-
tology on the right could be 0.68, thereby producing the following mapping element:
〈id4,3, ResearchAssociate, Researcher, 0.68, =〉. However, the relation between the
same pair of entities, according to another matching algorithm which is able to deter-
mine that the first entity is a kind of the second entity, could be exactly the less general
relation (without computing the confidence measure). Thus, in this case, the 5-uple
〈id4,3, ResearchAssociate, Researcher, n/a,	〉 is returned to the user.

3 Community-Driven Ontology Matching

In this section, we introduce a community-driven ontology matching problem, provide
a motivating scenario for it, and describe the benefits of the approach.

3.1 Problem Statement

By a community we mean here a group of individuals that have common interests and
(often) maintain their own communication and collaboration environments through,
e.g., Semantic Web community portals [6]. Recent research identified a high impor-
tance of direct involvement of humans and communities in ontology management: an
agent or a human contributor was shown to be an indispensable part of a semantic net-
work [18], and participation of a community in ontology construction was shown as a
way to a more complete and up-to-date domain knowledge representation [25].

Being in line with the general ideas of community-driven ontology management,
community-driven ontology matching extends conventional ontology matching by in-
volving end users, knowledge engineers, and developer communities in the processes
of establishing, describing and reusing mappings. More precisely, community-driven
ontology matching operation can be defined as follows. It takes as input information
from an agent, e.g., a human contributor (such as request, context, personal data), and
two ontologies, each consisting of a set of discrete entities (such as classes, proper-
ties). Based on the input information, the operation encapsulates, besides conventional
ontology matching, some community-driven ontology management operations, such as
social network analysis, harvest of additional web data. It determines as output the re-
lations (e.g., equivalence, subsumption) between the entities of the input ontologies,
which are particularly tailored to resolve the semantic heterogeneity problem of an
agent. All the output relations are represented via annotated mappings and are to be
propagated to the communities associated with the human contributor.

A specific feature of relations resulting from the community-driven ontology match-
ing is their customization to the user/community and an application requirements. Thus,
the community-driven matching process determines subjective alignments. Notice that
subjective alignments are appropriate for specific tasks in a specific community, but
may be inappropriate or even contradicting to practices of other communities.

The community-driven ontology matching operation requires human involvement
and utilizes resources of the following (main) types:

Information about Users. This represents information about agents involved in the
community-driven ontology matching. For example, their expertise in the domain,
experiences with the ontologies being matched, their goals, and so on.

Community-Driven Ontology Matching 37

Information about Communities, Groups, Social Networks. This captures relations
between agents. For example, which agents belong to the same community, to
which agents a particular agent trusts most of all. These links between agents help
in recommendation/sharing of an ontology alignment among them, for instance, in
choosing a mapping element when multiple alternatives exist.

Tools Facilitating Automatic Ontology Matching. These tools are often based, amo-
ng others, on linguistic techniques. However, such tools may not be sufficiently
helpful when the users have to match ontologies specified in different natural lan-
guages, e.g., in English and Arabic. In these cases, one may rely on bi-lingual users
and automatic natural language translation systems in addition to tools for auto-
matic ontology matching.

3.2 Motivating Scenario

Suppose a community member wants to be timely informed about the trends happening
in his/her communities and potentially interesting trends happening in other communi-
ties. Specifically, a biologist wants to be notified about published papers, conferences
and other activities associated with the concept protein in the biology research commu-
nity where he/she comes from, as well as in the chemistry research community. Thus,
he/she wants to know which papers and activities are considered to be important for
both communities.

In order to exemplify community-driven ontology matching, let us consider a simple
scenario which involves four researchers from two natural science communities. The
researchers are Mark, Michael, Jenny, and Alexander. They are represented by
roles held in their communities (i.e., end user, knowledge engineer, developer) and web
domains/communities where they interact (e.g., biology, chemistry). These researchers
have the following profiles:

name Mark
interacts biology, chemistry web applications
role(s) end user

name Jenny
interacts chemistry web application
role(s) end user, developer

name Michael
interacts biology, chemistry web applications
role(s) end user, knowledge engineer

name Alexander
interacts biology, chemistry web applications
role(s) end user

A community view on ontology matching process is shown in Figure 2. Let us dis-
cuss it in detail.

Suppose the following two actions take place:
– Michael creates an alignment m between ontologies coming from biology and
chemistry web applications;

– Alexander uses the alignment m.
The result of a tool for community-driven ontology matching is the alignment m, which
is recommended to Mark. After the tool recommends a new mapping to Mark, he,
as a researcher, can benefit from the extended interoperability between biology and
chemistry web applications without applying any effort to rediscover the new

38 A.V. Zhdanova and P. Shvaiko

Fig. 2. A community-driven ontology matching process

knowledge (already established byMichael and validated byAlexander). Whereas,
in the proposed scenario, alignment m is not recommended to Jenny, because she does
not use the biology web application.

Process of mapping recommendation to individual users and communities can be
varied and qualitatively improved by analysis of individual and community profiles,
e.g., reusing information about users’ activity and expertise in certain domains, users’
collaboration history, users’ social networking relations and mutual trust [14].

3.3 Benefits from Employing Community-Driven Ontology Matching

In the given scenario, a biologist will be enabled to match the concepts standing for
protein in the ontologies of chemists and biologists, and benefit from being easily aware
of the community-driven changes. His/her community members can also contribute as
well as benefit from mappings created by the scientist. Community-driven ontology
matching facilitates mapping discovery and satisfaction from mapping reuse, as, e.g., in
the given scenario (i) the mappings used by one of the biologists can be easily found by
his/her community via social networking1, (ii) the mappings established by the biologist
will be most likely valid and valuable for his/her community. Therefore, via community-
driven ontology matching, Web communities become self-manageable with respect to
generation of alignments between the ontologies from the participating parties.

Supporting growth of the Semantic Web and assistance to the ontology matching de-
velopment community are the major added values of community-driven ontology match-
ing compared to conventional ontology matching. Let us discuss these points in turn.

Primarily, community-driven ontology matching amounts to scalability and dynam-
icity characteristics of the Semantic Web. In fact, it extends and preserves advantages
given to the communities by the (ordinary) Web.

1 See ”knowledgeweb on the people’s portal” for an example of identification and representation
of a cross-linked research community: http://people.semanticweb.org.

Community-Driven Ontology Matching 39

– The ontologies which are constructed, aligned and further evolved by the commu-
nities represent the domain and connection with other domains more comprehensi-
bly than the ontologies designed and matched by an external knowledge engineer.
External knowledge engineers are typically the bottleneck to the ontology compre-
hensiveness, as they are not capable to capture all the varieties of mapping elements
that might take place in a community and associated communities.

– The community-driven ontology matching approach provides a higher dynamicity
and up-to-dateness to the outside-world changes in time, compared to the con-
ventional ontology matching approach. When ontologies are matched by external
knowledge engineers, all the changes need to be captured and introduced by these
engineers. With external knowledge experts, the delay in realizing and introducing
the changes might take days, weeks or even months. This delay is unacceptable
for many dynamic domains, where vocabularies regularly and rapidly change (e.g.,
business or sport).

– Community-driven ontology matching approach with its subjective alignment se-
mantically extends the current Web by following the Web principles of scalable,
self-organizable mass of content and structures. In the Web now, anyone is free
to publish anything that he/she finds important. End users are to decide whether
published Web information and services are exploited or not. In Semantic Web this
principle should remain (for it to become large scale). Therefore, we should allow
publishing different and even contradicting alignments. Usage of these alignments
in proper contexts should be ensured by annotations and services assisting for the
choice of a particular alignment for the needs of users and communities.

Secondarily, the community-driven ontology matching naturally assists to creation
of a stimulating environment for developers of ontology matching services/systems.

– Ontology matching is an expensive process. In community-driven ontology match-
ing, the expenses are shifted from the ontology/alignment maintainers to the com-
munities employing them. This shift results in adequate investment distribution
among the ontology entities (e.g., classes and properties) and some particular map-
ping elements of the alignment. Specifically, the ontology entities or mapping ele-
ments of higher importance to the communities gain more support in terms of more
associated resources.

– The community-driven ontology matching approach contributes to creation of an
environment for an evaluation of automatic matching algorithms. Indeed, as the
community-driven ontology matching approach stipulates that the users, depend-
ing on their needs, select the most effective or efficient algorithms and systems for
ontology matching, existing ontology matching systems will be improved perma-
nently in competition for their users.

– Lack of background knowledge, most often domain specific knowledge, is one of
the key problems of ontology matching these days [13]. In fact, as recent industry-
strength evaluations show [2, 11], most of state of the art systems, for the tasks of
matching thousands of entities, perform not with such high values of recall (namely
∼30%) as in cases of ”toy” examples, where the recall was most often around 80%.
To this end, community-driven ontology matching approach provides yet another

40 A.V. Zhdanova and P. Shvaiko

source of domain specific knowledge, namely a (public) repository of alignments
from the past match operations.

Practically, these advantages are gained by introducing an infrastructure that enables
the communities to match their ontologies and reuse ontology mappings which are rele-
vant to them. In the rest of the paper we mostly concentrate on technical details support-
ing the primarily benefits (as identified above). While addressing a technical solution
for the secondary benefits is posed as the future work.

4 Implementation

4.1 Architecture

In the context of the World Wide Web, the community-driven ontology matching can be
seen as a service, which was created by a community of developers, is used by the com-
munity of users, and which fills in a machine processible repository with mappings.
The implemented prototype of the community-driven ontology matching service2 al-
lows semi-automatic ontology matching and saving the approved mapping elements in
a publicly available repository, currently, as OWL files. The resulting application runs
on a Tomcat server, reusing three major software components: INRIA API [10], OWL
API [3] and Jena 2 [5]. A JSP interface to make the application available for the final
user and to realize the semi-automatic matching process was implemented.

An architecture of the community-driven ontology matching system is shown in
Figure 3. Let us discuss it in detail.

Fig. 3. Architecture of the community-driven ontology matching system

2 The community-driven ontology matching service is available online at http://align.deri.org

Community-Driven Ontology Matching 41

The community-driven ontology matching service, depending on the task, may take
as input ontologies, ontology repositories, mapping elements, annotated mapping ele-
ments and repositories of annotated mapping elements. It may produce as output an-
notated mapping elements and repositories of annotated mapping elements. The repos-
itories of annotated mapping elements are produced as output instead or in addition
to annotated mapping elements depending on the request. The former contains sev-
eral annotated mapping elements and additional annotations specific to the context or
subjectiveness of the identified semantic heterogeneity problem. The output production
process is directed by involvement of the communities directly via user interfaces (UI)
and indirectly via tools and applications employing community-driven ontology match-
ing services.

Human contributors. These form a crucial part of community-driven ontology match-
ing. The roles of the human contributors are end users, knowledge engineers and devel-
opers. The domains for activities of human contributors are any applications which can
be represented on the Web (e.g., chemistry, biology).

Tools and Web applications. These provide a platform for alignment reuse in com-
munities. Web applications are usually domain-dependent and gather end communities
around a certain topic. They often employ tools. Tools, in turn, are typically created
for developer communities. They are domain-independent and may reuse or include
mapping repositories (as well as ontologies) to support applications’ integration. Tool
category also includes various (external) ontology matchers.

Ontologies, mapping elements, repositories of ontologies and mapping elements. In
the perspective of Web communities, ontologies are models of a domain shared by a
group of individuals who form communities on the basis of this sharing. Mappings
link ontology entities, and therefore, provide a basis for interoperation between com-
munities. A repository of ontologies and mapping elements are several ontologies and
mapping elements united for a common usage purpose. All the mappings that are val-
idated by a human are stored in an OWL serialization in a publicly available mapping
repository. Therefore, usage and experiment with the online version of ontology align-
ment implementation result in generation of human validated data on matched ontology
items3 that can be reused by Semantic Web applications.

Annotated mapping elements and repositories of annotated mapping elements. In
order to select mapping elements which fit best for a desired task, annotated mapping
elements are produced by community-driven ontology matching service. Annotation
of a mapping element generally contains its usage-related characteristics. Repositories
of annotated mapping elements are collections of mapping elements annotated with
values corresponding to characteristics specified in Table 1. Depending on specific on-
tology and alignment selection algorithms, additional mapping characteristics can be
considered.

User interfaces and API connections. Community-driven ontology matching is avail-
able to all the community members, and visual ontology representations (web-forms,
graphics and natural language descriptions) are the ones viewed in the portals user inter-
faces and commonly shared in human-portal interaction. For the regular Web users (not

3 The mappings acquired from human contributors by the alignment service are available online:
http://align.deri.org:8080/people/mappings.owl

42 A.V. Zhdanova and P. Shvaiko

Table 1. Characteristics of community-driven ontology mapping repositories

Mapping Characteristics Sample Values
by what or by whom by an automatic ontology matching service

a mapping element was established http://align.deri.org;
manually by a user with an address

anna.zhdanova@deri.org
by what or by whom by a community using the Web application

a mapping element was re-established or used http://people.semanticweb.org;
by a user community of the Jena tool

how often and when ca. 100 times per day;
a mapping element was re-established or used 2 times per week

necessarily ontology engineers), ontology matching is downsized to provision of nat-
ural language descriptions, filling out forms and triggering implicit personalization and
ontology instantiation (e.g., resulting from observing actual use of the ontology entities
such as calculation of entity popularity measure). Meanwhile, the ontology mappings
introduced at the natural language and user-form level have potential to be reused also
at the level of machine-to-machine interoperation.

4.2 Functionality

At present, automatic matching of ontologies usually cannot be performed with a due
quality. Therefore, we consider semi-automatic matching, where a system suggests
mappings between entities of the source ontologies and the user either discards or fol-

Fig. 4. Ontology and matching method selection

Community-Driven Ontology Matching 43

Fig. 5. Mapping output

lows these suggestions. With the current implementation, the following functions are
offered to the user:

Choose two ontologies to match. User needs to select two ontologies to be matched
by inputting URIs of ontologies or specifying files from the local disk (see Figure 4).

Choose a matching algorithm/service. The ontology matching service provides ac-
cess to a number of different ontology matching algorithms and systems (e.g., edit dis-
tance matcher). User selects a desired one and starts the matching process (see Figure 4).

Provide feedback on automatically generated alignment. When the matching process
has finished, the system reports the alignment determined. The user can now perform
the approve/discard operation of the mapping elements on a per-mapping element basis.

Store the alignment. Once the user has decided that all the necessary mapping ele-
ments are in place, he/she will tell the system to store the alignment determined for a
later re-use. Thus, the user can save the chosen ontology mappings (in OWL files) in
common repository available on the Web for everyone’s reuse (see Figure 5).

Reuse the alignment. The user may need to modify manually an existing alignment
and reuse the mappings independently from the OWL Ontology Aligner service. For
these actions, the user receives confirmed by him/her mappings in an accessible way
(see Figure 5).

Extend to annotated mapping repository. In community-driven ontology matching,
assigning community-related information to the gained mappings is highly important.
Such additional information should convey the details on the context of mapping cre-
ation and foreseen usage, i.e., who created the mapping, when, with what instrument,
etc. A basic ontology alignment format [10] can be extended with an annotation pro-
viding additional community-related information about a mapping as follows:

<map> <Cell>

<entity1 rdf:resource=’http://www.example.org/ontology1#reviewedarticle’/>

<entity2 rdf:resource=’http://www.example.org/ontology2#article’/>

44 A.V. Zhdanova and P. Shvaiko

<measure rdf:datatype=’&xsd;float’>0.6363636363636364</measure>

<relation>=</relation>

<dc:creator> <foaf:Person>

<foaf:name>Anna V. Zhdanova</foaf:name>

<rdfs:seeAlso rdf:resource="http://www.ee.surrey.ac.uk/Personal/A.Zhdanova/foaf.rdf"/>

</foaf:Person> </dc:creator> <dc:date>2005-03-30</dc:date>

<dc:contributor rdf:resource="http://align.deri.org"/>

</Cell> </map>

As mentioned in §3.1, resulting alignments can formally contradict or subsume each
other. Nevertheless, they can be correctly employed in a community-driven Semantic
Web environment. The role of alignments’ annotations is to ensure a correct interpre-
tation of an alignment in a context of a specific task. Let us consider a simple ex-
ample. Suppose, one sub-community of biologists may be interested only in journal
papers dealing with protein. While, another sub-community may be interested in all
kinds of papers on the same subject. When a biologist belongs to both of these sub-
communities, a reconciliation algorithm is needed in order to decide what kind of infor-
mation needs to be delivered to the user. Such an algorithm may employ precisions of
alignments, biologist’s personal data, and other details of the community-driven align-
ment annotations.

5 Usage Analysis

The community-driven ontology matching service has been available online since No-
vember 2004. The usage of the service has been observed for one year. Results of the
usage analysis are summarized in Table 2. In particular, the first column lists the charac-
teristics which were analyzed. The second and the third columns represent the statistics,
respectively, for the first half of the observation period and for the whole period.

Table 2. Usage analysis results

Characteristics Observation Period Observation Period
(Nov 04 - Apr 05) (Nov 04 - Oct 05)

Number of the matched entities 52 different ontology 343 different ontology
which were acquired entities entities
Number of the mappings 29 different mappings 317 different mappings
which were acquired
Number of the ontologies processed
/namespaces known 8 different namespaces 20 different namespaces
via the communities involved
Identification of who and when used anonymous Web users from anonymous Web users from
community-driven matching service more than 25 countries more than 40 countries

Table 2 demonstrates (as expected) a relatively infrequent usage of the system just
after its launch. For example, during the first half of the exploitation period no new
(to the system) ontology namespaces were acquired, namely all 8 namespaces already

Community-Driven Ontology Matching 45

existed in the ontologies offered to the prototype users as examples. However, during the
second half of the observation period, 12 completely new namespaces were acquired.
Also, it is worth noticing that the numbers of matched entities and acquired mappings
have substantially increased during the second half of the exploitation period.

In general, during the observation time around 750 users accessed the online service.
These were mostly researchers and developers. According to the alignments acquired
by the prototype, two types of ontologies served most often as input: (i) common knowl-
edge ontologies, with such most frequently used concepts as Person, Time, Place, and
(ii) domain specific ontologies (e.g., academia), with such most frequently used con-
cepts as University, Faculty, Publication. However, ontology entities from more spe-
cific domains were acquired as well. Some examples are a museum ontology in Italian
and an ontology devoted to electronics of the Dutch origin.

From the experiments with the system, the following two main problems restricting
usage of the community-driven ontology matching were identified:

– Still, there exists a relatively small number of OWL ontologies. Moreover, there
exists even a smaller number of ontologies which have a meaningful overlap, hence,
they are worth being matched. A similar problem (namely, finding real-world OWL
ontology matching tasks) has been encountered in the ontology matching contests4.

– There are no services supporting relatively easy reuse of acquired ontology align-
ments in predefined scenarios and efficient interaction with the repositories of an-
notated mappings. We consider these problems to be very important, and therefore,
pose addressing them as one of our future work directions.

Thus, the above observations suggest that, on the one hand, the uptake of Semantic
Web technology in general, and of community-driven ontology matching in particular,
by the Web communities is still slow. However, on the other hand, the usage analysis
gives us a preliminary vision of a feasibility of ontology mappings acquisition from the
Web communities and their usefulness for those communities.

6 Discussion

There exists a number of semi-automated schema/ontology matching systems, recent
surveys on the topic are provided in [21, 22, 19, 7], while state of the art matching ap-
proaches can be found in [15, 12, 20, 17, 9, 8]5. Below, we analyze some state of the art
matching systems from the community-driven ontology matching perspective.

PROMPT is an ontology merging and alignment tool with a sophisticated prompt
mechanism for possible matching terms [20]. At present, the PROMPT system is sup-
ported by its authors. It is an open source system written in Java and can be downloaded
from the project web-site6. PROMPT handles ontologies expressed in such knowl-
edge representation formalisms as OWL and RDFS. The major obstacle in reusing the
PROMPT tool in the community-driven approach comes from the fact that it has being

4 See for details, e.g., http://oaei.inrialpes.fr/2005/ and http://oaei.inrialpes.fr/2004/Contest/
5 A complete information on the topic can be found at www.OntologyMatching.org
6 http://protege.stanford.edu/plugins/prompt/prompt.html

46 A.V. Zhdanova and P. Shvaiko

developed as the Protégé7 plug-in. Thus, its source code needs additional modifications
in order to be suitably integrated within the community-driven settings.

MAFRA is an ontology mapping framework which aims at matching distributed
ontologies and reasoning over the mappings [17]. At present, the MAFRA system is
not supported by its authors8. The tool is an open source and is implemented in Java.
MAFRA handles ontologies expressed in RDFS and DAML+OIL. It has been devel-
oped as the KAON9 plug-in. Thus, as in the PROMPT system case, the reuse in the
community-driven approach of the ontology matching component of MAFRA is hin-
dered by its tight integration with KAON and GUI. Finally, up-to-date documentation
of the MAFRA code is not available10.

Alignment API is an implementation of the format for expressing alignments in
RDF [10]. At present, Alignment API is supported by its author. It is an open source. It
is written (in Java) as an extension of the OWL API [3] and can be downloaded from
the project web-site11. Alignment API handles ontologies in OWL/RDF. In general,
it can be used for various tasks, such as completing partial alignments, thresholding
alignments, evaluating results of matching algorithms, and so on. There is a possibil-
ity of integrating new matching algorithms, composing matching algorithms, generat-
ing transformations in other than OWL knowledge representation formalisms, such as
SWRL rules [16] and C-OWL [4]. The API module is easy to understand, install and
use. The supporting documentation is also available. Naturally, Alignment API can be
easily reused (and was reused as discussed in the paper) in the community-driven on-
tology matching approach.

COMA++ is a schema/ontology matching tool with an extensible library of match-
ing algorithms, a framework for combining matching results, and a platform for the
evaluation of the effectiveness of the different matchers [1]. At present, the COMA++
system is supported by its authors. It is written in Java and can be downloaded from the
project web-site12. COMA++ handles ontologies expressed in OWL. This system sup-
ports the alignment reuse operation, although privately, being limited to the individual
users of the system, who usually do not know each other, hence, they do not com-
municate with each other. In particular, COMA++ supports alignment reuse for entire
ontologies and their fragments. Since the system is available only as an executable file,
it requires additional efforts to be suitably incorporated within the community-driven
ontology matching approach.

FOAM is a framework for ontology matching and alignment which is based on
a semi-automatic combination of different heuristics/matchers [9, 8]. At present, the
FOAM system is supported by its authors. It is an open source system written in Java
and can be downloaded from the project web-site13. FOAM handles ontologies in OWL
and RDF. The system is easy to install and use. The supporting documentation is also

7 http://protege.stanford.edu/
8 private communication
9 http://kaon.semanticweb.org/

10 http://sourceforge.net/projects/mafra-toolkit/
11 http://co4.inrialpes.fr/align/align.html
12 http://dbs.uni-leipzig.de/Research/coma.html
13 http://www.aifb.uni-karlsruhe.de/WBS/meh/foam/

Community-Driven Ontology Matching 47

available. Thus, FOAM can be easily adapted for the settings of the community-driven
ontology matching approach.

The above analysis (which has been carried out in more detail with about 15 systems
in [24]) shows that though a relatively large number of ontology matching systems
were elaborated, only a few of them are available for download and can be potentially
reused. Further, we identified that neither of the current ontology matching approaches
and tools employs community-related aspects, whenever such aspects have a potential
to be beneficial for most of these approaches and tools. PROMPT, Alignment API,
and FOAM correspond to our vision of a community-driven ontology matching tool
most of all. Due to the above mentioned PROMPT’s dependency on Protégé, Alignment
API and FOAM (underway) were chosen to serve as a basis for the community-driven
ontology matching prototype.

In general, it is worth noting that, for example, engineers of information integration
systems would rather use existing matching systems than build their own. However, it
is quite difficult to connect existing state of the art matching systems to other systems
or embed them into the new environments. They are usually packaged as stand alone
systems, designed for communication with a human user. In addition, they are not pro-
vided with an interface described in terms of abstract data types and logical functional-
ity. Thus, integration of different matching systems into the new environments is itself
a challenging task.

7 Conclusions

We have presented the community-driven ontology matching approach. A prototype
supporting the approach was implemented and its usage was analyzed. The results
demonstrate feasibility of acquisition and sharing of ontology mappings among the Web
communities, thereby supporting, e.g., facilitated knowledge exchange within those
communities. Also, by providing a repository of annotated mappings, which is a source
of domain specific knowledge, the approach enables other ontology matching systems
to produce potentially better results (e.g., a higher recall).

To step forwards, community-driven ontology matching needs more support for
detailed alignment annotations and specific employment of information from user
profiles, groups, communities, their goals and activities, e.g., in alignment recom-
mendation mechanisms. Also, we are interested in further inclusion into the system
of different matching algorithms as well as in the support for ontologies expressed in
various (besides OWL) knowledge representation formalisms. Then, establishing pro-
tocols for machine to machine annotated alignments exchanges and a better end user
interfaces are among the next steps towards a fully-fledged employment of the pro-
posed approach. Finally, we are interested in applying the principles of community-
driven ontology matching as a part of community-driven ontology management [23]
in practical case studies, going beyond conventional scenarios at Semantic Web por-
tals [6]. In particular, we want to investigate the benefits for human contributors from
creating and reusing ontology mappings.

Acknowledgements. This work has been partly supported by the Knowledge Web
European network of excellence (IST-2004-507482) and IP SPICE (IST-2006-027617).

48 A.V. Zhdanova and P. Shvaiko

References

1. D. Aumüller, H. H. Do, S. Massmann, and E. Rahm. Schema and ontology matching with
COMA++. In Proceedings of SIGMOD, Software Demonstration, 2005.

2. P. Avesani, F. Giunchiglia, and M. Yatskevich. A large scale taxonomy mapping evaluation.
In Proceedings of ISWC, pages 67 – 81, 2005.

3. S. Bechhofer, R. Volz, and P. Lord. Cooking the Semantic Web with the OWL API. In
Proceedings of ISWC, pages 659–675, 2003.

4. P. Bouquet, F. Giunchiglia, F. van Harmelen, L. Serafini, and H. Stuckenschmidt. Contextu-
alizing ontologies. Journal of Web Semantics, (26):1–19, 2004.

5. J. Carroll, I. Dickinson, C. Dollin, D. Reynolds, A. Seaborne, and K. Wilkinson. Jena: Im-
plementing the Semantic Web recommendations. In Proceedings of WWW, pages 74–83,
2004.

6. O. Corcho, A. Gomez-Perez, A. Lopez-Cima, V. Lopez-Garcia, and M. Suarez-Figueroa.
ODESeW. Automatic generation of knowledge portals for intranets and extranets. In Pro-
ceedings of ISWC, pages 802–817, 2003.

7. A. Doan and A. Halevy. Semantic integration research in the database community: A brief
survey. AI Magazine, Special Issue on Semantic Integration, 2005.

8. M. Ehrig and S. Staab. QOM: Quick ontology mapping. In Proceedings of ISWC, pages
683–697, 2004.

9. M. Ehrig, S. Staab, and Y. Sure. Bootstrapping ontology alignment methods with APFEL.
In Proceedings of ISWC, pages 186–200, 2005.

10. J. Euzenat. An API for ontology alignment. In Proceedings of ISWC, pages 698–712, 2004.
11. J. Euzenat, H. Stuckenschmidt, and M. Yatskevich. Introduction to the ontology alignment

evaluation 2005. In Proceedings of Integrating Ontologies workshop at K-CAP, 2005.
12. F. Giunchiglia, P. Shvaiko, and M. Yatskevich. Semantic schema matching. In Proceedings

of CoopIS, pages 347–365, 2005.
13. F. Giunchiglia, P. Shvaiko, and M. Yatskevich. Discovering missing background knowledge

in ontology matching. Technical report, DIT-06-005, University of Trento, 2006.
14. J. Golbeck, P. Bonatti, W. Nejdl, D. Olmedilla, and M. Winslett, editors. Proceedings of the

ISWC’04 Workshop on Trust, Security, and Reputation on the Semantic Web. 2004.
15. W. R. Hage, S. Katrenko, and G. Schreiber. A method to combine linguistic ontology-

mapping techniques. In Proceedings of ISWC, pages 732–744, 2005.
16. I. Horrocks, P. Patel-Schneider, H. Boley, S. Tabet, B. Grosof, and M. Dean. SWRL:

a semantic web rule language combining OWL and RuleML. Technical report,
http://www.daml.org/rules/proposal/, 2004.

17. A. Maedche, B. Motik, N. Silva, and R. Volz. MAFRA - A MApping FRAmework for
Distributed Ontologies. In Proceedings of EKAW, pages 235–250, 2002.

18. P. Mika. Ontologies are us: A unified model of social networks and semantics. In Proceed-
ings of ISWC, pages 522–536, 2005.

19. N. Noy. Semantic Integration: A survey of ontology-based approaches. SIGMOD Record,
33(4):65–70, 2004.

20. N. Noy and M. Musen. The PROMPT Suite: Interactive tools for ontology merging and
mapping. International Journal of Human-Computer Studies, (59(6)):983–1024, 2003.

21. E. Rahm and P. Bernstein. A survey of approaches to automatic schema matching. The VLDB
Journal, (10(4)):334–350, 2001.

22. P. Shvaiko and J. Euzenat. A survey of schema-based matching approaches. Journal on Data
Semantics, (IV):146–171, 2005.

Community-Driven Ontology Matching 49

23. A. V. Zhdanova. The people’s portal: Ontology management on community portals. In
Proceedings of the workshop on Friend of a Friend, Social Networking and the Semantic
Web (FOAF), 2004.

24. A. V. Zhdanova, J. de Bruijn, K. Zimmermann, and F. Scharffe. Ontology alignment solution
v2.0. EU IST Esperonto project deliverable (D1.4), 2004.

25. A. V. Zhdanova, R. Krummenacher, J. Henke, and D. Fensel. Community-driven ontology
management: DERI case study. In Proceedings of WI, pages 73–79, 2005.

Reconciling Concepts and Relations in
Heterogeneous Ontologies

Chiara Ghidini and Luciano Serafini

ITC-IRST
Via Sommarive 18

I-38040 Trento, Italy
{ghidini, serafini}@itc.it

Abstract. In the extensive usage of ontologies envisaged by the Seman-
tic Web there is a compelling need for expressing mappings between the
components of heterogeneous ontologies. These mappings are of many
different forms and involve the different components of ontologies. State
of the art languages for ontology mapping enable to express semantic re-
lations between homogeneous components of different ontologies, namely
they allow to map concepts into concepts, individuals into individuals,
and properties into properties. Many real cases, however, highlight the
necessity to establish semantic relations between heterogeneous compo-
nents. For example to map a concept into a relation or vice versa. To
support the interoperability of ontologies we need therefore to enrich
mapping languages with constructs for the representation of heteroge-
neous mappings. In this paper, we propose an extension of Distributed
Description Logics (DDL) to allow for the representation of mapping be-
tween concepts and relations. We provide a semantics of the proposed
language and show its main logical properties.

1 Introduction

In the extensive usage of ontologies envisaged by the Semantic Web there is a
compelling need for expressing mappings between different and heterogeneous
ontologies. These mappings are of many different forms and involve the different
components of ontologies.

Most of the formalisms for distributed ontology integration, which are based
on the p2p architecture [12], provide a language to express semantic relations
between concepts belonging to different ontologies. These classes of languages
are usually called mapping languages [11, 9]. These formalisms can express that
a concept, say MarriedMan, in Ontology 1 is equivalent to the concept Husband
in Ontology 2, or that the concept Benedict in Ontology 3 is more specific that
the concept Relative in Ontology 4. Few mapping languages allow also to ex-
press semantic relations between properties in different ontologies (see [7, 5]).
However, to the best of our knowledge, none of the existing approaches sup-
port mappings between properties and concepts. Such mappings are necessary
to express the semantic relations between two ontologies, when the informa-
tion represented as a concept in the former is represented as a relation in the

Y. Sure and J. Domingue (Eds.): ESWC 2006, LNCS 4011, pp. 50–64, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Reconciling Concepts and Relations in Heterogeneous Ontologies 51

latter, or vice versa. As a practical example consider two ontologies. The first
one is the ontology http://www.daml.org/2001/01/gedcom/gedcomwhich con-
tains the concept Family and the property spouseIn. Family represents the set
of families, and spouseIn relates a Human with the family in which he/she
is one of the spouses. The second one is the ontology http://ontologypor-
tal.org/translations/SUMO.owl, which contains the relation spouse, which
represents the relationship of marriage between two Humans. In integrating these
two ontologies one would like to state, for instance, that every family in the first
ontology can be mapped into a married couple in the second ontology, or in other
words, that that the concept Family can be mapped into the relation spouse.

The goal of this paper is to extend a language for ontology mapping, an to
introduce mechanisms for the representation of heterogeneous mappings between
ontologies. We focus on the mappings between concepts and relations as they
provide a challenging example of ontology mismatch, we describe their formal
semantics and we study their main properties. We adopt the formal framework
of Distributed Description Logics (DDL) [10] because it is a formalism which is
explicitly constructed to state expressive relations between heterogeneous lan-
guages and domains of interpretation. Summarizing, the claimed contributions
of this paper are: (i) an expressive mapping language for heterogeneous on-
tologies; (ii) a clear semantics for the proposed mapping language, and (iii) an
investigation of its basic logical properties.

The paper is structured as follows: in Section 2 we motivate our work with a
detailed example. In Section 3 we provide an extension of DDL to represent het-
erogeneous mappings. In Section 4 we study the main properties of the proposed
logic. We end with related work (Section 5) and some final remarks (Section 6).

2 A Motivating Example

Let us consider two ontologies from the web. The first is an extensive ontology
describing the domain of Geography developed by a corporation1, the second
is the DAML+OIL representation of the 2001 CIA World Fact Book2. We call
the first Ontology 1, and the second Ontology 2. Looking at the ontologies in
detail we have noticed that both need to represent the notion of geographic
coordinates. Figures 1 and 2 report the definition of geographic coordinates
from the two ontologies.

While the two ontologies are interested in describing the geographic coordi-
nate system of Earth, they have specific views on how to describe this domain
of knowledge. Rather than giving a detailed formalization of the example, we
focus on the key elements that are affected by the representation of geographical
coordinates in the two ontologies. Ontology 1 does not contain an explicit no-
tion of position on hearth (or geographical coordinate), and expresses positions
in terms of Latitude and Longitude (see Figure 1). Ontology 2 takes a different
perspective and expresses geographical coordinates as a specific concept LatLon,
1 See http://reliant.teknowledge.com/DAML/Geography.daml
2 See http://www.daml.org/2001/12/factbook/factbook-ont

52 C. Ghidini and L. Serafini

<rdfs:Class rdf:ID= "Latitude">
<rdfs:subClassOf

rdf:resource = "http://reliant.teknowledge.com/DAML/SUMO.owl#Region"/>
<rdfs:label>latitude</rdfs:label>
<rdfs:label>parallel</rdfs:label>
<rdfs:comment>Latitude is the class of Regions,

associated with areas on the Earth’s surface, which are parallels
measured in PlaneAngleDegrees from the Equator.</rdfs:comment>

</rdfs:Class>

<rdfs:Class rdf:ID= "Longitude">
<rdfs:subClassOf

rdf:resource ="http://reliant.teknowledge.com/DAML/SUMO.owl#Region"/>
<rdfs:label>longitude</rdfs:label>
<rdfs:label>meridian</rdfs:label>

<rdfs:comment>Longitude is the class of Regions, associated with areas
on the Earth’s surface, which are meridians measured in PlaneAngleDegrees
from the PrimeMeridian through GreenwichEnglandUK.</rdfs:comment>

</rdfs:Class>

Fig. 1. Position = Latitude + Longitude

<owl:Class rdf:ID="LatLon">
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource="#latitude"/>
<owl:allValuesFrom rdf:resource="&xsd;double"/>
<factbook:units>degrees</factbook:units>

</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource="#longitude"/>
<owl:allValuesFrom rdf:resource="&xsd;double"/>
<factbook:units>degrees</factbook:units>

</owl:Restriction>
</rdfs:subClassOf>

</owl:Class>

Fig. 2. Position = Object with two properties: Latitude and Longitude

which has two properties represented by the roles latitude and longitude which
are numbers of type Double (see Figure 2). A graphical representation of two
different representations of geographical coordinates inspired by the definitions
in Figures 1 and 2 is given in Figure 3. Despite the different choices made by the
ontology designers, there is clear relation between Ontology 1 and Ontology 2,
and in particular between the concepts Latitude and Longitude and the properties
(roles) latitude and longitude, respectively.

Reconciling Concepts and Relations in Heterogeneous Ontologies 53

Longitude

Ontology 2

Equator

Tropic of cancer

Tropic of Capricorn

Latitude

Rome Meridian

Greenwich Meridian

Rome

Baltimore

39.3
76.6

Paris Meridian

Double

Town
LatLon

longitude

latitude

Position

Position

Ontology 1

Fig. 3. Representing geographical positions

State of the art formalisms for the representation of distributed ontologies and
reasoning, would do very little with this example, except perhaps identifying that
Latitude and Longitude in Ontology 1 are related with Double in Ontology 2 (as-
suming that Latitude and Longitude are represented as doubles also in Ontology 1).
But this is an hardly informative mapping, as it does not capture the essential fact
that both ontologies are describing the geographic coordinate system of Earth.

3 An Expressive Mapping Language

Description Logic (DL) has been advocated as the suitable formal tool to repre-
sent and reason about ontologies. Distributed Description Logic (DDL) [3, 10] is
a natural generalization of the DL framework designed to formalize multiple on-
tologies interconnected by semantic mappings. As defined in [3, 10], Distributed
Description Logic provides a syntactical and semantical framework for formal-
ization of multiple ontologies pairwise linked by semantic mappings. In DDL,
ontologies correspond to description logic theories (T-boxes), while semantic
mappings correspond to collections of bridge rules (B).

In the following we recall the basic definitions of DDL as defined in [10], and
we extend the set of bridge rules, introducing new semantic mappings between
distributed ontologies.

3.1 Distributed Description Logics: The syntax

Given a non empty set I of indexes, used to identify ontologies, let {DLi}i∈I

be a collection of description logics3. For each i ∈ I let us denote a T-box of
3 We assume familiarity with Description Logic and related reasoning systems, de-

scribed in [1].

54 C. Ghidini and L. Serafini

DLi as Ti. In this paper, we assume that each DLi is description logic weaker
or at most equivalent to SHIQ. Thus a T-box will contain all the information
necessary to define the terminology of a domain, including not just concept
and role definitions, but also general axioms relating descriptions, as well as
declarations such as the transitivity of certain roles.

We call T = {Ti}i∈I a family of T-Boxes indexed by I. Intuitively, Ti is the
description logic formalization of the i-th ontology. To make every description
distinct, we will prefix it with the index of ontology it belongs to. For instance,
the concept C that occurs in the i-th ontology is denoted as i : C. Similarly,
i : C 	 D denotes the fact that the axiom C 	 D is being considered in the i-th
ontology.

Semantic mappings between different ontologies are expressed via collections
of bridge rules. In the following we use A and B as placeholders for concepts and
R and S as placeholders for relations.

Definition 1 (Bridge rules). A bridge rule from i to j is an expression defined
as follows:

i : A
�−→ j : B (concept-onto-concept bridge rule) (1)

i : A
�−→ j : B (concept-into-concept bridge rule) (2)

i : R
�−→ j : S (role-onto-role bridge rule) (3)

i : R
�−→ j : S (role-into-role bridge rule) (4)

i : A
�−→ j : R (concept-onto-role bridge rule) (5)

i : A
�−→ j : R (concept-into-role bridge rule) (6)

i : R
�−→ j : A (role-onto-concept bridge rule) (7)

i : R
�−→ j : A (role-into-concept bridge rule) (8)

where A and B are concepts of DLi and DLj respectively, and R and S are
roles of DLi and DLj respectively. Bridge rules (1)–(4) are called homogeneous
bridge rules, and bridge rules (5)–(8) are called heterogeneous bridge rules.

Bridge rules do not represent semantic relations stated from an external objective
point of view. Indeed, there is no such global view in the web. Instead, bridge
rules from i to j express relations between i and j viewed from the subjective
point of view of the j-th ontology. Let us discuss the different mapping categories.

Homogeneous bridge rules. Bridge rules (1) and (2) have been introduced and
studied in [3, 10] with the name of onto-bridge rule and into-bridge rule, respec-

tively. Intuitively, the concept-into-concept bridge rule i : A
�−→ j : B states

that, from the j-th point of view the concept A in i is less general than its local
concept B. Similarly, the concept-onto-concept bridge rule i : A

�−→ j : B ex-
presses the fact that, according to j, A in i is more general than B in j. Therefore,

Reconciling Concepts and Relations in Heterogeneous Ontologies 55

bridge rules from i to j provide the possibility of translating into j’s ontology
(under some approximation) the concepts of a foreign i’s ontology. Note, that
since bridge rules reflect a subjective point of view, bridge rules from j to i are
not necessarily the inverse of the rules from i to j, and in fact bridge rules from
i to j do not force the existence of bridge rules in the opposite direction. Thus,
the bridge rule

i : Article
�−→ j : ConferencePaper (9)

expresses the fact that, according to ontology j, the concept Article in ontology
i is more general than its local concept ConferencePapers, while the bridge rules

i : Article
�−→ j : Article (10)

i : Article
�−→ j : Article (11)

say that, according to ontology j, the concept Article in ontology j is equivalent
to its local concept Article. Bridge rules (3) and (4) formalize the analogous
intuition for roles. For example, the bridge rule:

i : marriedTo
�−→ j : partnerOf

says that according to ontology j, the relation marriedTo in ontology i is less
general than its own relation partnerOf.

Heterogeneous bridge rules. Bridge rules (5) and (6) define how concepts are
mapped into roles. Bridge rule (5) states that from the point of view of j concept
A in Ontology i corresponds to its own relation R and A is less general than
R. Bridge rule (6), on the contrary, states that A is more general than R. For
instance, the bridge rule:

1 : Latitude
�−→ 2 : latitude

says that according to ontology 2, concept Latitude in ontology 1 is more general
than its own relation latitude. That is all latitudes in its own ontology have a
corresponding Latitude in ontology 1.

Bridge rules (7) and (8) define how roles are mapped into concepts, and are
the counterpart of bridge rules (5) and (6). Bridge rule (7) says that from the
point of view of j role A in Ontology i corresponds to its own concept A and
R is less general than A. Bridge rule (8), on the contrary, states that R is more
general than A. For example, the bridge rule:

1 : spouse
�−→ 2 : Family

states that every married couple in ontology 1, can be mapped into a family in
ontology 2. Similarly the bridge rule. Similarly the bridge rule

1 : WorksFor
�−→ 2 : WorkingContract

56 C. Ghidini and L. Serafini

states that every working contract in ontology 2 corresponds to some working
relation in ontology 1.

Bridge rules (5)– (8) are important examples of heterogeneous mappings be-
tween ontologies, but the list of heterogeneous bridge rules presented in this
paper is by no means complete. We have chosen to study the mappings between
relations and concepts as they are a clear and interesting example of heteroge-
neous mapings. To address the problem of ontology mapping and alignment in
full, other forms of heterogeneous mappings need to be investigated, among them
mappings between individuals and concepts and even more complex mappings
involving interconnected parts of different ontologies.

Definition 2 (Distributed T-box). A distributed T-box (DTB)

T = 〈{Ti}i∈I , B〉

consists of a collection {Ti}i∈I of T-boxes, and a collection B = {Bij}i�=j∈I of
bridge rules between them.

3.2 Distributed Description Logics: The semantics

The semantic of DDL, which is a customization of Local Models Semantics [6, 7],
assigns to each ontology Ti a local interpretation domain. The first component
of an interpretation of a DTB is a family of interpretations {Ii}i∈I , one for each
T-box Ti. Each Ii is called a local interpretation and consists of a possibly empty
domain ΔIi and a valuation function ·Ii , which maps every concept to a subset
of ΔIi , and every role to a subset of ΔIi ×ΔIi . The interpretation on the empty
domain is denoted with the apex ε.

Notice that, in DL, interpretations are defined always on a non empty domain.
Therefore Iε is not an interpretation in DL. In DDL however we need to provide a
semantics for partially inconsistent distributed T-boxes, i.e. DTBs in which some
of the local T-boxes are inconsistent. Iε provides an “impossible interpretation”
which can be associated to inconsistent T-boxes. Indeed, Iε satisfies every axiom
X 	 Y (also � 	 ⊥) since XI

ε
= ∅ for every concept and role X .

The second component of the DDL semantic are families of domain relations.
Domain relations define how the different T-box interact and are necessary to
define the satisfiability of bridge rules.

Definition 3 (Domain relation). A domain relation rij from ΔIi to ΔIj is
a subset of ΔIi ×ΔIj . We use rij(d) to denote {d′ ∈ ΔIj | 〈d, d′〉 ∈ rij}; for any
subset D of ΔIi , we use rij(D) to denote

⋃
d∈D rij(d); for any R ⊆ ΔIi ×ΔIi

we use rij(R) to denote
⋃

〈d,d′〉∈R rij(d) × rij(d′).

A domain relation rij represents a possible way of mapping the elements of ΔIi

into its domain ΔIj , seen from j’s perspective. For instance, if ΔI1 and ΔI2

are the representation of time as Rationals and as Naturals, rij could be the
round off function, or some other approximation relation. This function has to
be conservative w.r.t., the order relations defined on Rationals and Naturals.

Reconciling Concepts and Relations in Heterogeneous Ontologies 57

Domain relation is used to interpret homogeneous bridge rules according with
the following definition.

Definition 4 (Satisfiability of homogeneous bridge rules). The domain
relation rij satisfies a homogeneous bridge rule w.r.t., Ii and Ij, in symbols
〈Ii, rij , Ij〉 |= br, according with the following definition:

1. 〈Ii, rij , Ij〉 � i : A
�−→ j : B, if rij(AIi) ⊆ BIj

2. 〈Ii, rij , Ij〉 � i : A
�−→ j : B, if rij(AIi) ⊇ BIj

where A and B are either two concept expressions or two role expressions.

Domain relations do not provide sufficient information to evaluate the satisfiabil-
ity of heterogeneous mappings. Intuitively, an heterogeneous bridge rule between
a relation R and a concept A connects a pair of objects related by R with an
object which is in A. This suggests that, to evaluate heterogeneous bridge rules
from roles in i to concepts in j one needs a relation that maps pair of objects
in ΔIi into objects of ΔIj , and to evaluate a heterogeneous bridge rule from
concepts in i to roles in j one needs a relation that maps objects in ΔIi into
pairs of objects in ΔIj .

Definition 5 (Concept-role and role-concept domain relation). A con-
cept-role domain relation crij from ΔIi to ΔIj is a subset of ΔIi×ΔIi×ΔIj . A
role-concept domain relation rcij from ΔIi to ΔIj is a subset of ΔIi×ΔIj×ΔIj .

We use crij(d) to denote {〈d1, d2〉 ∈ ΔIj×ΔIj | 〈d, d1, d2〉 ∈ crij}; for any subset
D of ΔIi , we use crij(D) to denote

⋃
d∈D crij(d). We use rcij(〈d1, d2〉) to denote

{d ∈ ΔIj | 〈d1, d2, d〉 ∈ rcij}; for any subset R of ΔIi ×ΔIi , we use rcij(R) to
denote

⋃
〈d1,d2〉∈R rcij(〈d1, d2〉).

Domain relation crij represents a possible way of mapping elements of ΔIi into
pairs of elements in ΔIj , seen from j’s perspective. For instance, if ΔI1 and
ΔI2 are the representation of geographical coordinates as in Figure 4, cr12 could
be the function mapping latitude values into the corresponding latitudes. For
instance, by setting

cr12(TropicOfCancerI1) = {〈x, 23.27〉 ∈ latitudeI2}

we can represent the fact that the tropic of cancer is associated with pairs of ob-
jects 〈x, y〉 such that y is the latitude of x and y is equal to 23.27 (the latitude of
the tropic of cancer). Vice-versa a domain relation rcij represents a possible way
of mapping a pair of ΔIi into the corresponding element in ΔIj . For instance,
if the pair

〈
JohnI1 , MaryI1

〉
∈ spouseI1 , then the fact that

rc12(JohnI1 , MaryI1) = family23I2

represents the fact that family23 is the family containing the married couple of
John and Mary.

58 C. Ghidini and L. Serafini

longitude

Ontology 1 Ontology 2

Latitude

Longitude Double

Tropic of cancer

23.27

cr12
LatLon latitude

Fig. 4. Concept-role domain relation

Definition 6 (Satisfiability of heterogeneous bridge rules). The concept-
role domain relation crij satisfies a concept to role bridge rule w.r.t., Ii and Ij,
in symbols 〈Ii, crij , Ij〉 |= br, according with the following definition:

1. 〈Ii, crij , Ij〉 � i : A
�−→ j : R, if crij(AIi) ⊆ RIj

2. 〈Ii, crij , Ij〉 � i : A
�−→ j : R, if crij(AIi) ⊇ RIj

where A is a concept expression of i and R a role expression of j.
The role-concept domain relation rcij satisfies a role to concept bridge rule w.r.t.,
Ii and Ij, in symbols 〈Ii, rcij , Ij〉 |= br, according with the following definition:

1. 〈Ii, rcij , Ij〉 � i : R
�−→ j : A, if rcij(RIi) ⊆ AIj

2. 〈Ii, rcij , Ij〉 � i : R
�−→ j : A, if rcij(RIi) ⊇ AIj

where A is a concept expression of j and R a role expression of i.

Definition 7 (Distributed interpretation). A distributed interpretation

I = 〈{Ii}i∈I , {rij}i�=j∈I , {crij}i�=j∈I , {rcij}i�=j∈I〉

of a DTB T consists of local interpretations Ii for each Ti on local domains ΔIi ,
and families of domain relations rij , crij and rcij between these local domains.

Definition 8 (Satisfiability of a Distributed T-box). A distributed inter-
pretation I satisfies the elements of a DTB T according to the following clauses:
for every i, j ∈ I

1. I � i : A 	 B, if Ii � A 	 B
2. I � Ti, if I � i : A 	 B for all A 	 B in Ti

3. I � Bij , if

Reconciling Concepts and Relations in Heterogeneous Ontologies 59

– 〈Ii, rij , Ij〉 satisfies all the homogeneous bridge rules in Bij ,
– 〈Ii, crij , Ij〉 satisfies all the concept-to-role bridge rules in Bij ,
– 〈Ii, rcij , Ij〉 satisfies all the role-to-concept bridge rules in Bij

4. I � T, if for every i, j ∈ I, I � Ti and I � Bij

Definition 9 (Distributed Entailment and Satisfiability). T � i : C 	 D
(read as “T entails i : C 	 D”) if for every I, I � T implies I �d i : C 	 D. T
is satisfiable if there exists a I such that I � T. Concept i : C is satisfiable with
respect to T if there is a I such that I � T and CIi �= ∅.

4 Characterizing Mappings

In this section we enunciate the most important properties of the extended ver-
sion of DDL and for each result we provide an example that explains why this
property is desirable. We assume familiarity with Description Logics, and in par-
ticular with SHIQ. Symbols, �, , and − denote the usual union, intersection,
and inverse operators of Description Logics. Similarly, ∃R.C is used to denote
the existential restriction.

Theorem 1 (General property). If I � i : A
�−→ j : G, and I � i : B

�−→ j :
H, then

I � i : A 	 B =⇒ I � j : G 	 H (12)

where the pair A and B and the pair G and H are pairs of homogeneous elements,
that is either pairs of concepts or pairs of roles.

Example 1. Let

– I � i : Article
�−→ j : ConferencePaper, and

– I � i : Article
�−→ j : ScientificArticle.

Theorem 1 allows to infer that a conference paper is a Scientific article in Oj ,
namely I � j : ConferencePaper 	 Article, from the fact that I � i : Article 	
Article. Similarly, let

– I � i : Couple
�−→ j : partnerOf, and

– I � i : Family
�−→ j : spouseIn � childIn,

where Couple and Family are concepts and partnerOf, and spouseIn relations. If
I � i : Couple 	 Family, then I � j : partnerOf 	 spouseIn � childIn.

Theorem 2 (Concept into/onto concept). If I � i : A
�−→ j : G, and

I � i : Bk
�−→ j : Hk for 1 ≤ k ≤ n (with n ≥ 0), then:

I � i : A 	
n⊔

k=1

Bk =⇒ I � j : G 	
n⊔

k=1

Hk (13)

where A, G, Bk and Hk (1 ≤ k ≤ n) are concepts.

60 C. Ghidini and L. Serafini

Example 2. Let

– I � i : ArchivalPublication
�−→ j : ArchivalPublication,

– I � i : ConferencePaper
�−→ j : Article, and

– I � i : BookChapter
�−→ j : Article.

Theorem 3 guarantees that if I � i : ArchivalPublication 	 ConferencePaper �
BookChapter then I � j : ArchivalPublication 	 Article.

Theorem 3 (Concept into/onto role). If I � i : A
�−→ j : R, and I � i :

Bk
�−→ j : Sk for 1 ≤ k ≤ n (with n ≥ 0), then:

I � i : A 	
n⊔

k=1

Bk =⇒ I � j : ∃R.X 	
n⊔

k=1

∃Sk.X (14)

where A and Bk (1 ≤ k ≤ n) are concepts, R and Sk (1 ≤ k ≤ n) are roles, and
X is any arbitrary concept.

Example 3. Let

– I � i : Parent
�−→ j : hasChild,

– I � i : Mother
�−→ j : motherOf, and

– I � i : Father
�−→ j : fatherOf, and

where Parent, Mother and Father are concepts, while hasChild, motherOf and
fatherOf are relations. If I � i : Parent 	 Mother � Father, then I � j :
∃hasChild.X 	 ∃motherOf.X � ∃fatherOf.X , for any concept X .

Theorem 4 (Role into/onto role).

If I � i : R
�−→ j : S, then I � i : R− �−→ j : S− (15)

If I � i : R
�−→ j : S, then I � i : R− �−→ j : S−, (16)

Example 4. Let I � i : marriedTo
�−→ j : partnerOf, then I � i : marriedTo−

�−→
j : partnerOf−. Similarly for the into case.

Corollary 1 (Role into/onto concept). If I � i : R
�−→ j : A, and I � i :

S
�−→ j : Bk for 1 ≤ k ≤ n (with n ≥ 0), then:

I � i : R 	 S =⇒ I � j : A 	
n⊔

k=1

Bk (17)

I � i : R 	 S =⇒ I � j : A 	
n�

k=1

Bk (18)

where R, and S are roles and A and Bk (1 ≤ k ≤ n) are concepts.

Reconciling Concepts and Relations in Heterogeneous Ontologies 61

Example 5. Let

– I � i : holdsSeasonalTicketOf
�−→ j : SeasonalTicketHolder

– I � i : supporterOf
�−→ j : Person, and

– I � i : supporterOf
�−→ j : JuventusFan

where holdsSeasonalTicketOf, Person and JuventusFan are concepts, while Sea-
sonalTicketHolder, supporterOf and JuventusFan are relations. If

I � i : holdsSeasonalTicketOf 	 supporterOf

then
I � i : SeasonalTicketHolder 	 Person � JuventusFan

and
I � i : SeasonalTicketHolder 	 Person JuventusFan

Corollary 2 (concept into/onto role). If I � i : A
�−→ j : R, and I � i :

B
�−→ j : S, then:

I � i : A 	 B =⇒ I � j : R− 	 S− (19)

where A, and B are concepts and R and S are roles.

Example 6. Let

– I � i : Mother
�−→ j : motherOf

– I � i : Parent
�−→ j : hasChild,

where Parent, and Mother are concepts, while hasChild, and motherOf are rela-
tions. If I � i : Mother 	 Parent, then I � j : motherOf− 	 hasChild−.

Corollary 3 (role into/onto role). If I � i : R
�−→ j : P , and I � i : S

�−→
j : Q, then:

I � i : R 	 S− =⇒ I � j : P 	 Q− (20)

where R, S P and Q are roles.

Example 7. Let

– I � i : marriedTo
�−→ j : partnerOf, and

– I � i : livingWith
�−→ j : friendOf.

If I � i : marriedTo 	 leavingWith−, then I � j : partnerOf 	 FriendOf−.

Theorem 5 (Role union). If the DL includes role union R�S, then Theorem 2
can be generalised to all bridge rules, with the only constraint of A and Bk and
G and Hk families of homogeneous elements, that is either families of concepts
or families of roles.

62 C. Ghidini and L. Serafini

5 Related Work

All the mapping languages described in [11] do not support full heterogeneous
mappings. In general, however, mapping languages support a limited version
of heterogeneous mappings. For instance, in [5], it is possible to express the
mapping

∀x.(∃y.R1(x, y) → C2(x)) (21)

or, similarly, in the original version of DDL one can state the mapping

1 : ∃R.� �−→ 2 : C (22)

However, the encoding of heterogeneous mappings shown above is not very
expressive and its usage can also lead to undesirable consequences. For instance,
assume a relation IsMarried exists in ontology 1, and a concept Marriage exists in
ontology 2. Assume we want to impose that the relation IsMarried in ontology 1
is equivalent to the concept Marriage in ontology 2, and we only have mappings
as in Equation (22). Then, we can only state mappings of the form:

1 : ∃IsMarried.� �−→ 2 : Marriage

1 : ∃IsMarried.� �−→ 2 : Marriage

But these mappings express something rather different from our initial goal as
they map single elements of a couple into marriages. Moreover, assume we also
have a bridge rule mappings wives in ontology 1 into women in ontology 2 as
follows:

1 : Wife
�−→ 2 : Woman

together with the axiom
Wife 	 ∃IsMarried.�

in ontology 1 stating that a wife is a married entity. From all this we can infer
in ontology 2 that a wife is a marriage, i.e.,

Wife 	 Marriage

This undesirable conclusion reflects the fact that in mapping the two ontolo-
gies, we have identified the participants of a relation, (the married person) with
the relation itself (the marriage). To avoid this bad behavior, Omelayenko claims
in [8] that mappings between classes and properties are not relevant from an ap-
plication point of view. We believe that the examples shown in the paper provide
a convincing evidence that this is not the case, and that an appropriate formal-
ization of heterogeneous mappings can avoid some of the problems mentioned
above.

An effort towards the formalization of heterogeneous mappings between con-
cepts and relations in the area of federated databases is described in [2]. In
this work the authors define five types of correspondences between concepts and
properties. If A is a concept and R is a relation, they consider the following
correspondences:

Reconciling Concepts and Relations in Heterogeneous Ontologies 63

– A is equivalent to R;
– A is more general to R;
– A is less general to R;
– A and R do overlap;
– A and R do not overlap.

The semantics of the correspondences above can be expressed by the following
mappings:

– ∀x.(A(x) ↔ ∃y.R(y, x));
– ∀x.(∃y.R(y, x) → A(x));
– ∀x.(A(x) → ∃y.R(y, x));
– ∃x.(A(x) ∧ ∃y.R(y, x));
– ∀x.(A(x) → ¬∃y.R(y, x)).

This semantics is similar to the encoding described in Equation (21). The only
difference is that it considers the range of the relation R in place of the do-
main. Therefore it suffers of problems similar to the ones shown above for Equa-
tion (21).

Different forms of mappings (bridge rules) have been studied in other for-
malisms strictly related to DDL, such as C-OWL [4] and DFOL [7]. Both for-
malisms do not address the problem of heterogeneous mappings and should
therefore be extended in this direction.

6 Concluding Remarks

The language and the semantics presented in this paper constitute a genuine
contribution in the direction of the integration of heterogeneous ontologies. The
language proposed in this paper makes it possible to directly bind a concept with
a relation in a different ontology, and vice-versa. At the semantic level we have
introduced a domain relation that maps pairs of object into objects and vice-
versa. This also constitute a novelty in the semantics of knowledge integration.
We have showed the main formal properties of the mapping language, and we
have left the complete characterization of the logic for future work.

References

1. Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi, and Pe-
ter F. Patel-Schneider, editors. The Description Logic Handbook: Theory, Imple-
mentation, and Applications. Cambridge University Press, 2003.

2. J. M. Blanco, A. Illarramendi, and A. Goñi. Building a federated database system:
An approach using a knowledge base system. International Journal of Intelligent
and Cooperative Information Systems, 3(4):415–455, 1994.

3. A. Borgida and L. Serafini. Distributed description logics: Assimilating information
from peer sources. Journal of Data Semantics, 1:153–184, 2003. LNCS 2800,
Springer Verlag.

64 C. Ghidini and L. Serafini

4. P. Bouquet, F. Giunchiglia, F. van Harmelen, L. Serafini, and H. Stuckenschmidt.
C-OWL: Contextualizing ontologies. In Second International Semantic Web Con-
ference (ISWC-03), volume 2870 of LNCS, pages 164–179. Springer Verlag, 2003.

5. D. Calvanese, G. De Giacomo, M. Lenzerini, and R. Rosati. Logical foundations
of peer-to-peer data integration. In 23rd ACM SIGACT SIGMOD SIGART Sym.
on Principles of Database Systems (PODS 2004), pages 241–251, 2004.

6. C. Ghidini and F. Giunchiglia. Local models semantics, or contextual reasoning =
locality + compatibility. Artificial Intelligence, 127(2):221–259, April 2001.

7. C. Ghidini and L. Serafini. Distributed First Order Logics. In Frontiers Of Com-
bining Systems 2, Studies in Logic and Computation, pages 121–140. Research
Studies Press, 1998.

8. B. Omelayenko. Integrating vocabularies: Discovering and representing vocabulary
maps. In Proceedings of the First International Semantic Web Conference (ISWC-
2002), volume 2342 of LNCS. Springer-Verlag, 2003.

9. L. Serafini, H. Stuckenschmidt, and H. Wache. A formal investigation of map-
ping language for terminological knowledge. In 19th Joint Conference on Artificial
Intelligence (IJCAI-05), pages 576–581, 2005.

10. Luciano Serafini, Alex Borgida, and Andrei Tamilin. Aspects of distributed and
modular ontology reasoning. In 19th Joint Conference on Artificial Intelligence
(IJCAI-05), pages 570–575, 2005.

11. H. Stuckenschmidt and M. Uschold. Representation of semantic mappings. In
Semantic Interoperability and Integration, number 04391 in Dagstuhl Seminar
Proceedings. Internationales Begegnungs- und Forschungszentrum (IBFI), Schloss
Dagstuhl, Germany, 2005.

12. Ilya Zaihrayeu and Matteo Bonifacio, editors. Proceedings of the Fist Workshop
on Peer-to-Peer Knowledge Management (P2PKM 2004), volume 108 of CEUR
Workshop Proceedings. CEUR-WS.org, 2004.

Empirical Merging of Ontologies — A Proposal
of Universal Uncertainty Representation

Framework

Vı́t Nováček1 and Pavel Smrž2

1 Faculty of Informatics, Masaryk University
Botanická 68a, 602 00 Brno, Czech Republic

xnovacek@fi.muni.cz
2 Faculty of Information Technology, Brno University of Technology

Božetěchova 2, 612 66 Brno, Czech Republic
smrz@fit.vutbr.cz

Abstract. The significance of uncertainty representation has become
obvious in the Semantic Web community recently. This paper presents
our research on uncertainty handling in automatically created ontologies.
A new framework for uncertain information processing is proposed. The
research is related to OLE (Ontology LEarning) — a project aimed at
bottom–up generation and merging of domain–specific ontologies. For-
mal systems that underlie the uncertainty representation are briefly in-
troduced. We discuss the universal internal format of uncertain concep-
tual structures in OLE then and offer a utilisation example then. The
proposed format serves as a basis for empirical improvement of initial
knowledge acquisition methods as well as for general explicit inference
tasks.

1 Introduction

This paper introduces a novel representation of uncertain knowledge in the do-
main of automatic ontology acquisition. The framework presented here was de-
signed and developed in the scope of a broader project — OLE — that comprises
complex ontological support for Semantic Web applications and knowledge ac-
quisition in general.

The main objective of the ontology acquisition platform OLE is to implement
a system that is able to automatically create and update domain specific ontolo-
gies for a given domain of the scientific knowledge. We emphasise an empirical
approach to the ontology construction by means of bottom-up acquisition of con-
cepts from the domain-relevant resources (documents, web pages, corpus data,
etc.). The acquisition process is incrementally boosted by the knowledge already
stored in the ontology.

The concepts extracted from a single resource form so called miniontology
that is instantly integrated into the current domain ontology. The integration
phase is the moment when the need of uncertainty representation arises. Even if

Y. Sure and J. Domingue (Eds.): ESWC 2006, LNCS 4011, pp. 65–79, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

66 V. Nováček and P. Smrž

we could obtain precise conceptual constructions from individual resources (e. g.
birds fly), we will experience infeasible consistency difficulties when trying to
establish precise relations between the concepts in broader scope of the whole
domain (as illustrated by the popular example: the fact birds fly collides with the
statements penguins are birds; penguins do not fly). Besides the inconsistency
handling, there are also important cognitive motivations of the utilisation of
uncertainty in our empiric ontologies that led us to the proposal of a novel
framework for representing uncertain knowledge. It is called ANUIC (Adaptive
Net of Universally Interrelated Concepts).

The rest of the paper is organised as follows. In Section 2 we give a concise
description of the ontology acquisition process in the scope of OLE. Section 3
summarises the overall motivation for the designed uncertainty processing mech-
anisms. This section also overviews important ideas from the cognitive science
field that are both inspiring and relevant with respect to the topic. Formal back-
ground of uncertain information representation is briefly recalled in Section 4.
Sections 5 and 6 define the framework itself and present basic notes on its util-
isations. In Section 7, two illustrative examples of uncertain ontology fragment
generation and query–processing are given. We conclude the paper and outline
future directions of our research in Section 8.

2 Ontology Acquisition Process Within OLE

An ontology acquisition framework is an integral part of the emerging ontology
acquisition platform OLE [1, 2]. In the following subsections we give a brief
overview of this tool.

As we basically process raw text data (articles, web pages’ textual content,
natural language corpora etc.), we can dissociate the ontology acquisition in
two main phases — text preprocessing and identification of relevant text’s parts
and creation of ontology from such parts. These phases are described in sub-
sections 2.1 and 2.2 here, whereas the last subsection 2.3 offers preliminary
extraction results.

2.1 Text Preprocessing

OLE processes English plain-text documents and produces the respective ontol-
ogy for each input resource (miniontology). To increase the efficiency, the input is
preprocessed with the aim to pose at least some simple structure on the text and
to reduce irrelevant data as well. Especially shallow syntactic structures (that
are usually very helpful for some methods of semantic relations’ acquisition) are
identified in this step. Except of that, a domain dictionary is created and each
of the term occurring in the dictionary is annotated by a vector that reflects its
average context. This is crucial for other extraction methods, as seen below.

The preprocessing consists of creating the domain dictionary and annotation
of terms by context vectors, splitting of the text into sentences (while possibly
eliminating irrelevant sentences), text tokenization, POS tagging and lemmati-
zation, and chunking. The steps related to processing of particular resources are

Empirical Merging of Ontologies 67

based on regular expressions and performed in one pass through the input file.
The promising relevance — for example the presence of a lexico-syntactic pattern
— is detected and resolved (if possible) at this stage as well.

The tagging and chunking phases of preprocessing depend on task specific
utilisation of NLTK natural language toolkit [3] with custom-trained Brill POS
tagging algorithm [4] and fast regular expression chunking incorporated. More-
over, the usage of NLTK toolkit (which allows users to train their own POS
taggers from annotated data and easily create efficient chunking rules) enables
to adapt the whole OLE system even for other languages than English in
future.

2.2 Taxonomy Extraction and Ontology Generation

Any extraction algorithm (such as semantic clustering, statistical co-occurrence
methods or formal concept analysis) can be integrated into OLE in the form of
a plug-in. Such a plug-in is responsible for the concept extraction and precise
(or fuzzy) assignment of a class or a property. Then it translates the gained
information into an output ontology, or passes it further to other OLE modules
(like ontology-merger or reasoner).

The taxonomy (is-a) relation is crucial for ontology development. Therefore
we have implemented methods for its acquisition first so that we could experi-
ment with practical application of our proposal of novel uncertainty representa-
tion framework. In order to build taxonomic skeleton for our ontologies we have
implemented a basic pattern-driven is-a relation extraction plug-in with rela-
tively high precision but low recall. The pattern-based method gains classes
(intensions) and individuals (extensions) that are directly lexicalised in the
resources. To increase the overall precision of our system, we have also
devised and implemented a novel method that utilises hierarchical clustering
of domain terms and consequent autonomous class annotation. This method
considers the terms in processed resources as extensions and tries to anno-
tate their groups by appropriate intensional identifiers using the WordNet lex-
ical database [5]. See [2] for detailed description of these methods and their
implementation.

The extracted information is stored in the universal format proposed here in
Section 5, no matter which extraction technique has been used. The output on-
tology file can be produced by applying respective translation rules. These rules
are implemented as another independent plug-in (likewise the extraction algo-
rithms) responsible for producing the output file in a desired format. Currently,
the OWL DL format with our own basic fuzzy extensions is supported, but OLE
is able to produce any other format by the same mechanism.

2.3 Preliminary Results of Taxonomy Extraction

Due to problems with evaluation of automatic ontology acquisition (as artic-
ulated for example in [6]) we have performed only orientational measures. For

68 V. Nováček and P. Smrž

the pattern based method, we tested the system with patterns given in Table 1
below1. The patterns are presented in common regular expression–like syntax.

Table 1. Patterns for is-a relation

Id The pattern
1 NP such as (NPList | NP)
2 such NP as (NPList | NP)
3† (NPList | NP) (and | or)other NP
4 NP (including | especially) (NPList | NP)
5‡ (NPList | NP) (is | was)an? NP
6† (NPList | NP) is the NP
7† (NPList | NP) and similar NP
8† NP like (NPList | NP)

Other patterns can be added easily, but the patterns presented in the table
were found to be sufficient for basic evaluation.

For the approximate manual evaluation we randomly chose ten resources from
the whole document set (12, 969 automatically downloaded articles from com-
puter science domain in this case). For each miniontology created by OLE sys-
tem, we computed precision as the ratio of “reasonable” relations compared to
all extracted relations. The recall was computed as the ratio of number of ex-
tracted terms (nouns) to all terms present in the resource. For all the measures
of informal precision (Pr.) and recall (Rec.), an average value was computed.
We present these results in Table 2, provided with respective average original
resource size and number of all concepts extracted (in the M1 row).

Table 2. Selected results of OLE’s taxonomy extraction tools

Method Res. sz. No. of No. of Pr. Rec. I (%)
(wrd.) conc. rel. (%) (%)

M1 4093 22.6 14.5 61.16 1.57 3399.17
avg.
M2 - 47 99 38.38 100 2183.62

cl.–cl.
M2 - 60 62 51.61 100 5691.05

cl.–indiv.
M2 486 107 161 44.99 100 3937.34

sum–up (avg.) (avg.) (avg.)

In the same table, there are also similar results of clustering–based technique
(in the M2 rows). Due to the strenuousness of manual evaluation of large ontolo-
gies we used only a set of 131 concepts (non–unique individuals) from a coherent
computer science domain resource. 60 unique individuals and 47 classes were in-
duced. We distinguished between class–class and class–individual relationships
when analysing the precision. The method’s approximate recall is 100%, because
it processes all the terms within the input data.
1 † — introduced by author, ‡ — modified by author, others adopted according to [7]

and [8]; however, the devision of simple patterns is quite easy, therefore similar
patterns can be found even in other works.

Empirical Merging of Ontologies 69

Precision values for both methods are quite high when we look at the I column
in the table. The I values present an improvement in precision over a base–
line, which is computed as RR

N(N−1) , where RR stands for number of reasonable
relations and N is the number of concepts in an ontology2. Moreover, it is only
a “crisp” precision of the extraction phase.

When we incorporate empirical merging of the miniontologies by means of our
uncertainty representation framework proposed in Section 5, we can significantly
improve the values of precision (among other things) in a certain sense, as shown
in Section 7 in more detail.

3 Motivation and Cognitive Observations

The knowledge repositories built by OLE tools must reflect the state of the
respective domain empirically according to information contained in the provided
resources. Such kind of knowledge is as objective as possible, because it is not
influenced by arbitrary considerations about the domain’s conceptual structure,
but determined by the structure itself.

3.1 Remedy to Emerging Inconsistencies

Nevertheless, the automated empiric approach has an obvious drawback – the
threat of inconsistency and possible errors. As we do not generally have an infal-
lible “oracle” to tell us how to precisely join or map newly extracted concepts to
the ones that are already stored in our ontology, crisp relations between concepts
are virtually impossible. We must deal with the inconsistencies somehow.

There are two general kinds of possible inconsistencies in an ontology (virtu-
ally any relational inconsistency can be modelled using these3):

– subsumption inconsistency: given concepts C, D and E, the C ⊆ D and
C ⊆ E statements may collide when we represent for example crisp part-
of relation by the ⊆ symbol (supposing Europe and Asia are disjunct, the
‘Turkey is both part of Europe and Asia’ statement is inconsistent);

– equivalence inconsistency: given concepts C, D and E, the C ≡ D, C ⊂ E
and D ≡ E statements are in conflict (for example when we find out in a
text that ‘science’, ‘knowledge’ and ‘erudition’ are synonyms and at the same
time we induce that ‘knowledge’ is a super–concept of ‘erudition’).

Such collisions are hard to be modelled in classic crisp ontology representation
frameworks (see [9] or [10]). Implementation of the uncertainty into our knowl-
edge representation is a solution for dealing with conflicts in the continuously
updated ontology.

2 The N(N−1) is number of all is-a relations that can be assigned among all concepts.
3 As a matter of fact, even the equivalence inconsistency can be modelled by the

subsumption one, but we give both of them in order to show clear examples.

70 V. Nováček and P. Smrž

3.2 Mental Models Reflection

The second motivation lies in inspiration by the conceptual models that are char-
acteristic for human mind. This topic is closely related to the very definition of
concept and meaning. As stated for example in [11] or [12], people definitely do
not represent the meaning of concepts as static crisp structures. The meanings
are rather constructed as vague sets of dynamically overlapping referential as-
sociations [11], or so called “meaning potentials” with particular instantiation
dependent on the context of concept-referring word or sequence of words [13].
These overlapping structures can also be viewed as interconnected in an asso-
ciative network presented in [14]. We address all these issues in the framework
proposal.

In the rest of this section, we will give an informal definition of a concept
and its meaning in the perspective of OLE. More precise formulations related
to the topic are presented in Section 5. By concept we mean a representation
of an entity existing in real world and/or utterable in human language. A con-
cept is determined by its relations to another concepts in the universe then.
Such “relational” definition of a concept is partly inspired by poststructuralis-
tic philosophy (see for example [15]). Reference of a concept is then realised by
instances of its relational connections. By these instances we mean especially
concrete uncertainty measures assigned to each relation a concept is involved
into (see Section 5 for details).

Thus we can naturally represent the dynamic conceptual overlap in the mean-
ing of [11], because the assigned relations’ measures are continuously updated
within new knowledge incorporation process. And by introducing a special rela-
tion of association we can represent the notion of meaning potentials according
to [13]. Using this relation we can associate a concept with a representation of se-
lected co-occurring concepts and impose another useful restriction on the mean-
ing construction (helpful for example when resolving word-sense ambiguities).

4 Uncertainty Formalisations

The uncertain information representation frameworks are determined by three
significant courses of contemporary mathematics:

1. extensions of the theory of measure into a more general theory of monotonous
measures with respect to the classical measures of information;

2. applications of (conditional) probability theory;
3. extensions of the classical set theory into a more general fuzzy set theory.

Various uncertainty extensions of the information measure theory are mentioned
by Klir in [16]. However, in the computer science field there are other probabilis-
tic theories generally accepted, mainly in the scope of:

– Bayesian networks (good overview of the topic is given in [17], specific ap-
plications are described in [10] or [9]);

Empirical Merging of Ontologies 71

– non-monotonic reasoning and respective probabilistic (or possibilistic) ex-
tensions of “classical” (mainly propositional, first order or description) logics
(see for example [18] or [19]).

All these more or less probabilistic approaches are no doubt significant for un-
certainty representation. However, we dissociate from them in our work for a
few important reasons. As we want our ontologies to be built automatically
in an empirical manner, it would be very hard to find out appropriate (con-
ditional) probability assignments without any background knowledge (axioms
and/or inference rules) at our hand except of the knowledge given by frequen-
cies of particular evidences. Moreover, we would like to assign similar and quite
high “belief” measures to certain instances of some relations. Imagine we would
like to make our system quite strongly believe that dog is very likely a canine
as well as a pet. The strong believe can be intuitively represented for instance
as 0.8 value and higher within the 〈0, 1〉 scale. Suppose we induce this belief–
measure from data on a probabilistic basis — then we can assign values equal to
at most 0.5 to each of the relation instances if we want to have them as similar as
possible and reasonably high at the same time. Moreover, the probabilities can
limitary decrease to 0 for very large amounts of data with uniform distribution
of instances of particular relations.

Coping with these facts would obviously break axioms of usual probability
or information measure theory. But with a relatively little effort, we can quite
naturally avoid these problems using the notion of fuzzy measure. That is why we
prefer using the fuzzy sets and fuzzy logic formalisms to motivate our uncertain
knowledge representation proposal.

Fuzzy sets were introduced by Zadeh in 1965 [20]. The theory has been quite
developed and widely used in many application domains so far and is quite well
known. The most important notion we will use here is a membership function
that uniquely defines each fuzzy set, assigning a certain degree of respective set’s
membership to each element in a universal set X . Another crucial term is fuzzy
relation (R on X×X) – it is defined as a mapping R : X×X → 〈0, 1〉. Notions
of reflexivity, symmetry, transitivity etc. similar to those of classical relations can
be adopted even for fuzzy relations. This is very useful for example for explicit
reasoning tasks (see [21]) based on set operations. However, this intriguing topic
will be discussed more elaborately in another dedicated paper.

5 ANUIC Proposal

ANUIC (Adaptive Net of Universally Interrelated Concepts) forms a backbone of
the uncertainty representation in OLE. The formal definition of ANUIC and a
few comments on the topic are mentioned in this section.

5.1 Formal Definition

The concepts are stored in a special fuzzy network structure. The network is an
oriented multigraph G = (V, E), where V is a set of stored concepts and E is a set

72 V. Nováček and P. Smrž

of ordered tuples (u, v), where u ∈ V, v ∈ V . The edges are induced by imprecise
concept relations. Multiple edges are allowed as there can exist multiple relations
between concepts. A node is a tuple in the form of (c, R, A), where:

– c is a reference word or collocation (a term in general) of the concept. It
serves as a master reference index for the node in the network;

– R is a relational set of tuples in the form of (r, cr, μ(r)), where r ∈ N is an
identifier of a relation from a given set N (its members can be usual lexico-
semantic relations, such as hyperohyponymy (is-a), synonymy, holonymy,
meronymy, or domain–specific relations like used for, appears in, method of
and so forth). The cr ∈ V is again a concept, which is related with the
current one by r, and μ(r) ∈ 〈0, 1〉 is the fuzzy μ–measure assigned to this
observation — see below what exactly this measure represents;

– A is an associative set of numeric centroid vectors that are representing
the terms occurring near the reference term in average (either throughout
the whole domain or specific subdomains); numeric elements of the vectors
are gained through mapping of domain terms to integers using a domain
dictionary. This supports the meaning potentials remark from Section 3,
among other things like induction of vector space on the domain texts (useful
for example for concept clustering).

5.2 Conviction Function

Fuzzy appropriateness (μ–measure) of a relation r (for example the is-a relation)
between concepts (c1, c2) is given by a special conviction function (derived from
standard sigmoid):

μ(r) =
1

1 + e−s(fr−β)

where fr = f(r(c1,c2))
c∈V f(r(c1,c)) is the relative frequency of relation instance observa-

tions in input data, s is a parameter regulating the “steepness” of the function
and β influences the placement of the inflexion point. The domain of the function
is real interval (0, 1〉 (but only rational numbers obviously appear as an input).
The range is real interval (0, 1).

This function maps relative frequencies of respective observations in input
data to the fuzzy appropriateness measure of the relation. It can model various
natural characteristics of human mind like conservativeness, open–mindness (in
the meaning of influence of major or minor observations to the overall conviction)
and so forth4.

The function is continuous and thus can be implemented in a very straight-
forward way. However, it can easily imitate discontinuous jumps in the shape of
the curve, which is also very useful. Examples showing shapes of the conviction
function are displayed in Figure 15. As we can see on examples, the proposed
4 Thus we can for example fix the meaning of a specific group of concepts and allow

meaning variations for another one.
5 With the relative frequency and μ-measure on the horizontal and vertical axes re-

spectively.

Empirical Merging of Ontologies 73

Fig. 1. Examples of various shapes of the conviction function

conviction function allow us to naturally simulate the relative influence the ob-
servation frequency has on the relevancy of the observed relation instance. To
be more specific, consider the following overview:

– Shape labelled as m(x) presents quite “hesitating” function that assigns
relatively high μ-measures (greater than 0.5) even to small frequencies, thus
making the system partially believe in almost every evidence, yet preferring
the higher frequencies significantly.

– The j(x) function presents a shape assigning relatively low values (in the
meaning that they are quite far from 1) even for frequency near or equal to
1. It reflects an “opinion” of the system that even a provisionally sure fact
can never be absolutely valid if we consider future observations.

– The shape given by l(x) presents a very “conservative” settings — only very
high frequency will get a μ-measure significantly higher than 0, observations
with minor frequencies are ignored. The β parameter presents a threshold of
these ignored frequencies here.

6 Notes on the μ-measures Interpretation and Processing

In the following subsections we present basic ideas related to utilisations of the
principles described in the previous section. We introduce notions of implicit and
explicit reasoning with respect to the automatic empirical ontology acquisition
and merging. The notions are also supported by preliminary examples given in
Section 7.

6.1 Implicit Reasoning

The implicit reasoning plays mayor role in learning of new knowledge by integra-
tion of various examples of empirical evidence for a relation between concepts
in an ontology. We induce knowledge by a kind of implicit inference based on
comparing the stored information and new sources of evidence in a well–defined
manner.

The process of integration of newly coming facts is similar to the process
of how people construct their conceptual representations — first they have an

74 V. Nováček and P. Smrž

almost crisp evidence of a relation between objects (for example that dogs have
four legs). This opinion is strengthened by further observations of four–legged
dogs, but one day they see a cripple dog having only three legs. So they have to
add another instance of the “have–number–of–legs” relation, but with much more
decreased relevancy (unless they keep seeing other and other different three–
legged dogs).

This is analogous to the ontology merging task — when we have a large
amount of miniontologies gained from a vast number of domain resources, we
can join them simply using their mutual insertion into one complex ANUIC struc-
ture. After proper configuration of the conviction function parameters we have
qualitatively different representation of the domain — many formerly incorrect
relations are mostly marginalised, whereas the empirically more valid relations
obtain high μ-measures, signalising strong belief in their appropriateness.

We have found that very good heuristic for configuration of the conviction
function parameters presented in Section 5 is dynamic setting of the β inflexion
point value. The steepness parameter s can be set arbitrarily (however higher
values are generally better for they cause better discrimination). The β for a
concept c and relation R is set as:

β =
1

|{ĉ|(c, ĉ) ∈ R}| .

Moreover, any relative frequency f higher than 0.5 is modified by weighing the β
parameter with 1−(f−0.5) expression. Only then we obtain for example natural
conviction of (almost) 1 when we deal with a single relation instance. Thus we
can discriminate very well between the relation instances with significant and
insignificant frequencies due to the shape of the conviction function6. Concrete
example of such an ontology merge is given in Section 7.1.

6.2 Explicit Reasoning

Explicit reasoning conforms to classical definition of reasoning — it stems from
explicit inference of new facts based on the facts already stored in an ontology
and corresponding rules tailored to our uncertain knowledge representation. It
can always be reduced on query–answering. The mechanisms underlying the
query processing proposal are rather fuzzy set–based then logic–founded. Thus
we can answer also queries difficult or even infeasible when using a classical
logical formalism (see Section 7.2 for an example of the query–processing and
possible utilisation sketches).

Despite of this, we can always reduce our knowledge repository to the OWL
DL format [22]. We can gain a crisp Description Logics approximation by per-
forming an α–reduction using respective α–cuts7 on fuzzy constructs contained
6 Supposing that the higher the relation frequency is with respect to the average

relative frequency for relation edges coming from the c concept, the more is the
relation significant and vice versa.

7 An α–cut of a fuzzy set A is a classical crisp set of objects that have a membership
value higher than α ∈ 〈0, 1〉 with respect to A.

Empirical Merging of Ontologies 75

in the ontology and by elimination of possible relations that are restricted in
OWL DL. Then we can use widely–adopted Description Logics8 reasoning on
such an approximation in order to learn less–expressive but crisp facts from our
knowledge base.

7 Examples of the ANUIC Framework Utilisation

We give an example on practical utilisation of the representation properties of
ANUIC for real world data in the first subsection. The second subsection offers
an example of how a query could be processed by the ANUIC–based empirical
inference engine. We also mention possible related utilisations of the framework
within our another project.

7.1 Ontology Merging

We tested the ontology merging on a set of 3, 272 automatically downloaded
articles from the computer science domain. The overall size of the resources was
20, 405, 014 words. We produced the respective miniontologies by pattern–based
OLE module and merged them into one ANUIC structure. Thus we gained a
taxonomy with 5, 538 classes, 9, 842 individuals9 and 61, 725 mutual is-a rela-
tions. A sample from this ontology is given on Figure 2 — the ovals represent
classes, squares individuals and arrows go from sub-concept to its super-concept,
labelled by respective μ–measures. For the μ–measures computation we used the
dynamic β assignment heuristics described in Section 6.1 and s parameter set
to 100, which performed best among various other settings.

It is very hard to formally decide what is the representation’s exact improve-
ment when compared to the knowledge stored in the former crisp miniontologies.
But we can again give at least an informal statistics — when we consider only
the relations with highest μ–measure(s) relevant for a particular concept10, we
can compute an approximate ratio of “reasonable” relations similar to the one
presented in Section 2.3. We computed the ratio on a random sample of 50 rela-
tions from the whole merged ontology and obtained the value 86 %. We cannot
formally compare this ratio even to the informal measures given in Section 2.3,
but we clearly see that this truly means a kind of improvement under a certain
perspective.

7.2 Query Processing and Possible Utilisations

In the following we show how can a vague but very useful query be processed
using ANUIC–based explicit reasoning. Suppose we have the query:

Are thenetwork and the graph concepts similar?
8 Currently the SROIQ Description Logic is implemented in OWL DL, version 1.1.

proposal, see [23].
9 We empirically assume that a concept is an individual as long as it has no hyponyms.

10 Which is by the way a very strong restriction, the range of possible interpretations
of the concrete conviction values is much higher.

76 V. Nováček and P. Smrž

Fig. 2. Sample of the merged ontology

Such a query can hardly be modelled in any classical logic. Nevertheless, it can
be very useful — let us give one example for all. The answer to such a query
is very significant when we consider different domains. In the computer science
domain, for instance, the network and graph concepts are quite similar (network
can be viewed as a kind of graph). On the other hand, in the sociology domain
there is no observable similarity between these concepts, albeit the network term
is widely used (social network etc.). Thus we can efficiently use such kind of
questions for example in the task of discourse identification.

Now how do we process the above query? Suppose we have the following four
kinds of relations stored in our ANUIC structure:

1. synonymy (s identifier) — usual lexico–semantic relation of meaning simi-
larity; however, this relation does not have to be sufficient when processing
vague queries among our empirical knowledge repository;

2. hyperohyponymy (h identifier) — super/sub–concept lexico–semantic rela-
tion;

Empirical Merging of Ontologies 77

3. association (a identifier) — arbitrary co–occurrence relation, its μ–measure
shows how often the concepts appear in the vicinity of each other;

4. antonymy (t identifier) — lexico–semantic relation of meaning dissimilarity.

Let us encode network and graph concepts as n, g respectively. Let μr(n, g) be
the value of μ–measure of relation r between n and g. Then we can express
empirical similarity (ψ) as:

ψ(n, g) = γ1(μs(n, g)−μt(n, g))+γ2(μh(n, g)+μh(g, n))+γ3(μa(n, g)+μa(g, n)),

where γ1, . . . , γ3 are real coefficients such that γ1, γ2, γ3 > 0 and γ1 > γ2 > γ3.
After selecting the γi, i ∈ {1, . . . , 3} coefficients appropriately, we can define a

non–decreasing scale of possible similarity values and map their consequent inter-
vals to the respective scale of linguistic fuzzy labels (for example distinct, almost
dissimilar, little similar, moderately similar, very similar, almost same, same).
Thus we can straightforwardly answer the query and/or pass the numeric value
for further processing. Supposing we have inserted sufficient amount of data in our
knowledge base, answers like this are useful even for rarely occurring concepts and
relations. Moreover, the time complexity of the query processing itself is constant
— we only need to get the 6 μ–measure values and add them up11.

The inference engine based on ANUIC format can be directly used in the scope
of general knowledge acquisition as well as within more specific Semantic Web
tasks. It can be very useful for example for another project we are involved in —
PortaGe — that is aimed on automatic generation and personalisation of scien-
tific Semantic Web portals [1]. We can employ the uncertainty representation for
example in the automatic extraction of metainformation from the scientific doc-
uments, citation analysis, metasearch in digital libraries, analysis of various web
pages, meta-data annotation of web resources and source-change analysis. The
ontology support would be useful even for general semantics–enhanced search
and retrieval tasks among the particular portal’s domain.

8 Conclusions and Future Work

We presented the ANUIC framework that deals with uncertain knowledge in
ontologies. The framework is motivated by intuitive, yet valuable notion of rep-
resentation of uncertainty in human mind. The theoretical background of fuzzy
sets methodology allows to develop an appropriate calculus and consecutively
build novel inference tools to reason among the concepts stored in expressive
ANUIC format very efficiently.

Our future work will focus on incorporation of results of another extraction
methods (mainly our clustering–based technique) into the ANUIC ontologies in
order to increase the recall. A formal development and validation of a specific
calculus for ANUIC explicit reasoning is needed then. We will also devise formal
evaluation methods and test the framework properly using various data from

11 The lookup for values is performed on efficient hash–like structures.

78 V. Nováček and P. Smrž

other distinct domains of available resources. Finally, the mutual correspondence
and transformation possibilities between ontologies in ANUIC format and formats
like OWL extended by possible fuzzy modifications must be examined. All of the
mentioned tasks are no doubt hard, but we demand it will be very challenging
to pursue them and refine the ideas behind to gain a sustainable, expressive and
efficient universal model of representation of uncertain knowledge.

Acknowledgements

This work has been supported by the Academy of Sciences of the Czech Republic,
‘Information Society’ national research program, the grant AV 1ET100300419,
and partially by the Czech Republic Ministry of Education, Research Plan MSM
6383917201.

References

1. Nováček, V., Smrž, P.: Ontology acquisition for automatic building of scientific
portals. In: LNCS. Volume 3831., Springer-Verlag Berlin Heidelberg (2006)

2. Nováček, V.: Ontology learning. Master’s thesis, Faculty of Informat-
ics, Masaryk University, Czech Republic (2006) Available at (February 2006):
http://nlp.fi.muni.cz/~xnovacek/files/dp.pdf.

3. NLTK: NLTK: Natural Language Toolkit – Technical Reports. (2005) Available
at (February 2006): http://nltk.sourceforge.net/tech/index.html.

4. Brill, E.: A report of recent progress in transformation-based error-driven learning.
In: Proc. ARPA Human Language Technology Workshop ’94, Princeton, NJ (1994)

5. Fellbaum, C., ed.: WordNet: An Electronic Lexical Database. MIT Press (1998)
6. Brewster, C., Alani, H., Dasmahapatra, S., Wilks, Y.: Data driven ontology eval-

uation. In: Proceedings of LREC 2004. (2004)
7. Hearst, M.A.: Automatic acquisition of hyponyms from large text corpora. In:

Proceedings of the 14th conference on Computational linguistics, Morristown, NJ,
USA, Association for Computational Linguistics (1992) 539–545

8. Etzioni, O., Cafarella, M., Downey, D., Kok, S., Popescu, A.M., Shaked, T., Soder-
land, S., Weld, D.S., Yates, A.: Web-scale information extraction in KnowItAll:
(preliminary results). In: Proceedings of WWW ’04, New York, NY, USA, ACM
Press (2004) 100–110

9. Holi, M., Hyvönen, E.: A method for modeling uncertainty in semantic web tax-
onomies. In: Proceedings of WWW Alt. ’04, New York, NY, USA, ACM Press
(2004) 296–297

10. Y. Peng, Z. Ding, R.P.: BayesOWL: A probabilistic framework for uncertainty in
semantic web. In: Proceedings of Nineteenth International Joint Conference on
Artificial Intelligence (IJCAI05). (2005)

11. Hofstadter, D.: Fluid Concepts & Creative Analogies: Computer Models of the
Fundamental Mechanisms of Thought. Basic Books, New York (1995)

12. Cuyckens, H., Dirven, R., Taylor, J.R., eds.: Cognitive Approaches to Lexical
Semantics. Cognitive linguistics research edn. Volume 23. Mouton de Gruyter,
Berlin (2003)

Empirical Merging of Ontologies 79

13. Allwood, J.: Meaning potentials and context: Some consequences for the analysis
of variation and meaning. In: Cognitive Approaches to Lexical Semantics. Mouton
de Gruyter, Berlin (2003) 29–66

14. Ruge, G.: Combining corpus linguistics and human memory models for automatic
term association. In Strzalkowski, T., ed.: Natural Language Information Retrieval.
Kluwer Academic Publishers (1999) 75–98

15. Derrida, J.: A Derrida Reader: between the Blinds. Harvester Wheatsheaf, New
York (1991)

16. Klir, G.J., Wierman, M.J.: Uncertainty-Based Information: Elements of Gener-
alized Information Theory. Physica-Verlag/Springer-Verlag, Heidelberg and New
York (1999)

17. Xiang, Y.: Probabilistic Reasoning in Multi-agent Systems: A Graphical Models
Approach. Cambridge University Press, Cambridge (2002)

18. Kyburg, H.E., Kyburg, J., Teng, C.M.: Uncertain Inference. Cambridge University
Press, Cambridge (2001)

19. Giugno, R., Lukasiewicz, T.: P-SHOQ(D): A probabilistic extension of SHOQ(D)
for probabilistic ontologies in the semantic web. In: Proceedings of JELIA ’02,
London, UK, Springer-Verlag (2002) 86–97

20. Zadeh, L.A.: Fuzzy sets. Journal of Information and Control 8 (1965) 338–353
21. Garmendia, L., Salvador, A.: Computing a transitive opening of a reflexive

and symmetric fuzzy relation. In: Proceedings of ECSQARU ’05, London, UK,
Springer-Verlag (2005) 587–599

22. Bechhofer, S., van Harmelen, F., Hendler, J., Horrocks, I., McGuinness, D.L., Patel-
Schneider, P.F., Stein, L.A.: OWL Web Ontology Language Reference. (2004)
Available at (February 2006): http://www.w3.org/TR/owl-ref/.

23. Horrocks, I., Kutz, O., Sattler, U.: The even more irresistible SROIQ. Technical
report, University of Manchester (2005)

Encoding Classifications into Lightweight
Ontologies

Fausto Giunchiglia, Maurizio Marchese, and Ilya Zaihrayeu

Department of Information and Communication Technology
University of Trento, Italy

{fausto, marchese, ilya}@dit.unitn.it

Abstract. Classifications have been used for centuries with the goal of
cataloguing and searching large sets of objects. In the early days it was
mainly books; lately it has also become Web pages, pictures and any
kind of electronic information items. Classifications describe their con-
tents using natural language labels, which has proved very effective in
manual classification. However natural language labels show their lim-
itations when one tries to automate the process, as they make it very
hard to reason about classifications and their contents. In this paper we
introduce the novel notion of Formal Classification, as a graph structure
where labels are written in a propositional concept language. Formal
Classifications turn out to be some form of lightweight ontologies. This,
in turn, allows us to reason about them, to associate to each node a nor-
mal form formula which univocally describes its contents, and to reduce
document classification to reasoning about subsumption.

1 Introduction

In today’s information society, as the amount of information grows larger, it
becomes essential to develop efficient ways to summarize and navigate informa-
tion from large, multivariate data sets. The field of classification supports these
tasks, as it investigates how sets of “objects” can be summarized into a small
number of classes, and it also provides methods to assist the search of such “ob-
jects” [8]. In the past centuries, classification has been the domain of librarians
and archivists. Lately a lot of interest has focused also on the management of
the information present in the web: see for instance the WWW Virtual Library
project [1], or directories of search engines like Google, or Yahoo!.

Web directories are often called lightweight ontologies [23]. However, they lack
at least one important property attributable to the notion of ontology. Namely,
that an ontology must be represented in a formal language, which can then be
used for automating reasoning [16]. None of the existing human crafted classi-
fications possesses this property. Because classification hierarchies are written
in natural language, it is very hard to automate the classification task, and, as
a consequence, standard classification approaches amount to manually classify-
ing objects into classes. Examples include DMOZ, a human edited web directory,
which “powers the core directory services for the most popular portals and search

Y. Sure and J. Domingue (Eds.): ESWC 2006, LNCS 4011, pp. 80–94, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Encoding Classifications into Lightweight Ontologies 81

engines on the Web, including AOL Search, Netscape Search, Google, Lycos,
DirectHit, and HotBot, and hundreds of others” [22]; and the Dewey Decimal
Classification System (DDC) [5]. Although they are based on well-founded clas-
sification methodologies, all these classifications have a number of limitations:

– the semantics of a given category is implicitly codified in a natural language
label, which may be ambiguous and will therefore be interpreted differently
by different classifiers;

– a link, connecting two nodes, may also be ambiguous in the sense that it may
be considered to specify the meaning of the child node, of the parent node,
or of both. For instance, a link connecting the parent node “programming”
with its child node “Java” may, or may not mean that (a) the parent node
means “computer programming” (and not, for example, “events schedul-
ing”); (b) that the child node means “Java, the programming language” (and
not “Java, the island”); and (c) that the parent node’s meaning excludes the
meaning of the child node, i.e., it is “programming and not Java”;

– as a consequence of the previous two items, the classification task also be-
comes ambiguous in the sense that different classifiers may classify the same
objects differently, based on their subjective opinion.

In the present paper we propose an approach to converting classifications into
lightweight ontologies, thus eliminating the three ambiguities discussed above.
This in turn allows us to automate, through propositional reasoning, the essential
task of document classification. Concretely, we propose a three step approach:

– first, we convert a classification into a new structure, which we call Formal
Classification (FC), where all the labels are expressed in a propositional
Description Logic (DL) language (i.e., a DL language without roles) [3];

– second, we convert a FC into a Normalized Formal Classification (NFC). In
NFCs each node’s label is a propositional DL formula, which univocally cod-
ifies the meaning of the node in the corresponding classification, taking into
account both the label of the node and its position within the classification;

– third, we encode document classification in NFCs as a propositional satisfia-
bility (SAT) problem, and solve it using a sound and complete SAT engine.

NFCs are full-fledged lightweight ontologies, and have many nice properties.
Among them:

– nodes’ labels univocally codify the set of documents, which can be classified
in these nodes;

– NFCs are taxonomies in the sense that, from the root down to the leaves,
labels of child nodes are subsumed by the labels of their parent nodes;

– as nodes’ labels codify the position of the nodes in the hierarchy, document
classification can be done simply by analyzing the set of labels. There is no
need to inspect the edge structure of the NFC.

The remainder of the paper is organized as follows. In Section 2 we introduce
classifications and discuss how they are used. In Section 3 we motivate a formal

82 F. Giunchiglia, M. Marchese, and I. Zaihrayeu

approach to dealing with classifications. In Section 4 we introduce the notion of
FC as a way to disambiguate labels in classifications. In Section 5 we discuss
how we disambiguate links in classifications by introducing the notion of NFC.
In Section 6 we show how the essential task of document classification can be
fully automated in NFCs by means of propositional reasoning. In Section 7 we
discuss related work. Section 8 summarizes the results and concludes the paper.

2 Classifications

Classifications are rooted trees, where each node is assigned a natural language
label. Classifications are used for the categorization of various kinds of objects,
such as books, office documents, web pages, and multimedia files into a set of
categories. Classifications are also used for searching for objects by browsing the
categories and looking inside those, where the objects are likely to be located.

We define the notion of classification as a rooted tree C = 〈N, E, L〉 where N
is a finite set of nodes, E is a set of edges on N , and L is is a finite set of labels
expressed in natural language, such that for any node ni ∈ N , there is one and
only one label li ∈ L.

Labels describe real world entities or individual objects, and the meaning of
a label in a classification is the set of documents, that are about the entities (or
individual objects) described by the label. We call this meaning of labels, the
classification semantics of labels. Note, that a label can be about a document,
e.g., a book; and, in this case, the classification semantics of this label is the set
of documents, which are about the book, e.g., book reviews.

There are many methodologies for how to classify objects into classification
hierarchies. These methodologies range from the many rigorous rules of DDC [5],
“polished” by librarians during more than one hundred years; to less strict, but
still powerful rules of classification in a web directory1. In all the different cases,
a human classifier needs to follow a common pattern, which we summarize in
four steps. We discuss the steps below, and we elucidate them on the example
of a part of the DMOZ web directory shown in Figure 1.

1. Disambiguating labels. The challenge here is to disambiguate natural lan-
guage words and labels. For example, the classifier has to understand that in the
label of node n7, the word “Java” has at least three senses, which are: an island
in Indonesia; a coffee beverage; and an object-oriented programming language;
2. Disambiguating links. At this step the classifier has to interpret links
between nodes. Namely, the classifier needs to consider the fact that each non-
root node is “viewed” in the context of its parent node; and then specify the
meanings of the nodes’ labels. For instance, the meaning of the label of node n8,
computers, is bounded by the meaning of node n6, business books publishing;
3. Understanding classification alternatives. Given an object, the classifier
has to understand what classification alternatives for this object are. For instance,
the book “Java Enterprise in a Nutshell, Second Edition” might potentially be put

1 See, for instance, the DMOZ classification rules at http://dmoz.org/guidelines/.

Encoding Classifications into Lightweight Ontologies 83

in all the nodes of the hierarchy shown in Figure 1. The reason for this is that the
book is related to both business and technology branches;
4. Making choices. Given the set of classification alternatives, the classifier
has to decide, based on a predefined system of rules, where to put the given
object. The system of rules may differ from classification to classification, but
one rule is commonly followed: the get-specific rule. The rule states that any
object must be classified in a category (or in several categories), which most
specifically describes the object. In order to follow this rule, one needs to “dig”
deep into the classification schema and find a category, which is located as low
as possible in the classification tree, and which is still more general than what
the object is about. Note, that there may be more than one such category. For
instance, if the get-specific rule was used, then one would classify the above
mentioned book into nodes n7 and n8, as they most specifically characterize it.

Fig. 1. A part of the DMOZ web directory

Note, that the four steps above are also followed when one is searching for an
object by means of classification browsing. The only difference is in that now
the categories are searched for where to find the object, and not where to put it.

3 Why Formal Classifications?

Let us exemplify our arguments in favour of a formal approach to classification
on the English part of the DMOZ web directory2. We report a summary of the
statistical analysis we performed on it in Table 1.

Humans have proven to be very effective at performing steps 1 and 2 de-
scribed in Section 2. However, there are still some challenges to be addressed.
The main challenge in step 1 is dealing with the ambiguities introduced by mul-
tiple possibilities in meaning. One source of this is in that labels contain many

2 We excluded branches leading to non-English labels, such as “Top/World/” or
“Top/Kids and Teens/International/”.

84 F. Giunchiglia, M. Marchese, and I. Zaihrayeu

Table 1. DMOZ statistics

Statistics category Value
Total English labels 477,786
Tokens per label, avg. 1.81
Total links classified in English labels 3,047,643
Duplicate links, % from the total 10.70%
Nouns and adjectives polysemy, avg. 3.72
“and”’s and “or”’s per label, avg. 0.23
Total disjunctions per label, avg. 3.79
Root-to-leaf path length, avg. 7.09
Branching factor, avg. 4.00

conjunctions “and”’s and “or”’s, whereas they actually mean inclusive disjunc-
tion, i.e., either the first conjunct, or the second, or both. For instance, the
phrase “wine and cheese” means either wine, or cheese, or both. Apart from the
conjunctions, multiple possibilities are also introduced by punctuation marks de-
noting enumeration (e.g., the comma), and by words’ senses (recall the “Java”
example from the previous section). It has been shown, that cognitive reasoning
with the presence of multiple possibilities in meaning is an error-prone task for
humans [10]. For instance, even if DMOZ labels are short phrases, consisting,
on average, of 1.81 tokens, they contain 0.23 conjunctions per label; and average
polysemy for nouns and adjectives is 3.72 per word.

The challenge of step 2 is that the classifier may need to follow a long path
of nodes in order to figure out a node’s meaning. It has two consequences: first,
the classifier needs to deal with the growing complexity in ambiguity introduced
by each new label in the path; and, second, the classifier has to consider each
new label in the context of the labels of the ancestor nodes, and, thus, partly
resolve the ambiguity. Note, that the average length of a path from the root to
a leaf node in DMOZ is rather high and it constitutes 7.09 nodes.

Steps 3 and 4 are where the real problems for humans begin. Even with classi-
fications of an average size, it is not easy to find all the classification alternatives.
With large classifications this task becomes practically unfeasible. For instance,
think about possible classification alternatives in DMOZ, which has 477,786 Eng-
lish categories. Thus, at step 3, a human classifier may not be able to enumerate
all the possible classification alternatives for an object.

Step 4 requires abundant expertise and profound methodological skills on the
side of the classifier. However, even an expert makes subjective decisions, what
leads, when a classification is populated by several classifiers, to nonuniform,
duplicate, and error-prone classification. If the get-specific rule is used, then the
classifier has to parse the classification tree in a top-down fashion, considering at
each parent node, which of its child nodes are appropriate for the classification.
Note, that even if DMOZ encourages the classification of a Web page in a single
category, among 3,047,643 links (classified in English labels), about 10.70% are
classified in more than one node3. And, about 91.36% of these are classified in
3 We identified duplicate links by exact equivalence of their URLs.

Encoding Classifications into Lightweight Ontologies 85

two different nodes. This is not surprising given that DMOZ is populated by
more than 70,000 classifiers, and that it has average branching factor of 4.00.

Given all the above described complexity, humans still outperform machines
in natural language understanding tasks [20], which are the core of steps 1 and
2. Still, the availability of electronic repositories that encode world knowledge
(e.g., [12, 14]), and powerful natural language processing tools (e.g., [17, 12])
allows the machines to perform these steps reasonably well. Moreover, machines
can be much more efficient and effective at steps 3 and 4, if the problem is
encoded in a formal language, which is what we propose to do in our approach.

4 Disambiguating Labels

Formal Classifications (FCs) are rooted trees, where each node is assigned a
formal language label. FCs and classifications are related in the sense that a
FC is a formalized copy of a classification. In other words, a FC has the same
structure as the classification, but it encodes the classification’s labels in a formal
language, capable of encapsulating, at the best possible level of approximation,
their classification semantics. In this respect, classifications’s labels have at least
one nice property. Namely, since labels are meant to describe real world entities,
and not actions, performed on or by entities, and relations between entities, the
labels are mainly constituted of noun phrases; and, therefore, there are very
few words which are verbs. This makes it very suitable to use a Description
Logic (DL) language as the formal language, as DLs are a precise notation for
representing noun phrases [3].

We define the notion of Formal Classification as a rooted tree FC = 〈N, E, LF 〉
where N is a finite set of nodes, E is a set of edges on N , and LF is a finite set
of labels expressed in Propositional Description Logic language LC, such that for
any node ni ∈ N , there is one and only one label lFi ∈ LF .

Converting classifications into FCs automates step 1, as described in Section 2.
In our approach we build on the work of Magnini et. al. [13]. We translate a nat-
ural language label into an expression in LC by means of mapping different parts
of speech (POSs), their mutual syntactic relation, and punctuation to the clas-
sification semantics of labels. We proceed in two steps, as discussed below:

1. Build atomic concepts. Senses of (multi-word) common nouns and adjec-
tives become atomic concepts of LC , whose interpretation is the set of documents
about the entities, which are denoted by the nouns, or which possess the qualities
denoted by the adjectives4. We enumerate word senses using WordNet [14], and
we write [x#i] to denote an atomic concept corresponding to the ith sense of the
word x in WordNet. For instance, [programming#2] is an atomic concept, whose
interpretation is the set of documents which are about computer programming;

4 Because of their negligibly small presence, we do not consider verbs. We neither
consider articles, numerals, pronouns and adverbs. However, their share in the labels
of actual classifications is reasonably small. When such words are found, they are
just omitted from the label.

86 F. Giunchiglia, M. Marchese, and I. Zaihrayeu

and the atomic concept [red#1] denotes the set of documents which are about
red entities, e.g., red cats or red hats. Proper nouns become atomic concepts of
LC , whose interpretation is the set of documents about the individual objects,
denoted by these nouns. They may be long expressions, denoting names of peo-
ple, movies, music bands, and so on. Some examples are the movie “Gone with
the Wind”, and the music band “The Rolling Stones”.
2. Build complex concepts. Complex concepts are built from atomic concepts
as follows: first, we build formulas for words as the logical disjunction (�) of
atomic concepts corresponding to the words’ senses, and we write [x∗] to denote
the disjunction of the senses of word x. For instance, the noun “Programming”
becomes the concept [programming#1 � programming#2], whose interpretation
is the set of documents which are about event scheduling and/or about com-
puter programming. Second, labels are chunked, i.e., divided into sequences of
syntactically correlated parts of words. We then translate syntactic relations of
words within chunks to the logical connectives of LC following a precise pattern.
Let us consider few examples.

A set of adjectives followed by a noun group is translated into logical con-
junction () of the formulas corresponding to the adjectives and the nouns. The
interpretation of the resulting concept is the set of documents which are about
the real world entities denoted by all the nouns, and which possess qualities, de-
noted by all the adjectives. For instance, the phrase “long cold winter blizzard”
is translated into the concept [long∗ cold∗ winter∗ blizzard∗]. Preposi-
tions are also translated into the conjunction. The intuition is that prepositions
denote some commonality between the objects they relate; and, in terms of the
classification semantics, this “commonality” can be approximated to the set of
documents which are about the both objects. For instance, the following phrases:
“books of magic”, “science in society”, and “software for engineering”, they all
denote what the two words, connected by the prepositions, have in common.

Coordinating conjunctions “and” and “or” are translated into the logical dis-
junction. For instance, “flights or trains” and “animals and plants” become
[flight∗ � train∗] and [animal∗ � plant∗] respectively. Punctuation marks
such as the period (.), the coma (,) and the semicolon (;) are also translated
into logical disjunction. For instance, the phrase “metro, bus, and trolley” is
converted into the concept [metro∗ � bus∗ � trolley∗].

Words and phrases denoting exclusions, such as “excluding”, “except”, “but
not”, are translated into the logical negation (¬). For instance, the label “runners
excluding sprinters” becomes the concept [runner∗ ¬sprinter∗]. However,
since they are meant to describe what “there is” in the world, and not what
“there isn’t”, labels contain very few such phrases, if at all.

The use of logical connectives, as described above but with the exception of
prepositions, allows it to explicitly encode the classification semantics of labels. In
other words, the interpretation of the resulting formulas explicitly represents the
set of documents which are about the natural language labels. The translation
of prepositions is an approximation, as they may encode meaning, which only
partly can be captured by means of logical conjunction. For example, “life in

Encoding Classifications into Lightweight Ontologies 87

war” and “life after war” will collapse into the same logical formula, whereas
the classification semantics of the two labels is different. In this respect we are
different from [18], where DL roles are used to encode the meaning of labels. The
advantage of our approach is in that, while using a simpler subset of DLs, we
are able to explicitly capture the semantics of a large portion of the label data
in a real classification.

In order to estimate how much of the information encoded into the labels of
a real classification can be captured using our approach, we have conducted a
grammatical analysis of the DMOZ classification. For doing this, we have used
the OpenNLP Tools tokenization and POS-tagging library [17], which reports
to achieve more than 96% accuracy on unseen data. In Table 2 we show POS
statistics of tokens. Note, that about 77.59% of the tokens (nouns and adjectives)
become concepts, and about 14.69% (conjunctions and prepositions) become
logical connectives of LC . WordNet coverage for common nouns and adjectives is
quite high, and constitutes 93.12% and 95.01% respectively. Detailed analysis of
conjunctions and prepositions shows that about 85.26% of them are conjunctions
“and”, and about 0.10% are conjunctions “or”. In our analysis we found no words
or phrases which would result into the logical negation. Only about 4.56% of the
tokens are verbs and adverbs in all their forms.

Table 2. DMOZ token statistics

POS Share
Common nouns 71.22%
Proper nouns 0.18%
Adjectives 6.19%
Conjunctions and prepositions 14.69%
Verbs, adverbs 4.56%
Other POSs 3.16%

Note, that the propositional nature of LC allows us to explicitly encode about
90.13% of label data in DMOZ (i.e., nouns, adjectives, conjunctions “and” and
“or”). Still, this is a rough understated estimation, as we did not take into
account multi-word nouns. In fact, manual analysis of the longest labels, as well
as of the ones with verbs, shows that the majority of these labels represents
proper names of movies, games, institutions, music bands, etc.

5 Disambiguating Edges

As discussed in Section 2, the classification semantics of links codifies the fact
that child nodes’ labels are always considered in the context of their parent
nodes. This means that the meaning of a non-root node is the set of documents,
which are about its label, and which are also about its parent node. We encode
the classification semantics of links as a property of nodes in FCs, which we call
the concept at a node. We write Ci to refer to the concept at node ni, and we
define this notion as:

88 F. Giunchiglia, M. Marchese, and I. Zaihrayeu

Ci =
{

lFi if ni is the root of FC
lFi Cj if ni is not the root of FC, where nj is the parent of ni

(1)

There may be two meaningful relations between the concept of a parent node,
and the label of its child node, as represented in Figure 2:

– in case (a) the label of the child node is about the parent node, but it is also
about something else. In this case the parent node specializes the meaning
of the child node by bounding the interpretation of the child node’s label
with the interpretation of the concept of the parent node. For instance, think
about a classification where the root node is labeled “Italy” and its sole child
node is labeled “Pictures” (see Figure 2-a). A human can understand that
the meaning of the child node is “pictures of Italy” and not “pictures of
Germany”, for example. In the corresponding FC this knowledge is encoded
into the concept at node C2 = [italy ∗ picture∗];

– in case (b) the child node represents a specification of the parent node, and
their relation can be, for instance, an “is-a” or a “part-of” relation. Note, that
in this case, differently from case (a), the parent node does not influence the
meaning of the child node. Suppose that in the previous example the child
node’s label is “Liguria” (see Figure 2-b). A human can understand that the
meaning of this node is the same as of its label. In the corresponding FC this
knowledge is encoded into the concept at node C2 = [italy ∗ liguria∗],
which can be simplified to C2 = [liguria#1], taking into account that both
words “Italy” and “Liguria” have only one sense in WordNet, and given
that the corresponding axiom [liguria#1 	 italy#1] is memorized in
some background knowledge base.

Fig. 2. Edge semantics in FCs

Note, that applying Equation 1 recursively, we can compute the concept at
any non-root node ni as the conjunction of the labels of all the nodes on the
path from the root of the FC, n1, to ni. This corresponds to how the notion of
concept at a node is defined in [7], namely:

Ci = lF1 lF2 . . . lFi (2)

The concept at a node encodes, but only to a certain extent, the path from the
root to the node. In fact, there may be more than one way to reconstruct a path

Encoding Classifications into Lightweight Ontologies 89

from a concept. Atomic concepts in a concept at a node may be “distributed”
differently among different number of nodes, which, in turn, may have a different
order in the path. The number of nodes may range from one, when the concept
at the node is equivalent to the node’s label, to the number of clauses in the
DNF equivalent of the concept. However, all the possible paths converge to
the same semantically equivalent concept. Consider, for instance, node n8 in the
classification shown in Figure 1. All the following paths will converge to the same
concept for this node5: “top:publishing and printing:business books:computers”,
“top:business:publishing and printing:computer books”.

We use the notion of concept at a node to define a further new structure
which we call Normalized Formal Classification (NFC). A NFC is a rooted tree
NFC = 〈N, E, LN 〉 where N is a finite set of nodes, E is a set of edges on
N , and LN is is a finite set of labels expressed in LC, such that for any node
ni ∈ N , there is one and only one label lNi ∈ LN and lNi ≡ Ci.

Note, that the main characteristic of NFCs, that distinguishes them from FCs,
is the fact that labels of child nodes are always more specific than the labels of
their parent nodes. Particularly, if a taxonomic classification, i.e., a classification
with only “is-a” and “part-of” links, is converted into a FC, then the latter is also
a NFC. Apart from this, NFCs have a number of important properties relevant
to classifications, discussed below:

– the classification semantics of the labels of nodes is the set of documents
which can be classified in these nodes. We underline the “can” since, as we
discuss in the next section, documents which are actually classified in the
nodes are often a subset of the classification semantics of the labels;

– two nodes, representing in a classification the same real world entities, will
have semantically equivalent labels in the NFC. This fact can be exploited for
automatic location and/or prevention of adding of such “duplicate” nodes.
As an example, consider the different paths that lead to the same concept
at a node as described earlier in this section;

– NFCs are full-fledged lightweight ontologies, suitable for the automation of
the core classification tasks, such as document classification, as it is discussed
in the following section.

6 Document Classification

Before some document d can be classified, it has to be assigned an expression in
LC , which we call the document concept, written Cd. The assignment of concepts
to documents is done in two steps: first, a set of keywords is retrieved from the
document using text mining techniques (see, for example, [19]); the keywords
are then converted into a concept using similar techniques to those used in the
translation of natural language labels into labels in FCs (see Section 4).

We say that node ni is a classification alternative for the classification of some
document d with concept Cd, if Cd 	 lNi . In fact, if this relation holds, then the

5 For sake of presentation we give these examples in natural language.

90 F. Giunchiglia, M. Marchese, and I. Zaihrayeu

document is about the classification node, whose semantics is encoded in the
label of the NFC. For any given document d and a NFC, we compute the set of
classification alternatives for d in the NFC as follows:

A(Cd) = {ni|Cd 	 lNi } (3)

By computing Equation 3, we can automate step 3 described in Section 2. The
automation of step 4, i.e., making classification choices, depends on what clas-
sification algorithm is used. Below we show how it can be automated for some
set A of classification alternatives if the get-specific rule (see Section 2) is used:

C(A) = {ni ∈ A|�nj ∈ A (i �= j), such that lNj 	 lNi } (4)

The set C(A) includes all the nodes in the NFC, whose labels are more general
than the document concept, and more specific among all such labels. As labels
of child nodes in NFCs are more specific than the labels of their parent nodes,
C(A) always consists of nodes which lie as low in the CNF tree as possible, and
which are still classification alternatives for the document. Note, that the get-
specific rule applies not only to nodes located on the same path from the root,
but also to nodes located in different branches. For instance, a document about
computer graphics will not be classified in the node “top:computers” if the more
specific node “top:arts:computers” exists.

Formula 4 stipulates that the set of documents classified in some node ni

may (and, in most cases will) be a subset of the interpretation of its label lNi .
In fact, the set of documents which are actually classified in ni excludes those,
which belong to the interpretation of labels, which are more specific than lNi . We
encode this set in the concept Di which univocally identifies the set of documents
classified in node ni, and, therefore, defines the classification semantics of ni in
the NFC. We compute Di as follows:

Di = lNi ¬
⊔

(lNj |j �= i, lNj 	 lNi) (5)

Computation of Equations 3, 4 and 5 requires verifying whether subsumption
holds between two formulas in LC . As discussed in [6], a problem, expressed in
a propositional DL language, can be translated into an equivalent propositional
satisfiability problem, and can therefore be solved using sound and complete
reasoning procedures of a SAT decider. The translation rules from LC to a
propositional language transform atomic concepts into propositions, less gener-
ality into implication (i.e., [A 	 B] ⇒ [A → B]), disjunctions and conjunctions
into logical or’s and and’s respectively (e.g., [A�B] ⇒ [A∨B]), and so on. Inter-
ested readers are referred to [6] for details. Thus, if we need to check whether a
certain relation rel holds between two concepts A and B, given some knowledge
base KB, which represents our a priori knowledge, we construct a propositional
formula according to the pattern shown in Equation 6, and check it for validity:

KB → rel(A, B) (6)

Encoding Classifications into Lightweight Ontologies 91

The intuition is that KB encodes what we know about concepts A and B, and
rel(A, B) holds only if it follows from what we know. In our approach KB is built
as a set of axioms which encode the relations that hold between atomic concepts
in A and B. As discussed in Section 4, atomic concepts in LC are mapped to
the corresponding natural language words’ senses. These senses may be lexi-
cally related through the synonymy, antonymy, hypernymy (i.e., the “kind-of”
relation, e.g., car is a kind of vehicle), or holonymy (i.e., the “part-of” relation,
e.g., room is a part of building) relations. These relations can be translated into
axioms, which explicitly capture the classification semantics of the relation that
holds between the two senses. Thus, for instance, the set of documents which
are about cars is a subset of the set of documents which are about a hypernym
of the word “car”, vehicle. The idea, therefore, is to find the lexical relations
using WordNet, and to translate synonymy into logical equivalence, antonymy
into disjointness, hypernymy and holonymy into subsumption in LC .

Let us consider an example. Recall the classification in Figure 1, and sup-
pose that we need to classify the following book: “Java Enterprise in a Nut-
shell, Second Edition”, whose concept is [java#3 enterprise#2 book#1].
It can be shown, by means of propositional reasoning, that the set of classifi-
cation alternatives includes all the nodes of the corresponding NFC. For sake
of space we provide concrete formulas only for nodes n7 and n8, whose la-
bels are lN7 = [computer ∗ programming ∗ language ∗ java∗], and lN8 =
[business∗[publishing∗�printing∗]publishing∗books∗computer∗].
We can extract the following knowledge from WordNet: the programming lan-
guage Java is a kind of programming languages, and it is a more specific concept
than computer is; books are related to publishing; and enterprise is a more spe-
cific concept than business is. We encode this knowledge in the following axioms:

a1 = [java#3 	 pr language#1]; a3 = [book#1 	 publishing#1];
a2 = [java#3 	 computer#1]; a4 = [enterprise#1 	 business#2].

We then translate the axioms and the labels into the propositional logic lan-
guage, and we verify if the condition in Formula 3 holds for the two labels by
constructing two formulas, following the pattern of Equation 6, as shown below:

(a2 ∧ a3 ∧ a4) → (Cd → lN8); (a1 ∧ a2) → (Cd → lN7).

Then, we run a SAT solver on the above formulas, which shows that they are
tautologies. It means that both nodes n7 and n8 are classification alternatives for
the classification of the book. Among all the classification alternatives, only these
two nodes conform to the get-specific rule, and, therefore, are final classification
choices for the classification of the book. The latter can be shown by computing
Equation 4 by means of propositional reasoning.

Note, that the edges of the NFC are not considered in document classification.
In fact, the edges of the NFC become redundant, as their information is implicitly
encoded in the labels. As from Section 5, there may be several paths to the
same concept. Analogously, given a set of labels, there may be several ways to
reconstruct the set of edges of a NFC. However, from the classification point of
view, all these NFCs are equivalent, as they classify documents identically.

92 F. Giunchiglia, M. Marchese, and I. Zaihrayeu

7 Related Work

In our work we adopt the notion of concept at a node as first introduced in [6]
and further elaborated in [7]. Moreover, the notion of label of a node in a FC,
semantically corresponds to the notion of concept of a label introduced in [7].
In [7] these notions play a key role in the identification of semantic mappings
between nodes of two schemas. In this paper, these are the key notions needed
to define NFCs.

This work as well as the work in [6, 7] mentioned above is crucially related
and depends on the work described in [4, 13]. In particular, in [4], the authors
introduce the idea that in classifications, natural language labels can be trans-
lated in logical formulas, while, in [13], the authors provide a detailed account
of how to perform this translation process. The work in [6, 7] improves on the
work in [4, 13] by understanding the crucial role that concepts at nodes have in
matching heterogeneous classifications and how this leads to a completely new
way to do matching. This paper, for the first time, recognizes the crucial role
that the ideas introduced in [4, 6, 7, 13] have in the construction of a new theory
of classification, and in introducing the key notion of FC.

A lot of work in information theory, and more precisely on formal concept
analysis (see, for instance, [24]) has concentrated on the study of concept hier-
archies. NFCs are what in formal concept analysis are called concept hierarchies
with no attributes. The work in this paper can be considered as a first step to-
wards providing a computational theory of how to transform the “usual” natural
language classifications into concept hierarchies.

The classification algorithm, proposed in this paper, is similar to what in the
DL community is called realization. Essentially, realization is the task of finding
the most specific concept(s) an individual object is an instance of given a hier-
archy of concepts [3]. The fundamental difference between the two approaches
is in that in DL the concept hierarchy is not predefined by the user, but is built
bottom-up from atomic concepts by computing the partial ordering of the sub-
sumption relation. In our case, the underlying classification structure is defined
solely by the user.

In Information Retrieval, the term classification is seen as the process of ar-
ranging a set of objects (e.g., documents) into categories or classes. There exist
a number of different approaches which try to build classifications bottom-up,
by analyzing the contents of documents. These approaches can be grouped in
two main categories: supervised classification, and unsupervised classification. In
the former case, a small set of training examples needs to be pre-populated into
the categories in order to allow the system to automatically classify a larger set
of objects (see, for example, [2, 15]). The latter approach uses various machine
learning techniques to classify objects, for instance, data clustering [9]. There
exist some approaches that apply (mostly) supervised classification techniques to
the problem of documents classification into hierarchies [11, 21]. The classifica-
tions built following our approach are better and more natural than those built
following these approaches. In fact, they are constructed top-down, as chosen
by the user and not constructed bottom-up, as they come out of the document

Encoding Classifications into Lightweight Ontologies 93

analysis. Our approach has the potential, in principle, to allow for the automatic
classification of (say) the Yahoo! documents into the Yahoo! web directory.

8 Conclusions

In this paper we have introduced the notion of Formal Classification, namely
of a classification where labels are written in a propositional concept language.
Formal Classifications have many advantages over standard classifications all
deriving from the fact that formal language formulas can be reasoned about far
more easily than natural language sentences. In this paper we have highlighted
how this can be done to perform document classification. However much more
can be done. Our future work includes testing the feasibility of our approach with
very large sets of documents, such as those classified in the DMOZ directory, as
well as the development of a sound and complete query answering algorithm.

Acknowledgements

This work is partially supported by the FP6 project Knowledge Web6. We also
thank all the members of the KnowDive group, and, especially, Mikalai Yatske-
vich, for the many useful discussions about earlier versions of this paper.

References

1. The WWW Virtual Library project. see http://vlib.org/.
2. G. Adami, P. Avesani, and D. Sona. Clustering documents in a web directory. In

Proceedings of Workshop on Internet Data management (WIDM-03), 2003.
3. Franz Baader, Diego Calvanese, Deborah McGuinness, Daniele Nardi, and Peter

Patel-Schneider. The Description Logic Handbook : Theory, Implementation and
Applications. Cambridge University Press, 2003.

4. P. Bouquet, L. Serafini, and S. Zanobini. Semantic coordination: a new approach
and an application. In Proc. of the 2nd International Semantic Web Conference
(ISWO’03). Sanibel Islands, Florida, USA, October 2003.

5. Lois Mai Chan and J.S. Mitchell. Dewey Decimal Classification: A Practical Guide.
Forest P.,U.S., December 1996.

6. F. Giunchiglia and P. Shvaiko. Semantic matching. workshop on Ontologies and
Distributed Systems, IJCAI, 2003.

7. F. Giunchiglia, P. Shvaiko, and M. Yatskevich. S-match: An algorithm and an
implementation of semantic matching. In Proceedings of ESWS’04, 2004.

8. A.D. Gordon. Classification. Monographs on Statistics and Applied Probability.
Chapman-Hall/CRC, Second edition, 1999.

9. A. K. Jain, M. N. Murty, and P. J. Flynn. Data clustering: a review. ACM
Computing Surveys, 31(3):264–323, 1999.

10. Johnson-Laird. Mental Models. Harvard University Press, 1983.

6 The Knowledge Web project. See http://knowledgeweb.semanticweb.org/.

94 F. Giunchiglia, M. Marchese, and I. Zaihrayeu

11. Daphne Koller and Mehran Sahami. Hierarchically classifying documents using
very few words. In Douglas H. Fisher, editor, Proceedings of ICML-97, 14th In-
ternational Conference on Machine Learning, pages 170–178, Nashville, US, 1997.
Morgan Kaufmann Publishers, San Francisco, US.

12. Douglas B. Lenat. CYC: A large-scale investment in knowledge infrastructure.
Communications of the ACM, 38(11):33–38, 1995.

13. Bernardo Magnini, Luciano Serafini, and Manuela Speranza. Making explicit the
semantics hidden in schema models. In: Proceedings of the Workshop on Human
Language Technology for the Semantic Web and Web Services, held at ISWC-2003,
Sanibel Island, Florida, October 2003.

14. George Miller. WordNet: An electronic Lexical Database. MIT Press, 1998.
15. Kamal Nigam, Andrew K. McCallum, Sebastian Thrun, and Tom M. Mitchell. Text

classification from labeled and unlabeled documents using EM. Machine Learning,
39(2/3):103–134, 2000.

16. Natalya F. Noy. Semantic integration: a survey of ontology-based approaches.
SIGMOD Rec., 33(4):65–70, 2004.

17. The OpenNLP project. See http://opennlp.sourceforge.net/.
18. S. Sceffer, L. Serafini, and S. Zanobini. Semantic coordination of hierarchical clas-

sifications with attributes. Technical Report 706, University of Trento, Italy, De-
cember 2004.

19. Fabrizio Sebastiani. Machine learning in automated text categorization. ACM
Computing Surveys, 34(1):1–47, 2002.

20. J. F. Sowa. Conceptual Structures: Information Processing in Mind and Machine.
Addison-Wesley, 1984.

21. Aixin Sun and Ee-Peng Lim. Hierarchical text classification and evaluation. In
ICDM, pages 521–528, 2001.

22. DMOZ: the Open Directory Project. See http://dmoz.org/.
23. Michael Uschold and Michael Gruninger. Ontologies and semantics for seamless

connectivity. SIGMOD Rec., 33(4):58–64, 2004.
24. Rudolf Wille. Concept lattices and conceptual knowledge systems. Computers and

Mathematics with Applications, 23:493–515, 1992.

A Method to Convert Thesauri to SKOS

Mark van Assem1, Véronique Malaisé1, Alistair Miles2, and Guus Schreiber1

1 Vrije Universiteit Amsterdam, Department of Computer Science
{mark, vmalaise, guus}@cs.vu.nl

2 CCLRC Rutherford Appleton Laboratory,
Business and Information Technology Department,

Oxfordshire, OX11 0QX, UK
A.J.Miles@rl.ac.uk

Abstract. Thesauri can be useful resources for indexing and retrieval
on the Semantic Web, but often they are not published in RDF/OWL.
To convert thesauri to RDF for use in Semantic Web applications and
to ensure the quality and utility of the conversion a structured method
is required. Moreover, if different thesauri are to be interoperable with-
out complicated mappings, a standard schema for thesauri is required.
This paper presents a method for conversion of thesauri to the SKOS
RDF/OWL schema, which is a proposal for such a standard under de-
velopment by W3Cs Semantic Web Best Practices Working Group. We
apply the method to three thesauri: IPSV, GTAA and MeSH. With these
case studies we evaluate our method and the applicability of SKOS for
representing thesauri.

1 Introduction

Thesauri and thesauri-like resources such as MeSH [5] and the Art and Archi-
tecture Thesaurus [9] are controlled vocabularies developed by specific commu-
nities, often for the purpose of indexing (annotation) and retrieval (search) of
resources (images, text documents, web pages, video, etc.). They represent a
valuable means for indexing, retrieval and simple kinds of reasoning on the Se-
mantic Web. Most of these resources are represented in databases, as XML files,
or some other special-purpose data format. For deployment in Semantic Web
applications an RDF/OWL representation is required. Thesauri can be con-
verted to RDF/OWL in different ways. One conversion might define a thesaurus
metamodel which represent terms as instances of a class Term, while another
converts them into literals contained in a property term. This can introduce
structural differences between the conversions of two thesauri which have the
same semantics. Using a common framework for the RDF/OWL representation
of thesauri (and thesauri-like resources) either enables, or greatly reduces the
cost of (a) sharing thesauri; (b) using different thesauri in conjunction within
one application; (c) development of standard software to process them (because
there is no need to bridge structural differences with mappings). However, there
is a significant amount of variability in features of thesauri, as exemplified by

Y. Sure and J. Domingue (Eds.): ESWC 2006, LNCS 4011, pp. 95–109, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

96 M. van Assem et al.

the case studies presented here. The challenge for a common metamodel such
as SKOS is to capture the essential features of thesauri and provide enough
extensibility to enable specific, locally-important thesaurus features to be
represented.

The SKOS Core Guide [6] and the SKOS Core Vocabulary Specification [7]
are currently Working Drafts for W3C Working Group Notes. They present the
basic metamodel consisting of an RDF/OWL schema, an explanation of the fea-
tures that the properties and classes of the schema represent. Guidelines and
examples for extending SKOS Core are given by a proposed draft appendix to
the SKOS Core Guide1 and another draft proposes additional properties for
representing common features in thesauri2. Because they are at the proposal
stage they have no formal status within W3C process as yet. For the purpose
of this paper we take these four documents to represent the SKOS metamodel
and guidelines. Together they define (in a non-formal way) what constitutes
a “correct” SKOS RDF document. SKOS models a thesaurus (and thesauri-
like resources) as a set of skos:Concepts with preferred labels and alterna-
tive labels (synonyms) attached to them (skos:prefLabel, skos:altLabel).
Instances of the Concept class represent actual thesaurus concepts can be re-
lated with skos:broader, skos:narrower and skos:related properties. This
is a departure from the structure of many existing thesauri that are based on
the influential ISO 2788 standard published in 1986, which has terms as the
central entities instead of concepts. It defines two types of terms (preferred and
non-preferred) and five relations between terms: broader, narrower, related, use
and use for. Use and use for are allowed between preferred and non-preferred
terms, the others only between preferred terms [2]. More recent standards such
as ANSI/NISO Z39-19 acknowledge that terms are “lexical labels” represent-
ing concepts, but are still term-based format [1]. Often it is possible to con-
vert a term-based thesaurus into a concept-based one, but sometimes informa-
tion is lost (examples appear in the paper). The standards (including SKOS)
allow polyhierarchies, i.e. a term/concept can have more than one broader
term/concept.

Careful analysis of a thesaurus may still not result in an error-less, interoper-
able conversion to SKOS. To help ensure the quality and utility of conversions a
structured method is required. This paper addresses a methodological research
question: given the SKOS metamodel for thesauri, can a step-wise method be
developed that assists in converting thesauri to this metamodel in a correct man-
ner? The method should be able to guide the development of a deterministic
program (i.e. does not require human intervention) that generates correct SKOS
RDF for a specific thesaurus. We address the research question by first by exam-
ining existing thesaurus conversion methods in Section 2. Secondly, we develop
our method by refining an applicable existing method in Section 3. Thirdly, we
apply our method to three thesauri in Sections 4 through 6. Fourthly, we evaluate
our method and the SKOS metamodel in Section 7.

1 http://isegserv.itd.rl.ac.uk/cvs-public/˜checkout˜/skos/drafts/appextensions.html
2 http://www.w3.org/2004/02/skos/extensions/spec/

A Method to Convert Thesauri to SKOS 97

2 Existing Thesaurus Conversion Methods

This section discusses existing methods to convert thesauri. We distinguish con-
version methods for specific thesauri, method that convert thesauri to ontologies
and methods that convert any thesaurus to RDF/OWL.

A first stream of research presents methods to convert one specific thesaurus
from its native format to RDF/OWL, such as for MeSH [11] and the NCI the-
saurus [3]. Although the steps and techniques developed for these methods are
useful in thesaurus conversion, it is not clear if they can be applied to other
thesauri because only features that appear in the specific thesaurus are covered.
We do not consider these methods when choosing a method to base ours on.

A second stream of research presents methods with the goal to convert any
thesaurus into an ontology, such as the work of Soergel et al. [10]. A major
difference between thesauri and ontologies is that the latter feature logical is-a
hierarchies, while in thesauri the hierarchical relation can represent anything
from is-a to part-of. Their method has three steps: (1) define ontology meta-
model; (2) define rules to convert a traditional thesaurus into the metamodel,
introducing more specific kinds of relationships; and (3) manual correction. The
main requirement of the method is to refine the usual thesaurus relationships
into more specific kinds of relationships such as “causes”, “hasIngredient” and
“growsIn”. The method does not target a specific output format, although hints
are given for conversion to RDFS. It is not clear if the method would convert the-
saurus concepts into rdfs:Classes with rdfs:subClassOf and other relations
between them, or rather as instances of a class Concept as is in SKOS.

An elaborate 7-step method is defined by Hyvönen [4]3 with the goal of cre-
ating a true ontology consisting of an RDFS or OWL class hierarchy. Thesaurus
concepts are converted into instances of a metaclass (a subclass of rdfs:Class)
so that they are simultaneously instances and classes. A main requirement of
the method is that conversion refines the traditional BT/NT relationships into
rdf:type, rdfs:subClassOf or partOf. Another requirement is to rearrange
the class hierarchy to better represent an ontological structure, e.g. to ensure
only the real root concepts do not have a parent. Besides refining the relations
it retains the original structure by also converting the BT/NT/RT relations into
equivalent RDFS properties. It does not currently use SKOS.

A third stream of research presents methods to convert thesauri into
RDF/OWL without creating an ontology. Earlier work by Van Assem et al. [12]
describes a method to convert thesauri in four steps: (1) preparation; (2) syntactic
conversion; (3) semantic conversion; and (4) standardization. In the first step, an
analysis is made of the thesaurus and its digital format. This is used in step two to
convert to very basic RDF, after which it is converted to more common modeling
used in RDF and OWL in step three. In the last step the RDF/OWL metamodel
developed for the specific thesaurus is mapped to SKOS. This method is based on
two requirements: (a) preservation of the thesaurus’ original semantics; and (b)
step-wise refinement of the thesaurus’ RDF/OWL metamodel.

3 In Finnish, our understanding is based on correspondence with the author.

98 M. van Assem et al.

Work by Miles et al. [8] defines a method to convert thesauri to an earlier
version of SKOS in three steps: (1) generate RDF encoding; (2) error checking
and validation; and (3) publishing encoding on the web. Three case studies illus-
trate the method. It is based on two requirements: (a) conversion of a thesaurus
to the SKOS model with the goal of supporting thesaurus interoperability (b)
preserve all information encoded in the thesaurus. The first step is separated
into conversion of thesauri with a “non-standard structure” or “standard struc-
ture”. Thesauri with “standard structure” are based on the ISO 2788 standard.
Such thesauri can be converted into instances of the SKOS schema without loss of
information. Thesauri with “non-standard structure” are those who have “struc-
tural features that are not described by the standard ISO 2788”. The recommen-
dation is to develop an extension of the SKOS schema using rdfs:subClassOf
and rdfs:subPropertyOf to support non-standard features as this solution en-
sures that both method requirements are met. The method and described cases
does not admit of a third category of thesauri, namely those with non-standard
structure which cannot be defined as a strict specialization of the SKOS schema
(this paper shows examples of these). The second step comprises error check-
ing and validation using the W3C’s RDF validator, while the third step is not
discussed further.

3 Development of Conversion Method

The development of our method is based on a tentative process with the fol-
lowing components: (a) defining requirements on the method; (b) comparing to
existing methods and choosing an applicable one; (c) developing the steps of our
method; (d) applying the method; and (e) evaluating the method. This section
presents the first three components. We apply the method in Sects. 4 through 6
and evaluate in the discussion. We restrict the scope of our method to mono-
lingual thesauri and do not discuss thesaurus metadata. We also ignore some
practical issues such as defining an appropriate namespace for the converted
thesaurus.

3.1 Method Goal and Requirements

The general goal of the method is to support interoperability of thesauri encoded
in RDF/OWL. The first requirement of the method is to produce conversion pro-
grams that convert the digital representations of a specific thesaurus to SKOS.
The underlying assumption is that converting to SKOS provides interoperabil-
ity. A sub-requirement that follows is that the resulting conversion program
should produce correct SKOS RDF. The second requirement of the method is
that the converted thesaurus is complete (i.e. has all information that is present
in the original) as long as this does not violate the previous requirement. For
this method we value the goal of interoperability higher than the requirement of
being complete.

A Method to Convert Thesauri to SKOS 99

3.2 Comparison with Existing Methods

Here we compare the goals and requirements to those of existing methods to
choose a suitable one to use as a basis for our own. The method by Soergel et
al. does not have interoperability of thesauri as a goal. For each thesaurus a
new metamodel is developed. Its main requirement is to produce a more refined
version of the thesaurus. This is not in opposition to our requirement of com-
pleteness, but does introduce more work than necessary to achieve our main goal
and may also introduce incorrect interpretations of the thesaurus’ relations.

In Hyvönen’s method the thesaurus is converted into a rearranged class hier-
archy. It does not use a standard metamodel such as SKOS to promote interop-
erability and it rearranges the thesaurus’ original structure. The method by Van
Assem et al. also does not have interoperability of thesauri as a goal. The meta-
models of different thesauri converted using this method may have structural
differences. The method by Miles et al. has the same goal as ours: interoperabil-
ity of thesauri in RDF/OWL. The stated requirements of using SKOS and of
completeness also match. A difference is that it does not acknowledge possible
conflicts between these requirements.

3.3 Developing Steps of the Method

The method by Miles et al. has a comparable goal and requirements and therefore
we take their method as a starting point and adapt it. We focus here on working
out the first step of the method, namely producing a conversion (“encoding”)
of the thesaurus in correct SKOS RDF. We do not adapt and discuss steps two
and three.

The first step in the method by Miles et al. is split in two different processes
depending on whether the thesaurus is “standard” or “non-standard”. This re-
quires an analysis of the thesaurus, so we include this as a separate activity in
our method. Furthermore, the two processes only differ on whether they con-
vert directly to instances of the SKOS schema or into extensions of the SKOS
schema (defined with rdfs:subPropertyOf and rdfs:subClassOf). We decide
to merge the two processes, and for each thesaurus feature in the analysis we
determine whether to use a class/property from the SKOS schema or define a
new subclass/subproperty.

We analyzed which activities need to be performed in the step, starting with
its inputs and outputs. The input of the step is the thesaurus digital format,
and its documentation (including interviews with experts and applications that

Table 1. Substeps and activities of step 1

Substep Activity Output
(A) thesaurus analysis analyze digital format, analyze

documentation
catalogue of data items and con-
straints, list of thesaurus fea-
tures

(B) mapping to SKOS define data item to SKOS schema
mapping

tables mapping data items to
schema items

(C) conversion program develop algorithm conversion program

100 M. van Assem et al.

use the thesaurus such as websites). The output of the step should be a program
that transforms the data from the original digital format to SKOS RDF. In some
cases the output of the step will also include an extension of the SKOS schema.
There are three activities to be performed that link output to input: creating an
(algorithm for the) transformation program, defining a mapping between input
data items and output SKOS RDF as a basis for the algorithm, analyzing the
thesaurus. We split the last activity into two parallel analyses: an analysis of
the digital format and of the documentation. Both are helpful to understand
which features the thesaurus has and how they are encoded. This results in the
substeps and activities summarized in Table 1.

For the thesaurus analysis, we have listed the set of features that appear in
common thesauri. We derived this set from studying thesaurus standards [2, 1]
and the SKOS documentation listed earlier. There are three sets: one specific
to term-based thesauri, one specific to concept-based thesauri and one set that
is used in both. Term-based features are: term, compound term (combination
of two or more terms), “use” relation, “use for” relation, broader term rela-
tion between preferred terms, narrower relation between preferred terms, scope
note attached to preferred term (indicates scope for which term can be used in
indexing), documentation attached to terms such as definitions and historical
notes. Concept-based features are: concept, compound concept, preferred labels,
non-preferred labels, broader concept relation, narrower concept relation, doc-
umentation attached to concepts such as definitions and historical notes. Gen-
eral features are: node labels (explained later), facets (a top-level named group
of terms or concepts that is not meant for use in indexing itself). SKOS is a
concept-based model. Therefore, any feature that cannot be converted into a
concept-based or generic feature falls outside the scope of the SKOS schema and
thus of SKOS interoperability. Although most term-based features in their most
basic form can be converted into concept-based features, there are exceptions.

A sub-activity we would like to highlight here is the identification of unique
identifiers in the source to generate the rdf:IDs of skos:Concepts. Some the-
sauri like MeSH already provide unique identifiers, but others like GTAA do
not provide one. A number of options exists: (a) generate completely new iden-
tifiers which have no relation to the terms or concepts themselves; or (b) use
the name of the preferred term if it is unique (replacing illegal URI characters).
The first option has the disadvantage of additional management (a mapping be-
tween source terms and identifiers needs to be maintained). The second option
has the disadvantage that a concept is not independent of its name. Additional
programming is required to ensure that when a term changes name, the cor-
responding skos:Concept’s label is changed, instead of its URI. Currently we
have not found a particular reason to prefer one option over the other.

In the next three sections we apply the method to three thesauri. We have
chosen IPSV, GTAA and MeSH because they (a) are used in practice; and
(b) represent progressively complex thesauri (i.e. non-standard features). The
progressive complexity allows us to explore the limitations of our method and
of SKOS.

A Method to Convert Thesauri to SKOS 101

4 Case Study: IPSV

The Integrated Public Sector Vocabulary (IPSV) is a thesaurus developed
in the UK for indexing government documents4. It is modeled with the
ISO2788/BS5723 standards in mind and contains 2732 preferred terms and 4230
non-preferred terms. The IPSV is a result of the merger of three thesauri. The
sources and results of the conversion are available on-line5.

Step A: analyze thesaurus. We used the XML version6 in our analysis as
it is the most complete. IPSV-XML has a DTD which provides the catalogue
of data items and their constraints. IPSV-XML is a reasonably standard term-
based thesaurus with preferred and non-preferred terms both called <Item>s
in the XML data. Columns one and three of Table 2 list the data items and
the features (for non-standard features we describe the function instead). IPSV
provides unique identifiers for its terms and has a polyhierarchy.

Step B: map data items to SKOS. We have analyzed which data items
correspond to which SKOS features or specializations of them (column three of
Table 2). Although polyhierarchies are not allowed in ISO 2788, this is allowed
in SKOS so this does not hinder a correct conversion. We were not able to find
appropriate (specializations of) SKOS properties for the last four data items in
the table. The two data items that indicate version information for terms cannot
be made subproperties of skos:altLabel or skos:prefLabel as done for the
AToZ attribute, because there is no place to store the version number (only literals
are allowed for the label properties). A solution would be to attach two new
properties to skos:Concept that have instances of a class Term as range. To these
instances we can then attach a property that repeats the term name and then
another property with the version number. Although this solution represents the
information correctly, it introduces redundancy into the conversion (it repeats
the term name with non-SKOS classes and properties). If this is not an issue
this solution can be used to remain complete. However, it is a structural work-
around because SKOS does not have the ability to attach information on specific
skos:prefLabels and skos:altLabels directly.

Items that are Obsolete are removed from the actual thesaurus but are re-
tained to be able to retrieve documents that were indexed with older versions of
the thesaurus. The skos:hiddenLabel is intended to contain labels that should
not be displayed to users but should be available for retrieval purposes, so we cre-
ate an ipsv:obsoleteTerm that is a subproperty of skos:hiddenLabel. Short-
cuts are attached to terms in the XML, but are actually meant to be able to
insert a whole concept within an application, so it is attached to skos:Concept
as a non-standard feature without a SKOS superproperty.

4 http://www.esd.org.uk/standards/ipsv/index.html
5 http://thesauri.cs.vu.nl/eswc06/
6 Also available in other formats, see

http://www.esd.org.uk/documents/IPSVVersionsAndFormats.pdf

102 M. van Assem et al.

Table 2. Mapping of IPSV Data Items to features and RDFS property/classes. The
upper part lists standard features, the middle part specializations and the lower part
non-standard features. Omitted closing tags in Data Item column.

Data Item Feature/function Property/class
<Item Id=“A”
ConceptId=“B”
Preferred=”True”>
<Name: >X

Preferred Term skos:Concept with rdf:ID=A,
skos:prefLabel=X attached to it

<Item Id=“A”
ConceptId=“B”
Type=”Synonym”>
<Name: >X

Non-Preferred Term skos:prefLabel=X attached to
concept with rdf:ID=B

<Item
Type=“misspelling”>
<Name: >X

common misspelling of a
(non)preferred term

skos:hiddenLabel=X

<UseItem> USE relation none required
<ScopeNote>X ScopeNote skos:scopeNote=X attached to

concept created for surrounding
<Item>

<BroaderItem Id=“X”> Broader Term skos:broader to Concept with
rdf:ID=X

<RelatedItem Concep-
tId=“X”>Y

Related Term skos:related to Concept with
rdf:ID=X

<BroaderItem Id=“X”
Default=“true”>

default broader term ipsv:broaderDefault (subproperty
of skos:broader) to Concept with
rdf:ID=X

<Item AToZ=“true”
Preferred=“Y”>Z

term should be displayed on web-
sites

ipsv:displayableAltLabel=Z
(subproperty of skos:altLabel)
when Y=false,
ipsv:displayablePrefLabel=Z
(subproperty of skos:prefLabel)
when Y=true

<Item
Obsolete=“true”>

obsolete term ipsv:obsoleteTerm=X (subprop-
erty of skos:hiddenLabel

<Item AddedInVer-
sion=“X”>

X is a real indicating in which
IPSV version the term was added

<Item LastUpdatedIn-
Version=“X”>

X is a real indicating in which
IPSV version the term was last
changed

<Shortcut>X X is a letter; keyboard shortcut for
an application

ipsv:shortcut attached to concept
created for surrounding <Item>

Step C: create conversion program. We created a SWI-Prolog program that
parses the IPSV-XML file and converts it to SKOS RDF using the mappings
from step 1b. The program takes an <Item> and applies the matching mappings
between data items and SKOS RDF. There is no need for any other information
external to the <Item> to generate the triples for that Item. For example,
because non-preferred Items also contain the identifier of their preferred Item (in
the ConceptId attribute), we can generate the skos:altLabel triple even if the
preferred Item that is used to generate the skos:Concept is not yet processed.

Case study summary. The case study took one analyst approximately two
weeks to perform and was not very complex as the thesaurus is not complicated
and is clearly documented. For a few issues we contacted one of the original
developers. We learned that it is not always possible to perform a complete
information-preserving conversion as some information on terms was lost.

A Method to Convert Thesauri to SKOS 103

5 Case Study: GTAA

The GTAA thesaurus is the controlled vocabulary used at The Netherlands
Institute for Sound and Vision7, which archives and indexes most of the public
broadcasted TV and radio programs of the Netherlands 8. GTAA stands for the
Common Thesaurus for Audiovisual Archives; it is the result of the collaborative
work of different institutions concerned with audiovisual documents indexing,
including the FilmMuseum of Amsterdam. It contains 159 831 preferred terms,
1900 non-preferred terms, and 88 categories. A sample of the source file, the
conversion program and the resulting RDF are available on-line9.

Step A: analyze thesaurus. We had access to GTAA documentation and
data as text files with an ISO-style formatting. This thesaurus is a faceted term-
based thesaurus, where only one facet (the Subject facet, used to describe the
content of a program) is organized with the ISO 2788 broader term/narrower
term hierarchy. The other facets are alphabetical controlled lists, with some
scope notes (lists of people’s names, geographical location, etc.). The Subject
facet contains one non-standard feature called Category. Each term is supplied
with at least one Category, providing an alternative way to the normal NT/BT
hierarchy for indexers to find them. We list GTAA data items in column one of
the upper part of Table 3 and the features they represent in column two.

Step B: map data items to SKOS. Two issues arose in this step. The first one
concerns the GTAA BT relationship. In the documentation of the thesaurus, the
BT and NT relationships are stated to be each other’s inverse. In the data itself,
two or more preferred terms can have a NT link with the same narrower term.
However, this narrower term has only one BT link to one of the broader terms
(instead of multiple BT links). There are two options: either the missing BT links
are intended but omitted in the data, or the BT link has a special status, e.g.
it is a defaultBroader such as in IPSV. After discussion with GTAA experts,
and according to the fact that this defaultBroader relationship does not appear
in the documentation, we mapped the GTAA BT to skos:broader (see column
three of Table 3).

Secondly, there are two ways to interpret the CC relationship. Either it is
meant to disambiguate different aspects of a term (as in “Chruch-institution”
vs “Church-building”), or it is a way of grouping terms sharing a specific aspect
(as with “Milk by animal” and “Cow-milk”, “Buffalo-milk”, etc.). In the second
case, “Milk by animal” is called a node label: it is a way of grouping terms, but
it should not be used for indexing. These node labels are ususally part of the
term hierarchy. The experts indicated that this option was the intended usage
of Categories: to provide a grouping of terms under a label that is not used
in the indexing process. Nevertheless, they are meant to provide an alternative
7 http://www.beeldengeluid.nl/index.jsp
8 Of the estimated 850,000 hours of audio-visual material that is preserved in the

Netherlands, around 700,000 hours is archived by Sound and Vision.
9 http://thesauri.cs.vu.nl/eswc06/

104 M. van Assem et al.

Table 3. Mapping of GTAA Data Items to features and RDFS property/classes. Upper
part lists standard features, the lower part specializations. “Term A” is an actual term
in the thesaurus such as “Boat”.

Data Item Feature/function Property/class
Term A Preferred Term skos:Concept with rdf:ID=A,

skos:prefLabel=A attached to it
US Term B Non-Preferred Term skos:altLabel=B attached to con-

cept
CC Category C Grouping of Preferred Terms by

Categories
skos:member between a
skos:Collection (with rdf:ID=C)
and a skos:Concept

BT Term A Broader Term skos:broader
NT Term A Narrower Term skos:narrower
RT Term A or See also Related Term skos:related
SN X or (X) ScopeNote skos:scopeNote=X attached to

concept created for surrounding
Preferred Term

LT relationship between terms from
different facets

gtaa:hasLinkedTerm (subproperty
of skos:related)

DL relationship between terms within
a certain time period

gtaa:hasDebateLine (subproperty
of skos:related)

grouping of the GTAA terms, and thus are not part of the BT/NT hierarchy.
Although we mapped the Categories to an existing SKOS construct, namely the
skos:Collection (see column three of Table 3), this modelling remains a non-
standard feature that cannot be processed by SKOS software. The Categories
have explicit identifiers, from which we could infer their hierarchy (01 stands for
Philosophy, and 01.01 is one of its subdivisions, for instance).

GTAA does not include identifiers for its terms, so we used the preferred
term’s name as the rdf:ID of concepts.

Step C: create conversion program. As our source for the GTAA data was
plain text, we created a Perl program to convert it according to the mappings in
Table 3. We also had to make some manual corrections for reference errors intro-
duced by thesaurus maintenance. Some relationships were referring to terms of
the thesaurus that became obsolete, to terms which changed spelling, or to terms
that became non-preferred terms. We corrected the references, or suppressed the
relationships when no reference could be found; as these are relatively straight-
forward decisions no expert involvement was necessary.

Case study summary. The conversion could be made by direct mapping to or
by extension of the SKOS schema, except for the Categories. In the conversion
process, understanding the GTAA model from textual resources and experts
interview, and converting the Categories into a SKOS construct took the longest
time. Including programming, the process took about two weeks for one person
and a half full time.

6 Case Study: MeSH

The Medical Subject Headings (MeSH) is a large thesaurus-like vocabulary de-
veloped by the U.S. National Library of Medicine and used to index millions

A Method to Convert Thesauri to SKOS 105

of biomedical article citations10. It contains 22,997 “descriptors”, most of which
are used to index the subject of articles (two of the trees do not contain subjects
but publication types and geographical regions). MeSH is the result of a merger
of many different sources. The input data files and results of the conversion are
available on-line11.

Step A: analyze thesaurus. MeSH is available in different formats which con-
tain the same information. We chose the XML version12 because it is easier to
analyze and convert. MeSH-XML has a DTD which provides us with the data cat-
alogue and constraints. MeSH is a concept-based thesaurus without facets. Con-
cepts are called “Descriptors” in MeSH terminology. The MeSH structure is com-
plicated: “Descriptors” contain “Concepts”, “Concepts”contain “Terms”. Each
has a name and a unique identifier, and to each entity documentation is attached
such as its date of introduction and historical notes. Descriptors are hierarchically
related: each MeSH Descriptor has one or more “TreeNumbers”, which implicitly
encode its position in a polyhierarchy (e.g. A01.456 is a child of A01). Each De-
scriptor has a preferred Concept, and each Concept has a preferred Term. MeSH
Concepts that appear within one Descriptor can be related to each other with re-
lations “brd”, “nrw” and “rel”. MeSH has fifteen trees with top-concepts named
e.g. “organisms” or “diseases”. These appear to be facets, but they are used in
idexing articles so we interpret them as normal thesaurus Concepts.

As the MeSH DTD defines almost 90 tags13 and for each tag different at-
tributes, we only list the exemplary and special data items in column one of
Table 4 (the corresponding feature, or function if it is a non-standard feature,
is in column two). MeSH Descriptors have a redundant <DescriptorName> and
<ConceptName> as these strings are the same as the name of the preferred
Concept and Term, respectively.

MeSH has two non-standard features that require special attention. Firstly,
so-called Qualifiers are used to indicate specific aspects of Descriptors, such
as “pathology” or “abnormalities”. They are combined with Descriptors to en-
able more specific article indexing (e.g. “Abdomen/abnormalities”). Secondly,
so-called EntryCombinations relate a non-preferred Descriptor/Qualifier pair to
a preferred Descriptor/Qualifier pair (or preferred Descriptor without Qualifier).
This is comparable to but slightly different from the ISO 2788 “USE” relation,
which can be used to point from a non-preferred non-compound term to a pre-
ferred compound term. The difference is that in MeSH the preferred concept is
a compound.

Step B: map data items to SKOS. We mapped Descriptor to skos:Concept
instances and sub-tags to properties of skos:Concept (see Table 4). Each child
Descriptor is linked to its parent(s) - stated implicitly in the <TreeNumber>

10 http://www.ncbi.nlm.nih.gov/entrez/
11 http://thesauri.cs.vu.nl/eswc06/
12 http://www.nlm.nih.gov/mesh/filelist.html
13 An overview of their meaning is given in:

http://www.nlm.nih.gov/mesh/xml data elements.html

106 M. van Assem et al.

Table 4. Mapping of representative MeSH Data Items to features and RDFS prop-
erty/classes. Upper part lists standard features, the middle part specializations and
lower part non-standard features. Omitted closing tags in Data Item column.

Data Item Feature/function Property/class
<DescriptorRecord>
<DescriptorName>
<String>X
<DescriptorUI>Y

Concept skos:Concept with rdf:ID=Y and
skos:prefLabel=X

<Concept
PreferredConceptYN=”Y”>
<ScopeNote>X

Scope Note skos:scopeNote=X attached to
concept created for surrounding
<DescriptorRecord>

<TreeNumber>X implicitly indicates Broader
Concept

skos:broader to concept with
rdf:ID=X

<Term
RecordPreferredTerm=”N”>
<String>B

Non-preferred Label skos:altLabel=B attached to
concept with rdf:ID found in
surrounding Descriptor

<SeeRelatedDescriptor>
<DescriptorReferredTo>
<DescriptorUI>X
<DescriptorName>Y

Related Concept skos:related to Concept with
rdf:ID=X

<HistoryNote>X Historical Note mesh:historyNote=X (subprop-
erty of skos:historyNote)

Data Item Feature/function Property/Class
<EntryCombination>
<ECIN> X <ECOUT> Y

Compound Concept and special
relation (see text). X and Y con-
tain tags with the identifiers of
one Descriptor/Qualifier pair in
them

mesh:CompoundConcept
mesh:Qualifier mesh:main
mesh:qualifier (subclasses
and subproperties of
skos:Concept and skos:broader)
mesh:preferredCombination (no
parent)

<PublicMeSHNote>X Note mixing historical and see
also information

mesh:publicMeSHNote=X (sub-
property of skos:note)

<PreviousIndexing>X Historical Note skos:historyNote
<ConsiderAlso>X textual reference to other possi-

ble records
mesh:considerAlso=X (subprop-
erty of skos:note)

<ActiveMeSHYear>X Year in which the Descriptor was
part of MeSH

mesh:activeMeSHYear=X (sub-
property of skos:editorialNote)

<RecordOriginator>X Thesaurus where the Descriptor
comes from

mesh:recordOriginator (suprop-
erty of skos:note)

<DateCreated>X Date Descriptor was first created mesh:dateCreated=X (subprop-
erty of skos:editorialNote

Data Item Feature/function Property/class
<ActiveMeSHYear> Year in which Descriptor was

present in MeSH
mesh:activeMeSHYear

<DescriptorClass> Classifies Descriptor into one of
four numbered categories, in-
cluding “topical descriptor” and
“publication type”

mesh:descriptorClass

<RunningHead> page header used in printed
MeSH versions

mesh:runningHead

<LexicalTag> lexical category of a <Term>
<Abbreviation> abbreviation of a <Term>

tag(s) - with skos:broader. We only map Descriptor names one time, removing
the redundancy.

Because the MeSH Concepts and Terms are converted into skos:prefLabel
and skos:altLabels, information about the Concepts and Terms themselves
is lost. One example is the Concept’s “brd”, “nrw” and “rel” relations. These
cannot be mapped to the broader/narrower concept feature, because the De-

A Method to Convert Thesauri to SKOS 107

scriptor hierarchy is already mapped to that. Two more examples are the Term’s
<Abbreviation> and <LexicalTag>. Only in cases where it is valid to attach
information about a Concept or Term to the Descriptor can this information
be preserved by attaching it to the skos:Concept, which is not the case for a
number of Concept and Term tags. An example where this is possible is with a
preferred Concept’s <ScopeNote>.

To support the use of Descriptor/Qualifier pairs in indexing we intro-
duced classes mesh:Qualifier and mesh:CompoundConcept as subclass of
skos:Concept. Qualifiers are a special class of Concepts because they do not
have broader/narrower relations themselves. The properties mesh:main and
mesh:qualifier are used to attach a Descriptor (skos:Concept) and Quali-
fier (mesh:Qualifier) to the CompoundConcept. By making the properties a
subproperty of skos:broader, the CompoundConcepts become narrower con-
cepts of their contained concept, so that queries for documents with that concept
as subject will also return documents indexed with the CompoundConcept. For
the rdf:ID of the CompoundConcept the unique Descriptor and Qualifier iden-
tifiers are concatenated. We used the same CompoundConcept class to represent
<EntryCombination>s which we link with mesh:preferredCombination. This
last property does not have a SKOS parent. The only candidate skos:related
has a different semantics: it links preferred concepts that are related in mean-
ing (a symmetric relation), while mesh:preferredCombination links a non-
preferred concept to a preferred concept (asymmetric relation).

Step C: create conversion program. We created a SWI-Prolog program that
parses the MeSH-XML file and converts it to SKOS RDF using the mappings
from step B. The program takes a DescriptorRecord tag and converts it into a
skos:Concept. It also converts the non-standard features of MeSH.

Case study summary. The case study took one analyst approximately two
weeks to perform and was relatively complex because of the many non-standard
features and ambiguities. We have not yet been able to confirm our decisions
with MeSH experts. We learned that some thesauri have complex structures for
which no SKOS counterparts can be found (e.g. information on Terms) and that
for some features care is required in converting them in such a way that they
are still usable for their original purpose (e.g. the CompoundConcepts).

7 Discussion and Evaluation

In this section we first evaluate our method and then discuss the applicability
of the SKOS metamodel for representating thesauri. The case studies showed
that the method gives appropriate guidance in identifying common features
of thesauri. However, we found that two of our three cases had non-standard
features which our method cannot anticipate. Further case studies should in-
crease the number of identified non-standard features to be incorporated into
the method. For the analysis of the meaning of some features it is necessary to

108 M. van Assem et al.

investigate how the feature is used in practice (e.g. GTAA Categories). Conver-
sion of concept-based thesauri should be simpler than term-based thesauri as
SKOS is concept-based, but we cannot confirm this as MeSH is not typical of
the first category. Although MeSH was not a good choice as a case study in this
respect, it did help us in identifying the boundaries of applicability of SKOS (see
below). A problematic type of feature are textual notes that mix several kinds
of knowledge (e.g. <PublicMeSHNote> contains historical and see also informa-
tion). Our method does not investigate if it is possible to separate them. We are
currently unsure whether such an investigation will result in generic rules that
can be incorporated in our method.

The SKOS metamodel itself seems applicable for representing resources which
have considerable resemblance to the ISO 2788 standard. From the MeSH case
we learned that SKOS does not have a standard class to represent compound
concepts, although this is a feature that is defined in ISO 2788. A related ISO
feature, the USE relation from non-preferred compound terms to preferred ones
has no SKOS counterpart either. Thesauri such as IPSV and MeSH also rep-
resent management information about their terms (e.g. date of term creation)
which cannot be represented within SKOS itself . One might argue that this
information is not relevant to a thesaurus’ content. It may represent information
on a higher level of abstraction that should not be considered for conversion.
However, SKOS does partly supports representing other types of management
information e.g. with the skos:changeNote and skos:editorialNote. Besides
management information, there is also additional content information on terms
that cannot be represented in SKOS, such as the MeSH <LexicalTag>. If it is
appropriate to represent additional information on terms, a solution is to intro-
duce into SKOS a new class skos:Term as the range of skos:prefLabel and
skos:altLabel. This would enable terms to be entities in themselves to which
additional properties can be attached.

Lastly, we note that it is difficult to confirm whether or not a given RDF
document is valid SKOS RDF. The draft SKOS Test Set14 and implementation15

can simplify this in the future.

Acknowledgements. This work was partly supported by NWO’s CHIME and
CHOICE projects. The authors wish to thank Stella Dextre Clarke for providing
information concerning the IPSV and Eero Hyvönen for correspondence on his
method. The authors also thank all participants of public-esw-thes@w3c.org who
have contributed to the development of SKOS.

References

1. ANSI/NISO. Guidelines for the construction, format, and management of mono-
lingual thesauri. Ansi/niso z39.19-2003, 2003.

2. International Organization for Standardization. Documentation - guidelines for
the establishment and development of monolingual thesauri. Iso 2788-1986, 1986.

14 http://isegserv.itd.rl.ac.uk/cvs-public/˜checkout˜/skos/drafts/integrity.html
15 http://www.w3.org/2004/02/skos/core/validation

A Method to Convert Thesauri to SKOS 109

3. J. Goldbeck, G. Fragoso, F. Hartel, J. Hendler, B. Parsia, and J. Oberthaler. The
National Cancer Institute’s Thesaurus and Ontology. Journal of Web Semantics,
1(1), Dec 2003.

4. Eero Hyvönen. Miksi asiasanastot eivät riitä vaan tarvitaan ontologioita? why the-
sauri are not enough but ontologies are needed? (in finnish). Tietolinja, (2), 2005.
ISSN 1239-9132, URL: http://www.lib.helsinki.fi/tietolinja/0205/index.html.

5. D. Johnston, S. J. Nelson, J. Schulman, A. G. Savage, and T. P. Powell. Redefining
a thesaurus: Term-centric no more. In Proc. of the 1998 AMIA Annual Symposium.

6. A. Miles and D. Brickley (editors). SKOS Core Guide. W3C Public Work-
ing Draft, World Wide Web Consortium, November 2005. Latest version:
http://www.w3.org/TR/swbp-skos-core-guide.

7. A. Miles and D. Brickley (editors). SKOS Core Vocabulary Specification. W3C
Public Working Draft, World Wide Web Consortium, November 2005. Latest
version: http://www.w3.org/TR/swbp-skos-core-spec/.

8. A. Miles, N. Rogers, and D. Beckett. Migrating Thesauri to the Se-
mantic Web - Guidelines and case studies for generating RDF encod-
ings of existing thesauri. Deliverable 8.8, SWAD-Europe, 2004. URL:
http://www.w3.org/2001/sw/Europe/reports/thes/8.8/.

9. T. Peterson. Introduction to the Art and Architecture Thesaurus. Oxford University
Press, 1994.

10. D. Soergel, B. Lauser, A. Liang, F. Fisseha, J. Keizer, and S. Katz. Reengineer-
ing thesauri for new applications: the AGROVOC example. Journal of Digital
Information, 4(4), 2004.

11. L.F. Soualmia, C. Goldbreich, and S.J. Darmoni. Representing the mesh in owl:
Towards a semi-automatic migration. In Proc. of the 1st Int’l Workshop on Formal
Biomedical Knowledge Representation (KR-MED 2004), pages 81–87, Whistler,
Canada, 2004.

12. M. van Assem, M. R. Menken, G. Schreiber, J. Wielemaker, and B. Wielinga. A
method for converting thesauri to rdf/owl. In S. A. McIlraith, D. Plexousakis, and
F. van Harmelen, editors, Proc. of the 3rd Int’l Semantic Web Conf. (ISWC’04),
number 3298 in Lecture Notes in Computer Science, pages 17–31. Springer-Verlag,
2004.

Ontology Engineering Revisited:
An Iterative Case Study�

Christoph Tempich2, H.Sofia Pinto1, and Steffen Staab3

1 Dep. de Engenharia Informática, Instituto Superior Técnico, Lisboa, Portugal
sofia.pinto@dei.ist.utl.pt

2 Institute AIFB, University of Karlsruhe (TH), 76128 Karlsruhe, Germany
tempich@aifb.uni-karlsruhe.de

3 ISWeb, University of Koblenz Landau, 56016 Koblenz, Germany
staab@uni-koblenz.de

Abstract. Existing mature ontology engineering approaches are based on some
basic assumptions that are often violated in practice, in particular in the Semantic
Web. Ontologies often need to be built in a decentralized way, ontologies must
be given to a community in a way such that individuals have partial autonomy
over them and ontologies have a life cycle that involves an iteration back and
forth between construction/modification and use. While recently there have been
some initial proposals to consider these issues, they lack the appropriate rigor
of mature approaches. i.e. these recent proposals lack the appropriate depth of
methodological description, which makes the methodology usable, and they lack
a proof of concept by a long-lived case study. In this paper, we revisit mature and
new ontology engineering methodologies. We provide an elaborate methodology
that takes decentralization, partial autonomy and iteration into account and we
demonstrate its proof-of-concept in a real-world cross-organizational case study.

1 Introduction and Motivation

Ontologies are used in order to improve the quality of communication between com-
puters, between humans and computers as well as between humans. An ontology is an
agreement supporting such communication and this agreement must be constructed in a
comprehensive ontology engineering process. There are several mature methodologies
that have been proposed to structure this process and thus to facilitate it (cf. [1, 2, 3])
and their success has been demonstrated in a number of applications.

Nevertheless, these methodologies make some basic assumptions about the ontology
engineering process and about the way the resulting ontologies are used. In practice, we
observe that these methodologies neglect some important issues:

Decentralization: The methodologies do not take into account that even a medium
sized group of stakeholders of an ontology is often quite distributed and does not nec-
essarily meet often or easily.

� Research reported in this paper has been financed by EU in the IST projects SEKT (IST-2003-
506826) and aceMedia (IST-FP6-001765).

Y. Sure and J. Domingue (Eds.): ESWC 2006, LNCS 4011, pp. 110–124, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Ontology Engineering Revisited 111

Partial Autonomy: Users of an ontology are typically forced to use an ontology as is
or to forget about it. A typical situation that we have encountered was that people want
to retain a part of the shared ontology and modify it locally, i.e. personalize it.

Iteration: The methodologies mention the problem of evolving the ontology, but the
cases that support the methodologies are typically cases where the construction phase
of the ontology strictly precedes the usage phase of the ontology while we often see the
need for interleaving ontology construction and use. Moreover, there is a lack of case
studies that support hypothesis about how to iterate in the ontology evolution process.

These issues arise naturally for many ontologies and one might claim for all ontolo-
gies in the Semantic Web! Recently a number of approaches that touch these issues
have been proposed [4, 5, 6] — among them our own, DILIGENT. However, none of
these approaches elaborated their methodological description or tested their proposals
in a case study with regard to Decentralization, Partial Autonomy and Iteration between
the definition and the use of an ontology.

In this paper, we present our approach, DILIGENT. It is based on the process model
described in [4]. We add substance to existing proposals by, (i), specifying the internal
structure of methodology stages1 (i.e. their input, output, decision points, actions to be
taken in each stage, and available tool support) and, (ii), by providing a comprehensive
case study that takes Decentralization, Partial Autonomy as well as Iteration between
ontology construction/modification and usage seriously in a real-world case study of
3 months duration, where the ontology was the driving factor of a cross-organizations
peer-to-peer knowledge management platform.

In the following, we first revisit ontology engineering methodologies to describe our
starting point (Section 2). In Section 3, we survey our way of arriving at the method-
ology described here. Then we describe the refinements, adaptations and extensions
we made to related methodologies in Section 4. Because of space restrictions, this de-
scription can only highlight some of our methodological improvements. For the full
description we refer the reader to a technical report [7]. We evaluate DILIGENT by
comparing it in detail to other methodologies (Section 5) and by validating it through a
case study (Section 6) that shows a concrete instantiation of our methodology including
two full iterations of the ontology life cycle.

2 Related Work

In the past, there have been OE case studies involving dispersed teams, such as (KA)2

ontology [6] or [8]. However, they usually involved tight control of the ontology, of its
development process, and of a small team of ontology engineering experts that could
cope with the lack of precise guidelines.

Established methodologies for ontology engineering summarized in [1, 2, 3], focus
on the centralized development of static ontologies, i.e. they do not consider iteration
between construction/modification and use. METHONTOLOGY [1] and the OTK

1 To facilitate reading, we introduce here a convention to refer to parts of processes. We call a
larger part a ‘process stage’ or ‘stage’ and a smaller part, which is also a part of a stage, a
‘process action’ or ‘action’.

112 C. Tempich, H.S. Pinto, and S. Staab

methodology [2] are good examples for this approach. They offer guidance for building
ontologies either from scratch, reusing other ontologies as they are, or re-engineering
them. They divide OE processes into several stages which produce an evaluated ontol-
ogy for a specific domain. Holsapple et al. [9] focus their methodology on the collab-
orative aspects of ontology engineering but still aim at a static ontology. A knowledge
engineer defines an initial ontology which is extended and modified based on the feed-
back from a panel of domain experts. HCOME is a methodology which integrates
argumentation and ontology engineering in a distributed setting [5]. It supports the de-
velopment of ontologies in a decentralized setting and allows for ontology evolution.
It introduces three different spaces in which ontologies can be stored: In the Personal
Space users can create and merge ontologies, control ontology versions, map terms
and word senses to concepts and consult the top ontology. The evolving personal on-
tologies can be shared in the Shared Space. The Shared Space can be accessed by all
participants. In the shared space users can discuss ontological decisions. After some
discussion and agreement, the ontology is moved into the Agreed space. However, they
have neither reported that their methodology had been applied in a case study nor do
they provide any detailed description of the defined process stages.

3 Developing the New DILIGENT OE Methodology

In order to arrive at a sound OE methodology we have proceeded in five steps to de-
velop DILIGENT. First, we built on [8] to conceive our initial DILIGENT framework.
Second, this framework contained a step for initially constructing a core ontology. With
regard to this step, we decided not to develop a new methodology but to adopt the
OTK methodology. Third, in order to validate the combined methodology, we analyzed
its potential for the past (and ongoing) development process that has led to the bio-
logical taxonomy of living species and we conducted a lab experiment case study (cf.
[10]). Fourth, we started a real-life case study and reported about its initial state and
supporting means in [4]. Fifth, by the sum of these initial methodologies, cases and ex-
periments, we arrived at the new and refined DILIGENT methodology that we present
here. The focus of the refinement has been on decentralization, iteration and partial
autonomy as well as on guiding users who were not ontology engineering experts. The
methodology has been validated by the iterative case study presented in Section 6. Thus,
we could repeatedly switch between hypothesis formulation and validation in order to
present the result of step five and its validation in the remainder of this paper.

4 The DILIGENT Methodology

In order to give the necessary context for the detailed process description as depicted in
Fig. 1 we start by summarizing the overall DILIGENT process model.

4.1 General Process

The DILIGENT process [4] supports its participants, in collaboratively building one
shared ontology. The process comprises five main activities: (I) build, (II) local adap-
tation, (III) analysis, (IV) revision, (V) local update. The process starts by having

Ontology Engineering Revisited 113

domain experts, users, knowledge engineers and ontology engineers building an initial
ontology. It proposes that the team involved in building the initial ontology should be
relatively small, in order to more easily find a small and consensual first version of
the shared ontology. At this point, it is not required to arrive at an initial ontology that
would cover the complete domain. Once the initial ontology is made available, users
can start using it and locally adapting it for their own purposes. Typically, due to new
business requirements, or user and organization changes, their local ontologies evolve.
In their local environment they are free to change the reused shared ontology. However,
they are not allowed to directly change the ontology shared by all users.

A board of ontology stakeholders analyzes the local ontologies and the users’ re-
quests and tries to identify similarities in their ontologies. At this point it is not intended
to merge all local ontologies. Rather changes to local ontologies will be analysed by the
board in order to decide which changes introduced or requested by the users will be in-
troduced. Therefore, a crucial activity of the board is deciding which changes are going
to be introduced in the next version of the shared ontology. A balanced decision that
takes into account the different needs of user’s evolving requirements has to be found.
The board should regularly revise the shared ontology, so that the parts of the local
ontologies overlapping the domain of the shared ontology do not diverge too far from
it. Therefore, the board should have a well-balanced and representative participation
of the different kinds of participants involved in the process, which includes ontology
engineers, domain experts and users.2 Once a new version of the shared ontology is
released, users can update their own local ontologies to better use the knowledge rep-
resented in the new version. The last four stages of the process are performed in a cyclic
manner: when a new common ontology is available a new round starts again.

4.2 DILIGENT Process Stages

In order to facilitate the application of ontology engineering processes in real settings,
DILIGENT had to be detailed to provide guidance to its participants. For this purpose,
we have analyzed the different process stages in detail. For each stage we have identified
(i) major roles, (ii) input, (iii) decisions, (iv) actions, (v) available tools, and (vi) output
information. One should stress that this elaboration is rather a recipe or check list than
an algorithm or integrated tool set. In different contexts it may have to be adapted or
further refined to fit particular needs and settings. Tools may need to be integrated or
customized to match requirements of the application context. In Fig. 1 we sketch our
results, which are presented in the following. For lack of space we refer the reader to a
technical report that includes a more detailed description of all items depicted in Fig. 1
[7]. In this paper we consider ’Local Adaptation’, ’Revision’, and ’Local Update’ at an
abstract level, zoom only into the ’Analysis’ stage in an exemplary fashion and we omit
the ’Build’ stage, which is well-covered by existing methodologies [1, 2].

Local Adaptation

Roles: The actors involved in the local adaptation step are users of the ontology. They
use the ontology e.g. to retrieve documents which are related to certain topics modelled
in the ontology or more structured data like the projects an employee was involved in.

2 These are roles that may overlap.

114 C. Tempich, H.S. Pinto, and S. Staab

Fig. 1. Process stages (1-5), actions (1-17) and structures

Input: Besides the common shared ontology, in the local adaptation step the informa-
tion available in the local information space is used. This can be existing databases,
ontologies or folder structures and documents.

Decisions: The actors must decide which changes they want to make to their local
ontology. Hence, they must decide if and where new concepts are needed and which
relations a concept should have. They should provide reasons for their decisions.

Actions: To achieve the desired output the user performs different actions namely (2)
Understand shared ontology, (3) Identify communalities between own and shared con-
ceptualization, (4) Map equivalent conceptualizations of different actors, (5) Identify
missing conceptualizations, (6) Change conceptualization and finally (7) Organize lo-
cal knowledge according to the conceptualization.

The last three actions of the process step are performed in a cyclic manner until a new
common ontology is available and the entire process step starts again. The single actions
performed manually would require a grounded understanding of ontologies and their
underlying formal representation. We cannot expect such knowledge from all actors
participating in the process. The process should rather be integrated seamlessly in the
environment the user works in. Hence we now indicate for each of the actions some
available technology to support the actors.

Tool support: Building is supported by existing ontology editors like [11]. In [4] we de-
scribe how existing structure on local machines can be utilized to facilitate the creation
of ontologies. The tool supports thus actions (3) and (5). We have further integrated
ontology mapping to support step (4). (6) is a manual step. (7) is currently a manual
step, too, but it could be supported by semi automatic classification.

Ontology Engineering Revisited 115

Output: The output of the process step is a locally changed ontology which better
reflects the user’s needs. Each change is supported by arguments explaining the reasons
for a change. At this point changes are not propagated to the shared ontology. Only in
the analysis step the board gathers all ontology change requests and their corresponding
arguments to be able to evolve the common shared ontology in the revision step.

Analysis
In this stage, in the middle of the overall ontology engineering process, the board (cf.
the description of DILIGENT in Sec. 2) analyzes incoming requests and observations
of changes. The frequency of this analysis is determined based on the frequency and
volume of changes to the local ontologies.

Roles: In the analysis stage we can distinguish three roles played by board members:
(i) The domain expert decides which changes to the common ontology are relevant for
the domain and which are relevant for smaller communities only. (ii) Representatives
of the users explain different requirements from the usability perspective. At this stage,
work is conducted at a conceptual level. (iii) The ontology engineers analyze the pro-
posed changes from a knowledge representation point of view foreseeing whether the
requested changes could later be formalized and implemented.3

Input: The analysis stage takes as input the ontology changes proposed and/or made
by the participating actors. To be able to understand the change requests, users should
provide their reasons for each request. Both manual and automated methods can be
used in the previous stages. Besides of arguments by ontology stakeholders, one may
here consider rationales generated by automated methods, e.g. ontology learning. The
arguments underlying the proposed changes constitute important input for the board to
achieve a well balanced decision about which changes to adopt.

Decisions: The board must decide which changes to introduce into the new shared
ontology at the conceptual level. Metrics to support this decision are (i) the number of
users who introduced a change in proportion to all users who made changes. (ii) The
number of queries including certain concepts. (iii) The number of concepts adapted by
the users from previous rounds.

Actions: To achieve the desired output the board takes different actions namely (8)
Gather locally updated ontologies and corresponding arguments, (9) Analyze the intro-
duced changes and (10) Identify changes presumably relevant for a significant share of
all actors.

Tool support: In [4] we present an extension to an ontology editor, which supports
actions (8) and (9) and (10). (8) Ontologies can be collected from the users in a peer-to-
peer system. Different sorting and grouping mechanisms help the board to analyze the
introduced changes systematically. The identification of relevant changes is in the end
a community process. Here we support decision making by structured argumentation
support as described in [12].

Output: The result is a list of major changes to be introduced that were agreed by the
board. All changes which should not be introduced into the shared ontology are filtered.
At this stage it is not required to decide on the final modelling of the shared ontology.

3 In the revision stage.

116 C. Tempich, H.S. Pinto, and S. Staab

We now detail each one of the proposed actions:4

(8) Gather locally updated ontologies and corresponding arguments: Depending on
the deployed application the gathering of the locally updated ontologies can be more or
less difficult. It is important that the board has access to the local changes from users to
be able to analyze them. It might also be interesting not only to analyze the final user
ontology, but also its evolution. However, with an increasing number of participants this
in-depth analysis might be unfeasible. Since analysis takes place at the conceptual level,
reverse engineering is usually an important technique to get the conceptual model from
the formalized model [1]. To support users providing their reasons, an argumentation
framework that focuses the user on the relevant arguments was developed cf. [12].

(9) Analyze introduced changes: The number of change requests may be large and
also contradictory. First the board must identify the different areas in which changes
took place. Within analysis the board should bear in mind that changes of concepts
should be analyzed before changes of relations and these before changes of axioms.
Good indicators for changes relevant to the users are (i) overlapping changes and (ii)
their frequency. Furthermore, the board should analyze (iii) the queries made to the
ontology. This should help to find out which parts of the ontology are more often
used. Since actors instantiate the ontology locally, (iv) the number of instances for
the different proposed changes can also be used to determine the relevance of certain
adaptations.

(10) Identify changes presumably relevant for a significant share of all actors: Hav-
ing analyzed the changes and having grouped them according to the different parts of
the ontology they belong to, the board has to identify the most relevant changes. Based
on the provided arguments the board must decide which changes should be introduced.
Depending on the quality of the arguments the board itself might argue about differ-
ent changes. For instance, the board may decide to introduce a new concept that better
abstracts several specific concepts introduced by users, and connect it to the several spe-
cific ones. Therefore, the final decisions entail some form of evaluation from a domain
and a usage point of view. The outcome of this action must be a reduced and structured
list of changes that are to be accomplished in the shared ontology.

Revision

Roles: The ontology engineers from the board judge the changes from an ontological
perspective more exactly at a formalization level. Some changes may be relevant for
the common ontology, but may not be correctly formulated by the users. The domain
experts from the board should judge and decide wether new concepts/relations should
be introduced into the common ontology even so they were not requested by the users
(who may be domain experts or not).

Input: The input for the revision phase is a list of changes at a conceptual level which
should be included into the ontology.

Decisions: The main decisions in the revision phase are formal ones. All intended
changes identified during the analysis phase should be included into the common ontol-
ogy. In the revision phase the ontology engineer decides how the requested changes

4 Such a detailed description is available for all actions, but mostly omitted for sake of brevity.

Ontology Engineering Revisited 117

should be formalized. Evaluation of the decisions is performed by comparing the
changes on the conceptual level with the final formal decisions. The differences be-
tween the original formalization by the users and the final formalization in the shared
ontology should be minimal.

Actions: To achieve the desired output the members of the board, mainly its ontology
engineers, perform different actions namely (11) Formalization of the decided changes,
(12) Aggregation of arguments and (13) Documentation. Judging entails Evaluation of
proposed changes from a knowledge representation/ontological point of view.

Tool support: For the revision phase we do not envision any special tool support be-
yond the one provided by classical ontology engineering environments.

Output: The revision phase ends when all changes are formalized and well documented
in the common ontology.

Local Update

Roles: The local update phase involves only the users. They perform different actions
to include the new common ontology into their local system before they start a new
round of local adaptation.

Input: The formalized ontology including the most relevant change request is the input
for this step. We also require as an input the documentation of the changes. For a better
understanding the user can request a delta to the original version.

Decisions: The user must decide which changes he will introduce locally. This depends
on the differences between the own and the new shared conceptualization. The user
does not need to update his entire ontology. This stage interferes a lot with the next
local adaptation stage. We do not exclude the possibility of conflicts and/or ambiguity
between local and shared ontologies, which may entail reduced precision if the ontology
is being used in IR applications.5

Actions: To achieve the desired output the user takes different actions namely (14)
Distribution of the new ontology to all actors, (15) Tagging of the old ontology to allow
for a roll back, (16) Local inclusion of the updated version and (17) Alignment of old
and new versions.

Tool support: The Local update stage is very critical from a usability point of view.
Changes cannot be introduced without the user’s agreement. Further he should not be
bothered too often. In case of equivalent but local conceptualizations it must be possible
to change to the common conceptualization. From a technical point of view this stage
is supported by tools like KAON cf. [13].

Output: The output of the local update phase is an updated local ontology which
includes all changes made to the common ontology. However, we do not require the
users to perform all changes proposed by the board. The output is not mandatory,
since the actors could change the new ontology back to the old one in the local adap-
tation stage.

5 Ideally one should be able to blacken out the ambiguous parts like in multilevel databases.
This has not been transferred to OE yet.

118 C. Tempich, H.S. Pinto, and S. Staab

5 Comparison with Related Methodologies

In table 1 we compare DILIGENT to other well known methodologies. We have adapted
the categorization of [1] separating Management of the OE process activities,6 Ontol-
ogy development oriented activities and Ontology support activities. To the original
classification we have added the aspects of Evolution, different Knowledge acquisi-
tion modes and stages during Documentation.

Table 1. Summary of ontology engineering methodologies adapted from [1]

Feature METHON-
TOLOGY

On-To-
Knowledge
(OTK)

HCOME DILIGENT

Management of OE
process activities

Scheduling Proposed Described NP from OTK
Control Proposed Described NP from OTK
Quality assurance NP Described NP from OTK

Ontology
development
oriented activities

Pre development
processes

Environment study NP Proposed NP from OTK
Feasibility study NP Described NP from OTK

Development
processes

Specification Descr. in detail Descr. in detail Proposed Described
Conceptualization Descr. in detail Proposed Proposed Descr. in detail
Formalization Described Described Proposed Descr. in detail
Implementation Descr. in detail Described Proposed Described

Post development
processes

Maintenance Proposed Proposed Described Descr. in detail
Use NP Proposed Described Described
Evolution NP NP Proposed Descr. in detail

Ontology support
activities

Knowledge acquisition Descr. in detail Described NP Proposed
Distributed know. acquisition NP NP Proposed Described
Partial autonomy NP NP NP Described

Evaluation Descr. in detail Proposed NP Proposed
Integration Proposed Proposed NP Proposed
Configuration management Described Described NP from OTK
Documentation Descr. in detail Proposed Described from OTK

Results Descr. in detail Proposed Described from OTK
Decision process NP NP Proposed Descr. in detail

Merging and Alignment NP NP Proposed Proposed

The comparison reveals that DILIGENT is well suited for ontology engineering tasks
where distributiveness and change/evolution are of major concern. Further it is the first
methodology which formalizes the argumentation taking place in an ontology engineer-
ing discussion. Hence, DILIGENT should be used in cases where tracing the engineer-
ing decisions is important. This allows future users to understand the different reasons
which lead to the conceptualization. We think that these aspects are very important in
the context of the semantic web. DILIGENT does not itself support management of OE
process activities and Pre development activities, since these are already well supported
by other mature methodologies.

6 Case Study Evaluation

The case study described in the following helped us to validate the previously defined
methodology and to refine it in a few specific places. To this end, case study evaluation
has incorporated the clients and practitioners to help us understand the diversity of the
process. Before we describe how the DILIGENT ontology engineering process took
place in our case study, we describe its organizational setting.

6 Formerly named Ontology Management activities.

Ontology Engineering Revisited 119

6.1 Organizational Setting

A DILIGENT process has been performed in a case study within the domain of tourism
service providers of the Balearic Islands. To collaborate on regional issues some or-
ganizations set out to collect and share information about indicators (SDI) reflecting
the impact of growing population and tourist fluxes in the islands, their environment
and their infrastructures. For instance, organizations that require Quality & Hospitality
management (QHM) use the information to better plan, e.g., their marketing campaigns.

Due to the different working areas and goals of the collaborating organizations, it
proved impossible to build a centralized ontology satisfying all user requirements. The
users emphasized the need for local control over their ontologies. They asked explicitly
for a system without a central server, where knowledge sharing was integrated into the
normal work, but where different kinds of information, like files, emails, bookmarks
and addresses could be shared with others. To this end a generic platform was built that
would allow for satisfying the information sharing needs just elaborated using local
ontologies, which were linked to a shared ontology. A case study was set up involving
both hierarchical and loose organizations. The case study lasted for 3 months.

In this case study most of the tools were being developed at the same time as the
process was taking place. Therefore, the administrator had a major role in bridging the
gap between our real users and the weaknesses of the tools, for instance by doing the
local adaptations for the users since the tools were not error-proof.

6.2 Instantiated DILIGENT Process

We now describe the initial building phase, and the two rounds following the DILI-
GENT process focusing on the analysis phase.

Build
(1)7 To build the first version of the shared ontology two domain experts with the help
of two knowledge/ontology engineers were involved. In this case, domain experts were
also knowledge providers and users.

The OE process started by identifying the main concepts of the ontology through
the analysis of competency questions and their answers. The most frequent queries
and answers exchanged by users were analyzed. The main objective of the ontology
was to categorize documents. The concepts identified were divided into three main
modules: “Sustainable Development Indicators (SDI)”, “New Technologies (NT)”
and “Quality&Hospitality Management (QHM)”. From the competency questions the
board quickly derived a first ontology with 20 concepts and 7 relations for the “SDI”
ontology. For “NT” the board identified 15 concepts and 8 relations and for “QHM”
8 concepts and 5 relations. Between the modules 8 cross module relations were intro-
duced. A part of the result of the initial building stage is visualized in Fig. 2(a).

The first round of our OE process started with the distribution of the three modules
of the common ontology to all users. In both rounds, users - during the local adaptation
stage - and the board - in the revision stage - could perform ontology change operations.
They could introduce concepts/relations/instances, delete concepts/relations/instances,

7 The numbering here and in the following corresponds to the number of the actions in Fig. 1.

120 C. Tempich, H.S. Pinto, and S. Staab

(a) First version of the com-
mon ontology

(b) Second version of the
common ontology

(c) Third version of the com-
mon ontology

Fig. 2. Excerpts from the common ontology evolution

or combine these operations arbitrarily, thus extend or restructure the ontology. Most
frequently the concept hierarchy was changed.

6.3 First Round

The first month of the case study, corresponded to the first round of the DILIGENT
process. One organization with seven peers participated. This organization can be clas-
sified as a rather loose one.

Local Adaptation
The users in our case study had no OE background. Therefore, they initially regarded
the ontology mainly as a classification hierarchy for documents. Consequently they
compared their existing folder structures with the common ontology to (3) identify com-
munalities between their own and the shared conceptualization. (5) Identification of
missing conceptualizations was thus based on mismatches between the common ontol-
ogy and their local folder structures. Users (6) changed the common conceptualization
accordingly. This entailed that the local documents stored in the folders were (7) orga-
nized according to that conceptualization. In this organization most of the users were
very active and did local adaptations to best serve their own needs.

Analysis

Roles: The board consisted of two ontology engineers and two domain experts/users.

Input: The local adaptations from seven users were collected. Additionally the board
had access to the folder structures of those users.

Decisions: All changes introduced were motivated by the users, since they all made
sense and were not contradictory on the conceptual level.

Actions:
(8) Gather locally updated ontologies and corresponding arguments: In the first
round the board, through the administrator (i) directly accessed the formal local changes
on the different peers and (ii) some change requests on the conceptual level. At this
stage the board also used (iii) the folder structures as indication for the requirements on
the ontology, and it used (iv) the number of documents related to the concepts of the
ontology as an indicator for its usage. Additionally, the board received new background
knowledge which led to many additions in the “NT” module. The “SDI” module was

Ontology Engineering Revisited 121

(a) Example of a user extension to the first
version of the common ontology

(b) Example of a user extension to the sec-
ond version of the common ontology

Fig. 3. Examples of user extensions to the common ontology

changed based on the formal changes collected electronically. Although the number
of changes varied between the different modules the kinds of changes were the same.
Therefore, we subsequently focus on the changes introduced to the “QHM” module
which are partly visualized in Fig. 2.

(9) Analyze introduced changes: The board analyzed the changes introduced by the
users at a conceptual level. They can be categorized as follows:

Elaboration. The elaboration of the ontology was the most often observed action. The
board could identify elaborations in three different ways. (i) The users correctly re-
quested either formally or informally to add sub concepts to existing concepts to special-
ize them. (ii) The users incorrectly added new top level concepts, which were special-
izations of existing concepts. (iii) Finally they incorrectly refined the wrong concepts.
In this way users elaborated the “NT” module with 15 concepts, the “SDI” module with
3 concepts and the “QHM” module also with 3 concepts.

Extension. The board regarded a change as an extension whenever users requested new
concepts on the top level. Again, users could not distinguish wether a required concept
was an elaboration or an extension. Users extended the “NT” module with 2 concepts
and the “QHM” module also with 2 concepts. The “SDI” module was not extended.

Renaming. In two cases the users liked the way the board had conceptualized the do-
main, but did not agree with the names of the concepts.

Usage. Usage behavior of single concepts in the common ontology was analyzed. This
included (i) the number of queries posed to the system containing a specific concept,
(ii) the number of documents related to that concept and (iii) the elaboration of a
concept. Most of the users did not delete any concepts or ask explicitly to remove
concepts. Nevertheless the board concluded, that a concept which was never used
should be removed.

(10) Decide on changes to be made: The board decided to introduce all change re-
quests into the common ontology since all were supported by at least two users either
through usage or extension/elaborations. Moreover, the domain expert could provide
reasonable arguments for the introduction of all changes. Thus, the division of the on-
tology into 3 modules generated a consensual group of users, already.

Output: The analysis of the local adaptations resulted in 27 changes for the “NT”
module, 10 changes for the “QHM” module, and 5 for the “SDI” module.

122 C. Tempich, H.S. Pinto, and S. Staab

Revision
After modelling the conceptual changes, the second version of the common ontology
contained 54 concepts and 13 relations (figure 2(b)).

Local update
(14) The extensions to the core ontology were distributed to the users. (17) The users
were able to align their local ontologies with the new version of the shared and thus the
feedback of the users was in general positive.

6.4 Second Round

In the second round the case study was extended to 4 organizations with 21 peers. The
users participating in the first round had more experience. One of these organizations
was very hierarchical.

Local Adaptation
As in the first round participants (6) changed and (7) used the common ontology accord-
ing to their needs. Due to the larger number of participants more modifications were
introduced. In particular the module “QHM” evolved (cf. Fig. 3(b)). In the hierarchical
organization not all actors changed the ontology. They delegated the responsability to
adapt the ontology to their hierarchical superior according to their organizational needs.

Analysis

Roles: In the second round the board consisted of one domain expert and two ontol-
ogy engineers. Additionally two users were invited to answer questions to clarify the
changes they introduced.

Input: The 21 local ontologies of the users were the input to the second round. Some
of the users did not change the common ontology at all. Instead their supervisor was
responsible to make all needed modifications for them. In very hierarchical and well
defined organizations one single ontology could be adopted by all peers (Fig. 3(b)).

Decisions: In this round the board had to perform reverse engineering on the formal
local ontologies from users in order to get conceptual models from them.

Actions:
(8) Gather locally updated ontologies and corresponding arguments: As in the first
round the updated ontologies were retrieved electronically. Some of the modification
requests were collected interviewing the participants.

(9) Analyze introduced changes: Similar to the first round the modifications did not
follow good ontology building practices. With respect to the conceptual modelling de-
cisions the board observed that this time the users modified the ontology on a deeper
level than in the first round. Renaming was a bigger issue in this round due to political
changes, which required the adoption of new naming conventions. Moreover, general-
ization took place in two cases. Users introduced concepts which were more abstract
than existing ones. The board moved one concept “Indicator” to another module of the
ontology, since there the users elaborated it extensively.

In Fig. 3(b) we observe that a user has extended the local version of the common on-
tology with concepts for Circulars. With help by the domain expert, and taking also into

Ontology Engineering Revisited 123

account other local updates, the knowledge engineers inferred on the conceptual level
that the module lacked concepts for Business Administration. Hence, the board did
not only introduce new concepts, but also generalize existing ones 2(c). To exemplify
an argumentation thread in favor or against a modelling decision, one may consider the
local extension of Circulars performed by one user: Legislation was introduced as a
subclass of Circulars. The argumentation for a different way of modelling was straight-
forward, because the board found a Counter Example in the form of a document dealing
with Legislation, which was not a Circular. Here, users were requesting an elaboration
of Circulars for which the board found a countradicting example. The most convinc-
ing arguments were selected and emphasized for documentation purposes. In [12] we
present the argumentation framework that allows such argument formalization.

(10) Decide on changes to be made: As in the first round the board included all change
requests from users. Again, as in the first round, only few of the concepts in the common
ontology were never used.

Output: The board identified 3 changes in the “NT” module, 28 modifications for the
“QHM” module and 15 for the “SDI” module.

Revision
The third version of the common ontology contained 95 concepts and 15 relations (Fig.
2(c)).

Local update
(14) As in the first round the new version was distributed to the participants. (16) Up-
dating to the new version is still a problem, since some instances of the ontology might
have to be newly annotated to the new concepts of the shared ontology. In our case
documents needed a new classification. (17) Partly this problem can be overcome with
the help of technology cf. [13].

7 Discussion and Conclusions

Decentralization can take different forms. One can have more loose or more hierarchi-
cal organizations. We observed and supported both kinds of organizations in this case
study. Therefore, the first finding is the fact that this process can be adapted both to
hierarchical and to more loose organizations. DILIGENT processes cover both tradi-
tional OE processes and more Semantic Web-oriented OE processes, that is with strong
decentralization and partial autonomy requirements.

The process helped non OE-expert users to conceptualize, specialize and refine their
domain. The agreement met with the formalized ontology was high, as shown by people
willing to change their folder structures to better use the improved domain conceptual-
ization. In spite of the technical challenges, user feedback was very positive.

The DILIGENT process proved to be a natural way to have different people from dif-
ferent organizations collaborate and change the shared ontology. The set-up phase for
DILIGENT was rather fast, and users could profit from their own proposals (local adap-
tations) immediately. The result was much closer to the user’s own requirements. More-
over, other users profited from them in a longer term. Finally, this case study clearly has
shown the need for evolution. Users performed changes and adaptations.

124 C. Tempich, H.S. Pinto, and S. Staab

The development of ontologies in centralized settings is well studied and there are
established methodologies. However, current experiences from projects suggest that on-
tology engineering should be subject to continuous improvement rather than a one-time
effort and that ontologies promise the most benefits in decentralized rather than central-
ized systems. To this end we have conceived the DILIGENT methodology. DILIGENT
supports domain experts, users, knowledge engineers and ontology engineers in collab-
oratively building a shared ontology in a distributed setting. Moreover, the methodology
guides the participants in a fine grained way through the ontology evolution process,
allowing for personalization. We have demonstrated the applicability of our process
model in a cross-organizational case study in the realm of tourism industry. Real users
were using the ontology to satisfy their information needs for an extended period of
time. Two rounds following our methodology were observed and have been described
here. To our knowledge, this is the first case study combining all the above mentioned
features described in the literature.

References

1. Gómez-Pérez, A., Fernández-López, M., Corcho, O.: Ontological Engineering. Springer
(2003)

2. Staab, S., Schnurr, H.P., Studer, R., Sure, Y.: Knowledge processes and ontologies. IEEE
Intelligent Systems 16 (2001)

3. Uschold, M., King, M.: Towards a methodology for building ontologies. In: Proc. of IJCAI95
WS, Montreal, Canada (1995)

4. Pinto, H.S., Staab, S., Sure, Y., Tempich, C.: OntoEdit empowering SWAP: a case study in
supporting DIstributed, Loosely-controlled and evolvInG Engineering of oNTologies (DILI-
GENT). In: 1. Euro. Semantic Web Symposium, ESWS 2004, Springer (2004)

5. Kotis, K., Vouros, G.A., Alonso, J.P.: HCOME: tool-supported methodology for collabo-
ratively devising living ontologies. In: SWDB’04: 2. Int. Workshop on Semantic Web and
Databases. (2004)

6. Benjamins, V.R., Fensel, D., Decker, S., Gómez-Pérez, A.: (KA)2: Building ontologies for
the internet. International Journal of Human-Computer Studies (IJHCS) 51 (1999) 687–712

7. Sure, Y., Tempich, C., Vrandečić, Z.: D7.1.1. SEKT methodolgoy: Survey and initial frame-
work. SEKT deliverable 7.1.1, Institute AIFB, University of Karlsruhe (2004)

8. Pinto, H.S., Martins, J.: Evolving Ontologies in Distributed and Dynamic Settings. In: Proc.
of the 8th Int. Conf. on Princ. of Knowledge Representation & Reasoning (KR2002). (2002)

9. Holsapple, C.W., Joshi, K.D.: A collaborative approach to ontology design. Commun. ACM
45 (2002) 42–47

10. Pinto, H.S., Staab, S., Tempich, C.: DILIGENT: Towards a fine-grained methodology for
DIstributed, Loosely-controlled and evolvInG Engineering of oNTologies. In: Proceedings
of the 16th European Conference on Artificial Intelligence (ECAI 2004). (2004)

11. Noy, N., Fergerson, R., Musen, M.: The knowledge model of Protégé-2000: Combining
interoperability and flexibility. In: Proc. of the 12th Int. Conf. on Knowledge Engineering
and Knowledge Management: Methods, Models, and Tools (EKAW 2000), Springer (2000)

12. Tempich, C., Pinto, H.S., Sure, Y., Staab, S.: An argumentation ontology for DIstributed,
Loosely-controlled and evolvInG Engineering processes of oNTologies (DILIGENT). In:
Second European Semantic Web Conference, ESWC 2005, Springer (2005)

13. Maedche, A., Motik, B., Stojanovic, L.: Managing multiple and distributed ontologies on the
semantic web. The VLDB Journal 12 (2003) 286–302

Y. Sure and J. Domingue (Eds.): ESWC 2006, LNCS 4011, pp. 125 – 139, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Towards a Complete OWL Ontology Benchmark

Li Ma, Yang Yang, Zhaoming Qiu, Guotong Xie, Yue Pan, and Shengping Liu

IBM China Research Laboratory, Building 19, Zhongguancun Software Park,
ShangDi, Beijing, 100094, P.R. China

{malli, yangyy, qiuzhaom, xieguot, panyue, liusp}@cn.ibm.com

Abstract. Aiming to build a complete benchmark for better evaluation of exist-
ing ontology systems, we extend the well-known Lehigh University Benchmark
in terms of inference and scalability testing. The extended benchmark, named
University Ontology Benchmark (UOBM), includes both OWL Lite and OWL
DL ontologies covering a complete set of OWL Lite and DL constructs, respec-
tively. We also add necessary properties to construct effective instance links
and improve instance generation methods to make the scalability testing more
convincing. Several well-known ontology systems are evaluated on the ex-
tended benchmark and detailed discussions on both existing ontology systems
and future benchmark development are presented.

1 Introduction

The rapid growth of information volume in World Wide Web and corporate intranets
makes it difficult to access and maintain the information required by users. Semantic
Web aims to provide easier information access based on the exploitation of machine-
understandable metadata. Ontology, a shared, formal, explicit and common under-
standing of a domain that can be unambiguously communicated between human and
applications, is an enabling technology for Semantic Web. W3C has recommended
two standards for publishing and sharing ontologies on the World Wide Web: Re-
source Description Framework (RDF) [3] and Web Ontology Language (OWL) [4,5].
OWL facilitates greater machine interpretability of web content than that supported
by RDF and RDF Schema (RDFS) by providing additional vocabulary along with
formal semantics. That is, OWL has more powerful expressive capability which is
required by real applications and is thus the current research focus. In the past several
years, some ontology toolkits, such as Jena [23], KAON2 [22] and Sesame [14], had
been developed for ontologies storing, reasoning and querying. A standard and effec-
tive benchmark to evaluate existing systems is much needed.

1.1 Related Work

In 1998, Description Logic (DL) community developed a benchmark suite to facilitate
comparison of DL systems [18,19]. The suite included concept satisfiability tests, syn-
thetic TBox classification tests, realistic TBox classification tests and synthetic ABox
tests. Although DL is the logic foundation of OWL, the developed DL benchmarks are
not practical to evaluate ontology systems. DL benchmark suite tested complex

126 L. Ma et al.

inference, such as satisfiability tests of large concept expressions, and did not cover
realistic and scalable ABox reasoning due to poor performance of most systems at that
time. This is significantly far away from requirements of Semantic Web and ontology
based enterprise applications. Tempich and Volz [16] conducted a statistical analysis
on more than 280 ontologies from DAML.ORG library and pointed out that ontologies
vary tremendously both in size and their average use of ontological constructs. These
ontologies are classified into three categories, taxonomy or terminology style, descrip-
tion logic style and database schema-like style. They suggested that Semantic Web
benchmarks have to consist of several types of ontologies.

SWAT research group of Lehigh University [9,10,20] made significant efforts to
design and develop Semantic Web benchmarks. Especially in 2004, Guo et al. devel-
oped Lehigh University Benchmark (LUBM) [9,10] to facilitate the evaluation of
Semantic Web tools. The benchmark is intended to evaluate the performance of on-
tology systems with respect to extensional queries over a large data set that conforms
to a realistic ontology. The LUBM appeared at a right time and was gradually ac-
cepted as a standard evaluation platform for OWL ontology systems. More recently,
Lehigh Bibtex Benchmark (LBBM) [20] was developed with a learned probabilistic
model to generate instance data. According to Tempich and Volz’s classification
scheme [16], the LUBM is to benchmark systems processing ontologies of description
logic style while the LBBM is for systems managing database schema-like ontologies.
Different from the LUBM, the LBBM represents more RDF-style data and queries.
By participating in a number of enterprise application development projects (e.g.,
metadata and master data management) with IBM Integrated Ontology Toolkit [12],
we learned that RDFS is not expressive enough for enterprise data modeling and
OWL is more suitable than RDFS for semantic data management. The primary objec-
tive of this paper is to extend the LUBM for better benchmarking OWL ontology
systems.

OWL provides three increasingly expressive sublanguages designed for use by
specific communities of users [4]: OWL Lite, OWL DL, and OWL Full. Implement-
ing complete and efficient OWL Full reasoning is practically impossible. Currently,
OWL Lite and OWL DL are research focuses. As a standard OWL ontology bench-
mark, the LUBM has two limitations. Firstly, it does not completely cover either
OWL Lite or OWL DL inference. For example, inference on cardinality and allVal-
ueFrom restrictions cannot be tested by the LUBM. In fact, the inference supported by
this benchmark is only a subset of OWL Lite. Some real ontologies are more expres-
sive than the LUBM ontology. Secondly, the generated instance data may form multi-
ple relatively isolated graphs and lack necessary links between them. More precisely,
the benchmark generates individuals (such as departments, students and courses)
taking university as a basic unit. Individuals from a university do not have relations
with individuals from other universities (here, we mean the relations intentionally
involved in reasoning.) Therefore, the generated instance is grouped by university.
This results in multiple relatively separate university graphs. Apparently, it is less
reasonable for scalability tests. Inference on a complete and huge graph is substan-
tially harder than that on multiple isolated and small graphs. In summary, the LUBM
is weaker in measuring inference capability as well as less reasonable to generate big
data sets for measuring scalability.

 Towards a Complete OWL Ontology Benchmark 127

1.2 Contributions

In this paper, we extend the Lehigh University Benchmark so that it could better provide
both OWL Lite and OWL DL inference tests (except TBox with cyclic class definition.
Hereinafter, OWL Lite or OWL DL complete is understood with this exception) on
more complicated instance data sets. The main contributions of the paper are as follows.

 The extended Lehigh University Benchmark, named University Ontology
Benchmark (UOBM), is OWL DL complete. Two ontologies are generated to
include inference of OWL Lite and OWL DL, respectively. Accordingly, queries
are constructed to test inference capability of ontology systems.

 The extended benchmark generates instance data sets in a more reasonable way.
The necessary links between individuals from different universities make the test
data form a connected graph rather than multiple isolated graphs. This will guar-
antee the effectiveness of scalability testing.

 Several well-known ontology systems are evaluated on the extended benchmark
and conclusions are drawn to show the state of arts.

The remainder of the paper is organized as follows. Section 2 analyzes and summarizes
the limitations of the LUBM and presents the UOBM, including ontology design, in-
stance generation, query and answer construction. Section 3 reports the experimental
results of several well-known ontology systems on the UOBM and provides detailed
discussions. Section 4 concludes this paper.

2 Extension of Lehigh University Benchmark

This section provides an overview of the LUBM and analyzes its limitations as a
standard evaluation platform. Based on such an analysis, we further propose methods
to extend the benchmark in terms of ontology design, instance generation, query and
answer construction.

Table 1. OWL Constructs Supported by the LUBM

Property Restrictions:

 allValuesFrom

 someValuesFrom

Restricted Cardinality:

 minCardinality (only 0 or 1)

 maxCardinality (only 0 or 1)

 cardinality (only 0 or 1)

(In)Equality:

 equivalentClass

 equivalentProperty

 sameAs

 differentFrom

 AllDifferent

 distinctMembers

RDF Schema Features:

 rdfs:subClassOf

 rdfs:subPropertyOf

 rdfs:domain

 rdfs:range

Property Characteristics:

 ObjectProperty

 DatatypeProperty

 inverseOf

 TransitiveProperty

 SymmetricProperty

 FunctionalProperty

 InverseFunctional
Property
Class Intersection:

 IntersectionOf

Class Axioms:
 oneOf, dataRange

 disjointWith

 equivalentClass (applied to class expressions)

 rdfs:subClassOf (applied to class expressions)

Boolean Combinations of Class
Expressions:
 unionOf

 complementOf

 intersectionOf

Arbitrary Cardinality:
 minCardinality

 maxCardinality

 cardinality

Filler Information:
 hasValue

OWL Lite OWL DL

128 L. Ma et al.

2.1 Overview of the LUBM

The LUBM is intended to evaluate the performance of ontology systems with respect
to extensional queries over a large data set that conforms to a realistic ontology. It
consists of an ontology for university domain, customizable and repeatable synthetic
data, a set of test queries, and several performance metrics. The details of the bench-
mark can be found in [9,10]. As a standard benchmark, the LUBM itself has two
limitations. Firstly, it covers only part of inference supported by OWL Lite and OWL
DL. Table 1 tabulates all OWL Lite and OWL DL language constructs which are
inference-related as well as those supported by the LUBM (in underline).

The above table shows clearly that the LUBM’s university ontology only uses a
small part of OWL Lite and OWL DL constructs (the used constructs are in under-
line) and thus covers only part of OWL inference. That is, it cannot exactly and com-
pletely evaluate an ontology system in terms of inference capability. In fact, some
constructs excluded by LUBM’s ontology, such as allValuesFrom, cardinality, oneOf
and SymmetricProperty, are very useful for expressive data modeling in practice. For
example, using construct hasValue, we can define class “basketBallLover” whose
property “like” has a value of “basketBall”. We found that the LUBM’s ontology is
less expressive than some real ontologies. With the increasing uses of ontologies in
practical applications, more and more complex ontologies will appear. Obviously,
more constructs (hence more inference requirements) should be included for system
evaluation.

Another limitation of the LUBM is that the generated instance data may form multi-
ple relatively isolated graphs and lacks necessary links between them for scalability
testing. Figure 1(a) shows a simplified example of the LUBM generated instance (the
real instance may include more universities and more departments in a university). We
can see from this figure that there are two relatively independent university graphs, and
two relatively independent department graphs in the same university. Such kind of data
is less challenging for scalability testing. As is well known, to evaluate the scalability
of a system, we generally observe the system performance changes with the increasing
size of the data. Here, the increase of the testing data means that more universities will
be generated. Due to the relative independence of the data of different universities, the
performance changes of an ontology system on an Relational DBMS (currently, most
ontology repositories are on top of RDBMS) with such data sets will be determined to
a large extent by the underlying database. This cannot really reveal the inference effi-
ciency of an ontology system, considering the fact that inference on a complete and
huge RDF graph is significantly harder than that on multiple isolated and small graphs
with comparable number of classes and properties. The underlying reason leading to
such a case is that the instance generator of the LUBM creates data using university as
a basic unit and does not intentionally construct individuals and relationships across
universities. Therefore, we will enhance the instance generator of the LUBM to gener-
ate instances in a more practical way. As shown in Figure 1(b), crossing-university and
crossing-department relations will be added to form a more complicated graph. For
instance, professor can teach course in different departments and universities, and

 Towards a Complete OWL Ontology Benchmark 129

students can have friends from different universities. In the LUBM, it is possible that
two persons from different universities graduate from the same university (by property
degreeFrom). Here, our intention is to add more links between universities and the
links should be involved in reasoning, which is challenging for scalability tests. Com-
pared with the graph in Fig 1(a), the graph in Fig. 1(b) can be used to better character-
ize the scalability of ontology systems.

(a) Original graph (b) Enriched graph

Fig. 1. Instance Graph Enrichment of the LUBM

2.2 University Ontology Benchmark (UOBM)

Based on our analysis on the LUBM, we can conclude that LUBM is insufficient to
evaluate the inference capability and less effective to reflect the scalability of an ontol-
ogy system. We build University Ontology Benchmark (UOBM) based on the LUBM
to solve these two problems. Figure 2 gives an overview of the UOBM. It consists of
three major components, ontology selector, instance generator and queries and answers
analyzer. These core components are detailed in the following subsections.

Instance
Generator

OWL Lite
Ontology

OWL DL
Ontology

Ontology Selector

Instance
Files

Testing Platform

The UOBM

Queries and Answers

Ontology Systems Evaluation Results

Fig. 2. Overview of the UOBM

130 L. Ma et al.

2.2.1 Ontology Selector
Different from the original LUBM, the UOBM includes both OWL Lite and OWL
DL ontologies. That is, one ontology includes all language constructs of OWL Lite,
and another one covers all OWL DL constructs. The user can specify which ontology
will be used for evaluation according to specific requirements. As Table 1 shows, a
number of OWL constructs are absent in the LUBM. For those absent constructs, we
newly define corresponding classes and properties in the UOBM. Table 2 lists our
major extensions for OWL Lite and OWL DL ontologies, respectively. Classes and
properties corresponding to the constructs in the table are represented in W3C’s OWL
language abstract syntax [5]. Due to space limitation, some classes and properties,
namespace of URIs and enumerated values in oneOf classes are not listed there.

Table 2. Class and Property Extensions of the UOBM

OWL Lite

allValueFrom
Class(GraduateStudent, complete intersectionOf(restriction(takesCourse,
someValueFrom(Thing)), restriction(takesCourse, allValue-
From(GraduateCourse))))

minCardinality Class(PeopleWithHobby, restriction(like, minCardinality(1)))
EquivalentProperty EquivalentProperty(like, love)
EquivalentClass EquivalentClass(Person, Humanbeing)
SymmetricProperty ObjectProperty (isFriendOf, Symmetric, domain(Person), range(Person))

TransitiveProperty
ObjectProperty (hasSameHomeTownWith, Symmetric|Transitive, do-
main(Person), range(Person))

FunctionalProperty ObjectProperty(isTaughtBy, Functional, domain(Course), range(Faculty))
InverseFunctional
Property

ObjectProperty(isHeadOf, InverseFunctional, domain(Person),
range(Organization))

OWL DL
disjointWith DisjointClasses(Man, Woman)

oneOf
Class(Science, oneOf(Physics, Mathematics ….))
Class(Engineer, oneOf(Electical_Engineer, Chemical_Engineer…)) …

unionOf
Class(Person, unionOf(Man, Woman))
Class(AcademicSubject, unionOf(Science, Engineer, FineArts, Humanitie-
sAndSocial))

complementOf

Class(NonScienceStudnet, complementOf(restriction(hasMajor, someVal-
ueFrom(Science))))
Class(WomanCollege, complete intersectionOf(College, retriction (hasStu-
dent, allValueFrom(complementOf(Man)))))

intersectionOf
Class(SwimmingFan, complete intersectionOf(Person, restriction (isCrazy-
About, hasValue(Swimming)))

hasValue
Class(BasketBallLover, restriction(like, value(BasketBall)))
Class(TennisFan, restriction(isCrazyAbout, value(Tennis)))…

minCandinality Class(PeopleWithMultipleHobbies, restriction(like, minCardinality(3)))

maxCandinality
Class(LeisureStudent, intersactionOf(UndergraduateStudent, restric-tion
(takesCourse, maxCardinality(2))))

Candinality Class(PeopleWith2Hobbies, restriction(like, Cardinality(2)))

EquivalentClass
EquivalentClass(TeachingAssistant, complete intersectionOf(Person, restric-
tion (teachingAssistantOf, someValueFrom(Course))))

Table 3 shows a comparison between the LUBM and the UOBM in terms of the
number of classes, properties and individuals per university. The number of classes
and properties used to define ABox are denoted in the bracket. This means that some

 Towards a Complete OWL Ontology Benchmark 131

classes and properties are only used to define class and property hierarchies in TBox
and not used to directly restrict individuals. But users can issue queries using such
classes and properties constraints. Individuals in TBox are used to define oneOf and
hasValue restrictions. We can see from the table that the UOBM can generate much
larger and more complex instance graph. More important is that it covers all OWL
Lite and OWL DL constructs. An effective evaluation on the benchmark will help
researchers to figure out more problems and promote the development of ontology
systems. Note that the number of instances shown in Table 3 (e.g., No. of statements
per univ.) is assessed based on parameters used in [9] and used in our experiments
presented in next section, respectively.

Table 3. Comparison of the LUBM and the UOBM

The UOBM
Benchmark The LUBM

OWL Lite OWL DL
No. of Classes 43 (22) 51 (41) 69 (59)
No. of Datatype Property 7 (3) 9 (5) 9 (5)
No. of Object Property 25(14) 34(24) 34 (24)
No. of Individuals in TBox 0 18 58

No. of Statements per University
90,000 –
110,000

210,000 –
250,000

220,000 –
260,000

No. of Individuals per University
8,000 –
15,000

10,000 –
20,000

10,000 –
20,000

2.2.2 Instance Generator
Instance generator automatically and randomly creates instances according to user-
specified ontology (OWL Lite or OWL DL). Also, the user can specify the size of the
generated instance data by setting the number of universities to be constructed. Com-
pared with the LUBM, we extend following properties to link individuals from differ-
ent departments and universities. As a result, the UOBM will enable the construction
of a complicated connected graph instead of multiple relatively-isolated graphs.

 ObjectProperty (isFriendOf, Symmetric, domain(Person), range(Person))
 ObjectProperty(hasSameHomeTownWith, Symmetric|Transitive, do-

main(Person), range(Person))
 ObjectProperty(takesCourse, domain(Student))
 ObjectProperty (hasMajor, domain(Student), range(AcademicSubject))
 ObjectProperty (like, domain(Person), range(Interest))

EquivalentProperties(love, like)
 ObjectProperty (isCrazyAbout, super(like), domain(Person), range(Interest))

Instance generator can be configured to generate data sets for specific evaluation.
Some important parameters for building a connected graph are listed below.

 Specify ontology, OWL Lite or OWL DL (parameter for TBox configuration)
 Specify the probability that a student takes courses of other departments and

universities, and the range of the number of courses a student takes.

132 L. Ma et al.

 Specify the probability that a person has the same hometown with those from
other departments and universities. (Affect the ratio of transitive properties as
well)

 Specify the probability that a person has friends of other departments and uni-
versities, and the range of the number of friends a person has.

 Specify the probability that a university has woman college, and the range of
the number of students.

 Specify the probability that a person has some hobbies.

2.2.3 Queries and Answers Analyzer
A set of queries are constructed to evaluate the inference capability and scalability of
an ontology system. Queries are designed based on two principles: 1) Queries need
search and reasoning across universities so that the scalability of a system can be
better characterized. In the original LUBM, some queries are evaluated only on spe-
cific universities and departments regardless of the increasing size of the testing data.
This results mainly from lacks of links between different universities. 2) Each query
supports at least a different type of OWL inference. By this way, if a query cannot be
correctly answered, we can easily identify which kind of inference is not well sup-
ported. The test queries are listed in appendix with detailed explanations.

Given queries and randomly generated test data, we have to find corresponding
correct answers in order to compute completeness and soundness of the inference.
The original LUBM does not explicitly provide a method to generate correct results.
Our current scheme is to import all statements into an RDBMS such as DB2 or
MySQL, and then manually translate each query into SQL queries to retrieve all cor-
rect results. It is feasible because we know inference required by every query and can
use a DL reasoner for TBox inference and build SQL queries on the inferred TBox for
ABox inference and retrieval. Also, we use some tricks for SQL query rewriting, for
example, naming convention of instances. The manual translation method has been
written into a standalone application in the benchmark. It is convenient to run the
application to obtain answer sets.

Using the UOBM, the user can follow a simple approach for performance evalua-
tion of ontology systems. Firstly, the user selects an ontology (OWL Lite or OWL
DL) to generate corresponding instances. Then, using the built-in query translation
method, the user can obtain correct query results in advance. Finally, based on the
selected ontology, generated instances, test queries and correct answers, load time,
query response time, inference completeness and soundness of a system can be easily
computed. Currently, the UOBM is publicly available at [12].

3 Evaluation of Ontology Systems and Discussions

In this section, we use the UOBM to evaluate several well-known ontology systems
and discuss problems deserving further research work based on experimental results.
This work is not intended to make a complete evaluation for existing OWL ontology
systems. From our preliminary experiments, we hope to find some critical problems
to promote the development of OWL ontology systems as well as figure out more
issues needed to be considered in a complete benchmark.

 Towards a Complete OWL Ontology Benchmark 133

3.1 Target Systems and Experiments Setting

In [9], Guo et al. conducted a quantitative evaluation on the LUBM for four knowl-
edge base systems, Sesame’s persistent storage and main memory version [14,15],
OWLJessKB [13], and DLDB-OWL [8]. They used data loading time, repositories
sizes, query response time, query completeness and soundness as evaluation metrics.
Experimental results showed that, as a whole, DLDB-OWL outperformed other sys-
tems on large-scale data sets. OWLIM [18] is a newly developed high performance
repository and is packaged as a Storage and Inference Layer (SAIL) for Sesame. Re-
cently, IBM released its Integrated Ontology Development Toolkit [12], including an
ontology repository (named Minerva), EMF based Ontology Definition Metamodel
and a workbench for ontology editing. Here, we will evaluate these persistent ontol-
ogy repositories, DLDB-OWL, OWLIM (version 2.8.2) and Minerva (version 1.1.1).

We will have a brief look at these systems so that we can understand the experi-
mental results better. DLDB-OWL [8] is a repository for processing, storing, and
querying large amounts of OWL data. Its major feature is the extension of a relational
database system with description logic inference capabilities. It uses the DL reasoner
to precompute class subsumption and employs relational views to answer extensional
queries based on the implicit hierarchy that is inferred. Minerva [12] completely im-
plements the inference supported by Description Logic Program (DLP), an intersec-
tion of Description Logic and Horn Logic Program. Its highlight is a hybrid inference
method which uses Racer or Pellet DL reasoner to obtain implicit subsumption among
classes and properties and adopts DLP logic rules for instance inference. Minerva
designs the schema of the back-end database completely according to the DLP logic
rules to support efficient inference. OWLIM is a high-performance semantic reposi-
tory, wrapped as a Storage and Inference Layer for the Sesame RDF database.
OWLIM uses Ontotext’s TRREE to perform forward-chaining rule reasoning. The
reasoning and query are conducted in-memory. At the same time, a reliable persis-
tence strategy assures data preservation, consistency and integrity.

Our evaluation method is similar to the one used in [9]. Here, 6 test data sets are
generated, Lite-1, Lite-5, Lite-10, DL-1, DL-5 and DL-10, where the alphabetic string
indicates the type of the ontology and is followed by an integer indicating the number
of universities. Each university contains about 20 departments and over 210,000
statements. The most complex and largest data set, DL-10, includes over 2,200,000
statements. Test queries are listed in the appendix of the paper, where 13 queries for
OWL Lite tests and 3 more for OWL DL tests. Experiments are conducted on a PC
with Pentium IV CPU of 2.66 GHz and 1G memory, running Windows 2000 profes-
sional with Sun Java JRE 1.4.2 (JRE 1.5.0 for OWLIM) and Java VM memory of
512M. The following three metrics [9] are used for comparison.

 Load time. The time for loading a data set into memory or persistence storage. It
includes reasoning time since some systems do TBox or ABox inference at load
time.

 Query response time. The time for issuing a query, obtaining the result set and
traversing the results sequentially.

 Completeness and soundness. Completeness measures the recall of a system’s an-
swer to a query and soundness measures its precision.

134 L. Ma et al.

3.2 Evaluation of OWL Ontology Systems

Fig. 3. Load Time Comparison

Figure 3 shows load time of Minerva and DLDB-OWL (hereinafter, DLDB denotes
DLDB-OWL). Since OWLIM takes only 29 seconds to load Lite-1, it is too small to
plot it in the figure. OWLIM is substantially faster than other two systems as reason-
ing is done in memory. But, OWLIM cannot complete forward-chaining inference on
other data sets due to memory limitation. There are no results for DLDB on DL data
sets as an exception was thrown out when loading OWL DL files. DLDB is faster
than Minerva to load data sets because it does not conduct ABox materialization at
load time. In fact, Minerva’s performance on loading and reasoning on OWL data is
high, only about 2.5 hours for over 2.2M triples from Lite-10 data set. Its storage
schema provides effective support for inference at load time.

OWLIM does inference in memory. Therefore, it can answer queries more quickly
than DLDB and Minerva. But its scalability is relatively poor. In most cases, Minerva
outperforms DLDB in terms of query response time. The reason is that Minerva does
all inference at load time and directly retrieves results using SQL queries at query time,
whereas DLDB uses class views which are built based on inferred class hierarchy at
load time to retrieve instances at query time. DLDB's view query (a view is equivalent
to a query in relational database.) needs to execute union operations in runtime which
is more expensive than select operations on pre-built index in most cases. The last
three subfigures in Fig. 4 show the scalability of DLDB on Lite data sets and that of
Minerva on both Lite and DL data sets, respectively. We observe that for most queries,
the query time of DLDB grows dramatically with the increase of the size of the data
set. But Minerva scales much better than DLDB. For some queries, such as queries 13
and 15, the query time of Minerva is almost zero and does not change too much since
there are few or no results. One may find that Minerva’s query time for query 8 in-
creases significantly on DL-10. The reason is that there are a large number of results.
Since the query time includes time to traverse results sequentially (the original LUBM
uses such a definition as well), it can be affected by the number of results.

Our experiments have confirmed that all three systems are sound, i.e., the precision
is 1. Table 4 shows query completeness results. Compared with previous version,
OWLIM 2.8.2 can answer all queries correctly. In this new release of OWLIM, more
rules are added and inference is made configurable. As is known, OWL-Lite and
OWL-DL reasoning cannot be implemented only by rules. That is, OWLIM currently
conducts partial OWL DL TBox inference. This is different from DLDB and Minerva

 Towards a Complete OWL Ontology Benchmark 135

Fig. 4. Query Response Time Comparison

Table 4. Query Completeness Comparison

Query Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15
OWLIM Lite-1 1 1 1 1 1 1 1 1 1 1 1 1 1 NA NA

Lite-1 1 0.82 1 1 0 0 0 0 0 0.83 0 0.2 0.51 NA NA
Lite-5 1 0.81 1 1 0 0 0 0 0 0.59 0 0.12 0.57 NA NA DLDB
Lite-10 1 0.81 1 1 0 0 0 0 0 0.87 0 0.26 0.53 NA NA
Lite-1 1 1 1 1 1 1 1 1 1 1 1 1 0.67 NA NA
Lite-5 1 1 1 1 1 1 1 1 1 1 1 1 0.61 NA NA
Lite-10 1 1 1 1 1 1 1 1 1 1 1 1 0.64 NA NA
DL-1 1 1 1 1 1 1 1 1 1 1 1 1 0.90 0.96 0
DL-5 1 1 1 1 1 1 1 1 1 1 1 1 0.88 0.97 0

Minerva

DL-10 1 1 1 1 1 1 1 1 1 1 1 1 0.88 0.95 0

which depend on a DL reasoner for TBox inference. Coincidentally, the UOBM does
not contain a query that needs subsumption inference not covered by existing OWLIM
rules. This indicates that the UOBM should add more complex class definition and
corresponding instances and queries. The inference capability of DLDB is relatively
weak and it gives 100% complete answers to only 3 queries. Minerva is able to com-
pletely and correctly process 12 out of 13 queries. Inference on minCardinality needed

136 L. Ma et al.

by query 13 is not currently supported in Minerva. These three persistence systems use
rules for ABox inference. How to support more ABox rules on large-scale data sets
which cannot be fit into memory directly deserves more efforts.

3.3 Discussions

From our preliminary experiments, we found some interesting problems about OWL
ontology systems as well as some issues needed to be further investigated for a com-
plete OWL ontology benchmark.

Native Storage vs DBMS based approaches. OWLIM can be considered as a native
ontology repository since it is directly built on the file system. Compared with DBMS
based systems (Minerva and DLDB), it greatly reduced the load time. On the other
hand, database systems provide many query optimization features, thereby contributing
positively to query response time. For OWLIM-like systems, efforts should be made
for functionalities such as transactions processing, query optimization, access control
and logging/recovery. A typical example is that in query 4, only an exchange of the
order of two triples makes OWLIM’s response time about 21 times longer (0.6s vs
13s). This suggests that we should leverage DBMS as much as possible. Of course, we
also believe that the underlying database more or less affects the performance of ontol-
ogy systems. For example, DLDB’s performance may change when switching the
back-end store from Access to SQL server. We are going to investigate such problems.

TBox inference. Considering the modest size of real ontologies (excluding in-
stances), using mature DL reasoners for TBox inference could be a good choice. In
fact, Minerva and DLDB leverages a DL reasoner (such as Pellet, FaCT) to under-
stand complete class subsumption. These illustrated that the combination of DL rea-
soners for TBox inference and rules for ABox inference is a promising approach.

Query interface. SPARQL language is increasingly used for RDF graph query by
both RDF(S) and OWL ontology systems [12,21-23]. But, OWL is different from
RDFS. In OWL, it is possible to define new classes by logical expressions. In this
sense, SPARQL is not an appropriate query language for OWL, since it imposes a
substantial restriction on the users’ query choices. We should pay more attentions to
OWL query interface, such as OWL-QL in [24].

Instance generation. Currently, the extended benchmark provides users a number
of parameters for scalable instance generation. In [20], Wang et al. proposed a learned
probabilistic model to generate instance data set based on representative samples. The
objective is to help the users find an ontology system which best fit their data envi-
ronment. It is worthwhile investigating what kind of parameters should be provided so
that the generated instances set can best simulate user’s data.

Tunable TBox. Currently, we do not find a class which is practically meaningful
and needs cyclic definition in university domain. But in other domains, such as life
sciences, realistic ontologies do include cyclic class definition. Therefore, to add
cyclic class definition which may not have real meaning in university domain could
be valuable. Furthermore, real ontologies vary tremendously in their average use of
ontological constructs. To automatically create an ontology that is tunable by com-
plexity (not just at the level of OWL DL and OWL Lite, but also in terms of the quan-
tities of constructs that are used) is also valuable for users to use in their tests. This
could be future research work for a compete benchmark.

 Towards a Complete OWL Ontology Benchmark 137

Update Tests. A practical ontology system should deal with frequent update in an
efficient manner. At the same time, system consistency should be guaranteed. We are
intended to add update tests in the UOBM.

4 Conclusions

This paper presented important extensions to the Lehigh University Benchmark in terms
of inference and scalability testing. The extended benchmark can characterize the per-
formance of OWL ontology systems more completely. Furthermore, a preliminary
evaluation for several well-known ontology systems was conducted and some conclu-
sions were drawn for future research. Also, some issues worthy to be further investi-
gated for a complete OWL ontology benchmark were discussed and summarized.

Acknowledgements

The authors would like to thank Jeff Heflin, Yuanbo Guo and Zhengxiang Pan of
Lehigh University, Atanas Kiryakov and Damyan Ognyanov of OntoText Lab,
Kavitha Srinivas, Achille Fokoue, Aaron Kershenbaum and Edith Schonberg of IBM
T.J. Watson Research Center for their constructive suggestions and comments.

References

1. T. Berners-Lee, J. Hendler, O. Lassila, The Semantic WEB, Scientific American, 2001.
2. J. Davies, D. Fensel, F. Harmelen, Eds., Towards the Semantic WEB: Ontology-driven

Knowledge Management, England: John Wiley & Sons, Ltd., 2002.
3. P. Hayes, Resource Description Framework (RDF): Semantics, W3C Recommendation,

http://www.w3.org/ TR/2004/REC-rdf-mt-20040210/#rdf_entail, 2004.
4. Michael K. Smith, Chris Welty, Deborah L. McGuinness, OWL Web Ontology language

Guide, http://www.w3.org/TR/owl-guide/, 2004.
5. Peter F. Patel-Schneider, Patrick Hayes, Ian Horrocks, OWL Web Ontology Language

Semantics and Abstract Syntax, http://www.w3.org/TR/owl-semantics/, 2004.
6. Michael J. Carey, David J. DeWitt, Jeffrey F. Naughtor, “The 007 Benchmark”, Proc. of

ACM international conference on Management of data, Volume22, Issue 2, 1993.
7. TPC Database Benchmark, http://www.tpc.org/, 2004.
8. Z. Pan, and J. Heflin, “DLDB: Extending Relational Databases to Support Semantic Web

Queries”, Proc. of Workshop on Practical and Scaleable Semantic Web Systms, pp. 109-
113, 2003.

9. Y. Guo, Z. Pan, and J. Heflin, “An Evaluation of Knowledge Base Systems for Large
OWL Datasets”, Proc. of Third International Semantic Web Conference, pp. 274-288,
2004.

10. The Lehigh University Benchmark,
http://swat.cse.lehigh.edu/projects/LUBMm/index.htm, 2004.

11. Pellet OWL Reasoner, http://www.mindswap.org/2003/pellet/index.shtml, 2004.
12. IBM Integrated Ontology Development Toolkit -- Minerva,

http://www.alphaworks.ibm.com/ tech/semanticstk, 2005.

138 L. Ma et al.

13. Kopena, J.B. and Regli, W.C, “DAMLJessKB: A Tool for Reasoning with the Semantic
Web”, In Proc. of ISWC2003.

14. Broekstra, J. and Kampman, “A. Sesame: A Generic Architecture for Storing and Query-
ing RDF and RDF Schema”, In Proc. of ISWC2002.

15. Sesame, An Open Source RDF Database with Support for RDF Schema Inferencing and
Querying, http://www.openrdf.org/, 2002.

16. C. Tempich and R. Volz, “Towards a benchmark for Semantic Web reasoners–an analysis
of the DAML ontology library”, In Workshop on Evaluation on Ontology-based Tools,
ISWC2003.

17. R. Volz, Web Ontology Reasoning with Logic Databases. PhD thesis, AIFB, Karlsruhe,
2004.

18. Q. Elhaik, M.C. Rousset, and B. Ycart, “Generating Random Benchmarks for Description
Logics”. In Proc. of DL’ 98.

19. I. Horrocks, and P. Patel-Schneider, “DL Systems Comparison”, In Proc. of DL’ 98.
20. S. Wang, Y. Guo, A. Qasem, and J. Heflin, “Rapid Benchmarking for Semantic Web

KnowledgeBase Systems”, Lehigh University Technical Report LU-CSE-05-026, 2005.
21. OWLIM, OWL Semantic Repository, http://www.ontotext.com/owlim/. 2005.
22. KAON2, http://kaon2.semanticweb.org/.
23. Jena2, http://www.hpl.hp.com/semweb/jena.htm.
24. R. Fikes, P. Hayes, I. Horrocks, “OWL-QL - a language for deductive query answering on

the Semantic Web”, J. of Web Semantics (2004)

Appendix

Format: [Query No.] Query in form of SPARQL
Description explains the meaning of queries and major inference rules involved.

[Query 1] SELECT DISTINCT ?x

WHERE { ?x rdf:type benchmark:UndergraduateStudent . ?x benchmark:takesCourse
http://www.Department0.University0.edu/Course0}

Description: All undergraduate students who take course http://www.Department0.University0.edu/Course0.
It only needs simple conjunction

[Query 2] SELECT DISTINCT ?x
WHERE { ?x rdf:type benchmark:Employee }
Description: Find out all employees
Domain(worksFor, Employee), <a worksFor b> τ <a rdf:type Employee>
Domain(worksFor,Employee), researchAssistant β ⏐worksFor.ResearchGroupτresearchAssistantβ Employee

[Query 3] SELECT DISTINCT ?x
WHERE {?x rdf:type benchmark:Student . ?x benchmark:isMemberOf

http://www.Department0.University0.edu }
Description: Find out all students of http://www.Department0.University0.edu
Range(takeCourse,Student) , GraduateStudent β ƒ1 takeCourse τ GraduateStudent β Student

[Query 4] SELECT DISTINCT ?x
WHERE { ?x rdf:type benchmark:Publication . ?x benchmark:publicationAuthor ?y .
?y rdf:type benchmark:Faculty . ?y benchmark:isMemberOf http://www.Department0.University0.edu }
Description: All the publications by faculty of http://www.Department0.University0.edu
SubClass: Faculty = FullProfessor 7 AssociateProfessor 7…7ClericStaff, Publication=Article 7 …7 Journal

[Query 5] SELECT DISTINCT ?x
WHERE { ?x rdf:type benchmark:ResearchGroup . ?x benchmark:subOrganizationOf

http://www.University0.edu }
Description: All research groups of http://www.University0.edu
Transitive(subOrganizationOf), <a subOrganizationOf b>, <b subOrganizationOf http://www.University0.edu>

τ <a subOrganizationOf http://www.University0.edu>
[Query 6] SELECT DISTINCT ?x

WHERE { ?x rdf:type benchmark:Person . http://www.University0.edu benchmark:hasAlumnus ?x }

 Towards a Complete OWL Ontology Benchmark 139

Description: All alumni of http://www.University0.edu
Inverse(hasAlumni, hasDegreeFrom), <a hasDegreeFrom b> τ <b hasAlumnus a>

[Query 7] SELECT DISTINCT ?x
WHERE {?x rdf:type benchmark:Person . ?x benchmark:hasSameHomeTownWith

http://www.Department0.University0.edu/FullProfessor0}
Description: Those who has same home town with http://www.Department0.University0.edu/FullProfessor0
Transitive(hasSameHomeTownWith), Symmetric(hasSameHomeTownWith), <a hasSameHomeTownWIth b>,

<c hasSameHomeTownWIth b> τ < a hasSameHomeTownWith c>
[Query 8] SELECT DISTINCT ?x

WHERE {?x rdf:type benchmark:SportsLover . http://www.Department0.University0.edu bench-
mark:hasMember ?x}

Description: All sports lovers of http://www.Department0.University0.edu
<x like y>, <y rdf:type Sports>, SportLoverβ⏐like.Sports τ <x rdf:type SportLover>
subProperty(isCrazyAbout, like), SportFanβ⏐isCrazyAbout.Sportsτ SportFan β SportLover

[Query 9] SELECT DISTINCT ?x
WHERE { ?x rdf:type benchmark:GraduateCourse . ?x benchmark:isTaughtBy ?y .

?y benchmark:isMemberOf ?z .?z benchmark:subOrganizationOf http://www.University0.edu }
Description: All Graduate Courses of http://www.University0.edu
GraduateStudentη…takesCourse.GraduateCourse, <a rdf:type GraduateStudent>, <a takesCourse b> τ <b
rdf:type GraduateCourse>

[Query 10] SELECT DISTINCT ?x
WHERE { ?x benchmark:isFriendOf http://www.Department0.University0.edu/FullProfessor0}
Description: All friends of http://www.Department0.University0.edu/FullProfessor0
Symmetric(isFriendOf), <a isFriendOf b> τ <b isFriendOf a>

[Query 11] SELECT DISTINCT ?x
WHERE { ?x rdf:type benchmark:Person . ?x benchmark:like ?y . ?z rdf:type benchmark:Chair .

?z benchmark:isHeadOf http://www.Department0.University0.edu . ?z benchmark:like ?y}
Description: All people who has same interest with the chair of http://www.Department0.University0.edu
FunctionalProperty(isHeadOf), <a isHeadof b>, <c isHeadOf b) τ <a sameAs c> // there are some same indi-

viduals of chair0
[Query 12] SELECT DISTINCT ?x

WHERE {?x rdf:type benchmark:Student . ?x benchmark:takesCourse ?y
.?y benchmark:isTaughtBy http://www.Department0.University0.edu/FullProfessor0 }

Description: All students who take course taught by http://www.Department0.University0.edu/FullProfessor0
GraduateStudent η …takesCourse.GraduateCourse 6 ƒ1.takesCourse, Domain(takesCourse, Student) τ Student τ

GraduateStudent
[Query 13] SELECT DISTINCT ?x

WHERE { ?x rdf:type benchmark:PeopleWithHobby . ?x benchmark:isMemberOf
http://www.Department0.University0.edu}

Description: All people who has some kind of hobbies in http://www.Department0.University0.edu
Lite Cardinality: PeopleWithHobby(ƒ1like) τ SportLover, <a like b> τ <a rdf:type PeopleWithHobby>

Queries Only for DL
[Query 8]: This query is the same as query 8 in lite, but in context of OWL DL, it will involve more inference
rules

Description: Inference rules: SwimmingLoverβ⏐like.{Swimming}τ SwimmingLover β SportsLover …
[Query 14] SELECT DISTINCT ?x

WHERE { ?x rdf:type benchmark:Woman . ?x rdf:type benchmark:Student . ?x benchmark:isMemberOf ?y .
?y benchmark:subOrganizationOf http://www.University0.edu }

Description: All woman students of http://www. University0.edu
<a,isStudentof b>, <b rdf:type WomanCollege>, WomanCollege β…hasStudent.(⎯Man), disjoint(Man,
Woman), Man7Woman η Person τ <a rdf:type Woman>

[Query 15] SELECT DISTINCT ?x
WHERE {?x rdf:type benchmark:PeopleWithManyHobbies . ?x benchmark:isMemberOf

http://www.Department0.University0.edu }
Description: All people who has many hobbies in http://www. Department0.University0.edu
PeopleWithManyHobbiesβƒ3like, <a like b1> … <a like bn>, all different(b1,b2…bn) τ <a rdf:type Peo-

pleWithManyHobbies> // nƒ 3

Y. Sure and J. Domingue (Eds.): ESWC 2006, LNCS 4011, pp. 140 – 154, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Modelling Ontology Evaluation and Validation

Aldo Gangemi, Carola Catenacci, Massimiliano Ciaramita, and Jos Lehmann

Laboratory for Applied Ontology, ISTC-CNR, Roma, Italy
{aldo.gangemi, carola.catenacci, m.ciaramita,

jos.lehmann}@istc.cnr.it

Abstract. We present a comprehensive approach to ontology evaluation and
validation, which have become a crucial problem for the development of
semantic technologies. Existing evaluation methods are integrated into one sigle
framework by means of a formal model. This model consists, firstly, of a meta-
ontology called O2, that characterises ontologies as semiotic objects. Based on
O2 and an analysis of existing methodologies, we identify three main types of
measures for evaluation: structural measures, that are typical of ontologies
represented as graphs; functional measures, that are related to the intended use
of an ontology and of its components; and usability-profiling measures, that
depend on the level of annotation of the considered ontology. The meta-
ontology is then complemented with an ontology of ontology validation called
oQual, which provides the means to devise the best set of criteria for choosing
an ontology over others in the context of a given project. Finally, we provide a
small example of how to apply oQual-derived criteria to a validation case.

1 Introduction

The need for evaluation methodologies in the field of ontology development and
reuse emerged as soon as 1994 (see [21]) and it has grown steadily ever since. Yet, no
comprehensive and global approach to this problem has been proposed to date. This
situation may become a serious obstacle for the success of semantic technologies,
especially in industrial and commercial sectors. A typical example in this sense is the
development of the Semantic Web. On the one hand, the idea of conveying semantics
through ontologies definitely arouses the interest of large parts of the ICT Industry.
Ontologies promise to be crucial components of web-like technologies that are able to
cope with high interconnection, constant change and incompleteness. On the other
hand, however, the lack of well-understood and shared notions of ontology evaluation
and validation significantly slows down the transition of ontologies from esoteric
symbolic structures to reliable industrial components.

In this paper we look at existing ontology-evaluation methods from the perspective
of their integration into one single framework. To this end, we set up a formal model
for ontology evaluation that consists, in the first place, of a meta-ontology – called O2
– which characterises ontologies as semiotic objects. O2 is meant to provide a
foundation to the elements and features that are targeted by evaluation. Secondly,
based on O2 and an overview of the state of the art (cf. [8]), we provide a provisional
catalogue of qualitative and quantitative measures for evaluating ontologies. We

 Modelling Ontology Evaluation and Validation 141

identify three main types of measures: structural measures, that are typical of
ontologies represented as graphs; functional measures, that are related to the intended
use of an ontology and of its components, i.e. their function; usability-profiling
measures, that depend on the level of annotation of the considered ontology. Thirdly,
the meta-ontology is complemented with an ontology of ontology validation – oQual
– which allows to pick up ontology elements by means of O2, provides quality-
parameters and, when feasible, their ordering functions. Both O2 and oQual are partly
formalized in FOL and are currently maintained as OWL models, plugged into the
DOLCE ontology library and its design patterns [25]. In practice, we model ontology
evaluation as a diagnostic task based on ontology descriptions. Such descriptions
make explicit some knowledge items that are crucial to ontology validation, like e.g.:
roles and functions of the elements of the considered ontology; parameters for the
descriptions that typically denote the quality of an ontology; and functions that
compose those parameters according to a preferential ordering. At the end of the
paper, we sketch an analytic examples of the trade-offs needed when composing
principles with conflicting parameters, i.e. an application of oQual-derived criteria to
a validation case. Finally, some conclusions are drawn.

2 O2: A Semiotic Meta-ontology

The use of meta-ontologies is becoming relevant within the semantic web, because of
their easy integration and the shared construction methods with ontologies proper.

Fig. 1. A UML class diagram depicting the main notions from the O2 ontology

142 A. Gangemi et al.

[12], for instance, have recently proposed an Ontology Metadata Vocabulary.
Following this tendency, we characterize an ontology as a semiotic object, i.e. an
object constituted by an information object and an intended conceptualization
established within a communication setting. The basic intuition behind this part of our
proposal is that information can be constituted by any pattern that is used to represent
another pattern, whereas that representation is interpretable by some rational agent as
an explanation, an instruction, a command, etc. This is an idea that goes back at least
to Peirce (cf. [17]).

This intuition is formalized by applying an ontology design pattern called
Information↔Description (see [7]), and originates a new pattern called O2 (because it is
a “meta-ontology”). O2, in turn, formalizes the following specification: a) an ontology is
information of a special kind; b) its patterns are graph-like structures; c) they represent
intended conceptualizations, i.e. internal representations (by a rational agent) of entity
types. For example, it is perfectly possible to define an ontology for subways, but one
will hardly consider the graph of the London Underground as an ontology - at most, the
latter can be considered as a model of an appropriate subway ontology.

In O2 (Fig.1), an ontology graph has an intended conceptualization and a formal
semantic space admitted by the conceptualization. The graph and the concept-
ualization are ‘kept together’ by a rational agent who encodes/interprets the graph,
while internally representing its intended conceptualization.

An agent can also provide a profile containing metadata that express a “description”
of the ontology, e.g. a method to measure the structural or functional properties of an
ontology graph, its resulting attributes, its possible quality criteria and values, as well
as its lifecycle annotations, such as provenance and informal annotations. A good
profile typically enhances or enforces the usability of an ontology.

3 Measures for Ontology Evaluation

The literature on ontology evaluation is fragmentary. Most approaches address more
or less specific evaluation issues but often do it unsystematically. Only [11] tries to
disentangle issues by providing a classification grid for ontology evaluation methods.
Such grid allows to present methods in terms of answers to the following questions:
what is the considered method/tool like (Structure)? Subordinately: what is its goal
(Goal)? What functions are supported by it (Function)? At which stage of
development of an ontology may it be applied (Application)? Furthermore, how
useful is the method? Subordinately: for which type of users is it conceived (Users
types: Knowledge Engineers, Project Managers, Application Users, Ontology
Developers)? How relevant is it to practice (Usefulness)? How usable is it
(Usability)? For which type of uses was it conceived in the first place (Use cases)?

Partly based on such grid, and on an analysis of the related most relevant literature
(notably, [24], [14], [23], [19], [18], [9], [6], and [16]), we have devised a large
amount of possible measurement methods for ontologies and framed them in the
pattern provided by O2.

We introduce here the main distinctions among measure sets, and provide a few
examples for some of them. For the full list of identified measures and the detailed
state-of-the-art review, see [8].

 Modelling Ontology Evaluation and Validation 143

3.1 Measure Types

As explained above, by ontology we mean a semiotic object including graph objects,
formal semantic spaces, conceptualizations, and annotation profiles; therefore, we
propose to measure ontologies relatively to three main dimensions: structural,
functional, and usability-profiling.

The structural dimension of ontologies focuses on syntax and formal semantics,
i.e. on ontologies represented as graphs. In this form, the topological, logical and
meta-logical properties of an ontology can be measured by means of a context-free
metric.

The functional dimension is related to the intended use of a given ontology and of
its components, i.e. their function in a context. The focus is on the conceptualization
specified by an ontology.
Finally, the usability-profiling dimension focuses on the ontology profile
(annotations), which typically addresses the communication context of an ontology
(i.e. its pragmatics).

Notice that those dimensions follow a partition into logical types: structurally, we
look at an ontology as an (information) object; functionally, we look at it as a
language (information object+intended conceptualization), and from the usability
viewpoint, we look at its meta-language (the profile about the semiotic context of an
ontology). Therefore, the dimension types correspond to the constituents of the O2
pattern and heterogeneous measurement methods are needed.

3.2 Measuring the Structural Dimension

In our treatment of the structural dimension, the idea is to define a general function
like the following: M = D,S,mp,c , where dimension D is a graph property or

concept we want to measure: the intensional counterpart of the metric space; the set of
graph elements S is a collection of elements in the graph (which may be seen as the
ontology structure); mp is a measurement procedure; and c is a coefficient of
measurement error.

The value of M is a real number obtained by applying a measurement procedure
mp for a dimension D to a set S of graph elements, modulo a coefficient c (if any), i.e.
(with an operational semantics): mpD,c,S yields

⎯ → ⎯ ⎯ m ∈ ℜ

Within the possible sets of graph elements, we have considered the following :

• The set of graph nodes G from a graph g, G ⊆ S
• The set of root nodes ROO ⊆ G, where the root nodes are those having no outgoing

is-a arcs in a graph g.
• The set of leaf nodes LEA ⊆ G, where the leaf nodes are those having no ingoing

is-a arcs in a graph g.
• The sets of sibling nodes SIBj∈G connected to a same node j in a graph g through is-

a arcs.
• The set of paths P where ∀j∈P j⊆G, where a path j is any sequence of directly

connected nodes in a digraph g starting from a root node x∈ROO and ending at a leaf
node y∈LEA.

144 A. Gangemi et al.

• The set of levels (“generations”) L where ∀j∈L j⊆G, where a generation j is the
set of all sibling node sets having the same distance from (one of) the root node(s)
r∈ROO of a digraph g.

• The sets of graph nodes N j ∈P from a same path j in a digraph g

• The sets of graph nodes N j ∈L from a same level j in a digraph g

• The set MO of modules from a graph g. A module is any subgraph sg of g, where
the set of graph elements S’ from sg is such that S’ ⊆ S. Two modules sg1 and sg2
are taxonomically disjoint when only 0 is-a arcs ai connect sg1 to sg2, and each ai
has the same direction.

Several structural measures can be defined, involving:

a) topological properties such as depth (related to the cardinality of paths in a
graph), breadth (related to the cardinality of paths in a graph), tangledness
(related to multihierarchical nodes of a graph), and fan-outness (related to the
‘dispersion’ of graph nodes), among others;

b) logical-adequacy properties such consistency, anonymous classes and cycle
ratios, among others;

c) metalogical-adequacy properties, such as e.g qualified density (i.e. presence
of meaningful conceptual-relation ‘dense’ areas, or ‘patterns’).

For instance, we have defined depth (a topological property) as a graph property
related to the cardinality of paths in a graph, where the arcs considered are only is-a
arcs. This measure only applies to digraphs (directed graphs). E.g., average depth,

where N j ∈P is the cardinality of each path j from the set of paths P in a graph g, and

nP ⊆g is the cardinality of P: m = 1
nP ⊆g

N j ∈P

j

P

3.3 Measuring the Functional Dimension

The functional dimension is coincident with the main purpose of an ontology, i.e.
specifying a given conceptualization, or a set of contextual assumptions about an area
of interest. Such specifications, however, are always approximate, since the
relationship between an ontology and a conceptualization is always dependent on a
rational agent that conceives that conceptualization (the ‘cognitive’ semantics) and on
the semantic space that formally encodes that conceptualization (the ‘formal’
semantics) (Fig. 1). Hence, an appropriate evaluation strategy should involve a
measurement of the degree of how those dependencies are implemented. We call this
the matching problem.

The matching problem requires us to find ways of measuring the extent to which
an ontology mirrors a given expertise (cf. [20]), competency (cf. [22]), or task:
something that is in the experience of a given community and that includes not only a
corpus of documents, but also theories, practices and know-how that are not
necessarily represented in their entirety in the available documents. This seems to
imply that no automatised method will ever suffice and that intellectual judgement

 Modelling Ontology Evaluation and Validation 145

will always be needed. However, automatic and semi-automatic techniques can be
applied that make evaluation easier, less subjective, more complete and faster [6].

The functional measures provided in [8] are variants of the precision, coverage,
and accuracy measures introduced by [10], which are in turn based on an analogy
with the precision and recall measures widely used in information retrieval (cf. [2]).
They include competence adequacy (e.g. inter-subjective agreement, task adequacy,
task specifity, and topic specificity); NLP adequacy (e.g. compliance with lexical
distinctions), and functional modularity (e.g. ontology stratification, or granularity).

Due to the matching problem, however, the adaptation of precision, recall and
accuracy to ontology evaluation is by no means straightforward. Since expertise is by
default in the cognitive “black-box” of rational agents, ontology engineers have to
elicit it from agents, or they can assume a set of data as a qualified expression of
expertise and tasks, e.g. texts, pictures, diagrams, database records, terminologies,
metadata schemas, etc. Therefore, we distinguish between black-box and glass-box
measurement methods.

Black-box methods require rational agents, because they don't explicitly use
knowledge of the internal structure of an expertise (see [8] for a more extensive
discussion of these methods).

Glass-box methods require a data set that ‘samples’ that knowledge, and, on this
basis, we can treat the internal structure of those data as if it were the internal
structure of an expertise.

Based on these assumptions, precision, recall and accuracy of an ontology can be
measured against: a) experts’ judgment, or b) a data set assumed as a qualified
expression of experts’ judgment:

(1) Agreement (black-box): it is measured through the proportion of agreement that
experts have with respect to ontology elements; when a group of experts is
considered, we may also want to measure the consensus reached by the group’s
members.

(2) User-satisfaction (black-box): it can be measured by means of dedicated polls, or
by means of provenance, popularity, and trust assessment.

(3) Task: what has to be supported by an ontology? (glass-box). It deals with
measuring an ontology according to its fitness to some goals, preconditions,
postconditions, constraints, options, etc. This makes the measurement very
reliable at design-time, while it needs a reassessment at reuse-time.

(4) Topic: what are the boundaries of the knowledge domain addressed by an
ontology? (glass-box). It deals with measuring an ontology according to its
fitness to an existing knowledge repository. This makes the measurement reliable
both at design-time, and at reuse-time, but is based on the availability of data that
can be safely assumed as related to the (supposed) topic covered by an ontology.
Natural Language Processing (NLP)-based methods fit into this category, and are
currently the most reliable method for ontology evaluation, at least for
lightweight ontologies.

(5) Modularity: what are the building blocks for the design of an ontology? (glass-
box). It is based on the availability of data about the design of an ontology.
Therefore, it deals with measuring an ontology according to its fitness to an
existing repository of reusable components. This makes the measurement very
reliable both at design-time, and at reuse-time. On the other hand, modularity

146 A. Gangemi et al.

assessment is only practicable on ontologies that have been designed with an
appropriate methodology.

As example of (glass-box) NLP-based measurements, consider a case in which the
ontology is lexicalized (i.e., it defines, at least to some extent, what instances of
classes and relations are called in natural language) and there exists a substantial
amount of textual documents that contain information about the content of the
ontology. By identifying mentions of ontological elements in a given corpus, it is
possible to count the frequency of classes (or relations). The relative frequency of
each class c (or relation r) is the proportion of mentions of ontology instances which
are equal to c; i.e., P(c) = count(c)/sumi count(ci). The relative frequency measures the
importance of each class and provides a first simple measure of the ontology quality.
For example, in newswire texts the three typical classes of ‘person’, ‘location’ and
‘organisation’ have somewhat similar frequencies, while if the corpus analysis reveals
that one of the classes is much more unlikely than the others this means that there is
something wrong with the instances of that class. This might indicate that the low
frequency class is underrepresented in the ontology, at the lexical level. Recent work
has focused also on discovering class attributes and arbitrary relation between classes
through automatic or semi-automatic population of ontology objects (see [1], [5], and
[4]). In fact, it is possible that new senses of already known instances are discovered,
for example because the instance is polysemous/ambiguous (e.g., ‘Washington’ is
both a person and a location).

3.4 Measuring the Usability Profile of Ontologies

Usability-profiling measures focus on the ontology profile, which typically addresses
the communication context of an ontology (i.e. its pragmatics). An ontology profile is
a set of ontology annotations: the metadata about an ontology and its elements.
Presence, amount, completeness, and reliability are the usability measures ranging on
annotations, which have been singled out in our research.

Annotations contain information about structural, functional, or user-oriented
properties of an ontology. There are also purely lifecycle-oriented properties, e.g.
authorship, price, versioning, organisational deployment, interfacing, etc.
Three basic levels of usability profiling have been singled out: recognition, efficiency,
and interfacing.

The recognition level makes objects, actions, and options visible (cf. [13]). Users
need an easy access to the instructions for using ontologies in an effective way, and
an efficient process to retrieve appropriate meta-information. That is, “give your users
the information that they need and allow them to pick what they want”. Hence
recognition is about having a complete documentation and to be sure to guarantee an
effective access.

The efficiency level includes organisational, commercial, and developmental
annotations. Large organisations tend to be compartmentalized, with each group
looking out for its own interests, sometimes to the detriment of the organisation as a
whole. Information resource departments often fall into the trap of creating or
adopting ontologies that result in increased efficiency and lowered costs for the
information resources department, but only at the cost of lowered productivity for the
company as a whole. This managing-operating-balance principle translates into some

 Modelling Ontology Evaluation and Validation 147

requisites (parameters) for the organisation-oriented design of ontology libraries (or
of distributed ontologies), which provide constraints to one or more of the following
entities: organisation architecture, (complex) application middleware, trading
properties, cost, accessibility, development effort.

The interfacing level concerns the process of matching an ontology to a user
interface. As far as evaluation is concerned, we are only interested in the case when
an ontology includes annotations to interfacing operations. For example, a contract
negotiation ontology might contain annotations to allow an implementation of e.g. a
visual contract modelling language. If such annotations exist, it is indeed an
advantage for ontologies that are tightly bound to a certain (computational) service.
On the other hand, such annotations may result unnecessary in those cases where an
interface language exists that maps to the core elements of a core ontology e.g. for
contract negotiation.

4 oQual: A Model of Ontology Validation

We model ontology validation as a diagnostic task over ontology elements, processes,
and attributes (Fig. 2). This task involves:

• Quality-Oriented Ontology Descriptions (qoods), which are a type of ontology
description (cf. Fig.1) that provide the roles and tasks of, respectively, the
elements and processes from/on an ontology, and have elementary qoods (called
principles) as parts. For example, a type of qood is retrieve, which formalizes the
requirement to be able to answer a certain competency question. In Fig. 2, the
retrieve type is instantiated as a requirement for the ontology to be able to
retrieve the ‘family history for a condition related to blood cancer’, in an
ontology project for ‘blood cancer information service’.

• Value spaces (“attributes”) of ontology elements. For example, the presence of a
relation such as: R(p,f,c,i), where Patient(p), Family(f), Condition(c), Indicator(i).

• Principles for assessing the ontology fitness, which are modelled as elementary
qoods, and are typically parts of a project-oriented qood. For example,
‘description of fitness to expertise’ is a principle.

• Parameters (ranging over the attributes -value spaces- of ontologies or ontology
elements), defined within a principle. For example, ‘relation fitness to
competency question’ is a parameter for the relation R(p,f,c,i).

• Parameter dependencies occurring across principles because of the
interdependencies between the value spaces of the measured ontology elements.
For example, the ‘relation fitness to competency question’ parameter is
dependent on either ‘first-order expressiveness’ or ‘presence of a relation
reification method’ parameters ranging on the logical language of the ontology,
because the relation R(p,f,c,i) has four arguments and it is not straightforwardly
expressible in e.g. OWL(DL).

• Preferential ordering functions that compose parameters from different
principles. For example, in a ‘blood cancer information service’ project, the
‘relation fitness to competency question’ parameter may be composed with the
‘computational complexity’ parameter.

148 A. Gangemi et al.

Fig. 2. The oQual design pattern applied to a clinical use case. A qood based on the fitness to
competency questions constrains the setting of the intended use for the ontology to be designed
in a clinical information project.

• Trade-offs, which provide a conflict resolution description when combining
principles with conflicting parameters. For example, the two abovementioned
parameters might be conflicting when the cost of the expressiveness or of the
reification method are too high in terms of computational efficiency. A trade-off
in this case describes a guideline to simplify the competency question, or a
strategy to implement the relation differently.

The oQual formal model is based on the the Description↔Situation pattern (cf. [7])
from the DOLCE ontology library ([15]), which is integrated with the
Information↔Description pattern used for O2.

Ontology descriptions, roles, parameters, and ordering functions are defined on the
results of the measurement types that can be performed on an ontology graph,
conceptualization, or profile. The results are represented as regions within value
spaces. Quality parameters constrain those regions within a particular qood.

5 Applying a Qood to a Validation Case

In order to apply oQual to an analytic case of trade-off, we need a more detailed
presentation of principles and of some of their typical parameters.

 Modelling Ontology Evaluation and Validation 149

5.1 Some Principles and Parameters

Principles are defined here as structured descriptions of the quality of an ontology
(qoods): they are considered elementary qoods because they usually define a limited
set of parameters constraining ontology properties in order to support a common goal.
Principles should also lack conflicting parameters.

Here is a list of some qoods emerged in the practice of ontology engineering:

• Cognitive ergonomics
• Transparency (explicitness of organizing principles)
• Computational integrity and efficiency
• Meta-level integrity
• Flexibility (context-boundedness)
• Compliance to expertise
• Compliance to procedures for extension, integration, adaptation, etc.
• Generic accessibility (computational as well as commercial)
• Organizational fitness

The parameters defined by principles can be complex, but at the current state of
research, they are usually simple scalars ranging on the measurement value spaces
associated with the measures mentioned in Section 3.

Here is a list of parameters defined by the principles introduced above. For an
easier understanding, each parameter is presented with the name of the measure on
which it ranges, preceded by a + or – sign to indicate the scalar region constrained
within the value space:

Cognitive ergonomics. Intuition: this principle prospects an ontology that can be
easily understood, manipulated, and exploited by final users. Parameters:

-depth -breadth
-tangledness +class/property ratio
+annotations (esp. lexical, glosses, topic) -anonymous classes
+interfacing +patterns (dense areas)

Transparency. Intuition: this principle prospects an ontology that can be analyzed in
detail, with a rich formalization of conceptual choices and motivations. Parameters:

+modularity +axiom/class ratio
+patterns +specific differences
+partitioning +accuracy
+complexity +anonymous classes
+modularity design

Computational integrity and efficiency. Intuition: this principle prospects an ontology
that can be successfully/easily processed by a reasoner (inference engine, classifier,
etc.). Parameters:

+logical consistency +disjointness ratio
-tangledness -restrictions
-cycles

150 A. Gangemi et al.

Meta-level integrity. Intuition: this principle prospects an ontology that respects
certain ordering criteria that are assumed as quality indicators. Parameters:

+metalevel consistency -tangledness

Flexibility. Intuition: this principle prospects an ontology that can be easily adapted to
multiple views. Parameters:

+modularity +partitioning
+context-boundedness

Compliance to expertise. Intuition: this principle prospects an ontology that is
compliant to one or more users’ knowledge. Parameters:

+precision +recall
+accuracy

Compliance to procedures for mapping, extension, integration, adaptation. Intuition:
this principle prospects an ontology that can be easily understood and manipulated for
reuse and adaptation. Parameters:

+accuracy(?) +recognition annotations (esp. lexical)
+modularity -tangledness(?)

Organizational fitness. Intuition: this principle prospects an ontology that can be
easily deployed within an organization, and that has a good coverage for that context.
Parameters:

+recall +organizational design annotations
+commercial/legal annotations +user satisfaction
+organizational design annotations

Generic accessibility. Intuition: this principle prospects an ontology that can be easily
accessed for effective application. Parameters:

+accuracy (based on task and use cases) +annotations (esp. policy semantics,
application history)

+modularity -logical complexity

5.2 Preference and Trade-Offs, with an Example in Legal Ontologies

Due to partly mutual independence of principles, the need for a preferential ordering
of quality parameters required by different principles often arises, e.g. because of a
conflict, or because two parameters from different principles are unsustainable with
existing tools or resources. OntoMetric ([14]) is an example of a tool that supports
measurement based on a preferential ordering.

A preferential ordering can either define the prevalence of a set of parameters from
a principle p1 over another principle p2, or it can define a composition of the two sets
of parameters from p1 and p2. A compositions is the result of a trade-off. Both
prevalence and trade-off descriptions are based on meta-parameters, e.g.: available
resources, available expertise, business relations, tools, etc.

 Modelling Ontology Evaluation and Validation 151

A simple exemplification of a trade-off for principle composition is the following.
Transparency and compliance to expertise principles usually require content ontology
design patterns (cf. [7]), involving hub nodes (classes with several properties, cf.
[16]), then those principles require a high rate of dense areas parameter. But dense
areas often need the definition of sets of (usually existential) axioms that potentially
induce complex (in)direct cycles. Consequently, high rate of dense areas depends on
a high complexity parameter (cf. [3] for the complexity of description logic ports of
UML models).

The content design pattern for the LimitViolation pattern is an example of such a
case (Fig.3). The LimitViolation pattern contains the following axioms (restrictions)
that constitute a cyclical path, encoded here in OWL abstract syntax (corresponding to
the red path in Fig.3):

Class(LimitViolation partial restriction(defines
someValuesFrom(ViolationParameter)))

Class(ViolationParameter partial restriction(classifies
someValuesFrom(ValueRegion)))

Class(ValueRegion partial restriction(observedBy
allValuesFrom(LegalControlSystem)))

Class(LegalControlSystem partial restriction(classifiedBy
someValuesFrom(LegalRole)))

Class(LegalRole partial restriction(d-used-by
someValuesFrom(LimitViolation)))

Class(LimitViolation partial restriction(defines
someValuesFrom(ViolationParameter)))

Class(ViolationParameter partial restriction(classifies
someValuesFrom(ValueRegion)))

Class(ValueRegion partial restriction(observedBy
allValuesFrom(LegalControlSystem)))

Class(LegalControlSystem partial restriction(classifiedBy
allValuesFrom(LegalRole)))

Class(LegalRole partial restriction(d-used-by
someValuesFrom(LimitViolation)))

If an ontology project using the limit violation axioms is based on a qood that aims at
both a transparency principle, and a computational efficiency principle, and we
already know (cf. [8]) that computationally efficiency requires a low rate of cycles
parameter, then we get a conflict of parameters (Fig.4). Therefore, a trade-off may be
needed in an ontology project that uses the limit violation axioms. The trade-off can
be applied by following two approaches.

The first approach defines a preference ordering over the parameters, which in the
example leads either to accept the complexity, or to dismiss the pattern. The pattern is
in this case essential to the ontology, then, if the low rate of cycles is also required
because of e.g. available computational resources, we must resort to the second
approach: relaxation of parameters. The possible methods to relax the parameters
should act on either the reasoning algorithm, or the axioms. Since the first cannot be

152 A. Gangemi et al.

Fig. 3. The LimitViolation pattern in UML, showing a potential indirect cycle: a description of
limit violation defines violation parameters ranging on some value space (e.g., speed), also
assigning (legal) roles and tasks to legally-relevant entities: control systems, vehicles, persons,
actions, etc. A violation case conforms to the description if legally-relevant entities and values
are classified by parameters, roles, and tasks.

changed easily in most ontology projects, the best practice is to modify the model
according to some tuning practices e.g. involving generalization over restrictions,
which in our example can be done on one of the following axioms by substituting the
class in the restriction with its superclass:

Class(ValueRegion partial restriction(observedBy
allValuesFrom(ControlSystem)))

Class(LegalControlSystem partial restriction(classifiedBy
allValuesFrom(Role)))

Fig. 4. A qood (a diagnosis of an ontology project using the limit violation pattern) that
composes two principles requiring conflicting parameters

 Modelling Ontology Evaluation and Validation 153

6 Conclusions and Future Work

O2 and oQual are ontologies that characterise an ontology as a communication object,
and allow to make a parametric design of evaluation and validation (diagnostic) tasks.
Ontologies are analyzed in their graph and formal elements, functional requirements,
and annotation profile. Therefore our approach results in parametric design
specifications that address varied measures, ranging from graph properties to logical
consistency, precision/recall, intersubjective reliability, etc., which do not suggest
prescriptive validation of an ontology, but suggest an interactive, distributed
validation against well-understood tasks.

Current work is focusing on the empirical assessment of the O2 and oQual
ontologies and related methods, by measuring existing ontologies, comparing the
quality of distinct ontologies that represent the same domain, creating correlations
between user-oriented and structural measures, and creating tools to assist ontology
evaluation in large industry- and organization-scale projects (until now, the ontology
and the method have been tested on fragments of large ontologies, and only
thoroughly in the context of the Italian OntoDev project, featuring a mid-size
lightweight ontology repository). Collaboration with the Oyster, Onthology, and
KnowledgeZone projects ([26]) are being established in order to harmonize ontology
metadata semantics with tools, and to include/extract evaluation annotation in/from
current metadata vocabularies.

References

1. Almuhareb A. and Poesio M., (2004), “Attribute-based and value-based clustering: an
evaluation”, in Proceedings of the Conference on Empirical Methods in Natural Language
Processing.

2. Baeza-Yates R. and Ribeiro-Neto B., 1999, Modern Information Retrieval, Addison
Wesley.

3. Berardi D., Calvanese D., De Giacomo G., (2001), “Reasoning on UML Class Diagrams
using Description Logic Based Systems”, Proceedings of the KI'2001 Workshop on
Applications of Description Logics.

4. Brewster C., Alani H., Dasmahapatra S. and Wilks Y., (2004), “Data-driven ontology
evaluation”, in Proceedings of LREC.

5. Ciaramita M., Gangemi A., Ratsch E., Saric J., and Rojas I., (2005), “Unsupervised
Learning of Semantic Relations between Concepts of a Molecular Biology Ontology”, in
Proceedings of the 19th International Joint Conference on Artificial Intelligence.

6. Daelemans W. and Reinberger M.L., (2004), “Shallow Text Understanding for Ontology
Content Evaluation”, IEEE Intelligent Systems: 1541-1672.

7. Gangemi A., (2005), “Ontology Design Patterns for Semantic Web Content”, in Motta E.
and Gil Y. (eds.), in Proceedings of the Fourth International Semantic Web Conference.

8. Gangemi A., Catenacci C., Ciaramita M., and Lehmann J., (2005), “Ontology evaluation:
A review of methods and an integrated model for the quality diagnostic task”, Technical
Report, available at http://www.loa-cnr.it/Publications.html.

9. Gómez-Pérez A., (2003), “Ontology Evaluation”, in Handbook on Ontologies, S. Staab
and R. Studer (eds.), Springer-Verlag, pp. 251–274.

154 A. Gangemi et al.

10. Guarino N., (2004), “Towards a Formal Evaluation of Ontology Quality”, IEEE Intelligent
Systems: 1541-1672.

11. Hartmann J., Spyns P., Giboin A., Maynard D., Cuel R., Suárez-Figueroa M.C., and Sure
Y., (2004), “Methods for ontology evaluation”, Knowledge Web Deliverable D1.2.3,

12. Hartmann J., Palma R., Sure Y., Suárez-Figueroa M.C., and Haase P. (2005), “OMV–
Ontology Metadata Vocabulary”, paper presented at the Ontology Patterns for the Semantic
Web (OPSW) Workshop at ISWC2005, Galway, Ireland:
http://www.research.ibm.com/people/w/welty/OPSW-05/.

13. Kaakinen, J., Hyona, J., and Keenan, J.M., (2002), “Individual differences in perspective
effects on on-line text processing”, Discourse Processes, 33: 159 - 173.

14. Lozano-Tello, A. and Gómez-Pérez A., (2004), “ONTOMETRIC: A method to choose the
appropriate ontology”, Journal. of Database Management, 15(2).

15. Masolo, C., A. Gangemi, N. Guarino, A. Oltramari and L. Schneider, (2004),
“WonderWeb Deliverable D18: The WonderWeb Library of Foundational Ontologies”,
available at http://www.loa-cnr.it/Publications.html.

16. Noy, N., (2004), “Evaluation by Ontology Consumers”, IEEE Intelligent Systems:
1541-1672.

17. Peirce C.S., (1931-1958), Collected Papers, vols. 1-8, C. Hartshorne, P. Weiss and A.W.
Burks (eds), Cambridge, MA: Harvard University Press.

18. Porzel R. and Malaka R., (2004), “A Task-based Approach for Ontology Evaluation”, in
Proceedings of ECAI04.

19. Spyns P., (2005), “EvaLexon: Assessing triples mined from texts”, Technical Report 09,
STAR Lab, Brussel.

20. Steels L., (1990), “Components of Expertise”, AI Magazine, 11, 2: 30-49.
21. Sure Y. (ed.), (2004), “Why Evaluate Ontology Technologies? Because It Works!”, IEEE

Intelligent Systems: 1541-1672.
22. Uschold U. and Gruninger M., (1996), ”Ontologies: Principles, Methods, and

Applications,” Knowledge Eng. Rev., vol. 11, no. 2: 93–155.
23. Welty C. and Guarino N., (2001), “Supporting ontological analysis of taxonomic

relationships”, Data and Knowledge Engineering, vol. 39, no. 1, pp. 51-74.
24. Yao H., Orme A.M., and Etzkorn L., (2005), “Cohesion Metrics for Ontology Design and

Application”, Journal of Computer Science, 1(1): 107-113.
25. http://www.loa-cnr/ontologies/DLP_397.owl, http://dolce.semanticweb.org .
26. http://oyster.ontoware.org; http://www.onthology.org; http://smi-protege.stanford.edu:

8080/KnowledgeZone/.

Benchmark Suites for Improving the RDF(S)
Importers and Exporters of Ontology

Development Tools

Raúl Garćıa-Castro and Asunción Gómez-Pérez

Ontology Engineering Group, Departamento de Inteligencia Artificial,
Facultad de Informática, Universidad Politécnica de Madrid, Spain

{rgarcia, asun}@fi.upm.es

Abstract. Interoperability is the ability of two or more systems to
interchange information and to use the information that has been in-
terchanged. Nowadays, interoperability between ontology development
tools is low. Therefore, to assess and improve this interoperability, we
propose to perform a benchmarking of the interoperability of ontology
development tools using RDF(S) as the interchange language. This paper
presents, on the one hand, the interoperability benchmarking that is cur-
rently in progress in Knowledge Web1 and, on the other, the benchmark
suites defined and used in this benchmarking.

1 Introduction

The number of users of ontology development tools is ever increasing. These users
come from academia or from industry, and might have or not deep knowledge on
ontology engineering. Each ontology development tool provides a different set
of functionalities and the user that develops an ontology prefers one ontology
development tool over the others. Hence, users need to interchange ontologies
from one ontology development tool to another.

Nowadays, users of ontology development tools do not know whether ontolo-
gies can be properly interchanged between two ontology development tools and,
if so, which are the consequences of this interchange, such as addition or loss
of knowledge. This leads to a slower uptake of ontology development tools by
end users, both in the academia and the industrial world. Moreover, the exper-
imentation carried out so far [1] has demonstrated that the degree of ontology
interchange between ontology development tools is low.

One of the main goals of the Knowledge Web Network of Excellence is to sup-
port the industrial applicability of ontology technology. This involves assessing
and improving several types of ontology technology: ontology development tools,
alignment tools, annotation tools, querying and reasoning services, and semantic
web service technology.

1 http://knowledgeweb.semanticweb.org/

Y. Sure and J. Domingue (Eds.): ESWC 2006, LNCS 4011, pp. 155–169, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

156 R. Garćıa-Castro and A. Gómez-Pérez

In order to assess and improve the interoperability of ontology tools, the first
task to perform in Knowledge Web is benchmarking the interoperability of ontol-
ogy development tools by evaluating their RDF(S)2 importers and exporters, and
this is what we present in this paper. Participation in the benchmarking is open
to any organization and its current status and its results are publicly available3.
At the end of the benchmarking process, we will get public results with detailed
information about the current interoperability of ontology development tools.
This benchmarking will also provide us with mechanisms that can be used to
evaluate the RDF(S) importers and exporters of other Semantic Web technology
(i.e. mapping tools, annotation tools, etc.).

According to [2], ontology development tools can interoperate in four ways: by
mapping ontologies in the source tool to others in the target tool, by translating
ontologies to a single pivot language, by translating ontologies to one language
in a layered architecture of languages, and by a generalisation of the pivot and
the layered approaches that does not require either a fixed pivot language or a
fixed layering of languages. This paper only covers the pivot approach, that is,
interoperability in terms of interchanging ontologies using a common interchange
language. Therefore, the interoperability depends on the correct working of the
importers and exporters from and to the different languages.

This paper is structured as follows. Section 2 presents other evaluation initia-
tives related to this work and the differences found. Section 3 describes briefly
the benchmarking methodology being used; Sections 4 and 5 state how this
methodology was instantiated to our own case. Section 6 defines how the bench-
mark suites used in the benchmarking were defined as well as how they are
used. Section 7 shows how these benchmark suites have been evaluated accord-
ing to the desirable properties of benchmark suites. Finally, Section 8 presents
the conclusions derived form this work and future lines of work.

2 Related Work

This section introduces the terms benchmark and benchmarking, because they
are frequently used in the paper, and explains the benefits of benchmarking over
performing tool evaluations. It also presents other related evaluation initiatives
and the differences between them and our approach.

2.1 Benchmark and Benchmarking

Benchmarking is a continuous process for improving products, services and
processes by systematically evaluating and comparing them to those considered
to be the best. This definition, adapted from the business management com-
munity [3], is used by some authors in the Software Engineering community [4]
while others consider benchmarking as a software evaluation method [5].

2 http://www.w3.org/TR/rdf-schema/
3 http://knowledgeweb.semanticweb.org/benchmarking interoperability/

Benchmark Suites for Improving the RDF(S) Importers and Exporters 157

A benchmark, by contrast, is a test that measures the performance of a sys-
tem or subsystem on a well-defined task or set of tasks [6]. However, Sim et al. [7]
propose to measure also tools and techniques for comparing their performance.

The reason for benchmarking ontology tools instead of just evaluating them
is to obtain several benefits from benchmarking that cannot be obtained from
tool evaluations. As Figure 1 illustrates, the evaluation of a tool shows us the
weaknesses of the tool or its compliance to quality requirements. If several tools
are involved in the evaluation, we also obtain a comparative analysis of these
tools and recommendations for users of these tools. When benchmarking several
tools, besides all the benefits commented, we gain continuous improvement of
the tools, recommendations for developers on the practices used when developing
these tools and, from these practices, those that can be considered best practices.

Fig. 1. Benchmarking benefits

2.2 Related Evaluations

In this section, we briefly present two evaluation initiatives related to this work.
The first is a benchmark suite for evaluating RDF(S) usage, and the second is a
previous evaluation of the interoperability of ontology development tools.

RDF(S) Test Cases. The RDF Test Cases4 were created by the W3C RDF
Core Working Group. These tests check the correct usage of the tools that im-
plement RDF knowledge bases and illustrate the resolution of different issues
considered by the Working Group.

The RDF Test Cases could also be used for evaluating RDF(S) importers but,
while they provide examples for, and clarification of, the normative definition
of the language, our approach aims for an exhaustive evaluation of RDF(S)
importers. Another difference is that we distinguish between the benchmarks
that depend on the RDF(S) knowledge model and those that depend on the
RDF syntax used. Moreover, we only consider valid input ontologies while the
RDF Test Cases consider erroneous input ontologies and entailment benchmarks.
4 http://www.w3.org/TR/rdf-testcases/

158 R. Garćıa-Castro and A. Gómez-Pérez

EON 2003 Interoperability Experiments. The Second International Work-
shop on Evaluation of Ontology-based Tools (EON 2003) had as main topic the
evaluation of the interoperability of ontology-based tools [1]. The main reasons
for benchmarking the interoperability of ontology tools two years later are:

– Interoperability is still a great problem in the Semantic Web not solved yet.
– Each experiment presented in the workshop involved only a few tools.
– Some experiments evaluated export functionalities, while others evaluated

import functionalities or interoperability.
– No systematic evaluation of the tools was performed since ontology tool de-

velopers were just asked to model and interchange a domain ontology. Each
experiment used different test strategies, different interchange languages, and
different principles for modelling ontologies. Therefore, only specific com-
ments and recommendations were made but not general ones.

3 Benchmarking Methodology for Ontology Tools

The benchmarking methodology for ontology tools is composed of a benchmark-
ing iteration that is repeated forever. Each iteration is composed of three phases
(Plan, Experiment and Improve) and ends with a Recalibration task:

– Plan phase. Its main goal is to produce a document with a detailed pro-
posal for benchmarking. It will be used as a reference document during
benchmarking and should include all the relevant information about it: its
goal, benefits and costs; the tool (and its functionalities) to be evaluated;
the metrics to be used when evaluating these functionalities; and the people
involved in the benchmarking. The last tasks of this phase are related to
the search for other participant organizations and to the agreement on the
benchmarking proposal (both with the organization management and with
the other organizations) and on the benchmarking planning.

– Experiment phase. In this phase, the organizations must define and ex-
ecute the evaluation experiments for each of the tools that participate in
the benchmarking. The evaluation results must be compiled and analysed,
determining the practices that lead to these results and identifying which of
them can be considered as best practices.

– Improve phase. The first task of this phase is the writing of the bench-
marking report, which must include: a summary of the process followed, the
results and conclusions of the experimentation, recommendations for improv-
ing the tools, and the best practices found during the experimentation. The
benchmarking results must be communicated to the participant organiza-
tions; afterwards, in several improvement cycles, the tool developers should
improve their tools and monitor this improvement.

While the three phases mentioned above are devoted to the improvement of
the tools, the goal of the Recalibration task is to improve the benchmarking
process itself using the lessons learnt while performing it.

Sections 4 and 5 present how we use this methodology for benchmarking the
interoperability of ontology development tools.

Benchmark Suites for Improving the RDF(S) Importers and Exporters 159

4 Plan Phase

Goals Identification. The authors of this paper took the role of benchmarking
initiators and prepared the benchmarking, carrying out the first tasks of the
benchmarking process.

The goals for benchmarking the interoperability of ontology development tools
are related to the benefits pursued through it, and these are:

– To evaluate and improve the interoperability of ontology development tools.
– To obtain recommendations on the interoperability of these tools for users.
– To obtain a deep understanding of the practices used to develop the im-

porters and exporters of these tools.
– To extract from these practices those that can be considered best practices

when developing importers and exporters.
– To create consensual processes for evaluating the interoperability of ontology

development tools.

Tool and Metrics Identification. The authors of this paper decided to par-
ticipate in the benchmarking with WebODE [8], since this is the ontology engi-
neering platform being developed by this research group.

Of the different evaluation criteria that can be considered when evaluating
ontology development tools, i.e., performance, scalability, interoperability, ro-
bustness, etc.; we contemplated only interoperability. An approach for bench-
marking the performance and scalability of ontology development tools can be
found in [9]. Of the different ways of dealing with interoperability, we have cen-
tered our focus on the interoperability of ontology development tools using an
interchange language. In our first approach, the language used was RDF(S), in
its RDF/XML syntax.

However, we cannot assess interoperability using an interchange language
without assessing first the import and export of ontologies to that language.
Therefore, the functionalities relevant to the benchmarking are the RDF(S) im-
porters and exporters of the ontology development tools, while the evaluation
criteria that will be used for evaluating these tools are:

– The components of the knowledge model of an ontology development tool
that can be interchanged with another tool using RDF(S) as interchange
language.

– The information added or lost when interchanging these components.

Participant Identification. As WebODE is being developed by the Ontology
Engineering Group, it seemed quite straightforward to identify and contact the
members of the organization involved with WebODE’s RDF(S) importers and
exporters and then to select, from this very group, the members of the bench-
marking team.

Proposal Writing. The benchmarking proposal, which is now being used as a
reference along the benchmarking, did not take the form of a paper document,

160 R. Garćıa-Castro and A. Gómez-Pérez

but of a web page5, which is publicly available and includes all the relevant
information about the benchmarking: motivation, goals, benefits and costs, tools
and people involved, planning, related events, and a complete description of the
experimentation and the benchmark suites.

Management Involvement. When analysing the benchmarking proposal, the
managers of the Ontology Engineering Group agreed on the continuity of the
benchmarking and on the allocation of future resources.

Partner Selection. To find other best-in-class organizations willing to partic-
ipate in the benchmarking, the following actions were taken:

– To research different ontology development tools, both freely available and
commercial ones, that could export and import to and from RDF(S) and to
contact the organizations that develop them.

– To announce the interoperability benchmarking and to call for participation
through the main mailing lists of the Semantic Web area and on those lists
specific to ontology development tools.

When writing this paper, five tools are participating in the benchmarking,
of these four are ontology development tools: KAON6, OntoStudio7, Protégé8

using its RDF backend, and WebODE9; and one is a RDF engine: Corese10. In
most cases, benchmarking is performed by the developers of the tools.

Planning and Resource Allocation. A plan for the full duration of the
benchmarking was not defined since it was decided to plan the benchmarking
phase by phase. Then, each of the organizations assigned enough people to per-
form the benchmarking.

5 Experiment Phase

Experiment Definition. Evaluating the interoperability of ontology develop-
ment tools using RDF(S) for ontology interchange requires that the importers
and exporters from/to RDF(S) of these tools work accurately in order to in-
terchange ontologies correctly. Therefore, the planning for the experimentation
included three consecutive stages, shown in Figure 2:

– Agreement stage. The quality of the benchmark suites to be used is es-
sential for the results of the benchmarking. Therefore, the first step in the
experimentation is to agree on the definition of these benchmark suites,
which will be common for all the tools. Section 6 deals with the definition
and use of these benchmark suites.

5 http://knowledgeweb.semanticweb.org/benchmarking interoperability/
6 http://kaon.semanticweb.org/
7 http://www.ontoprise.de/content/e3/e43/index eng.html
8 http://protege.stanford.edu/
9 http://webode.dia.fi.upm.es/

10 http://www-sop.inria.fr/acacia/soft/corese/

Benchmark Suites for Improving the RDF(S) Importers and Exporters 161

– Evaluation stage 1. The RDF(S) importers and exporters of the ontology
development tools are evaluated with the agreed versions of the benchmark
suites.

– Evaluation stage 2. Once the RDF(S) importers and exporters have been
evaluated, a second stage will cover the evaluation of the ontology inter-
change between ontology development tools.

Fig. 2. Experimentation Phases

Experiment Execution. When writing this paper, the benchmarking partici-
pants are in the Evaluation stage 2, performing the interoperability experiments
on the tools after having reached an agreement on the benchmark suites and
having performed the import and export experiments. By the beginning of June
2006, the experimentation will be finished, and the results obtained will be avail-
able in the benchmarking web page.

Experiment Result Analysis. Once the results of the experimentation on
each tool are available, the participants will analyse them as well as the practices
that lead to these results. They will also attempt to identify among the practices
found whether some of them can be considered best practices.

6 Definition of the Benchmark Suites

This section describes the three benchmark suites used in the benchmarking:
the RDF(S) Import Benchmark Suite and the RDF(S) Export Benchmark Suite
used in the Evaluation stage 1, and the RDF(S) Interoperability Benchmark
Suite to be used in the Evaluation stage 2.

6.1 RDF(S) Import Benchmark Suite

Our goal when defining the RDF(S) Import Benchmark Suite was to perform
an exhaustive evaluation of the RDF(S) import capabilities of the ontology de-
velopment tools, testing the import of RDF(S) ontologies.

The benchmark suite is composed of benchmarks that import an ontology
that models a simple combination of the components of the RDF(S) knowledge
model (classes, properties, instances, etc.) [10]. Assessing the import of real, large
or complex ontologies can be useless if we do not know if the importer can deal
correctly with simple ones. Besides, it is easier to find problems in simple cases
than in complex ones. These benchmarks can depend on the RDF(S) knowledge
model or on the RDF(S) syntax chosen:

162 R. Garćıa-Castro and A. Gómez-Pérez

– Benchmarks that depend on the knowledge model. These bench-
marks check the import of ontologies with different combinations of the
RDF(S) knowledge model components. Since the checking of the different
syntaxes of the selected RDF serialisation is performed in another group
of benchmarks, the syntax selected is one that is easily understood by hu-
mans. These benchmarks evaluate the import of single components, all the
possible combinations of two components with a property, combinations of
more than two components usually appearing together in RDF(S) graphs
such as the properties that have both domain and range (rdf:Property with
rdfs:domain and rdfs:range); the statements that have subject, predicate and
object (rdf:Statement with rdf:subject, rdf:predicate and rdf:object); and the
definitions of lists (rdf:List with rdf:first, rdf:rest and rdf:nil).

– Benchmarks that depend on the syntax. These benchmarks check the
import of ontologies with the different variants of the RDF/XML syntax,
as stated in the RDF/XML Syntax Specification [11] since this is the most
commonly used by ontology editors for importing and exporting ontologies.
• Different syntax of URI references: absolute URI references, URI ref-

erences relative to a base URI, URI references transformed from rdf:ID
attribute values, and URI references relative to an ENTITY declaration.

• Language identification attributes (xml:lang) in tags.
• Abbreviations of empty nodes, multiple properties, typed nodes, string

literals, blank nodes, containers, collections, and statements.
In the case of evaluating the import of RDF(S) using other syntax (N3,
N-Triples, etc.), only this group of benchmarks should be redefined.

As RDF(S) does not impose any restriction on the combinations of its com-
ponents, the number of resulting benchmarks is huge (more than 4000) and the
benchmark suite has to be pruned, as seen in [12], according to its intended use
and to the kind of tools that it is supposed to evaluate: ontology development
tools. Therefore, we only considered the RDF(S) components most frequently
used for modelling ontologies in these tools: rdfs:Class, rdf:Property, rdfs:Literal,
rdf:type, rdfs:domain, rdfs:range, rdfs:subClassOf, and rdfs:subPropertyOf. The
rest of the RDF(S) components have not been dealt with.

Table 1 shows the categories of the benchmark suite, which contains 72 bench-
marks, with the number of benchmarks and the components used in each cate-
gory. A detailed description of such benchmarks can be found in a web page11.

The definition of each benchmark in the benchmark suite, as Table 2 shows,
includes the following fields:

– An identifier for tracking the different benchmarks.
– A description of the benchmark in natural language.
– A graphical representation of the ontology to be imported in the benchmark.
– A file containing the ontology to be imported in the RDF/XML syntax.

11 http://knowledgeweb.semanticweb.org/benchmarking interoperability/
rdfs import benchmark suite.html

Benchmark Suites for Improving the RDF(S) Importers and Exporters 163

Table 1. Categories of the import benchmarks

Category No. Components used
Class 2 rdfs:Class
Metaclass 5 rdfs:Class, rdf:type
Subclass 5 rdfs:Class, rdfs:subClassOf
Class and property 6 rdfs:Class, rdf:Property, rdfs:Literal
Property 2 rdf:Property
Subproperty 5 rdf:Property, rdfs:subPropertyOf
Property with domain
and range

21 rdfs:Class, rdf:Property, rdfs:Literal,
rdfs:domain, rdfs:range

Instance 3 rdfs:Class, rdf:type
Instance and property 9 rdfs:Class, rdf:type, rdf:Property, rdfs:Literal
Syntax and abbreviation 14 rdfs:Class, rdf:type, rdf:Property, rdfs:Literal

Table 2. An example of a benchmark definition

Identifier I14
Description Import one class that has the same property with several

other classes
Graphical
representation

RDF/XML
file

<rdf:RDF xmlns="http://www.w3.org/2000/01/rdf-schema#"
xmlns:g1="http://www.test.org/graph14#"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#">
<Class rdf:about="http://www.test.org/graph14#class1">
<g1:prop1 rdf:resource="http://www.test.org/graph14#class2"/>
<g1:prop1 rdf:resource="http://www.test.org/graph14#class3"/>

</Class>
<Class rdf:about="http://www.test.org/graph14#class2"/>
<Class rdf:about="http://www.test.org/graph14#class3"/>

</rdf:RDF>

The steps for executing each import benchmark are the following:

1. To model into the ontology development tool the expected ontology that
results from importing the RDF(S) ontology .

2. To import the file with the RDF(S) ontology into the tool.
3. To compare the imported ontology with the expected ontology and to check

whether they are equivalent.

Although these steps can be performed manually, performing them (or part
of them) automatically is highly advised when dealing with many benchmarks,
especially for comparing the expected and imported ontologies.

The evaluation criteria used for the benchmark suite are:

– Modelling (YES/NO). The tool can model the ontology components de-
scribed in the benchmark.

164 R. Garćıa-Castro and A. Gómez-Pérez

Table 3. An example of the result of a benchmark execution

Tool Id Added Lost Model Execute Comments
Protégé I50 class - NO OK Undefined resources with instances

are imported as classes.
WebODE I50 - instance NO OK Instances of undefined resources

are not imported.

– Execution (OK/FAIL). The execution of the benchmark is normally carried
out without any problem, and the tool always produces the expected result.
When a failed execution occurred, the benchmarking participants were asked
to provide information for obtaining the practices used when developing the
RDF(S) importers. The information required was the following:
• The reasons for failing the benchmark execution.
• If the tool was corrected to pass a benchmark, the changes performed.

– Information added or lost. The information added or lost in the ontology
interchange when executing the benchmark.

Table 3 shows an example with the results of executing benchmark I50 (Import
one instance of a resource, without the resource definition) in two tools. While
both tools cannot model an instance of an undefined resource, they produce the
expected result, one inserting information and the other losing it.

6.2 RDF(S) Export Benchmark Suite

When defining the RDF(S) Export Benchmark Suite, our goal was to perform
an evaluation of the RDF(S) export capabilities of ontology development tools
by testing the export of ontologies modelled in these tools.

The benchmark suite for evaluating RDF(S) exporters is composed of bench-
marks that export a single ontology with a simple combination of the components
of the knowledge models of the tools.

The composition of the RDF(S) Export Benchmark Suite is similar to the
composition of the import one. Instead of taking as input the knowledge model
of RDF(S), we took as input a common core of the knowledge modelling com-
ponents that is very frequently used in ontology development tools: classes and
class hierarchies, object and datatype properties, instances, and literals.

Table 4 shows the categories of the benchmark suite, that contains 52 bench-
marks, with the number of benchmarks and the components used in each cate-
gory. A detailed description of such benchmarks can be found in a web page12.

The definition of each benchmark in the benchmark suite, as Table 5 shows,
includes the following fields:

– An identifier for tracking the different benchmarks.
– A description of the benchmark in natural language.

12 http://knowledgeweb.semanticweb.org/benchmarking interoperability/
rdfs export benchmark suite.html

Benchmark Suites for Improving the RDF(S) Importers and Exporters 165

– A graphical representation of the ontology to be exported by the tool.
– The instantiation of the ontology described in the benchmark for each of the

participating tools, using the vocabulary and components of these tools.

The steps for executing each export benchmark are the following:

1. To define in RDF(S) the expected ontology resulting from exporting the
ontology.

2. To model into the tool the ontology described in the benchmark.
3. To export the ontology modelled using the tool to RDF(S).
4. To compare the exported RDF(S) ontology with the expected RDF(S) on-

tology to check whether they are equivalent.

As in the case of the import benchmark suite, some automatic mean of per-
forming these steps is highly advisable.

The evaluation criteria used for the export benchmark suite are the same
as those from the import benchmark suite, that is, Modelling, Execution and
Information added or lost. The only difference with the import criteria is that,

Table 4. Categories of the export benchmarks

Category No. Components used
Class 2 class
Metaclass 5 class, instanceOf
Subclass 5 class, subClassOf
Class and object property 4 class, object property
Class and datatype property 2 class, datatype property, literal
Object property 13 object property
Datatype property 9 datatype property
Instance 3 class, instanceOf
Instance and object property 7 class, instanceOf, object property
Instance and datatype property 2 class, instanceOf, datatype property, literal

Table 5. An example of a benchmark definition

Identifier E09
Description Export one class that is subclass of several classes
Graphical
representation

WebODE’s
instantiation

Export one concept that is subclass of several concepts

Protégé’s
instantiation

Export one class that is subclass of several classes

... ...

166 R. Garćıa-Castro and A. Gómez-Pérez

as there may be a benchmark that defines an ontology that cannot be modelled
in a certain tool, that benchmark cannot be executed in the tool, being the
Execution result N.E. (Non Executed). In the import benchmark suite, even if a
tool cannot model some components of the ontology, it should be able to import
correctly the rest of the components.

6.3 RDF(S) Interoperability Benchmark Suite

Our goal when defining the RDF(S) Interoperability Benchmark Suite was to
evaluate the interoperability of ontology development tools by testing the inter-
change of ontologies from one origin tool to a destination one, and vice versa.

We considered the interchange of a common core of the knowledge modelling
components most frequently used for modelling ontologies. These are: classes and
class hierarchies, object and datatype properties, instances, and literals. As these
components are the same as those in the RDF(S) Export Benchmark Suite, the
Interoperability Benchmark Suite is identical to the RDF(S) Export Benchmark
Suite and has the same benchmark definitions as presented in Section 6.2.

The interoperability will be checked between each pair of tools. As the RDF(S)
exported files of all the tools will be available from the export experiments of the
Experiment stage 1, participants will not have to export these ontologies again,
they will just have to import the exported files into their tools.

The steps for executing each interoperability benchmark are the following:

1. To define in the destination tool the expected ontology resulting from inter-
changing the ontology.

2. To import the RDF(S) file exported by the origin tool into the destination
tool.

3. To compare the interchanged ontology with the expected ontology and to
check whether they are equivalent.

The evaluation criteria used for the interoperability benchmark suite are the
same as those from the export benchmark suite, that is, Modelling, Execution
and Information added or lost.

7 Evaluation of the Benchmark Suites

We have evaluated these benchmark suites according to the main desirable prop-
erties of a benchmark suite that many different authors have stated [7, 13, 14, 15]:
accessibility, affordability, simplicity, representativity, portability, scalability, ro-
bustness, and consensus.

Accessibility. The complete definition of the benchmark suites as well as all
the information relevant to the benchmarking are accessible to anyone in a
public web page. This page will include, when available, the results obtained
when executing the benchmark suites. Thus anyone can execute them and
compare their results with the ones available.

Benchmark Suites for Improving the RDF(S) Importers and Exporters 167

Affordability. The costs of using the benchmark suites and analysing their
results are mainly human resources. In order to reduce these costs and fa-
cilitate the work we provided a clear definition of the benchmark suites and
templates to fill in the results.

Simplicity. The benchmark suites are simple and interpretable because we have
provided different ways of defining each benchmark, i.e. in natural language,
graphically, etc. These benchmark suites and their results are also clearly
documented, having a common structure and use.

Representativity. Although the different benchmarks that compose the bench-
mark suites are not exhaustive or represent real-world ontologies, they rep-
resent the different structures of ontologies commonly used when developing
these ontologies; and a first evaluation of these simple ontologies is needed
before evaluating more complex ones.

Portability. The benchmark suites have been defined at a high level of abstrac-
tion, so they are not biased towards a certain tool or tools. Therefore, they
can be executed on a wide variety of environments and not just on ontology
development tools.

Scalability. The benchmark suites scale to work with tools at different levels
of maturity. Also, as their benchmarks are grouped according to the differ-
ent ontology components that they manage, it is quite easy to increase or
decrease the number of benchmarks by considering new components or by
taking into account only certain components of interest, respectively.

Robustness. As the results of the benchmark suites depend on the algorithms
implemented to perform the import and export of ontologies, they are not in-
fluenced by factors irrelevant to the study. Furthermore, running the bench-
mark suites with the same version of the tools will always produce the same
results.

Consensus. The benchmark suites were developed by experts in the domain of
ontology translation and interoperability and were assessed and agreed on
by the benchmarking partners and by the members of Knowledge Web.

8 Conclusions and Future Work

The interoperability benchmarking described in this paper is now taking place.
Although the benchmarking has not reached its Improve phase yet, the devel-
opers have already improved their tools by correcting the bugs detected while
executing the experiments.

Although the benchmarking has not finished yet, we have already learnt some
lessons from it. The main one is that benchmarking is a time consuming process
both to organize and to participate on it and it is also enduring. Besides, the in-
volvement of tool developers is a primary need, as they are the most appropriate
for and capable of analysing and improving the tools.

In addition to the benchmarking participants, other intended users of the
work here presented and of its future results are, on the one hand, end users who
want to know the current interoperability of ontology development tools before

168 R. Garćıa-Castro and A. Gómez-Pérez

selecting one of these tools and, on the other hand, ontology tool developers who
wish to improve the interoperability of their ontology development tools or of
any other ontology technology capable of interchanging ontologies by means of
their RDF(S) importers and exporters.

The RDF(S) Import Benchmark Suite can be used to evaluate the RDF(S)
import capabilities of any tool, while the RDF(S) Export and Interoperability
Benchmark Suites can be used to evaluate any kind of interoperability between
ontology development tools since these are not dependant on the interchange
language.

Once we will have the benchmarking results, we will be able to provide dif-
ferent kind of information about the interoperability of ontology development
tools for different groups of people. For example, from an ontology modelled in
a certain tool, we can obtain information about the possibility of interchanging
that ontology between that tool and any other tool.

The benchmarking web page will also provide mechanisms for updating the
interoperability results when the tools are improved, or for inserting the results
of a new tool.

Based on the structure and the definition of the benchmark suites, other
benchmark suites can be defined to consider the evaluation of interoperabil-
ity using other languages for interchanging ontologies. We have also started to
organise a benchmarking activity13, similar to this, for benchmarking the in-
teroperability of ontology development tools using OWL14 as the interchange
language.

Acknowledgments

This work is partially supported by a FPI grant from the Spanish Ministry of Ed-
ucation (BES-2005-8024), by the IST project Knowledge Web (IST-2004-507482)
and by the CICYT project Infraestructura tecnológica de servicios semánticos
para la web semántica (TIN2004-02660). Thanks to all the people participat-
ing in the benchmarking: Olivier Corby, York Sure, Moritz Weiten, and Markus
Zondler. Thanks to Rosario Plaza for reviewing the grammar of this paper.

References

1. Sure, Y., Corcho, O., eds.: Proceedings of the 2nd International Workshop on Eval-
uation of Ontology-based Tools (EON2003). Volume 87 of CEUR-WS., Florida,
USA (2003)

2. Euzenat, J., Stuckenschmidt, H.: The ‘Family of Languages’ approach to semantic
interoperability. In Omelayenko, B., Klein, M., eds.: Knowledge transformation for
the semantic web. IOS press, Amsterdam (NL) (2003) 49–63

3. Spendolini, M.: The Benchmarking Book. AMACOM, New York, NY (1992)

13 http://knowledgeweb.semanticweb.org/benchmarking interoperability/owl/
14 http://www.w3.org/TR/owl-features/

Benchmark Suites for Improving the RDF(S) Importers and Exporters 169

4. Wohlin, C., Aurum, A., Petersson, H., Shull, F., Ciolkowski, M.: Software inspec-
tion benchmarking - a qualitative and quantitative comparative opportunity. In:
Proceedings of 8th International Software Metrics Symposium. (2002) 118–130

5. Kitchenham, B.: DESMET: A method for evaluating software engineering methods
and tools. Technical Report TR96-09, Department of Computer Science, University
of Keele, Staffordshire, UK (1996)

6. Sill, D.: comp.benchmarks frequently asked questions version 1.0 (1996)
7. Sim, S., Easterbrook, S., Holt, R.: Using benchmarking to advance research: A

challenge to software engineering. In: Proceedings of the 25th International Con-
ference on Software Engineering (ICSE’03), Portland, OR (2003) 74–83

8. Arṕırez, J., Corcho, O., Fernández-López, M., Gómez-Pérez, A.: WebODE in a
nutshell. AI Magazine 24 (2003) 37–47

9. Garćıa-Castro, R., Gómez-Pérez, A.: Guidelines for benchmarking the performance
of ontology management APIs. In: Proceedings of the 4th International Semantic
Web Conference (ISWC2005). Number 3729 in LNCS, Galway, Ireland, Springer-
Verlag (2005) 277–292

10. Brickley, D., Guha, R.V. (editors): RDF Vocabulary Description Language 1.0:
RDF Schema. W3C Recommendation 10 February 2004 (2004)

11. Beckett, D. (editor): RDF/XML Syntax Specification (Revised). W3C Recommen-
dation 10 February 2004 (2004)

12. Garćıa-Castro, R., Gómez-Pérez, A.: A method for performing an exhaustive evalu-
ation of RDF(S) importers. In: Proceedings of the Workshop on Scalable Semantic
Web Knowledge Based Systems (SSWS2005). Number 3807 in LNCS, New York,
USA, Springer-Verlag (2005) 199–206

13. Bull, J.M., Smith, L.A., Westhead, M.D., Henty, D.S., Davey, R.A.: A methodology
for benchmarking java grande applications. In: Proceedings of the ACM 1999
conference on Java Grande. (1999) 81–88

14. Shirazi, B., Welch, L., Ravindran, B., Cavanaugh, C., Yanamula, B., Brucks, R.,
Huh, E.: Dynbench: A dynamic benchmark suite for distributed real-time systems.
In: Proc. of the 11 IPPS/SPDP’99 Workshops, Springer-Verlag (1999) 1335–1349

15. Stefani, F., Macii, D., Moschitta, A., Petri, D.: FFT benchmarking for digital signal
processing technologies. In: 17th IMEKO World Congress, Dubrovnik (2003)

Repairing Unsatisfiable Concepts in OWL
Ontologies

Aditya Kalyanpur1, Bijan Parsia1, Evren Sirin1, and Bernardo Cuenca-Grau2,�

1 MINDLAB, University of Maryland, College Park, USA��

aditya@cs.umd.edu, bparsia@isr.umd.edu, evren@cs.umd.edu
2 School of Computer Science, University of Manchester, UK

bcg@cs.man.ac.uk

Abstract. In this paper, we investigate the problem of repairing unsat-
isfiable concepts in an OWL ontology in detail, keeping in mind the user
perspective as much as possible. We focus on various aspects of the repair
process – improving the explanation support to help the user understand
the cause of error better, exploring various strategies to rank erroneous
axioms (with motivating use cases for each strategy), automatically gen-
erating repair plans that can be customized easily, and suggesting appro-
priate axiom edits where possible to the user. Based on the techniques
described, we present a preliminary version of an interactive ontology
repair tool and demonstrate its applicability in practice.

1 Introduction

Now that OWL is a W3C Recommendation, one can expect that a much wider
community of users and developers will be exposed to the expressive description
logic SHOIN (D) which is the basis of OWL-DL. As semantic descriptions in
OWL ontologies become more complicated, ontology debugging becomes an ex-
tremely hard task for users, especially for those with little or no experience in
description-logic-based knowledge representation. In such cases, ontology debug-
ging tools are needed to explain and pinpoint defects in ontological definitions.

A common defect found in OWL Ontologies is unsatisfiable concepts, i.e.,
concepts which cannot have any individuals. Unsatisfiable concepts are usually
a fundamental modeling error, and are also quite easy for a reasoner to detect
and for a tool to display. However, determining why a concept in an ontology is
unsatisfiable can be a considerable challenge even for experts in the formalism
and in the domain, even for modestly sized ontologies. The problem worsens
significantly as the number and complexity of axioms of the ontology grows.

� This author is is supported by the EU Project TONES (Thinking ONtologiES) ref:
IST-007603.

�� This work was completed with funding from Fujitsu Laboratories of America Col-
lege Park, Lockheed Martin Advanced Technology Laboratory, NTT Corp., Kevric
Corp., SAIC, National Science Foundation, National Geospatial-Intelligence Agency,
DARPA, US Army Research Laboratory, NIST, and other DoD sources.

Y. Sure and J. Domingue (Eds.): ESWC 2006, LNCS 4011, pp. 170–184, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Repairing Unsatisfiable Concepts in OWL Ontologies 171

In our previous work, we have developed a suite of techniques for debugging
unsatisfiable concepts in OWL Ontologies [6]. Our work focused on two key
aspects: given a large number of unsatisfiable concepts in an ontology, identi-
fying the root and derived unsatisfiable concepts from among them; and given
a particular unsatisfiable concept in an ontology, extracting and presenting to
the user the minimal set of axioms from the ontology responsible for making
it unsatisfiable. We have provided an optimized implementation in the reasoner
Pellet [14], a UI in the ontology editor Swoop [5], and proposed various enhance-
ments in the display to improve the explanation of the cause of error. We have
shown through a user study that these techniques are effective for debugging
inconsistency errors in OWL ontologies.

However, while the emphasis was on pinpointing and explaining the errors in
OWL ontologies, there was a lack of support for (semi-)automatically repairing
or fixing them. Though in most cases, repairing errors is left to the ontology mod-
eler’s (/author’s) discretion, and understanding the cause of the error certainly
helps make resolving it much easier, bug resolution can still be a non-trivial
task, requiring an exploration of remedies with a cost/benefit analysis, and tool
support here can be quite useful.

In this paper, we present the following main contributions:

– We enhance the information that drives the repair process by modifying
our algorithm to capture the part(s) of axiom(s) responsible for an error
(section 3.2)

– We propose a technique to generate repair solutions automatically based on
strategies used to rank erroneous axioms and a modified Reiter’s Hitting Set
algorithm (sections 3.3, 3.4). In addition, we consider strategies for rewriting
axioms (section 3.5).

– We describe a preliminary implementation of an interactive ontology repair
tool and discuss results of a conducted pilot study (section 3.6).

Note that while we focus on repairing unsatisfiable concepts in a consistent
OWL Ontology, the underlying problem involves dealing with and rectifying a set
of erroneous axioms, and thus the same principles for generating repair solutions
are applicable when debugging an inconsistent OWL ontology.

2 Related Work

To our knowledge, the most relevant work is described in [13], where the authors
identify minimal conflicting axiom sets responsible for unsatisfiable concepts in
an ALC knowledge base, and then in [11], [12] use Reiter’s Hitting Set algorithm
to compute repair solutions from the conflict sets.

However, we differ from the work above in two key respects: our axiom-based
solution works for a much more expressive description logic SHOIN , and hence
OWL-DL, with a finer granularity (identifying erroneous parts of axioms); and
we consider ranking axioms for our repair solution and accordingly modify the
Reiter’s HS algorithm to generate repair plans.

172 A. Kalyanpur et al.

3 Ontology Repair

3.1 Preliminaries

Before proceeding further, we revisit the notion of a MUPS (Minimal Unsatisfi-
ability Preserving Sub-TBoxes), which was formally introduced in [13]. Roughly,
a MUPS for an atomic concept A is a minimal fragment of the KB in which A
is unsatisfiable. Obviously, a concept may have several different MUPS within
an ontology. Finding all the MUPS of an unsatisfiable concept is a critical task
from a debugging point of view, since one needs to remove at least one axiom
from each set in its MUPS in order to make the concept satisfiable.

3.2 Continuing Where We Left Off

Improving Axiom-Based Explanation. A key component of our earlier de-
bugging solution was the Axiom Pinpointing service which was used to extract
the MUPS of a concept that is unsatisfiable w.r.t. a SHOIN knowledge base
[4]. We have since extended this service to identify specific parts of axioms that
are responsible for the inconsistency, and we refer to the resultant axiom set as
the precise MUPS.

We briefly describe the idea behind this extension here (for details of our im-
plementation, see [4]). Since we aim at identifying relevant parts of axioms, we
define a function that splits the axioms in a KB K into “smaller” axioms to obtain
an equivalent KB Ks that contains as many axioms as possible. This function
rewrites the axioms in K in a convenient normal form and split across conjunc-
tions in the normalized version, e.g., rewriting A 	 C D as A 	 C, A 	 D. In
some cases, we are forced to introduce new concept names, only for the purpose
of splitting axioms into smaller sizes (which prevents any arbitrary introduction
of new concepts); for example, since the axiom A 	 ∃R.(CD) is not equivalent
to A 	 ∃R.C, A 	 ∃R.D, we introduce a new concept name, say E, and trans-
form the original axiom into the following set of “smaller” axioms: A 	 ∃R.E,
E 	 C, E 	 D, C D 	 E. Finally, the problem of finding the precise MUPS
of an unsatisfiable concept in K reduces to the problem of finding its MUPS in
the split version of the KB Ks. Note that to prevent an exponential blowup, we
do not split the entire KB beforehand, instead perform a lazy splitting of certain
specific axioms on the fly (as described in [4]).

Fig. 1. Displaying the minimal set of axioms from the ontology (with key entities
highlighted and irrelevant parts struck out) responsible for making the concept AI Dept
in the University ontology unsatisfiable

Repairing Unsatisfiable Concepts in OWL Ontologies 173

Given the precise MUPS, any tool used to display it for the purpose of de-
bugging the error can choose a suitable presentation format to highlight the
relevant parts. For our debugging tool UI, we chose to strike out irrelevant parts
of axioms that do not contribute to the contradiction (see Figure 1). So far, our
tests have shown that this form of highlighting makes a significant difference in
the presentation and greatly aids repair, since it makes it explicit to the user,
the part of the axiom(s) that needs to be altered in order to resolve the bug.

3.3 Strategies for Ranking Axioms

We now discuss a key piece of the repair process: selecting which erroneous
axiom(s) to remove from the MUPS in order to fix the unsatisfiable concepts.

For this purpose, an interesting factor to consider is whether the axioms in
the MUPS can be ranked in order of importance. Repair is then reduced to an
optimization problem whose primary goal is to get rid all of the inconsistency
errors in the ontology, while ensuring that the highest rank axioms are preserved
and the lowest rank axioms removed from the ontology.

A simple criterion to rank axioms is to count the number of times it appears
in the MUPS of the various unsatisfiable concepts in an ontology. This idea is
similar to the notion of arity of the axiom as discussed in [13]. If an axiom
appears in n different MUPS (in each set of the MUPS), removing the axiom
from the ontology ensures that n concepts turn satisfiable. Thus, higher the
frequency, lower the rank assigned to the axiom.

Besides the axiom frequency in the MUPS, we consider the following strategies
to rank ontology axioms:

– Impact on ontology when the axiom is removed or altered (need to identify
minimal impact causing changes)

– Test cases specified manually by the user to rank axioms
– Provenance information about the axiom (author, source reliability, time-

stamp etc.)
– Relevance to the ontology in terms of its usage

Impact Analysis. The basic notion of revising a knowledge base while pre-
serving as much information as possible has been discussed extensively in belief
revision literature [1]. We now apply the same principle to repairing unsatisfi-
able concepts in an OWL ontology, i.e., we determine the impact of the changes
made to the ontology in order to get rid of unsatisfiable concepts, and identify
minimal-impact causing changes. Since repairing an unsatisfiable concept in-
volves removing axioms in its MUPS, we consider the impact of axiom removal
on the OWL ontology.

A fundamental property of axiom removal based on the monotonicity of OWL-
DL is the following: removing an axiom from the ontology cannot add a new
entailment. Hence, we only need to consider entailments (subsumption, instan-
tiation etc.) that are lost upon axiom removal, and need not consider whether
other concepts in the ontology turn unsatisfiable.

174 A. Kalyanpur et al.

For now, we shall only consider subsumption/disjointness (between atomic
concepts) and instantiation (of atomic concepts) as the only interesting entail-
ments to check for when an axiom is removed. In the next subsection, we discuss
how the user can provide a set of test cases as additional interesting entailments
to check for.

As mentioned earlier, our Axiom Pinpointing service computes the minimal
set of axioms (justification) responsible for any arbitrary entailment of an OWL-
DL ontology . Thus, we can use this service to compute the justification sets
for the significant subsumption and instantiation relationships in the ontology.
When removing an axiom, we can check if it falls into a particular justification
set, and accordingly determine which subsumption and/or instantiation rela-
tion(s) would break directly. Axioms to be removed can then be ranked based
on the number of entailments they break (higher the rank, lesser the entailments
broken).

An important distinction is the entailments resulting from the unsatisfiable
concepts in the ontology. Note that when a concept is unsatisfiable, it is equiv-
alent to the bottom concept (or in OWL lingo, owl:Nothing), and hence is
trivially equivalent to all other unsatisfiable concepts, and is a subclass of all
satisfiable concepts in the ontology. In this case, we need to differentiate be-
tween the stated or explicit entailments related to unsatisfiable concepts and
the trivial ones. Thus, we apply the following strategy: if a given entailment
related to an unsatisfiable concept holds in a fragment of the ontology in which
the concept is satisfiable, we consider the entailment to be explicit.

There are two techniques to obtain such explicit entailments: the first is a brute-
force approach that involves considering all possible (minimal) solutions to fix the
unsatisfiable concept in the ontology, and verifying if the entailment still holds in
the modified ontology. In order to obtain minimal repair solutions, we can use
Reiter’s algorithm as seen in the next section. On the other hand, the second ap-
proach is much faster (though incomplete) and is based on using the structural
analysis techniques seen in [6] to detect the explicit relationships involving unsat-
isfiable concepts without performing large scale ontology changes. For example,
we can use the Ontology Approximation heuristic to get rid of the contradictions
in the ontology while revealing the hidden subsumption entailments.

Having obtained the explicit entailments related to unsatisfiable concepts, we
can present them to the user to learn which, if any, of the relationships are
(un)desired. This information would then be used in the plan generation phase.

We consider a few examples that highlight the significance of this strategy.

Example 1. In the Tambis OWL ontology1, the three critical unsatisfiable con-
cepts are: metal, non-metal, metalloid. The unsatisfiability arises because
each concept is defined to be equivalent to the same complex concept: chemical
 (=1)atomic-number ∃atomic-number.integer, and also defined to be dis-
joint from each other.

1 Note: All ontologies mentioned in this paper are available online at
http://www.mindswap.org/ontologies/debugging/

Repairing Unsatisfiable Concepts in OWL Ontologies 175

In this case, though the disjoint axioms appear in each of the three unsatisfiable
concepts MUPS, removing them is not the correct solution, since eliminating the
disjointness makes all three concepts metal, non-metal, metalloid equivalent
which is probably undesired.

In fact, a better solution is to weaken the equivalence to a subclass relation-
ship in each concept definition, thereby getting rid of the subclasses: chemical
 (=1)atomic-number ∃atomic-number.integer 	 metal / non-metal /
metalloid; and we find that removing these relationships has no impact on
other entailments in the ontology.

Example 2. Consider the following MUPS of an unsatisfiable concept Ocean-
CrustLayer w.r.t. the Sweet-JPL ontology O: { (1) OceanCrustLayer 	
CrustLayer, (2) CrustLayer 	 Layer, (3) Layer 	 Geometric 3D Object,
(4) Geometric 3D Object 	 ∃ hasDimension. {3D}, (5) OceanCrustLayer 	
OceanRegion, (6) OceanRegion 	 Region, (7) Region 	 Geometric 2D Object,
(8) Geometric 2D Object 	 ∃ hasDimension. {2D}, (9) hasDimension is Func-
tional }.

Note that in O, each of the concepts CrustLayer, OceanRegion, Layer, Region,
Geometric 3D Object, Geometric 2D Object, has numerous individual sub-
classes.

In this case, removing the functional property assertion on hasDimension from
O eliminates the disjoint relation between concepts Geometric 2D Object and
Geometric 3D Object, and between all its respective subclasses. Also, removing
any of the following axioms 2, 3, 4, 6, 7, 8 eliminates numerous subsumptions from
the original ontology. Thus, using the minimal impact strategy, the only option
for repair is removing either 1 or 5, which turns out to be the correct solution,
based on the feedback given by the original ontology authors.

User Test Cases. In addition to the standard entailments considered in the
previous subsection, the user can specify a set of test cases describing desired
entailments. Axioms to be removed can be directly ranked based on the desired
entailments they break.

Also, in some cases, the user can specify undesired entailments to aid the re-
pair process. For example, a common modeling mistake is when an atomic con-
cept C inadvertently becomes equivalent to the top concept, owl:Thing. Now,
any atomic concept disjoint from C becomes unsatisfiable. This phenomenon oc-
curred in the CHEM-A ontology, where the following two axioms caused concept
A (anonymized) to become equivalent to owl:Thing: {A ≡ ∀R.C, domain(R, A)
}. Here, specifying the undesired entailment prevented our ontology-effect strat-
egy from considering the impact of removal of the erroneous axiom (in this case,
the equivalence, which needed to be changed to a subclass) on this entailment.

Provenance Information Regarding Change. Provenance information
about an axiom can act as a useful pointer for determining its importance/rank,
i.e., based on factors such as:

176 A. Kalyanpur et al.

– reliability of the source (author, document etc.)
– context/reason for which the axiom was added (specified as an annotation

or otherwise)
– time the axiom was specified

OWL has support for adding human-readable annotations to entities in an
ontology using owl:AnnotationProperties such as rdfs:label, rdfs:comment.
However, there is no direct provision to annotate assertions or axioms in the
ontology, unless one resorts to reification. In general, manually providing prove-
nance information about axioms can be a tedious task, and thus tool support
is critical. To address this issue, ontology editors such as Protege [7], KAON
[8] and Swoop have the option to maintain an elaborate change log to record
provenance information.

In Swoop, we automatically keep track of all changes made to an OWL on-
tology, storing information such as authorship, date etc of each change. Addi-
tionally, we use a change-ontology that represents various atomic and complex
change operations to serialize the change-log to RDF/XML, which can then be
shared among users.

Such information is extremely useful for ranking axioms in a collaborative
ontology building context, i.e., if a group of authors are collectively building an
ontology, and there exists a precedence level among the authors, i.e., ontology
changes made by the supervisor are given higher priority than those made by a
subordinate. In this case, for each change made, one can derive the corresponding
axioms added to the ontology, and automatically determine the rank of each
axiom based on the person making the change.

Syntactic Relevance. There has been research done in the area of ontology
ranking [2], where for example, terms in ontologies are ranked based on their
structural connectedness in the graph model of the ontology, or their popularity
in other ontologies, and the total rank for the ontology is assigned in terms
of the individual entity ranks. Since an ontology is a collection of axioms, we
can, in theory, explore similar techniques to rank individual axioms. The main
difference, of course, lies in the fact that ontologies as a whole can be seen as
documents which link to (or import) other ontology documents, whereas the
notion of linkage is less strong for individual axioms.

Here, we present a simple strategy that ranks an axiom based on the usage
of elements in its signature, i.e., for each OWL entity (atomic class, property or
individual) in the signature of the axiom, we determine how often the entity has
been referenced in other axioms in the ontology, and sum the reference counts
for all the entities in the axiom signature to obtain a measure of its syntactic
(or structural) relevance.

The significance of this strategy is based on the following intuition: if the
entities in the axiom are used (or are referred to) often in the remaining axioms
or assertions of the ontology, then the entities are in some sense, core or central
to the overall theme of the ontology, and hence changing or removing axioms
related to these entities may be undesired. For example, if a certain concept is

Repairing Unsatisfiable Concepts in OWL Ontologies 177

heavily instantiated, or if a certain property is heavily used in the instance data,
then altering the axiom definitions of that concept or property is a change that
the user needs to be aware of. Similarly, in large ontologies where certain entities
are accidentally underspecified or unused, axioms related to these entities may
be given less importance.

The simple strategy presented above can be altered in various ways such as by
restricting usage counts to certain axiom types, and/or weighing certain kinds
of axioms differently than others (e.g., weighing property attribute assertions
such as InverseFunctional higher). This would be motivated by user prefer-
ences depending on the ontology modeling philosophy and purpose (e.g., see
OntoClean [3]).

3.4 Generating Repair Solutions

So far, we have devised a procedure to find tagged MUPS for an unsatisfiable
concept in an OWL-DL ontology and proposed various strategies to rank axioms
in the MUPS. The next step is to generate a repair plan (i.e., a set of ontology
changes) to resolve the errors in a given set of unsatisfiable concepts, taking into
account their respective MUPS and axiom ranks.

Modifying Reiter’s Algorithm. For this purpose, we use the Reiter’s Hitting
Set algorithm [10], which given a diagnosis problem and a collection of conflict
sets for that problem, generates minimal hitting sets from the conflict sets. A
hitting set for a collection of sets C is a set that touches (or intersects) each set
in C. A hitting set is minimal for C, if no proper subset of it is a hitting set for
C. This approach was suggested in [12], which generates hitting sets from the
MUPS – the idea here is that removing all the axioms in the minimal hitting
set removes one axiom from each of the MUPS and thus renders all concepts
satisfiable. The same principle applies to our repair solution except that we need
to modify the HS algorithm to take into account the axiom ranks.

Given a collection C of conflict sets, Reiter’s algorithm introduces the notion
of a hitting set tree (HST), which is the smallest edge-labeled and node-labeled
tree such that a node n in HST is labeled by a tickmark if C is empty, otherwise
its labeled with any set s ∈ C. For each node n, let H(n) be the set of edge labels
on the path in HST from the root to n; then the label for n is any set s ∈ C, that
satisfies the property s ∩H(n) ← ∅, if such a set exists. If n is labeled by a set
s, then for each σ ∈ s, n has a successor nσ joined to n by an edge labeled by σ.
For any node labeled by a tickmark, the labels of its path from the root (H(n))
is a hitting set for C. Also, while generating the HST, if the search along a path
exceeds the current optimal solution, the search is terminated earlier, marked
by a cross in the label of a node.

Now for our problem, the MUPS of the unsatisfiable concepts correspond to
the conflict sets. However, while the normal HST algorithm has the optimality
criteria as the minimal path length, we set it as the minimal path rank instead,
i.e., the sum of the ranks of the axioms in the path H(n) should be minimal.
Also, in the standard algorithm, there is no basis for selecting an axiom over

178 A. Kalyanpur et al.

another while building the edges of the HST, whereas we can use the ranks of
the axioms when making a selection to prune down the search space, i.e., at each
stage, we select the lowest ranked axiom while creating a new edge.

Figure 2 shows a HST for a collection C = {{2, 5}, {3, 4, 7}, {1, 6}, {4, 5, 7},
{1, 2, 3}} with the axioms 1− 7 ranked as follows: r(1) = 0.1, r(2) = 0.2, r(3) =
0.3, r(4) = 0.4, r(5) = 0.3, r(6) = 0.3, r(7) = 0.5, where r(x) is the rank of
axiom x. The ranks are computed based on the factors mentioned earlier, such
as arity, impact analysis etc. each weighed separately if needed using appropriate
weight constants. The superscript for each axiom-number denotes the rank of
the axiom, and Pr is the path rank computed as the sum of the ranks of axioms
in the path from the root to the node. For example, for the leftmost path shown:
Pr = 0.2 + 0.3 + 0.1 + 0.3 = 0.9.

Fig. 2. Modified Reiter’s Hitting Set Algorithm: Generating a repair plan based
on ranks of axioms in the MUPS of unsatisfiable concepts

As shown in the figure, by choosing the lowest rank axiom in each set while
constructing the edges of the HST, the algorithm only generates 3 hitting sets,
two of which are minimal, while avoiding numerous path checks (indicated by
the crosses). The repair solution found with the minimal path rank is either
{2,4,1} or {5,3,1}.

However, there is a drawback of using the above procedure to generate repair
plans, i.e., impact analysis is only done at a single axiom level, whereas the
cumulative impact of the axioms in the repair solution is not considered. This
can lead to non-optimal solutions. For example, in the Tambis ontology, where
the three root classes are asserted to be mutually disjoint, removing any one
of the disjoint axioms does not cause as large an impact as removing all the
disjoints together.

Repairing Unsatisfiable Concepts in OWL Ontologies 179

In order to resolve this issue, we propose another modification to the algorithm
above: each time a hitting-set HS is found, we compute a new path-rank for HS
based on the cumulative impact of the axioms in the hitting-set. The algorithm
now finds repair plans that minimize these new path-ranks. Note that the early
termination condition for paths remains the same since the path rank represents
a lower bound, as cumulative impact is always greater than or equal to the sum
of individual unique impacts.

Improving and Customizing Repair. The algorithm described above can be
used in general to fix any arbitrary set of unsatisfiable concepts, once the MUPS
of the concepts and the ranks for axioms in the MUPS is known. Thus, a brute
force solution for resolving all the errors in an ontology involves determining the
MUPS (and ranking axioms in the MUPS) for each of the unsatisfiable concepts.
This is computationally expensive and moreover, unnecessary, given that strong
dependencies between unsatisfiable concepts may exist. Thus, we need to focus
on the MUPS of the critical or root contradictions in the ontology.

To achieve this, we make use of a debugging service we have devised in [6]
that identifies the root unsatisfiable concepts in an ontology, which propagate and
cause errors elsewhere in the ontology, leading to derived unsatisfiable concepts.
Intuitively, a root unsatisfiable concept is one in which a clash or contradiction
found in the concept definition does not depend on the unsatisfiability of another
concept in the ontology; whereas, a derived unsatisfiable concept acquires a con-
tradiction due to its dependence on another unsatisfiable concept. For example,
if A is an unsatisfiable concept, then a concept B (B 	 A) or C (C 	 ∃R.A)
also becomes unsatisfiable due to its dependence on A, and is thus considered
as derived.

We have experimented with the root/derived debugging service on numerous
OWL ontologies that have a large number of unsatisfiable concepts and found
it to be useful in narrowing down the error space quickly, e.g, for the Tambis
OWL Ontology, only 3 out of 144 unsatisfiable concepts were discovered as roots
in under 5 seconds. From a repair point of view, the key advantage here is that
one needs to focus on the MUPS of the root unsatisfiable concepts alone since
fixing the roots effectively fixes a large set of directly derived concept bugs.

Also, the service guides the repair process which can be carried out by the
user at three different granularity levels:

– Level 1: Reparing a single unsatisfiable concept at a time: In this case, it
makes sense to deal with the root unsatisfiable concepts first, before resolv-
ing errors in any of the derived concepts. This technique allows the user to
monitor the entire debugging process closely, exploring different repair al-
ternatives for each concept before fully fixing the ontology. However, since
at every step in the repair process, the user is working in a localized con-
text (looking at a single concept only), the debugging of the entire ontology
could be prolonged due to new bugs introduced later based on changes made
earlier. Thus, the repair process may not be optimal.

180 A. Kalyanpur et al.

– Level 2: Repairing all root unsatisfiable concepts together : The user could
batch repair all the root unsatisfiable concepts in a single debugging iter-
ation before proceeding to uncover a new set of root/derived unsatisfiable
concepts. This technique provides a cross between the tool-automation (done
in level 3) and finer manual inspection (allowed in level 1) with respect to
bug correction.

– Level 3: Repairing all unsatisfiable concepts: The user could directly focus on
removing all the unsatisfiable concepts in the ontology in one go. This tech-
nique imposes an overhead on the debugging tool which needs to present a
plan that accounts for the removal of all the bugs in an optimal manner. The
strategy works in a global context, considering bugs and bug-dependencies
in the ontology as a whole, and thus may take time for the tool to compute,
especially if there are a large number of unsatisfiable concepts in the ontol-
ogy (e.g. Tambis). However, the repair process is likely to be more efficient
compared to level 1 repair.

The number of steps in the repair process depends on the granularity level
chosen by the user: for example, using Level 1 above, the no. of steps is atleast
the no. of unsatisfiable concepts the user begins with; whereas using Level 3
granularity, the repair reduces to a single big step. To make the process more
flexible, the user should be allowed to change the granularity level, as and when
desired, during a particular repair session.

3.5 Suggesting Axiom Rewrites

Now, to make our repair solution more flexible, we consider strategies to rewrite
erroneous axioms instead of strictly removing them from the ontology2.

Using Erroneous Axiom Parts. As shown in section 3.2 (see Figure 1), our
Axiom Pinpointing service has been extended to identify parts of axioms in
the MUPS responsible for making a concept unsatisfiable. Having determined
the erroneous part(s) of axioms, we can suggest a suitable rewrite of the axiom
that preserves as much as information as possible while eliminating unsatisfia-
bility.

Identifying Common Pitfalls. Common pitfalls in OWL ontology model-
ing have been enumerated in literature [9]. We have summarized some com-
monly occurring errors that we have observed (in addition to those mentioned
in [9]), highlighting the meant axiom and the reason for the mistake in each
case.
2 Note that rewriting an axiom involves an axiom removal followed by an addition.

Thus, similar to the impact analysis performed for axiom removal, we also need to
consider entailments that are introduced when an axiom is added. Currently, we only
check if unsatisfiable concepts arise upon axiom addition, and we are working on iter-
ative reasoning techniques (see http://www.mindswap.org/papers/TR-incclass.pdf)
to optimally compute other entailments added.

Repairing Unsatisfiable Concepts in OWL Ontologies 181

Asserted Meant Reason for Misunderstanding
A ≡ C A 	 C Difference between

Defined and Primitive concepts
A 	 C A 	 C �D Multiple subclass
A 	 D has intersection semantics

domain(P,A) A 	 ∀P.B Global vs. Local
range(P,B) property restrictions
domain(P,A) domain(P, A �B) Unclear about multiple domain
domain(P,B) semantics

A library of error patterns can be easily maintained, extended and shared be-
tween ontology authors using appropriate tool support. Once we have identified
the axioms in the ontology responsible for an unsatisfiable concept, we can check
if any of the axioms has a pattern corresponding to one in the library, and if so,
suggest the meant axiom to the user as a replacement. We note that in a lot of
cases that we have observed, the most common reason for unsatisfiability is the
accidental use of equivalence instead of subsumption.

In some cases, an additional heuristic to consider is the label (or ID) of the
concept or role, which acts as a pointer to its intended meaning and can be
used to detect mismatches in modeling. For example, the unsatisfiable concept
OceanCrustLayer seen earlier in the Sweet-JPL OWL ontology was accidentally
defined to be a subclass of CrustRegion, instead of CrustLayer.

A combination of the heuristics was used to debug an error in the University
ontology. The concept ProfessorInHCIorAI was responsible for the unsatisfi-
able concepts AI Student and HCI Student because there were two separate
subclass axioms for ProfessorInHCIorAI, associating it with the student con-
cepts separately, whereas the ‘or’ in the concept name implied that a disjunction
was intended.

3.6 Interactive Repair Tool (Preliminary Evaluation)

We are currently working on an ontology repair plug-in for Swoop. The key design
goal is to provide a flexible, interactive framework for repairing unsatisfiable
concepts in an ontology by allowing the user to analyze erroneous axioms, weigh
axiom ranks as desired, explore different repair solutions by generating plans on
the fly, preview change effects before executing the plan and compare different
repair alternatives. Moreover, the tool also suggests axiom edits where possible.

Figure 3 is a screenshot of the Swoop repair plugin when used to debug the
University OWL ontology. As can be seen, the top segment of the repair frame
displays a list of unsatisfiable concepts in the ontology, with the root classes
marked. The adjacent pane renders the axioms responsible for making the con-
cepts selected in the list unsatisfiable. There are two view modes for this pane –
the one shown in Figure 3 displays the erroneous axioms for each unsatisfiable
class in separate tables with axioms indented (as described in [6]), and common
axioms responsible for causing multiple errors highlighted as shown. The other
view (not shown) displays all erroneous axioms globally in a single list.

182 A. Kalyanpur et al.

Fig. 3. Interactive Repair in Swoop: Generating a repair plan to remove all root
unsatisfiable concepts in the University OWL Ontology. The popup in the lower right
corner displays a preview of the current repair plan including unsatisfiable concepts
that would get fixed and key entailments that would be lost or retained.

The tables display for each axiom, its arity, impact and usage, computed as
described earlier. The values for these parameters are hyperlinked, clicking on
which pops up a pane which displays more details about the parameter (not
shown in the figure). Also, clicking on the table headers re-sorts the results
based on the parameter selected. The total rank for each axiom, displayed in the
last column of the table, is the weighted sum of the parameter values, with the
weights (and thus ranks) being easily reconfigurable by the user. For example,
users interested in generating minimal impact plans can assign a higher weight
to the impact parameter, while users interested in smaller sized plans can weigh
arity higher. The range of the weights is from -1.0 to 1.0.

As discussed earlier, we provide three different granularities for the repair
process, i.e., the ability to fix a particular set of unsatisfiable concepts; all the
roots only; or all the unsatisfiable classes directly in one go. For example, in
Figure 3, the user has asked the tool to generate a plan to repair all the roots.

For a repair tool to be effective, it should support the easy customization of
the plan to suit the user’s needs. In the simple case, the user can either choose
to keep a particular axiom in the ontology, or forcibly remove a particular one.
These user-enforced changes are automatically reflected in the plans. In Figure
3, the user has chosen to keep the disjoint axioms AIStudent 	 ¬HCIStudent,
and Lecturer 	 ¬AssistantProfessor in the ontology (highlighted in green in the

Repairing Unsatisfiable Concepts in OWL Ontologies 183

Table). In the advanced case, the user can choose to keep or remove a particular
entailment of the ontology, e.g., a particular subclass relation. The tool then
takes these desired and undesired entailments into account when generating a
plan.

Finally, axiom rewrites suggested by the tool can be (optionally) included
in the plan as well. In the figure, the tool has suggested weakening the two
equivalence axioms to subclass relations, which removes the contradictions in the
unsatisfiable classes, but preserves the semantics as much as possible. Obviously,
the user can directly edit erroneous axioms if desired.

The repair plan can be saved, compared with other plans and executed, after
which the ontology changes (which are part of the plan) are logged in Swoop.
These changes can be serialized and shared among ontology users (as shown
in [5]).

Pilot Study. We conducted a small pilot study involving twelve subjects, who
had at least one year’s experience with OWL and an understanding of descrip-
tion-logic reasoning that varied greatly (novices to experts). Each subject re-
ceived a 30 minute orientation including an overview of the semantic errors
found in OWL ontologies (using examples of unsatisfiable classes); a brief tuto-
rial of Swoop, demonstrating its key browsing, editing and search features; and
a detailed walkthrough of the debugging and repair support in Swoop using a
set of toy ontologies.

We selected two OWL Ontologies – University.owl and miniTambis.owl and
asked each subject to fix all the unsatisfiable classes in a particular ontology
using the debugging techniques seen in [6] (case 1), and in the other ontology
using the repair techniques described in this paper (case 2). The subjects were
randomly assigned to the two cases, but the overall distribution was equally
proportional in that given a particular ontology, an equal number of subjects
(six) debugged it with and without using the repair facilities. At the end of the
study, our goal was to compare the performance improvement, if any, of using
the repair services over the previous debugging services, which were shown to be
useful in an earlier study [6].

The results of the study were encouraging. We found that while the quality
of the repair solutions in both cases were comparable, the time taken to arrive
at a solution in the second case was between 2-8 times less than in first case.
More importantly, the subjects felt that in the second case, they understood the
different alternatives for repair, and decided on one knowing its overall impact.
Three key features appreciated by the subjects were the impact analysis to see
lost/retained entailments, the suggested axiom rewrites and the option to modify
the plan on the fly by keeping or forcibly removing axioms.

4 Conclusion

In this paper, we have discussed the problem of repairing unsatisfiable concepts in
OWL Ontologies, and provided solutions that tie in nicely with (and extend) our

184 A. Kalyanpur et al.

earlier work on explanation and debugging [6]. Thus, we are now in a position
to construct an end-to-end framework for interactive debugging and repair of
OWL Ontologies, though more extensive testing and evaluation is necessary.
Given the nature of the problem, our focus right from the start, has been on
the user-experience and in aiding the overall understanding and analysis of the
ontology, and the results so far have been in correspondence with our goal.

References

1. Gardenfors P. Makinson D. Alchourron, C. On the logic of theory change: Partial
meet contraction and revision functions. 1985. Journal of Symbolic Logic 50 (1985).

2. Li Ding, Rong Pan, Tim Finin, Anupam Joshi, Yun Peng, and Pranam Kolari.
Finding and Ranking Knowledge on the Semantic Web. In Proceedings of the
4th International Semantic Web Conference, LNCS 3729, pages 156–170. Springer,
November 2005.

3. Nicola Guarino and Christopher Welty. Evaluating ontological decisions with on-
toclean. Commun. ACM, 45(2):61–65, 2002.

4. A. Kalyanpur, B. Parsia, B. Cuenca-Grau, and E. Sirin. Axiom pinpointing: Find-
ing (precise) justifications for arbitrary entailments in SHOIN (owl-dl). Technical
report, UMIACS, 2005-66, 2006. Technical Report.

5. A. Kalyanpur, B. Parsia, E.Sirin, B. Cuenca-Grau, and J. Hendler. Swoop: A web
ontology editing browser. Journal of Web Semantics, 2005. To Appear.

6. Aditya Kalyanpur, Bijan Parsia, Evren Sirin, and James Hendler. Debugging un-
satisfiable classes in owl ontologies. Journal of Web Semantics, Volume 3 Issue 4,
2005. (To Appear).

7. N. Noy, M. Sintek, S. Decker, M. Crubezy, R. Fergerson, and M. Musen. Creating
semantic web contents with Protégé-2000. IEEE Intelligent Systems, 2001.

8. Daniel Oberle, Raphael Volz, Boris Motik, and Steffen Staab. An extensible ontol-
ogy software environment. In Steffen Staab and Rudi Studer, editors, Handbook on
Ontologies, International Handbooks on Information Systems, chapter III, pages
311–333. Springer, 2004.

9. Alan Rector, Nick Drummond, Matthew Horridge, Jeremy Rogers, Holger
Knublauch, Robert Stevens, Hai Wang, and Chris Wroe. OWL Pizzas: Practi-
cal Experience of Teaching OWL-DL: Common Errors & Common Patterns . In
EKAW, pages 63–81, 2004.

10. R. Reiter. A theory of diagnosis from first principles. 1987. Artificial Intelligence
32:57-95.

11. S. Schlobach. Debugging and semantic clarification by pinpointing. 2005. European
Semantic Web Conference ESWC.

12. S. Schlobach. Diagnosing terminologies. In In Proceedings of AAAI’05, 2005.
13. S. Schlobach and R. Cornet. Non-standard reasoning services for the debugging of

description logic terminologies. In Proceedings of IJCAI, 2003.
14. Evren Sirin, Bijan Parsia, Bernardo Cuenca Grau, Aditya Kalyanpur, and Yarden

Katz. Pellet: A practical owl-dl reasoner. Technical report, University of Maryland
Institute for Advanced Computes Studies (UMIACS), 2005-68, 2005. Available
online at http://www.mindswap.org/papers/PelletDemo.pdf.

Winnowing Ontologies Based on Application Use

Harith Alani, Stephen Harris, and Ben O’Neil

Advanced Knowledge Technologies (AKT), School of Electronics and Computer Science,
University of Southampton, Southampton SO17 1BJ, UK
{h.alani, swh, bjon104}@ecs.soton.ac.uk

Abstract. The requirements of specific applications and services are often over
estimated when ontologies are reused or built. This sometimes results in many
ontologies being too large for their intended purposes. It is not uncommon that
when applications and services are deployed over an ontology, only a few parts
of the ontology are queried and used. Identifying which parts of an ontology
are being used could be helpful to winnow the ontology, i.e., simplify or shrink
the ontology to smaller, more fit for purpose size. Some approaches to handle this
problem have already been suggested in the literature. However, none of that work
showed how ontology-based applications can be used in the ontology-resizing
process, or how they might be affected by it. This paper presents a study on the
use of the AKT Reference Ontology by a number of applications and services,
and investigates the possibility of relying on this usage information to winnow
that ontology.

1 Introduction

Ontologies normally grow to large sizes when the main purpose of building them is to
provide an extensive representation of a domain. However, when building or reusing
ontologies for the purpose of supporting certain applications, those ontologies are ex-
pected to be much smaller in size and be more focused towards meeting the require-
ments of those applications and services, rather than to provide a generic representation
of a domain. A study of the applications submitted to the 2003 Semantic Web (SW, [4])
challenge, showed that most of the ontologies used in those applications were relatively
small and simple, but also sufficient for their intended purposes [12].

When designing an ontology, it is highly recommended to keep in mind what the
ontology is to be used for to avoid over or under representing the domain [14]. The first
step of the methodology proposed by Uschold and Grüninger for building ontologies
is to identify its purpose and scope [22]. Grüninger and Fox [8] suggested articulating
the requirements for an ontology in the form of a list of competency questions that the
ontology must be able to answer. This is meant to assure a more fit-for-purpose scoping
of the ontology.

However, in spite of such recommendations and methodologies, it is not uncommon
to find ontologies that are much larger than actually required by the SW applications
and services that the ontologies are meant to support. Most SW users only need to use
small portions of existing ontologies to run their applications [15]. Ontology engineers
might sometimes prefer to build or reuse extensive and more detailed ontologies for

Y. Sure and J. Domingue (Eds.): ESWC 2006, LNCS 4011, pp. 185–199, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

186 H. Alani, S. Harris, and B. O’Neil

their applications in preparation for a probable future expansion of requirements, or to
allow for an imaginable automatic communication with external agents that perhaps
will require a more exhaustive representation of the domain.

Nevertheless, it is logical to expect enduring much higher costs for hosting and run-
ning a large and complex ontology than a trimmed-down version of that ontology. This
includes costs of maintenance, documentation, change management, visualisation, and
scalability. Tools to reduce an ontology to one that better fits certain needs can also
greatly aid and encourage reusing existing ontologies [21].

Several approaches and suggestions for semi-automatic trimming or breaking-down
of ontologies into smaller sizes have been introduced in the literature. However, to
the best of our knowledge, none of the proposed approaches are driven by application
needs, or study how applications might be affected by the shrinkage of their supporting
ontologies. Manually selecting which parts or classes of an ontology to preserve, which
is what most of previous work is based on, can be unreliable. The developer of the
ontology or application might not be fully aware of all the parts that will be required
and used by the application, and the ones that will never be needed or used. So in the
end, the application itself might be the best judge here.

In this paper, we would like to examine how the usage of an ontology by applications
can be used to drive the process of reducing the ontology size. To this end, we will
study how our project’s main ontology is being used by local and external applications
and services. The aim of this work is partly to get a better understanding of how and
where the ontology is being queried, and more importantly, how this information can
be interpreted. We hope that this study will enable us to better scope the ontology and
provide some insight into whether such analysis can be used to automatically winnow
an ontology without affecting its usage. We use the term winnowing to refer to the
process of removing any unused parts of an ontology, keeping only the parts that are
needed to represent the existing data and run any dependent applications.

2 Related Work

There has been some work in recent years investigating various approaches to trim
ontologies for various purposes. These approaches vary in purpose and technique, as
described below.

2.1 Ontology Partitioning

Stuckenschmidt and Klein [20] proposed the use of classical clustering algorithms to
partition ontologies based on how their class hierarchies are structured. In their ap-
proach, each partition will contain classes that are more strongly connected to other
classes in this partition rather than to classes in other partitions. The suggested ontol-
ogy partitioning is therefore based on how the classes are connected in the ontology,
regardless of how the ontology is, or can be, used. Nothing in this approach can guar-
antee that the ontology produced by each cluster is meaningful or usable.

If an application needs to interact with a set of classes that ended up being spread
over many of the partitions suggested by the clustering process, then those partitions
will have to be remapped or remerged together, thus rendering the whole partitioning

Winnowing Ontologies Based on Application Use 187

process less useful. So even though the approach suggested in [20] is good for a general
structure-based scaling down of ontologies, it is not suitable for usage-driven ontology
winnowing.

2.2 Ontology Views

Other work suggested generating specific views on complex RDFS ontologies using
view-querying languages [23, 13]. The aim was to use these views to personalise or
simplify ontology structures by creating virtual ones, based on view-selection queries.
Another related approach is to limit the view of an ontology to only a user-selected class
and its neighbourhood [15]. This neighbourhood can be restricted in size by the number
of connections it is allowed to span out, which can be set by the user for each property
separately.

The above approaches can be useful for quickly limiting how an ontology is viewed
or browsed. However, they are not designed, not well suited, for automatic extraction
of ontology parts, or for trimming an ontology based on the demands of certain appli-
cations and services.

2.3 Ontology Segment Extraction

Bhatt and colleagues [5] developed a distributed architecture for extracting sub-ontolo-
gies. In this approach, users were expected to specify which ontology entities to keep,
which to remove, and which to leave for the system to decide. This approach suggests
using three main rules to minimise ontologies. For a class that is selected to be kept:

– Keep all its superclasses and their inherited relationships.
– Keep all its subclasses and their relationships.
– Keep all attributes with cardinality more than zero.

The experiments reported in [5] were driven by users manually selecting which en-
tities to keep and which ones to throw away. It is not obvious how this approach could
apply when the selection process is based on applications actively using the ontology
to be winnowed, and if and how such applications might be affected by the process.

Another segmentation work is presented in [16]. They start from a specific class and
follow certain paths along the ontology network to create a segment. They have only
applied their approach to the GALEN ontology, and only considered segmenting based
on a single class selection, rather than with multiple classes as would be the case when
based on ontology use. The rules they applied are:

– Keep all superlasses and subclasses of selected class
– Include equivalent classes
– Include properties and classes of any restrictions on included classes.
– Keep all the classes that these properties point to
– Keep superproperties and superclasses of all the included classes from the last 3

steps.

This approach focuses on maintaining the semantics of the ontology, which is why it
is more generous in its segmentation that the previous approaches.

188 H. Alani, S. Harris, and B. O’Neil

2.4 Ontology Use Analysis

Analysing how an ontology is being used is an important step towards better ontology
management [18]. In [19], the authors logged ontology usage information in the aim
that this might help knowledge engineers to increase the efficiency of search within
a given knowledge base (KB). They argued that if an ontology class or property is
queried at higher rates then this might indicate a too-broad representation, which could
be detailed further in the ontology [19]. On the other hand, if the entity is never queried,
then it will be flagged as a good candidate for removal, unless the entity is instantiated
in the KB. They also looked at the problem where an entity is frequently queried but
not many results are available. They regard this as an indication of a knowledge gap.

Note that the work reported in [18] and [19] only looked at direct user interactions
with a KB, rather than at queries steadily coming from external applications. Further-
more, how the ontology is to be changed in line with the information they collected,
and how that change will affect further use of the KB, seemed to be out of the scope of
their reported work.

Another work that took usage into account is reported in [9]. The aim here was to
monitor the use of a simple ontology (the ACM topic hierarchy) by several users, then
try to make change recommendations on the items in the hierarchy. The change rec-
ommendations were based on how the hierarchy has been queried and modified by the
users. However, the ACM ontology which they experimented with is a simple taxon-
omy, and the user interactions and change recommendations were equally simple.

None of the work reported in this section focussed on processing queries sent by ap-
plications and services to their supporting ontologies as an input to software to perform
the trimming of these ontologies. In this paper, we investigate applying some variations
of the rules proposed in previous work to winnow a locally-developed ontology that
have been in use by several applications for over three years.

3 Winnowing the AKT Reference Ontology

Ontology winnowing differs from the approach described in section 2 in that the process
of trimming the ontology here is entirely based on need. Need is determined by the
queries sent to the ontology by any supported applications, and by the underlying data.

In this section we discuss a case study on the usage of a locally maintained ontology;
the AKT Reference ontology.

3.1 AKT Reference Ontology

The AKT Reference Ontology (AKTRO1) was developed over a period of six months
by several partners of the AKT2 project. This ontology built on a number of smaller
ontologies previously developed at various AKT sites. AKTRO currently consists of
175 classes and 142 properties.

AKTRO models the domain of academia. It contains representations for people, con-
ferences, projects, organisations, publications, etc. AKTRO is stored in a triple store;

1 http://www.aktors.org/ontology/
2 http://www.aktors.org

Winnowing Ontologies Based on Application Use 189

namely 3Store [11], and is instantiated with information drawn from various databases
and information gathering tools (currently stores around 30M triples in the KB). The
AKTRO ontology is written in OWL, though 3Store is only capable of RDFS inferenc-
ing, and thus AKTRO was stored in 3Store in RDFS.

When the AKTRO was first developed over three years ago, the intention was to
create a reference ontology for the whole AKT consortium to avoid the use of several
variant ontologies about the same domain within the project. In other words, the aim of
that ontology was to provide a reference model, rather than to meet the needs of any
specific application or service.

3.2 AKTRO Instantiations

As mentioned above, we maintain a KB with a large number of instantiations made
against the AKTRO. Many classes in the ontology have no instances, while others are
heavily instantiated. Figure 1 gives some idea on how sparsely instantiated the AKTRO
is in our repository.

Even though some of these instances might not be required for running some of our
applications, they represent an important and resourceful part of the KB and can be
considered as a type of ontology use, and hence it was deemed important to make sure
that all these instances remain intact.

3.3 Queries to AKTRO

The AKTRO and its KB are used to support a number of on-site and off-site appli-
cations, such as OntoCoPI[3], CSAktiveSpace[17], AKT Technologies dynamic web
pages3, Armadillo[7] from Sheffield University, and any other ad hoc works, such as
[1], or even queries directly typed by users.

In our case study, we experimented with winnowing AKTRO based on its general
use by the above applications and services. Then in a second experiment, we focused
the usage analyses of AKTRO on two selected applications only, and extended the win-
nowing process to take into account query results. The two experiments are described
in the following.

4 Experiment 1: Winnowing AKTRO Based on General Use
Analysis

Our first winnowing experiment was based on the general use of AKTRO, where all
queries from any application or ad hoc query were taken into account [2]. This section
details this experiment and its results.

4.1 Query Log

We logged over 193 thousand RDQL queries that have been posed to the AKTRO by
various sources. After analysing the logged queries, we found that only 6 classes and 27
properties of our ontology have been explicitly queried (i.e. the URIs of these classes

3 http://www.aktors.org/technologies/

190 H. Alani, S. Harris, and B. O’Neil

Fig. 1. Space view of the AKT Reference ontology. Classes that are instantiated are shown in
black colour. Grey coloured classes are the domains or ranges of instantiated properties.

and properties were given in at least one RDQL query). These classes and properties
are given in tables 1 and 2 respectively.

The frequency with which a concept or a property has been queried gives a good
indication of whether the query is directly typed in by a person (very low frequency),
or rather coming from an application (higher frequencies). However, to make sure that
all requests are met, any concept or property that has been queried at least once will be
regarded as essential, and included in the winnowed ontology. In the second experiment,
only application queries are considered (section 5.3).

Membership of many other classes can be indirectly constrained through properties.
For example, if the property has-project-member appears in a query, then it is implicitly
restricting the bindings for its subject to members of the class of Project and its object
to the class of Person, which are the domain and range of this property respectively.
This indicates that in addition to instantiations and queries, we also need to find all the

Winnowing Ontologies Based on Application Use 191

Table 1. Queried classes from the AKT Reference Ontology and the number of times they ap-
peared in the logged queries

Class Queries Class Queries Class Queries
Technology 63462 Organization 7554 Research-Area 985

Person 750 Academic 9 Thing 3

Table 2. Queried properties from the AKT Reference Ontology and the number of times they
appeared in the logged queries

Property Queries Property Queries
has-title 22478 technology-builds-on 15092

has-key-document 14964 has-author 14809
addresses-generic-area-of-interest 13735 has-appellation 12620

has-email-address 12620 has-web-address 10386
has-date 10210 has-project-leader 9549

has-project-member 9551 owned-by 7602
family-name 7588 full-name 7562

has-relevant-document 7482 works-in-unit 5140
contributes-to 3133 has-telephone-number 2832

has-pretty-name 2034 has-research-interest 1543
sub-area-of 1288 unit-of-organization 960

has-affiliation-to-unit 110 contributes-to-rating 36
has-research-quality 36 given-name 1
has-academic-degree 1

classes that are domains or ranges of properties that were queried or used by instances
(i.e assigned values for some instances).

4.2 Winnowing the Ontology

As stated earlier, our aim is to study how an ontology can be automatically trimmed
down based on analysing how the ontology is being used by dependent applications and
services. So to complete our experiment, we winnowed the AKT Reference ontology
by following these rules:

1. Keep all ontology classes that are directly instantiated with one or more instances.
This lead to the inclusion of 54 classes from AKTRO (figure 1).

2. Keep all the ontology properties that are assigned values by at least one instance in
the KB. This totalled 69 properties.

3. Keep all classes and properties explicitly mentioned in one or more queries (tables
1 and 2), that are not already found in steps 1 and 2 above. This brought in 1
additional class; Thing, and 3 properties; has-academic-degree, has-key-document,
and has-relevant-document.

4. Keep all classes that are domains or ranges of any property found in steps 2 or
3 above. This lead to the inclusion of 13 new classes. Note that some properties
have multiple domains and ranges, not all of which are used by our applications.
However, for the sake of completeness, all domains and ranges are included.

5. Remove classes and properties not identified in previous steps. Classes and proper-
ties will be shifted up the hierarchy if their superclasses are removed.

192 H. Alani, S. Harris, and B. O’Neil

Remember that AKTO had 175 classes and 142 properties. After applying the rules
above, only 68 classes (61.2% reduction), and 72 properties (49.3% reduction) were
left. Checking the resulting ontology (lets call it winnAKTRO-1) with a reasoner (Pel-
let4) showed that, in this particular case, the ontology remained consistent.

4.3 Evaluation of winnAKTRO-1

To evaluate the effect of winnowing AKTRO on its supported applications, we com-
pared the results of nearly 1800 carefully selected logged queries using AKTRO against
the results when using winnAKTRO-1 [2]. Scripts were used to compare each binding
returned for each query from both ontologies to determine whether the results obtained
from the two ontologies are an exact match or not.

The comparison revealed that the results of around 3% of the selected queries were
different when using winnAKTRO-1 than when using AKTRO. A closer look at the
results showed that the failed queries were querying the rdf:type of instances, as in:

SELECT ?type
WHERE (<instance-uri>, rdf:type, ?type)

This query could be issued by applications that use the type to choose how to render
data relating to the instance. For example, an application might ask the above query,
then search among the returned types for the Project class, as a way of verifying whether
the instance in hand is a project or not. If the Project class is no longer in winnAKTRO-
1, then this query will return a different answer than before.

5 Experiment 2: Taking Query Results into Account

The previous winnowing trial showed that, for some RDQL queries, the results were
different before and after the winnowing process. This indicates that further steps might
be required when winnowing an ontology to avoid such result-mismatches.

We decided to focus this second experiment on two specific applications (CSAktive
Space [17] and OntoCoPI [3]) to make sure that the queries in the log can be traced
back to their sources. This will also ensure that no arbitrary queries (not required by
any application) are logged by mistake. Note that these two applications are the most
active users of AKTRO.

In this experiment, we will also take the results of queries in the log into account
when winnowing the ontology. This will hopefully reduce the results-mismatching
problem encountered in experiment 1 (section 4.3).

5.1 Query Log

To make sure we log all possible queries from the two selected applications, the ap-
plications were put to extensive use for several hours, and their queries to 3Store were
clearly tagged in the log. The result was a query log of just under 13 thousand queries.

4 http://www.mindswap.org/2003/pellet/

Winnowing Ontologies Based on Application Use 193

Table 3. Properties in AKTRO that are queried explicitly by CSAktive Space and Ontocopi

Properties Queries Properties Queries Properties Queries
has-project-leader 1011 has-project-member 1011 has-date 854

has-author 828 works-in-unit 528 address-generic-area-of-interest 506
has-grant-value 253 has-amount 253 has-funding 253

has-telephone-number 157 has-web-address 157 unit-of-organization 123
has-pretty-name 80 has-research-interest 63 sub-area-of 41

contributes-to-rating 22 has-research-quality 22

After collapsing duplicates, 5 thousand unique queries remained. Number of queries is
much less than in previous experiment because of the focus on two applications only.

When analysing the query log it was found that only one class and 17 properties
have been explicitly queried. The queried properties and the number of queries that
mentioned them is shown in table 3. The queried class was Person, and it appeared in
137 queries.

The fact that only one class was explicitly queried supports the observation from
the first experiment that applications often rely on properties to filter out the results.
OntoCoPI for example often queries the triple store for any individuals connected to a
given person instance via specific properties [3]. Such a query will return instances of
classes such as Project, Conference, Paper, etc. OntoCoPI then asks for the rdf:type of
each returned URI to find their class types.

5.2 Query Results

As mentioned earlier, in this second experiment, the results of the logged queries will
also be considered when identifying the class and property URIs to be maintained in
the winnowed ontology.

Table 4. Classes in AKTRO that appear in results of queries from CSAktiveSpace and OntoCoPI

Class Results Class Results Class Results
Thing 504 Intangible-Thing 424 Publication-Reference 275

Abstract-Information 275 Person 218 Generic-Agent 189
Temporal-Thing 154 Legal-Agent 149 Proceedings-Paper-Reference 135
Affiliated-Person 120 Article-Reference 114 Employee 71

Academic 47 Researcher-In-Academia 29 Working-Person 13
Educational-Employee 13 Technology 9 Book-Section-Reference 7

Book-Reference 6 Researcher 6 PhD-Student 4
Conference-Proceedings-Reference 4 Student 4 Activity 3

Technical-Report-Reference 3 Project 2 Prof 2
Dr 2 Thesis-Reference 1 Professor-In-Academia 1

Table 5. Properties in AKTRO that appear in results of queries from CSAktiveSpace and Onto-
CoPI

Properties Results Properties Results Properties Results
has-research-interest 781 works-in-unit 724 sub-area-of 305

works-for 168 unit-of-organization 152 has-affiliation-to-unit 128
contributes-to-rating 83 family-name 61 full-name 61

studies-in-unit 54 has-email-address 32 has-appellation 26
has-telephone-number 25 has-fax-number 20 has-affiliation 19

has-postal-address 16 project-involves-organization-unit 11 given-name 9
has-web-address 7 sub-unit-or-organization-unit 6 has-pretty-name 6

194 H. Alani, S. Harris, and B. O’Neil

When analysing the results of the 13 thousand logged queries, the URIs of 30 classes
and 21 properties were found (tables 4 and 5 respectively).

Fig. 2. Space view of the winnowed AKT Reference Ontology for experiment 2

Winnowing Ontologies Based on Application Use 195

5.3 Winnowing the Ontology

Similarly to section 4.2, the following steps were followed to winnow the ontology:

1. Keep all directly instantiated classes and properties (assigned values for some in-
stances). As in experiment 1, 54 classes and 69 properties remained.

2. Keep all classes and properties that were explicitly mentioned in queries. Even
though 1 class and 17 properties were explicitly mentioned in the logged queries,
they were all instantiated and thus already identified in step 1.

3. Keep all domains and ranges of required properties. 10 new classes were added that
were not identified in previous steps.

4. Keep all classes and properties that appear in the results of the logged queries. This
includes 30 classes and 21 properties. However, only 7 classes and 0 properties
have not been already identified in the previous steps.

5. Remove classes and properties not identified in previous steps. Classes and proper-
ties will be shifted up the hierarchy if their superclasses are removed.

Once the rules above were applied to AKTRO and winAKTRO-2 was produced, it
had 71 classes, and 69 properties. This is a reduction of 59.5% in classes, and 51.4% in
properties when compared to the original ontology (figure 2).

5.4 Evaluation of winnAKTRO-2

The results of all the queries logged in experiment 2 (5K queries) were compared as
returned from AKTRO and winnAKTRO-2. The comparison showed a perfect match
between the two sets of results, including queries on rdf:type which failed in experiment
1. In other words, the applications used in this experiment have not been affected by the
winnowing process, and continued to function as usual. However, the ontology that
supports them is now about half of its original size.

6 Discussion

A number of approaches have been suggested in the literature to trim down ontologies
to simply make them easier to manage (sec. 2). However, we noticed that none of this
work investigated using application queries as a guideline to how an ontology should be
winnowed, nor did they study the effect of winnowing an ontology on its current use.
Unlike user queries, application queries tend to be fixed to some extent at develop-
ment time. Therefore, analysing how an application is making use of an ontology can
form a good basis for deciding how the ontology is to be winnowed. This, of course,
is only possible if the applications are fully developed and their use of the ontology is
not expected to change very frequently. However, it is always possible to revert to the
original ontology if, for example, the requirements of the applications changed, or new
applications are developed.

Some ontology-trimming rules have already been proposed (sec. 2). However, we
believe that such rules need to be rechecked and perhaps changed when applications
are involved in the process. For example, some have proposed keeping all subclasses

196 H. Alani, S. Harris, and B. O’Neil

and superclasses of preserved classes ([5, 16]). In our first experiment (sec. 4, this would
have meant keeping the entire AKTRO class hierarchy, simply because the top class,
Thing, was selected for preservation.

In [19], the authors suggested that classes that are queried very often should be bro-
ken down to further subclasses. When analysing our query log, we noticed that most
queries targeted the more general classes, rather than their subclasses. For example, in
experiment 1, there were 750 queries to the class Person, but only one of its 13 instanti-
ated subclasses was queried, 9 times. In experiment 2, none of Person’s subclasses were
queried, whereas Person appeared in 137 queries. Of course this is somewhat dependent
on the applications, and on the type of query filtering used (see below). Nevertheless
this observation seems to match the report in [6], which states that people tend to for-
mulate their queries more generally than actually needed. Query frequency of classes
is therefore not always a reliable indication of whether a class needs further subclassi-
fication or not.

Another possible explanation of the high use of certain classes rather than others is,
as mentioned earlier, that membership of many classes has been indirectly constrained
through properties, rather than explicitly mentioned in queries. For example, the prop-
erty has-project-member appeared in 9551 queries in experiment 1, and in 1011 queries
in experiment 2, while the class Project (the domain of this property) has not been
explicitly queried in either experiment.

One crucial element in our ontology-winnowing approach is of course the query
logs. That is, the logs of queries sent to the ontology by applications. For the log to be
complete, one has to make sure that all the applications to winnow the ontology for,
have been running long enough to ensure that all their query templates are logged.

In our study, we kept all directly instantiated classes and properties in the winnowed
ontology, irrespective of whether they have been queried or not by applications. Sto-
janovic and colleague [19] believe that unused instances indicates a lack of awareness
of their existence. However, we believe that in some cases, non-queried instances are
simply not needed by the applications. To minimise the ontology further, one can re-
move any such classes (if none of their instances are ever queried), along with their
instances.

In experiment 1, some queries that involved rdf:type failed to return the same re-
sults before and after winnowing the ontology (sec. 4.3). This shows that for this query
template, and perhaps others, it is important not only to look at the log of queries, but
also to log query answers when deciding what to keep in the winnowed ontology and
what to throw away, or shelf!. This finding agrees with the approach taken in [19],
where they analysed query results to acquire information that could potentially be used
to tune the ontology. Taking query results into account when winnowing AKTRO in
experiment 2 lead to a 100% match of query results to AKTRO and winnAKTRO-2.

However, a point to consider when reserving all classes and properties that appear
in query results is how acceptable it is for certain queries to return different results.
For some queries, it might not be important for the application to receive the exact
same answer every time. For example, if the sole aim of a query or a set of queries is to
retrieve the ontology structure to display it on the screen, then it might not be a problem

Winnowing Ontologies Based on Application Use 197

if the structure has changed. However, if the aim of the query is, say, to search for all
publications of John Smith prior to 2001, then some consistency is expected.

There is no easy way of finding out from the query log which query results have to
be preserved (i.e. unchanged before and after winnowing), and which are more flexible.
Such knowledge will most likely require some analysis of the applications themselves.

When winnowing an ontology, it might be important to maintain its semantic com-
pleteness and consistency. In our practical oriented approach, the main focus was to
preserve only the necessary parts of the ontology to keep the applications running, rather
than to hold on to any specific semantics. For example, our winnowing process removed
some restrictions in AKTRO because they were not used by any application.

7 Conclusions and Future Work

If the ultimate goal of reusing or building an ontology is to serve specific applications,
then it seems sensible to use these application to limit the ontology to smaller and easier
to manage sizes. In this paper we described a study we performed on the AKT Refer-
ence Ontology which is being used by several applications. We logged large number of
queries sent to the ontology from several applications, and applied some rules to win-
now the ontology and throw away or shelf any unnecessary parts, regardless of their
position in the original ontologies. The winnowed ontology produced in the first exper-
iment turned out to have only 38.8% of the classes, and 50.7% of the properties of the
original ontology. Query results were taken into account when producing the second
winnowed ontology, which had 59.5% less classes and 51.4% less properties than the
original AKTRO.

We have shown through experiments that analysing query syntax to determine which
parts of an ontology are being triggered is not enough without also analysing the results
of those queries. Further developments to this work could include the processing of
SPARQL queries, rather than RDQL. This has the advantage that the SPARQL language
and protocol are both more tightly defined than RDQL, making the technique easier to
apply to other platforms and applications.

We expect our winnowing approach to produce scruffier ontologies, with perhaps
less semantic consistency than their originals. Further steps will be needed to maintain
consistency while changing the ontology [10]. More of the ontology will need to be
preserved if higher semantic consistency is required (e.g. if all constraints must remain
in the winnowed ontology). However, this might not be required if the main goal is to
simply shrink an ontology with respect to the exact needs of specific applications, with-
out affecting any of their queries. If the applications’ needs change, or the knowledge
base changes, then the winnowing process should be rerun on the original ontology to
produce a new winnowed ontology.

In addition to semantic consistency, we need to pay attention to semantic redun-
dancy that might result from the winnowing process. For example in winnAKTRO-2,
Geographical-Region is now a subclasses of Location as well as of Temporal-Thing, and
Location itself is a subclass of Temporal-Thing. A classifier could be used to identify
and sort out such cases.

The methodology used in this paper takes into account classes and properties that
are explicitly mentioned in queries and/or results, but does not take into account those

198 H. Alani, S. Harris, and B. O’Neil

that are potentially included in the subgraph used by the query engine but not explicitly
mentioned. For example, the query:

SELECT ?i WHERE (?i rdf:type ?class)
(?class rdfs:label "WorkingPerson")

uses the class WorkingPerson during the query execution without ever mentioning it
explicitly, and without it appearing in the results. As it happens no classes or properties
are used in only this way by the applications in the study, but it is a possibility that
we will investigate in future work. Another related issue is that it some cases (e.g. for
clarification or mapping purposes) the ontology is required to contain certain classes
or properties without them being instantiated or queried. One possible solution to force
our winnowing approach to maintain such entities is for applications to add dummy
queries to any classes or properties that they desire to keep in the winnowed ontology.

As mentioned earlier, 3Store only performs RDFS inferencing. AKTRO was stored
in RDFS in 3Store. As it happens, none of the restrictions present in the ontology
were used in the logged queries, so they were not preserved by the winnowing process.
Clearly, for use with an OWL inferencing engine a more sophisticated set of rules would
be required to maintain the OWL restrictions.

Acknowledgment

This work is supported under the Advanced Knowledge Technologies (AKT) Inter-
disciplinary Research Collaboration (IRC), which is sponsored by the UK Engineer-
ing and Physical Sciences Research Council under grant number GR/N15764/01. The
AKT IRC comprises the Universities of Aberdeen, Edinburgh, Sheffield, Southampton
and the Open University. The views and conclusions contained herein are those of the
authors and should not be interpreted as necessarily representing official policies or en-
dorsements, either express or implied, of the EPSRC or any other member of the AKT
IRC.

References

1. H. Alani, N. Gibbins, H. Glaser, S. Harris, and N. Shadbolt. Monitoring research collabora-
tions using semantic web technologies. In Proc. 2nd European Semantic Web Conf. (ESWC),
pages 664–678, Crete, 2005.

2. H. Alani, S. Harris, and B. O’Neil. Ontology winnowing: A case study on the akt reference
ontology. In Proc. Int. Conf. on Intelligent Agents, Web Technology and Internet Commerce
(IAWTIC’2005), Vienna, Austria, 2005. IEEE.

3. H. Alani, S. D. K. O’Hara, and N. Shadbolt. Identifying communities of practice through
ontology network analysis. IEEE Intelligent Systems, 18(2):18–25, 2003.

4. T. Berners-Lee, J. Hendler, and O. Lassila. The semantic web. Scientific American, May
2001.

5. M. Bhatt, C. Wouters, A. Flahive, W. Rahayu, and D. Taniar. Semantic completeness in sub-
ontology extraction using distributed methods. In Proc. Int. Conf. on Computational Science
and its Applications (ICCSA), pages 508–517, Perugia, Italy, 2004. LNCS, Springer Verlag.

Winnowing Ontologies Based on Application Use 199

6. H. Chen and V. Dhar. Cognitive process as a basis for intelligent retrieval systems design.
Information Processing & Management, 27(5):405–432, 1991.

7. F. Ciravegna, S. Chapman, A. Dingli, and Y. Wilks. Learning to harvest information for the
semantic web. In Proc. 1st European Semantic Web Symp. (ESWS), Crete, Greece, 2004.

8. M. Gruninger and M. S. Fox. Methodology for the design and evaluation of ontologies. In
Proc. Workshop on Basic Ontological Issues in Knowledge Sharing, in IJCAI’95, Montreal,
Canada, 1995.

9. P. Haase, A. Hotho, L. Schmidt-Thieme, and Y. Sure. Collaborative and usage-driven evolu-
tion of personal ontologies. In Proc. Second European Semantic Web Conference (ESWC),
pages 486–499, Crete, 2005.

10. P. Haase, F. van Harmelen, Z. Huang, H. Stuckenschmidt, and Y. Sure. A framework for
handling inconsistency in changing ontologies. In Proc. 4th Int. Semantic Web Conf. (ISWC),
Galway, Ireland, 2005.

11. S. Harris and N. Gibbins. 3store: Efficient bulk rdf storage. In Proc. 1st Int. Workshop on
Practical and Scalable Semantic Systems (PSSS’03), pages 1–20, FL, USA, 2003.

12. M. Klein and U. Visse. Semantic web challenge 2003. IEEE Intelligent Systems, 19(3):31–
33, 2004.

13. A. Magkanaraki, V. Tannen, V. Christophides, and D. Plexousakis. Viewing the semantic
web through rvl lenses. In Proc. Second Int. Semantic Web Conf. (ISWC), pages 98–112,
Sanibel Island, Florida, 2003.

14. N. F. Noy and D. L. McGuinness. Ontology development 101: A guide to creating your first
ontology. Technical Report KSL-01-05, Stanford Medical Informatics, March 2001.

15. N. F. Noy and M. A. Musen. Specifying ontology views by traversal. In 3rd Int. Semantic
Web Conf. (ISWC’04), Hiroshima, Japan, 2004.

16. J. Seidenberg and A. Rector. Web Ontology Segmentation: Analysis, Classification and Use.
In Proceedings 15th International World Wide Web Conference, Edinburgh, Scotland, 2006.

17. N. Shadbolt, monica schraefel, N. Gibbins, and S. Harris. CS Aktive Space: or how we
stopped worrying and learned to love the semantic web. In 2nd Int. Semantic Web Conf,
Florida, 2003.

18. N. Stojanovic, J. Hartmann, and J. Gonzalez. Ontomanager - a system for usage-based on-
tology management. In Proc. FGML Workshop. SIG of Germal Information Society, 2003.

19. N. Stojanovic and L. Stojanovic. Usage-oriented evolution of ontology-based knowledge
management systems. In Int. Conf. on Ontologies, Databases and Applications of Semantics
(ODBASE), pages 230–242, Irvine, CA, 2002.

20. H. Stuckenschmidt and M. Klein. Structure-based partitioning of large concept hierarchies.
In 3rd Int. Semantic Web Conf. (ISWC2004), Hiroshima, Japan, 2004.

21. M. Uschold, P. Clark, M. Healy, K. Williamson, and S. Woods. An experiment in ontology
reuse. In Proc. Eleventh Knowledge Acquisition Workshop (KAW), Banff, Canada, 1998.

22. M. Uschold and M. Gruninger. Ontologies: principles, methods and applications. The Knowl-
edge Engineering Review, 11(2):93–136, 1996.

23. R. Volz, D. Oberle, and R. Studer. Implementing views for light-weight web ontologies. In
Proc. IEEE Database Engineering and Application Symposium (IDEAS), Hong Kong, China,
2003.

Y. Sure and J. Domingue (Eds.): ESWC 2006, LNCS 4011, pp. 200 – 214, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Resolving Inconsistencies in Evolving Ontologies

Peter Plessers and Olga De Troyer

Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
{Peter.Plessers, Olga.DeTroyer}@vub.ac.be

Abstract. Changing a consistent ontology may turn the ontology into an incon-
sistent state. It is the task of an approach supporting ontology evolution to en-
sure an ontology evolves from one consistent state into another consistent state.
In this paper, we focus on checking consistency of OWL DL ontologies. While
existing reasoners allow detecting inconsistencies, determining why the ontol-
ogy is inconsistent and offering solutions for these inconsistencies is far from
trivial. We therefore propose an algorithm to select the axioms from an ontol-
ogy causing the inconsistency, as well as a set of rules that ontology engineers
can use to resolve the detected inconsistency.

1 Introduction

More and more, ontologies are finding their way into a wide variety of software sys-
tems. Not only do they serve as the foundation of the Semantic Web [3], ontologies
are starting to be applied in content and document management, information integra-
tion and knowledge management systems. The use of ontologies enhances systems
with extensive reasoning capabilities, improve query possibilities, and ease integra-
tion and cooperation between systems.

Until recently, ontologies were mainly treated as being static i.e. once the ontology
was developed and deployed, the knowledge captured by the ontology was considered
to be fixed. Nevertheless, there is a need for ontologies to evolve in course of their
lifetime. Reasons for ontology evolution includes changes to the domain represented,
modifications of user requirements and corrections of design flaws. As ontologies may
be shared by different applications and extended by other ontologies, a manual and ad-
hoc handling of such an ontology evolution process is not feasible nor desirable as it is
a too laborious, time intensive and complex process [17]. A structured approach is
therefore essential to support the ontology engineer in this evolution process.

As ontologies are used to reason about and to infer implicit knowledge from, it is
essential for an approach supporting ontology evolution to ensure that ontologies
evolve from one consistent state into another consistent state. As changes to an
ontology may possibly introduce inconsistencies, a method to detect and resolve incon-
sistencies in the ontology is required. For OWL DL1, several reasoners capable of
checking for inconsistencies have been developed (e.g., RACER [8], Fact [5], Pellet
[9]). These reasoners are based on the description logics tableau algorithm. While such
reasoners allow detecting inconsistencies, determining why the ontology is inconsistent

1 http://www.w3.org/TR/owl-ref/

 Resolving Inconsistencies in Evolving Ontologies 201

and how to resolve these inconsistencies is far from trivial. However, pinpointing the
concepts that lead to an inconsistent ontology, determining the reasons for the inconsis-
tencies and using these to offer the ontology engineer suggestions how to resolve these
inconsistencies should be part of an ontology evolution approach.

In literature, three forms of ontology consistency are in general distinguished:
Structural Consistency, Logical Consistency and User-defined Consistency [4]. The
difference between these three forms is as follows:

• Structural Consistency: an ontology is considered structural consistent when the
structure of the ontology conforms to the language constructs imposed by the un-
derlying ontology language (e.g., OWL). Structural consistency can be enforced by
checking a set of structural conditions defined for the underlying ontology lan-
guage. Examples of such structural conditions include: ‘the complement of a class
must be a class’, ‘a property can only be a subproperty of a property’, etc. In case
of OWL, the set of structural conditions depends on the variant of OWL used. E.g.,
the set of structural conditions for OWL Lite will be more restrictive than these for
OWL DL.

• Logical Consistency: an ontology is considered logical consistent when the ontol-
ogy conforms to the underlying logical theory of the ontology language. In the case
of OWL, this is a variant of description logics. E.g., specifying the range of a prop-
erty requires the objects of all instantiations of this property to be in this range.

• User-defined Consistency: this form of consistency means that users can add their
own, additional conditions that must be met in order for the ontology to be consid-
ered consistent. E.g., users could require that classes can only be defined as a sub-
class of at most one other class (i.e. preventing multiple inheritance) in order for
the ontology to be considered consistent.

Most research in the field of ontology evolution concerning consistency has been
focused on structural consistency. In this paper however, we focus on the problem of
logical consistency. We therefore extend our previous work on ontology evolution
[10, 11] to support the detection and resolving of logical inconsistencies within OWL
DL (and by definition OWL Lite) ontologies. Checking logical consistency can be
achieved by running a reasoner on the ontology. To achieve this, most state-of-the-art
reasoners have adopted a description logic tableau algorithm as mentioned earlier. Al-
though reasoners can be used to identify unsatisfiable concepts, they provide very lit-
tle information about which axioms are actually causing the inconsistency. This
makes it extremely difficult to offer the ontology engineer solutions to solve the in-
consistency.

The contribution of this paper is twofold. First we present an approach that deter-
mines the axioms causing a logical inconsistency. We do this by extending the tableau
algorithm so that it keeps track of both the transformations performed during the pre-
processing step of the algorithm and the axioms (in transformed format) leading to a
clash used in the execution of the tableau algorithm itself. Based on this extra informa-
tion, we have defined an algorithm to determine the axioms causing the inconsistency.
The second contribution concerns a set of rules that can be applied by the ontology en-
gineer to actually resolve the inconsistency detected.

The paper is structured as follows. Section 2 describes the process of consistency
checking and discusses the principles of a tableau algorithm. Section 3 introduces an

202 P. Plessers and O. De Troyer

algorithm to determine those axioms causing an inconsistency. In section 4, we pre-
sent the set of rules that can be used by an ontology engineer to resolve the inconsis-
tency detected. Section 5 discusses related work, and finally, Section 6 presents some
conclusions.

2 Consistency Checking

The objective of our approach is to verify whether an ontology remains logical consis-
tent after changes have been applied. We differentiate between two possible scenarios
based on the common distinction found in literature between TBox (terminological or
concept knowledge) and ABox (assertional or instance knowledge):

1. An axiom was added to the TBox or an existing axiom from the TBox was
modified. To check logical consistency of the ontology, we require two tasks per-
formed sequentially. First, we verify whether the concepts of the TBox itself are
still satisfiable (without considering a possible ABox). We refer to this task as the
TBox Consistency Task. Second, we verify if the ABox remains consistent w.r.t.
the modified TBox, called the ABox Consistency Task.

2. An axiom was added to the ABox or an existing axiom from the ABox was
modified. We verify if the ABox remains consistent w.r.t. its TBox (called ABox
Consistency Task).

Note that we don’t take the deletion of an axiom from either the TBox or ABox

into account. Because OWL DL is based on a monotonic logic, an ontology can only
become inconsistent when new axioms are added or existing ones are changed. An
overview of the consistency checking process is shown in Figure 1.

When the user applies changes to the TBox, first the TBox Consistency Task (see)
is performed. An inconsistent TBox can be resolved by changing particular axioms
of the TBox (see). Note that resolving inconsistencies is an iterative process as

Fig. 1. Overview of consistency checking process.

 Resolving Inconsistencies in Evolving Ontologies 203

new changes may introduce new inconsistencies. When the TBox is consistent, the
ABox Consistency Task is performed (see). Inconsistencies in the ABox can be re-
solved either by changing particular axioms of the TBox (see) so that the TBox
conforms to the changed ABox, or by changing axioms of the ABox so that the
changed ABox forms a valid model for the TBox (see). In Section 3, we present an
algorithm to determine which axioms are causing the inconsistency, while in Section
4 we introduce a set of rules that specify which changes can be applied to these axi-
oms to resolve the inconsistency. The checking of TBox and ABox consistency is
based on existing OWL reasoners. As the state-of-the-art reasoners are based on a tab-
leau algorithm, we first give a short introduction of the tableau algorithm in the next
subsection.

2.1 Tableau Algorithm

We focus in this paper, as already mentioned in the introduction, on the DL variant of
OWL. OWL DL conforms to the (D) description logic. The syntax of

(D) is summarized in Table 1. We adopt the following convention: A and B are
atomic concepts, C and D are complex concepts, R is an abstract role, S is an abstract
simple role, T and U are concrete roles, d is a datatype, a, b and c are individuals, and
n is a non-negative integer. Based on this syntax, different types of axioms can be
formed: concept equivalent axioms C ≡ D, concept inclusion axioms C D, role
equivalent axioms R ≡ S, role inclusion axioms R S, transitivity axioms Trans(R),
inverse role axioms R ≡ S-, symmetric role axioms R ≡ R-, concept assertions C(a),
role assertions R(a, b), individual equalities a b and inequalities a b. Subse-
quently, we define an ontology O as a finite set of axioms.

The tableau algorithm allows verifying both the satisfiability of a concept C w.r.t. a
given TBox i.e. whether C doesn’t denote the empty concept, as well as the consis-
tency of a given ABox w.r.t. a TBox i.e. whether the assertions in the ABox form a
valid model for the axioms defined in the TBox. An ontology O (composed of a TBox

 and ABox) is considered to be logical consistent if all concepts of the TBox are
satisfiable and the ABox is consistent w.r.t. to this TBox .

The basic principle of the tableau algorithm used when checking the satisfiability
of a concept C is to gradually build a model of C, i.e. an interpretation in which C
is not empty. The algorithm tries to build a tree-like model of the concept C by de-
composing C using tableau expansion rules. These rules correspond to constructors in
the description logic. E.g., C D is decomposed into C and D, referring to the fact
that if a (C D)I then a CI and a DI. The tableau algorithm ends when either no
more rules are applicable or when a clash occurs. A clash is an obvious contradiction
and exists in two forms: C(a) C(a) and (n S) (m S) where m > n. A con-
cept C is considered to be satisfiable when no more rules can be applied and no
clashes occurred. The tableau algorithm can be straightforwardly extended to support
consistency checking of ABoxes. The same set of expansion rules can be applied to
the ABox, requiring that we add inequality assertions a b for every pair of distinct
individual names.

Important to note is that, although the tableau algorithm allows us to check ontol-
ogy consistency, the algorithm doesn’t provide us any information regarding the

204 P. Plessers and O. De Troyer

axioms causing the inconsistency, neither does it suggest solutions to overcome the
inconsistency. In the remainder of this paper we discuss how we can overcome these
shortcomings.

Table 1. SHOIN(D) syntax

Syntax Description Syntax Description
C D Conjunction n S Atmost restriction
C D Disjunction n S Atleast restriction

C or d Negation ∃T.d Datatype exists
∃R.C Exists restriction ∀T.d Datatype value
∀R.C Value restriction n T Datatype atmost
{a, b, c} Individuals n T Datatype atleast

3 Selecting Axioms Causing Inconsistency

In this section we discuss how we extend the tableau algorithm by keeping track of
the internal transformations that occur during the preprocessing step and the axioms
leading to a clash used in the execution of the algorithm. We therefore introduce
Axiom Transformation Trees and Concept Dependency Trees. Next, we explain how
such a Concept Dependency Tree is used to determine the axioms causing the incon-
sistency. In the last subsection, we explain the overall algorithm and illustrate it with
an example.

3.1 Axiom Transformations and Concept Dependencies

To be able to determine the axioms causing an inconsistency, we keep track of both
the axiom transformations that occur in the preprocessing step, and the axioms lead-
ing to a clash used during algorithm execution. The result of the preprocessing step is
a collection of axiom transformations, represented by a set of Axiom Transformation
Trees (ATT), while the axioms used are represented in a Concept Dependency Tree
(CDT). We explain the construction of both the ATT and the CDT by means of a
simple example. We consider for our example the following TBox consisting of the
following axioms: {PhDStudent ∀enrolledIn. Course, ∃enrolledIn.Course Un-
dergraduate, Undergraduate PhDStudent, PhDStudent_CS PhDStudent}.

3.1.1 Axiom Transformation Tree
We give an overview of the different kind of transformations that occur during the
preprocessing step of the tableau algorithm:

• Normalization: The tableau algorithm expects axioms to be in Negation Normal
Form (NNF) i.e. negation occurs only in front of concept names. Axioms can be
transformed to NNF using De Morgan’s rules and the usual rules for quantifiers.
For our example, this means that PhDStudent ∀enrolledIn. Course is trans-
formed to PhDStudent ∃enrolledIn.Course. Other forms of normalization can be
treated in a similar way.

 Resolving Inconsistencies in Evolving Ontologies 205

• Internalization: Another task in the preprocessing step concerns the transforma-
tion of axioms to support General Concept Inclusion (GCI) of the form C D
where C and D are complex concepts. In contrast to subsumption relations between
atomic concepts (A B), which are handled by expansion, this is not possible with
GCI. To support GCI, C D must first be transformed into C D (meaning
that any individual must belong to C D). In our example, ∃enrolledIn.Course
Undergraduate is transformed to Undergraduate ∀enrolledIn. Course.

• Absorption: The problem with GCI axioms is that they are time-expensive to rea-
son with due to the high-degree of non-determinism that they introduce [1]. They
may degrade the performance of the tableau algorithm to the extent that it becomes
in practice non-terminating. The solution of this problem is to eliminate GCI axi-
oms whenever possible. This is done by a technique called absorption that tries to
absorb GCI axioms into primitive axiom definitions.

• Axiom composition: different axioms can be composed together into one axiom.
E.g., the axioms C A and C B can be transformed to C A B.

We introduce the notion of an Axiom Transformation Tree (ATT) to keep track of
the transformations that occur during the preprocessing step i.e. an ATT stores the
step-by-step transformation of the original axiom (as defined by the ontology engi-
neer) to their transformed form. When later on the tableau algorithm ends with a
clash, the ATTs can be used to retrieve the original axioms by following the inverse
transformations from the axioms causing the clash (as found by the tableau algorithm)
to the original ones. We define an Axiom Transformation Tree as follows:

Definition (ATT). An Axiom Transformation Tree, notation ATT, is a tree structure
starting from one or more axioms 1, ..., n, and ending with a transformed axiom ’.
Each branch of the tree represents a transformation and is accordingly labeled as
follows:

• NRM: transformation into normal form;
• ABS: absorption of axioms into primitive axiom definitions;
• GCI: transformation of General Concept Inclusion axioms;
• CMP: composition of axioms.

Fig. 2. An ATT for the given example

206 P. Plessers and O. De Troyer

Figure 2 shows the ATT for the axioms ∃enrolledIn.Course Undergraduate and
PhDStudent ∀enrolledIn. Course in our example.

3.1.2 Concept Dependency Tree
The tableau algorithm reasons with the transformed set of axioms resulting from the
preprocessing step. In our example this means the following set: {PhDStudent ∃en-
rolledIn.Course (Undergraduate ∀enrolledIn. Course), Undergraduate

PhDStudent (Undergraduate ∀enrolledIn. Course), PhDStudent_CS
PhDStudent (Undergraduate ∀enrolledIn. Course)}. To test the satisfiability of
a concept C, the set of tableau rules are applied to expand this concept until either a
clash occurs or no more rules are applicable. We now want to store explicitly the dif-
ferent axioms that are used during the tableau reasoning process leading to a clash.
We therefore introduce a Concept Dependency Tree (CDT):

Definition (CDT). We define a Concept Dependency Tree for a given concept C, nota-
tion CDT(C), as an n-ary tree where N1, ..., Nn are nodes of the tree and a child(Ni,Nj)
relation exists to represent an edge between two nodes in the tree. Furthermore, we de-
fine parent as the inverse relation of child, and child* and parent* as the transitive
counterparts of respectively child and parent. A node Ni is a tuple of the form φ, RA
where φ is a concept axiom and RA is a set of role axioms and assertions.

To construct a CDT, we keep track, for each node added to the tableau, of the path
of axioms leading to the addition of that node. When a clash is found between two
nodes, the paths of axioms associated with both nodes are used to construct the CDT.

Fig. 3. Example tableau algorithm result and associated CDTs

 Resolving Inconsistencies in Evolving Ontologies 207

For each concept axiom φ represented in a path, we add a new node N to the CDT
(unless such a node already exists) as child of the previous node (if any) so that N =
φ, {} . When we encounter a role axiom or assertion , we add it to the RA set of the

current node N of the CDT so that ∈ RA where N = φ, RA . Note that cyclic axi-
oms (e.g., C ∀R.C) don’t lead to the construction of an infinite CDT, as reasoners
normally include some sort of cycle checking mechanism, such as blocking.

The result of the tableau algorithm testing the satisfiability of the concept PhDStu-
dent_CS in our example is shown in Figure 3 at the top, while the CDTs are shown
below. The tableau algorithm terminates with a clash between PhDStudent(a)

PhDStudent(a) and between Course(a) Course(a). Note that non-deterministic
branches in the tableau result in more than one CDT i.e. one for each non-
deterministic branch. The CDTs contain the different axioms that lead from the con-
cept examined (in our example PhDStudent_CS) to the cause of the inconsistency (the
concepts involved in the clash).

3.2 Interpretation of Concept Dependency Trees

We use the CDTs to determine the axioms causing the inconsistency. The interpreta-
tion of a CDT differs for the TBox and ABox consistency task. In this section, we will
discuss both interpretations.

3.2.1 TBox Consistency Task
The set of axioms of a CDT(C) can be seen as a MUPS (Minimal Unsatisfiability Pre-
serving Sub-TBox) of the unsatisfiable concept C, i.e. the smallest set of axioms re-
sponsible for the unsatisfiable concept C [13]. Although removing one of the axioms
of the CDT will resolve, by definition of a MUPS, the unsatisfiability of C, we con-
sider it in general bad practice to take all axioms of a CDT into consideration to re-
solve inconsistencies. We will explain this by means of an example. Assume the fol-
lowing TBox: {C B, B ∃R.D, D E, E A F, F ¬A}. Checking the
satisfiability of C will reveal that C is unsatisfiable due to a clash between A(b)

A(b). The left side of Figure 4 shows the tableau, the right side the associated CDT.

Fig. 4. Example of a CDT in the TBox Consistency Task

208 P. Plessers and O. De Troyer

Although removing for example the axiom C B resolves the unsatisfiability of
C, this change fails to address the true cause of the unsatisfiability as the overall
TBox remains inconsistent. A concept is considered unsatisfiable if a clash is found
in two deterministic branches of the tableau. This implies that the axioms contain-
ing the concepts involved in the clash must have a common parent in the CDT. Oth-
erwise, no clash could have occurred between both concepts. Therefore, only the
first common parent of these axioms and the axioms along the paths from this first
common parent to the clashes are directly involved in the unsatisfiability problem.
Changing axioms leading to this common parent (e.g. C B or D E) may resolve
the unsatisfiability of the concept under investigation, but doesn’t tackle the true
cause. We therefore introduce the notion of a FirstCommonParent for the CDT, and
define it as follows:

Definition (FirstCommonParent). We define c as the first common parent for two
axioms 1 and 2, notation FirstCommonParent(c, 1, 2), iff ∃Nc ∈ CDT (par-
ent*(Nc, N1) ∧ parent*(Nc, N2) ∧ ∃N3 (parent*(N3, N1) ∧ parent*(N3, N2) ∧
child*(N3, Nc) ∧ N3 ≠ Nc)) where Nc = φc, RA , N1 = φ1, RA’ and N2 = φ2, RA’’ .

In our example, the axiom E A F is the first common parent for the axioms

containing the concepts involved in the clash. We therefore restrict the set of axioms
causing the inconsistency to the following set: {E A F, F ¬A}.

3.2.2 ABox Consistency Task
The interpretation of the CDT differs for the ABox consistency task from the TBox
consistency task. Consider the example with TBox: {C B, B ∀R.D, E A, D
¬A} and ABox: {C(a), E(b)}. Note that the TBox doesn’t contain any unsatisfiable
concepts (as we assume that the TBox consistency task was performed previously).

Fig. 5. Example of CDTs in the ABox consistency task

 Resolving Inconsistencies in Evolving Ontologies 209

Adding the assertion R(a, b) to the ABox, will result in an inconsistent ABox as a
clash occurs between A(b) ¬A(b). At the top of Figure 5 the tableau is shown and
at the bottom the CDTs.

Checking the ABox consistency for our example results in two CDTs, one for each
individual checked (i.e., a and b). The axioms causing the inconsistency are the axi-
oms resulting from both CDTs, together with axioms of the ABox used during the
reasoning process (e.g., R(a, b) as it allowed to trigger the →∀ expansion rule). Note
that we only consider axioms present in the original ABox i.e. no individuals added
by the tableau algorithm to direct reasoning.

3.3 Axiom Selection

In this section, we give an overview of the overall algorithm to determine the axioms
causing an inconsistency based on the interpretations of the CDT given in the previ-
ous section. Note that the axioms that will be considered differ for the TBox and
ABox consistency task. The algorithm takes as input the clash information, CDTs and
ATTs and outputs a set of axioms causing the inconsistency. Before explaining the
complete algorithm, we fist need to address the following issues:

• Mark axioms. A complete axiom is not necessarily the cause of an inconsistency;
instead only parts of the axiom may be the cause. Parts of axioms are causing an
inconsistency either because they are the direct cause of the inconsistency, or be-
cause they are leading to a concept directly causing the inconsistency. The algo-
rithm therefore marks those parts of the axioms. In order to do so, we introduce the
markAllParents function that marks all parent nodes of the nodes containing a con-
cept involved in the clash. The pseudo-code of the function is given below:

markAllParents(N):
 if not rootNode(N) then
 = getConceptAxiom(N);
 C = getLeftPart();
 Nparent = getParentNode(N);
 parent = getConceptAxiom(Nparent);
 mark(def , parent);
 call markAllParents(Nparent)
 end if

• Non-inconsistency-revealing clashes. Clashes found between transformed axioms
by the tableau algorithm, may not always indicate conflicting concepts in the origi-
nal axioms as defined by the ontology engineer. Figure 3 (see Section 3.1.2) illus-
trates this. The clash Course(b) Course(b) seems to reveal a contradiction ,
but when we transform the axioms back to their original form (i.e., PhDStudent

∀enrolledIn. Course and ∃enrolledIn.Course Undergraduate) it is clear that
they both refer to the same concept ∃enrolledIn.Course (although one is in NNF
while the other is not). The clash found guided the tableau algorithm, rather than
revealing an actual inconsistency.

210 P. Plessers and O. De Troyer

The structure of the overall algorithm is as follows:

1. For each clash C(a) D(a), lookup the concepts C and D in the leaf nodes of the
associated CDTs, and mark these concepts.

2. For each marked node N, mark all parent nodes using the markAllParents(N) func-
tion.

3. Depending on the task performed (TBox or ABox consistency task) select for each
CDT the axioms as described in Section 3.2. This results for each CDT in a set S
containing the selected axioms.

4. For each set S, transform all axioms ∈ S into their original form by applying the
inverse transformations of the correct ATT.

5. The union of all sets S is the desired set of axioms.

Applying this algorithm to the example introduced in Section 3.1 results in the fol-
lowing set S. Underlined concepts are the concepts marked by the algorithm, under-
lined and bold concepts are the concepts involved in the consistency-revealing clash.
S = {PhDStudent ∀enrolledIn. Course, ∃enrolledIn.Course Undergraduate,
Undergraduate PhDStudent};

4 Resolving Inconsistencies

When an ontology is logical inconsistent this is because the axioms of the ontology
are too restrictive as axioms are contradicting each other. To resolve the inconsis-
tency, the restrictions imposed by the axioms should be weakened. In the previous
section (see Section 3.3), we have defined an algorithm to determine the set of axioms
causing the inconsistency. Changing one of these selected axioms will resolve the de-
tected inconsistency. In the remainder of this section, we present a collection of rules
that guides the ontology engineer towards a solution. A rule either calls another rule
or applies a change to an axiom. Note that it remains the responsibility of the ontol-
ogy engineer to decide which axiom he wants to change from the set provided by the
approach.

Before we define the different rules, we first introduce the notion of class- and
property hierarchy. We call c the class hierarchy of all classes present in the set S so
that if (C, D) ∈ c then C D, and p the property hierarchy of all properties present
in the set S so that if (R, S) ∈ p then R S. Note that these hierarchies don’t include
classes or properties not included in S. Furthermore, we define t as the top of a hier-
archy for a concept , notation top(t, ,), iff t ∧ ¬∃ ∈ S: t. Analo-
gous, we define l as the leaf of a hierarchy for a concept , notation leaf(l, ,

), iff l ∧ ¬∃ ∈ S: l .
In the remainder of this section, we present a set of rules that guide the ontology

engineer to a solution for the detected inconsistency. Note that we don’t list the com-
plete set of rules due to space restrictions. First, we define a set of rules that handle
the different types of axioms. Secondly, we define the necessary rules to weaken or
strengthen the different types of concepts. Note that axioms can always be weakened
by removing the axiom. We therefore won’t mention this option explicitly in the rules
below. The rules for weakening axioms are given below:

 Resolving Inconsistencies in Evolving Ontologies 211

• A concept definition C D can be weakened either by removing the axiom or by
weakening C or D (assuming C D resulted from C D in the CDT):
(4.1) weaken(C D) strengthen(C)
(4.2) weaken(C D) weaken(D)

• A concept inclusion axiom C D can be weakened by removing the axiom,
strengthening C or weakening D. The same rule applies for role inclusion axioms:
(4.3) weaken(C D) strengthen(C)
(4.4) weaken(C D) weaken(D)

• A concept assertion C(a) can be weakened by either removing the axiom or by re-
placing C with a superclass:
(4.5) weaken(C(a)) change(C(a), D(a)) where X D and leaf(X, C, c)

• A role assertion R(a, b) can be weakened by either removing the axiom or by re-
placing R with a super-property:
(4.6) weaken(R(a, b)) change(R(a, b), S(a, b)) where X S and leaf(X, R, p)

The second part of rules deal with the weakening and strengthening of concepts:

• A conjunction relation C D can be weakened (strengthened) by weakening
(strengthening) either C or D. The rules for weakening are given below; the rules
for strengthening are analogous:
(4.7) IF marked(C): weaken(C D) weaken(C)
(4.8) IF marked(D): weaken(C D) weaken(D)
(4.9) IF marked(C) ∧ marked(D): weaken(C D) weaken(C) ∨ weaken(D)

• A disjunction relation C D can be weakened (strengthened) by weakening
(strengthening) C, D, or both C and D. The rules for weakening are given below;
the rules for strengthening are analog:
(4.10) IF marked(C): weaken(C D) weaken(C)
(4.11) IF marked(D): weaken(C D) weaken(D)
(4.12) IF marked(C) ∧ marked(D): weaken(C D) weaken(C) ∨ weaken(D)

• An existential quantification ∃R.C can be weakened and strengthened in two
manners as it represents both a cardinality restriction (“at least one”) and a value
restriction. To weaken ∃R.C, we either remove ∃R.C if it concerns a cardinality
restriction violation, or we weaken C if it concerns a value restriction violation.
To strengthen ∃R.C, we either add a minimum cardinality restriction if it concerns
a cardinality restriction violation, or we strengthen C if it concerns a value restric-
tion violation:
(4.13) IF marked(C): weaken(∃R.C) weaken(C)
(4.14) IF marked(R): strengthen(∃R.C) add((2 R))
(4.15) IF marked(C): strengthen(∃R.C) strengthen(C)

• A universal quantification ∀R.C can be weakened (strengthened) by weakening
(strengthening) C. The rule for weakening is given below; the rule for strengthen-
ing is analogous:
(4.16) IF weaken(∀R.C) weaken(C)

• A maximum cardinality restriction (n R) can be weakened either by raising n or
by removing the cardinality restriction altogether. To strengthen (n R), we can
lower n:

212 P. Plessers and O. De Troyer

(4.17) weaken((n R)) changeCardinalityRestriction(R, m) where m 1
 if (n R) conflicts with ∃R.C, or m α if (n R) conflicts with (α R)
(4.18) weaken((n R)) remove((n R))
(4.19) strengthen((n R)) changeCardinalityRestriction(R, m) where m = 0
 if (n R) conflicts with ∃R.C, or m α if (n R) conflicts with (α R)

• A minimum cardinality restriction (n R) can be weakened by either lowering n or
by removing the cardinality restriction altogether. To strengthen (n R), we can
raise n:
(4.20) weaken((n R)) changeCardinalityRestriction(R, m) where m α

 if (n R) conflicts with (α R)
(4.21) weaken((n R)) remove((n R))
(4.22) strengthen((n R)) changeCardinalityRestriction(R, m) where m α
 if (n R) conflicts with (α R)

• A negation C is weakened by either removing C or by strengthening C. To
strengthen C, we need to weaken C:
(4.23) weaken(C) strengthen(C)
(4.24) strengthen(C) weaken(C)

• A concept A is weakened either by removing the concept or by replacing it with a
superclass of A. To strengthen an atom concept A, we replace it with a subclass of
A. When no (appropriate) sub- or superclass exists, we can create one first:
(4.25) weaken(A) change(A, B) where X B and leaf(X, A, c)
(4.26) strengthen(A) change(A, B) where B X and top(X, A, c)

We conclude this section with our example. The selection of axioms consisted of

the following axioms: PhDStudent ∀enrolledIn. Course, ∃enrolledIn.Course
Undergraduate, Undergraduate PhDStudent. If, for example, the ontology engi-
neer beliefs that the axiom ∃enrolledIn.Course Undergraduate doesn’t reflect the
real world situation, he could for example change the axiom to ∃enrolledIn.Course
Student, assuming Undergraduate Student, by following the rules 4.4 and 4.25.

5 Related Work

Change management has been a long-term research interest. Noteworthy in the con-
text of this paper is certainly the work on database schema evolution [13] and mainte-
nance of knowledge-based systems [7]. When considering the problem of ontology
evolution, only few approaches have been proposed. [15] defines the process of ontol-
ogy evolution as the timely adaptation of an ontology to the arisen changes and the
consistent propagation of these changes to depending artifacts. In [16], the authors
propose a possible ontology evolution framework. They introduce a change representa-
tion and discuss the semantics of change for the KAON ontology language. A similar
approach has been taken by [6] for the OWL language. The authors of [11][12] pro-
pose another approach for the OWL language based on the use of a version log to rep-
resent evolution. They define changes in terms of temporal queries on this version log.

On the topic of dealing with consistency maintenance for evolving ontologies, only
very little research has been done. [4] presents an approach to localize an inconsistency

 Resolving Inconsistencies in Evolving Ontologies 213

based on the notion of a minimal inconsistent sub-ontology. The notion of a minimal in-
consistent sub-ontology is very similar to the concept of a MUPS introduced by [14].
Although removing one axiom from the minimal inconsistent sub-ontology will resolve
an unsatisfiable concept, it can not be guaranteed that this will solve the true cause of
the inconsistency (as discussed in this paper). Furthermore, the approach doesn’t mark-
ing indicating parts of axioms as cause of the inconsistency, but rather treats axioms as a
whole.

Some related work has been carried out in explaining inconsistencies in OWL on-
tologies. The authors of [2] present a Symptom Ontology that aims to serve as a
common language for identifying and describing semantic errors and warnings. The
Symptom Ontology doesn’t identify the cause of the ontology nor does it offer possi-
ble solutions to resolve an inconsistency.

Another interesting research area is the field of ontology debugging [10][18]. Their
aim is to provide the ontology engineer with a more comprehensive explanation of the
inconsistency than is generally provided by ‘standard’ ontology reasoners. We distin-
guish two types of approaches: black-box versus glass-box techniques. The first treats
the reasoner as a ‘black box’ and uses standard inferences to locate the source of the in-
consistency. The latter modifies the internals of the reasoner to reveal the cause of the
problem. While black-box techniques don’t add an overhead to the reasoner, more
precise results can be obtained using a glass-box technique. Therefore, glass-box tech-
niques are considered a better candidate in the context of ontology evolution. The authors
of [9] discuss a glass-box approach which offers the users information about the clash
found and selects the axioms causing the inconsistency (similar to a MUPS). The disad-
vantage of a MUPS is that it doesn’t necessarily pinpoints the true cause of the inconsis-
tency. Furthermore, the approach doesn’t offer solutions to resolve the detected problem.

6 Conclusion

Ontologies are in general not static, but do evolve over time. An important aspect for
evolving ontologies is that they evolve from one consistent state into another consis-
tent state. Checking whether an ontology is consistent can be achieved by means of a
reasoner. The problem is that it is in general extremely challenging for an ontology
engineer to determine the cause of an inconsistency and possible solutions for the
problem based on the output of a reasoner. We therefore presented an algorithm to se-
lect the axioms causing the inconsistency. Furthermore, we have presented a set of
rules that ontology engineers can use to change the selected axioms to overcome the
detected inconsistency.

References

1. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.: The description
logic handbook: theory, implementation and applications. Cambridge University Press.
ISBN 0-521-78176-0 (2003)

2. Baclawski, K., Matheus, C., Kokar, M., Letkowski, J., Kogut, P.: Towards a symptom on-
tology for semantic web applications. In Proceedings of 3rd International Semantic Web
Conference (ISWC 2004), Hiroshima, Japan (2004) 650-667

214 P. Plessers and O. De Troyer

3. Berners Lee, T., Hendler, J., Lassila, O.: The semantic web: A new form of web content
that is meaningful to computers will unleash a revolution of new possibilities. Scientific
American (2001) 5(1)

4. Haase, P., Stojanovic, L.: Consistent evolution of OWL ontologies. Asunción Gómez-
Pérez, Jérôme Euzenat (Eds.), The Semantic Web: Research and Applications, Second
European Semantic Web Conference (ESWC 2005), Lecture Notes in Computer Science
3532 Springer 2005, ISBN 3-540-26124-9, Heraklion, Crete, Greece (2005) 182-197

5. Horrocks, I.: The fact system. In Proceedings of Automated Reasoning with Analytic Tab-
leaux and Related Methods: International Conference Tableaux’98, Springer-Verlag
(1998) 307-312

6. Klein, M.: Change Management for Distributed Ontologies. PhD Thesis (2004)
7. Menzies, T.: Knowledge maintenance: the state of the art, The Knowledge Engineering

Review (1999) 14(1) 1-46
8. Moller, R., Haarslev, V.: Racer system description. In Proceedings of the International

Joint Conference on Automated Reasoning (IJCAR 2001), Siena, Italy (2001)
9. Parsia, B., Sirin, E.: Pellet: An OWL DL reasoner. In Ralf Moller Volker Haaslev (Eds.),

Proceedings of the International Workshop on Description Logics (DL2004) (2004)
10. Parsia, B., Sirin, E., Kalyanpur, A.: Debugging OWL ontologies. In Proceedings of the

14th International World Wide Web Conference (WWW2005), Chiba, Japan (2005)
11. Plessers, P., De Troyer, O., Casteleyn, S.: Event-based modeling of evolution for semantic-

driven systems. In Proceedings of the 17th Conference on Advanced Information Systems
Engineering (CAiSE'05), Publ. Springer-Verlag, Porto, Portugal (2005)

12. Plessers, P., De Troyer, O.: Ontology change detection using a version log, In Proceedings
of the 4th International Semantic Web Conference, Eds. Yolanda Gil, Enrico Motta,
V.Richard Benjamins, Mark A. Musen, Publ. Springer-Verlag, ISBN 978-3-540-29754-3,
Galway, Ireland (2005) 578-592

13. Roddick, J.F.: A survey of schema versioning issues for database systems, Information and
Software Technology (1995) 37(7): 383-393.

14. Schlobach, S., Cornet, R.: Non-standard reasoning services for the debugging of descrip-
tion logic terminologies. In Proceedings of IJCAI 2003 (2003)

15. Stojanovic, L., Maedche, A., Motik, B., Stojanovic, N.: Userdriven Ontology Evolution
Management. In Proceeding of the 13th European Conference on Knowledge Engineering
and Knowledge Management EKAW, Madrid, Spain (2002)

16. Stojanovic, L.: Methods and Tools for Ontology Evolution. Phd Thesis (2004)
17. Tallis, M., Gil, Y.: Designing scripts to guide users in modifying knowledge-based sys-

tems. In Proceedings of the 14th National Conference on Artificial Intelligence
(AAAI/IAAI 1999), Orlando, Florida, USA (1999) 242-249

18. Wang, H., Horridge, M., Rector, A., Drummond, N., Seidenberg, J.: Debugging OWL-DL
ontologies: A heuristic approach. In Proceedings of the 4th International Semantic Web
Conference, Eds. Yolanda Gil, Enrico Motta, V.Richard Benjamins, Mark A. Musen, Publ.
Springer-Verlag, ISBN 978-3-540-29754-3, Galway, Ireland (2005)

Automatic Extraction of Hierarchical Relations
from Text

Ting Wang1,2, Yaoyong Li1, Kalina Bontcheva1,
Hamish Cunningham1, and Ji Wang2

1 Department of Computer Science, University of Sheffield, Sheffield, S1 4DP, UK
{T.Wang, Y.Li, K.Bontcheva, H.Cunningham}@dcs.shef.ac.uk

2 Department of Computer, National University of Defense Technology, Changsha,
Hunan, 410073, P.R. China

{tingwang, jiwang}@nudt.edu.cn

Abstract. Automatic extraction of semantic relationships between en-
tity instances in an ontology is useful for attaching richer semantic meta-
data to documents. In this paper we propose an SVM based approach
to hierarchical relation extraction, using features derived automatically
from a number of GATE-based open-source language processing tools.
In comparison to the previous works, we use several new features includ-
ing part of speech tag, entity subtype, entity class, entity role, semantic
representation of sentence and WordNet synonym set. The impact of the
features on the performance is investigated, as is the impact of the rela-
tion classification hierarchy. The results show there is a trade-off among
these factors for relation extraction and the features containing more
information such as semantic ones can improve the performance of the
ontological relation extraction task.

1 Introduction

Information Extraction (IE) [4] is a process which takes unseen texts as input
and produces fixed-format, unambiguous data as output. It involves processing
text to identify selected information, such as particular named entity or relations
among them from text documents. Named entities include people, organizations,
locations and so on, while relations typically include physical relations (located,
near, part-whole, etc.), personal or social relations(business, family, etc.), and
membership (employ-staff, member-of-group, etc.).

Until recently, research has focused primarily on use of IE for populating
ontologies with concept instances (e.g. [9, 16]). However, in addition to this,
many ontology-based applications require methods for automatic discovery of
properties and relations between instances. Semantic relations provide richer
metadata connecting documents to ontologies and enable more sophisticated
semantic search and knowledge access.

One barrier to applying relation extraction in ontology-based applications
comes from the difficulty of adapting the system to new domains. In order to
overcome this problem, recent research has advocated the use of Machine Learn-
ing (ML) techniques for IE. A number of ML approaches have been used for

Y. Sure and J. Domingue (Eds.): ESWC 2006, LNCS 4011, pp. 215–229, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

216 T. Wang et al.

relation extraction, e.g. Hidden Markov Models (HMM) [7], Conditional Ran-
dom Fields (CRF) [12], Maximum Entropy Models (MEM) [11]. and Support
Vector Machines (SVM) [19]. The experimental results in [19] showed that the
SVM outperformed the MEM on the ACE2003 relation extraction data1.

Zelenko et al [18] proposed extracting relations by computing kernel func-
tions between shallow parse trees. Kernels have been defined over shallow parse
representations of text and have been used in conjunction with SVM learning
algorithms for extracting person-affiliation and organization-location relations.
Culotta et al [5] extended this work to estimate kernel functions between aug-
mented dependency trees.

Zhou et al [19] further introduced diverse lexical, syntactic and semantic
knowledge in feature-based relation extraction using SVM. The feature system
covers word, entity type, overlap, base phrase chunking, dependency tree and
parse tree, together with relation-specific semantic resources, such as country
name list, personal relative trigger word list. Their results show that the feature-
based approach outperforms tree kernel-based approaches, achieving 55.5% F-
measure in relation detection and classification on the ACE2003 training data.

Motivated by the above work, we use the SVM as well and apply a diverse
set of Natural Language Processing (NLP) tools to derive features for relation
extraction. In particular, several new features are introduced, such as part-of-
speech (POS) tags, entity subtype, entity class, entity role, semantic represen-
tation of sentences and WordNet synonym set.

In the rest of the paper, we first describe the ACE2004 entity and relation
type hierarchy from an ontological perspective (Section 2). Then we give a brief
introduction of SVM used as the classifier for relation extraction (Section 3) and
explain an extensive set of features used in our experiments (Section 4). Section
5 presents and discusses a series of experiments that investigate the impact of
the different features and the classification hierarchy. Finally, we summarise the
work and discuss some future directions.

2 The ACE Entity and Relation Hierarchies

Relation extraction from text aims to detect and classify semantic relations
between entities according to a predefined entity and relation type system or an
ontology. The Automatic Content Extraction (ACE) programme [1] defines this
task as Relation Detection and Characterization (RDC). RDC uses the results
of named entity recognition, which detects and classifies entities according to a
predefined entity type system.
1 SVM has achieved state of the art results in many NLP tasks such as text classifica-

tion, part of speech tagging and information extraction. This is mainly because, on
the one hand, the SVM is an optimal classifier with maximal margin in feature space;
on the other hand, NLP tasks typically represent instances by very high dimensional
but very sparse feature vectors, resulting in positive and negative examples being
distributed into two distinctly different areas of the feature space. As we use a very
high dimensional and very sparse feature vector for relation extraction, it can be
expected that SVM will have similarly good performance.

Automatic Extraction of Hierarchical Relations from Text 217

In contrast to earlier ACE evaluations, ACE2004 introduced a type and sub-
type hierarchy for both entity and relations, an important step towards ontology-
based IE. Hence, we evaluate our method on the corpus for learning relation
hierarchy

2.1 The ACE2004 Entity Hierarchy

Entities are categorized in a two level hierarchy, consisting of 7 types and 44
subtypes. The entity type includes Person, Organisation, Facility, Location and
Geo-political Entity (GPE). Subtype refers to sub-concept of entity concept. For
example, The entity type Organisation was divided into the subtypes such as
Government, Commercial and Educational. For details see [2].

Each entity has been assigned a class which describes the kind of reference the
entity makes to something in the world. The class can be one of four values: Neg-
atively Quantified(NEG), Specific Referential(SPC), Generic Referential(GEN),
Under-specified Referential(USP). The occurrence of each entity in the dataset
is called an entity mention, which can be one of the following: Names(NAM) ,
Quantified Nominal Constructions(NOM), Pronouns(PRO), Pre-modifier(PRE).

In addition, GPEs are regarded as composite entities comprising of popula-
tion, government, physical location, and nation (or province, state, county, city,
etc.). Consequently, each GPE mention in the text has a mention role which
indicates which of these four aspects is being referred to in the given context: of
that mention invokes: Person(PER), Organization(ORG), Location(LOC), and
GPE.

2.2 The ACE2004 Relation Hierarchy

In an ontology, the concepts are not only organised in a taxonomy representing
IS-A relations, but also linked together by semantic relations such as Part-Whole,
Subsidiary, LocatedIn, etc. ACE2004 defines a hierarchy of relations with 7 top
types and 22 sub-types, shown in Table 1 [3]. There are 6 symmetric relations
(marked with star in table) and the remaining ones are asymmetric relations.

Table 1. ACE2004 relation types and subtypes

Type Subtype
Physical (PHYS) Located, Near*, Part-Whole
Personal/Social (PER-SOC) Business*, Family*, Other*
Employment/Membership/ Employ-Exec, Employ-Staff, Employ-Undetermined,
Subsidiary (EMP-ORG) Member-of-Group, Subsidiary, Partner*, Other*
Agent-Artifact (ART) User/Owner, Inventor/Manufacturer, Other
PER/ORG Affiliation Ethnic, Ideology, Other
(OTHER-AFF)
GPE Affiliation (GPE-AFF) Citizen/Resident, Based-In, Other
Discourse (DISC) (none)

218 T. Wang et al.

Fig. 1. The hierarchy of the ACE2004 relation types and subtypes

This relation type and subtype hierarchy can also be described as a three levels
tree (see Fig 1). In the experiments reported next, we use the ACE2004 corpus
to evaluate ontological relation extraction.

3 Using SVM for Relation Extraction

SVM is one of the most successful ML methods, which has achieved the state-of-
the-art performances for many classification problems. For example, our exper-
iments in [13] showed that the SVM obtained top results on several IE bench-
marking corpora.

As SVM were originally designed for binary classification and relation ex-
traction can be reduced into a multi-class classification problem, we have to
extend the SVM for multi-class classification. There exists two approaches to
use the SVM for multi-class problem [10]: (i) constructing and combining sev-
eral SVM binary classifiers via either the one-against-all method or the one-
against-one method; (ii) learning a multi-class SVM classifier directly for the
multi-class problem. The comparison in [10] shows that one-against-one method
is the best in both training time and performance, and suggests that one-against-
one method may be more suitable for practical use on large problems than other
approaches. Therefore we used the one-against-one method in the experiments
(see Section 5.1 for more details).

For a k-class classification task, the one-against-one method constructs k(k−
1)/2 classifiers where each one is trained on data from two classes, while the one-
against-all method learns k classifier each of which is used to separate one class
from all others. Although one-against-one method has to train more classifiers
than one-against-all does (on k classifiers), each training data is much smaller,
resulting into less total training time than the one-against-all method. We used
the Max Wins voting strategy to predicate the class: apply every classifier to
instance x; if one classifier says x is in the i-th class, then the vote for the i-th
class is incremented by one; in the end x is classified as the class with the largest
number of votes.

Automatic Extraction of Hierarchical Relations from Text 219

We built SVM models for detecting the relations, predicting the type and
subtype of relations between every pair of entity mentions within the same sen-
tence. As defined in the ACE evaluation, we only model explicit relations rather
than implicit ones. For example, the sentence

Texas has many cars. (1)

explicitly expresses a ART.User/Owner relation between the two entity mentions
Texas and many cars. What we need to do is to detect the relation and its
type and subtype based on the context information within this sentence. Such
context information is usually expressed as a vector consisting of values for some
specific attributes, which is called features. Choosing the right features is key to
successful application of ML technology.

4 Features for Relation Extraction

Using NLP to derive ML features has been shown to benefit IE results [13].
Features which have been used for relation extractions include word, entity type,
mention level, overlap, chunks, syntactic parse trees, and dependency relations
[7, 11, 18, 19].

Based on the previous works, we developed a set of features for semantic
relation extraction, many of which are adopted from [19]. Moreover, we intro-
duce some new features such as POS tags, entity subtype and class features,
entity mention role feature, and several general semantic features. Zhou et al in
[19] have designed some relation-specific semantic features, for example, some
important trigger words list have been collected from WordNet [15] in order to
differentiate the six personal social relation subtypes. However, these lists are too
specific to the dataset to be applicable for general purpose relation extraction.
Therefore in our method, we introduce instead a set of more general semantic
features produced by a semantic analyser and WordNet.

BuChart (which has been renamed to SUPPLE) is a bottom-up parser that
constructs syntax trees and logical forms for English sentences [8]. One of its
significant characteristics is that it can produce a semantic representation of
sentences - called simplified quasilogical form (SQLF). Previously, one of the
limitations in applying general semantic information in IE is the relative lack of
robustness of semantic analyser. However, BuChart is a general purpose parser
that can still produce partial syntactic and semantic results for fragments even
when the full sentential parses cannot be determined. This makes it applicable
for deriving semantic features for ML-based extraction of semantic relations from
large volumes of real text.

WordNet [15] is a widely used linguistic resource which is designed accord-
ing to psycholinguistic theories of human lexical memory. English nouns, verbs,
adjectives and adverbs are organized into synonym sets (called synsets), each
representing one underlying lexical concept. In this work, WordNet is used to
derive several semantic features based on the synset and hypernym information.

220 T. Wang et al.

4.1 Using GATE for Feature Extraction

General Architecture for Text Engineering (GATE) [6] is an infrastructure for
developing and deploying software components that process human language. It
provides or includes from other people a set of NLP tools including tokeniser,
gazetteer, POS tagger, chunker, parsers, etc. For the relation extraction task,
we make use of a number of GATE components as follows: English Tokeniser,
Sentence Splitter, POS Tagger, NP Chunker, VP Chunker, BuChart Parser,
MiniPar Parser. To develop more semantic features we also made use of WordNet
and derived the synset information as the features.

4.2 Developing Features

In the experiments we tried to use as many NLP features as could be provided by
GATE components and which were considered as potentially helpful for modeling
the relation extraction task. This is a valid approach due to one advantage of
the SVM learning algorithm. Namely, carefully choosing features is crucial for
some learning algorithms such as decision trees and rule learning. However, it is
no so important for the SVM, because the irrelevant features for one particular
binary problem usually distribute evenly over the positive and negative training
examples and therefore would have little contribution to the SVM model due to
its learning mechanism. Hence, when using SVM, we can put into the feature
vector as many features as possible and let the SVM algorithm determine the
most useful ones for a given binary classification problem.

In Section 5.3 we will experimentally discuss the contributions of these features
to the relation extraction task.

The total feature set consists of 94 features. The rest of the subsection provide
an overview of the different types of features we used. Due to space limitations,
a complete description is provided in a separate technical report [17].

Word Features. This set consists of 14 features including the word list of the
two entity mentions and their heads, the two words before the first mention, the
two after the second mention, and the word list between them.
POS Tag Features. Because the word features are often too sparse, we also
introduce POS tag features. For example, sentence 1 has been tagged as: Texas
/NNP has/VBZ many/JJ cars/NNS, where NNP denotes proper name, JJ -
adjectives, NNS - plural nouns, etc. Similar to the word features, this set of
features includes the POS tag list of the two entity mentions and their heads,
the two POS tags before the first mention, the two after the second mention,
and the tag list in between.
Entity Features. As already discussed, ACE2004 divides entities into 7 types
and all the entity mentions has also been annotated with the entity type , sub-
type and class, all of which have been used to develop features. For each pair
of mentions, the combination of their entity types is taken as the entity type
feature. For the example sentence above, there are two entity mentions: Texas
categorized as GPE, and many cars as WEH. In addition, the entity hierarchy is

Automatic Extraction of Hierarchical Relations from Text 221

used, because subtypes carry more accurate semantic information for the entity
mentions. Therefore, the combination of the entity subtypes of the two entity
mentions is provided as the entity subtype feature. The subtypes of the two
example mentions are State-or-Province and Land. Finally, each entity has also
been annotated with a class which describes the kind of reference for the entity.
So the entity class is also used in this paper to predicate semantic relations. The
classes for the above two mentions are SPC and USP.
Mention Features. This set of features includes the mention type and role in-
formation of both mentions, which is also provided by the ACE2004 annotations.
For the example sentence, the mention types for the two mentions in sentence (1)
are NAM and NOM, while the mention role for Texas is GPE and there is no role
information for the second because only GPE entity can take role information.
Overlap Features. The relative position of the two entity mentions can also be
helpful for indicating the relationship between them. For these features, we have
considered: the number of words separating them, the number of other entity
mentions in between, whether one mention contains the other. As the feature
indicating whether one mention contains the other is too general, it has been
combined with the entity type and subtype of the two mentions to form more
discriminating features.
Chunk Features. GATE integrates two chunk parsers: Noun Phrase (NP) and
Verb Phrase (VP) Chunker that segment sentences into noun and verb group
chunks. For instance, the example sentence (1) is chunked as: [Texas] has [many
cars], in which, Texas and many cars are NPs, while has is the VP between
them whose type and voice are FVG (means finite verb phrase) and active. The
following information has been used as chunk features: whether the two entity
mentions are included in the same NP Chunk or VP Chunk, the type and voice
information of the verb group chunk in between if there is any.
Dependency Features. In contrast to Kambhatla [11] and Zhou et al [19],
who derive the dependency tree from the syntactic parse tree, we apply MiniPar
to directly build the dependency tree. MiniPar is a shallow parser which can
determine the dependency relationships between the words of a sentence [14].
Fig 2 shows the dependency tree for the example sentence. From the resulting
dependency relationships between words, the dependency features are formed,
including: combination of the head words and their dependent words for the two
entity mentions involved; the combination of the dependency relation type and
the dependent word of the heads of the two mentions; the combination of the
entity type and the dependent word for each entity mention’s head; the name of
the dependency relationship between the heads of the two mentions if there is
any; the word on which both the heads of the two mentions depend on if there
is any; and the path of dependency relationship labels connecting the heads of
the two mentions.
Parse Tree Features. The features on syntactic level are extracted from the
parse tree. As we mentioned above, we use BuChart to generate the parse tree
and the semantic representation of each sentence. Unlike many full parsers which

222 T. Wang et al.

Fig. 2. The dependency tree for the example sentence

would fail if a full sentential parse cannot be found, BuChart can still produce
the partial parsing trees and correspondent semantic representations for the
fragments. The following list the parse tree in the bracket form for the example
sentence,

(s (np (bnp (bnp core (bnp head (ne np (tagged location np (list np
”Texas”))))))) (fvp (vp (vpcore (fvpcore (nonmodal vpcore (nonmo-
dal vpcore1 (vpcore1 (av (v ”has”))))))) (np (bnp (bnp core (premods
(premod (jj ”many”))) (bnp head (n ”cars”))))))))

Consequently, from the product of the parser, we extract the following fea-
tures: the lowest and second lowest phrase labels governing each entity mentions
involved; the lowest phrase labels governing both entity mentions; the lowest
phrase labels governing the heads of both entity mentions; the path of phrase
labels connecting both mentions in the parse tree; and that connecting the heads
of both mentions.
Semantic Features from SQLF. Using relation- or domain- independent se-
mantic features potentially makes the approach easier to adapt to new domains.
BuChart provides semantic analysis to produce SQLF for each phrasal con-
stituent. The logical form is composed of unary predicates that denote entities
and events (e.g., chase(e1), run(e2)) and binary predicates for properties (e.g.
lsubj(e1,e2)). Constants (e.g., e1, e2) are used to represent entity and event iden-
tifiers (see [8] for further details). The (somewhat simplified) semantic analysis
of the example sentence in SQLF is

location(e2), name(e2,’Texas’), have(e1), time(e1,present), aspect(e1,simple),
voice(e1,active), lobj(e1,e3), car(e3), number(e3,plural), adj(e3,many), lsubj
(e1,e2)

From the SQLFs, a set of semantic features is generated, one of which is the
path of predicate labels connecting the heads of both mentions in the semantic
SQLFs. This path may be too specific to be effective and cause data sparseness
problem, so we also take some important predicate labels as separate features,
such as the first, second, last and penultimate predicates labels in that path.
Semantic Features from WordNet. To exploit more relation-independent
semantic features, we use WordNet together with a simple semantic tagging
method to find the sense information for the words in each sentence. Tagging
words with their corresponding WordNet synsets (e.g. word sense disambiguation
- WSD) is a difficult task, which usually can not achieve accuracy as high as
other NLP tasks such as POS tagging. However, WordNet’s design ensures that
synsets are ordered by importance, so a simple and yet efficient heuristic can be

Automatic Extraction of Hierarchical Relations from Text 223

used instead of a WSD module, without major accuracy penalty. The heuristic
is to take the first synset from WordNet, which matches the POS tag of the
given word. Each synset has been assigned an id (consisting of the POS tag
and its offset in the WordNet files) which is used in the features. Similar to the
word and POS tag features, the features from WordNet include the synset-id list
of the two entity mentions and their heads, the two synset-ids before the first
mention, the two after the second mention, and the synset-id list in between.
With considerations of the data sparseness problem, we also developed a set of
more abstract features by using the hypernym information of each synset, which
exactly parallel the synset ones by replacing each synset-id with the id of its
hypernym synset.

5 Experiment Results and Analysis

We evaluate our method, especially the contribution of the different features, on
the ACE2004 training data. As mentioned above, only explicit relations between
pairs of entity mentions within the same sentence are considered. We not only
evaluate the performance of the system as a whole, but also investigate in detail
several factors which have impact on the performance, such as the features set
and the relation classification hierarchy.

5.1 Experimental Settings

The ACE2004 training data consists of 451 annotated files (157,953 words) from
broadcast, newswire, English translations of Arabic and Chinese Treebank, and
Fisher Telephone Speech collection. Among these files, there are 5,914 relation
instances annotated which satisfied the experiment set up described above. The
distribution of the instances is listed in Table 2.

Table 2. The distributions of the relation instances in ACE 2004 training data

Type Subtype Number Type Subtype Number
PHYS Located 1029 OTHER Ethnic 53

Near 141 -AFF Ideology 55
Part-Whole 518 Other 75

PER Business 197 GPE Citizen/Resident 368
-SOC Family 178 -AFF Based-In 333

Other 69 Other 87
EMP Employ-Exec 630 ART User/Owner 273
-ORG Employ-Undetermined 129 Inventor/Manufacturer 13

Employ-Staff 694 Other 7
Member-of-Group 225 DISC 434
Subsidiary 300
Partner 16
Other 90 Total 5,914

224 T. Wang et al.

Following previous work, in order to focus on the performance of the relation
extraction only, we suppose that all named entity mentions have been recognised
without mistakes and only evaluate the performance of relation extraction on
”true” named entity mentions with ”true” chaining (i.e. as annotated by the
ACE2004 annotators).

Among the 23 relation subtypes (including DISC which has no subtype),
there are 6 symmetric ones. So to model the relation extraction task as multi-
class classification, we use two labels to denote each non-symmetric relation and
only one label for each symmetric one. Also we assign a label to the class of
no-relation, which indicates that there is no relation between the two entity
mentions. Consequently, in our experiments, relation extraction is modeled as
a 41-class classification task, where each pair of entity mentions is assigned one
of these 41 relation classes, based on the features discussed in Section 4. In the
following experiments, we use the package LIBSVM2 for training and testing the
SVM classifiers with one-against-one method for multi-class classification which
has been described in Section 3.

From Table 2 we can see that the different relation subtypes and types are
distributed very unevenly, so we only measure the micro-average of Precision,
Recall and F1 measure(which is 2 ∗ Precision ∗ Recall/(Precision + Recall)),
because in such cases macro-average does not reflect the performance reliably.

In each of the following experiments, we performed 5 folds cross validation on
the whole data. In every execution, the corpus is spited into a training set (80% of
the total files) and a testing set (20% of the total files). All the performance results
of Precision, Recall and F1 reported are the means averaged over five runs.

Table 3. The result on different kernel functions

Kernel type Precision(%) Recall(%) F1(%)
Linear 66.41 49.18 56.50
Quadratic 68.96 46.20 55.33
Cubic 71.31 42.39 53.17

5.2 Evaluation on Different Kernels

Since different kernel functions can be used with SVM, in order to select a
suitable kernel for relation extraction task, we have implemented experiments
to compare three different types of kernels for SVM: the linear, quadratic and
cubic kernels. In the comparison, all the features have been used and Table 3
shows the result. The result shows that with all the features the linear kernel
is better than both the quadratic and cubic ones. But the t paired test we did
using the results from 5-fold cross validation showed that the linear kernel was
no significantly better than quadratic kernel at the 95% confidence level (the
p-value of the test was 0.088). Since the linear kernel is more simple and efficient
than others and obtained better results, in the following experiments we only
use the linear kernel with SVM.
2 See http://www.csie.ntu.edu.tw/∼cjlin/libsvm/.

Automatic Extraction of Hierarchical Relations from Text 225

5.3 Evaluation on Features

We carried out the experiments to investigate the impact of different features on
the performance by adding them incrementally. The features have been added
in the order from the shallow to deep to see the effect of different features. Ta-
ble 4 presents the results from the experiments. It is possible that not only the
individual features but also the combinations of features would affect the per-
formance. Hence, more experiments will be done in the future to figure out the
effects of the features on relation extraction. It can be seen from the table, the
performance improves as more features are used, until the F1 measure reaches
56.78% which is comparable to the reported best results(55.5%) of [19]on the
ACE2003 training data. From the new features introduced in this work, the POS
tag features and the general semantic features all contribute to the improvement.
The improvement of the general semantic features, including semantic features
from SQLF and WordNet, is significant at confidence level 95%, as the p-value
of the t paired test on the corresponding data is 0.003. The improvement 1.72%
(from 55.06% to 56.78%) was even higher than that brought by some syntactic
features such as the chunk, dependency and parse tree features which was only
1.54%(from 53.52% to 55.06%) in total. Therefore, the contribution of the se-
mantic features shows that general semantic information is beneficial for relation
extraction and should receive further attention.

The entity features lead to the best improvement in performance. It is not
surprised because the relation between two entity mentions is closely related to
the entity types of the two mentions. Actually we took advantage of the ACE2004
corpus which included not only the entity types but also entity subtype and
class. Therefore we used more entity type features than the previous studies
using the ACE2003 corpus which only had entity type. Further investigation
shows that the two additional features are in fact very helpful: when only using
entity type feature the F1 improvement is 10.29%, and when using the other
two features additionally, the improvement increase to 13.83%. This result shows
that the more accurate information of the entity mentions we have, the better
performance can be achieved in relation extraction.

Table 4. The result on different feature sets

Features Precision(%) Recall(%) F1(%)
Word 57.90 23.48 33.38
+POS Tag 57.63 26.91 36.66
+Entity 60.03 44.47 50.49
+Mention 61.03 45.60 52.03
+Overlap 60.51 48.01 53.52
+Chunk 61.46 48.46 54.19
+Dependency 63.07 48.26 54.67
+Parse Tree 63.57 48.58 55.06
+SQLF 63.74 48.92 55.34
+ WordNet 67.53 48.98 56.78

226 T. Wang et al.

From Table 4, we can also see that the impact of the deep features is not as
significant as the shallow ones. Zhou et al [19] show that chunking features are
very useful while the dependency tree and parse tree features do not contribute
much. Our results even show that features from word, POS tag, entity, mention
and overlap can achieve 53.52% F1, while the deeper features (including chunk,
dependency tree, parse tree and SQLF) only give less than 2% improvement over
simpler processing. As the number of features impacts directly the required size
of training data and the efficiency of training and application (more features
need more annotated data for training the model and need more computation
resources), there is an interesting trade-off in feature selection for relation ex-
traction.

5.4 Experiments on Hierarchical Classification

As already discussed, ACE2004 defined both an entities and relations hierarchy,
which provides a data resource for evaluating our method for ontology-based IE.
The significant contribution of entity subtype and class features demonstrated
above shows that the entity hierarchy information is important for relation ex-
traction. As shown in Fig 1 the relation hierarchy has three levels, so we ran
experiments to evaluate our method with these different classification levels:
subtype classification – 23 relations at leaf level, type classification – 7 relations
at middle level, relation detection – predicating if there is relation between two
entity mentions, which can be treated as a binary classification task. The ex-
periments on the three different classification levels have been done separately.
In each experiment, the classifier is trained and tested on the corresponding re-
lation labels (e.g. 23, 7, or 1 relations). All these experiments made use of the
complete feature set and Table 5 shows the averaged overall results.

Table 5. The result on different classification levels

Level Precision(%) Recall(%) F1(%)
Subtype classification 67.53 48.98 56.78
Type classification 71.41 60.03 65.20
Relation detection 73.87 69.50 71.59

The results show that performance on relation detection level is the highest
while that on subtype classification is the lowest. The Precision, Recall and F1
all show the same trend, revealing that it is more difficult to classify on deeper
levels of the hierarchy because there are less examples per class and also the
classes are getting more similar as the classification level gets deeper. This has
been supported by the more detailed results for the relations type EMP-ORG
and its subtypes, as shown in Table 6. The performance for the type EMP-ORG
when classifying on the type level is the best among all 7 relation types: 77.29%
Precision, 75.00% Recall and 76.01% F1 averaged over 5 folds cross validation.
However, the performance on the 7 subtypes within EMP-ORG when classifying
at subtype level is not only much lower than the result for EMP-ORG overall

Automatic Extraction of Hierarchical Relations from Text 227

Table 6. The result on the subtypes of EMP-ORG

Subtypes Num Precision(%) Recall(%) F1(%)
Employ-Exec 630 71.37 63.9 67.16
Employ-Undetermined 129 68.76 43.23 51.2
Employ-Staff 694 64.39 60.97 62.25
Member-of-Group 225 62.16 38.55 46.85
Subsidiary 300 83.81 65.29 72.79
Partner 16 0 0 0
Other 90 33.33 5.89 9.9

Table 7. The F1(%) results on different feature sets and classification levels

Features Relation detection Type classification Subtype classification
Word 61.25 41.61 33.38
+POS Tag 60.03 44.13 36.66
+Entity 63.31 57.84 50.49
+Mention 65.57 59.45 52.03
+Overlap 66.84 61.36 53.52
+Chunk 66.61 62.52 54.19
+Dependency 70.01 63.61 54.67
+Parse Tree 70.42 64.05 55.06
+SQLF 70.08 64.24 55.34
+WordNet 71.59 65.20 56.78

but also rather unstable: from zero for Partner to 72.79% for Subsidiary. The
two biggest subtypes Employ-Exec and Employ-Staff get only 67.16% and 62.25
% F1 which are much lower than the 76.01% on type level for their parent type
EMP-ORG. We consider that the zero result for Partner is mainly due to too
few instances. Therefore, the closer distance between the classes at subtype level
causes the performance to decrease and become unstable.

We also investigated the influence of different feature sets on the different
classification levels (see Table 7). For all of the three classification levels, the
improvements are almost stable as more features are introduced and the best
performance is achieved with the complete feature set (there is only one excep-
tion when add SQLF features in relation detection). But the improvement at
various levels is different: as more features are used, the improvement in relation
detection is only 10.34% (from 61.25% to 71.59%), while the improvement in
type and subtype classification is much more significant: 23.59% (from 41.61%
to 65.20%) and 23.40% (from 33.38% to 56.78%). Such difference suggests that
features provide more significant effect for classification on deep level. Further-
more, the impact of the SQLF and WordNet synset features on different levels
also shows that semantic knowledge will play more important role in extracting
fine granularity relations.

228 T. Wang et al.

6 Conclusions

In this paper we investigated SVM-based classification for relation extraction
and explored a diverse set of NLP features. In comparison to previous work,
we introduce some new features, including POS tag, entity subtype and class
features, entity mention role features and even general semantic features which
all contribute to performance improvements. We also investigated the impact of
different types of feature and different relation levels.

Further work on using machine learning for relation extraction needs to ad-
dress several issues. Firstly, although the ACE2004 entity and relation type sys-
tem provides a hierarchy organization which is somewhat like ontology, it is still
very limited for large-scale ontology-based IE. We plan to extend our method
and evaluate it on bigger scale ontology. Another interesting future work is to
integrate the automatic named entity recognition with relation extraction, which
would be more realistic than the experiments described in this paper where re-
lation extraction was based on the gold standard named entities. It would also
be interesting to compare the SVM model with other variants of the SVM (such
as the SVM with uneven margins) as well as with other ML approaches (such
as CRF, MEM and so on) for relation extraction.

Acknowledgements. This research is supported by the EU-funded SEKT
project (www.sekt-project.com) , the National Natural Science Foundation of
China (60403050) and the National Grand Fundamental Research Program of
China under Grant No. 2005CB321802. Thanks to Guodong Zhou for his helpful
information about his work.

References

1. ACE. See http://www.nist.gov/speech/tests/ace/
2. Annotation Guidelines for Entity Detection and Tracking (EDT) Version 4.2.6,

http://www.ldc.upenn.edu/Projects/ACE/docs/EnglishEDTV4-2-6.PDF. (2004)
3. Annotation Guidelines for Relation Detection and Characterization (RDC)

Version 4.3.2, http://www.ldc.upenn.edu/Projects/ACE/docs/EnglishRDCV4-3-
2.PDF. (2004)

4. Appelt, D.: An Introduction to Information Extraction. Artificial Intelligence Com-
munications, 12(3) (1999) 161-172

5. Culotta, A., Sorensen, J.: Dependency tree kernels for relation extraction. Pro-
ceedings of 42th Annual Meeting of the Association for Computational Linguistics.
21-26 July Barcelona, Spain (2004)

6. Cunningham, H., Maynard, D., Bontcheva, K., Tablan, V.: GATE: A Framework
and Graphical Development Environment for Robust NLP Tools and Applications.
Proceedings of the 40th Anniversary Meeting of the Association for Computational
Linguistics. Philadelphia, July (2002)

7. Freitag, D., and McCallum A.: Information extraction with HMM structures
learned by stochastic optimization. Proceedings of the 7th Conference on Artificial
Intelligence (AAAI-00) and of the12th Conference on Innovative Applications of
Artificial Intelligence (IAAI-00), 584-589,Menlo Park, CA. AAAI Press (2000)

Automatic Extraction of Hierarchical Relations from Text 229

8. Gaizauskas, R., Hepple, M., Saggion, H., Greenwood, M.A., Humphreys, K.: SUP-
PLE: A Practical Parser for Natural Language Engineering Applications. Technical
report CS–05–08, Department of Computer Science, University of Sheffield (2005)

9. Handschuh, S., Staab, S., Ciravegna, F.: S-CREAM — Semi-automatic CREAtion
of Metadata. Proceedings of the13th International Conference on Knowledge En-
gineering and Knowledge Management (EKAW02), Siguenza, Spain(2002)

10. Hsu, C.-W., Lin, C.-J.: A comparison of methods for multi-class support vector
machines , IEEE Transactions on Neural Networks, 13(2). (2002)415-425

11. Kambhatla, N.: Combining lexical, syntactic and semantic features with Maximum
Entropy models for extracting relations. Proceedings of 42th Annual Meeting of
the Association for Computational Linguistic. 21-26 July Barcelona, Spain (2004)

12. Lafferty, J., McCallum, A., Pereira. F.: Conditional random fields: Probabilistic
models for segmenting and labeling sequence data. In Proc. 18th International
Conf. on Machine Learning, Morgan Kaufmann, San Francisco, CA (2001) 282-
289

13. Li, Y., Bontcheva, K., Cunningham, H.: SVM Based Learning System For Informa-
tion Extraction. In Proceedings of Sheffield Machine Learning Workshop, Lecture
Notes in Computer Science. Springer Verlag (2005)

14. Lin, D.: Dependency-based Evaluation of MINIPAR. In Workshop on the Evalua-
tion of Parsing Systems, Granada, Spain, May (1998)

15. Miller, A., ”WordNet: An On-line Lexical Resource”, Special issue of the Journal
of Lexicography, vol. 3, no. 4(1990)

16. Motta, E., VargasVera, M., Domingue, J., Lanzoni, M., Stutt, A., Ciravegna, F.:
MnM: Ontology Driven Semi-Automatic and Automatic Support for Semantic
Markup. Proceedings of the 13th International Conference on Knowledge Engi-
neering and Knowledge Management (EKAW02), Siguenza, Spain(2002)

17. Wang, T., Bontcheva, K., Li, Y., Cunningham, H.: D2.1.2. Ontology-Based
Information Extraction. SEKT Deliverable D2.1.2. (2005). http://www.sekt-
project.org/rd/deliverables/index html/

18. Zelenko, D., Aone, C., Richardella, A.: Kernel methods for relation extraction.
Journal of Machine Learning Research (2003) 1083-1106

19. Zhou G., Su, J., Zhang, J., Zhang, M.: Combining Various Knowledge in Rela-
tion Extraction, Proceedings of the 43th Annual Meeting of the Association for
Computational Linguistics (2005)

An Infrastructure for Acquiring High Quality
Semantic Metadata

Yuangui Lei, Marta Sabou, Vanessa Lopez, Jianhan Zhu,
Victoria Uren, and Enrico Motta

Knowledge Media Institute (KMi), The Open University, Milton Keynes
{y.lei, r.m.sabou, v.lopez, j.zhu, v.s.uren, e.motta}@open.ac.uk

Abstract. Because metadata that underlies semantic web applications
is gathered from distributed and heterogeneous data sources, it is impor-
tant to ensure its quality (i.e., reduce duplicates, spelling errors, ambigui-
ties). However, current infrastructures that acquire and integrate seman-
tic data have only marginally addressed the issue of metadata quality.
In this paper we present our metadata acquisition infrastructure, ASDI,
which pays special attention to ensuring that high quality metadata is
derived. Central to the architecture of ASDI is a verification engine that
relies on several semantic web tools to check the quality of the derived
data. We tested our prototype in the context of building a semantic
web portal for our lab, KMi. An experimental evaluation comparing the
automatically extracted data against manual annotations indicates that
the verification engine enhances the quality of the extracted semantic
metadata.

1 Introduction

The promise of the semantic web is to automate several information gathering
tasks on the web by making web data interpretable to software agents [1]. A
condition for realizing this technology is the existence of high quality semantic
metadata that would provide a machine understandable version of the web.
By quality we mean that the semantic metadata should accurately capture the
meaning of the data that it describes. For example, it should capture the meaning
of each entity as intended in the context of its use (describe “jaguar” as a car
or as a animal depending on its context). Further, a single semantic identifier
should be attached to each entity even if this entity is referred to in the web
page using different variants of its name or its name is misspelled. Also, metadata
should be up to date when the described web page changes.

However, as previously debated in the literature [16], the characteristics of
the web data hamper the acquisition of quality metadata. Besides its large scale,
web data is usually distributed over multiple knowledge sources. These sources
are heterogeneous in their level of formality, representation format, content and
the quality of knowledge they contain. Integrating data from several of these
sources often leads to errors that decrease the quality of the metadata. Also, the

Y. Sure and J. Domingue (Eds.): ESWC 2006, LNCS 4011, pp. 230–244, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

An Infrastructure for Acquiring High Quality Semantic Metadata 231

data on the web is changing continuously so the derived metadata has to be kept
up to date.

Our overview of the most relevant infrastructures that acquire and aggregate
semantic web metadata reveals that they offer limited or no support for verifying
the quality of the derived metadata. In contrast with these, the system we present
here, ASDI, provides several means to ensure the quality of the extracted data.
First, it aims to reduce ambiguities by taking into account the context in which
an entity is mentioned in order to determine its type. Second, it contains a
verification engine that checks the validity of any derived metadata against a
repository of trusted domain knowledge and against the information available
on the web. Finally, since the whole acquisition process is automatic, it can be
automatically run whenever new data becomes available, thus ensuring that the
semantic metadata is always up to date.

The rest of the paper is organized as follows. We begin by describing the
KMi context in which our prototype was designed and tested (section 2). Based
on this description we discuss some of the tasks that an infrastructure needs
to perform in order to ensure the quality of the derived semantic metadata.
We then investigate how current semantic web infrastructures approach quality
control for semantic metadata (section 3). In section 4 we present the ASDI
infrastructure and detail its components that play a role in the quality control
process. Thereafter, we describe an experimental evaluation of ASDI’s validation
functionality in section 5. Finally, we conclude our paper with a discussion of
our results, the limitations of ASDI and future work in section 6.

2 Building the KMi Semantic Web Portal

We have designed and tested our infrastructure in the context of building a
semantic web portal for KMi that would provide an integrated access to various
aspects of the academic life of our lab1. By relying on semantic web technology
the content of the portal is usable both by humans and software agents. While
the KMi portal is a particular application, we believe that it provides the generic
characteristics of a semantic web application scenario. In this section we briefly
describe the particularities of the KMi context that are needed to understand the
content of this paper (section 2.1). In the second part of this section, section 2.2,
based on our experience with the KMi context, we extract and generalize a set
of tasks that should be performed by any integration platform in order to ensure
the quality of the extracted metadata.

2.1 The KMi Context

In the case of KMi the data relevant for building the semantic portal is spread in
several different data sources such as departmental databases, knowledge bases
and HTML pages. Information about people, technologies, projects and research
areas is maintained in our departmental databases. Bibliographic data is stored
1 http://semanticweb.kmi.open.ac.uk

232 Y. Lei et al.

in an internal knowledge base. In addition, KMi has an electronic newsletter2,
which now contains an archive of several hundreds of news items, describing
events of significance to the KMi members.

Beside its heterogeneous nature, another important feature of the KMi domain
data is that it continuously undergoes changes. The departmental databases
change to reflect events such as additions of new projects. KMi-related events
are reported in the newsletter and added to the news archive. Therefore, the
semantic data that underlies the portal has to be often updated.

We decided to use and extend an existing ontology for representing the seman-
tic metadata on which the portal realizes. We use the AKT reference ontology3,
which has been designed to support the AKT-2 demonstrator.We extended this
ontology by adding some domain specific concepts, such as kmi-planet-news-item,
kmi-research-staff-member, kmi-support-staff-member, etc.

2.2 Tasks for Insuring Metadata Quality

Based on the characteristics of the KMi semantic web portal context, we identify
three generic tasks that are related to ensuring semantic metadata quality and
which should be supported by any semantic web infrastructure. Note, however,
that while this set of tasks is grounded in our practical experience, it is by no
means exclusive. The generic tasks are:

A. Extract information from un-structured or semi-structured data sources in
an automatic and adaptive manner. Useful knowledge is often distributed in sev-
eral data sources which can be heterogeneous from the perspective of their level
of structure or the used representation language. Methods have to be developed
that extract the required data from each data source. It is important to employ
automatic methods so that the process can be easily repeated periodically in
order to keep the knowledge updated. Another important characteristic of the
extraction mechanism is that it should be adaptable to the content of the sources
that are explored. Being able to distinguish the type of an entity depending on
its context is a pre-requisite for ensuring the quality of the semantic metadata.
For example, we would expect from an adaptive information extraction tool to
identify the different meanings that a given term can have on different web sites.
For instance, “Magpie” is the name of a project in many web pages related to
KMi, and should be identified as such. However, in other web sites it is more
likely that it denotes a bird.

B. Ensure that the derived metadata is free of common errors. Since seman-
tic data is typically gathered from different data sources which were authored
by different people, it is often the case that it contains several errors, such as
different identifiers that refer to the same entity, or instances whose meaning is
not clear and needs to be disambiguated. Errors can be caused by data entry
mistakes, by information extraction tools, or by the inconsistency and duplica-
tion entries of diverse data sources. We envision two major approaches to avoid
these errors.
2 http://kmi.open.ac.uk/news
3 http://kmi.open.ac.uk/projects/akt/ref-onto/

An Infrastructure for Acquiring High Quality Semantic Metadata 233

First, one might attempt to tackle these errors before the data has been ex-
tracted. In particular, domain specific knowledge can help to avoid some prob-
lems, e.g., using lexicons to get rid of some domain specific noisy data. Such
knowledge can be either supplied at design time in formats of transformation
instructions or be generated automatically and incrementally according to the
user’s assessment on the performance of the system.

The second way to approach this problem is to clean the semantic data after
it has been extracted. This approach requires mechanisms to correctly diagnose
the problem at hand and then algorithms to correct each individual problem.

C. Update the semantic metadata as new information becomes available. Since
the underlying data sources are likely to change, the whole data acquisition and
verification process must be repeated so that the knowledge base is updated in
an appropriate fashion.

In our prototype we provide support for all these quality insurance related
tasks (as described in section 4). In the following section we overview a set
of semantic web applications that rely on data acquisition and integration and
describe how they approach the issue of quality control.

3 State of the Art

In this section we describe how existing approaches address semantic metadata
quality control. We survey a representative sample of these approaches without
performing an exhaustive study of this research direction. In particular, we focus
on the approaches which address heterogeneous sources. We therefore leave out
the approaches which either support the annotation of textual sources ([17]), the
migration of data from structured sources ([2], [14]) and the creation of semantic
web data from scratch ([10]).

The On-To-Knowledge project [15] provided one of the first suits of tools to
be used for semantics based knowledge management. This tool suite not only
supports semantic data acquisition from heterogeneous sources, but also supports
ontology sharing, editing, versioning, and visualization. However, it does not
provide explicit support to ensure the quality of the acquired semantic data.

The Semantic Content Organization and Retrieval Engine (SCORE) [13] is
one of the semantic web based technologies, which has been commercialized.
Quality control is addressed by i) enhancement rules which exploit the trusted
knowledge to populate empty attribute values and ii) disambiguation mecha-
nisms which make use of domain classification and the underlying trusted knowl-
edge to address ambiguities.

The KIM platform [11] addresses the complete cycle of metadata creation,
storage and semantic-based search. It pre-populates its ontology from several
publicly available knowledge sources. This populated ontology supports the sys-
tem to perform named entity recognition (NER) in a wide range of domains.
The focus of this work is very much on scaling up and adapting NER to the
needs of the semantic web.

234 Y. Lei et al.

The CS AKTive Space [12], the winner of the 2003 semantic web Challenge
competition, gathers data automatically on a continuous basis. It relies on Ar-
madillo [4] to achieve the task of automatic data acquisition. Quality control
related issues such as the problem of duplicate entities are only weakly addressed
(for example, by heuristics based methods or using manual input).

MuseumFinland [6] is the first and largest semantic web based portal that ag-
gregates heterogeneous museum collections. In the MuseumFinland application
possible errors are logged by the system for correction by a human user.

The Flink system [9], winner of the 2004 semantic web Challenge competi-
tion, is an infrastructure for extracting, aggregating and visualizing online social
networks. The data is aggregated in an RDF(S) repository and a set of domain-
specific inference rules are used to ensure its quality. In particular, identity rea-
soning (smushing) is performed to determine if different resources refer to the
same individual (i.e., co-relation).

All the approaches mentioned above support acquiring semantic web data
from heterogeneous sources in an automatic fashion. They typically exploit man-
ually (e.g., On-To-Knowledge, SCORE, MuseumFinland) or semi-automatically
(e.g., CS AKTive Space) constructed rules to define how metadata is to be ex-
tracted from domain specific structured or semi-structured sources.

Although they do provide comprehensive support for the acquisition activity
in their specific problem domain, the support for quality control is relatively weak.
Even though some co-relation (e.g., in CS AKTive Space and Flink) and disam-
biguation mechanisms (e.g., in SCORE) have been exploited, quality control has
not been fully addressed. For example, the problems of duplicate or erroneous
entities have not been addressed in any of the approaches mentioned above. Such
problems may significantly de-crease the quality of the acquired semantic data.

4 The ASDI Infrastructure

In this section, we describe the infrastructure that we developed to build the
semantic portal at KMi. An important characteristic of ASDI is that, in com-
parison with the approaches we have described in section 3, it addresses the
quality control issue. We first present an overview of the ASDI infrastructure.
Then we detail two of the most important layers of the infrastructure that ensure
adaptive data extraction and the quality check of this extracted data.

4.1 An Overview

Figure 1 shows the four layered architecture of ASDI, which contains:

A Source Data Layer contains the collection of all available data sources such
as semi-structured textual documents (e.g. web pages) or structured data in
the form of XML feeds, databases, and knowledge bases.

An Extraction Layer is responsible with the generation of semantic data from
the source data layer. It comprises an automatic and adaptive information
extraction tool, which marks-up textual sources, a semantic transformation

An Infrastructure for Acquiring High Quality Semantic Metadata 235

Fig. 1. An overview of the ASDI infrastructure

engine, which converts data from source representations into the specified
domain ontology according to the transformation instructions specified in a
mapping ontology, and a set of mappings specification/discovery tools, which
support the construction of transformation instructions. The output of this
layer consists of i) raw semantic data entries and ii) logs of acquisition op-
erations which describe the provenance of data entries.

A Verification Layer checks the quality of the previously generated semantic
data entries. The core component is the verification engine, which makes
use of a number of semantic web tools to achieve high quality data. While
the verification engine is completely automatic, we allow users to inspect the
changes made to the semantic data through a user evaluation engine. This
engine assists users to assess the performance of the system and generates
transformation rules according to the feedback given by them. A KB editor
is also included in this layer to allow users (i.e., knowledge engineers) to
inspect the final results and modify them whenever necessary.

An Application Layer sums up all the applications that use the acquired and
verified semantic data (stored in the semantic web data repository).

4.2 The Extraction Layer

The role of extraction layer is to acquire data from heterogeneous sources and
convert them to semantic web data objects equipped with rich semantic rela-
tions.

To address the issue of adaptive information extraction, we use ESpotter [18],
a named entity recognition (NER) system that provides an adaptive service.
ESpotter accepts the URL of a textual document as input and produces a list
of the named entities mentioned in that text. The adaptability is realized by

236 Y. Lei et al.

means of domain ontologies and a repository of lexicon entries. For example, in
the context of the KMi domain, ESpotter is able to mark the term “Magpie” as
a project, while in other domains it marks it as a bird.

For the purpose of converting the extracted data to the specified domain
ontology (i.e., the ontology that should be used by the final applications), an
instance mapping ontology has been developed, which supports i) representation
independent semantic transformations, ii) the generation of rich semantic rela-
tions along with the generation of semantic data entries, and iii) the specification
of domain specific knowledge (i.e. lexicons). This lexicons are later used by the
verification process. Using this ontology (see details in [7]) one can define a set of
mappings between the schema of the original data sources and the final domain
ontology. A semantic transformation engine is prototyped, which accepts struc-
tured sources and transformation instructions as input and produces semantic
data entries. Since writing these mapping rules manually is a considerable effort,
we are currently focusing on semi-automating this process.

To ensure that the acquired data stays up to date, a set of monitoring services
detect and capture changes made in the underlying data sources and initiate the
whole extraction process again. This ensures a sustainable and maintenance-free
operation of the overall architecture.

4.3 The Verification Layer

The role of verification layer is to identify problems of the extracted data entries
and to resolve them properly. This layer relies on two components. First, an
automatic verification engine employs several tools to verify the extracted data.
Second, a user evaluation tool allows a knowledge engineer to evaluate and fine-
tune the verification process of the engine. We describe both components.

The Verification Engine. The goal of the verification engine is to check that
each entity has been extracted correctly by the extraction layer. For example,
it checks that each entity has been correctly associated with a concept and in
the cases when the type of the entity is dubious it performs disambiguation.
This engine also makes sure that a newly derived entity is not a duplicate for
an already existing entity. The verification process consists of three increasingly
complex steps as depicted in figure 2. These steps employ several semantic web
tools and a set of resources to complete their tasks.

Step1: Checking the internal lexicon library. In the first step, a lexicon
library, which maintains domain specific lexicons, is checked. If no match is
found there, the verification process continues.

Step2: Querying the semantic web data repository. The second step
uses an ontology-based QA tool, AquaLog [8], to query the already acquired
semantic web data (which is assumed to be correct, i.e. trusted) and to
solve obvious typos and minor errors in the data. This step contains a dis-
ambiguation mechanism, whose role is to de-reference ambiguous entities
(e.g., whether the term “star wars” refers to the Lucas’ movie or President
Reagan’s military programme).

An Infrastructure for Acquiring High Quality Semantic Metadata 237

Fig. 2. The overall algorithm of the data verification engine

Step3: Investigating external resources. If the second step fails, the third
step relies on investigating external resources such as the web. An instance
classification tool is developed, which makes use of PANKOW [3] and Word-
Net [5], to determine the appropriate classification of the verified entity.

We will now detail all these three steps.

Step1: Checking the lexicon library. The lexicon library maintains domain
specific lexicons (e.g., abbreviations) and records the mappings between strings
and instance names. One lexicon mapping example in the KMi semantic web
portal is that the string “ou” corresponds to the the-open-university entity. The
verification engine will consider any appearances of this abbreviation as referring
to the corresponding entity.

The lexicon library is initialized by lexicons specified through the mapping
instruction and expands as the verification process goes on. By using the lexicon
library, the verification engine is able to i) exploit domain specific lexicons to
avoid domain specific noisy data and ii) avoid repeating the verification of the
same entity thus making the process more efficient. However, there is a risk
of mis-identifying different entities in different contexts which share the same
name. For example, in one context the name Victoria may refer to the entity
Victoria-Uren and in other contexts it may not.

If no match can be found in this step, the engine proceeds to the next step.
Otherwise, the verification process ends.

238 Y. Lei et al.

Step2: Querying the semantic web data repository. The semantic web
data repository stores both the semantic entries extracted from trusted knowl-
edge sources and the final results of the verification engine. In this second step,
the verification engine relies on AquaLog to find possible matches for the verified
entity in the semantic web data repository.

AquaLog is a fully implemented ontology-driven QA system, which takes an
ontology and a natural language query as an input and returns answers drawn
from semantic data compliant with the input ontology. In the context of the
ASDI infrastructure, we exploit AquaLog’s string matching algorithms to deal
with obvious typos and minor errors in the data. For example, in a news story
a student called Dnyanesh Rajapathak is mentioned. The student name is how-
ever misspelled as it should be Dnyanesh Rajpathak. While the student name is
successfully marked up and integrated, the misspelling problem is carried into
the generated data as well. With support from AquaLog, this problem is cor-
rected by the verification engine. AquaLog queries the knowledge base for all
entities of type Student and discovers that the difference between the name of
the verified instance (i.e., Dnyanesh Rajapathak) and that of one of the students
(i.e, Dnyanesh Rajpathak) is minimal (they only differ by one letter). Therefore,
AquaLog returns the correct name of the student as a result of the verification.
Note that this mechanism has its downfall when similarly named entities denote
different real life objects.

If there is a single match, the verification process ends. However, when more
matches exist, contextual information is exploited to address the ambiguities.

In the disambiguation step, the verification engine exploits i) other entities
appearing in the same news story and ii) the semantic relations contained in the
semantic web data repository as the contextual information. To illustrate the
mechanism by means of a concrete example, suppose that in the context of the
KMi semantic web portal, ESpotter marks Victoria as a person entity in a news
story. When using AquaLog to find matches for the entity, the verification engine
gets two matches: Victoria-Uren and Victoria-Wilson. To decide which one is
the appropriate match, the verification engine looks up other entities referenced
in the same story and checks whether they have any relation with any of the
matches in the knowledge base. In this example, the AKT project is mentioned
in the same story, and the match Victoria-Uren has a relation (i.e., has-project-
member) with the project. Hence, the appropriate match is more likely to be
Victoria-Uren than Victoria-Wilson.

Step3: Investigating external resources. When a match cannot be found
in the internal resources, the entity can be:

1) partially correct, e.g., the entity IEEE-conference is classified as an Orga-
nization,

2) correct but new to the system, e.g., the entity IBM, is correctly classified
as an Organization, but the local knowledge sources do not contain this
information so it cannot be validated,

3) miss-classified, e.g., sun-microsystems is classified as a Person, and

An Infrastructure for Acquiring High Quality Semantic Metadata 239

Fig. 3. The algorithm of the instance classification tool

4) erroneous, which does not make any sense and should be removed, e.g. the
entity today classified as a Person.

The task of this step is to find out in which category the verified entity falls
into. For this purpose, a classification tool is developed, which uses PANKOW
and WordNet to support the classification of unknown terms. Figure 3 shows
the algorithm of the instance classification tool. We describe each step of this
process and provide as an example the process of verifying the IBM entity which
was classified by ESpotter as an Organization.

Step 3.1. The PANKOW service is used to classify the string IBM. PANKOW
employs an unsupervised, pattern-based approach on web data to categorize the
string and produces a set of possible classifications along with ranking values.
As shown in figure 3, if PANKOW cannot get any result, the term is treated as
erroneous but still can be partially correct. Thus, its variants are investigated
one by one until classifications can be drawn. If PANKOW returns any results,
the classifications with the highest ranking are picked up. In this example, the
term “company” has the highest ranking.

Step 3.2. Next the algorithm uses WordNet to compare the similarity be-
tween the type of the verified entity as proposed by the extraction layer (i.e.,
“organization”) and an alternative type for the entity as returned by PANKOW
(i.e.,“company”). If they are similar (which is the case of the example), it is con-
cluded that the verified entity is classified correctly (its derived type is similar
to that which is most frequently used on the web) but it was not added yet into
the trusted knowledge base. Thus, a new instance (IBM of type Organization)
needs to be created and added to the repository.

If the two compared terms are not similar, other major concepts of the domain
ontology are compared to the web-endorsed type (i.e.,“company”) in an effort
to find a classification for the entity. If one concept is found similar to the web-
endorsed type, it is concluded that the verified entity was wrongly classified by
the extraction layer. The verification engine then associates the verified entity
with the correct concept and places it back to the step 2 (which is to seek matches
from the semantic web data repository). Otherwise, it can be safely concluded
that the verified entity is erroneous.

240 Y. Lei et al.

The User Evaluation Engine. While the verification engine is completely
automatic, it is often the case that the knowledge engineers wish to verify the
correctness of this process and to adjust it. For this we are currently developing
an user evaluation engine. The user evaluation engine accepts acquisition logs as
input and produces semantic transformation rules for improving the performance
of the system. As shown in figure 1, the transformation rules are represented in
terms of the instance mapping ontology. The user evaluation engine comprises a
tool which assists users to browse the provenance of semantic data entries and
the verification operations carried out and allows users to give feedback. Another
tool generates transformation rules according to user’s feedback.

5 Evaluation

The KMi semantic web portal has been running for several months generating
and maintaining semantic data from the underlying sources of the KMi web site
in an automated way. In this section, we describe an experimental evaluation of
the quality control mechanism provided by ASDI. We first describe the evalua-
tion setup and the metrics we use (section 5.1). We then discuss the results of
the evaluation (section 5.2).

5.1 Evaluation Setup

We randomly chose 36 news stories from the KMi news archive and then asked
several KMi researchers to manually mark them up in terms of person, organi-
zation and projects. Because the annotators have a good knowledge of the KMi
domain we consider the result of the annotation as a Gold Standard. We used
ASDI to produce semantic data from these news stories and compared the auto-
matically extracted data to the manual annotations. To illustrate the important
role of the verification engine, the performance of ESpotter is introduced in the
comparison, which shows the quality of the extracted data before and after the
verification process.

We assess the results in terms of recall, precision and f-measure, where recall is
the proportion of all possible correct annotations that were found by the system
with respect to the ones that can be in principle extracted from the source text,
precision is the proportion of the extracted annotations that were found to be
correct, and f-measure evaluates the overall performance by treating recall and
precision equally.

5.2 Evaluation Results

Table 1 shows the recall rates of ESpotter and ASDI. The manual annotation
of the news stories identified 92 people, 74 organizations, and 21 projects. Com-
pared to these manual annotations, ESpotter failed to identify 17 people, 16
organizations, and 5 projects, thus reaching an overall recall of 0.798. ASDI
reached a slightly lower recall (0.775) as it missed 21 people, 16 organizations,
and 5 projects in comparison with the manual annotation. The major reason for

An Infrastructure for Acquiring High Quality Semantic Metadata 241

Table 1. Recall of ESpotter and ASDI

Type People Organizations Projects Total
Manual annotations 92 74 21 187
ESpotter failures 17 16 5 38
ESpotter Recall 0.815 0.783 0.761 0.798
ASDI failures 21 16 5 42
ASDI Recall 0.771 0.783 0.761 0.775

this lower recall is that the instance classification tool sometimes has problems
in providing the appropriate classification. In some cases, PANKOW cannot find
enough evidence to produce a satisfactory classification. For example, the clas-
sification of the person named “Marco Ramoni” returns an empty result. As a
consequence, the verification engine loses one correct entry.

Table 2 shows the precision of ESpotter and ASDI. ESpotter discovered 87
people, 96 organizations, and 19 projects when working on the sample stories.
Among them, 11 people and 32 organizations are not correct. This results in an
overall precision of 0.787. On the other hand, ASDI obtained 86 person entities,
74 organization entities, and 19 project entities. Among them, 12 person entities
and 4 organization entities are wrong. Hence, the overall precision of ASDI is
0.911. Note that the ASDI application improves the precision rate significantly.
One major problem of ESpotter is the significant amount of redundant entries.
For example, values like “open-university” and “ou” are often treated as the
same entity. The verification engine gets rid of this problem by defining lexicons
and relying on AquaLog to spot similar entities.

ESpotter derives several inaccurate classifications, which lead to a number
of erroneous values, such as considering “IBM global education”, or “the 2004
IEEE” Organization type entities. These values are successfully corrected during
the verification process by looking up their variants. Finally, some erroneous
values produced by ESpotter are kept out of the target knowledge base, as they
do not make any sense. Examples are“workshop chair”, “center”, etc.

To give an overall insight in the performance of ASDI versus that of ESpot-
ter we computed the F-measure of these systems by giving equal importance to
both Recall and Precision. The values (listed in table 3) show that ASDI per-
forms better than ESpotter. This means that the quality of the extracted data
is improved by our verification engine.

Table 2. Precision of ESpotter and ASDI

Type People Organizations Projects Total
ESpotter discovered 87 96 19 202
ESpotter spurious 11 32 0 43
ESpotter Precision 0.873 0.667 1 0.787
ASDI discovered 86 74 19 179
ASDI spurious 12 4 0 16
ASDI Precision 0.860 0.946 1 0.911

242 Y. Lei et al.

Table 3. F-Measure of ESpotter and ASDI

F-measure People Organizations Projects Total
ESpotter 0.843 0.72 0.864 0.792
ASDI 0.813 0.856 0.864 0.837

6 Discussion

The core observation that underlies this paper is that, in the case of semantic
web applications that rely on acquiring and combining semantic web data from
several data sources, it is crucial to ensure that this semantic data has a high
quality. By quality here we mean that the semantic data contains no duplicates,
no errors and that the semantic descriptions correctly reflect the nature of the
described entities. Our survey of a set of semantic web applications that gather
data from several sources shows that little or no attention is paid to ensure the
quality of the extracted data. In most cases heuristics based algorithms are used
to ensure referential integrity. In contrast with these efforts, our semantic web
infrastructure, ASDI, focuses on ensuring the quality of the extracted metadata.

Our evaluation of the quality verification module shows that it improved the
performance of the bare extraction layer. ASDI outperforms ESpotter by achiev-
ing 91% precision and 77% recall. In the context of the KMi portal precision
is more important than recall - erroneous results annoy user more than missing
information. We plan to improve the recall rate by introducing additional infor-
mation extraction engines to work in parallel with ESpotter. Such a redundancy
is expected to substantially improve recall. Another future work we consider is
to evaluate the added value of each component of the verification engine, i.e.,
determine the improvements brought by each individual component.

An interesting feature of ASDI is that it relies on a set of tools that were
developed in the context of the semantic web. These are: the ESpotter adaptive
NER system, the PANKOW annotation service and an ontology based question
answering tool AquaLog. This is a novelty because many similar tools often
adapt existing techniques. For example, the KIM platform adapts off the shelf
NER techniques to the needs of the semantic web. By using these tools we show
that the semantic web reached a development stage where different tools can
be safely combined to produce new, complex functionalities. Another benefit we
derived by using these domain independent tools is that our verification engine
is highly portable. We are currently making it available as a web service.

Once set up, ASDI can run without any human intervention. This is thanks
to the monitors that identify any updates in the underlying data structures and
re-initiate the semantic data creation process for the new data.

We are, however, aware of a number of limitations associated with ASDI. For
example, the manual specification of mappings in the process of setting up the
ASDI application makes the approach heavy to launch. We currently address this
issue by investing the use of automatic or semi-automatic mapping algorithms.
A semi-automatic mapping would allow our tool to be portable across several
different application domains.

An Infrastructure for Acquiring High Quality Semantic Metadata 243

Another limitation is related to AquaLog’s lack of providing a degree of sim-
ilarity between an entity and its match. For example, when querying for the
entity university-of-London, AquaLog returns a number of matches which are
university entities but it does not specify how similar they are to the entity that
is verified. This has caused a number of problems in the KMi portal scenario.

Our general goal for the future is to make our work more generic by providing a
formal definition of what semantic data quality is and transforming our prototype
into a generic framework for verifying semantic data.

Acknowledgements. This work was funded by the Advanced Knowledge Tech-
nologies Interdisciplinary Research Collaboration (IRC), and the Knowledge
Sharing and Reuse across Media (X-Media) project. AKT is sponsored by the
UK Engineering and Physical Sciences Research Council under grant number
GR/N15764/01. X-Media is sponsored by the European Commission as part of
the Information Society Technologies (IST) programme under EC Grant IST-
FF6-26978.

References

1. T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic Web. Scientific Ameri-
can, 284(5):34 – 43, May 2001.

2. C. Bizer. D2R MAP - A Database to RDF Mapping Language. In Proceedings of
the 12th International World Wide Web Conference, Budapest, 2003.

3. P. Cimiano, S. Handschuh, and S. Staab. Towards the Self-Annotating Web. In
S. Feldman, M. Uretsky, M. Najork, and C. Wills, editors, Proceedings of the 13th
International World Wide Web Conference, pages 462 – 471, 2004.

4. A. Dingli, F. Ciravegna, and Y. Wilks. Automatic Semantic Annotation using Un-
supervised Information Extraction and Integration. In Proceedings of the KCAP-
2003 Workshop on Knowledge Markup and Semantic Annotation, 2003.

5. C. Fellbaum. WORDNET: An Electronic Lexical Database. MIT Press, 1998.
6. E. Hyvonen, E. Makela, M. Salminen, A. Valo, K. Viljanen, S. Saarela, M. Junnila,

and S. Kettula. MuseumFinland – Finnish Museums on the Semantic Web. Journal
of Web Semantics, 3(2), 2005.

7. Y. Lei. An Instance Mapping Ontology for the Semantic Web. In Proceedings of
the Third International Conference on Knowledge Capture, Banff, Canada, 2005.

8. V. Lopez, M. Pasin, and E. Motta. AquaLog: An Ontology-portable Question
Answering System for the Semantic Web. In Proceedings of ESWC, 2005.

9. P. Mika. Flink: Semantic Web Technology for the Extraction and Analysis of Social
Networks. Journal of Web Semantics, 3(2), 2005.

10. N.F. Noy, M. Sintek, S. Decker, M. Crubezy, R.W. Fergerson, and M.A. Musen.
Creating Semantic Web Contents with Protege-2000. IEEE Intelligent Systems,
2(16):60 – 71, 2001.

11. B. Popov, A. Kiryakov, A. Kirilov, D. Manov, D. Ognyanoff, and M. Goranov.
KIM - Semantic Annotation Platform. In D. Fensel, K. Sycara, and J. Mylopou-
los, editors, The SemanticWeb - ISWC 2003, Second International Semantic Web
Conference, Proceedings, volume 2870 of LNCS. Springer-Verlag, 2003.

12. M.C. Schraefel, N.R. Shadbolt, N. Gibbins, H. Glaser, and S. Harris. CS AKTive
Space: Representing Computer Science in the Semantic Web. In Proceedings of the
13th International World Wide Web Conference, 2004.

244 Y. Lei et al.

13. A. Sheth, C. Bertram, D. Avant, B. Hammond, K. Kochut, and Y. Warke. Semantic
Content Management for Enterprises and the Web. IEEE Internet Computing,
July/August 2002.

14. L. Stojanovic, N. Stojanovic, and R. Volz. Migrating data-intensive web sites into
the semantic web. In Proceedings of the 17th ACM symposium on applied computing
(SAC), pages 1100 – 1107. ACM Press, 2002.

15. Y. Sure, H. Akkermans, J. Broekstra, J. Davies, Y. Ding, A. Duke, R. Engels,
D. Fensel, I. Horrocks, V. Iosif, A. Kampman, A. Kiryakov, M. Klein, Th. Lau,
D. Ognyanov, U. Reimer, K. Simov, R. Studer, J. van der Meer, and F van
Harmelen. On-To-Knowledge: Semantic Web Enabled Knowledge Management.
In N. Zhong, J. Liu, and Y. Yao, editors, Web Intelligence. Springer-Verlag, 2003.

16. F. van Harmelen. How the Semantic Web will change KR: challenges and oppor-
tunities for a new research agenda. The Knowledge Engineering Review, 17(1):93
– 96, 2002.

17. M. Vargas-Vera, E. Motta, J. Domingue, M. Lanzoni, A. Stutt, and F. Ciravegna.
MnM: Ontology Driven Semi-Automatic and Automatic Support for Semantic
Markup. In Proceedings of the 13th International Conference on Knowledge Engi-
neering and Management (EKAW), Spain, 2002.

18. J. Zhu, V. Uren, and E. Motta. ESpotter: Adaptive Named Entity Recognition
for Web Browsing. In Proceedings of the Professional Knowledge Management
Conference, 2004.

Extracting Instances of Relations from Web
Documents Using Redundancy

Viktor de Boer, Maarten van Someren, and Bob J. Wielinga

Human-Computer Studies Laboratory, Informatics Institute,
Universiteit van Amsterdam

{vdeboer, maarten, wielinga}@science.uva.nl

Abstract. In this document we describe our approach to a specific sub-
task of ontology population, the extraction of instances of relations. We
present a generic approach with which we are able to extract information
from documents on the Web. The method exploits redundancy of infor-
mation to compensate for loss of precision caused by the use of domain
independent extraction methods. In this paper, we present the general
approach and describe our implementation for a specific relation instance
extraction task in the art domain. For this task, we describe experiments,
discuss evaluation measures and present the results.

1 Introduction

The emerging notion of the Semantic Web envisions a next generation of the
World Wide Web in which content can be semantically interpreted with the
use of ontologies. Following [1], we make a distinction between ontology and
knowledge base. An ontology consists of the concepts (classes) and relations
that make up a conceptualization of a domain, the knowledge base contains
the ontology content, consisting of the instances of the classes and relations in
the ontology. The Semantic Web calls for a large number of both ontologies on
different domains and knowledge base content.

It has been argued that manual construction of ontologies is time consuming
and that (semi-)automatic methods for the construction of ontologies would be
of great benefit to the field and there is a lot of research into tackling this
problem. For the same reason, to avoid the knowledge acquisition bottleneck,
we also would like to extract the ontology content in a (semi)-automatic way
from existing sources of information such as the World Wide Web. This task is
called ontology population. The content can exist either in the form of actual
extracted information stored in some knowledge base for which the ontology
acts as the metadata schema, or it can be locally stored web content annotated
with concepts from the ontology. Automatic methods for ontology population
are needed to avoid the tedious labor of manually annotating documents.

The task of ontology learning can be decomposed into learning domain con-
cepts, discovering the concept hierarchy and learning relations between concepts.
We can also decompose ontology population into the extraction of concept in-
stances or instances of relations. In this document, we describe a method for

Y. Sure and J. Domingue (Eds.): ESWC 2006, LNCS 4011, pp. 245–258, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

246 V.de Boer, M.van Someren, and B.J. Wielinga

automatically extracting instances of relations, predefined in an ontology. This
task, further defined in the next section, we call Relation Instantiation.

A common and generic approach to extracting content is to build the next
generation of the web on top of the existing one, that is, to use the World Wide
Web as our corpus containing the information we use to extract our content
from. For the main part of this document, we will focus on the Web Corpus.

In the next section we will take a closer look at the relation instantiation task
and current approaches to it. In Section 3, we briefly look at current approaches
to this task.

In Section 4, we will describe the architecture of our method. A case study,
evaluation and our results will be discussed in Section 5 and in the last section
we will look at related work and further research.

2 Relation Instantiation

In this section, we first describe the relation instantiation task and the assump-
tions we make, followed by a short description of current approaches to automatic
extraction of relation instances.

For our purpose, we define an ontology as a set of labeled classes (the domain
concepts) C1, ..., Cn, hierarchically ordered by a subclass relation. Other relations
between concepts are also defined (R : Ci×Cj). We speak of a (partly) populated
ontology when, besides the ontology, a knowledge base with instances of both
concepts and relations from the ontology is also present.

We define the task of relation instantiation from a corpus as follows:

Given two classes Ci and Cj in a partly populated ontology, with sets
of instances Ii and Ij and given a relation R : Ci × Cj , identify for an
instance i ∈ Ii for which j ∈ Ij , the relation R(i, j) is true given the
information in the corpus.

Furthermore, in this document we make a number of additional assumptions
listed below:

– the relation R is not a one-to-one relation. The instance i is related to mul-
tiple elements of Ij .

– we know all elements of Ij .
– we have a method available that recognizes these instances in the documents

in our corpus. For a textual corpus such as the Web, this implies that the
instances must have a textual representation.

– in individual documents of the corpus, multiple instances of the relation are
represented.

– we have a (small) example set of instances of Ci and C for which the relation
R holds.

Examples of relation instantiation tasks that meet these assumptions in-
clude: extracting the relation between instances of the concept ‘Country’ and

Extracting Instances of Relations from Web Documents Using Redundancy 247

the concept ‘City’, in a geographical ontology; the extraction of the relation ‘ap-
pears in’ between films and actors in an ontology about movies or finding the
relation ‘has artist’ between instances of the class ‘Art Style’ and instances of
the class ‘Artist’ in an ontology describing the art domain. As a case study for
our approach, we chose this last example and we shall discuss this in Section 5.

3 Current Approaches

The current approaches to (semi-)automatic relation instantiation and Ontology
Population in general can be divided into two types: Those that use natural
language techniques and those that try to exploit the structure of the documents.

The approaches that use natural language adopt techniques such as stemming,
tagging and statistical analysis of natural language to do the Information Ex-
traction. Some methods learn natural language patterns to extract the instances.
These methods generally perform well on free text but fail to extract information
in semi-structured documents containing lists or tables of information.

Secondly, the structure-based extraction methods such as [2] perform well on
(semi-)structured documents containing lists or tables with information but they
perform poorly on natural language sources. However, most of the content on the
Web is highly heterogeneous in structure, even within individual web pages. A
generic method for extracting the different kinds of information presented on the
World Wide Web should be able to handle different types of documents and more
specifically documents that themselves contain variably structured information.

Also, as was argued in [3], the current approaches assume a large number
of tagged example instances to be able to learn patterns for extracting new
instances. This is a serious limitation for large scale use.

In the next section, we will present our approach to relation instantiation,
which is applicable to heterogeneous sources and minimizes the need for tagged
example instances.

4 Redundancy Based Relation Instantiation

In this section, we describe our method for relation instantiation. We want the
method to be applicable to a wide range of domains and heterogeneous corpora
and therefore we use generic methods based on coarse ground features that do
not rely on assumptions about the type of documents in the corpus. However,
by using these more general methods for the extraction, we will lose in precision
since the general methods are not tweaked to perform well on any type of domain
or corpus. We need to compensate for this loss.

The Web is extremely large and a lot of knowledge is redundantly available
in different forms. Since we choose methods that are applicable to a greater
number of sources on the Web than the more specific ones, we have a greater
set of documents to extract our information from. We assume that because of
the redundancy information on the Web and because we are able to combine
information from different sources, we can compensate for this loss of precision.

248 V.de Boer, M.van Someren, and B.J. Wielinga

Our approach to relation instantiation relies on bootstrapping from already
known examples of the relation so we also assume that we have a (small) set of
instances for which we already know that the given relation holds.

4.1 Outline of the Method

We first now present an outline of the method for the general relation instanti-
ation task described in Section 2. In Section 5, we present how a specific rela-
tion instantiation task can be performed using this method. The outline of our
method for relation instantiation is shown in Figure 1.

Step 1:

Retrieve/Select
Working Corpus

Step 2:

Identify Instances

Step 3:
Rank candidate
relation instance

consequents

WWW

Set of documents
about concept i

Identified instances
of Cj in each

document

Ranked list of
relation instance

candidates

<inst, doc>
<inst, doc>
<inst, doc>
…

<1, inst, score>

…

<2, inst, score>
<3, inst, score>

Instance i Instances of Cj
Seed set of relation

instances

Fig. 1. Outline of the general case of the approach

To extract instances of the relation R(i, j), we first construct a ‘working
corpus’, consisting of a subset of documents from the World Wide Web describing
the concept i. These documents are retrieved using a search engine (retrieving
the pages that make up the result when searching for the label of the concept).
Note that, for reasons of redundancy, we do not require a retrieval module that
scores high on ‘precision’, instead we focus on recall (a high number of pages).
The size of the subset is a parameter of the method.

The next step in the approach is the identification of all textual representa-
tions of instances of the concept Cj . Since we assume that we know all instances,
this step consists of matching the instances to their representations on the corpus
documents using a given method.

Once we have identified all instances in the documents as candidates for a
new instance of the relation, we integrate the evidence to produce a ranking
for these candidates. We do this by calculating a document score DS for each
document. This document score represents how likely it is that for each of the

Extracting Instances of Relations from Web Documents Using Redundancy 249

instances j ∈ Ij identified in that document, the relation R(i, j) holds according
to the seed set.

After the DS for each document is calculated, for each relation instance
candidate an instance score IS is calculated, which is an aggregate of the doc-
ument scores associated with the candidate. The document and instance scores
are defined in section 4.2.

4.2 Document and Instance Scores

We use the seed set to calculate DS and IS. We look for evidence of instances
of ontological relations in textual documents and we assume that this relation
is represented in the corpus through the occurrence of textual representations
of the instances of Cj in documents that are themselves representations of i.
If a relatively large number of instances of Cj are already part of our seed
set of instances with the relation to i, we can assume that this relation is well
represented by this document and that there is evidence that any other instances
identified in that document will also be part of this relation. Following this
principle we give a document score DSdoc,i to each document:

DSdoc,i =
μdoc

νdoc
(1)

where νdoc = |{j ∈ Ij , j in doc}| and μdoc,i = |{j ∈ Ij , j in doc, R(i, j) ∈
seedset}|

This can be interpreted as the probability that an instance is in the seed set
of the relation given that it is an instance of Cj . We use this document score to
calculate a score for each of the instances of Cj identified in the corpus that are
not in our seed list. The evidence score for each instance is the average of DSdoc

over the number of used documents: N .

ISj =
∑doc

DSdoc

N
(2)

where j ∈ Ij , j ∈ doc
We rank all instances of Cj by their instance score. All instances with a

score above some threshold are added to the knowledge base as instances of the
relation. The threshold is determined empirically.

5 Example: Artists and Art Styles

In this section, we illustrate how the approach works on an example of the
relation instantiation task described in Section 2.

5.1 Method Setup

As the domain in which to test our approach, we chose the art domain. We
use the method to extract instances of relations between two different existing
structured vocabularies widely used in the art domain.

250 V.de Boer, M.van Someren, and B.J. Wielinga

One of the vocabularies is the Art and Architecture Thesaurus [4] (AAT), a
thesaurus defining a large number of terms used to describe and classify art. The
other is the Unified List of Artist names [5] (ULAN), a list of almost 100.000
names of artists. We took the combination of these two structured vocabularies
(in RDF format) and added a relation aua:has artist 1 between the AAT con-
cept aat:Styles and Periods and the top-level ULAN concept ulan:Artist.
This made up our ontology and knowledge base.

In these experiments, the task is to find new instances of the aua:has artist
relation between aat:Styles and Periods and ulan:Artist, with the use of
a seed set of instances of this relation. The aua:has artist relation describes
which artists represent a specific art style. R is aua:has artist, Ci is aat:
Styles and Periods and Cj is ulan:Artist. This relation satisfies the require-
ment that it is not a one-to-one relation since a single art style is represented by
a number of artists. For each of the experiments, we manually added a number
of instances of the aua:has artist relation to the knowledge base.

For each experiment, we first choose for which instance of aat:Styles and
Periods we will extract new relations. Then, for the working corpus retrieval
step, we query the Google2 search engine using the label string of that instance,
for example ‘Impressionism’, ‘Post-Impressionism’ or ‘Expressionism’. In the ex-
periments described below, we retrieved 200 pages in this way.

Then in step 2, for every document of this corpus, we identify the instances of
ulan:Artist in that document. The instances (individual artists) are textually
represented in the documents in the form of person names. Here we use the Per-
son Name Extraction module of the tOKO toolkit [6]. We then match all person
names identified by the module to the instances of ulan:Artist, thus filtering
out all non-artist person names. One difficulty in this step is disambiguation of
names. Because of the large number of artists in the ULAN, unambiguously find-
ing the correct artist with a name proved very difficult. For example, the ULAN
lists three different artists named ‘Paul Gauguin’, thus making it impossible to
determine which specific artist is referred to in a document using only the name
string.

Rather than resorting to domain-specific heuristic methods such as consid-
ering birth dates to improve precision, the method relies on the redundancy of
information on the Web to overcome this problem through the occurrence of a
full name (‘Paul Eugene-Henri Gauguin’) in a number of documents. We discard
any ambiguous name occurrences and assume that a non-ambiguous name oc-
currences will appear somewhere in the corpus. This step leaves us with a set of
instances of Cj identified in the documents.

In step 3 we determine the document score, DS, for all documents and from
that IS for all identified artists, using our seed set. For each of the artists found
in the corpus, the scores of the pages it appears on are summarized. We normalize
this score and order all artists by this score. In Section 5.3 and 5.4 we present
the results of a number of experiments conducted in this way.

1 aua denotes our namespace specifically created for these experiments
2 www.google.com

Extracting Instances of Relations from Web Documents Using Redundancy 251

5.2 Evaluation

Evaluation of Ontology Learning and Population still is an open issue. Since the
specific task we tackle resembles Information Retrieval, we would like to calculate
standard IR evaluation measures such as precision, recall and the combination:
the F-measure. However, this requires us to have a gold standard of all relations
in a domain. Although we assume we know all artists, there is no classic gold
standard that for an single art style indicates which artists represent that art
style. This is due to the fuzziness of the domain. Art web sites, encyclopedias
and experts disagree about which individual artists represent a certain art style.
Although this fuzziness occurs in many domains, it is very apparent in the Art
domain. For our experiments we chose a number of representative web pages
on a specific art style and manually identified the artists that were designated
as representing that art style. If there was a relative consensus about an artist
representing the art style among the pages, we added it to our ‘gold standard’.
The gold standard we obtained using this method is used to measure recall,
precision and F1-measure values.

5.3 Experiment 1: Expressionism

In our first experiment, we chose ‘Expressionism’ as the instance of Ci. We
manually constructed a gold standard from 12 authoritative web pages. For a
total of 30 artists that were considered Expressionists in three or more of these
documents we used the relation aua:has artist from Expressionism to those
artists as our gold standard. The actual artists that make up our gold standard
are shown in Table 1. From these 30 instances of the relation, we randomly
selected three instances (italicized in Table 1) as our seed set and followed the
approach described above to retrieve the remaining instances of the relation.

Step 1 (the retrieval step) resulted in 200 documents, from this we extracted
the person names, matched the names to ULAN artists and calculated the IS
score for each artists as described in the previous sections. In Table 2, we show the

Table 1. Our gold standard for ‘Expressionism’. The names of the three artists selected
for the seed set are italicized.

Paula Modersohn-Becker Emil Nolde Edvard Munch
Georges Rouault George Grosz Erich Heckel
Kathe Kollwitz Otto Dix Lyonel Feininger
Egon Schiele August Macke Paul Klee
Ernst Ludwig Kirchner Max Pechstein Ernst Barlach
Oskar Kokoschka Alexei Jawlensky Francis Bacon
Chaim Soutine James Ensor Gabriele Munter
Franz Marc Karl Schmidt-Rottluff Heinrich Campendonk
Max Beckmann Alfred Kubin Jules Pascin
Wassily Kandinsky Amedeo Modigliani Gustav Klimt

252 V.de Boer, M.van Someren, and B.J. Wielinga

Table 2. Part of the resulting ordered list for i = ‘Expressionism’. For each identified
artist, we have listed whether it appears in the gold standard (’1’) or not (’0’).

Artist Name IS In GS
grosz, george 0.0100 1
emil nolde 0.0097 1
heckel, erich 0.0092 1
marc, franz 0.0060 1
pechstein, max 0.0058 1
max beckman 0.0056 1
kandinsky, wassily 0.0054 1
munch, edvard 0.0042 1
kokoschka, oskar 0.0042 1
schiele egon 0.0041 1
klee, paul 0.0040 1
dix, otto 0.0024 1
alexej von jawlensky 0.0021 1
chaim soutine 0.0020 1
santiago calatrava 0.0016 0
...

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

00.0020.0040.0060.0080.01
threshold

Recall

Precision

F-Measure

Fig. 2. Recall, precision and F-measure for Experiment 1

top 15 candidates for the instantiation of the relation according to the resulting
ranked list.

In Figure 2, we plotted the value for the F-measure against the value for
the threshold. The value of F decreases as the value for the threshold decreases.
The highest value of F is 0.70 (this occurs at values for recall and precision of
respectively 0.56 and 0.94). This highest F-value is obtained with a threshold of
0.0012.

Extracting Instances of Relations from Web Documents Using Redundancy 253

Table 3. Our gold standard for ‘Impressionism’. The names of the three artists selected
for the seed set are italicized.

Claude Monet Frederick Bazille Paul Gauguin
Alfred Sisley Boudin Armand Guillaumin
F.C. Frieseke Gustave Caillebotte Childe Hassam
Berthe Morisot Mary Cassat Edouard Manet
Georges Seurat Paul Cezanne Edgar Degas
Camille Pissarro Camille Corot Pierre-Auguste Renoir

To test the robustness of the method with respect to the content of the seed
set, we performed the same experiments using two different seed sets selected
from the gold standard. One seed set consisted of the three most likely artists
linked with Expressionist, according to our ordered gold standard. This seed
set yielded the same results: a maximum value of F of 0.69 was found (recall
= 0.63, precision = 0.77). The other seed set consisted of the three least likely
Expressionists, resulting in a lower maximum value of F: 0.58 (recall = 0.63,
precision = 0.53).

We also conducted this experiment using different sizes of the seed set (15
seed/15 to be found and 9 seed/21 to be found). These experiments yielded
approximately the same maximum values for the F-measure. Before we discuss
further findings, we first present the results of a second experiment within the
art domain, using a different instance of Ci: Impressionism.

5.4 Experiment 2: Impressionism

From the 11 web pages mentioned in Section 5.2, we identified 18 artists that
were added to our gold standard. From these 18 instances of the relation, we
again chose three as our seed set and followed the approach described above to
retrieve the 15 remaining instances of the relation. Again, the actual artists are
shown in Table 3.

We again built a corpus of 200 documents and performed the described steps.
In Table 4, we show a part of the resulting ordered list.

Again, we plotted the value of precision, recall and F (Figure 3). In this
experiment, F reaches a maximum value of 0.83 (where recall = 0.80 and pre-
cision = 0.86) at a threshold value of 0.0084. In this experiment, we also tested
for robustness by using different content for the seed set in the same way as in
Experiment 1. If the seed set contained the most likely Impressionists according
to our ordered Gold Standard, the maximum value of F is 0.72 (recall = 0.60,
precision is 0.90). If we start with the least likely Impressionists the maximum
value of F is 0.69 (recall = 0.8, precision = 0.6).

5.5 Discussion

In the experiments, we find almost the same maximum value of F under different
conditions. In both cases, the first few found artist are always in the gold stan-

254 V.de Boer, M.van Someren, and B.J. Wielinga

Table 4. Part of the resulting ordered list for i =’Impressionism’

Artist Name IS In GS
edgar degas 0.0699 1
edouard manet 0.0548 1
pierre-auguste renoir 0.0539 1
morisot, berthe 0.0393 1
gogh, vincent van 0.0337 0
cassatt, mary 0.0318 1
cezanne, paul 0.0302 1
georges pierre seurat 0.0230 1
caillebotte, gustave 0.0180 1
bazille, frederic 0.0142 1
guillaumin, armand 0.0132 1
signac paul 0.0131 0
childe hassam 0.0120 1
eugene louis boudin 0.0084 1
sargent, john singer 0.0081 0
...

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

00.010.020.030.040.050.060.070.08
threshold

Recall

Precision

F-Measure

Fig. 3. Recall, precision and F-measure for Experiment 2

dard, after which the precision drops due to the errors made. The values of F are
encouraging. There are several reasons that the F-measure does not reach higher
values. These can be divided into reasons for lack of precision and for lack of recall.

First of all, one of the reasons for the false positives is due to precision
errors of the Person Name Extraction module. For example, in Experiment 2
the misclassified string ”d’Orsay” (name of a museum on impressionist art) is
first misclassified as a person name and then passes the disambiguation step and
is mapped to the ULAN entity ”Comte d’Orsay”.

Another portion of the error in precision is caused by the strictness of the
gold standard that we used. In Experiment 2, Vincent van Gogh is suggested as

Extracting Instances of Relations from Web Documents Using Redundancy 255

an Impressionist, he is however, not in our gold standard. However, a number of
sources cite him as an Impressionist painter and a less strict gold standard could
have included this painter. We assume that this strictness of the gold standard
accounts for a lot of the lack of precision.

Errors in recall are also caused by three factors. We find that 2 of the 15
Impressionists and 10 of the 27 Expressionists are not in our ordered list at all.
As with precision, errors made by the Person Name Extraction module account
for a part of the lack of recall. The module (biased towards English names), has
apparent difficulty with non-English names such as ‘Ernst Ludwig Kirchner’ and
‘Claude Monet’. A better Person Name Extractor would yield a higher recall and
consequently, a better value for the F-measure.

Another cause for recall errors is the difficulty of the disambiguation of the
artist names. From some extracted names, it is even impossible to identify the
correct ULAN entity. An example is the string ‘Lyonel Feininger’. In the ULAN
there are two different artists: one with the name ‘Lyonel Feininger’ and one with
the name ‘Andreas Bernard Lyonel Feininger’. Our method cannot determine
which one of these entities is found in the text and so the string is discarded.

Of course, a number of artists are not retrieved because they simply do not
appear in the same (retrieved) page as one of the artist from a seed list. One
way to solve this problem is introduced in the next section.

A problem, not directly related to recall and precision is that from the ex-
periments featured above, it is not possible to a priori determine a standard
value for the threshold, with which the value of the F-measure is at a maximum.
The optimal threshold value for Experiment 1 is 0.0012, whereas in Experiment
2 it is 0.0043. The lack of a method to determine this threshold value poses a
problem when the method is used in different, real life situations. It requires
experimentation to find the optimal value for F. In the next section we describe
an extension to our method to eliminate the need for a threshold value.

5.6 Bootstrapping

To circumvent the need for a generally applicable value for the threshold for
actually adding relation instances, we expanded our method by using bootstrap-
ping. Corpus construction, name extraction and the scoring of documents and
instances is done in the same way as in the previous experiments. From the re-
sulting ordered list we take the first artist and add a aua:has artist relation
to our seed list. Then on the next iteration, the document and instance scores
are again calculated, using the updated seed list. This bootstrapping eliminates
the need for a fixed threshold value and we can examine the effect of the total
number of iterations on the performance measures. Recall will also be raised due
to the fact that documents that have received a score of zero in a first scoring
round can have their document score raised when the newfound instances are
added to the seed list. We depict the results in Table 5 and Figure 4.

While we find approximately the same values for the F-measure, we have
indeed eliminated the need for a threshold and raised the overall recall (now

256 V.de Boer, M.van Someren, and B.J. Wielinga

Table 5. The first 15 iterative results for i =’Expressionism’

Artist Name Iteration In GS
grosz, george 1 1
emile nolde 2 1
heckel, erich 3 1
pechstein, max 4 1
max beckman 5 1
vasily kandinsky 6 1
munch, edvard 7 1
kokoschka, oskar 8 1
marc, franz 9 1
klee, paul 10 1
dix otto 11 1
schiele egon 12 1
alexey von jawlensky 13 1
vincent van gogh 14 0
baron ensor 15 1
...

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50threshold

Recall

Precision

F-Measure

Fig. 4. Recall, precision and F-measure for the Iterative Experiment

only 7 out of 27 Expressionists are never awarded a score higher than 0). We
now have the issue of determining when to stop the iteration process. This is the
subject of future research.

6 Related Work

Related work has been done in various fields, including Information Extraction,
Information Retrieval and Ontology Learning.

Extracting Instances of Relations from Web Documents Using Redundancy 257

The Armadillo system [7] is also designed to extract information from the
World Wide Web. The Armadillo method starts out with a reliable seed set,
extracted from highly structured and easily minable sources such as lists or
databases and uses bootstrapping to train more complex modules to extract
information from other sources. Like our method, Armadillo uses redundancy
of information on the Web to combine evidence for new instances. One of the
differences between Armadillo and our method is that Armadillo does not require
a complete list of instances as our method does. The method, however requires
specific sources of information as input, depending on the type of information
to be extracted using wrappers. Our method requires no extra input defined by
the extraction task other than relevant instance extraction modules such as the
Person Name Extraction module.

Also, in the method proposed by Cimiano et al. [8], evidence from different
techniques is combined to extract information. This method, however attempts
to extract taxonomic relations between concepts. Our method can be used to ex-
tract instances of non-taxonomic relations as well, as shown by our experiments.

The KnowItAll system [9] aims to automatically extract the ‘facts’ (in-
stances) from the web autonomously and domain-independently. It uses Machine
Learning to learn domain-specific extraction patterns, starting from universal
patterns. In combination with techniques that exploit list structures the method
is able to extract information from heterogeneous sources.

The Normalized Google Distance [10] is a method that calculates semantic
distance between two terms by using a search engine (Google). This method does
not use a seed set and could be used to extract instances of relations. However,
the method can only determine the distance between two terms (as opposed to
our method, which takes ontological instances, that can have multiple terms, as
input). The Normalized Google Distance is also unable to distinguish between
different types of relations between instances. Using our method, different rela-
tions can be examined, due to the use of the seed set. We are currently exploring
this in more detail.

7 Conclusions and Further Research

We have argued that for Relation Instantiation, an Information Extraction task,
methods that work on heterogeneous sources should become available to extract
instances of relations in various domains. We presented a novel approach to
this task exploiting the redundancy of information on the Web. We presented
an outline for this approach in the form of a framework that is applicable in
various domains and described the prerequisites of this approach. A specific
instance of a Relation Instantiation problem in the Art domain was presented
and we implemented and tested of the method. The recall and precision scores
are satisfactory, considering the strict evaluation standards used and suggest
further research and testing of the method.

An obvious direction for further research is to test this method in other
domains. Examples of domains are geography (eg. which cities are located in a
country) and the biomedical domain (which proteins interact with a gene).

258 V.de Boer, M.van Someren, and B.J. Wielinga

Another direction for further research is to expand in such a way that new
instances of concept Cj can be added to the ontology, whereas now, only known
instances can be part of a instantiated relation.

Also, the notion of exploiting redundancy of information on the web by using
generally applicable methods could be expanded in such a way that other sub-
tasks of ontology learning, such as hierarchy construction or concept discovery
could be performed.

Acknowledgements

This research was supported by MultimediaN project (www.multimedian.nl)
funded through the BSIK programme of the Dutch Government. We would like
to thank Anjo Anjewierden and Jan Wielemaker for their extensive programming
support.

References

1. Maedche, A., Staab, S.: Ontology learning for the semantic web. IEEE Intelligent
Systems 13 (2001) 993

2. Kushmerick, N., Weld, D., Doorenbos, R.: Wrapper induction for information
extraction. In: in Proceedings of the Fifteenth International Joint Conference on
Artificial Intelligence. (1997) 729737

3. Cimiano, P.: Ontology learning and population. Proceedings Dagstuhl Seminar
Machine Learning for the Semantic Web (2005)

4. The Getty Foundation: Aat: The art and architecture thesaurus.
http://www.getty.edu/research/tools/vocabulary/aat/ (2000)

5. The Getty Foundation: Ulan: Union list of artist names.
http://www.getty.edu/research/tools/vocabulary/ulan/ (2000)

6. Anjewierden, A., Wielinga, B.J., de Hoog, R.: Task and domain ontologies for
knowledge mapping in operational processes. Metis Deliverable 4.2/2003, Univer-
sity of Amsterdam. (2004)

7. Ciravegna, F., Chapman, S., Dingli, A., Wilks, Y.: Learning to harvest information
for the semantic web. Proceedings of the 2nd European Semantic Web Conference,
Heraklion, Greece (2005)

8. Cimiano, P., Schmidt-Thieme, L., Pivk, A., Staab, S.: Learning taxonomic relations
from heterogeneous evidence. Proceedings of the ECAI 2004 Ontology Learning
and Population Workshop (2004)

9. Etzioni, O., Cafarella, M., Downey, D., Kok, S., Popescu, A., Shaked, T., Soderland,
S., Weld, D.S., Yates, A.: Webscale information extraction in knowitall preliminary
results. In: in Proceedings of WWW2004. (2004)

10. Cilibrasi, R., Vitanyi, P.: Automatic meaning discovery using google.
http://xxx.lanl.gov/abs/cs.CL/0412098 (2004)

Toward Multi-viewpoint Reasoning
with OWL Ontologies

Heiner Stuckenschmidt

Institut für Praktische Informatik
University of Mannheim

A5,6 68159 Mannheim, Germany
heiner@informatik.uni-mannheim.de

Abstract. Despite of their advertisement as task independent represen-
tations, the reuse of ontologies in different contexts is difficult. An expla-
nation for this is that when developing an ontology, a choice is made with
respect to what aspects of the world are relevant. In this paper we deal
with the problem of reusing ontologies in a context where only parts of the
originally encoded aspects are relevant. We propose the notion of a view-
point on an ontology in terms of a subset of the complete representation
vocabulary that is relevant in a certain context. We present an approach of
implementing different viewpoints in terms of an approximate subsump-
tion operator that only cares about a subset of the vocabulary. We dis-
cuss the formal properties of subsumption with respect to a subset of the
vocabulary and show how these properties can be used to efficiently com-
pute different viewpoints on the basis of maximal sub-vocabularies that
support subsumption between concept pairs.

1 Introduction

Originally, ontologies where meant as a task-neutral description of a certain
domain of interest that can be reused for different purposes. This idea is also at
the heart of the semantic web vision, where the ontology-based description of
Information is supposed to make it possible to use the information for different
purposes and in different contexts. In practice, however, it has turned out that
the re-use of ontologies for different tasks and purposes causes problems [15].
The reason for this is that ontologies are often not really designed independent
of the task at hand. The development is rather driven by the special needs of
a particular system or task. In general the context of use has an impact on the
way concepts are defined to support certain functionalities. As some aspects of a
domain that are important for one application do not matter for another one and
vice versa, an ontology does not represent the features needed for a particular
application. In this case, there is little hope for direct reuse. Another potential
problem, that we will address in this paper is that an ontology contains too
many aspects of a domain. This can become a problem, because in introduces
unnecessary complexity and can even lead to unwanted conclusions, because
the ontology introduces unwanted distinctions between classes that should be

Y. Sure and J. Domingue (Eds.): ESWC 2006, LNCS 4011, pp. 259–272, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

260 H. Stuckenschmidt

treated in the same way in the current application context. We argue that in
order to solve this problem, we have to find ways to enable the representation of
different viewpoints on the same ontology, that better reflects the actual needs
of the application at hand.

1.1 Related Work

The concept if having different viewpoints on the same model is a well established
concept in the area of software engineering [8]. In order to extend this to semantic
web systems, the concept of a viewpoint has to be extended to the semantic
models used in the system. There has been some work on specifying viewpoints
on RDF data, mainly inspired by the concept of views in database systems.
The idea is to define rules for extracting an possibly restructuring parts of a
basic RDF model to better reflect the needs of a certain user or application.
Different techniques have been proposed including the use of named queries [10],
the definition of a view in terms of graph traversal operations [11] and the use
of integrity constraints for ensuring the consistency of a viewpoint [16]. In this
paper, we focus on ontologies represented in description logics, in particular
OWL-DL. In the context of description logics, the classical notion of views can
only be used in a restricted way as relevant inference problems related to views
have been shown to be undecidable [3].

An alternative approach to viewpoints in description logics has been pro-
posed based on the concept of contextual reasoning . Here, each viewpoint is
represented in terms of a separate model with a local interpretation [9]. Re-
lations between different viewpoints are represented by context mappings that
constrain the local interpretations. Based on these basic principles of contex-
tual reasoning, approaches for representing and linking different viewpoints on
the same domain have been developed for description logics [4] and for OWL
resulting the C-OWL language [6]. These approaches, however have a slightly
different goal as they mainly aim at providing means for integrating different
existing models. Our interest is to develop methods that allows us to extract a
certain viewpoint from an existing model that best fits the requirements of an
application.

An approach that is very similar to this idea is the work of Arara and others
[12, 1]. They propose the use of modal description logics for encoding multiple
viewpoints in the same ontology by indexing parts of the definitions with the
contexts they are supposed to hold in. A drawback of their approach is that they
require an extension of the representation language and its semantics to deal with
multiple perspectives. In contrast to the contextual approaches mentioned above
there currently is no reasoning support for this formalism.

1.2 Contributions and Motivating Example

In this paper, we propose an approach for multi-viewpoint reasoning that do
not require an extension to the OWL-DL language. The approach is based on
the idea of approximate logical reasoning and uses an approximate subsumption
operator that can be tuned to only use a certain part of the definitions in the

Toward Multi-viewpoint Reasoning with OWL Ontologies 261

Fig. 1. The Example Ontology

ontology. In particular, we address the problem of efficient computing concept
hierarchies that represent a certain viewpoint on a domain in terms of ignoring
a certain subset of the vocabulary used in concept expressions.

To clarify this idea we consider the family ontology shown in figure 1. The
ontology classifies persons into different concepts according to certain criteria
including gender and the presence of children.

The silent assumption underlying this ontology is that all of the criteria used
in the definitions are actually relevant for the application. In particular, the as-
sumption is that it is important to distinguish between male and female persons
(man vs. woman) and between people with and without children (woman vs.
mother).

We can imagine applications that would benefit from an ontology of people,
but in which only some of the distinguishing aspects are important. An exam-
ple would be a system for processing salary information in the German public
sector. In such a system it makes sense to distinguish between people with and
without children, because the existence of children entitles to special benefits.
The distinction between genders in completely irrelevant in this context and even
prohibited by laws guaranteeing gender equality. Other applications e.g. related
to private pension funds the gender is relevant as there are different regulations
with respect to the age in which male and female persons can retire. In this
application the existence of children is not important.

The paper is structured as follows. In section 2 first briefly introduce De-
scription Logics as a basis for representing ontologies including some modeling
examples from our example ontology and review the notion of approximate de-
duction in description logics proposed by Cadoli and Schaerf [13]. Section 3
introduces our notion of a viewpoint and its definition in terms of an approxi-
mate subsumption operator. In section 4 we discuss some axiomatic properties
of the approximate subsumption operators and discuss their use for implement-
ing basic reasoning services relevant for multi-viewpoint reasoning. The paper
concludes with a discussion of the approach.

2 The Description Logics SIN
The basic modeling elements in Description Logics are concepts (classes of ob-
jects), roles (binary relations between objects) and individuals (named objects).

262 H. Stuckenschmidt

Based on these modeling elements, Description Logics contain operators for spec-
ifying so-called concept expressions that can be used to specify necessary and
sufficient conditions for membership in the concept they describe. Basic reason-
ing tasks associated with these kinds of logics are checking whether an expression
is satisfiable (whether it is possible that an object satisfies the membership con-
dition) and deciding subsumption between two concepts (deciding whether a
concept expression implies another one). We now look at these issues on a more
formal level.

Let C be a set of concept names and R a set of role names. Further let there be
a set R+ ⊆ R of transitive roles (i.e. for each r ∈ R+ we have r(x, y)∧ r(y, z) ⇒
r(x, z)). If now R− denotes the inverse of a role (i.e. r(x, y) ⇒ r−(y, x)) then we
define the set of roles as R∪{r−|r ∈ R}. A role is called a simple role if it is not
transitive. The set of concepts (or concept expressions) in SIN is the smallest
set such that:

– � and ⊥ are concept expressions
– every concept name A is a concept expression
– if C and D are concept expressions, r is a role, s is a simple role and n is a

non-negative integer, then ¬C, C D, C �D,∀r.C, ∃r.C, ≥ n r and ≤ n r
are concept expressions.

A general concept inclusion axioms is an expression C 	 D where C and D
are concepts, the equivalence axiom C ≡ D is defined as C 	 D ∧ D 	 C A
terminology is a set of general concept inclusion and role inclusion axioms. In
the following, we only consider axioms of the form A 	 C and A ≡ C where
A is an atomic concept name. Further, we assume that all concepts C are in
negation normal form (negation only applies to atomic concept names). Note
that for every concept can deterministically be transformed into an equivalent
concept in negation normal form. Thus this assumption does not impose any
restriction on the approach.

This logic covers a significant part of the OWL-DL Language. We exclude
the following language elements, because their behavior in connection with the
approximation approach presented below needs more investigation:

– Role Hierarchies: It is not clear how to deal with the situation where we
want to consider a certain role but not its super-roles.

– Qualified Number restrictions: The use of qualified number restrictions make
it hard to predict the effect of restricting reasoning to a sub-vocabulary,
because ignoring the type restriction to C in the expression (≥ n r.C) makes
the overall expression more general whereas ignoring C in (≤ n r.C) makes
the expression more specific.

– Nominals: The current mechanism for implementing multi-viewpoint reason-
ing is based on concept and role names and does not cover objects as part
of the signature of an ontology.

– General Concept Inclusion Axioms: The presence of general inclusion axioms
makes it hard to determine the impact of ignoring parts of the vocabulary
on the interpretation of a certain concept.

Toward Multi-viewpoint Reasoning with OWL Ontologies 263

Examples. In the following we illustrate the use of description logic for defin-
ing and reasoning about concepts in our example ontology from figure 1. In
particular, we look at the definitions of concepts related to motherhood. In our
ontology the concept mother is defined as an intersection of the concepts Woman
and Parent stating that each mothers is both, a woman and a parent.

Mother ≡ Woman Parent

These two concepts in turn are defined as special cases of the person concept
using the relations has-gender and has-child. In particular, these relations
are used to claim that each woman must have the gender female and that each
parent must have a person as a child.

Woman ≡ Person ∃has− gender.Female

Parent ≡ Person ∃has− child.Person

Finally, the concept of a grandmother is defined by chaining the has-child
relation to state that every instance of this class is a Woman with a child that
has a child itself which is a Person.

Grandmother ≡ Woman ∃has− child.(∃has− child.Person)

Description Logics are equivalent to a fragment of first order logic. Corre-
sponding semantics preserving translation rules from Description logic expres-
sions are given in [2, 5, 14]. Subsumption between concepts (C 	 D) can be
decided based on this semantics. In particular one concept subsumes another if
the first order representation of D is implied by the first order representation
of C. This way, we can for example find out that Grandmother is a subclass of
Mother.

3 Reasoning with Limited Vocabularies

The idea of reasoning with limited vocabularies has been used in the area of
approximate reasoning in order to improve efficiency of propositional inference.
Cadoli and Schaerf propose a notion of approximate entailment that allows errors
on parts of the vocabulary – in their case propositional letters [13]. We adopt
the general idea of allowing errors on parts of the vocabulary and generalize this
idea to the case where the vocabulary does not consist of propositional letters,
but of concepts and relations. Cadoli and Schaerf also present an extension
of their approach to description logics, but in this work the sub-vocabulary
does not correspond to concept and role names but rather to the position of
a subexpression [7]. As our aim is to provide a mechanism for ”switching on
and off” certain concept and relation names, we have to find a different way of
defining inference with respect to a certain sub-vocabulary.

264 H. Stuckenschmidt

3.1 Vocabulary-Limited Subsumption

The basic idea of our approach to inference with limited vocabularies is that
terminologies define restrictions on the interpretation of certain concepts. Based
on these restrictions, we can decide whether one concept is subsumed by another
one. In the case of a limited vocabulary, we only want to consider such restrictions
that relate to a certain sub-vocabulary under consideration and ignore other
restriction. If we want to implement this idea, the basic problem is to identify
and eliminate those restrictions that are not related to the sub-vocabulary under
consideration. Here we have to distinguish two kinds of restrictions:
1. the interpretation of a concept can be restricted by claiming that instances

of this concept belong to a set defined by a Boolean expression over other
concept names.

2. the interpretation of a concept can be restricted by claiming that instances of
the concept are related to other object with certain properties via a certain
relation.

We can deal with the first kind of restriction in the same way as with proposi-
tional logic. Therefore we adopt the approach of Cadoli an Schaerf who replace
concepts that are not in the relevant sub-vocabulary as well as their negations
by true. For the case of Description logics this means that we replace concepts
and their negations by �, thus disabling the restriction imposed by them.

The second kind of restrictions can be dealt with by just ignoring those re-
strictions that are related to a certain relation. This includes the restrictions
on the related objects. More specifically, we can disable these kind of restric-
tions by replacing subexpressions that contain a relations r �∈ V – in particular
subexpressions of the form (∃r.C), (∀r.C), (≥ n r) and (≤ n r) – by �.

Definition 1 (Approximation). Let V = C ∪ R be the vocabulary (the set of
all concept and role names) of an ontology. Let further V ⊆ V be a subset of V
and X a concept expression in negation normal form, then the approximation of
a concept expression X approxV (X) is defined by:
– Replacing every concept name c ∈ V − V that occurs in X and its negation

by �
– Replacing every subexpression of X that directly contains a slot name r ∈
V − V and its negation by �

The restriction of terminologies to axioms that only have atomic concept names
on the left hand side allows us to apply the approximation defined above to
complete terminologies in a straightforward way by replacing the right hand
sides of the axioms in a terminology by their approximation. Further, we remove
the definitions of concepts not in V as they are irrelevant. the corresponding
definition of an approximated terminology is the following:

Definition 2 (Approximated Terminology). Then we define the approxi-
mation of a terminology T with respect to sub-vocabulary V as

TV = {A 	 approxV (C)|A ∈ V, (A 	 C) ∈ T } ∪
{A ≡ approxV (C)|A ∈ V, (A ≡ C) ∈ T }

Toward Multi-viewpoint Reasoning with OWL Ontologies 265

The approximated terminology TV represents the original model while ignoring
the influence of the concepts and relations not in V . Consequently, if we can
derive a subsumption statement C 	 D from this terminology, we can interpret
this as subsumption with respect to the sub-vocabulary V .

Definition 3 (Subsumption wrt a sub-vocabulary). Let T be a terminol-
ogy with sub-vocabulary V ⊆ V, let further C, D ∈ V be concept names in V ,
then we define the notion of subsumption with respect to sub-vocabulary V as:

T |= C 	
V

D ⇔def TV |= C 	 D

In this case, we say that C is subsumed by another concept D with respect to
sub-vocabulary V

The definition leaves us with a family of subsumption operators, one for each
subset of the vocabulary. Below we illustrate the use of the operator with respect
to the motivating example.

Example 1: Gender. We can now apply the notion of subsumption with respect to
a sub-vocabulary to our example ontology and exclude certain aspects from the
definitions. The first is the case where the target application does not care about
the gender of a person. We treat this case by replacing the classical notion of sub-
sumption by subsumption with respect to the vocabulary V − {has− gender}.
We implement this by replacing subexpressions that directly contain the slot
has-gender by �. The result of this operation on the example definitions from
above are:

Woman ≡ Person �
Parent ≡ Person ∃has− child.Person

Mother ≡ � Parent

Grandmother ≡ Mother ∃has− child.(∃has− child.Person)

As a consequence of this operation, there are a number of changes in the in-
ferable concept hierarchy. In particular, the concept Mother becomes equivalent
to Person with respect to the sub-vocabulary V − {has− gender}. The same
happens with respect to the concept Man which also becomes equivalent to the
other two concepts with respect to V − {has− gender}. This means that the
ontology does not make a distinction between male and female persons any more
which is exactly what we wanted to achieve.

Example 2: Children. In the same way, we can implement our second motivating
example where we do not want to distinguish between persons with and without
children. For this case, we use subsumption with respect to sub-vocabulary V −
{has− child}. Replacing the corresponding subexpressions in our example by
� leads to the following definitions:

Woman ≡ Person ∃has− gender.Female

266 H. Stuckenschmidt

Parent ≡ Person �

Mother ≡ Woman Parent

Grandmother≡ Mother�

In this case, we see that the concept Parent becomes equivalent to Person
with respect to subvocabulary V − {has− child}. This, in turn makes Mother
and Grandmother equivalent to Woman. As we can see, using this weaker notion
of subsumption a whole branch of the hierarchy that used to describe different
kinds of female parents collapses into a single concept with different names. With
respect to our application that does not care about children, this is a wanted
effect as we do not want to distinguish between different female persons on the
basis of whether they have children or not.

3.2 Defining Viewpoints

As sketched in the motivation, each approximate subsumption operator defines a
certain viewpoint on an ontology. In particular, it defines which aspects of a do-
main are relevant from the current point of view. If we chose the sub-vocabulary
such that it does not contain the slot has-gender then we state that the cor-
responding aspect is not of interest for the particular viewpoint implemented
by the subsumption operator. This basically means that we actually define a
viewpoint in terms of a relevant part of the vocabulary. The corresponding sub-
sumption operator serves as a tool for implementing this viewpoint. Based on
this idea we define a viewpoint on an ontology as the set of subsumption relations
that hold with respect to a certain sub-vocabulary.

Definition 4 (Viewpoint). Let V ⊆ V a sub-vocabulary, then the viewpoint
induced by sub-vocabulary V (PV) is defines as:

PV = {C 	 D|C 	
V

D}

Example 1: Gender. If we apply the above definition of a viewpoint on our
example, we get a modified concept hierarchy, that reflects the corresponding
viewpoint on the domain. For the case of the sub-vocabulary V−{has− gender}
we get the hierarchy shown in figure 2.

Fig. 2. The Hierarchy if we ignore the gender

Toward Multi-viewpoint Reasoning with OWL Ontologies 267

If we compare this hierarchy with the original one shown in figure 1, we see
that all distinctions that were based on the gender of a person have disappeared
from the hierarchy. Now there is a single concept containing men, women, persons
and humans a single class containing mothers, fathers and parents as well as a
single concept containing brothers and sisters and a single class containing uncles
and aunts.

Example: Children. A similar observation can be made when looking at the
viewpoint defined by the the sub-vocabulary V − {has− child}. The concept
hierarchy representing this viewpoint is shown in figure 3.

Fig. 3. The Example Ontology if we ignore children

Again, comparing this hierarchy to the original ontology shows that all dis-
tinctions that were based on the excluded property have disappeared from the
hierarchy. In particular, the root of the hierarchy is now a concept that contains
all people and all parents which are now indistinguishable. As in the previous
example, this phenomenon occurs across the hierarchy as we now have a single
class for women, mothers and grandmothers, a single class for men and fathers
as well as a single class for brothers and uncles as well as for sisters and aunts.

4 Multi-perspective Reasoning

The notion of subsumption with respect to a sub-vocabulary comes with new
forms of reasoning. We can not longer only ask whether one concept subsumes
another, but also whether it does with respect to a certain sub-vocabulary or ask
for sub-vocabularies in which a concept subsumes another one. In the following,
we first discuss some general properties of the subsumption operator introduced
above that defines the relation between subsumption and sub-vocabularies. We
then show how we can use the formal properties to efficiently compute viewpoints
using sets of maximal vocabularies that ensure subsumption between a pair of
concepts.

4.1 Axiomatic Properties of Limited Subsumption

The subsumption with respect to a sub-vocabulary operator has some general
properties that we will exploit in the following to define the notion of viewpoint
and to discuss the computation of different viewpoints. We briefly present these
properties in the following without providing formal proofs, mainly because most

268 H. Stuckenschmidt

of the properties are easy to see from the definition of subsumption with respect
to a sub-vocabulary given above.

The first obvious property is the fact that subsumption with respect to the
complete vocabulary is exactly the same as classical subsumption. The argument
for this is straightforward as in that case, the set of concepts and relations to be
removed from concept expressions is empty, so checking limited subsumption is
just checking classical subsumption

C 	
V

D ⇔ C 	 D (1)

The properties above describe is an extreme cases of the framework where
either the complete vocabulary is considered to be relevant. The interesting cases,
however, are those where subsets of the vocabulary are considered. An interesting
feature of the approach is that there is a direct correspondence between the
relation between different sub-vocabularies and the limited forms of subsumption
they define. In particular, the subsumption between two concepts with respect
to a sub-vocabulary V1 implies subsumption between the same concepts with
respect to any subset V2 of V1.

C 	
V1

D ⇒ C 	
V2

D, if V2 ⊆ V1 (2)

Another property is concerned with the transitivity of subsumption. It is quite
obvious that if C subsumes D and D subsumes E with respect to the same sub-
vocabulary, C also subsumes E with respect to this sub-vocabulary. We can
generalize this to the case where subsumption relations between the concepts
exist with respect to different sub-vocabularies V1 and V2.

C 	
V1

D ∧D 	
V2

E ⇒ C 	
V1∩V2

E (3)

The previous property provides a basis for defining equivalence with respect
to a subvocabulary. This basically is the special case of equation 3 where E is
the same concept as C. In this case we say that C and D are equivalent with
respect to the sub-vocabulary defined as the intersection of the two vocabularies
in which one concept subsumes the other. The justification of thus axiom is
exactly the same as for equation 3.

C 	
V1

D ∧D 	
V2

C ⇒ C ≡
V1∩V2

D (4)

As we will see in the following, these properties are quite useful with respect
to defining different viewpoints and to determine important reasoning tasks in
the context of multi-viewpoint reasoning.

4.2 Reasoning About Viewpoints

The reasoning tasks we have to consider in the context of multi-viewpoint repre-
sentations are the same as for standard OWL ontologies. As in OWL, computing

Toward Multi-viewpoint Reasoning with OWL Ontologies 269

subsumption between two concept expressions is one of the basic reasoning tasks
many other tasks such as classification and instance retrieval can be reduced to.

What makes reasoning in our framework different from standard reasoning
is the fact that we have to deal with many different subsumption operators. In
order to reduce the complexity of the task, we can refer to the axiomatic prop-
erties shown above and use the implications between subsumption statements
to improve reasoning. If we know for example that C is subsumed by D with re-
spect to the complete vocabulary, we do not have to check whether C subsumes
D in any sub-vocabulary, as equation 2 tells us that this is always the case.

We can use the same equation to support the computation of a viewpoint. The
idea is that in order to compute the viewpoint with respect to a sub-vocabulary
V , we do not really have to check whether for each pair of concepts whether
subsumption holds with respect to V . It is sufficient if we know that subsumption
holds with respect to a larger sub-vocabulary V ′ ⊇ V . It is not directly evident
why this helps to reduce reasoning effort as normally computing subsumption
with respect to a larger vocabulary is more costly. We can make use of this
property, however, if we know the maximal sub-vocabulary V for which C 	

V
D

holds. In this case, we just have to test whether the current sub-vocabulary is a
subset of the maximal vocabulary in order to decide conditional subsumption.

Definition 5 (Maximal Subsumption Vocabulary). Let C and D be con-
cept expressions. A sub-vocabulary V ⊆ V is called a maximal Subsumption
Vocabulary for C and D if

1. C 	
V

D

2. there is no V ′ ⊃ V such that C 	
V ′

D

Unfortunately, there is not always a unique maximal sub-vocabulary with the
required properties. If we look at the following example, we see that C is sub-
sumed by D with respect to V = {Q} as approx{Q}(C) = approx{Q}(D) = Q
and that C is subsumed by D with respect to V = {R}, because in this case we
have approx{R}(C) = approx{R}(D) = � ∃R.�. At the same time, C is not
subsumed by D with respect to V = {Q, R} as we can easily see.

D ≡ Q ∃R.Q (5)
C ≡ Q ∃R.(¬Q) (6)

Nevertheless, maximal sub-vocabularies, even though there may be more than
one are important with respect to efficient reasoning about viewpoints. In par-
ticular, we can store a list of all maximal sub-vocabularies with reach pair of
concepts and use equation 2 to test whether a given viewpoint is defined by a
sub-vocabulary of one of the maximal ones stored. In this case, we know that C
is subsumed by D in the current viewpoint.

This means that computing the set of maximal subsumption vocabularies
for each pair of concepts is the primal reasoning task in the context of multi-
viewpoint reasoning. In the following we provide a first algorithm for computing
maximal subsumption vocabularies as a basis for more advanced reasoning tasks.

270 H. Stuckenschmidt

Algorithm 1. Maximal Subsumption Vocabulary (MSV)
Require: A set C of Concept Expressions over Vocabulary V
Require: An ordering (V0, V1, · · · , Vm) on the subsets of V such that V0 = V and

i < j ⇒ |Vi| > |Vj |
for all {(C, D)|C, D ∈ C} do

MSV (C, D) := ∅
Cand(C, D) := (V0, V1, · · · , Vm)
for all V ∈ Cand(C, D) do

if approxV (C) � approxV (D) then
MSV (C, D) := MSV (C, D) ∪ {V }
Cand(C, D) := Cand(C, D) − {V ′|V ′ ⊂ V }

end if
end for

end for

The algorithms computes for every pair C,D of concepts the set MSV (C, D)
of maximal Subsumption Vocabularies for C and D. This is done on the basis of
a partial ordering of possible sub-vocabularies where the complete vocabulary
is the first element in the order and sub-vocabularies are ordered by their
cardinality. The algorithm now tests for each vocabulary if C is subsumed by D
with respect to this vocabulary starting with the largest one. If this is the case,
the vocabulary is added to MSV (C, D) and all subsets of the vocabularies are
removed from the order as they do not satisfy the second condition of definition
5. The result is a complete set of maximal subsumption vocabularies for each
pair of concepts that can be used for efficiently checking the subsumption with
respect to a certain sub-vocabulary. In particular, we can use the result of the
algorithm to compute Viewpoints without actually computing subsumption.
The corresponding algorithm is given below.

Algorithm 2. Viewpoint
Require: A set C of Concept Expressions over Vocabulary V
Require: A subvocabulary V ⊆ V
PV := ∅
for all {(C, D)|C, D ∈ C} do

if ∃V ′ ∈ MSV (C, D) : V ⊂ V ′ then
PV := PV ∪ {C ⊆ D}

end if
end for

The computation can further be optimized by using special index structures
that already contain all subsets of MSV (C, D). In this case, a viewpoint can be
computed in linear time with respect to the number of concept pairs (quadratic
with respect to the number of concepts). This means that based on a central-
ized generated index structure different applications can efficiently access their
personal viewpoint of the model.

Toward Multi-viewpoint Reasoning with OWL Ontologies 271

5 Discussion

In this paper, we proposed a model for representing and reasoning with multiple
viewpoints in description logic ontologies. Our goal was to support the reuse
of existing ontologies by applications that consider different aspects of the do-
main to be relevant. We have shown how we can deal with the case where a
new application only considers a subset of the aspects encoded in the ontology
relevant using an approximate subsumption operator that only takes a subset of
the vocabulary into account.

If we really want to support the reuse of ontologies, we also have to take cases
into account, where the aspects relevant to the new application are not a strict
subset of the aspects covered by the ontology. In this case, the new aspects have
to be integrated into the ontology. Currently this is often not done on the original
ontology, because there is a danger of producing unwanted inconsistencies and
to destroy existing subsumption relationships. Instead, a new ontology is created
and customized to the needs of the new context. We think that the framework
for multiple-viewpoints in ontologies can also help in this situation as it makes
it possible to extend the original ontology with new aspects while still keeping
it intact for its previous applications. The previous applications can just use the
viewpoint that corresponds to the vocabulary that existed before the extension.

This possibility to keep one ontology and extend it for different purposes
brings us closer to the idea of an ontology as a conceptualization that us actually
shared between different applications. The use of viewpoints makes it possible
to sign up for a common ontology without being forced to a viewpoint taken by
other applications. This increases the chances of reducing the fragmentation of
ontology development where a new ontology is created for every new application.
The hope is, that the number of ontologies about a certain domain can be reduced
to a number of models that represent completely non-compatible views on a
domain while applications that have a different but compatible view on the
domain use different viewpoints on the same ontology which evolves with every
new application that introduces new aspects into the ontology.

From a theoretical point of view, the notion of approximate subsumption is a
very interesting one. In this work, we chose a very specific definition and imple-
mentation of subsumption with respect to a sub-vocabulary. The definition was
directly motivated by the aim to define different viewpoints on the same ontol-
ogy. In future work we will aim at investigating approximate subsumption based
on limited vocabularies in a more general setting. In particular, we will investi-
gate a model-theoretic characterization of approximate subsumption in terms of
weaker and stronger approximations (the work presented here is a special form
of weaker approximation).

References

1. Ahmed Arara and Djamal Benslimane. Towards formal ontologies requirements
with multiple perspectives. In Proceedings of the 6th International Conference on
Flexible Querz Answering Systems, pages 150–160, 2004.

272 H. Stuckenschmidt

2. F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, and P F. Patel-Schneider.
The Description Logic Handbook - Theory, Implementation and Applications. Cam-
bridge University Press, 2003.

3. Catriel Beeri, Alon Y. Levy, and Marie-Christine Rousset. Rewriting queries using
views in description logics. In Proceedings of The 16th Symposium on Principles
of Database Systems, pages 99–108, 1997.

4. A. Borgida and L. Serafini. Distributed description logics: Assimilating information
from peer sources. Journal of Data Semantics, 1:153–184, 2003.

5. Alexander Borgida. On the relative expressiveness of description logics and predi-
cate logics. Artificial Intelligence, 82(1-2):353–367, 1996.

6. P. Bouquet, F. Giunchiglia, F. van Harmelen, L. Serafini, and H. Stuckenschmidt.
C-OWL: Contextualizing ontologies. In Second International Semantic Web Con-
ference ISWC’03, volume 2870 of LNCS, pages 164–179. Springer, 2003.

7. Marco Cadoli and Marco Schaerf. Approximation in concept description languages.
In Proceedings of the International Conference on Knowledge Representation and
Reasoning, pages 330–341, 1992.

8. A. Finkelstein, J. Kramer, B. Nuseibeh, L. Finkelstein, and M. Goedicke. View-
points: a framework for integrating multiple perspectives in system development.
International Journal of Software Engineering and Knowledge Engineering, 2:31–
57, 1992.

9. F. Giunchiglia and C. Ghidini. Local models semantics, or contextual reasoning =
locality + compatibility. In Proceedings of the Sixth International Conference on
Principles of Knowledge Representation and Reasoning (KR’98), pages 282–289.
Morgan Kaufmann, 1998.

10. A. Magkanaraki, V. Tannen, V. Christophides, and D. Plexousakis. Viewing the
semantic web through rvl lenses. Web Semantics: Science, Services and Agents on
the World Wide Web, 1(4):359–375, 2004.

11. N.F. Noy and M.A. Musen. Specifying ontology views by traversal. In Proceedings
of the Third International Conference on the Semantic Web (ISWC-2004), 2004.

12. Rami Rifaieh, Ahmed Arara, and Acha-Nabila Benharkat. Muro: A multi-
representation ontology as a foundation of enterprise information systems. In
Proceedings of the 4th International Conference on Computer and Information
Technology, pages 292–301, 2004.

13. M Schaerf and M Cadoli. Tractable reasoning via approximation. Artificial Intel-
ligence, 74:249–310, 1995.

14. Dmitry Tsarkov, Alexandre Riazanov, Sean Bechhofer, and Ian Horrocks. Using
vampire to reason with owl. In Proceedings of the International Semantic Web
Conference, pages 471–485, 2004.

15. Andre Valente, Thomas Russ, Robert MacGregor, and William Swartout. Building
and (re)using an ontology of air campaign planning. IEEE Intelligent Systems,
14(1):27 – 36, 1999.

16. R. Volz, D. Oberle, and R. Studer. Views for light-weight web ontologies. In
Proceedings of the ACM Symposium on Applied Computing SAC 2003, 2003.

Effective Integration of Declarative Rules with External
Evaluations for Semantic-Web Reasoning

Thomas Eiter, Giovambattista Ianni, Roman Schindlauer, and Hans Tompits

Institut für Informationssysteme, Technische Universität Wien
Favoritenstraße 9-11, A-1040 Vienna, Austria

{eiter, ianni, roman, tompits}@kr.tuwien.ac.at

Abstract. Towards providing a suitable tool for building the Rule Layer of the
Semantic Web, hex-programs have been introduced as a special kind of logic
programs featuring capabilities for higher-order reasoning, interfacing with ex-
ternal sources of computation, and default negation. Their semantics is based on
the notion of answer sets, providing a transparent interoperability with the Ontol-
ogy Layer of the Semantic Web and full declarativity. In this paper, we identify
classes of hex-programs feasible for implementation yet keeping the desirable
advantages of the full language. A general method for combining and evaluating
sub-programs belonging to arbitrary classes is introduced, thus enlarging the va-
riety of programs whose execution is practicable. Implementation activity on the
current prototype is also reported.

1 Introduction

For the realization of the Semantic Web, the integration of different layers of its con-
ceived architecture is a fundamental issue. In particular, the integration of rules and
ontologies is currently under investigation, and many proposals in this direction have
been made. They range from homogeneous approaches, in which rules and ontologies
are combined in the same logical language (e.g., in SWRL and DLP [16, 13]), to hybrid
approaches in which the predicates of the rules and the ontology are distinguished and
suitable interfacing between them is facilitated, like, e.g., [10, 8, 25, 15] (see also [1] for
a survey). While the former approaches provide a seamless semantic integration of rules
and ontologies, they suffer from problems concerning either limited expressiveness or
undecidability, because of the interaction between rules and ontologies. Furthermore,
they are not (or only to a limited extent) capable of dealing with ontologies having differ-
ent formats and semantics (e.g., RDF and OWL) at the same time. This can be handled,
in a fully transparent way, by the approaches which keep rules and ontologies separate.
Ontologies are treated as external sources of information, which are accessed by rules
that also may provide input to the ontologies. In view of the well-defined interfaces,
the precise semantic definition of ontologies and their actual structure does not need to
be known. This in particular facilitates ontology access as a Web service, where also
privacy issues might be involved (e.g., a customer taxonomy in the financial domain).

In previous work [8], hex-programs were introduced as a generic rule-based language
fostering a hybrid integration approach towards implementing the Rule Layer of the
Semantic Web (“hex” stands for higher-order with external atoms). They are based on

Y. Sure and J. Domingue (Eds.): ESWC 2006, LNCS 4011, pp. 273–287, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

274 T. Eiter et al.

nonmonotonic logic programs, which support constructs such as default negation, under
the answer-set semantics, which underlies the generic answer-set programming (ASP)
paradigm for declarative problem solving. The latter has proven useful in a variety of
domains, including planning, diagnosis, information integration, and reasoning about
inheritance, and is based on the idea that problems are encoded in terms of programs such
that the solutions of the former are given by the models (the “answer sets”) of the latter.
The availability of default negation allows an adequate handling of conflict resolution,
non-determinism, and dealing with incomplete information, among other things.
hex-programs compensate limitations of ASP by permitting external atoms as well

as higher-order atoms. They emerged as a generalization of dl-programs [10], which
themselves have been introduced as an extension of standard ASP, by allowing a cou-
pling with description-logic knowledge bases, in the form of dl-atoms. In hex-programs,
however, an interfacing with arbitrary external computations is realized. That is to say,
the truth of an external atom is determined by an external source of computation. For
example, the rule triple(X, Y, Z) ← &rdf [url](X, Y, Z) imports external RDF theories
taking values from the external predicate &rdf . The latter extracts RDF statements from
a given set of URLs (encoded in the predicate url) in form of a set of “reified” ternary
assertions. As another example, C(X) ← triple(X, Y, Z), (X, rdf :type,C), not filter(C)
converts triples to facts of a respective type, unless this type is filtered. Here, C(X) is a
higher-order atom, where C ranges over predicates constrained by not filter(C).
hex-programs are attractive since they have a fully declarative semantics, and allow

for convenient knowledge representation in a modular fashion without bothering about
the order of rules or literals in the bodies of rules of a program. However, the pres-
ence of external and higher-order atoms raises some technical difficulties for building
implemented systems, given the following design goals which should be kept:

Full declarativity. This would mean that the user must be enabled to exploit external
calls ignoring the exact moment an evaluation algorithm will invoke an external
reasoner. So external calls must be, although parametric, stateless.

Potentially infinite universe of individuals. Current ASP solvers work under the as-
sumption of a given, finite universe of constants. This ensures termination of eval-
uation algorithms (which are based on grounding), but is a non-practical setting if
actual external knowledge must be brought inside the rule layer. Therefore, suit-
able methods must be devised for bringing finite amounts of new symbols into play
while keeping decidability of the formalism.

Expressive external atoms. Interfacing external sources should support (at least) the
exchange of predicates, and not only of constants (i.e., individuals). However, the
generic notion of an external atom permits that its evaluation depends on the inter-
pretation as a whole. For a practical realization, this quickly gets infeasible. There-
fore, restricted yet still expressive classes of external atoms need to be identified.

These problems are nontrivial and require careful attention. Our main contributions
are briefly summarized as follows.

We consider meaningful classes of hex-programs, which emerge from reasonable
(syntactic and semantic) conditions, leading to a categorization of hex-programs. They
include a notion of stratification, laid out in Section 3.1, which is more liberal than pre-
vious proposals for fragments of the language (e.g., as for HiLog programs [21]), as

Effective Integration of Declarative Rules with External Evaluations 275

well as syntactic restrictions in terms of safety conditions for the rules, as discussed in
Section 3.2. Furthermore, we consider restricted external predicates with additional se-
mantic annotation which includes types of arguments and properties such as monotonic-
ity, anti-monotonicity, or linearity.

Section 3.3 introduces a method of decomposing hex-programs into separate modules
with distinct features regarding their evaluation algorithm, and Section 3.4 discusses
strategies for computing the models of hex-programs by hierarchically evaluating their
decomposed modules.

Finally, we have implemented a prototype of hex-programs. The current implemen-
tation features dl-atoms and RDF-atoms for accessing OWL and RDF ontologies, re-
spectively, but also provides a tool kit for programming customized external predicates.
The prototype actually subsumes a prototype for dl-programs [10] we built earlier.

Our results are important towards the effective realization of a fully declarative lan-
guage which integrates rules and ontologies. While targeted for hex-programs, our
methods and techniques may be applied to other, similar languages and frameworks
as well. Indeed, hex-programs model various formalisms in different domains [8], and
special external atoms (inspired by [10]) are important features of other recent declara-
tive rule formalisms for the Semantic Web [25, 15, 24].

2 hex-Programs

In this section, we briefly recall hex-programs; for further background, see [8].
Before describing syntax and semantics, we consider an example to give the flavor

of the formalism. An interesting application scenario where several features of hex-
programs come into play is ontology alignment. Merging knowledge from different
sources in the context of the Semantic Web is a crucial task. To avoid inconsistencies
which arise in merging, it is important to diagnose the source of such inconsistencies
and to propose a “repaired” version of the merged ontology. In general, given an entail-
ment operator |= and two theories T1 and T2, we want to find some theory rep(T1 ∪T2)
which, if possible, is consistent (relative to |=). Usually, rep is defined according to
some customized criterion, so that to save as much knowledge as possible from T1 and
T2. Also, rep can be nondeterministic and admitting more than one possible solution.
hex-programs allow to define the relation |= according to a range of possibilities;

as well, hex-programs are a useful tool for modeling and customizing the rep operator.
How hex coding can achieve these goals is sketched in the following program, Pex:

triple(X, Y, Z)← url(U),&rdf [U](X, Y, Z); (1)

proposition(P)← triple(P, rdf :type, rdf :Statement); (2)

pick(P) ∨ drop(P)← proposition(P); (3)

pick(P)← axiomatic(P); (4)

C(rdf :type, X)← picked(X, rdf :type,C); (5)

D(rdf :type, X)← picked(C, rdf :subClassOf ,D),C(rdf :type, X); (6)

276 T. Eiter et al.

picked(X, Y, Z)← pick(P), triple(P, rdf :subject, X), (7)

triple(P, rdf :predicate, Y), (8)

triple(P, rdf :object, Z), not f ilter(P); (9)

← &inconsistent[picked]. (10)

Pex illustrates some features of hex programs, such as:

Importing external theories. Rule (1) makes use of an external predicate &RDF in-
tended to extract knowledge from a given set of URLs.

Searching in the space of assertions. Rules (2) and (4) choose nondeterministically
which propositions have to be included in the merged theory and which not. These
rules take advantage of disjunction in order to generate a space of choices.

Translating and manipulating reified assertions. E.g., it is possible to choose how
to put RDF triples (possibly including OWL assertions) in an easier manipulatable
and readable format, making selected propositions true as with rules (5) and (7).

Defining ontology semantics. The operator |= can be defined in terms of rules and
constraints expressed in the language itself, as with rule (6) or constraint (10). The
external predicate &inconsistent takes for input a set of assertions and establishes
through an external reasoner whether the underlying theory is inconsistent.

hex-programs are built on mutually disjoint sets C, X, and G of constant names,
variable names, and external predicate names, respectively. Unless stated otherwise,
elements fromX (resp., C) are denoted with first letter in upper case (resp., lower case);
elements from G are prefixed with “ & ”.1 Constant names serve both as individual and
predicate names. Importantly, C may be infinite.

Elements from C ∪ X are called terms. A higher-order atom (or atom) is a tuple
(Y0, Y1, . . . , Yn), where Y0, . . . , Yn are terms; n ≥ 0 is its arity. Intuitively, Y0 is the pred-
icate name; we thus also use the familiar notation Y0(Y1, . . . , Yn). The atom is ordinary,
if Y0 is a constant. For example, (x, rdf :type, c) and node(X) are ordinary atoms, while
D(a, b) is a higher-order atom. An external atom is of the form

&g[Y1, . . . , Yn](X1, . . . , Xm), (11)

where Y1, . . . , Yn and X1, . . . , Xm are two lists of terms (called input list and output list,
respectively), and &g ∈ G is an external predicate name. We assume that &g has fixed
lengths in(&g) = n and out(&g) = m, respectively. Intuitively, an external atom pro-
vides a way for deciding the truth value of an output tuple depending on the extension
of a set of input predicates.

Example 1. The external atom &reach[edge, a](X) may compute the nodes reachable
in the graph edge from the node a. Here, in(&reach)= 2 and out(&reach)= 1. �

A hex-program, P, is a finite set of rules of form

α1 ∨ · · · ∨ αk ← β1, . . . , βn, not βn+1, . . . , not βm, (12)

1 In [8], “ # ” is used instead of “ & ”; we make the change to be in accord with the syntax of the
prototype system.

Effective Integration of Declarative Rules with External Evaluations 277

where m, k ≥ 0, α1, . . . , αk are atoms, and β1, . . . , βm are either atoms or external atoms.
For a rule r as in (12), we define H(r) = {α1, . . . , αk} and B(r) = B+(r) ∪B−(r), where
B+(r) = {β1, . . . , βn} and B−(r) = {βn+1, . . . , βm}. If H(r) = ∅ and B(r) � ∅, then r is a
constraint, and if B(r) = ∅ and H(r) � ∅, then r is a fact; r is ordinary, if it contains
only ordinary atoms, and P is ordinary, if all rules in it are ordinary.

The semantics of hex-programs generalizes the answer-set semantics [12], and is
defined using the FLP-reduct [11], which is more elegant than the traditional reduct
and ensures minimality of answer sets.

The Herbrand base of a hex-program P, denoted HBP, is the set of all possible
ground versions of atoms and external atoms occurring in P obtained by replacing vari-
ables with constants from C. The grounding of a rule r, grnd(r), is defined accordingly,
and the grounding of program P is grnd(P) =

⋃
r∈P grnd(r).

For example, for C = {edge, arc, a, b}, ground instances of E(X, b) are, for instance,
edge(a, b), arc(a, b), and arc(arc, b); ground instances of &reach[edge,N](X) are
&reach[edge, edge](a), &reach[edge, arc](b), and &reach[edge, edge](edge), etc.

An interpretation relative to P is any subset I ⊆ HBP containing only atoms. We say
that I is a model of atom a ∈HBP, denoted I |= a, if a ∈ I. With every external predicate
name &g ∈ G we associate an (n+m+1)-ary Boolean function f&g (called oracle func-
tion) assigning each tuple (I, y1 . . . , yn, x1, . . . , xm) either 0 or 1, where n = in(&g),
m = out(&g), I ⊆ HBP, and xi, y j ∈ C. We say that I ⊆ HBP is a model of a
ground external atom a = &g[y1, . . . , yn](x1, . . . , xm), denoted I |= a, iff f&g(I, y1 . . .,
yn, x1, . . . , xm)= 1.

Example 2. Associate with &reach a function f&reach such that f&reach(I, E, A, B) = 1
iff B is reachable in the graph E from A. Let I = {e(b, c), e(c, d)}. Then, I is a model of
&reach[e, b](d) since f&reach(I, e, b, d) = 1. �

Let r be a ground rule. We define (i) I |=H(r) iff there is some a ∈ H(r) such that I |= a,
(ii) I |= B(r) iff I |= a for all a ∈ B+(r) and I
|= a for all a ∈ B−(r), and (iii) I |= r iff I |=H(r)
whenever I |= B(r). We say that I is a model of a hex-program P, denoted I |= P, iff I |= r
for all r ∈ grnd(P).

The FLP-reduct [11] of P with respect to I ⊆HBP, denoted fPI , is the set of all
r ∈ grnd(P) such that I |= B(r). I ⊆HBP is an answer set of P iff I is a minimal model
of fPI . By AS(P) we denote the set of all answer sets of P.

Example 3. Consider the program Pex from the above, together with the set F of facts
{url(“http://www.polleres.net/foaf.rdf”), url(“http://www.gibbi.com/foaf.rdf”)}.

Suppose that the two URLs contain the triples (gibbi, hasHomepage, url) and (gibbi,
hasHomepage, url2), respectively, and that &inconsistent is coupled with an external
reasoner such that the property hasHomepage is enforced to be single valued. Then,
Pex ∪ F has two answer sets, one containing the fact picked(gibbi, hasHomepage, url)
and the other the fact picked(gibbi, hasHomepage, url2). Note that the policy for pick-
ing and/or dropping propositions can be customized by changing the hex-program at
hand. ��

278 T. Eiter et al.

3 Decomposition of hex-Programs

Although the semantics of hex-programs is well-defined, some practical issues remain
and need further attention:

1. It is impractical to define the semantics of each external predicate by means of a
Boolean function. Also, most of the external predicates encountered do not depend
on the value of the whole interpretation but only on the extensions of predicates
specified in the input. We thus introduce a model in which external predicates are
associated with functions whose input arguments are typed.

2. Many external predicates have regular behavior. For instance, their evaluation func-
tion may be monotonic with respect to the given input, like for most of the dl-atoms
introduced in [10]. These kinds of behaviors need to be formalized so that they can
be exploited for efficient evaluation of hex-programs.

3. It is important to find a notion of mutual predicate dependency and stratification
that accommodates the new sorts of introduced constructs, in order to tailor efficient
evaluation algorithms.

4. Although the semantics of hex-programs fosters a possibly infinite Herbrand uni-
verse, it is important to bound the number of symbols that have to be actually taken
into account, by means of adequate restrictions. In any case, the assumption that
oracle functions are decidable is kept, but they may have an infinite input domain
and co-domain.

To take the first two points into account, we introduce the following concept:

Definition 1. Let &g be an external predicate, f&g its oracle function, I an interpreta-
tion, and q ∈ C. Furthermore, we assume that:

– in(&g) = n and out(&g) = m;
– &g is associated with a type signature (t1, . . . , tn), where each ti is the type associ-

ated with position i in the input list of &g. A type is either c or a nonnegative integer
value. If ti is c, then we assume the i-th input of F&g is a constant, otherwise we
assume that the i-th input of F&g ranges over relations of arity ti.

– For a ≥ 0, Da is the family of all sets of atoms of arity a and Dc = C; and
– Πa(I, q) is the set of all atoms belonging to I having q as predicate name and arity
a, whereas Πc(I, q) = q.

Then, F&g : Dt1 × · · · × Dtn → Dm−1 is an extensional evaluation function iff (a1, . . . ,
am) ∈ F&g(Πt1 (I, p1), . . . , Πtn (I, pn)) precisely if f&g(I, p1, . . . , pn, a1, . . . , am) = 1.

We will call the external predicates associated with an extensional evaluation func-
tion and a type signature typed. Unless specified otherwise, we will assume in what
follows to deal with typed external predicates only.

An evaluation function is a means for introducing an explicit relationship between
input and output values of an external atom, and for expressing restrictions on the type
of input values. Actual parameters inside external atoms express how, in the context of
a given rule, input arguments are given in order to compute the output relation.

Effective Integration of Declarative Rules with External Evaluations 279

Example 4. Associate with predicate &reach an evaluation function F&reach and a type
signature (2, 0) such that F&reach(Π2(I, E), A) = B, where B is the set of nodes reachable
in the graph E from node A in the current interpretation. Let I = {e(b, c), e(c, d)}. The
set of values for X such that I is a model for the atom &reach[e, b](X) is {c, d} since
F&reach({e(b, c), e(c, d)}, b) = {(c), (d)}. �

Example 5. The evaluation function of the external predicate &rdf is such that the
atom &rdf [u](X, Y, Z) is bounded to all triples (X, Y, Z) which are in the output of
F&rdf (Π1(I, u)), for the current interpretation. The type of u is 1. E.g., if the current
interpretation I is {u(“http://www.polleres.net/foaf.rdf”), u(“http://www.gibbi.com/
foaf.rdf”)}, then F&rdf (Π1(I, u)) will return a set of triples extracted from the two spec-
ified URLs. �

Definition 2. Let &g be a typed external predicate and F&g its extensional evalua-
tion function. Let x̄ = x1, . . . , xn be a ground input list, and let Π(J, x̄) = Πt1 (J, x1),
. . . , Πtn (J, xn), for any interpretation J. Then: (i) &g is monotonic, if F&g(Π(I′, x)) ⊆
F&g(Π(I′′, x)), for any I′, I′′ and any x̄, whenever I′ ⊆ I′′; (ii) &g is anti-monotonic, if
F&g(Π(I′, x)) ⊆ F&g(Π(I′′, x)), for any I′, I′′ and any x̄, whenever I′ ⊇ I′′; and (iii) &g
is linear, if F&g(Π(I′ ∪ I′′, x)) = F&g(Π(I′, x))∪ F&g(Π(I′′, x)) for any I′, I′′ and any x̄.

Example 6. Intuitively, the &reach predicate is monotonic. Indeed, if we add some edge
to G′ = {e(b, c), e(c, d)} so that we have, e.g., G′′ = {e(b, c), e(c, d), e(c, h)}, the set of
values for X such that G′′ is a model of the atom &reach[e, b](X) will grow. In particular,
F&reach(G′, b) = {〈c〉, 〈d〉} and F&reach(G′′, b) = {〈c〉, 〈d〉, 〈h〉}. �

Many external predicates of practical interest can be classified as being monotonic. For
instance, in most of the cases, dl-atoms as defined in [10] are monotonic.

Example 7. The &rdf predicate is linear. Indeed, let U′ = {u(“http://www.gibbi.com/
foaf.rdf”)} and U ′′ = {u(“http://www.polleres.net/foaf.rdf”)}. Then, F&rd f (U ′, u))∪
F&rdf (U ′′, u)) = F&rdf (U ′ ∪ U ′′, u)), i.e., the two requested RDF sources are simply
merged by union.2 ��

3.1 Dependency Information Treatment

Taking the dependency between heads and bodies into account is a common tool for
devising an operational semantics for ordinary logic programs, e.g., by means of the no-
tions of stratification or local stratification [18], or through modular stratification [20]
or splitting sets [17]. In hex-programs, dependency between heads and bodies is not the
only possible source of interaction between predicates. In particular we can have:

Dependency between higher order atoms. For instance, p(A) and C(a) are strictly
related. Intuitively, since C can unify with the constant symbol p, rules that de-
fine C(a) may implicitly define the predicate p. This is not always the case: for
instance, rules defining the atom p(X) do not interact with rules defining a(X), as
well as H(a, Y) does not interact with H(b, Y).

2 Note that we are assuming a simple &rdf predicate where entailment is not performed. hex-
programs offer the possibility to implement RDF semantics either in the language itself or by
means of a different external predicate bounded to a suitable reasoner.

280 T. Eiter et al.

Dependency through external atoms. External atoms can take predicate extensions
as input: as such, external atoms may depend on their input predicates. This is the
only setting where predicate names play a special role.

Disjunctive dependency. Atoms appearing in the same disjunctive head have a tight
interaction, since they intuitively are a means for defining a common nondetermin-
istic search space.

Note that the above dependency relations relate non-ground atoms to each other
rather than predicates. We next formalize the above ideas.

Definition 3. Let P be a program and a, b atoms occurring in some rule of P. Then:

1. a matches with b, symbolically a ≈u b, if there exists a partial substitution θ of
variables in a such that either aθ = b or a = bθ (e.g., H(a, Y) unifies with p(a, Y);
note that this relation is symmetric);

2. a positively precedes b, symbolically a �p b, if there is some rule r ∈ P such that
a ∈ H(r) and b ∈ B+(r);

3. a negatively precedes b, symbolically a �n b, if there is some rule r ∈ P such that
a ∈ H(r) and b ∈ B−(r);

4. a is disjunctive dependent on b, symbolically a ≈d b, if there is some rule r ∈ P
such that a, b ∈ H(r) (note that this relation is symmetric);

5. a is externally dependent on b, symbolically a �e b, if a is an external predicate of
form &g[X̄](Ȳ), where X̄ = X1, . . . , Xn, and either

– b is of form p(Z̄), and, for some i, Xi = p, ti = a, where a is the arity of p(Z̄)
(e.g., &count[item](N) is externally dependent on item(X)), or

– a is an external predicate of form &g[X1, . . . , Xn](Ȳ), and there is some vari-
able Xi of type a, and b is an atom of arity a (e.g., &DL[p,Q](N) is externally
dependent on q(X, Y) provided that Q ranges over binary predicates).

We say that a precedes b, if a � b, where � = ⋃i∈{p,n,e} �i ∪⋃i∈{u,d} ≈i. Furthermore,
a strictly precedes b, symbolically a ≺ b, if a �+ b but b
�+ a, where + is the transitive
closure operator.

We can now define several structural properties of hex-programs.

Definition 4. Let P be a hex-program and � the relation defined above. We say that
P is (i) nonrecursive, if � is acyclic; (ii) stratified, if there is no cycle in � containing
some atom a and b such that a �n b; (iii) e-stratified, if there is no cycle in � containing
some atom a and b such that a �e b; and (iv) totally stratified, if it is both stratified and
e-stratified.

For instance, the program Pex from Section 2 is both stratified and e-stratified. More-
over, rules (1) and (2) form a nonrecursive program.

3.2 Dealing with Infinite Domains

Given a hex-program P, its grounding grnd(P) is infinite in general, and cannot be
reduced straightforwardly to a finite portion since, given an external predicate &g, the

Effective Integration of Declarative Rules with External Evaluations 281

co-domain of F&g is unknown and possibly infinite. It is thus important to restrict the
usage of external predicates. Such restrictions are intended to bound the number of
symbols to be taken into account to a finite totality, whilst external knowledge in terms
of new symbols can still be brought into a program.

Definition 5. Given a rule r, the set of safe variables in r is the smallest set X of vari-
ables such that (i) X appears in a positive ordinary atom in the body of r, or (ii) X
appears in the output list of an external atom &g[Y1, . . . , Yn](X1, . . . , Xm) in the body of
r and Y1, . . . , Yn are safe. A rule r is safe, if each variable appearing in a negated atom
and in any input list is safe, and variables appearing in H(r) are safe.

For instance, the rule r : C(X) ← url(U),&rdf [U](X, rdf :subClassOf ,C) is safe. Intu-
itively, this notion captures those rules for which input to external atoms can be deter-
mined by means of other atoms in the same rule. Given the extension of the predicate
url, the number of relevant ground instances of r intuitively is finite and can be deter-
mined by repeated calls to F&rdf .

In some cases, safety is not enough for determining finiteness of the set of relevant
symbols to be taken in account. This motivates the following stronger notion:

Definition 6. A rule r is strongly safe in P iff each variable in r occurs in some ordinary
atom b ∈ B+(r) and each atom a ∈ H(r) strictly precedes b.

The rule r above is not strongly safe. Indeed, if some external URL invoked by means
of &rd f contains some triple of form (X, rdf :subClassOf , url), the extension of the url
predicate is potentially infinite. The rule

r′ : instanceOf (C, X)← concept(C), ob j(X), url(U),
&rd f [U](X, rdf :subClassOf ,C)

is strongly safe, if concept(C), obj(X), and url(U) do not precede instanceOf (C, X).
The strong safety condition is, anyway, only needed for rules which are involved in

cycles of �. In other settings, the ordinary safety restriction is enough. This leads to
the following notion of a domain-expansion safe program. Let grndU(P) be the ground
program generated from P using only the set U of constants.

Definition 7. A hex-program P is domain-expansion safe iff (i) each rule r ∈ P is safe,
and (ii) each rule r ∈ P containing some b ∈ B(r) such that, for each a ∈ H(r) with
a ⊀+ b, a is strongly safe.

The following theorem states that we can effectively reduce the grounding of domain-
expansion safe programs to a finite portion.

Theorem 1. For any domain-expansion safe hex-program P, there exists a finite set
D ⊆ C such that grndD(P) is equivalent to grndC(P) (i.e., has the same answer sets).

Proof (Sketch). The proof proceeds by considering that, although the Herbrand universe
of P is in principle infinite, only a finite set D of constants can be taken into account.
From D, a finite ground program, grndD(P), can be used for computing answer sets.

282 T. Eiter et al.

Provided that P is domain-expansion safe, it can be shown that grndD has the same
answer sets as grndC(P).

A program that incrementally builds D and grndD(P) can be sketched as follows:
We update a set of active ordinary atoms A and a set R of ground rules (both of them
initially empty) by means of a function ins(r, A), which is repeatedly invoked over all
rules r ∈ P until A and R reach a fixed point. The function ins(r, A) is such that, given
a safe rule r and a set A of atoms, it returns the set of all ground versions of r such
that each of its body atom a is either (i) such that a ∈ A or (ii) if a is external, fa
is true. D is the final value of A, and R = grndA(P). It can be shown that the above
algorithm converges and grndD(P) ⊆ grndC(P). The program grndC(P) can be split
into two modules: N1 = grndD(P) and N2 = grndC(P) \ grndD(P). It holds that each
answer set S of grndC(P) is such that S = S 1∪S 2, where S 1 ∈ AS(N′1) and S 2 ∈ AS(N2).
N′1 is a version of N1 enriched with all the ground facts in AS(N2). Also, we can show
that the only answer set of N2 is the empty set. From this the proof follows. ��

3.3 Splitting Theorem

The dependency structure of a program P, given by its dependency graph �, can be
employed for detecting modules inside the program itself. Intuitively, a module cor-
responds to a strongly-connected component3 of � and can be evaluated separately.
The introduction of a modular evaluation strategy would allow to use, on the one hand,
different evaluation algorithms depending on the nature of the module at hand. For
instance, a module without external atoms can be directly evaluated by an efficient
ASP solver, whereas a specific algorithm for stratified modules with monotonic exter-
nal predicates can be devised (see e.g., the evaluation strategy adopted in [7] for dl-
programs). On the other hand, such a strategy would enable the evaluation of a broader
class of programs, given by the arbitrary composition of modules of different nature.

A way for splitting a program in sub-modules can be given by the notion of a splitting
set [17]. Intuitively, given a program P, a splitting set S is a set of ground atoms that
induce a sub-program grnd(P′) ⊂ grnd(P) whose modelsM = {M1, . . . ,Mn} can be
evaluated separately. Then, an adequate splitting theorem shows how to plug inM in a
modified version of P \ P′ so that the overall models can be computed.

The traditional notion of a splitting set and the associated theorem must be adapted in
two respects. First, the new notions of dependency have to be accommodated. Second,
we need a notion of splitting set built on non-ground programs. Indeed, given P, grnd(P)
is in principle infinite. Even if, under reasonable assumptions, we must take only a finite
portion of grnd(P) into account, this portion can be exponentially larger than P. This
makes the idea of managing sub-modules at the ground level infeasible.

Definition 8. A global splitting set for a hex-program P is a set A of atoms appearing
in P such that, whenever a ∈ A and a � b, for some atom b appearing in P, then b
belongs to A. The global bottom of P with respect to A is the set of rules gbA(P) =
{r ∈ P | for each a ∈ H(r) there is an element b ∈ A such that a �u b}.

3 A strongly-connected component (SCC) is a maximal subgraph in which every node is reach-
able from every other node. Note that we modify this definition and let a single node, which is
not part of any SCC, be an SCC by itself.

Effective Integration of Declarative Rules with External Evaluations 283

For example, given the program P

triple(X, Y, Z)← &rdf [u](X, Y, Z), (13)

C(X)← triple(X, rdf :subClassOf ,C), (14)

r(X, Y)← triple(X, r,C), (15)

then, S={triple(X, r,C), triple(X, Y, Z), triple(X, rdf :subClassOf ,C), r(X, Y),&rdf [u](X,
Y, Z)} is a splitting set for P. We have gbS (P) = {(13), (15)}.
Definition 9. For an interpretation I and a program Q, the global residual, gres(Q, I),
is a program obtained from Q as follows:

1. add all the atoms in I as facts;
2. for each “resolved” external atom a = &g[X1, . . . , Xn](Y1, . . . , Ym) occurring in

some rule of Q, replace a with a fresh ordinary atom d&g(Y1, . . . , Ym) (which we
call additional atom), and add the fact d&g(c̄) for each tuple c̄= 〈c1, . . . , cn〉 output
by EVAL(&g,Q, I).

For space reasons, we omit here the formal notion of a “resolved” external atom and the
details of EVAL(&g,Q, I). Informally, an external atom a is resolved if its actual input
list depends only on atoms in I. Thus, the input to &g is fully determined and its output
can be obtained by calling F&g with suitable parameters. To this end, EVAL(&g,Q, I)
performs one or multiple calls to F&g. The external atom &rd f [u](X, Y, Z), for instance,
has a ground input list. Thus EVAL(&g,Q, I) amounts to computing F&g(Πp/1(I, u)).
EVAL is more involved in case of non-ground input terms. Here, some preliminary
steps are required.

Intuitively, given a program P = {triple(X, Y, Z) ← &rdf [url](X, Y, Z)} and the inter-
pretation I = {url(“http://www.gibbi.com/foaf.rdf”)}, its residual is

gres(P, I) = {triple(X, Y, Z)← drdf (X, Y, Z), . . . ,
d&rdf (“me”, “http://xmlns.com/foaf/0.1/workplaceHomepage”,

“http://www.mat.unical.it/ianni”)}.
We can now formulate a generalization of the Splitting Theorem from [17].

Theorem 2 (Global Splitting Theorem). Let P be a domain-expansion safe program
and let A be a global splitting set for P. Then, M \ D ∈ AS(P) iff M ∈ AS(gres(P \
gbA(P), I)), where I ∈ AS(gbA(P)), and D is the set of additional atoms in gres(P \
gbA(P), I) with predicate name of form d&g.

Proof (Sketch). The idea behind the proof is that a splitting set A denotes a portion of P
(viz., the bottom gbA(P)) whose answer sets do not depend from the rest of the program.
Also, gbA(P) is the only portion of P necessary in order to compute the extension of
atoms appearing in A in any model. That is, for each model M ∈ AS(P), we have that
M ∩GA ∈ AS(gbA(P)), where GA is the set of all ground instances (built from constants
in C) of atoms in A. This claim can be exploited in the opposite direction as follows: We
first computeM′ = AS(gbA(P)). Then, we simplify P to Ps by removing gbA(P). The
answer sets of {gres(Ps,M′) | M′ ∈ M′} are answer sets of P provided that additional
atoms in D are stripped out. ��
The above theorem is a powerful tool for evaluating a hex-program by splitting it re-
peatedly in modules, which we consider next.

284 T. Eiter et al.

Splitting Evaluation Algorithm
(Input: a hex-program P; Output: AS(P))

1. Determine the precedes relation � for P.
2. Partition the set of atoms of P into the set Comp = {C1, . . . ,Cn} of strongly connected

components Ci of �, and define that Ci ≺ C j iff there is some a ∈ Ci and some b ∈ C j such
that a ≺ b.

3. Set T � Comp andM � {{}} (the empty model). The setM will eventually contain AS(P)
(which is empty, in case inconsistency is detected).

4. While T � ∅ do:
5. Pop from T some C such that for no C′ ∈ T we have C ≺ C′.
6. LetM � ⋃M∈M AS(gres(bC(P),M)).
7. IfM = ∅, then halt (inconsistency, no answer set exists).
8. P � P \ bC(P).

Fig. 1. Splitting algorithm

3.4 Splitting Algorithm

The class of domain-expansion safe hex-programs encompasses a variety of practical
situations. Note that such programs need not be stratified, and may harbor nondetermin-
ism.

We can design a splitting evaluation algorithm for hex-programs P under the follow-
ing rationale. First of all, P is decomposed into strongly connected components. Then, a
partial ordering is created between such components. Given a current setM of models,
for each component C, we evaluate the answer sets of its possible residuals with respect
to elements of M. The actual method for computing the answer sets of each residual
depends on its structure. The detailed algorithm is depicted in Figure 1.4

In fact, we can generalize this algorithm by popping from T a set E ⊆ T of compo-
nents such that for each Ci ∈ E, {C j ∈ T | C j ≺ Ci} ⊆ E holds (i.e., E is downwards
closed under ≺ with respect to T). For instance, unstratified components without exter-
nal atoms may be evaluated at once.

Example 8. Consider program Pex from Section 2. We mimic an iteration of the split-
ting algorithm. The set S = {pick(P), drop(P)} forms a strongly connected component.
Assume at the moment of evaluating this componentM contains the single answer set
M = {proposition(p1), proposition(p2), axiomatic(p2), . . .}. At this stage, P no longer
contains rules (1) and (2), so the bottom of S is formed by rules (3) and (4). Then,
gres(bC(P),M) is the following program:

proposition(p1)←, proposition(p2) ← , . . . (16)

axiomatic(p2) ← , (17)
. . .

pick(P) ∨ drop(P) ← proposition(P), (18)

pick(P) ← axiomatic(P). (19)

4 M may contain exponentially many intermediate models. A variant of the algorithm avoiding
this by computing one model at a time is straightforward, but omitted for simplicity.

Effective Integration of Declarative Rules with External Evaluations 285

having two answer set M1 = {. . . , pick(p1), pick(p2), . . . } and M2 = {. . . , drop(p1),
pick(p2), . . . }. Then, P is modified by deleting rules (3) and (4). �

3.5 Special Algorithms for Components

The above algorithm enables to exploit special evaluation algorithms depending on the
specific structure of a given strongly connected component C and its corresponding
residual program. In particular:

– recursive positive programs (either e-stratified or not) with monotonic external
atoms can be evaluated by an adequate fixed-point algorithm as described in [7];

– programs without external atoms (either stratified or not) can be directly mapped to
a corresponding ASP program and evaluated by some ASP solver (e.g., DLV); and

– generic components with generic external atoms can be evaluated by an apposite
guess and check strategy (cf. [7]).

3.6 Current Prototype

The experimental prototype for evaluating hex-programs, dlvhex, mainly follows the
algorithm presented in Section 3.4. After transforming the higher-order program into a
first-order syntax and decomposing it into its dependency graph, dlvhex uses an external
answer-set solver to evaluate each of the components. The functions for computing the
external atoms are embedded in so-called plug-ins, which are shipped separately and
linked dynamically to the main application.

For a more detailed presentation of the implementation, we refer the reader to [9]
and http://www.kr.tuwien.ac.at/research/dlvhex.

4 Related Work

A number of works are related to ours in different respects. We group literature into
works more tailored to the Semantic Web and others of a more general perspective. The
works of Heymans et al. [14, 15] on open and conceptual logic programs fall into the
first group. Here, infinite domains are considered, in a way similar to classical logics
and/or description logics, but adopting answer-set semantics based on grounding. The
syntax of rules is restricted. In [15], call atoms are considered similar to ours, but only
restricted to the propositional setting. They also consider preferences, which can be
added to our framework in the future.

[10] introduces the notion of a dl-atom, through which a description-logic knowledge
base can be interfaced from an answer-set program. The notion of stratification given
there is subsumed by the one in this paper, given that stratified dl-programs of [10] can
be viewed as an instance of hex-programs.

Inspired by [10], Antoniou et al. [25] have used dl-atoms for a hybrid combination of
defeasible and description logic, and have used in [24] an extension of dl-programs for
ontology merging and alignment, which fits our framework. Early work on hybrid com-
bination of logic programs and description logics appeared in [19, 5]. Both works do

286 T. Eiter et al.

not consider the issue of bidirectional flow of information to and from external sources
and prescribe more restrictive safety conditions. Also similar in spirit is the TRIPLE
language [22]. The semantics of TRIPLE considers Horn rules under the well-founded
semantics. However, the information flow here is unidirectional.

Ross [21] developed a notion of stratification for HiLog programs, which basically
constitute the fragment of hex-programs without external atoms. Our notion of stratifi-
cation is more general (as it handles external atoms), and no special range restrictions
on predicate variables are prescribed.

The use of external atoms in logic programs under the answer-set semantics dates
back to [6], where they have been modeled as generalized quantifiers. In general, this
approach (based on the usual reduct by Gelfond and Lifschitz [12]) is different from
ours, and no value invention has been considered there. The latter problem has been
studied extensively in the database field. For instance, Cabibbo [3] studied decidable
fragments of the ILOG language, which featured a special construct for creating new
tuple identifiers in relational databases. He developed notions of safety similar to ours
(in absence of higher order atoms) and gave conditions such that new values do not
propagate in infinite chains.

In a broad sense, value invention, while keeping decidability in ASP, has been con-
sidered in [23, 2, 4]. In [23, 2], potentially infinite domains are considered by allowing
function symbols, whose usage is restricted. Syrjänen [23] introduced ω-restricted pro-
grams, in which, roughly, all unstratified rules according to the dependency graph are
put in some special stratum ω at the top level. Then, each function term must be bound
by some predicate which belongs to some lower stratum. However, the models of ω-
restricted programs have always finite positive part. They are a subclass of Bonatti’s
finitary programs [2], which have been designed for query answering. The work of Cal-
imeri and Ianni [4] considered ASP with external atoms, but input and output arguments
are restricted to constants (individuals), and no higher-order atoms are present. Thus,
the framework there is subsumed by ours.

5 Conclusion and Future Work

We have discussed methods and techniques by which an integration of a rule-based
formalism that has higher-order features and supports external evaluations, as given by
the powerful framework of hex-programs, can be made effective. In this way, declara-
tive tool support for a wide range of reasoning applications on the Semantic Web at a
high level of abstraction can be realized. For example, merging and alignment of on-
tologies [24], or combining and integrating different information sources on the Web in
general, which possibly have different formats and semantics.

The current prototype implementation features atoms for accessing RDF and OWL
ontologies, and provides a tool kit for customized external evaluation plug-ins that the
user might create for his or her application. Our ongoing work concerns enhancing and
further improving the current prototype, as well as extending the classes of effective hex-
programs. Finally, applications in personalized Web information systems are targeted.

Acknowledgement. This work was partially supported by the Austrian Science Funds
project P17212 and the European Commission project REWERSE (IST-2003-506779).

Effective Integration of Declarative Rules with External Evaluations 287

References

1. G. Antoniou, C. V. Damásio, B. Grosof, I. Horrocks, M. Kifer, J. Maluszynski, and P. F.
Patel-Schneider. Combining Rules and Ontologies. A Survey. Technical Report IST506779/
Linkoeping/I3-D3/D/PU/a1, Linköping University, 2005.

2. P. A. Bonatti. Reasoning with Infinite Stable Models. Artificial Intelligence, 156(1):75–111,
2004.

3. L. Cabibbo. The Expressive Power of Stratified Logic Programs with Value Invention. In-
formation and Computation, 147(1):22–56, 1998.

4. F. Calimeri and G. Ianni. External Sources of Computation for Answer Set Solvers. In Proc.
LPNMR 2005, pp. 105–118.

5. F. M. Donini, M. Lenzerini, D. Nardi, and A. Schaerf. AL-log: Integrating Datalog and
Description Logics. J. Intell. Inf. Syst., 10(3):227–252, 1998.

6. T. Eiter, G. Gottlob, and H. Veith. Modular Logic Programming and Generalized Quantifiers.
In Proc. LPNMR’97, pp. 290–309.

7. T. Eiter, G. Ianni, R. Schindlauer, and H. Tompits. Nonmonotonic Description Logic Pro-
grams: Implementation and Experiments. In Proc. LPAR 2004, pp. 511–527.

8. T. Eiter, G. Ianni, R. Schindlauer, and H. Tompits. A Uniform Integration of Higher-order
Reasoning and External Evaluations in Answer Set Programming. In Proc. IJCAI 2005.

9. T. Eiter, G. Ianni, R. Schindlauer, and H. Tompits. dlvhex: A System for Integrating Multiple
Semantics in an Answer-Set Programming Framework. In Proc. WLP 2006, pp. 206–210.

10. T. Eiter, T. Lukasiewicz, R. Schindlauer, and H. Tompits. Combining Answer Set Program-
ming with Description Logics for the Semantic Web. In Proc. KR 2004, pp. 141–151.

11. W. Faber, N. Leone, and G. Pfeifer. Recursive Aggregates in Disjunctive Logic Programs:
Semantics and Complexity. In Proc. JELIA 2004, pp. 200–212.

12. M. Gelfond and V. Lifschitz. Classical Negation in Logic Programs and Disjunctive Data-
bases. New Generation Computing, 9:365–385, 1991.

13. B. N. Grosof, I. Horrocks, R. Volz, and S. Decker. Description Logic Programs: Combining
Logic Programs with Description Logics. In Proc. WWW 2003, pp. 48–57.

14. S. Heymans, D. V. Nieuwenborgh, and D. Vermeir. Nonmonotonic Ontological and Rule-ba-
sed Reasoning with Extended Conceptual Logic Programs. In Proc. ESWC 2005.

15. S. Heymans, D. V. Nieuwenborgh, and D. Vermeir. Preferential Reasoning on a Web of Trust.
In Proc. ISWC 2005, pp. 368–382.

16. I. Horrocks, P. F. Patel-Schneider, H. Boley, S. Tabet, B. Grosof, and M. Dean. SWRL: A
Semantic Web Rule Language Combining OWL and RuleML, 2004. W3C Member Submis-
sion.

17. V. Lifschitz and H. Turner. Splitting a Logic Program. In Proc. ICLP’94, pp. 23–38.
18. T. Przymusinski. On the Declarative Semantics of Deductive Databases and Logic Programs.

In Foundations of Deductive Databases and Logic Programming., pp. 193–216. 1988.
19. R. Rosati. Towards Expressive KR Systems Integrating Datalog and Description Logics:

Preliminary Report. In Proceedings DL’99, pp. 160–164.
20. K. A. Ross. Modular Stratification and Magic Sets for Datalog Programs with Negation. J.

ACM, 41(6):1216–1266, 1994.
21. K. A. Ross. On Negation in HiLog. Journal of Logic Programming, 18(1):27–53, 1994.
22. M. Sintek and S. Decker. Triple - a Query, Inference, and Transformation Language for the

Semantic Web. In Proc. ISWC 2004, pp. 364–378.
23. T. Syrjänen. Omega-restricted Logic Programs. In Proc. LPNMR 2001, pp. 267–279.
24. K. Wang, G. Antoniou, R. W. Topor, and A. Sattar. Merging and Aligning Ontologies in

dl-Programs. In Proc. RuleML 2005, pp. 160–171.
25. K. Wang, D. Billington, J. Blee, and G. Antoniou. Combining Description Logic and Defea-

sible Logic for the Semantic Web. In Proc. RuleML 2004, pp. 170–181.

Variable-Strength Conditional Preferences
for Ranking Objects in Ontologies

Thomas Lukasiewicz1,� and Jörg Schellhase2

1 DIS, Università di Roma “La Sapienza”
Via Salaria 113, I-00198 Rome, Italy

lukasiewicz@dis.uniroma1.it
2 Fachgebiet Wirtschaftsinformatik, Universität Kassel

Nora-Platiel-Straße 4, D-34127 Kassel, Germany
schellhase@wirtschaft.uni-kassel.de

Abstract. We introduce conditional preference bases as a means for ranking ob-
jects in ontologies. Conditional preference bases consist of a description logic
knowledge base and a finite set of variable-strength conditional preferences. They
are inspired by Goldszmidt and Pearl’s approach to default reasoning from con-
ditional knowledge bases in System Z+. We define a notion of consistency for
conditional preference bases, and show how consistent conditional preference
bases can be used for ranking objects in ontologies. We also provide algorithms
for computing the rankings. To give evidence of the usefulness of this approach
in practice, we describe an application in the area of literature search.

1 Introduction

In their seminal works [34, 33], Poole and Smyth deal with the problem of matching
instances against models of instances, which are both described at different levels of
abstraction and at different levels of detail, using qualitative probability theory. Infor-
mally, such problems can be described as follows. Given an instance I and a model
of instances M , compute the qualitative probability that the instance I is matching the
model M (that is, of I given M). For example, in a geological exploration domain,
we may want to determine whether there might be gold in an area. In this case, an in-
stance I may be given by the description of an area, while a model M may be given by
a description of areas where gold can be found, and the qualitative probability that I is
matching M describes the likelihood that gold may be found in I .

In this paper, we continue this line of research. A serious drawback of the above
works [34, 33] on matching instances against models of instances is that they only al-
low for expressing simple preferences of the form “property α is preferred over prop-
erty ¬α with strength s” in models of instances. In particular, they do not allow for
conditional preferences such as “generally, in the context φ, property α is preferred
over property ¬α with strength s”. In this paper, we try to fill this gap. We present a

� Alternate address: Institut für Informationssysteme, Technische Universität Wien, Favoriten-
straße 9-11, A-1040 Vienna, Austria; e-mail: lukasiewicz@kr.tuwien.ac.at.

Y. Sure and J. Domingue (Eds.): ESWC 2006, LNCS 4011, pp. 288–302, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Variable-Strength Conditional Preferences for Ranking Objects 289

formalism for ranking objects in description logics that allows for expressing such con-
ditional preferences in models of instances. In a companion paper [30], we present a
generalization of this formalism for matchmaking in description logics.

Like Poole and Smyth’s work [34, 33], the ranking formalism in this paper is also
based on qualitative probabilities. Differently from Poole and Smyth’s work [34, 33],
however, it requires a technically more involved way of computing qualitative proba-
bilities, since our language for encoding models of instances is more expressive. We
especially have to suitably handle variable-strength conditional preferences, which are
the above statements “generally, in the context φ, property α is preferred over prop-
erty ¬α with strength s” (also called variable-strength conditional desires [36]). They
bear close similarity to variable-strength defaults of form “generally, if φ then α with
strength s” in default reasoning from conditional knowledge bases (see Section 7).

In this paper, we define a formal semantics for variable-strength conditional prefer-
ences, which is based on a generalization of Goldszmidt and Pearl’s default entailment
in System Z+ [22]. We focus on the problem of ranking objects against a description of
objects. Since we are especially interested in the Semantic Web as the main application
context, we assume that objects and descriptions of objects are expressed in the ex-
pressive description logics SHIF(D) and SHOIN (D), which stand behind the web
ontology languages OWL Lite and OWL DL, respectively [23].

The Semantic Web [6, 17] aims at an extension of the current World Wide Web by
standards and technologies that help machines to understand the information on the
Web so that they can support richer discovery, data integration, navigation, and automa-
tion of tasks. The main ideas behind it are to add a machine-readable meaning to Web
pages, to use ontologies for a precise definition of shared terms in Web resources, to
make use of KR technology for automated reasoning from Web resources, and to apply
cooperative agent technology for processing the information of the Web. The Seman-
tic Web consists of several hierarchical layers, where the Ontology layer, in form of
the OWL Web Ontology Language [37, 24] (recommended by the W3C), is currently
the highest layer of sufficient maturity. OWL consists of three increasingly expressive
sublanguages, namely OWL Lite, OWL DL, and OWL Full. OWL Lite and OWL DL
are essentially expressive description logics with an RDF syntax [24]. Ontology entail-
ment in OWL Lite (resp., OWL DL) reduces to knowledge base (un)satisfiability in the
description logic SHIF(D) (resp., SHOIN (D)) [23].

The main contributions of this paper can be summarized as follows:

– We introduce conditional preference bases, which consist of a description logic
knowledge base and a finite set of conditional preferences. They are syntactically
and semantically inspired by Goldszmidt and Pearl’s approach to default reasoning
from conditional knowledge bases in System Z+. We define a notion of consistency
for conditional preference bases, and show how consistent conditional preference
bases can be used for ranking objects in ontologies.

– We also provide algorithms for computing the rankings relative to a conditional
preference base. These algorithms are based on a reduction to deciding whether a
description logic knowledge base is satisfiable. More precisely, they require a poly-
nomial number of such satisfiability tests, and thus can all be done in polynomial
time whenever the satisfiability tests are possible in polynomial time.

290 T. Lukasiewicz and J. Schellhase

– Finally, we describe an application of this approach in literature search. Search
query languages of current search engines are very restricted in their expressive
power. There are scientific search engines on the web, however, that have valuable
metadata about research publications, authors, organizations, and scientific events.
We show that conditional preference bases allow for a more powerful query lan-
guage, which can exploit this metadata better than the current approaches do. In
particular, we give some sample queries that (i) explicitly follow different search
strategies, (ii) influence the ranking of the query results, (iii) express quality mea-
sures, (iv) cluster query results, or (v) restrict queries to different result types.

2 The Description Logics SHIF(D) and SHOIN (D)

In this section, we recall the description logics SHIF(D) and SHOIN (D), which
stand behind the web ontology languages OWL Lite and OWL DL, respectively [23].
Intuitively, description logics model a domain of interest in terms of concepts and roles,
which represent classes of individuals and binary relations between classes of individu-
als, respectively. Roughly, a description logic knowledge base encodes subset relation-
ships between classes, the membership of individuals to classes, and the membership
of pairs of individuals to binary relations between classes.

Syntax. We first describe the syntax of SHOIN (D). We assume a set of elementary
datatypes and a set of data values. A datatype is either an elementary datatype or a set
of data values (called datatype oneOf). A datatype theory D= (ΔD, ·D) consists of
a datatype domain ΔD and a mapping ·D that assigns to each elementary datatype a
subset of ΔD and to each data value an element of ΔD. The mapping ·D is extended
to all datatypes by {v1, . . .}D = {vD

1 , . . .}. Let A, RA, RD, and I be pairwise disjoint
finite nonempty sets of atomic concepts, abstract roles, datatype roles, and individuals,
respectively. We denote by R−

A the set of inverses R− of all R∈RA.
A role is an element of RA ∪R−

A ∪RD. Concepts are inductively defined as fol-
lows. Every φ∈A is a concept, and if o1, . . . , on ∈ I, then {o1, . . . , on} is a concept
(called oneOf). If φ, φ1, and φ2 are concepts and if R∈RA ∪R−

A, then also (φ1 φ2),
(φ1 � φ2), and ¬φ are concepts (called conjunction, disjunction, and negation, respec-
tively), as well as ∃R.φ, ∀R.φ, ≥nR, and ≤nR (called exists, value, atleast, and at-
most restriction, respectively) for an integer n≥ 0. If D is a datatype and U ∈RD, then
∃U.D, ∀U.D, ≥nU , and ≤nU are concepts (called datatype exists, value, atleast, and
atmost restriction, respectively) for an integer n≥ 0. We write � and ⊥ to abbreviate
the concepts φ � ¬φ and φ ¬φ, respectively, and we eliminate parentheses as usual.

An axiom has one of the following forms: (1) φ	ψ (called concept inclusion axiom),
where φ and ψ are concepts; (2) R	S (called role inclusion axiom), where either
R, S ∈RA or R, S ∈RD; (3) Trans(R) (called transitivity axiom), where R∈RA;
(4) φ(a) (called concept membership axiom), where φ is a concept and a∈ I; (5) R(a, b)
(resp., U(a, v)) (called role membership axiom), where R∈RA (resp., U ∈RD) and
a, b∈ I (resp., a∈ I and v is a data value); and (6) a = b (resp., a �= b) (equality (resp.,
inequality) axiom), where a, b∈ I. A knowledge base KB is a finite set of axioms. For
decidability, number restrictions in KB are restricted to simple abstract roles [25].

Variable-Strength Conditional Preferences for Ranking Objects 291

The syntax of SHIF(D) is as the above syntax of SHOIN (D), but without the
oneOf constructor and with the atleast and atmost constructors limited to 0 and 1.

Example 2.1. An online store (such as amazon.com) may use a description logic knowl-
edge base to classify and characterize its products. For example, suppose that (1) text-
books are books, (2) personal computers and laptops are mutually exclusive electronic
products, (3) books and electronic products are mutually exclusive products, (4) any
objects on offer are products, (5) every product has at least one related product, (6) only
products are related to each other, (7) tb ai and tb lp are textbooks, which are related
to each other, (8) pc ibm and pc hp are personal computers, which are related to each
other, and (9) ibm and hp are providers for pc ibm and pc hp, respectively. These rela-
tionships are expressed by the following description logic knowledge base KB1:

Textbook 	 Book ; PC � Laptop 	 Electronics ; PC 	 ¬Laptop;
Book � Electronics 	 Product ; Book 	 ¬Electronics ; Offer 	 Product ;

Product 	 ≥ 1 related ; ≥ 1 related � ≥ 1 related− 	 Product ;
Textbook(tb ai); Textbook(tb lp); PC (pc ibm); PC (pc hp);
related(tb ai, tb lp); related(pc ibm, pc hp);
provides(ibm, pc ibm); provides(hp, pc hp).

Semantics. An interpretation I = (ΔI , ·I) w.r.t. a datatype theory D=(ΔD, ·D) con-
sists of a nonempty (abstract) domain ΔI disjoint from ΔD, and a mapping ·I that
assigns to each atomic concept φ∈A a subset of ΔI , to each individual o∈ I an ele-
ment of ΔI , to each abstract role R∈RA a subset of ΔI ×ΔI , and to each datatype
role U ∈RD a subset of ΔI ×ΔD. We extend ·I to all concepts and roles, and we
define the satisfaction of a description logic axiom F in an interpretation I = (Δ, ·I),
denoted I |=F , as usual [23]. The interpretation I satisfies the axiom F , or I is a
model of F , iff I |= F . The interpretation I satisfies a knowledge base KB , or I is
a model of KB , denoted I |= KB , iff I |= F for all F ∈KB . We say that KB is sat-
isfiable (resp., unsatisfiable) iff KB has a (resp., no) model. An axiom F is a logical
consequence of KB , denoted KB |= F , iff every model of KB satisfies F .

3 Conditional Preference Bases

In this section, we first define the syntax of conditional preferences, which are intui-
tively statements of form “generally, if φ, then α is preferred over ¬α with strength s”.
We then define the semantics of such statements in terms of object rankings, taking
inspiration from default reasoning from conditional knowledge bases in System Z+.

Syntax. We assume a finite set of classification concepts C (which are the relevant de-
scription logic concepts for defining preference relationships). A conditional preference
is of the form (α|φ)[s] with concepts φ∈C (called its body) and α∈C (called its head),
and an integer s∈{0, . . . , 100} (called its strength). Informally, (α|φ)[s] expresses that
(i) generally, among the objects satisfying φ, the ones satisfying α are preferred over
those satisfying ¬α, and (ii) this preference relationship holds with strength s. Condi-
tional preferences of the form (α|�)[s] are also abbreviated as (α)[s]. A conditional

292 T. Lukasiewicz and J. Schellhase

preference base is a pair PB =(T, A, P), where T is a description logic knowledge
base, A is a finite set of concepts from C, and P is a finite set of conditional pref-
erences. Informally, T contains terminological knowledge, and A contains assertional
knowledge about an individual o (that is, A actually represents the set of all C(o) such
that C ∈A), while P contains conditional preferences about the individual o (that is, P
actually represents the set of all (α(o)|φ(o))[s] such that (α|φ)[s]∈P). Observe also
that the statements in T and A are strict (that is, they must always hold), while the ones
in P are defeasible (that is, they may have exceptions and thus do not always hold),
since P may not always be satisfiable as a whole.

Example 3.1. The assertional knowledge “either a PC or a laptop” and the preference
relationships “generally, PC’s are preferred over laptops with strength 20”, “generally,
laptops on offer are preferred over PC’s on offer with strength 70”, and “generally, in-
expensive objects are preferred over expensive ones with strength 90” can be expressed
by the conditional preference base PB =(T, A, P), where T is the description logic
knowledge base from Example 2.1, A= {�	PC �Laptop}, and P = {(PC)[20],
(Laptop|Offer)[70], (Inexpensive)[90]}.

Semantics. We now define some basic semantic notions, including objects and object
rankings (which are certain functions that map every object to a rank from {0, 1, . . .} ∪
{∞}), and we then associate with every conditional preference base a set of object rank-
ings as a formal semantics. An object o is a set of concepts from C. We denote by OC
the set of all objects relative to C. An object o satisfies a description logic knowledge
base T , denoted o |=T , iff T ∪{φ(i) |φ∈ o} is satisfiable and entails (resp., does not
entail) every concept membership φ(i) such that φ∈ o (resp., φ �∈ o), where i is a new
individual. Informally, every object o represents an individual i that is fully specified
on C in the sense that o belongs (resp., does not belong) to every concept φ∈ o (resp.,
φ �∈ o). An object o satisfies a concept φ∈C, denoted o |=φ, iff φ∈ o. An object o sat-
isfies a set of concepts A⊆C, denoted o |= A, iff o satisfies all φ∈A. A concept φ is
satisfiable iff there exists an object o∈OC that satisfies φ. An object o satisfies a condi-
tional preference (α|φ)[s], denoted o |= (α|φ)[s], iff o |=¬φ�α. We say o satisfies a set
of conditional preferences P , denoted o |= P , iff o satisfies all p∈P . We say o verifies
(α|φ)[s] iff o |= φα. We say o falsifies (α|φ)[s], denoted o �|= (α|φ)[s], iff o |=φ¬α.
A set of conditional preferences P tolerates a conditional preference p under a descrip-
tion logic knowledge base T and a set of classification concepts A⊆C iff an object o
exists that satisfies T ∪A∪P (that is, o satisfies T , A, and P) and verifies p. We say P
is under T and A in conflict with p iff P does not tolerate p under T and A.

An object ranking κ is a mapping κ : OC → {0, 1, . . .}∪{∞} such that κ(o)= 0 for
at least one object o∈OC . It is extended to all concepts φ as follows. If φ is satisfiable,
then κ(φ) = min {κ(o) | o∈OC , o |=φ}; otherwise, κ(φ)=∞. We say κ is admissible
with a description logic knowledge base T (resp., a set of concepts A) iff κ(o)=∞ for
all o∈OC such that o �|= T (resp., o �|= A). We say κ is admissible with a conditional
preference (α|φ)[s] iff either κ(φ)=∞ or κ(φ α) + s < κ(φ ¬α). We say κ is
admissible with PB =(T, A, P) iff κ is admissible with T , A, and all p∈P .

Consistency. The notion of consistency is inspired by the notion of ε-consistency for
conditional knowledge bases [1, 21]. A conditional preference base PB is consistent

Variable-Strength Conditional Preferences for Ranking Objects 293

(resp., inconsistent) iff an (resp., no) object ranking κ exists that is admissible with PB .
Notice that PB =(T, A, P) with P = ∅ is consistent iff T ∪A is satisfiable. We now
summarize some results that carry over from conditional knowledge bases.

The following result shows that the existence of an object ranking that is admissible
with PB =(T, A, P), where P �= ∅, is equivalent to the existence of a preference rank-
ing on P that is admissible with PB . Here, a preference ranking σ on a set of conditional
preferences P maps each p∈P to an integer. We say that a preference ranking σ on P
is admissible with PB =(T, A, P) iff every P ′⊆P that is under T and A in conflict
with some p∈P contains some p′ such that σ(p′)<σ(p).

Theorem 3.1. A conditional preference base PB =(T, A, P) with P �= ∅ is consistent
iff there exists a preference ranking σ on P that is admissible with PB .

The next result shows that the consistency of PB is equivalent to the existence of an
ordered partition of P with certain properties.

Theorem 3.2. A conditional preference base PB =(T, A, P) with P �= ∅ is consistent
iff there exists an ordered partition (P0, . . . , Pk) of P such that either (a) every Pi,
0≤ i≤k, is the set of all p∈

⋃k
j=i Pj tolerated under T and A by

⋃k
j=i Pj , or (b) for

every i, 0≤ i≤ k, each p∈Pi is tolerated under T and A by
⋃k

j=i Pj .

We call the unique partition in (a) the z-partition of PB .

Example 3.2. The conditional preference base PB of Example 2.1 is consistent. Its
z-partition is (P0, P1) = ({(PC)[20], (Inexpensive)[90]}, {(Laptop|Offer)[70]}).

4 Ranking Objects Under Conditional Preference Bases

In this section, we define object rankings that reflect the conditional preferences en-
coded in a consistent conditional preference base PB = (T, A, P).

We first rewrite P from a set of defeasible statements to a set of strict statements P �.
Intuitively, this is done by adding exceptions to the bodies of conditional preferences.

Example 4.1. Let the conditional preference base PB =(T, A, P) be given by T and A
as in Example 3.1 and P = {(PC)[20], (Laptop|Offer)[70]}. Ignoring the strengths,
P encodes that “PCs are preferred over laptops, as long as they are not on offer, be-
cause in that case, laptops are preferred over PCs”. That is, for technical reasons, lap-
tops on offer always falsify the conditional preference p =(PC)[20]. When computing
the rank of laptops on offer, we have to avoid such falsifications. We do this by rewrit-
ing p and thus PB . The rewritten conditional preference base PB� = (T, A, P �) is given
by P � = {(PC |¬Offer)[20], (Laptop|Offer)[70]}. It is obtained from PB by adding
the exception ¬Offer to the body of (PC)[20].

A conditional preference base PB = (T, A, P) is flat iff its z-partition is given by (P)
and thus consists only of one component. Algorithm flatten in a companion paper [30]
transforms a consistent conditional preference base PB = (T, A, P) into an equivalent
flat conditional preference base, denoted PB� =(T, A, P �).

294 T. Lukasiewicz and J. Schellhase

Table 1. The object rankings κsum and κlex

PC Laptop Offer κsum κlex

o1 false false false ∞ ∞
o2 false false true ∞ ∞
o3 false true false 21 1
o4 false true true 0 0

PC Laptop Offer κsum κlex

o5 true false false 0 0
o6 true false true 71 2
o7 true true false ∞ ∞
o8 true true true ∞ ∞

We are now ready to define the object rankings κsum and κlex. Informally, κsum as-
sociates with every object (as a penalty) the sum of the strengths of all conditional pref-
erences in P � that are falsified by o. Roughly, objects with smaller values under κsum

are those that satisfy more conditional preferences with larger strengths. Formally, κsum

is defined as follows for all objects o∈OC :

κsum(o) =

⎧⎨
⎩
∞ if o �|= T ∪A∑
p=(α|φ)[s]∈P � : o �|=p

s + 1 otherwise. (1)

The object ranking κlex, in contrast, is based on a lexicographic order. Roughly, objects
with smaller values under κlex are those that satisfy more conditional preferences with
larger strengths, where satisfying one conditional preference of strength s is strictly
preferred to satisfying any set of conditional preferences of strength at most s− 1. For-
mally, κlex is defined as follows for all objects o∈OC (where nj with j ∈{0, . . . , 100}
is the number of all p∈P � of strength j):

κlex(o) =

⎧⎨
⎩
∞ if o �|= T ∪A
100∑
i=0

|{p =(α|φ)[i] ∈ P � | o �|= p}| ·Πi−1
j=0(nj + 1) otherwise.

(2)

Example 4.2. The object rankings κsum and κlex for PB of Example 4.1 are shown
in Fig. 1. For example, under both κsum and κlex, the object o4 is strictly preferred
over o3, as desired, since κsum(o4)< κsum(o3) and κlex(o4)< κlex(o3), respectively.

Summarizing, every object ranking κ∈{κsum, κlex} of a conditional preference base
PB represents the preference relationships encoded in PB . For every (fully specified)
object o, the rank of o under PB is given by κ(o). Every object ranking κ ∈ {κsum,
κlex} can also be used to compare two objects o, o′ ∈OC as follows. The distance be-
tween o and o′ under PB is defined as |κ(o) − κ(o′)|. Furthermore, the (credulous)
rank of a partially specified object (which is simply a concept) φ under PB is defined
as mino∈OC:o|=φ κ(o). Finally, the (credulous) distance between two partially specified
objects φ and φ′ is defined as mino,o′∈OC:o|=φ,o′|=φ′ |κ(o)− κ(o′)|.

5 Algorithms and Complexity

There are several computational tasks related to conditional preference bases PB =
(T, A, P). First, deciding the consistency of PB is done by algorithm consistency in

Variable-Strength Conditional Preferences for Ranking Objects 295

Algorithm sum-ranking

Input: conditional preference base PB =(T, A, P) and set of objects O⊆OC .
Output: ranking κsum on O for PB , if PB is consistent; nil, otherwise.

1. if PB is inconsistent then return nil;
2. for each o∈O do if o |= A∪T then κ(o) := 0 else κ(o) := ∞;
3. if P = ∅ then return κ;
4. (T, A,P) := flatten(T, A,P);
5. for each o∈O such that κ(o) �=∞ do
6. for each p= (α|φ)[s]∈P do if o �|= p then κ(o) := κ(o) + s + 1;
7. return κ .

Fig. 1. Algorithm sum-ranking

Algorithm lex-ranking

Input: conditional preference base PB =(T, A, P) and set of objects O⊆OC .
Output: ranking κlex on O for PB , if PB is consistent; nil, otherwise.

1. if PB is inconsistent then return nil;
2. for each o∈O do if o |= A∪T then κ(o) := 0 else κ(o) := ∞;
3. if P = ∅ then return κ;
4. (T, A,P) := flatten(T, A,P);
5. for each o∈O such that κ(o) �=∞ do begin
6. n := 1;
7. for each i := 0 to 100 do begin
8. h := 0;
9. for each p= (α|φ)[i]∈P do if o �|= p then h := h + i + 1

10. κ(o) := κ(o) + h ·n;
11. n := n · (|{(α|φ)[s]∈P | s = i}|+ 1)
12. end
13. end;
14. return κ .

Fig. 2. Algorithm lex-ranking

a companion paper [30] (which returns the z-partition of PB , if PB is consistent, and
nil, otherwise), which generalizes an algorithm for deciding ε-consistency in default
reasoning [21]. The extended algorithm is essentially based on O(|P |2) tests whether a
description logic knowledge base is satisfiable. Second, rewriting PB to an equivalent
flat conditional preference base PB� is done by algorithm flatten in a companion paper
[30], which is similar to a rewriting algorithm in fuzzy default reasoning [16], and which
requires O(|P |2) description logic satisfiability tests. Finally, computing the ranking
functions κsum and κlex is done by algorithms sum- and lex-ranking in Figs. 1 and 2,
respectively, in a polynomial number of description logic satisfiability tests.

Theorem 5.1. Given a conditional preference base PB =(T, A, P) and a set of objects
O⊆OC , computing the rankings κsum and κlex on O relative to PB can be done
in O(|P | · (|P |+ |C| · |O|)) description logic satisfiability tests.

296 T. Lukasiewicz and J. Schellhase

Hence, under the assumption that |P | and |C| are bounded by a constant (which is
a reasonable assumption in the application in literature search below), computing the
rankings κsum and κlex can be done in O(|O|) description logic satisfiability tests.

Furthermore, if we restrict the class of description logic expressions in PB in such
a way that the above satisfiability tests on description logic knowledge bases can be
done in polynomial time (for example, such as in DL-Lite [12]), then all the described
computational tasks can also be solved in polynomial time.

6 Application: Literature Search

In this section, we describe an application in literature search for the above approach to
ranking objects relative to a conditional preference base.

Background. A very important and time consuming task of researchers is finding pub-
lications. There exist a lot of possibilities to find relevant research publications over
the internet. For instance, there are portals for research publications, portals for ejour-
nals, special purpose search engines for researchers (for example, CiteSeer and Google
Scholar), specialized databases, publication databases of institutions, and bibliographic
online catalogues. It seems that there is a trend to more diversity and quality regarding
online search engines. On the other hand, the “tremendous increase in the quantity and
diversity of easily available research publications has exacerbated the problems of in-
formation overload for researchers attempting to keep abreast of new relevant research,
especially in rapidly advancing fields” [7].

A very powerful instrument for search engines are citation indexes, which can be
very well exploited for search processes. Garfield [19] examined the possibilities and
advantages of citation indexes. There are a lot of advantages of citation indexes com-
pared to traditional subject indexes. The quality of references tends to be higher than the
quality of title words and keywords. Using citation indexes enhances the search produc-
tivity (finding the largest possible number of relevant publications) and the search ef-
ficiency (minimizing the number of irrelevant publications). Citations are semantically
more stable than keywords. Citation indexes can be used in many ways, for example,
finding relevant publications through backward and forward navigation, finding out the
importance of publications, and identifying research trends [13].

CiteSeer and Google Scholar have recognized the work of Garfield and are using
the valuable information of citations. In Google, for example, the ranking algorithm
PageRank is based on the linking of web resources [10]. CiteSeer automatically de-
tects scientific publications on the Web and extracts the necessary metadata (citations,
citation context, title, etc.), builds the citation index, and performs the full-text index-
ing [27]. For the ranking of query results, CiteSeer has adopted the ranking algorithm
of Google. The CiteSeer database is queried by simple keyword search and returns a
list of indexed publications [20]. For each publication, CiteSeer offers a query-sensitive
summary, containing the citation context of the publication, links to similar documents
and links to author homepages [27]. The user follows citations by browsing the links.
For each query result, there are a lot of pieces of information and links that can be used
to browse the database. In Google Scholar, one also uses keyword searches that can be

Variable-Strength Conditional Preferences for Ranking Objects 297

restricted, for example, to authors or titles. The search result contains a list of publica-
tions that match the query. For each publication, there is a link “cited by” that leads to
a list of publications citing the discovered publication.

There are a lot of good search strategies that a researcher can use for the task of find-
ing relevant scientific publications. Bates [4] has identified the following six important
information search strategies:

– Footnote chasing: Following up footnotes (that is, references) found in publica-
tions. This can be done in successive leaps.

– Citation searching: Looking for publications that cite certain publications.

– Journal run: Identification of a central journal in a research area and then looking
up publications in relevant volumes.

– Area scanning: Browsing resources that are physically collocated with resources
that are regarded as relevant. A good example is a book shelf in a library. In a
digital library, one could exploit the classification of resources.

– Subject searches: The usage of subject descriptors such as keywords to find relevant
publications.

– Author searching: To find other publications of an author, which may have a similar
topic as a publication one already knows of.

The first two strategies are supported by citation indexes. It would be helpful if the
above mentioned search strategies could be explicitly supported by the query languages
of search engines. The power of search query languages of scientific search engines
should go beyond the classical Boolean keyword searching. It should be enhanced to ask
more elaborated queries. The search strategies citation searching, subject searches, and
author searching are well supported by CiteSeer and Google Scholar. The search strat-
egy footnote chasing is well supported by CiteSeer, although normally not all citations
to a publication are listed. There is no direct support for the search strategy footnote
chasing with Google Scholar. The publication has to be found and downloaded. Then
the references have to be looked up in the document. CiteSeer and Scholar Google are
no help for the search strategy journal run. In order to use the search strategy journal
run, one could use Google to find the web site of the journal and then one can browse
through the journal’s volumes. The search strategy area scanning is not supported by
CiteSeer, Google Scholar, and Google.

Actually, to use all the search strategies footnote chasing, citation searching, journal
run, subject searches, and author searching, one has to use all the above search engines,
and there is no way to exploit the search strategies by the formulation of the search
queries. What is also not supported by the mentioned search engines is the possibility
to exploit relationships like citations or co-authorship by the formulation of queries. To
date, search query languages of most web search engines have little expressive power
for formulating semantic queries, cannot be used to explicitly influence the ranking
of query results, have no possibilities to formulate ones own quality measures for the
query results, have no possibilities to restrict the query results to certain result types
(for example, authors, journals, conferences, keywords, and publications), and have no
possibilities to influence the clustering of query results. Of course, even most scientists
normally do not want to learn a complex query language. Therefore, one has to think

298 T. Lukasiewicz and J. Schellhase

about good query assistants that help formulating sophisticated queries. Nevertheless,
when the benefit of more sophisticated queries becomes clear, we are convinced that
researchers will use such query languages instead of the query assistants.

Literature Search via Conditional Preference Bases. In this section, we show that our
approach to conditional preferences bases allows for expressing more sophisticated
search queries, and avoids the above mentioned deficiencies. The presented examples
also show the expressive power of the formalism proposed in this paper.

The strict terminological knowledge is informally described as follows. We assume
the concepts Publication, JournalPublication, ConfPublication, Person, Publication-
medium, Journal, Proceedings, Keyword, Event, Conference, and Workshop, which are
related by the concept inclusion axioms JournalPublication	 Publication, ConfPubli-
cation	 Publication, Conference	 Event, Workshop	 Event, Journal	 Publication-
medium, and Proceedings	 Publicationmedium. We assume the roles Author (relating
Publication and Person), Coauthor (on Person), Cite (on Publication), Publishedin (re-
lating Publication and Publicationmedium), Keywords (relating Publication and Key-
word), and hasPublicationmedium (relating Event and Publicationmedium). Moreover,
the concept Publication has the attributes year, title, publishedat, and type. Finally, we
assume the unary function in title of type string→ Publication.

In the following, some literature search queries are associated with a corresponding
conditional preference base PB =(T, A, P), expressed as the conjunction of all the
elements in A∪P . For example, consider the following query Q (which supports the
search strategy subject searches): We are looking for papers with the word “matching”
in the title. In case of a conference paper, we prefer papers of international conferences
to papers of national conferences. This query is expressed by the following conjunction:

C = Publication in title(“matching”)
(type(“international”)|ConfPublication)[70] (ConfPublication)[80] ,

which in turn stands for the conditional preference base PB =(T, A, P), where T = ∅,

A = {Publication, in title(“matching”)}, and
P = {(type(“international”)|ConfPublication)[70], (ConfPublication)[80]} .

Query Q contains two conditional preferences (with the two strengths 70 and 80, re-
spectively, which are directly specified by the user). Intuitively, an object that fulfills
query Q has to be a publication with the word “matching” in the title and it should pos-
sibly satisfy the two conditional preferences. Publications that satisfy the conditional
preferences have a lower rank than publications that falsify them. Query Q therefore di-
vides the publications in the query result into three groups as follows: first international
conference publications (lowest rank), second national conference publications (second
lowest rank), and third non-conference publications (highest rank).

We now provide several other queries, expressed in the textual and the conjunctive
way. The following queries support the search strategy footnote chasing:

(1) All references that Ian Horrocks cited in his papers:
∃Cite−.∃Author.{“Ian Horrocks”} .

(2) Journal publications that were cited by Ian Horrocks:
JournalPublication∃Cite−.∃Author.{“Ian Horrocks”} .

Variable-Strength Conditional Preferences for Ranking Objects 299

The following queries support the search strategy citation searching:

(3) All publications that cite the paper “Weaving the Web” of Tim Berners Lee:
∃Cite.(title(“Weaving the Web”)∃Author.{“Tim Berners Lee”}) .

(4) All publications that cite publications of Ian Horrocks:
∃Cite.∃Author.{“Ian Horrocks”} .

(5) All publications that cite papers of ISWC in the year 2000:
∃Cite.(ConfPublication publishedat(“ISWC”)=2000(year)) .

The following queries support the search strategy journal run:

(6) All publications of ISWC after the year 2001:
ConfPublication publishedat(“ISWC”)≥2001(year) .

(7) All journals that were cited by Ian Horrocks:
Journal∃Publishedin−.(∃Cite−.∃Author.{“Ian Horrocks”}) .

(8) All conferences with publications that contain the keywords “elearning” and “Se-
mantic Web”:
Conference∃hasPublicationmedium.∃Publishedin−

(∃Keywords.{“elearning”}∃Keywords.{“Semantic Web”}) .

The following queries support the search strategy subject searches:

(9) All publications with “Semantic Web” in the title that were cited at least five times:
in title(“Semantic Web”)≥5Cite− .

(10) All publications with “Semantic Web” in the title, that contain at least four litera-
ture references that are cited at least ten times:
in title(“Semantic Web“)≥4Cite.(≥10Cite−) .

(11) All publications with the keyword “Semantic Web” and the keywords “OWL” and
“DAML+OIL”. The ranking is influenced by the strengths of the keywords:
∃Keywords.{“Semantic Web”} (∃Keywords.{“OWL”})[70]
(∃Keywords.{“DAML+OIL”})[20] .

The following queries support the search strategy author searching:

(12) All publications of Ian Horrocks:
∃Author.{“Ian Horrocks”} .

(13) All publications of authors who have a joint publication with Tim Berners-Lee:
∃Author.∃Coauthor.{“Tim Berners-Lee”} .

(14) All publications that cite publications of coauthors of Tim Berners-Lee and him-
self, giving a higher rank to publications that cite Tim Berners-Lee:
(∃Cite.∃Author.∃Coauthor.{“Tim Berners-Lee”})[30]
(∃Cite.∃Author.{“Tim Berners-Lee”})[80] .

Query 14 divides the publications in the query result into three groups as follows: first
publications that cite publications that Tim Berners-Lee wrote with colleagues (lowest
rank), second publications that cite publications where Tim Berners-Lee was the only
author (second lowest rank), and third publications that cite publications of coauthors
of Tim Berners-Lee, where Tim Berners-Lee was not an author (highest rank).

Note that queries 9 and 10 include a user-defined quality measure. Query 7 (resp., 8)
has the result type journal (resp., conference). Queries 11 and 14 are directly influencing
the ranking of the query results, and they are also clustering the query results.

300 T. Lukasiewicz and J. Schellhase

Two important measures for retrieval systems are precision and recall. Let Q be
a query, let R be the set of relevant documents to the query Q, let A be the set of
documents that a retrieval system returns for Q, and let Ra =R∩A be the set of rel-
evant documents to Q within A. Then, the notions of precision and recall are defined
by precision = |Ra| / |A| and recall = |Ra| / |R|, respectively [3].

Queries 1–7, 12, 13, and 14 are examples where the information need could be spec-
ified very precisely, resulting in relative small query results. These are examples that
lead to a higher precision and a higher recall. Queries 8–11 contain elements that are
based on string comparisons. Although these elements are restricted to titles and key-
words, they cannot correctly express the information need. This is a known problem for
conventional search engines. Queries 11 and 14 contain conditional preferences. The
purpose of the conditional preferences is to influence the clustering and the ranking of
the query results. Although there is no effect on precision and recall, this helps the user.
Normally users just look at the top results of a result list. The user defined ranking and
clustering makes the ranking more transparent to the user and increases the likelihood
that the user actually recognizes the most important query results.

7 Related Work

We now give an overview on default reasoning from conditional knowledge bases, and
we discuss (less closely) related work on skyline queries and rankings in databases.

The literature contains several different proposals for default reasoning from con-
ditional knowledge bases and extensive work on its desired properties. The core of
these properties are the rationality postulates of System P by Kraus et al. [26], which
constitute a sound and complete axiom system for several classical model-theoretic
entailment relations under uncertainty measures on worlds. They characterize classi-
cal model-theoretic entailment under preferential structures, infinitesimal probabilities,
possibility measures [15], and world rankings. They also characterize an entailment re-
lation based on conditional objects [14]. A survey of all these relationships is given
in [5, 18]. Mainly to solve problems with irrelevant information, the notion of rational
closure as a more adventurous notion of entailment was introduced by Lehmann [28].
It is in particular equivalent to entailment in System Z by Pearl [32] (which is general-
ized to variable-strength defaults in System Z+ by Goldszmidt and Pearl [22]) and to
the least specific possibility entailment by Benferhat et al. [5]. Recently, also general-
izations of many of the above approaches to probabilistic and fuzzy default reasoning
have been proposed (see especially [29] and [16], respectively).

In the database context, the work [9] proposes an extension of database systems by
a Skyline operation, which filters out a set of interesting points from a potentially large
set of data points. It presents an extension of SQL by Skyline queries along with al-
gorithms for them. The work [2] proposes several approaches to rank database query
results, while [11] focuses on top-k query evaluation in web databases, and [31] pro-
poses a decentralized top-k query evaluation algorithm for peer-to-peer networks. In
contrast to our approach, none of the above works deals with ranking objects relative to
conditional preferences of the form “generally, in the context φ, property α is preferred
over property ¬α with strength s” in the framework of expressive description logics.

Variable-Strength Conditional Preferences for Ranking Objects 301

8 Summary and Outlook

We have presented an approach to conditional preference bases, which consist of a de-
scription logic knowledge base and a finite set of conditional preferences, and which
are given a qualitative probabilistic formal semantics in a generalization of Goldszmidt
and Pearl’s System Z+. We have defined the notion of consistency for conditional pref-
erence bases and shown how consistent conditional preference bases can be used for
ranking objects in ontologies. We have also provided algorithms for these rankings.

We have demonstrated the usefulness of the presented approach in the area of lit-
erature search. Search query languages of current search engines are very restricted in
their expressive power. There are scientific search engines on the web, however, that
have valuable metadata about research publications, authors, organizations, and scien-
tific events. We have shown that conditional preference bases allow for a more powerful
query language, which can exploit this metadata better than the current approaches do.
In particular, we have given some sample queries that (i) explicitly follow different
search strategies, (ii) influence the ranking of the query results, (iii) express quality
measures, (iv) cluster query results, or (v) restrict queries to different result types.

An interesting topic of future research is to explore further applications of the pre-
sented approach, for example, in personalization tasks and recommender systems.

Acknowledgments. This work has been partially supported by a Heisenberg Profes-
sorship of the German Research Foundation (DFG). We thank the reviewers for their
constructive comments, which helped to improve this work.

References

1. E. W. Adams. The Logic of Conditionals, volume 86 of Synthese Library. D. Reidel, Dor-
drecht, Netherlands, 1975.

2. S. Agrawal, S. Chaudhuri, G. Das, and A. Gionis. Automated ranking of database query
results. In Proceedings CIDR-2003.

3. R. Baeza-Yates and B. Ribeiro-Neto. Modern Information Retrieval. Addison Wesley, 1999.
4. M. Bates. The design of browsing and berrypicking techniques for the on-line search inter-

face. Online Review, 13(5):407–431, 1989.
5. S. Benferhat, D. Dubois, and H. Prade. Nonmonotonic reasoning, conditional objects and

possibility theory. Artif. Intell., 92(1–2):259–276, 1997.
6. T. Berners-Lee. Weaving the Web. Harper, San Francisco, 1999.
7. K. D. Bollacker, S. Lawrence, and C. L. Giles. Discovering relevant scientific literature on

the web. IEEE Intelligent Systems, 15(2):42–47, 2000.
8. C. Boutilier, R. I. Brafman, C. Domshlak, H. H. Hoos, and D. Poole. CP-nets: A tool for rep-

resenting and reasoning with conditional ceteris paribus preference statements. J. Artif. In-
tell. Res., 21:135–191, 2004.

9. S. Börzsönyi, D. Kossmann, and K. Stocker. The Skyline operator. In Proceedings ICDE-
2001, pp. 421–430.

10. S. Brin and L. Page. The anatomy of a large-scale hypertextual web search engine. In Pro-
ceedings WWW-1998, pp. 107–117.

11. N. Bruno, L. Gravano, and A. Marian. Evaluating top-k queries over web-accessible data-
bases. In Proceedings ICDE-2002, pp. 369–382.

302 T. Lukasiewicz and J. Schellhase

12. D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. DL-Lite: Tractable
description logics for ontologies. In Proceedings AAAI-2005, pp. 602–607.

13. C. Ding, C.-H. Chi, J. Deng, and C.-L. Dong. Citation retrieval in digital libraries. In Pro-
ceedings IEEE SMC-1999, volume 2, pp. 105–109.

14. D. Dubois and H. Prade. Conditional objects as nonmonotonic consequence relationships.
IEEE Trans. Syst. Man Cybern., 24(12):1724–1740, 1994.

15. D. Dubois and H. Prade. Possibilistic logic, preferential models, non-monotonicity and re-
lated issues. In Proceedings IJCAI-1991, pp. 419–424.

16. F. D. de Saint-Cyr and H. Prade. Handling uncertainty in a non-monotonic setting, with ap-
plications to persistence modeling and fuzzy default reasoning. In Proceedings KR-2006.

17. D. Fensel, W. Wahlster, H. Lieberman, and J. Hendler, editors. Spinning the Semantic Web:
Bringing the World Wide Web to Its Full Potential. MIT Press, 2002.

18. D. M. Gabbay and P. Smets, editors. Handbook on Defeasible Reasoning and Uncertainty
Management Systems. Kluwer Academic, Dordrecht, Netherlands, 1998.

19. E. Garfield. Citation Indexing — Its Theory and Application in Science, Technology, and
Humanities. John Wiley & Sons, New York, 1979.

20. C. L. Giles, K. D. Bollacker, and S. Lawrence. CiteSeer: An automatic citation indexing
system. In Proceedings ACM Digital Libraries 1998, pp. 89–98, 1998.

21. M. Goldszmidt and J. Pearl. On the consistency of defeasible databases. Artif. Intell.,
52(2):121–149, 1991.

22. M. Goldszmidt and J. Pearl. Qualitative probabilities for default reasoning, belief revision,
and causal modeling. Artif. Intell., 84(1–2):57–112, 1996.

23. I. Horrocks and P. F. Patel-Schneider. Reducing OWL entailment to description logic satisfi-
ability. J. Web Semantics, 1(4):345–357, 2004.

24. I. Horrocks, P. F. Patel-Schneider, and F. van Harmelen. From SHIQ and RDF to OWL:
The making of a web ontology language. J. Web Semantics, 1(1):7–26, 2003.

25. I. Horrocks, U. Sattler, and S. Tobies. Practical reasoning for expressive description logics.
In Proceedings LPAR-1999, pp. 161–180, LNCS 1705, Springer.

26. S. Kraus, D. Lehmann, and M. Magidor. Nonmonotonic reasoning, preferential models and
cumulative logics. Artif. Intell., 14(1):167–207, 1990.

27. S. Lawrence, K. D. Bollacker, and C. L. Giles. Indexing and retrieval of scientific literature.
In Proceedings CIKM-1999, pp. 139-146.

28. D. Lehmann and M. Magidor. What does a conditional knowledge base entail? Artif. Intell.,
55(1):1–60, 1992.

29. T. Lukasiewicz. Weak nonmonotonic probabilistic logics. Artif. Intell., 168: 119–161, 2005.
30. T. Lukasiewicz and J. Schellhase. Variable-strength conditional preferences for matchmaking

in description logics. In Proceedings KR-2006.
31. W. Nejdl, W. Siberski, U. Thaden, and W.-T. Balke. Top-k query evaluation for schema-based

peer-to-peer networks. In Proceedings ISWC-2004, pp. 137–151.
32. J. Pearl. System Z: A natural ordering of defaults with tractable applications to default

reasoning. In Proceedings TARK-1990, pp. 121–135.
33. D. Poole and C. Smyth. Type uncertainty in ontologically-grounded qualitative probabilistic

matching. In Proceedings ECSQARU-2005, pp. 763–774.
34. C. Smyth and D. Poole. Qualitative probabilistic matching with hierarchical descriptions. In

Proceedings KR-2004, pp. 479–487.
35. M. Stempfhuber. Keep the best — Forget the rest? Towards models for CRISs integrating

heterogeneous information. In Proceedings CRIS-2004.
36. S.-W. Tan and J. Pearl. Specification and evaluation of preferences under uncertainty. In

Proceedings KR-1994, pp. 530–539.
37. W3C. OWL web ontology language overview, 2004. W3C Recommendation (10 February

2004). Available at www.w3.org/TR/2004/REC-owl-features-20040210/.

A Metamodel and UML Profile for
Rule-Extended OWL DL Ontologies

Saartje Brockmans, Peter Haase, Pascal Hitzler, and Rudi Studer

Institute AIFB, Universität Karlsruhe, Germany
{brockmans, haase, hitzler, studer}@aifb.uni-karlsruhe.de

Abstract. In this paper we present a MOF compliant metamodel and
UML profile for the Semantic Web Rule Language (SWRL) that inte-
grates with our previous work on a metamodel and UML profile for OWL
DL. Based on this metamodel and profile, UML tools can be used for
visual modeling of rule-extended ontologies.

1 Introduction

An ontology defines a common set of concepts and terms that are used to de-
scribe and represent a domain of knowledge. The manual creation of ontologies is
a labor-intensive, expensive, often difficult, and – without proper tool support –
an error-prone task. Visual syntaxes have shown to bring many benefits that sim-
plify conceptual modeling [18]. As for other modeling purposes, visual modeling
of ontologies decreases syntactic and semantic errors and increases readability.
It makes the modeling and use of ontologies much easier and faster, especially if
tools are user-friendly and appropriate modeling languages are applied.

The usefulness of a visual syntax for modeling languages has been shown
in practice; visual modeling paradigms such as the Entity Relationship (ER,
[4]) model or the Unified Modeling Language (UML, [5]) are used frequently
for the purpose of conceptual modeling. Consequently, the necessity of a visual
syntax for KR languages has been argued frequently in the past [6, 12]. Particular
representation formalisms such as conceptual graphs [19] or Topic Maps [11], for
example, are based on well-defined graphical notations.

Description Logic-based ontology languages such as OWL, however, are usu-
ally defined in terms of an abstract (text-based) syntax and most care is spent on
the formal semantics, neglecting the development of good modeling frameworks.
In our previous work [3], we therefore have developed a Meta Object Facility
(MOF, [14]) metamodel for the purpose of defining ontologies, called Ontology
Definition Metamodel (ODM), with specific focus on the OWL DL language,
along with a UML profile for the purpose of visual modeling.

In the meantime, rule extensions for OWL have been heavily discussed [20].
Just recently the W3C has chartered a working group for the definition of a Rule
Interchange Format [21]. One of the most prominent proposals for an extension
of OWL DL with rules is the Semantic Web Rule Language (SWRL, [9]). SWRL
proposes to allow the use of Horn-like rules together with OWL axioms.

Y. Sure and J. Domingue (Eds.): ESWC 2006, LNCS 4011, pp. 303–316, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

304 S. Brockmans et al.

A high-level abstract syntax is provided that extends the OWL abstract syn-
tax described in the OWL Semantics and Abstract Syntax document [17]. An
extension of the OWL model-theoretic semantics provides a formal meaning for
SWRL ontologies.

The definition of a visual notation for SWRL rules is currently missing. There-
fore, this paper defines a metamodel and UML profile for SWRL that extends
and complements our previous metamodel and UML profile for OWL DL. Our
goal is to achieve an intuitive notation, both for users of UML and description
logics as well as for rule-based systems. Naturally, the proposed metamodel has a
one-to-one mapping to the abstract syntax of SWRL and OWL DL and thereby
to their formal semantics.

The paper is organized as follows: Section 2 introduces the Meta Object Fa-
cility (MOF) and our previous work on an OWL DL metamodel along with its
UML profile. Section 3 presents our extensions of the ODM towards SWRL rules.
Section 4 introduces a UML Profile for the modeling of rules and explains the
major design choices made in order to make the notation readable and intuitive
both for users with UML background and for users with a background in OWL
and rule-based systems. In Section 5 we discuss related work. We conclude in
Section 6 by summarizing our work and discussing future research.

2 An Ontology Definition Metamodel of OWL Within
the MOF Framework

This section introduces the essential ideas of the Meta Object Facility (MOF)
and shows how the Ontology Definition Metamodel (ODM) and the UML On-
tology Profile (UOP) fit into this more general picture. The need for a dedicated
visual ontology modeling language stems from the observation that an ontology
cannot be sufficiently represented in UML [8]. The two representations share a
set of core functionalities such as the ability to define classes, class relationships,
and relationship cardinalities. But despite this overlap, there are many features
which can only be expressed in OWL, and others which can only be expressed
in UML. Examples for this disjointness are transitive and symmetric properties
in OWL or methods in UML. For a full account of the conceptual differences we
refer the reader to [10].

UML methodology, tools and technology, however, seem to be a feasible ap-
proach for supporting the development and maintenance of ontologies. The gen-
eral idea of using MOF-based metamodels and UML profiles for this purpose is
depicted in Figure 1 and explained in the following:

1. The ODM and the UOP are grounded in MOF, in that they are defined in
terms of the MOF meta-metamodel, as explained in Section 2.1.

2. The UML profile defines a visual notation for OWL DL ontologies, based on
the above mentioned metamodel. Furthermore, mappings in both directions
between the metamodel and this profile are established.

3. Specific OWL DL ontologies instantiate the Ontology Definition Metamodel.
The constructs of the OWL DL language have a direct correspondence with

A Metamodel and UML Profile for Rule-Extended OWL DL Ontologies 305

those of the ODM. Analogously, specific UML models instantiate the UML
Ontology Profile. The translation between the UML models and OWL on-
tologies is based on the above mappings between the ODM and the UOP.

Fig. 1. An ontology to UML mapping allows existing tools to operate on compatible
aspects of ontologies

2.1 Meta Object Facility

The Meta Object Facility (MOF) is an extensible model driven integration
framework for defining, manipulating and integrating metadata and data in a
platform independent manner. The goal is to provide a framework that sup-
ports any kind of metadata and that allows new kinds to be added as required.
MOF plays a crucial role in the four-layer metadata architecture of the Object
Management Group (OMG) shown in Figure 2. The bottom layer of this archi-
tecture encompasses the raw information to be described. For example, Figure 2
contains information about a wine called ElyseZinfandel and about the Napa
region, where this wine grows. The model layer contains the definition of the
required structures, e.g. in the example it contains the classes used for group-
ing information. Consequently, the classes wine and region are defined. If these
are combined, they describe the model for the given domain. The metamodel
defines the terms in which the model is expressed. In our example, we would
state that models are expressed with classes and properties by instantiating the
respective meta classes. Finally, the MOF constitutes the top layer, also called
the meta-metamodel layer. Note that the top MOF layer is hard wired in the
sense that it is fixed, while the other layers are flexible and allow to express
various metamodels such as the UML metamodel or the ODM.

2.2 Ontology Definition Metamodel

The Ontology Definition Metamodel (ODM, [3]) defines a metamodel for on-
tologies. This metamodel is built on the MOF framework, which we explained in
Section 2.1. We defined an Ontology Definition Metamodel for OWL DL using
a notation which is accessible for users of UML as well as for OWL DL ontology
engineers. A metamodel for a language that allows the definition of ontologies

306 S. Brockmans et al.

MOF - Meta-metamodel
MetaClass, MetaAttr, ...

Metamodel:
MetaClass(“Class“), MetaClass(“Property“), ...

Model:
Class(“Wine“), Class(“Region“), ...

Information:
Wine: ElyseZinfandel, Region: NapaRegion

Fig. 2. OMG Four Layer Metadata Architecture

NamedElement

-uri:URI

Ontology

AnnotatableElement

OntologyElement

OntologyProperty

AnnotationProperty

Property

Class

Individual

DataRange

Rule

*

Fig. 3. Main Elements of the Ontology Definition Metamodel

naturally follows from the modeling primitives offered by the ontology language.
The proposed metamodel has a one-to-one mapping to the abstract syntax of
OWL DL and thereby to the formal semantics of OWL. It primarily uses ba-
sic well-known concepts from UML2, which is the second and newest version of
UML. Additionally, we augmented the metamodel with constraints specifying
invariants that have to be fulfilled by all models that instantiate the metamodel.
These constraints are expressed in the Object Constraint Language [23], a declar-

A Metamodel and UML Profile for Rule-Extended OWL DL Ontologies 307

Class Property

−deprecated :Boolean =false

−functional:Boolean =false

ObjectProperty

−transitive :Boolean =false

−symmetric :Boolean =false

−inverseFunctional :Boolean =false

−/complex:Boolean

DatatypeProperty DataRange

domain*

range

*

range

inverseOf

*

*

Fig. 4. Properties

Class

ClassDescription AtomicClass

−deprecated :Boolean =false

BooleanCombination Restriction

Complement Intersection Union

EnumeratedClass

Individual

combinationOf

*

oneOf

*

Fig. 5. Classes

ative language that provides constraint and object query expressions on object
models that cannot otherwise be expressed by diagrammatic notation.

Figure 3 shows the main elements of the ODM. Every element of an ontology
is a NamedElement and hence a member of an Ontology.

Properties, as shown in Figure 4, represent named binary associations in the
modeled knowledge domain. OWL distinguishes two kinds of properties, so-called
object properties and datatype properties. A common generalization of them is
given by the abstract metaclass Property. Properties can be functional and
their domain is always a class. Object properties may additionally be inverse
functional, transitive, symmetric, or inverse to another property. Their range is
a class, while the range of datatype properties are datatypes.

Users can relate properties by using two types of axioms: property subsump-
tion (subPropertyOf) specifies that the extension of a property is a subset of
the related property, while property equivalence (equivalentProperty) defines
extensional equivalence.

Class descriptions are depicted in Figure 5. In contrast to UML, OWL DL does
not only allow to define simple named classes. Instead, classes can be formed using

308 S. Brockmans et al.

a number of class constructors. One can conceptually distinguish the boolean com-
bination of classes, class restrictions, and enumerated classes. EnumeratedClass
is defined through a direct enumeration of named individuals. Boolean combina-
tions of classes are provided through Complement, Intersection and Union.

OWL does not follow the clear conceptual separation between terminology
(T-Box) and knowledge base (A-box) that is present in most description logics
and in MOF, which distinguishes between model and information. The knowl-
edge base elements (cf. Figure 6) are part of an ontology. An Individual is an
instantiation of a Class and is the subject of a PropertyValue, which instan-
tiates a Property. Naturally, an ObjectPropertyValue relates its subject with
another Individual whilst a DatatypePropertyValue relates its subject with
a DataValue, which is an instance of a DataType.

Class Property

Individual PropertyValue

ObjectPropertyValue DatatypePropertyValue

DataType

DataValue Individual AllDifferent

type type type

objectobject

subject

sameAs

differentFrom

distinctMembers

*

*

*

Fig. 6. Knowledge Base

Individuals can be related via three special axioms: The sameAs association
allows users to state that two individuals (with different names) are equiva-
lent. The differentFrom association specifies that two individuals are not the
same. AllDifferent is a simpler notation for the pairwise difference of several
individuals.

For a full specification of the OWL DL metamodel, we refer to [3].

2.3 UML Ontology Profile

The UML ontology profile (UOP) describes a visual UML syntax for modeling
ontologies. We provide a UML profile that is faithful to both UML2 and OWL
DL, with a maximal reuse of UML2 features and OWL DL features. Since the
UML profile mechanism supports a restricted form of metamodeling, our pro-
posal contains a set of extensions and constraints to UML2. This tailors UML2
such that models instantiating the ODM can be defined. Our UML profile has
a basic mapping, from OWL class to UML class, from OWL property to bi-
nary UML association, from OWL individual to UML object, and from OWL
property filler to UML object association. Extensions to UML2 consist of cus-
tom UML stereotypes, which usually carry the name of the corresponding OWL
DL language element, and dependencies. Figure 7 (left) shows an example of
two classes Wine and WineGrape, visually depicted as UML classes, which are
connected via the object property madeFromGrape, depicted as a UML associ-
ation. Some extensions to UML2 are used in the example in Figure 7 (right),

A Metamodel and UML Profile for Rule-Extended OWL DL Ontologies 309

<< >>

WineColor

White Rose Red

owl::oneOf
Wine

WineGrape

madeFromGrape

Fig. 7. A fragment of the UML profile: The ObjectProperty and oneOf constructs

SelaksIceWine

<< owl::intersectionOf >>

LateHarvest DessertWine

<< rdf::type >>

Fig. 8. A fragment of the UML profile: An individual of a complex class description

which shows that an enumerated class is connected to the enumerated individ-
uals by dependencies. A stereotype denotes the enumerated class, whereas the
UML notation for objects is used for individuals. Another example, depicted in
Figure 8, shows an individual SelaksIceWine of the intersection between the
classes LateHarvest and DessertWine.

3 A Metamodel for SWRL Rules

We propose a metamodel for SWRL rules as a consistent extension of the meta-
model for OWL DL ontologies which we described in the previous section of this
paper. Figure 9 shows the metamodel for SWRL rules. We discuss the meta-
model step by step along the SWRL specifications. Interested readers may refer
to the specifications [9] for a full account of SWRL. For a complete reference
of the formal correspondence between the metamodel and SWRL itself and the
OCL constraints for the rule metamodel, we refer the reader to [2].

3.1 Rules

SWRL defines rules as part of an ontology. The SWRL metamodel defines Rule
as a subclass of OntologyElement. OntologyElement is defined in the OWL DL
metamodel (Figure 3) as an element of an Ontology, via the composition link
between NamedElement and Ontology. As can also be seen in Figure 3, the class
OntologyElement is a subclass of the class AnnotatableElement, which defines
that rules can be annotated. As annotations are modeled in the ODM, a URI
reference can be assigned to a rule for identification.

310 S. Brockmans et al.

A rule consists of an antecedent and a consequent, also referred to as body and
head of the rule, respectively. Both the antecedent and the consequent consist
of a set of atoms which can possibly be empty, as depicted by the multiplicity in
Figure 9. Informally, a rule says that if all atoms of the antecedent hold, then
the consequent holds. An empty antecedent is treated as trivially true, whereas
an empty consequent is treated as trivially false.

The same antecedent or consequent can be used in several rules, as indicated
in the metamodel by the multiplicity on the association between Rule on the one
hand and Antecedent or Consequent on the other hand. Similarly, the multi-
plicities of the association between Antecedent and Atom and of the association
between Consequent and Atom define that an antecedent and a consequent can
hold zero or more atoms. The multiplicity in the other direction defines that the
same atom can appear in several antecedents or consequents. According to the
SWRL specifications, every Variable that occurs in the Consequent of a rule
must occur in the Antecedent of that rule, a condition referred to as ”safety”.

3.2 Atoms, Terms and Predicate Symbols

The atoms of the antecedent and the consequent consist of predicate symbols
and terms. According to SWRL, they can have different forms:

– C(x), where C is an OWL description and x an individual variable or an
OWL individual, or C is an OWL data range and x either a data variable
or an OWL data value;

– P (x, y), where P is an OWL individual valued property and x and y are both
either an individual variable or an OWL individual, or P is an OWL data
valued property, x is either an individual variable or an OWL individual and
y is either a data variable or an OWL data value;

OntologyElement

Rule

Antecedent Consequent

Atom

PredicateSymbol

Class DataRange Property BuiltIn

−builtInID:URI

Term

Variable Constant

TermList

−order:int

DataVariable IndividualVariable Individual DataValue

hasAntecedent hasConsequent

hasPredicateSymbol

containsAtomcontainsAtom

* *

* *

* *
* *

1 1

1 1

1

*

Fig. 9. The Rule Definition Metamodel

A Metamodel and UML Profile for Rule-Extended OWL DL Ontologies 311

– sameAs(x, y), where x and y are both either an OWL individual or an indi-
vidual variable;

– differentFrom(x, y), where x and y are both either an OWL individual or an
individual variable;

– builtIn(r, x, ...), where r is a built-in predicate and x is a data variable or
OWL data value. A builtIn atom could possibly have more than one variable
or OWL data value.

The first of these, OWL description, data range and property, were already pro-
vided in the ODM, namely as metaclasses Class, DataRange and Property, re-
spectively. As can be seen in Figure 9, the predicates Class, DataRange,Property
and BuiltIn are all defined as subclasses of the class PredicateSymbol, which is
associated to Atom. The remaining two atom types, sameAs and differentFrom,
are represented as specific instances of PredicateSymbol.

To define the order of the atom terms, we put a class TermOrder in between
Atom and Term. This UML association class connects atoms with terms and
defines the term order via the attribute order.

4 A UML Profile for Rules

UML provides an extension mechanism, the UML profile mechanism, to tailor
the language to specific application areas. The definition of such a UML exten-
sion is based on the standard UML metamodel. In this section, we propose a
UML profile for modeling SWRL rules which is consistent with the design con-
siderations taken for the basic UML Ontology Profile. For a complete reference
of the relationship between the UML profile and the metamodel introduced in
Section 3, we refer the reader to [2]. Figure 10 shows an example of a rule,
which defines that when a vintager does not like the wine made in his winery,
he is a bad vintager. We introduce the profile in an order based on the SWRL
metamodel introduced in Section 3.

4.1 Rules

As can be seen in Figure 10, a rule is depicted by two boxes connected via a
dependency with the stereotype rule. All atoms of the antecedent are contained

<< variable >>

X

<< variable >>

Y

<< variable >>

Z

<< variable >>

X:BadVintager

dislikesWine
hasMaker

ownsWinery

<<rule>>

Fig. 10. BadVintager(x) ← ownsWinery(x, y) ∧ dislikesWine(x, z) ∧ hasMaker(z, y)

312 S. Brockmans et al.

in the box at the origin of the dependency, whereas the box at the end contains
the consequent. This way, antecedent and consequent can easily be distinguished,
and it also allows to distinguish between the rule atoms and the OWL DL facts
which are depicted in similar ways. The left box of our example contains the
three variable definitions and the three properties that are defined between these
variables. The consequent-box on the right contains the definition of the variable
X from which it is known which class it belongs to. We explain the specific design
considerations of these concepts in the following subsections.

4.2 Terms

Although the existing UOP already comprises a visual syntax for individuals and
data values, namely by applying the UML object notation, it does not include
a notation for variables since OWL DL ontologies do not contain variables. We
decided to depict variables in the UML object notation as well, since a variable
can be seen as a partially unknown class instance. We provide a stereotype
variable to distinguish a variable. Figure 11 shows a simple example for a
variable, an individual and a data value.

<< variable >>

X
White:WineColor 30:xsd::Integer

Fig. 11. Terms

4.3 Predicate Symbols in Atoms

Class description and data range. A visual notation for individuals as in-
stances of class descriptions is already provided in the UOP for OWL DL. An
atom with a class description and a variable as its term, is illustrated simi-
larly. An appropriate stereotype is added. An example of this can be seen in
the consequent in Figure 10. A visual construct for a data range definition using
individuals is contained in the UOP for OWL DL as well, namely represented
in the same way as class individuals. Data range constructs containing variables
are also depicted in a similar fashion.

Properties. Object properties are depicted as directed associations between the
two involved elements. A datatype property is pictured as an attribute. These
notations were provided for properties of individuals by the UOP for OWL DL,
and we follow them to depict properties of variables. The antecedent of the rule in
Figure 10 contains three such object properties between variables, ownsWinery,
dislikesWine and hasMaker. The other example rule, depicted in Figure 13,
contains amongst other things twice the datavalued property yearValue.

sameAs and differentFrom. According to the UOP, equality and inequality
between objects are depicted using object relations. Because of the similarity
between individuals and variables, as shortly explained in Section 4.2, we propose
to use the same visual notation for sameAs and differentFrom relations between
two variables or between a variable and an object.

A Metamodel and UML Profile for Rule-Extended OWL DL Ontologies 313

<< built−in>>

swrlb:greaterThan

<< variable >>

y

<< variable >>

x

1

2

Fig. 12. Built-in predicates

Built-in predicates. For the visual representation of built-in relations, we use
usual associations to all participating variables and data values, similar to the
owl:AllDifferent concept provided in the basic UOP. To denote the built-in
relation, we provide the stereotype built-in together with the specific built-in
ID. The names of the associations denote the order of the arguments, by num-
bers. Figure 12 shows an example of a built-in relation swrlb:greaterThan,
which is defined to check whether the first involved argument is greater than the
second one. For the six most basic built-ins, swrlb:equal, swrlb:notEqual,
swrlb:lessThan, swrlb:lessThanOrEqual, swrlb:greaterThan and swrlb:
greaterThanOrEqual, we provide an alternative notation. Instead of depicting
the stereotype and the name of the built-in, an appropriate icon can be used.
Figure 13 depicts a rule example using this alternative notation for built-in pred-
icates. This rule states that if the year value of a wine (y) is greater than the
year value of another wine (x), then the second wine (x) is older than the first
one (y). Next to the built-in predicate, Figure 13 shows six variables with the
properties hasVintageYear, yearValue and olderThan.

<< variable >>

x

<< variable >>

y

<< variable >>

x

<< variable >>

y

<< variable >>

v

<< variable >>

u

<< variable >>

z

<< variable >>

w
hasVintageYear

hasVintageYear

yearValue

yearValue

>

<<rule>>

olderThan

Fig. 13. olderThan(x, y) ← hasVintageYear(x, u) ∧ hasVintageYear(y, v) ∧
yearValue(u, w) ∧ yearValue(v, z) ∧ swrlb:greaterThan(z, w)

314 S. Brockmans et al.

5 Related Work

As a response to the original call of the OMG for an Ontology Definition Meta-
model [16], the OMG has received a number of diverse proposals (see [3] for a
comparison). The various proposals have been merged into one submission [10]
that covered several metamodels for RDF, OWL, Common Logic, and Topic
Maps, as well as mappings between them. Our proposed metamodel departs
from this approach as it strictly focuses on OWL DL and is tailored to its
specific features, with the advantage that it has a direct mapping between the
metamodel and OWL DL. Also, none of the other OMG proposals so far has
considered rule extensions. To the best of our knowledge, our work presents the
first MOF-based metamodel and UML profile for an ontology rule language.

DL-safe rules [13] are a decidable subset of SWRL. As every DL-safe rule is
also a SWRL rule, DL-safe rules are covered by our metamodel. Using additional
constraints it can be checked whether a rule is DL-safe. It should be noted that
SWRL is not the only rule language which has been proposed for ontologies.
Other prominent alternatives for rule languages are mentioned in the W3C Rule
Interchange Format Working Group charter [21], namely the Web Rule Language
WRL [1] and the rules fragment of the Semantic Web Service Language SWSL
[7]. These languages differ in their semantics and consequently also in the way
in which they model implicit knowledge for expressive reasoning support. From
this perspective, it could be desirable to define different metamodels, each of
which is tailored to a specific rules language.

From the perspective of conceptual modeling, however, different rule lan-
guages appear to be very similar to each other. This opens up the possibility to
reuse the SWRL metamodel defined in this paper by augmenting it with some
features to allow for the modeling of language primitives which are not present
in SWRL. As a result, one would end up with a common metamodel for different
rules languages. An advantage of the latter approach would be a gain in flex-
ibility. Intricate semantic differences between different ontology languages may
often be difficult to understand for the practitioner, and hence it may be de-
sirable to provide simplified modeling support in many cases. A common visual
modeling language would for example allow a domain expert to model a domain
independent of a concrete logical language, while an ontology engineer could
decide on the language paradigm most suitable for the application domain.

As a complementary approach to using visual modeling techniques for writing
rules, [22] discusses a proposal to use (controlled) natural language.

6 Conclusion

We have presented a MOF metamodel for the Semantic Web Rule Language
SWRL. This metamodel tightly integrates with our previous metamodel for
OWL DL. The validity of instances of this metamodel is ensured through OCL
constraints. We also provided a UML profile for this metamodel. It employs the
extensibility features of UML2 to allow a visual notation for the modeling of

A Metamodel and UML Profile for Rule-Extended OWL DL Ontologies 315

rule-extended ontologies which is particularly adequate for users familiar with
UML. We plan to provide an implementation as a next step.

Future work may also include the modeling of other logics-based rule lan-
guages. The outcome of the W3C working group to establish a Rule Interchange
Format is currently open. It is likely that several rule languages will need to
co-exist, which will require techniques for rule language interoperability. Here,
the model driven approaches of MOF might provide useful techniques to achieve
such interoperability, for example based on the Query View and Transformation
(QVT, [15]) framework, which allows the definition and automated execution of
mappings between MOF-based metamodels.

Acknowledgements

Research for this paper has been partially funded by the EU under the projects
SEKT (IST-2003-506826) and NeOn (IST-2005-027595), by the German Federal
Ministry of Education and Research (BMBF) under the SmartWeb project (01
IMD01 A) and by the German Research Foundation (DFG) under the Graduate
School IME – Universität Karlsruhe (TH).

References

1. J. Angele, H. Boley, J. de Bruijn, D. Fensel, P. Hitzler, M. Kifer, R. Krummenacher,
H. Lausen, A. Polleres, and R. Studer. Web Rule Language (WRL). World Wide
Web Consortium, September 2005. W3C Member Submission,
http://www.w3.org/Submission/WRL/.

2. S. Brockmans and P. Haase. A Metamodel and UML Profile for Rule-
extended OWL DL Ontologies –A Complete Reference. Technical report, Uni-
versität Karlsruhe, March 2006. http://www.aifb.uni-karlsruhe.de/WBS/sbr/
publications/owl-metamodeling.pdf.

3. S. Brockmans, R. Volz, A. Eberhart, and P. Loeffler. Visual Modeling of OWL DL
Ontologies using UML. In F. van Harmelen, S. A. McIlraith, and D. Plexousakis,
editors, The Semantic Web – ISWC 2004, pages 198–213. Springer-Verlag, 2004.

4. P. P. Chen. The entity-relationship model – toward a unified view of data. ACM
Transactions on Database Systems, 1(1):9–36, 1976.

5. M. Fowler. UML Distilled. Addison-Wesley, third edition, 2004.
6. B. R. Gaines. An Interactive Visual Language for Term Subsumption Languages.

In J. Mylopoulos and R. Reiter, editors, Proc. of 12th Int. Joint Conf. on Art. Int.,
pages 817–823, Sydney, Australia, August 1991. Morgan Kaufmann.

7. B. Grosof, M. Kifer, and D. L. Martin. Rules in the Semantic Web Services Lan-
guage (SWSL): An overview for standardization directions. In Proceedings of the
W3C Workshop on Rule Languages for Interoperability, 27-28 April 2005, Wash-
ington, DC, USA, 2005.

8. L. Hart, P. Emery, B. Colomb, K. Raymond, S. Taraporewalla, D. Chang, Y. Ye,
and M. D. Elisa Kendall. OWL full and UML 2.0 compared, March 2004.
http://www.itee.uq.edu.au/\simcolomb/Papers/UML-OWLont04.03.01.pdf.

316 S. Brockmans et al.

9. I. Horrocks, P. F. Patel-Schneider, H. Boley, S. Tabet, B. Grosof, and
M. Dean. SWRL: A Semantic Web Rule Language Combining OWL and
RuleML. World Wide Web Consortium, May 2004. W3C Member Submission,
http://www.w3.org/Submission/2004/SUBM-SWRL-20040521/.

10. IBM, Sandpiper Software. Ontology Definition Metamodel, Fourth Revised Sub-
mission to OMG, November 2005.

11. ISO/IEC. Topic Maps: Information Technology – Document Description and
Markup Languages. ISO/IEC 13250,
http://www.y12.doe.gov/sgml/sc34/document/0129.pdf, December 1999.

12. R. Kremer. Visual Languages for Knowledge Representation. In Proc. of 11th
Workshop on Knowledge Acquisition, Modeling and Management (KAW’98), Voy-
ager Inn, Banff, Alberta, Canada, April 1998. Morgan Kaufmann.

13. B. Motik, U. Sattler, and R. Studer. Query answering for OWL-DL with rules. In
F. van Harmelen, S. McIlraith, and D. Plexousakis, editors, International Semantic
Web Conference, Lecture Notes in Computer Science, pages 549–563, Hiroshima,
Japan, 2004. Springer.

14. Object Management Group. Meta Object Facility (MOF) Specifica-
tion. Technical report, Object Management Group (OMG), April 2002.
http://www.omg.org/docs/formal/02-04-03.pdf.

15. Object Management Group. MOF 2.0 Query / Views / Transformations – Request
for Proposal. http://www.omg.org/docs/ad/02-04-10.pdf, 2002.

16. Object Management Group. Ontology Definition Metamodel – Request For Pro-
posal, March 2003. http://www.omg.org/docs/ontology/03-03-01.rtf.

17. P. F. Patel-Schneider, P. Hayes, and I. Horrocks. OWL Web Ontology Language
Semantics and Abstract Syntax. World Wide Web Consortium, 10. Februar 2004.
Recommendation. http://www.w3.org/TR/2004/REC-owl-semantics-20040210/.

18. W. Schnotz. Wissenserwerb mit Texten, Bildern und Diagrammen. In L. J. Issing
and P. Klimsa, editors, Information und Lernen mit Multimedia und Internet, pages
65–81. Belz, PVU, Weinheim, third, completely revised edition, 2002.

19. J. F. Sowa. Conceptual graphs summary. In P. Eklund, T. Nagle, J. Nagle, and
L. Gerholz, editors, Conceptual Structures: Current Research and Practice, pages
3–52. Ellis Horwood, New York, 1992.

20. Accepted Papers of the W3C Workshop on Rule Languages for Interoperability, 27-
28 April 2005, Washington, DC, USA, 2005. http://www.w3.org/2004/12/rules-
ws/accepted.

21. W3C. Rule interchange format working group charter.
http://www.w3.org/2005/rules/wg/charter, 2005.

22. A. Walker. Understandability and semantic interoperability of diverse rules sys-
tems. http://www.w3.org/2004/12/rules-ws/paper/19, April 2005. Position Pa-
per for the W3C Workshop on Rule Languages for Interoperability.

23. J. Warmer and A. Kleppe. Object Constraint Language 2.0. MITP Verlag, 2004.

Visual Ontology Cleaning: Cognitive Principles
and Applicability�

Joaqúın Borrego-Dı́az and Antonia M. Chávez-González

Departamento de Ciencias de la Computación e Inteligencia Artificial.
E.T.S. Ingenieŕıa Informática-Universidad de Sevilla.

Avda. Reina Mercedes s.n. 41012-Sevilla, Spain
{jborrego, tchavez}@us.es

Abstract. In this paper we connect two research areas, the Qualitative
Spatial Reasoning and visual reasoning on ontologies. We discuss the log-
ical limitations of the mereotopological approach to the visual ontology
cleaning, from the point of view of its formal support. The analysis is
based on three different spatial interpretations wich are based in turn on
three different spatial interpretations of the concepts of an ontology.

1 Introduction

It is commonly accepted that for achieving a satisfactory sharing of knowledge
in the envisioned Semantic Web (SW), it will be necessary to build ontologies.
They play a key role in the reasoning services for Knowledge Bases (KB) in the
SW [17]. Practical management of ontologies, such as extension, refinement and
versioning technologies will be essential tasks.

From the point of view of the Knowledge Representation (KR) paradigm,
ontology revision comes from the fact that the discourse domain may not be
faithfully represented by an ontology (a well known working principle in KR). In
many cases, end-users need to interact and transform the ontology. Even if the
ontology designer thinks that the ontology is final, the end-user may think the
opposite, or simply that the ontology is incorrect. In fact, it should be feasible to
achieve the agreement designer-user. This agreement is essential for the assimi-
lation of SW technologies into non-academic community portals, for example.

Unfortunately, several reasons obstruct the agreement. The first one is that
end users do not know the logical formalisms behind ontology web languages.
Therefore, the user can not know hidden principles on which ontologies are built.
It does not help to increase the understanding of technologies involved in SW
tools. Anyway, this fact might not be important if he uses amenable technologies
for representing/repairing the anomalies founded in its own ontology project.
Visual encodings are very interesting for such pourposes.

End-user preferences on visual representation are well known in other re-
lated fields such as Formal Concept Analysis or Data Engineering. The spatial
� Supported by project TIN2004-03884 of Spanish Ministry of Education and Science,

cofinanced by FEDER founds.

Y. Sure and J. Domingue (Eds.): ESWC 2006, LNCS 4011, pp. 317–331, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

318 J. Borrego-Dı́az and A.M. Chávez-González

metaphor is a powerful tool in human information processing. The user will feel
encouraged to repair the anomaly, although there exist some obstacles: on the
one hand, visual reparation may not be corresponded by a logical reparation of
the ontology source. This occurs if there is no a formal semantics for supporting
the change; on the other hand, repairs can be logically complex. Domain ex-
perts often underestimate the amount of time required to produce an ontology,
and consequently they build an ontology based on a large scope. The resulting
conceptual ontologies are consequently a mix of both domain and task ontology
concepts which are hard to manage [22].

Paraphrasing [23], visual cleaning of ontologies is important for future end-
users of ontology debugging systems due mainly to three reasons:

1. It allows the user to summarize ontology contents.
2. User’s information is often fuzzily defined. Visualization can be used to help

the user to get a nice representation.
3. Finally, visualization can therefore help the user to interact with the infor-

mation space.

There is not a generally accepted representation mechanism that translates every
possible changes in the visual representation into the specification of the ontol-
ogy. In fact, this is an interesting problem in the design of visual reasoning
tools. Current end-user tools are mostly based on facilitating the understanding
of the ontology (see e.g. [14], [21]) facilitating very limited graphical changes
to the user. In order to augment such features, we need formally sound map-
pings between (visual) representations and Knowledge Bases (KBs) (expressed,
for example, in Description Logics). Note that such mappings have to trans-
late logical notions for supporting the logical impact of arrangements on the
spatial representation (for example, when new concepts are inserted). These is-
sues are critical and we need to solve them in order to integrate solutions in
systems for visual representation of information [14]. This goal is far away of
being achieved for classical Information Visualization (IV) tools. IV is the use of
computer-supported, interactive and visual representations of abstract data to
amplify cognition [9]. The goal of Visual Ontology Cleaning (VOC) should be to
reason spatially for visually debugging and repairing of ontologies . Therefore,
it should have aditional features, different from classical user analysis, querying
and navigation/browsing.

A second limitation concerns to the scalability of debugging problem. It is hard
to manage visual representations of large ontologies, although a broad spectrum
of tools has been designed [14]. It is sometimes sufficent to locate which small
portion of the ontology supports the anomaly. This task can be facilitated by
Automated Reasoning Systems (ARS). ARS are useful both for debugging on-
tologies [1] [2][27] (although several foundational problems exist [4]), and for the
computer-assisted evolution of robust ontologies [6] [7]. If an ARS find a proof
of an anomalous result, it can recover an argument from the proof. An argument
is a pair formed by a consistent portion of the KB and the entailed result (an
ontological argument). In this case, it seems natural to consider the repairing
of the self argument to cut such inference [3]. The argument is often a very

Visual Ontology Cleaning 319

small portion of the ontology, and therefore it is easily represented. Despite its
modest size, it provides more useful information about the anomaly than the
full ontology. Furthermore, the reparation is model-based. That is, the user keep
in mind the intended model that ontology represents, and this model induces
the changes. Therefore, argument repairing is a relatively easy task. Thus, for
the pourposes of this paper, we might consider the ontological argument as the
anomalous ontology.

In this paper we investigate some KR issues behind the sound mereotopologi-
cal representation of the conceptualization induced by small ontologies (namely
the mentioned ontological arguments) [3]. The intended aim of such representa-
tion is the understanding and repairing of ontologies. Specifically, those consid-
ered as anomalous (although consistent) due to errors in the concept structure.
In this paper the spatial representation and algorithmic repairing are described;
we do not describe here the (future) implementation. The advantage of this ap-
proach is that visual reparation stage hides formal semantics that supports the
change, facilitating in this way its use by non experts.

The structure of the paper is as follows. The next section introduces a well-
known mereotopological approach to qualitative spatial reasoning. Section 4 is
devoted to study whether the Mereotopological reasoning can be interpreted as
an abstract metaontology. It is proved, using logical types (sect. 3) that such
interpretation does not support the work with instances inaccurately classified.
In sections 5,6 we suggest new approachs based on the representation of frontiers
and vague regions, respectively. The paper concludes with some closing remarks
about the presented framework.

2 Mereotopology and First Cognitive Principle

The thesis that supports this paper is the following principle

Main Cognitive Principle (MCP): If we aim to use spatial reasoning for
cleaning ontologies, we have to provide a theory on spatial entities for translat-
ing the impact of spatial arrangements into revisions of the ontology source.

In order to satisfy the MCP, a theory on Qualitative Spatial Reasoning (QSR)
has to be selected. In this way, the following sub-principle is choosen:

First Cognitive Principle (CP1): The concepts of a conceptualization as-
sociate to a clear ontology can be topologically represented by means of regular
non-empty regions.

That is, there is a model of the ontology whose universe is the bidimensional
or tridimensional space, and that model interprets concept symbols as regions.
It is evident that the represented knowledge will depend of topological relations.
The starting-up of CP1 needs of a robust theory to reason with spatial regions.

320 J. Borrego-Dı́az and A.M. Chávez-González

DC(x, y) ↔ ¬C(x, y) (x is disconnected from y)
P (x, y) ↔ ∀z[C(z, x) → C(z, y)] (x is part of y)
PP (x, y) ↔ P (x, y) ∧ ¬P (y, x) (x is proper part of y)
EQ(x, y) ↔ P (x, y) ∧ P (y, x) (x is identical with y)
O(x, y) ↔ ∃z[P (z, x) ∧ P (z, y)] (x overlaps y)
DR(x, y) ↔ ¬O(x, y) (x is discrete from y)
PO(x, y) ↔ O(x, y) ∧ ¬P (x, y) ∧ ¬P (y, x) (x partially overlaps y)
EC(x, y) ↔ C(x, y) ∧ ¬O(x, y) (x is externally connected to y)
TPP (x, y) ↔ PP (x, y) ∧ ∃z[EC(z, x) ∧ EC(z, y)] (x is a tangential prop. part of y)
NTPP (x, y) ↔ PP (x, y) ∧ ¬∃z[EC(z, x) ∧ EC(z, y)] (x is a non-tang. prop. part of y)

Fig. 1. Axioms of RCC

a b a b a b
a

b b

a

PO(a,b) TPPi(a,b)EC(a,b) TPP(a,b) NTPP(a,b) NTPPi(a,b)DC(a,b) EQ(a,b)

a

b
a ba b

Fig. 2. The relations of RCC8

Aditionally, the theory must facilitate the knowledge interchange between the
ontology and spatial models.

The selected theory is the well known Region Connection Calculus (RCC) [13].
RCC is a mereotopological approach to QSR; it describes topological features of
spatial relationships. It has been used in several subfields of AI, for example, in
GIS and spatial databases [24] [16].

In RCC, the spatial entities are non-empty regular sets. The ground relation
is the connection, C(x, y), with intended meaning: “the topological closures of x
and y intersect”. The basic axioms of RCC are

∀x[C(x, x)] ∀x, y[C(x, y) → C(y, x)]

and a set of definitions on the main spatial relations (fig. 1), jointly with another
set of auxiliary axioms (see [13]).

The set of binary relations formed by the eight jointly exhaustive and pairwise
disjoint (JEPD) relations given in figure 2 is denoted by RCC8. If this set is
thought as a calculus for Constraint Satisfaction Problems (CSP), every set
of basic relations is considered. This calculus has been deeply studied by J.
Renz and B. Nebel in [26]. Other interesting calculus is RCC5, based on the set
{DR, PO, PP, PP i, EQ}. Roughly speaking, the main difference between RCC5
and RCC8 is that the latter one allows one to represent knowledge that depends
on topological frontiers, while the former one does not allow. The cognitive
impact of this distinction on the spatial representation of a concept has to be
discussed (as we will do, in fact). Nevertheless, it has been empirically constated
that RCC8 is more adequate than RCC5 as a tool for representing topological
relations discriminated by humans [19].

Visual Ontology Cleaning 321

3 Background: 1-Types in Ontologies

For analyzing the first spatial interpretation showed in thi paper types are re-
quired. The use of types is a classic tool in Model Theory (see e.g. [11]). We
succintly describe here their main features. Given a consistent ontology Σ, a
1-type is a (maximal) set of formulas {ϕk(x)}k finitely satisfiable. That is, such
that for any F ⊆ N (F finite), the theory

Σ + {∃x
∧

k∈F

ϕk(x)}

is consistent. The ontology Σ realizes the type if that theory is consistent when
F = N. Equivalently, Σ realizes the type if the theory Σ + {ϕk(a) : k ∈ N} is
consistent, being a a new constant symbol.

For a correct definition of types it has to consider First Order Logic (FOL)
formulas. Types contain formulas that can not be translated into DL. Never-
theless, general FOL formulas are not needed in the proof of Theorem 1 below.
Only the constructors negation and intersection are needed.

The set S(Σ) = {p : p is a type of Σ} is the space of types for Σ. For a
concept C, let SΣ(C) := {p ∈ S(Σ) : C ∈ p} be the set of types containing C. It
will be denoted by [C] if Σ has been previously fixed. It is easy to see that

[C] ∩ [D] = [C ∧ D] and [¬C] = S(Σ) � [C]

Given a model I |= Σ and a an element of its universe, the type of a in I is
[a] = tpI(a) = {ϕ(x) : I |= ϕ(a)}. Fixed I, it will be denoted [a].

4 RCC as a Meta-ontology (I): Strong Interpretation

The use of RCC to visually represent the concepts turns RCC8 into an ontology
on conceptual relations. The idea can be translated in different ways.

The straightforward approach consists in interpreting the concepts as regions
in some model of the theory. Thus, in the strong interpretation, the intended
meaning of C(x, y) is: there exist a common element in the concepts x, y in some
model I of the ontology.

Definition 1. (Strong Interpretation of RCC as a metaontology) Two concepts
C1, C2 of an ontology Σ are Σ-connected (denoted by CΣ(C1, C2)) if

Σ �|= C1 C2 ≡ ⊥

The remaining RCC relations can be interpretated by means of its correspond-
ing definition (depicted in fig. 1). Note that the strong interpretation works on
abstract spatial encodings of Σ. That is, it does not work on a concrete spatial
interpretation of concepts. The following result states a logical limitation of the
strong interpretation of RCC as meta-ontology.

322 J. Borrego-Dı́az and A.M. Chávez-González

Theorem 1. The strong interpretation does not discriminate RCC8 as ontolog-
ical relations between concepts. Concretely, it has the following characterizations:

1. CΣ(C1, C2) ⇐⇒ SΣ(C1) ∩ SΣ(C2) �= ∅
2. DCΣ(C1, C2) ⇐⇒ SΣ(C1) ∩ SΣ(C2) = ∅
3. PΣ(C1, C2) ⇐⇒ SΣ(C1) ⊆ SΣ(C2)
4. PPΣ(C1, C2) ⇐⇒ SΣ(C1) � SΣ(C2)
5. EQΣ(C1, C2) ⇐⇒ Σ |= C1 ≡ C2.
6. OΣ(C1, C2) ⇐⇒ CΣ(C1, C2)

7. POΣ(C1, C2) ⇐⇒
{

SΣ(C1) ∩ SΣ(C2) �= ∅ ∧ SΣ(C1) �⊆ SΣ(C2)∧
∧ SΣ(C2) �⊆ SΣ(C1)

8. DRΣ(C1, C2) ⇐⇒ DCΣ(C1, C2)
9. If C1, C2 and R ∈ {EC, TPP, NTPP, TPPi, NTPPi}, then ¬RΣ(C1, C2).

Proof. Let us only show three cases (the complete proof appears in [10]).

(1) By definition, CΣ(C1, C2) means Σ �|= C1 C2 ≡ ⊥. Let I be a model whith
C1

I ∩ C2
I �= ∅. By interpreting a new constant a as an element of the inter-

section, it certifies that Σ ∪ {(C1 C2)(a)} is consistent. In fact,

[a] ∈ [C1 C2]

therefore, [C1 C2] �= ∅. Hence it holds SΣ(C1) ∩ SΣ(C2) �= ∅. The converse
is trivial: if p ∈ SΣ(C1)∩SΣ(C2), any element realizing this type in a model
I is an element of C1

I C2
I . Thus, CΣ(C1, C1).

(3) Assume proved (1) and (2). By definition of P , PΣ(C1, C2) means

∀C3 (SΣ(C3) ∩ SΣ(C1) �= ∅ → SΣ(C3) ∩ SΣ(C2) �= ∅) (†)

We proceed to show that this condition is equivalent to SΣ(C1) ⊆ SΣ(C2)
(thus, (3) will be proved):

It suffices to show that the condition is necessary.
Let us consider p ∈ SΣ(C1) (that is, C1 ∈ p). Suppose, contrary to our
claim, that p �∈ SΣ(C2). Hence C2 �∈ p. Since p is maximal, ¬C2 ∈ p.
Therefore, C1 ∈ p and ¬C2 ∈ p, thus

p ∈ SΣ(C1) ∩ SΣ(C1 ¬C2)

Then it follows that SΣ(C1) ∩ SΣ(C1 ¬C2) �= ∅. Consequently, by (†)

SΣ(C2) ∩ SΣ(C1 ¬C2) �= ∅

From this, we obtain p′ ∈ [C1 ¬C2] and p′ ∈ [C2]. This is impossible
because {C1¬C2, C2} can not be contained in a type (it is inconsistent).

(5) Suppose proved from (1) to (4). By definition, EQΣ(C1, C2) is

PΣ(C1, C2) ∧ PΣ(C2, C1)

By (3), this is equivalent to SΣ(C1) ⊆ SΣ(C2) and SΣ(C2) ⊆ SΣ(C1).
Therefore SΣ(C1) = SΣ(C2).
Finally, the last condition is equivalent to Σ |= C1 ≡ C2. It is trivial to see
that it is sufficient. Let us see that it is necessary:

Visual Ontology Cleaning 323

MaleMale
Retraction

Region of
vague belonging

Male

RuPaul RuPaul RuPaul

Fig. 3. Two kinds of representation of a problematic instance in the frontier (left, right)
and solving by retraction the first one (middle) (right)

Let I |= Σ and a some realization of C1 in I, I |= C1(a). Thus,

[a] = {φ : I |= φ(a)} ∈ SΣ(C1)

So [a] ∈ SΣ(C2). Therefore, I |= ∀x(C1(x) → C2(x)). In DLs, I |= C1 	
C2. Similarly, I |= C2 	 C1 holds. Thus, Σ |= C1 ≡ C2.

It sould be pointed out that the above interpretation might be not usable in
practice. The connection between concepts is based on entailment. Therefore, it
can have high algorithmic complexity when we deal with expressive description
logics (the consistency of concepts and, hence, satisfiability, is EXPTIME-hard in
ALC, cf. [8]). Strong connection reduces to subsumption (hence to a satisfiability
problem):

CΣ(C1, C2) if and only if Σ �|= C1 	 ¬C2

Theorem 1 says that, thinking RCC as a metaontology, this theory can not
represent frontier-sensitive knowledge. Nevertheless, sometimes it seems cogni-
tively natural to consider the frontier of a concept as formed by elements in
which the user has not confidence on its correct classification in the concept.
This can occur when the user works with a notion, a rough idea of the concept
that attempts to specify. The notion becomes in a concept when its behavior is
constrained by new axioms that relate it with the former concepts. By allocating
the problematic instances near of the frontier it will be easy to discard them by
a simple topological movement (a retraction, see fig. 3).

5 RCC as Meta-ontology (II): Weak Interpretation

As it has been commented, strong interpretation can be not advisable due to
its computational complexity for ontological arguments of larger size. Other
limitation is that our cognitive capability is reduced to RCC5. In this section
a new interpretation is introduced. This is based on the following idea: if it
were possible to represent RCC8-relations in visual encodings, the topological
frontiers of the regions could be endowed of cognitive features. The following
principle is useful for both the weak interpretation defined bellow and the vague
interpretation defined in the next section (see figure 3).

324 J. Borrego-Dı́az and A.M. Chávez-González

Second Cognitive Principle (CP2): The frontier of a spatial interpretation
of a concept C represents the individuals with doubtful membership to C.

The ontology RCC has been used as formal support for CP2 in ontology
cleaning [3]. The idea is based on the translation of relations between concepts
into spatial relationships among spatial representations of these concepts. It is, at
the same time, based on studies about the relation between logical consistency of
Constraint Satisfaction Problems in RCC and spatial consistency [25]. The main
step of the cited cleaning cycle consists in a translation of logical information
on conceptual relations of the ontology into a CSP on spatial relations. Solving
this CSP, a spatial encoding of conceptual relations is obtained. This approach
is useful to repair arguments suffering anomalies due to the conceptualization.
It works with spatial interpretations.

Definition 2. A spatial interpretation I of Σ is a interpretation in the lan-
guage of Σ, such that I : concepts(Σ) ∪ indiv(Σ) → Ω, where Ω is a T3
connected topological space such that I |= Σ and for each C ∈ concepts(Σ), I(C)
is an open regular set in Ω and for each a ∈ indiv(Σ), I(a) is a point.

A spatial model of Σ is a spatial interpretation which is a model of Σ.

The following theorem guarantees that the weak interpretation is useful for
analysing knowledge bases in DL, since it preserves the consistency.

Theorem 2. [10] The CSP associate to Σ is spatially consistent if Σ is consis-
tent.

Moreover, it is possible to obtain a spatial model on the plane formed by polyg-
onal regions [25].

Once formalized the notion of spatial model, spatial arrangements can be
formally justified and classified [10]. In figure 4 we present a simple example
of visual repairing (of the ontology of Figure 7, left) following a cleaning cycle
presented in [3] (see fig. 6). Note that, although one can think that the ontology
source is correct, it is assumed that the end-user thinks it is anomalous (he
thinks that it is an ontological argument that deficently classifies to Rupaul).
The cycle is based on the following stages:

1. First, it builds a constraint satisfaction problem (CSP) on the spatial rela-
tional calculus RCC8 (or RCC5). The problem is solved obtaining a consis-
tent scenario, represented in 2D. Facts of the Abox are added as points.

2. The user is requested to make reticular or topological arrangements on the
graphical representation. Reticular arrangements represent refinements of
relationships between concepts, and topological arrangements imply substi-
tution of a relationship by another one, disjoint with the former one but
cognitively near of that. The user must lastly think that she/he has a fair
RCC8(5) representation. This gives a table of spatial constraints on notions
of the provisional ontology.

3. A translation from RCC into DL is applied. In the resulting ontology, some
relationships have changed and new concepts may have been induced.

Visual Ontology Cleaning 325

Fig. 4. Spatial representation of an anomalous argument (left) and the solution pro-
posed (right)

Man

Female

Rupaul

Man

Female

N
Man Female
(Rupaul)

Fig. 5. New Notion induced. The user has to interpret/discard it, because it transforms
DRΣ(Man, Female) into POΣ(Man, Female)

4. Finally, the user interprets (or discards) the new objects (individuals or con-
cepts) that the translation may induce (see Fig. 5).

The result of the process is a new ontology modified according to the prefer-
ences of the user. The impact of this arrangement on the ontology is shown
in fig. 7 (right). Furthermore, in complex or huge ontologies, it is convenient
to use, for cleaning tasks, other relaxed spatial interpretations. Since the ontol-
ogy we are representing is regarded as defective, it is possible to make a spatial
characterization less detailed than the offered one by the CSP [3].

There is a natural relationship between strong and weak interpretations.

Theorem 3. [10] The following conditions are equivalent:
1. CΣ(C1, C2)
2. There is a spatial interpretation I of Σ such that I |= C(C1, C2).

6 RCC as Meta-ontology (III): Vague Interpretation

Strong and weak interpretation work with precise regions. In both cases, the
interpretation of C is a subset. The vague interpretation deals with the spatial
interpretation of the concepts by vague regions. A vague region can be repre-
sented by means of two regular regions although there are other options such as
egg-yolk [12], topological spaces with pulsation [10], rough sets, etc.

326 J. Borrego-Dı́az and A.M. Chávez-González

Data
source

Ontology+ source
Data

+ Ontology
New

Knowledge Base

<T,A>

Provisional

Base
Knowledge

New
Knowledge
BaseStep 1: Mereotopological Translation

Step 2: Refinements on the spatial model

 Interest of induced
 the user:

 concepts and new
 facts

Step 4: Interview with

Step 3: Translation to a KB

Fig. 6. Visual Ontology Cleaning Cycle [3]

In order to work wiht vague regions, a robust extension of RCC ([6, 7, 10]) is
needed. The extension needs of the re-interpretation of the ontology. In figure
8 we present one of the seven possible robust extensions of the ontology RCC
given in [6]. The interpretation is based on pulsation. A pulsation in a topological
space Ω = (X , T) is a map that associates to each regular set X a set σ(X) such
that its closure contains the closure of X ; X ⊆ σ(X). In Fig. 8, the topological
interpretation of the new relation I(a, b) is PP (a, b)∧EQ(σ(a), σ(b)) (see Fig. 8,
right). The reasoning of vague regions is based on the following principle:

Third Cognitive Principle (CP3): Given a spatial interpretation I, the re-
gion σ(I(C))\I(C) represents the set of individuals with doubtful membership
to C

In order to apply this principle for visual encoding, it considers the concept
and its approximate definition in the ontology.

From now on, it is assumed that Σ is an unfoldable DL-ontology, that is, the
left-hand sides of the axioms (defined concepts) are atomic and the right hand
sides contain no direct or undirect references to defined concepts.

Definition 3. Let Σ be a DL ontology. The approximate definition according to
Σ is a map σ that associates to any C ∈ concepts(Σ) a DL-formula as follows:

σ(C) =

⎧⎨
⎩

C, if C is a defined concept
{D : C 	 D ∈ Σ}, if C is a primitive concept
�, if C is an atomic concept

Visual Ontology Cleaning 327

T =

Woman � Person � Female
Man � Person � ¬Woman
Father � Man � ∃hasChild.Person
Father � Parent

A =

Father(John)
Man(John)
Female(RuPaul)
Man(RuPaul)
Woman(Ann)
∃hasChild.Person(Ann)

T ′ =

Father � Parent �Man � ¬Female
Female � Person
Woman � Person
Man � Person
Parent � Person
Man ≡ ¬Woman
∃hasChild.Person ≡ Parent
Crossdresser � Female
Crossdresser � ¬Woman
Mother � Parent
AbWoman,¬Woman � Woman � ¬Woman

A′ =

Female(Rupaul), Man(Rupaul)
Father(John), Man(John)
Parent(John), Woman(Ann)
∃hasChild.Person(Ann), Female(Ann)
Woman(cWoman,¬Woman)
¬Woman(cWoman,¬Woman)
NMan�Female(Rupaul)
AbWoman,¬Woman(cWoman,¬Woman)
Mother(Ann)
Crossdresser(RuPaul)

Fig. 7. Ontology before (left) and after the spatial repairing (right)

Two concepts C1, C2 ∈ concepts(Σ), will be said Σ-connected under σ, which
will be denoted by Cσ

Σ (C1, C2), if CΣ(σ(C1), σ(C2)). The formula σ(C1) will be
named the associate notion to C1 in Σ.

The notion is defined for any concept. Nevertheless, in practice, this definition is
not used intensively for atomic concepts (in the analysis of anomalies). It is that
because the undefinition of the notions of an atomic concept can be deliberated:
they are primitive concepts of the ontology (abstract concepts in many cases).
Thus, it is not advisable to force to the user to refine them. The spatial idea
of Σ-connection under σ is obviously that of the topological connection of the
pulsation of sets. Now, σ(C) represents a DL formula associate to a concept C.
Notice that the new connection is related with the previous one:

Cσ
Σ (C1, C2) ⇐⇒ Σ �|= σ(C1) σ(C2) ≡ ⊥

Therefore, given two concepts C1, C2 in the ontology Σ and R ∈ RCC8,

Rσ
Σ(C1, C2) ⇐⇒ RΣ(σ(C1), σ(C2))

However, there is no cognitive reason to consider frontiers in vague regions,
because the undefinition is represented by σ(I(C)) \ I(C). Thus, RCC5 is more
adequate in this case [12]. Starting with Cσ

Σ , it is possible both to classify all the
relative positions between concepts/notions and, in due course, to repair them
by using spatial reasoning preserving consistency [10].

328 J. Borrego-Dı́az and A.M. Chávez-González

C DR

O

P Pi

PP PPi

EC DCPO NTPP TPP EQ TPPi NTPPiI

b

I2

σ(a) σ(b)

a

Fig. 8. A robust ontological extension of RCC by insertion of an uncertain relation
(left) and its spatial interpretation (right)

6.1 Application: Advicement of Visual Repairs

The following principle is actually a working principle for refining specifications.
Its soundness has to be accepted by the user in that application.

Fourth Cognitive Principle (CP4): If the RCC5-relation between spatial
concepts does not agree with that of their corresponding notions, it may be
necessary to adjust the spatial representation in order to ensure the agreement

To illustrate how CP4 can be applied in a simple case, let us consider

Σ =

⎧⎨
⎩

Omnivorous 	 CarnivorousHerbivorous
Carnivorous 	 Animal, Herbivorous 	 Animal
Omnivorous(Bear)

We deduce that POΣ(Carnivorous, Herbivorous) ∧ EQσ
Σ(Carnivorous, Herbi-

vorous).
A simple way to solve this conflict, under the consideration of the user, relies

on adding two constants b1, b2 to accurate the partial overlapping of notions (in
the notion of a concept but not in the other one). In such a way, POΣ(C1, C2)
and POσ

Σ(C1, C2) holds. After this step, the new knowledge base is:

Σ′ =

⎧⎨
⎩

Omnivorous 	 CarnivorousHerbivorous
Carnivorous 	 Animal ¬{b2}, Herbivorous 	 Animal ¬{b1}
Herbivorous(b2), Carnivorous(b1), Omnivorous(Bear)

Therefore, POσ
Σ′(Carnivorous, Herbivorous)∧POσ

Σ′(Carnivorous, Herbivorous).
Graphically, the spatial adjustment consists in inserting two skolem constants

in the spatial encodings of the notions (see Fig. 9, left). The interpretation of
new constants b1, b2 (actually they are Skolem constants) is requested to the
user. There are other more complex cases that imply more complex ontological
revisions (figure 9 shows two examples based on individual insertion).

Visual Ontology Cleaning 329

POΣ(C1, C2)

POσ
Σ(C1, C2)

POΣ(C1, C2) EQσ
Σ(C1, C2)

b2
b1

POΣ(C1, C2)

POσ
Σ(C1, C2)

PP σ
Σ(C1, C2)DRΣ(C1, C2)

a
b1

Fig. 9. Two examples of spatial arrangements based on CP4

6.2 Auxiliary Principles

Once CP4 is applied, an optional principle is useful for nonmonotonic reasoning
on the visual encoding:

Fifth Cognitive Principle (CP5): Once CP4 is satisfied and the visual
repairing is done, analyse whether is sound the following transformation on
the final ontology: C 	 σ(C) ∈ Σ %→ C ≡ σ(C)

CP5 is a completation-based principle that would allow to find a definitional
ontology. That is, it can allow to transform the ontology source into an ontology
which satisfies most of definitional principles given in [5]. However, the logical
categoricity is weakened by some sort of spatial categoricity.

7 Closing Remarks

There exist a great number of methods for visual representation of ontologies,
supporting a variety of tasks such as data analysis and queries ([14], [15]). How-
ever these works are mostly focused on visual representation and they lack both
inference mechanisms and formal semantics. Unlike such visual encodings, RCC8
(RCC5) representations outlined here operate beyond just primarily mapping the
ontology information/conceptualization structure. RCC8-based spatial encoding
provides formal semantics where spatial arrangements mean ontology revision.
Moreover, the encoding stablishes a correspondence between the conceptualiza-
tion implicit in the Ontology and a realm well known to the user. We described
several spatial encodings based on different mereotopological interpretations of
the ontologies. The spatial encoding are a sort of concept map [18] (because it
identifies the interrelationships among concepts) enhanced with sound reason-
ing on the representation. Furthermore, we exploit logical features of RCC to
analyse the impact of revision on the self ontology.

330 J. Borrego-Dı́az and A.M. Chávez-González

It is worth pointing out that it would be possible for that anomaly to come
from other reasons different from the conceptualization. Future will be focused
on mereotopological encodings of roles, in order to assist the user in the repair
of anomalous arguments caused by roles. This phase is essential prior to the
full implementation of a VOC-system. Finally, note that the visual encoding
can be unmamnageable for medium size ontologies. Our reparation method is
argumentative (that is, it does not use representations of the whole ontology).
However, if we want a whole representation, it would be interesting to adapt
the spatial semantics to work with other visual encodings as the hyperbolic
plane [20].

References

1. J. A. Alonso-Jiménez, J. Borrego-Dı́az, A. M. Chávez-González and J.D. Navarro-
Maŕın, A Methodology for the Computer-Aided Cleaning of Complex Knowledge
Databases. Proc. 28th Conf. of IEEE Industrial Electronics Soc. IECON 2002, pp.
1806-1812, 2003.

2. J. Alonso-Jiménez, J. Borrego-Dı́az, A. M. Chávez-González, M. A. Gutiérrez-
Naranjo and J. D. Navarro-Maŕın, Towards a Practical Argumentative Reasoning
with Qualitative Spatial Databases, 16th Int. Conf. on Industrial & Eng. Appl. of
Artificial Intelligence and Expert Systems IEA/AIE 2003, LNAI 2718, Springer,
2003, pp. 789-798.

3. J.A. Alonso-Jiménez, J. Borrego-Dı́az, A. M. Chávez-González, Ontology Cleaning
by Mereotopological Reasoning. DEXA Workshop on Web Semantics WEBS 2004,
pp. 132-137 (2004).

4. J. A. Alonso-Jiménez, J. Borrego-Dı́az, A. M. Chávez-González and F. J. Mart́ın-
Mateos, Foundational Challenges in Automated Data and Ontology Cleaning in
the Semantic Web, IEEE Intelligent Systems, 21(1):42-52 (2006).

5. B. Bennett, The Role of Definitions in Construction and Analysis of Formal On-
tologies, Logical Formalization of Commonsense Reasoning (2003 AAAI Spring
Symposium), 27-35, AAAI Press, 2003.

6. J. Borrego-Dı́az and A. M. Chávez-González, Extension of Ontologies Assisted
by Automated Reasoning Systems, 10th Int. Conf. on Computer Aided Systems
Theory, EUROCAST 2005, LNCS 3643, pp. 247-253, Springer, 2005.

7. J. Borrego-Dı́az and A. M. Chávez-González, Controlling Ontology Extension by
Uncertain Concepts Through Cognitive Entropy, Proc. of ISWC’05 Workshop on
Uncertainty Reasoning for the Semantic Web, pp. 56-66 (2005).

8. Calvanese, K., de Giacomo,G., Lenzerini, M., Nardi, D. Reasoning in Expressive
Description Logics. In Alan Robinson y Andrei Voronkov (eds.) Handbook of Au-
tomated Reasoning, pp. 1581-1634 Elsevier Science Pub. (2001).

9. S. Card, J. Mckinlay and B. Shneiderman (eds.) Readings in Information Visual-
ization: Using Vision to Think, Morgan Kauffman, 1999.

10. A. M. Chávez-González, Automated Mereotopological Reasoning for Ontology De-
bugging (spanish), Ph.D. Thesis, University of Seville, 2005.

11. C.C. Chang, H.J. Keisler, Model Theory, North Holland, 1977.
12. A.G. Cohn and N.M. Gotts, The ’Egg-Yolk’ Representation of Regions with In-

determinate Boundaries in P. Burrough and A. M. Frank (eds), Proc. GISDATA
Specialist Meeting on Geographical Objects with Undetermined Boundaries, GIS-
DATA Series, vol. 3, Taylor and Francis, pp. 171-187 (1996).

Visual Ontology Cleaning 331

13. A. G. Cohn, B. Bennett, J. M. Gooday and N. M. Gotts. Representing and Rea-
soning with Qualitative Spatial Relations about Regions. chapter 4 in O. Stock
(ed.), Spatial and Temporal Reasoning, Kluwer, Dordrecth, 1997.

14. C. Fluit, M. Sabou, F. Harmelen. Ontology-based Information Visualization, in V.
Geroimenko, C. Chen (eds.), Visualizing the Semantic Web. Springer (2003).

15. C. Fluit, M. Sabou, F. Harmelen. Supporting User Tasks Through Visualization of
Light-weight Ontologies, in S. Staab and R. Studer (eds.), Handbook on Ontologies
in Information Systems, Springer-Verlag (2003).

16. M. Grohe and L. Segoufin, On first-order topological queries, ACM Trans. Comput.
Log. 3(3) (2002) pp. 336-358.

17. I. Horrocks, D.L. McGuinnes, C. A. Welty. Digital Libraries and Web-Based In-
formation Systems. In F. Baader et al. (ed.) The Description Logic Handbook, pp.
436-459. Cambridge University Press (2003).

18. B. Gaines, M. Shaw, Concept Maps as Hypermedia Components, Int. Journal of
Human-Computer Studies 43(3):323-361 (1995).

19. M. Knauff, R. Rauh and J. Renz, A Cognitive Assessment of Topological Spatial
Relations: Results from an Empirical Investigation, Proc. 3rd Int. Conf. on Spatial
Inf. Theory (COSIT’97), LNCS 1329, 193-206, Springer-Verlag, Berlin (1997).

20. J. Lamping, R. Rao, and P. Pirolli. A focus + context technique based on hyperbolic
geometry for visualizing large hierarchies, ACM Conference on Human Factors in
Computing Systems (CHI’95) (1995).

21. Y. Mao, Z. Wu, H. Chen, X. Zheng, An Interactive Visual Model for Web Ontolo-
gies, Proc. Knowl. Eng. Systems KES 2005, LNAI 3862, pp. 866-872 (2005).

22. H. Mizen, C. Dolbear and G. Hart, Ontology Ontogeny: Understanding How an On-
tology is Created and Developed, Proc. First International Conference on Geospa-
tial Semantics (GeoS 2005), LNCS 3799, pp. 15,29, 2005.

23. F. Murtagh, T. Taskaya, P. Contreras, J. Mothe and K. Englmeier, Interactive
Visual Interfaces: A Survey, Artificial Intelligence Review 19:263-283, 2003.

24. C. Papadimitriou, D. Suciu and V. Vianu, Topological Queries in Spatial Data-
bases, J. Computer System Sci. 58 (1):29-53 (1999).

25. J. Renz. A Canonical Model of the Region Connection Calculus. Proc. 6th Int.
Conf. on Principles of Knowl. Rep. and Reasoning (KR’98) (1998).

26. J. Renz, B. Nebel. On the Complexity of Qualitative Spatial Reasoning: A Maxi-
mal Tractable Fragment of the Region Connection Calculus, Artificial Intelligence
108(1-2): 69-123 (1999).

27. D. Tsarkov, A. Riazanov, S. Bechhofer, and I. Horrocks, Using Vampire to Rea-
son with OWL. 2004 Int. Semantic Web Conference (ISWC 2004), LNCS 3298
Springer, 2004, pp. 471-485.

Rules with Contextually Scoped Negation

Axel Polleres1,2, Cristina Feier1, and Andreas Harth1

1 Digital Enterprise Research Institute Innsbruck, Austria and Galway, Ireland
2 Universidad Rey Juan Carlos, Madrid, Spain

axel@polleres.net, {cristina.feier, andreas.harth}@deri.org

Abstract. Knowledge representation formalisms used on the Semantic
Web adhere to a strict open world assumption. Therefore, nonmonotonic
reasoning techniques are often viewed with scepticism. Especially nega-
tion as failure, which intuitively adopts a closed world view, is often
claimed to be unsuitable for the Web where knowledge is notoriously
incomplete. Nonetheless, it was suggested in the ongoing discussions
around rules extensions for languages like RDF(S) or OWL to allow
at least restricted forms of negation as failure, as long as negation has
an explicitly defined, finite scope. Yet clear definitions of such “scoped
negation” as well as formal semantics thereof are missing. We propose
logic programs with contexts and scoped negation and discuss two possi-
ble semantics with desirable properties. We also argue that this class of
logic programs can be viewed as a rule extension to a subset of RDF(S).

1 Introduction

The current Web is a huge network linking between different sources of data and
knowledge, formatted for human users. Such linked knowledge bases become
particularly interesting when it comes to discussions about the next generation
of the Web, the Semantic Web. Technologies like RDF(S) [5] and OWL [16]
shall allow us to describe meta-data and the structure of such meta-data in an
unambiguous way using standardized vocabularies, also called ontologies. These
ontologies let you infer additional knowledge about the meta-data published on
the Web. Meta-data descriptions and ontologies are to be distributed over the
Web just like current Web pages as machine-readable knowledge bases accessible
via URIs. Different approaches exist for combining such meta-data from different
sources. A common approach is to import and/or simply reuse the vocabulary of
one ontology in the definition of another, for instance using common namespaces
or OWL’s import mechanism. A more fine-grained approach is in the form of so-
called mappings or bridge rules [4] that connect entities from different knowledge
bases. Eventually, standardized rule languages, which allow for the definition of
such mappings or other combinations of meta-data in general are the natural
next evolution step on W3C’s agenda. Still, there are many unresolved issues
around the proper integration of ontology language recommendations such as
RDFS and OWL with existing rule languages. For instance, nonmonotonic fea-
tures of such rule languages are viewed with partial scepticism1. In particular,
1 cf. http://lists.w3.org/Archives/Public/public-sws-ig/2004Jan/0040.html

Y. Sure and J. Domingue (Eds.): ESWC 2006, LNCS 4011, pp. 332–347, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Rules with Contextually Scoped Negation 333

it is argued that the use of negation as failure is invalid in an open environment
such as the Web where knowledge is notoriously incomplete. Still, two of the
proposals for rule languages on the Web, namely WRL [1] and SWSL Rules [2],
include negation as failure as a language feature, however leaving critical ques-
tions about the suitability of negation as failure in a Web context open. Recently,
the term “scoped negation” emerged in discussions around this topic, to describe
a restricted form of negation as failure over a closed scope. “Scoped negation as
failure” is also explicitly mentioned as one of the extensions to be investigated
by W3C’s recently established Rule Interchange Format (RIF) working group2.
However, clear definitions of what “scope” and “scoped negation” actually mean
and what the formal semantics for this form of negation should be are missing.

Contributions. In this paper we present a logic programming framework for
the combination of interlinked rule bases on the Web and show how scoped nega-
tion as failure fits in such a framework. A peculiarity of our rule language is that
it allows “open” as well as “closed” rules: On the one hand, universally valid,
open rules shall be allowed which apply to any available statement on the Web.
This is in accordance with RDF and OWL which also allow that several sources
define statements and axioms affecting the same resource.3 On the other hand,
we also define closed rules which are only evaluated with respect to a particular
context, that is a (finite and known set of) web-accessible rule base(s).

We ensure in our language that negation as failure is always “scoped”, i.e. that
the search for failure in a rule body is not depending on any “open” rules. This
way we circumvent the undesirable non-monotonic effects of negation as fail-
ure in open environments such as the Web. Thereby we achieve a weak form of
monotonicity, called “context-monotonicity” which intuitively means that nega-
tion as failure behaves monotonically with respect to the set of web-accessible
rule-bases that an agent is aware of. In order to achieve context-monotonicity
we propose two alternative semantics for sets of rule bases with scoped nega-
tion, namely (a) contextually bounded semantics and (b) contextually closed
semantics. Both semantics are defined in terms of translations to normal logic
programs. Remarkably, these translations make no commitment to a particular
semantics used for negation as failure upfront, be it well-founded or stable, and
allow for direct implementations on top of many existing rule engines which
adopt either of these semantics.

We further demonstrate that our language can be viewed as a rule extension
of (a subset of) RDFS.

Paper Overview. The remainder of this paper is organized as follows: In sec-
tion 2 we illustrate by means of simple examples what we understand by con-
text, “open” and “closed” rules, and queries. We formally introduce the syntax
for logic programs with contexts and scoped literals in section 3.1. We then
define a formal requirement for a proper semantics for such programs called
context-monotonicity. The two alternative semantics fulfilling this requirement

2 cf. http://www.w3.org/2005/rules/wg/charter.
3 Actually, a strong argument why semantics of these languages assume an open world.

334 A. Polleres, C. Feier, and A. Harth

are presented in sections 3.2 and 3.3. We relate our approach to RDF(S) in sec-
tion 4 and slightly extend our notion of scope to unions of contexts in section 5.
Finally, we discuss some related works and draw conclusions in sections 6 and 7.

2 Context, Open Rules and Scoped Negation

In the following, we will give an informal description of our notion of context,
logic programs with open vs. closed rules and introduce our understanding of
scoped negation as failure for such programs. We will base these explanations
on simple examples. The underlying formal definitions are given in section 3.1.

Context. For tracking provenance of a single fact or rule, we associate a context
with each statement. We define a context as the URI of a Web-accessible data
source (i.e. the location where a set of rules and facts is accessible). That means
the context <URI> is associated with all the rules and facts retrieved when you
type URI in your browser.
Rules and Queries. In the context of our rule language, we assume a Web
of logic programs, published at different URIs. In order to illustrate this, we
assume programs describing movies, directors and ratings as shown in Figure 1.
The notation we use is the usual syntax known from e.g. PROLOG systems.

http://www.moviereviews.com/
rated(m1,bad).
rated(X,bad) :- directedBy(X,"Ed Wood"). (*)

http://www.b-movies.com/
rated(m1,classic).
rated(m3,classic).

http://www.polleres.net/
rated(m2,bad). movie(m2).
http://www.imdb.com/
sciFiMovie(m1). hasTitle(m1,"Plan 9 from Outer Space"). directedBy(m1,"Ed Wood").
sciFiMovie(m2). hasTitle(m2,"Matrix Revolutions"). directedBy(m2,"Andy Wachowski").
directedBy(m2,"Larry Wachowski").
sciFiMovie(m3). hasTitle(m3,"Bride of the Monster"). directedBy(m3,"Ed Wood").
movie(X) :- sciFiMovie(X).
...

Fig. 1. Four Programs describing rules and data about movies, directors and ratings

A typical feature which we adopt from RDF is that different sources (contexts)
are allowed to talk about the same resource. This shall allow to draw additional
conclusions from combining contexts. For instance, in our example, three con-
texts http://www.imdb.com/, http://www.moviereviews.com/ and http://www.b-

movies.com/ talk about the same movie m1. A semantic search engine might
gather arbitrary programs like the ones shown in Figure 1 on the Web from
different contexts and allow us to ask queries about particular movies. Queries
can be formalized as rules, e.g.

“Give me movies which are rated as bad” (1)

can be expressed by the following simple rule:

answer(X) :- movie(X), rated(X,bad).

Rules with Contextually Scoped Negation 335

We call a rule like this “open” since it is not restricted to a particular context,
but in principle all movies and ratings at all possible contexts on the Web are
of interest.

Assume that the search engine, which has to evaluate this query is aware of the
contexts http://www.imdb.com/, http://www.moviereviews.com/, http://www.b-

movies.com/, where we would expect m1 and m3 as answers. The easiest and
straightforward way to evaluate such a query then would be to retrieve these
three programs, build the union of all rules and facts and and then evaluate
the resulting logic program with one of the standard techniques. Note that
rated(m3,bad) is inferred by another “open” rule from the combination of two
contexts.

Usually, in such a Web search scenario we would accept incompleteness of
the given answers, since we cannot expect that our fictitious search engine has
complete knowledge about the whole Web. For instance, the search engine might
not be aware of the personal movie reviews of one of the authors published at
http://www.polleres.net/, see Figure 1 and would thus not return m2 as an
answer for query (1). But at least we can be sure that all answers are sound, as
long as programs consist of positive rules only.
Scoped Literals. Recall the “open” rule (*) in http://www.moviereviews.com/

saying that everything directed by Ed Wood is bad. If we want to determine
the provenance of a certain atom (i.e., “to which context does a particular fact
belong to“) this is easy for facts such as rated(m1,bad). However, we have
certain difficulties to determine the provenance of atoms inferred by (open)
rules via information from other contexts. For instance, does the inferred atom
rated(m3,bad) “belong” to context http://www.moviereviews.com/ or con-
text http://www.imdb.com/ (which was needed to satisfy the body of the rule)?
In this paper, we will adopt the view that all facts inferred by rules belong to
the context of the rule that triggered the new fact.4

Now that we have given an informal definition of provenance of atoms inferred
from distributed logic programs, we can ask queries about facts restricted to a
certain context, like for instance:

“Give me movies which are rated as bad by
http://www.moviereviews.com/” (2)

We will use the following notation for such a query/rule in this paper:

answer(X) :- movie(X), rated(X,bad)@http://www.moviereviews.com/.

where we call the atom rated(bad)@http://www.moviereviews.com/ a scoped
literal. By making the context explicit, we do no longer need to bother about
information concerning ratings from other sources such as the ones from http://

www.polleres.net/.
However, we still have not solved the problem about incomplete informa-

tion here since the atom rated(bad)@http://www.moviereviews.com/ again
4 Note that an atom can belong to several contexts. We remark that there are more

involved proposals for handling provenance of data on the Semantic Web, see e.g. [7].

336 A. Polleres, C. Feier, and A. Harth

depends on an open rule; i.e., as soon as the search engine would become aware
of an additional source saying that a particular other movie was directed by Ed
Wood it could again infer additional information from the rule (*) in Figure 1.
This problem could be solved by making rule (*) more explicit. If we know that
IMDB has complete knowledge about all movies by Ed Wood we could replace
the rule (*) by its closed off version, adding a scope just as we did for query (2):

rated(X,bad) :- directedBy(X,"Ed Wood")@http://www.imdb.com. (**)

Now, under the assumption that http://www.imdb.com stores all directedBy(·)
atoms as explicit facts not depending on any other (open) rules, we can indeed
be sure to get complete information about the ratings for query (2).

The example shows that one has to be aware that scoped literals do not solve
the problem of incompleteness per se; completeness is only achievable if none of
rules which the scoped literal depends on contains open literals. As it turns out,
this issue becomes more severe in combination with negation as failure.
Scoped Negation as Failure. Let us now focus on negative queries such as:

“Give me movies which are not ranked as bad” (3)

Such queries can be expressed in a rule language with negation as failure (not):

answer(X) :- movie(X), not rated(X,bad).

However, here we end up in a dilemma due to the inherent non-monotonicity
of negation as failure: Unless we have complete information about any rating
ever published, we can never be sure to find correct answers to such a query.

What we aim at in this paper is a more cautious form of negation, i.e. scoped
negation as failure, which allows us to ask negative queries with explicit scope,
such as:

“Give me movies which are not ranked as bad by moviereviews.com ” (4)

Now, if the ratings on moviereviews.com solely depend on facts and “closed”
rules such as (**), we can safely return correct answer. We will give a formal
definition of this condition, which we call contextual boundedness, in section 3.1.
For instance, contextual boundedness is violated by the combination of queries
such as (4) and open rules such as (*).

Contextually bounded use of scoped negation as failure intuitively guarantees
that even if we become aware of new contexts with additional information, we
do not need to retract any query answers. We will call this desirable property
context-monotonicity in the following.

3 Programs with Context and Scoped Negation

In this section, we provide the formal basis for the rule and query language
informally introduced in section 2. We will allow to express contextually scoped
queries and rules in a way that guarantees sound answers despite of incomplete

Rules with Contextually Scoped Negation 337

knowledge and the inherent non-monotonicity of negation as failure. We propose
two approaches to achieve this, either (a) we syntactically guarantee contextually
bounded use of negation, or (b) we close off open rules referenced by scoped
literals. We will define semantics for both these options by means of appropriate
transformations to normal logic programs which then can be evaluated using one
of the standard semantics for negation as failure.

3.1 Definitions

Definition 1 (Scoped Atoms, Literals). If t1, . . . , tn are constants or vari-
ables and c is a constant then c(t1, . . . , tn) is an atom. A scoped atom is of the
form a@u where u is a URI and a is an atom.5 A literal is either

– a (possibly scoped) atom – positive literal
– or a negated scoped atom of the form not t@u – negative literal,

i.e. all negative literals must be scoped.

Note that we do not make a distinction between constant symbols and predicate
symbols, since the usage is clear from the syntax. Neither do the constants and
URIs necessarily need to be disjoint.

Definition 2 (Program). A program P is a set of rules of the form

h : − l1, . . . , ln.

Where h is an unscoped atom, and l1, . . . ln are literals and all variables occurring
in h or in some negative body literal do also appear in a positive body literal. Each
program P has a URI p and we make the assumption that each program can be
accessed via its URI. The URI p is also called context of P .

The informal semantic meaning of scoped literals is that literals referenced via
an external context represent links to other programs accessible over the Web.

Definition 3 (Link, Closure). Let P, Q be programs with names p and q,
respectively. We say that program P links to a program Q if P contains a scoped
body literal (not) a@q (direct link) or P contains a rule with a scoped body literal
(not) a@r such that the program R dereferenced by r links to Q. Given a set of
Programs P we denote by the closure Cl(P) the set of all programs in P plus all
programs which are linked to programs in P.

Definition 4 (Contextual Boundedness). A rule is contextually bounded
iff each negative body literal not a@p is contextually bounded.

A scoped literal (not) a@p is called contextually bounded, iff each rule r in
the program dereferenced by name p with head h where h is unifiable with a is
strongly contextually bounded.
5 Note that we do not allow variables or parameterized contexts such as for example

in TRIPLE[8] or FLORA-2 [13].

338 A. Polleres, C. Feier, and A. Harth

A rule is strongly contextually bounded iff it has either an empty body or
each body literal is scoped and contextually bounded.

A program is (strongly) contextually bounded if each of its rules is (strongly)
contextually bounded.

Intuitively, contextual boundedness means that a literal is (recursively) only
depending on scoped literals. From our above definition, we see that we can
separate each program into its “open” and “closed” parts:

Definition 5. Let P be a program, then we denote by &P ' the program only
consisting of the strongly contextually bounded rules in P and by (P) the program
consisting only of not strongly contextually bounded rules in P .

Intuitively, &P ' denotes a set of rules which is based only on a set of rules closed
over explicitly given contexts, whereas (P) defines all “open” rules in P . This
means that &P ' is “self-contained”, i.e., independent of the contexts which the
agent (in our example the search engine) is aware of, whereas (P) is not.

Next, let us define queries before we describe an intuitive requirement which
we would expect from the proper semantics for respective query answers:

Definition 6 (Query, Query Answer). We denote by CnS(P) the set of
consequences from a set of programs P wrt. semantics S. A query q is a special
context consisting of a single rule:

answer(x1,...,xn) :- l1, ..., lk.

where x1, . . . xn are all variables and answer is a special predicate symbol not
allowed in other contexts. We define a query answer wrt. an agent A as a tuple
of constants (c1, . . . cn), such that answer(c1,...,cn)∈ CnS(PA∪ q), where PA

denotes the set of contexts which A is aware of.

Context-Monotonicity. Let us consider we ask a query q to a search engine A.
Here, the set PA is unknown to the user and only known to A. Although A might
gather tremendous amounts of URIs, i.e. programs, in an open environment such
as the Web, one can never be sure that A has complete knowledge. We would
expect the following intuitive requirement fulfilled by our semantics:

Whatever query you ask to an agent A, the results should return a maximum
set of answers which are entailed by the semantics with respect to the contexts
known to A. Additionally, the semantics we choose should guarantee, that in
case that A becomes aware of additional knowledge (i.e. programs), none of the
previous answers need to be retracted. Thus, we require that our semantics is
monotonic with respect to the addition of contexts i.e.

P ⊆ R ⇒ CnS(P) ⊆ CnS(R)

where P ,R are sets of contexts. We will further refer to this requirement as
context-monotonicity. Note that context-monotonicity can be viewed as sound-
ness of query answers: Although completeness can never be achieved, due to

Rules with Contextually Scoped Negation 339

openness of the environment, at least we want to be sure that our semantics only
returns sound answers.6 The claim for context-monotonicity may be viewed as
contradictory to the inherent non-monotonicity of negation as failure. However,
the intention here is as follows: Negation as failure is allowed, as long as it is
restricted to an explicit scope. This view corresponds to the usual use of nega-
tion in a database sense where a closed world assumption is made rather than
meaning negation “by default”. I.e., we allow a closed world view as long as it
is explicit where to close off.

3.2 Contextually Bounded Semantics

In the following, we define the semantics of programs under the assumption that
all programs are contextually bounded, i.e. that no program negatively references
to a contextually unbounded atom. The semantics is defined in terms of a simple
rewriting in two variants, based on the stable and well-founded semantics for logic
programs, respectively. As it turns out, context-monotonicity is guaranteed for
both variants.

For a contextually bounded program p we define a rewriting trCB(p) by re-
placing each rule h :- l1, ..., ln. with the rule h@p :- l1, ..., ln.

Definition 7 (Contextually Bounded Consequences). Let P={p1, . . . , pk}
be a set of programs. Then we define CnCB(P) as follows:
Let PCB =

⋃
p∈Cl(P) trCB(p) ∪ p1 ∪ . . . ∪ pk,then

– Cnsms
CB (P) =

⋂
M(PCB) where M(Π) denotes the set of all stable models[11]

of a program Π, i.e. we define Cnsms
CB (P) by the cautious consequences of

PCB under the stable model semantics.
– Cnwfs

CB (P) = M(PCB) where M(Π) denotes the well-founded model [10] of
program Π.

We now investigate the two semantic variants wrt. context-monotonicity:

Proposition 1. Context-monotonicity holds for Cnsms
CB under the assumption

that all programs are contextually bounded for any set of programs P.

Proof. (sketch) Let us assume that context-monotonicity does not hold, i.e. there
exist programs p, r such that CnCB(p) �⊆ CnCB({p, r}). From this, we conclude
that there exists some atom a in M(pCB) which is not in M(pCB ∪ rCB). By
the working of the stable model semantics we know that this can only be the
case if a depends negatively on some literal in rCB . However, due to the fact
that each negation is scoped and the contextual boundedness assumption, this
would imply that there exists some rule of the form b@ri : −body in rCB which
is satisfied in all stable models of pCB ∪ rCB but not in pCB and which stems
from a strongly contextually bounded rule b : −body in program ri. However,
since then ri would necessarily be in Cl(p) and thus b@ri : −body in pCB we get
a contradiction, because therefore also body solely depends on rules in pCB.
6 Obviously, this only holds under the somewhat idealized assumption that in the

“Web of programs” only trustworthy knowledge providers publish their knowledge.

340 A. Polleres, C. Feier, and A. Harth

By similar arguments we can show:

Proposition 2. Context-monotonicity holds for Cnwfs
CB under the assumption

that all programs are contextually bounded.

A simple counterexample shows that context-monotonicity no longer holds when
the requirement for contextual boundedness is dropped:

p: r:
a :- not b@p. b :- c. c.

Here, the rewriting {p}CB yields:
a :- not b@p. b :- c.
a@p :- not b@p. b@p :- c.

which obviously has a ∈ Cnsms,wfs
CB (p), whereas {p, r}CB would extend the above

program by the facts c. and c@r. such that a �∈ Cnsms,wfs
CB ({p, r}).

The restriction to contextually bounded programs is justified in an open en-
vironment only under the assumption that existing programs once published
under a certain URI do not change and all previously published programs al-
ways remain accessible. Under this assumption, publishing new programs always
needs to be preceded by a check for contextual boundedness. Note that the con-
dition of contextual boundedness was defined with this assumption in mind:
Publishing/adding new programs should not ever break context-monotonicity.
However, obviously contextual boundedness is not stable against changes of sin-
gle programs as the following example shows:

p: r:
a. b :- not a@p.

Here, p is obviously contextually bounded. Upon publication of r contextual
boundedness could be checked and granted with respect to p. However, if one
later on changes p by adding the single “open” rule a :- c. contextual bound-
edness of r would be broken. Unfortunately, such violations can not be checked
upon change of a program, since in an open and decoupled environment p would
not be aware of which other programs link to it.

Thus, in the next section we try to define an alternative rewriting which
is more restrictive in the sense that it allows to infer less consequences under
both the stable or well-founded semantics, but is more resistant against program
changes, since it is independent of contextual boundedness.

3.3 Contextually Closed Semantics

Let p be an arbitrary program, then we define the program trCC(p) by rewriting
each rule h : −l1, . . . , ln. in p to h@p : −l′1, . . . , l

′
n. where

l′i =
{

li in case li is scoped
li@p otherwise

Intuitively, under this semantics the semantics of scoped literals changes to
“(not) a@p is true if and only if a can(not) be derived from p alone”.

Definition 8 (Contextually Closed Consequences). Let P = {p1, . . . , pk}
be a set of programs. Then we define CnCC(P) as follows:
Let PCC =

⋃
p∈Cl(P) trCC(p) ∪ p1 ∪ . . . ∪ pk, then

Rules with Contextually Scoped Negation 341

– Cnsms
CC (P) =

⋂
M(PCC) where M(Π) is the set of all stable models of Π.

– Cnwfs
CC (P) = M(PCC) where M(Π) is the well-founded model of Π.

Context-monotonicity is trivially fulfilled under this translation both in the sta-
ble and well-founded variants, since negation is automatically “closed off” to the
linked contexts only. Note that, in case all programs are contextually bounded
the semantics still does not coincide, but contextually closed semantics is indeed
more restrictive than contextually bounded semantics:

Proposition 3. For any set of contextually bounded programs P

Cnsms,wfs
CC (P) ⊆ Cnsms,wfs

CB (P)

Proof. (sketch) We want to show that: Cnsms
CC (P) ⊆ Cnsms

CB (P) and Cnwfs
CC (P) ⊆

Cnwfs
CB (P), respectively.
Note that by construction for each rule h : −l1, . . . , ln. in &Cl(P)' stemming

from program p there is a rule h@p : −l1, . . . , ln. in PCB ∩PCC . We denote this
set of rules by floor. Note that Lit(floor) is a splitting set [15] for both PCB

and PCC and thus the stable models for both PCB and PCC coincide on floor.
We can argue similarly for the well-founded semantics that the well-founded

models of PCB and PCC coincide on floor, since both 〈floor,PCC \ floor〉 and
〈floor,PCB \ floor〉 are stratified pairs [18].

Moreover, PCB \ floor and PCC \ floor are (due to contextual boundedness)
both positive logic programs modulo stratified input negation for literals from
floor.7 That means that both PCB \ floor and PCC \ floor extend the stable
models (or the well-founded model8) of floor. Moreover, for each stable model
(or the well-founded model) m of floor and each rule h@p : −l′1, . . . l

′
n. which is

satisfied in PCC \floor∪m there is a corresponding rule h@p : −l1, . . . ln. which
is satisfied in PCB \floor∪m. Finally, each of the remaining rules h : −l1, . . . ln.
with an unscoped head in PCC \ floor ∪m is also present in PCB \ floor ∪m.
This proves that proving that the consequences of PCB are a superset of the
consequences of PCC for both the well-founded and the stable semantics.

Indeed, there are consequences under contextually bounded semantics which are
invalid under contextually closed semantics, for instance:

p: r:
a :- b@r. c. b :- c.

Here, the query a?{p} is true with respect to contextually bounded semantics
but not with respect to contextually closed semantics.

This reflects the intuition that contextually closed semantics draws inferences
more cautiously and allow less interferences between programs, but does in trade
not run into problems with contextually unbounded programs.
7 By “input negation” we mean that given the stable models (or well-founded model)

of floor as “input fats” for PCB \ floor and PCC \ floor only these input facts can
occur negatively in rule bodies.

8 Since both well-founded semantics and stable model semantics coincide on stratified
programs, we do not need to treat them separately for the remainder of the proof.

342 A. Polleres, C. Feier, and A. Harth

4 RDF(S) Plus Rules

In the Semantic Web, RDF is currently gaining more and more momentum.
Thus, it is worthwhile to apply our context-aware rule language with scoped
negation on arbitrary knowledge bases, consisting of RDF, RDFS and Logic
Programming style rules with scoped negation distributed over the Web at dif-
ferent URIs. In this section we introduce a straightforward LP-compliant notion
of a subset of RDF and investigate how it interacts with the semantics we have
defined so far. To this end we will define a subset of the RDFS semantics in terms
of open rules. As it turns out, we will need to slightly extend our definition of
scoped literals to make it work. Based on this conclusion we will finally present
a variant of contextually closed semantics in section 5.

We use a simplified syntax of RDF(S) here in terms of logic programming to
show that the major part of RDFS can be understood as a set of facts and rules in a
logic program. As implicit from [12] and partly shown in [8], large parts of RDF(S)
can be embedded in logic programming. To this end, we use logic programs which
express each statement 〈S, P, O〉 by a single atom triple(S,P,O). Almost all of
the RDFS semantics itself can be expressed by the following program

http://www.example.org/rdfs-semantics :
triple(P,rdf:type,rdf:Property) :- triple(S,P,O).
triple(S,rdf:type,rdfs:Resource) :- triple(S,P,O).
triple(O,rdf:type,rdfs:Resource) :- triple(S,P,O).
triple(S,rdf:type,C) :- triple(S,P,O), triple(P,rdfs:domain,C).
triple(O,rdf:type,C) :- triple(S,P,O), triple(P,rdfs:range,C).
triple(C,rdfs:subClassOf,rdfs:Resource):- triple(C,rdf:type,rdfs:Class).
triple(C1,rdfs:subClassOf,C3) :- triple(C1,rdfs:subClassOf,C2),

triple(C2,rdfs:subClassOf,C3).
triple(S,rdf:type,C2) :- triple(S,rdf:type,C1),

triple(C1,rdfs:subClassOf,C2).
triple(C,rdf:type,rdfs:Class) :- triple(S,rdf:type,C).
triple(C,rdfs:subClassOf,C) :- triple(C,rdf:type,rdfs:Class).
triple(P1,rdfs:subPropertyOf,P3) :- triple(P1,rdfs:subPropertyOf,P2),

triple(P2,rdfs:subPropertyOf,P3).
triple(S,P2,O) :- triple(S,P1,O),

triple(P1,rdfs:subPropertyOf,P2).
triple(P,rdfs:subPropertyOf,P) :- triple(P,rdf:type,rdf:Property).

plus the respective axiomatic triples in RDF/RDFS, cf. [12, Sections 3.1 and
4.1]. For simplicity, we ignore XML literals, data types, containers and blank
nodes here. Additional issues related with these features of RDF are out of the
scope of this paper. We can now simply view the above program as a new context
with the URI http://www.example.org/rdfs-semantics .

In order to illustrate the interplay of our semantics with this RDFS formula-
tion, we revisit the examples from section 2 in terms of RDF, see Figure 2.

Our intention is to embed the RDFS semantics as a set of open rules in our
framework. For this, we assume that an agent which answers a query is always
aware of the RDFS context. However, as we will see, this is not enough.

Rules with Contextually Scoped Negation 343

http://www.moviereviews.com/
triple(ex:m1,ex:rate,ex:bad).

http://www.polleres.net/
triple(ex:m2,ex:rate,ex:bad).
triple(ex:m2,rdf:type,movie).

http://www.imdb.com/
triple(ex:m1,rdf:type,ex:sciFiMovie). triple(ex:m1,ex:title,"Plan 9 from Outer Space").
triple(ex:m1,ex:directedBy,"Ed Wood").
triple(ex:m2,rdf:type,ex:sciFiMovie). triple(ex:m2,ex:title,"Matrix Revolutions").
triple(ex:m2,ex:directedBy,"Andy Wachowski"). triple(ex:m2,ex:directedBy,"Larry
Wachowski").
triple(ex:m3,rdf:type,ex:sciFiMovie). triple(ex:m3,ex:title,"Bride of the Monster").
triple(ex:m3,ex:directedBy,"Ed Wood").
triple(ex:sciFiMovie,rdf:subClassOf,ex:movie).
...

Fig. 2. RDF versions of some of the programs from Figure 1

Note that negative literals that depend on RDFS inferences, immediately
cause violations of contextual boundedness. Let us consider the query

“Give me all movies not listed at http://www.imdb.com/” (5)

asked to a search engine aware of contexts http://www.example.org/rdfs-
semantics, http://www.imdb.com/, http://www.moviereviews.com/, and http://
www.polleres.net/, cf. (2). The straightforward formulation of this query

answer(X) :- triple(X,rdf:type,ex:movie),
not triple(X,rdf:type,ex:movie)@http://www.imdb.com/.

violates contextual boundedness because of the dependency between the neg-
ative literal from the query and the following RDFS rule:

triple(S,rdf:type,C2):- triple(S,rdf:type,C1),
triple(C1,rdfs:subClassOf,C2).

Now let us see how the same query is evaluated wrt. the contextually-closed
semantics. We expect the answer to this query to be empty. However, the above-
mentioned RDFS rule which should allow one to derive that ex:m1 and ex:m2
are movies listed by http://www.imdb.com/, will never be applied because of the
working of trCC , and the final answer will be ex:m2.

We extend our syntax by allowing unions of contexts in literal scopes to deal
with this problem, which allows us to reformulate the query above as follows:

“Give me all movies not listed at http://www.imdb.com/, under additional
consideration of http://www.example.org/rdfs-semantics” (6)

which could be written as

answer(X) :- triple(X,rdf:type,ex:movie),
not triple(X,rdf:type,ex:movie)@
{http://www.example.org/rdfs-semantics, http://www.imdb.com/}.

We need to extend trCC to handle unions of contexts in scoped literals , as we
will show in the next section. Note that we do not cover unions of contexts as
an extension of trCB due to the inherent violation of contextual boundedness.

344 A. Polleres, C. Feier, and A. Harth

5 Contextually Closed Semantics with Context Sets

The basic intuition behind extending contextually closed semantics with unions
of contexts in scoped literals is as follows: A literal scoped over a union of contexts
shall be evaluated with respect to and closed over the union of the respective
programs. Thus, we adapt the definition of trCC as follows:

Let P be an arbitrary set of programs, then trCC(P) is defined by rewriting
each rule h : −l1, . . . , ln. in any of the programs in P to h@P : −l′1, . . . , l

′
n. where

l′i =
{

l@R in case li = l@R is a scoped literal with possibly set scope R
li@P otherwise

plus recursively adding trCC(R) for any scoped body literal l@R.
Note that this more general definition is equivalent to the original definition

of trCC despite it per se includes the relevant part of the closure already. That
means, we can also simplify the definition of PCC in Definition 8 as follows:

PCC =
⋃

p∈(P)

(trCC(p) ∪ p)

The remainder of Definition 8 can stay as is for this generalization. As we can
easily verify, query (6) would be correctly answered under this semantics.

6 Related Works

FLORA-2 [13] is a query answering system based on the logic programming
fragment of F-Logic [14], a frame-based syntactic variant of first-order logic
popular for ontology reasoning. FLORA-2’s module mechanism allows a form
of scoped negation as failure using the well-founded semantics. Negative queries
can be posed to a certain module. However, variables can be used in the place of
the module identifier, in which case the scope of the query (negation) is the union
of all the modules registered with the system at that point in time. This rather
unrestricted way for defining scoped negation does not fulfill our monotonicity
criterion with respect to the addition of new modules in the general case. Anyway,
FLORA-2 is a system and per se does not define the semantics of programs
and queries defined on the Web, nor are any assumptions made that modules
need to coincide with contexts (i.e. URIs) in our sense. Implementations of our
transformations on top of FLORA-2 are possible.

N3 [3] is a language for representing RDF rules on the Web. It has a form
of scoped negation as failure and without an explicit notion of context. In N3
negation appears in the form of an infix operator log:notIncludes9 that links
two (possibly complex) formulas and that succeeds whenever the first formula
does not include the second one. However, a formula is not necessarily closed in
our sense and can have infinite size in N3 due to the presence of blank nodes

9 http://www.w3.org/2000/10/swap/doc/Reach

Rules with Contextually Scoped Negation 345

(existentials) in the head of the rules.10 This leads to a possibly infinite search
space for negation as failure, which is undesirable and contradictive with the
requirement of context-monotonicity.

TRIPLE [8] is another logic programming engine particularly tailored for RDF
reasoning and querying with the support of scoping over possibly parameterized
contexts, allowing union, intersection and set difference over contexts. The au-
thors outline that nonmonotonic negation interpreted under the well-founded
semantics can be supported. Since variables are allowed in parameterized con-
texts, similar considerations apply as for FLORA-2.

C-OWL [4] is a proposed extension of OWL by contexts and bridge rules. An
interesting feature of this language is that its semantics makes use of so-called
local model semantics where for each context there exists a local set of models
and a local domain of interpretation. These kinds of semantics are opposed to
the global model semantics where there exists a global model and a global do-
main of interpretation. Global model semantics have the disadvantage that local
inconsistency propagates to the whole, which is not desirable on the Web. Our se-
mantics follows a global model nature: When building on top of stable semantics
local inconsistency propagates to the whole model. Note that the well-founded
variants of our semantics do not involve inconsistency, and thus local inconsis-
tencies cannot arise. Investigation of the relations and possible integrations with
C-OWL are on our agenda.

Finally, we point out that the idea behind scoped negation as failure is orthog-
onal to the so-called local closed world assumption [9]. Instead of stating ”local
complete knowledge” as is done in local closed world assumption, we merely
impose to explicitly close off any use of negation over a context, not making any
statement about whether the knowledge of this context is indeed complete.

7 Conclusion

In this paper we discussed logic programs under contextually scoped negation
and provided two possible semantics based on simple translations to normal logic
programs. The rationale behind was keeping these translations lightweight in or-
der to facilitate direct implementations with existing engines based on either
the stable or well-founded semantics, while preserving context-monotonicity. Al-
though our framework is general we emphasized the fruitful application of our
approach in the context of rules on top of RDF and RDFS.

This work is a first step towards a proper definition for scoped negation for
the upcoming RIF working group in W3C. Open issues like for instance the
treatment of full RDF including blank nodes, data types, etc. require further in-
vestigation. Also, the transformations to normal logic programs provided in this
paper still possibly contain redundant rules and might be subject to optimiza-
tions for actual implementations. As for future extensions, it seems to be useful
to extend our definition of scope not only to unions but also intersections or

10 http://lists.w3.org/Archives/Public/public-cwm-bugs/2005Jul/0000.html

346 A. Polleres, C. Feier, and A. Harth

set difference of contexts. More refined concepts of context such as e.g. so-called
named RDF graphs [6] could also serve as a basis for further investigations.

We set the basis for a rule based query language. It is well-known that query
languages like SQL naturally translate into queries expressed by logic programs.
However, without negation as failure (for modeling set difference) such a query
language is incomplete. Scoped negation is a natural and lightweight candidate
to extend RDF query languages such as for instance SPARQL [17] and N3 [3] in
this direction.

Acknowledgments. The authors thank Jos de Bruijn, Rubén Lara, and Michael
Kifer for fruitful discussions and the anonymous reviewers for their useful feed-
back. This work is partially supported by the EC projects DIP, KnowledgeWeb,
Infrawebs, SEKT, and ASG; by the FIT-IT projects RW2 and TSC; by SFI grant
SFI/02/CE1/I13; by the CICyT project TIC-2003-9001-C02.

References

1. J. Angele et al. Web rule language (WRL). W3C Member Submission,
http://www.w3.org/Submission/WRL/, June 2005.

2. S. Battle, et al. Semantic Web services Framework (SWSF). W3C Member Sub-
mission, http://www.w3.org/Submission/SWSF/, May 2005.

3. T. Berners-Lee, D. Connolly, E. Prud’homeaux, and Y. Scharf. Experience with
N3 rules. In W3C Workshop on Rule Languages for Interoperability, Washington,
D.C., USA, Apr. 2005.

4. P. Bouquet, F. Giunchiglia, F. van Harmelen, L. Serafini, and H. Stuckenschmidt.
C-OWL: Contextualizing ontologies. In Second International Semantic Web Con-
ference - ISWC 2003, Sanibel Island, FL, USA, 2003.

5. D. Brickley, R. V. Guha (eds.), and B. McBride (series ed.). RDF Vocabulary
Description Language 1.0. Feb. 2004. W3C Recommendation,
http://www.w3.org/TR/2004/REC-rdf-schema-20040210/.

6. J. Carroll, C. Bizer, P. Hayes, and P. Stickler. Named graphs. Journal of Web
Semantics, 3(4), 2005.

7. Paulo Pinheiro da Silva, Deborah L. McGuinness, and Rob McCool. Knowledge
provenance infrastructure. IEEE Data Engineering Bulletin, 26(4), 2003.

8. S. Decker, M. Sintek, and W. Nejdl. The model-theoretic semantics of TRIPLE.
Technical report, 2002.

9. O. Etzioni, K. Golden, and D. Weld. Tractable closed world reasoning with updates.
In KR’94: Principles of Knowledge Representation and Reasoning, Bonn, Germany,
1994.

10. A. Van Gelder, K. Ross, and J.S. Schlipf. Unfounded sets and well-founded seman-
tics for general logic programs. In 7th ACM Symposium on Principles of Database
Systems, Austin, Texas, 1988.

11. M. Gelfond and V. Lifschitz. The stable model semantics for logic programming.
In 5th Int’l Conf. on Logic Programming, Cambridge, Massachusetts, 1988.

12. P. Hayes. RDF semantics. W3C Recommendation,
http://www.w3.org/TR/rdf-mt/, Feb. 2004.

13. M. Kifer. Nonmonotonic reasoning in FLORA-2. In 8th Int’l Conf. on Logic
Programming and Nonmonotonic Reasoning (LPNMR’05), Diamante, Italy, 2005.

Rules with Contextually Scoped Negation 347

14. M. Kifer, G. Lausen, and J. Wu. Logical foundations of object-oriented and frame-
based languages. JACM, 42(4), 1995.

15. V. Lifschitz and H. Turner. Splitting a logic program. In Pascal Van Hentenryck,
editor, 11th Int’l Conf. on Logic Programming (ICLP’94), Santa Margherita Ligure,
Italy, June 1994.

16. D.L. McGuinness and F. van Harmelen. OWL Web ontology language overview.
W3C Recommendation,
http://www.w3.org/TR/2004/REC-owl-features-20040210/ , Feb. 2004.

17. E. Prud’hommeaux and A. Seaborne (eds.). SPARQL Query Language for RDF,
July 2005. W3C Working Draft.

18. J.S. Schlipf. Formalizing a Logic for Logic Programming. AMAI,5(2-4), 1992.

Beagle++: Semantically Enhanced Searching
and Ranking on the Desktop

Paul-Alexandru Chirita, Stefania Costache, Wolfgang Nejdl, and Raluca Paiu

L3S Research Center / University of Hanover
Deutscher Pavillon, Expo Plaza 1

30539 Hanover, Germany
{chirita, ghita, nejdl, paiu}@l3s.de

Abstract. Existing desktop search applications, trying to keep up with
the rapidly increasing storage capacities of our hard disks, offer an in-
complete solution for information retrieval. In this paper we describe our
Beagle++ desktop search prototype, which enhances conventional full-
text search with semantics and ranking modules. This prototype extracts
and stores activity-based metadata explicitly as RDF annotations. Our
main contributions are extensions we integrate into the Beagle desktop
search infrastructure to exploit this additional contextual information for
searching and ranking the resources on the desktop. Contextual informa-
tion plus ranking brings desktop search much closer to the performance
of web search engines. Initially disconnected sets of resources on the
desktop are connected by our contextual metadata, PageRank derived
algorithms allow us to rank these resources appropriately. First experi-
ments investigating precision and recall quality of our search prototype
show encouraging improvements over standard search.

1 Introduction

The capacity of our hard-disk drives has increased tremendously over the past
decade, and so has the number of files we usually store on our computer. It is
no wonder that sometimes we cannot find a document any more, even when
we know we saved it somewhere. Ironically, in quite a few of these cases, the
document we are looking for can be found faster on the World Wide Web than
on our personal computer.

Web search has become more efficient than PC search due to the boom of web
search engines and to powerful ranking algorithms like the PageRank algorithm
introduced by Google [12]. The recent arrival of desktop search applications,
which index all data on a PC, promises to increase search efficiency on the desk-
top. However, even with these tools, searching through our (relatively small set
of) personal documents is currently inferior to searching the (rather vast set of)
documents on the web. This happens because these desktop search applications
cannot rely on PageRank-like ranking mechanisms, and they also fall short of
utilizing desktop specific characteristics, especially context information.

Y. Sure and J. Domingue (Eds.): ESWC 2006, LNCS 4011, pp. 348–362, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Beagle++: Semantically Enhanced Searching 349

We therefore have to enhance simple indexing of data on our desktop by
more sophisticated ranking techniques, otherwise the user has no other choice
but to look at the entire result sets for her queries – usually a tedious task.
The main problem with ranking on the desktop comes from the lack of links
between documents, the foundation of current ranking algorithms (in addition
to TF/IDF numbers). A semantic desktop offers the missing ingredients: By
gathering semantic information from user activities, from the contexts the user
works in1, we build the necessary links between documents.

We begin this paper by presenting related work in Section 2, continuing with
our proposed desktop system architecture described in detail in Section 3. In
this paper we enhance and contextualize desktop search based on both resource
specific and semantic metadata collected from different available contexts and
activities performed on a personal computer. We describe the semantics of these
different contexts by appropriate ontologies in Section 3.3, and then propose a
ranking algorithm for desktop documents in Section 3.4. For this latter aspect,
we focus on recent advances of PageRank-based ranking, showing how local
(i.e., context-based) and global ranking measures can be integrated in such an
environment. We are implementing our prototype on top of the open source
Beagle project [10], which aims to provide basic desktop search in Linux. Section
4 gives a detailed description of our prototype, and shows how we extended
Beagle with additional modules for annotating and ranking resources. In Section
5 we investigate the quality of our algorithms in a typical desktop search scenario,
and illustrate how our extended Beagle++ search infrastructure improves the
retrieval of search results in terms of number (recall) and order (precision) of
results, using context and ranking based on this information.

2 Previous Work

The difficulty of accessing information on our computers has prompted several
first releases of desktop search applications recently. The most prominent exam-
ples include Google desktop search [11] (proprietary, for Windows) and the Bea-
gle open source project for Linux [10]. Yet they include no metadata whatsoever
in their system, but just a regular text-based index. Nor does their competitor
MSN Desktop Search [14]. Finally, Apple Inc. promises to integrate an advanced
desktop search application (named Spotlight Search [2]) into their upcoming op-
erating system, Mac OS Tiger. Even though they also intend to add semantics
into their tool, only explicit information is used, such as file size, creator, or
metadata embedded into specific files (images taken with digital cameras for
example include many additional characteristics, such as exposure information).
While this is indeed an improvement over regular search, it still misses contextual
information often resulting or inferable from explicit user actions or additional
background knowledge, as discussed in the next sections.
1 Studies have shown that people tend to associate things to certain contexts [17], and

this information should be utilized during search. So far, however, neither has this
information been collected, nor have there been attempts to use it.

350 P.-A. Chirita et al.

Swoogle [7] is a search and retrieval system for finding semantic web docu-
ments on the web. The ranking scheme used in Swoogle uses weights for the
different types of relations between Semantic Web Documents (SWD) to model
their probability to be explored. However, this mainly serves for ranking between
ontologies or instances of ontologies. In our approach we have instances of a fixed
ontology and the weights for the links model the user’s preferences.

Facilitating search for information the user has already seen before is also the
main goal of the Stuff I’ve Seen (SIS) system, presented in [8]. Based on the fact
that the user has already seen the information, contextual cues such as time,
author, thumbnails and previews can be used to search for and present informa-
tion. [8] mainly focuses on experiments investigating the general usefulness of
this approach though, without presenting more technical details.

The importance of semantically capturing users’ interests is analyzed in [1].
The purpose of their research is to develop a ranking technique for the large
number of possible semantic associations between the entities of interest for a
specific query. They define an ontology for describing the user interest and use
this information to compute weights for the links among the semantic entities. In
our system, the user’s interest is a consequence of her activities, this information
is encapsulated in the properties of the entities defined, and the weights for the
links are manually defined.

An interesting technique for ranking the results for a query on the semantic
web takes into consideration the inferencing processes that led to each result
[16]. In this approach, the relevance of the returned results for a query is com-
puted based upon the specificity of the relations (links) used when extracting
information from the knowledge base. The calculation of the relevance is how-
ever a problem-sensitive decision, and therefore task oriented strategies should
be developed for this computation.

3 An Architecture for Searching the Semantic Desktop

3.1 Overview

This chapter will present our 3-layer architecture for generating and exploiting
the metadata enhancing desktop resources. At the bottom level, we have the
physical resources currently available on the PC desktop. Even though they can
all eventually be reduced to files, it is important to differentiate between them
based on content and usage context. Thus, we distinguish structured documents,
emails, offline web pages, general files2 and file hierarchies. Furthermore, while all
of them do provide a basis for desktop search, they also miss a lot of contextual
information, such as the author of an email or the browsing path followed on a
specific web site. We generate and store this additional search input using RDF
metadata, which is placed on the second conceptual layer of our architecture.
Finally, the uppermost layer implements a ranking mechanism over all resources
on the lower levels. An importance score is computed for each desktop item,

2 Text files or files whose textual content can be retrieved.

Beagle++: Semantically Enhanced Searching 351

supporting an enhanced ordering of results within desktop search applications.
The architecture is depicted in Figure 1. In the next subsections we describe
each of its layers following a bottom-up approach.

Fig. 1. Desktop Ranking System Architecture

3.2 Current Desktop Infrastructure and Its Limitations

Motivation and Overview. Today the number of files on our desktops can
easily reach 10,000, 100,000 or more. This large amount of data can no longer
be ordered with manual operations such as defining explicit file and directory
names. Automatic solutions are needed, preferably taking into account the ac-
tivity contexts under which each resource was stored/used. In our prototype we
focus on three main working contexts of email exchanges, file procedures (i.e.,
create, modify, etc.), and web surfing. Furthermore, we investigate an additional
extended context related to research and scientific publications. In the follow-
ing paragraphs, we discuss how the resources associated to these contexts are
currently encountered, and which (valuable) information is lost during their uti-
lization. Subsequent sections present solutions to represent this information and
exploit it for desktop search applications.

Email Context. One of the most flourishing communication medium is surely
email communication. International scientific collaboration has become almost
unthinkable without electronic mail: Outcomes of brainstorming sessions, inter-
mediate versions of reports, or articles represent just a few of the items exchanged
within this environment. Similarly, Internet purchasing or reservations are usu-
ally confirmed via email. Considering the continuous increase of email exchanges,
enhanced solutions are necessary to sort our correspondence. More, when stor-
ing emails, a lot of contextual information is lost. Most significant here is the
semantic connection between the attachments of an email, its sender and subject
information, as well as the valuable comments inside its body. This information
should be explicitly represented as RDF metadata, to enable both enhanced
search capabilities for our inbox, as well as the exploitation of the semantic links

352 P.-A. Chirita et al.

between desktop files (e.g., PDF articles stored from attachments), the person
that sent them to us and the comments he added in the email body.

Files and File Hierarchy Context and Web Cache Context. Similar to
the discussion above, various semantic relationships exist in other contexts such
as file and web cache context. Due to space limitations, we refer the reader to
[5], where we proposed several solutions to enrich the information associated to
file and directory names, as well as to previously visited resources on the Web.

Working with Scientific Publications. Research activities represent one of
the occupations where the need for contextual metadata is very high. The most
illustrative example is the document itself: Where did this file come from? Did
we download it from CiteSeer or did somebody send it to us by email? Which
other papers did we download or discuss via email at that time, and how good
are they (based on a ranking measure or on their number of citations)? We
might remember the general topic of a paper and the person with whom we dis-
cussed about it, but not its title. These situations arise rather often in a research
environment and have to be adressed by an appropriate search infrastructure.

3.3 RDF Semantic Information Layer

Motivation and Overview. People organize their lives according to prefer-
ences often based on their activities. Consequently, desktop resources are also
organized according to performed activities and personal profiles. Since, as de-
scribed above, most the information related to these activities is lost on our
current desktops, the goal of the RDF semantic information layer is to record
and represent this data and to store it in RDF annotations associated to each

Fig. 2. Contextual Ontology for the Semantic Desktop

Beagle++: Semantically Enhanced Searching 353

resource. Figure 2 depicts an overview image of the ontology that defines ap-
propriate annotation metadata for the context we are focusing on in this paper.
The following paragraphs will describe these metadata in more detail.

Email Metadata. Basic properties for the email context refer to the date when
an email was sent or accessed, as well as its subject and body text. The status of
an email can be described as seen/unseen or read/unread. A property “reply to”
represents email thread information, the “has attachment” property describes a
1:n relation between an email and its attachments. The “sender” property gives
information about the email sender, which can be associated to a social network-
ing trust scheme, thus providing valuable input for assessing the quality of the
email according to the reputation of its sender.

File and Web Cache Specific Metadata. For these, we again refer the reader
to our previous work [5] which describes the ontologies associated to these ac-
tivity contexts. An overview can be found in the lower half of Figure 2.

Scientific Publications Metadata. The Publication class represents a spe-
cific type of file, with additional information associated to it. The most common
fields are “author”, “conference”, “year”, and “title”, which comprise the regu-
lar information describing a scientific article. Additionally, we store the paper’s
CiteSeer ID if we have it. The publication context is connected to the email
context, if we communicate with an author or if we save a publication from an
email attachment. Of course, since each publication is stored as a file, it is also
connected to the file context, and thus to the file specific information associated
to it (e.g., path, number of accesses, etc.).

3.4 Aggregated Ranking System

Motivation and Overview. As the amount of desktop items has been increas-
ing significantly over the past years, desktop search applications will return more
and more hits to our queries. Contextual metadata, which provide additional in-
formation about each resource, result in even more search results. A measure of
importance is therefore necessary, which enables us to rank these results. The
following paragraphs describe such a ranking mechanism, based on the Google
PageRank algorithm [12].

Basic Ranking. Given the fact that rank computation on the desktop would
not be possible without the contextual information, which provides semantic
links among resources, annotation ontologies should describe all aspects and re-
lationships among resources influencing the ranking. The identity of the authors
for example influences our opinion of documents, and thus “author” should be
represented explicitly as a class in our publication ontology.

Second, we have to specify how these aspects influence importance. Object-
Rank [4] has introduced the notion of authority transfer schema graphs, which
extend schemas similar to the ontologies previously described, by adding weights
and edges in order to express how importance propagates among the entities and
resources inside the ontology. These weights and edges represent authority trans-

354 P.-A. Chirita et al.

fer annotations, which extend our context ontologies with the information we need
to compute ranks for all instances of the classes defined in the context ontologies.

Figure 3 depicts our context ontology plus appropriate authority transfer an-
notations. For example, authority of an email is split among the sender of the
email, its attachment, the number of times that email was accessed, the date
when it was sent and the email to which it was replied. If an email is important,
the sender might be an important person, the attachment an important one
and/or the number of times the email was accessed is very high. Additionally,
the date when the email was sent and the previous email in the thread hierarchy
also become important. As suggested in [4], every edge from the schema graph is
split into two edges, one for each direction. This is motivated by the observation
that authority potentially flows in both directions and not only in the direction
that appears in the schema: if we know that a particular person is important,
we also want to have all emails we receive from this person ranked higher. The
final ObjectRank value for each resource is calculated based on the PageRank
formula (presented in Section 4.3).

Using External Sources. For the computation of authority transfer, we can
also include additional external ranking sources to connect global ranking com-
putation and personalized ranking of resources on our desktop. These external
ranking sources are used to provide the seed values for the calculation of the

Fig. 3. Contextual Authority Transfer Schema

Beagle++: Semantically Enhanced Searching 355

personal ranking. Our prototype ontology includes three global ranking services,
one returning Google ranks, the second one ranks computed from the CiteSeer
database and the last one from the social network described with FOAF.

The ObjectRank value for each resource is calculated based on the PageRank
formula and the seed values for this computation integrate information from
external ranking systems and personalized information. We use the following
external ranking systems as the most relevant for our purpose:

– Ranking for articles. Co-citation analysis is used to compute a primary rank
for the article [15]. Because of the sparse article graph on each desktop this
rank should be retrieved from a server that stores the articles (in our case
all metadata from CiteSeer and DBLP).

– Recommendations. We may receive documents from other peers together
with their recommendations. These recommendations are weighted by a local
estimate of the sender’s expertise in the topic [9, 6].

Personalization. Different authority transfer weights express different prefer-
ences of the user, translating into personalized ranking. The important require-
ment for doing this successfully is that we include in a users ontology all concepts,
which influence her ranking function. For example, if we consider a publication
important because it was written by an author important to us, we have to
represent that in our context ontology. Another example are digital photogra-
phies, whose importance is usually heavily influenced by the event or the location
where they were taken. In this case both event and location have to be included
as classes in our context ontology. The user activities that influence the ranking
computation have also to be taken into account, which translates to assigning
different weights to different contexts.

4 Beagle++ Prototype

Our current prototype is built on top of the open source Beagle desktop search
infrastructure, which we extended with additional modules: metadata generators,
which handle the creation of contextual information around the resources on the
desktop, and a ranking module, which computes the ratings of resources so that
search results are shown in the order of their importance. The advantage of our
system over existing desktop search applications consists in both the ability of
identifying resources based on an extended set of attributes – more results, and
of presenting the results according to their ranking – to enable the user to quickly
locate the most relevant resource.

4.1 Current Beagle Architecture

The main characteristic of our extended desktop search architecture is metadata
generation and indexing on-the-fly, triggered by modification events generated
upon occurrence of file system changes. This relies on notification functionalities
provided by the kernel. Events are generated whenever a new file is copied to

356 P.-A. Chirita et al.

hard disk or stored by the web browser, when a file is deleted or modified, when
a new email is read, etc. Much of this basic notification functionality is provided
on Linux by an inotify-enabled Linux kernel, which is used by Beagle.

Our Beagle++ prototype keeps all the basic structure of Beagle and adds
additional modules that are responsible for generating and using the contextual
annotations enriching the resources on our desktop. The main components of
the extended Beagle prototype are Beagled++ and Best++, as seen in Figure
4, ”++” being used to denote our extensions. Beagled++ is the main module
that deals with indexing of resources on the desktop and also retrieving the
results from user queries. Best++ is responsible for the graphical interface, and
communicates with Beagled++ through sockets. When starting Beagle, the query
driver is started and waits for queries. The Best++ interface is initialized, too,
and is responsible for transmitting queries to Beagled++ and visualization of
answers.

Fig. 4. Extended Beagle Desktop Search

4.2 Extending Beagle with Metadata Generators

Depending on the type and context of the file / event, metadata generation is
performed by appropriate metadata generators, as described in Figure 5. These
applications build upon an appropriate RDFS ontology as shown in [5], describ-
ing the RDF metadata to be used for that specific context. Generated metadata
are either extracted directly (e.g. email sender, subject, body) or are generated
using appropriate association rules plus possibly some additional background
knowledge. All of these metadata are exported in RDF format, and added to a
metadata index, which is used by the search application together with the usual
full-text index [13].

The architecture of our prototype environment includes four prototype meta-
data generators according to the types of contexts described in the previous
sections. We added a new subclass of the LuceneQueryable class, MetadataQue-
ryable, and, from this one, derived four additional subclasses, dealing with the
generation of metadata for the appropriate contexts (Files, Web Cache, Emails
and Publications). The annotations we create include the corresponding elements
depicted in the ontology graph Figure 2. They are described in detail in [5]. A
new one is the publication metadata generator, described in the next paragraph.

Publication Metadata Generator. For the experiments described in this
paper, we have implemented a metadata generator module which deals with
publications. For each identified paper, it extracts the title and tries to match

Beagle++: Semantically Enhanced Searching 357

Fig. 5. Beagle Extensions for Metadata Support

it with an entry into the CiteSeer publications database. If it finds an entry, the
application builds up an RDF annotation file, containing information from the
database about the title of the paper, the authors, publication year, conference,
papers which cite this one and other CiteSeer references to publications. All an-
notation files corresponding to papers are merged in order to construct the RDF
graph of publications existing on one’s desktop.

4.3 Extending Beagle with a Ranking Module

Each user has his own contextual network / context metadata graph and for
each node in this network the appropriate ranking as computed by the algo-
rithm described in section 3.4. The computation of rankings is based on the link
structure of the resources as specified by the defined ontologies and the corre-
sponding metadata. We base our rank computation on the PageRank formula

r = d ·A · r + (1− d) · e (1)

applying the random surfer model and including all nodes in the base set. The
random jump to an arbitrary resource from the data graph is modeled by the
vector e. [6] shows how, by appropriately modifying the e vector, we can take
the different trust values for the different peers sending information into account.
A is the adjacency matrix which connects all available instances of the existing
context ontology on one’s desktop. The weights of the links between the instances
correspond to the weights specified in the authority transfer annotation ontology
divide by the number of the links of the same type. When instantiating the
authority transfer annotation ontology for the resources existing on the users
desktop, the corresponding matrix A will have elements which can be either 0,
if there is no edge between the corresponding entities in the data graph, or they
have the value of the weight assigned to the edge determined by these entities, in
the authority transfer annotation ontology, divided by the number of outgoing
links of the same type.

358 P.-A. Chirita et al.

The original Beagle desktop search engine uses the facilities provided by
Lucene.NET for ranking the results, which means that Beagle’s hits are scored
only based on TF/IDF measures. Such a ranking scheme gives good results in
the case of documents explicitly containing the keywords in the query. Still,
as discussed above, TF/IDF alone is not sufficient, as it does not exploit any
additional hints about importance of information.

We have therefore implemented a new ranking scheme in Beagle++, which
profits from the advantages offered by TF/IDF, but takes into account Object-
Rank scores as described in this paper. For all resources existing on the desktop
this scheme computes the ranks with our ObjectRank-based algorithm presented
above, and the resulting ranks are then combined with the TF/IDF scores pro-
vided by Lucene.NET using the following formula:

R′(a) = R(a) ∗ TF × IDF (a), (2)

where:
a - represents the resource
R(a) - is the computed ObjectRank
TFxIDF(a) - is the TF/IDF score for resource a
This formula guaranties that the hits will have a high score if they both have

a high ObjectRank and a TF/IDF score.
The user is able to chose one of the two available ranking schemas: the one

provided by Beagle, based on TF/IDF measures, or the one we developed, based
on ObjectRank plus TF/IDF. The first scheme is implicit. For the second one,
users have to specify an additional parameter when starting the Best client:
%best –l3s-ranking.

5 Experiments

5.1 Experimental Setup

We did a first evaluation of our algorithms by conducting a small scale user study.
Colleagues of ours provided a set of their locally indexed publications, some of
which they received as attachments to emails (thus containing rich contextual
metadata associated to them from the specific email fields). Then, each subject
defined her own queries, related to their activities, and performed search over
the above mentioned reduced images of their desktops. In total, 30 queries were
issued. The average query length was 2.17 keywords, which is slightly more than
the average of 1.7 keywords reported in other larger scale studies (see for example
[8]). Generally, the more specific the test queries are, the more difficult it is
to improve over basic textual information retrieval measures such as TFxIDF.
Thus, having an average query length a bit higher than usual can only increase
the quality of our conclusions.

For comparison purposes, we sent each of these queries to three systems:
(1) the original Beagle system (with output selected and sorted using solely
TFxIDF), (2) an intermediate version of Beagle++ enhanced only with activity

Beagle++: Semantically Enhanced Searching 359

based metadata (using the same TFxIDF measure for ordering its output, but
giving more importance to metadata results than to regular desktop items), and
(3) the current Beagle++, containing enhancements for both metadata support
and desktop ranking. For every query and every system, each user rated the top
5 output results using grades from 0 to 1, as follows: 0 for an irrelevant result,
0.5 for a relevant one, and 1 for highly relevant one.

5.2 Methodology

Even when semantic information (e.g., RDF annotations, etc.) is integrated as
part of a search system, the traditional measures from information retrieval
theory can and should still be applied when evaluating system performance. We
therefore used the ratings of our subjects to compute average precision and recall
values at each output rank [3]. In general, precision measures the ability of an
(information retrieval) system to return only relevant results. It is defined as:

Precision =
Number of Relevant Returned Results

Number of Returned Results
(3)

Recall is its complement: It measures the ability of a system to return all
relevant documents, and is computed using the formula below:

Recall =
Number of Relevant Returned Results

Total Number of Relevant Results Available in the Entire System
(4)

Both measures can be calculated at any rank r, i.e., considering only the top
r results output by the application. For example, even if the system has returned
2000 hits for some user query, when calculating precision at the top-3 results, we
consider only these three as returned results. This is necessary for large scale envi-
ronments, such the World Wide Web, and more recently, the PC desktop, because
it impossible to check the relevance of all output results – even in the desktop en-
vironment, it is not uncommon to obtain several hundreds of search results to a
given query. Restricting the calculation of precision and recall to various ranks
is also useful in order to investigate the quality of the system at different levels.
Usually, in a healthy information retrieval system, as the rank level is increased,
recall is also increasing (the denominator remains the same, while the numerator
has the possibility to increase), whereas precision is decreasing (because most of
the relevant results should be at the very top of the list).

Another important aspect is calculating the total number of available relevant
results. For search engines, including desktop ones, an approximation must be
used, as the datasets they cope with are too large. In this paper, we consider
this amount to be equal to the total number of (unique) relevant results returned
by the three systems we investigated. For every query, each system returned 5
results, 15 in total. Thus, the minimum possible total number of relevant results
is 0 and the maximum is 15. Similarly, the maximum number of relevant results
a system can return is 5 (since it only outputs 5 results), indicating that the
recall will not necessarily be 1 when restricting the computation to rank 5. This
version of recall is called relative recall [3].

360 P.-A. Chirita et al.

Fig. 6. Average Precision Results

5.3 Results and Discussion

As the main purpose of our experimental analysis was to produce a first estimate
of each system’s performance, we averaged the precision values at each rank from
one to five for all 30 queries submitted by our experts. The results we obtained
are depicted in Figure 6. We first notice that the current Beagle Desktop Search
is rather poor, containing more qualitative results towards rank 4 to 5, rather
than at the top of the result list. This is in fact explainable, since Beagle only uses
TFxIDF to rank its results, thus missing any kind of global importance measure
for the desktop resources. On the contrary, our first prototype, consisting of

Fig. 7. Average Relative Recall Results

Beagle++: Semantically Enhanced Searching 361

Beagle enhanced with RDF metadata annotations, already performs very well.
An important reason for this high improvement is that metadata are mostly
generated for those resources with high importance to the user, whereas the other
automatically installed files (e.g., help files) are not associated with metadata,
and thus ranked lower. When we have metadata describing a desktop item,
more text is inherently available to search for, and thus this item is also easier
to find. Finally, the precision values are even higher for our second prototype,
which adds our desktop ranking algorithm to the metadata-extended version of
Beagle. Clearly, ranking pushes our resources of interest more towards the top
of the list, yielding even higher desktop search output quality.

In the second part of the evaluation, we drew similar conclusions with re-
spect to the average recall values (depicted in Figure 7): The recall of Beagle
is very low, whereas that of our prototypes is almost three times better (owing
to the additional information available as metadata, especially comments to the
paper included in the emails). The difference between our prototypes is rela-
tively small, which is correct, since recall analyzes the amount of good results
returned, and both our systems yield relevant results. We thus conclude that
enhancing Beagle with RDF metadata annotations significantly increases its re-
call (as metadata usually represents additional, highly relevant text associated
to each desktop file), whereas adding desktop ranking further contributes with
a visible improvement in terms of precision.

6 Conclusions and Future Work

We presented two main contributions that enhance traditional desktop search, fo-
cusing on how regular text-based desktop search can be enhanced with semantics
/ contextual information and ranking exploiting that information. Searching for
resources then will not only retrieve explicit results but also items inferred from
the users’ existing network of resources and contextual information. Maintaining
the provenance of information can help the search engine take into account the
recommendations from other users and thus provide more retrieved results. The
ranking module, by exploiting contextual information, improves retrieval preci-
sion and presentation of search results, providing more functionality to desktop
search.

There are quite a few interesting additional contexts, that are worth inves-
tigating in the future: metadata embedded in multimedia files, the relations
between objects embedded within each other (a presentation including pictures,
tables, charts, etc.), or chat history. A further interesting question we want to
investigate in the future is how to learn contextual authority transfer weights
from user feedback on ranked search results. Additionally we are experimenting
with extended INEX datasets3 to evaluate the performance of our system on
larger data sets.

3 http://inex.is.informatik.uni-duisburg.de/2005/

362 P.-A. Chirita et al.

Acknowledgements

This work was supported by the Nepomuk project funded by the European
Commission under the 6th Framework Programme (IST Contract No. 027705).

References

1. B. Aleman-Meza, C. Halaschek, I. B. Arpinar, and A. Sheth. Context-aware se-
mantic association ranking. In Semantic Web and Databases Workshop, 2003.

2. Apple spotlight search. http://developer.apple.com/macosx/tiger/spotlight.html.
3. R. A. Baeza-Yates and B. A. Ribeiro-Neto. Modern Information Retrieval. ACM

Press / Addison-Wesley, 1999.
4. A. Balmin, V. Hristidis, and Y. Papakonstantinou. Objectrank: Authority-based

keyword search in databases. In VLDB, Toronto, Sept. 2004.
5. P. A. Chirita, R. Gavriloaie, S. Ghita, W. Nejdl, and R. Paiu. Activity based

metadata for semantic desktop search. In Proc. of the 2nd European Semantic
Web Conference, Heraklion, Greece, May 2005.

6. A. Damian, W. Nejdl, and R. Paiu. Peer-sensitive objectrank: Valuing contextual
information in social networks. In Proc. of the International Conference on Web
Information Systems Engineering, November 2005.

7. L. Ding, T. Finin, A. Joshi, R. Pan, R. S. Cost, Y. Peng, P. Reddivari, V. C. Doshi,
and J. Sachs. Swoogle: A search and metadata engine for the semantic web. In
Proc. of the 13th ACM Conf. on Information and Knowledge Management, 2004.

8. S. Dumais, E. Cutrell, J. Cadiz, G. Jancke, R. Sarin, and D. C. Robbins. Stuff i’ve
seen: A system for personal information retrieval and re-use. In SIGIR, 2003.

9. S. Ghita, W. Nejdl, and R. Paiu. Semantically rich recommendations in social
networks for sharing, exchanging and ranking semantic context. In Proc. of the 4th
International Semantic Web Conference, 2005.

10. Gnome beagle desktop search. http://www.gnome.org/projects/beagle/.
11. Google desktop search application. http://desktop.google.com/.
12. Google search engine. http://www.google.com.
13. T. Iofciu, C. Kohlschütter, W. Nejdl, and R. Paiu. Keywords and rdf fragments:

Integrating metadata and full-text search in beagle++. In Proc. of the Semantic
Desktop Workshop held at the 4th International Semantic Web Conference, 2005.

14. Msn desktop search application. http://beta.toolbar.msn.com/.
15. A. Sidiropoulos and Y. Manolopoulos. A new perspective to automatically rank

scientific conferences using digital libraries. In Information Processing and Man-
agement 41 (2005) 289 ↪aZ12, 2005.

16. N. Stojanovic, R. Studer, and L. Stojanovic. An approach for the ranking of query
results in the semantic web. In ISWC, 2003.

17. J. Teevan, C. Alvarado, M. Ackerman, and D. Karger. The perfect search engine is
not enough: A study of orienteering behavior in directed search. In Proc. of CHI,
2004.

RDFBroker: A Signature-Based
High-Performance RDF Store

Michael Sintek and Malte Kiesel

DFKI GmbH, Kaiserslautern, Germany
{sintek, kiesel}@dfki.uni-kl.de

http://www.dfki.uni-kl.de/~{sintek, kiesel}

Abstract. Many approaches for RDF stores exist, most of them us-
ing very straight-forward techniques to store triples in or mapping RDF
Schema classes to database tables. In this paper we propose an RDF
store that uses a natural mapping of RDF resources to database tables
that does not rely on RDF Schema, but constructs a schema based on
the occurring signatures, where a signature is the set of properties used
on a resource. This technique can therefore be used for arbitrary RDF
data, i.e., RDF Schema or any other schema/ontology language on top
of RDF is not required. Our approach can be used for both in-memory
and on-disk relational database-based RDF store implementations.

A first prototype has been implemented and already shows a sig-
nificant performance increase compared to other freely available (in-
memory) RDF stores.

1 Introduction

RDF has been developed to facilitate semantic (meta-)data exchange between
actors on the (Semantic) Web [1]. Its primary design rationale was simplicity;
therefore, a lowest common denominator of knowledge representation formalisms
suited for this task has been chosen: triples, or statements of the form subject,
predicate, object. But exactly for the same reason, being a lowest common denom-
inator of knowledge representation formalisms, it is suited neither for internal
use in general applications1 nor for efficient handling in established databases
which are optimized to handle tables or n-tuples, not ternary statements/binary
predicates. Also, naive handling of triples leads to inefficient memory usage since
data is implicitly duplicated.2

We therefore propose (and implemented a first prototype of) an RDF store
that on the one hand allows efficient import and export of RDF data, but on the
other hand allows adequate and efficient access from applications (i.e., from the
applications that serve as actors on the Semantic Web, e.g., web services). Unlike

1 Applications’ data structures are typically object-oriented and not statement-
oriented.

2 A resource with four properties needs four statements, each having the resource’s
URI as object.

Y. Sure and J. Domingue (Eds.): ESWC 2006, LNCS 4011, pp. 363–377, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

364 M. Sintek and M. Kiesel

other similar approaches which restrict themselves to supporting exactly one
(application-adequate) schema formulated in a schema language such as RDFS
or OWL, we believe that we should stay schema independent, for two simple
reasons: there is no “one-size-fits-all” schema/ontology language, and because of
the distributed and chaotic nature of the Semantic Web, an application might
not have full access to the schema, the schema might be incomplete or even
non-existent, or the data is, at least at intermediate stages, simply not schema-
compliant.

Our approach is based on the notion of signatures, where a signature of a
resource is the set of properties used on that very resource (at a specific point
of time in an application). This approach allows Semantic Web data to be rep-
resented as normal (database) relations (with signatures being the database
column headings), which are much more application-adequate and, at the same
time, much more efficient wrt. space and time than naive approaches that directly
store triples. Especially queries that access multiple properties of a resource si-
multaneously (which, in our experience, form the vast majority of queries) benefit
from this approach.

We furthermore benefit from database technology that has been optimized for
performing queries on normal database tables, i.e., tables that group structurally
similar objects, which in our case are resources with the same properties. Stan-
dard database technology is not very efficient (esp. wrt. queries) when you sim-
ply map triples to one large table (plus some tables for compressing namespaces
etc.), since then data usually accessed together is arbitrarily distributed over the
database, resulting in many (non-consecutive) parts (“pages”) from hard disk
being accessed for one query.

Apart from the obvious benefits of our approach when using on-disk databases,
the approach also shows considerable performance improvements when storing
RDF data in memory, esp. for queries accessing multiple properties for a single
resource.

A first (in-memory) prototype, the RDFBroker, has been realized as part of
the OpenDFKI open-source initiative.3

In the following, we will first explain the major concepts of RDFBroker (sec-
tion 2), give some details on the implementation (section 3), show first results
of evaluating our approach (section 4), list some related work (section 5), and
finally conclude the paper and describe plans for future work (section 6).

2 RDFBroker Concepts

RDFBroker mainly relies on the concept of signatures and signature tables which
are organized in a lattice-like structure. On these tables, normal operations
known from relational algebra are applied. In the following, we will formally
define these basic concepts.

3 http://rdfbroker.opendfki.de/

RDFBroker: A Signature-Based High-Performance RDF Store 365

2.1 Signatures

Definition 1. The signature ΣG(s) of a resource s wrt. an RDF graph4 G is
the set of properties that are used on s in G:

ΣG(s) = {p | ∃o : 〈s, p, o〉 ∈ G}

When it is understood from the context (or irrelevant) which graph is being
referred to, we just write Σ(s).

Definition 2. The signature set ΣG for an RDF graph G is the set of all sig-
natures occurring in it, i.e.,

ΣG = {ΣG(s) | ∃p, o : 〈s, p, o〉 ∈ G}

Definition 3. A signature Σ(s1) subsumes a signature Σ(s2) iff

Σ(s1) ⊆ Σ(s2)

Definition 4. The signature subsumption graph GG for an RDF graph G is
the directed acyclic graph with vertices ΣG and edges according to the subsumes
relation between signatures, i.e., GG = (ΣG,⊆).

The simplified signature subsumption graph G′
G for an RDF graph G is the

graph that results from the signature subsumption graph by deleting all edges that
can be reconstructed from the transitivity and reflexivity of ⊆.

Note that the (simplified) signature subsumption graph has, in general, more
than one “root.” Adding ∅ and

⋃
s ΣG(s) (for all subjects s in G) turns it into a

lattice. We will see later (Sect. 3.1) that adding ∅ is used for implementing the
basic operators on RDF graphs.

Example 1. Let’s consider the simple RDF graph depicted in Fig. 1.

The signatures for the four subjects Person, p1, p2, p3 that occur in P are:

ΣP (Person) = {rdf : type}
ΣP (p1) = {rdf : type, rdfs : label, firstName, lastName}
ΣP (p2) = {rdf : type, firstName, lastName, email, homepage}
ΣP (p3) = {rdf : type, firstName, lastName}

We therefore have the following signature set:

ΣP =
{rdf : type}, {rdf : type, rdfs : label, firstName, lastName},
{rdf : type, firstName, lastName, email, homepage},
{rdf : type, firstName, lastName}

The simplified signature subsumption graph GP is shown in Fig. 2.
4 For simplicity, an RDF graph G is a set of subject-predicate-object triples 〈s, p, o〉.

Special aspects of RDF like BNodes, reification, containers, and datatypes are not
handled in this paper.

366 M. Sintek and M. Kiesel

Fig. 1. A Sample RDF Graph: Persons

Fig. 2. Sample Simplified Signature Subsumption Graph

2.2 Signature Tables

The basis of our approach is the storage of an RDF graph entirely in tables that
correspond to the signatures occurring in the graph. These tables are defined in
the following.

Definition 5. The signature table TG({p1, . . . , pn}) for a signature
{p1, . . . , pn} ∈ ΣG for an RDF graph G is a two dimensional table with
headings (rdf:about, p1, . . . , pn) (where the pi are canonically ordered) and
entries as follows: for each subject s in G with ΣG(s) = {p1, . . . , pn}, there is
exactly one row in the table, where the rdf:about column contains s and column
pi contains the set of values for this property on s, i.e., {v | 〈s, pi, v〉 ∈ G}.

Definition 6. The signature table set TG for an RDF graph G is defined as
TG = {TG(s) | s ∈ ΣG}.

The signature table set for Ex. 1 (TP) looks like this:

rdf:about rdf:type
Person rdfs:Class

rdf:about rdf:type firstName lastName
p3 Person “Peter” “Miller”

RDFBroker: A Signature-Based High-Performance RDF Store 367

rdf:about rdf:type rdfs:label firstName lastName
p1 Person “Michael Sintek” “Michael” “Sintek”

rdf:about rdf:type firstName lastName email homepage
p2 Person “Frank” “Smith” mailto:. . . http://. . .

2.3 Algebraic Database Operations

Now that we have mapped an RDF graph to a set of tables,5 we can lay the
foundation for queries (and rules) by defining the algebraic operations used in
(relational) databases. We define two sets of database operators, those directly
operating on RDF graphs and those operating on the resulting tables.

On RDF graphs, we define only two operators, namely the projection π̇ and
a combined projection and selection [π̇σ̇]. On the resulting tables, we allow the
usual set of algebraic operators known from relational databases, i.e., π, σ,×, ��
,∪,∩,−,

Definition 7. The projection π̇ on an RDF graph G for a property tuple
(p1, . . . , pn) is defined as follows:

π̇(p1,...,pn)(G) =
⋃

π(p1,...,pn)(t)
for all t = TG(s) with s ∈ ΣG and {p1, . . . , pn} ⊆ s

where π is the normal database projection operator slightly modified to work on
non-normalized tables (since the entries are set-valued).

It would be sufficient to have only the projection operator π̇ defined on RDF
graphs, as we allow the full range of database operators to be applied to the
resulting tables. Since all relational algebra expressions can be reformulated such
that some projections occur first, we do not need any of the other operators to
directly work on RDF graphs.

But this would mean that we have to copy all tuples from signature tables as
the first step, which would not be very wise for efficiency reasons. Therefore, we
also define a combined selection and projection operator, [π̇σ̇].6

Definition 8. The projection-selection [π̇σ̇] on an RDF graph G for a property
tuple p = (p1, . . . , pn) and a condition C is defined as follows:

[π̇σ̇]Cp (G) = πp

⋃
(σC ◦ πp′)(t)

for all t = TG(s) with s ∈ ΣG and p′ ⊆ s
and p′ = {p1, . . . , pn} ∪ properties(C)

where π and σ are the normal database selection operators (modified as π above),
and properties(C) is the set of properties that occur in C.
5 or, in the case of multiple RDF graphs, to several sets of tables, allowing access to

named graphs which are nicely supported by our approach
6 Note that we do not define an operator σ̇ on RDF graphs since signature tables that

would naturally be involved in a single selection are of varying arity.

368 M. Sintek and M. Kiesel

The essential parts of these two definitions are the subsumption restrictions
({p1, . . . , pn} ⊆ s and p′ ⊆ s, resp.), i.e., in both cases we only consider the
signature tables with signatures that are subsumed by the properties occurring
in the operators.

2.4 RDF Schema Semantics

Although RDFBroker is designed to work efficiently on RDF graphs without
RDFS (or any other schema), we believe that is very important to provide an
efficient implementation of the RDFS semantics as RDFS is used as ontology
language in most applications dealing with mass data and therefore being a
target for our system.

In the following, we define the (simplified)7 RDFS semantics GRDFS of an RDF
graph mainly with the help of the (conjointly computed) transitive closures of
rdfs:subClassOf and rdfs:subPropertyOf, the class propagation for rdf:type, and
the value propagation for rdfs:subPropertyOf,8 which follows directly from the
RDF/S model theory [2]. Note that the naive approach to compute the transitive
closures and propagations separately (or in any fixed order) is not correct (e.g.,
this would not catch the case where one defines a subproperty of rdfs:subClassOf
(or even rdfs:subPropertyOf itself)).

Definition 9. The (simplified) RDFS immediate consequence operator9 TRDFS
for an RDF graph G is defined as follows:10

TRDFS(G) = G ∪ {〈p, sPO, q〉 | {〈p, sPO, r〉, 〈r, sPO, q〉} ⊆ G}
∪ {〈p, sCO, q〉 | {〈p, sCO, r〉, 〈r, sCO, q〉} ⊆ G}
∪ {〈s, type, c〉 | {〈c′, sCO, c〉, 〈s, type, c′〉} ⊆ G}
∪ {〈s, p, o〉 | {〈p′, sPO, p〉, 〈s, p′, o〉} ⊆ G}

Theorem 1. The (simplified) RDF Schema semantics of an RDF graph G is
the fixpoint of TRDFS:

GRDFS =
⋃

n∈N0

T n
RDFS(G ∪AP)

where AP are the axiomatic triples 〈rdf:type, rdfs:domain, rdfs:Resource〉, . . . as
defined in the RDF/S model theory.

We will show in Sect. 3.4 that TRDFS can be directly used to implement GRDFS.

7 We explicitly ignore here some details of the RDFS semantics, namely rdfs:domain
and rdfs:range, as their correct handling is sometimes counterintuitive when coming
from a database or logic programming perspective.

8 {〈p, rdfs:subPropertyOf, q〉, 〈s, p, o〉} ⊆ GRDFS → 〈s, q, o〉 ∈ GRDFS

9 which is similar to the normal immediate consequence operator TP
10 with sPO = rdfs:subProperyOf, sCO = rdfs:subClassOf, and type = rdf:type

RDFBroker: A Signature-Based High-Performance RDF Store 369

2.5 Sample Queries

In the following, we give some sample queries for the RDF graph P from Exa. 1.

Example 2. ‘Return first name and last name for all persons.’

r = [π̇σ̇]rdf:type=Person
(firstName,lastName)(P)

Example 3. ‘Find first name, email address, and homepage for the person with
last name “Smith”’:

r = [π̇σ̇]rdf:type=Person∧lastName=”Smith”
(firstName,email,homepage) (P)

The current implementation does not support complex selection conditions, we
therefore have to evaluate the query in several steps:11

r = π(1̄,3̄,4̄)(σ2̄=”Smith”([π̇σ̇]rdf:type=Person
(firstName,lastName,email,homepage)(P)))

3 Implementation

The in-memory variant of RDFBroker is currently being implemented with JDK
1.5. It uses Sesame’s RIO parser, which could easily be replaced by any streaming
parser generating “add statement” events.

Most of the concepts of Sect. 2 have directly corresponding implementations
plus appropriate index structures (e.g., there is an index for each column in a
signature table, currently realized as a hash table).

Our approach benefits heavily from well-known database optimization tech-
niques. E.g., queries are reformulated such that selections and joins on multiple
columns access small tables and columns which hold many different values (and
are therefore discriminating) first, thus reducing the size of intermediate results
as fast as possible.

In the following, we describe some aspects of the implementation in detail
(some of which have not yet been realized in our first prototype, like updates
and the RDFS semantics).

3.1 The Operators π̇ and [π̇σ̇]

The efficient implementation of π̇ and [π̇σ̇], which form the basis of all queries,
is obviously vital for our RDF store. The implementation of these operators
requires the lookup of the signature tables TG(s) for all signatures s where the
properties occurring in the operator subsume s, as defined in Def. 7 and Def. 8.

The signature table lookup is performed by first looking up the matching
signatures in the simplified signature subsumption graph and then retrieving
the associated signature tables.

The signature lookup for properties p = {p1, . . . , pn} is performed by the
following (informally described) algorithm, which is also exempflified in Fig. 3:
11 Column numbers for relational operators are marked with a bar on top: 1̄, 2̄, 3̄,

370 M. Sintek and M. Kiesel

(a) add ∅ as an artificial root to the simplified signature subsumption graph G′
G

(making it a “meet-semilattice”12)
(b) starting at ∅, find all minimal signatures s which are subsumed by p, i.e., for

which p ⊆ s holds
(c) add all signatures which are subsumed by these minimal signatures (simply

by collecting all signatures reachable from the minimal ones using a depth-
first walk)

Fig. 3. Algorithm: Lookup of Signatures

3.2 Merging of Signature Tables

An important source for optimization are the signature tables and their orga-
nization in the subsumption graph. First tests with the system revealed that
sometimes many small tables are generated which are responsible for overhead,
which we wish to avoid. The obvious solution for this is pruning the subsumption
tree by merging small adjacent signatures tables (i.e., which share many prop-
erties) or merging small tables with subsumed big ones. A sketch for a greedy
algorithm (which tries to minimize the number of NULL values to be added and
the number of merge operations) is as follows:

(a) pick the smallest signature table and mark it to be merged
(b) pick the smallest signature table adjacent to a signature table marked to be

merged (and sharing substantially many properties) and mark it also
(c) repeat (b) until the size of all marked signature tables exceeds some thresh-

old; if the threshold cannot be exceeded, mark the directly subsumed table
with the smallest signature to be merged

(d) merge all marked signature tables
(e) repeat (a) – (d) until no single signature table exists that is smaller than

some threshold

Fig. 4 shows the result of applying this algorithm on some sample signature
subsumption graph.

The resulting signature subsumption graphs are often very similar to user
defined schemas, which is what we expect since co-occurrence of properties is the
basis for (manually) defining classes in an schema/ontology. We therefore expect
our approach to perform similar to mapping an RDF Schema to an (object-)
relational database directly.
12 i.e., an partially ordered set where for any two elements there exists an infimum

(greatest lower bound) but not necessarily a supremum in the set

RDFBroker: A Signature-Based High-Performance RDF Store 371

Fig. 4. Algorithm: Merging of Signatures

3.3 Updates

Updates (i.e., inserts, deletes, and value updates) can easily be realized on top
of our RDF store, but some operations come with performance penalties when
they change the signature of a subject resource, which then has to migrate from
one signature table to another. To improve this, special methods will be used
to allow mass updates to be handled efficiently. In the case of mass inserts,
e.g., either a whole RDF graph is added all at once, thus allowing first the
property values per subject to be collected (as it is done for parsing already), or
applications use methods like add(Resource, Map<URI,Value>) to explicitly
add many property values for one subject at once.

Since the merging of signature tables results in allowing NULL values in
merged tables, this reduces the likelihood that database rows have to migrate
from one table to another.

3.4 RDF Schema

In general, two main approaches exist to implement the RDFS semantics: com-
pute the triples resulting from the RDFS semantics in advance and material-
ize them, or compute them on demand. Since our main goal currently is high-
performance for queries, we decided to take the first approach.

Materializing the RDF Schema semantics GRDFS of an RDF graph G can
directly be based on Theorem 1, analogously to the realization of logic program-
ming with the well-known immediate consequence operator TP (for a deductive
database / logic program P) [3]. For this, the semi-naive bottom-up evaluation
is used, i.e., the TRDFS operator is not evaluated on the full data set from all
previous rounds in the fixpoint computation, but restricted in the sense that
certain parts of TRDFS are checked only against the data newly produced in the
previous round. Furthermore, the materialization of the propagation for rdf:type
is not necessary and can be handled by query rewriting, which will drastically
reduce the number of additionally created data.

3.5 Natural Data Handling and Querying

One of our promises is that our RDF store is application-adequate. Therefore,
we allow queries and data handling using traditional programming languages (in
our prototype implementation, Java) in a very natural way.

372 M. Sintek and M. Kiesel

Queries. Higher-level query languages like SPARQL have the disadvantage
compared to using Java that they do not nicely cooperate with Java data: e.g.,
query parameters have to be translated into textual representations matching
the query language syntax, which involves the typical problems of quoting special
characters, character encoding, problems with malformed queries at runtime, no
support from typical development environments,13 etc.

Example 4. For the Exa. 3 query, the Java code looks like this (C equals creates
an equality selection condition and projection/selection indices are 0-based):

p.projectAndSelect(
p.properties(FIRSTNAME, LASTNAME, EMAIL, HOMEPAGE),
p.C_equals(p.RDF_TYPE, PERSON))

.select(p.C_equals(1, p.literal("Smith")))

.project(0,2,3);

Comparing Java-based queries (using algebraic operators) with standard declar-
ative query languages is difficult. Both approaches have benefits and draw-
backs: Java-based queries allow simple debugging since intermediate results are
available. Manual optimization is easily possible without having to know much
about the query engine’s internals. On the other hand, declarative query lan-
guages are easier to read (since inherently they describe only the goal of the
query in a simpler syntax), and automatic optimization can be done to some
degree.

Data Handling. Normal RDF store APIs provide only triple-based methods
for manipulating the RDF data which is uncomfortable for most applications
as the typical view on an application’s data is an object-oriented view. With
additional tools such as RDF2Java [4] or RDFReactor [5] that introduce an
abstraction layer this problem can be solved from the programmer’s point of
view. However, these approaches still map to triples internally. Using RDFBroker
and its object/resource-centric data representation, it is possible to provide a
natural data interface without mapping between data representations.

4 Evaluation

For our first in-memory prototype, we evaluated the (RDFBroker-specific) dis-
tribution of signature tables and load times, memory consumption, and query
execution times by comparing them to the behavior of other freely available RDF
stores, using several queries on a large database and measuring database load
times on three different databases.

We used RDF data from TAP14 which comes with RDF files of
sizes up to about 300 MB. In particular, for evaluating load times
13 Standard IDEs feature autocompletion which helps a lot in coding but does not work

with queries which are just strings to the IDE.
14 http://sp11.stanford.edu/

RDFBroker: A Signature-Based High-Performance RDF Store 373

tuples per table tuples tables
1–10 8941 4137

11–100 15375 506
101–1000 13730 62

1001–10000 0 0
10001–100000 117288 2

100001–1000000 130939 1

Fig. 5. Signature Table Distribution

1.7MB DB 24MB DB 298MB DB
load time memory load time memory load time memory

RDFBroker 500ms 66MB 7,500ms 102MB 102,000ms 945MB
Jena 800ms 36MB 11,000ms 70MB 151,000ms 822MB

Sesame 300ms 28MB 4,500ms 83MB 74,000ms 408MB

Fig. 6. Load Times and Memory Consumption of RDFBroker, Sesame, and Jena

we used swirl-SiteArchitectureEmporis.rdf (1.7MB and 17,086 triples),
swirl-SitePlacesWorldAirportCodes.rdf (24MB and 245,578 triples), and
swirl-SiteMoviesIMDB.rdf (298MB and 3,587,064 triples). For testing query
performance, we used swirl-SiteMoviesIMDB.rdf exclusively. The RDF store
implementations we compared are Sesame [6], Jena [7], and of course RDFBro-
ker.15 The evaluation environment was an Athlon 64 3000+ (3530 bogomips)
with 2GB RAM running Linux 2.6.12.3 i686 and Sun Java 1.5.0-2. The evalua-
tion software can be found on the RDFBroker project website.

Signature Table Distribution. With swirl-SiteMoviesIMDB.rdf (298MB,
3,587,064 triples, 286,273 resources in subject position, 4,708 signature tables),
we got the distribution of signature tables shown in Fig. 5, i.e., there are 4,137
tables of size 1–10 tuples that hold a total of 8941 tuples, . . . , and there is
exactly one table that holds 130,939 tuples. This is exactly what we expect for
mass data: most of the data is in very few tables (in this case, three tables hold
87% of all tuples).

Load Times and memory consumption for the three RDF files are shown in
Fig. 6. Since RDFBroker currently uses Sesame’s “Rio” parser, its load times are
similar to Sesame’s performance. The creation of signature tables and exhaustive
indices explains the higher values.

Queries. We measured the execution times and memory consumption (see
Fig. 7) for several queries, ranging from simple “retrieval” of property values
over path expressions to joins that are not representable as path expressions. In
Appendix A, we list the SeRQL queries for evaluating Sesame for completeness.

15 For all implementations we enabled RDF validation on load and disabled inferencing.

374 M. Sintek and M. Kiesel

Query 1 Query 2 Query 3 Query 4
time memory time memory time memory time memory

RDFBroker 70ms 4MB 1200ms 63MB 260ms 4MB 160ms 10MB
Jena 4300ms 82MB 8700ms 26MB 70ms 3MB - -

Sesame 1400ms 24MB 2200ms 46MB 50ms 2MB - -

Fig. 7. Query Times and Memory Consumption of RDFBroker, Sesame, and Jena

Query 1: ‘return some interesting properties of all movies’: This operates heavily
on the queried instances’ properties. As to be expected, RDFBroker performs
very fine in this case since the signature tables nicely match the query’s structure.

[π̇σ̇]rdf:type=imdb:Movie
(rdf:about,rdfs:label,imdb:PropertyCountry,PropertySound Mix...)

Query 2: ‘find names for persons casted in movies’: This is a join query that in
many high-level RDF query languages is expressed as a path expression. Since
this is a very common query, most systems come up with optimized algorithms
for it. Still, RDFBroker’s performance was the best.

[π̇σ̇]rdf:type=imdb:Movie
(rdf:about,rdfs:label,imdb:creditedCast) ��3̄=1̄ [π̇σ̇]rdf:type=imdb:Person

(rdf:about,rdfs:label)

Query 3: ‘find persons playing in movies three cast hops separated from Kevin
Bacon’: This query is related to the Bacon Number.16 Since it is a path expression
using only one property, RDFBroker is not optimized for this kind of query, and
has to walk over thousands of tables multiple times.17

Query 4: ‘find movies with same title and return some useful properties on them,
like release year, cast, genre, . . . ’:

[π̇σ̇]rdf:type=imdb:Movie
(rdf:about,rdfs:label,imdb:creditedCast,...) ��2̄=2̄,1̄�=1̄ [π̇σ̇]rdf:type=imdb:Movie

(rdf:about,rdfs:label,...)

RDFBroker evaluated this query in less than 200ms, while Sesame and Jena
were not able to finish it (we stopped after 30 minutes). Probably joins that
are not path expressions are not handled “properly” in the sense that they are
evaluated by first computing the complete cartesian product.

Conclusion. For standard queries, the RDFBroker approach performs very
well. The prototype’s memory consumption is higher than that of other RDF
stores. Both characteristics are most likely due to the fact that currently all
database columns get indexed which leads to high performance but counteracts
the potential benefit of small memory footprint that is inherent of the approach.
We will address this in future RDFBroker versions, as well as implementing table
merging to reduce the overhead of walking over thousands of tables for queries
accessing only few properties.
16 http://en.wikipedia.org/wiki/Bacon number
17 We expect this kind of query to perform much better in RDFBroker when we use

table merging.

RDFBroker: A Signature-Based High-Performance RDF Store 375

5 Related Work

Since most RDF frameworks such as Sesame [6] or Jena [7] allow using RDBMSs
as storage backends, quite a lot of previous work on this area is available. An
overview of different RDF frameworks can be found in [8]; an overview of different
approaches of mapping RDF to standard DBs can be found in [9] and [10].

There are several RDF frameworks that rely on native storage such as
YARS [11], Redland [12], or BRAHMS [13]. Often, these implementations per-
form superior with special types of queries. BRAHMS, for example, is very fast
when searching semantic associations—semantic association paths leading from
one resource to another resource.

In [10], several RDBMS mapping characteristics are presented along with a
generic performance comparison of the approaches described. The approaches
outlined use one or more tables with at most three columns, one table repre-
senting either triples, properties, or RDFS class instances. The drawback of this
compared to our approach is that properties of one resource get scattered over
multiple tables and/or rows—an advantage is that no support for sets in table
cells is needed.

The definition of the mapping characteristics in the same paper are a bit too
narrow and cannot be applied to our approach easily—while, for example, no
schema is needed for our approach, it is not schema-oblivious in terms of the
cited paper since we do not use only one table for storing triples.

In [14], an approach to derive table layout from the data or using machine
learning-based query analysis approaches is described. This leads to high initial
costs and requires a large amount of data for initial training. Our approach is
much more lightweight especially concerning initial setup. However, we do not
support query analysis at all.

For performance comparison and test data generation several tools have been
described, mostly using using a Zipfian distribution when generating class in-
stances. See [10] and Store-Gen [14] for a further description of synthetic data
generators.

6 Conclusions and Future Work

In this paper, we introduced RDFBroker, an RDF store using signatures as the
basis for storing arbitrary RDF data. Since signatures and their organization in a
lattice-like structure approximate user-defined schemas/ontologies (and thus also
make RDF data accessible from applications in a more natural way), RDFBroker
performs similar to hand-coded (object-) relational databases. Comparison of our
first prototype with other RDF stores showed that even for the in-memory case
queries can be evaluated more efficiently than with standard techniques using
triples as the basis for storage organization.

Our approach can handle, on standard hardware, already fairly large knowl-
edge bases (RDF files with several hundred MBs) in main memory. For mass
data, we will make use of on-disk databases (which requires support of multiple-

376 M. Sintek and M. Kiesel

valued attributes), which lets us expect even higher differences in performance
compared to existing RDF stores which store RDF data in on-disk databases.

We also intend to support query and esp. rule language standards like
SPARQL and the result of the W3C Rule Interchange Format Working Group
that has just been founded, where we will profit from well-investigated deductive
database technologies (like magic set transformation). We furthermore plan to
provide a natural programming API for manipulation of the RDF data stored
in RDFBroker, where the interface classes can be build as known from our
RDF2Java [4] tool. Our future plans also include using a P2P network (or grid)
to improve performance by using in-memory (instead of on-disk) stores in peers
and using the signature subsumption graph for distributing the data, routing
queries, and developing appropriate peer leave/join algorithms.

Acknowledgments. This work has been supported in part by the SmartWeb
project, which is funded by the German Ministry of Education and Research
under grant 01 IMD01 A, and by the NEWS project, which is funded by the
IST Programme of the European Union under grant FP6-001906.

References

1. Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web. Scientific American
(2001) 34–43

2. Hayes, P.: RDF semantics (2004) W3C Recommendation.
http://www.w3.org/TR/rdf-mt/.

3. Lloyd, J.W.: Foundations of logic programming. Springer-Verlag New York, Inc.,
New York, NY, USA (1984)

4. Sintek, M., Schwarz, S., Kiesel, M.:
RDF2Java (2005) http://rdf2java.opendfki.de/.

5. Völkel, M., Sure, Y.: RDFReactor - from ontologies to programmatic data access.
Poster and Demo at ISWC2005 (2005)

6. Broekstra, J., Kampman, A., van Harmelen, F.: Sesame: An architecture for stor-
ing and querying rdf data and schema information. In Fensel, D., Hendler, J.A.,
Lieberman, H., Wahlster, W., eds.: Spinning the Semantic Web, MIT Press (2003)
197–222

7. Wilkinson, K., Sayers, C., Kuno, H.A., Reynolds, D.: Efficient RDF storage and
retrieval in Jena2. In Cruz, I.F., Kashyap, V., Decker, S., Eckstein, R., eds.: SWDB.
(2003) 131–150

8. SWAD: SWAD-europe deliverable 10.1: Scalability and storage: Survey of free
software / open source RDF storage systems (2002)
http://www.w3.org/2001/sw/Europe/reports/rdf scalable storage report/.

9. SWAD: SWAD-europe deliverable 10.2: Mapping semantic web data
with RDBMSes (2003) http://www.w3.org/2001/sw/Europe/reports/
scalable_rdbms_mapping_report.

10. Theoharis, Y., Christophides, V., Karvounarakis, G.: Benchmarking database rep-
resentations of RDF/S stores. In Gil, Y., Motta, E., Benjamins, V.R., Musen,
M.A., eds.: International Semantic Web Conference. Volume 3729 of Lecture Notes
in Computer Science., Springer (2005) 685–701

RDFBroker: A Signature-Based High-Performance RDF Store 377

11. Harth, A., Decker, S.: Optimized index structures for querying RDF from the web.
In: 3rd Latin American Web Congress, Buenos Aires - Argentina, Oct. 31 - Nov. 2
2005. (2005)

12. Beckett, D.: The design and implementation of the redland RDF application frame-
work. Computer Networks 39(5) (2002) 577–588

13. Janik, M., Kochut, K.: BRAHMS: A workbench RDF store and high performance
memory system for semantic association discovery. In: 4th International Semantic
Web Conference. (2005)

14. Ding, L., Wilkinson, K., Sayers, C., Kuno, H.A.: Application-specific schema design
for storing large RDF datasets. In Volz, R., Decker, S., Cruz, I.F., eds.: PSSS.
Volume 89 of CEUR Workshop Proceedings., CEUR-WS.org (2003)

Appendix A. SeRQL Queries Used in the Evaluation

Query 1: ‘return some interesting properties of all movies’

SELECT MovieLabel, Year, Runtime, Color, Language, Country, Sound
FROM {MovieURI} rdf:type {imdb:Movie}; rdfs:label {MovieLabel};

imdb:PropertyCountry {Country}; ...
USING NAMESPACE imdb = <http://data.imdb.com/data/>

Query 2: ‘find names for persons casted in movies’

SELECT Movie, Title, Cast, PersonName
FROM {Movie} rdf:type {imdb:Movie}; rdfs:label {Title};

imdb:creditedCast {Cast} rdfs:label {PersonName}
USING NAMESPACE imdb = <http://data.imdb.com/data/>

Query 3: ‘find persons playing in movies three cast hops separated from Kevin Bacon’

SELECT DISTINCT PersonName
FROM {StartPerson} imdb:PropertyActor_filmography {Movie1}

imdb:creditedCast {Cast1} imdb:PropertyActor_filmography {Movie2}
imdb:creditedCast {Cast2} imdb:PropertyActor_filmography {Movie3}

imdb:creditedCast {Cast3} rdfs:label {PersonName}
WHERE StartPerson = imdb:PersonKevin_Bacon_8_July_1958
USING NAMESPACE imdb = <http://data.imdb.com/data/>

Towards Distributed Information Retrieval in
the Semantic Web: Query Reformulation Using

the oMAP Framework�

Umberto Straccia1 and Raphaël Troncy2

1 ISTI-CNR, Via G. Moruzzi 1, 56124 Pisa, Italy
straccia@isti.cnr.it

2 CWI Amsterdam, P.O. Box 94079, 1090 GB Amsterdam, The Netherlands
raphael.troncy@cwi.nl

Abstract. This paper introduces a general methodology for perform-
ing distributed search in the Semantic Web. We propose to define this
task as a three steps process, namely resource selection, query refor-
mulation/ontology alignment and rank aggregation/data fusion. For the
second problem, we have implemented oMAP, a formal framework for
automatically aligning OWL ontologies. In oMAP, different components
are combined for finding suitable mapping candidates (together with
their weights), and the set of rules with maximum matching probability
is selected. Among these components, traditional terminological-based
classifiers, machine learning-based classifiers and a new classifier using
the structure and the semantics of the OWL ontologies are proposed.
oMAP has been evaluated on international test sets.

1 Introduction

Information Retrieval (IR) studies the problem of finding a (ranked) set of doc-
uments that are relevant for a specific information need of a user. One of the
premises of the Semantic Web is that it provides the means to use metadata
that help determining which documents are relevant. In a Semantic Web-based
version of IR, not only the sheer amount of data, but also the differences among
the local metadata vocabularies, call for a distributed approach. In this paper,
we propose a three-step framework for distributed, Semantic Web-enabled Infor-
mation Retrieval. The first step is resource selection, because on the Semantic
Web it is unlikely that for any given query the full Web has to be queried. The
second step, query reformulation and ontology alignment deals with the differ-
ences in the vocabularies used by the user and the selected information resources.
The third and last step, aggregation and data fusion integrates the ranked re-
sults from the individual resources into a single ranked result list. In this paper,
we focus on the second step for which we describe an efficient model that is
compared with other approaches using the independent OAEI1 benchmarks.
� This work was carried out during the tenure of an ERCIM fellowship.
1 http://oaei.inrialpes.fr.

Y. Sure and J. Domingue (Eds.): ESWC 2006, LNCS 4011, pp. 378–392, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Towards Distributed Information Retrieval in the Semantic Web 379

The paper is organized as follows. We briefly present in the next section our
main problem: distributed search over the Semantic Web. Then, we introduce in
Section 3 oMAP, a framework whose goal is to automatically align all the entities
defined in two OWL ontologies. These mappings are then used for the query
reformulation process. The mappings are obtained by combining the prediction
of different classifiers. We describe the set of classifiers used: terminological,
machine learning-based and we present a new one, based on the structure and
the semantics of the OWL axioms. We have evaluated oMAP on an independent
test set provided by an international ontology alignment contest and we show
our results with respect to the other competitors in Section 4. Finally, we provide
some related work and give our conclusions and future work in Section 5.

2 Motivating Problem

In Information Retrieval the task of Distributed IR (DIR) [3] is the task, given an
information need, of accessing (and retrieving from) in an effective way distrib-
uted information resources 2. DIR has been proposed to overcome the difficulties
of centralized approaches. For instance, information resources become more and
more “proprietary” and not crawl-able. That is, more and more the content in-
formation resources (e.g. Web repositories, Digital Libraries) cannot be crawled
anymore and, thus, indexed by a centralized Web retrieval engine. Documents
may be accessed by issuing a specific query to the information resource only
and remain mostly hidden to Web search engines. DIR is an effective solution
to this problem as it aims at, given an information request, to discover the rel-
evant information resources and to query them directly. So, in DIR we do not
require to crawl and index documents, but just to select relevant resources and
submitting appropriately a query to them. In the following, we show how DIR
can be reformulated in the context of the Semantic Web.

2.1 Towards Distributed Search in the Semantic Web

In order to effectively cope with very large amounts of knowledge, the task of
distributed search in the Semantic Web may be defined in terms of three different
sub-tasks. Let us assume that an agent A has to satisfy an information need QA

expressed in a query language QA, whose basic terms belong to an ontology OA,
defined using the ontology language OA. Let us assume also that there are a
large number of ontology-based Web resources S = {S1, . . . ,Sn} accessible to
A, where each Web resource Si provides access to its Web pages by having its
own ontology Oi, ontology language Oi and query language Qi (see Figure 1).

Then, the agent should perform the following three steps to satisfy its infor-
mation need:

1. Resource selection: The agent has to select a subset of some relevant
resources S ′ ⊆ S , since it is not reasonable to assume that it will access
and query all the resources;

2 The techniques of DIR are also applied in so-called Metasearch engines [27]

380 U. Straccia and R. Troncy

Fig. 1. Distributed Information Retrieval

2. Query reformulation: For every selected resource Si ∈ S ′ the agent has
to re-formulate its information need QA into the query language Li provided
by the resource;

3. Data fusion and rank aggregation: The results from the selected re-
sources have to finally be merged together.

That is, an agent must know where to search, how to query, and how to com-
bine the information and ranked lists provided back from querying different and
heterogeneous resources. As information resources continue to proliferate, these
problems become major obstacles to information access. This is an ineffective
manual task for which accurate automated tools are desired.

As noted previously, the problem of DIR has already been addressed in the
context of textual IR. Our approach to DIR in the Semantic Web is incremen-
tal and tries to follow the way IR addressed the issue. The tasks of automated
resource selection and the one of query reformulation seem to be the more prob-
lematic ones, while the data fusion and rank aggregation issue may be solved
apparently by applying directly existing techniques [19]. Therefore, the latter
will not be discussed further in this paper.

In IR, both the automated resource selection and the query-reformulation
tasks are fully automatic and do not require human intervention. In order to
make resource selection effective and automatic, in DIR, an agent has to com-
pute an approximation of the content of each information resource. Based on this
approximation, the agent is then able to select resources and perform query refor-
mulation effectively. The approximation is computed by relying on the so-called
query-based resource sampling methodology (see, e.g. [4]). This method consists
of computing automatically an approximation of the content of a resource, re-
lying on a sampling technique. Roughly, it consists of a series of quasi-random
queries submitted to the information resource. In the context of textual IR, it has
been shown that the retrieval of a few documents is a sufficient representation
of the content of information resource [4]. In automated resource selection, this
approximation is then used to decide whether a resource may contain relevant
information with respect to the agents’ information need [3]. For ontology-based
information resources such an approximation may contain the ontology the in-
formation resource relies on and some annotated documents (called instances)
retrieved using quasi-random queries.

Towards Distributed Information Retrieval in the Semantic Web 381

For the query reformation task, the agent relies on so-called transformation
rules, which dictates how to translate concepts and terms of the agent’s vocab-
ulary into the vocabulary of the information resource. Once the set of rules is
given, the query transformation is relatively easy. What is difficult is to learn
these rules automatically. In the context of the Semantic Web, these rules are es-
sentially rules which map an entity (concept or property) in the agent’s ontology
into one or several entities of the information resource’s ontology. Therefore, the
major difficulty is in learning these ontology mappings automatically. Again, to
do this, we may rely on the approximation computed so far through query-based
sampling. The ontology of the agent, the ontology of the information resource
and some annotated documents will allow the agent to learn these mappings
automatically. This task is called Ontology Alignment in the Semantic Web.
Furthermore, from a DIR perspective, these mappings are often established only
to a degree of probability to which the mapping is true. [16] also shows that this
degree cannot be neglected during the DIR process without loosing in retrieval
effectiveness.

In summary, while numerous works deal with one of the three sub-tasks de-
scribed above for distributed textual IR, to the best of our knowledge, very few
works address the issue of distributed search in the context of the Semantic
Web, where documents are well-structured and annotated semantically using
terms belonging to a (formal) ontology. In this paper we tackle the second task,
namely the problem of query reformulation in general and automatically learning
mapping rules in particular, in the context of OWL-annotated resources. The
first task (resource selection) will be addressed in future work.

2.2 Query Reformulation

In the context of database schema matching, [16] proposes to rely on Probabilistic
Datalog (pDatalog for short) [12] to express mapping rules and use it for query
reformulation. We show that we can use it in our context as well. pDatalog, for
which an effective implementation exists, is an extension to Datalog, a variant of
predicate logic based on function-free Horn clauses. Queries and mapping rules
are probabilistic rules (see examples below). The mapping rules we consider are
of the form

αi,j Tj(x) ← Si(x)

stating that the source entity Si may be aligned to the target entity Tj with
the probability αj,i. For instance, by relying on Figure 2, we may establish the
mappings:

0.78 Creator(d, x) ← Author(d, x)
0.22 Creator(d, x) ← Editor(d, x)
0.90 Journal(y) ← Periodical(y) .

(1)

The first rule establishes that the probability that the creator x of document d
is the also the author of d is 78%, while in the remaining 22% the creator is the
editor. The third rule is similar. So, for instance, for the agent’s ontology (“On-
tology2”) and the resource’s ontology (“Ontology1”), if the agent’s information

382 U. Straccia and R. Troncy

need is “find a periodical paper whose author is Straccia and the document is
about IR”, then this request can be represented by the agent by means of the
pDatalog rule 3

1.00 Query(d) ← Periodical(d), Author(d, “Straccia′′), KeyWordSearch(d, “IR′′)

The reformulation of the query with respect to the information resource based
on “Ontology1”, using the mapping rules, gives us the query:

0.702 Query(d) ← Journal(d), Creator(d, “Straccia′′), KeyWordSearch(d, “IR′′)

(where 0.702 = 0.78 · 0.9), i.e. find all journal papers created by Straccia and
about IR. This is exactly the query to be submitted to the information resource
based on “Ontology1”. Once the query is submitted to the information resource,
for instance using PIRE [16], the degree of relevance of a retrieved document is
multiplied with the degree of the corresponding rule. The documents are ranked
then according to this final score. Note that without the weight of the rules, we
would erroneously give the same preference to documents authored or edited by
Straccia, i.e. the weights give more importance to documents matching “author”
than those matching “editor” As the example above shows and as already stated
previously, once the weighted mappings are established the query reformulation
is rather easy. In the following, we will describe how to establish the mappings
automatically.

3 oMAP: An Implemented Framework for Automatically
Aligning OWL Ontologies

oMAP [23] is a framework whose goal is to automatically align two OWL on-
tologies, finding the best mappings (together with their weights) between the
entities defined in these ontologies. Our approach is inspired by the data ex-
change problem [11] and borrows from others, like GLUE [6], the idea of using
several specialized components for finding the best set of mappings.

We draw in section 3.1 the general picture of our approach. Then, we detail
several classifiers used to predict the weight of a possible mapping between two
entities. These classifiers are terminological (section 3.2) or machine learning-
based (section 3.3). Finally, we propose a classifier working on the structure and
the formal semantics of the OWL constructs, thus using the meaning of the
entities defined in the ontology (section 3.4).

3.1 Overall Strategy

Our goal is to automatically determine “similarity” relationships between classes
and properties of two ontologies. For instance, given the ontologies in Figure 2,
we would like to determine that an instance of the class Conference is likely an
instance of the class Congress, that the property creator should subsume the
property author, or that the class Journal is disjoint from the class Directions.
3 The predicate KeywordSearch(d, x) performs a key word search of key x in document

d and gives back the probability that document d is about x.

Towards Distributed Information Retrieval in the Semantic Web 383

Reference

Thing

Journal

Conference

Address

Entry

Congress

Directions

Periodical

creator

author

frequency

periodicity

location

place

Ontology 2Ontology 1

equivalence

equivalence

subsumption

Fig. 2. Excerpt of two bibliographic ontologies and their mappings

Theoretically, an ontology mapping is a triple M = (S,T, Σ), where S and T
are respectively the source and target ontologies, and Σ is a finite set of mapping
constraints of the form:

αi,j Tj ← Si

where Si and Tj are respectively the source and target entities. The intended
meaning of this rule is that the entity Si of the source ontology is mapped onto
the entity Tj of the target ontology, and the confident measure associated with
this mapping is αi,j . Note that a source entity may be mapped onto several
target entities and conversely. But, we do not require that we have a mapping
for every target entity.

Aligning two ontologies in oMap consists of three steps:

1. We form a possible Σ, and estimate its quality based on the quality measures
for its mapping rules;

2. For each mapping rule Tj ← Si, we estimate its quality αi,j , which also
depends on the Σ it belongs to, i.e. αi,j = w(Si, Tj , Σ);

3. As we cannot compute all possible Σ (there are exponentially many) and
then choose the best one, we rather build iteratively our final set of mappings
Σ using heuristics.

Similar to GLUE [6], we estimate the weight w(Si, Tj, Σ) of a mapping Tj ←
Si by using different classifiers CL1, . . . , CLn. Each classifier CLk computes a
weight w(Si, Tj , CLk), which is the classifier’s approximation of the rule Tj ← Si.
For each target entity Tj , CLk provides a rank of the plausible source entities Sik

.
Then we rely on a priority list on the classifiers, CL1 ≺ CL2 ≺ . . . ≺ CLn and
proceed as follows: for a given target entity Tj , select the top-ranked mapping of
CL1 if the weight is non-zero. Otherwise, select the top-ranked mapping provided
by CL2 if non-zero, and so on.

In the following we present several classifiers that are currently used in our
framework. It is worth noting that some of the classifiers consider the termino-
logical part of the ontologies only, while others are based on their instances (i.e.

384 U. Straccia and R. Troncy

the values of the individuals). Finally, we end this section by introducing a new
classifier that fully uses the structure and the semantics of ontology definitions
and axioms.

3.2 Terminological Classifiers

The terminological classifiers work on the name of the entities (class or prop-
erty) defined in the ontologies. In OWL, each resource is identified by a URI, and
can have some annotation properties attached. Among others, the rdfs:label
property may be used to provide a human-readable version of a resource’s name.
Furthermore, multilingual labels are supported using the language tagging facil-
ity of RDF literals. In the following, we consider that the name of an entity is
given by the value of the rdfs:label property or by the URI fragment if this
property is not specified.

Same entity names. This binary classifier CLSN returns a weight of 1 if and
only if the two classes (or properties) have the same name, and 0 otherwise:

w(Si, Tj , CLSN) =
1 if Si, Tj have same name,
0 otherwise

Same entity name stems. This binary classifier CLSS returns a weight of 1 if
and only if the two classes (or properties) have the same stem4 (for the English
text, we use the Porter stemming algorithm [18]), and 0 otherwise:

w(Si, Tj , CLSS) =
1 if Si, Tj have same stem ,
0 otherwise

String distance name. This classifier CLED computes some similarity mea-
sures between the entity names (once downcased) such that the Levenshtein
distance [15] (or edit distance), which is given by the smallest number of in-
sertions, deletions, and substitutions required to transform one string into the
other. The prediction is then computed as:

w(Si, Tj , CLED1) = 1− distLevenshtein(Si, Tj)
max(length(Si), length(Tj))

Another possible variant is:

w(Si, Tj , CLED2) = 1/ exp
distLevenshtein(Si, Tj)

|length(Si) + length(Tj)|

We can then threshold this measure and consider only the mappings Tj ← Si

such that w(Si, Tj, CLED) ≥ 0.9.

4 The root of the terms without its prefixes and suffixes.

Towards Distributed Information Retrieval in the Semantic Web 385

Iterative substring matching. This classifier CLIS proposed by [22] also
considers the commonalities and differences between the two strings but in a
more stable and discriminating way. The prediction is computed as:

w(Si, Tj , CLIS) = Comm(Si, Tj)−Diff(Si, Tj) + winkler(Si, Tj)

where

– Comm(Si, Tj) = 2× i length(maxComSubStringi)
length(Si)+length(Tj) ,

– Diff(Si, Tj) =
uLenSi

×uLenTj

p+(1−p)×(uLenSi
+uLenTj

−uLenSi
×uLenTj

) with p5 ∈ [0,∞),
and uLenSi, uLenTj represents the length of the unmatched substring from
the initial strings Si and Tj scaled with the string length, respectively,

– winkler(Si, Tj) stands for the improvement of the result using the method
introduced by Winkler in [26].

WordNet distance name. This classifier CLWN computes another similarity
measure between the entity names using the WordNet R©6 relational dictionary.
The prediction is obtained by7:

w(Si, Tj , CLWN) =
1 if Si, Tj are synonyms,
max sim , 2∗lcs

length(Si)+length(Tj) otherwise

where

– lcs is the longest common substring between Si and Tj (also named “sub-
string similarity” in [9]),

– sim = |synonym(Si)|∩|synonym(Tj)|
|synonym(Si)|∪|synonym(Tj)| where |synonym(Si)| is the cardinality of

the set of all synonyms of Si.

3.3 Machine Learning-Based Classifiers

An ontology often contains some individuals. It is then possible to use machine
learning-based classifiers to predict the weight of a mapping between two entities.
In the following, we define, for each instance of an OWL ontology, u as a set
of strings obtained by gathering: (i) the label for the named individuals, (ii)
the data value for the datatype properties and (iii) the type for the anonymous
individuals and the range of the object properties.

For example, using the abstract syntax of [14], let us consider the following
individuals :

5 The parameter p can be adjusted, but the experiments reported in [22] show that
the value 0.6 tends to give the best results.

6 WordNet: http://wordnet.princeton.edu/ .
7 Of course, many other WordNet based classifiers exist (or new ones can be de-

veloped). Anyway, they can easily be added to oMAP. Their effectiveness will be
evaluated in future work.

386 U. Straccia and R. Troncy

Individual (x1 type (Conference)
value (label "3rd European Semantic Web Conference")
value (location x2))

Individual (x2 type (Address)
value (city "Budva") value (country "Montenegro"))

Then, the text gathered u1 for the named individual x1 will be ("3rd European

Semantic Web Conference", "Address") while u2 for the anonymous individual
x2 will be ("Address", "Budva", "Montenegro").

We describe in the following typical and well-known classifiers that we used
in oMAP: the kNN classifier and the Naive Bayes [20].

kNN classifier. The algorithm of the k-nearest neighbors is based on the cal-
culus of the distances between an unknown form and all the forms of a reference
base. It is particularly popular for text classification [20]. In our CLkNN classi-
fier, each class (or property) Si acts as a category, and training sets are formed
from the instances x (which have u as value) of Si:

Train =
s

i=1

{(Si, x,u): (x, u) ∈ Si}

For every instance y ∈ Tj and its value v, the k-nearest neighbors TOPk have
to be found by ranking the values (Si, x, u) ∈ Train according to their similarity
RSV 8(u, v). The prediction weights are then computed by summing up the sim-
ilarity values for all x which are built from Si, and by averaging these weights
w̃(y, v, Si) over all instances y ∈ Tj :

w(Si, Tj , CLkNN) =
1
|Tj |

·
(y,v)∈Tj

w̃(y, v, Si) ,

w̃(y, v, Si) =
(Sl,x,u)∈TOPk ,Si=Sl

RSV (u, v) ,

RSV (u, v) =
m∈u∩v

Pr(m|u) · Pr(m|v) ,

Pr(m|u) =
tf (m, u)

m′∈u tf (m′, u)
,

Pr(m|v) =
tf (w, v)

m′∈v tf (m′, v)

Here, tf (m, u) (resp. tf (m, v)) denotes the number of times the word m appears
in the string u (seen as a bag of words).

Naive Bayes text classifier. The classifier CLNB uses a Naive Bayes text
classifier [20] for text content. Like the previous one, each class (or property)
Si acts as a category, and training sets are formed from the instances x (which
have u as value) of Si:
8 The Retrieval Status Value is the similarity among two vectors of word, i.e. the sum

is the scalar product among the two vectors u and v, i.e. the cosine of the angle
among the two vectors.

Towards Distributed Information Retrieval in the Semantic Web 387

Train =
s

i=1

{(Si, x,u): (x, u) ∈ Si}

For example, the triple (Conference, x1, u1) will be considered, where x1 and
u1 are defined above.

For each (y, v) ∈ Tj, the probability Pr(Si|v) that the value v should be
mapped onto Si is computed. In a second step, these probabilities are combined
by:

w(Si, Tj , CLNB) =
(y,v)∈Tj

Pr(Si|v) · Pr(v)

Again, we consider the values as bags of words. With Pr(Si) we denote the
probability that a randomly chosen value in

⋃
k Sk is a value in Si. If we assume

independence of the words in a value, then we obtain:

Pr(Si|v) = Pr(v|Si) ·
Pr(Si)
Pr(v)

=
Pr(Si)
Pr(v)

·
m∈v

Pr(m|Si)

Together, the final formula is:

w(Si, Tj , CLNB) = Pr(Si) ·
(y,v)∈Tj m∈v

Pr(m|Si)

If a word does not appear in the content for any individual in Si (Pr(m|Si) = 0),
we assume a small value to avoid a product of zero.

3.4 A Structural Classifier

Besides these well-known algorithm in information retrieval and text classifica-
tion, we introduce a new classifier, CLSem, which is able to use the semantics
of the OWL definitions while being guided by their syntax. In other words, this
classifier computes similarities between OWL entities by comparing their syn-
tactical definitions. It is used in the framework a posteriori. Indeed, we rely on
the classifier preference relation CLSN ≺ CLSS ≺ CLED1 ≺ CLED2 ≺ CLIS ≺
CLNB ≺ CLkNN . According to this preference relation, a set Σ′ of mappings
is determined. This set is given as input to the structural classifier. Then the
structural classifier tries out all alternative ways to extend Σ′ by adding some
Tj ← Si if no mapping related to Tj is present in Σ′. Any extension of Σ′ is
denoted below by Σ (Σ′ ⊆ Σ).

In the following, we note with w′(Si, Tj, Σ) the weight of the mapping Tj ← Si

estimated by the classifiers of the previous sections, where Si (resp. Tj) is a
concept or property name of the source (resp. target) ontology. Note that in
case the structural classifier is used alone, we set: w′(Si, Tj , Σ) = 1. The formal
recursive definition of CLSem is then given by:

1. If Si and Tj are property names:

w(Si, Tj , Σ) =
0 if Tj ← Si �∈ Σ
w′(Si, Tj , Σ) otherwise

388 U. Straccia and R. Troncy

2. If Si and Tj are concept names: let assume that their definitions are Si 	
C1 . . . and . . . Cm and Tj 	 D1 . . . and . . . Dn, and we note D = D(Si) ×
D(Tj)9, then:

3. Let CS = (QR.C) and DT = (Q′R′.D), where Q, Q′ are quantifiers ∀ or ∃
or cardinality restrictions, R, R′ are property names and C, D are concept
expressions, then:

w(CS, DT , Σ) = wQ(Q,Q′) · w(R,R′, Σ) · w(C, D, Σ)

4. Let CS = (op C1 . . . Cm) and DT = (op′ D1 . . .Dm), where the concept
constructors op, op′ in the concepts CS , DT are in prefix notation, op, op′ are
the concept constructors among ,�,¬ and n, m ≥ 1, then:

w(CS, DT , Σ) = wop(op, op′) ·

max
Set

(Ci,Dj)∈Set

w(Ci, Dj , Σ)

min(m, n)

where:

– Set ⊆ {C1 . . . Cm} × {D1 . . . Dn} and |Set| = min(m, n),
– (C, D) ∈ Set, (C′, D′) ∈ Set ⇒ C �= C′, D �= D′.

We give in the Table 1 the values for wQ and wop we used.

Table 1. Possible values for wop and wQ weights

wop is given by: wQ is given by:
� � ¬

� 1 1/4 0
� 1 0
¬ 1

∃ ∀
∃ 1 1/4
∀ 1

≤ n ≥ n

≤ m 1 1/3
≥ m 1

4 Evaluation

The problem of aligning ontologies has already produced some interesting works.
However, it is difficult to compare theoretically the various approaches proposed
since they base on different techniques. Hence, it is necessary to compare them on
common tests. This is the goal of the Ontology Alignment Evaluation Initiative
(OAEI10) since two years, who set up contests and benchmark tests for assessing
9 D(Si) represents the set of direct (immediate) parent concepts of Si.

10 http://oaei.inrialpes.fr

Towards Distributed Information Retrieval in the Semantic Web 389

the strengths and weakness of the available tools. We have thoroughly evaluated
oMAP with the data of the OAEI 2005 campaign [24]. We present below the
updated results of our new approach with respect to the other competitors of
this contest for two different scenarios: systematic benchmark tests based on
bibliography data (section 4.1), and the alignment of three large web directories
(Google, Looksmart and Yahoo) which fits perfectly with our web distributed
search scenario (section 4.2).

oMAP is freely available at: http://homepages.cwi.nl/~troncy/oMAP and all
these results can be reproduced.

4.1 Aligning Bibliographic Data: The OAEI Benchmarks

The benchmarks tests are systematic benchmarks series produced for identifying
the areas in which each alignment algorithm is strong and weak. Taking back
the tests of the 2004 contest [25] and extending them, there are based on one
particular ontology dedicated to the very narrow domain of bibliography and a
number of alternative ontologies of the same domain for which alignments are
provided. The overall score of oMAP for this task is quite good (see Table 2, the
results of the other competitors are based on [1]).

Table 2. Overall results for the OAEI benchmark tests, oMAP is given in the last
column

algo edna Falcon FOAM ctxMatch Dublin20 CMS OLA oMAP

Test Prec. Rec. Prec. Rec. Prec. Rec. Prec. Rec. Prec. Rec. Prec. Rec. Prec. Rec. Prec. Rec.

1xx 0.96 1.00 1.00 1.00 0.98 0.65 0.87 0.34 1.00 0.99 0.74 0.20 1.00 1.00 1.00 1.00
2xx 0.41 0.56 0.90 0.89 0.89 0.69 0.72 0.19 0.94 0.71 0.81 0.18 0.80 0.73 0.80 0.63
3xx 0.47 0.82 0.93 0.83 0.92 0.69 0.37 0.06 0.67 0.60 0.93 0.18 0.50 0.48 0.93 0.65

H-mean 0.45 0.61 0.91 0.89 0.90 0.69 0.72 0.20 0.92 0.72 0.81 0.18 0.80 0.74 0.85 0.68

However, oMAP has poor performance for the tests 25x and 26x where all la-
bels are replaced with random strings. Actually, the terminological and machine-
learning based classifiers give wrong input to our structural classifier. This clas-
sifier is then not able to counterbalance this effect and give also wrong align-
ments. It is the typical case where the other classifiers should be turn off and
the structural classifier should work alone. In this specific case, the computing
time increases but the performances are much better.

4.2 Aligning Web Categories

The directory real world case consists of aligning web sites directory using the
large dataset developing in [2]. These tests are blind in the sense that the ex-
pected alignments are not known in advance. As explained in [1], only recall
results are available. The results for web directory matching task are presented
on the Table 3 (the results of the other competitors are based on [1]). The
web directories matching task is a very hard one, since the best systems found

390 U. Straccia and R. Troncy

Table 3. Overall results for the web categories alignment, oMAP is given in the last
column

Falcon FOAM ctxMatch Dublin20 CMS OLA oMAP

31.17% 11.88% 9.36% 26.53% 14.08% 31.96% 34.43

about 30% of mappings form the dataset (i.e. have Recall about 30%). oMAP
gives already good results but a complete analysis of them should provide some
improvements in a very near future.

5 Related Work and Conclusion

In this paper, we have proposed a three-step framework for distributed, Semantic
Web-enabled Information Retrieval. For the second step, namely query reformu-
lation and ontology alignment, we have described oMAP, an efficient tool for
automatically aligning OWL ontologies, whereas the first step, namely resource
selection, will be addressed in future work. oMAP uses different classifiers to
estimate the quality of a mapping. Novel are the use of machine learning-based
classifiers and a classifier which uses the structure of the OWL constructs and
thus the semantics of the entities defined in the ontologies. We have implemented
the whole framework and evaluated it on the OAEI benchmark tests with respect
to the other competitors.

The alignment problem for ontologies, as well as the matching problem for
schemas, has been addressed by many researchers so far and are strictly related.
Some of the techniques applied in schema matching can be applied to ontology
alignment as well, taking additionally into account the formal semantics carried
out by the taxonomies of concepts and properties and the axioms of the ontol-
ogy. Among the works related to ontology alignment, FOAM [7, 8] propose to
combine different similarity measures from pre-existing hand-established map-
ping rules. Besides the validity of these rules could be generally put into ques-
tion, this method suffers from not being fully automatic. [17] has developed an
interesting approach: from anchor-pairs of concepts that seem to be close (dis-
covered automatically or proposed manually), their hors-context similarity are
computed analyzing the paths in the taxonomy that link the pairs of concepts.
This method has been implemented into the Anchor-Prompt tool which has,
until now, one of the best performance. [10] have adapted works on similarity
calculus for object-based knowledge representation languages to the Semantic
Web languages. A global similarity measure taking into account all the features
of the OWL-Lite language has been proposed, capable to treat both the circular
definitions and the collections. For a complete state of the art on the numerous
ontology alignment approaches proposed, see [5, 21].

Our future work will concentrate on the major issue left out so far, namely
automated resource selection. To this end, we plan to extend methods for query-
based sampling and automated resource selection from the textual IR resources
to ontology-based information resources. Furthermore, the oMAP framework

Towards Distributed Information Retrieval in the Semantic Web 391

could still be improved. The combination of a rule-based language with an
expressive ontology language like OWL has attracted the attention of many
researchers [13] and is considered now as an important requirement. Taking
into account this additional semantics of the ontologies appear thus necessary.
Additional classifiers using more terminological resources can be included in
the framework, while the effectiveness of the machine learning part could be
improved using other measures like the KL-distance. While to fit new classifiers
into our model is straightforward theoretically, practically finding out the most
appropriate one or a combination of them is quite more difficult. In the future,
more variants should be developed and evaluated to improve the overall quality
of oMAP.

Acknowledgments

The authors wish to thank in particular Jacco van Ossenbruggen and Lynda
Hardman for insightful discussions and helpful comments.

References

1. B. Ashpole, M. Ehrig, J. Euzenat, and H. Stuckenschmidt, editors. K-CAP 2005
Workshop on Integrating Ontologies (IntOnt’05), Banff, Canada, 2005.

2. P. Avesani, F. Giunchiglia, and M. Yatskevich. A Large Scale Taxonomy Mapping
Evaluation. In 4th International Semantic Web Conference (ISWC’05), pages 67–
81, Galway, Ireland, 2005.

3. J. Callan. Distributed Information Retrieval. In W.B. Croft, editor, Advances in
Information Retrieval, pages 127–150. Kluwer Academic, 2000.

4. J. Callan and M. Connell. Query-Based Sampling of Text Databases. ACM Trans-
actions on Information Systems, 19(2):97–130, 2001.

5. KW Consortium. State of the Art on Ontology Alignment. Deliverable Knowledge
Web 2.2.3, FP6-507482, 2004.

6. A. Doan, J. Madhavan, R. Dhamankar, P. Domingos, and A. Halevy. Learning to
Match Ontologies on the Semantic Web. The VLDB Journal, 12(4):303–319, 2003.

7. M. Ehrig and S. Staab. QOM - quick ontology mapping. In 3rd International
Semantic Web Conference (ISWC’04), pages 683–697, Hiroshima, Japon, 2004.

8. M. Ehrig, S. Staab, and Y. Sure. Bootstrapping Ontology Alignment Methods
with APFEL. In 4th International Semantic Web Conference (ISWC’05), pages
186–200, Galway, Ireland, 2005.

9. J. Euzenat. An API for ontology alignment. In 3rd International Semantic Web
Conference (ISWC’04), pages 698–712, Hiroshima, Japon, 2004.

10. J. Euzenat and P. Valtchev. Similarity-based ontology alignment in OWL-Lite.
In 15th European Conference on Artificial Intelligence (ECAI’04), pages 333–337,
Valence, Spain, 2004.

11. R. Fagin, P.G. Kolaitis, R.J. Miler, and L. Popa. Data Exchange: Semantics and
Query Answering. In 9th International Conference on Database Theory (ICDT’03),
pages 207–224, Sienne, Italie, 2003.

12. N. Fuhr. Probabilistic Datalog: Implementing Logical Information Retrieval for
Advanced Applications. Journal of the American Society for Information Science,
51(2):95–110, 2000.

392 U. Straccia and R. Troncy

13. I. Horrocks and P.F. Patel-Schneider. A proposal for an OWL rules language. In
13th International World Wide Web Conference (WWW’04), pages 723–731, 2004.

14. I. Horrocks, P.F. Patel-Schneider, and F. van Harmelen. From SHIQ and RDF
to OWL: The making of a web ontology language. Journal of Web Semantics,
1(1):7–26, 2003.

15. V.I. Levenshtein. Binary codes capable of correcting deletions, insertions, and
reversals (Russian). Doklady Akademii Nauk SSSR, 163(4):845–848, 1965. English
translation in Soviet Physics Doklady, 10(8):707–710, 1966.

16. H. Nottelmann and U. Straccia. sPLMap: A probabilistic approach to schema
matching. In 27th European Conference on Information Retrieval (ECIR’05), pages
81–95, Santiago de Compostela, Spain, 2005.

17. N.F. Noy and M.A. Musen. Anchor-PROMPT: Using non-local context for seman-
tic matching. In Workshop on Ontologies and Information Sharing at IJCAI’01,
Seattle, Washington, USA, 2001.

18. M.F. Porter. An algorithm for suffix stripping. Program, 14(3):130–137, 1980.
19. M.E. Renda and U. Straccia. Web Metasearch: Rank vs. Score Based Rank

Aggregation Methods. In 18th Annual ACM Symposium on Applied Computing
(SAC’03), pages 841–846, Melbourne, Florida, USA, 2003.

20. F. Sebastiani. Machine learning in automated text categorization. ACM Comuting
Surveys, 34(1):1–47, 2002.

21. P. Shvaiko and J. Euzenat. A Survey of Shema-based Matching Approaches. Jour-
nal on Data Semantics (JoDS), 2005.

22. G. Stoilos, G. Stamou, and S. Kollias. A String Metric for Ontology Alignment. In
4th International Semantic Web Conference (ISWC’05), pages 624–637, Galway,
Ireland, 2005.

23. U. Straccia and R. Troncy. oMAP: Combining Classifiers for Aligning Automati-
cally OWL Ontologies. In 6th International Conference on Web Information Sys-
tems Engineering (WISE’05), pages 133–147, New York City, New York, USA,
November, 20-22 2005.

24. U. Straccia and R. Troncy. oMAP: Results of the Ontology Alignment Contest. In
Workshop on Integrating Ontologies, pages 92–96, Banff, Canada, 2005.

25. Y. Sure, O. Corcho, J. Euzenat, and T. Hughes, editors. 3rd International Work-
shop on Evaluation of Ontology-based Tools (EON’04), Hiroshima, Japon, 2004.

26. W. Winkler. The state record linkage and current research problems. Technical
report, Statistics of Income Division, Internal Revenue Service Publication, 1999.

27. C. Yu, W. Meng, King-Lup, W. Wu, and N. Rishe. Efficient and Effective
Metasearch for a Large Number of Text Databases. In 8th International Con-
ference on Information and Knowledge Management (CIKM’99), pages 217–224,
Kansas City, Missouri, USA, 1999.

Y. Sure and J. Domingue (Eds.): ESWC 2006, LNCS 4011, pp. 393 – 410, 2006.
© Springer-Verlag Berlin Heidelberg 2006

PowerAqua: Fishing the Semantic Web

Vanessa Lopez, Enrico Motta, and Victoria Uren

Knowledge Media Institute & Centre for Research in Computing, The Open University.
Walton Hall, Milton Keynes,MK7 6AA, United Kingdom
{v.lopez, e.motta, v.s.uren}@open.ac.uk

Abstract. The Semantic Web (SW) offers an opportunity to develop novel, so-
phisticated forms of question answering (QA). Specifically, the availability of
distributed semantic markup on a large scale opens the way to QA systems
which can make use of such semantic information to provide precise, formally
derived answers to questions. At the same time the distributed, heterogeneous,
large-scale nature of the semantic information introduces significant challenges.
In this paper we describe the design of a QA system, PowerAqua, designed to
exploit semantic markup on the web to provide answers to questions posed in
natural language. PowerAqua does not assume that the user has any prior in-
formation about the semantic resources. The system takes as input a natural
language query, translates it into a set of logical queries, which are then an-
swered by consulting and aggregating information derived from multiple het-
erogeneous semantic sources.

1 Introduction

The development of a semantic layer on top of web contents and services, the Seman-
tic Web [1], has been recognized as the next step in the evolution of the World Wide
Web as a distributed knowledge resource. The Semantic Web brings to the web the
idea of having data formally defined and linked in a way that they can be used for
effective information discovery, integration, reuse across various applications, and for
service automation.

Ontologies play a crucial role on the SW: they provide the conceptual infrastruc-
ture supporting semantic interoperability, addressing data heterogeneity [2] and open-
ing up opportunities for automated information processing [3]. However, because of
the SW’s distributed nature, data will inevitably be associated with different ontolo-
gies and therefore ontologies themselves will introduce heterogeneity. Different on-
tologies may describe similar domains, but using different terminologies, while others
may have overlapping domains: i.e. given two ontologies, the same entity can be
given different names or simply be defined in different ways.

Our goal is to design and develop a Question Answering (QA) system, able to ex-
ploit the availability of distributed, ontology-based semantic markup on the web to
answer questions posed in natural language (NL). A user must be able to pose NL
queries without being aware of which information sources exist, the details associated

394 V. Lopez, E. Motta, and V. Uren

with interacting with each source, or the particular vocabulary used by the sources.
We call this system PowerAqua.

PowerAqua follows from an earlier system, AquaLog [4], and addresses its main
limitation, as discussed in the next section.

2 The AquaLog Question Answering System

AquaLog [4] is a fully implemented ontology-driven QA system, which takes an
ontology and a NL query as an input and returns answers drawn from semantic
markup compliant with the input ontology. In contrast with much existing work on
ontology-driven QA, which tends to focus on the use of ontologies to support query
expansion in information retrieval [5], AquaLog exploits the availability of semantic
statements to provide precise answers to complex queries expressed in NL.

An important feature of AquaLog is its ability to make use of generic lexical re-
sources, such as WordNet, as well as the structure of the input ontology, to make
sense of the terms and relations expressed in the input query. Naturally, these terms
and relations normally match the terminology and concepts familiar to the user rather
than those used in the ontology.

Another important feature of AquaLog is that it is portable with respect to ontolo-
gies. In other words, the time required to configure AquaLog for a particular ontology
is negligible. The reason for this is that the architecture of the system and the reason-
ing methods are completely domain-independent, relying on an understanding of
general-purpose knowledge representation languages, such as OWL1, and the use of
generic lexical resources, such as WordNet. AquaLog also includes a learning mecha-
nism, which ensures that, for a given ontology and community of users, its perform-
ance improves over time, as the users can easily correct mistakes and allow AquaLog
to learn novel associations between the relations used by users, which are expressed
in natural language, and the ontology structure.

AquaLog uses a sequential process model (see Figure 1), in which NL input is first
translated into a set of intermediate representations – these are called query triples, by
the Linguistic Component. The Linguistic Component uses the GATE infrastructure
and resources [6] to obtain a set of syntactic annotations associated with the input
query. The set of annotations is extended by the use of JAPE grammars to identify
terms, relations, question indicators (who, what, etc.), features (voice and tense) and
to classify the query into a category. Knowing the category of the query and having
the GATE annotations for the query, it becomes straight-forward for the Linguistic
Component to automatically create the Query-Triples. Then, these query triples are
further processed and interpreted by the Relation Similarity Service Component,
which uses the available lexical resources and the structure and vocabulary of the
ontology to map them to ontology-compliant semantic markup or triples.

However AquaLog suffers from a key limitation: at any time it can only be used for
one particular ontology. This of course works well in many scenarios, e.g. in company

1 A plug-in mechanism and a generic API ensure that different Knowledge Representation
languages can be used.

 PowerAqua: Fishing the Semantic Web 395

intranets where a shared organizational ontology is used to describe resources. How-
ever, if we consider the SW in the large, this assumption no longer holds. As already
pointed out, the semantic web is heterogeneous in nature and it is not possible to de-
termine in advance which ontologies will be relevant to a particular query. Moreover, it
is often the case that queries can only be solved by composing heterogeneous informa-
tion derived from multiple information sources that are autonomously created and
maintained. Hence, to perform effective QA on the semantic web, we need a system
which is able to locate and aggregate information, without any pre-formulated assump-
tion about the ontological structure of the relevant information.

Fig. 1. The AquaLog Data Model

3 QA for the Semantic Web: Multiple-Ontology Scenario

In the previous sections we have sketched our vision for a QA system suitable for the
semantic web, PowerAqua, and we have also explained why AquaLog does not quite
fit the bill. In this section we address the problem in more detail and we examine the
specific issues which need to be tackled in order to develop PowerAqua. It should be
noted that here we only focus on the issues which are specific to PowerAqua and are
not tackled already by AquaLog. For instance, we will not be looking at the problem
of translating from NL into triples: the AquaLog solution, which is based on GATE,
can be simply reused for PowerAqua.

Resource discovery and information focusing
PowerAqua aims to support QA on the open, heterogeneous Semantic Web. In princi-
ple, any markup associated with any ontology can be potentially relevant. Hence, in
contrast with AquaLog, which simply needs to retrieve all semantic resources which
are based on a given ontology, PowerAqua has to automatically identify the relevant
semantic markup from a large and heterogeneous semantic web2. In this paper we do

2 Here we do not need to worry about the precise mechanism used to index and locate an ontol-
ogy and the relevant semantic markup. Various solutions are in principle possible depending
on the SW evolution, here we can simply assume that the semantic web will provide the ap-
propriate indexing mechanisms, much like the cluster architecture used by Google provides
indexing mechanisms for the web as a whole.

396 V. Lopez, E. Motta, and V. Uren

not address the problem of scalability or efficiency in determining the relevance of the
ontologies, in respect to a query. Currently, there are ontology search engines, such as
Swoogle [7] and different RDF ontology storage technologies suitable for processing
SW information [8], e.g. 3store and Sesame servers.
Mapping user terminology into ontology terminology
A key design criterion for both AquaLog and PowerAqua is that the user is free to use
his / her own terminology when posing a query. So, while this is an issue also for
AquaLog, a critical problem for PowerAqua, not applicable to AquaLog, is that of
different vocabularies used by different ontologies to describe similar information
across domains [9].
Integrating information from different semantic sources
Queries posed by end-users may need to be answered not by a single knowledge
source but by consulting multiple sources, and therefore, combining the relevant in-
formation from different repositories. On other occasions more than one source con-
tains a satisfactory answer to the same query. Thus, if there is a complete translation
into one or more ontologies or if the current partial translation, in conjunction with
previously generated partial translations, is equivalent to the original query, the data
must be retrieved from the relevant ontologies and appropriately combined to give the
final answer. Interestingly, the problem of integrating information from multiple
sources in the first instance can be reduced to the problem of identifying multiple
occurrences of individuals in the sources in question.

4 Methodology: Query-Driven Semantic Mapping Algorithm Step
by Step

The algorithm presented here covers the design of the whole PowerAqua system.
However the AquaLog components reusable for PowerAqua have already been de-
scribed in detail in [4], so here they will be described only briefly. In this paper, we
focus primarily on the issues of mapping user terminology into ontology terminology
in a semantic web multi-ontology scenario, and the information integration problem.
To help the reader make sense of the algorithm shown in Figure 2, we will use the
query “What is the capital of Spain?” as a running example throughout. This query is
particularly useful to present the issues introduced in section 3, especially when de-
scribing the different ways in which the PowerAqua algorithm interprets the above
query and the query “Was Capital3 written in Spain?”.

4.1 Step 1: Linguistic and Query Classification Analysis

The Linguistic Component’s task is to map the NL input query into Query-Triples.
The role of the Query-Triples is simply to provide an easy way to manipulate the
input. AquaLog linguistic component [4] is appropriate for the linguistic analysis
thanks to its ontology portable and independent nature, and therefore, it is reused for
PowerAqua.

3 Book written by Karl Marx (1867).

 PowerAqua: Fishing the Semantic Web 397

4.1.1 Running Example
The example query “What is the capital of Spain?” is classified as a wh-query4 that
represents a binary relationship where there is not any information about the type of
the query term (focus), and generates the linguistic triple: <?, capital, Spain>. How-
ever, the relation “is the capital of” contains the noun “capital”, therefore, we need to
take into account that the triple may be restructured as a triple with an implicit rela-
tion between the term “capital” and “Spain”.

The second example query “Was Capital written in Spain?” is translated into a ba-
sic affirmative/negative query that generates the triple: <capital, written, Spain>.

Fig. 2. Algorithm step by step

4.2 Step 2: Syntactic Term Mapping and Resource Discovery

The initial selection of candidate ontologies, which may have the potential to an-
swer the query, is entirely done by syntax driven techniques (SDT). Note that
we use the same terminology as [10] referring to syntactic matching when the
matching between two nodes is computed using the labels of the nodes. SDT looks

4 The set of “wh-queries” are the ones starting with: what, when, where, are there any, does
anybody, how many, and also imperative commands like list, give, tell, name, show. “wh-
queries” like “who” can be interchanged into “which person/organization”, “where” into
“which location” and so on.

398 V. Lopez, E. Motta, and V. Uren

for similarities between labels by means of string-based metrics5, taking into ac-
count abbreviations, acronyms and domain and lexical knowledge.

4.2.1 Phase a: Extending the Query Vocabulary with Lexical and Domain
Knowledge

To maximize recall, with respect to other ontology search systems that only looks for
classes or instances that have labels matching a search term either exactly or partially
[11], each term in the query, or noun in the relation if any (relations may be formed
by a noun plus verbs and prepositions) is extended with its synonyms, hypernyms and
hyponyms.

The current version of WordNet provides a priori lexical and domain knowledge.
As Ide and Veronis state [12], WordNet is the most used lexical resource at present
for disambiguation in English. Most of the research methods in the literature are lim-
ited to WordNet [13]. Nouns, verbs, adjectives, and adverbs are each organized into
networks of synonyms sets (synsets). Each synset has a gloss to define it. There are
nine types of semantic relations defined on the noun subnetwork: hyponymy (IS-A)
relation, and its inverse hypernymy; six meronymic (PART-OF) relations –
COMPONENT-OF, MEMBER-OF, SUBSTANCE-OF and their inverses; and the
COMPLEMENT-OF relation.

4.2.2 Phase b: Syntactic Matching of Ontology Terms
Depending on the query category, the system will look for ontology instances, classes
or both to map a term or its lexical variations. The system looks for ontology classes,
which can be handled in the client memory, through the use of string distance metrics,
also used in AquaLog.

SDT are used in AquaLog, however, the weakness of these techniques becomes
more evident when applied to PowerAqua (see example in section 4.2.4). Firstly, the
discovery of user terms in the ontology by the use of SDT becomes increasingly com-
putationally expensive as the number of ontologies increases. Secondly, many of the
discovered ontology terms syntactically related with the query terms, obtained as a
result of applying SDT, may be similarly spelled words (labels) that do not have pre-
cisely matched meanings. As already indicated in section 3, in this paper we will not
address the issues to do with the efficiency and scalability of the algorithm in deter-
mining the relevance of the ontology and terms by use of SDT, but we will focus on
the issue of disambiguating among the possible interpretations of a query.

4.2.3 Phase c: Complete Coverage of the Triple by Candidate Ontologies
A criterion for filtering candidate ontologies is to select the ones that present potential
candidates mappings for all the terms within a triple, if any. In other words, if ontol-
ogy 1 presents a possible complete translation of a query triple, while ontology 2 only
presents a partial translation of the same triple, the later will be discarded. Similarly,
the coverage of an ontology given the search terms is used as a measure in the ontol-
ogy ranking approach on AKTiveRank [11].

Consider the query “Which wine is appropriate with chicken?”. The term “wine”
has a syntactic mapping with the term “wine” belonging to an ontology of colors, and

5 http://secondstring.sourceforge.net/

 PowerAqua: Fishing the Semantic Web 399

with the term “wines” related to an ontology of food and wines. Similarly, the term
“chicken” maps to an ontology of farming and to the same food and wine ontology.
Since the food and wine ontology presents a complete potential translation for the
triple we retain it, and we discard both the farming and color ontologies, which only
present partial translations.

However, we may find the case in which none of the available ontologies con-
tains a whole translation of the triple. Consider the query “Which researchers play
football?”, where we can find an ontology about researchers and an ontology about
footballers. In this case, the linguistic triple <researchers, play, football> should be
restructured and translated into two triples solved by different ontologies: <?, is-a,
researcher> and <?, is-a, footballer>.

In some cases, it may happen that no candidate terms are found due to the vocabu-
lary used in some ontologies, e.g. labels with multiple words. In this case, if there is a
possible mapping for one of the two query terms on the triple, we can identify a set of
possible candidate terms that can complete the triple through the ontology relation-
ships valid for this mapped term.

4.2.4 Running Example
Through WordNet we get the synonyms, hypernyms and hyponyms presented in
Table 1.

Table 1. Lexical related Words obtained in WordNet

Capital (glosses) Synonyms Hypernyms Hyponyms
#1: assets available for use in the
production of further assets

working capital assets stock, venture capital, risk
capital, operating capital

#2: wealth in the form of money or
property

- assets endowment, endowment
fund, means, substance,
principal, corpus, sum

#3: a seat of government - seat Camelot, national / provin-
cial / state capital

#4: one of the large alphabetic char-
acters used as the first letter

capital letter, upper-
case, majuscule

character, grapheme,
graphic symbol

small capital, small cap

#5: a book written by Karl Marx Das Kapital, Capital book (instance-of) -
#6: the upper part of a column that
supports the entablature

capital, chapiter, cap top -

As said in 4.1.1, the relation in the query example “What is the capital of Spain?”
is the noun “capital”, and therefore it can be understood as a) an ontology relation or
as a b) query term that should be mapped into an ontology class. After running phases
b and c, the system obtains the following ontologies:

• Ontology 1: Geographical information. Contains the terms “capital-city” as a can-
didate mapping for “capital” and “Spain” as an instance of “country”. There is a
direct relation that connects “capital-city” and “country”.

• Ontology 2: Financial ontology. Contains the terms “capital” and “Spain” as an
instance of “country”. The classes “capital” and “country” are related through the
concept “company”.

• Ontology 3: Country statistics. Contains the term “Spain”.

400 V. Lopez, E. Motta, and V. Uren

• Ontology 4: flights information. Contains the term “Logrono” (a Spanish city),
where “Logrono” is a WordNet hyponym of the only synset of “Spain”.

In Ontology 1 and 2, the query triple “capital” is understood as an ontology class,
and therefore, the resultant triple will be an unknown relation between “capital-city /
capital” and “Spain”. For the ontology 3 and 4 “capital” is understood as an ontology
relation, therefore the ontologies contains only a mapping for the term “Spain”, as
relations are not addressed until the step in section 4.4.

At this stage we have selected the candidate ontology terms that potentially will be
part of the equivalent ontology semantic query by a simple lexical analysis of the
labels (SDT). In the next phase the system performs sense disambiguation using the
ontology semantics and WordNet to analyze the meaning and discard non-related
ontology terms mapped in this phase.

Also, it is worth mentioning that in the question “Was Capital written in Spain?”,
where the triple is <capital, written, Spain>, the system should only obtain the fol-
lowing ontology:

• Ontology 5: Bibliographic information. Contains the terms “Das-Kapital” as an
instance of “book”, also “Spain” as an instance of a “country” (e.g. where a book
is published, at this stage we do not know if “published” is the same as “written”).

This is because the category of the query (affirmative-negative) is telling us that
the term ”capital” should be mapped into the instance “Das-Kapital”, while in “What
is the capital of Spain?” “capital” should be mapped into a class, and thanks to
WordNet we know that “book” is related to “capital” by an “instance-of” kind of
relationship not by an “hypernym”.

4.3 Step 3: Semantic Mapping from User Terminology into Ontology
Terminology

The mapping between user and ontology terms becomes increasingly complicated as
the number of ontologies increases. SDT (string metrics, lexicon, synonyms) used to
select the candidate terms and ontologies are obviously not enough to identify rele-
vant terms in the heterogeneous scenario introduced by multiple ontologies. A seman-
tic mapping component that considers the content of an information item and its in-
tended meaning is needed because:

− Calling the user to disambiguate between possible ontology candidate terms is not
feasible because of the broad space of syntactically obtained distributed terms6:
spelled words (labels) may have not precisely matched meanings. Relationships
between word senses, not words, are needed. If we know the possible senses for
the user’s query we can filter the candidate results without the user’s feedback.

− To answer a query the system may need to combine partial answers from more
than one ontology, or two ontologies may provide compatible answers, e.g. an-
swers which can be merged, to the same query. Semantic interoperability between

6 Interactivity should be the last resort for the Similarity Services (section 4.4) where, after a
deep analysis of the ontology, domain knowledge does not further help to automatically per-
form disambiguation.

 PowerAqua: Fishing the Semantic Web 401

two concepts is only possible if they are semantically equivalent, or in other words,
instance information from different ontology classes can be correlated / integrated
only if the ontology classes are semantically equivalent. We make the assumption
that two ontology classes may be semantically equivalent, and denote compatible
information, if the WordNet senses associated with the labels of the classes, in the
context of their position in the ontology taxonomy, share some similarity. Other-
wise they are just classes that share lexically-related labels but they refer to differ-
ent domains and therefore their information is not compatible.

In this step the semantic equivalence of the candidate ontology terms obtained in step
2 is studied. As a consequence, ontology terms that are syntactically related to the
terms in the query, but are not semantically equivalent, are discarded as potential
mappings. The semantic equivalence, and therefore the word sense disambiguation
(WSD), is measured through the notion of similarity. Many reasonable similarity
measures and strategies exist in the literature for WSD (see [12] for a state of the art).
Hence, to maximize our system applicability we propose a sense-based similarity
matcher algorithm in section 4.3.1. This algorithm applied to PowerAqua is described
in the steps 4.3.2 and 4.3.3.

4.3.1 Semantic Equivalence Between Two Terms: Sense-Based Similarity
Algorithm

To study similarity between terms the meaning of each term should be made explicit
by an interpretation of its label and position in the ontology taxonomy (see 4.3.3).
Note that similarity is a more specialized notion than association or relatedness. Simi-
lar entities are semantically related by virtue of their similarity (bank-trust company).
Dissimilar entities may also be semantically related by lexical relationships such as
meronym (car-wheel) and antonymy (hot-cold), or just by any kind of functional
relationship or frequent association (pencil-paper, penguin-Antarctica) [13]. Taking
the example in [14] doctors are minimally similar to medicines and hospitals, since
these things are all instances of “something having concrete existence, living or
nonliving” (although they may be highly associated), but they are much more similar
to lawyers, since both are kinds of professional people, and even more similar to
nurses, since both are professional people within the health professions.
 In Hierarchy distance based matchers [15] the relatedness between words is meas-
ured by the distance between two concepts/senses in a given input hierarchy. In par-
ticular, similarity between words is measured by looking at the shortest path between
two given concepts/senses in the WordNet “IS-A” taxonomy of concepts.

Two words are similar if any of the following holds:

1. They have a synset in common (e.g. “human” and “person”)
2. A word is a hypernym/hyponym in the taxonomy of the other word.
3. If there exists an allowable “is-a” path connecting a synset associated with each

word –in the WordNet taxonomy-.
4. Additionally, if any of the previous cases is true and the definition (gloss) of

one of the synsets of the word (or its direct hypernyms/hyponyms) includes the
other word as one of its synonyms, we said that they are strongly similar.

For evaluating points 2 and 3 we make use of two WordNet indexes: the depth and
the common parent index (C.P.I). At the top of WordNet hierarchy are 11 abstract

402 V. Lopez, E. Motta, and V. Uren

concepts or unique beginners (e.g. “entity”), the maximum depth in the noun hierar-
chy is 16 nodes. The shorter the path between two terms [14] the more similar they
are, e.g. depth=1 represents case 3 (“is-a” path). However, a widely acknowledged
problem is that the approach typically “relies on the notion that links in the taxonomy
represent uniform distances”, but typically this is not true and there is a wide variabil-
ity in the “distance” covered by a single taxonomic link [13]. Resnik [14] established
that one criterion of similarity between two concepts is the extent to which they share
information in common, which, in an IS-A taxonomy, can be determined by inspect-
ing the relative position of the most-specific concept that subsumes them both. With
the use of the C.P.I we can immediately identify this lowest super-ordinate concept
(lso) between two terms, or the most specific common subsumer. The number of links
(depth) is still important to distinguish between any two pairs of concepts having the
same lso. Apart from point 1 of the algorithm, in which the words have a synset in
common, the most immediate case occurs in point 2 (C.P.I = 1, Depth = 1), e.g. while
comparing “poultry” and “chicken” we notice that “poultry#2” is the common sub-
sumer (hypernym) of “chicken#1”.

4.3.2 Phase a: Filtering Non-semantically Equivalent Candidate Ontology
Terms with Respect to a Query by the Use of Similarity

SDT (string algorithms, synonyms) were used in the previous phases to select the first
set of candidate terms and ontologies to map a query. Because of the use of SDT, the
ontology mapped term and the query term do not necessarily share the same meaning.
However, they must share some similarity in common; otherwise the candidate ontol-
ogy term is discarded.

For instance, for a query like “What investigators work in the akt project?” the sys-
tem, using string algorithms over WordNet synonyms, discovers the following terms
as possible candidate mappings for “investigators”: “researcher”, “KMi-researchers”,
“research-worker”, “research-area”. Using the WordNet “IS-A” taxonomy we must
find at least one synset in common with the mapped ontology term and the query term
or a short/relevant path in the IS-A WordNet taxonomy that relates them together.
Otherwise it is discarded as a solution.

Here, “researcher” and “investigator” have a synset in common, namely “research-
worker, researcher, investigator – a scientist who devotes himself to doing research”.
We get the same for “research-worker” and “KMi-researchers” (nominal compound
which lemma is “researcher”). However “research-area” will be discarded (even if
they may be highly associated) because not only do they not share any sense in com-
mon but also there is not a relevant “IS-A” path that connects “researcher” with “re-
search-area”; “researcher” is connected to the root through the path “scientist/man of
science” and “person”, while “research-area” is connected through “investigation”
which is connected to “work”.

4.3.3 Phase b: Analysis of the Semantic Interoperability Between Candidate
Ontology Terms by Means of Similarity Measures

Different ontology mappings for the same query term may represent different mean-
ings of the query term, and therefore they are not necessarily semantically equivalent.
Two classes are semantically interoperable or two instances are semantically equiva-
lent if they are similar, following the algorithm in 4.3.1, for any of its possible

 PowerAqua: Fishing the Semantic Web 403

WordNet synsets. The meaning of an ontology term is determined not only by its label
but by its position in the ontology taxonomy (ancestors and descendants) and by the
meaning of the rest of the concepts in the same taxonomy path (the context where the
class or instance occurs).

The algorithm used to obtain the set of possible WordNet synsets valid for an on-
tology term as part of an ontology taxonomy is inspired by the algorithm described in
[16] to make explicit the semantics hidden in schema models: Let L be a generic label
for a concept and L1 either an ancestor label or a descendant label of L and let s* and
s1* be respectively the sets of WordNet senses of a word in L and a word in L1. If
one of the senses belonging to s* is either a synonym, hypernym, holonym, hyponym
or a meronym of one of the senses belonging to s1*, these two senses are retained and
all the other senses are discarded. As an example, imagine Apple (which can denote
either a fruit or a tree) and Food as its ancestor; since there exits a hyponymy relation
between apple#1 (denoting a fruit) and food#1, we retain apple#1 and discard apple#2
(denoting a tree). Note this phase works better when the ontology term is a class in-
stead of an instance, as WordNet may not have the correct sense for a proper name.
This phase is further described in the running example.

4.3.4 Running Example
Going back to the example “What is the capital of Spain?” the mappings for “capital”
for the geographical and financial ontologies are “capital-city” and “capital” respec-
tively. After execution of phase a both interpretations remain, as the lemma for both
terms is the same as the query term “capital” and therefore, in principle, they have all
the synsets in common. In phase b the system will study whether both interpretations
are semantically equivalent by obtaining the sense of the mapped term in the context
of the ontology it belongs to.
 For instance, we run the algorithm of similarity presented in 4.3.1 to obtain the
synset of the term “capital” in the geographical ontology. We obtain the results pre-
sented in table 2 when trying to find an allowable path between all the senses of the
candidate ontology word “capital” and all the senses of its ancestor “city” (please note
that blank means that either there is not an allowable path or the depth is too long to
be considered as relevant).

Analyzing the results of table 2 we can quickly filter capital#c, capital#f, city#1,
city#2 and discard the others. A deeper study will show that capital#c is more likely
than capital#f because there are only 2 common subsumers in the latter (entity and
location), both of them representing abstracts top elements of the WordNet taxonomy,
while in the former we have 3 common subsumers. We can not study the descendants
of “capital” in the ontology because none exist. The study of the next direct ascendant
of “city” (“geographical-unit”) does not offer additional information (the
fine-grainedness of WordNet sense distinctions, e.g. in this case city#1 and city#2, is
a frequently cited problem). Moreover, the hypernym of capital#c is “seat#5”, de-
fined as “seat –centre of authority (city from which authority is exercised)”. The word
“city” is used as part of its definition. Therefore capital#c is strongly related to “city”.

After phase b it is clear that in the financial ontology “capital” is referred to
senses #1 and #2, while in geographical ontology “capital” is referred to sense #3.

404 V. Lopez, E. Motta, and V. Uren

Table 2. Similarity between “capital” and its ontology ancestor “city” using WordNet “IS-A”
taxonomy

City#1
(large and densely populated
urban area.., metropolis)

City#2
(an incorporated administrative
district ..)

City#3
(people living in
large municipality)

Capital#a (assests ..) -------------------------- -------------------------- ------------------------
Capital#b (wealth ..) -------------------------- -------------------------- ------------------------
Capital#c
(seat of government)

Depth = 8, lso = region
Num_so (common subsumers)
= 3 (region, location, entity)

Depth = 7, lso = region
Num_so = 3 (entity, location,
region)

Capital#d
(capital letter)

-------------------------- -------------------------- ------------------------

Capital#e
(book by Karl Marx)

-------------------------- -------------------------- -----------------------

Capital#f
(upper part column)

Depth = 8, lso = location
Num_so = 2 (entity, location)

Depth = 7, lso = location
Num_so = 2 (entity, location)

Therefore both terms in different ontologies are not semantically equivalent and
their information cannot be correlated (even if they share the same label) which
means that the system must select one of them using ontology semantics or query
relatedness in the following steps.

4.3.5 Selection of Candidate Ontology Terms Using the Notion of Relatedness
After the execution of previous steps, we have narrowed down to two the valid map-
pings for the linguistic triple: ?(capital, Spain), one in the geographical ontology and
the other one in the financial ontology. We also know that there is not semantic inter-
operability or equivalence between the class “capital” represented in both ontologies,
therefore only one mapping will be valid to create the final ontology compliant triple.

The next step (section 4.4) is the study of the ontology taxonomy and relationships
to analyze the relatedness between ontology terms to choose a correct mapping for
the query. However, it is worth mentioning that we also consider the study of the
sense of term “capital” in the user’s query by using the idea of relatedness found in
the computational linguistics literature. Most approaches assume that words that ap-
pear together in a sentence can be disambiguated by assigning to them the senses that
are most closely related to their neighboring words [17]. For instance, in “What is the
capital of Spain?”, for a human user it is obvious that capital#c, should be adopted
when considering only Spain as the neighborhood term. Pendersen and his colleagues
[17] have made available a Perl implementation of six WordNet measures evaluated
in [13] plus their own sense disambiguation algorithm based on glosses [17] to assign
a meaning to every content word in a text. Basically, these measures look for a path
connecting a synset associated with each word, e.g. in Hirst and St-Onge measure the
intuition behind is “the longer the path and the more changes of direction (upward for
hypernym and meronym; downward for hyponymy and holonymy and horizontal for
antonymy) the lower the weight”. In [17] extended semantic gloss matchers measure
semantic relatedness between concepts (and its ancestors/descendants according to the
is-a WordNet hierarchy) that is based on the number of shared words in their defini-
tions (glosses).

SDT based on text is not mature enough because there are useful computational
methods in the literature only for quantifying semantic distances for non-ad hoc

 PowerAqua: Fishing the Semantic Web 405

relationships. However, relatedness includes not just the WordNet relationships but
also associative and ad hoc relationships. These can include just about any kind of
functional relation or frequent association in the world (i,e bed-sleep), sometimes
constructed in the context, and cannot always be determined purely from a priori
lexical resources such as WordNet.

We believe that in our PowerAqua scenario we can take advantage of the related-
ness expressed in the ontology semantics to filter the correct candidate ontology tri-
ples equivalent to the user query triples, without the need to apply techniques for text
relatedness. This is explained in section 4.4.

4.4 Relation Similarity Services and Linking Triples

Essentially, the relation similarity service (RSS) tries to make sense of the input query
and express it in the form of ontology relationships between ontology terms. The RSS
is invoked after all the linguistic terminology is mapped into ontology terms (classes
or instances). The RSS is responsible of creating the ontology compliant triples by a)
linking the mapped ontology terms to create triples and b) linking the triples between
themselves. For the step a) to create the triples, a pair of ontology terms is linked by
relationships within the same ontology to which the terms belong. For step b) while
different triples may belong or not to different ontologies they have to be also linked
by at least one common term.

AquaLog mechanisms for step a) and b) can be reused. Briefly, for step a)
AquaLog looks for a set of possible ontology relationships between two terms by
looking at the structure in the ontology. This set is further disambiguated by the use of
distance metrics, or as the vocabulary of the user may have a number of discrepancies
with the vocabulary of the ontology it also uses WordNet and a learning mechanism.
For step b) sentences that are structurally ambiguous, in the way they are linked, can
be disambiguated using domain knowledge or in the last instance by calling the user
to choose between alternative readings.

There is not a single strategy here; basically it depends on the query category and
ontology structure. A typical situation is when the structure of triples in the ontology
do not match the way the information was represented in the query triples. We ex-
plore this situation with the following example: consider the query “which KMi re-
searchers working in the Semantic Web have publications in the ESWC conference?”
and the subset of ontologies in figure 3. The resultant semantically equivalent map-
pings or ontology-compliant-triples are presented in table 3. Note that the first query
triple <KMi researchers, working, Semantic Web> has a translation in both ontolo-
gies, while the second query triple <KMi researchers, have publications, eswc con-
ference> can only be resolved by the second ontology.
 The number of query triples is fixed a priori for each query category, however the
final number of ontology triples is not obvious at the first stage and it is dependent on
the ontology semantics. Therefore, triples must be created at run-time to generate an
equivalent representation according to the ontologies. Linguistic terms can be mapped
into ontology classes (i.e., “Kmi-researchers”), instances (“Semantic-web-area”,
“ISWC conference), or even a new triple (like the nominal compound “KMi research-
ers” into the triple <academics, Belongs-to, KMi>).

406 V. Lopez, E. Motta, and V. Uren

Different situations can be found by the similarity services when looking for a
proper relation mapping. For instance, the simple case is when a linguistic relation is
mapped into a ontology relation like “working” into “has-interest-on” in the case of
the first triple. In other cases, to map a relation a new triple must be created, for in-
stance, the relation “have publications” is mapped in the ontology B though the medi-
ating concept “papers”, and a new triple is created to represent the indirect relation-
ship (<academics, wrote, papers> <papers, accepted-in, european semantic web
conference>). Other mapping situations can be found in [4].

Ontology A: KMi ontology

KMi-researcher

employee

secretary
Subclass-ofSubclass-of

Ontology B: AKT ontology

research-area

Semantic-Web-area

Instance-of

has-interest-on

European Semantic
Web Conference

people

academics
Subclass-of organization

Belongs-to
KMi

Instance-of

papers conferences

wrote

accepted inreview

Instance-ofSemantic web

agents ontologies …

Instance-of

works-in

Fig. 3. Ontology scenario example

Table 3. Triples representation

Query-triples (linguistic triples) Onto-triples (ontology compatible triples)
<kmi researchers, working,
semantic web>

Ontology 1: [kmi-researchers, has-
interest-on, semantic-web-area]

Ontology 2: [academics, belongs-to, kmi]
[academics, works-in, semantic-web]

<kmi researchers, have publica-
tions, eswc conference>

Ontology 2: [academics, wrote, papers] [papers, accepted-in, european semantic
web conference]

4.4.1 Running Example
As said before, through the use of WordNet and the ontology we have narrowed down
to two valid non-equivalent mappings for the linguistic triple: <capital, ?, Spain>,
one in the geographical ontology and the other one in the financial ontology. A deeper
analysis of the ontology relationships will find a direct relation that connects any
country, e.g. Spain, with its capital for the geographical ontology. However, in the
financial ontology there is not a direct relation between countries and capital. There is
a mediating concept that represents a company, that has a series of capital goods and
it is based in a country. This is a strong indication that the geographical ontology is
more related to our query and should be selected.
 For the linguistic triple <?, capital, Spain> where capital is considered a relation, a
relationship analysis will uncover the relation “is-capital-of” between “country” and
“city” in ontology 3 (country statistics), while in the ontology 4 (flight information)
there are not any relations similar to “is-capital-of”. Therefore ontology 3 is selected.
 Note that both triple representations are valid representations of the query and se-
mantically equivalent to each other (they refer to “city” as the ascendant of “capital”
in one ontology or as the type of the relation “is-capital-of” in the other ontology). In

 PowerAqua: Fishing the Semantic Web 407

the next phases of the algorithm, an answer can be generated by correlating both re-
sults, e.g. identifying the common instance “Madrid” as an answer, or by selecting
one representation.

4.5 Generating an Answer

A key issue when generating an answer is to identify if semantically equivalent con-
cepts in the ontology triples have overlapping information and, in such a case, per-
form the fusion of instances. For example, in the KMi semantic web portal ontology,
the instance “Nigel Shadbolt” from the class “researcher” has some basic information,
but an instance about the same person has also been defined in the AKT web portal
ontology under the class “AKT-researcher”.

4.5.1 Phase a: Operational Combination of Triples
AquaLog provides two mechanisms (depending on the triple categories) for opera-
tionally integrating the triples information to generate an answer. These mechanisms
are: (1) and/or link: e.g., in “who has an interest in ontologies or in knowledge re-
use?”, the result will be a fusion of the instances of people who have an interest in
ontologies and the people who are interested in knowledge reuse; (2) conditional link,
in which we can differentiate between: a) conditional link to a term: e.g. in ”which
KMi academics work in the akt project sponsored by eprsc?” the second triple <akt
project, sponsored, eprsc> must be resolved and the instance representing the “akt
project sponsored by eprsc” identified to get the list of academics required for the first
triple <KMi academics, work, akt project>; and b) conditional link to a triple: e.g. in
”What are the homepages of the researchers working on the semantic web?” the sec-
ond triple <researchers, working, semantic web> must be resolved and the list of
researchers obtained prior to generating an answer for the first triple <?, homepage,
researchers>.

4.5.2 Information Correlation: Identify Common Instances
It is common to get semantically equivalent triples from different ontologies, as a
translation of one query triple. The challenge is to identify the instances in common
between the two equivalent terms in each triple. For example, the query “Who are the
academics working on the Semantic Web?” might have a complete translation in the
ontology X about researchers in KMi, ontology Y about academics in the University
of Trento and ontology Z about the AKT consortium. Ontologies X and Y have no
instances in common. However, ontologies X and Z contain overlapping information,
as many of the academics in KMi belong to the AKT project. Common instances must
be identified to give a complete non-redundant answer.

Furthermore, for queries represented by partial translations from different ontolo-
gies the identification of common instances is also a key issue. For instance, the query
“What are the citations for the publications of Enrico Motta?” is solved by an ontol-
ogy about citations and an ontology about academics in which the instance “Enrico
Motta” is related to his publications. The publications from the academics ontology
must be identified in the citations ontology.

Identifying whether two instances from semantically equivalent concepts are the
same is not an easy task. Instances may not have the same name, and information

408 V. Lopez, E. Motta, and V. Uren

about the same instance can have different purposes, e.g. the description of a car for
sale or for an environmental study. We can use the OWL mechanism which identifies
the attributes that provide sufficient evidence that two instances are the same. How-
ever, further mechanisms need to be adopted, e.g., use of joint probability approaches
similar to GLUE[3] over the instance full name (from the taxonomy root) and its
textual content (word frequency over attributes and values)

5 Related Work

The AquaLog linguistic component, reused for PowerAqua, in combination with the
SW scenario provides a new twist on the old issues associated to asking natural lan-
guage queries to databases (NLDB). See [4] for comparisons between AquaLog and
previous work in NLDB and open-domain NL QA systems. Here, we look at the
solutions proposed in the literature to address semantic heterogeneity in information
systems.

The Semantic Knowledge Articulation Tool (SKAT) [18] uses a first order logic
notation to specify declarative matching rules between ontology terms. SKAT initially
attempts to match nodes in the two graphs based on their labels and their structural
similarity. The idea of presenting a conceptually unified view of the information
space to the user, the world-view, is studied in [19]. The user can pose declarative
queries in terms of the objects and the relations in the world-view. Given a query to
the world-view, the query processor in the global information system poses subqueries
to the external sources that contain the information relevant to answer a query. In
order to do that, the semantic of the contents of the external sites is related to the
world-view through the use of a description language. These solutions have an intrin-
sic limitation to be applied to the open-world domain introduced by the SW scenario,
where the distributed sources are constantly growing. And therefore, it is not possible
to apply any closed-domain solution for environments with well-defined boundaries,
like corporate intranets, in which the problem can be addressed by the specification of
shared models like mapping rules, global ontologies/vocabularies, and definitions of
conversion libraries or functions between semantic data/values, among others. The
manual effort needed to maintain any kind of centralized/global shared approach for
semantic mapping (i.e. to implement the previous solution) in the SW is not only very
costly, in terms of maintaining the mappings for such a highly dynamic environment
that evolves quickly, but also has the added difficulty of “negotiating” a shared model
that suits the needs of all the parties involved [20].

In Query Processing in Global Information Systems [9] user queries are rewritten
by using inter-ontology relationships to obtain semantic translations across ontolo-
gies. There are two restrictions: firstly the user must subscribe to the terminology and
model captured by a chosen ontology. Secondly, the solution to the vocabulary prob-
lem is obtained through the declarative representation of synonym relationships relat-
ing ontology terms. The disadvantages are: 1) synonym relationship mappings must
be maintained between terms in the user ontology and the underlying repositories. 2)
Every time there is a change in the structure of underlying repositories the mappings
of the component ontology must be change. 3) Such synonym relationships should be
defined when a new ontology is added to the system (its centralized nature may affect

 PowerAqua: Fishing the Semantic Web 409

the efficiency of the system). The advantage is that different partial answers can be
easily correlated since all of them are expressed in the language of the user ontology.

CUPID [21] analyzes the factors that affect effectiveness of algorithms for auto-
matic semantic reconciliations; however, this is a complementary goal to ours: our
system matches terms and relations in an user’s query with distributed ontologies
while they match data repositories and ontologies. In GLUE [3] the probability of
matching two concepts is studied by analyzing the available ontologies using a relaxa-
tion labeling methods; however, this approach is not very adaptable because it ana-
lyzes all the ontology concepts. Finally, In our QA-driven scenario there is no need
for obtaining mappings for each pair of concepts belonging to different ontologies, in
which the level of effort is at least linear in the number of matches to be performed
[22] (see algorithms for the Match operator [22]). In our run-time scenario only rele-
vant concepts to the user’s query are analyzed (on-demand driven approach).

6 Summary

We have presented the design of PowerAqua, a novel QA system which provides
answers drawn from multiple, heterogeneous and distributed ontologies on the Web.
PowerAqua evolved from AquaLog, an implemented ontology-based QA system
limited to one ontology at a time. The issues derived from opening the system with
respect to the SW have been addressed here. A prototype based on the algorithm pre-
sented here will be implemented in the following months.

Acknowledgements

This work was partially supported by the AKT project sponsored by UK EPSRC and
by the EU OpenKnowledge project (FP6-027253). Thanks to Yuangui Lei and Marta
Sabou for useful input.

References

1. The Semantic Web. Berners-Lee, T., Hendler, J. and Lassila, O. Scientific American,
284(5): 33-43 (2001)

2. Semantic Integration of Heterogeneous Information Sources Using a Knowledge-Based
System. Adams T., Dullea J., Clark P., Sripada S. and Barrett T. In Proc. of the 5th Inter-
national Conference on Computer Science and Informatics, (2000).

3. Learning to Map between Ontologies on the Semantic Web. Doan A., Madhavan J.,
Domingos P., and Halevy A. In Proc. of the World-Wide Web Conference (2002).

4. AquaLog: An Ontology-portable Question Answering System for the Semantic Web. Lo-
pez V., Pasin M. and Motta E. In Proc. of the 2nd European Semantic Web Conference
(2005)

5. Question Answering on the SW. Mc Guinness,D. IEEE Intelligent Systems,19(1)82-85
(2004)

410 V. Lopez, E. Motta, and V. Uren

6. Cunningham, H., Maynard, D., Bontcheva, K., Tablan, V.: GATE: A Framework and
Graphical Development Environment for Robust NLP Tools and Applications. In Proc. of
the 40th Anniversary Meeting of the Association for Computational Linguistics (ACL'02).
Philadelphia (2002).

7. Swoogle: A semantic web search and metadata engine. X L. Ding et al. In Proc. 13th ACM
Conf. on Information And Knowledge Management (2004)

8. An Evaluation of Knowledge Base Systems for Large OWL Datasets. Guo, Y., Pan, Z.,
Heflin, J. International Semantic Web Conference 274-288 (2004)

9. OBSERVER: An approach for Query Processing in Global Information Systems based on
Interoperation across Pre-existing Ontologies. Mena E., Kashyap V., Sheth A. and Illarra-
mendi A. Distributed and Parallel Databases 8(2): 223-271 (2000)

10. S-Match: an algorithm and an implementation of semantic matching. Giunchiglia F.,
Shvaiko P and Yatskevich M. In Proc. of the 1t European Semantic Web Symposium
(2004).

11. Ontology Ranking based on the Analysis of Concept Structures. Alani, H. and Brewster, C.
In Proc, of the 3th International Conference on Knowledge Capture (2005).

12. Word Sense Disambiguation: The State of the Art. Ide N. and Veronis J. Computational
Linguistics, 24(1):1-40. (1998).

13. Evaluating WordNet-based measures of semantic distance. Budanitsky, A. and Hirst, G.
Computational Linguistics (2006).

14. Disambiguating noun grouping with respect to WordNet senses. Resnik P. In Proc. of the
3rd Workshop on very Large Corpora. MIT (1995).

15. Element Level Semantic Matching. Giunchiglia F. and Yatskevich M. Meaning Coordina-
tion and Negotiation Workshop, ISWC (2004).

16. Making Explicit the Semantics Hidden in Schema Models. Magnini B., Serafín L., and
Speranza M. In Proc. of the Workshop on Human Language Technology for the Semantic
Web and Web Services, held at ISWC-2003, Sanibel Island, Florida, (2003).

17. Extended Gloss Overlaps as a Measure of Semantic Relatedness. Banerjee S., and Peder-
sen T. International Joint Conference on Artificial Intelligence (2003).

18. Semi-automatic Integration of Knowledge Sources. Mitra P., Wiederhold G., Jannink J. In
Proc. of the 2nd International Conf.erence on Information Fusion. (1999).

19. Data Model and Query Evaluation in Global Information Systems. Levy A., Y., Srivastava
D. and Kirk T. Journal of Intelligence Information Systems. 5(2): 121-143 (1995).

20. Semantic coordination: a new approach and an application. Bouquet P., Serafini L. and
Zanobini S. International Semantic Web Conference 130-145 (2003).

21. Generic schema matching with cupid. Madhavan, J., Bernstein, P.A. and Rahm, E. The
Very Large Databases Journal: 49-58 (2001)

22. A survey of approaches to automatic schema matching. Rahm E. and Bernstein P. A. The
VLDB Journal — The International Journal on Very Large Data Bases 10(4): 334-350,
(2001).

Information Retrieval in Folksonomies: Search and
Ranking

Andreas Hotho1, Robert Jäschke1,2, Christoph Schmitz1, and Gerd Stumme1,2

1 Knowledge & Data Engineering Group, Department of Mathematics and Computer Science,
University of Kassel, Wilhelmshöher Allee 73, D–34121 Kassel, Germany

http://www.kde.cs.uni-kassel.de
2 Research Center L3S, Expo Plaza 1, D–30539 Hannover, Germany

http://www.l3s.de

Abstract. Social bookmark tools are rapidly emerging on the Web. In such sys-
tems users are setting up lightweight conceptual structures called folksonomies.
The reason for their immediate success is the fact that no specific skills are needed
for participating. At the moment, however, the information retrieval support is
limited. We present a formal model and a new search algorithm for folksonomies,
called FolkRank, that exploits the structure of the folksonomy. The proposed al-
gorithm is also applied to find communities within the folksonomy and is used to
structure search results. All findings are demonstrated on a large scale dataset.

1 Introduction

Complementing the Semantic Web effort, a new breed of so-called “Web 2.0” appli-
cations is currently emerging on the Web. These include user-centric publishing and
knowledge management platforms like Wikis, Blogs, and social resource sharing tools.

These tools, such as Flickr1 or del.icio.us,2, have acquired large numbers of users
within less than two years.3 The reason for their immediate success is the fact that no
specific skills are needed for participating, and that these tools yield immediate benefit
for each individual user (e.g. organizing ones bookmarks in a browser-independent,
persistent fashion) without too much overhead. Large numbers of users have created
huge amounts of information within a very short period of time. The frequent use of
these systems shows clearly that web- and folksonomy-based approaches are able to
overcome the knowledge acquisition bottleneck, which was a serious handicap for many
knowledge-based systems in the past.

Social resource sharing systems all use the same kind of lightweight knowledge
representation, called folksonomy. The word ‘folksonomy’ is a blend of the words ‘tax-
onomy’ and ‘folk’, and stands for conceptual structures created by the people. Folk-
sonomies are thus a bottom-up complement to more formalized Semantic Web tech-
nologies, as they rely on emergent semantics [11, 12] which result from the converging

1 http://www.flickr.com/
2 http://del.icio.us
3 From discussions on the del.icio.us mailing list, one can approximate the number of users on

del.icio.us to be more than three hundred thousand.

Y. Sure and J. Domingue (Eds.): ESWC 2006, LNCS 4011, pp. 411–426, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

412 A. Hotho et al.

use of the same vocabulary. The main difference to ‘classical’ ontology engineering ap-
proaches is their aim to respect to the largest possible extent the request of non-expert
users not to be bothered with any formal modeling overhead. Intelligent techniques may
well be inside the system, but should be hidden from the user.

A first step to searching folksonomy based systems – complementing the brows-
ing interface usually provided as of today – is to employ standard techniques used in
information retrieval or, more recently, in web search engines. Since users are used to
web search engines, they likely will accept a similar interface for search in folksonomy-
based systems. The research question is how to provide suitable ranking mechanisms,
similar to those based on the web graph structure, but now exploiting the structure of
folksonomies instead. To this end, we propose a formal model for folksonomies, and
present a new algorithm, called FolkRank, that takes into account the folksonomy struc-
ture for ranking search requests in folksonomy based systems. The algorithm will be
used for two purposes: determining an overall ranking, and specific topic-related rank-
ings.

This paper is organized as follows. Section 2 reviews recent developments in the
area of social bookmark systems, and presents a formal model. Section 3 recalls the ba-
sics of the PageRank algorithm, describes our adaptation to folksonomies, and discusses
experimental results. These results indicate the need for a more sophisticated algorithm
for topic-specific search. Such an algorithm, FolkRank, is presented in Section 4. This
section includes also an empirical evaluation, as well as a discussion of its use for gen-
erating personal recommendations in folksonomies. Section 5 concludes the paper with
a discussion of further research topics on the intersection between folksonomies and
ontologies.

2 Social Resource Sharing and Folksonomies

Social resource sharing systems are web-based systems that allow users to upload their
resources, and to label them with arbitrary words, so-called tags. The systems can be
distinguished according to what kind of resources are supported. Flickr, for instance, al-
lows the sharing of photos, del.icio.us the sharing of bookmarks, CiteULike4 and Con-
notea5 the sharing of bibliographic references, and 43Things6 even the sharing of goals
in private life. Our own system, BibSonomy,7 allows to share simultaneously bookmarks
and bibtex entries (see Fig. 1).

In their core, these systems are all very similar. Once a user is logged in, he can
add a resource to the system, and assign arbitrary tags to it. The collection of all his
assignments is his personomy, the collection of all personomies constitutes the folkson-
omy. The user can explore his personomy, as well as the personomies of the other users,
in all dimensions: for a given user one can see all resources he had uploaded, together
with the tags he had assigned to them (see Fig. 1); when clicking on a resource one

4 http://www.citeulike.org/
5 http://www.connotea.org/
6 http://www.43things.com/
7 http://www.bibsonomy.org

Information Retrieval in Folksonomies: Search and Ranking 413

Fig. 1. Bibsonomy displays bookmarks and BibTeX based bibliographic references simultane-
ously

sees which other users have uploaded this resource and how they tagged it; and when
clicking on a tag one sees who assigned it to which resources.

The systems allow for additional functionality. For instance, one can copy a resource
from another user, and label it with one’s own tags. Overall, these systems provide a
very intuitive navigation through the data. However, the resources that are displayed
are usually ordered by date, i. e., the resources entered last show up at the top. A more
sophisticated notion of ‘relevance’ – which could be used for ranking – is still missing.

2.1 State of the Art

There are currently virtually no scientific publications about folksonomy-based web
collaboration systems. The main discussion on folksonomies and related topics is cur-
rently taking place on mailing lists only, e.g. [3]. Among the rare exceptions are [5] and
[8] who provide good overviews of social bookmarking tools with special emphasis on
folksonomies, and [9] who discusses strengths and limitations of folksonomies. In [10],
Mika defines a model of semantic-social networks for extracting lightweight ontologies
from del.icio.us. Besides calculating measures like the clustering coefficient, (local)
betweenness centrality or the network constraint on the extracted one-mode network,
Mika uses co-occurence techniques for clustering the folksonomy.

There are several systems working on top of del.icio.us to explore the underlying
folksonomy. CollaborativeRank8 provides ranked search results on top of del.icio.us
bookmarks. The ranking takes into account how early someone bookmarked an URL
and how many people followed him or her. Other systems show popular sites (Populi-
cious9) or focus on graphical representations (Cloudalicious10, Grafolicious11) of sta-
tistics about del.icio.us.

8 http://collabrank.org/
9 http://populicio.us/

10 http://cloudalicio.us/
11 http://www.neuroticweb.com/recursos/del.icio.us-graphs/

414 A. Hotho et al.

Confoto,12 the winner of the 2005 Semantic Web Challenge, is a service to annotate
and browse conference photos and offers besides rich semantics also tagging facilities
for annotation. Due to the representation of this rich metadata in RDF it has limitations
in both size and performance.

Ranking techniques have also been applied in traditional ontology engineering. The
tool Ontocopi [1] performs what is called Ontology Network Analysis for initially pop-
ulating an organizational memory. Several network analysis methods are applied to
an already populated ontology to extract important objects. In particular, a PageRank-
like [2] algorithm is used to find communities of practice within sets of individuals
represented in the ontology. The algorithm used in Ontocopi to find nodes related to
an individual removes the respective individual from the graph and measures the dif-
ference of the resulting Perron eigenvectors of the adjacency matrices as the influence
of that individual. This approach differs insofar from our proposed method, as it tracks
which nodes benefit from the removal of the invidual, instead of actually preferring the
individual and measuring which related nodes are more influenced than others.

2.2 A Formal Model for Folksonomies

A folksonomy describes the users, resources, and tags, and the user-based assignment
of tags to resources. We present here a formal definition of folksonomies, which is also
underlying our BibSonomy system.

Definition 1. A folksonomy is a tuple F := (U, T, R, Y,≺) where

– U , T , and R are finite sets, whose elements are called users, tags and resources,
resp.,

– Y is a ternary relation between them, i. e., Y ⊆ U ×T ×R, called tag assignments
(TAS for short), and

– ≺ is a user-specific subtag/supertag-relation, i. e., ≺⊆ U × T × T , called sub-
tag/supertag relation.

The personomy Pu of a given user u ∈ U is the restriction of F to u, i. e., Pu :=
(Tu, Ru, Iu,≺u) with Iu := {(t, r) ∈ T × R | (u, t, r) ∈ Y }, Tu := π1(Iu), Ru :=
π2(Iu), and≺u:= {(t1, t2) ∈ T ×T | (u, t1, t2) ∈≺}, where πi denotes the projection
on the ith dimension.

Users are typically described by their user ID, and tags may be arbitrary strings. What is
considered as a resource depends on the type of system. For instance, in del.icio.us, the
resources are URLs, and in flickr, the resources are pictures. From an implementation
point of view, resources are internally represented by some ID.

In this paper, we do not make use of the subtag/supertag relation for sake of simplic-
ity. I. e.,≺= ∅, and we will simply note a folksonomy as a quadruple F := (U, T, R, Y).
This structure is known in Formal Concept Analysis [14, 4] as a triadic context [7, 13].
An equivalent view on folksonomy data is that of a tripartite (undirected) hypergraph
G = (V, E), where V = U ∪̇T ∪̇R is the set of nodes, and E = {{u, t, r} | (u, t, r) ∈
Y } is the set of hyperedges.

12 http://www.confoto.org/

Information Retrieval in Folksonomies: Search and Ranking 415

2.3 Del.ico.us — A Folksonomy-Based Social Bookmark System

In order to evaluate our retrieval technique detailed in the next section, we have ana-
lyzed the popular social bookmarking sytem del.icio.us, which is a server-based sys-
tem with a simple-to-use interface that allows users to organize and share bookmarks
on the internet. It is able to store in addition to the URL a description, an extended
description, and tags (i. e., arbitrary labels). We chose del.icio.us rather than our own
system, BibSonomy, as the latter went online only after the time of writing of this
article.

For our experiments, we collected data from the del.ico.us system in the following
way. Initially we used wget starting from the top page of del.ico.us to obtain nearly
6900 users and 700 tags as a starting set. Out of this dataset we extracted all users and
resources (i. e., del.icio.us’ MD5-hashed urls). From July 27 to 30, 2005, we down-
loaded in a recursive manner user pages to get new resources, and resource pages to
get new users. Furthermore we monitored the del.icio.us start page to gather additional
users and resources. This way we collected a list of several thousand usernames which
we used for accessing the first 10000 resources each user had tagged. From the col-
lected data we finally took the user files to extract resources, tags, dates, descriptions,
extended descriptions, and the corresponding username.

We obtained a core folksonomy with |U | = 75, 242 users, |T | = 533, 191 tags
and |R| = 3, 158, 297 resources, related by in total |Y | = 17, 362, 212 TAS.13 After
inserting this dataset into a MySQL database, we were able to perform our evaluations,
as described in the following sections.

 1e-07

 1e-06

 1e-05

 1e-04

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000 100000 1e+06

Pe
rc

en
ta

ge

Number of Occurrences

"Tags"
"Users"

"Resources"

Fig. 2. Number of TAS occurrences for tags, users, resources in del.icio.us

13 4,313 users additionally organised 113,562 of the tags with 6,527 so-called bundles. The bun-
dles will not be discussed in this paper; they can be interpreted as one level of the ≺ relation.

416 A. Hotho et al.

As expected, the tagging behavior in del.icio.us shows a power law distribution, see
Figure 2. This figure presents the percentage of tags, users, and resources, respectively,
which occur in a given number of TAS. For instance, the rightmost ‘+’ indicates that
a fraction of 2.19 · 10−6 of all tags (i. e. one tag) occurs 415950 times – in this case
it is the empty tag. The next ‘+’ shows that one tag (“web”) occurs 238891 times, and
so on. One observes that while the tags follow a power law distribution very strictly,
the plot for users and resources levels off for small numbers of occurrences. Based on
this observation, we estimate to have crawled most of the tags, while many users and
resources are still missing from the dataset. A probable reason is that many users only
try posting a single resource, often without entering any tags (the empty tag is the most
frequent one in the dataset), before they decide not to use the system anymore. These
users and resources are very unlikely to be connected with others at all (and they only
appear for a short period on the del.icio.us start page), so that they are not included in
our crawl.

3 Ranking in Folksonomies Using Adapted PageRank

Current folksonomy tools such as del.icio.us provide only very limited search support
in addition to their browsing interface. Searching can be performed over the text of tags
and resource descriptions, but no ranking is done apart from ordering the hits in reverse
chronological order. Using traditional information retrieval, folksonomy contents can
be searched textually. However, as the documents consist of short text snippets only
(usually a description, e. g. the web page title, and the tags themselves), ordinary rank-
ing schemes such as TF/IDF are not feasible.

As shown in Section 2.2, a folksonomy induces a graph structure which we will
exploit for ranking in this section. Our FolkRank algorithm is inspired by the seminal
PageRank algorithm [2]. The PageRank weight-spreading approach cannot be applied
directly on folksonomies because of the different nature of folksonomies compared to
the web graph (undirected triadic hyperedges instead of directed binary edges). In the
following we discuss how to overcome this problem.

3.1 Adaptation of PageRank

We implement the weight-spreading ranking scheme on folksonomies in two steps.
First, we transform the hypergraph between the sets of users, tags, and resources into an
undirected, weighted, tripartite graph. On this graph, we apply a version of PageRank
that takes into account the edge weights.

Converting the Folksonomy into an Undirected Graph. First we convert the folk-
sonomy F = (U, T, R, Y) into an undirected tripartite graph GF = (V, E) as follows.

1. The set V of nodes of the graph consists of the disjoint union of the sets of tags,
users and resources: V = U ∪̇T ∪̇R. (The tripartite structure of the graph can be
exploited later for an efficient storage of the – sparse – adjacency matrix and the
implementation of the weight-spreading iteration in the FolkRank algorithm.)

Information Retrieval in Folksonomies: Search and Ranking 417

2. All co-occurrences of tags and users, users and resources, tags and resources be-
come undirected, weighted edges between the respective nodes: E = {{u, t},
{t, r}, {u, r} | (u, t, r) ∈ Y }, with each edge {u, t} being weighted with |{r ∈
R : (u, t, r) ∈ Y }|, each edge {t, r} with |{u ∈ U : (u, t, r) ∈ Y }|, and each edge
{u, r} with |{t ∈ T : (u, t, r) ∈ Y }|.

Folksonomy-Adapted Pagerank. The original formulation of PageRank [2] reflects
the idea that a page is important if there many pages linking to it, and if those pages
are important themselves. The distribution of weights can thus be described as the fixed
point of a weight passing scheme on the web graph. This idea was extended in a sim-
ilar fashion to bipartite subgraphs of the web in HITS [6] and to n-ary directed graphs
in [15]). We employ the same underlying principle for our ranking scheme in folk-
sonomies. The basic notion is that a resource which is tagged with important tags by
important users becomes important itself. The same holds, symmetrically, for tags and
users. Thus we have a graph of vertices which are mutually reinforcing each other by
spreading their weights.

Like PageRank, we employ the random surfer model, a notion of importance for web
pages that is based on the idea that an idealized random web surfer normally follows
hyperlinks, but from time to time randomly jumps to a new webpage without following
a link. This results in the following definition of the rank of the vertices of the graph the
entries in the fixed point �w of the weight spreading computation �w ← dA�w+(1−d)�p,
where �w is a weight vector with one entry for each web page, A is the row-stochastic14

version of the adjacency matrix of the graph GF defined above, �p is the random surfer
component, and d ∈ [0, 1] is determining the influence of �p. In the original PageRank,
�p is used to outweigh the loss of weight on web pages without outgoing links. Usually,
one will choose �p = 1, i. e., the vector composed by 1’s. In order to compute personal-
ized PageRanks, however, �p can be used to express user preferences by giving a higher
weight to the components which represent the user’s preferred web pages.

We employ a similar motivation for our ranking scheme in folksonomies. The basic
notion is that a resource which is tagged with important tags by important users becomes
important itself. The same holds, symmetrically, for tags and users, thus we have a
tripartite graph in which the vertices are mutually reinforcing each other by spreading
their weights. Formally, we spread the weight as follows:

�w ← α�w + βA�w + γ�p (1)

where A is the row-stochastic version of the adjacency matrix of GF, �p is a preference
vector, α, β, γ ∈ [0, 1] are constants with α + β + γ = 1. The constant α is intended to
regulate the speed of convergence, while the proportion between β and γ controls the
influence of the preference vector.

We call the iteration according to Equation 1 – until convergence is achieved –
the Adapted PageRank algorithm. Note that, if ||�w||1 = ||�p||1 holds,15 the sum of the
weights in the system will remain constant. The influence of different settings of the
parameters α, β, and γ is discussed below.

14 i. e., each row of the matrix is normalized to 1 in the 1-norm.
15 . . . and if there are no rank sinks – but this holds trivially in our graph GF.

418 A. Hotho et al.

As the graph GF is undirected, part of the weight that went through an edge at
moment t will flow back at t + 1. The results are thus rather similar (but not identical)
to a ranking that is simply based on edge degrees, as we will see now. The reason for
applying the more expensive PageRank approach nonetheless is that its random surfer
vector allows for topic-specific ranking, as we will discuss in the next section.

3.2 Results for Adapted PageRank

We have evaluated the Adapted PageRank on the del.ico.us dataset described in Sec-
tion 2.3. As there exists no ‘gold standard ranking’ on these data, we evaluate our results
empirically.

First, we studied the speed of convergence. We let �p := 1 (the vector having 1 in
all components), and varied the parameter settings. In all settings, we discovered that

Table 1. Folksonomy Adapted PageRank applied without preferences (called baseline)

Tag ad. PageRank
system:unfiled 0,0078404
web 0,0044031
blog 0,0042003
design 0,0041828
software 0,0038904
music 0,0037273
programming 0,0037100
css 0,0030766
reference 0,0026019
linux 0,0024779
tools 0,0024147
news 0,0023611
art 0,0023358
blogs 0,0021035
politics 0,0019371
java 0,0018757
javascript 0,0017610
mac 0,0017252
games 0,0015801
photography 0,0015469
fun 0,0015296

User ad. PageRank
shankar 0,0007389
notmuch 0,0007379
fritz 0,0006796
ubi.quito.us 0,0006171
weev 0,0005044
kof2002 0,0004885
ukquake 0,0004844
gearhead 0,0004820
angusf 0,0004797
johncollins 0,0004668
mshook 0,0004556
frizzlebiscuit 0,0004543
rafaspol 0,0004535
xiombarg 0,0004520
tidesonar02 0,0004355
cyrusnews 0,0003829
bldurling 0,0003727
onpause tv anytime 0,0003600
cataracte 0,0003462
triple entendre 0,0003419
kayodeok 0,0003407

URL ad. PageRank
http://slashdot.org/ 0,0002613
http://pchere.blogspot.com/2005/02/absolutely-delicious-complete-tool.html 0,0002320
http://script.aculo.us/ 0,0001770
http://www.adaptivepath.com/publications/essays/archives/000385.php 0,0001654
http://johnvey.com/features/deliciousdirector/ 0,0001593
http://en.wikipedia.org/wiki/Main Page 0,0001407
http://www.flickr.com/ 0,0001376
http://www.goodfonts.org/ 0,0001349
http://www.43folders.com/ 0,0001160
http://www.csszengarden.com/ 0,0001149
http://wellstyled.com/tools/colorscheme2/index-en.html 0,0001108
http://pro.html.it/esempio/nifty/ 0,0001070
http://www.alistapart.com/ 0,0001059
http://postsecret.blogspot.com/ 0,0001058
http://www.beelerspace.com/index.php?p=890 0,0001035
http://www.techsupportalert.com/best 46 free utilities.htm 0,0001034
http://www.alvit.de/web-dev/ 0,0001020
http://www.technorati.com/ 0,0001015
http://www.lifehacker.com/ 0,0001009
http://www.lucazappa.com/brilliantMaker/buttonImage.php 0,0000992
http://www.engadget.com/ 0,0000984

Information Retrieval in Folksonomies: Search and Ranking 419

α �= 0 slows down the convergence rate. For instance, for α = 0.35, β = 0.65, γ = 0,
411 iterations were needed, while α = 0, β = 1, γ = 0 returned the same result in only
320 iterations. It turns out that using γ as a damping factor by spreading equal weight
to each node in each iteration speeds up the convergence considerably by a factory of
approximately 10 (e. g., 39 iterations for α = 0, β = 0.85, γ = 0.15).

Table 1 shows the result of the adapted PageRank algorithm for the 20 most impor-
tant tags, users and resources computed with the parameters α = 0.35, β = 0.65, γ = 0
(which equals the result for α = 0, β = 1, γ = 0). Tags get the highest ranks, followed
by the users, and the resources. Therefore, we present their rankings in separate lists.

As we can see from the tag table, the most important tag is “system:unfiled” which
is used to indicate that a user did not assign any tag to a resource. It is followed by
“web”, “blog”, “design” etc. This corresponds more or less to the rank of the tags given
by the overall tag count in the dataset. The reason is that the graph GF is undirected.
We face thus the problem that, in the Adapted PageRank algorithm, weights that flow
in one direction of an edge will basically ‘swash back’ along the same edge in the next
iteration. Therefore the resulting is very similar (although not equal!) to a ranking based
on counting edge degrees.

The resource ranking shows that Web 2.0 web sites like Slashdot, Wikipedia, Flickr,
and a del.icio.us related blog appear in top positions. This is not surprising, as early
users of del.ico.us are likely to be interested in Web 2.0 in general. This ranking corre-
lates also strongly with a ranking based on edge counts.

The results for the top users are of more interest as different kinds of users appear.
As all top users have more than 6000 bookmarks; “notmuch” has a large amount of
tags, while the tag count of “fritz” is considerably smaller.

To see how good the topic-specific ranking by Adapted PageRank works, we com-
bined it with term frequency, a standard information retrieval weighting scheme. To this
end, we downloaded all 3 million web pages referred to by a URL in our dataset. From
these, we considered all plain text and html web pages, which left 2.834.801 documents.
We converted all web pages into ASCII and computed an inverted index. To search for a
term as in a search engine, we retrieved all pages containing the search term and ranked
them by tf(t) · �w[v] where tf(t) is the term frequency of search term t in page v, and
�w[v] is the Adapted PageRank weight of v.

Although this is a rather straightforward combination of two successful retrieval
techniques, our experiments with different topic-specific queries indicate that this adap-
tation of PageRank does not work very well. For instance, for the search term “football”,
the del.icio.us homepage showed up as the first result. Indeed, most of the highly ranked
pages have nothing to do with football.

Other search terms provided similar results. Apparently, the overall structure of the
– undirected – graph overrules the influence of the preference vector. In the next section,
we discuss how to overcome this problem.

4 FolkRank – Topic-Specific Ranking in Folksonomies

In order to reasonably focus the ranking around the topics defined in the preference vec-
tor, we have developed a differential approach, which compares the resulting rankings
with and without preference vector. This resulted in our new FolkRank algorithm.

420 A. Hotho et al.

4.1 The FolkRank Algorithm

The FolkRank algorithm computes a topic-specific ranking in a folksonomy as follows:

1. The preference vector �p is used to determine the topic. It may have any distribution
of weights, as long as ||�w||1 = ||�p||1 holds. Typically a single entry or a small set
of entries is set to a high value, and the remaining weight is equally distributed over
the other entries. Since the structure of folksonomies is symmetric, we can define a
topic by assigning a high value to either one or more tags and/or one or more users
and/or one or more resources.

2. Let �w0 be the fixed point from Equation (1) with β = 1.
3. Let �w1 be the fixed point from Equation (1) with β < 1.
4. �w := �w1 − �w0 is the final weight vector.

Thus, we compute the winners and losers of the mutual reinforcement of resources
when a user preference is given, compared to the baseline without a preference vector.
We call the resulting weight �w[x] of an element x of the folksonomy the FolkRank of x.

Whereas the Adapted PageRank provides one global ranking, independent of any
preferences, FolkRank provides one topic-specific ranking for each given preference
vector. Note that a topic can be defined in the preference vector not only by assigning
higher weights to specific tags, but also to specific resources and users. These three
dimensions can even be combined in a mixed vector. Similarly, the ranking is not re-
stricted to resources, it may as well be applied to tags and to users. We will show below
that indeed the rankings on all three dimensions provide interesting insights.

4.2 Comparing FolkRank with Adapted PageRank

To analyse the proposed FolkRank algorithm, we generated rankings for several top-
ics, and compared them with the ones obtained from Adapted PageRank. We will here
discuss two sets of search results, one for the tag “boomerang”, and one for the URL
http.//www.semanticweb.org. Our other experiments all provided similar re-
sults.

The leftmost part of Table 2 contains the ranked list of tags according to their
weights from the Adapted PageRank by using the parameters α = 0.2, β = 0.5, γ =
0.3, and 5 as a weight for the tag “boomerang” in the preference vector �p, while the
other elements were given a weight of 0. As expected, the tag “boomerang” holds the
first position while tags like “shop” or “wood” which are related are also under the Top
20. The tags “software”, “java”, “programming” or “web”, however, are on positions
4 to 7, but have nothing to do with “boomerang”. The only reason for their showing
up is that they are frequently used in del.icio.us (cf. Table 1). The second column from
the left in Table 2 contains the results of our FolkRank algorithm, again for the tag
“boomerang”. Intuitively, this ranking is better, as the globally frequent words disap-
pear and related words like “wood” and “construction” are ranked higher.

A closer look reveals that this ranking still contains some unexpected tags; “kas-
sel” or “rdf” are for instance not obviously related to “boomerang”. An analysis of the
user ranking (not displayed) explains this fact. The top-ranked user is “schm4704”, and
he has indeed many bookmarks about boomerangs. A FolkRank run with preference

Information Retrieval in Folksonomies: Search and Ranking 421

Table 2. Ranking results for the tag “boomerang” (two left at top: Adapted PageRank and
FolkRank for tags, middle: FolkRank for URLs) and for the user “schm4704” (two right at top:
Adapted PageRank and FolkRank for tags, bottom: FolkRank for URLs)

Tag ad. PRank
boomerang 0,4036883
shop 0,0069058
lang:de 0,0050943
software 0,0016797
java 0,0016389
programming 0,0016296
web 0,0016043
reference 0,0014713
system:unfiled 0,0014199
wood 0,0012378
kassel 0,0011969
linux 0,0011442
construction 0,0011023
plans 0,0010226
network 0,0009460
rdf 0,0008506
css 0,0008266
design 0,0008248
delicious 0,0008097
injuries 0,0008087
pitching 0,0007999

Tag FolkRank
boomerang 0,4036867
shop 0,0066477
lang:de 0,0050860
wood 0,0012236
kassel 0,0011964
construction 0,0010828
plans 0,0010085
injuries 0,0008078
pitching 0,0007982
rdf 0,0006619
semantic 0,0006533
material 0,0006279
trifly 0,0005691
network 0,0005568
webring 0,0005552
sna 0,0005073
socialnetworkanalysis 0,0004822
cinema 0,0004726
erie 0,0004525
riparian 0,0004467
erosion 0,0004425

Tag ad. PRank
boomerang 0,0093549
lang:ade 0,0068111
shop 0,0052600
java 0,0052050
web 0,0049360
programming 0,0037894
software 0,0035000
network 0,0032882
kassel 0,0032228
reference 0,0030699
rdf 0,0030645
delicious 0,0030492
system:unfiled 0,0029393
linux 0,0029393
wood 0,0028589
database 0,0026931
semantic 0,0025460
css 0,0024577
social 0,0021969
webdesign 0,0020650
computing 0,0020143

Tag FolkRank
boomerang 0,0093533
lang:de 0,0068028
shop 0,0050019
java 0,0033293
kassel 0,0032223
network 0,0028990
rdf 0,0028758
wood 0,0028447
delicious 0,0026345
semantic 0,0024736
database 0,0023571
guitar 0,0018619
computing 0,0018404
cinema 0,0017537
lessons 0,0017273
social 0,0016950
documentation 0,0016182
scientific 0,0014686
filesystem 0,0014212
userspace 0,0013490
library 0,0012398

Url FolkRank
http://www.flight-toys.com/boomerangs.htm 0,0047322
http://www.flight-toys.com/ 0,0047322
http://www.bumerangclub.de/ 0,0045785
http://www.bumerangfibel.de/ 0,0045781
http://www.kutek.net/trifly mods.php 0,0032643
http://www.rediboom.de/ 0,0032126
http://www.bws-buhmann.de/ 0,0032126
http://www.akspiele.de/ 0,0031813
http://www.medco-athletics.com/education/elbow shoulder injuries/ 0,0031606
http://www.sportsprolo.com/sports%20prolotherapy%20newsletter%20pitching%20injuries.htm 0,0031606
http://www.boomerangpassion.com/english.php 0,0031005
http://www.kuhara.de/bumerangschule/ 0,0030935
http://www.bumerangs.de/ 0,0030935
http://s.webring.com/hub?ring=boomerang 0,0030895
http://www.kutek.net/boomplans/plans.php 0,0030873
http://www.geocities.com/cmorris32839/jonas article/ 0,0030871
http://www.theboomerangman.com/ 0,0030868
http://www.boomerangs.com/index.html 0,0030867
http://www.lmifox.com/us/boom/index-uk.htm 0,0030867
http://www.sports-boomerangs.com/ 0,0030867
http://www.rangsboomerangs.com/ 0,0030867

Url FolkRank
http://jena.sourceforge.net/ 0,0019369
http://www.openrdf.org/doc/users/ch06.html 0,0017312
http://dsd.lbl.gov/ hoschek/colt/api/overview-summary.html 0,0016777
http://librdf.org/ 0,0014402
http://www.hpl.hp.com/semweb/jena2.htm 0,0014326
http://jakarta.apache.org/commons/collections/ 0,0014203
http://www.aktors.org/technologies/ontocopi/ 0,0012839
http://eventseer.idi.ntnu.no/ 0,0012734
http://tangra.si.umich.edu/ radev/ 0,0012685
http://www.cs.umass.edu/ mccallum/ 0,0012091
http://www.w3.org/TR/rdf-sparql-query/ 0,0011945
http://ourworld.compuserve.com/homepages/graeme birchall/HTM COOK.HTM 0,0011930
http://www.emory.edu/EDUCATION/mfp/Kuhn.html 0,0011880
http://www.hpl.hp.com/semweb/rdql.htm 0,0011860
http://jena.sourceforge.net/javadoc/index.html 0,0011860
http://www.geocities.com/mailsoftware42/db/ 0,0011838
http://www.quirksmode.org/ 0,0011327
http://www.kde.cs.uni-kassel.de/lehre/ss2005/googlespam 0,0011110
http://www.powerpage.org/cgi-bin/WebObjects/powerpage.woa/wa/story?newsID=14732 0,0010402
http://www.vaughns-1-pagers.com/internet/google-ranking-factors.htm 0,0010329
http://www.cl.cam.ac.uk/Research/SRG/netos/xen/ 0,0010326

422 A. Hotho et al.

weight 5 for user “schm4704” shows his different interests, see the rightmost column
in Table 2. His main interest apparently is in boomerangs, but other topics show up as
well. In particular, he has a strong relationship to the tags “kassel” and “rdf”. When a
community in del.ico.us is small (such as the boomerang community), already a sin-
gle user can thus provide a strong bridge to other communities, a phenomenon that is
equally observed in small social communities.

A comparison of the FolkRank ranking for user “schm4704” with the Adapted
PageRank result for him (2nd ranking from left) confirms the initial finding from above,
that the Adapted PageRank ranking contains many globally frequent tags, while the
FolkRank ranking provides more personal tags. While the differential nature of the
FolkRank algorithm usually pushes down the globally frequent tags such as “web”,
though, this happens in a differentiated manner: FolkRank will keep them in the top
positions, if they are indeed relevant to the user under consideration. This can be seen
for example for the tags “web” and “java”. While the tag “web” appears in schm4704’s
tag list – but not very often, “java” is a very important tag for that user. This is reflected
in the FolkRank ranking: “java” remains in the Top 5, while “web” is pushed down in
the ranking.

The ranking of the resources for the tag “boomerang” given in the middle of Table 2
also provides interesting insights. As shown in the table, many boomerang related web
pages show up (their topical relatedness was confirmed by a boomerang aficionado).
Comparing the Top 20 web pages of “boomerang” with the Top 20 pages given by
the “schm4704” ranking, there is no “boomerang” web page in the latter. This can
be explained by analysing the tag distribution of this user. While “boomerang” is the
most frequent tag for this user, in del.icio.us, “boomerang” appears rather infrequently.
The first boomerang web page in the “schm4704” ranking is the 21st URL (i. e., just
outside the listed TOP 20). Thus, while the tag “boomerang” itself dominates the tags
of this user, in the whole, the semantic web related tags and resources prevail. This
demonstrates that while the user “schm4704” and the tag “boomerang” are strongly
correlated, we can still get an overview of the respective related items which shows
several topics of interest for the user.

Let us consider a second example. Table 3 gives the results for the web page
http://www.semanticweb.org/. The two tables on the left show the tags and
users for the adapted PageRank, resp., and the two ones on the right the FolkRank re-
sults. Again, we see that the differential ranking of FolkRank makes the right decisions:
in the Adaptive PageRank, globally frequent tags such as “web”, “css”, “xml”, “pro-
gramming” get high ranks. Of these, only two turn up to be of genuine interest to the
members of the Semantic Web community: “web” and “xml” remain at high positions,
while “css” and “programming” disappear altogether from the list of the 20 highest
ranked tags. Also, several variations of tags which are used to label Semantic Web re-
lated pages appear (or get ranked higher): “semantic web” (two tags, space-separated),
“semantic web”, “semweb”, “sem-web”. These co-occurrences of similar tags could be
exploited further to consolidate the emergent semantics of a field of interest. While the
discovery in this case may also be done in a simple syntactic analysis, the graph based
approach allows also for detecting inter-community and inter-language relations.

Information Retrieval in Folksonomies: Search and Ranking 423

Table 3. Ranking for the resource http://www.semanticweb.org (Left two tables:
Adapted PageRank for tags and users; right two tables: FolkRank for tags and users. Bottom:
FolkRank for resources).

Tag ad. PRank
semanticweb 0,0208605
web 0,0162033
semantic 0,0122028
system:unfiled 0,0088625
semantic web 0,0072150
rdf 0,0046348
semweb 0,0039897
resources 0,0037884
community 0,0037256
xml 0,0031494
research 0,0026720
programming 0,0025717
css 0,0025290
portal 0,0024118
.imported 0,0020495
imported-bo... 0,0019610
en 0,0018900
science 0,0018166
.idate2005-04-11 0,0017779
newfurl 0,0017578
internet 0,0016122

User ad. PageRank
up4 0,0091995
awenger 0,0086261
j.deville 0,0074021
chaizzilla 0,0062570
elektron 0,0059457
captsolo 0,0055671
stevag 0,0049923
dissipative 0,0049647
krudd 0,0047574
williamteo 0,0037204
stevecassidy 0,0035887
pmika 0,0035359
millette 0,0033028
myren 0,0028117
morningboat 0,0025913
philip.fennell 0,0025338
mote 0,0025212
dnaboy76 0,0024813
webb. 0,0024709
nymetbarton 0,0023790
alphajuliet 0,0023781

Tag FolkRank
semanticweb 0,0207820
semantic 0,0121305
web 0,0118002
semantic web 0,0071933
rdf 0,0044461
semweb 0,0039308
resources 0,0034209
community 0,0033208
portal 0,0022745
xml 0,0022074
research 0,0020378
imported-bo... 0,0018920
en 0,0018536
.idate2005-04-11 0,0017555
newfurl 0,0017153
tosort 0,0014486
cs 0,0014002
academe 0,0013822
rfid 0,0013456
sem-web 0,0013316
w3c 0,0012994

User FolkRank
up4 0,0091828
awenger 0,0084958
j.deville 0,0073525
chaizzilla 0,0062227
elektron 0,0059403
captsolo 0,0055369
dissipative 0,0049619
stevag 0,0049590
krudd 0,0047005
williamteo 0,0037181
stevecassidy 0,0035840
pmika 0,0035358
millette 0,0032103
myren 0,0027965
morningboat 0,0025875
philip.fennell 0,0025145
webb. 0,0024671
dnaboy76 0,0024659
mote 0,0024214
alphajuliet 0,0023668
nymetbarton 0,0023666

URL FolkRank
http://www.semanticweb.org/ 0,3761957
http://flink.semanticweb.org/ 0,0005566
http://simile.mit.edu/piggy-bank/ 0,0003828
http://www.w3.org/2001/sw/ 0,0003216
http://infomesh.net/2001/swintro/ 0,0002162
http://del.icio.us/register 0,0001745
http://mspace.ecs.soton.ac.uk/ 0,0001712
http://www.adaptivepath.com/publications/essays/archives/000385.php 0,0001637
http://www.ontoweb.org/ 0,0001617
http://www.aaai.org/AITopics/html/ontol.html 0,0001613
http://simile.mit.edu/ 0,0001395
http://itip.evcc.jp/itipwiki/ 0,0001256
http://www.google.be/ 0,0001224
http://www.letterjames.de/index.html 0,0001224
http://www.daml.org/ 0,0001216
http://shirky.com/writings/ontology overrated.html 0,0001195
http://jena.sourceforge.net/ 0,0001167
http://www.alistapart.com/ 0,0001102
http://www.federalconcierge.com/WritingBusinessCases.html 0,0001060
http://pchere.blogspot.com/2005/02/absolutely-delicious-complete-
tool.html

0,0001059

http://www.shirky.com/writings/semantic syllogism.html 0,0001052

The user IDs can not be checked for topical relatedness immediately, since they are
not related to the users’ full names – although a former winner of the Semantic Web Chal-
lenge and the best paper award at a Semantic Web Conference seems to be among them.
The web pages that appear in the top list, on the other hand, include many well-known
resources from the Semantic Web area. An interesting resource on the list is PiggyBank,
which has been presented in November 2005 at the ISWC conference. Considering that
the dataset was crawled in July 2005, when PiggyBank was not that well known, the
prominent position of PiggyBank in del.icio.us at such an early time is an interesting re-
sult. This indicates the sensibility of social bookmarking systems for upcoming topics.

424 A. Hotho et al.

These two examples – as well as the other experiments we performed – show that
FolkRank provides good results when querying the folksonomy for topically related
elements. Overall, our experiments indicate that topically related items can be retrieved
with FolkRank for any given set of highlighted tags, users and/or resources.

Our results also show that the current size of folksonomies is still prone to being
skewed by a relatively small number of perturbations – a single user, at the moment,
can influence the emergent understanding of a certain topic in the case that a sufficient
number of different points of view for such a topic has not been collected yet. With the
growth of folksonomy-based data collections on the web, the influence of single users
will fade in favor of a common understanding provided by huge numbers of users.

As detailed above, our ranking is based on tags only, without regarding any inherent
features of the resources at hand. This allows to apply FolkRank to search for pictures
(e. g., in flickr) and other multimedia content, as well as for all other items that are
difficult to search in a content-based fashion. The same holds for intranet applications,
where in spite of centralized knowledge management efforts, documents often remain
unused because they are not hyperlinked and difficult to find. Full text retrieval may
be used to find documents, but traditional IR methods for ranking without hyperlink
information have difficulties finding the most relevant documents from large corpora.

4.3 Generating Recommendations

The original PageRank paper [2] already pointed out the possibility of using the random
surfer vector �p as a personalization mechanism for PageRank computations. The results
of Section 4 show that, given a user, one can find set of tags and resources of interest to
him. Likewise, FolkRank yields a set of related users and resources for a given tag. Fol-
lowing these observations, FolkRank can be used to generate recommendations within
a folksonomy system. These recommendations can be presented to the user at different
points in the usage of a folksonomy system:

– Documents that are of potential interest to a user can be suggested to him. This
kind of recommendation pushes potentially useful content to the user and increases
the chance that a user finds useful resources that he did not even know existed by
“serendipitous” browsing.

– When using a certain tag, other related tags can be suggested. This can be used, for
instance, to speed up the consolidation of different terminologies and thus facilitate
the emergence of a common vocabulary.

– While folksonomy tools already use simple techniques for tag recommendations,
FolkRank additionally considers the tagging behavior of other users.

– Other users that work on related topics can be made explicit, improving thus the
knowledge transfer within organizations and fostering the formation of communi-
ties.

5 Conclusion and Outlook

In this paper, we have argued that enhanced search facilities are vital for emergent
semantics within folksonomy-based systems. We presented a formal model for folk-

Information Retrieval in Folksonomies: Search and Ranking 425

sonomies, the FolkRank ranking algorithm that takes into account the structure of folk-
sonomies, and evaluation results on a large-scale dataset.

The FolkRank ranking scheme has been used in this paper to generate personalized
rankings of the items in a folksonomy, and to recommend users, tags and resources. We
have seen that the top folksonomy elements which are retrieved by FolkRank tend to
fall into a coherent topic area, e.g. “Semantic Web”. This leads naturally to the idea of
extracting communities of interest from the folksonomy, which are represented by their
top tags and the most influential persons and resources. If these communities are made
explicit, interested users can find them and participate, and community members can
more easily get to know each other and learn of others’ resources.

Another future research issue is to combine different search and ranking paradigms.
In this paper, we went a first step by focusing on the new structure of folksonomies.
In the future, we will incorporate additionally the full text that is contained in the web
pages addressed by the URLs, the link structure of these web pages, and the usage
behavior as stored in the log file of the tagging system. The next version will also
exploit the tag hierarchy.

Currently, spam is not a serious problem for social bookmarking systems. With the
increasing attention they currently receive, however, we anticipate that ‘spam posts’
will show up sooner or later. As for mail spam and link farms in the web, solutions will
be needed to filter out spam. We expect that a blend of graph structure analysis together
with content analysis will give the best results.

When folksonomy-based systems grow larger, user support has to go beyond en-
hanced retrieval facilities. Therefore, the internal structure has to become better orga-
nized. An obvious approach for this are semantic web technologies. The key question
remains though how to exploit its benefits without bothering untrained users with its
rigidity. We believe that this will become a fruitful research area for the Semantic Web
community for the next years.

Acknowledgement. Part of this research was funded by the EU in the Nepomuk project
(FP6-027705).

References

1. Harith Alani, Srinandan Dasmahapatra, Kieron O’Hara, and Nigel Shadbolt. Identifying
Communities of Practice through Ontology Network Analysis. IEEE Intelligent Systems,
18(2):18–25, March/April 2003.

2. Sergey Brin and Lawrence Page. The Anatomy of a Large-Scale Hypertextual Web Search
Engine. Computer Networks and ISDN Systems, 30(1-7):107–117, April 1998.

3. Connotea Mailing List. https://lists.sourceforge.net/lists/listinfo/connotea-discuss.
4. B. Ganter and R. Wille. Formal Concept Analysis: Mathematical foundations. Springer,

1999.
5. Tony Hammond, Timo Hannay, Ben Lund, and Joanna Scott. Social Bookmarking Tools (I):

A General Review. D-Lib Magazine, 11(4), April 2005.
6. Jon M. Kleinberg. Authoritative sources in a hyperlinked environment. Journal of the ACM,

46(5):604–632, 1999.

426 A. Hotho et al.

7. F. Lehmann and R. Wille. A triadic approach to formal concept analysis. In G. Ellis,
R. Levinson, W. Rich, and J. F. Sowa, editors, Conceptual Structures: Applications, Imple-
mentation and Theory, volume 954 of Lecture Notes in Computer Science. Springer, 1995.

8. Ben Lund, Tony Hammond, Martin Flack, and Timo Hannay. Social Bookmarking Tools
(II): A Case Study - Connotea. D-Lib Magazine, 11(4), April 2005.

9. Adam Mathes. Folksonomies – Cooperative Classification and Communication Through
Shared Metadata, December 2004. http://www.adammathes.com/academic/computer-
mediated-communication/folksonomies.html.

10. Peter Mika. Ontologies Are Us: A Unified Model of Social Networks and Semantics. In
Yolanda Gil, Enrico Motta, V. Richard Benjamins, and Mark A. Musen, editors, ISWC 2005,
volume 3729 of LNCS, pages 522–536, Berlin Heidelberg, November 2005. Springer-Verlag.

11. S. Staab, S. Santini, F. Nack, L. Steels, and A. Maedche. Emergent semantics. Intelligent
Systems, IEEE [see also IEEE Expert], 17(1):78–86, 2002.

12. L. Steels. The origins of ontologies and communication conventions in multi-agent systems.
Autonomous Agents and Multi-Agent Systems, 1(2):169–194, October 1998.

13. Gerd Stumme. A finite state model for on-line analytical processing in triadic contexts.
In Bernhard Ganter and Robert Godin, editors, ICFCA, volume 3403 of Lecture Notes in
Computer Science, pages 315–328. Springer, 2005.

14. R. Wille. Restructuring lattice theory: An approach based on hierarchies of concepts. In
I. Rival, editor, Ordered Sets, pages 445–470. Reidel, Dordrecht-Boston, 1982.

15. W. Xi, B. Zhang, Y. Lu, Z. Chen, S. Yan, H. Zeng, W. Ma, and E. Fox. Link fusion: A unified
link analysis framework for multi-type interrelated data objects. In Proc. 13th International
World Wide Web Conference, New York, 2004.

DEMO - Design Environment for Metadata Ontologies

Jens Hartmann1, Elena Paslaru Bontas2, Raúl Palma3, and Asunción Gómez-Pérez3

1 Institute AIFB, University of Karlsruhe, Germany
hartmann@aifb.uni-karlsruhe.de

http://www.aifb.uni-karlsruhe.de/WBS/
2 Networked Information Systems,

Institute of Computer Science, Free University of Berlin, Germany
paslaru@inf.fu-berlin.de

3 Ontology Engineering Group, Laboratorio de Inteligencia Artificial
Facultad de Informática, Universidad Politécnica de Madrid, Spain

rpalma@delicias.dia.fi.upm.es

Abstract. Efficient knowledge sharing and reuse—a pre-requisite for the real-
ization of the Semantic Web vision—is currently impeded by the lack of stan-
dards for documenting and annotating ontologies with metadata information. We
argue that the availability of metadata is a fundamental dimension of ontology
reusability. Metadata information provides a basis for ontology developers to
evaluate and adapt existing Semantic Web ontologies in new application settings,
and fosters the development of support tools such as ontology repositories. How-
ever, in order for the metadata information to represent real added value to ontol-
ogy users, it is equally important to achieve a common agreement on the terms
used to describe ontologies, and to provide an appropriate technology infrastruc-
ture in form of tools being able to create, manage and distribute this information.
In this paper we present DEMO, a framework for the development and deploy-
ment of ontology metadata. Besides OMV , the proposed core vocabulary for
ontology metadata, the framework comprises an inventory of methods to collabo-
ratively extend OMV in accordance to the requirements of an emerging commu-
nity of industrial and academia users, and tools for metadata management.

1 Introduction

As the Semantic Web grows, increasing numbers of private and public sector communi-
ties are developing ontologies which represent their domain(s) of interest. As ontologies
are also intended to act as commonly agreed domain conceptualizations[7] it is expected
that reuse will play a crucial role in the widespread dissemination of ontology-driven
technologies. First, reusability is an intrinsic property of ontologies, originally defined
as means for “knowledge sharing and reuse”[13]. Sharing and reusing existing ontolo-
gies increases their quality—as they are continuously accessed, used and revised by
many people—and the quality of the applications using them—since these applications
become (more) interoperable and are provided with a deeper, machine-processable un-
derstanding of the underlying domain. Second, analogously to other engineering disci-
plines, reusing existing ontologies—if performed in an efficient way—reduces the costs

Y. Sure and J. Domingue (Eds.): ESWC 2006, LNCS 4011, pp. 427–441, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

428 J. Hartmann et al.

related to ontology development, since it avoids the re-implementation of the compo-
nents, which are already available on the Web and can be directly or after some addi-
tional customization integrated to a target ontology. Finally, access to available ontolo-
gies across the Web is a fundamental requirement for the dissemination of Semantic
Web Services, which are envisioned to automatically use these sources in order to de-
scribe their capabilities and for interprocess communication.

While finding a solution to the problematic trade-off between usability in a specific
application setting and wide-scale reusability is often considered an art more than a
science, poor reusability can be significantly alleviated by resorting to several design
principles, which have proved their relevance across various computer science disci-
plines confronted with this issue: modularity and decomposition along abstraction and
functionality levels, the deployment of standardized tools and technologies, as well as
careful documentation of the development process and up-to-date component repos-
itories. Current research achievements in the Semantic Web field provide a feasible
basis for many of these principles to be put into practice. The usage of standardized
ontology representation languages in conjunction with the ubiquitous URI-based ac-
cess on Semantic Web resources and the emergence of ontology management methods
and tools definitely constitute a solid inventory for building more reusable ontologies.
However their wide-scale reusability is still impeded by the lack of standards for doc-
umenting and annotating ontologies with metadata information, which is in the same
time a pre-requisite for the realization of fully-fledged ontology repositories on the Web.
At present, Semantic Web ontologies are poorly documented (at most), while additional
clarifying information is spread across the Web in various forms, thus not being opti-
mally available to potential ontology users. Further on, current repositories restrict to
a minimal set of search and navigation services, usually offering a simple Web inter-
face to the ontological resources. Their limited retrieval functionality is significantly
influenced by the absence of metadata information about the administrated ontologies.

A first step towards the alleviation of this situation is the development of a fea-
sible metadata schema for the systematic description of ontologies. Represented in a
machine-processable form this schema would provide a basis for a more effective ac-
cess and exchange of ontologies across the Web. However, in order for it to represent
real added value to ontology users, it is equally important to achieve a common agree-
ment on the terms used to describe ontologies, and to provide appropriate tools being
able to create, manage and distribute metadata information.

Our contribution consists of the DEMO (Design Environment for Metadata Ontolo
gies), framework for the development and deployment of an ontology metadata vo-
cabulary. The main part of the framework is the OMV model (Ontology Metadata
Vocabulary), which is intended to capture reuse-relevant information about ontologies
(i.e. ontology metadata) in a machine-understandable form. Further on, the framework
is concerned with methodologies, methods and tools to support the dissemination of
OMV towards a representative metadata vocabulary, which reflects the needs of an
expending community of ontology users w.r.t. ontology reuse. In particular, DEMO fo-
cuses on the evolution and extension of OMV ; we introduce a technical, methodologi-
cal and organizational setting to allow interested parties to effectively contribute to this

DEMO - Design Environment for Metadata Ontologies 429

initiative and foresee extensions of the core model for more specific reuse activities
(such as the evaluation of ontologies, their engineering process etc).

The remainder of this paper is organized as follows: we introduce DEMO, its goals,
contents and realization in Section 2. The main components of the framework are de-
scribed in Sections 3 to 5. Section 3 addresses the development process of the current
OMV metadata model. Further on, it accounts for the procedure currently applied to
operationalize the evaluation and refinement of the OMV core on the basis of large
scale agreement discussions with partners of the EU Network of Excellence Knowl-
edgeWeb.1 The contents of the metadata schema is detailed in Section 4, while exten-
sion modules, which focus on a particular topic or activity of the reuse process, are
discussed in Section 5. Our approach is compared against related work in the area of
ontology reuse and metadata in Section 6. We conclude with a brief description of the
limitations of the current approach and sketch the planned future work (Section 7).

2 DEMO - A Design Environment for Metadata Ontologies

Developing and maintaining an ontology metadata vocabulary is a long-term, resource-
intensive process for every involved participant, as it requires a well-defined operational
structure and appropriate technological support. The current state of the OMV model
is the result of an intensive collaboration among many Semantic Web experts affiliated
to academia or industry. Our experiences in the development of the OMV so far (see
Section 3), consolidated by general engineering guidelines recommended by the ma-
jority of ontology engineering methodologies currently available, indicated the need of
an environment which provides support to systematically realize and promote ontology
metadata vocabularies for the Semantic Web.

DEMO (Design Environment for Metadata Ontologies) aims at providing this kind
of support at organizational, methodological and technological level. The mission of
the framework can be categorized as follows:

– Provision of an organizational infrastructure for the development and maintenance
of a commonly agreed metadata vocabulary for ontologies. In particular this in-
cludes the facilitation of equitable participation mechanisms for the organizations
involved in the DEMO activities.

– Identification and application of suitable methodologies and technologies to sup-
port the complete life cycle of the OMV Core.

– Development and maintenance of the OMV Core.
– Promotion of OMV extensions relying on the OMV Core.
– Provision of an appropriate technical infrastructure for the enumerated activities.

DEMO aims to establish and ensure an efficient engineering process and application
of the proposed ontology metadata vocabulary. For usability and extendability reasons,
DEMO distinguishes between the OMV Core and OMV extensions. The former pro-
vides information about the core metadata vocabulary which should be sufficient for
an efficient reuse and access of ontologies in the Semantic Web (see Section 3). For

1 http://knowledgeweb.semanticweb.org/

430 J. Hartmann et al.

specific applications or differentiated aspects of ontologies, e.g. detailed evolution in-
formation of an ontology, it foresees the development and usage of OMV extension
modules. This flexible mechanism allows on the one hand all participants to engineer a
base vocabulary (i.e. the OMV Core) and on the other hand, to provide more detailed
information by developing domain, task or application-specific vocabularies (i.e. OMV
Extensions).

The framework is divided into several functional components in accordance to the
aforementioned objectives:

– The Engineering Component is responsible for the development and maintenance
of the OMV Core.

– The Evolution Component is authorized to perform changes on the OMV Core
according to the requirements of the OMV users.

– The Extensions Component coordinates the realization of extension modules.
– The Applications Component is responsible for the propagation of the OMV re-

sults to new application scenarios, demonstrating the usability of the metadata stan-
dards in these applications and contributing to their evaluation in real-world set-
tings.

From an organizational perspective, DEMO activities are driven and supervised by
the Management Board (MB), consisting of representatives from the OMV Consor-
tium, which includes all active OMV contributors. A central organization objective of
DEMO is to keep the barrier low for participants to join the OMV Consortium and
to get involved in the development and recommendation process. Complementary to
this distinction, DEMO foresees several Working Groups (WG) corresponding to the
aforementioned components (WG Engineering, WG Evolution, WGs Extensions, WGs
Applications), which are further organized in working group board and members.

DEMO provides the technical means required for metadata management and main-
tenance for the Semantic Web in form of the semantic engineering platform OntoWare2

which provides a scalable, collaborative software and ontology engineering environ-
ment for the collaborating partners.

3 The Development of the OMV Core Ontology

The OMV core ontology was realized in accordance to the present research achieve-
ments in Ontology Engineering, a field in which several elaborated methodologies have
already proved their applicability in real-world situations (refer to [3] for a descrip-
tion of and a comparison among the most relevant ones). The development process is
performed in five stages, which are described in the remaining of this section.

3.1 Requirements Analysis

In this step we elaborated an inventory of requirements for the metadata model as a
result of a systematic survey of the state of the art in the area of ontology reuse. Be-
sides analytical activities, we conducted extensive literature research, which focused

2 c.f. http://ontoware.org

DEMO - Design Environment for Metadata Ontologies 431

on theoretical methods [16, 4, 12], but also on case studies on reusing existing ontolo-
gies [22, 18, 15], in order to identify the real-world needs of the community w.r.t. a
descriptive metadata format for ontologies. Further on, the requirements analysis phase
was complemented by a comparative study of existing (ontology-independent) meta-
data models and of tools such as ontology repositories and libraries (implicitly) making
use of metadata-like information. An overview of the results of this study is given in
Section 6. The main requirements identified in this process step are the following:

Accessibility: Metadata should be accessible and processable for both humans and
machines. While the human-driven aspects are ensured by the usage of natural lan-
guage concept names, the machine-readability requirement can be implemented by
the usage of Web-compatible representation languages (such as XML or Semantic
Web languages, see below).

Usability: This requirement states for the necessity of building a metadata model which
1). reflects the needs of the majority of ontology users, as reported by current case
studies in ontology reuse, but in the same time 2). allows proprietary extensions
and refinements in particular application scenarios. The realization of the latter is
further discussed in Section 5. From a content perspective, usability can be maxi-
mized by taking into account multiple metadata types, which correspond to specific
viewpoints on the ontological resources and are applied in various application tasks.
Despite the broad understanding of the metadata concept and the use cases asso-
ciated to each definition, several key aspects of metadata information have already
established across computer science fields [14]:

– Structural metadata relates to statistical measures on the graph structure un-
derlying an ontology. In particular we mention the number of specific ontolog-
ical primitives (e.g. number of classes, instances). The availability of structural
metadata influences the usability of an ontology in a concrete application sce-
nario, as size and structure parameters constraint the type of tools and methods
which are applied to aid the reuse process.

– Descriptive metadata relates to the domain modelled in the ontology in form
of keywords, topic classifications, textual descriptions of the ontology contents
etc. This type of metadata plays a crucial role in the selection of appropriate
reuse candidates, a process which includes requirements w.r.t. the domain of
the ontologies to be re-used.

– Administrative metadata provides information to help manage ontologies,
such as when and how it was created, rights management, file format and other
technical information.

Interoperability: Similarly to the ontology it describes, metadata information should
be available in a form which facilitates metadata exchange among applications.
While the syntactical aspects of interoperability are covered by the usage of stan-
dard representation languages (see “Accesibility”), the semantical interoperability
among machines handling ontology metadata information can be ensured by means
of a formal and explicit representation of the meaning of the metadata entities, i.e.
by conceptualizing the metadata vocabulary itself as an ontology.

Separation between Knowledge and Implementation Levels: In accordance to the
recommendations of current ontology engineering methodologies it should be

432 J. Hartmann et al.

clearly distinguished between the conceptual model of an ontology and particu-
lar implementations (in various languages, syntaxes, versions etc.). The realization
of this criterion is illustrated in Section 4.

3.2 Categorisation

On the basis of the aforementioned analysis we designed the core structure of the meta-
data model in terms of classes and properties/attributes of these classes. In order to
increase the usability of the model w.r.t. its extendability we assigned the metadata en-
tities to three usage categories (in the style of XML Schema):

– Required: These metadata facts are mandatory. Missing elements lead to incom-
plete metadata descriptions of ontologies and are handled accordingly by metadata
management tools.

– Optional: The specification of optional metadata elements, though not mandatory,
increases the reusability of the corresponding ontology.

– Extensional: This class of metadata elements is not represented in detail in the core
model, but can be further elaborated in extension modules (see Section 5).

Further on, every metadata entity was labelled in accordance to a predefined naming
schema and carefully documented.

3.3 Implementation

Due to the high accessibility and interoperability requirements, as well as the nature
of the metadata, which is intended to describe Semantic Web ontologies, the concep-
tual model designed in the previous step was implemented in the OWL language. An
implementation as XML-Schema or DTD was estimated to restrict the functionality of
the ontology management tools using the metadata information (mainly in terms of re-
trieval capabilities) and to impede metadata exchange at semantical level. Further on, a
language such as RDFS does not provide a means to distinguish between required and
optional metadata properties. The implementation was performed manually by means
of a common ontology editor.

3.4 Evaluation

The evaluation of the first draft of the metadata model was conducted in two parallel
phases: on one hand, the content of the model was subject to human-driven evaluation
w.r.t. the inventory of the included metadata elements, their meaning and labelling. On
the other hand the usability of the proposed OMV was tested in several application
settings.

The content-based evaluation was performed by conducting interviews with a group
of experts in the area of Ontology Engineering. Considering that the people best placed
to give a comprehensive assessment of the ontology metadata vocabulary are currently
researchers being directly involved in theoretical or practical issues of Ontology En-
gineering, we organized an expert group of four academics affiliated in this commu-
nity and in the EU Network of Excellence KnowledgeWeb which evaluated the model
against a pre-defined set of criteria[5]:

DEMO - Design Environment for Metadata Ontologies 433

– Consistency: this criterion refers to the existence of explicit or implicit contradic-
tions in the represented ontological content.

– Completeness: according to [5], an ontology is complete if it (explicitly or implic-
itly) covers the intended domain.

– Conciseness: complementary to the previous feature, conciseness states for the
redundancy-free representation of the application domain of an ontology and for
the avoidance of useless definitions.

– Expandability/Sensitiveness: the criterion refers to the possibility of adding new
definitions to the ontology without altering the existent content.

The aforementioned evaluation framework was extended with two dimensions: read-
ability, which accounts for the usage of intuitive labels to denominate the OMV entities,
and understandability, which mainly relates to the quality of the documentation of the
metadata model.

The evaluation resulted in changes on both conceptual and implementation levels
of the OMV ontology. In the following we summarize the key aspects of the evaluation
process:

– Consistency: according to human judgement and to the automatic consistency
checking no inconsistencies were found.

– Completeness: during the evaluation the participants identified several aspects
which were missing in the initial draft of OMV . For instance, information about
the representation language of an ontology (syntax, representation paradigm etc.)
were found to be insufficiently covered by OMV . As a result we introduced con-
cepts such as RepresentationParadigm and
OntologyRepresentationLanguage to account for these aspects. Further
on, a classification of tasks ontologies are typically designed for was included in
form of a root concept OntologyTask and more specialized sub-concepts such
as SemanticSearch or SemanticAnnotation.

– Conciseness: parallel to extending the ontology, the experts expressed their con-
cerns w.r.t. a series of concepts which were too specific for a core metadata vocab-
ulary. Most of these concepts related to particular aspects of the engineering process
in which the corresponding ontology was originally created and of the evaluation
of the ontology (the concepts OntologyReviews, OntologyReviewer etc.).
These aspects were removed from the OMV core and transferred to the OMV ex-
tensions (see Section 5).

– Readability: the naming of particular metadata entities was one of the most chal-
lenging parts of the evaluation process. The experts proposed alternative names
for several fundamental OMV concepts, such as those representing the conceptual
model and the implementation of an ontology, respectively (see below). Finally an
agreement was achieved with the result that the original names of these two meta-
data entities were changed to Conceptualization and Implementation,
respectively. Further on, the experts indicated the poor readability of abbreviated
concept labels, which were modified accordingly.

– Understandability: the experts evaluated the OMV model favorably. They were
able to easily understand its scope, content and limitations and expressed their con-
fidence in its usability.

434 J. Hartmann et al.

In summary, the results of the expert-driven evaluation significantly contributed to
the quality of the OMV ontology, confirming our expectations towards the realization of
a standardized metadata schema for Semantic Web ontologies. However, the evaluation
process has already pointed out the main challenge of our approach, which is related to
the achievement of a common agreement in a large community of ontology users w.r.t.
their requirements and perceptions about ontology metadata. This issue is addressed in
the next section.

3.5 Evolution

As aforementioned the real added value of the proposed metadata vocabulary is fun-
damentally determined by the representativeness of its content and its dissemination
across the Semantic Web community. For this purpose one of the foci of the DEMO
environment is the provision of an organizational and methodological setting, which
allows the OMV consortium to participate at the metadata development initiative.

For the realization of this goal we take advantage of the results already available
in the Ontology Engineering community w.r.t collaboratively building ontologies in
distributed environments. Based on the long-standing tradition of argumentation and
conflict mediation research in Knowledge Management, Agent-based Computing or
Linguistics, approaches such as [17, 11, 19] provide a deep analysis of the challenges
of such engineering settings and means to operationalize it at process and technology
level. They describe the organizational setting of evolving multi-site ontology develop-
ment processes and propose an inventory of tools which can be used to optimize the
achievement of commonly accepted agreements w.r.t. ontology modelling decisions.

For the collaborative refinement of the current OMV Core we decided to apply the
DILIGENT methodology[17], because, compared to alternative approaches, it provides
a more fine-grained description of the underlying process model, whose validity has
been tested in several case study.

The organizational structure of the OMV consortium is fully compatible with the
recommendations of the aforementioned methodology. The working group responsible
for the OMV evolution (WG Evolution, see Section 2) is divided into a working group
board and its members. As foreseen by the DILIGENT methodology[17],3 a first ver-
sion of the shared ontology (in our case the OMV Core ontology described in this paper)
was already distributed to the members of the working group, which will submit their
change requests accompanied by the arguments justifying them in regular time spans
to the working group board. The board analyzes the requests on the basis of their argu-
ments, decides upon the changes and releases a new version of the OMV Core, which
is analyzed by the rest of the participants. The tools supporting the evolution activity
are provided by the OntoWare platform.

The evolution process aiming at realizing a representative metadata vocabulary for
Semantic Web ontologies is still in its infancy. However, we are confident that, given the
positive feedback received during the development of the current OMV version and the
willingness of many academia and industrial institutions to get involved in this process,
the proposed OMV will evolve towards a high-quality metadata standard.

3 Due to space considerations, we restrict to a minimal description of the process model in this
paper.

DEMO - Design Environment for Metadata Ontologies 435

In the following we turn to a more detailed description of the current OMV core
ontology, while OMV extensions are addressed in Section 5.

4 The Ontology Metadata Vocabulary - OMV Core

As the result of the requirements distilled from comprehensive literature and case study
research we designed a first version of the OMV core ontology, which is subject of a
recently initiated evolution process (see Section 3). The main components of the ontol-
ogy, manually implemented in OWL, are presented in the remaining of this section.

4.1 Conceptualization vs. Implementation

OMV distinguishes between the ontology conceptualization and an ontology imple-
mentation as concrete realization of an ontology in a particular representation lan-
guage. This separation is based on the observation that any ontology is based on a
language-independent conceptual model. The conceptualization represents the view of
the engineering team upon the application domain, which then is implemented using an
ontology editor and stored in a specific format. The same conceptualization might result
in several implementations, with various classes, properties and axioms, depending on
the concrete representation paradigm, language and syntax. Therefore we define:

– Ontology Conceptualization: An Ontology Conceptualization (OC) represents the
abstract or core idea of an ontology. It describes the core properties of an ontology,
independent from any implementation details.

– Ontology Implementation: An Ontology Implementation (OI) represents a spe-
cific implementation of a conceptualization. Therefore, it describes implementation-
specific properties of an ontology.

The distinction between OC and OI leads to an efficient mechanism, for tracking
multiple ontology versions, as well as for different representations of one knowledge
model in different languages. Technically, the two are modelled as separate classes
connected by means of the relation realizes. This means that there may be many
possible ontology implementations for one conceptualization, but one ontology imple-
mentation can only implement one conceptual model.

An instance of the OI class should not be able to exist without a corresponding
conceptualization. However, for practical reasons, we allow the existence of the two
independently of each other. We cannot assume that every existing ontology will be an-
notated by its original author who might have created the underlying conceptualization.

An excerpt of the main classes and properties of the OMV core ontology are illus-
trated in figure 1. The ontology is available for download in several ontology formats.4

It should be noticed that there exist several properties defined at the classes OC and
OI which are denominated with similar names, but have a different semantics. Consider,
for instance, an ontology engineer developing an ontology in OWL using the RDF/XML
syntax and annotating it with OMV . The values of the properties of the correspond-
ing OC and OI individuals definitely overlap to some extent (e.g., both would have the

4 OMV representations are available at http://ontoware.org/projects/omv/

436 J. Hartmann et al.

Fig. 1. OMV Overview

same party as creator, but they do not necessarily have the same number of on-
tological primitives). However, a new implementation of the ontology in, for instance,
F-Logic would result in new values for these properties (e.g. not only a new creator or
creation date, but eventually a different number of classes, properties, since the ways the
same conceptual model is implemented using two different knowledge representation
paradigms might vary).

DEMO - Design Environment for Metadata Ontologies 437

4.2 Basic Classes of OMV

The OMV focuses on the two main classes OC and OI for representing core informa-
tion about ontologies. However, additional classes are required to adequately represent
ontology-related information, especially in the context of the Semantic Web (Figure 1).

Common ontology engineering assumes that ontologies are created and owned by
Person(s) or Organizations. We group these two classes under the generic
class Party by a subclass-of relation. A Party can have several locations by
referring to a Location and can create or contribute to a OntologyConceptuali
zation or OntologyImplementation, respectively. Tools such as ontology ed-
itors can be referred to by the class OntologyEngineeringTool, which itself can
be developedBy a Party. The different existing syntactical representations and on-
tology languages are representable by OntologySyntax, OntologyLanguage
and RepresentationParadigm. OMV further contains the class Ontology
EngineeringMethodology which makes explicit the methodology (or method-
ologies) used during the engineering process. Ontologies might be categorized accord-
ing to various dimensions[6]. Those types are modelled as sub-classes of Ontology
Type. For commercial settings it might be relevant to propose usage licenses which can
be realized by the class LicenseModel relating to each OntologyConceptuali
sation or OntologyImplementation.

Exemplary, the SWRC ontology project is applying OMV to annotate their Seman-
tic Web Research Community Ontology [21]. The core idea of the SWRC ontology is to
model entities of research communities and their relationships. This conceptualization
of SWRC (core idea) originated several different implementations of SWRC. As a first
result, OMV increases the transparency within the engineering process and supports the
dissemination due facilitating reuse and discovery of SWRC5.

5 The Development of OMV Extensions

The OMV Core is intended to represent a commonly agreed metadata for the Semantic
Web. In contrast to that, we are aware that for specific domains, tasks or communities
extensions in any direction might be required. These extensions should be compatible
to the OMV Core, but in the same time fulfill the requirements of a domain, task or
community-driven setting. In order to ensure the compatibility to the commonly agreed
core, one of the goals of DEMO is the elaboration of a procedure to supervise and
promote the creation of new OMV extension modules.

An OMV extension can be originated by members of the OMV Working Group
Extensions. The group provides deliverables documenting their work for the public.
Initially, it creates a charter, nominates a responsible chair and sets up a technical in-
frastructure, for example a Web site and mailing-list. Such a charter describes the initial
motivation and explains specific requirements for a planned OMV extension. The char-
acter of an OMV extension is a metadata ontology itself which imports the OMV core
ontology. There are no restricting modelling guidelines to be met. However DEMO pro-
vides a basic inventory of design decisions and guidelines, which are recommended to

5 The ontology and metadata example are available at http://swrc.ontoware.org/.

438 J. Hartmann et al.

be applied for the extension modules[8]. The engineering team of an extension ontol-
ogy might resort to the same engineering methodologies and tools as those applied for
the OMV Core (see Section 3).

The first DEMO working group on OMV extensions has already been initiated. It
aims at the realization of an OMV extension module on the topic Ontology Evalua-
tion. Its results are intended to be applied in the EU Network of Excellence Knowl-
edgeWeb as a support tool for the OOA (Ontology Outreach Advisory) initiative,
whose goal is to provide consultancy, promote and outreach high-quality ontologi-
cal content in key industrial sectors of the Semantic Web such as eHealth or eRe-
cruitment.6 From a ontology engineering perspective, the working group elaborated a
first draft of a metadata schema relying on the OMV Core, which describes various
aspects of the ontology evaluation field: typical methods applied to evaluate an ontol-
ogy from multiple points of view (e.g. consistency checking, validation, requirements-
based evaluation, ontological evaluation) and in particular application scenarios (e.g.
NLP-based evaluation methods), roles involved in the evaluation process (e.g. re-
viewer), tools (e.g. reasoners, validators). As in the case of the OMV Core, the eval-
uation module is currently subject of revisions within the members of the working
group.

6 Related Work

Metadata and metadata standards have a long-tradition in a variety of computer sci-
ences areas, such as digital libraries or data management and maintenance systems.
We will briefly mention related metadata standards, including in particular those ones
relevant for the Semantic Web. The Dublin Core (DC) metadata standard is a simple
yet effective element set for describing a wide range of networked resources7. It in-
cludes two levels: Simple (with fifteen elements) and Qualified, including an additional
element as well as a group of element refinements (or qualifiers) that adapt the seman-
tics of the elements for resource discovery purposes. The Reference Ontology[1] is a
domain ontology that gathers, describes and has links to existing ontologies. However
its focus is to characterize ontologies from the user point of view, and provides only
a list of property-value pairs for describing ontologies. The Semantic Web search en-
gine SWOOGLE[2] makes use of an implicitly defined metadata schema, which cov-
ers information which can be extracted automatically from ontology implementations.
Our approach includes and extends this metadata vocabulary. Ideally, future versions
of SWOOGLE would also take into account the additional vocabulary defined in OMV
. Further on, the issue of creating a metadata standard for ontologies is addressed by
various ontology repositories initiatives. However, the majority of these repositories
rely on a restricted, implicitly declared vocabulary, whose meaning is not machine-
understandable. The DAML ontology library provides a catalog of DAML ontologies
that can be browsed by different properties8. The FIPA ontology service[20] defines
an agent wrapper of open knowledge base connectivity. The SchemaWeb Directory

6 http://knowledgeweb.semanticweb.org/
7 c.f. http://dublincore.org/
8 c.f. http://www.daml.org/ontologies/

DEMO - Design Environment for Metadata Ontologies 439

is a repository for RDF schemas expressed in RDFS, OWL and DAML+OIL9. Finally
we mention the ontology metadata example presented in [10] emerged within the EU
Network of Excellence Knowledge Web. The metadata consists only of attribute-value
pairs, and does not consider the distinction between conceptualizations and implemen-
tations. However, the work presented there provided a preliminary basis for the OMV
ontology introduced in this paper.

7 Conclusions and Future Work

In this paper we present DEMO, a framework for the development and deployment for
ontology metadata. Besides OMV , the proposed core vocabulary for ontology meta-
data, the framework comprises an inventory of methods to collaboratively extend OMV
in accordance to the requirements of a emerging community of industrial and academia
users, to develop extension modules for particular applications, user communities or
aspects of the reuse process, as well as tools for metadata management.

The proposed OMV Core captures information that is similar to other metadata
standards, such as Dublin Core. However, it goes beyond this general-purpose level
and provides a vocabulary for capturing information about ontologies, represented in a
well-defined machine and human interpretable language. The differences between ar-
bitrary information sources and ontologies make the usage of metadata standards such
as Dublin Core inappropriate. When talking about ontologies, there is a distinction be-
tween the conceptual representation of an application domain (the ontology at knowl-
edge level) and its various implementations (in particular representation languages). As
these two parts are characterized by different properties, the metadata about ontologies
should be able to differentiate between the semantic conceptualization and its particu-
lar realization as a concrete ontology document. Besides, aspects related to application
scenario, scope, purpose, or evaluation results are essential coordinates for a successful
ontology reuse and should be captured by the ontology metadata schema. On the other
hand, besides structural and technical information on ontologies—which can be cap-
tured automatically—there is a strong demand for representing descriptive metadata,
like authorship information, categorizations or underlying methodologies. The enu-
merated factors indicate the need for a ontology-specific metadata vocabulary, which,
though remaining compatible to information represented in generic metadata standards
like Dublin Core, is customized to the particular requirements of ontology sharing and
reuse.

Within the DEMO environment we initiated an activity aiming at achieving a broad
scale agreement on the OMV contents and representation, which was received favor-
ably by both academia and industry institutions and will continue in the future. As a
first result of DEMO activities, the WG Applications developed the P2P metadata shar-
ing tool Oyster10 and the metadata portal ONTHOLOGY11. Both systems compose an
interlocked metadata management framework and contribute to the development and
dissemination activities [9].

9 c.f. http://www.schemaweb.info
10 c.f. http://oyster.ontoware.org/
11 c.f. http://www.onthology.org/

440 J. Hartmann et al.

While the basis technical infrastructure for the DEMO activities is provided by the
OntoWare platform, we are experimenting with methods and heuristics to operational-
ize the metadata generation process and to check the quality of the existing metadata
information. These tasks, though not trivial, can be automatized to a considerable extent
due to the ontology-based representation of the OMV .

Acknowledgments. This proposal is based on a huge number of discussions and many
helpful arguments by persons from academia and industry. Especially we would like to
thank our colleagues York Sure (AIFB), M. Carmen Suárez-Figueroa (UPM),
Peter Haase (AIFB), Denny Vrandecic(AIFB) and Rudi Studer (AIFB). Furthermore,
we thank our partners from the EU project Knowledge Web for their present and future
collaboration.

References

1. J. Arpirez, A. Gomez-Porez, A. Lozano-Tello, and H. Pinto. Reference Ontology and
(ONTO)2 Agent: The Ontology Yellow Pages. Knowledge and Information Systems, 2:387–
412, 2000.

2. L. Ding et al. Swoogle: A search and metadata engine for the semantic web. In Proc. of the
13th ACM Conf. on Information and Knowledge Management, pages 58–61, 2004.

3. M. Fernandez-Lopez and A. Gomez-Perez. Overview and analysis of methodologies for
building ontologies. Knowledge Engineering Review, 17(2):129–156, 2002.

4. A. Gangemi, D. M. Pisanelli, and G. Steve. An overview of the ONIONS project: Apply-
ing ontologies to the integration of medical terminologies. Data Knowledge Engineering,
31(2):183–220, 1999.

5. A. Gomez-Perez. Evaluation of ontologies. Int. Journal of Intelligent Systems, 16(3), 2001.
6. A. Gómez-Pérez, M. Fernández-López, and O. Corcho. Ontological Engineering. Springer,

2003.
7. T. R. Gruber. Toward principles for the design of ontologies used for knowledge sharing. Int.

J. Hum.-Comput. Stud., 43(5-6):907–928, 1995.
8. J. Hartmann and R. Palma. OMV - Ontology Metadata Vocabulary for the Semantic Web,

2005. Technical Report V. 1.0, available at http://omv.ontoware.org/.
9. J. Hartmann, Y. Sure, R. Palma, P. Haase, M.C. Suarez-Figueroa, R. Studer, and A. Gomez-

Perez. Ontology metadata vocabulary and applications. In Robert Meersman, editor, Inter-
national Conference on Ontologies, Databases and Applications of Semantics. In Workshop
on Web Semantics (SWWS), OCT 2005.

10. KnowledgeWeb European Project. Identification of standards on metadata for ontologies
(Deliverable D1.3.2 KnoweldgeWeb FP6-507482), 2004.

11. K. Kotis, G. A. Vouros, and J. Padilla Alonso. HCOME: tool-supported methodology for
collaboratively devising living ontologies. In SWDB’04: 2. Int. Workshop on Semantic Web
and Databases, 2004.

12. A. Lozano-Tello and A. Gomez-Perez. ONTOMETRIC: A Method to Choose the Appropri-
ate Ontology. Journal of Database Management, 15(2), 2004.

13. R. Neches, R. E. Fikes, T. Finin, T. R. Gruber, T. Senator, and W. R. Swartout. Enabling
technology for knowledge sharing. AI Magazine, 12(3):35–56, 1991.

14. National Information Stadards Organization. Understanding metadata. NISO Press, 2004.
15. E. Paslaru Bontas, M. Mochol, and R. Tolksdorf. Case Studies on Ontology Reuse. In

Proceedings of the IKNOW05 International Conference on Knowledge Management, 2005.

DEMO - Design Environment for Metadata Ontologies 441

16. H. S. Pinto and J. P. Martins. A methodology for ontology integration. In Proc. of the
International Conf. on Knowledge Capture K-CAP01, 2001.

17. H. S. Pinto, S. Staab, and C. Tempich. Diligent: Towards a fine-grained methodology for dis-
tributed, loosely-controlled and evolving engineering of ontologies. In Proc. of the ECAI04,
pages 393–397, 2004.

18. T. Russ, A. Valente, R. MacGregor, and W. Swartout. Practical Experiences in Trading
Off Ontology Usability and Reusability. In Proc. of the Knowledge Acquisition Workshop
(KAW99), 1999.

19. S. Buckingham Shum, E. Motta, and J. Domingue. Augmenting design deliberation with
compendium: The case of collaborative ontology design. In Proc. of the HypACoM02 Work-
shop: Facilitating Hypertext-Augmented Collaborative Modeling, 2002.

20. H. Suguri et al. Implementation of FIPA Ontology Service. In Proc. of the Workshop on
Ontologies in Agent Systems, 5th Int. Conf. on Autonomous Agents Montreal, Canada, 2001.

21. Y. Sure, S. Bloehdorn, P. Haase, J. Hartmann, and D. Oberle. The SWRC ontology - Se-
mantic Web for Research Communities. In Carlos Bento, Amilcar Cardoso, and Gael Dias,
editors, Proceedings of the 12th Portuguese Conference on Artificial Intelligence - Progress
in Artificial Intelligence (EPIA 2005), volume 3803 of LNCS, pages 218 – 231, Covilha,
Portugal, DEC 2005. Springer.

22. M. Uschold, M. Healy, K. Williamson, P. Clark, and S. Woods. Ontology Reuse and Ap-
plication. In Proc. of the Int. Conf. on Formal Ontology and Information Systems FOIS98,
1998.

Y. Sure and J. Domingue (Eds.): ESWC 2006, LNCS 4011, pp. 442 – 456, 2006.
© Springer-Verlag Berlin Heidelberg 2006

An Environment for Semi-automatic Annotation of
Ontological Knowledge with Linguistic Content

Maria Teresa Pazienza and Armando Stellato

AI Research Group, Dept. of Computer Science, Systems and Production
University of Rome, Tor Vergata

Via del Politecnico 1, 00133 Rome, Italy
{pazienza, stellato}@info.uniroma2.it

Abstract. Both the multilingual aspects which characterize the (Semantic) Web
and the demand for more easy-to-share forms of knowledge representation, be-
ing equally accessible by humans and machines, push the need for a more “lin-
guistically aware” approach to ontology development. Ontologies should thus
express knowledge by associating formal content with explicative linguistic ex-
pressions, possibly in different languages. By adopting such an approach, the
intended meaning of concepts and roles becomes more clearly expressed for
humans, thus facilitating (among others) reuse of existing knowledge, while
automatic content mediation between autonomous information sources gets far
more chances than otherwise. In past work we introduced OntoLing [7], a Pro-
tégé plug-in offering a modular and scalable framework for performing manual
annotation of ontological data with information from different, heterogeneous
linguistic resources. We present now an improved version of OntoLing, which
supports the user with automatic suggestions for enriching ontologies with lin-
guistic content. Different specific linguistic enrichment problems are discussed
and we show how they have been tackled considering both algorithmic aspects
and profiling of user interaction inside the OntoLing framework.

1 Introduction

The multilingual aspects which characterize the (Semantic) Web and the demand for
more easy-to-share forms of knowledge representation, being equally accessible by
humans and machines, depict a scenario where formal semantics must coexist side-
by-side with natural language, all together contributing to the shareability of the con-
tent they describe. The role of different cultures and languages is fundamental in a
real World aWare Web and, though English is widely accepted as a “lingua franca”
all over the world, much effort must be spent to preserve other idioms as they express
different cultures. As a consequence, multilinguality has been cited as one of the six
challenges for the Semantic Web [2].

These premises suggest that semantic web ontologies, delegated to express ma-
chine-readable information on the Web, should be enriched to both cover formally
expressed conceptual knowledge and expose its content in a linguistically motivated
fashion.

 An Environment for Semi-automatic Annotation of Ontological Knowledge 443

Even more could be done: revisiting ontology development process under this per-
spective, would in fact guarantee this scenario to become a suitable framework upon
which even machine oriented task, like mediation and discovery, would benefit of this
greater expressivity.

Following this intent, in [7,8] we defined OntoLing, a Protégé [5,6] plug-in offer-
ing a modular and scalable framework for supporting manual annotation of ontologi-
cal data with information from different, heterogeneous linguistic resources.

We present now an improved version of OntoLing, which prompts the user with
automatic suggestions for enriching ontologies with linguistic content. We explain
how and why different kinds of linguistic enrichment processes should be performed
and focus our attention on one of these tasks, showing how its automatization has
been obtained, considering both algorithmic aspects and profiling of user interaction
in the context of OntoLing framework.

2 Linguistic Enrichment of Ontologies: Different Possible Tasks

We introduced the expression “Linguistic Enrichment of Ontologies” to identify a se-
ries of different processes sharing the common objective of improving the linguistic
expressivity of an ontology, through the exploitation of existing Linguistic Resources
(LRs, from now on). The nature of this “linguistic expressivity” strongly depends on
the LRs used for linguistic enrichment and on the specific goals the enrichment proc-
ess will achieve. In the following sections we describe three different enrichment
tasks, together with possible scenarios in which these tasks may be applied.

2.1 Using a LR’s Semantic Structure as a Controlled Vocabulary: Semantic
Enrichment of Ontologies

In this class of Linguistic Enrichment tasks, the semantic structure of a given LR
(provided it has one), is used as a controlled vocabulary for the ontology and related
application. What is required is just identification of pointers from ontological data to
semantic elements of the linguistic resource. Access to pure linguistic information is
then guaranteed by the links between the semantic and linguistic structure of the LR.

As a first example, consider an NLP ontology-based application, dedicated to
whatsoever kind of text analysis task (e.g. Information Extraction), and which is
strongly coupled with a semantic lexicon for extracting linguistic information from
the text. The semantic pointers are needed to easily move from extracted, neutral,
“linguistic information”, which is processed in terms of lexical concepts, to “events”
which are represented by the ontology.

As a further example, consider a scenario where distributed information sources
must be aligned by mediators relying on a common form of knowledge. This commit-
ted knowledge is represented by so called “upper ontologies”, or “upper models”
which contain a first stratification of general concepts. Examples in literature [1] re-
port of adoption, instead of an ontology, of the semantic structure of an existing lin-
guistic resource [4] as a interlingua for guaranteeing communication between
autonomous distributed agents.

444 M.T. Pazienza and A. Stellato

2.2 Explicit Linguistic Enrichment

When no semantic commitment has been established between autonomously devel-
oped information sources, no further solution exists for reaching semantic interopera-
bility than relying on the very last form of shared knowledge representation: natural
language. It is the form used by humans to pass from their own conceptualization of
the world, to any form of shareable communication, being it spoken, written, or even
related to formal representations of knowledge (also a good programming style ask
for variables and functions being expressed through evocative labels). Indeed, stating
direct links between ontological content (which is often scarcely modeled, upon a lin-
guistic point of view) and linguistic expressions, may represent the only viable solu-
tion to increase the shareability of the represented knowledge.

Moreover, the improved range of expressions for denoting a concept and the (pos-
sible) presence of natural language descriptions for ontological data, facilitate reuse of
existing knowledge, which is made more comprehensible also for humans.

2.3 Producing Multilingual Ontologies

Exploitation of existing bilingual resources may help in the development of multilin-
gual ontologies, in which different multilingual expressions coexist and share the
same ontological knowledge. The multilingual enrichment process, mainly if consid-
ered upon already enriched ontologies, may beneficiate of a greater linguistic expres-
sivity of the source data and thus exploit different techniques for obtaining proper
translations for ontology concepts and roles.

3 Techniques for Semantic/Linguistic Enrichment of Ontologies

While OntoLing’s underlying model for accessing LRs is thought for supporting all of
the above tasks, in this work we focus on techniques and solutions for automatizing
the first task which has been presented: semantic enrichment of ontologies. This
represents in fact a first necessary step through which all of the other tasks may be ac-
complished.

3.1 The Linguistic Enrichment Environment: Adopted Terminology

For sake of clarity, we will adopt from now on a terminology inherited from two well
known standards for ontological and linguistic resources: OWL and WordNet model.

OWL [3] has recently been accepted as a W3C recommendation for the representa-
tion of ontologies on the Web, so we have adopted its ontological model for our
framework and will use its nomenclature for distinguishing ontological objects into
classes, properties (object properties and datatype properties) and individuals. Frame
based models for knowledge representation can equally be considered inside this
framework, with slots taking the role of properties and instances acting as individuals
of the OWL model. We adopt in fact the term frame to address any ontological object
whose type needs not to be specified.

WordNet [4] is an on-line lexical reference system whose design is inspired by cur-
rent psycholinguistic theories of human lexical memory. English nouns, verbs,

 An Environment for Semi-automatic Annotation of Ontological Knowledge 445

adjectives and adverbs are organized into synonym sets (synsets), each representing
one underlying lexical concept. Several wordnets have been developed for other lan-
guages [11, 9], which have thus favored a large diffusion of the model which inspired
the original English version. As only those LRs which expose (cfr. [7, 8]) a semantic
structure (like WordNet) may be elected for the semantic enrichment task, we decided
to adopt notation borrowed from the WordNet Model to address linguistic elements
from LRs. We thus use terms like synset (or lexical concept, or semantic element),
sense and synonym, under the meaning they assume in WordNet-like lexical data-
bases.

We prefer in general to avoid use of term concept in any formal statement, as it is
adopted in different communities with different meanings: a synset is a lexical con-
cept in WordNet, while an OWL class implements a concept in Description Logics
theory, furthermore, other ontology traditions use “concept” to mean every generic
ontology construct, thus including properties and instances other than classes.

3.2 The Semantic Enrichment Task

Objective of semantic enrichment task is to identify pointers from ontological objects
(frames) to semantic entities (e.g. synsets, for WordNet) of a linguistic resource.

Before detailing our semantic enrichment process, we describe a few empirical re-
sults we collected during our research. These results took the form of morphosyntactic
and semantic evidences recognized over several pairs of ontologies and linguistic re-
sources, which could be used to guide the enrichment process.

All the reported examples refer to semantic enrichment of a DAML ontology1
about baseball, downloaded from the DAML library of ontologies2, using WordNet as
a source for linguistic knowledge.

3.3 Taxonomy-Alignment Evidences

In case the semantic structure of a given LR has been organized as a taxonomy of
broader/narrower linguistic concepts, similarities between this taxonomy and that of
the ontology may provide useful evidences for an enrichment task. The IS-A relation
of ontologies has however well defined semantics, while taxonomical links of LRs
may often confuse different informal and/or ambiguous relationships (specialization,
part-of, relatedness etc…); nonetheless, an analysis of these similarities typically
leads to interesting and reliable results. The intuition behind this strategy is that if a
semantic pointer links a frame-synset pair <F,S>, then other frame-synset pairs
(where the frame is more specific/more generic that F and the synset is nar-
rower/broader than S), have a good probability of being linked through a semantic
pointer. We call this phenomenon the “sense-alignment square”.

In Fig. 1 below, the semantic pointer between FH and SH already exists and repre-
sents an evidence for assessing a new semantic pointer over the pair <FL, SL>.

An example of this configuration is represented by the class labeled as Hit in the
baseball ontology: this class has been eligible for 14 potential senses in WordNet. Of
these 14 senses one is represented by the synset noun.124696, whose gloss states:

1 http://www.daml.org/2001/08/baseball/baseball-ont for the original DAML version.
2 http://www.daml.org/ontologies/

446 M.T. Pazienza and A. Stellato

a successful stroke in an athletic contest (especially in baseball); "he came all the way around on
Williams'’hit"

This synset is more general than another WordNet synset, noun.39042, which is
described by the following gloss:

a base hit on which the batter stops safely at second base; "he hit a double to deep centerfield"

and which has among its synonyms the word “double”. Finally, closing the align-
ment-square, Double is another class of the ontology, which is a subclass of Hit.
Thanks to this evidence, both Hit-noun.124696 and Double-noun.39042 pairs
result as good candidates for being linked through a semantic pointer.

FH LH

FL SL

IS-A Narrower/broader

semantic pointer

pair candidate for a
semantic pointer

ON LR

Fig. 1. The sense-alignment square

3.4 Evidences Resulting upon Analysis of Glosses from the Linguistic Resource

Glosses offer natural language descriptions of concepts. Though their content is gen-
erally intended as an easy reference for human readability, it represents indeed a use-
ful mean for discovering relations which have no explicit semantic counterpart in the
resource they come from.

From the glosses reported in the previous example, we could learn that a “double”
is a kind of “base hit” (though the meaning of “hit" is not formally specified by the
gloss), even if the resource lacked of a taxonomical structure, thus binding the two
lexical concepts together in a broader/narrower relation.

A further example is represented by the class Division (again in the DAML base-
ball ontology). WordNet offers 12 different senses for the term “division”. The gloss
of the correct synset, noun.7741947, states:

a league ranked by quality; "he played baseball in class D for two years"; "Princeton is in the
NCAA Division 1-AA".

Again, we could learn that a “division” is a “league”, and League is one of the classes
of the ontology. This case is however different from the previous one: in fact in the
ontology tree, Division has not been conceived as a type of League. Nonetheless, a
further analysis of ontological context reveals that Division appears in the restricted
range of a property of class League. The co-occurrence of these two terms in the gloss,
together with the presence of the range restriction binding the two classes labelled by
the terms, suggests noun.7741947 as a potential candidate for Division.

There are however cases where a supposed interesting relation is not formally ex-
pressed in the ontology. An example is given by the class Out: we report here the
gloss of its correct matching synset:

 An Environment for Semi-automatic Annotation of Ontological Knowledge 447

(baseball) a failure by a batter or runner to reach a base safely in baseball; "you only get 3 outs
per inning".

we observe that “base” is a term appearing in the above gloss and that, at the same
time, Base is a class in the ontology. Unfortunately, Base is not bound by any onto-
logical relation to Out. Should this combination be discarded as a mere fortuity? May
be not: the baseball ontology for example, with its 104 frames (considering classes
and properties), may in fact be considered as a very domain-specific representation,
where the sole presence of few concepts is enough to consider them semantically re-
lated in some way.

A final consideration: it may happen that glosses describing synsets which are can-
didate for enrichment of different ontology frames, contain common references to
concepts of which no trace is present in the ontology. Oddly enough, the ontology
about baseball which we used for our examples, contains no specific lexical nor con-
ceptual reference to “baseball” itself! On the other hand, many WordNet definitions
contain the word baseball in their glosses, so that, in those cases, it is quite easy for a
human to immediately choose the right sense from the given set of candidates, just af-
ter a glimpse at the list of glosses. An automatic process should be able to discover
even these “hidden” correlations and weight their effectiveness appropriately.

4 The Feature Model

To take into account all previous considerations, and to maintain a scalable approach
towards new possible strategies and LR configurations, we adopted a probabilistic
model based on a feature space which is produced upon the observed evidences.

We have thus defined a Plausibility Matrix MP as a two-dimensional matrix on a
O×L space, where O is the cardinality of the ontological objects and L is the cardinal-
ity of the semantic data in the linguistic resource. Each element MP(i,j) of the matrix
represents the plausibility that the ontological object i be matched with the lexical
concept j. Analogously, an Evidence Matrix ME contains in each element ME(i,j) the
set of evidences which contribute to the computation of element MP(i,j) in the Plausi-
bility Matrix.

The Discovery Phase. The linguistic dimension in the two matrices is far broader
than the ontological one. An efficient enrichment process should thus consider a first
discovery phase in which lexical anchors between the ontology and the LR are thrown
to define possible candidates for linguistic enrichment. Each anchor represents a po-
tential pointer from the ontology to the LR, and is discovered thanks to lexical simi-
larity measures (use of string matching distances, possibly made smarter through
knowledge of morphosyntactic properties of the natural language under analysis). In
this phase it is important to drop as many anchors as possible, as they will represent
the whole search space which is screened during the linguistic enrichment process.
The trade-off is therefore lightly biased towards recall rather than precision, as the lat-
ter, in this case, is only important for reducing the computational cost of the process.
The result of the discovery phase is thus a subspace LA represented by all synsets in L
which have been anchored as potential targets for semantic pointers.

448 M.T. Pazienza and A. Stellato

The Semantic Enrichment Function. Once an LA space has been extracted, we can
then define the linguistic enrichment function fse :

[]: 0..1se Af O L× (1)

This function maps pairs of elements from the ontology and the (restricted) linguistic
resources into a confidence interval [0..1] representing the plausibility for assessing
the presence of a semantic pointer between them.

The whole function fse is realized through two main phases: by first the analysis of
the linguistic and semantic similarities of the ontology and of the LR will lead the
production of the Evidence Matrix ME; the Plausibility Matrix MP, based on the pre-
viously captured evidences, is then evaluated upon ME.

There may exist mutual dependencies between contributions of features for differ-
ent frame-synset pairs. For this reason, fse is actually an iterative process fse = fse(t); in
particular, computation of the plausibility matrix takes this general form:

()() , (1), (0)P E P PM t f M M t M= − (2)

To adopt a smarter notation for addressing plausibilities of single frame-synset pairs,
we define:

(, ,) (,) with ()
def

P P Pp F S t M F S M M t= = (3)

Finally, we define a candidate pair <F,S> as a pair of elements F O and S LC,

where p(F,S,0) 0.

5 Instantiating fse

The formulas in equations (1,2) are declarative forms representing classes of func-
tions for realizing a semantic enrichment process, which are compatible with our
model. In this section we present our realization of the semantic enrichment function,
according to the two defined phases.

5.1 Computing Plausibilities

In our experiments, we specified this function according to the following desiderata:

1. prizing candidate pairs characterized by positive evidences
2. punishing candidate pairs characterized by negative evidences
3. evaluate quantitative factors associated to different kind of evidences (representing

the strength, or presence, of the evidence)
4. take into account inherent polysemy of every label associated to ontology concepts

The following equation has thus been conceived for computing elements of the Plau-
sibility Matrix:

 An Environment for Semi-automatic Annotation of Ontological Knowledge 449

()() ()

()()

0 0
1

1 0

1 1 , 1

()
1

1 1 1 , 1

n

i
i

m

i
i

p t p

p t

t
p

ρ ν

ρ ν

=

=

+ − − ⋅ −
=

+ − − ⋅ −

∏

∏
 (4)

p(t) is actually a smarter notation (to avoid abuse of indices in the formula) for
p(F, S, t), while p0 = p(0). p0 value depends on high and low, two parameters repre-
senting the threshold over (resp. under) which a frame-synset pair must automatically
be accepted (rejected), and on the ambiguity (number of senses for word) of the term
denoting F, according to the following formula:

0
high low

lowp
a

τ τ
τ

−
+ (5)

For each evidence i, a weighted feature is then computed through the function (i,t),
whose value depends on the type of evidence i and on the instantiation of its associ-
ated parameters. In the following section details are provided about the structure of
the different features i.

5.2 Extracting Evidences

Following the experiences we summarized in section 3, we formalized methods for extract-
ing interesting evidences and for mapping their content into features for our fse function.

First of all, we define the search space over ontological relations which is investi-
gated for every class of evidences:

Def. A conceptual sphere of a frame F over a set of relations R is a collection of
frames linked to F through a relation r R. If r is a transitive relation, its closure may
be limited to n allowed hops, depending on ontology’s size; n is called the range of
the sphere wrt the r dimension.

The conceptual sphere (sometimes called context in literature) for the Taxonomy-
Alignment evidences has obviously been defined over the sole IS-A relationship, and
its allowed range depends on the dimension of the ontology.

For gloss-based evidences we restricted the IS-A relation to cover only super con-
cepts of the frame to be enriched; moreover, we considered both domain and range
specifications of properties, and range restrictions of properties for specific classes.
Computation of the sphere also depends on the nature of the ontological object under
analysis. In figure 3 the algorithm for computing the conceptual sphere for classes,
properties and individuals has been shown.

Taxonomy-alignment evidences: These kind of evidences assume the following
form:

, , sgnframe synsetν

where frame-synset is a candidate pair whose alignment influences the plausibility of
the candidate pair which is being evaluated. The associated weighted features are
computed through this formula:

450 M.T. Pazienza and A. Stellato

() (), sgn , , 1i TAt p frame synset tρ ν σ ⋅ ⋅ −

where SA is a coefficient related to this type of evidences and p(frame, synset, t-1) is
the plausibility of the <frame, synset> pair at time t-1. sgn is 1 if is a positive evi-
dence, -1 if it is a negative one. Negative features for this kind of evidence are repre-
sented by configurations like that in fig. 2 below:

FH SH

FL SL

IS-A

candidate pair candidate

ON LR

Narrower/broader

Fig. 2. negative evidence for sense-alignment

Here, <FH,SL> and <FL,SH> represent mutual negative influences, so that the plausi-
bility of each pair is decreasing that of the other.

Gloss-mentioned Related Concepts: The strategy for extracting these evidences is
based on the intuition that the glosses of the candidate synsets which best define a
given frame F, may contain linguistic references to other concepts contained in the
conceptual sphere of F.

The extraction of this kind of evidences is described by the following algorithm:

for each Frame rc ConceptualSphere do
MtchLvl match(rc, gloss),
if MtchLvl 0
Evidences Evidences evd(GR, rc, MtchLvl)
end if

end for

where Evidences is the set of evidences related to a given <F,S> pair, Conceptual-
Sphere is the conceptual sphere built around F and gloss is the gloss of S. GR is a tag
denoting membership of the extracted evidences to this class of features. MtchLvl is a
degree of lexical similarity between the term from the gloss and the label of the
matching concept: this value is obtained on the basis of raw string matching distances
and comparative morphological analysis of the two terms.

Gloss-mentioned Generic concepts: Sometimes glosses of a candidate synset may
disclose useful correlations between ontology concepts, which are unfortunately not
captured by existing ontological relationships. In most cases nothing could be done
and this phenomenon should simply be treated as a lack of information: the concepts
can be recognized, upon human common sense, as potentially related (and they actu-
ally represent an evidence for a correct semantic pointer!), but they are not connected
by any sort of relationship in the ontology (see related example in section 3.4)

 An Environment for Semi-automatic Annotation of Ontological Knowledge 451

Should the ontology be of modest size, offering a specification of a conceptualiza-
tion of a very limited domain, it is nonetheless possible to consider each concept as
somewhat related to the others. Under this hypothesis, given a <F, S> pair and a gloss
gloss for synset S, this strategy considers as an evidence every occurrence of a term in-
side gloss which is also a label for a frame, even if no apparent relation with F exists.

for each term t gloss do
F rc find(Ontology, t, MtchLvl),
if rc null

Evidences Evidences evd(GG, rc, MtchLvl)
end if

end for

Both these two gloss-based features are defined by the following expression:

MatchingLevelν

and their contribution to fse is:

() /,i GR GGt MatchingLevelρ ν σ ⋅

computeConceptualSphere(Frame frm, int DepthRange) SET OF Frame
input frm: the class, property or individual which has been selected for linguistic enrichment

DepthRange: the number of allowed hops along the IS-A relation for retrieving super concepts of frm
output ConceptualSphere: the conceptual sphere surrounding frm
begin
FrameType type getOntoType(frm)
SET OF Frame ConceptualSphere {}
if (type = class or type = property)

ConceptualSphere ConceptualSphere getSuperConcepts(frm, DepthRange)
else //frm is an instance

Classes getClasses(frm)
for each class Classes do

ConceptualSphere ConceptualSphere {class} getSuperConcepts(class, DepthRange)
end for

end if
if (type = class)

for each property p, class c | frm.hasRestriction(p,c) or c.harRestriction(p,frm)
ConceptualSphere ConceptualSphere { c } { p }

if (type = instance)
for each property p (frm.getOwnRelationalProperties()) do

ConceptualSphere ConceptualSphere { p } frm.getOwnPropertyValues(p)
end if
if (type = property)

for each class c (domain(frm) range(frm)) do
ConceptualSphere ConceptualSphere {class}

end if
return ConceptualSphere
end

Fig. 3. Algorithm for realizing the conceptual sphere for gloss-based evidences

Gloss-overlap between candidate synsets: A user manually doing linguistic enrich-
ment knows the domain covered by the ontology and therefore would prefer senses
whose glosses report domain related terms (see last example in section 3.4).

452 M.T. Pazienza and A. Stellato

Analogously, this strategy checks for possible term overlaps between glosses of
synsets which appear as candidates for enriching concepts appearing each in the con-
ceptual sphere of the other. Of course, overlapping terms must be properly filtered, to
remove co-occurrences of articles, particles and very common words.

Instead of adopting large stop-lists, which may reveal to be incomplete, we exploit
the whole set of glosses of the same resource which is used for linguistic enrichment,
as a large corpus for statistically determining the distribution of terms. Thresholds
may then be established for filtering very common terms which bear no informative
evidence. Formally:

for each Frame rfi ConceptualSphere do
for each synset sij candidateSynsets(rfi) do

let rfgloss[i,j] sj.getGloss()
end for
for each term t, t gloss and t rfgloss[i,j]

let freq = LR.getGlossFrequency(t)
if !filter(freq)
Evidences Evidences evd(GO, rfi, si, freq)
end if

end for
end for

As for taxonomy-alignment, even this third gloss-based strategy produces mutual in-
fluences among features: the collected evidences are in fact dependent upon the plau-
sibility of candidate <rc, si> pairs. Their structure is in fact:

, ,MatchingLevel frame synsetν

and assumes is computed this way:

() (), , , 1i GOt MatchingLevel p frame synset tρ ν σ ⋅ ⋅ −

MatchingLevel is in this case also dependant on the frequency of the observed over-
lapping term.

6 Supporting Linguistic Enrichment of Ontologies in OntoLing

In line with OntoLing’s highly modular architecture, we defined abstract layers for
supporting automatic linguistic enrichment of ontologies at different levels. The
schema in figure 4 extends OntoLing architecture [7] with new interfaces for:

• accessing a generic module for linguistic enrichment
• invoking standard methods for storing/caching information necessary for the en-

richment task, from both the ontology the linguistic resource

We have provided a first realization of the enrichment interface through the implemen-
tation of the previously discussed techniques for semantic enrichment of ontologies. The
storage and caching API have been realized according to diverse technologies and solu-
tions, each of them thought for matching specific requirements. Mainly, these solutions
can be split into two main categories:

 An Environment for Semi-automatic Annotation of Ontological Knowledge 453

Linguistic
Resource

Linguistic
Browser

Ontology
Browser

GUI
Facade

Linguistic Interface
<<interface>>

Wordnet
Interface

<<Implementation>>

Linguistic
Resource

FreeDict
Interface

<<Implementation>>

Linguistic
Resource

…
Interface

<<Implementation>>

Protégé API

Enrichment Algorithm

<<implementation>>OntoLing Core

Li
ng

ui
st

ic
En

ric
hm

en
tA

PI
<<

in
te

rfa
ce

>>

Enrichment Storage API
<<interface>>

Storage and Caching
Component

<<Implementation>>

Enrichment
data

Fig. 4. OntoLing Architecture

• disk storage/caching of data
• in-memory storage

The first class has been thought to provide a scalable environment where even
thousands of ontological objects, linguistic elements and relations between them can
be easily handled. We provided one implementation for this category, based on use of
database technologies. Different drivers may be loaded at run time for accessing
available and preferred DBMSs. A dedicated driver for a popular java embedded
DBMS [12] has been bundled into the application, to make OntoLing immediately
operative without need of any external technology.

Aim of the second class of solutions is to maximize performances by storing data
directly in memory, thus providing fast access to ontological and linguistic information
during the enrichment process. This approach is ideal whenever size of the ontology
and complexity of the linguistic resource do not require massive memory usage. Cur-
rently, two implementations are available to realize this solution:

• A prolog DB, which represents linguistic and ontological objects (and the relations
between them) into sets of prolog facts

• An specific driver for an in-memory DBMS, sharing the same SQL implementa-
tion of already described DBMS solution.

Finally, a new interface has been produced for interacting with the user, which can
initially choose between three different modalities:

454 M.T. Pazienza and A. Stellato

1. manual enrichment (classic OntoLing behavior and interface)
2. completely automatic enrichment (which can be lately verified by the user and cor-

rected wherever necessary)
3. step-by-step verification of prompted suggestions

In both modalities 2 and 3 the user can in any moment choose to stop the process
and cycle through classes, properties and instances to verify their enrichment status.
Fig. 5 provides an example of a step-by-step supervised process of semantic enrich-
ment, by showing a dialog window which lets the user choose between different
(WordNet) senses of the word “hit”. The user can cycle through ontological data by
selecting elements from the list on the left. Different colors in the central table indi-
cate whenever a sense has been suggested by OntoLing, inspected, selected or
confirmed by the user. Supplementary interfaces and interaction modalities will be
developed in next releases of OntoLing also for other kinds of linguistic enrichment
tasks. At present time, it is however possible to automatically pass from senses chosen
during the semantic enrichment process, to their related linguistic information (syno-
nyms and/or glosses) and use it for directly enriching ontological objects.

Fig. 5. Prompting the user with suggested WordNet senses for the word “hit”

 An Environment for Semi-automatic Annotation of Ontological Knowledge 455

7 Automatic Semantic Enrichment: Experimental Results and
Final Remarks

To evaluate our enrichment process, we ran two experiments on enriching two public
domain ontologies with synsets from WordNet. In reporting performances, standard
Precision & Recall metrics have been adopted, instead of simple Hit Percentages, be-
cause for any given Frame, the system may propose a suggestion (right or wrong) or
not. We also reported F-measure [10] which combines recall and precision in a single
efficiency measure (it is the harmonic mean of precision and recall):

() ()2* * /F recall precision recall precision= +

The first experiment has been performed on the baseball ontology chosen for our
examples. The ontology, is composed of 78 classes, 26 properties and 13 individuals.
Of these objects, 60 classes and 21 properties were considered for semantic enrichment
(we performed the experiment limiting to the ontology schema, so we provide statistics
only for classes and properties) during the discovery phase. The number of non am-
biguous concepts (including both classes and properties) is 20 (~ 24,7% of the whole
concept set) while the average ambiguity, (measured as the average polysemy of con-
sidered terms, wrt WordNet synset structure), is ~ 9,16. Two annotators were initially
hired to realize two documents (one per annotator) reporting the most evocative synset
for each concept. The documents have then been compared and a final decision has
been taken where discrepancies were found, to produce the oracle used in the experi-
ments. The observed inter-annotator agreement on the two original documents has
been however of 98.76% (one re-discussed decision out of the whole set).

Recall has been measured towards the number of concepts which can be enriched
with the considered LR. The terms offered by any linguistic resource represent in fact
the whole search space, and each evaluation of a linguistic enrichment process has
only sense if considered wrt a specific LR. Fine tuning of evidence-typed -
parameters has been performed over a collection of several small ontologies and/or
portions of them, before running the experiment, whose results are reported in table 1.

The second experiment has been run on an ontology related to the university aca-
demic domain3, developed in the context of the EU funded project MOSES (IST-2001-
37244). This ontology has been built, in OWL language, over a preexisting DAML on-
tology4 from the official DAML repository and finalized for representing the Italian
university domain. As a consequence, while the original language in which concepts
were expressed was English, many of the concepts added for describing the Italian aca-
demic institutions had only Italian labels. Though we plan for the future to define a two
step enrichment process which is able to rely on multiple linguistic resources (for differ-
ent languages) even for dealing with this kind of situations, we evaluated our algorithms
over those parts of the ontology which were eligible for monolingual enrichment. More
than half of the classes (100 out of 192) emerged during the discovery phase, while only
a very small part of the properties (9 out of 100) have been discovered: this is probably
due to the large amount of properties added during the customization to the Italian

3 http://www.mondeca.com/owl/moses/ita.owl
4 http://www.cs.umd.edu/projects/plus/DAML/onts/univ1.0.daml

456 M.T. Pazienza and A. Stellato

Table 1. Evaluation of linguistic enrichment over two publicly available ontologies

Ontology Precision Recall F-Measure

Baseball Ontology 80% 39,5% 52,89%

Moses Italian 81,48% 42,72% 56,05%

domain. We report in table 1 evaluation of the algorithm for both the experiments. De-
tailed analysis of the test data on the first experiment revealed that, though only 40% of
the original corpus (ontology) has been correctly annotated with WordNet synsets, an-
other 50% contains the right choice in a high ranked position (second or third sugges-
tion, or even first but under the established plausibility threshold).

A similar observation holds for precision, where the 20% wrong hits gave only few
plausibility points over the correct ones. This reveals to be in line with the intended
nature of the task, which is to be seen as part of a computer-aided, linguistically moti-
vated approach to ontology development, more than a mere disambiguation problem.

References

1. Beneventano D., Bergamaschi S., Guerra, F., Vincini, M: Building an integrated Ontology
within SEWASIE system. In proceedings of the First International Workshop on Semantic
Web and Databases (SWDB), Co-located with VLDB 2003 Berlin, Germany, September 7-
8, 2003

2. V. R. Benjamins, J. Contreras, O. Corcho and A. Gómez-Pérez. Six Challenges for the
Semantic Web. SIGSEMIS Bulletin, April 2004.

3. M. Dean and G. Schreiber, editors: OWL Web Ontology Language Guide. 2004. W3C
Recommendation (10 February 2004).

4. C. Fellbaum: WordNet - An electronic lexical database. MIT Press, (1998).
5. J. Gennari, M. Musen, R. Fergerson, W. Grosso, M. Crubézy, H. Eriksson, N. Noy, and S.

Tu. The evolution of Protégé-2000: An environment for knowledge-based systems devel-
opment. International Journal of Human-Computer Studies, 58(1):89–123, 2003.

6. H. Knublauch, R. W. Fergerson, N. F. Noy, M. A. Musen. The Protégé OWL Plugin: An
Open Development Environment for Semantic Web Applications Third International Se-
mantic Web Conference - ISWC 2004, Hiroshima, Japan. 2004

7. M. T. Pazienza, A. Stellato: The Protégé OntoLing Plugin: Linguistic Enrichment of
Ontologies in the Semantic Web. In Poster Proceedings of the 4th International Semantic
Web Conference (ISWC-2005) Galway, Ireland, November, 2005

8. M.T. Pazienza, A. Stellato: Linguistically motivated Ontology Mapping for the Semantic
Web. Semantic Web Applications and Perspectives 2nd Italian Semantic Web Workshop
(SWAP 2005), December 2005

9. S. Stamou, K. Oflazer, K. Pala, D. Christoudoulakis, D. Cristea, D. Tufi , S. Koeva, G.
Totkov, D. Dutoit, M. Grigoriadou (2002). BALKANET: A Multilingual Semantic Network
for the Balkan Languages. Proceedings of the International Wordnet Conference, January
21-25, Mysore, India, 12-14.

10. C. J. Van Rijsbergen, Information Retrieval. 2nd edition, London, Butterworths, 1979
11. P. Vossen. EuroWordNet: A Multilingual Database with Lexical Semantic Networks, Klu-

wer Academic Publishers, Dordrecht, 1998
12. http://www.daffodildb.com/

Turning the Mouse into a Semantic Device: The seMouse
Experience�

Jon Iturrioz, Sergio F. Anzuola, and Oscar Díaz

The Onekin Group
Department of Languages and Computer Systems

University of Basque Country
Po Manuel de Lardizabal, 1

20.018 San Sebastián (Spain)
{jon.iturrioz, jibfeans, oscar.diaz}@ehu.es

Abstract. The desktop is not foreign to the semantic way that is percolating
broad areas of computing. This work reports on the experiences on turning the
mouse into a semantic device. The mouse is configured with an ontology, and
from then on, this ontology is used to annotate the distinct desktop resources.
The ontology plays the role of a clipboard which can be transparently accessed
by the file editors to either export (i.e. annotation) or import (i.e. authoring) meta-
data. Traditional desktop operations are now re-interpreted and framed by this on-
tology: copy&paste becomes annotation&authoring, and folder digging becomes
property traversal. Being editor-independent, the mouse accounts for portability
and maintainability to face the myriad of formats and editors which characterizes
current desktops. This paper reports on the functionality, implementation, and
user evaluation of this “semantic mouse”.

Keywords: Semantic Annotation, Knowledge Management, Metadata and On-
tologies.

1 Introduction

Hard-disk drives enjoy an increasing storage capacity that, however, has not come along
with a similar improvement on mechanisms that harness this storage power. It is at
least dubious whether current desktops have scaled to handle a number of files that
doubles or triples the ones a layman held a few years ago. Scalability not only includes
fault-tolerance or performance stability, but also the availability of tools that permit the
end user to harness this power. The lack of appropriate tools for locating, navigating,
relating or sharing bulky file sets are preventing PC users from taking full benefit of
their storage power.

Current efforts on enhancing operating systems with automatic meta-data extrac-
tion support (e.g. Spotlight for MAC1 or WinFS for Windows2) strive to overcome this
� This paper is an extension of a demostration poster presented at the First Semantic Desktop

Workshop.
1 http://www.apple.com/macosx/features/spotlight/
2 http://msdn.microsoft.com/library/default.asp?url=/library/en-

us/dnwinfs/html/winfs03112004.asp

Y. Sure and J. Domingue (Eds.): ESWC 2006, LNCS 4011, pp. 457–471, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

458 J. Iturrioz, S.F. Anzuola, and O. Díaz

shortcoming. However, these proposals are format-oriented. That is, the extension of
the file (e.g. .doc .ppt .html) determines the meta-data to be extracted. If all files belong
to the same extension, identical meta-data is extracted from all of them. The extractor
does not consider the semantics of the content, but the format of the container. This
falls short in a desktop setting where the meta-data to be extracted is highly dependent
on the user’s mental model. The ontology should not be format-centric but user-centric.
But this can be cumbersome if appropriate tooling is missing.

Distinct works strive to provide sophisticated new environment or enhancing current
tools for achieving the semantic desktop[17, 18, 2]. However, most often this implies
for the user to move to a new editor when annotating (like in SMORE [12]), or to
learn a new “ontological interface” when files from different formats are edited (like in
SemanticWord [19]). This can pose important usability issues that refrain the adoption
of the semantic desktop.

Based on this observation, this work rather than providing separate tools for anno-
tation & authoring, enhances a popular tool for traditional copy&paste operations: the
mouse. This will certainly facilitate user adoption.

To this end, the semantic mouse (seMouse) is introduced. By clicking on its middle
button, seMouse exports/imports properties from the ontology, regardless of the editor
you are working with. It does not matter whether you are working with Word, Excel,
PowerPoint, Adobe Acrobat, Netscape, etc, the “semantic” button is available for anno-
tation/authoring.

The rest of the paper is organized as follows. Section 2 addresses related work. Sec-
tion 3 introduces seMouse through five scenarios, namely, file classification, annotation,
authoring, semantic navigation and ontology editing. As previously mentioned, usabil-
ity is one of the main objectives of our tool, so an evaluation is addressed in section 4.
The architecture of the implementation is introduced in section 5. Finally, conclusions
are given.

2 Framing the Work

This work aligns with current efforts for desktops to become semantic-aware[9, 3, 17].
The endeavors target different goals, namely, semantic infrastructure (e.g. Gnowsis
[17]), resource organization (e.g. Fenfire [4], Haystack [13]), annotation/authoring of
resources (e.g. SemanticWord [19]).

For the purpose of this paper, approaches to inlaying semantics into desktops can
be classified in accordance with the coupling between editing concerns (e.g. spelling,
grammar checking, layout) and “ontological” concerns (e.g. authoring, annotation).
Some approaches to annotation detach the process of annotation from that of authoring
(e.g. Ont-O-Mat [6]). Others, like SMORE [12], do both (i.e. authoring and annotation)
but using ad-hoc editors.

By contrast, SemanticWord [19] integrates semantic capabilities into MS Word edi-
tor so that the text of the document can be analyzed and annotated as it is being typed,
appearing to the author as a service analogous to Word’s spelling and grammar check-
ing. Moreover, the MS Word GUI is augmented with toolbars that support the annota-
tion process. The use of a popular editor certainly facilitates the introduction of these

Turning the Mouse into a Semantic Device: The seMouse Experience 459

Table 1. Tool comparison table

Feature Ont-O-Mat Semantic
Word OntoOffice SMORE seMouse

coupling Proprietary editor Word plug-in
MS Office

plug-in
Proprietary

editor
Windows
plug-in

file-format support HTML
MS Word
documents

MS Office
Documents

HTML, mail
format Any type

attachment availability Yes Yes No No No

GUI device for seman-
tic interactions

Drag & drop
Toolbars and

cascading
menus

MS SmartTags
Right mouse

button and forms

Center mouse
button and

pop-up menus
Annotation subject Text Text File Text File
Automatic metadata
extraction

Yes, using
Amilcare

Yes, using
AeroDAML

No No No

techniques into the desktop. Unfortunately, this only works for Word. Other editors
would require similar enhancements.

Table 1 compares distinct approaches along the following dimensions:

– coupling, which denotes how semantic tooling (i.e. annotation, authoring) is cou-
pled with either the resource format, the editor or the operating system. The editor
alternative admits two additional options depending on whether the editor has been
developed ad hoc for annotation purposes, or it is realized as a plug-in for an exist-
ing editor. According to this criterion, seMouse is the less coupled solution.

– file-format support, which indicates the type of formats the tool can handle. This is
somehow related with the previous criterion in the sense that the lesser the coupling,
the broader the file types handled by the tool. By working at the operating-system
level, seMouse can be integrated with any editor available for Windows.

– attachment availability, which refers to the possibility of attaching the metadata
to the file itself. Most formats permit to do so. This is an interesting option in case
a file needs to be shared with other users or environments. However, the vocabulary
and attaching mechanism used commonly depends on the format/editor used. For
instance, Adobe is promoting the Extensible Metadata Platform (XMP) initiative3

whereas OpenOffice4 has a different set of metadata which also overlaps (but does
not totally coincide) with Dublin Core5. To complicate things further, how metadata
is attached to the document can also vary. As a result of this heterogeneity and pro-
prietary formats, extracting the embedded metadata results in a high programming
and maintenance effort as it has been particularized for each format.

– GUI device for semantic interactions, which refers to the GUI device used for
annotation/authoring. Loose-coupling approaches complicate a seamless integra-
tion (if any) with the GUI of the chosen editor. For semantic-lite tooling, this can
pose no problem as the mouse can give enough support. This is the option taken by

3 http://www.adobe.com/products/xmp/main.html
4 http://www.openoffice.org
5 http://dublincore.org

460 J. Iturrioz, S.F. Anzuola, and O. Díaz

Fig. 1. A sample ontology

Fig. 2. SeMouse window to load the ontology

seMouse. However, more sophisticated tooling can make the mouse fall short, and
require a tighter integration with the editor’s GUI. SemanticWord is a nice example.

– annotation subject, which indicates the granularity of the element being annotated.
Alternatives include the file as a whole, or regions of text within a file.

– automatic metadata extraction, where the availability of mechanisms for auto-
matic annotation is indicated.

This work strives to introduce ontological concerns as seamless as possible into cur-
rent desktops. Hence, our preferences align with those of SemanticWord. However, the
myriad of formats which can be found in current desktop (e.g .doc, .xml, .gif, .java,
.pdf to mention a few), and the corresponding editors, vindicate the use of an editor-
independent solution. Our bet is to use the mouse to attain this aim.

Rather than using the extensibility technology provided by each editor (e.g. Ac-
tiveX controls in the case of Word), we move down to the operating system so that the
solution can be available to no matter which editor. The result is seMouse (Semantic
MOUSE), an annotation/authoring tool that achieves editor-independence by work-
ing at the operating-system level. By clicking on its middle button, data can be ex-
ported/imported from the ontology regardless of the editor you are working with.

Turning the Mouse into a Semantic Device: The seMouse Experience 461

Fig. 3. Scenario 1: file classification

In this way, the user does not have to move to a new editor when annotating (like
in SMORE), nor has to learn a new “ontological interface” when files from different
formats are edited (like in SemanticWord).

The downside is usability. Enhancing current editors with “ontological concerns”
certainly leads to more appealing and sophisticated interfaces. SemanticWord is a case
in point. However, this advantage dilutes in a multi-editor scenario, where the seMouse
approach ensures the same annotation/authoring tool no matter which editor is being
used.

Another comparison of semantic annotation tools can be found in [14].

3 seMouse at Work

seMouse is an annotation/authoring extension of the mouse device that achieves editor-
independence by working at the operating-system level. This section introduces se-
Mouse with the help of an example.

Consider the heterogeneous documents that goes with a research project. This in-
cludes the project proposal (e.g. one Word file), bills payed with the project funding
(e.g. twenty Excel files), papers as deliverables of the project (e.g. twenty files in both
.pdf and .doc formats), participants (whose desktop counterpart can be either the home-
page, an .html resource, or a .pdf resource) and comments (being realized as either
emails or .doc resources).

Regardless of their format and folder location, it is likely that a high degree of con-
tent reuse as well as frequent contextual navigations within this “file space” happens.
Being in a participant -an html file-, you frequently need to locate her project proposals
-Word files-, or being in a project proposal, the associated papers -PDF files- are com-
monly accessed. This contextual navigation indicates the existence of a mental model.
This mental model is made explicit through an ontology. This ontology serves then to
configure seMouse. From then on, the mouse can be used to annotate & author file
documents.

462 J. Iturrioz, S.F. Anzuola, and O. Díaz

Fig. 4. Scenario 2: annotation. Some text is selected. Being a deliverable file, the menu displays
properties of this class. The text will become the value of the chosen property.

As an example consider the ontology depicted in figure 1. It includes four classes
which are characterized by a set of value-based properties (e.g. title, keyword, ab-
stract). Associations are defined between these classes (e.g. a project is supervisedBy a
participant).

However the tool is open to load any ontology stored in web ontology repositories6

using the window shown in the figure 2 . The user introduces the name of a required
class, and the system using the web services offered by the ontology repositories, shows
in a scrollable listbox all the ontologies that contains the input class. The user must
select the appropriate ontology clicking on the load button, and the ontology is uploaded
on the semantic desktop.

Once seMouse is configured with the ontology, interactions with the underlying on-
tology are achieved via mouse clicks. Specifically, pressing the middle button on the
mouse causes an interaction with the ontology manager (part of the seMouse installa-
tion). This interaction is context-schema sensitive, i.e. the button accomplishes distinct
operations depending on the place the pointer sits on. Next paragraphs introduce five
scenarios of the use of the semantic mouse.

Scenario 1: file classification (see figure 3). First of all, files need to be identified
as instances of any of the ontology’s classes. This is achieved by opening a file, and
pressing the middle button. A menu pops up for the user to indicate to which class this
file is a resource.

Scenario 2.1: property annotation (see figure 4). Annotation&authoring becomes the
counterpart of copy&paste in traditional desktops, with the difference that now these
operations are conducted along the ontology net. What is being exported(i.e. copy) is
no longer a string but a class property of the ontology.

If a file has already been categorized, the annotation process may begin. If some
text is selected, the mouse is used to export this text as part of the value of a property
as it is shown in figure 4. Of course, the set of properties will depend on the class of

6 schemaweb.info or swoogle.umbc.edu.

Turning the Mouse into a Semantic Device: The seMouse Experience 463

Fig. 5. Scenario 2: annotation. No text is selected. The menu shows associations of the file class.

the resource. In the example, title, keyword and abstract correspond to properties of the
deliverable class.

Scenario 2.2: association annotation (see figure 5). Once a file has been categorized,
if no text is selected, the middle button is used to establish associations with other files.
This situation is exemplified in figure 5. In this case, the CORDIS project template 7

for EEC projects has been used. This Word document has been classified as Project
class instance, and when the middle button is pressed, a menu pops up for the user to
link the current resource with other target resources. The menu is customized for the
current resource, that is, the associations are restricted to those available for the current
resource, whereas the target of all the associations are also limited to those files of
the appropriated class. In the example, if the user selects the delivers association, the
association can only be established with Deliverable files, since this is the destination
class of the delivers association. The upper part of the delivers menu shows all the
associations already annotated.

Scenario 3: authoring (see figure 6). Associations being set during annotation can now
be exploited. For instance, the project resource can import the title of its associated
deliverable resources. In the example, the article “Authoring and Annotation of Web
Pages in CREAM” appears as a deliverable of the current file. By selecting this article,
the menu is extended right wise to show up its properties. The user can select one of
these properties, and its value is inserted at the cursor place.

Scenario 4: semantic navigation (see figures 7 and 8). File location in current desktops
frequently implies folder digging. By contrast, semantic navigation strives to exploit
the associative behavior of the human memory. A resource can be located from the
resources it is related to. That is, the ontology provides the context to facilitate resource
location.

7 http://dbs.cordis.lu/cordis-cgi/autoftp?FTP=/documents_r5/natdir0000035/
s_2064005_20050316_104351_2064en.wd9.doc&ORFN=2064en.wd9.doc

464 J. Iturrioz, S.F. Anzuola, and O. Díaz

Fig. 6. Scenario 3: authoring. The title of a deliverable is imported into a project resource.

Once a file has been selected, semantically-related files can be located by pressing
the middle button, regardless of the folders where these files are physically located,
providing a resource-centric navigation. This facilitates location of neighbor resources,
but it may be cumbersome whenever browsing is required. In this case, a graph-based
RDF visualizer can be a better option (see [5] for an overview of RDF visualizers).

In this work, the Welkin8 editor has been extended for our purposes. Figure 8 de-
picts the graph for our sample problem. Some of the nodes stand for resources (i.e.
documents). Welkin has been extended so that clicking on one of these nodes makes
the corresponding resource to be edited. In this way, Welkin becomes a “resource
explorer”.

If the user does not want to use external applications, another available way to nav-
igate through the associations of the resource is shown in the figure 7. The user clicks
the middle button on a resource, and selecting one of its associations, all the resources
related with chosen association are displayed in a search window.

Scenario 5: ontology editing. Back to the desktop, the ontology can be edited by press-
ing the middle button of the mouse with no file selected. In this case, the associated
action calls an ontology editor like Protégé [8].

Nevertheless, some authors argue that current tools for ontology creation are too
difficult for ordinary users [15, 14]. The authors empirically found that “the effort to
select a class before typing in an annotation discouraged use of the tool” (Protégé in
this case)”. This observation is pertinent in the context of this work as we care for
usability.

So far, seMouse is a tool for authoring and annotation, and we take the ontology
for granted. However, the semantic desktop should provide for seamless ontology cre-
ation as well. In [15] the authors discuss an extreme approach to authoring whereby
users immediately created metadata without defining the ontology first: “it is our belief

8 http://simile.mit.edu/welkin/index.html

Turning the Mouse into a Semantic Device: The seMouse Experience 465

Fig. 7. Scenario 4: semantic navigation. The user can navigate along the associations: from a
project resource to its deliverables.

that ontologies can be created later in a bottom-up fashion, as the by-product of cre-
ating and using data, rather than a straightjacket that inhibits the evolution of domain
vocabularies”.

We plan to extend seMouse for ontology creation. Rather than creating classes and
properties out of the blue, seMouse will facilitate dynamic definition of classes and
properties, as resources are being annotated and investigate on how much meta-data
can be automatically inferred from the type and context of the resource.

4 Evaluating seMouse Usability

We adopt ISO’s broad definition of usability [1] as consisting of three distinct aspects:

– Effectiveness, which is the accuracy and completeness with which users achieve
certain goals. Indicators of effectiveness include quality of solution and error rates.
In this study, we use quality of solution as the primary indicator of effectiveness,
i.e. a measure of the outcome of the user’s interaction with the system.

– Efficiency, which is the relation between (1) the accuracy and completeness with
which users achieve certain goals and (2) the resources expended in achieving
them. Indicators of efficiency include task completion time and learning time. In
this study, we use task completion time as the primary indicator of efficiency.

– Satisfaction, which is the users’ comfort with and positive attitudes toward the use
of the system. Users’ satisfaction can be measured by attitude rating scales such as
SUMI [10]. In this study, we use preference as the primary indicator of satisfaction.

Subjects. The experiment was conducted among 6 PhD students. They have a good
background on computing but they have never been exposed to semantic issues. Hence,
a ten-minute talk was given introducing the purpose and functionality of seMouse.

Given material. Two documents were prepared. First, a UML diagram of the figure 1
describing the ontology and second, a document describing the set of 16 files of distinct

466 J. Iturrioz, S.F. Anzuola, and O. Díaz

Fig. 8. Graphical representation of our sample domain using Welkin

types (PDF, DOC, PPT and HTML) and of different semantic concepts (Projects, De-
liverables and Participants). Table 2 indicates for each file its class and its associations
corresponding to a fictitious project. Students were familiar with the UML notation so
they quickly caught the main classes and associations of the ontology.

Tasks. In the experiment each subject has to complete the task of creating a knowledge
folder. This includes:

1. file classification. Each file should be classified according to its class (scenario 1).
The 16 files correspond to 2 projects, 10 deliverables, and 4 participants.

2. annotation. The key property of each resource (i.e. title, fullname, etc) is annotated
and the associations between the resources are now established (scenario 2).

3. authoring. Once a project document is open, take advantage of the relationships to
fill in the tables of participants and deliverables as shown in scenario 3.

4.1 Results

Effectiveness. All the students complete their tasks without any additional help. This
makes us think that the GUI is intuitive enough. It should be noted that the number of
resources to be annotated, sixteen, was rather small, although there are not yet experi-
ences on the average size of resources handled by a layman on his daily tasks. If the
number of resources is too large, the solution is not within the scope of desktop tooling
but content management frameworks. Nevertheless, the notion of knowledge folder also
helps to split the resource bulk into meaningful clusters so that seMouse does not have
to cope with too numerous resources.

Efficiency. The classification and “key attribute” annotation took on average, 30”. On
the other hand, the students spent 10” on average to establish an association between

Turning the Mouse into a Semantic Device: The seMouse Experience 467

Table 2. Resources and their associations to be established by the participants during the test

Key attribute File type Class Relation

1 Semantic Web .doc Project delivers:[3][4][5][6]
[7][8][9][10]
formedBy:[13][14][15]

2 Personal Information Management .doc Project delivers:[3][4][5][6]
[11][12]
formedBy:[13][14][16]

3 Authoring and Annotation of Web Pages in CREAM .pdf Deliverable fundingBy:[1][2]
4 Incremental Formalization of Document Annotations .pdf Deliverable fundingBy:[1][2]
5 Trends in Database Development: XML, .NET, WinFS .ppt Deliverable fundingBy:[1][2]
6 Semantic Annotation of Web Services (SAWS) .doc Deliverable fundingBy:[1][2]
7 Semantic (Web) Technology in Action: Ontology Driven

Information Systems for Search, Integration and Analysis
.doc Deliverable fundingBy:[1]

8 OWL: An Ontology Language for the Semantic Web .ppt Deliverable fundingBy:[1]
9 The Semantic Desktop: an architecture to leverage docu-

ment processing with metadata
.pdf Deliverable fundingBy:[1]

10 Towards the Self Annotating Web .pdf Deliverable fundingBy:[1]
11 Mining the Semantic Web .doc Deliverable fundingBy:[2]
12 Semantic Word Processing for Content Authors .pdf Deliverable fundingBy:[2]
13 Steffen Staab .html Participant participatesIn:[1][2]
14 Siegfried Handschuh .html Participant participatesIn:[1][2]
15 Yolanda Gil .html Participant participatesIn:[1]
16 Tim Berners-Lee .html Participant participatesIn: [2]

Table 3. Questionnaire to assess seMouse usability

two resources. The last task, authoring, i.e. obtaining the participants’ name and deliv-
erables’ title took on average, 15” per resource.

Satisfaction. To measure this property a questionnaire was provided to the subjects.
Table 3 summarizes the result of the test along the Likert scale: Strongly agree (5),
Agree (4), Neutral (3), Disagree (2), Strongly disagree (1). All the students agree on the
usefulness of semantic annotation for improving location and navigation in the resource

468 J. Iturrioz, S.F. Anzuola, and O. Díaz

space. As for seMouse, questions 3 and 4 show that the students were neutral about its
GUI. More interesting is the deviations on the opinion about overloading the mouse
with semantic operations: 2 strongly agree, 2 agree and 2 disagree. Although they all
appreciate the format-independence provided by seMouse, some of them were not ac-
customed to use the middle button that they found counter-intuitive. This situation can
however improve as the users get more practice on using this gadget. Finally, classifi-
cation and annotation was found intuitive to be achieved through seMouse. Association
establishment was found more complicated.

5 The seMouse Architecture

The DOGMA initiative [11] is promoting a formal-ontology engineering framework
that basically consists of a three-layer architecture, namely, the layer of the heteroge-
neous data sources, the ontology layer, and the consumers’ layer. Mappings between
these layers are established with the help of wrappers that lift these data sources onto
a common ontology model and of integration modules (mediators in the dynamic case)
that reconcile the varying semantics of the different data sources.

Basically, we follow this architecture where both sources and consumers are re-
stricted to be resource handlers (either readers or editors); the ontology model is OWL;
and the flow between resource handlers and the ontology is achieved through the mouse.
The issue of semantic heterogeneity is not addressed in this work.

The seMouse architecture comprises three components (see figure 9), namely, the
OntologyManager component, which is realized using Joseki 9, the SemanticDesk-
top component, which is supported as a specialization of WindowsXP, and the Re-
sourceHandler whose interfaces are supported by editors or readers of documents (see
figure 9).

The IOntologyManager interface comprises methods to add/remove/update OWL
triples as well as to query and check the existence of a given resource. All these methods
find their realizations in the Joseki implementation where OWL triples are stored in the
Jena DBMS10.

The resourceHandler component holds two interfaces, IReader and IEditor, which
permit to extract or paste data from/to a file, respectively. Readers such as Acrobat
Reader only support IReader, whereas editors such as Word support both IReader and
IEditor. Implementation wise, these interfaces are supported through the WndProc func-
tion of Windows. Whenever anything happens to a window, the operating system will
call this function informing what has occurred. The message parameter contains the
message sent. The resource handler can then trap any message. In this case, however,
only two messages need to be caught: copy and paste.

The ISemanticDesktop interface describes those operations that mediate between
the resource handlers and the ontology manager. Its functionality resembles a kind of
clipboard, exporting and importing metadata among files (operations getText() and set-
Text()). Interactions with the semantic desktop are accomplished by pressing the middle
button of the mouse (e.g. the sendMessage(WM_MBUTTONDOWN) operation).

9 http://www.joseki.org
10 http://www.hpl.hp.com/semweb/jena.htm

Turning the Mouse into a Semantic Device: The seMouse Experience 469

Fig. 9. The seMouse architecture

Figure 10 depicts the interaction diagram among the seMouse components. The
semanticDesktop component has been unfolded to show its implementation classes,
namely, messageDispatcher, hook11, clipboard and the semanticDesktop class itself.

Figure 10 considers an annotation scenario. A file is opened and some text is se-
lected. By pressing the middle button of the mouse, a two step annotation process is
initiated. First (1.1), the mouse device sends a middle-button click message to the mes-
sageDispatcher. When the dispatcher detects that there is a hook associated to this
message, the hook is called (1.2); finally (1.3), the hook invokes the semanticDesktop
which causes a menu to be popped up. In the second interaction (2.1), the user, through
the mouse device, selects the annotation operation to apply to the selected text (2.2).
The semanticDesktop sends a copy message to the resourceHandler through the mes-
sageDispatcher, and (2.3) the application copies the selected text into the clipboard.
Finally (2.4), the text is retrieved by the semanticDesktop from the clipboard which, in
turn, builds up the OWL triple.

11 A Window hook is “a point in the system message-handling mechanism where an application
can install a subroutine to monitor the message traffic in the system and process certain types of
messages before they reach the target window procedure" [16]. So, hooks are basically event
handlers that catch the message sent to the window. Through hooks, these messages can be
modified or even discarded before they even reach the target window. In this implementation
we caught just one message: WM_MBUTTONDOWN which is sent if the middle button on the
mouse has been pressed. This has been attained using the Cool Mouse utility [7].

470 J. Iturrioz, S.F. Anzuola, and O. Díaz

Fig. 10. Interaction diagram among the seMouse components. The annotation use case.

6 Conclusions

This work strives to lower the adoption barrier of the semantic desktop by providing
seamless tooling. To this end, the mouse is proposed as the interactive device. In this
way, traditional desktop operations are now re-interpreted and framed by the ontology:
copy&paste becomes annotation&authoring, and folder digging becomes property tra-
versal. Moreover, through the mouse, the user can classify, annotate, author, and locate
a file as a resource of the underlying ontology. Being editor-independent, the mouse
accounts for portability and maintainability to face the myriad of formats and editors
which characterizes current desktops.

Similar to other areas of computing, a balance is needed between generality (e.g.
format-independence, editor-independence, etc), and functionality (i.e. the semantic
tooling available). seMouse illustrates a semantic-lite approach where a compact set
of functions are available to no matter which editor within Windows.

Acknowledgments. This work is partially supported by the Spanish Science and Tech-
nology Ministry (MCYT) under contract TIC2002-01442. Sergio F. Anzuola enjoys a
doctoral grant from the University of the Basque Country.

References

1. ISO 9241-11. Ergonomic requirements for office work with visual displays terminals(VDTs)
- Part 11: Guidance on usability. Technical report, ISO, 1998.

2. Adam Cheyer, Jack Park, and Richard Giuli. IRIS: Integrate. Relate. Infer. Share. In 1st
Workshop on The Semantic Desktop, November 2005.

3. Stefan Decker and Martin Frank. The Social Semantic Desktop. Technical report, Digital
Enterprise Research Institute (DERI), May 2004.

Turning the Mouse into a Semantic Device: The seMouse Experience 471

4. Benja Fallenstei. Fentwine: A navigational rdf browser and editor. In Proceedings of 1st
Workshop on Friend of a Friend, Social Networking and the Semantic Web, August 2004.

5. John Gilbert and Mark H. Butler. Review of existing tools for working with schemas, meta-
data, and thesauri. Technical report, Hewlett Packard Laboratories, October 2003.

6. Siegfried Handschuh and Steffen Staab. Authoring and Annotation of Web Pages in
CREAM. In The Eleventh International World Wide Web Conference WWW2002, pages
462–473, 2002.

7. Shelltoys Inc. Cool Mouse - Mouse Wheel and Middle Mouse Button Utility, 2004.
http://www.shelltoys.com/mouse_software/index.html.

8. Stanford Medical Informatics. The Protégé; ontology editor and knowledge acquisition sys-
tem, 2004. http://protege.stanford.edu/.

9. Jon Iturrioz, Oscar Díaz, Sergio F. Anzuola, and Iker Azpeitia. The Semantic Desktop: an
architecture to leverage document processing with metadata. In Proceedings of the VLDB
Workshop on Multimedia and Data Document Engineering (MDDE’03), September 2003.

10. Kirakowski J. and Corbett M. SUMI: The software usability measurement inventory. British
Journal of Educational Technology, 24(3):210–212, 1993.

11. Mustafa Jarrar and Robert Meersman. Formal Ontology Engineering in the DOGMA Ap-
proach. In On the Move to Meaningful Internet Systems, 2002 - DOA/CoopIS/ODBASE 2002
Confederated International Conferences DOA, CoopIS and ODBASE 2002, pages 1238–
1254. Springer-Verlag, 2002.

12. Aditya Kalyanpur, James Hendler, Bijan Parsia, and Jennifer Golbeck. SMORE - Semantic
Markup, Ontology, and RDF Editor. http://www.mindswap.org/papers/SMORE.pdf, 2004.

13. David R. Karger and Dennis Quan. Haystack: A User Interface for Creating, Browsing,
and Organizing Arbitrary Semistructured Information. In CHI 2004 Conference on Human
Factors in Computing Systems, April 2004.

14. Brian Kettler, James Starz, William Miller, and Peter Haglich. A Template-based
Markup Tool for Semantic Web Content. In 4th International Semantic Web Conference
2005,ISWC2005, November 2005.

15. Robert MacGregor, Sameer Maggon, and Baoshi Yan. MetaDesk: A Semantic Web Desktop
Manager. In Knowledge Markup and Semantic Annotation Workshop, ISWC 2004, Novem-
ber 2004.

16. Steve McMahon. Win32 Hooks in VB - The vbAccelerator Hook Library,
2003. http://www.vbaccelerator.com/home/VB/Code/Libraries/Hooks/vbAccelerator_
Hook_Library/article.asp.

17. The Gnowsis Project. Leo sauermann, 2005. http://www.gnowsis.com.
18. The Haystack Project. Haystack team, 2005. http:/haystack.lcs.mit.edu.
19. Marcelo Tallis. Semantic Word Processing for Content Authors. In Workshop Notes of

Knowledge Markup and Semantic Annotation Workshop (SEMANNOT 2003). Second Inter-
national Conference on Knowledge Capture (K-CAP 2003), October 2003.

Managing Information Quality in e-Science Using
Semantic Web Technology

Alun Preece1, Binling Jin1, Edoardo Pignotti1, Paolo Missier2, Suzanne Embury2,
David Stead3, and Al Brown3

1 University of Aberdeen, Computing Science, Aberdeen, UK
2 University of Manchester, School of Computer Science, Manchester, UK

3 University of Aberdeen, Molecular and Cell Biology, Aberdeen, UK
info@qurator.org

http://www.qurator.org

Abstract. We outline a framework for managing information quality (IQ) in e-
Science, using ontologies, semantic annotation of resources, and data bindings.
Scientists define the quality characteristics that are of importance in their partic-
ular domain by extending an OWL DL IQ ontology, which classifies and organ-
ises these domain-specific quality characteristics within an overall quality man-
agement framework. RDF is used to annotate data resources, with reference to
IQ indicators defined in the ontology. Data bindings — again defined in RDF
— are used to represent mappings between data elements (e.g. defined in XML
Schemas) and the IQ ontology. As a practical illustration of our approach, we
present a case study from the domain of proteomics.

1 Introduction

Information is viewed as a fundamental resource in the discovery of new scientific
knowledge. Scientists expect to make use of information produced by other labs and
projects in validating and interpreting their own results. A key element of e-Science
is the development of a stable environment for the conduct of information-intensive
forms of science. Problems arise due to variations in the quality of the information
being shared [3]. Data sets that are incomplete, inconsistent, or inaccurate can still be
useful when scientists are aware of these deficiencies.

The Qurator project1[6] is developing techniques for managing information qual-
ity (IQ) using Semantic Web technology. In contrast to previous IQ research, which
has tended to focus on the identification of generic, domain-independent quality char-
acteristics (such as accuracy, currency and completeness) [13], we allow scientists to
define the quality characteristics that are of importance in their particular domain. For
example, one group of scientists may record “accuracy” in terms of some calculated
experimental error, while others might define it as a function of the type of equipment
that captured the data.

In order to support this form of domain-specific IQ, we identify three key require-
ments, each of which can be met using Semantic Web technologies:

1 Funded by the EPSRC Programme Fundamental Computer Science for e-Science: GR/S67593
& GR/S67609 — Describing the Quality of Curated e-Science Information Resources.

Y. Sure and J. Domingue (Eds.): ESWC 2006, LNCS 4011, pp. 472–486, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Managing Information Quality in e-Science Using Semantic Web Technology 473

– Scientists must be able to use the domain-specific IQ descriptions, by giving them
precise, meaningful definitions, and creating executable metrics based on them.
They must also be able to reuse definitions created by others, by browsing and
querying an organised collection of definitions. To meet this requirement, we pro-
pose an extensible IQ ontology containing basic domain-independent IQ terms,
upon which definitions of domain-specific concepts can be built. By defining the
ontology in OWL DL, new descriptors can be classified automatically within the
overall IQ framework, allowing user-scientists to locate useful definitions.

– IQ descriptions for specific resources need to be computed and associated with
those resources. IQ descriptions of a resource are essentially quality metadata, and
can be used to derive higher-order IQ metrics or rankings over sets of resources.
As metadata about resources, IQ descriptions can be captured as semantic annota-
tions expressed in RDF and related to concepts in the IQ ontology. Annotations are
generated by data checking services, sometimes using secondary data sources (e.g.
reference datasets), and it is necessary to retain provenance information about how
the annotations themselves were derived. This can be done by attaching provenance
information to the RDF annotation instances.

– Resources include data and services; both of these kinds of resource are modelled
by concepts in the IQ ontology, so that the ontology can express which kinds of
IQ descriptor make sense for which kinds of resource. The relationship between
actual types of resource (for example a particular data model expressed as an XML
Schema, or as a relational database schema) and the abstract models of those re-
sources in the IQ ontology needs to be stated explicitly in order to determine, for a
given resource, which checking services are applicable. We refer to these relation-
ships — between the “ontology space” and the “data/service space” — as bindings,
which can be captured using an RDF schema.

We claim several novel aspects here. To the best of our knowledge, our IQ ontol-
ogy is the first systematic attempt to capture domain-specific and domain-independent
quality descriptors in a semantic model. Moreover, we argue that the use of OWL DL
supports the necessary extensibility of the core ontology with domain-specific quality
definitions. The annotation and binding RDF schemas are both intended to be generic,
reusable components; we were unable to find any previous solution that met our re-
quirements for these.

To provide a concrete illustration of how the elements of our framework can be
used in practice, Section 2 introduces a case study in the domain of biology, specifically
proteomics. Section 3 gives an overview of the Qurator framework, and the following
sections present each of the three components in detail: Section 4 introduces the IQ
ontolology, Section 5 describes the binding schema, and Section 6 presents the annota-
tion model. In Section 7 we show how the various components have been implemented
within a desktop tool used by biologists to manage their data and metadata.

2 Case Study: Protein Identification

Proteomics is the study of the set of proteins that are expressed under particular con-
ditions within organisms, tissues or cells. Proteins play a vital role in most, if not all,

474 A. Preece et al.

cellular activities — understanding their regulation and function is therefore of fun-
damental importance to biologists. One experimental approach that is widely used to
gain information about the large-scale expression of proteins involves extracting the
soluble proteins from a biological sample, then separating them by a technique known
as 2-dimensional gel electrophoresis (2DE). This results in a characteristic distribu-
tion of protein spots within a rectangular gel (Figure 1). Many hundreds of proteins
can be separated from a single sample in this way and the relative amounts of each
determined.

Fig. 1. Sample gel produced by the 2DE technique; the dark areas are protein spots

The identification of proteins in such experiments is routinely obtained by peptide
mass fingerprinting (PMF). In this technique, the protein within the gel spot is first di-
gested with an enzyme that cleaves the protein sequence at certain predictable sites.
The fragments of protein that result (called peptides) are extracted and their masses are
measured in a mass spectrometer. The experimental list of peptide masses (the “finger-
print”) is then compared against theoretical peptide mass lists, derived by simulating
the process of digestion on sequences extracted from a protein database (e.g. NCBInr2).
Since, for various reasons, it is unlikely that an exact match will be found, the protein
identification search engines (e.g. Mascot3), that perform this task typically return a list
of potential protein matches, ranked in order of search score. Different search engines
calculate these scores in different ways, so their results are not directly comparable.
It may therefore be difficult for the experimenter and subsequent users of the data to
decide whether a particular protein identification is acceptable or not.

There is a debate in progress that seeks to define what information is required when
reporting the results of protein identifications by mass spectrometry. For peptide mass
fingerprinting, it has been suggested that this should include the number of peptides
matched to the identified protein, the number that were not matched in the mass spec-
trum, and the sequence coverage observed [1].

It would be useful for biologists seeking to interpret the results of proteomic ex-
periments to have a tool that can apply certain quality preferences to a list of protein

2 ftp://ftp.ncbi.nlm.nih.gov/blast/db/blastdb.html
3 http://www.matrixscience.com/

Managing Information Quality in e-Science Using Semantic Web Technology 475

matches, for the purposes of accepting or questioning a protein identification result.
Such functionality would be particularly useful to scientists wishing to compare pro-
tein identification results generated by other labs with those produced within their own.
There are two readily accessible indicators that can be used to rank protein identification
data and which are independent of the particular search engine used:

– Hit ratio: the number of peptide masses matched, divided by the number of peptide
masses submitted to the search. This indicator effectively combines the number of
matched peptides and the number of unmatched peptides mentioned above. Ide-
ally, most of the peaks in the spectrum should be accountable for by the protein
identified, but because of the presence of other components and unpredicted modi-
fications to the matched peptides the hit ratio is unlikely to reach unity.

– Mass coverage: the number of amino acids contained within the set of matched
peptides, expressed as a fraction of the total number of amino acids making up the
sequence of the identified protein and multiplied by the total mass (in kDa) of the
protein. Mass coverage is considered superior to the sequence coverage, because
peptide mass fingerprints of equal quality give low (percent) sequence coverage for
large proteins and high (percent) coverage for small proteins.

These two indicators can be combined in a logical expression that allows us to
classify protein matches as acceptable or unacceptable. A software tool could then allow
the user-scientist to set threshold values (that is, acceptance criteria) for each metric
independently and to see the effect in real time of altering any or all of the threshold
values on the acceptability of the data set. This is an example of the kind of quality-
aware data analysis that Qurator aims to support.

3 Overview of the Qurator IQ Framework

Before we present the details of the three main components of the Qurator framework
— IQ ontology, bindings, annotations — this section gives an overview of how these
elements fit together. Figure 2 sets out the key relationships between the various indi-
viduals and classes. At the top we have the elements of the IQ ontology, which includes
definitions of domain-independent IQ concepts such as Accuracy4 and also classes of
domain-specific indicator such as Hit Ratio and Mass Coverage from the proteomics do-
main. The IQ ontology also models the various kinds of abstract data entities to which
we might wish to apply IQ indicators, such as a Protein Hit obtained from a PMF data-
base search. The ontology then captures the fact that the Hit Ratio indicator applies to
a Protein Hit. Finally, the ontology defines the various kinds of data checking function
available, as described in detail in Section 4.

At the bottom of Figure 2 we have instances of specific resources (r), for example
a particular protein hit derived from a database search. These are often represented
in XML; in the proteomics case the PEDRo data model [12] is widely used for this
purpose, by means of the PEDRo XML Schema5.

4 Throughout this paper, sans-serif font is used for ontology and schema terms from the Qurator
framework.

5 http://pedro.man.ac.uk/files/PEDRoSchema.xsd

476 A. Preece et al.

r

b a

C
c

IQ ontology

annotations

bindings

c instance of IQ concept

b instance of data binding

a instance of IQ annotation

r instance of resource

C class of IQ concept

Fig. 2. Overview of the elements of the Qurator IQ framework

Bindings and annotations both relate resources to elements of the IQ ontology. An
instance of a binding (b) relates a resource instance (r) to the corresponding class in the
ontology (C); e.g. a specific PEDRo protein hit list to the model class Protein Hit. One
of the main uses of bindings is to determine which parts of the IQ conceptualisation
are relevant to a particular concrete data model. So, for example, the binding from
a PEDRo protein hit structure to the ontology Protein Hit class also lets us identify
relevant indicators (such as Hit Ratio) and associated checking functions. For details,
see Section 5.

An instance of an annotation (a) relates a specific resource instance (r) to the in-
stance of a quality concept (c). For example, an instance of Hit Ratio with a specific
value (e.g. 0.45) might be associated with an individual concrete PEDRo protein hit
via an annotation. The IQ instance is said to annotate the associated resource. Further
details of annotations are given in Section 6. The difference between bindings and an-
notations is that the former relate data schema elements (or service types) to the corre-
sponding ontology classes, while the latter relate individual items of data to individual
pieces of quality evidence. In other words, bindings define which IQ concepts relate
to which kinds of data or service, while annotations associate individual computed IQ
descriptors with specific pieces of data.

4 A Semantic Model for Information Quality

As explained in Section 1, a scientist’s goal with respect to quality is to determine the
suitability of a data set for a given purpose. In our case study, scientists want to as-
sess whether a set of protein identification (PI) experiment results can be safely used as
input to a new in silico experiment. The scientists’ exercise is one of knowledge elic-
itation: the tacit knowledge regarding quality properties of interest needs to be made
explicit and formalized. As we will see, this is also a novel opportunity for scientists to
test hypotheses regarding their understanding of quality within a domain. One such hy-
pothesis, described in the next section, is that a small number of measurable quantities

Managing Information Quality in e-Science Using Semantic Web Technology 477

associated with the output of protein identification algorithms can be used to discrimi-
nate effectively between acceptable and unacceptable matches.

We now present a semantic model that supports such a knowledge elicitation process,
by providing a vocabulary and semantic structure for expressing information quality.
The model allows scientists to share and reuse their understanding of quality, as well as
to perform semi-automated quality assessments on data sets of interest to them.

4.1 Basic Ontology Structure

A number of different existing quality properties can potentially describe suitability,
such as Currency, Completeness or Accuracy, definitions of which have been proposed
in the existing information quality literature (e.g. [3, 8, 13]). Some of these definitions
are given in abstract terms: accuracy for example is defined as the “distance” between a
value v and a second value v′ that is considered correct, with further distinctions being
made based on how the distance is measured [10]. Our model is based on the assump-
tion that scientists should not be concerned with such definitions, and that they should
instead be able to state their quality requirements in operational terms, by describing
decision procedures that determine the suitability of the data.

Nevertheless, our goals of knowledge sharing and reuse mandate the use of a com-
mon vocabulary for quality. Our approach is therefore to let users express operational
properties of quality in their own terms, while at the same time providing a semantic
structure that includes suitable axiomatizations of the definitions found in the litera-
ture. We argue, and demonstrate on the practical example presented in this section, that
the knowledge representation framework can then be used to establish a relationship
between user-provided operational definitions and the axiomatizations.

In practice, let us suppose that our scientists are interested in the “credibility” of
published PI experimental results, defined in terms of likelihood of false positives —
that is, that a claim of a given protein being present in a sample is false. The biol-
ogists involved in this research are proposing decision procedures for computing the
likelihood of false positives, based on a small set of measurable quantities, namely the
Hit Ratio and the Mass Coverage, which are combined using a logical expression to
produce an overall quality score.

In general, the task of defining decision procedures amounts to identifying a col-
lection of measurable indicators, and demonstrating, usually in an experimental way,
that they indeed allow a distinction to be made between acceptable and unacceptable
data. In some cases, decision models can be semi-automatically generated from sets
of examples, with the help of machine learning techniques [14]. In other cases, ad hoc
methods have been developed for statistical quality control of experimental data [5, 7].

In the ontology, we model these concepts by introducing Quality Assertions (QA for
short); these are decision procedures that are based upon some Quality Evidence (QE),
which consists either of measurable attributes called Quality Indicators, or recursively,
of functions of those indicators, Quality Metrics. Three main sources of indicators are
common in practice:

– Provenance metadata, which provides a description of the processes that were in-
volved in producing the data [4, 15].

478 A. Preece et al.

– Quality functions that explicitly measure some quality property, for instance the
completeness of a data set relative to a second, reference data set; these functions
are typically available from toolkits for data quality assessment with reference to
specific issues [2].

– Metadata that is produced as part of the data processing; for example, the Hit Ratio
and Mass Coverage indicators are defined as the output of the matching algorithm
used for protein identification.

Focusing primarily on the second and third category, we model the indicator-bearing
environment as a collection of Data Analysis Tools that may incorporate multiple Data
Test Functions, and which are applied to some Data Entity. Indicators are either pa-
rameters to or output of these analysis tools. Thus, Hit Ratio and Mass Coverage are
part of the output of a test function called PIMatch, used in the PMFMatchAnalysisTool.
To continue with our example, a quality metric called PMF Match Ranking associates
a “credibility score” to each data in the set, using a function of our two indicators.
This score can be used either to classify data as acceptable/non acceptable according
to a user-defined threshold, or to rank the data set. Here we will assume that our deci-
sion procedure is a classification function called PI-Topk, that provides a simple binary
classification of the data set according to the credibility score and to a user-defined
threshold.

A QA is applied to collections of data items, which are individuals of the Data Entity
class, using the values for the indicators associated to those items. Our example of Data
Entity is a protein hit generated by the mass spectrometer, as explained in Section 2,
which is used as input to our PMFMatchAnalysisTool.

The following is a summary of the classes and relationships introduced above,using
informal notation for the sake of readability; user-defined axioms for the proteomics
case study are in bold:6

1. Quality-Assertion is based on Quality-Evidence;
2. Quality-Indicator is-a Quality-Evidence;
3. Quality-Metric is-a Quality-Evidence;
4. Quality-Metric is based on Quality-Indicator;
5. Quality-Evidence is output of Data-test-function;
6. Data-analysis-tool is based on Data-test-function;
7. MassCoverage is-a Quality-Evidence;
8. HitRatio is-a Quality-Evidence;
9. PIMatch is-a Data-test-function;

10. PMFMatchAnalysisTool is-a Data-analysis-tool;
11. PMFMatchAnalysisTool is based on PIMatch;
12. PIMatch requires input ProteinHit;
13. HitRatio is output of PIMatch;
14. MassCoverage is output of PIMatch;
15. PMF-Match-Ranking is a Quality-Metric;
16. PMF-Match-Ranking is based on MassCoverage;
17. PMF-Match-Ranking is based on HitRatio;
18. PI-Topk is based on PMF-Match-Ranking.

6 The full IQ ontology is available from the “Downloads” section at http://www.qurator.org.

Managing Information Quality in e-Science Using Semantic Web Technology 479

4.2 Classification of User-Defined Quality Properties Through Reasoning

As mentioned, one goal of this model is to provide a shared collection for top-level,
abstract information quality concepts like “accuracy”, and to enforce their consistent
use. Specifically, we claim that it should be possible to let scientists add only concepts
that are familiar to them to the ontology, like those described earlier, while at the same
time providing useful entailments that enrich the shared top-level concepts.

In this section, we report on early experiments that support this claim. The main idea
is to encourage users to annotate their domain-specific concepts with simple and con-
crete quality features, to the extent that they are familiar with them, and to use reasoning
over OWL DL to entail additional quality properties, or to determine inconsistencies.

Building on the structure described so far, we begin by adding a top-level Qual-
ity Property class, with a number of subclasses for Consistency, Timeliness, Currency,
and more. Our collection for these concepts currently includes about 20 classes, or-
ganized into a three-level hierarchy. Also, we add a root class for Quality Characteri-
zation, whose subclasses include Confidence-QC, Reputation-QC, Specificity-QC, and
more. These are examples of the “concrete” properties that scientists can more easily
associate to specific indicators, or indicator-bearing functions or tools. Thus, we expect
users to be able to assert that the PIMatch function has a Confidence-QC, because its
purpose, from the quality perspective, is to provide information on the confidence in
the experiment result. Note that the ontology model allows a single piece of evidence,
or function, to have multiple quality characterizations. The only user assertion for the
example is:

PIMatchReport has quality characterization Confidence-QC.
We then introduce OWL DL axioms that describe classes of evidence that have the
same quality characterization; given that users may quality-characterize either indica-
tors, metrics, functions, or tools, a sample definition is as follows:

Confidence evidence includes all and only the quality metrics or indicators
whose quality characterization includes Confidence-QC, union all indicators
that are output of functions, or of tools that use functions, whose quality char-
acterization includes Confidence-QC.

Here is the OWL DL definition for this class:

ConfidenceEvidence ≡
(QtyMetric (∃ metric-based-on-indicator ConfidenceEvidence) �
(QtyIndicator ∃ is-output-of (∃hasQC ConfidenceQC)) �
(QtyIndicator ∃ is-parameter-of (∃hasQC ConfidenceQC)) �
(QtyIndicator ∃ hasQC ConfidenceQC)

Using the user-defined assertion above, the definitions in the previous section, and this
class definition, an OWL DL reasoner7 entails the following:

PIMatchReport 	 ConfidenceEvidence,
HitRatio 	 ConfidenceEvidence,
MassCoverage 	 ConfidenceEvidence,

7 RacerPro has been used for these experiments, http://www.racer-systems.com/

480 A. Preece et al.

PMFMatchRanking 	 ConfidenceEvidence.
We now define the Accuracy class in terms of the underlying quality characterization,
expressing the following:

Any quality property that is based on a decision procedure that makes use of
Confidence or Specificity evidence, can be classfied as Accuracy.

Formally:

Accuracy ≡
(∃ QtyProperty-from-QtyPreference (∃ pref-based-on-evidence
(ConfidenceEvidence� SpecificityEvidence))

This last definition allows the ontology to be extended in a consistent way using stan-
dard reasoning. Firstly, given a user-defined but yet unclassified quality property, let us
call it PI-Acceptability, that is based on the PI-Topk procedure, the reasoner entails that
the property is a subclass of Accuracy. Conversely, users may classify PI-Acceptability
within the IQ top-level taxonomy; in this case, the reasoner verifies the consistency of
this classification.

The experiment shows that it is possible, using suitable DL assertions, to (i) pro-
vide axiomatic definitions of traditional quality properties, in terms of an underlying
quality characterization vocabulary, and (ii) to use those axioms to propagate, or test
the consistency of, user-defined and domain specific quality assertions. As explained in
the introduction, the motivation here is to facilitate the use and reuse of definitions in
the ontology: consistency checking supports extension of the ontology, and the classi-
fication of domain-specific descriptors under generic concepts (such as “accuracy”) is
intended to assist users in locating useful concepts.

5 Bindings

As we have shown, the IQ ontology includes semantic models of data resources and
the quality analysis services which can be applied to them. The actual data resources
have a native definition and presentations; quality test functions applicable on the data
might have multiple implementations in different programming languages. For exam-
ple, a ProteinHit8 XML element, defined in the PEDRo XML schema, may be an
input parameter of a HitRatioCalculator function, implemented as a Web service. We
designed a generic data model to capture the mapping relationships between data or ser-
vice resources and their semantic definition. The basic structure of the binding model
is presented in Figure 3. There are four core concepts in the Binding model:

Resource refers to any resource that can be located on the Web. We distinguish two
sub types of resource: DataResource and ServiceResource. The former refers to any
resource which stores information (e.g. an XML file or database table); the latter type
represents any service, application or procedure which performs action on a DataRe-
source (e.g. a Web service). We define three categories of DataResource:

8 Throughout the remainder of this paper, typewriter font is used for data elements from
XML schemas, and XML syntax fragments.

Managing Information Quality in e-Science Using Semantic Web Technology 481

SubClass

Relation

Key

URLLocator

FileLocatorDataCollectionResource

XMLData

ServiceResource

ServiceLocator

locatedBy*

WebService

Resource

DataResource ResourceLocator

locatedBy*

WebServiceRegistry

DataElementResource

isContainedIn

XMLElement

DataLocator

locatedBy*

DataEntityResource

DBLocator

Binding

hasSubject

:THING

hasObject

XMLSchemaEntity

Fig. 3. Overview of the Qurator binding model

– DataEntityResource represents elements defined in a data schema/structure, for ex-
ample the ProteinHit element defined in the PEDRo.xsd schema, or a column
defined in a DB table.

– DataElementResource represents a data element inside a collection, for example
an XML element specified by an XPath, or a database tuple.

– DataCollectionResource represents a collection of data elements, for example an
XML document, a database table, or a text file.

A Binding relates a Resource to a semantic concept in some ontology (for example, in
the IQ ontology from the previous section). This relationship is defined by two proper-
ties on the binding:

– hasSubject identifies the subject of the binding, which is always a locatable Re-
source (data or service).

– hasObject identifies the object of the binding, which can be any semantic concept in
any ontology (represented in our ontology diagram with the most general concept
:THING — for example, this could be any class in our IQ Ontology).

ResourceLocator identifies a global locator for a specific resource. Since the re-
source is categorised into DataResource and ServiceResource, the ResourceLocator
has two types: DataLocator and ServiceLocator. Due to various ways to access the data
resources, the data locator can have different types. For example, for a data document,
we can use a URL to retrieve it; while for a DB table, a DB connector API could be
used (such as JDBC). Similarly, ServiceLocator has different types; for example, the
locator of a quality annotation web service can be referred to a WSDL description and
the endpoint of the service is presented in this WSDL description.

Figure 4 shows an example binding between a data resource and an IQ ontology
class; here, the entity &q; refers to the Qurator IQ Ontology and the prefix b: identifies
terms from the binding model. The data resource #XMLSchemaEntity1 represents the

482 A. Preece et al.

<b:Binding rdf:about="#binding0">

 <b:hasSubject rdf:resource="#xmlSchemaEntity1"/>
 <b:hasObject rdf:resource="&q;ProteinHit"/>

</b:Binding>

<b:XMLSchemaEntity rdf:about="#xmlSchemaEntity1">
 <b:locatedBy>

 <b:URLLocator rdf:about="#urlLocator2>
 <b:hasURL>http://example.org/schema/PEDRo.xsd</b:hasURL>

 </b:URLLocator>

 </b:locatedBy>
 <b:hasEntityName>ProteinHit</b:hasEntityName>

</b:XMLSchemaEntity>

Fig. 4. An example data binding

entity ProteinHit defined in the PEDRo XML Schema, located by a URLLocator
instance. The instance #binding0 represents a binding between the ProteinHit data
entity and the concept ProteinHit in the IQ Ontology.

Bindings are bi-directional: the binding from resource to concept is used to identify
which IQ indicators and associated checking functions are applicable to a particular
concrete (e.g. XML) data model; the binding from concept to resource is used to locate
concrete data and service implementations (e.g. Web services) to run a data check.
Examples of this usage are given in Section 7. Bindings are defined as RDF resources
to allow metadata to be associated with the bindings themselves, such as provenance
information.

Our binding model was influenced by the XML-to-RDF mappings in WEESA [9].
The key difference, however, is that we are not aiming to map data from the XML “data
space” to the RDF “semantic space” or vice versa. In our framework, concrete data and
service instances are associated with corresponding ontological concepts by means of
the bindings, but there is no translation or transformation of one to the other.

6 Annotation Model

An important aspect of the Qurator approach is to share and reuse quality annotation
information on data resources among user-scientists. In order to achieve this we pro-
vide a data model which formalises annotation information with semantic support. The
structure of our annotation model is shown in Figure 5. The concepts shaded in the fig-
ure are defined externally to the annotation model: prefixes b and q identify the binding
model and the IQ ontology respectively.

The property hasAnnotation represents the relationship that a b:Resource is anno-
tated with quality information recorded in an AnnotationResult. AnnotationResult de-
fines a class of resource that records the output and related information from one run
of some quality annotation service. These annotation results are a group of instances
of one particular q:QtyEvidence class; the property referenceTo records the name of the
relevant class, and the property hasAnnotationElement records individual annotation
result elements, each of which contains an individual q:QtyEvidence instance.

Managing Information Quality in e-Science Using Semantic Web Technology 483

SubClass

Relation

Key

AnnotationResult

AnnotationElement

hasAnnotationElement*

q:QtyEvidence

referenceTo

b:DataResource

hasResourceRef hasQtyEvidence

b:Resource

hasAnnotation*

Fig. 5. Structure of Annotation Model

<a:AnnotationResult rdf:about="#hitRatio1">

 <a:referenceTo rdf:resource="&q;HitRatio" />
 <a:hasAnnotationElement rdf:resource="#aElement1" />
 <a:hasAnnotationElement rdf:resource="#aElement2" />
 …

</a:AnnotationResult>

(a) An AnnotationResult

<a:AnnotationElement rdf:about="#aElement1">

 <a:hasResourceRef rdf:resource="#proteinHit1" />
 <a:hasQtyEvidence>

 <q:HitRatio rdf:about="#qtyEvidence1">
 <q:hasValue> 0.45 </q:hasValue>

 </q:HitRatio>
 </a:hasQtyEvidence>

</a:AnnotationElement>

<b:XMLElement rdf:about="#proteinHit1">

 <b:isContainedIn rdf:about="#xmlData1" />
 <b:locatedBy>

 <b:XMLElementLocator>
 <b:hasXPath>/.../Spot[2]/PeakList[1]/ProteinHit[1]</b:hasXPath>

 </b:XMLElementLocator>
 </b:locatedBy>
</b:XMLElement>

(b) An AnnotationElement

<b:Binding>

 <b:hasSubject rdf:resource="#poteinHit1" />
 <b:hasObject rdf:resource="&q;ProteinHit" />

</b:Binding>

(c) A Binding to an XML element

Fig. 6. Examples of the annotation model in use

484 A. Preece et al.

An AnnotationElement relates one individual instance of q:QtyEvidence to one in-
dividual annotated resource, using the properties hasQtyEvidence and hasResourceRef
respectively. It is worth noting that the annotated data elements here are individual
ProteinHit XML elements, not a protein identification experiment as a whole.

Figure 6 shows an instance of Annotation which refers to the quality evidence class
q:HitRatio and has several annotation elements. Figure 6(b) shows one of the Anno-
tationElements, which indicates that the XML element identified by the XPath to DB

Search[1]/ProteinHit[1] is annotated by an instance of q:HitRatio with the
value 0.45.

Figure 6(c) shows a b:Binding which binds the annotated protein hit ProteinHit[1]
to the class ProteinHit in the IQ ontology. Although space prevents us from showing
this, the various annotated elements are all part of a b:DataCollectionResource, which
in practice would normally be located by a LSID.9

The main difference between our annotation model and that of other frameworks,
for example myGrid [11], is the way in which annotations are related to both ontology
concepts and data resources. The (abstract) conceptual space and the (concrete) data
space are kept separate, with annotations — like the bindings in Section 5 — associat-
ing elements in the two spaces. The main advantage of this approach is flexibility: an
annotation can be easily attached to any kind of resource, and easily associated with
any IQ ontology concept. We also support the attachment of provenance information to
instances of AnnotationResult, including the identify of the particular checking function
used to generate the annotations, and the data selections used as input. Details of this
provenance information are omitted for space reasons; however, we are exploring the
use of existing provenance architectures for capturing some of these data [4, 15].

7 Protein Identification IQ Service

The Pedro10 data entry tool is commonly used in proteomics — and several other
e-Science domains — to enter and manage XML-based data. To make our approach
convenient to user-scientists we have therefore embedded elements of the Qurator frame-
work in the Pedro desktop software. Figure 7 shows a screenshot of the augmented Pe-
dro tool. The top-left area of the screen is the XML document tree and the right-hand
panel is the data entry area. When the user starts-up the tool, they are prompted to select
the data model on which they will work, for example the PEDRo model for proteomics
data. Choice of the data model then drives the content of the top-left and right-hand
panels in the standard Pedro environment: users may enter and edit data, and export it
to various formats.

Our augmented version of Pedro introduces the lower-left panel, which contains a
tree view of the portions of the IQ ontology relevant to the loaded data model. These el-
ements are obtained by querying the ontology dynamically. For the PEDRo data model,
they include domain-specific elements such as ProteinHit and HitRatio as well as associ-
ated generic concepts such as ConfidenceEvidence. This panel allows users to discover

9 http://lsid.sourceforge.net/
10 http://pedrodownload.man.ac.uk/

Managing Information Quality in e-Science Using Semantic Web Technology 485

IQ ontology is used to populate this panel with concepts relevant to the

loaded data model, including test functions, annotatable data elements, IQ

indicators, and metrics.

Annotations on the displayed data element are summarised along with basic

provenance (test function used, timestamp).

Bindings to the

displayed data

element (and to

the data model)

are used to

lookup available

annotation

services, and

invoke these

through the

Pedro plugin

interface.

Fig. 7. Augmented “quality-aware” version of the Pedro data entry tool

available indicators for the data model at hand, and follow hyperlinks to explore the
ontology.

The augmented tool also uses Pedro’s plugin model to invoke any available test
functions for the model at hand. If the user clicks on the Plugins button at the top-right
of Figure 7 they are offered two services, to annotate the data with respect to the HitRa-
tio and MassCoverage indicators which are important to biologists (see Section 2). The
choice of available service is determined dynamically, using available bindings obtained
from an online binding repository. Invoking these services results in annotations being
added to an online annotation repository. (The augmented Pedro desktop tool is config-
ured to act as a client to these two repositories.) By querying the annotation repository,
Pedro can retrieve any annotations associated with the displayed data elements shown
in the right-hand panel.

It is worth emphasising that the augmented Pedro tool is intended to be a natural
and convenient way for user-scientists to access the facilities of the Qurator framework;
however, there is nothing in the framework specific to its use in the Pedro tool. In fact,
we also have Web interfaces to the various data-checking services, and are developing
interfaces that allow them to be invoked as part of e-Science workflows.

8 Conclusion

The Qurator project offers a framework for managing information quality in an e-
Science context, allowing user-scientists to specify their IQ requirements against a
formal ontology, so that the definitions are machine-manipulable. To the best of our
knowledge, this ontology is the first systematic attempt to capture generic and

486 A. Preece et al.

domain-dependent quality descriptors in a semantic model. In this paper, we have
shown how the use of OWL DL supports extensibility of the core ontology with domain-
specific quality definitions. We have also introduced binding and annotation models that
serve to associate concepts in the IQ ontology with data and service entities. Bindings
allow IQ-aware tools to identify parts of the IQ ontology relevant to a specific data
model. Annotations attach quality metadata to resources. Both the binding and annota-
tion models are to some extent intended to be generic, reusable components.

The Qurator framework has been implemented in a collection of services accessi-
ble from a scientist’s desktop environment. We are currently gathering feedback from
our collaborating users, after which we aim to further develop the IQ framework and
associated toolset.

References

1. S. Carr, R. Aebersold, M. Baldwin, A. Burlingame, K. Clauser, and A. Nesvizhskii. Editorial:
The need for guidelines in publication of peptide and protein identification data. Molecular
and Cellular Proteomics, 3:531–533, 2004.

2. M.G. Elfeky, A.K. Elmagarmid, and V.S. Verykios. Tailor: a record linkage tool box. In
Proceedings of the 18th International Conference on Data Engineering (ICDE 2002), San
Jose, CA, Feb. 2002. IEEE Computer Society.

3. L. English. Improving Data Warehouse and Business Information Quality. Wiley, 1999.
4. P. Groth, M. Luck, and L. Moreau. Formalising a protocol for recording provenance in Grids.

In Proc 3th UK e-Science All Hands Meeting, pages 147–154, 2004.
5. J. Listgarten and A. Emili. Statistical and computational methods for comparative proteomic

profiling using liquid chromatography-tandem mass spectrometry. Molecular & Cellular
Proteomics, 4(4):419–434, 2005.

6. P. Missier, S. Embury, M. Greenwood, A. Preece, and B. Jin. An ontology-based approach to
handling information quality in e-science. In Proc 4th e-Science All Hands Meeting, 2005.

7. A.I. Nesvizhskii and R. Aebersold. Analysis, statistical validation and dissemination of large-
scale proteomics datasets generated by tandem ms. Drug Discovery Today, 9(4):173–181,
2004.

8. T.C. Redman. Data quality for the information age. Artech House, 1996.
9. G. Reif, H. Gall, and M. Jazayeri. WEESA - web engineering for semantic web applications.

In Proceedings of the 14th International World Wide Web Conference, 2005.
10. M. Scannapieco, P. Missier, and C. Batini. Data quality at a glance. Databanken-Spektrum,

14:6–14, 2005.
11. N. Sharman, N. Alpdemir, J. Ferris, M. Greenwood, P. Li, and C. Wroe. The myGrid infor-

mation model. In Proc 3rd e-Science All Hands Meeting, 2004.
12. C. F. Taylor et al. A systematic approach to modeling, capturing, and disseminating pro-

teomics experimental data. Nature Biotechnology, 21(3):247–254, March 2003.
13. R. Wang and D. Strong. Beyond accuracy: what data quality means to data consumers.

Journal of Management Information Systems, 12(4):5–34, 1996.
14. I. H. Witten and E. Frank. Data Mining: Practical Machine Learning Tools and Techniques,

2nd Edition. Morgan Kaufmann, 2005. ISBN 0-12-088407-0.
15. J. Zhao, C. Wroe, C. Goble, R. Stevens, D. Quan, and M. Greenwood. Using semantic web

technologies for representing e-science provenance. In Third International Semantic Web
Conference (ISWC2004), number 3298 in LNCS, pages 92–106, Hiroshima, Japan, Novem-
ber 2004. Springer-Verlag.

Annotated RDF�

Octavian Udrea, Diego Reforgiato Recupero, and V.S. Subrahmanian

University of Maryland, College Park MD 20742, USA
{udrea, diegoref, vs}@cs.umd.edu

Abstract. There are numerous extensions of RDF that support tem-
poral reasoning, reasoning about pedigree, reasoning about uncertainty,
and so on. In this paper, we present Annotated RDF (or aRDF for short)
in which RDF triples are annotated by members of a partially ordered
set (with bottom element) that can be selected in any way desired by the
user. We present a formal declarative semantics (model theory) for anno-
tated RDF and develop algorithms to check consistency of aRDF theories
and to answer queries to aRDF theories. We show that annotated RDF
captures versions of all the forms of reasoning mentioned above within a
single unified framework. We develop a prototype aRDF implementation
and show that our algorithms work very fast indeed - in fact, in just a
matter of seconds for theories with over 100,000 nodes.

1 Introduction

Since the adoption of “Resource Description Framework” (RDF) as a web rec-
ommendation by the W3C, there has been growing interest in using RDF for
knowledge representation [1, 2, 3, 4]. Extensions to RDF have included temporal
extensions [5], fuzzy extensions [6, 7], provenance management methods [2], and
others.

In this paper, we propose an extension of RDF called Annotated RDF (or
aRDF for short) that builds upon annotated logic [8, 9] which has been subse-
quently used, extended and improved [10] for a wide range of knowledge rep-
resentation tasks. In aRDF, you can start with any partially ordered set that
you like as long as it has has a bottom element1. A could capture fuzzy or
possibilistic values [2, 7] or timestamps [5] or - as we shall show - pedigree in-
formation or temporal-fuzzy information, and so on. We present a syntax for
aRDF in Section 2 - in essence, an aRDF triple consists of an ordinary RDF
triple together with an annotation (member of A). We then present a declara-
tive (model-theoretic) semantics for aRDF, together with notions of consistency
and entailment in Section 3 — unlike ordinary RDF, an aRDF theory can be
inconsistent and hence we provide a consistency check algorithm, together with

� Work supported in part by ARO grant DAAD190310202, AFOSR grant
FA95500510298, the Joint Institute for Knowledge Discovery, and by a DARPA
subcontract from the Univ. of California Berkeley.

1 Suppose (A,�) is a partially ordered set. ⊥ ∈ A is the “bottom element” of A iff
⊥ � x for all x ∈ A.

Y. Sure and J. Domingue (Eds.): ESWC 2006, LNCS 4011, pp. 487–501, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

488 O. Udrea, D.R. Recupero, and V.S. Subrahmanian

a result that whenever the partial order is a lattice, consistency is guaranteed.
In Section 4, we present algorithms to answer three types of atomic queries, each
with one unknown, together with an algorithm to answer conjunctive queries.
We then present our prototype implementation and experiments in Section 5
— our experiments show that our framework is very efficient to implement in
practice.

2 aRDF Syntax

We assume the existence of a partially ordered finite set (A,,) where elements of
A are called annotations and , is a partial ordering on A. We further assume A
has a bottom element. For example, we could have any of the following scenarios:

1. Afuzzy may be the set of all real numbers in the closed interval [0, 1] with
the usual “less than or equals” ordering on it.

2. Atime = N could be the set of all non-negative integers (denoting time
points) with the usual “less than or equals” ordering on it.

3. Atime−int = {[x, y] | x, y ∈ N could be the set of all time intervals. The
interval [x, y] as usual denotes the set of all t ∈ N such that x ≤ t ≤ y. The
inclusion ordering ⊆ is a partial ordering on this set.

4. Apedigree could be an enumerated set of sources with a partial ordering on
them. If s1, s2 ∈ Apedigree, then we could think of s1 , s2 to mean that s2
has “better” pedigree than s1.

5. Aset−pedigree could be the power set of Apedigree with the Egli-Milner or-
dering which says that S1 , S2 iff (∀s1 ∈ S1)(∃s2 ∈ S2)s1 	 s2 ∧ (∀s2 ∈
S2)(∃s2 ∈ S1)s1 	 s2. Note here that 	 is the ordering on Apedigree.

6. Afuztime could be the set of all pairs (x, y) such that x ∈ [0, 1] is a fuzzy
value and y is a time point. The , ordering on Afuztime can be defined as
(x, y) , (x′, y′) iff x ≤ x′ and y ≤ y′.

These are just a few examples of partial orders. All the partial orders above
except Apedigree and Aset−pedigree are complete lattices2. Note that one can con-
struct arbitrary combinations of partial orders by taking the Cartesian Product
of two known partial orders and taking the pointwise ordering on the Cartesian
Product as shown in the definition of Afuztime.

Suppose now that (A,,) is an arbitrary but fixed partially ordered set. As
in the case of RDF, we also assume the existence of some arbitrary but fixed
set R of resource names, a set P of property names, and a set dom(p) of values
associated with any property name p.

An annotated RDF-ontology (aRDF-ontology for short)3 is a finite set of triples
(r, p : a, v) where r is a resource name, p is a property name, a ∈ A and v is a
2 A partially ordered set (X,≤) is a complete lattice iff (i) every subset of X has a

unique greatest lower bound and (ii) every directed subset of X has a unique least
upper bound. A set Y ⊆ X is directed iff for all y1, y2 ∈ Y , there is an x ∈ X such
that y1 ≤ x and y2 ≤ x.

3 We will often abuse the term ontology to refer to both the intensional part (the
schema) and the extensional part (the instance).

Annotated RDF 489

value (which could also be a resource name). In particular, this representation
also supports RDF Schema triples such as4: (i) (A, rdfs : subClassOf, B) in-
dicates a subclass relationship between classes (which are also resources); (ii)
(X, rdf : type, C) indicates that a resource X is an instance of some class
C; (iii) (p, rdfs : subPropertyOf, q) denotes a sub-property relation between
p, q ∈ P5. We denote by rdfs : subPropertyOf∗ the reflexive, transitive closure
of rdfs : subPropertyOf .6 Once R,P and dom(·) are fixed, we use the notation
Univ to denote the set of all triples (r, p, v) where s ∈ R, p ∈ P and v ∈ dom(p).
Throughout the rest of this paper, we will assume that R,P ,A,,, dom(·) are all
arbitrary, but fixed.

(a) aRDF graph annotated with Atime−int (b) aRDF graph annotated with Apedigree

(c) aRDF graph annotated with Afuztime

Fig. 1. Three example aRDF ontology graphs

Definition 1. (aRDF Ontology graph). Suppose O is an aRDF-ontology. An
aRDF ontology graph for O is a labeled graph (V, E, λ) where

4 rdfs : range and rdfs : domain are also possible, as well as any other RDFS
constructs. The paper focuses primarily on aRDF instances, therefore rdfs :
subP ropertyOf schema constructs are particularly important.

5 Note we did not require that P ∩R = ∅.
6 We do not address reification and containers in RDF due to space constraints.

490 O. Udrea, D.R. Recupero, and V.S. Subrahmanian

(1) V = R ∪
⋃

p∈P dom(p) is the set of nodes.
(2) E = {(r, r′) | there exists a property p such that (r, p : a, r′) ∈ O} is the set

of edges.
(3) λ(r, r′) = {p : a | (r, p : a, r′) ∈ O} is the edge labeling function.

It is easy to see that there is a one-to-one correspondence between aRDF-
ontologies and aRDF-ontology graphs. Hence, we will often abuse notation and
interchangeably talk about both aRDF ontologies and aRDF ontology graphs.

Example 1. Figure 1 shows three examples7 of aRDF ontology graphs. Figure
1(a) is annotated with elements of Atime−int. Therefore, the triple (William,
rdf : type : [1991, now], P rofessor) denotes the fact that William has been a
Professor since 1991. Figure 1(b) uses Apedigree for the annotation, with the par-
tial order given in the figure. Here, the triple (Steve, chairOf : DW, ACME CS
Dept) denotes that the knowledge of Steve being the department chair was ob-
tained from the department web page. Figure 1(c) is annotated with Afuztime

and contains both uncertainty and temporal information. For instance, the triple
(Adam, rdf : type : (0.85, 1999), AcademicResearcher) denotes that we are
85% certain that Adam was an academic researcher until 1999.

The rest of the paper will primarily focus on the semantics and query processing
at the aRDF instance level; the problem of aRDF schema queries will be addressed
in an extended version of this paper. We note that there are a number of ways in
which aRDF theories can be represented in practice. One possible way is to use
quadruples8; another possibility is the use of reification. Since aRDF semantics
and query processing are the focus of this paper, we omit a lengthy discussion
on representation issues.

As in the case of OWL, we differentiate between transitive and non-transitive
properties. The RDFS semantics already specifies transitivity for rdfs:subClassOf
and rdfs:subPropertyOf relations. The reader may view the specification of tran-
sitive properties as a poor man’s inference capability for RDF instance data. We
assume that all properties in P are marked transitive or non-transitive. For in-
stance, in Figure 1(b) we consider hasSupervisor to be a transitive property9.

Definition 2 (p-Path). Let O be an aRDF ontology graph, p a transitive prop-
erty in O and suppose r, r′ ∈ O are two nodes. There is a p-path between r and
r′ if there exist t1 = (r, p1 : a1, r1), . . . , ti = (ri−1, pi : ai, ri), . . . , tk = (rk−1, pk :
ak, r′) ∈ O such that ∀ i ∈ [1, k] (pi, rdfs : subPropertyOf∗, p). We will de-
note a p-path Q by the set of triples {t1, . . . , tk} that form the path; we also say
AQ = {a1, . . . , ak} is the annotation of the p-path Q.

Example 2. Consider the aRDF ontology graph shown in Figure 1(c) and sup-
pose the hasSupervisor property is transitive. The triples (Max, hasAdvisor :
7 In all examples, classes are represented with circular node and instances with rec-

tangular nodes.
8 A quadruple-based approach is currently discussed for representing contexts/data

provenance in RDF — see http://www.w3.org/2001/12/attributions/.
9 Although this is not generally the case, we assume this for the sake of the example.

Annotated RDF 491

(0.9, 2004), Adam) and (Adam, hasSupervisor : (0.95, 2003), William) form a
hasSupervisor-path. Similarly, in Figure 1(b), assuming hasSupervisor and
hasAdvisor are transitive properties, the triples (Max, hasAdvisor : DW,
William) and (William, hasSupervisor : GS, Steve) form a hasSupervisor-
path, since (hasAdvisor, rdfs : subPropertyOf, hasSupervisor).

3 aRDF Semantics

In this section, we provide a declarative semantics for aRDF ontologies and study
consistency of such ontologies.

Definition 3. An aRDF-interpretation I is a mapping from Univ to A.

Definition 4. An aRDF-interpretation I satisfies (r, p : a, v) iff a , I(r, p, v).
I satisfies an aRDF-ontology O iff:

(S1) I satisfies every (r, p : a, v) ∈ O.
(S2) For all transitive properties p ∈ P and for all p-paths Q = {t1, . . . , tk} in

O, where ti = (ri, pi : ai, ri+1), and for all a ∈ A such that a , ai for all
1 ≤ i ≤ k, it is the case that a , I(r1, p, rk+1).

O is consistent iff there is at least one aRDF-interpretation that satisfies it. O
entails (r, p : a, v) iff every aRDF-interpretation that satisfies O also satisfies
(r, p : a, v).

The definition of satisfaction and the complex definition of case (S2) above are
best illustrated with an example.

Example 3. Let O be the aRDF ontology graph in Figure 1(c), where A =
Afuztime. Suppose the hasSupervisor property is transitive. Let I0(t) = (1, now)
∀t ∈ Univ. I0 satisfies O and hence O is consistent. Furthermore, O |= (Mary,
hasAdvisor: (0.7,2001), William) because for any satisfying interpretation, (0.7,
2001) , (0.7, 2003) , I(Mary, hasSupervisor, William).

The intuition behind item (S2) of Definition 4 is related to the notion of en-
tailment. For instance, in Figure 1(c) — with hasSupervisor transitive —, from
the triples (Max, hasAdvisor : (0.9, 2004), Adam) and (Adam, hasSupervisor :
(0.95, 2003), William), we can infer that with 90% probability, William was
Max’ supervisor until 2003, since ∀ (p, t) ∈ Afuztime s.t. (p, t) , (0.9, 2004) and
(p, t) , (0.95, 2003) (i.e. ∀ (p, t) , (0.9, 2003)), (p, t) , I(Max, hasSupervisor,
William).

It is immediately clear from Definition 4 that unlike RDF ontologies which are
always consistent, aRDF ontologies can be inconsistent. Consider the aRDF ontol-
ogy graph in Figure 1(b) and assume the hasSupervisor property is transitive.
We can identify the following sources of inconsistency:
1. The triples (Mary, hasSupervisor : PW, William) and (Mary, hasSuper−

visor : FL, William)10 indicate that for any interpretation I, we cannot have
10 The presence of such triples is reasonable since it indicates the same information was

obtained from different sources for which we cannot compare the pedigree according
to the partial order given.

492 O. Udrea, D.R. Recupero, and V.S. Subrahmanian

that PW , I(Mary, hasSupervisor, William) and FL , I(Mary, hasSu-
pervisor, William), which contradicts item (S1) from Definition 4.

2. The presence of the different hasSupervisor-paths {(Max, hasAdvisor:FL,
William),(William, hasSupervisor:GS, Steve)} and {(Max, hasSupervisor :
DW, Steve)} means that for any interpretation I, we cannot have that FL ,
I(Max, hasSupervisor, Steve) and DW , I(Max, hasSupervisor, Steve),
thus contradicting item (S2) from Definition 4.

We now state a necessary and sufficient condition for checking consistency of an
aRDF ontology.

Theorem 1. Let O be an aRDF ontology. O is consistent iff:

(C1) ∀p ∈ P and ∀ r, r′ ∈ R such that ∃ distinct a1, . . . ak ∈ A and ∀i ∈
[1, k] ∃(r, p : ai, r

′) ∈ O, then ∃ a ∈ A s.t. ∀i ∈ [1, k] ai , a AND
(C2) ∀p ∈ P transitive, ∀r, r′ ∈ R, let {Q1, . . . , Qk} be the set of different

p-paths between r and r′ and let {AQ1 , . . . , AQk} be the annotations for
these p-paths. Let BQi = {a ∈ A|a , a′ ∀a′ ∈ AQi}. Then ∃ a ∈ A s.t.
∀b ∈

⋃
i∈[1,k] BQi , b , a11.

The following result states that if we require A to be a partial order with a top
element12, then we are guaranteed consistency.

Corollary 1. Let A be a partial order with a top element. Then any aRDF
ontology O annotated w.r.t. A is consistent.

The justification is immediate, since the interpretation that maps every triple in
Univ to the top element satisfies any aRDF ontology.

Theorem 1 provides an immediate algorithm for checking the consistency of
aRDF ontologies. We present this algorithm in Figure 2.

Example 4. Let O the aRDF ontology graph in Figure 1(b). When we run our
consistency check algorithm and execution reaches line 4 with (r, p, r’)=(Mary,
hasSupervisor, William), A = {PW, FL} from line 2. Since � ∃ a ∈ A s.t.
PW, FL , a, the algorithm will determine that the ontology is inconsistent.

Now consider the same aRDF ontology without the triple (Mary, hasSuper−
visor : PW, William). In this case, the algorithm will proceed to the loop start-
ing on line 6. However, for the iteration for which p = hasSupervisor on line
6 and (r, r′) = (Max, Steve) on line 9, the set P ′ will contain the two possible
hasSupervisor-paths from Max to Steve detailed in Example 3. Then on line
12, A = {{DW}, {FL, GS}} and on line 13 B = {DW, FL} and since � ∃ a ∈ A
s.t. DW, FL , a, the algorithm will return False on line 14.

The following result states the correctness of our consistency check algorithm.

Proposition 1 (Consistency check correctness). The aRDFconsistency
on input (O,A,,) returns True iff O is consistent.
11 Note that (C2) implies (C1) when p is transitive, since paths of length 1 are possible.
12 An element ! ∈ A is a “top” element if x � ! for all x ∈ A.

Annotated RDF 493

Algorithm aRDFconsistency(O,A,�)
Input: aRDF ontology O and annotation (A, �).
Output: True if O is consistent, False otherwise.
Notation: For a property p we write SP (p) = {q ∈ P|(q, rdfs : subPropertyOf∗, p)}. We denote
by O|p the restriction of the aRDF graph O to triples labeled with properties in SP (p). N(O)
denotes the set of nodes in the aRDF ontology graph O.

1. for (r, p, r′) ∈ {(r, p, r′)|∃ a ∈ A s.t. (r, p : a, r′) ∈ O} do
2. A ← {a ∈ A|(r, p : a, r′) ∈ O};
3. if |A| > 1 then
4. if � ∃ a ∈ A s.t. ∀a′ ∈ A, a′ � a return False;
5. end
6. for p ∈ P transitive do
7. O′ ← O|p;
8. P ← {paths Q ⊆ O′| � ∃Q′ ⊆ O′ ∧ Q′ ⊃ Q};
9. for (r, r′) ∈ N(O′) × N(O′) do
10. P ′ ← {Q ∈ P |r, r′ are the first and last node respectively in Q};
11. if |P ′| > 0 then
12. A ← {AQ|Q ∈ P ′};
13. B ← {b ∈ A|∃AQ ∈ A s.t. ∀ a ∈ AQ, b � a};
14. if � ∃ a ∈ A s.t. ∀b ∈ B, b � a then return False;
15. end
16. end
17. end
18. return True;

Fig. 2. Consistency checking algorithm for aRDF ontologies

The consistency check algorithm runs in polynomial time as shown below.

Proposition 2 (Consistency check complexity). Let O be an aRDF ontol-
ogy graph and let n = |N(O)|, let e = |O| and let p = |P|. Let (A,,) be a partial
order and let a = |A|13.Then aRDFconsistency(O,A,,) is O(p ·(n3 ·e+n ·a2)).

The result follows from the loop on lines 6—17. For any transitive property, we
first compute the set of all maximal paths in O|p (line 8). Since we have to keep
the paths in memory (and not only their cost), this operation can be performed
in at most n3 · e steps in a modified version of Floyd’s algorithm that records
the paths explored. The loop on line 9 iterates through all the maximal paths
found — there can be at most 2n of them. For each such path we compute the
set A (line 12), which takes at most e steps, since any maximal path is of length
less than or equal to e. The size of each A set is bounded by a and the number
of maximal paths for the entire graph is at most O(n), meaning line 13 will be
run at most O(n · a2) times. Line 14 is run at most O(n · a2) times as well, since
|B| is bounded by a.

4 aRDF Query Processing

In this section, we consider aRDF-queries. We assume the existence of sets of
variables ranging over resources, properties, values and A. A term over one of
these sets is either a member of that set or a variable ranging over that set.
An aRDF query is a triple (R, P : A, V) where R, P, A, V are all terms over

13 We assume without loss of generality that a < e, since we can use at most one
annotation for each edge.

494 O. Udrea, D.R. Recupero, and V.S. Subrahmanian

resources, properties, annotations and values respectively. An aRDF query of
the above form is atomic if at most one term in it is a variable.

Example 5. Consider the aRDF ontology graph in Figure 1(c). The following are
aRDF atomic queries:

– What was the relationship between Max and William until 2002 with 80%
probability? (Max, ?p : (0.8, 2002), William).

– Who was Mary’s supervisor until 2002 with 70% probability? (Mary, has-
Supervisor:(0.7,2002), ?v).

– Who was affiliated with ACME University until 2002 with 65% probability?
(?r, affiliatedWith:(0.65,2002),ACME University).

Definition 5 (Semi-unifiable aRDF triples). Two aRDF triples (r, p : a, v),
(r′, p′ : a′, v′) are θ semi-unifiable iff there exists a substitution θ such that
rθ = r′θ and pθ = p′θ and vθ = v′θ.

As usual, rθ denotes the application of θ to r.

Definition 6 (Query answer). Let O be a consistent aRDF ontology and let
q = (rq, pq : aq, vq) be a query on O. Let AO(q) = {(r, p : a, v) | (rq , pq : aq, vq) is
semi-unifiable with q and O |= (r, p : a, v) ∧ ((a is a variable) ∨ (aq , a))}. The
answer to q is defined as AnsO(q) = {(r, p : a, v) ∈ AO(q)| � ∃ S ⊆ AnsO(q) −
{(r, p : a, v)} s.t. S |= (r, p : a, v)}.

AO(q) consists of all ground (i.e. variable-free) instances of q that are entailed
by O. However, AO(q) may contain redundant triples - for example, using our
time− int partial ordering, if (r, p : [1, 100], v) is in AO(q), then there is no point
including redundant triples such as (r, p : [1, 10], v) in it. AnsO(q) eliminates all
such redundant triples from AO(q).

Example 6. Consider the queries in Example 5. The answers are:

– AnsO(q) = {(Max, hasSupervisor : (0.9, 2003), William)}. Note that the
answer does not include for instance (Max, hasSupervisor : (0.9, 2001),
William) since the latter triple is already entailed by a triple in the
answer.

– AnsO(q) = {Mary, hasAdvisor : (0.7, 2003), William)}.
– AnsO(q) = {Max, affiliatedWith : (0.7, 2003), ACME University)}.

The following result specifies a condition that must hold when O entails a ground
aRDF triple.

Theorem 2. Let O be a consistent aRDF ontology and let (r, p : a, v) be an
aRDF triple. O |= (r, p : a, v) iff one of the following conditions holds:

(E1) ∃ (r, p : a1, v), . . . , (r, p : ak, v) ∈ O and let A be the set of values a′ such
that ai , a′ ∀i ∈ [1, k] (|A| ≥ 1 since O is consistent). Then ∀ a′ ∈ A,
a , a′.

Annotated RDF 495

(E2) ∃ p-paths Q1, . . . , Qk between r and v. Let BQi = {b ∈ A|b , a′ ∀a′ ∈
AQi}. Let A be the set of values a′ such that ∀ b ∈

⋃
i∈[1,k] BQi , b , a′

(|A| ≥ 1 since O is consistent). Then ∀ a′ ∈ A, a , a′.

Given an ontology O, we can infer new triples from O using the following two
operators, f1, f2:

1. f1(O) = {(r, p : a, v)|∃ (r, p : a1, v), (r, p′ : a2, v) ∈ O s.t. (p′, rdfs :
subPropertyOf∗, p) ∧ a is a minimal upper bound14 of a1, a2}.

2. f2(O) = {(r, p : a, v)|∃(r, p′ : a1, r
′), (r′, p′′ : a2, v) ∈ O s.t. (p′, rdfs :

subPropertyOf∗, p) ∧ (p′′, rdfs : subPropertyOf∗, p) ∧ (∀ a′ ∈ A, (a′ ,
a1 ∧ a′ , a2) ⇒ (a′ , a)) ∧ (a minimal with these properties w.r.t. ,)}.

Let μ(O) = f1(O) ∪ f2(O).

Proposition 3 (Closure of O). μ is a monotonic operator, i.e. O1 ⊆ O2
implies μ(O1) ⊆ μ(O2). Hence, by the Tarski-Knaster theorem, it has a least
fixpoint denoted by lfp(O) called the closure of O.

Example 7. Let O be the aRDF ontology in Figure 1(c). Then lfp(O) contains
all triples in O and the triple (Max, hasSupervisor: (0.9,2003), William).

The following result is a necessary and sufficient condition for entailment by an
aRDF ontology.

Proposition 4. Let O be an aRDF ontology. O |= (r, p : a, v) iff (r, p : a, v) ∈
lfp(O) or ∃(r′, p′ : a′, v′) ∈ lfp(O) s.t. {(r′, p′ : a′, v′)} |= (r, p : a, v).

Proposition 5. Let O be a consistent aRDF ontology and q a query on O. Then
Ansq(O) ⊆ lfp(O).

The above proposition gives us a very simple algorithm for answering queries.

1. Consider query q = (r, p : a, v) on aRDF ontology O. Compute lfp(O).
2. A ← {(r′, p′ : a′, v′) ∈ lfp(O)|(r′, p′ : a′, v′) semi − unifiable with q ∧

((a is a variable) ∨ (a , a′))}.
3. Eliminate from A triples (r, p : a, v) entailed by subsets of A−{(r, p : a, v)}.

However, we can do much better by avoiding the costly computation of lfp(O).

4.1 Answering Atomic Queries

Although the closure of an aRDF ontology gives a simple method of computing
the answer to queries, its computation is potentially expensive. We show more
efficient algorithms for answering atomic queries. The algorithm for queries of
type q = (r, p : a, ?v) is given in Figure 3; computing the answers to atomic
queries of type q = (?r, p : a, v) is very similar and omitted for reasons of space.
14 a is an minimal upper bound of a1, a2 iff a1 � a and a2 � a and there is no other a′

such that a′ � a and a1, a2 � a′.

496 O. Udrea, D.R. Recupero, and V.S. Subrahmanian

Algorithm atomicAnswerV(O,A, �, q)
Input: Consistent aRDF ontology O, annotation (A,�) and query q = (r, p : a, ?v).
Output: AnsO(q).
Notation: For a property p we write SP (p) = {q ∈ P|(q, rdfs : subPropertyOf∗, p)}. We denote
by O|p the restriction of the aRDF graph O to triples labeled with properties in SP (p).

1. O ← O|p;
2. Ans ← ∅;
3. if p is non-transitive then
4. for (r, p′, v′) ∈ {(r, p′ : a′, v′) ∈ O} do
5. A ← {a′ ∈ A|(r, p′ : a′, v′) ∈ O};
6. B ← {b ∈ A|∀a ∈ A, a � b};
7. C ← {c ∈ B| � ∃c′ ∈ B, c′ �= c s.t. c′ � c};
8. Ans ← Ans ∪ {(r, p′ : c, v′)|c ∈ C ∧ a � c};
9. end
10. else if p transitive then
11. for all v′ s.t. ∃ Q1, . . . , Qk p-paths from r to v′ do
12. B ← {b ∈ A|∃i ∈ [1, k] s.t. ∀ a′ ∈ AQi , b � a′};
13. C ← {c ∈ A|∀b ∈ B, b � c};
14. D ← {d ∈ C| � ∃ d′ ∈ C, d′ �= d s.t. d′ � d};
15. Ans ← Ans ∪ {(r, p : d, v′)|d ∈ D ∧ a � d};
16. end
17. end
18. return Ans;

Fig. 3. Answering atomic aRDF queries (r, p : a, ?v)

Example 8. Consider the aRDF ontology graph in Figure 1(c) and the query
(Max, hasSupervisor : (0.8, 2002), ?v). Since hasSupervisor is transitive, the
algorithm will go on the second branch, starting at line 10. The loop on line
11 iterates through all the values reachable through hasSupervisor-paths from
Max, which are exactly {Adam, William}. Let us consider the second itera-
tion, where v′ = William. There is only one hasSupervisor-path between Max
and William, containing triples (Max, hasAdvisor : (0.9, 2004), Adam) and
(Adam, hasSupervisor : (0.95, 2003), William). Then AQ1 = {(0.9, 2004), (0.95,
2003)}. Therefore B is exactly the set of pairs (p, t) s.t. (p, t) , (0.9, 2003). C
will be the set of pairs (p, t) greater than (0.9, 2003) and thus D = {(0.9, 2003)}.
Therefore, the triple (Max, hasSupervisor : (0.9, 2003), William) will be added
to Ans.

The following theorem states that atomicAnswerV is correct.

Proposition 6. atomicAnswerV (O,A,,, q) returns AnsO(q).

The following result says that atomicAnswerV runs in polynomial time.

Proposition 7. Let O be an aRDF ontology graph and let n be the number of ver-
tices in the ontology graph O, let e = |O| and let p = |P|. Let (A,,) be a partial
order and let a = |A|. Then atomicAnswerV (O,A,,, q) is O(n2 · e + n · e · a2).

The complexity result is given by the loop on lines 11—16. We start by determin-
ing all values reachable by p-paths from r and the corresponding paths, which can
be done inO(n2 ·e) since v is fixed. Since there are at mostO(n) paths originating
from r, each with at most O(e) edges and the size of the annotation for each path
is bounded by a, line 12 will be run at most O(n · e · a2) times. Since the sizes of
B, C, D are all bounded by a, the same result holds for lines 13—15.

Annotated RDF 497

Algorithm atomicAnswerP(O,A, �, q)
Input: Consistent aRDF ontology O, annotation (A,�) and query q = (r, ?p : a, v).
Output: AnsO(q).

1. Ans ← ∅;
2. for all p′ such that ∃ Q1, . . . , Qk p′-paths from r to v do
3. B ← {b ∈ A|∃i ∈ [1, k] s.t. ∀ a′ ∈ AQi , b � a′};
4. C ← {c ∈ A|∀b ∈ B, b � c};
5. D ← {d ∈ C| � ∃ d′ ∈ C, d′ �= d s.t. d′ � d};
6. Ans ← Ans ∪ {(r, p′ : d, v)|d ∈ D ∧ a � d};
7. end
8. return {(r′, p′ : a′, v′) ∈ Ans| � ∃ S ⊆ Ans − {(r′, p′ : a′, v′)} s.t. S |= (r′, p′ : a′, v′)};

Fig. 4. Answering atomic aRDF queries (r, ?p : a, v)

An even tighter complexity bound holds when the annotation is a complete
lattice. In this case, after computing the set A on line 11, we can simply compute
the least upper bound of the elements in A and thus obtain set C (on line 13).
For complete lattices such as Atime−int, this can be done in at most a linear
number of steps in |A|. Thus, the overall complexity of the algorithm becomes
O(n2 · e + n · e · a).

Algorithm atomicAnswerP given in Figure 4 computes the answer to atomic
queries with an unknown property. The main difference from atomicAnswerV
is that the graph we need to explore is the one containing all paths between r
and v, instead of the one containing all p-paths starting at r. Depending on the
shape of the aRDF ontology (e.g., breadth vs. depth), either search space may
be larger, but the worst case complexity is identical. Algorithm atomicAnswerA
given in Figure 5 computes the answer to atomic queries with unknown annota-
tion. For atomicAnswerA, r, p, v are all known therefore the step in which we
compute all paths (line 11) can be performed in at most O(n·e) steps. Therefore,
atomicAnswerA is O(n · e · a2). Correctness results for both atomicAnswerV
and atomicAnswerA similar to Proposition 6 are immediate.

Algorithm atomicAnswerA(O,A, �, q)
Input: Consistent aRDF ontology O, annotation (A,�) and query q = (r, p :?a, v).
Output: AnsO(q).
Notation: For a property p we write SP (p) = {q ∈ P|(q, rdfs : subPropertyOf∗, p)}. We denote
by O|p the restriction of the aRDF graph O to triples labeled with properties in SP (p).

1. O ← O|p;
2. Ans ← ∅;
3. if p is non-transitive then
4. for (r, p′, v) ∈ {(r, p′ : a′, v) ∈ O|p′ ∈ SP (p)} do
5. A ← {a′ ∈ A|(r, p′ : a′, v) ∈ O};
6. B ← {b ∈ A|∀a ∈ A, a � b};
7. C ← {c ∈ B| � ∃c′ ∈ B, c′ �= c s.t. c′ � c};
8. Ans ← Ans ∪ {(r, p′ : c, v)|c ∈ C};
9. end
10. else if p transitive then
11. {Q1, . . . , Qk} ← {p-paths from r to v};
12. B ← {b ∈ A|∃i ∈ [1, k] s.t. ∀ a′ ∈ AQi , b � a′};
13. C ← {c ∈ A|∀b ∈ B, b � c};
14. D ← {d ∈ C| � ∃ d′ ∈ C, d′ �= d s.t. d′ � d};
15. Ans ← Ans ∪ {(r, p : d, v)|d ∈ D};
16. end
17. return Ans;

Fig. 5. Answering atomic aRDF queries (r, p :?a, v)

498 O. Udrea, D.R. Recupero, and V.S. Subrahmanian

The methods of computing query answers for atomic queries can be extended
with minimal changes to the case of queries with multiple variables15; for reasons
of space, we omit such algorithms.

4.2 Conjunctive Queries

Let O be a consistent aRDF ontology. We define conjunctive queries as a set
Q = {q1, . . . , qm} of atomic queries, where qi = (ri, pi : ai, vi). The answer can
be defined similarly to that of atomic queries as AnsO(Q) = {S ⊆ O|∃θ s.t. ∀i ∈
[1, m], ∃(r, p : a, v) ∈ S s.t.((r, p : a, v) θ semi−unifiable with qi)∧((ai variable)
∨ (ai , a)) ∧ (� ∃S′ ∈ AnsO(Q) s.t. S′ |= S)}. The algorithm for computing
answers to conjunctive queries given in Figure 6 is based on the observation that
a conjunctive query is apartially instantiated aRDF graph; thus, inexact graph
matching algorithms [11] between the graph corresponding to Q and subgraphs
of lfp(O) give potential answer sets.

Algorithm conjunctAnswer(O,A, �, Q)
Input: Consistent aRDF ontology O, annotation (A,�) and query Q = {qi = (ri, pi : ai, vi)|i ∈
[1, m]}.
Output: AnsO(q).
Notation: For a property p we write SP (p) = {q ∈ P|(q, rdfs : subPropertyOf∗, p)}. We denote
by O|p the restriction of the aRDF graph O to triples labeled with properties in SP (p). N(O)
denotes the set of nodes in the aRDF ontology graph O.

1. if Q contains no variable property queries then
2. O ← O|

i
SP(pi)

;

3. Ans ← ∅;
4. do
5. O ← O′;
6. for all paths R in O on some property p between some r, r′ do
7. B ← {b ∈ A|∀ a ∈ AR, b � a};
8. C ← {c ∈ A|∀ b ∈ B, b � c};
9. D ← {d ∈ C| � ∃ d′ ∈ C, d′ �= d, d′ � d};
10. O′ ← O ∪ {(r, p : d, r′)|d ∈ D};
11. end
12. for (r, p, r′) ∈ {(r, p, r′)|∃ a �= a′ ∈ A s.t. (r, p : a, r′), (r, p : a′, r′) ∈ O} do
13. A ← {a ∈ A|(r, p : a, r′) ∈ O};
14. B ← {b ∈ A|∀a ∈ A, a � b};
15. C ← {c ∈ B| � ∃c′ ∈ B, c′ �= c s.t. c′ � c};
16. O′ ← O ∪ {(r, p : c, r′)|c ∈ C ∧ a � c};
17. end
18. while O = O′;
19. GQ ← the graph corresponding to Q;
20. for all matchings between GQ and O do
21. ok ← true;
22. for i ∈ [1, m] do
23. (r, p : a, v) ← the triple in O matched to qi;
24. if ¬(ai variable) ∧ ¬(ai � q) then
25. ok ← false;
26. break;
27. end
28. end
29. if ok then
30. Ans ← Ans ∪ { set of triples matched to GQ};
31. end
32. return Ans;

Fig. 6. Answering conjunctive aRDF queries

15 However, the complexity of these algorithms remains polynomial.

Annotated RDF 499

Algorithm conjunctAnswer starts by computing the closure lfp(O) in the loop
on lines 4—18. Elements corresponding to f1 in Definition 3 are computed on
lines 12—16, whereas elements corresponding to f2 are computed on lines 6—11.
After lfp(O) is computed, inexact graph matchings [11] are used to determine
potential answers to the conjunctive query (line 20). Each triple in the potential
answer is checked against the annotation (if constant) of the respective query
(22—28). If all triples have “better” annotations than the corresponding query
triples, the answer is stored (line 30). The complexity of conjunctAnswer is
at worst case exponential since the computation of lfp(O) increases the size
of the aRDF ontology polynomially and may be performed a number of times
polynomial in the size of the ontology.

5 Experimental Results

Our experimental prototype of the aRDF query system was implemented in ap-
proximately 1100 lines of Java code; the experiments were performed on an Intel
Pentium 4 Mobile processor machine at 2.30 GHz and 512MB DDR SDRAM,
running Debian Linux 1.3.3.4-9. The experiments were run using synthetically
generated aRDF datasets ranging from 10,000 to 100,000 aRDF triples, using an
uniform distribution for the random generator. The following parameters were
constant throughout the generation process: (i) |P| = 100, (ii) 10 transitive
properties, (iii) |A| = 20, (iv) 10 subproperty relations.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

100000900008000070000600005000040000300002000010000

T
im

e
[m

s]

Dataset size [nodes]

Fig. 7. aRDFconsistency running time

The first set of experiments shown in Figure 7 show the time needed for
consistency checking. We see that aRDFconsistency takes under 1 second for
graphs of 100,000 nodes. Figure 8(a) describes the query running time for the
three algorithms detailed where queries were randomly generated. The main
points that determine the behavior observed in Figure 8(a) and 8(b) are: (i) in
line 11 of answerV we look for p-paths originating at a known r; (ii) line (2)
of answerP we look for any transitive property paths between a known r and
v; (iii) line (11) of answerA determines p-paths between a known r and v. It is

500 O. Udrea, D.R. Recupero, and V.S. Subrahmanian

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 10000 15000 20000 25000 30000 35000 40000 45000 50000

T
im

e
[m

s]

Dataset size [nodes]

atomicAnswerV
atomicAnswerP
atomicAnswerA

 0

 200

 400

 600

 800

 1000

 1200

 1400

 10000 15000 20000 25000 30000 35000 40000 45000 50000

T
im

e
[m

s]

Dataset size [nodes]

atomicAnswerP
atomicAnswerA

(a) Running time for atomic queries (b) Running time of answerA and answerP

Fig. 8. Query running time

easy to see why (iii) is the fastest, since r, v, p are all known. We can also see
that for the experimental setting described, (i) takes more time than (ii); this is
due to the relatively small number of properties in the graphs16.

6 Related Work

There has been considerable work on extending RDF with new features such
as time intervals (statements saying something is true at all time points in an
interval [5]), uncertainty [6, 7](though these are just one page position papers)
and provenance [2] which describes a model for representing named RDF graphs,
thus allowing statements about RDF graphs to be represented in RDF. [5] gives a
model for temporal RDF, allowing triples to be specified as true for a finite time
interval. [12] defines a model for representing multi-dimensional RDF, where
information can be context dependent; for instance the title of a book may be
represented in different languages. Our approach differs from all of the above:
(i) we define a general framework for extending the RDF data model with anno-
tations from an arbitrary partially ordered set; (ii) we give efficient algorithms
for querying annotated RDF ontologies.

Our framework is based upon annotated logic [8, 9] — however, by examining
RDF triples, we can provide far greater efficiency than annotated logic was able
to provide. Moreover, annotated logic was unable to handle the kinds of queries
shown where properties and the annotations desired were unknown.

To the best of our knowledge, this is the first paper that has attempted to
provide a single framework - where by swapping a new partial order (with bot-
tom) for another - we can get different types of reasoning capabilities in RDF.
We have shown that annotated RDF is capable of supporting diverse forms of
reasoning as well as combinations of reasoning (e.g. via fuztime), has a rich
declarative semantics, and provides an efficient computational engine for appli-
cation building.

16 A phenomenon normally encountered in real-world RDF graphs, as we can see from
most ontologies at www.daml.org.

Annotated RDF 501

References

1. Kahan, J., Koivunen, M.R.: Annotea: an open rdf infrastructure for shared web
annotations. In: WWW ’01: Proceedings of the 10th international conference on
World Wide Web, New York, NY, USA, ACM Press (2001) 623–632

2. Carroll, J.J., Bizer, C., Hayes, P., Stickler, P.: Named graphs, provenance and
trust. In: WWW ’05: Proceedings of the 14th international conference on World
Wide Web, New York, NY, USA, ACM Press (2005) 613–622

3. Karvounarakis, G., Alexaki, S., Christophides, V., Plexousakis, D., Scholl, M.:
Rql: a declarative query language for rdf. In: WWW ’02: Proceedings of the 11th
international conference on World Wide Web, New York, NY, USA, ACM Press
(2002) 592–603

4. Gutierrez, C., Hurtado, C., Mendelzon, A.O.: Foundations of semantic web data-
bases. In: PODS ’04: Proceedings of the twenty-third ACM SIGMOD-SIGACT-
SIGART symposium on Principles of database systems, New York, NY, USA, ACM
Press (2004) 95–106

5. Gutiérrez, C., Hurtado, C.A., Vaisman, A.A.: Temporal rdf. In: ESWC. (2005)
93–107

6. D. Dubois, M., Prade, H.: Possibilistic uncertainty and fuzzy features in descrip-
tion logic: a preliminary discussion. In: Proc. Workshop on Fuzzy Logic and the
Semantic Web (ed. E. Sanchez). (2005) 5–7

7. Straccia, U.: Towards a fuzzy description logic for the semantic web. In: Proc.
Workshop on Fuzzy Logic and the Semantic Web (ed. E. Sanchez). (2005) 3–3

8. Kifer, M., Subrahmanian, V.S.: Theory of generalized annotated logic program-
ming and its applications. J. Log. Program. 12 (1992) 335–367

9. Leach, S.M., Lu, J.J.: Query processing in annotated logic programming: Theory
and implementation. J. Intell. Inf. Syst. 6 (1996) 33–58

10. Fitting, M.: Bilattices and the semantics of logic programming. J. Log. Program.
11 (1991) 91–116

11. Hlaoui, A., Wang, S.: A new algorithm for inexact graph matching. In: ICPR (4).
(2002) 180–183

12. Gergatsoulis, M., Lilis, P.: Multidimensional rdf. In: Proc. 2005 Intl. Conf. on
Ontologies, Databases, and Semantics (ODBASE). Volume 3761., Springer (2005)
1188–1205

Y. Sure and J. Domingue (Eds.): ESWC 2006, LNCS 4011, pp. 502 – 513, 2006.
© Springer-Verlag Berlin Heidelberg 2006

A Multilingual/Multimedia Lexicon Model for Ontologies

Paul Buitelaar1, Michael Sintek2, and Malte Kiesel2

1 DFKI GmbH, Language Technology, Stuhlsatzenhausweg 3,
66123 Saarbruecken, Germany

paulb@dfki.de
2 DFKI GmbH, Knowledge Management, Erwin-Schrödinger-Straße,

67608 Kaiserslautern, Germany
{sintek, kiesel}@dfki.de

Abstract. Ontology development is mostly directed at the representation of
domain knowledge and much less at the representation of textual or image-
based symbols for this knowledge, i.e., the multilingual and multimedia lexicon.
To allow for automatic multilingual and multimedia knowledge markup, a
richer representation of text and image features is needed. At present, such in-
formation is mostly missing or represented only in a very impoverished way. In
this paper we propose an RDF/S-based lexicon model, which in itself is an on-
tology that allows for the integrated representation of domain knowledge and
corresponding multilingual and multimedia features.

1 Introduction

Ontologies define the semantics for a set of objects in the world using a set of classes,
each of which may be identified by a particular symbol (either linguistic, as image, or
otherwise). In this way, ontologies cover all three sides of the “semiotic triangle” that
includes object, referent, and symbol, i.e., an object in the world is defined by its
referent and represented by a symbol (Ogden and Richards, 1923 – based on Peirce,
de Saussure and others).

Currently, ontology development and the Semantic Web effort in general have
been mostly directed at the referent side of the triangle, and much less at the symbol
side. To allow for automatic multilingual and multimedia knowledge markup a richer
representation is needed of the linguistic and image-based symbols for the object
classes that are defined by the ontology. At present, such information is mostly miss-
ing or represented only in a very impoverished way, leaving the semantic information
in an ontology without a grounding to the human cognitive and linguistic domain. For
instance, according to the collection of ontologies available through OntoSelect1 (see
Buitelaar et al., 2004), currently only about 9% of ontologies represent multilingual
terms for classes and/or properties.

Linguistic symbols, i.e., simple words or more complex terms, are represented in a
lexicon that provides the meaning of these words or terms, besides a more or less

1 http://olp.dfki.de/OntoSelect/

 A Multilingual/Multimedia Lexicon Model for Ontologies 503

extensive representation of their linguistic features, e.g., if the word is a noun or a
verb, if it is atomic or can be split into multiple words, etc. Similarly, a lexicon of
images can be defined that represent which prototypical image, or more precisely,
which set of image features corresponds to which ontology class. Here, we will dis-
cuss a multilingual/multimedia lexicon model that will allow for the representation of
linguistic and image symbols for ontology classes and properties.

2 Ontologies and Multilingual/Multimedia Features

An ontology describes a knowledge model of a particular domain of discourse at a
particular point of time and is shared between two or more actors in the domain. As
the ontology defines the agreed semantics of the domain, all relevant content will be
marked-up with knowledge according to the ontology. The definition of the ontol-
ogy in turn depends primarily2 on the content that has already been interpreted.
Accordingly, content production and interpretation will drive the adaptation of the
ontology infrastructure, and ontology adaptation will drive content interpretation
and production.

In order to arrive at such a continuous ‘hermeneutic cycle’ of content and knowl-
edge production and interpretation, a rich representation of domain knowledge and
content features is needed. Here we propose an integrated approach that organizes
content and knowledge in several layers:

• content layer (outermost layer)
This layer consists of multilingual (text documents) and multimedia data (images,
video and/or mixed image and text documents).

• features layer (1st inner layer)
This layer consists of extracted features for the data in the content layer. For
multilingual data, this ranges from comparatively informal feature vectors
gathered by use of statistical methods to formalized descriptions of the content of
text documents, typically extracted by use of natural language processing and
information extraction methods. For multimedia data, this will be mostly limited
to informal features as used in color histograms and similar.

• feature association layer (2nd inner layer)
This layer consists of ontology-based representations of the multilingual and
multimedia features also occurring in the features layer. While in the features
layer features are associated with multilingual and multimedia data, in the fea-
ture association layer the features are associated with ontology classes and re-
lations.

• ontology layer (central layer)
This layer consists of ontology classes and relations, with which the data in the
content layer is to be interpreted (i.e., annotated) by use of the extracted and rep-
resented features in the features layer and the feature association layer.

2 Aside from more generic knowledge of the physical world, time, space, etc. that will be inher-

ited from an upper-level ontology.

504 P. Buitelaar, M. Sintek, and M. Kiesel

onto-
logy

Images

Other
Media

content

features
English

Text

German
Text

…

informal

fo
rm

al

inform
al

formal

feature
associations

inf
or

mal

formal

form
al

formal

informal

informal

Fig. 1. Interacting Layers in Feature Extraction and Representation

3 Towards an Ontology-Based Representation of Multilingual and
Multimedia Features

In the following, we describe how to represent multilingual and multimedia features
in ontologies and how to link them to ontology concepts.

3.1 Representation of Multilingual and Multimedia Features

Multilingual features consist of a list of term variants - for each language covered by
the ontology - with lexical and context information for each term:

• language-ID: ISO-based unique identifier for the language of each term
• part-of-speech: (possibly ISO-based) representation of the part of speech of

the head of the term
• morphological decomposition: representation of the morphological structure

(segments, head, modifiers) of a term
• syntactic decomposition: representation of the syntactic structure (segments,

head, modifiers) of a term
• statistical and/or grammatical context model: representation of the linguistic

context of a term in the form of N-grams, grammar rules or otherwise

Multimedia features will be represented by MPEG-7 descriptors (see also Petridis et
al., 2004) for properties such as:

 A Multilingual/Multimedia Lexicon Model for Ontologies 505

• color: color space, structure, layout; dominant color, scalable color
• texture: homogeneous texture, texture browsing, edge histogram
• shape: contour-based, region-based, 3-D, multiple-views

3.2 Annotating Ontology Classes with Multilingual and Multimedia Features

To represent terminology in different languages as well as multimedia features, we
created an RDF/S-based domain knowledge representation introducing meta-class
ClassWithFeats and meta-property PropertyWithFeats, as shown in
Figure 2. Using meta-classes and meta-properties allows us to connect content fea-
tures to classes and properties directly. In ontology tools such as Protégé (Noy et al.,
2001), using ClassWithFeats as meta-class for a domain class results in addi-
tional widgets getting displayed along with the standard class widgets such as Name
and Documentation. In these new widgets, the features of the corresponding class or
property can be entered, populating the feat:lingFeat and feat:imgFeat
properties for each class.

rdfs:subClassOf

rdfs:Class

feat:ClassWithFeats
feat:lingFeat
feat:imgFeat

if:ImgFeat
if:color

if:texture
…

lf:LingFeat
lf:term
lf:lang

…

feat:PropertyWithFeats
feat:lingFeat
feat:imgFeat

meta-classes

classes

Fig. 2. ClassWithFeats and PropertyWithFeats

For instances, we attached the feat:lingFeat property to the root class of the
domain ontology. This way every instance of the knowledge base can get annotated
with linguistic information, e.g., allowing representation of language-dependent
names. The same can be done with the feat:imgFeat property.

The integrated ontology-based feature representation we propose is based on ongo-
ing work in the context of the SmartWeb3 project on mobile Semantic Web access for
intelligent information services in the soccer domain. The proposed feature represen-
tation is currently used in the SmartWeb ontology on sports events and related issues
(see also section 5).

Figure 3 shows the ontology with example (domain) classes and associated linguis-
tic and image features: the ontology contains the class o:FootballPlayer with
subclasses o:Defender and o:Midfielder. All these classes are instances of
the meta-class feat:ClassWithFeats which allows them to use the feature-
association properties feat:lingFeat and feat:imgFeat.

3 http://www.smartweb-project.de/

506 P. Buitelaar, M. Sintek, and M. Kiesel

rdfs:
subClassOf

rdfs:subClassOf

meta-classes

classes

rdfs:Class

feat:ClassWithFeats

o:FootballPlayer
feat:ClassWithFeats

o:Midfielder
feat:ClassWithFeats

feat:imgFeat
feat:lingFeat

if:ImgFeat

lf:LingFeat

rdfs:Class

rdfs:Class

lf:lang “de”
lf:term “Mittelfeldspieler”
…

lf:LingFeat

if:color “#111111”
lf:texture “&keypatchSet_223
…

if:ImgFeat

URI
rdf:type

property ...Le
ge

nd

o:Defender
feat:ClassWithFeats

feat:lingFeat

lf:lang “de”
lf:term “Abwehrspieler”
…

lf:LingFeat

...

...

instances

Fig. 3. Ontology and Examples (simplified) – Defender, Midfielder

Figure 4 depicts the part of our ontology in detail that deals with the representation
of linguistic features, which is mainly the morphosyntactic decomposition of phrases
and word forms down to stems, roots, morphemes, affixes etc. Apart from having
linguistic properties like gender, number, part of speech, case, etc., word forms have
the property semantics which is a back link into the ontology allowing semantics
to be assigned to them.

LingFeatlingFeat

PropertyWithFeats
LingFeatlingFeat

PropertyWithFeats

LingFeatlingFeat

ClassWithFeats
LingFeatlingFeat

ClassWithFeats

{en_US, en_GB, en, de, fr, ...}lang

Literalterm

PhraseOrWordFormmorphSyntDecomp

LingFeat

{en_US, en_GB, en, de, fr, ...}lang

Literalterm

PhraseOrWordFormmorphSyntDecomp

LingFeat

{modifier, head, negModifier}function

IntegeranalysisIndex

PhraseOrWordForm

{modifier, head, negModifier}function

IntegeranalysisIndex

PhraseOrWordForm

PhraseOrWordFormphraseAnalysis

Literalphrase

{S, NP, AP, PP, VG}phraseCategory

Phrase

PhraseOrWordFormphraseAnalysis

Literalphrase

{S, NP, AP, PP, VG}phraseCategory

Phrase

{singular, plural}number

LiteralorthographicForm

{Adj, Verb, Noun, ...}partOfSpeech

Rootroot

Resourcesemantics

{neuter, female, male}gender

Literalcase

WordForm

{singular, plural}number

LiteralorthographicForm

{Adj, Verb, Noun, ...}partOfSpeech

Rootroot

Resourcesemantics

{neuter, female, male}gender

Literalcase

WordForm

Affixinflection

WordFormwordForm

InflectedWordForm
Affixinflection

WordFormwordForm

InflectedWordForm

WordFormisComposedOf

Stem
WordFormisComposedOf

Stem

RootRoot

AffixAffix LiteralorthographicForm

Morpheme
LiteralorthographicForm

Morpheme

is-a

is-a

is-a

is-a

is-a

is-a

...

Fig. 4. Linguistic Features in Detail

Figure 5 shows a sample application of this part of the ontology, the decomposition
of the German term “Fußballspielers” (= “of the football player”): inst1 indicates
that is an inflected word form (where the inflection is for forming the genitive) with

 A Multilingual/Multimedia Lexicon Model for Ontologies 507

stem “Fußballspieler” (inst2, “footballplayer”), which can be decomposed into
two stems, “Fußball” (inst3 , “football”) and “Spieler” (inst8 , “player”); this is
recursively continued for “Fußball” which is composed of the stems “Fuß” and “Ball”
(inst5 and inst7, “foot” and “ball”).

Fußballspielersterm
morphSynDecomp

delang
inst0 : LingInfo

wordForm
…

singularnumber
FußballspielersortographicForm
NounpartOfSpeech

malegender
genitivecase

inst1 : InflectedWordForm

isComposedOf
…

singularnumber

FußballspielerortographicForm
NounpartOfSpeech

malegender
nominativecase

inst2 : Stem

root

FußballorthographicForm

modifierfunction
isComposedOf

semantics

...

1analysisIndex
inst3 : Stem

root
…

SpielerorthographicForm

…

2analysisIndex
inst8 : Stem

SpielerorthographicForm
…

inst1 : Root

inst7 : Stem (Ball)

inst5 : Stem (Fuß)

inst4 : Root (Ball)

inst6 : Root (Fuß)

o:BallObject

Fig. 5. Morphosyntatic Decomposition of “Fußballspielers”

4 Comparison with Related Work

The multilingual/multimedia lexicon model we propose has some overlap with related
proposals, of which we discuss the most prominent ones here:

• SKOS: Simple Knowledge Organization System
• OntoWordNet
• LMF: Lexical Markup Framework

Of these, SKOS originates out of the W3C working group on “Best Practices for the
Semantic Web”4, whereas LMF is a working draft of the ISO working group on Lan-
guage Resources Management TC37/SC45 (Francopoulo, 2006).

4 http://www.w3.org/2001/sw/BestPractices/
5 http://www.tc37sc4.org

508 P. Buitelaar, M. Sintek, and M. Kiesel

4.1 SKOS - Simple Knowledge Organization System

Although there is some overlap with SKOS6 (Miles and Brickley, 2005a, 2005b), the
proposed representation is richer as it will include not only multilingual terms for
classes (and properties) but also multimedia features and context models.

However, more specifically there is also a technical and conceptual reason why
SKOS does not fulfill the needs of our scenario7: SKOS uses sub-properties of
rdfs:label (skos:prefLabel, skos:altLabel) together with
xml:lang to attach multilingual terms to concepts.

Furthermore, the RDFS specification8 (Brickley and Guha, 2004; Hayes, 2004) de-
fines the range of rdfs:label to be rdfs:Literal. From the definition of
rds:subPropertyOf follows that the range of skos:prefLabel and
skos:altLabel is also rdfs:Literal (or a specialization of
rdfs:Literal). This is not sufficient in our scenario since we want to attach more
information as linguistic information to classes than simple multilingual strings. This
led to our decision to use the meta-class ClassWithFeats, which allows us to at-
tach complex information to classes with the properties lingFeat and imgFeat (in
the future, more properties will be defined for other media types like audio and video).

The conceptual problem we see with SKOS for the use in our scenario is that it
mixes linguistic and semantic knowledge. SKOS uses skos:broader and
skos:narrower to express “semantic” relations without clearly stating the seman-
tics of these relations intentionally, and defines the sub-properties
skos:broaderGeneric and skos:narrowerGeneric to have class sub-
sumption semantics (i.e., they inherit the rdfs:subClassOf semantics from
RDFS). We clearly keep the linguistic and semantic, ontology-based knowledge rep-
resentations apart: the ontology is represented using the semantic relations defined in
RDFS or OWL-Full9 (McGuinnes and van Harmelen, 2004), and attach linguistic
knowledge to the classes (and properties).

We further propose to integrate image-related features in this representation, which
is beyond the scope of SKOS. Note that SKOS uses foaf:depiction,
skos:prefSymbol, and skos:altSymbol to attach images to concepts, but not
complex feature descriptions.

4.2 Wordnets and OntoWordNet

Our approach in effect integrates a domain-specific multilingual wordnet into the
ontology, although also the wordnet model does not distinguish clearly between lin-
guistic and semantic information - see e.g. (Miller et al., 1995) on WordNet and
(Vossen, 1998) on EuroWordNet.

6 http://www.w3.org/TR/swbp-skos-core-guide/
7 In fact, our argumentation applies to all approaches based on rdfs:label and xml:lang

to attach multilingual labels to classes and relations.
8 http://www.w3.org/TR/rdf-schema/
9 OWL Lite and OLW DL do not support meta-classes and meta-properties (see

http://www.w3.org/TR/owl-features/)

 A Multilingual/Multimedia Lexicon Model for Ontologies 509

Alternative lexicon models that are more similar to our approach include (Bateman
et al., 1995; Alexa et al., 2002), but these concentrate on the definition of a top ontol-
ogy for lexicons instead of text/image features for domain ontology classes and prop-
erties as in our case. This is also the main difference with the proposed OntoWordNet
model (Gangemi et al., 2003), which aims at merging the foundational ontology
DOLCE (Gangemi et al., 2002) with WordNet to provide the latter with a formal
semantics.

4.3 LMF – Lexical Markup Framework

Closest to our goals is the LMF or Lexical Markup Framework by the ISO working
group on Language Resources Management TC37/SC4. “The goals of LMF are to
provide a common model for the creation and use of very large scale lexical re-
sources, to manage the exchange of data between and among these resources, and to
enable the merging of large numbers of different individual electronic resources to
form large global electronic resources. … The ultimate goal of LMF is to create a
modular structure that will enable true content interoperability across all aspects of
lexical resources.”

The main difference with LMF and the lexicon model proposed here is the strict
division of linguistic and semantic knowledge. In LMF these are integrated in the
same model by way of a lexical semantics slot, whereas in our model all lexical se-
mantics is to be found in the domain ontology - that is outside of the lexicon model
per se. On top of this, our model allows also for the representation of non-linguistic,
i.e. multimedia features.

Nevertheless, the aims and structure of LMF and our model are sufficiently similar
to investigate ways of merging the two proposals. We envision this as a potential
enrichment on both sides, as our model has a more principled approach to knowledge
representation that builds directly on current standards in this area (i.e. RDFS),
whereas the LMF model has a strong background in the representation of linguistic
knowledge.

5 Applications

The integrated LingInfo approach allows for cross-lingual, cross-media feature ex-
traction, representation and employment as follows:

• text2image - cross-lingual acquisition of German content features by use of rep-
resented English content features
i.e., if we know which terms express a class in English then we can build a classi-
fier for the classification of images that occur in the context of English terms for
this class

• image2text - cross-media acquisition of German content features by use of repre-
sented multimedia features
i.e., if we know which images represent instances for a specific class then we can
extract German terms for this class from surrounding German text

• text2text - cross-media acquisition of multimedia content features by use of rep-
resented English content features

510 P. Buitelaar, M. Sintek, and M. Kiesel

i.e., if we know which terms express a class in English and the context features
(i.e. words) for these terms and possible translations into German then we can
build a cross-lingual classifier for recognition of unseen German terms for this
class

• text2class, image2class - data-driven adaptation of domain knowledge represen-
tation for a class by use of represented English terminology
i.e., if we know which terms express a class in English and the context words for
these terms then we can detect a change in the semantic model for this class by
monitoring any change in the context words - similar with image feature models

5.1 Application of LingInfo in SmartWeb

LingInfo is developed and used within the SmartWeb project, which aims at the
development of a complex multi-modal question answering and dialog system that
derives answers from unstructured resources such as the Web, from automatically
acquired knowledge bases and from web services.

A central component is SWIntO, the SmartWeb Integrated Ontology (Oberle et al.
in prep.), which consists of three layers: the upper model DOLCE (Gangemi et al.,
2002), the domain-independent model SUMO (Niles and Pease, 2001) the SportE-
vents ontology, focused mainly on soccer, and further task ontologies. The SportE-
vents ontology contains about 400 direct classes, all of which are provided with
linguistic information as described above.

Enriching the ontology with linguistic information is an incremental process, by
which some information can be derived semi-automatically from annotated corpora.
In this way, lexicons (and grammars) of available tools are in effect tuned to the soc-
cer domain and become fully integrated with the SmartWeb ontology. Alternatively,
if such resources cannot be integrated into LingInfo (e.g. due to copyright problems),
pointers may be used to refer to external resources.

Multimedia information is not yet being added to the ontology on a larger scale,
but also here a semi-automatic approach will be explored that exploits automatically
annotated image collections - where the annotation is performed on the basis of the
textual context of the images (Buitelaar et al. 2006).

5.2 LingInfo in Information Extraction from Text

In the SmartWeb project, the LingInfo model is interfaced with the information ex-
traction (IE) system SProUT (Drozdzynski et al., 2004). Based on the information
encoded in LingInfo, we automatically extract gazetteer entries for named entities,
with back-references to the ontology. For terms associated with concepts, we recom-
pile the relevant parts of the ontology, including LingInfo, into a type hierarchy used
in the IE system. Thus, LingInfo information can be used to consistently identify and
mark up (inflected) occurrences of domain-relevant terms. The following example
may illustrate this. It displays an excerpt of the SWIntO ontology that has been com-
piled into a type hierarchy defined in TDL10, the representation language used by
SProUT:

10 Type Description Language – see (Krieger and Schäfer 1994) for details.

 A Multilingual/Multimedia Lexicon Model for Ontologies 511

PlayerAction :< SportMatchAction.

SingleFootballPlayerAction :< PlayerAction.

FootballTeamAction :< PlayerAction.

GoalKeeperAction :< SingleFootballPlayerAction.

AnyPlayerAction :< SingleFootballPlayerAction.

Properties associated with these concepts are translated to TDL attributes of the cor-
responding types, e.g. the property inMatch of the SWIntO class Sport-
MatchAction translates to the TDL attribute INMATCH that is inherited by all
subtypes of the TDL type SportMatchAction. The SWIntO property Commit-
tedBy that is defined for the SWIntO class SingleFootballPlayerAction
translates to a corresponding TDL attribute COMMITTEDBY of the TDL type
SingleFootballPlayerAction, and is again inherited by all its subtypes:

SportMatchAction := swinto_out & [INMATCH Football].

SingleFootballPlayerAction := swinto_out & [COMMITTEDBY
FootballPlayer].

Multilingual (e.g. German) terms that are encoded as LingInfo instances are compiled
into TDL lexical types:

“Teamaktion” :< FootballTeamAction.

“Spieleraktion” :< PlayerAction.

“Torwartaktion” :< GoalkeeperAction.

“Gesperrt” :< Banned.

SProUT extraction patterns can thus be triggered by lexical types, and define output
structures that correspond directly to the classes and properties of the SWIntO ontol-
ogy. For instance, the extraction rule below matches an extraction pattern for the
SWIntO (SportEvents) class BanEvent with attributes CommittedBy and In-
Match that is triggered for instance by the German LingInfo term “gesperrt”. Exam-
ple sentences from the SmartWeb development corpus11 to which this rule applies are
as follows:

“… ist Petrow für die Partie gegen Schweden gesperrt.” (“… has Petrow been
banned for the match against Sweden”)

“… ist David Trezeguet von der FIFA für zwei Spiele gesperrt worden.” (“… has
David Tezeguet been banned by FIFA for two matches”)

11 See also http://www.dfki.de/sw-lt/olp2_dataset/

512 P. Buitelaar, M. Sintek, and M. Kiesel

banned_player :>

@seek(player) & [IMPERSONATEDBY #player, INMATCHTEAM #team1]

(@seek(weekday_only) & [DOFW #dofw])? (token{0,2}
@seek(soccer_institutions))? token{0,3}
@seek(game_teams) & [INTOURNAMENT #tour, TEAM2 #team2] morph & [STEM banned, SURFACE #event])

-> playeraction &
[SPORTACTIONTYPE #event,
COMMITTEDBY footballplayer &

[IMPERSONATEDBY #player],
INMATCH match &

[INTOURNAMENT #tour, MATCHTYPE #match, TEAM1 #team1, TEAM2 #team2]].

Fig. 6. SProUT Extraction Rule for the SWIntO Class BanEvent

6 Conclusions and Future Work

In this paper we proposed a model for the representation of multilingual and multime-
dia content features in ontologies, which will allow for more efficient automatic proc-
essing of textual and image data in knowledge markup, ontology learning and other
applications such as dialog processing, summarization, machine translation, etc.

The model we propose clearly separates domain knowledge on sets of objects from
linguistic- and image-related knowledge on terms and images used for referring to
such objects. In this way, our proposal extends traditional knowledge representation
models used in ontology definition as well as current models used in defining compu-
tational lexicons (i.e. Wordnets) and thesauri (i.e. SKOS).

In future work we also intend to expand the model towards the representation of
multilingual and multimedia content features for instances. In this way, the knowl-
edge base for a given ontology will be able to represent the linguistic and/or image
context for extracted facts.

Acknowledgements

This research has been supported in part by the SmartWeb project, which is funded by
the German Ministry of Education and Research under grant 01 IMD01 A.

References

M. Alexa, B. Kreissig, M. Liepert, K. Reichenberger, L. Rostek, K. Rautmann, W. Scholze-
Stubenrecht, S. Stoye The Duden Ontology: an Integrated Representation of Lexical and
Ontological Information In: Proc. of the OntoLex Workshop at LREC, Spain, May 2002.

J. A. Bateman, R. Henschel and F. Rinaldi Generalized Upper Model 2.0: documentation
Report of GMD/Institut für Integrierte Publikations- und Informationssysteme, Darmstadt,
Germany, 1995.

D. Brickley, R.V. Guha (eds.) RDF Vocabulary Description Language 1.0: RDF Schema.
World Wide Web Consortium, 2004.

 A Multilingual/Multimedia Lexicon Model for Ontologies 513

P. Buitelaar, Th. Eigner, Th. Declerck OntoSelect: A Dynamic Ontology Library with Support
for Ontology Selection In: Proc. of the Demo Session at the International Semantic Web
Conference, Hiroshima, Japan, Nov. 2004.

P. Buitelaar, P. Cimiano, S. Racioppa and M. Siegel Ontology-based Information Extraction
with SOBA In: Proc. of the International Conference on Language Resources and Evaluation
(LREC), 2006.

W. Drozdzynski, H.-U. Krieger, J. Piskorski, U. Schäfer, F. Xu Shallow Processing with Unifi-
cation and Typed Feature Structures - Foundations and Applications. In Künstliche Intelli-
genz, 1/2004.

G. Francopoulo, M. George, N. Calzolari, M. Monachini, N. Bel, M. Pet, C. Soria Lexical
Markup Framework (LMF) In: Proc. of the International Conference on Language Re-
sources and Evaluation (LREC), 2006.

A. Gangemi, Guarino, N., Masolo, C., Oltramari, A. and L. Schneider. 2002. Sweetening On-
tologies with DOLCE. In Proceedings of the 13th International Conference on Knowledge
Engineering and Knowledge Management (EKAW), Siguenza, Spain, pp. 166-181.

A. Gangemi, Navigli R, Velardi P The OntoWordNet Project: extension and axiomatization of
conceptual relations in WordNet. Meersman R, et al. (eds.), Proceedings of ODBASE03
Conference, Springer, 2003.

P. Hayes (ed.) RDF Semantics. World Wide Web Consortium, 2004.
H.-U. Krieger and U. Schafer TDL---a type description language for constraint-based gram-

mars In Proceedings of the 15th International Conference on Computational Linguistics
(COLING), pp. 893-899, 1994.

D.L. McGuinness, F. van Harmelen (eds.) OWL Web Ontology Language Overview. W3C
Recommendation 10 February 2004.

A. Miles, D. Brickley (ed.) SKOS Core Vocabulary Specification. W3C Working Draft 10 May
2005a.

A. Miles, D. Brickley (eds.) SKOS Core Guide. W3C Working Draft 10 May 2005b.
G. A. Miller WORDNET: A Lexical Database for English. Communications of ACM (11): 39-

41, 1995.
I. Niles and Pease, A. Towards a standard upper ontology. In: FOIS '01: Proceedings of the

international conference on Formal Ontology in Information Systems, ACM Press (2001)
N. F. Noy, M. Sintek, S. Decker, M. Crubezy, R. W. Fergerson, & M. A. Musen. Creating

Semantic Web Contents with Protege-2000. IEEE Intelligent Systems 16(2):60-71, 2001.
D. Oberle, A. Ankolekar, P. Hitzler, P. Cimiano, C. Schmidt, M. Weiten, B. Loos, R. Por-

zel,H.-P. Zorn,M. Micelli, M. Sintek,M. Kiesel, B. Mougouie, S. Vembu, S. Baumann, M.
Romanelli, P. Buitelaar, R. Engel, D. Sonntag, N. Reithinger, F. Burkhardt, J. Zhou DOLCE
ergo SUMO: On Foundational and Domain Models in SWIntO (SmartWeb Integrated On-
tology), in preparation.

Ch. K. Ogden and I. A. Richards The meaning of meaning - A study of the influence of lan-
guage upon thought and of the science of symbolism. London: Kegan Paul, Trench, Trubner
& Co., 1923.

K. Petridis, I. Kompatsiaris, M. G. Strintzis, S. Bloehdorn, S. Handschuh, S. Staab and N.
Simou Knowledge Representation for Semantic Multimedia Content Analysis and Reasoning
In: Proc. of the European Workshop on the Integration of Knowledge, Semantics and Digital
Media Technology, Royal Statistical Society, London, 25-26 Nov. 2004.

Vossen P. (ed). EuroWordNet: A Multilingual Database with Lexical Semantic Networks.
Kluwer Academic Publishers, Dordrecht, 1998

Semantic Network Analysis of Ontologies

Bettina Hoser1, Andreas Hotho2, Robert Jäschke2,3,
Christoph Schmitz2, and Gerd Stumme2,3

1 Chair of Informationservices and Electronic Markets, School of Economics and Business
Engineering, Universität Karlsruhe (TH), Zirkel 2, D–76128 Karlsruhe, Germany

2 Knowledge & Data Engineering Group, Department of Mathematics and Computer Science,
University of Kassel, Wilhelmshöher Allee 73, D–34121 Kassel, Germany

3 Research Center L3S, Expo Plaza 1, D–30539 Hannover, Germany

Abstract. A key argument for modeling knowledge in ontologies is the easy re-
use and re-engineering of the knowledge. However, current ontology
engineering tools provide only basic functionalities for analyzing ontologies.
Since ontologies can be considered as graphs, graph analysis techniques are a
suitable answer for this need. Graph analysis has been performed by sociolo-
gists for over 60 years, and resulted in the vivid research area of Social Network
Analysis (SNA). While social network structures currently receive high attention
in the Semantic Web community, there are only very few SNA applications, and
virtually none for analyzing the structure of ontologies.

We illustrate the benefits of applying SNA to ontologies and the Semantic
Web, and discuss which research topics arise on the edge between the two areas.
In particular, we discuss how different notions of centrality describe the core
content and structure of an ontology. From the rather simple notion of degree
centrality over betweenness centrality to the more complex eigenvector centrality,
we illustrate the insights these measures provide on two ontologies, which are
different in purpose, scope, and size.

1 Introduction

A key argument for modeling knowledge in ontologies is the easy re-use and re-engi-
neering of the knowledge. However, beside consistency checking, current ontology
engineering tools provide only basic functionalities for analyzing ontologies. Since on-
tologies can be considered as (labeled, directed) graphs, graph analysis techniques are
a promising tool. Sociologists have performed graph analysis since for over 60 years.
In the late 1970ies, Social Network Analysis (SNA) emerged as a research area out
of this work. Its aim is to analyze the structures of social communities. Typical ap-
plications include the analysis of relationships like friendship, communication patterns
(e. g., phone call graphs), and the distribution of attendants over several events. While
social structures are currently a steeply rising topic within the Semantic Web commu-
nity (e. g., friend-of-a-friend networks,1 social tagging systems like del.icio.us.org or
www.bibsonomy.org, or semantics-based P2P networks [21]), Social Network Analysis
has only been applied marginally up to now on ontologies and the Semantic Web.

1 http://www.foaf-project.org/

Y. Sure and J. Domingue (Eds.): ESWC 2006, LNCS 4011, pp. 514–529, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Semantic Network Analysis of Ontologies 515

In this paper, we will discuss the use of SNA for analyzing ontologies and the Seman-
tic Web. While the SNA community has already discovered the internet and the Web as
fruitful application domains for their techniques a while ago (e. g., analysing the link
structure of the internet [16], and email traffic [17, 22, 25]), SNA applications for the
Semantic Web are only emerging slowly. We advocate here a systematic development
of Semantic Network Analyis (SemNA), as the adoption of SNA to ontologies and the
Semantic Web. In this paper, we show that the application of both basic and advanced
SNA techniques to ontologies provide a powerful tool for analyzing the structure of
the ontology. We adapt SNA tools to ontology analysis, and discuss the findings. In
particular, we discuss how different notions of centrality describe the core content and
structure of an ontology. From the rather simple notion of degree centrality over be-
tweenness centrality to the more complex eigenvector centrality based on Hermitian
matrices, we illustrate the insights these measures provide on two ontologies, which are
different in purpose, scope, and size. The results may be used for selecting the right
ontology for a specific application, as well as for re-engineering ontologies.

SemNA is a sub-area of Semantic Web Mining [4]. that addresses the mining of the
Semantic Web. To this end, we consider ontologies as (both vertex- and edge-)labeled,
directed graphs. As we will discuss below, the existence of different types of nodes and
edges (which are reflected in the labels) is a problem for standard SNA approaches. We
will discuss solutions for this problem. In this paper, we present two selected applica-
tions, and discuss the use of different SNA techniques for analyzing ontologies. The
examples will illustrate the deep insights we were able to gain from the two ontologies.

Testcases: SWRC and SUMO ontologies. The SWRC ontology2 provides a vocabu-
lary about publications, authors, academic staff and the like. It consists of 54 concepts
and 70 relations. Figure 1 shows a graphical representation of the ontology. Rectangles
represent concepts, relations are shown as rounded boxes.

We selected the SWRC ontology as our first example, as it is a handy size, and
as we know its structure rather well, since some of the authors have contributed to
its construction. We are thus able to validate the resulting SNA findings (which were
computed independently by the non-ontology author) with our insight in the history of
the SWRC ontology. The promising results (which were also surprising for the authors)
motivated us to consider a larger ontology, the SUMO ontology, where we only knew
about its general purpose, but no details about its structure nor its content.

The aim of the Suggested Upper Merged Ontology (SUMO)3 is to express the most
basic and universal concepts for creating a framework for merging ontologies of dif-
ferent domains. With its 630 concepts and 236 relations, SUMO is significantly larger
than the SWRC ontology. This information is about all we knew about SUMO when
performing our analysis. We are thus in exactly the situation of an ontology engineer
who wants to gain deeper insights to a previously unknown ontology.

Organization of the paper. This paper is organized as follows. In the next section,
we will provide a brief overview over the history and main lines of research in So-
cial Network Analysis. In Section 3, we will apply a representative selection of SNA

2 http://ontobroker.semanticweb.org/ontologies/swrc-onto-2001-12-11.oxml
3 http://www.ontologyportal.org/

516 B. Hoser et al.

techniques to a representative set of ontologies with different structures. In particular,
we will analyse the most central parts of the ontology, and will study the eigenvector
system assigned to the ontology. Section 4 addresses further applications of SNA for
the Semantic Web. In the conclusion, we summarize our experiences, and will discuss
the research issues that arise when applying SNA to ontologies and the Semantic Web.

2 Social Network Analysis

Already as early as the 1930’s Moreno [19] started to describe social relationships
within groups using so called sociograms. A sociogram is a graph where the mem-
bers of an observed population are represented as nodes and the relationships among
members as edges. The step from modelling relationships between entities of a graph
to a structural analysis of these graphs started by using the results from graph theory as
early as the 1960’s. Pioneers in this field are Harary, Norman and Cartwright [7]. To
use the tools of graph theory to analyze and thus describe structures of social networks
and to interpret these results in the context of anthropological and sociological contexts
was the major achievement of these researchers. The notion of Social Network Analysis
(SNA) was used to subsume all tools for methodological as well as functional analysis
of such group structures.

The two aspects of SNA, the functional aspect and the structural aspect, each high-
light a different perspective of research. The functional view focuses on how the func-
tion of a network is determined by the structure of a given network. Thus the question
of flow between nodes is very prominent. The structural view on the other hand is more
interested in the question of structure per se and what statements about a given network
can be made based on the analysis of structure alone. Both aspects can be viewed sep-
arately, but for some objects of interest, such as organizations, a combined approach
may be more appropriate. Since the use of SNA tools in the semantic web environ-
ment is just starting out, we will focus in this paper on the structuralist view on SNA,
in particular on different notions of centrality. The concept of centrality has many dif-
ferent branches. Just to name a few: in/out degree centrality, betweenness centrality,
information centrality, eigenvector centrality. For a good overview see [9].

Wasserman and Faust [26, p.205-219] describe to a great extent the history of rank
prestige index, which is an eigenvector centrality based concept. This index is based on
the idea, that the rank of a group member depends on the rank of the members he or
she is connected to. Stated in mathematical terms this yields the eigenvalue equation
(for an eigenvalue equal to 1). The components of the principal eigenvector are the rank
prestige indices of each group member. This concept is implemented in the hub-and-
authority algorithms of Kleinberg [15] and also in the PageRank algorithm proposed
by Page and Brin [6].

There have been different approaches to the analysis of unbalanced graphs. All con-
cepts work very well on undirected and unweighted graphs. But if none of these restric-
tions apply for a given graph, diffuculties arise. Freeman [10] proposed to use the possi-
bility to split any asymmetric square matrix into its symmetric and skew-symmetric part,
perform a singular value decomposition of the skew-symmetric matrix, and showed,
that the result could be interpreted as a ranking of dominance. Tyler et al. [25] could

Semantic Network Analysis of Ontologies 517

identify subgroups in unbalanced email networks by analyzing betweenness centrality
in the form of inter-community edges with a large betweenness value. These edges are
then removed until the graph decomposes into separate communities, thus re-organizing
the graph structure.

Barnett and Rice [2] showed that the transformation of asymmetrical data into ma-
trices that avoid negative eigenvalues may result in the loss of information. This is one
of the reasons why we will transform the adjacency matrix into a Hermitian matrix in
Subsection 3.3.

Beside considering the direction of links as discussed, the notion of a graph can be
refined in several ways. One-mode graphs consider just one type of nodes (e. g., par-
ticipants of an email network), while two-mode graphs distinguish between two types
of nodes (but still have only one type of edges), forming thus a bipartite graph (e. g.,
persons and events they are visiting). More general, n-mode graphs distinguish n types
of nodes. The edges may also be typed. Extending the definition of [26], we call a n-
mode multigraph with k edge types a graph where the nodes may be labeled with n
different types and the edges with k different labels. This reflects exactly the structure
of an (RDFS-based) ontology. Since the interpretation of such complex graphs is more
difficult, one often tries to preprocess the data in order to obtain a 1- or 2-mode graph
with only one relation, i. e., with one type of edges. Of course the chosen preprocessing
transformation has to be taken into account when interpreting the results.

To analyze networks more easily, several software tools have been developed. These
packages include, but are not limited to UCINet,4 Pajek,5 and Visone.6 There are also
packages for R7 and also some implementations in Java.8 For a good overview on SNA
and its history refer to Wasserman and Faust [26] and Freeman [11].

3 Network Analysis of Ontologies

Ontologies can be considered as n-mode multi-graphs with k edge types. As argued
above, n-mode multi-graphs with k edge types are hard to analyze when n is larger than
2 or 3, and k is larger than 1. Therefore we follow the usual approach of projecting them
first to a 1- or 2-mode 1-plex network. In the sequel of this section, we will first illustrate
the benefit of some basic SNA approaches, before performing a more sophisticated
analysis, based on the analysis of the eigenvectors of the adjacency matrix. To show
the diversity of results that can be expected from such an analysis, we will apply the
basic techniques to two different ontologies: the SWRC and the SUMO ontology, which
differ in purpose, scope, and size.

3.1 Preprocessing the Ontologies

As SNA works on graphs, we first transform the ontology into a suitable graph. As in
all knowledge discovery (KDD) applications (and probably more so than in the average

4 http://www.analytictech.com/ucinet.htm
5 http://vlado.fmf.uni-lj.si/pub/networks/pajek/
6 http://www.visone.info/
7 http://www.stat.ucl.ac.be/ISdidactique/Rhelp/library/sna/html/00Index.html
8 http://jung.sourceforge.net/index.html

518 B. Hoser et al.

KDD scenario), the interpretation of the final results is highly sensitive to the decisions
made during preprocessing.

A standard approach (which we use also) of turning n-mode networks with k edge
types into a (directed or undirected) graph is to collect all types of nodes into just one set
of nodes, and to ignore the edge types.9 We will keep the typing information, though,
and refer to it during the analysis.

As a first step, we set up a directed graph for the input ontology in the following
way: Technical artifacts were pruned from the ontology. In the KAON ontology API,10

which we used, these comprise the artificial root concept present in all ontologies, and
entities for lexical information such as labels and word stems. Each concept and each
property became a node in the graph. Between two concepts C1 and C2, a directed edge
(C1, C2) was added if C1 is a direct subconcept of C2. For each property node, edges
are added from the each domain concept to the property node, and from the property
node to each range concept (unless the property is scalar-valued or untyped), as well as
from the property to each superproperty.

The adjacency matrix A of this graph has one row and one column for each node. If
there is an edge from the ith to the jth node, then aij := 1, else aij := 0. This matrix
is the subject of our subsequent analysis. For the SWRC ontology, A has thus 54+70
rows and 54+70 columns, with entries 0 and 1. The matrix for the SUMO ontology is
structured in the same way, with 630 + 236 = 866 rows and columns in total.

3.2 Basic Methods of Network Analysis

The intuitive approach to analyze a network, represented as a graph G := (V, E) with
nodes (or vertices) v ∈ V and edges e ∈ E, is to start with the number of connec-
tions each node has. A node that has many connections is presumed to be important,
while a node without connections is presumed to be irrelevant. This concept is called
degree centrality. In the adjacency matrix A the degree centrality ck of a vertex in an
undirected graph can be calculated as the row or column sum ck =

∑n
l akl of A. If the

connection between two nodes has no directional preference this is just called degree.
If the relationship has an inherent direction, like in ’person A called person B’ then the
degree is categorized into in- (column sums) and outdegree (row sums) depending on
whether the connection ends at a node or starts at a given node.

The betweenness centrality is the (normalized) number of shortest paths between any
two nodes that pass through the given node. The betweenness centrality provides often
a high degree of information, as it describes the location of a node in the graph in a
global sense, while in- and outdegree consider the direct neighbor nodes only.

Based on the degree centrality we can define the density d of a network. Let the net-
work describe a non-directional relationship between nodes, then the density is defined
as the number of existing connections divided by the number N := |V |(|V |−1)

2 of all

possible edges as d = kl akl

N . Thus a completely connected network has a density

9 A more frequent way for handling different edge types is to perform a sequence of analyses,
one for each edge type. For ontologies, however, this approach is not suitable, as most edge
types (beside ‘is a’ and eventually ‘part of’) appear only once.

10 http://kaon.semanticweb.org/

Semantic Network Analysis of Ontologies 519

of 1. In the directed case one has to keep in mind that at most two connections are pos-
sible between two nodes. Thus the density dd becomes dd = kl akl

|V |(|V |−1) . This concept
is not useful anymore when multiple connections are allowed or when the connections
become valued or weighted, because no total number of possible connections can be
given in that case.

Another measure of how well a graph is connected is its diameter. For all pairs A,
B of nodes, we calculate the shortest path from A to B, and take then the maximum
over their lengths. The well-known small-world phenomenon states that social networks
have a small diameter. Diameter and density are used for comparing networks.

Global comparison of SWRC and SUMO. To analyze the given ontologies, we cal-
culated for each of them the diameter and the density of the network. The results are
shown in Table 1. These indices were generated using Pajek.

Table 1. Size, diameter, and density of SWRC and SUMO

concepts # relations diameter density
SWRC 54 70 16 0.015
SUMO 630 236 27 0.0024

Compared to typical social networks, the density of the SWRC ontology (0.015) is
very sparse. SUMO has an even sparser density with 0.0024. The fact that the difference
between both ontologies is approx. one magnitude, which is in the same ratio as their
difference in size, indicates that the concepts in both ontologies have a similar number
of properties attached in average. It might be interesting to analyze more ontologies to
check whether this is some kind of constant stemming from ontology engineering prin-
ciples. We assume that ontologies are scale-free networks because of their construction.

For studying both ontologies in more details, we computed as next step for all their
nodes indegree, outdegree and betweenness centrality.

The SWRC ontology in detail. Table 2 shows the indegrees, outdegrees and between-
ness centralities of the nodes in the graph extracted from the SWRC ontology. While
the degrees could still be read from Fig. 1, the betweenness centrality has to be listed.

Considering the degrees only, one observes that the BibTeX part of the ontology was
modeled with the highest level of detail: BibTeX-related concepts such as ‘Book’ and
‘InCollections’ have high outdegrees (i. e. a large number of properties) but no indegree,
while the related properties such as ‘author’, ‘month’, and ‘address’ have large indegree.

Properties which apply to all kinds of publications, such as ‘title’ and ‘year’, have a
low degree, as they are attached to ‘Publication’ only and are inherited by its subclasses.
This is a result of the way we set up the adjacency matrix. An alternative way of setting
up the matrix is to model explicitly also the inherited attributes. This is an example for
the fact that the modeling step has to be taken into account for the interpretation of the
SNA results.

The betweenness centrality gives us a more global description of the roles of nodes
in the graph. For SWRC, it returns first of all ‘Organization’ and ‘Project’, followed in
short distance by Academic Staff’ and ‘Research Topic’. These are thus the concepts

520 B. Hoser et al.

Table 2. Degree and betweenness centrality of concepts (# 1–54) and relations (# 55–124)

Label do di bc
1 Academic Staff 10 4 0.102
2 Administrative Staff 1 0 0.
3 Article 7 0 0.
4 Assistant Professor 1 0 0.
5 Associate Professor 1 0 0.
6 Association 1 0 0.
7 Book 13 0 0.
8 Booklet 5 0 0.
9 Conference 2 0 0.
10 Department 2 0 0.
11 Development Project 1 1 0.004
12 Employee 2 4 0.025
13 Enterprise 1 0 0.
14 Event 6 9 0.019
15 Exhibition 1 0 0.
16 Faculty Member 1 3 0.013
17 Full Professor 1 0 0.
18 Graduate 1 1 0.016
19 In Book 13 0 0.
20 In Collection 14 0 0.
21 In Proceedings 12 0 0.
22 Institute 3 0 0.
23 Lecture 2 0 0.
24 Lecturer 1 0 0.
25 Manager 1 0 0.
26 Manual 6 0 0.
27 Master Thesis 1 0 0.
28 Meeting 4 1 0.001
29 Misc 3 0 0.
30 Organization 8 10 0.134
31 Person 7 5 0.024
32 PhDStudent 4 1 0.024
33 Ph DThesis 1 0 0.
34 Proceedings 9 0 0.
35 Product 2 3 0.017
36 Project 7 7 0.12
37 Project Meeting 1 0 0.
38 Project Report 2 0 0.
39 Publication 5 14 0.022
40 Report 2 2 0.005
41 Research Group 3 1 0.01
42 Research Project 1 1 0.004

Label do di bc
43 Research Topic 3 1 0.079
44 SoftwareComponent 2 0 0.
45 Software Project 2 0 0.
46 Student 2 3 0.027
47 Technical Report 3 1 0.014
48 TechnicalStaff 1 0 0.
49 Thesis 6 2 0.01
50 Topic 1 1 0.
51 Undergraduate 1 0 0.
52 University 3 2 0.041
53 Unpublished 3 0 0.
54 Workshop 2 0 0.
55 Abstract 0 1 0.
56 address 0 9 0.
57 Affiliation 1 1 0.019
58 AtEvent 1 1 0.
59 author 0 10 0.
60 booktitle 0 2 0.
61 carried Out By 1 1 0.009
62 carriesOut 1 1 0.033
63 Chapter 0 2 0.
64 cooperate With 0 2 0.
65 Date 0 2 0.
66 Dealt With In 1 1 0.004
67 Describes Project 1 1 0.004
68 Developed By 1 1 0.017
69 develops 1 1 0.006
70 edition 0 4 0.
71 editor 0 6 0.
72 Email 0 1 0.
73 employs 1 1 0.013
74 Event Title 0 1 0.
75 fax 0 1 0.
76 financedBy 1 1 0.009
77 Finances 1 1 0.033
78 Given By 1 1 0.
79 Has Part Event 1 1 0.
80 Has Parts 0 3 0.
81 hasPrice 0 1 0.
82 head 0 2 0.
83 Head Of 1 1 0.011
84 head Of Group 1 1 0.008

Label do di bc
85 homepage 0 1 0.
86 howpublished 0 2 0.
87 institution 0 0 0.
88 Is About 1 1 0.078
89 IsWorkedOnBy 1 1 0.069
90 Isbn 0 1 0.
91 Journal 0 1 0.
92 Keywords 0 1 0.
93 Location 0 2 0.
94 member 0 2 0.
95 member Of PC 1 1 0.01
96 month 0 11 0.
97 name 0 6 0.
98 Note 0 1 0.
99 number 0 6 0.
100 organization 0 4 0.
101 organizer Or Chair Of 1 1 0.01
102 Pages 0 4 0.
103 participant 1 1 0.001
104 phone 0 1 0.
105 Photo 0 1 0.
106 Price 0 1 0.
107 product 1 1 0.001
108 projectInfo 1 1 0.009
109 publication 0 2 0.
110 Publisher 0 5 0.
111 publishes 1 1 0.01
112 School 1 1 0.012
113 series 0 8 0.
114 source 0 1 0.
115 has student 1 1 0.002
116 Studies At 1 1 0.024
117 Supervises 1 1 0.023
118 supervisor 1 1 0.006
119 TechnicalReport 1 1 0.017
120 Title 0 2 0.
121 Type 0 3 0.
122 Volume 0 6 0.
123 Works AtProject 0 2 0.
124 Year 0 1 0.

Mean (Degree) 1.82 1.82 –
Std (Degree) 2.84 2.55 –

Fig. 1. The SWRC Ontology

that play a ‘bridging role’ in SWRC; they are used for describing (chains of) other
objects (these are the incoming edges), and they are described by (chains of) other
objects (the outgoing edges). From a database perspective, these are typical candidates
for joins in a query.

Semantic Network Analysis of Ontologies 521

Table 3. Highest out- and indegrees of SUMO concepts

Outdegree Indegree
Process 20 10
Object 15 21
RealNumber 13 15

Outdegree Indegree
BinaryObject 3 102
AsymmetricRelation 2 71
UnaryFunction 3 54

The SUMO ontology in detail. We also computed the list of in, out and between
degrees of the concepts and relations of the SUMO ontology. Due to space restrictions,
we omit this list. The means of in- and outdegree (which are obviously equal, as each
outgoing edge has to go in somewhere) are at 2.07. The standard deviation is 1.67 for
the outdegrees, and 5.8 for the indegrees. The large difference of the standard deviations
indicates a heterogeneity in the way of modeling.

When looking at the concepts and relations with out- and indegrees differing largely
from the mean, this heterogeneity can be explained. The highest indegree has the con-
cept ‘BinaryPredicate’ (di = 102), and the highest outdegree has the concept ‘Process’
(do = 20). The former shows that this technical notions is important for the designers
of the ontology. However, this concept is conceptually not part of the domain of interest
of the ontology, but rather a meta-construct. If the KR language permitted different arity
relations, this would be modeled with language constructs and not by reification. The
latter, on the other hand, indicates that ‘Process’, which is indeed a concept of the do-
main of interest, is modelled in a high level of detail by providing many properties that
a process can have. As in the SWRC ontology, the betweenness centrality emphasizes
more on the conceptual part of the ontology: the top node according to this measure
is ‘Object’, followed by ‘Formula’, ‘Entity’, ‘Physical’, ‘List’, ‘Process’. These are the
central nodes of the SUMO ontology.

3.3 Eigensystem Analysis

Compared to the centrality measures described so far, the eigensystem of the adjacency
matrix provides an overall view of the network, while still allowing a very detailed
structure analysis of its parts.

Eigenvector centrality measurements have become a standard procedure in the analy-
sis of group structures. Mostly symmetric (dichotomized) data has been used. Bonacich
and Lloyd [5] present an introduction of the use of eigenvector-like measurements of
centrality for asymmetric data. The analysis of directed, weighted, asymmetric relation-
ships within a social network poses some difficulties. In this paper we will use a method
based on the status (rank prestige) index method [26, p.205-219], that was adapted by
the first author to complex adjacency matrices. We sketch the principal approach here
(the technical details are presented in [13] and [14]) and adapt it to the analysis of
ontologies.

In the following, we consider an ontology as a network which can be modeled as a
directed, weighted graph G = (V, E) with V denoting the set of nodes or members and
E denoting the set of edges, links or communications between different members. Self
references (loops) are excluded.

We use the following construction rules for a complex adjacency matrix H of the
initial graph G: First, we construct a square complex adjacency matrix C with n nodes
from the possibly weighted real valued adjacency matrix A of graph G by C = A+ iAt

522 B. Hoser et al.

with akl = m+ip where m is the number of outbound edges (or equivalently the weight
of the outbound edge) from node k to node l, p is the number of inbound edges (or
equivalently the weight of the inbound edge) from node l to node k, and i is representing
the imaginary unit (i2 = −1). As can be seen, ckl = iclk holds. Then we rotate C by
multiplying it with e−i π

4 in order to obtain a Hermitian matrix H , i. e., H := C · e−i π
4 .

For the proof see [14].
The fact that the resulting matrix is Hermitian has the advantage that it has full rank

and thus a complete orthogonal eigenbasis can be found. The consequence is that H can
be represented by a Fourier sum as the sum of all orthogonal projectors Pk = xkx∗

k,
weighted by the corresponding eigenvalue λk: H =

∑n
k=1 λkPk. Since all eigenvalues

are real, they can be sorted by absolute value. In addition the eigenvalue can be used
to calculate the covered data variance. These characteristics can be used to analyze a
network structure at different levels of relevance as will be shown later in this paper.

Under this similarity transformation the coordinate independent characteristics of
the original directional patterns are kept, no information is lost. For instance, more
outbound than inbound links lead to a negative sign of the imaginary part of hkl, while
more inbound than outbound links lead to a positive sign of the imaginary part of hkl.
Now one can analyze the eigensystem of the matrix H in order to gain insights into the
structure of the underlying ontology.

Eigensystem analysis of the SWRC ontology. We start by using the adjacency matrix
A for the SWRC ontology from subsection 3.2, and construct the matrix H as described
above. This matrix is the subject of further examination.

Let us first have a look at the distribution of the eigenvalues of H as shown in Fig. 2.
The diagram suggests a symmetry in the spectrum. This indicates that major compo-
nents of the network are star like in structure. As the concept hierarchy of SWRC is a
tree, this hierarchy has a snowflake structure if considered as graph. Hence our obser-
vation that stars are predominant indicates that the concept hiararchy has a more impor-
tant influence on the overall structure of the SWRC ontology than the non-hierarchical
relationships.

Fig. 3 displays the cumulative covered variance of the ontology. One can see that the
first two eigenvalues cover already 29 % of the variance of the system, that it has a clear

Fig. 2. Eigenspectrum of the ontology
sorted by value

20 40 60 80 100 120
k

0.2

0.4

0.6

0.8

1

σ2
c,K

Fig. 3. Cumulative covered variance σ2
c,K

of the SWRC ontology by eigenvalues λk

Semantic Network Analysis of Ontologies 523

distance to the following eigenvalue, and that the first 14 eigenvalues cover approx.
70 % of the overall variance. The remaining eigenvalues contribute marginally only.

In Fig. 4 we now take a more detailed look at the eigenvectors and their components.
The lefthand side gives the eigenvalues of each eigenvector, the righthand side gives
covered data variance, each eigenvector is represented horizontally with the components
numbered 1 through 125 on the bottom, and each eigenvector component is represented
as a colored (or gray scaled) field.

The eigenvector components are complex valued, indicating in the phase of the com-
plex number the direction of the connection with respect to the central node,and in the
absolute value the relevance of the node in this eigenvector. The color representation
lends itself naturally. The absolute value of the component is given by the brightness
of the colored field. In gray scales an absolute value of 0 or near 0 is black, while an
absolute value close to 1 is bright or has a saturated color. The phase of the complex
number is represented by color where a phase of 0 is given as red and counter clock-
wise π

4 is yellow, π
2 is yellow-green, 3

4π green,−π cyan,− 3
4π blue,−π

2 blue-magenta,
−π

4 magenta and coming back to red. Thus for example the field with the coordinates
1.0, 39 is bright red which indicates an eigenvalue with high absolute value and phase 0.

By checking for the largest eigenvector component in each of the eigenvectors (col-
ored red) corresponding to these eigenvalues we can see which concept/relation of the
ontology is most central: In the first eigenvector (i. e., the lowest row in Fig. 4, with
eigenvalue +1), the brightest color is in column 39, which is the concept ‘Publication’.
The fact that the same column shows in the eigenvector for the negative of the eigen-
value (i. e., in the second row from below, with eigenvalue −1) the same phase (as it
is red as well) indicates that the concept ‘Publication’ is the center of a star like struc-
ture. The concept ‘Organization’ (= column 29) follows (at some distance) with the
third and fourth eigenvector. This confirms that publications were in the key focus of
the developers of SWRC – a finding we were already pointed to when analysing the
in- and outdegrees in the previous subsection. In fact, this fits with the history of the
development of the SWRC ontology, which started by transforming the BibTeX format
into an ontology.

When looking further down the eigenvalues, we observe that of the three concepts
‘Academic Staff’, ‘Employee’ and ‘Person’, ‘Academic Staff’ already becomes relevant
in the fifth eigenvector, while ‘Person’ becomes relevant as late as the 11th eigenvector.
‘Employee’ does not feature as a central concept in any eigenvector. This observation
raises the question if the concepts ‘Employee’ and ‘Person’ are really needed by the
applications the SWRC ontology is targeted to, or if they eventually have just been
added because ‘one is usually doing so’ when designing an ontology.

In Fig. 4, we observe also that the concept ‘Academic Staff’ interlaces with ‘Or-
ganisation’, ‘Project’ and ‘Person’. This behavior is visible by observing that while
‘Academic Staff’ is colored red in the fifth eigenvector (eigenvalue −0.52), it changes
color already in the next line and goes back to red again in line 10 and again in line 14.
The three other concepts are colored red in the remaining eigenvectors in between. The
absolute values of the eigenvalues do not come in strict pairs of equal absolute value
but different sign, thus the three star like structures can not be clearly separated into
blocks. The pattern of connection of AcademicStaff to the rest of the network is not

524 B. Hoser et al.

0 20 40 60 80 100 120

1.0
-1.00
0.58

-0.57
-0.52
0.51
0.47

-0.47
-0.46
0.46
0.44

-0.44
0.43

-0.42

EW

0.14
0.28
0.33
0.38
0.42
0.45
0.49
0.52
0.55
0.58
0.61
0.63
0.66
0.69

σ2
k

Fig. 4. The 14 strongest eigenvectors of the ontology

125
121
118
115
112
107
100
92
90
87
81
63
55
51
47
44
40
37
32
27
24
17
5
2

105
103
93
78
73
69
46
31
65
54
23
14

108
88
77
66
42
11

117
101
84
64
1

76
61
52
30
13
6

113
102
96
70
56
39
26
20
8
3

124
120
116
114
111
106
98
91
89
86
74
60
53
48
45
43
38
33
29
25
18
16
4
119
104
97
85
75
72
50
35
79
58
28
15
9
94
82
67
62
36
123
109
95
83
12
80
68
57
41
22
10
122
110
99
71
59
49
34
21
19
7

Fig. 5. Back rotated partial sum of first two eigenprojectors

easily explained. The pattern of AceademicStaff is distrubed by other structures that
have approximately the same amount of connections, thus seperating the eigenvalues.

When considering the eigenvectors of the 36th to 44th eigenvalue (which are out
of Fig.4 due to space restrictions), we observe that the concepts ‘Assistant Professor’,
‘Associate Professor’, and ‘Full Professor’ (columns 4, 5, and 17) behave identically
with respect to ‘Faculty Member’ (column 16). As these three concepts are also very
similar from an ontology engineering point of view, we take this as a hint that, in a re-
engineering step, they should be unified to a single concept, with an additional attribute
like ‘status’.

Finally, we take a look at the partial sums as described earlier. In Fig. 5 we see the
partial sum of the Fourier sum of the first two eigenprojectors weighted by

Semantic Network Analysis of Ontologies 525

125
121
118
115
112
107
100

92
90
87
81
63
55
51
47
44
40
37
32
27
24
17
5
2

105
103

93
78
73
69
46
31
65
54
23
14

108
88
77
66
42
11

117
101

84
64
1

76
61
52
30
13
6

113
102

96
70
56
39
26
20
8
3

124
120
116
114
111
106
98
91
89
86
74
60
53
48
45
43
38
33
29
25
18
16
4
119
104
97
85
75
72
50
35
79
58
28
15
9
94
82
67
62
36
123
109
95
83
12
80
68
57
41
22
10
122
110
99
71
59
49
34
21
19
7

Fig. 6. Back rotated partial sum of first 14 eigenprojectors

their eigenvalues and rotated back (
∑2

k=1 λkPk). This figure was generated by using
an adapted k-means cluster algorithm based on the eigensystem. To define the initial
cluster centers we use the eigenvector components with the highest absolute value of
those eigenvectors that have a negative eigenvalue. We further restrict the selection to
all those eigenvectors where the eigenvalues add up to explain data variance to a pre-
defined level of 70%. Thus we do not need to set the number of clusters ex ante. An
approximated block matrix is generated when we then sort the eigenvectors and re-
arrange the eigenvector components accordingly before calculating the eigenprojector.
Since the matrices are hermitian, the blocks are symmetric but different in color. The
color-coding is the same as in Fig. 4. What is clearly visible is the BibTeX structure
as a block in the upper left hand corner. It shows a very strong outbound connection
from concepts like ‘Book’, ‘InBook’, etc. to Publication’, ‘address’ and ‘edition’ for
example.

If we now take the partial sum of the first 14 eigenprojectors we bring more detail
to the picture. In Fig. 6 we see in addition to the BibTeX block five right angles in the
matrix plot. These five structures belong to the concepts of ‘Organisation’, ‘Academic
Staff’, ‘Project’, ‘Event’ and ‘Person’. As this matrix can be read as a ‘partial adjacency
matrix’, such right angles are the structure one expects for stars in the graph: one cen-
tral node pointing from/to several nodes around it. Different to the BibTeX block that
is visible in the upper left hand corner, these concepts play thus a central role in their
surroundings. The color of the horizontal part of the angle indicates the direction: for
‘Organization’, it is green, hence this concept has many inbound edges – its subcon-
cepts. The red color for ‘Acadamic Staff’ comes from its many outbound properties.
‘Project’, ‘Event’ and ‘Person’ have both incoming and outcoming edges/properties.

526 B. Hoser et al.

Eigensystem analysis of the SUMO ontology. The eigensystem of the SUMO ontol-
ogy differs significantly from the one of SWRC. Not only because the SUMO ontology
is modeled as a graph with more then 800 nodes, but if differs in that this ontology does
not have such a very prominent center.

Fig. 7. Eigenspectrum of the SUMO ontol-
ogy sorted by value

200 400 600 800
k

0.2

0.4

0.6

0.8

1

σ2
c,K

Fig. 8. Cumulative covered variance σ2
c,K

of the SUMO ontology by eigenvalues λk

The spectrum of SUMO (given in Fig. 7) shows – as in the SWRC case – a very
strong symmetry, thus suggesting star like structures which come again from the con-
cept hierarchy where several subconcepts all point to their common superconcept. Dif-
ferent to SWRC, the cumulative covered variance (Fig. 8) shows a rather slow incline.
While the first two eigenvalues of the SWRC ontology covered already 29% of the data
variance, the first two eigenvalues of SUMO cover only about 10 %. The incline then
goes without any obvious steps. This suggests that many concepts need to be taken into
account to explain the complete ontology. Otherwise said, the degree of detail in SUMO
seems to be more balanced than in SWRC.

Due to space restrictions, we cannot display the equivalents of Figs. 4 to 6 for SUMO
here. We only present the major insights of our analysis verbally. The concept ‘Binary
Predicate’ contributes most to the interpretation of the first two eigenvectors. ‘Asym-
metric Relation’ seems to follow the same pattern in connecting to other nodes. Thus it
is the second strongest concept in the first two eigenvectors. The fact that these two con-
cepts also have a high absolute value in the following six eigenvectors further indicates
that these two concepts also contribute to a high extent to the interpretation of these pat-
terns. This might tells us that, in SUMO, these two concepts play a predominant role.

The third and fourth eigenvectors are most strongly influenced by the concepts
‘Unary Function’, ‘Total Valued Relation’ and ‘Unit of Measure’. These three con-
cepts have similar incoming connections from many concepts which are all of the
form‘. . . Fn’. This can be taken as a hint that these bundles of relations could be unified
if there were a suitable construct in the KR formalism.

Concluding this section, we summarize that the out-/indegree analysis (and in partic-
ular the different differences of the standard deviations for out- and indegree) showed us
that SUMO is more heterogenous in its way of modeling (due to the lack of a construct
for higher-arity relations in the KR language) than SWRC, but that it is – according
to the eigensystem analyis – more homogenous in the distribution of the coverage of
different sub-domains of interest.

Semantic Network Analysis of Ontologies 527

4 Other Applications of SNA in the Semantic Web Context

There are interesting first results from emerging SNA applications in the Semantic Web
context. Mike [18] defines a model of semantic-social networks for extracting light-
weight ontologies from folksonomies. Besides calculating such measures as the cluster-
ing coefficient, (local) betweenness centrality or the network constraint on the extracted
one-mode network, Mika uses co-occurence techniques for clustering the concept net-
work. Stuckenschmidt [23] uses network analysis to partition an ontology into a disjoint
and covering set of concepts. After creating a dependency graph of the ontology and
computing the strength of the dependencies the line island method [3] is used to deter-
mine strongly related concepts. These are then used to form a partition of the ontology
graph. The tool Ontocopi described in [1] performs what is called Ontology Network
Analysis for initially populating an organizational memory. Several network analysis
methods are applied to an already populated ontology to extract important objects. In
particular, a PageRank-like [6] algorithm is used to find communities of practice of
individuals represented in the ontology.

Another field of interest regarding SemNA are Friend Of A Friend (FOAF)11 net-
works which are studied for instance in [20] and [8]. Both articles focus on analysing
the structure of the social network yielded by a large collection of FOAF documents.

5 Conclusion

In this paper, we have shown that Social Network Analysis provides a promising set of
tools for analyzing ontologies and Semantic Web applications, providing deep insights
into the structure of ontologies and knowledge bases. In particular, we have seen that
the analysis of a given ontology can be done very thoroughly at different levels of
granularity.

While the degree based measures from SNA already give an insight into the im-
portance of certain concepts and properties of the ontology, the eigenvector analysis
provides a detailed analysis of the importance of entities and the structure of the on-
tology. Little used “dummy” concepts, as well as candidates for concept fusion can be
detected, and the topical clusters within the ontology and their structure can be shown
using the eigenprojectors. The analysis is also useful for selecting the right ontology
for reuse from a set of candidate ontologies. The eigenvalue analysis provides deep in-
sights into the structure and focus of each ontology and supports the selection of the
most suitable result.

As the two research areas Semantic Web and Semantic Network Analysis met only
recently, open issues are still abundant, and provide a rich domain of research for the
coming years:

– As seen above, SNA deals well with one- to n-mode networks with one relation.
However, ontologies typically consist of more than one or two concepts, and of
more than just one kind of relation. A systematic analysis of preprocessing steps
which transform an ontology into a one- or two-mode network, as well as the inter-
pretation of the results, is thus needed.

11 http://www.foaf-project.org/

528 B. Hoser et al.

– One step further in this direction is the interesting and far from trivial research
question how to expand existing SNA approaches to n-mode multigraph data sets.

– The interpretation of the standard eigenvector analysis needs currently some ex-
perience. Future work includes the use of cluster algorithms for rearranging the
dimensions of the vector space such that similar dimensions are visualized together.

– (Description) Logics based ontologies describe relations (such as the subsumption
hierarchy) implicitly only. It has to be studied whether these relations have to be
computed explicitly before SNA techniques can be applied in a meaningful way.

– The next step after analyzing the ontologies is to turn the outcome into support for
search, navigation, browsing, and restructuring ontologies and knowledge bases.
Seeing the large field of SNA techniques, though, we expect a lot more techniques
and tools to come up within the next years.

– Another direction of research is the comparison with philosophical aspects of ontol-
ogy engineering. The OntoClean [12] method provides a framework for the eval-
uation of ontological decisions bsaed on philosophical notions e.g. of Identity or
Polysemy. Correlations between the structural and philosophical properties of on-
tologies will have to be researched.

References

1. Harith Alani, Srinandan Dasmahapatra, Kieron O’Hara, and Nigel Shadbolt. Identifying
Communities of Practice through Ontology Network Analysis. IEEE Intelligent Systems,
18(2):18–25, March/April 2003.

2. George A. Barnett and Ronald E. Rice. Longitudinal non-euclidean networks: Applying
galileo. Social Networks, 7:287–322, 1985.

3. Vladimir Batagelj. Analysis of large networks - Islands. Presented at Dagstuhl seminar
03361: Algorithmic Aspects of Large and Complex Networks, August/September 2003.

4. B. Berendt, A. Hotho, and G. Stumme. Towards semantic web mining. In Proc Int. Semantic
Web Conference, Sardinia, Italy, 2002.

5. P. Bonacich and P. Lloyd. Eigenvector-like measurement of centrality for asymmetric rela-
tions. Social Networks, 23:191 – 201, 2001.

6. Sergey Brin and Lawrence Page. The Anatomy of a Large-Scale Hypertextual Web Search
Engine. Computer Networks and ISDN Systems, 30(1-7):107–117, April 1998.

7. Frank Harary ; Robert Z. Norman ; Dorwin Cartwright. Structural models : an introduction
to the theory of directed graphs. Wiley, New York, 1965.

8. Li Ding, Lina Zhou, Timothy W. Finin, and Anupam Joshi. How the Semantic Web is Being
Used: An Analysis of FOAF Documents. In HICSS. IEEE Computer Society, 2005.

9. M.G. Everett and S.P. Borgatti. The centrality of groups and classes. Journal of Mathematical
Sociology, 23(3):181–201, 1999.

10. Linton C. Freeman. Uncovering organizational hierarchies. Computational & Mathematical
Organization Theory, 3(1):5 – 18, 1997.

11. Linton C. Freeman. The Development of Social Network Analysis: A Study in the Sociology
of Science. BookSurge Publishing, 2004.

12. Nicola Guarino and Christopher A. Welty. Evaluating ontological decisions with OntoClean.
Commun. ACM, 45(2):61–65, 2002.

13. Bettina Hoser. Analysis of Asymmetric Communication Patterns in Computer Mediated Com-
munication Environments. PhD thesis, Universität Karlsruhe, 2005.

Semantic Network Analysis of Ontologies 529

14. Bettina Hoser and Andreas Geyer-Schulz. Eigenspectralanalysis of Hermitian Adjacency
Matrices for the Analysis of Group Substructures. Journal of Mathematical Sociology,
29(4):265–294, 2005.

15. Jon M. Kleinberg. Authoritative sources in a hyperlinked environment. In Ninth Annual
ACM-SIAM Symposium, pages 668 – 677, Jan 1998.

16. Jon M. Kleinberg. Authoritative sources in a hyperlinked environment. JACM, 46(5):604–
632, sep 1999.

17. Barry Wellman Laura Garton. Social impacts of electronic mail in organizations: A review
of research literature. Communication Yearbook, 18:434–453, 1995.

18. Peter Mika. Ontologies Are Us: A Unified Model of Social Networks and Semantics. In
Yolanda Gil, Enrico Motta, V. Richard Benjamins, and Mark A. Musen, editors, ISWC 2005,
volume 3729 of LNCS, pages 522–536, Berlin Heidelberg, November 2005. Springer-Verlag.

19. J.L. Moreno. Who shall survive? : a new approach to the problem of Human Interrelations,
volume 58 of Nervous and mental disease monograph series. Nervous and Mental Disease
Publ., Washington, 1934.

20. John C. Paolillo, Sarah Mercure, and Elijah Wright. The Social Semantics of LiveJournal
FOAF: Structure and Change from 2004 to 2005. In Stumme et al. [24].

21. Christoph Schmitz. Self-organization of a small world by topic. In Proc. 1st International
Workshop on Peer-to-Peer Knowledge Management, Boston, MA, August 2004.

22. Michael F. Schwartz and David C. M. Wood. Discovering Shared Interests Using Graph
Analysis. Communications of the ACM, 36(8):78 – 89, Aug 1993.

23. Heiner Stuckenschmidt. Network Analysis as a Basis for Ontology Partitioning. In Stumme
et al. [24].

24. Gerd Stumme, Bettina Hoser, Christoph Schmitz, and Harith Alani, editors. Proc. ISWC
2005 Workshop on Semantic Network Analysis, Galway, Ireland, November 2005.

25. J. R. Tyler, D. M. Wilkinson, and B. A. Huberman. Email as spectroscopy: Automated
discovery of community structure within organizations. cond-mat/0303264, 2003.

26. Stanley Wasserman and Katherine Faust. Social Network Analysis: Methods and Applica-
tions, volume 8 of Structural Analysis in the Social Sciences. Cambridge University Press,
Cambridge, 1 edition, 1999.

Content Aggregation on Knowledge Bases Using
Graph Clustering

Christoph Schmitz, Andreas Hotho, Robert Jäschke, and Gerd Stumme

Knowledge and Data Engineering Group, Universität Kassel
{lastname}@cs.uni-kassel.de

http://www.kde.cs.uni-kassel.de

Abstract. Recently, research projects such as PADLR and SWAP have
developed tools like Edutella or Bibster, which are targeted at establish-
ing peer-to-peer knowledge management (P2PKM) systems. In such a
system, it is necessary to obtain provide brief semantic descriptions of
peers, so that routing algorithms or matchmaking processes can make
decisions about which communities peers should belong to, or to which
peers a given query should be forwarded.

This paper provides a graph clustering technique on knowledge bases
for that purpose. Using this clustering, we can show that our strategy
requires up to 58% fewer queries than the baselines to yield full recall in
a bibliographic P2PKM scenario.

1 Introduction: Ontology-Based P2PKM

Recently, a lot of effort has been spent on building peer-to-peer systems using
semantic web technology [22, 5, 2, 15], based on a notion of peer-to-peer based,
personal knowledge management (P2PKM for short). In such a scenario, users
will model their knowledge in personal knowledge bases, which can then be
shared with other users via a peer-to-peer network.

Many use cases for P2PKM have been implemented recently. In the PADLR
and ELENA projects1, a P2P infrastructure is established for the exchange of
learning material; Bibster2 is a tool for sharing BibTEX entries between re-
searchers; the SCAM tool3 for knowledge repositories connects to a P2P net-
work. In these systems, each peer builds a knowledge base on top of a common
ontology such as LOM and ACM CCS.

One crucial point in such a P2P network is that query messages need to be
routed to peers which will be able to answer the query without flooding the
network with unnecessary traffic. Several proposals have been made recently as
to how the network can self-organize into a topology consisting of communities
around common topics of interest, a structure which is beneficial for routing, and
how messages can be routed in this topology [20, 21, 8, 23]. All of these are based
on the idea of routing indices [3]. In a routing index, peers store an aggregated
1 http://www.l3s.de/english/projects/projects overview.html
2 http://bibster.semanticweb.org
3 http://scam.sourceforge.net/

Y. Sure and J. Domingue (Eds.): ESWC 2006, LNCS 4011, pp. 530–544, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Content Aggregation on Knowledge Bases Using Graph Clustering 531

view of their neighbors’ contents, enabling them to make content-based routing
decisions.

One missing link towards these self-organized network topologies is the ex-
traction of expertises – semantic self-descriptions – of peers from the peers’
knowledge bases. In this paper, a method of extracting these expertises using a
clustering technique on the knowledge base is proposed and evaluated.

The remainder of this paper is structured as follows: After a brief review of
an ontology-based P2P knowledge management scenario and related work, we
will introduce technical preliminaries in Section 2. In Section 3 the automatic
generation of self-descriptions of peers’ knowledge bases through the use of graph
clustering will be shown. Section 4 presents evaluation results for a bibliographic
P2PKM scenario. Section 5 concludes and discusses future work.

1.1 Related Work

To the best of our knowledge, the exact problem discussed in this paper has
not been treated before. There are, however, related areas which touch similar
topics.

Knowledge-rich approaches from the text summarization area [10, 9] use al-
gorithms on knowledge representation formalism to extract salient topics from
texts in order to generate summaries. We compare our approach to the one in
[10] in Section 4.

In semantic P2P overlays, peers need some means of obtaining a notion of
other peers’ contents for routing tables and other purposes. [13] and others rely
on observing the past behavior of peers – queries sent and answered – to guess
what kind of information peers contain, including some fallback strategies to
overcome the bootstrapping problem. In [8], peers publish their expertise con-
taining all topics they have information about without any aggregation, which
will be a resource consumption problem for larger knowledge bases and networks.

Keyword-based P2P information retrieval systems can make use of the bag-
of-words or vector-space models for IR. [19] proposes the use of Bloom filters to
maintain compact representations of contents for routing purposes. These tech-
niques, however, do not provide a semantically aggregated view of the contents,
but rather a bitwise superposition of keywords which loses semantic relationships
between related keywords.

Much work has been done on graph clustering (e. g. [16]) in a variety of
areas. Most of these algorithms, though, do not readily yield representatives
such as the centroids from the k-modes algorithm used in Section 3, and/or may
not be naturally adapted to the shared-part/personal-part consideration used in
Section 2.3.

2 Basics and Definitions

2.1 P2P Network Model

As in [20], the following assumptions are made about about peers in a P2PKM
network:

532 C. Schmitz et al.

– Each peer stores a set of content items. On these content items, there exists
a similarity function called sim. We assume sim(i, j) ∈ [0, 1] for all items
i, j, and the corresponding distance function d := 1− sim shall be a metric.
For the purpose of this paper, we assume content items to be entities from
a knowledge base (cf. Section 2.2), and the metric to be defined in terms of
the ontology as described in Section 2.4.

– Each peer provides a self-description of what its knowledge base contains,
in the following referred to as expertise. Expertises need to be much smaller
than the knowledge bases they describe, as they are transmitted over the
network and used in other peers’ routing indices. A method of obtaining
these expertises is outlined in Section 3. Formally, an expertise consists of
a set {(ci, wi)|i = 1 . . . k} of pairs mapping content items ci to real-valued
weights wi.

– There is a relation knows on the set of peers. Each peer knows a certain set
of other peers, i. e., it knows their expertises and network address (e. g. IP
address, JXTA ID, . . .). This corresponds to the routing index as proposed
in [3]. In order to account for the limited amount of memory and processing
power, the size of the routing index at each peer is limited.

– Peers query for content items on other peers by sending query messages to
some or all of their neighbors; these queries are forwarded by peers according
to some query routing strategy, which uses the sim function mentioned above
to decide which neighbors to forward messages to.

2.2 Ontology Model

For the purpose of this paper, we use the view on ontologies proposed by the
KAON framework [6]. Following the simplified nomenclature of [6], an ontology
consists of concepts with a subclassOf partial order, and relations between con-
cepts. A knowledge base consists of an ontology and instances of concepts and
relations. Concepts and instances are both called entities (for details cf. [6]).

Another important feature of KAON is the inclusion mechanism for knowledge
bases, enabling the implementation of the shared and personal parts of knowledge
bases as introduced in the next section.

2.3 Shared and Personal Parts of the Knowledge Bases

Based on the use cases mentioned in Section 1, all peers Pi, i = 1 . . . n, in the
system are assumed to share a certain part O of their ontologies: in the case of
e-learning, this could be the Learning Object Metadata (LOM)4 standard plus
a classification scheme; when exchanging bibliographic metadata as in Bibster,
this would be an ontology reflecting BibTEX and a classification scheme such as
ACM CCS5, etc.

Additionally, the knowledge base KBi of each peer Pi contains personal knowl-
edge PKi which is modeled by the user of the peer and is not known a-priori
4 http://ltsc.ieee.org/wg12
5 http://www.acm.org/class

Content Aggregation on Knowledge Bases Using Graph Clustering 533

Fig. 1. Example Knowledge Base

to other peers. Querying this knowledge efficiently and sharing it among peers
is the main task of the P2PKM system. Formally, we can say that for all i,
KBi = O ∪ PKi.

In Figure 1, the ontology used in the evaluation in Section 4 is shown. In this
case, the shared part O comprises the concepts Person, Paper, Topic, and their
relations, as well as the topics of the ACM CCS. The personal knowledge PKi of
each peer contains instantiations of papers and persons and their relationships
to each other and the topics for the papers of each individual author in DBLP
with papers in the ACM digital library (cf. 4.1 for details).

For the purpose of this paper, an agreement on a shared ontology O is as-
sumed. The problem of ontologies emerging in a distributed KM setting [1], of
ontology alignment, mapping, and merging [4], are beyond the scope of this work.

2.4 Ontology-Based Metrics

An ontology of the kind we use is a labeled, directed graph: the set of nodes
comprises the entities, and the relations between entities make up the set of
edges. An edge between entities in this graph expresses relatedness in some sense:
the instance paper37 may have an instanceOf edge to the concept Paper, Paper
and Topic would be connected by an edge due to the hasTopic relation, etc.

On this kind of semantic structure, [17] has proposed to use the distance in the
graph-theoretic sense (length of shortest path) as a semantic distance measure.

Metric Used in the Evaluation. We follow this suggestion and apply it to
the abovementioned graph as follows:

– To each edge, a length is assigned; taxonomic edges (instanceOf, subclassOf)
get length 1, while non-taxonomic edges are assigned length 2. This reflects
the fact that subclassOf(PhDStudent, Person) is a closer link between
these concepts than, say, rides(Person, Bicycle).

– Edge lengths are divided by the average distance of the incident nodes from
the root concept. This reflects the intuition that top-level concepts such as
Person and Project would be considered less similar than, e.g., Graduate
Student and Undergraduate farther from the root.

534 C. Schmitz et al.

Similarity, Relatedness, and Semantic Distances – Why Edge Count-
ing? The notions of semantic similarity (things having similar features) and
relatedness (things being associated with each other) have long been explored in
various disciplines such as linguistics and cognitive sciences. Discussions about
these phenomena and their respective properties have lasted for decades (cf.
[24, 7]). While most of this discussion is outside the scope of this paper, some
key points [7] are worth mentioning: Thematic relatedness and similarity are
distinct phenomena, but both can get mixed up or influence each other.

In the context of this paper, where the goal is to provide self-descriptions
of knowledge in a P2PKM system, some more influences on the choice of the
semantic distance should be noted:

– The ontologies to be used in P2PKM will be engineered specifically for KM
purposes. Thus, regarding a relation between two concepts as an indication
that these two have something to do with each other reflects the intention
of a knowledge engineer to express relatedness.

– In a P2PKM system, domain specific ontologies will be used. These represent
a conceptualization of a small part of the world which is relevant for the
given domain, so that stray associations such as lamp – round glowing object
– moon – . . . , which might occur in a “world ontology”, will be avoided.

– Modeling idiosyncrasies of certain tools and formalisms such as described in
the next section need to be anticipated. This can be done by allowing for
flexible weighting and filtering strategies.

Various constraints are present on other kinds of metrics which have led to
the use of an edge-counting metric for the purpose of this paper. Approaches
such as [18] or [24] assume the presence of full text or linguistic background
knowledge; others such as [14] only use concepts and an instanceOf relationship,
neglecting instances and non-taxonomic relationships altogether. To yield max-
imum flexibility and to use as much of the modeled content as possible, an edge
counting approach was chosen for this paper.

Keeping this discussion in mind, one needs to be aware of what kinds of
similarity and/or relatedness should be expressed in modeling the ontology and
parameterizing the metric.

Pitfalls on Real-World Ontologies. While the edge-counting metric seems
straightforward, applying it to real-world ontologies turned out to be non-trivial:

Noise and Technical Artifacts. Often not all of the content of a knowledge
base is used to model a certain domain as such; e. g., in KAON, lexical
information is represented as first-class entities in the knowledge base. This
yields entities which are not relevant for the semantic distance computation.
There is also a root class which every entity is an instance of, which would
render our approach to calculating distances useless.

Modeling Idiosyncrasies. Engineering an ontology implies design decisions,
e. g. whether to model something as an instance or as a concept [25]. These

Content Aggregation on Knowledge Bases Using Graph Clustering 535

decisions carry implications for the weighting of edges, e. g. when taxonomic
relationships are expressed by a relation which is not one of instanceOf,
subclassOf.

To overcome these problems, we have implemented extensive entity filtering
and weighting customization strategies which are applied prior to the metric
computation itself.

Choice of Parameters. One obvious question is where the parameters, weight-
ing schemes and filtering rules necessary for this kind of metric should come from.
These can be agreed upon just like the ontology to be used itself. When stake-
holders deside that there should be a “see also” relation between topics, they
could also agree on its importance or non-importance for retrieval tasks (cf. the
discussion about the value of non-taxonomic relations in [17]).

Secondly, this kind of semantic metric will not primarily be used to reflect
human judgment of similarity or relatedness directly, but to structure a net-
work topology. For this type of use, optimal parameters can be determined in
simulation experiments or might be learned over the lifetime of the system.

2.5 k-Modes Clustering

In Section 3, we will use an extension of k-modes clustering [11] to obtain ag-
gregations of knowledge bases. The basic version of k-modes clustering for par-
titioning a set S of items into k clusters S1, . . . , Sk such that S =

⋃̇
iSi works as

follows:

1. Given k, choose k elements Ci, i = 1 . . . k of S as centroids
2. Assign each s ∈ S to the cluster Si with i = arg minj d(Cj , s)
3. For i = 1 . . . k, recompute Ci such that

∑
s∈Si

d(Ci, s) is minimized.
4. Repeat steps 2 and 3 until centroids converge.

This algorithms yields (locally) optimal centroids which minimize the average
distance of each centroid to its cluster members. A variation we will use is bi-
section k-modes clustering, which produces k clusters by starting from an initial
cluster containing all elements, and then recursively splitting the cluster with
the largest variance with 2-modes until k clusters have been reached.

As the algorithm is randomized, it may happen that a cluster cannot be split
although k clusters have not been reached. In that case, we retry a fixed number
of times before accepting the clustering.

3 Graph Clustering for Content Aggregation

As mentioned in the motivation, a peer needs to provide an expertise in order to
be found as an information provider in a P2PKM network. From the discussion
above, the following requirements for an expertise can be derived:

536 C. Schmitz et al.

– The expertise should provide an aggregated account of what is contained in
the knowledge base of the peer, meaning that using the similarity function,
a routing algorithm can make good a-priori guesses of what can or cannot be
found in the knowledge base. More specifically, the personal part PKi should
be reflected in the expertise.

– The expertise should be much smaller than the knowledge base itself, prefer-
ably contain only a few entities, because it will be used in routing indices
and in computations needed for routing decisions.

With these requirements in mind, we propose the use of a clustering algorithm
to obtain an expertise for each peer.

3.1 Clustering the Knowledge Base

We use a version of bi-section k-modes clustering for the extraction of such an ex-
pertise. As mentioned before, k-modes clustering yields centroids which are locally
optimal elements of a set regarding the average distance to their cluster members.

Using the semantic metric, these centroids fulfill the abovementioned require-
ments for an expertise: We can compute a small number of centroids, which
are – on the average – semantically close to every member of their respective
clusters, thus providing a good aggregation of the knowledge base.

In order to apply this algorithm in our scenario, however, some changes need
to be made:

– The set S to be clustered has to consist only of the personal parts PKi of the
knowledge bases. Otherwise, the structure of the shared part (which may be
comparatively large) will shadow the interesting structures of the personal
part.

– The centroids Ci will not be chosen from the whole knowledge base, but
only from the shared part O of the ontology. Otherwise, other peers could
not interpret the expertise of a peer.

The expertise for each knowledge base is obtained by clustering the knowledge
base as described, obtaining a set {Ci | i = 1 . . . k} ⊆ O of entities from the
ontology as centroids for a given k. The expertise then consists of the pairs
{(Ci, |Si|)|i = 1 . . . k} of centroids and cluster sizes. Because we restricted the
choice of centroids to be from O, we get expertises that other peers can interpret
from clustering the elements of KBi.

3.2 Determining the Number of Centroids

One problem of the k-modes algorithm is that one needs to set the value of k
beforehand. As the appropriate number of topics for a given knowledge base may
not be known a-priori, we use the silhouette coefficient [12], which is an indicator
for the quality of the clustering. In short, it determines how well clusters are
separated in terms of the distances of each item to the nearest and the second
nearest centroid: if each item is close to its own centroid and far away from the
others, the silhouette coefficient will be large, indicating a good clustering.

Content Aggregation on Knowledge Bases Using Graph Clustering 537

4 Experimental Evaluation

In the following sections, we will try to verify three hypotheses:

1. Extracting a good expertise from a knowledge base is harder for large knowl-
edge bases.

2. With larger expertises, the retrieval results improve.
3. The clustering strategy extracts expertises which are useful for retrieval.

The intuition is as follows: Extracting a good expertise from a large knowledge
base is harder than from a small one, as the interests of a person interested in
many areas will be more difficult to summarize than those of someone who has
only few fields of interest. With larger expertises, the retrieval results improve,
because if we spend more space (and processing time) for describing someone’s
interests, we can make better guesses about what his knowledge base contains.
As the clustering strategy tries to return the centroids which are as close as
possible to all cluster members, we assume that it gives a good approximation
of what a knowledge base contains.

4.1 Setup

To evaluate the usefulness of the expertise extraction approach from the previous
sections, we consider a P2PKM scenario with a self-organized semantic topology
as described in [20, 8, 23]: the expertises of peers are stored in routing tables,
where similarity computations between queries and expertises in the routing
indices are used to make greedy routing decisions when forwarding queries.

If the routing strategy of this network works as intended, the peers which
published an expertise closest to a given query will be queried first. In the fol-
lowing experiment, the quality of the expertises is evaluated in isolation based
on that observation: An expertise was extracted for each peer. All of the shared
entities of the ontology were used in turn as queries. For each query, the authors
were sorted in descending similarity of the closest entity of the expertise to the
query. Ties were resolved by ordering in decreasing weight order.

The evaluation is based on the bibliographic use case mentioned in Section 1:
there are scientists in the P2P network sharing bibliographic information about
their publications. An ontology according to Figure 1 is used. Only the top level
concepts (Person, Topic, Paper) and the ACM classification hierarchy are shared
among the peers. Each user models a knowledge base on his peer representing
his own papers.

We instantiated such a set of knowledge bases using the following data:

– For 39067 papers from DBLP which are present in the ACM Digital Library,
the topics were obtained from the ACM website. There are 1474 topics in the
ACM Computing Classification System. Details on the construction of the
data set and the conversion scripts can be found on http://www.kde.cs.
uni-kassel.de/schmitz/acmdata.

538 C. Schmitz et al.

– To yield non-trivial knowledge bases, only those authors who wrote papers
on at least 10 topics were considered. This left 317 authors. A discussion of
this pruning step can be found in Section 4.3.

For each of the summarization strategies described below, we show the number
of authors which had to be queried in order to yield a given level of recall. This
is an indicator for how well the expertises capture the content of the authors’
knowledge bases: the better the expertises, the fewer authors one needs to ask
in order to reach a certain level of recall.

This is a variation of the usual precision-against-recall evaluation from infor-
mation retrieval. Instead of precision – how many of the retrieved documents are
relevant? – the relative number of the queried authors which are able to provide
papers on a given topic is measured.

4.2 Expertise Extraction Strategies

In comparison with the clustering technique from Section 3, the following strate-
gies were evaluated. The expertise size was fixed to be 5 except where noted
otherwise.

Counting (#5): The occurrences of topics in each author’s knowledge base
were counted. The top 5 topics and counts were used as the author’s
expertise.

Counting Parents (#P5): As above, but each topic did not count for itself,
but for its parent topic.

Random (R5): Use 5 random topics and their counts.
Wavefront (WFL7/WFL9): Compute a wavefront of so-called fuser concepts

[10]. A fuser concept is a concept many descendants of which are instantiated
in the knowledge base. The intuition is that if many of the descendants of a
concept occur, it will be a good summary of that part of the knowledge base.
If only few children occur, a better summarization would be found deeper in
the taxonomy.
There are two parameters in this computation: a threshold value between 0
and 1 for the branch ratio (the lower the branch ratio, the more salient the
topic), and a minimal depth for the fuser concepts. There are some problems
in comparing this strategy with the other strategies named here:
– It is not possible to control the number of fuser concepts returned with

the parameters the strategy offers.
– Leaves can never be fuser concepts, which is a problem in a relatively

flat hierarchy such as ACM CCS, where many papers are classified with
leaf concepts.

– All choices of parameters yielded very few fuser concepts.
The expertise consisted of the fuser concepts as returned by the wavefront
computation with the inverse of the branch ratio as weights. If the number
of fuser concepts was less than 5, the expertise was filled up with the leaf
concepts occurring most frequently. We examined thresholds of 0.7 (WFL7)
and 0.9 (WFL9) with minimal depth 1.

Content Aggregation on Knowledge Bases Using Graph Clustering 539

Clustering (C5/C37): The expertise consisted of centroids and cluster sizes
determined by a bisection-k-modes clustering as described in Section 3.
C5 used a fixed k of 5, while C37 selected the best k ∈ {3, . . . , 7} using
the silhouette coefficient. 20 retries were used in the bi-section k-means
computation.

4.3 Results

In this section, results are presented for the different strategies. The values pre-
sented are averaged over all queries (i. e. all ACM topics), and, in the cases with
randomized algorithms (C5, C37, R5), over 20 runs.

Note that all strategies except C37 returned expertises of size 5, while in
C37, the average expertise size was slightly larger at 5.09. Table 3 shows the
distribution of expertise sizes for C37.q

Pruning of the Evaluation Set. In order to yield interesting knowledge bases
to extract expertises from, we pruned the ACM/DBLP data set as described in
Section 4.1. Thus, only the knowledge bases of authors which have written papers
on at least 10 topics were considered.

Table 1. Full vs. pruned data: Fraction of authors (%) queried to yield given recall,
C5 strategy

Recall full data pruned data
10% 0.01 4.09
30% 0.04 4.93
50% 0.07 6.43
70% 0.16 12.53
90% 0.55 18.73

100% 3.45 22.88

Table 1 presents a comparison of the full and the pruned dataset for the C5
strategy. It can be seen that the full data require querying only a fraction of the
authors which is one or two orders of magnitude smaller than the pruned data.
This indicates that the first hypothesis holds; the pruning step yields the “hard”
instances of the problem.

Influence of the Expertise Size. Intuitively, a larger expertise can contain
more information about the knowledge base than a smaller one. In the extreme
case, one could use the whole knowledge base as the expertise.

To test the second hypothesis, Figure 2 and Table 2, show the influence of
the expertise size on retrieval performance for the C5 clustering strategy.

While the small number of data points for each recall level do not lend them-
selves to a detailed quantitative analysis, it is clear that the expertise size has
the expected influence in the clustering technique: the larger the expertise is, the

540 C. Schmitz et al.

Fig. 2. Influence of Expertise Size (C5 Strategy)

Table 2. Percentage of Authors Queries against Expertise Size (C5 Strategy)

Expertise Size
Recall 1 3 5 7 10

10% 15.06 6.80 4.09 3.38 3.03
30% 17.66 8.16 4.93 4.12 3.69
50% 21.79 10.59 6.43 5.35 4.82
70% 33.37 19.79 12.53 10.21 9.18
90% 44.57 28.20 18.73 15.44 14.15

100% 49.07 33.04 22.88 19.10 17.67

Table 3. Distribution of Expertise Sizes for C37

Exp. Size Percentage of Authors
3 20%
4 15%
5 21%
6 23%
7 21%

Avg.: 5.09

more detail it can provide about the knowledge base, and the better the retrieval
performance is.

Note that the resources a peer would be willing to spend on storing routing
tables and making routing decisions are limited, so that a trade-off between
resources set aside for routing and the resulting performance must be made,
especially as network and knowledge base sizes grow larger.

Influence of the Summarization Strategy. Finally, we evaluate the perfor-
mance of the clustering strategies against the other strategies mentioned above.

Table 4 and Figure 3 show that the k-modes clustering compares favorably
against the other strategies: fewer authors need to be asked in order to find a

Content Aggregation on Knowledge Bases Using Graph Clustering 541

Table 4. Percentage of Authors Queried against Recall; σ: Standard Deviation

Authors Queried
Recall WFL7 WFL9 C5 (σ) C37 (σ) #5 #P5 R5 (σ)

10% 6.11 6.37 4.09 (.28) 3.10 (.18) 10.69 9.25 6.96 (.48)
30% 7.16 7.43 4.93 (.28) 3.80 (.19) 12.15 10.72 8.26 (.52)
50% 9.61 9.86 6.43 (.32) 5.01 (.21) 15.33 13.67 11.33 (.61)
70% 19.06 19.67 12.53 (.52) 9.65 (.33) 27.43 23.38 24.04 (.82)
90% 28.97 29.78 18.73 (.64) 14.78 (.47) 39.45 33.91 35.16 (.93)

100% 34.35 35.37 22.88 (.75) 18.42 (.48) 44.15 39.27 39.65 (.83)

Fig. 3. Percentage of Authors Queried against Recall

given proportion of the available papers on a certain topic. This is an indication
that the clustering technique will yield expertises which can usefully be applied
in a P2PKM system with a forwarding query routing strategy based on routing
indices. For example, to yield 100% recall, 58% fewer (18.42% vs. 44.15%) peers
would have to be queried when using C37 instead of the #5 strategy. With C37
and a routing strategy that contacted best peers first, 100%− 18.42% ≈ 81% of
the peers could be spared from being queried while still getting full recall.

The standard deviations σ of the randomized strategies given in Table 4 show
that while the actual results of the C5, C37, and R5 runs may vary, the quality
of the results for querying is stable.

To get an impression about why the clustering strategies work better than
the others, consider one author whose papers are labelled with the following
topics6: B.5, B.6, B.6, B.6.1.a, B.6.1.a, B.6.3.b, B.7, B.7.1.c, B.8, B.8, C.0.d,
C.3.e, C.5.3.f, D.3.2, G.1, I.5.4.g, J.

The different strategies delivered the results shown in Table 5. It can be
seen that the clustering strategies find the best balance between spreading the
expertise over all occuring topics, and on the other hand generalizing so that

6 Note that the fourth level topics do not have names of their own originally; we
attached artificial IDs to distinguish them

542 C. Schmitz et al.

Table 5. Sample Results for Different Strategies

#P5 #5 R5 WFL7 WFL9 C5 C37
B. (6) B.6.1.a (2) B.6.1.a (2) C. (3) C. (3) B. (11) B.6 (10)

B.6.1 (2) B.6 (2) B.6.3.b (1) B.6.1.a (2) B.6.1.a (2) C. (3) C. (3)
B.6.3 (1) B.8 (2) D.3.2 (1) B. (2) B. (2) I.5.4.g (1) J. (1)

C.0 (1) B.6.3.b (1) C.5.3.f (1) B.6 (1.5) B.6 (1.5) D.3.2 (1) G.1 (1)
B.7.1 (1) B.5 (1) B.7 (1) B.6.3.b (1) B.6.3.b (1) G.1 (1) D.3.2 (1)

I.5.4.g (1)

many occuring topics are subsumed under one expertise entry. This happens
due to the way the clustering strategy spreads the clusters over the ontology
graph, maxminizing the coherence within clusters. Most other strategies, e. g. ,
did not consider any of the topics outside the B and C parts of ACM CCS.

5 Summary and Outlook

5.1 Conclusion

In this paper, an algorithm which can be used to extract semantic summaries
– called expertises – from knowledge bases is proposed. A motivation for the
necessity of this kind of summary is given, namely, that such summaries are
needed for routing tables in semantic P2P networks.

We demonstrate that the clustering method outperforms other strategies in
terms of queries needed to get a given recall on a set of knowledge bases from a
bibliographic scenario. We also show qualitatively that larger knowledge bases
are harder to summarize, and that larger expertises are an advantage in deter-
mining which peers to query.

5.2 Outlook and Work in Progress

Evaluation in Context. This paper provides evidence that the clustering proce-
dure extracts suitable expertises for a P2PKM setting. The next step will be
combining the clustering with self-organization techniques for P2PKM networks
as described in [20]. Note that usually the value of aggregations or summaries
is measured by evaluating it against human judgment. In our case, however, the
aggregations will be evaluated with regard to their contribution to improving
the performance of the P2P network.

Scalability Issues. Computing the metric as described above is very expensive,
as it needs to compute all-pairs-shortest-paths. For large ontologies having tens
or hundreds of thousands of nodes, this is prohibitively expensive. In the current
evaluation, the shortest paths needed are computed on the fly, but for a real-
world P2PKM implementation, some faster solution needs to be found. The
obvious idea of pre-computing the metric does not mitigate the problem very
much, because maintaining the shortest path lengths requires O(n2) storage.

On possible direction of investigation is to look at the actual usage of the
metric in a P2PKM system. If the community structure of the network leads

Content Aggregation on Knowledge Bases Using Graph Clustering 543

to a locality in the use of the metric, caching and/or dynamic programming
strategies for the metric computation may be feasible.

Test Data and Evaluation Methodology. Other than in Information Retrieval, for
example, there are neither widespread testing datasets nor standard evaluation
methods available for Semantic Web and especially P2PKM applications. In
order to compare and evaluate future research in these areas, standardized data
sets and measures need to be established.

Acknowledgement. Part of this research was funded by the EU in the Nepomuk
project (FP6-027705).

References

1. K. Aberer, P. Cudré-Mauroux, M. Hauswirth. The Chatty Web: Emergent Seman-
tics Through Gossiping. In Proc. 12th International World Wide Web Conference.
Budapest, Hungary, May 2003.

2. M. Bonifacio, R. Cuel, G. Mameli, et al. A peer-to-peer architecture for distributed
knowledge management. In Proc. 3rd International Symposium on Multi-Agent
Systems, Large Complex Systems, and E-Businesses MALCEB’2002. Erfurt, Ger-
many, October 2002.

3. A. Crespo, H. Garcia-Molina. Routing indices for peer-to-peer systems. In Proc. In-
ternational Conference on Distributed Computing Systems (ICDCS). Vienna, Aus-
tria, July 2002. ISSN 0734-2071.

4. J. de Bruijn, F. Martin-Recuerda, D. Manov, et al. State-of-the-art sur-
vey on ontology merging and aligning (SEKT project deliverable 4.2.1).
http://sw.deri.org/∼jos/sekt-d4.2.1-mediation-survey-final.pdf, 2004.

5. M. Ehrig, P. Haase, F. van Harmelen, et al. The SWAP data and metadata model
for semantics-based peer-to-peer systems. In M. Schillo, M. Klusch, J. P. Müller,
et al. (eds.), Proc. MATES-2003. First German Conference on Multiagent Tech-
nologies, vol. 2831 of LNAI, pp. 144–155. Springer, Erfurt, Germany, SEP 2003.
ISSN 0734-2071.

6. M. Ehrig, S. Handschuh, A. Hotho, et al. KAON - towards a large scale Semantic
Web. In K. Bauknecht, A. M. Tjoa, G. Quirchmayr (eds.), Proc. E-Commerce
and Web Technologies, Third International Conference, EC-Web 2002, no. 2455 in
LNCS. Springer, Aix-en-Provence

7. D. Gentner, S. K. Brem. Is snow really like a shovel? Distinguishing similarity from
thematic relatedness. In M. Hahn, S. C. Stoness (eds.), Proc. Twenty-First Annual
Meeting of the Cognitive Science Society. Mahwah, NJ, 1999. ISBN 3-540-40317-5.

8. P. Haase, R. Siebes. Peer selection in peer-to-peer networks with semantic topolo-
gies. In Proc. 13th International World Wide Web Conference. New York City,
NY, USA, May 2004.

9. U. Hahn, U. Reimer. Knowledge-based text summarization: Salience and gener-
alization operators for knowledge base abstraction. In I. Mani, M. T. Maybury
(eds.), Advances in Automatic Text Summarization. MIT Press, 1999.

10. E. Hovy, C.-Y. Lin. Automated text summarization in SUMMARIST. In I. Mani,
M. T. Maybury (eds.), Advances in Automatic Text Summarization. MIT Press,
1999.

544 C. Schmitz et al.

11. Z. Huang. Extensions to the k-means algorithm for clustering large data sets with
categorical values. Data Min. Knowl. Discov., 2(3):283–304, 1998. ISSN 1384-5810.
doi: http://dx.doi.org/10.1023/A:1009769707641.

12. L. Kaufman, P. J. Rousseeuw. Finding Groups in Data: An Introduction to Cluster
Analysis. John Wiley, 1990. ISBN 1-58133-109-7.

13. A. Löser, C. Tempich, B. Quilitz, et al. Searching dynamic communities with
personal indexes. In Y. Gil, E. Motta, V. R. Benjamins, et al. (eds.), Proc. 4th
International Semantic Web Conference, ISWC 2005. Galway, Ireland, Nov. 2005.

14. A. Maedche, S. Staab. Measuring similarity between ontologies. In Proc. Of the
European Conference on Knowledge Acquisition and Management - EKAW-2002.
Madrid, Spain, October 1-4, 2002, vol. 2473 of LNCS/LNAI. Springer, 2002. ISBN
1-58133-109-7.

15. W. Nejdl, B. Wolf, C. Qu, et al. Edutella: A p2p networking infrastructure based
on rdf. In Proc. 11th International World Wide Web Conference (WWW 2002).
Honolulu, Hawaii, May 2002.

16. A. Pothen. Graph partitioning algorithms with applications to scientific comput-
ing. In D. E. Keyes, A. Sameh, V. Venkatakrishnan (eds.), Parallel Numerical
Algorithms, pp. 323–368. Kluwer, 1997.

17. R. Rada, H. Mili, E. Bicknell, et al. Development and application of a metric on
semantic nets. IEEE Transactions on Systems, Man and Cybernetics, 19(1):17–30,
January/February 1989.

18. P. Resnik. Using information content to evaluate semantic similarity in a taxon-
omy. In Proc. Fourteenth International Joint Conference on Artificial Intelligence,
IJCAI 95. Montreal, Canada, August 1995.

19. P. Reynolds, A. Vahdat. Efficient peer-to-peer keyword searching. In M. Endler,
D. C. Schmidt (eds.), Middleware, vol. 2672 of Lecture Notes in Computer Science.
Springer, 2003. ISBN 3-540-40317-5.

20. C. Schmitz. Self-organization of a small world by topic. In Proc. 1st International
Workshop on Peer-to-Peer Knowledge Management. Boston, MA, August 2004.

21. C. Schmitz, S. Staab, C. Tempich. Socialisation in peer-to-peer knowledge man-
agement. In Proc. International Conference on Knowledge Management (I-Know
2004). Graz, Austria, June 2004.

22. J. Tane, C. Schmitz, G. Stumme. Semantic resource management for the web: An
elearning application. In Proc. 13th International World Wide Web Conference.
New York, May 2004.

23. C. Tempich, S. Staab, A. Wranik. Remindin’: Semantic query routing in peer-to-
peer networks based on social metaphors. In W3C (ed.), Proceedings of the 13th
International World Wide Web Conference (WWW 2004), pp. 640–649. ACM,
New York, USA, MAY 2004.

24. A. Tversky. Features of similarity. Psychological Review, 84(4):327–352, 1977.
25. C. A. Welty, D. A. Ferrucci. What’s in an instance? Tech. Rep. #94-18, RPI

Computer Science Dept., 1994.

Y. Sure and J. Domingue (Eds.): ESWC 2006, LNCS 4011, pp. 545 – 559, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Dynamic Assembly of Personalized Learning Content
on the Semantic Web

Jelena Jovanovi 1, Dragan Gaševi 2, and Vladan Devedži 1

1 FON, School of Business Administration, University of Belgrade, Serbia and Montenegro
{jeljov, devedzic}@fon.bg.ac.yu

2 School of Interactive arts and Technology, Simon Fraser University Surrey Canada
dgasevic@sfu.ca

Abstract. This paper presents an ontology-based approach for automatic de-
composition of learning objects (LOs) into reusable content units, and dynamic
reassembly of such units into personalized learning content. To test our ap-
proach we developed TANGRAM, an integrated learning environment for the
domain of Intelligent Information Systems. Relying on a number of ontologies,
TANGRAM allows decomposition of LOs into smaller content units, which can
be later assembled into new LOs personalized to the user’s domain knowledge,
preferences, and learning styles. The focus of the presentation is on the ontolo-
gies themselves, in the context of user modeling and personalization. Further-
more, the paper presents the algorithm we apply to dynamically assemble
content units into personalized learning content. We also discuss our experi-
ences with dynamic content generation and point out directions for future work.

1 Introduction

Reusing learning objects (LOs) across educational applications is a great idea, but not
easily achievable in practice. A recent study by Brooks et al. [1] has shown that cur-
rent e-learning standards and specifications (such as the IEEE LOM standard) are
rather restrictive in terms of the variety of metadata they capture and imprecise in
expressing the structure of such metadata. Moreover, few of the metadata fields pro-
posed by such specifications are actually used in learning object repositories (LORs)
to annotate the LOs, which reduces the possibility for agents to retrieve the LOs. As a
result, nearly all LO-based courses are created directly by instructional designers, who
explicitly hand craft the LOs for the purpose. Furthermore, Robert and Gingras [12]
conducted an experiment showing that teachers mostly reuse their own material, and
only some LOs created by other teachers. The reusability of other people's LOs
largely depends on the teacher's instructional practices and teaching style, as well as
on the type of content of those LOs (presentations, diagrams, tests, etc.). The practice
of handcrafting new LOs from existing ones shows that authors very often copy-and-
paste parts of existing LOs into newly created LOs. In other words, rather than reus-
ing entire LOs for their courses, they manually reuse their parts.

This creates the idea of reusable content units at a granularity finer than LO as a
whole. We have developed an ontology-based approach for automatic decomposition

546 J. Jovanovi , D. Gaševi , and V. Devedži

of LOs into reusable fragments, and dynamic reassembly of such fragments into per-
sonalized learning content.

1.1 Problem Statement

The objectives of this paper are:

• to explain the rationale for using ontologies to enable on-the-fly assembly of per-
sonalized learning content out of reusable content units;

• to present an example of how such an ontology-based approach is implemented in
a specific learning environment, called TANGRAM;

• to discuss practical implementation details and experience with dynamic genera-
tion of personalized learning content.

The focus of the presentation is on the ontologies themselves, in the context of user
modeling and personalization. The principles we discuss are implementation-
independent. On the other hand, their implementation in TANGRAM helped us reveal
important practical details we were not aware of initially.
 The rest of the paper is structured to follow the order of the objectives stated above.

2 The Rationale

The approach that we propose can be summarized as follows: reuse existing content
units to dynamically generate new learning content tailored to satisfy the needs of a
specific student. To overcome the problem of interoperability between disparate do-
mains, we based our approach on Semantic Web technologies, ontologies in particular.

The starting point in our approach is the classification of ontologies in the domain
of eLearning suggested in [13]. This classification differentiates between the follow-
ing types of ontologies: 1) content (domain) ontologies that formally describe the
subject matter (topics) of learning content; 2) structural ontologies that formalize the
content structure; and 3) context ontologies that specify the pedagogical/instructional
role of the content. In our approach, a LO is represented in a structural ontology com-
pliant format, whereas concepts of a domain ontology are used to semantically de-
scribe the LO’s content. In addition, the concepts from a context ontology are used to
mark up LOs with their pedagogical/instructional roles. The proposed approach also
assumes annotation of each component of a LO, thus making individual components
reusable.

Explicitly defined structure of a LO facilitates adaptation of the LO, as it enables
direct access to each of its components and their tailoring to the specific features of a
student. Besides, being able to directly access components of a LO, we are empow-
ered to dynamically, on-the-fly create new, personalized learning content.

To be reusable, a domain ontology must not contain any information related to top-
ics sequencing and navigation. On the other hand, it does make sense to formally
represent an optimal learning path through the domain. Accordingly, we use a special
ontology for that purpose. Finally, a user model ontology is used to enable formal
representation of users’ data and exchange of these data with other learning applications.

 Dynamic Assembly of Personalized Learning Content on the Semantic Web 547

3 Ontologies for Dynamic Assembly of Personalized Content

To test the feasibility of the proposed approach to dynamic assembly of personalized
learning content, we have developed TANGRAM – an integrated learning environment
for the domain of Intelligent Information Systems (IIS). TANGRAM is implemented
as a Web application built on top of a repository of educational content and intended to
be useful to both content authors and students interested in the domain of IIS. Fig. 1
illustrates TANGRAM’s architecture and depicts the ontologies it uses. These ontolo-
gies are concisely described in the following subsections1. Additionally, to annotate
content units in TANGRAM, we defined a profile of the IEEE LOM RDF Binding
specification2. The profile defines a subset of the IEEE LOM elements that we found
necessary to support the intended functionalities of the system [9].

Fig. 1. TANGRAM’s architecture

3.1 ALOCoM-Based Ontologies

In our previous collaborative research efforts with the ARIADNE research group
from K.U. Leuven, Belgium, we developed ALOCoM ontology as a content structure
ontology based on the Abstract Learning Object Content Model (ALOCoM) [14]. The
ontology defines concepts and relationships that enable formal definition of the struc-
ture of a LO. To learn more about this ontology, interested readers should refer to
[10]. However, our latest research led to a major revision of the ALOCoM ontology
and its division into: ALOCoM Content Structure ontology (ALOCoMCS) and
ALOCoM Content Type ontology (ALOCoMCT).

1 All ontologies can be downloaded from: http://iis.fon.bg.ac.yu/TANGRAM/ ontologies.html
2 http://kmr.nada.kth.se/el/ims/md-lomrdf.html

548 J. Jovanovi , D. Gaševi , and V. Devedži

Being based on the common model, these two ontologies share the same root con-
cepts: Content Unit (CU), Content Fragment (CF), Content Object (CO) and Learning
Object (LO). CU is an abstract concept aimed at representing content of any level of
granularity. CFs are CUs in their most basic form, like text, audio and video. These
elements can be regarded as raw digital resources that cannot be further decomposed.
A CO is an aggregation of CFs and/or other COs. Navigational elements enable se-
quencing of CFs in a CO. LOs aggregate COs around a learning objective. However,
in our ALOCoM-based ontologies, these basic types of CUs are considered from
completely different perspectives – ALOCoMCS is about content structuring,
whereas ALOCoMCT focuses on potential instructional/pedagogical roles of CUs.

3.2 Domain Ontology

The SKOS Core ontology3 is used as the basis of the IIS course domain ontology4.
Being specifically developed to describe taxonomies and classification schemes, the
SKOS Core ontology has an excellent variety of properties to describe relationships
between topics in a course.

Each concept of the IIS domain is represented as an instance of the skos:Concept
class, whereas the conceptual scheme of the domain is represented as an instance of
the skos:ConceptScheme class. The SKOS’ property skos:inScheme is used to associ-
ate all defined instances of the skos:Concept class to the conceptual scheme of the IIS
domain. Likewise, each identified domain concept is assigned one or more aliases
(i.e., alternative terms typically used in literature when referring to a concept) using
the SKOS properties skos:prefLabel, skos:altLabel, and skos:hiddenLabel. SKOS
semantic properties, i.e. properties derived from the skos:semanticRelation property,
enabled us to structure the IIS domain in a generalization hierarchy (via the
skos:broader and its inverse skos:narrower properties), as well as to define semantic
relations between concepts belonging to different branches of the hierarchy (via the
skos:related property). We used the skos:hasTopConcept property to relate the most
general domain concepts (such as intelligent agents, Semantic Web, etc.) to the IIS
concept scheme, thus formally stating that these concepts form the top level of the
created concepts hierarchy. Fig. 2 shows an excerpt of the ontology that defines
‘XML Schema’ as a domain concept.

<skos:Concept rdf:ID="xml_schema">
<skos:broader rdf:resource="#xmltech"/>
<skos:prefLabel rdf:datatype="http://www.w3.org/2001/XMLSchema#string">XML Schema
</skos:prefLabel>
<skos:hiddenLabel rdf:datatype="http://www.w3.org/2001/XMLSchema#string">xsd
</skos:hiddenLabel>
<skos:inScheme rdf:resource="#iis-concept-scheme"/>

</skos:Concept>

Fig. 2. excerpt from the SKOS-based IIS domain ontology

3 http://www.w3.org/2004/02/skos/core/
4 Actually, we used SKOS Core OWL binding available at:

http://ai.usask.ca/mums/schemas/2005/01/27/skos-core-dl.owl

 Dynamic Assembly of Personalized Learning Content on the Semantic Web 549

One should note that the domain ontology does not contain any information regard-
ing topics sequencing, in terms of the order in which the topics should be presented to
the learners. That kind of information is stored separately in the Learning Paths ontology.

3.3 Learning Paths Ontology

The Learning Paths (LP) ontology defines learning trajectories through the topics
defined in the domain ontology. We defined this ontology as an extension of the
SKOS Core ontology that introduces three new properties: lp:requiresKnowledgeOf,
lp:isPrerequisiteFor, and lp:hasKnowledgePonder. The first two are semantic proper-
ties defining prerequisite relationships between domain topics, whereas the third one
defines difficulty level of a topic on the scale from 0 to 1.

The properties lp:requiresKnowledgeOf and lp:isPrerequisteFor are defined as
sub-properties of the skos:semanticRelation property of the SKOS Core ontology.
These properties are defined as mutually inverse and transitive. One should note that
unlike the Dublin Core properties dc:requires and dc:isRequiredBy5 that establish
dependency of prerequisite type among physical LOs, the properties we introduced
are intended to describe similar relations on the level of domain concepts.

As Fig. 3 suggests, the LP ontology relates instances of the domain ontology
through an additional set of relationships reflecting a specific instructional approach
to teaching/learning IIS. The main benefit of decoupling the domain model in this
way is to enable reuse of the domain ontology – even if the applied instructional ap-
proach changes, the domain ontology remains intact.

<skos:Concept rdf:about="http://tangram/iis-domain.owl#xml_schema">
<lp:isPrerequisiteFor rdf:resource="http://tangram/iis-domain.owl#xslt"/>
<lp:requiresKnowledgeOf rdf:resource="http://tangram/iis-domain.owl#xml">
<lp:requiresKnowledgeOf rdf:resource="http://tangram/iis-domain.owl#xpath">
<lp:hasKnowledgePonder rdf:datatype="http://www.w3.org/2001/XMLSchema#float">0.4
</lp:hasKnowledgePonder>

</skos:Concept>

Fig. 3. An excerpt from the Learning Paths ontology for the domain of IIS

3.4 User Model Ontology

We developed a User Model (UM) ontology to help us formally represent relevant
information about TANGRAM users (content authors and students). The ontology
focuses exclusively on the user information that proved to be essential for
TANGRAM’s functionalities. To enable interoperability with other learning applications
and exchange of users’ data, we based the ontology on official specifications for user
modeling: IEEE PAPI Learner6 and IMS LIP7. Furthermore, since we did not want to
end up with another specific interpretation of the official specifications, potentially
incompatible with existing learning applications, we explored existing solutions, like
the ones presented in [4] and [11]. The result is a modular UM ontology that:

5 http://dublincore.org/documents/dcmi-terms/
6 http://edutool.com/papi
7 http://www.imsglobal.org/profiles

550 J. Jovanovi , D. Gaševi , and V. Devedži

• uses some parts of the UM ontology developed for the ELENA project and de-
scribed in [4]; specifically, we use the elements aimed for representing students’
performance (as proposed by the IEEE PAPI Learner specification) and their pref-
erences (as specified in the IMS LIP);

• introduces new constructs for representing users’ data that the official specifica-
tions do not declare and the existing ontologies either do not include at all, or do
not represent in a manner compliant to the needs of TANGRAM.

In the center of Fig. 48 one can notice class um:User that formally describes the
concept of a TANGRAM user. Each user, i.e. instance of this class, is related to a set
of his/her personal data via the um:hasPersonalInfo property. Personal data are for-
mally represented with the um:PersonalInfo class and its datatype properties:
um:username and um:password properties that keep values of secure login data, as
well as um:name property representing the user’s name. Each user can be a member
of one or more organizations (um:Organization). Specifically, the user can be a mem-
ber of a university (um:University), a research centre (um:ResearchCentre) and/or a
research group (um:ResearchGroup). Additionally, for each user the system needs
data about his/her role/position in the formal organization (s)he belongs to. Therefore,

Fig. 4. Graphical representation of the TANGRAM’s User Model Ontology

8 Classes and properties that do not have namespace prefix in Fig. 4 belong to the um:
http://tangram/user-model/complete.owl namespace.

 Dynamic Assembly of Personalized Learning Content on the Semantic Web 551

we introduced property um:hasRole that relates an instance of the um:User class with
an appropriate instance of the um:UserRole class. The latter class formalizes the con-
cept of a role/position a user typically has in an educational environment and is speci-
fied as an enumeration (via owl:oneOf construct) of the following instances:
um:Teacher, um:TeachingAssistant, um:Researcher, um:Student. Of course, this
enumeration can be extended to encompass additional roles if needed. Further, each
user can have certain preferences (um:hasPreference) regarding language (ims:-
LanguagePreference) and/or domain topics (ims:ConceptPreference). Representation
of users’ preferences is taken from the user model ontology developed for the ELENA
project [4] and is fully compliant with the IMS LIP specification (hence ims prefix). Class
ims:Preference, formally representing a user’s preference, can have ims:hasImpor-
tanceOver property that defines priority (i.e. importance) of a preference for a specific
user. Furthermore, the ontology introduces um:AuthorPreference class as a subclass
of ims:Preference in order to represent users’ preferences regarding authors of learn-
ing content. The property um:refersToAuthor associates this specific type of a user’s
preference with his/her favorite author of learning content (one or more of them).

The remaining classes and properties of the TANGRAM UM ontology are exclu-
sively aimed at formal representation of students’ data. Each student (um:Student) is
assigned a set of performance-related data (via um:hasPerformance property) repre-
sented in the form of the papi:Performance class and the following set of properties9:

1. the papi:learning _competency property refers to a concept of the domain ontology
that formally describes the subject matter of the acquired knowledge in the best way
(i.e. contains URI of that concept);

2. the papi:learning_experience_identifier property identifies a CU that was a part of
the learning material used for learning. In TANGRAM, each instance of the
papi:Performance class has a number of properties of this type – one for each CU
used to assemble the learning content for the student;

3. the papi:performance_coding and papi:performance_metrics properties define
respectively the coding system and the metrics used to evaluate a student’s per-
formance level (i.e., the level of the acquired knowledge);

4. the papi:performance_value property keeps information about the real value/level of
the acquired knowledge measured in terms of the specified metrics and coding system;

5. the papi:recorded_date property is aimed at representing date and time when the
performance was recorded, i.e. when the learning process took place.

Additionally, for each student the system keeps data about his/her learning style.
Representation of learning styles in the UM ontology is based on the Felder &
Silverman model of learning styles [6]. This model recognizes 5 categories of learn-
ing styles: 1) Visual-Verbal, 2) Sensing-Intuitive, 3) Sequential-Global, 4) Inductive-
Deductive and 5) Active-Reflective. The learning style of a student is formally repre-
sented by the um:LearningStyle class in the UM ontology. This class is associated
(via the um:hasCategory property) with the um:LearningStyleCategory class that
formally stands for one specific aspect (category) of the learning style. Specifically,
TANGRAM implements the learning categories defined in the Felder & Silverman

9 The prefix papi: is used to denote that the Performance class and its properties are defined
according to the PAPI Learner Specification.

552 J. Jovanovi , D. Gaševi , and V. Devedži

model and introduces one subclass of the um:LearningStyleCategory class to repre-
sent each of those categories (e.g. um:LS_Visual-Verbal)10. To make the ontology
more general and easily extensible, we assigned the property um:basedOnTheory to
the um:LearningStyleCategory class, thus enabling the introduction of learning style
categories defined by other authors. The class um:LearningStyleCategory is also at-
tached the um:hasValue property aimed at representing the position of a specific stu-
dent on the continuum defined by the opposite poles of a learning style category. The
range of this property is restricted to double values between -1 and 1 (inclusively).
The boundary values (-1 and 1) represent the two extreme poles of each learning style
category. For example, assigning the value of -1 to the um:hasValue property of the
um:LS_Visual-Verbal class means that the learner is highly visual. On the opposite,
um:hasValue property with the value of 1 identifies a highly verbal learner.

4 Personalized Learning in TANGRAM

TANGRAM provides adaptation of learning content to the specific needs of individ-
ual students. Currently, it is focused on enabling personalized learning experience to
students interested in the domain of IIS. Two basic functionalities of the system from
the students’ perspective are:

• Provision of learning content adapted to the student’s current level of knowledge of
the domain concept of interest, his/her learning style, and other personal preferences.

• Quick access to a particular type of content about a topic of interest, e.g. access to
examples of RDF documents or definitions of the Semantic Web (both topics be-
long to the domain of IIS).

In this section we focus on the former functionality and explain in details how it is
implemented in TANGRAM.

4.1 Initialization of the User Model

A student must register with the system during the first session. Through the registra-
tion procedure the system acquires information about the student sufficient to create
an initial version of his/her model. The student is required to fill in a simplified ver-
sion of the Felder&Silverman questionnaire for determining the student's learning
style11. The acquired data enables the system to create personalized learning content
for the student.

As for initial determination of the student’s knowledge about the IIS domain, the
system relies on the student’s self-assessment. During the registration procedure, the
student is asked to estimate his/her level of knowledge of the main sub-domains of the
IIS domain (e.g. Intelligent Agents, Semantic Web). In particular, the student is pre-
sented with the following set of options: ‘Never heard of the topic’, ‘Have a basic
idea’, ‘Familiar with’, ‘Know well’ and ‘Demand advanced topics’, and has to choose

10 We did not consider Active-Reflective learning style category, as it emphasizes social aspects
of a learning process that TANGRAM currently is not able to support.

11 The questionnaire is known as “Index of Learning Styles”, and is available at http://www.
engr.ncsu.edu/learningstyles/ilsweb.html

 Dynamic Assembly of Personalized Learning Content on the Semantic Web 553

the one that reflects his\her knowledge best. Internally, TANGRAM converts the
student’s selection for each sub-domain into its numerical counterpart (0, 0.2, 0.4, 0.6
or 0.8, respectively). These numerical values are later compared to the values of the
lp:hasKnowledgePonder property assigned to the domain concepts in the LP ontol-
ogy, to let the system determine the student’s initial position in the IIS domain space
and provide him/her with proper guidance and support.

4.2 Dynamic Assembly of Personalized Learning Content

A learning session starts after the user (registered and authenticated as a student)
selects a sub-domain of IIS to learn about. The system performs a sort of comparative
analysis of data stored in the student’s model and in the LP ontology. Specifically, the
LP ontology is queried for the set of domain concepts that are essential for successful
comprehension of the topics from the chosen sub-domain. More precisely, the query
targets the concepts related via lp:requiresKnowledgeOf property to the topics en-
compassed by the chosen sub-domain. Subsequently, the student model is queried for
data about the student’s level of knowledge about the selected sub-domain and the
identified set of prerequisite concepts. Information resulting from this analysis is used
to provide adaptive guidance and direct the student towards the most appropriate
topics for him/her at that moment. To achieve this, we make use of link annotation
and hiding techniques [2]. Specifically, hierarchical organization of concepts of the
selected sub-domain is visualized as an annotated tree of links (shown in the upper
left corner of Fig. 5). We use the following link annotations:

Fig. 5. Screen shot of a page presenting a ranked list of generated assemblies (i.e. their descriptions)

554 J. Jovanovi , D. Gaševi , and V. Devedži

1. blue bullet preceding a link to a domain concept denotes that the student knows the
topic that the link points to,

2. green bullet denotes a recommended domain concept, i.e. a concept that the student
has not learned yet, but has knowledge about all prerequisite topics,

3. red bullet is used to annotate a domain topic that the student is still not ready for as
(s)he is ignorant of the prerequisite topics.

Link hiding technique is used to prevent the student from accessing topics that are too
advanced for him/her. In other words, links annotated with red bullets are made inactive.

After the student selects one concept from the topics tree, the system initiates the
process of dynamic assembly of learning content on the selected topic. The process is
based on the following algorithm:

1. Query the LOR for content units covering the selected domain topic. The query is
based on the dc:subject metadata element of the CUs from the repository. If the re-
pository does not contain CUs on the selected topic, the further steps of the algo-
rithm depend on the student’s learning style, i.e. on its Sequential-Global dimen-
sion, to be more precise12. If the student belongs to the category of global learners,
the algorithm proceeds normally. Otherwise, the system informs the student that
the learning content on the selected topic is currently unavailable and suggests
other suitable topics.

2. Classify the retrieved content units into groups according to the same parent LO
criterion. In other words, CUs originating from the same slide presentation are put
in the same group.

3. Sort components in each group. The sorting procedure is based on the original
order of CUs from the group, i.e. on the value of the alocomcs:ordering property
of the parent LO. In the subsequent text we use the term assembly to refer to a
group of CUs sorted in this manner.

4. Rank assemblies according to their compliance with the student model. Each as-
sembly is assigned a double value (relevancy) between 0 and 1 that reflects its
compliance with the student’s model, i.e. its relevancy for the student. To calculate
the relevancy of an assembly we query the student’s model for the data about the
student’s learning style, his/her preferred author as well as his/her learning history
data (already seen CUs). The greater the value of the relevancy, the higher the im-
portance of the assembly for the student.

5. Present the student the sorted list of assemblies’ descriptions and let him/her de-
cide which one to take (Fig. 5). Description of an assembly is actually the value of
the dc:description metadata element attached to the LO that the content of the as-
sembly originates from. One should note that the TANGRAM does not aim to
make a choice for a student. Instead, the system provides guidance to the student
(using link annotation and hiding techniques), and eventually lets him/her decide
on the assembly to learn from.

6. Show the student the learning content from the selected assembly. As soon as the
student selects one assembly from the list, the system presents its content using its
generic form for presentation of dynamically assembled learning content.

12 Whereas global learners prefer holistic approach and learn best when provided with a broader
context of the topic of interest, sequential learners tend to be confused/disoriented if the top-
ics are not presented in a linear fashion [6].

 Dynamic Assembly of Personalized Learning Content on the Semantic Web 555

7. Update the student model. Specifically, the system creates an instance of the
papi:Performance class in the student model and assigns values to its properties
(see Section 3.4 for details). For example, the papi:performance_value property is
assigned a value that reflects the level of mastery of the domain topic. If it was a
topic recommended by the system, the property is assigned the maximum value
(1). However, if the assembly covered an advanced topic, due to the lack of more
appropriate learning content, this property is set to 0.35. This approach was inspired
by the work of De Bra et al [3] and is based on the assumption that the student, due
to the lack of the necessary prerequisite knowledge was not able to fully understand
the presented content.

5 Discussion

In this section we discuss our experiences with the process of dynamic content as-
sembly, emphasizing its most challenging aspects. Actually, we draw attention to the
deficiencies of the presented algorithm and explain their origins.

Current implementation of the algorithm explained above uses exclusively slides
(instances of alocomc:Slide class) for dynamic generation of personalized learning
content. All our attempts to base the assembly process on CUs of lower granularity
levels (alocomcs:Paragraph, alocomcs:List, alocomcs:ListItem,...) ended unsuccess-
fully: we did not manage to automatically generate coherent learning content out of
those components. Additionally, one might argue that an assembly is nothing more
than a slide presentation from which someone has taken out slides that do not deal
with the relevant domain topic(s). However, it should be noted that our original idea
was completely different. We intended to build new learning materials by combining
CUs from diverse LOs. Nonetheless, this objective turned out as too ambitious:
proper sequencing of small size components, as well as meaningful arrangement of
their content, authoring styles, terminology and other relevant features proved to be
an insurmountable task.

We recognized the lack of precise semantic descriptions of a CU’s content as the
major obstacle for using small-size CUs in the process of automatic content assembly.
To make these statements clearer, let us consider a small example. Fig. 6 presents two
slides from different slide presentations, authored by different authors, but covering
the same domain concept – the concept of the XML Schema. Additionally, both slides
have the same instructional role – they provide examples of some specific features of
XML Schema. Let us assume that a student requested a learning content on XML
Schema and the system has started executing algorithm presented in Section 4.1.
Obviously, the slides from Fig. 6 will be in the set of the CUs retrieved from the LO
repository in the first step of the algorithm. To create a coherent learning content out
of the collected CUs, the system has to determine how to properly sequence those
CUs. Proper sequencing assumes: 1) sequential introduction of complexity – simple
concepts should always be introduced before complex topics, 2) respect of the stu-
dent’s learning style, particularly, in the context of our example, some students prefer
to be first presented with definitions and then provided with examples of a domain

556 J. Jovanovi , D. Gaševi , and V. Devedži

a) b)

Fig. 6 Sample slides annotated with the XML Schema domain ontology concept

topic, whereas others are inclined towards the opposite approach. Semantic annota-
tions of CUs are the primary source of information for resolving the problem of
proper sequencing. In particular, the most relevant are: dc:subject metadata element
pointing to a concept from the domain ontology and alocom-meta:type element point-
ing to the formal representation of the instructional role of a CU (i.e. concept from the
ALOCoMCT ontology). Since the domain ontology only has ‘XML Schema’ concept
to represent any content related to this very broad topic, it is clear that both slides
from Fig. 6 will have the same value for the dc:subject metadata. Additionally, both
slides have the same instructional role (alocomct:Example). In such a situation, the
dynamic assembly subsystem can only guess the right order of the CUs. On the other
hand, for people familiar with XML Schema concepts it is easy to deduce that slide
(b) should precede slide (a), as comprehension of the example from slide (b) is a pre-
requisite for understanding the example on slide (a). However, the system does not
know this, as its sole source of knowledge is the IIS domain ontology that does not
contain detailed knowledge about the XML Schema concept.

To resolve this problem we need a more precise formal description of the IIS do-
main. In other words, the employed domain ontology needs to be significantly
enlarged: each leaf class of the current ontology should be substituted with a set of
concepts and relationships that describe the domain topic more precisely. Accord-
ingly, we intend to organize the domain ontology in modules, including the core part
(the IIS domain ontology in its current state) and a number of extensions, one for each
complex concept of the current ontology. The OWL ontology language, we used to
encode the IIS ontology,provides support for such a modular approach. Additionally,
each extension of the domain ontology needs to be accompanied by a corresponding
extension of the LP ontology defining an optimal learning path through the concepts
of the extension. Finally, TANGRAM’s subsystem for automatic semantic annotation
of CUs needs to be improved if we want to fully exploit the potentials that semanti-
cally rich domain ontology offers. Although the initial evaluations of this subsystem
proved to be rather satisfactory, our intention is to further improve it with more ad-
vanced text mining and information extraction techniques.

 Dynamic Assembly of Personalized Learning Content on the Semantic Web 557

6 Related Work

Farell et al. have developed the Dynamic Assembly Engine (DAE), aimed at auto-
matic assembly of LOs into simple, short, focused, Web-based custom courses [5].
The process is based upon the learner’s request and consists of searching a LOR for
relevant LOs and sequencing the retrieved LOs into a coherent learning path. Being
partially inspired by the work of Farrell et al., our approach to dynamic content as-
sembly exhibits some common traits with theirs’. Nonetheless, as TANGRAM is
based on a content structure ontology (ALOCoMCS ontology), it enables reuse of
CUs of different granularity levels. In other words, TANGRAM allows one to reuse
not only LOs (as DAE does), but also smaller CUs (COs and CFs). Furthermore,
unlike our system, DAE does not keep the users data relevant for content adaptation
(e.g. learning style, preferences, knowledge of the domain topics). Instead the adapta-
tion is based exclusively on the user’s request, i.e. keyword query, desired level of
detail, and the amount of time available for learning. Like TANGRAM, DAE uses its
own profile of the IEEE LOM metadata schema. However, while TANGRAM’s pro-
file is used to annotate both LOs and their components (i.e. reusable CUs of divers
granularity levels), in DAE the developed profile is used exclusively for annotating
LOs. Another similarity of the two systems lies in their usage of a domain ontology
for semantic annotation of LOs. Furthermore, the two systems use similar taxonomies to
annotate LOs with instructional roles.

OntAWare provides an environment comprising a set of software tools that support
learning content authoring, management and delivery [8]. It enables semi-automatic
generation of LOs out of appropriate domain ontologies. Actually, LOs are produced
by the application of graph transformations to these ontologies. However, since on-
tologies are aimed primarily for machine (not human) consumption, they typically
contain terse and often scarce, human-readable descriptions of concepts and their
relationships. Therefore, content generated solely from a domain ontology can be
used as a skeleton for a LO, rather than as a LO per se. Further, adaptation of learning
content is of a limited scope and is based solely on a student’s browsing history – a
track of domain concepts presented to the student during his/her single session with
the system. Students’ personal traits are not considered at all. Additionally, the algo-
rithm for dynamic composition of LOs is hard-coded, making it difficult to change the
instructional approach to content authoring. Learning Paths ontology makes such a
change in TANGRAM much easier.

Henze [7] has developed a framework for creating and maintaining Personal Read-
ers that provide personalized contextual information on the currently considered LO,
like recommendations about additional readings, more general/detailed information,
exercises, quizzes, etc. The driving principle of this framework is to expose different
personalization functionalities as services which are coordinated by a mediator ser-
vice. Each personalization service performs a specific kind of a LO personalization,
based on the LO’s metadata, user’s characteristics and an appropriate domain ontol-
ogy. At the current state, Personal Reader employs a very simple user model that
keeps track of the learning resources the user has visited. LO’s metadata must be fully
IEEE LOM compliant, if it is to be processed by the system. Concepts of the

558 J. Jovanovi , D. Gaševi , and V. Devedži

domain ontology are used to enhance LOs annotations with semantic metadata. The
flexibility offered by such a service-oriented architecture, made us rethink the current
design of our system and made it service oriented.

7 Conclusion

The paper presents an approach to dynamic assembly of personalized learning content
using the Semantic Web technologies. The peculiarity of our approach is that we
reuse existing content units of different granularity levels to dynamically generate
new learning content compliant to the specific needs of each individual student. To
evaluate the feasibility of the proposed approach we developed TANGRAM, a web-
based learning environment for the domain of Intelligent Information Systems.
TANGRAM enables on-the-fly assembly of new learning content compliant to the
student’s knowledge of the subject domain, his/her preferences and learning style.
Furthermore, TANGRAM allows quick access to a particular type of content about a
domain topic of interest. Although TANGRAM supports exclusively the domain of
IIS, it can be easily repurposed for other domains if appropriate domain ontology and
its related learning path ontology are provided.

While working on TANGRAM’s implementation we became aware of same im-
portant practical details concerning dynamic assembly of CUs originating from dif-
ferent sources (i.e. LOs) - for example, the problem of ordering of CUs dealing with
the same domain concept. In our future research we address this issue by defining a
richer domain ontology, as well as by further improving TANGRAM’s subsystem for
automatic semantic annotation of CUs. We also plan to extend our solution to enable
repurposing content of other types of LOs beside slide presentations.

References

1. Brooks, C., McCalla, G., and Winter, M., "Flexible Learning Object Metadata", In Proc. of
the Int'l Workshop on Applications of Semantic Web Technologies for E-Learning,
Amsterdam, The Netherlands, 2005.

2. Brusilovsky, P, “Methods and Techniques of Adaptive Hypermedia,” Adaptive Hypertext
and Hypermedia, Kluwer Academic Publishers, the Netherlands, 1998, pp. 1-43.

3. De Bra, P., Aroyo, L., and Cristea, A., Adaptive Web-based Educational Hypermedia,
Book chapter in: Web Dynamics, Adaptive to Change in Content, Size, Topology and Use,
(Eds.) Mark Levene, Alexandra Poulovassilis, pp. 387-410, Springer, 2004

4. Dolog, P., and Nejdl, W., “Challenges and Benefits of the Semantic Web for User Modeling,”
In Proc. of AH2003 Workshop at 12th Int’l WWW Conf., Budapest, Hungary, May 2003.

5. Farrell, R., Liburd, S. D., and Thomas, J. C., “Dynamic Assembly of Learning Objects,” In
Proc. of the 13th Int’l WWW Conf., New York, USA, 2004, pp. 162-169.

6. Felder, R., and Silverman, L., “Learning and Teaching Styles In Engineering Education,”
Journal of Engineering Education, Vol.78, No.7, pp. 674–681, 1988.

7. Henze, N., “Personal Readers: Personalized Learning Object Readers for the Semantic
Web,” Proc. of the 12th Int’l Conf. on Artificial Intelligence in Education, Amsterdam,
The Netherlands, 2005.

 Dynamic Assembly of Personalized Learning Content on the Semantic Web 559

8. Holohan, E., Melia, M., McMullen, D., and Pahl, C., “Adaptive E-Learning Content
Generation based on Semantic Web Technology”, In Proc. Int'l Workshop on Applications
of Semantic Web Technologies for E-Learning, Amsterdam, The Netherlands, 2005

9. Jovanovi , J., Gaševi , D., and Devedži , V., “TANGRAM: An Ontology-based Learning
Environment for Intelligent Information Systems,” Proc. of the 10th World ELearn Conf,
Vancouver, Canada, 2005, pp. 2966-2971.

10. Jovanovi , J., Gaševi , D., Verbert, K., and Duval, E., “Ontology of learning object con-
tent structure,” Proc. of the 12th Int’l Conf. on Artificial Intelligence in Education, Am-
sterdam, The Netherlands, 2005, pp.322-329.

11. Keenoy, K., Levene, M., & Peterson, D., (2003.) “Personalisation and Trails in Self e-
Learning Networks”, SeLeNe Working Package 4 Deliverable 4.2. [Online]. Available at:
http://www.dcs.bbk.ac.uk/selene/reports/Del4.2-2.1.pdf.

12. Robert, J.-M., and Gingras, G., "Experimental study on the reuse of learning objects and teach-
ing practices", Proc. Int’l Conf. on Education and Technology, Calgary, Canada, 2005.

13. Stojanovi , Lj. et al. (2001). “eLearning in the Semantic Web,” Proc. of the WWW2001
Int’l Conf., Orlando, USA.

14. Verbert, K., Klerkx, J., Meire, M., Najjar, J., and Duval, E., “Towards a Global Compo-
nent Architecture for Learning Objects: an Ontology Based Approach,” Proc. of OTM
2004 Workshop on Ontologies, Semantics and E-learning, Agia Napa, Cyprus, 2004.

Interactive Ontology-Based User Knowledge
Acquisition: A Case Study

Lora Aroyo1, Ronald Denaux1, Vania Dimitrova2, and Michael Pye2

1 Eindhoven University of Technology, Faculty of Mathematics and Computer Science,
P.O.Box 513, 5600 MB Eindhoven, The Netherlands

2 School of Computing, University of Leeds, LS2 9NA, Leeds - UK
l.m.aroyo@tue.nl, vania@comp.leeds.ac.uk

Abstract. On the Semantic Web personalization technologies are
needed to deal with user diversity. Our research aims at maximising
the automation of acquisition of user knowledge, thus providing an ef-
fective solution for multi-faceted user modeling. This paper presents
an approach to eliciting a user’s conceptualization by engaging in an
ontology-driven dialog. This is implemented as an OWL-based domain-
independent diagnostic agent. We show the deployment of the agent in
a use case for personalized management of learning content, which has
been evaluated in three studies with users. Currently, the system is being
deployed in a cultural heritage domain for personalized recommendation
of museum resources.

1 Introduction

The rapid expansion of semantics-enriched services on the Web results in an
exponential growth of the users of these services. They differ in their capabilities,
expectations, goals, requirements, preferences and usage context. The one-size-
fits-all approach to developing Web applications is becoming inappropriate. To
fulfill the Semantic Web vision of improving the way computers and people work
together, context-aware and user-adaptive technologies that take into account
the users’ perspective are needed [1]. User-adaptive systems automatically tailor
their behavior to the needs of individual users. They can recommend items or
documents that relate to the user’s interests, provide links to relevant resources
according to the user’s goal, or offer explanation when needed. With the addition
of explicit semantics, user-adaptive systems become context-aware.

A critical aspect in the realization of personalization is the acquisition of
knowledge about the users. Traditionally it is represented in a user model [2].
The depth of the represented understanding about the users can vary from sim-
ple user profiles that focus mainly on users’ preferences to sophisticated models
that capture users’ conceptualizations [3]. In the open world context the lat-
ter capture individual users’ viewpoints, spanning from knowledge engineers to
naive users. They also define the semantics of the user knowledge representation,
thus facilitating the effective integration of the users within semantics-aware sys-
tems. This enables knowledge-enhanced reasoning to align the perspectives of

Y. Sure and J. Domingue (Eds.): ESWC 2006, LNCS 4011, pp. 560–574, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Interactive Ontology-Based User Knowledge Acquisition: A Case Study 561

users and system designers, where various mismatches in meaning can be dis-
covered and taken into account for more effective adaptation. The acquisition
and maintenance of user conceptual models requires robust methods that inte-
grate seamlessly in semantics-enhanced Web-based systems. An example of such
an approach is proposed in here and is illustrated in an e-learning case study.

Why did we chose an e-learning use case? E-learning is a key application
domain where the empowering role of semantics-enhanced technologies is be-
ing acknowledged. The Web is becoming the most popular educational medium
nowadays, at schools, universities, and for professional training [4]. A prominent
new stream of research on Educational Semantic Web [5] is being established.
Recent successes in this field include semantics-based annotation and sharing of
educational resources [6, 7, 8], as well as supporting the construction and sharing
of knowledge among communities of learners and teachers [9, 10]. Although there
are initial attempts to develop semantic-aware personalization technologies for
Web-based educational systems [11, 12], this research is still in an embryonic
stage. On the other hand, adaptive learning systems are well advanced in the
addressing of the user’ needs [13]. As pointed by Wolpers and Nejdl, future
research in the Educational Semantic Web should include, among others, cap-
turing the perspectives of different users based on observations from a variety of
sources, and representing these perspectives in interoperable learner models [4].
The approach presented in this paper is a contribution in this direction. Fur-
thermore, the proposed approach is domain-independent, and is currently being
instantiated in museum and digital library domains.

The paper describes an ontology-based dialog agent, called OWL-OLM, that
elicits and maintains a model of the user’s conceptualization. The architecture of
OWL-OLM is presented in Section 2, and the main components are described
in the follow-up sections: domain ontology and a user model (Section 3) and
dialog maintenance (Section 4). We illustrate the deployment of OWL-OLM
within an RDF/OWL-based system for personalized management of learning
content, called OntoAIMS Resource Browser (Section 6). It uses a multi-faceted
user model built by collecting, interpreting and validating user data from diverse
sources, such as user preferences, diagnostic dialog and monitoring the user in-
teraction with the system [14]. The evaluation of OntoAIMS Resource Browser
is outlined in Section 7. Finally, we discuss related and future work.

2 Architecture of OWL-OLM

OWL-OLM uses the STyLE-OLM framework for interactive ontology-based user
modeling [15] and extends it to work with an OWL-based domain ontology and
a user model. The architecture of OWL-OLM is presented in Figure 1.

The Dialog Agent is the main OWL-OLM component which maintains the
user-knowledge acquisition dialog. The user-agent interaction is geared towards
achieving the goal of the user, according to which the agent defines its dialog
goals. For example, in a learning situation the user may want to be recommended
what to read next on a certain topic. The goal of the dialog agent in this case

562 L. Aroyo et al.

would be to asses the current state of the user’s knowledge according to the
requirements for the particular course task. In a museum case, the user may
want to be recommended which painting to view next in the context of the
user’s current preferences. To do so, dialog subgoals are defined (e.g. to probe
the user’s knowledge of concepts related to the task or the preferences set). In
addition, the user may want to clarify some part of the domain, so he asks
questions. Dialog subgoals will be then to answer the user’s questions and help
him clarify the particular domain aspects.

Fig. 1. The architecture of OWL-OLM

A Domain Ontology built
in OWL is used to maintain
the dialog and to update
the user’s Short-Term Con-
ceptual State. The latter is
also represented in OWL
and provides a model of
the user’s conceptualization
gathered throughout the di-
alog. Section 3 gives details.

The dialog agent main-
tains a dialog episode goal,
which is divided into sub-
goals that trigger Dialog
Games - sequences of utter-
ances to achieve a specific
sub-goal, see Section 4.1.

The agent uses also a
Game Analyzer that ana-
lyzes each user’s utterance

to decide the agent’s response and to update the user’s short-term conceptual
state, see Section 4.2. When a dialog episode finishes, the short-term conceptual
state is used to update the user’s Long-Term Conceptual State, referred to as
the User Model. The belief revision algorithm used in [15] is employed.

The user interacts with the system by using a graphical user interface, issus-
trated in Figure 2. The interface uses JGraph1 to present, create, and modify
graphical utterances. The main components of OWL-OLM are described next.

3 Domain Ontology and a User’s Conceptual Model

OWL-OLM is built as a user modeling component to be integrated in Semantic
Web applications. OWL-OLM follows a general dialog framework that is domain
independent and produces OWL-based user model. The only restriction imposed
is that a URI of a domain ontology has to be provided, and that this ontology
has to be defined in OWL. For the current instantiation, example from which

1 http://www.jgraph.com/

Interactive Ontology-Based User Knowledge Acquisition: A Case Study 563

Fig. 2. Example of OWL-OLM interface - utterance (2) from the dialog in Section 5

was given in Section 5, we use basic Linux ontology2 which includes concepts
from an introductory Linux course taught at the University of Leeds, UK. The
ontology was built by a domain expert from Eindhoven University of Technology
by using Protégé [16], and is used in a Linux course, see Section 6.

OWL-OLM uses Jena 2.1 [17] extensively for input and output of OWL on-
tologies and models, creating and changing OWL resources and resolving domain
ontology queries (in the Dialog Agent). The OWL generic reasoner from Jena is
employed to make inferences from the domain ontology.

As shown in the OWL-OLM architecture (Figure 1), the dialog agent ex-
tracts a user’s Short Term Conceptual State, used to tune the user’s Long Term
Conceptual State. The main idea of a conceptual state is that it gives a par-
tial model of a user’s conceptualization which is linked to one or more exist-
ing ontologies. A user’s conceptual state is defined in OWL-OLM as a triple
of URIs pointing to a Conceptual model, a Domain ontology and a User. The
conceptual model is specified in OWL resembling an ontology specification, i.e.
it defines classes, individuals, and properties, and uses OWL properties to de-
fine relationships. It makes links to resources defined in the domain ontology,
when possible (a resource can represent a concept or a relationship between
concepts [18]).

2 SWALE project, http://wwwis.win.tue.nl:8080/~swale/blo

564 L. Aroyo et al.

To indicate how the conceptual model is derived, a set of properties 3 is used:

– times used correctly: the number of times that the user has used a re-
source correctly, i.e. the way in which the resource was used was supported
by the domain ontology either because the resource was found in the domain
ontology or because it could be inferred from it.

– times used wrongly: the number of times that the user has used a resource
in a way that contradicts the domain ontology.

– times affirmed: the number of times that the user has stated he knows
about this resource.

The above properties are related to classes, individuals, and properties in the
conceptual model. The following excerpt shows the state of the class Filesystem
node (called by its label file in the example in Section 5).

<rdf:Description rdf:about="blo:Filesystem_node">
<rdfs:comment rdf:datatype="xmls:string">

Any set of data that has a pathname on the
filesystem.

</rdfs:comment>
<rdfs:label>file</rdfs:label>
<rdf:type rdf:resource="owl:Class"/>
<aimsUM:times_used rdf:datatype="xmls:long">

12</aimsUM:times_used>
<aimsUM:times_used_correctly

rdf:datatype="xmls:long">
10</aimsUM:times_used_correctly>

<aimsUM:times_used_wrongly
rdf:datatype="xmls:long">
2</aimsUM:times_used_wronlgy>

<aimsUM:times_affirmed rdf:datatype="xmls:long">
3</aimsUM:times_affirmed>

<aimsUM:times_denied rdf:datatype="xmls:long">
1</aimsUM:times_denied>

</rdf:Description>

This example shows that the user has used the class Filesystem node a total
of 12 times; 10 times supported by the domain ontology and twice not supported.
He has stated 3 times that he knows the concept Filesystem node and once that
he does not. Classes, individuals, object properties, and datatype properties are
annotated in the same way.

We also need to capture the relations between concepts that the user builds.
In order to associate the properties described above with these relations we use
reified statements [18]. For instance, in utterance (15) in the example given
in Section 5 the user states that class Move file operation is a subclass of
Command. We can create a reified statement referring to this relationship and add
the aimsUM:times used wrongly property to this statement, as shown below:

<rdf:Description rdf:nodeID="A273">
<rdf:type

rdf:resource="rdf:Statement"/>
<rdf:subject

rdf:resource="blo:Move_file_operation"/>
<rdf:predicate

3 An RDF specification of those properties, http://wwwis.win.tue.nl/~swale/aimsUM

Interactive Ontology-Based User Knowledge Acquisition: A Case Study 565

rdf:resource="rdfs:subClassOf"/>
<rdf:object rdf:resource="blo:Command"/>
<aimsUM:times_used

rdf:datatype="xmls:long">1
</aimsUM:times_used>
<aimsUM:times_used_wrongly

rdf:datatype="xmls:long">1
</aimsUM:times_used_wrongly>

</rdf:Description>

The above denotes that the user has used the rdfs:subClassOf relationship
between Move file operation and Command. This is more detailed than only
associating properties with the individual classes, as in the first excerpt.

4 Dialog Maintenance

4.1 Dialog Games

The dialog in OWL-OLM is organized as a series of dialog games that represent
the dialog episodes. A dialog game DG in OWL-OLM is defined as:

DG = (C,P ,R,U ,S)

where: C is a set of domain concepts and relations targeted in the game used to
maintain a global focus [19]; P is a set of preconditions which define conditions
of the state of the system (e.g. a history of previous utterances or a user’s
current conceptual state) which are needed to trigger the game; R is a set of
postconditions that define conditions of the state of the system (e.g. changes in
the user’s conceptual state) which become valid when the game ends; U is a
set of rules to generate dialog utterances; S defines the scope that is a set of
concepts used to maintain a dialog focus space [19]. The definition follows the
formalization in [15] which is derived from a linguistic dialog games model [20].

The building blocks of every dialog are utterances : sentences interchanged
between the dialog agent and the user. Each utterance consists of three parts:
an originator, intention, and OWL statement. Originator is the producer of the
utterance, which can be the dialog agent or the user.

OWL statement is the domain-related proposition of an utterance. An OWL
statement is a small OWL model that defines a set of concepts and relations.
The OWL model is restricted to only one semantic relation, as it represents the
domain-related semantics of a single utterance. OWL statements are used to (a)
extract a section of an OWL ontology and only focus on this section; (b) gen-
erate text templates to render the semantics enclosed by the OWL statement,
for the interface with the user; and (c) exchange very focused information about
the exact relationship between a small number of classes, individuals and ontol-
ogy properties, which is critical for diagnosing users and identifying mismatches
between the user’s conceptual model and the domain ontology, as shown later.
Table 1 illustrates some OWL statements.

Intention states the dialog purpose of the utterance, i.e. the intention of the
originator of the utterance. Sample intention operators used in OWL-OLM are

566 L. Aroyo et al.

Table 1. Some types of OWL statements used in OWL-OLM

Name Basic RDF triple(s) Comment
Empty none Used in combination with intentions which do

not require an OWL statement
SingleClass c rdf:type owl:Class Defines a single class c.
SingleObjectProperty p rdf:type owl:ObjectProperty Defines a single object property p without a

domain or range
InstanceOf i rdf:type c Declares that i is an individual of class c
SubClass c1 rdfs:subClassOf c2 States that class c1 is a subclass of class c2
ObjectProperty p rdf:domain c Defines that class c has an object property p

p rdf:range r
QueryInstance i rdf:type c Declares that i is an individual of class c and

i rdf:type swaleQ:QuestionResource that i is a question
QueryClassOfInd i rdf:type c i is an individual of c and c is a question

c rdf:type swaleQ:QuestionResource
QueryDtPropDomain p rdf:domain c Class c has a datatype property p and c is a

c rdf:type swaleQ:QuestionResource question

4 (1) Give Answer, where the originator is answering a previous utterance
which was a question with the semantics enclosed in the OWL statement; (2)
Agree, where the originator states that he agrees with the semantics enclosed in
the OWL statement; (3) Ask, where the originator asks whether the semantics
described in the OWL statement is true.

To achieve effective dialogs, which feel natural and efficient to the user, several
problems have been tackled. Firstly, a dialog focus is maintained, so that the
interaction is structured and organized. In terms of utterances, this means that
consecutive utterances should have a concept in common whenever possible. For
this, a scope of relevant concepts is maintained. Secondly, the dialog continuity
is ensured to provide a logical exchange of utterances. This means that each
utterance has to be a logical response to the previous one. Cue phrases are used
when a game is opened, closed, or re-initiated, to show the logical flow and to
communicate the dialog goal, as in the example in Section 5. Thirdly, to avoid
repetition of utterances a history of the dialog is maintained to exclude already
said utterances. Finally, mixed initiative is maintained to allow both participants
in the dialog to introduce a new topic and ask clarification questions.

4.2 Game Analyzer

We will now explain how OWL-OLM analyzes the utterances received from the
user and how the results of this analysis are used to decide the next move of the
Dialog Agent and to update the user’s conceptual state. The following features
are analyzed:

– The scope and intention of two consecutive utterances are compared. If the
scopes do not match, the agent has to decide whether to follow the user and
change the dialog focus or to stay in the current scope;

– The incoming utterance is analyzed to determine whether it asks a question
to the system, which triggers a question answering game;

4 See screen shots for more examples.

Interactive Ontology-Based User Knowledge Acquisition: A Case Study 567

– The OWL statement of the incoming utterance is compared to the domain
ontology to determine whether the semantic relation described by the OWL
statement is supported by the domain ontology;

– If an OWL statement is not supported by the domain ontology, the agent
checks for a recognizable mismatch between the statement and the ontology.

During the analysis, the default OWL reasoner of Jena [17] is used to infer
relationships that follow from the domain ontology. The reasoner is used to
determine whether the OWL statement of an utterance is supported by the
domain ontology. This is the case if and only if every RDF triple in the statement
can be inferred from the domain ontology.

4.3 Mismatches

When the user submits an utterance that cannot be verified by the domain
ontology, this is considered as a mismatch. We define a mismatch as any RDF
triple in the utterance’s OWL statement which cannot be found in the existing
domain ontology. In this way we can determine the type of mismatch by using
the basic building blocks in OWL. The semantics of a mismatch is that a resource
or relationship in the OWL statement is not supported by the domain ontology.
Table 2 shows some of the types of mismatches which can be detected.

Table 2. Mismatches detected in OWL-OLM

Type Comment
Unknown None of the other types apply
OntClass A class cannot be found
Individual An individual cannot be found
ObProp An object property cannot be found
DtProp A datatype property cannot be found
SubClass A subclass relationship cannot be found
InstanceOf The link between an individual and its class cannot be found
ObProp-Rel The domain ontology (DO) doesn’t suggest that two resources are related by this object property
DtProp-Rel The DO doesn’t suggest that two resources are related by this datatype property
Domain The DO doesn’t suggest that a resource is the domain of a property
Range The DO doesn’t support that a resource is the range of a property
ObProp-Val The DO doesn’t support that a resource has this value for this

object property

By classifying the types of mismatches OntoAIMS Resource Browser is able
to define dialog games to clarify each of the recognized mismatches. For in-
stance, an example of clarification dialog is given in Section 5: utterance (19)
prompts a mismatch of a type SubClass, which is recognized by OWL-OLM and
a clarification dialog game (see utterances (14) - (19)) is initiated.

4.4 Answering Questions

Two different types of questions are catered for: those which can be answered
with an yes or no (yes/no questions) and those where the answer contains an
element missing in the question (open questions). The latter are based on OWL
statements that have special resource type - a question resource. A question

568 L. Aroyo et al.

resource is any resource in an OWL model which is marked as being the same as
the resource swale :Question Resource5. This means we can mark any resource
R in an OWL statement as being a question resource by adding the following
RDF triple to the OWL model: (R rdfs:sameAs swale :Question Resource)

Questions are answered by transforming them to queries and feeding these to
any OWL query answering mechanism. OWL-OLM uses Jena [17] to find triples
in the domain ontology which match the query. A user’s question may interrupt
the current dialog game and initiate a new game where the Dialog Agent tries
to answer the question as best as it can and to probe for relevant knowledge.

5 An Illustrative Example

We illustrate here the application of OWL-OLM for the acquisition of user knowl-
edge with an example from the OntoAIMS Resources Browser (see Section 6).
OntoAIMS employs OWL-OLM to extract a conceptual model of the learner and
uses this model to recommend an appropriate to his knowledge state learning
task or learning resources. The User in this example is a student who follows an
introductory Web-based course on ”Linux Operating System”. The OWL-OLM
Dialog Agent utilizes an existing domain ontology [21] to explore aspects of the
User’s conceptualization of the topic ”Files and operations on files”. The interac-
tion is conducted in a graphical way (see fig. 2) but due to space limit is presented
here only in the text form generated in the dialog history of OWL-OLM.

Opening a Probing Dialog Game

(1) DialogAgent: I’ll try to suggest a suitable task for you. I will first ask
you some questions related to ”Files and operations on files”.

(2) DialogAgent: Do you think a file has a unix user as its owner?
(3) User: Yes, a file has a unix user as its owner.
(4) DialogAgent: Do you think a file has a path as its full name?
(5) User: I don’t know whether a file has a path as its full name.

The agent opens the dialog episode and informs what the goal is. It then
initiates a probing dialog game to elicit the part of the user’s conceptualization
related to the current task. It begins with the concept file, which is the main
concept in this topic, and checks whether the user knows concepts linked to file
– utterances (2) - (5). Figure 2 shows the OWL-OLM interface for utterance
(2). The OWL statement of a dialog utterance is rendered in a graphical form,
while the intention is rendered as a sentence opener. To construct his reply,
utterance (3), the user edits the diagram with the OWL statement by using basic
graphical commands. Also, when he double clicks on an object, he can edit its
class/individual name, add/delete properties, or create links with other objects.
To state intention, the user uses a sentence opener, see the buttons group to the
right in Figure 2. The textual form of the composed dialog utterance is shown in
the bottom. To send his utterance, the user clicks on the Send sentence button.
The utterance is added to the the dialog history, shown at the top.
5 http://wwwis.win.tue.nl/~swale/swale question

Interactive Ontology-Based User Knowledge Acquisition: A Case Study 569

User Question - A New Game Is Initiated

(6) User: Can you tell me more about what can be the group readable
right of a file?

(7) DialogAgent: As far as I know, a file has a readable permission as
its group readable right.

(8) User: [Skip]
(9) DialogAgent: Let us return to discussing files.

(10) DialogAgent: We will continue with discussing about. moving files.
(11) DialogAgent: Do you know what moving file is?
(12) User: I think that moving file is a command.

The user interrupts the dialog by asking a question (6). The agent suspends
the current dialog game and initiates a new game to answer the user’s question. It
sends a query to the domain ontology and then composes the answer. The agent
then waits to see whether the user has more questions. Since the user’s questions
have been answered, the agent returns to the dialog game that probes what the
user knows about file. When finished the agent closes the game that probes
for files. It then opens a dialog game that probes for another main concept
– moving files – and starts with probing for the parent. The user answer in
utterance (12) indicates a mismatch (see Section 4.3). According to the domain
ontology used by the agent, moving a file is a file operation not a command.
The agent again suspends the probing game and starts a clarification game.

Mismatch Is Recognized - A Clarification Game Is Initiated

(13) DialogAgent: Why do you think moving file is a command.
(14) DialogAgent: Do you think moving a file is also a file operation?
(15) User: Yes, I think that moving a file is a file operation.
(16) DialogAgent: Do you think a command has a version?
(17) User: Yes, a command has a version.
(18) DialogAgent: You think that moving file is a file operation, as well

as a command.
(19) User: I don’t think that moving file is a command.

The agent first checks for an alignment between the user’s conceptualization
and the domain ontology (utterance (14)), and then checks for inherited proper-
ties from the subClass link between moving file and file operation. If the
answer is positive, the agent checks for an inherited property from the subClass
link the user makes between moving file and command. Because the user does
not confirm the property, the agent checks the property for command to highlight
the inheritance link the user makes between moving files and command. At the
end, the agent checks again the mismatch, which is now corrected by the user.

6 Use of OWL-OLM for Adaptive Content Management

In this section we demonstrate how OWL-OLM was utilized to enable person-
alization in a semantic-aware e-learning system, called OntoAIMS Resource

570 L. Aroyo et al.

Browser. OntoAIMS Resource Browser6 is an ontology-based version of the
AIMS Resource Brosweradaptive information management system [22] provid-
ing an information searching and browsing environment that enables users to
identify the most appropriate course task to work on and to find and learn the
relevant terminology and resources necessary for performing this particular task.

OntoAIMS Resource Browser uses ontologies to represent the aspects of the
application semantics, to allow a strict separation of domain-dependent data,
application-related data and resources, and to further enable reusability and
sharing of data on the Semantic Web. A Domain Ontology represents the do-
main terms and their relationships. The content is annotated and stored in a
Resource model, linked to the terms of the domain ontology. The course aspects
are modeled as a hierarchy of course tasks in a Course Task Model. Each task
specifies domain terms and learning objects as part of the task prerequisites,
input and output. Adaptive mechanisms are employed for sequencing the course
tasks and thus providing the most efficient way for the users to navigate through
the structure, terminology and learning material of the course. In OntoAIMS Re-
source Browser, the learners use a graphical environment for browsing through a
graphical representation of the domain conceptual space, and to browse through
a collection of semantically annotated resources ranked by the system according
to their relevance to the task and the user query, see Figure 3.

Fig. 3. OntoAIMS resource browser

A key role in the ranking and recommending of tasks and resources in On-
toAIMS is played by the User Model. OntoAIMS aims at covering an extensive
range of user’s aspects, e.g. goals, conceptual state, preferences, personal char-
acteristics, etc. thus allowing an unobtrusive way to collect various user data.
6 Accessible at: http://swale.comp.leeds.ac.uk:8080/staims/viewer.html, user-

name visitor, password visitor.

Interactive Ontology-Based User Knowledge Acquisition: A Case Study 571

Dialogs similar to the example shown in Section 5 are conducted by the OWL-
OLM agent within OntoAIMS to (a) validate the analysis of the user data, (b)
elicit a user’s conceptual state, and (c) build and maintain a dynamic user model
as a basis for a personalized information management process.

7 Evaluation Studies with Users

Three user studies were conducted with the current instantiation of OntoAIMS
Resource Browser in a domain of Linux. Initially, six users, postgraduate stu-
dents and staff from the universities of Leeds and Eindhoven, took part in video
recorded and monitored think aloud walk through sessions, as well as in detailed
usability questionnaires. An improved version of the system was used in a second
study with ten first year Computing students at Leeds. It followed a two-week
introductory course on Linux. The users were asked to study resources on Linux
recommended by the system. Detailed description of the OntoAIMS Resource
Browser evaluation is given in [23]. A final version was presented as an Inter-
active Event at the AIED’05 conference and was tested with ten international
experts in Learning Management Systems.

In general, the users appreciated the help and guidance provided by On-
toAIMS resource browser and regarded the system as useful. The dialogs to
discover the level of user’s knowledge lasted about 5-10 minutes, which saved
significant time for these users (who otherwise would have been offered reading
on topics they were familiar with). Less knowledgeable users became aware of as-
pects of the domain they did not know (which were addressed in the OWL-OLM
dialog), and liked that the system recommended basic Linux reading. OWL-OLM
was regarded as a key tool seamlessly integrated in the whole environment, and
was seen both as complying with the overall goal and unobtrusive. The dialog
was seen as coherent by the users. The evaluation revealed also pitfalls, to be
addressed in the next OWL-OLM versions, with respect to mismatches dialogs,
smooth switch between the dialog and OntoAIMS Resource Browser, awareness
how the conceptual model is used for adaptation, and several interface issues.
The purpose of these first three studies were to test the usability and effec-
tiveness of the dialog as a user model elicitation mechanism. With the current
extension of the system and its deployment in other application domains, we
plan to perform studies to test the advantages of the user modeling approach
with respect to the recall and precision of resource and task recommendations.

8 Related Work and Discussion

Different perspectives of enabling personalization on the Semantic Web are be-
ing addressed recently. Our work on OntoAIMS Resource Browser is situated
within the field of User-adaptive Web-based Information Systems [24] that capi-
talize on adaptation techniques to provide individual users with the right service
at the right time and in the right way. The OWL-OLM approach is similar to
the interactive sessions used in HUMOS [25]. While HUMOS uses a very simple

572 L. Aroyo et al.

probing dialog to elicit initial, fairly basic profile of the user, OWL-OLM con-
siders more in-depth interactions that extract enhanced user models. By using
Semantic Web technologies, enriched semantics for the user data can be achieved
to allow for more efficient reasoning and, thus, more accurate user modeling re-
sults. Stojanovic [26] in his comprehensive query refinement approach proofs also
the need and the benefit of an interactive ’step-by-step’ query refinement pro-
cess, which considers the user’s perspective on the domain conceptualization in
the retrieval process. The approach capitalizes on the improvement of the user
and context modeling versus the improvement of the information retrieval pro-
cess. In addition to this, our work shows how such interactive approach can be
realized and visualized with an OWL domain ontology. An example of an NLP-
based interactive knowledge acquisition interface is given by Chklovski and Gil
[27]. As in OWL-OLM it shows the need for a clarification dialog with the user
to correctly specify domain knowledge from multiple perspectives. Moreover,
the authors prove the efficiency of using semantic rich structures to ”collect se-
mantically interpretable knowledge while interacting in natural language”, as
exemplified in OWL-OLM as well.

A strong argument is being formed recently to stress the importance of
sharable and reusable user models, as well as personalization methods on the Se-
mantic Web[1]. Both OWL-OLM and OntoAIMS Resource Browser contribute
to an on-going work in this area [28, 11]. The work we present on eliciting a user’s
conceptualization based on an existing domain ontology relates to the research
on aligning and reconciling ontologies, reviewed in [29, 30]. However, there is a
crucial difference between the user-expert alignment considered in OWL-OLM
and the alignment of two (or more) expert ontologies considered in existing,
widely used tools, such as PROMPT [31]. Results from their empirical stud-
ies on aligning expert user’s ontologies as well as the existing, robust ontology
aligning algorithms (e.g. using word concordances and synonyms) can be very
useful to extend the OWL-OLM mismatch patterns. Most of the methodologies
applied for building shared ontologies have a dialog part at some stage to en-
able experts to clarify aspects of their conceptualizations. This confirms that
approaches like OWL-OLM are viable for capturing a user’s conceptualization.
Finally, the user modeling dialog in OWL-OLM is similar to negotiation between
agents who share knowledge and clarify meaning, e.g. [32].

9 Conclusion and Future Work

plus We presented OWL-OLM - a novel framework for eliciting a user’s concep-
tualization based on an ontology-driven dialog. We focused on the formal spec-
ification and the architectural design of the diagnostic dialog by illustrating the
following aspects: (a) maintaining dialog coherence, (b) answering different ques-
tions and (c) identifying mismatches. OWL-OLM makes extensive use of Jena
for OWL-based reasoning to maintain the dialogue and update the user model.
We demonstrated the utilization of OWL-OLM in OntoAIMS Resource Browser
- an RDF/OWL-based software architecture for adaptive learning content

Interactive Ontology-Based User Knowledge Acquisition: A Case Study 573

management. User studies showed that the user model extracted by OWL-OLM
could be used to improve personalization in OntoAIMS Resource Browser. Other
applications explored are digital libraries and museums, where effective help can
only be provided if a user’s view on the subject domain is considered. Possible
other applications include online banking, where a probing dialog can be used to
quickly identify what conceptual models the users have of key terms, or online
catalogues, where the search is driven by some taxonomy which may often differ
from the user’s perception of the domain. In overall, the novel aspects demon-
strated in this paper are: (a) ontological approach for integration of methods for
eliciting and utilizing user models; (b) improved adaptation functionality resulted
from that integration, validated in studies with real users; (c) support of inter-
operability and reusability on the educational Semantic Web.

Future work will focus on the development of a good classification of user’s
mismatches and patterns for clarification dialog based on systematic studies of
empirical and computational approaches for ontology aligning and reconciliation.
In-depth studies are needed to design effective knowledge elicitation tools suited
not for ontology engineers, but for users with a wide range of experiences. Finally,
it appears useful to provide also a text form for communication and to allow the
users to choose a preferred interaction medium.

Acknowledgments. The research was partly supported by the UK-Netherlands
Partnership in Science program and the EU Network of Excellence PROLEARN.

References

1. Henze, N.: Personalization functionality for the semantic web: Identification and
description of techniques. Technical report, REWERSE EU NoE (2004)

2. Kobsa, A.: User modeling in dialog systems: Potentials and hazards. Artificial
Intelligence and Society 1 (1990) 214–240

3. Jameson, A.: User-adaptive systems. Technical report, UM03 Tutorial (2003)
4. Wolpers, M., Nejdl, W.: European e-learning: Important research issues and appli-

cation scenarios. In: ED-Media’04 Conference, Lugano, Switzerland (2004) 21–25
5. Anderson, T., Whitelock, D.: The Educational Semantic Web: Visioning and Prac-

ticing the Future of Education. Volume 1. (2004)
6. L. Stojanovic, S.S., Studer, R.: elearning based on the semantic web. In: World

Conference on the WWW and Internet (WebNet’01), Florida, USA (2001) 23–27
7. Aroyo, L., Dicheva, D.: The new challenges for e-learning: The educational semantic

web. Journal of Educational Technology and Society 7 (2004) 59–69
8. Duval, E.: Learning technology standardization: making sense of it all. Interna-

tional Journal on Computer Science and Information Systems 1 (2004) 33–43
9. Simon, B., Dolog, P., Miklós, Z., Olmedilla, D., Sintek, M.: Conceptualising smart

spaces for learning. Journal of Interactive Media in Education (2004(9))
10. Stutt, A., Motta, E.: Semantic learning webs. Journal of Interactive Media in

Education: Special Issue on the Educational Semantic Web 10 (2004)
11. Dolog, P.: Identifying relevant fragments of learner profile on the semantic web. In:

SW-EL’04 at International Semantic Web Conference, Hiroshima, Japan (2004)

574 L. Aroyo et al.

12. N. Henze, P., Nejdl, W.: Reasoning and ontologies for personalized e-learning.
Journal of Educational Technology & Society 7 (2004)

13. Berners-Lee, T., Hendler, J., Lassila, O.: The defining characteristics of intelligent
tutoring systems research: Itss care, precisely. International Journal of Artificial
Intelligence in Education 10 (1999)

14. Denaux, R., Aroyo, L., Dimitrova, V.: An approach for ontology-based elicitation
of user models for the semantic web. In: WWW05(poster). (2004)

15. Dimitrova, V.: Style-olm: Interactive open learner modelling. Int. Journal of Arti-
ficial Intelligence in Education 13 (2003) 35–78

16. Noy, N., Sintek, M., Crubezy, M., Fergerson, R., Musen, M.: Creating semantic
web contents with protege-2000. IEEE Intelligent Systems 16(2) (2001) 60–71

17. Carroll, J., et al.: Jena: Implementing the semantic web recommendations. In:
WWW’04. (2004) 74–83

18. Miller, E., Manola, F.: Rdf primer. http://www.w3c.org/TR/ (2004)
19. Lecoeuche, R., Mellish, C., Barry, C., Robertson, D.: User-system dialogues and

the notion of focus. The Knowledge Engineering Review 13 (1998)
20. Levin, J., Moore, J.: Dialogue games: Meta-communication structures for natural

language interaction. Cognitive Science (1978)
21. Denaux, R., Dimitrova, V., Aroyo, L.: Interactive ontology-based user modeling for

personalized learning content management. In: AH 2004: Workshop Proceedings
Part II. (2004) 338–347

22. Aroyo, L., Dicheva, D.: Aims: Learning and teaching support for www-based edu-
cation. Int. Journal for Continuing Engineering Education and Life-long Learning
(IJCEELL) 11 (2001) 152–164

23. Denaux, R., Dimitrova, V., Aroyo, L.: Integrating open user modeling and learning
content management for the semantic web. In: International Conference on User
Modeling, UM05. (2004)

24. Brusilovsky, P., Tasso, C.: Special issue on user modelling for web information
retrieval. User Modeling and User Adapted Interaction 14 (2004)

25. Micarelli, A., Sciarrone, F.: Anatomy and empirical evaluation of an adaptive web-
based information filtering system. User Modeling and User-Adapted Interaction
14 (2004) 159–200

26. Stojanovic, N.: On the role of a user’s knowledge gap in an information retrieval
process. In: Proceedings of K-CAP’05, ACM Press (2005) 83–90

27. Chklovski, T., Gil, Y.: Improving the design of intelligent acquisition interfaces for
collecting world knowledge from web contributors. In: Proceedings of K-CAP’05,
ACM Press (2005) 35–42

28. Bra, P.D., Aroyo, L., Chepegin, V.: The next big thing: Adaptive web-based sys-
tems. Journal of Digital Information, 5(1) (2004)

29. Klein, M.: Combining and relating ontologies: an analysis of problems and solu-
tions. In Gomez-Perez, A., Gruninger, M., Stuckenschmidt, H., Uschold, M., eds.:
Workshop on Ontologies and Information Sharing, IJCAI’01, Seattle, USA (2001)

30. Ehrig, M., Sure, Y.: Ontology mapping – an integrated approach. In: Proceedings
of the 1st European Semantic Web Symposium. (2004)

31. Noy, N.F., Musen, M.A.: PROMPT: Algorithm and tool for automated ontology
merging and alignment. In: IJCAI–01 Workshop on Ontologies and Information
Sharing. (2000) 63–70

32. C.Bailin, S., Truszkowski, W.: Ontology negotiation between intelligent informa-
tion agents. The Knowledge Engineering Review 17 (2002) 7–19

Matching Semantic Service Descriptions with
Local Closed-World Reasoning

Stephan Grimm1, Boris Motik1, and Chris Preist2

1 FZI Research Center for Information Technologies at the University of Karlsruhe
Karlsruhe, Germany

{grimm, motik}@fzi.de
2 HP Laboratories

Bristol, UK
chris.preist@hp.com

Abstract. Semantic Web Services were developed with the goal of au-
tomating the integration of business processes on the Web. The main
idea is to express the functionality of the services explicitly, using seman-
tic annotations. Such annotations can, for example, be used for service
discovery—the task of locating a service capable of fulfilling a business
request. In this paper, we present a framework for annotating Web Ser-
vices using description logics (DLs), a family of knowledge representation
formalisms widely used in the Semantic Web. We show how to realise ser-
vice discovery by matching semantic service descriptions, applying DL
inferencing. Building on our previous work, we identify problems that oc-
cur in the matchmaking process due to the open-world assumption when
handling incomplete service descriptions. We propose to use autoepis-
temic extensions to DLs (ADLs) to overcome these problems. ADLs al-
low for non-monotonic reasoning and for querying DL knowledge bases
under local closed-world assumption. We investigate the use of epistemic
operators of ADLs in service descriptions, and show how they affect DL
inferences in the context of semantic matchmaking.

1 Introduction

Semantic Web Services have been recently proposed as a technology for the
automated integration of business processes. The key idea is to represent the
functionality of a Web Service explicitly, using so-called semantic annotations.
These are useful for numerous purposes, such as, for example, service discovery—
the process of locating Web Services capable of fulfilling a business request.

In the Semantic Web, annotation is a piece of machine-interpretable meta data
based on ontological vocabularies formulated by means of an ontology language.
The Web Ontology Language (OWL) [20] is a W3C recommendation language for
building ontologies in the Semantic Web. As part of the Web Service Modelling
Ontology initiative (WSMO), the Web Service Modelling Language (WSML) [4]
was recently proposed as an ontology language specifically tuned to annotating
Web Services. Certain variants of both languages, namely OWL-DL and WSML-
DL, are based on description logics (DL), a family of knowledge representation

Y. Sure and J. Domingue (Eds.): ESWC 2006, LNCS 4011, pp. 575–589, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

576 S. Grimm, B. Motik, and C. Preist

formalisms with a clearly defined semantics and well-understood computational
properties [3].

Several approaches to service discovery based on description logics have al-
ready been proposed in [26, 18, 17]. Along these lines, in this paper we extend
our work from [10] and present a DL-based approach for modelling semantics of
Web Services. We build on establishing a clear correspondence between the DL
modelling primitives and the modeller’s intention. In this way, we explain the in-
tuition behind the DL constructs in the service context and thus give guidelines
for their application.

Furthermore, we identify problems that occur when DL inferencing is applied
to matching semantic service annotations. Namely, DLs are monotonic logics
with open-world semantics: the inability to prove a fact does not imply its con-
trary ‘by default’. This often requires a modeller to overspecify a situation and to
include information that humans take for granted by common-sense. Sometimes,
it is not even possible to completely specify semantic service annotations without
making some default assumptions. Our analysis shows that the lack of common-
sense information in the domain model or in service annotations leads to false
matches, thus significantly degrading the quality of the discovery platform.

To address these deficiencies in a systematic way, we propose to base service
discovery on a non-monotonic logical formalism that allows for local closed-world
reasoning by referring to facts which are explicitly known. This compensates for
imprecision in domain ontologies and service annotations.

Numerous non-monotonic formalisms have already been developed, such as
default logic, circumscription or various extensions of logic programming with
negation-as-failure [2]. However, we base our service discovery framework on an
autoepistemic extension to description logic (ADL) from [5], namely the logic
ALCK. ADLs are proper extensions of description logics, so the same principles
can be applied to obtain autoepistemic extensions of OWL-DL or WSML-DL.
Moreover, the reasoning algorithm from [5] extends the well-known tableau al-
gorithm implemented in DL reasoning systems, such as RACER [11], FaCT [13]
or Pellet [25]. Therefore, we believe that ADLs are a good fit with the exist-
ing technological Semantic Web infrastructure. To verify the practicability of
our approach for matching semantic descriptions, we have implemented a sim-
ple ADL reasoner, as a testing environment to verify our examples for service
discovery.

2 The Service Discovery Problem

We introduce the problem of service discovery by means of an example taken
from the travelling domain. Let us assume that a company needs to frequently
book business trips for its employees. To stay competitive, for any single booking
this company wants to contact several travel agencies and pick the one providing
the best offer. In such a business transaction, the company plays the role of the
requester and the travel agencies play the role of providers of a travelling service.

Matching Semantic Service Descriptions with Local Closed-World Reasoning 577

In order to allow this process to be automated, the electronically available travel
agencies provide access to their booking services via Web Service interfaces.
Furthermore, both the requester company and the travel agencies need to specify
the functionality of the services they request or provide in a declarative way,
using semantic annotations.

In [21] the notion of a concrete service has been introduced, which represents a
particular business transaction. An example of a concrete service, offered by some
travel agency A, is ‘selling a flight ticket from Frankfurt to London at a particular
date and time for 50 Euro’. However, A also provides other concrete services,
which vary depending on the cities, date or price. The set of all concrete services
is approximated as an abstract service [21]. For example, A might advertise
“selling flight tickets between cities in Europe”. Similarly, another travel agency
B advertises an abstract service for ‘selling flight tickets from Europe to the US’,
which includes concrete services such as ‘selling a flight ticket from Frankfurt to
New York’.

In the same way, the business needs of the requester company correspond to
concrete services, such as ‘selling a ticket from Frankfurt to London for Novem-
ber 5th’. Similar to the agencies, the company summarises all intended con-
crete services in an abstract service, such as ‘selling a ticket from Germany to
the UK’.

We introduce the notion of capability description as a formal specification,
used by requesters and providers, to represent an abstract service. In their ca-
pability descriptions the requester company and the travel agencies intend to
capture the set of all concrete services they are willing to accept. Here, capa-
bility descriptions are expressed informally, however, in Section 4 we show how
to express them in a formal language to make them machine-processable. Our
capability descriptions are similar in functionality to WSMO Web Service ca-
pabilities [16] or OWL-S service profiles [1]. However, they are different in that
they base on an abstract ontological description of service functionality rather
than on a state transition model with pre- and postconditions.

In [21], the process of selecting a service to fulfil a request is split into two
consecutive phases. The service discovery phase is concerned with the identifi-
cation of abstract services relevant for the request. This is done by matching the
capability description of the requester to the capability descriptions of providers,
to determine whether they are compatible. In Section 4 we show how description
logic inferences can be used for this purpose. In this sense, service discovery is
based on the capability descriptions of requesters and providers, and does not
involve information that is obtained by invoking any Web Service.

The service discovery phase is followed by the service definition phase, where
the set of potential providers is further narrowed, and the concrete service to be
performed is specified in detail. As discussed in [14], this process often includes
negotiation and requires information which is not captured in the capability de-
scriptions for abstract services (such as preferences or additional business con-
straints that are not publicly available). In this paper we focus on the service
discovery phase, and leave the service definition phase to our future work.

578 S. Grimm, B. Motik, and C. Preist

3 Description Logics and Their Autoepistemic Extension

In this section we describe an autoepistemic extension to the description logic
(DL) formalism that we will use throughout the paper. We start with an intuitive
view on the basic DL ALC and its autoepistemic extension ALCK. Then we
revisit the formal syntax and semantics ofALCK and introduce epistemic queries
and the satisfiability of an ALCK concept w.r.t. an ALC knowledge base.

Description Logics

DLs [3] are a family of knowledge representation formalisms that provide the
formal underpinning of certain ontology languages for the Semantic Web, such
as WSML-DL [4] or OWL-DL [20]. The basic syntax elements of DLs are con-
cepts, such as City or Airplane, roles, such as transportationMeans or from, and
individuals, such as Frankfurt or Airbus380. Primitive concepts can be combined
into complex concepts using concept constructors. In this paper, we consider
the basic DL ALC, which provides the propositional connectives and restricted
existential and universal role quantification. For example, a complex concept
Journey ∃ from .UKCity ∀ transpMeans .¬Airplane intuitively represents a
journey from somewhere in the UK by a transportation means different from an
airplane.

A DL knowledge base consists of axioms and is split into a TBox and an
ABox. Concept inclusion axioms in the TBox state subset relationship between
concepts; for example, Airplane 	 Vehicle states that airplanes are kinds
of vehicles. Assertion axioms in the ABox describe the state of the world;
for example, UKCity(London) states that London is a city in the UK, and
train(Berlin,Hamburg) states that Berlin is connected by train to Hamburg.

Autoepistemic Description Logics

Autoepistemic logic is a formalism concerned with the notion of ‘knowledge’
and allows introspection of knowledge bases—that is, asking what a knowledge
base knows. In [5], the basic DL ALC has been extended by the autoepistemic
knowledge operator K, yielding the autoepistemic description logic ALCK. The
K-operator can be applied as a constructor to both concepts and roles, and can
intuitively be paraphrased as ‘known to be’.

To understand the intuition behind the K-operator, consider the knowledge
base KB = {City(Frankfurt), train(Frankfurt,Paris)}, and the concept D =
City ∃ train .¬GermanCity, which can be paraphrased as ‘cities which are con-
nected by train to some city outside Germany’. Since KB does not say whether
Paris is a German city or not, Frankfurt is not in the extension of D. On the con-
trary, consider the autoepistemic concept D′ = City ∃Ktrain .¬KGermanCity,
which can be intuitively paraphrased as ‘cities which are known to be connected
by train to something which is not known to be a German city’. Based on the
facts in KB , we cannot derive that Paris is a German city. Therefore, Paris is
not known to be a German city, and thus Frankfurt is in the extension of D′.

Matching Semantic Service Descriptions with Local Closed-World Reasoning 579

These autoepistemic extensions allow for local closed-world reasoning [7] and a
logical reconstruction of non-monotonic features of frame-based knowledge repre-
sentation systems, such as concept and role closure, defaults, integrity constraints
and procedural rules [23]. In Section 5 we apply local closed-world reasoning to
the matching of service capability descriptions.

The Language ALCK
We now formally introduce the syntax and semantics of ALCK [5]. The following
rules define the syntax of this language, where C, D denote concepts, A denotes
a primitive concept, r denotes a role and p denotes a primitive role:

C, D −→ A | � | ⊥ | C D | C �D | ¬C | ∀ r.C | ∃ r.C | KC
r −→ p | Kp

An epistemic interpretation is a pair (I,W) where I = (ΔI , ·I) is a first-
order interpretation with interpretation domain ΔI and interpretation function
·I , and W is a set of first-order interpretations, seen as possible worlds. The
following equations define how the syntax elements of ALCK are epistemically
interpreted.

�I,W = ΔI , ⊥I,W = ∅
AI,W = AI ⊆ ΔI , pI,W = pI ⊆ ΔI ×ΔI

(C D)I,W = CI,W ∩DI,W

(C �D)I,W = CI,W ∪DI,W

(¬C)I,W = ΔI \ CI,W

(∀ r.C)I,W = {a ∈ ΔI | ∀b.(a, b) ∈ rI,W → b ∈ CI,W}
(∃ r.C)I,W = {a ∈ ΔI | ∃b.(a, b) ∈ rI,W ∧ b ∈ CI,W}
(KC)I,W =

⋂
J∈W CJ ,W

(Kr)I,W =
⋂

J∈W pJ ,W

Primitive concepts are interpreted as subsets of ΔI , and primitive roles are in-
terpreted as subsets of ΔI×ΔI . The boolean connectives and existential and
universal role quantification are interpreted in terms of set operations on ΔI , as
in ALC [3]. An epistemic concept KC is interpreted as the set of all individuals
which belong to the concept C in all first-order interpretations in W , i.e. in all
possible worlds. Thus, applying K to concept C produces the set of objects that
are members of C in all possible worlds; in other words, these objects are defi-
nitely known to be members of C. Similarly, an epistemic role Kp is interpreted
as the pairs of individuals that belong to the role p in all possible worlds.

An epistemic interpretation satisfies an inclusion axiom C 	 D if CI,W ⊆
DI,W , and it satisfies an assertion axiom C(a) or r(a, b) if aI ∈ CI,W or
(aI , bI) ∈ rI,W , respectively. An epistemic model for an ALCK knowledge base
KB is a maximal non-empty set W of first-order interpretations such that, for
each I ∈ W, the epistemic interpretation (I,W) satisfies all axioms in KB . The
maximality condition for W ensures that there is no other first-order interpreta-
tion I �∈ W which also satisfies all the axioms in KB . In this way, the K-operator
allows to refer to definitely known facts by intersecting all possible worlds of KB .

580 S. Grimm, B. Motik, and C. Preist

Epistemic Queries and Concept Satisfiability

In this paper we assume that KB does not contain occurrences of the K-operator;
that is, KB is anALC knowledge base. Then, KB has at most one epistemic model
M(KB), comprising all its first-order models. An epistemic query [5] over anALC
knowledge base KB is an ALCK concept assertion of the form C(a). We say that
KB entails C(a), written KB |= C(a), if, for every first-order interpretation
I ∈M(KB), the epistemic interpretation (I,M(KB)) satisfies C(a).

A tableaux calculus for answering epistemic queries has been presented in [5].
However, in Section 5 we require checking satisfiability of epistemic concepts
with respect to a knowledge base KB , which we define next. This inference can
be performed by a straightforward extension of the calculus from [5].

Definition 1 (Concept Satisfiability). For a satisfiable ALC knowledge base
KB, an ALCK concept C is satisfiable w.r.t. KB if there is a first-order inter-
pretation I ∈M(KB) such that C(I,M(KB)) �= ∅ .

4 Modelling Service Capabilities in Description Logics

We now show how to use description logics to model capability descriptions for
services. In particular, we focus on mapping the notions introduced in Section 2
into the description logic framework, based on our previous work in [10]. Fur-
thermore, we identify incomplete capability descriptions as a key problem for
service discovery.

4.1 From Concrete Services to Capability Descriptions

We map a concrete service, representing a specific business transaction, to the re-
lational structure in a first-order interpretation I. Such an interpretation can be
understood as a directed labelled graph, which represents various properties of
services. For example, the bottom left part of Figure 1 shows a relational struc-
ture which corresponds to a concrete service for travelling between Frankfurt
and London on an Airbus 380.

We express a capability description using a DL concept. Under a first-order
interpretation, such a concept is mapped to a set of individuals. Thus, concepts
provide a natural way of modelling sets of concrete services. For example, at the
top of Figure 1 we show a capability description S, which describes ‘travelling
between EU cities’. In I, this concept is interpreted as a set SI of individuals,
representing the concrete services accepted by S. Since the service description
does not specify the actual cities, SI contains concrete services for different pairs
of cities, such as Frankfurt and London, or Berlin and Hamburg.

Capability descriptions usually refer to commonly used domain ontologies.
These ontologies define the background knowledge in a certain domain of interest
in form of DL axioms. For example, in the travelling domain, they define terms
such as ‘City’, ‘Journey’ or ‘Airplane’.

Matching Semantic Service Descriptions with Local Closed-World Reasoning 581

SI

Journey1

LondonFrankfurt

from to

AirplaneX
vehicle

“Airbus380”

type
. . .

Journey2

HamburgBerlin

from to

TrainY
vehicle

“ICE”

type

S = Journey ⊓ ∀from.EUCity ⊓ ∀ to.EUCity

Fig. 1. A Capability Description Specifying Several Concrete Services

4.2 Variance and Incompleteness in Capability Descriptions

Recall from Section 2 that the main purpose of a capability description is to
describe a set of concrete services which vary on several parameters. Hence, we
say that capability descriptions introduce variance due to intended diversity [10],
which manifests itself by allowing the capability description to specify several
concrete services, each having different parameter values. The fact that the ca-
pability description S allows concrete services for travelling between Frankfurt
and London, and Hamburg and Berlin, is an example of variance due to intended
diversity. Using DL concept expressions as a description technique allows us to
express this variance in a compact form, without listing all possible pairs of cities
explicitly.

Moreover, we also identify variance due to incomplete knowledge [10], which
is caused by the fact that capability descriptions do not completely specify all
parameters. For example, a travel agency might not explicitly specify the types
of payment it is willing to accept. This detail may be off-loaded from the ser-
vice discovery to the service definition phase. However, this does not mean that
a concrete service would not have any payment information; it simply means
that the type of payment has not been specified. Each concrete service will still
contain a certain type of payment. Variance due to incomplete knowledge is
captured by assuming different possible worlds. In each of these possible worlds
unspecified information is resolved in a particular way. In DL, variance due to
incomplete knowledge is reflected by the fact that a knowledge base can have
several different first-order interpretations, each corresponding to a particular
possible world. Notice that this actually coheres to open-world semantics in
description logics.

In Section 5 we show how epistemic operators can be incorporated into capa-
bility descriptions in order to close off parts of the domain model and to control
and reduce variance due to incomplete knowledge by ruling out some of the
possible worlds.

582 S. Grimm, B. Motik, and C. Preist

4.3 Matching Capability Descriptions

We now define a matching function match(KB , Sr, Sp), which returns true if the
capability descriptions Sr and Sp match, false otherwise. The basic idea behind
matching is to check if two capability descriptions, issued by a requester and a
provider, respectively, specify any common concrete service [26]. Such concrete
services might then be taken as a basis to enter into the service definition phase.

Technically, matching is reduced to checking the non-emptiness of the inter-
section of both capability descriptions. However, when performing this check,
there are two ways to resolve variance due to incomplete knowledge, as shown in
[10]. The first one is to check if the intersection is non-empty in some possible
world, as presented in the upper part of Table 1. In other words, we check if
there is a way to resolve incompleteness in the capability descriptions such that
they specify a common concrete service.

Another possibility is to check if the intersection of concept extensions is
non-empty in each possible world, as shown in the lower part of Table 1. This
is a stronger check: regardless of how we resolve incompleteness in capability
descriptions, we need a concrete service that is common to both descriptions.

Related approaches to service discovery use similar matching techniques. ‘Sat-
isfiability of concept conjunction’ was first proposed in [8, 26] and [24], and was
subsequently considered in [19, 18, 17, 14, 10]. Furthermore, many of these works
use ‘entailment of concept subsumption’, which checks if one of the sets of ac-
cepted concrete services is a subset of the other in each possible world. However,
as discussed in [10], this inference has not shown to be beneficial for our notion

Table 1. Using DL Inferences for Matching Service Capabilities

Inference: Satisfiability of Concept Conjunction
Function: matchint(KB , Sr, Sp)
Formula: Sr � Sp is satisfiable w.r.t. KB

Situation:
(Sr)

I
1

(Sp)
I
1

. . .

(Sr)
I
2

(Sp)
I
2

(Sr)
I
1

(Sp)
I
1

(Sr)
I
1

(Sp)
I
1

. . .

(Sr)
I
2

(Sp)
I
2

(Sr)
I
2

(Sp)
I
2

Intuition: Is there a way to resolve unspecified details such that Sr and Sp

specify some common concrete service?
Inference: Entailment of Concept Non-Disjointness
Function: matchndj(KB , Sr, Sp)
Formula: KB ∪ {Sr � Sp � ⊥} is unsatisfiable

Situation:

(Sp)
I
1

(Sr)
I
1

. . .

(Sp)
I
2

(Sr)
I
2

(Sp)
I
1

(Sr)
I
1

. . .

(Sp)
I
2

(Sr)
I
2

(Sp)
I
2

(Sr)
I
2

Intuition: Do Sr and Sp specify some common concrete service, regardless of
how unspecified details are resolved?

Matching Semantic Service Descriptions with Local Closed-World Reasoning 583

of compatibility between two descriptions Sr and Sp: we treat concrete services
as alternative specifications of service parameters, and thus, having a single con-
crete service in the extension of the sets is already sufficient for our capability
descriptions to be compatible. Subsumption and equivalence matching applied
to pairs (Sr, Sp) of descriptions has been used for establishing a ranking among
service providers in [19, 17, 14]. However, in our setting the partial subsumption
check between two provider descriptions SpA and SpB , defined in [10], provides
a more fine-grained ranking based on the options the requester has later on in
the service definition phase. In this work, we do not consider ranking but focus
on the characteristics of the matching inferences in a local closed-world setting.

In [15], and also partly in [14], the authors consider a different description
approach based on specifying services in terms of state transitions. They base
matching on transaction logic, a formalism capable of explicitly representing
changes in the world. In this way, they do not only consider the discovery phase,
but also address partly the service definition phase.

4.4 Problems in Matching Capability Descriptions

Both ways of matching, matchint and matchndj, cause problems in certain cases
[10], which we illustrate next on our running example. Let us assume that the
requester company asks for a flight from a city in the UK, and that two providers
A and B offer flights from cities in the EU and the US, respectively.

Example 1 (Problems with Matching Service Descriptions).

KB = { UKCity 	 EUCity, Flight 	 ∃ from .� }

Sr = Flight ∀ from .UKCity
SpA = Flight ∀ from .EUCity
SpB = Flight ∀ from .USCity

First, consider matching capability description Sr against SpA . Since the re-
quester asks for a flight from a UK city, and A offers flights from an EU city, we
intuitively expect the two descriptions to match. However, by applying the DL in-
ferences, we get that matchint(KB , Sr, SpA)= true, but matchndj(KB , Sr, SpA)=
false. In the second case, the unintuitive result is due to the fact that we never
specified that A actually offers any services. Hence, there is a way to resolve this
incompleteness in the specification by choosing a possible world in which the
extension of SpA is empty. Therefore, matching fails, since it is not the case that
the intersection of Sr and SpA is non-empty in each possible world.

Second, consider matching capability description Sr against SpB . Since the
requester asks for flights from UK cities, but B offers flights from US cities, we
would expect matching to fail. However, by applying the DL inferences, we get
that matchint(KB , Sr, SpB) = true, but matchndj(KB , Sr, SpB) = false. In the
first case, the unintuitive result is due to the fact that we never said that UK
and US cities are disjoint. Therefore, matching succeeds, since there is a possible
world in which some city is in the extension of both UKCity and USCity.

584 S. Grimm, B. Motik, and C. Preist

Both of these problems principally arise from the existence of unwanted possi-
ble worlds. To reduce the number of unintuitive matches, it would be desirable to
reduce the variance due to incomplete knowledge, and to rule out those possible
worlds which are ‘obviously’ wrong.

In the first case, this could be achieved by adding the assertion Flight(a), for
some new individual a, to the knowledge base before matching is performed,
ruling out possible worlds in which Flight is empty.

In the second case, the false positive match with matchint could be ‘repaired’
by adding the disjointness axiom EUCity USCity 	 ⊥ to the knowledge base,
eliminating possible worlds in which a city can be in both the EU and the US.

In any case, we would have to include additional facts, such as disjointness
constraints, which in practice often has the drawback of overloading the specifi-
cation with ‘obvious’ information. In general, domain ontologies in the Semantic
Web cannot be expected to contain such additional information, since they are
reusable domain vocabularies and different ontologies might have been developed
for different purposes.

As we shall see in the following section, non-monotonic features and local closed-
world reasoning allow us to address this important problem of overspecification by
dealing with incompleteness in an alternative way. A pure closed-world system, on
the other hand, would not equally support the desired variance. Since in [10] we
identifiedotherproblemswithsuccessfullyusingmatchndj whenseveral restrictions
on roles are combined, we will focus on matchint, which has alreadybeen applied in
an industrial logistics scenario in [22] on service descriptions in OWL-DL.

5 Epistemic Operators in Capability Descriptions

The autoepistemic extension to DL provides a means to exclude unwanted first-
order interpretations in a controlled way. In this section, we show how the prob-
lems described in Section 4.4 can be overcome by realising local closed-world
reasoning using the K-operator in capability descriptions.

5.1 Locally Closing Worlds in Capability Descriptions

Description logics employ the open-world semantics, under which, if a fact is not
derivable from the knowledge base, its contrary cannot be assumed ‘by default’.
This is considered appropriate for the Semantic Web, due to its open nature.
However, in a controlled scenario such as service discovery, it is sometimes ben-
eficial to assume that all relevant facts about a subset of the domain are known;
this is known in the literature as local closed-world assumption [7, 12]. The local
closed-world assumption can be applied to DL knowledge bases in form of con-
cept closure and role closure [23], which enable us to assume that all individuals
of a concept, or all pairs of individuals of a role are known.

Concept Closure
The K-operator can be used to restrict the extension of a concept to those indi-
viduals that belong to this concept in each possible world, which is denoted by

Matching Semantic Service Descriptions with Local Closed-World Reasoning 585

concept closure. Recall from the definition of the semantics of ALCK in Section
3 that an expression KC is interpreted as the intersection of extensions over
all first-order interpretations. Intuitively, this can be paraphrased by ‘the set
of individuals that are known to belong to C’. The following example extends
Example 1 by applying the pattern of concept closure to city concepts.

Example 2 (concept closure).

KB = { UKCity 	 EUCity, Flight 	 ∃ from .�, UKCity(London) }

Sr = Flight ∀ from .KUKCity
SpA = Flight ∀ from .KEUCity
SpB = Flight ∀ from .KUSCity

The ALC knowledge base KB states that every UK city is also an EU city, that
any flight must specify the property from and that the individual London is an
explicitly asserted UK city. The ALCK concepts Sr, SpA and SpB are the ser-
vice capability descriptions issued by a requester and providers A and B. The
requester requires a flight from somewhere in the UK, whereas the providers
advertise flights from EU and US locations, respectively. In contrast to Exam-
ple 1, in this example all parties use the pattern of concept closure to restrict
the property from to only those individuals that are known to be cities in the
UK, the US or Europe, respectively.

We use the extended notion of concept satisfiability from Definition 1 in Sec-
tion 3 to check satisfiability of the ALCK concept Sr Sp w.r.t. the ALC knowl-
edge base KB in matchint. As we show next, the application of matchint in
Example 2 yields the intuitively desired matching behaviour.

First, consider matching the capability description Sr against SpA using
matchint. The satisfiability of Sr SpA requires the existence of an individual
which is both known to be a UKCity and known to be a EUCity. The individual
London is explicitly stated to be a UKCity in KB , so it is known to be a UKCity.
This individual is also known to be a EUCity because of the inclusion axiom in
KB . Hence, Sr SpA is satisfiable w.r.t. KB and thus matchint(KB , Sr, SpA) =
true. Notice that without the explicitly introduced individual London1 this sat-
isfiability would not hold because there would be no individual which meets the
above mentioned conditions in each possible world.

Second, consider matching the capability description Sr against SpB using
matchint. The satisfiability of Sr SpB requires the existence of an individual
which is both known to be a UKCity and known to be a USCity. However, there
is no such individual and therefore matchint(KB , Sr, SpB) = false. Of course
there are first-order interpretations in which UKCity and USCity have common
individuals, namely, some in which London is both a UKCity and a USCity, but
for such individuals this is not the case in each possible world.

1 The individual London here can be seen as a representative for all explicitly modelled
cities in some domain ontology with a geographic context.

586 S. Grimm, B. Motik, and C. Preist

Role Closure
The K-operator can also be used to restrict the extension of a role to those pairs
of individuals that are connected by this role in each possible world, which is
denoted as role closure. Recall from the definition of the semantics of ALCK
in Section 3 that an expression Kr is interpreted as the intersection of role
extensions over all first-order interpretations. Intuitively, this can be paraphrased
by ‘all pairs of individuals that are known to be connected by r’. The following
example applies the pattern of role closure to a role train that denotes the
connection of two cities via the continental train network.

Example 3 (role closure).

KB = { GermanCity 	 EUCity, UKCity 	 EUCity, Flight 	 ∃ from .�,
UKCity(London) ,GermanCity(Berlin) ,GermanCity(Hamburg) ,
train(Berlin,Hamburg) , train(Hamburg,Berlin) }

Sr = Flight ∀ from .(KEUCity ∃Ktrain .�)
SpA = Flight ∀ from .KGermanCity
SpB = Flight ∀ from .KUKCity

The ALC knowledge base KB states that both German cities and UK cities
are cities in the EU and that the individuals London, Berlin and Hamburg are
explicitly stated to be such cities. Furthermore, KB states that the individuals
Berlin and Hamburg are connected via the train network. In the ALCK concept
Sr the requester requires a flight from a known EU city which is known to be
connected to the train network. This is achieved by applying concept closure to
the concept EUCity and role closure to the role train. The providers advertise
travelling from locations in Germany and in the UK, respectively. Also Example
3 shows the intuitively expected matching behaviour.

First, consider matching the capability description Sr against SpA using
matchint. There are two known German cities, Berlin and Hamburg, which
are both known to have connection to the train network. Furthermore, they
both are also known to be EU cities due to the inclusion axiom. Therefore,
matchint(KB , Sr, SpA) = true and provider A matches the request.

Second, consider matching the capability description Sr against SpB using
matchint. The only known UK city is London but it is not known to be connected
to the train network. Therefore, matchint(KB , Sr, SpB) = false and provider B
fails to match the request, although London is known to be a EU city. Due to
the local closure of worlds, only the known train connections explicitly modelled
in the domain knowledge are taken into account.

Without the K-operator applied to the role train in Sr, provider B would also
match the request because, due to the open-world assumption, London would
have train connection in some possible world. Alternatively to the usage of K, one
would have to complete the specification by listing all the cities which have no
connection to the continental train network, by axioms like ∀ train .⊥(London) .

Matching Semantic Service Descriptions with Local Closed-World Reasoning 587

5.2 Benefits of Locally Closing Worlds

By using the K-operator in capability descriptions to locally close off worlds, we
have excluded unwanted first-order interpretations (that is, possible worlds), re-
ducing variance due to incomplete knowledge. In this way, we have avoided over-
specifying the domain, but have succeeded in removing false positive matches.

In Example 2, there is no need to explicitly state disjointness between non-
related city concepts, since by the use of K we restrict their extensions to known
cities only, for which EU and US do not overlap. In general, adding disjointness
constraints is no real solution to the problem, since not all imaginable cities can
be covered in the specification. A requester or provider might introduce a new
city concept which is not explicitly related to the existing city concepts in any
ontology. Intuitively, we would not want this unrelated city concept to match
against any other. Hence, we avoid such additional constraints by locally closing
off city concepts, assuming full knowledge about this part of the world.

In Example 3, we avoid to list all the cities that are not connected to the train
network in addition to those that are. Here the use of K allows us to handle a
partial and incomplete description of the state of the world by closing off the
role train, assuming full knowledge about all train connections between cities.

Since the use of K makes matching dependent on the state of the world,
it should only be applied to concepts or roles for which there is some ABox
information present. For example, when requesting a flight carried out by a
Star Alliance partner, K would most likely be applied as follows: S = Flight
∀ carriedOutBy .KStarAlliancePartner. For the discovery system, assertions of
air carriers to the Star Alliance, such as StarAlliancePartner(Lufthansa), is static
ABox information present in some domain ontology. In combination with other
such information about the state of the world, like GermanCarrier(Lufthansa),
this request would match a provider that offers flights carried out by German
carriers. Thus, K can safely be applied to StarAlliancePartner in S, preventing
the specification from being overloaded with information about which airlines
are no such partners. On the contrary, in settings similar to those from our
Examples, no information about concrete flights and their carriers occurs in the
domain knowledge. Domain ontologies rather speak of flights in more general
terms, using TBox information such as Flight 	 ¬ShipCruise to distinguish
them from other forms of travelling. Therefore, K is not applied to Flight or to
carriedOutBy in S. The discovery system benefits from leaving this part of the
world open, not requiring travel agencies to list all the concrete flights they offer.

5.3 An Implementation of the Matchmaking Framework

We have verified these examples with our prototypical implementation of a rea-
soner forALCK according to the calculus presented in [5]. Based on this calculus,
we implemented a decision procedure for satisfiability of ALCK concepts w.r.t
ALC knowledge bases as well as for epistemic query answering. It can be used
as a testing environment for small examples2.
2 The implementation is available at http://www.fzi.de/downloads/wim/KToy.zip

588 S. Grimm, B. Motik, and C. Preist

6 Summary and Outlook

In this paper, we have described a DL-based framework for discovery of services
in the Semantic Web. We have presented an intuitive way to map the business
needs of requesters and providers to the formal DL constructs. Thus, we have
provided a basis for modelling guidelines which meet well the modeller’s intu-
ition. We have identified problems of DL-based matching related to open world
semantics. We have shown how an autoepistemic extension to DL can be used
to overcome those problems. In particular, we have shown how the application
of epistemic operators in service capability descriptions can be used to realise
local closed-world reasoning in a controlled way, preventing overspecification of
capability descriptions and domain ontologies. We also implemented a testing
environment for reasoning with ALCK concepts together with ALC knowledge
bases, in order to verify our examples.

We plan to investigate the extension of ALCK with features of expressive
description logics, such as number restrictions, nominals or inverse roles, which
proofed to be useful in the context of describing service semantics [17, 10]. We
also intend to investigate reasoning with arbitrary ALCK knowledge bases and
to explore the formalism presented in [6, 23], which introduces an additional epis-
temic operator A, capturing the notion of ‘assumption’. This formalism allows
for the whole range of non-monotonic features, such as default rules and integrity
constraints, which we have applied in a Semantic Web context in [9]. We intend
to incorporate these features into our discovery framework to further improve
the matching of capability descriptions. Moreover, we plan to systematise the
use of epistemic operators in service capability descriptions to obtain intuitive
modelling constructs that abstract from the underlying logical formalism.

References

1. The OWL Service Coalition. OWL-S 1.1 release. Available at http://www.daml.
org/services/owl-s/1.1/, November 2004.

2. Grigoris Antoniou. Nonmonotonic Reasoning. MIT Press, 1997.
3. F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. Patel-Schneider, editors.

The Description Logic Handbook. Cambridge University Press, January 2003.
4. J. de Bruijn, H. Lausen, A. Polleres, and D. Fensel. The Web Service Modeling

Language WSML: An Overview. In Proceedings of the 3rd European Semantic Web
Conference (ESWC), 2006.

5. F. M. Donini, M. Lenzerini, D. Nardi, W. Nutt, and A. Schaerf. An Epistemic
Operator for Description Logics. Artificial Intelligence, 100(1-2):225–274, 1998.

6. F. M. Donini, D. Nardi, and R. Rosati. Description Logics of Minimal Knowledge
and Negation as Failure. ACM Transactions on Computational Logic, 3(2):177–225,
2002.

7. O. Etzioni, K. Golden, and D. Weld. Tractable Closed World Reasoning with
Updates. In Proceedings of the 4th International Conference on Knowledege Rep-
resentation and Reasoning (KR1994), pages 178–189. Morgan Kaufmann, 1994.

8. J. Gonzlez-Castillo, D. Trastour, and C. Bartolini. Description Logics for Match-
making of Services. In Proc. of the KI-2001 Workshop on Appl. of DL, 2001.

Matching Semantic Service Descriptions with Local Closed-World Reasoning 589

9. S. Grimm and B. Motik. Closed-World Reasoning in the Semantic Web through
Epistemic Operators. In CEUR Proceedings of the OWL Experiences and Direc-
tions Workshop, Galway, Ireland, 2005.

10. S. Grimm, B. Motik, and C. Preist. Variance in e-Business Service Discovery. In
Proceedings of the 1st Int. Workshop SWS’2004 at ISWC 2004, November 2004.

11. V. Haarslev and R. Möller. Description of the RACER System and its Applications.
In International Workshop on Description Logics, 2001.

12. J. Heflin and H. Munoz-Avila. LCW-based Agent Planning for the Semantic Web.
In Proc.of AAAI Workshop on Ontologies and the Semantic Web(WS-02-11), 2002.

13. I. Horrocks. Using an Expressive Description Logic: FaCT or Fiction? In Pro-
ceedings of the 6th International Conference on Knowledege Representation and
Reasoning (KR1998), pages 636–645. Morgan Kaufmann, 1998.

14. U. Keller, R. Lara, H. Lausen, A. Polleres, and D. Fensel. Automatic Location of
Services. In Proc. of the 2nd European Semantic Web Conference(ESWC), 2005.

15. M. Kifer, R. Lara, A. Polleres, C. Zhao, U. Keller, H. Lausen, and D. Fensel. A Log-
ical Framework for Web Service Discovery. In Proceedings of the 1st International
Workshop SWS’2004 at ISWC 2004, November 2004.

16. H. Lausen, D. Roman, and U. Keller. Web service Modeling Ontology - Standard
(WSMO-Standard). Working draft. Technical report, Digital Enterprise Research
Institute (DERI), March 2004. http://www.wsmo.org/2004/d2/v0.2/.

17. L. Li and I. Horrocks. A Software Framework For Matchmaking Based on Semantic
Web Technology. In Proceedings of the 12th World Wide Web Conference, 2003.

18. T. Di Noia, E. Di Sciascio, F.M. Donini, and M. Mogiello. A System for Principled
Matchmaking in an Electronic Marketplace. Journal of E-Commerce vol.9, 2004.

19. M. Paolucci, T. Kawamura, T. Payne, and K. Sycara. Semantic Matching of Web
Service Capabilities. In Proceedings of the 1st International Semantic Web Con-
ference (ISWC), pages 333–347, 2002.

20. P. F. Patel-Schneider, P. Hayes, I. Horrocks, and F. van Harmelen. OWL Web
Ontology Language; Semantics and Abstract Syntax, W3C Candidate Recommen-
dation. http://www.w3.org/TR/owl-semantics/, November 2002.

21. C. Preist. A Conceptual Architecture for Semantic Web Services. In Proceedings
of the 3rd International Semantic Web Conference (ISWC), 2004.

22. C. Preist, J. Esplugas-Cuadrado, S. Battle, S. Grimm, and S. Williams. Auto-
mated B2B Integration of a Logistics Supply Chain Using Semantic Web Services
Technology. In Proc. of the 4th Int. Semantic Web Conference (ISWC), 2005.

23. R. Rosati. Autoepistemic Description Logics. AI Communications, IOS Press,
11(3–4):219–221, 1998.

24. E. Di Scasio, F. M. Dononi, M. Mongiello, and G. Piscitelli. A Knowledge Based
System for Person-to-Person E-Commerce. In Proc. of the KI-2001 Workshop on
Applications of Description Logics, 2001.

25. E. Sirin, B. Parsia, B. Cuenca Grau, A. Kalyanpur, and Y. Katz. Pellet: A
Practical OWL-DL Reasoner. Technical report, University of Maryland Insti-
tute for Advanced Computer Studies (UMIACS), 2005. http://mindswap.org/
papers/PelletDemo.pdf.

26. D. Trastour, C. Bartolini, and C. Preist. Semantic Web Support for the Business-
to-Business E-Commerce Lifecycle. In Proceedings of the Eleventh International
Conference on World Wide Web, pages 89–98, 2002.

The Web Service Modeling Language WSML: An
Overview

Jos de Bruijn1, Holger Lausen1, Axel Polleres1,2, and Dieter Fensel1

1Digital Enterprise Research Institute (DERI) Galway, Ireland and Innsbruck, Austria
{jos.debruijn, holger.lausen, dieter.fensel}@deri.org

2 Universidad Rey Juan Carlos, Madrid, Spain
axel@polleres.net

Abstract. The Web Service Modeling Language (WSML) is a language for the
specification of different aspects of Semantic Web Services. It provides a for-
mal language for the Web Service Modeling Ontology WSMO which is based
on well-known logical formalisms, specifying one coherent language framework
for the semantic description of Web Services, starting from the intersection of
Datalog and the Description Logic SHIQ. This core language is extended in the
directions of Description Logics and Logic Programming in a principled manner
with strict layering. WSML distinguishes between conceptual and logical mod-
eling in order to support users who are not familiar with formal logic, while not
restricting the expressive power of the language for the expert user. IRIs play a
central role in WSML as identifiers. Furthermore, WSML defines XML and RDF
serializations for inter-operation over the Semantic Web.

1 Introduction

Web Services1 are pieces of functionality which are accessible over the Web. Current
technologies such as WSDL allow to describe the functionality offered by a Web Ser-
vice on a syntactical level only. For automation of tasks, such as Web Service discovery,
composition and execution, semantic descriptions of Web Services are required. Since
Semantic Web technology enables this formal description of Web content, the combi-
nation of Semantic Web with Web Service is the natural next step to be taken.

This combination is often referred to as Semantic Web Services [16]. In this context,
the Web Service Modeling Ontology WSMO [17] provides a conceptual model for the
description of various aspects of Services towards such Semantic Web Services (SWS).
In particular, WSMO distinguishes four top-level elements:

Ontologies. Ontologies provide formal and explicit specifications of the vocabularies
used by the other modeling elements. Such formal specifications enable automated
processing of WSMO descriptions and provide background knowledge for Goal
and Web Service descriptions.

Goals. Goals describe the functionality and interaction style from the requester
perspective.

1 Throughout this paper we use the terms “Service” and “Web Service” interchangeably.

Y. Sure and J. Domingue (Eds.): ESWC 2006, LNCS 4011, pp. 590–604, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

The Web Service Modeling Language WSML: An Overview 591

Web Service descriptions. Web Service descriptions specify the functionality and the
means of interaction provided by the Web Service.

Mediators. Mediators connect different WSMO elements and resolve heterogeneity in
data representation, interaction style and business processes.

The Web Service Modeling Language WSML takes into account all aspects of Web
Service description identified by WSMO. WSML comprises different formalisms in
order to investigate their applicability to the description of SWS. Since our goal is to
investigate the applicability of different formalisms to the description of SWS, it would
be too restrictive to base our effort on existing language recommendations such as OWL
[6]. A concrete goal in our development of WSML is to investigate the usage of different
formalisms, most notably Description Logics and Logic Programming, in the context
of Ontologies and Web services.

We see three main areas which benefit from the use of formal methods in service de-
scriptions: Ontology description, Declarative functional description of Goals and Web
services, and Description of dynamics. In its current version WSML defines a syntax
and semantics for ontology descriptions. The underlying formalisms which were men-
tioned earlier are used to give a formal meaning to ontology descriptions in WSML.
For the functional description of Goals and Web services, WSML offers a syntacti-
cal framework, with Hoare-style semantics in mind. However, WSML does not yet
formally specify the exact semantics of the functional descriptions of services. The de-
scription of the dynamic behavior of Web services (choreography and orchestration)
in the context of WSML is currently under investigation, but has not been integrated
in WSML at this point. Thus, in this paper we primarily focus on ontology descrip-
tion in WSML, where it turns out that WSML already includes many potentially useful
features lacking in previous approaches.

We give an overview of WSML and its language layering in Section 2. The normative
human-readable syntax of WSML is described in Section 3, followed by key features
of WSML which are described in Section 4. Section 5 describes related approaches for
the description of Semantic Web Services and Ontologies. We draw conclusions and
outline future work in Section 6.

2 WSML Layering

Figure 1(a) shows the different variants of WSML and the relationships between them.
These variants differ in logical expressiveness and in the underlying language paradigms
and allow users to make the trade-off between provided expressiveness and the implied
complexity for ontology modeling on a per-application basis.

WSML-Core is based on by the intersection of the Description Logic SHIQ and
Horn Logic, based on Description Logic Programs [8]. It has the least expressive
power of all the WSML variants. The main features of the language are concepts,
attributes, binary relations and instances, as well as concept and relation hierarchies
and support for datatypes.

WSML-DL captures the Description Logic SHIQ(D), which is a major part of the
(DL species of) OWL [6].

592 J. de Bruijn et al.

�������	
 �������

��������������

��	����	�
	������

����������

�

�

�	
��
���

��
��

��
��

�������	��	������

�������������������
 �
������!

�
�	����

	�
	������
��

��������
���������
 �
������!

��������������������
������!

(a) Language variants

�������	

�������
������

������	����

���������������

�
���������������

�������

�������

�������		

(b) Layering

Fig. 1. WSML Variants and Layering

WSML-Flight is an extension of WSML-Core which provides a powerful rule lan-
guage. It adds features such as meta-modeling, constraints and nonmonotonic nega-
tion. WSML-Flight is based on a logic programming variant of F-Logic [12] and is
semantically equivalent to Datalog with inequality and (locally) stratified negation.
WSML-Flight is a direct syntactic extension of WSML-Core and it is a semantic
extension in the sense that the WSML-Core subset of WSML-Flight agrees with
WSML-Core on ground entailments (cf. [11]).

WSML-Rule extends WSML-Flight with further features from Logic Programming,
namely the use of function symbols, unsafe rules and unstratified negation under
the Well-Founded semantics.

WSML-Full unifies WSML-DL and WSML-Rule under a First-Order umbrella with
extensions to support the nonmonotonic negation of WSML-Rule. The semantics
of WSML-Full is currently an open research issue.

As shown in Figure 1(b), WSML has two alternative layerings, namely, WSML-Core
⇒ WSML-DL ⇒ WSML-Full and WSML-Core ⇒ WSML-Flight ⇒ WSML-Rule
⇒ WSML-Full. For both layerings, WSML-Core and WSML-Full mark the least and
most expressive layers. The two layerings are to a certain extent disjoint in the sense
that inter-operation in WSML between the Description Logic variant (WSML-DL) on
the one hand and the Logic Programming variants (WSML-Flight and WSML-Rule)
on the other, is only possible through a common core (WSML-Core) or through a very
expressive superset (WSML-Full).

3 General WSML Syntax

In this section we introduce the general WSML syntax which encompasses all features
supported by the different language variants. We describe the restrictions imposed on
this general syntax by the different variants. These restrictions follow from the logical
language underlying the specific language variant, as described in the previous section.

The Web Service Modeling Language WSML: An Overview 593

WSML makes a clear distinction between the modeling of the different conceptual
elements on the one hand and the specification of complex logical definitions on the
other. To this end, the WSML syntax is split into two parts: the conceptual syntax and
logical expression syntax. The conceptual syntax was developed from the user perspec-
tive, and is independent from the particular underlying logic; it shields the user from the
peculiarities of the underlying logic. Having such a conceptual syntax allows for easy
adoption of the language, since it allows for an intuitive understanding of the language
for people not familiar with logical languages. In case the full power of the underly-
ing logic is required, the logical expression syntax can be used. There are several entry
points for logical expressions in the conceptual syntax, namely, axioms in ontologies
and capability descriptions in Goals and Web Services.

We will first describe the use of Web identifiers and concrete data values in Sec-
tion 3.1. The different kinds of WSML definitions and a general explanation of the con-
ceptual syntax are given in Section 3.2. The logical expression syntax is described in
Section 3.3. Finally, we briefly outline the XML and RDF serializations in Section 3.4.

3.1 Identifiers in WSML

WSML has three kinds of identifiers, namely, IRIs, sQNames, which are abbreviated
IRIs, and data values.

An IRI (Internationalized Resource Identifier)2 uniquely identifies a resource in a
Web-compliant way. The IRI proposed standard is the successor of the popular URI
standard and has already been adopted in various W3C recommendations. IRIs are de-
limited using an underscore and a double quote ‘ ”’ and a double quote ‘”’, for example:
”http://www.wsmo.org/wsml/wsml-syntax#”.

In order to enhance legibility, an IRI can be abbreviated to an sQName, which is short
for ‘serialized QName’, and is of the following form: prefix#localname. The prefix and
local part may be omitted, in which case the name falls in the default namespace. Our
concept of an ‘sQName’ corresponds with the use of QNames in RDF and is slightly
different from QNames in XML, where a QNames is not merely an abbreviation for an
IRI, but a tuple <namespaceURI, localname>.

Data values in WSML are either strings, integers, decimals or structured data val-
ues, reflecting the XML Schema datatypes. WSML defines constructs which reflect the
structure of data values. For example, the date “March 15th, 2005” is represented as:
date(2005,3,15). In logical expressions, constructed data values can be used in the same

way as constructed terms, with the difference that constructed terms may not be nested
inside constructed data values.

3.2 Conceptual Syntax

The WSML conceptual syntax allows for the modeling of Ontologies, Web Services,
Goals and Mediators. It is shared between all variants, with the exception of some re-
strictions which apply on the modeling of ontologies in WSML-Core and WSML-DL.

Ontologies. An ontology in WSML consists of the elements concept, relation,
instance, relationInstance and axiom. Additionally, an ontology may have

2 IETF RFC 3987: http://www.ietf.org/rfc/rfc3987.txt

594 J. de Bruijn et al.

non-functional properties and may import other ontologies. We start the description
of WSML ontologies with an example which demonstrates the elements of an ontology
in Listing 1, and detail the elements below.

wsmlVariant ”http://www.wsmo.org/wsml/wsml−syntax/wsml−flight”
namespace { ”http://example.org/bookOntology#”,

dc ”http :// purl .org/dc/elements/1.1/”}
ontology ”http :// example.org/bookOntology”

nonFunctionalProperties
dc#title hasValue ”Example Book ontology”
dc#description hasValue ”Example ontology about books and shopping carts”

endNonFunctionalProperties
concept book

title ofType string
hasAuthor ofType author

concept author subConceptOf person
authorOf inverseOf(hasAuthor) ofType book

concept cart
nonFunctionalProperties

dc#description hasValue ”A shopping cart has exactly one id
and zero or more items, which are books.”

endNonFunctionalProperties
id ofType (1) string
items ofType book

instance crimeAndPunishment memberOf book
title hasValue ”Crime and Punishment”

hasAuthor hasValue dostoyevsky

relation authorship(impliesType author, impliesType document)
nonFunctionalProperties

dc#relation hasValue authorshipFromAuthor
endNonFunctionalProperties

axiom authorshipFromAuthor
definedBy

authorship(?x,?y) :− ?x[authorOf hasValue ?y] memberOf author.

Listing 1. An Example WSML Ontology

Concepts. The notion of concepts (sometimes also called ‘classes’) plays a central
role in ontologies. Concepts form the basic terminology of the domain of discourse.
A concept may have instances and may have a number of attributes associated with it.
The non-functional properties, as well as the attribute definitions, are grouped together
in one frame, as can be seen from the example concept book in Listing 1.

Attribute definitions can take two forms, namely constraining (using ofType) and
inferring (using impliesType) attribute definitions3. Constraining attribute definitions
define a typing constraint on the values for this attribute, similar to integrity constraints
in Databases; inferring attribute definitions imply that the type of the values for the
attribute is inferred from the attribute definition, similar to range restrictions on proper-
ties in RDFS [3] and OWL [6]. Each attribute definition may have a number of features
associated with it, namely, transitivity, symmetry, reflexivity, and the inverse of an at-
tribute, as well as minimal and maximal cardinality constraints.

Constraining attribute definitions, as well as cardinality constraints, require closed-
world reasoning and are thus not allowed in WSML-Core and WSML-DL. As opposed

3 The distinction between inferring and constraining attribute definitions is explained in more
detail in [5, Section 2].

The Web Service Modeling Language WSML: An Overview 595

to features of roles in Description Logics, attribute features such as transitivity, sym-
metry, reflexivity and inverse attributes are local to a concept in WSML. Thus, none of
these features may be used in WSML-Core and WSML-DL. For a motivation on the
use of constraining attributes, see [5].

Relations. Relations in WSML can have an arbitrary arity, may be organized in a hi-
erarchy using subRelationOf and the parameters may be typed using parameter type
definitions of the form (ofType type) and (impliesType type), where type is a concept
identifier. The usage of ofType and impliesType correspond with the usage in attribute
definitions. Namely, parameter definitions with the ofType keyword are used to check
the type of parameter values, whereas parameter definitions with the impliesType key-
word are used to infer concept membership of parameter values.

The allowed arity of the relation may be constrained by the underlying logic of the
WSML language variant. WSML-Core and WSML-DL allow only binary relations and,
similar to attribute definitions, they allow only parameter typing using the keyword
impliesType.

Instances. A concept may have a number of instances associated with it. Instances
explicitly specified in an ontology are those which are shared as part of the ontology.
However, most instance data exists outside the ontology in private databases. WSML
does not prescribe how to connect such a database to an ontology, since different or-
ganizations will use the same ontology to query different databases and such corporate
databases are typically not shared.

An instance may be member of zero or more concepts and may have a number of
attribute values associated with it, see for example the instance crimeAndPunishment
in Listing 1. Note that the specification of concept membership is optional and the
attributes used in the instance specification do not necessarily have to occur in the as-
sociated concept definition. Consequently, WSML instances can be used to represent
semi-structured data, since without concept membership and constraints on the use of
attributes, instances form a directed labelled graph. Because of this possibility to cap-
ture semi-structured data, most RDF graphs can be represented as WSML instance data,
and vice versa.

Axioms. Axioms provide a means to add arbitrary logical expressions to an ontol-
ogy. Such logical expressions can be used to refine concept or relation definitions in
the ontology, but also to add arbitrary axiomatic domain knowledge or express con-
straints. The axiom authorshipFromAuthor in Listing 1 states that the relation author-
ship exists between any author and any book of which he is an author; consequently,
〈dostoyesksy, crimeAndPunishment〉 is in the relation authorship. Logical expressions
are explained in more detail in Section 3.3.

Web Services. A Web Service has a capability and a number of interfaces. The capabil-
ity describes the Web Service functionality by expressing conditions over its
pre- and post-states4 using logical expressions; interfaces describe how to interact with

4 Pre-state (post-state, respectively) refers to the state before (after, respectively) the execution
of the Web Service.

596 J. de Bruijn et al.

the service. Additionally, WSML allows to specify non-functional properties of a Web
Service. Listing 2 describes a simple Web Service for adding items to a shopping cart.

webService ”http://example.org/bookService”
nonFunctionalProperties

dc#title hasValue ”Example book buying service”
dc#description hasValue ”A simple example web service for adding items to a shopping cart”

endNonFunctionalProperties

importsOntology ”http://example.org/bookOntology”
capability

sharedVariables {?cartId, ?item}
precondition

definedBy
?cartId memberOf string and ?item memberOf book.

postcondition
definedBy

forall ?cart (?cart [id hasValue ?cartId] memberOf cart implies
?cart [items hasValue ?item]).

Listing 2. A WSML Web Service description

Capabilities. Preconditions and assumptions describe the state before the execution of
a Web Service. While preconditions describe conditions over the information space, i.e.,
conditions over the input; assumptions describe condition over the state of world which
can not necessarily be directly checked. Postconditions describe the relation between
the input and the output, e.g., a credit card limit with respect to its values before the
service execution. In this sense, they describe the information state after execution of
the service. Effects describe changes in the real world caused by the service, e.g., the
physical shipment of some good. The sharedVariables construct is used to identify
variables which are shared between the pre- and postconditions and the assumptions
and effects. Shared variables can be used to refer to the same input and output values
in the conditions of the capability. Listing 2 describes a simple Web Service for adding
items to a shopping cart: given a shopping cart identifier and a number of items, the
items are added to the shopping cart with this identifier.

Interfaces. Interfaces describe how to interact with a service from the requester point-
of-view (choreography) and how the service interacts with other services and goals it
needs to fulfill in order to fulfill its capability (orchestration), which is the provider
point of view. Choreography and orchestration descriptions are external to WSML;
WSML allows to reference any choreography or orchestration identified by an IRI.

Goals. Goals are symmetric to Web Services in the sense that Goals describe desired
functionality and Web Services describe offered functionality. Therefore, a Goal de-
scription consists of the same modeling elements as a Web Service description, namely,
non-functional properties, a capability and a number of interfaces.

Mediators. Mediators connect different Goals, Web Services and Ontologies, and
enable inter-operation by reconciling differences in representation formats, encoding
styles, business protocols, etc. Connections between Mediators and other WSML ele-
ments can be established in two different ways:

The Web Service Modeling Language WSML: An Overview 597

1. Each WSML element allows for the specification of a number of used mediators
through the usesMediator keyword.

2. Each mediator has (depending on the type of mediator) one or more sources and one
target. Both source and target are optional in order to allow for generic mediators.

A mediator achieves its mediation functionality either through a Web Service, which
provides the mediation service, or a Goal, which can be used to dynamically discover
the appropriate (mediation) Web Service.

3.3 Logical Expression Syntax

We will first explain the general logical expression syntax, which encompasses all
WSML variants, and then describe the restrictions on this general syntax for each of
the variants. The general logical expression syntax for WSML has a First-Order Logic
style, in the sense that it has constants, function symbols, variables, predicates and the
usual logical connectives. Furthermore, WSML has F-Logic [12] based extensions in
order to model concepts, attributes, attribute definitions, and subconcept and concept
membership relationships. Finally, WSML has a number of connectives to facilitate
the Logic Programming based variants, namely default negation (negation-as-failure),
LP-implication (which differs from classical implication) and database-style integrity
constraints.

Variables in WSML start with a question mark, followed by an arbitrary number of
alphanumeric characters, e.g., ?x, ?name, ?123. Free variables in WSML (i.e., variables
which are not explicitly quantified), are implicitly universally quantified outside of the
formula (i.e., the logical expression in which the variable occurs is the scope of quan-
tification), unless indicated otherwise, through the sharedVariables construct (see the
previous Section).

Terms are either identifiers, variables, or constructed terms. An atom is, as usual,
a predicate symbol with a number of terms as arguments. Besides the usual atoms,
WSML has a special kind of atoms, called molecules, which are used to capture infor-
mation about concepts, instances, attributes and attribute values. The are two types of
molecules, analogous to F-Logic:

– An isa molecule is a concept membership molecule of the form A memberOf B
or a subconcept molecule of the form A subConceptOf B with A and B arbitrary
terms

– An object molecule is an attribute value expressions of the form A[B hasValue
C], a constraining attribute signature expression of the form A[B ofType C], or
an inferring attribute signature expression of the form A[B ofType C], with A,B,C
arbitrary terms

WSML has the usual first-order connectives: the unary negation operator neg, and
the binary operators for conjunction and, disjunction or, right implication implies, left
implication impliedBy, and dual implication equivalent. Variables may be universally
quantified using forall or existentially quantified using exists. First-order formulae are
obtained by combining atoms using the mentioned connectives in the usual way. The
following are examples of First-Order formulae in WSML:

598 J. de Bruijn et al.

// every person has a father
forall ?x (?x memberOf Person implies exists ?y (?x[father hasValue ?y])).
// john is member of a class which has some attribute called ’name’
exists ?x,?y (john memberOf ?x and ?x[name ofType ?y]).

Apart from First-Order formulae, WSML allows the use of the negation-as-failure
symbol naf on atoms, the special Logic Programming implication symbol :- and the
integrity constraint symbol !-. A logic programming rule consists of a head and a body,
separated by the :- symbol. An integrity constraint consists of the symbol !- followed
by a rule body. Negation-as-failure naf is only allowed to occur in the body of a Logic
Programming rule or an integrity constraint. The further use of logical connectives in
Logic Programming rules is restricted. The following logical connectives are allowed in
the head of a rule: and, implies, impliedBy, and equivalent. The following connectives
are allowed in the body of a rule (or constraint): and, or, and naf. The following are
examples of LP rules and database constraints:

// every person has a father
?x[father hasValue f(?y)] :− ?x memberOf Person.
// Man and Woman are disjoint
!− ?x memberOf Man and ?x memberOf Woman.
// in case a person is not involved in a marriage, the person is a bachelor
?x memberOf Bachelor :− ?x memberOf Person and naf Marriage(?x,?y,?z).

Particularities of the WSML Variants. Each of the WSML variants defines a number
of restrictions on the logical expression syntax. For example, LP rules and constraints
are not allowed in WSML-Core and WSML-DL. Table 1 presents a number of language
features and indicates in which variant the feature can occur.

Table 1. WSML Variants and Feature Matrix

Feature Core DL Flight Rule Full
Classical Negation (neg) - X - - X
Existential Quantification - X - - X
(Head) Disjunction - X - - X
n-ary relations - - X X X
Meta Modeling - - X X X
Default Negation (naf) - - X X X
LP implication - - X X X
Integrity Constraints - - X X X
Function Symbols - - - X X
Unsafe Rules - - - X X

– WSML-Core allows only first-order formulae which can be translated to the DLP
subset of SHIQ(D) [8]. This subset is very close to the 2-variable fragment of
First-Order Logic, restricted to Horn logic. Although WSML-Core might appear in
the Table 1 featureless, it captures most of the conceptual model of WSML, but has
only limited expressiveness within the logical expressions.

– WSML-DL allows first-order formulae which can be translated to SHIQ(D). This
subset is very close to the 2-variable fragment of First-Order Logic. Thus, WSML

The Web Service Modeling Language WSML: An Overview 599

DL allows classical negation, and disjunction and existential quantification in the
heads of implications.

– WSML-Flight extends the set of formulae allowed in WSML-Core by allowing vari-
ables in place of instance, concept and attribute identifiers and by allowing relations
of arbitrary arity. In fact, any such formula is allowed in the head of a WSML-Flight
rule. The body of a WSML-Flight rule allows conjunction, disjunction and default
negation. The head and body are separated by the LP implication symbol.
WSML-Flight additionally allows meta-modeling (e.g., classes-as-instances) and
reasoning over the signature, because variables are allowed to occur in place of
concept and attribute names.

– WSML-Rule extends WSML-Flight by allowing function symbols and unsafe rules,
i.e., variables which occur in the head or in a negative body literal do not need to
occur in a positive body literal.

– WSML-Full The logical syntax of WSML-Full is equivalent to the general logical
expression syntax of WSML and allows the full expressiveness of all other WSML
variants.

The separation between conceptual and logical modeling allows for an easy adop-
tion by non-experts, since the conceptual syntax does not require expert knowledge in
logical modeling, whereas complex logical expressions require more familiarity and
training with the language. Thus, WSML allows the modeling of different aspects re-
lated to Web services on a conceptual level, while still offering the full expressive power
of the logic underlying the chosen WSML variant. Part of the conceptual syntax for on-
tologies has an equivalent in the logical syntax. This correspondence is used to define
the semantics of the conceptual syntax. Notice that, since only parts of the conceptual
syntax are mapped to the logical syntax, only a part of the conceptual syntax has a
semantics in the logical language for ontologies. For example, non-functional proper-
ties are not translated (hence, the name ‘non-functional’). The translation between the
conceptual and logical syntax is sketched in Table 2.

Table 2. Translating conceptual to logical syntax

Conceptual Logical
concept A subConcepOf B A subConceptOf B.

concept A
B ofType (0 1) C

A[B ofType C].
!− ?x memberOf A and

?x[B hasValue ?y, B hasValue ?z] and ?y != ?z.

concept A B ofType C A[B ofType C].

relation A/n subRelationOf B A(x1 ,...,xn) implies B(x1,...,xn)

instance A memberOf B
C hasValue D

A memberOf B.
A[C hasValue D].

3.4 WSML Web Syntaxes

The WSML XML syntax is similar to the human-readable syntax, both in keywords
and in structure. We have defined the XML syntax through a translation from the

600 J. de Bruijn et al.

human-readable syntax [4] and have additionally specified an XML Schema for
WSML5. Note that all WSML elements fall in the WSML namespace http://www.wsmo.
org/wsml/wsml-syntax#.

WSML provides a serialization in RDF of all its conceptual modeling elements
which can be found in [4]. The WSML RDF syntax reuses the RDF and RDF Schema
vocabulary to allow existing RDF(S)-based tools to achieve the highest possible degree
of inter-operation. As a result, WSML can be seen as an extension of RDF(S).

4 Key Features of WSML

There are a number of features which make WSML unique from other language pro-
posals for the Semantic Web and Semantic Web Services. These key features are mainly
due to the two pillars of WSML, namely (1) a language independent conceptual model
for Ontologies, Web Services, Goals and Mediators, based on WSMO [17] and (2) reuse
of several well-known logical language paradigms in one syntactical framework. More
specifically, we see the following as the key features of WSML:

One syntactic framework for a set of layered languages. We believe different Se-
mantic Web and Semantic Web Service applications need languages of different
expressiveness and that no single language paradigm will be sufficient for all use
cases. With WSML we investigate the use of Description Logics and Logic Pro-
gramming for Semantic Web Services.

Normative, human readable syntax. It has been argued that tools will hide language
syntax from the user; however, as has been seen, for example, with the adoption of
SQL, an expressive but understandable syntax is crucial for successful adoption of
a language. Developers and early adopters of the language will have to deal with the
concrete syntax. If it is easy to read and understand it will allow for easier adoption
of the language.

Separation of conceptual and logical modeling On the one hand, the conceptual syn-
tax of WSML has been designed in such a way that it is independent of the under-
lying logical language and no or only limited knowledge of logical languages is
required for the basic modeling of Ontologies, Web Services, Goals, and Media-
tors. On the other hand, the logical expression syntax allows expert users to refine
definitions on the conceptual syntax using the full expressive power of the underly-
ing logic, which depends on the particular language variant chosen by the user.

Semantics based on well known formalisms. WSML captures well known logical
formalisms such as Datalog and Description Logics in a unifying syntactical frame-
work, while maintaining the established computational properties of the original
formalisms through proper syntactic layering. The variants allow the reuse of tools
already developed for these formalisms. Notably, WSML allows to reuse efficient
querying engines developed for Datalog and efficient subsumption reasoners devel-
oped in the area of Description Logics. Inter-operation between the paradigms is
achieved through a common subset, WSML-Core, based on DLP [8].

5 http://www.wsmo.org/TR/d16/d16.1/v0.21/xml-syntax/wsml-xml-syntax.xsd

The Web Service Modeling Language WSML: An Overview 601

WWW Language. WSML has a number of features which integrate it seamlessly in
the Web. WSML adopts the IRI standard, the successor of URI, for the identifi-
cation of resources, following the Web architecture. Furthermore, WSML adopts
the namespace mechanism of XML and datatypes in WSML are compatible with
datatypes in XML Schema [2] and datatype functions and operators are based on
the functions and operators of XQuery [15]. Finally, WSML defines an XML syn-
tax and an RDF syntax for exchange over the Web. When using the RDF syntax,
WSML can be seen as an extension of RDFS.

Frame-Based syntax. minus .1em Frame Logic [12] allows the use of frames in log-
ical expressions. This allows the user to work directly on the level of concepts,
attributes, instances and attribute values, instead of at the level of predicates. Fur-
thermore, variables are allowed in place of concept and attribute identifiers, which
enables meta-modeling and reasoning over the signature in the rule-based WSML
language variants.

5 Related Work

In this section we review existing work in the areas of Semantic Web and Semantic Web
Services languages and compare it to WSML.

RDFS. RDFS [3] is a simple ontology modeling languages based on triples. It allows
to express classes, properties, class hierarchies, property hierarchies, and domain- and
range restrictions. Several proposals for more expressive Semantic Web and Semantic
Web Service descriptions extend RDFS, however there are difficulties in semantically
layering an ontology language on top of RDFS:

1. RDFS allows the use of the language vocabulary as subjects and objects in the
language itself.

2. RDFS allows the use of the same identifier to occur at the same time in place of a
class, individual, and property identifier.

We believe that the number of use cases for the first feature, namely the use of lan-
guage constructs in the language itself, is limited. However, the use of the same identifier
as class, individual and property identifier (also called meta-modeling) is deemed use-
ful in many cases. WSML does not allow the use of the language constructs in arbitrary
places in an ontology, but does allow meta-modeling in its Flight, Rule and Full variants.

WSML is an extension of a significant part of RDFS; it does not allow the use of
language constructs in the language itself and does not allow full treatment of blank
nodes, because this would require reasoning with existential information, which is not
allowed in the rule-based WSML variants. WSML provides a significant extension of
RDFS through the possibility of specifying local attributes, range and cardinality con-
straints for attributes and attribute features such as symmetry, transitivity and reflexivity.
Furthermore, WSML (in its rule-based variants) provides an expressive rule language
which can be used for the manipulation of RDF data.

OWL. The Web Ontology Language OWL [6] is a language for modeling ontologies
based on the Description Logic paradigm. OWL consists of three species, namely OWL

602 J. de Bruijn et al.

Lite, OWL DL and OWL Full, which are intended to be layered according to increasing
expressiveness. OWL Lite is a notational variant of the Description Logic SHIF(D);
OWL DL is a notational variant of the Description logic SHOIN (D). The most ex-
pressive species of OWL, OWL Full, layers on top of both RDFS and OWL DL. We
compare OWL with the ontology description component of WSML, since OWL does
not offer means to describe Web Services, Goals and Mediators.

WSML-Core is a semantic subset of OWL Lite. WSML-DL is semantically equiv-
alent to OWL DL. However, there is a major difference between ontology modeling in
WSML and ontology modeling in OWL. WSML uses an epistemology which abstracts
from the underlying logical language, whereas OWL directly uses Description Logics
epistemology; WSML separates between conceptual modeling for the non-expert users
and logical modeling for the expert user. Arguably, these properties could make WSML
easier to use as an ontology language. This is, however, merely a conjecture and would
required extensive user testing to verify its correctness.

WSML-Flight and WSML-Rule are based on the Logic Programming paradigm,
rather than the Description Logic paradigm. Thus, their expressiveness is quite different
from OWL. On the one hand, WSML-Flight/Rule allow chaining over predicates and
non-monotonic negation, but do not allow classical negation and full disjunction and
existential quantification. We conjecture that both the Description Logics and Logic
Programming paradigms are useful on the Semantic Web (cf. [11]). With WSML we
capture both paradigms in one coherent framework. Interaction between the paradigms
is achieved through a common subset, WSML-Core.

OWL-S. OWL-S [1] is an OWL ontology for the modeling of Semantic Web Services.
It has been recognized that the expressiveness of OWL alone is not enough for the
specification of Web Services (e.g. [13]). To overcome this limitation OWL-S allows
the use of more expressive languages such as SWRL [9], KIF and DRS. However, the
relation between the inputs and output described using OWL and the formulae in these
languages is sometimes not entirely clear.

Comparing the language suggestions for WSML and OWL-S it turns out that while
OWL-S aims at combining different notations and semantics with OWL for the descrip-
tion of service conditions and effects, WSML takes a more cautious approach: WSML
does not distinguish between languages used for inputs/output and other description
elements of the Web Service, but provides one uniform language for capability descrip-
tions. Additionally, the languages suggested for OWL-S are all based on classical logic,
whereas WSML also offers the possibility to use (nonmonotonic) Logic Programming.

Finally, WSML is based on the conceptual model of WSMO, which differs signif-
icantly from the OWL-S conceptual model for Web Service modeling. For a detailed
comparison, see [14].

6 Conclusions and Future Work

In this paper we have presented the Web Service Modeling Language WSML, a lan-
guage for the specification of different aspects related to Semantic Web Services, based
on the Web Service Modeling Ontology WSMO [17]. WSML brings together different
logical language paradigms and unifies them in one syntactical framework, enabling

The Web Service Modeling Language WSML: An Overview 603

the reuse of proven reasoning techniques and tools. Unlike other proposals for Seman-
tic Web and Semantic Web Service languages, WSML has a normative human readable
syntax that makes a separation between conceptual and logical syntax, thereby enabling
conceptual modeling from the user point-of-view according to a language-independent
meta-model (WSMO), while not restricting the expressiveness of the language for the
expert user. With the use of IRIs (the successor of URI) and the use of XML and RDF,
WSML is a language based on the principles of the Semantic Web and allows seamless
integration with other Semantic Web languages and applications.

The definition of an inter-operability layer between the Description Logic and Rules
paradigms, in the form of WSML-Core, enables the use and extension of the same core
ontology for a number of different reasoning tasks supported by a number of different
reasoners, most notably subsumption reasoning using Description Logic reasoners and
query answering using Logic Programming reasoners.

Future work for WSML consists of the application of the language to various use
cases and the improvement of WSML tools, such as editors and reasoners6. From the
language development point of view, the semantics of WSML-Full has not yet been
defined; we are currently looking into several nonmonotonic logics, such as Autoepis-
temic and Default Logic. There are approaches which combine expressive Description
Logics with nonmonotonic logic programming without requiring the expressiveness of
WSML-Full (e.g.). Incorporating such approaches in WSML is a matter of ongoing in-
vestigation. We are working on defining the operational semantics for the Web Service
capability. Such operational semantics is necessary for the automation of several Web
Service related tasks, such as discovery [10]. It might turn out, however, that differ-
ent tasks need different operational semantics. Finally, the Web Service choreography
and orchestration are currently place-holders in WSML; work is ongoing to fill these
place-holders.

Acknowledgments

We would like to thank all members of the WSML working group, especially Eyal
Oren and Rubén Lara, for their comments and input to this document. We thank the
anonymous reviewers for useful feedback.

This work was funded by the European Commission under the projects ASG, DIP,
KnowledgeWeb, and SEKT; by Science Foundation Ireland under Grant No. SFI/02/
CE1/I13; and by the FIT-IT (Forschung, Innovation, Technologie - Informationstech-
nologie) under the project RW2.

References

1. D. Martin, M. Burstein, J. Hobbs, O. Lassila, D. McDemott, S. McIlraith, S. Narayanana,
M. Paolucci, B. Parsia, T. Payne, E. Sirin, N. Srinivasan and K. Sycara. OWL-S: Semantic
markup for web services. Member Submission 22, W3C, November 2004. http://
www.w3.org/Submission/2004/SUBM-OWL-S-20041122/ .

6 An overview of currently available tools can be found at: http://tools.deri.
org/wsml/

604 J. de Bruijn et al.

2. P. V. Biron and A. Malhotra, editors. XML Schema Part 2: Datatypes. 2004. http://
www.w3.org/TR/xmlschema-2/.

3. D. Brickley and R. V. Guha. RDF vocabulary description language 1.0: RDF
schema. Recommendation 10 February 2004, W3C, 2004. http://www.w3.org/
TR/rdf-schema/.

4. J. de Bruijn, editor. The Web Service Modeling Language WSML. 2005. WSMO Final Draft
D16.v0.21. http://www.wsmo.org/TR/d16/d16.1/v0.21/.

5. J. de Bruijn, A. Polleres, R. Lara, and D. Fensel. OWL DL vs. OWL Flight: Conceptual
modeling and reasoning on the semantic web. In Proc. WWW2005, Chiba, Japan. 2005.

6. M. Dean and G. Schreiber, editors. OWL Web Ontology Language Reference. 2004. W3C
Recommendation 10 February 2004.

7. T. Eiter, T. Lukasiewicz, R. Schindlauer, and H. Tompits. Combining answer set program-
ming with description logics for the semantic web. In Proc. KR2004, 2004.

8. B. N. Grosof, I. Horrocks, R. Volz, and S. Decker. Description logic programs: Combining
logic programs with description logic. In Proc. WWW2003, Budapest, Hungary, 2003.

9. I. Horrocks, P. F. Patel-Schneider, H. Boley, S. Tabet, B. Grosof, and M. Dean. SWRL: A
semantic web rule language combining OWL and RuleML. Member submission 21 may
2004, W3C, 2004. http://www.w3.org/Submission/SWRL/.

10. U. Keller, R. Lara, H. Lausen, A. Polleres, and D. Fensel. Automatic location of services. In
Proc. ESWC2005. 2005.

11. M. Kifer, J. de Bruijn, H. Boley, and D. Fensel. A realistic architecture for the semantic web.
In Proc. RuleML-2005, Ireland, Galway. 2005.

12. M. Kifer, G. Lausen, and J. Wu. Logical foundations of object-oriented and frame-based
languages. JACM, 42(4):741–843, 1995.

13. R. Lara, H. Lausen, S. Arroyo, J. de Bruijn, and D. Fensel. Semantic web services: de-
scription requirements and current technologies. In Semantic Web Services for Enterprise
Application Integration and e-Commerce workshop (SWSEE03), in conjunction with ICEC
2003, Pittsburgh, PA, USA.

14. R. Lara, A. Polleres, H. Lausen, D. Roman, J. de Bruijn, and D. Fensel. A concep-
tual comparison between WSMO and OWL-S. Final draft D4.1v0.1, WSMO, 2004.
http://www.wsmo.org/TR/d4/d4.1/v0.1/.

15. A. Malhotra, J. Melon, and N. Walsh. Xquery 1.0 and xpath 2.0 functions and
operators. Candidate Recommendation, W3C, 2005. http://www.w3.org/
TR/xpath-functions/.

16. S. McIlraith, T. C. Son, and H. Zeng. Semantic web services. IEEE Intelligent Systems,
Special Issue on the Semantic Web, 16(2):46–53, 2001.

17. D. Roman, U. Keller, H. Lausen, R. L. Jos de Bruijn, M. Stollberg, A. Polleres, C. Feier, C.
Bussler, and D. Fensel. Web service modeling ontology. Applied Ontology, 1(1):77–106,
2005.

18. R. Rosati. DL + log: Tight integration of description logics and disjunctive datalog. In
Proc. KR2006, 2006.

On the Semantics of Functional Descriptions of Web
Services

Uwe Keller, Holger Lausen, and Michael Stollberg

Digital Enterprise Research Institute (DERI)
University of Innsbruck, Austria

{firstname.lastname}@deri.org

Abstract. Functional descriptions are a central pillar of Semantic Web services.
Disregarding details on how to invoke and consume the service, they shall pro-
vide a black box description for determining the usability of a Web service for
some request or usage scenario with respect to the provided functionality. The
creation of sophisticated semantic matchmaking techniques as well as exposition
of their correctness requires clear and unambiguous semantics of functional de-
scriptions. As existing description frameworks like OWL-S and WSMO lack in
this respect, this paper presents so-called Abstract State Spaces as a rich and lan-
guage independent model of Web services and the world they act in. This allows
giving a precise mathematical definition of the concept of Web Service and the
semantics of functional descriptions. Finally, we demonstrate the benefit of ap-
plying such a model by means of a concrete use case: the semantic analysis of
functional descriptions which allows to detect certain (un)desired semantic prop-
erties of functional descriptions. As a side effect, semantic analysis based on our
formal model allows us to gain a formal understanding and insight in matching
of functional descriptions during Web service discovery.

1 Introduction

Enabling automated detection of Web services that adequately serve a given request or
usage scenario is a main objective of Semantic Web service technology. Therefore, the
functional description of a Web service specifies the provided functionality. Disregard-
ing detailed information on how to invoke and consume the Web service the purpose
of functional descriptions is to provide a black box description of normal runs of a
Web service, i.e. without regard to technical or communication related errors that might
occur during service usage.

In the most prominent overall description frameworks for Semantic Web services,
functional descriptions are essentially state-based and use at least prestate and poststate
constraints to characterize intended executions of a Web service. In OWL-S [13], Ser-
vice Profiles encompass the functional description that is described by the in- and out-
put, and by preconditions and results. Their counterpart in WSMO [11] are capabilities
that are defined by preconditions, assumptions, postconditions, and effects. However,
both models lack of clear and unambiguous semantics for functional descriptions [9].
This is essential for developing appropriate semantic matchmaking mechanisms for dis-
covery, or for proving the correctness of functional descriptions - in general for any sort
of symbolic computation based on functional descriptions in these frameworks.

Y. Sure and J. Domingue (Eds.): ESWC 2006, LNCS 4011, pp. 605–619, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

606 U. Keller, H. Lausen, and M. Stollberg

With respect to this necessity, we present a rigorous formal model of Web ser-
vices and the world they act as the basis for clear semantic definitions of functional
descriptions. Addressing the most fine-grained perspective on Web services and their
functional descriptions as identified in previous work [7, 8] (namely, the level of rich
semantic descriptions) we aim at applicability of the presented model in any setting
where state-based functional descriptions are used, e.g. in frameworks like OWL-S and
WSMO. Since both do not restrict themselves to a particular language for describing
states (i.e. preconditions and postconditions), a formal definition that is usable for these
frameworks must be modular and independent of the language chosen for describing
state-conditions.

The contribution of this paper is as follows:

– we present so-called Abstract State Spaces as a sufficiently rich, flexible, and lan-
guage independent model for describing Web services and the world they act in
(Sec. 2)

– based on the model we describe what a functional description actually is and prop-
erly specify their formal semantics (Sec. 2)

– we give concise, formal definitions of all concepts involved in our model (Sec. 3)
– we demonstrate the applicability of the introduced model by a specific use case: the

semantic analysis of functional descriptions (Sec. 4). In particular, we clearly define
desirable properties of functional descriptions like realizability and semantic refine-
ment and show how to determine these properties algorithmically based on existing
tools in a provably correct way. Hereby, we can reconstruct generalized versions of
results on matching between component specifications that are well-known in the
software component community [18], but (based on our formal model) get some
additional insights the relation between the semantic notion of refinement and the
syntactic criterion for checking semantic matches, that have can not be discussed
in [18] (see [10] for a deeper discusson).

The Bigger Picture. The model presented in this paper can be considered as a small
first step towards a mathematical model for service-oriented architectures. Based on a
more emcompassing and rich mathematical model, we will be able to give semantics
to formal descriptions of such architectures and (similarly to what we discussed for the
simple case of capabilities here) to reason about such descriptions in a well-understood
and verifiably correct way by extension and refinement of the presented basic model.
We expect that the presented model provides a suitable and flexible foundation for such
non-standard extensions.

Overview of the Solution. As a part of rich model description frameworks like OWL-
S and WSMO, functional descriptions of Web services D are syntactic expressions in
some specification language F that is constructed from some (non-logical) signature
ΣF . Each expression D ∈ F captures specific requirements on Web services W and
can be used to constrain the set of all Web services to some subset that is interesting
in a particular context. Hence, the set of Web services W that satisfy the functional
description D (denoted by W |=F D) can be considered as actual meaning of D. This

On the Semantics of Functional Descriptions of Web Services 607

way, we can define a natural model-theoretic semantics for functional descriptions by
defining a satisfaction relation |=F between Web services and functional descriptions.
In comparison to most common logics, our semantic structures (i.e interpretations that
are used to assign expressions D a truth value) are simply a bit more complex. In fact,
they can be seen as generalizations of so-called Kripke structures [1, 17].

In general, various simpler syntactic elements are combined withing a functional de-
scriptionD ∈ F . State-based frameworks as the ones mentioned above use at least pre-
conditions and postconditions. WhereasD refers to Web services, these conditions refer
to simpler semantic entities, namely states, and thus in a sense to a “static” world. Such
state conditions φ are expressions in (static) languageL over some signature ΣL. Single
states s determine how the world is perceived an external observer of the world and thus
the truth value of these conditions. Formally, we have a satisfaction relation |=L between
states s and state expressions φ, where s |=L φ denotes that φ holds in state s. In essence,
we can observe that on a syntactic level a language L for capturing static aspects of the
world is extended to a languageF that captures dynamic aspects of the world.

In order to define a similar extension on a semantic level, we extend the definition
of the satisfaction |=L (in L) to a definition of satisfaction |=F (in F). This way, our
definition is highly modular, language-independent to a maximum extent and focuses
on the description of dynamics (i.e. possible state transitions) as the central aspect
that the functional description language F adds on top of state description language
L. It can be applied to various languages L in the very same way as it only requires a
model-theoretic semantics for the static language L (which almost all commonly used
logics provide). Furthermore, our model-theoretic approach coincides to the common
understanding of functional descriptions to be declarative descriptions what is provided
rather than how the functionality is achieved.

2 Towards a Model of Web Services

The following introduces Abstract State Spaces as a flexible approach for defining a
rigorous, formal model of Web services, the world they act in, and the meaning of func-
tional descriptions. While introducing the model informally in the following, mathe-
matically concise definitions are given in Section 3.

A changing world. We consider the world as an entity that changes over time. Enti-
ties that act in the world (which can be anything from a human user to some computer
program) can affect how the world is perceived by themselves or other entities at some
specific moment. At each point in time, the world is in one particular state that deter-
mines how the world is perceived by the entities acting therein. We need to consider
some language for describing the properties of the world in a state. In the following we
assume an arbitrary (but fixed) signature Σ (that usually is based on domain ontolo-
gies), and some language L(Σ) derived from the signature.

We use classical First-order Logic for illustration purposes in the following, however
we stress that we are by no means bound to this specific language, i.e. other languages
such as WSML or OWL can easily be used instead in our framework. Consider a sig-
nature Σ ⊇ {isAccount(·), balance(·),≥, 0, 1, 2, . . .} that allows to talk about bank
accounts and their balance. Then, L(Σ) allows comparing the respective values, for

608 U. Keller, H. Lausen, and M. Stollberg

instance by expressions like ∀?x.(isAccount(?x) ⇒ balance(?x) ≥ 0) stating that
the balance of any account needs to be non-negative. In the context of dynamics and
properties of the world that change, it is useful to distinguish between symbols in Σ
that are supposed to have always the same, fixed meaning (e.g. ≥, 0) and thus can not
be affected by any entity that acts in the world, and symbols that can be affected and
thus can change their meaning during the execution a Web Service (e.g. isAccount(·),
balance(·)). We refer to the former class of symbols by static symbols (denoted by ΣS)
and the latter by dynamic symbols (denoted by ΣD).

Abstract State Spaces. We consider an abstract state space S to represent all possi-
ble states s of the world. Each state s ∈ S completely determines how the world is
perceived by each entity acting in S. Each statement φ ∈ L(Σ) of an entity about the
(current state of) the world is either true or false. Thus, a state s ∈ S in fact defines an
interpretation I (of some signature Σ). However, not all Σ-Interpretations I represent
senseful observations since I might not respect some “laws” that the world S underlies,
e.g. that the balance of any bank account is not allowed to be negative. In the follow-
ing, we assume that these laws are captured by a background ontology Ω ⊆ L(Σ) and
denote the set of Σ-Interpretations that respect Ω (i.e. the models of Ω) by ModΣ(Ω).
Considering our example signature from above and a background ontology Ω with
{∀?x.(isAccount(?x) ⇒ balance(?x) ≥ 0), isAccount(acc1), isAccount(acc2)} ⊆
Ω , the following interpretation denotes a state I : balance(acc1) = 10. In contrast,
the interpretation I : balance(acc2) = −40 does not denote a state in S (wrt. Ω).

Changing the World. By means of well-defined change operations, entities can affect
the world and modify their current state. Such operations denote state transitions in S. In
our setting, these change operations are single concrete executions of Web services W .
Following [8, 7], a change operation is represented by a service S that is accessed via
a Web service W . S is achieved by executing W with some given input data i1, . . . , in
that specify (for a service provider) what kind of particular service S accessible via W
is requested by the client, i.e. S ≈ W (i1, . . . , in).

Given input data i1, . . . , in, the execution of a Web service W essentially causes a
state transition τ in S, transforming the current state of the world s ∈ S into a new state
s′ ∈ S. However, a transition τ will in general not be an atomic transition τ = (s, s′) ∈
S × S but a sequence τ = (s0, . . . , sn) ∈ S+, where s0 = s, sn = s′ and n ≥ 1.
In every intermediate state si in τ some effect can already be perceived by an enitity.
This is especially relevant for Web services that allow accessing long lasting activities
that involve multiple conversation steps between the requester and the Web service W .
If we consider e.g. some international bank transfer having as concrete input data the
information to transfer $20 from acc2 to acc1 the web service execution might involve
the following intermediate state between spre and spost :

spre : balance(acc1) = 10 ∧ balance(acc2) = 100

s1 : balance(acc1) = 10 ∧ balance(acc2) = 80

spost : balance(acc1) = 30 ∧ balance(acc2) = 80

Outputs as Changes of an Information Space. During the execution W (i1, . . . , in)
of a Web service W , W can send some information as output to the requester. We
consider these outputs as updates of the so-called information space of the requester
of a service S. More precisely, we consider the information space of some service

On the Semantics of Functional Descriptions of Web Services 609

requester as a set IS ⊆ U of objects from some universe U . Every object o ∈ IS has
been received by the requester from W during the execution W (i1, . . . , in). During the
execution the information space itself evolves: starting with the empty set when the Web
service is invoked the execution leads to a monotonic sequence of information spaces
∅ = IS0 ⊆ IS1 ⊆ . . . ⊆ ISk. Within our bank transfer example, during some financial
transaction tid891 we might first receive a message acknowledgmentmsgid23 and then
a confirmation that the transaction has been approved and initialized:

IS1 ={ack(20051202, msgid23, tid891)}
IS2 ={ack(20051202, msgid23, tid891), confirm(acc1, acc2, 20, tid891)}

Observations in Abstract States. Our aim is to describe all the effects of Web ser-
vice executions for a requester. Obviously, a requester can observe in every state s ∈ S
world-related properties represented by statements φ in L(Σ) that hold in s. However,
additionally there might be other aspects that an observer of the world can perceive in
an abstract state s. In our model, this includes at least the information space IS ⊆ U
described above. Thus, an abstract state s ∈ S in a sense ,,corresponds” to all observa-
tions (relevant for the uses of our formal model) that can be made in s. For our purpose
here, this means all pairs of Σ-interpretations I ∈ ModΣ(Ω) and (possible) informa-
tion spaces IS ⊆ U . Consequently, we represent the observations related to a state s by
an observation function ω : S → ModΣ(Ω) × P(U) that assigns every state s ∈ S a
pair (I, IS) of a Σ-interpretation I (respecting the domain laws Ω) and an information
space IS. We denote the first component of ω(s) by ωrw(s) (real-world properties:
how an entity perceives the world) and the second component by ωis(s) (information
space: how the invoker perceives the information space). However, we require the ob-
servation function ω to be a (fixed) total function as is can not be arbitrary. This means
that the observations ω(s) of any entity are well-defined in every abstract state s. More-
over, any perception representable in terms of L(Σ) and U that is consistent with the
domain model Ω should actually corresponds to some abstract state s ∈ S by means of
ω, so that ω is surjective1. By considering abstract states as abstract objects without a
predefined or fixed structure, and the separated assignement of a formal structure rep-
resenting the actual observations that can be made in a state (by means of ω), we are
able to address extensions of our model that might be needed in future extensions in a
clean and modular way (e.g. when formally describing conversations between a group
of agents in the world). Moreover, we can easily include representation of contextual
aspects [3] in our model (e.g. that a state s is observed differently by various agents).

Web Service Executions. Given some input i1, . . . , in, the Web service execution
W (i1, . . . , in) = (s0, . . . , sm) starting in state s0 induces a sequence of observa-
tions (ω(s0), . . . , ω(sm)) which can be made by the service requester during the ex-
ecution. However, not all such sequences τ of abstract states actually do represent a
meaningful state-transition caused by an execution of W . For τ to faithfully represent
some W (i1, ..., in) we need to require at least that for any two adjacent states s, s′ in

1 However, since we assume a fixed signature Σ and thus a limited language for describing
observations about the world, we do not assume that ω is injective, i.e. there could be distinct
states s, s′ of the world which can not be distinguished by the (limited) language L(Σ), i.e.
ωrw(s) = ωrw(s′).

610 U. Keller, H. Lausen, and M. Stollberg

W (i1, . . . , in) some change can be observed by the invoker, and that objects which are
in the information space (i.e. have been received by the invoker) at some point in time
during the execution can not disappear until the execution is completed. As discussed
later, in general we need to require some further constraints on a sequence τ such that
we can interpret τ as a possible run W (i1, . . . , in) of a Web service W . We call s0
the pre-state of the execution, sm the post-state of the execution, and all other states in
W (i1, ..., in) intermediate states.

Web Services. A Web service W then can be seen as a set of executions W (i1, . . . , in)
that can be delivered by the Web service in any given state of the world to a requester
when being equipped with any kind of valid input data i1, . . . , in. However, in order to
keep track of the input data that caused a specific execution, we need to represent a Web
service in terms of a slightly richer structure than a set, namely a mapping between the
provided input values i1, . . . , in and the resulting execution W (i1, . . . , in). Figure 1
illustrates the proposed model.

Fig. 1. An abstract Model of the World and Web services therein

Functional Description of Web Services. Combining state-related descriptions with a
functional description (or capability) essentially creates a constraint on possible Web
Service executions. Executions of a Web service W whose capability has been de-
scribed in terms of a capability description D (where D contains a prestate-constraint
φpre and a post-state constraint φpost) can no longer be arbitrary possible executions τ
in an abstract state space S, but whenever the prestate s0 of τ respects φpre then the
final state sm of τ must respect φpost. Otherwise, τ is not considered to represent an
actual execution of a Web service W with capability D.

3 Abstract State Spaces and Web Services

We will now give a series of definitions which capture the preceding semi-formal dis-
cussion in a rigorous way.

On the Semantics of Functional Descriptions of Web Services 611

In the following, let Σ be some signature, L(Σ) be some logic over signature Σ
and Ω ⊆ L(Σ) be some background theory capturing relevant domain knowledge. Let
.(Σ) denote the set of Σ-interpretations in L(Σ) and .(Σ,U) denote the set of Σ-
interpretations such that for all I ∈ .(Σ) the universe considered in I (denoted by
universe(I)) is a subset of U . For a set U we use P(U) to denote the powerset of U .
Let ModΣ(Ω,U) denote the Σ-Interpretations I ∈ .(Σ,U) which satisfy the domain
model Ω (i.e. I |=L(Σ) Ω). We denote the meaning of a symbol α ∈ Σ that is assigned
by an interpretation I by meaningI(α).

Given a signature Σ0 = ΣD ∪ ΣS that is partitioned into a set ΣD of dynamic
symbols and a set ΣS of static symbols, we extend Σ0 to a signature Σ by adding
a (new) symbol αpre for each α ∈ ΣD. The set of these pre-variants of symbols is
denoted by Σpre

D . Furthermore, add a new symbol out to Σ0. The intention is as follows:
ΣS contains symbols that are interpreted always in the same way (static symbols),
ΣD contains symbols whose interpretation can change during the execution of a Web
service (dynamic symbols), and Σpre

D contains symbols that are interpreted during the
execution of a Web service as they have been right before starting the execution. Finally,
out denotes the objects in the information space. The symbols that have been added to
Σ0 can be used when formulating post-state constraints to describe changes between
pre-states and post-states in a precise way.

Definition 1 (Abstract State Space). An abstract state space A = (S,U , Σ, Ω, ω) is
a 5-tuple such that (i) S is a non-empty set of abstract states, (ii) U is some non-empty
set of objects called the universe of A (iii) Ω ⊆ L(Σ) is consistent (iv) ω : S →
ModΣ(Ω,U)×P(U) is a total surjective function that assigns to every abstract state s
a pair of a Σ-interpretation ωrw(s) satisfying Ω and an information space ωis(s) and
(v) for all s, s′ ∈ S and α ∈ ΣS : meaningωrw(s)(α) = meaningωrw(s′)(α). �

In A, Ω can be considered as a domain ontology representing (consistent) background
knowledge about the world. It is used in any sort of descriptions, like preconditions etc.
Clause (v) captures the nature of static symbols. In the following,A always denotes an
abstract state space A = (S,U , Σ, Ω, ω).

For interacting with a Web service W , a client can use a technical interface. When
abstracting from the technical details, every such interface basically provides a set of
values as input data. The required input data represent the abstract interface used for
interaction with the Web service from a capability point of view.

Definition 2 (Web Service Capability Interface, Input Binding). A Web service ca-
pability interface IF of a Web service W is a finite sequences of names (i1, . . . , in)
of all required input values of a W . An input binding β for a Web service capability
interface IF inA is a total function β : {i1, . . . , in} → U . The set of all input bindings
for IF in A is denoted by InA(IF). �

An input binding essentially represents the input that is provided by the invoker of a
Web service W during the entire execution of W .

Definition 3 (Web Service Execution). A (possible) Web service execution in A is fi-
nite sequences τ = (s0, . . . , sm) ∈ S+ of abstract states such that for all 0 ≤ j < m

612 U. Keller, H. Lausen, and M. Stollberg

and 0 ≤ i, k ≤ m (i) ω(sj) �= ω(sj+1), (ii) ∅ = ωis(s0) ⊆ ωis(s1) ⊆ . . . ⊆ ωis(sm),
(iii) universe(ωrw(si)) = universe(ωrw(sk)), (iv) ωis(si) ⊆ universe(ωrw(si)),
(v) for all α ∈ ΣD : meaningωrw(s0)(α) = meaningωrw(si)(αpre) and (vi)
meaningωrw(si)(out) = ωis(si). We denote the set of all possible Web service exe-
cutions in A by Exec(A). �

This definition gives detailed conditions under which a sequence τ can be considered
as a Web service execution. Clause (iii) requires that within an execution the universes
which are related to abstract states sj are the same2. In other words, universes (which
are used to interpret state-based expression) that are related by an execution are not
arbitrary, but specifically related to each other. In particular, (iii) ensures that within
a functional description D postconditions can talk about every object that the precon-
dition can refer to as well. Hence, precise comparisons between various states of an
execution becomes possible. Clause (iv) requires that for every abstract state that in-
volved in the execution its information space is part of the universe of the abstract state.
This allows to relate and compare information space objects with real-world objects
in state-based expressions. Finally, clauses (v) and (vi) ensure that in all intermediate
and final states, the pre-versions αpre of dynamic symbols α are interpreted as α in the
prestate s0 of the execution and that the symbol out represent the respective information
space.

Definition 4 (Web Service, Web Service Implementation). A Web service implemen-
tation W of some Web service capability interface IF = (i1, . . . , in) in A is a total
function ι : InA(IF) × S → Exec(A) that defines for all accepted input bindings
in InA(IF) and abstract states s ∈ S the respective Web service execution of W in
Exec(A). Formally, we require for ι that ι(β, s) = (s0, ..., sm) implies s0 = s for all
s ∈ S, β ∈ InA(IF). A Web service W = (IF , ι) is a pair of a Web service capability
interface IF and a corresponding Web service implementation ι of IF . �

One can consider the mapping ι as a marking of execution sequences in A by the input
data that triggers the execution. Since we define a Web service implementation in terms
of a function which maps to single Web service executions, we consider deterministic
Web services, i.e the execution is fully determined by the input binding β and the intial
state s0 only. Any sort of uncertainty about what is going to happen when executing W
(e.g. unexpected failures due to the environment the Web service is embedded in) is not
considered in our model. In being a total function on InA(IF)×S, the definition reflects
the fact that ι represents an (abstract) implementation, i.e. (unlike for specifications)
every possible effect in every situation is fully determined by ι.

Based on this formal machinery, we can now formalize the meaning of functional
descriptions D ∈ F that are based on a state-description language L(Σ). In the fol-
lowing, we write I, β |=L(Σ) φ to express that formula φ ∈ L(Σ) is satisfied under
Σ-interpretation I and variable assignment β. We assume that a functional description
D = (φpre, φpost, IFD) consists of a precondition φpre ∈ L(Σ0), and a postcondition

2 In order to model dynamic universes (e.g. object creation and deletion) one needs to model
object existence in the state-description language L itself, for instance by a dynamic unary
relation existing.

On the Semantics of Functional Descriptions of Web Services 613

φpost ∈ L(Σ). IFD ⊆ FreeVars(φpre, φpost) denotes the set of (free) variable names
in D which represent inputs for the Web service under consideration. The logical ex-
pressions φpre and φpost usually refer to some backgound ontology Ω ⊆ L(Σ).

Definition 5 (Extension of an Input Binding, Renaming). Let β be an input binding
for some Web service capability interface IF = (i1, . . . , in), V be a set of symbol names and
U ⊆ U . A total function β′ : {i1, . . . , in} ∪ V → U is called a V -extension of β in U if
β′(ij) = β(ij) for all 1 ≤ j ≤ n.

Let π be some function and β an input binding for IF . Then we denote by renameπ(β) the
input binding β′ for IF ′ that is derived from β by replacing all pairs (n, v) ∈ β with n ∈ dom(π)
by (π(n), v). We call renameπ(β) renaming of β by π. �

An extension of an input binding β is used in the next definition to ensure that every
variable that occurs free in a precondition or postcondition can be assigned a concrete
value. Otherwise, no truth-value can be determined for these statements. The renaming
represents on a technical level the effect of renaming input names in a Web service in-
terface by the corresponding names in the interface used in the Web service description.

Definition 6 (Capability Satisfaction, Capability Model). Let W = (IF , ι) be a Web
service in A and D = (φpre, φpost, IFD) be a functional description of a Web service. Let
FV denote the set of free variables in φpre and φpost and U denote universe(ωrw(s0)). W
satisfies capability D in A if and only if (i) there exists a subset IF ′ ⊆ IFD of the inputs of
D and a bijection π : IF → IF ′ between IF and IF ′ such that (ii) for all input bindings
β ∈ InA(IF) and abstract states s ∈ S: for all FV -extensions β′ of renameπ(β) in U : if
ι(β, s) = (s0, . . . , sm) for some m ≥ 0 and ωrw(s0), β′ |=L(Σ) φpre then ωrw(sm), β′ |=L(Σ)

φpost

In this case we write W |=F D and call the Web service W a capability model (or simply model)
of D in A. �

Clause (i) essentially requires (interface) compatibility between the Web service and
the inputs refered to in Web service description. Note, that we do not require syntactic
equality between these names, but only equivalence up to some renaming π. Moreover,
it is perfectly fine for models of D to only use a proper subset IF ′ of the inputs IFD
mentioned in capability D. Clause (ii) defines the meaning of preconditions and post-
condition. Please note, that free variables in these expressions are implicitly universally
quantified by our definition.

4 Applying the Formal Model for Semantic Analysis

For demonstrating the suitability of the proposed model, this section shows its benefi-
cial application for semantic analysis of functional descriptions Based on our model-
theoretic framework, we can carry over several semantic standard notions from mathe-
matical logic [2, 4] that refer to formal descriptions and are based on the model notion
to our particular context in a meaningful way. For a deeper and extended discussion of
the topic, we refer the interested reader to [10].

Realizability. We define realizability of a descriptionD as the corresponding notion to
satisfiability in a logic L: A functional descriptionD is realizable in an abstract state
space A iff. there is a Web service W in A that satisfies D, i.e. W |=F D.

614 U. Keller, H. Lausen, and M. Stollberg

Consider the following functional description D = (φpre, φpost, IFD) describing
Web services for account withdraws: IFD = {?acc, ?amt}

φpre : ?amt ≥ 0 φpost : balance(?acc) = balancepre(?acc)−?amt

At a first glance, the given description seems to be implementable within some Web
service W that satisfies D. However, taking a closer look at the respective domain
ontology it becomes obvious that this actually is not the case. The ontology defines
that a balance might not be negative, but the precondition does not prevent the balance
being less then the withdraw. Let’s assume that there is a Web service W realizing D.
When considering an input binding β with β(?amt) > balancepre(?acc), then the
precondition is satisfied and thus the postcondition should hold in the final state of the
respective execution, i.e. ωrw(sm), β |= ∀?acc.balance(?acc) < 0. However, this is
inconsistent with the domain ontology since Ω |= balance(?acc) ≥ 0 and thus sm can
not exist in A. This is a contradiction and shows that no Web service W with W |=F D
can exist. To fix the description such that it becomes realizable, we need to extend the
precondition to φpre : 0 ≤?amt∧ ?amt ≤ balance(?acc).

The example illustrates the usefulness of the notion of realizability. It provides a
tool for detecting functional descriptions that contain flaws that might not be obvious
to the modelers. Moreover, we as we will see soon, we can often rephrase the problem
of realizability of a descriptionD ∈ F to a well-understood problem in L for which al-
gorithms already exist. We first turn to an important other notion of which realizability
turns out to be a special case (in conformance as with the original notions in mathemat-
ical logic).

Functional Refinement. The notion of logical entailment is usually defined as follows:
An formula φ logically entails a formula ψ iff every interpretation I which is a models
of φ (i.e. I |=L φ) is also a model of ψ. Substituting interpretations by Web services,
formulae by functional descriptions and the satisfaction |=L by capability satisfaction
|=F we derive a criteria that captures fuctional refinement: Let D1,D2 ∈ F be func-
tional descriptions. D1 is a functional refinement of D2 in A (denoted by D1 	 D2)
iff. for each Web service W in A, W |=F D1 implies W |=F D2. Intuitively speak-
ing, D1 	 D2 means that D1 is more specific than D2: Every Web service (no matter
which one) that provides D1 can also provide D2. In other words, D1 must describe
some piece of functionality that always fits the requirementsD2 as well. However, Web
services that provide D2 do not have to satisfy D1 and therefore, a Web service that
providesD1 can do something more specific than required by D2.

For illustration, consider some Web service description D1 = (φpre
1 , φpost

1 , IF1)
with IF1 = {?prs, ?acc} that advertises the ability to provide access credentials for
a particular web site (http ://theSolution.com). A domain ontology specifies that if
some web site has some content and someone can access the web site, then he (is able to)
know about the content. Furthermore, http://theSolution.com is a web site providing
the ultimate answer to life (the universe and everything) and some constant accessFee
has a value less then 42.3

3 Note that we do not expect such knowledge in one central domain ontology, but a number
of knowledge bases (generic, provider- and requester-specific). For simplicity we assume Ω
being already aggregated.

On the Semantics of Functional Descriptions of Web Services 615

φpre
1 :account(?p, ?acc) ∧ balance(?acc) ≥ accessFee

φpost
1 :balance(?acc) = balancepre(?acc)− accessFee

∧ out(password(?prs,http://theSolution.com))

∧ isV alid(password(?prs,http://theSolution.com))

Ω |=∀?ws, ?co, ?prs. content(?ws, ?co) ∧ access(?prs, ?ws) ⇒ knows(?prs, ?co)

content(http://theSolution.com, answer2Life), accessFee ≤ 42

∀?prs, ?ws. isV alid(password(?prs,?ws)) ⇒ access(?prs, ?ws))

Using our formal definition we now can examine another definition D2 = (φpre
2 ,

φpost
2 , IF2) with IF2 = {?prs, ?acc} and check if it is a functional refinement of the

previous description.

φpre
2 : account(?prs, ?acc) ∧ balance(?acc) ≥ 100 φpost

2 :knows(?prs, answer2Life)

This notion can beneficially be applied within functionality-based matchmaking. For in-
stance, let’s assume that a Person me is seeking for the ultimate answer to life (knows
(me, answer2Life)); me has an account acc123 with a current balance of 174 USD.
Given this information (and our domain ontology Ω) and considering the specific in-
put binding β(?prs) = me, β(?acc) = acc123, we can infer that any Web service
W that is advertised to provide capability D2 can serve for me’s purpose as the pre-
condition φpre

2 is satisfied for the input β. In consequence, for the specific input β
the service delivers what is described the postcondition φpost

2 ; therefrom, we can infer
knows(me, answer2Life). However, since D1 	 D2 we know as well, that any Web
service W ′ that is advertised to provide capability D1 is perfectly suitable for me and
his endeavor as well. The notion of functional refinement can then be used to pre-index
some set of Web service description, such that for a given request it is not necessary to
consider all available description but only a subset identified by the pre-indexing.

Our framework allows to proof the following theorem (see [10]) , which is especially
useful for reducing the problem of determining functional refinement (and eventually
all other semantic analysis notions we discuss in this section) to a well-defined proof
obligation in the language L underlyingF .

Theorem 1 (Reduction of Functional Refinement from F to L). Let D1 = (φpre
1 ,

φpost
1 , IF 1) andD2 = (φpre

2 , φpost
2 , IF 2) be functional descriptions in F with the same

interfaces, i.e. IF 1 = IF 2. Let [φ]Σpre
D →ΣD

denote the formula φ′ which can be de-
rived from φ by replacing any dynamic symbol α ∈ ΣD by its corresponding pre-
variant αpre ∈ Σpre

D . Then D1 	F D2 if Ω ∪ [Ω]Σpre
D →ΣD

|=L ([φpre
2]Σpre

D →ΣD
∧

[φpre
1]Σpre

D →ΣD
∧ φpost

1 ⇒ φpost
2) �

This gives us the following: If there is an algorithm or an implemented system that al-
lows us to determine logical entailment in L, then we can use the very same system
or algorithm to determine functional refinement for descriptions of the capability lan-
guage F , i.e. in principle no new calculus for dealing with F is needed (at least for the
purpose semantic analysis). However, the algorithm which can be derived from Theo-
rem 1 is no longer a heuristic, but provably correct. For further discussion, variants and
generailzations of the theorem, we refer to [10].

616 U. Keller, H. Lausen, and M. Stollberg

To be able to formulate the next corollary (which is an immediate consequence of the
definition of realizability and functional refinement), we use⊥IF to denote a description
D ∈ F that is trivially unrealizable, i.e. D = (true, false, IF).

Corollary 1 (Realizability vs. Refinement). A functional description D = (φpre,
φpost, IF) is not realizable iff. D 	 ⊥IF �

The corollary simply states that any description which is more specific than the triv-
ially unrealizable functional description must be unrealizable as well. In the light of
Theorem 1, it shows that we can reduce realizability of D to a well-defined proof obli-
gation in L as well. Hence we can deal with realizability algorithmically based on ex-
isting tools.

Omnipotence. For any functional description D we can consider the dual notion of
being not realizable at all, i.e. having every Web service W in A as a model. This no-
tion corresponds to the classical notion of validity and obviously represents another
form of ill-defined or unacceptable type of description. It matches all possible Web ser-
vices, no matter what they actually do. Service providers could use such (non-trivially)
omnipotent descriptions to advertise their Web services in some registry to get maximal
visibility. A trivially omnipotent functional description inF is�IF = (true, true, IF).

As an immediate consequence we can derive the following corollary which shows
that we can reduce omnipotence of D to a well-defined proof obligation in L as well
and thus deal with it algorithmically based on existing tools:

Corollary 2 (Omnipotence vs. Refinement). A functional description D = (φpre,
φpost, IF) is omnipotent iff. �IF 	 D �

The corollary simply states that any description which is more general than the trivially
omnipotent functional description must be omnipotent as well.

Summary. Semantic analysis can be seen as both, (i) a concrete example of symbolic
computation with functional descriptions that we can formally ground in our formal
model, and (ii) as a problem that is interesting in itself. Using our model, we are able to
rigorously define various useful notions that enable us to analyze and relate functional
descriptions semantically. We have shown that we can reduce the various relevant no-
tions to well-defined proof obligations in the underlying language L without making
severe restrictions or assumptions on that language. Using our framework, we are able
to proof the correctness of the reduction. Given the a wealth of different languages that
co-exist on the Semantic Web (and the ones that might still be invented), our uniform
treatment provides a universal approach to the semantics of functional description in-
dependent of the language used.

5 Related Work

By defining the semantics of functional description we provide a basis for applications
like semantic Web service repositories and discovery engines (as illustrated in the use
case for our formalism and the corresponding examples). Work in this area has previ-
ously leveraged a different (less detailed) formal view on the concept of a Web Service:

On the Semantics of Functional Descriptions of Web Services 617

Web services there have been formally considered as sets of objects (input, outputs).
On a description (language) these sets allow for a natural representation by means of
concepts in Description Logics. Matching then has been reduced to standard reason-
ing tasks in the language [15, 12], however the dynamics associated with a detailed
(state-based) perspective on Web services, can not be represented in such a setting. Un-
til recently, it seemed to be a common practice in the Semantic Web Community when
considering semantic descriptions of Web service, to strictly focus on languages (e.g.
description logics) rather than an adequate (language-independent)mathematical model
of the objects of invest igation that underlies such descriptions. The latter question is
conceptually interesting and compatible with various concrete representation languages
such as Description Logics, First-order Logics, etc. as we have demonstrated in this
paper.

In the area of software specification, functional descriptions of are a well studied
phenomena. Hoare [5] introduced the approach describing a component by its pre- and
post-conditions. Numerous systems have been developed since then [14, 6, 16] that fol-
low the same line of description. They have significant commonalities with our frame-
work, such as constructs for identifying inputs and outputs as well as means to reference
symbols in pre-state formulae from the post-state. However our framework is different
in two dimensions: (1) we do not fix the underlying language and therefore address the
current situation in the Semantic Web with various different languages used in various
formalisms, and (2) we explicitly take the existence of background knowledge (repre-
sented by some Ontology Ω) and the notion of side effect in the real world modelled
into account. In particular, Theorem 1 in Section 4, represents a generalization of a
well-known criterion proposed in the software component community for specification
matching [18]. The Guarded Plugin Match defined by

matchguarded−pm(D1,D2) = (φpre
2 ⇒ φpre

1) ∧ (φpre
1 ∧ φpost

1 ⇒ φpost
2)

is the equivalent to the necessary condition presented in Theorem 1. However, [18]
covers a much simpler scenario, where specifications do not contain dynamic functions.
Futhermore, our criterion explicitly deals with a background ontology Ω on which the
functional descriptionsD1,D2 are based. In contrast to our work (i.e. Theorem 1), [18]
gives no formal investigation of how the criterion called Guarded Plugin Match actually
relates to the semantic notion of functional refinement, which is to be detected by means
of a well-defined proof obligation.

6 Conclusions and Future Work

We have defined Abstract State Spaces as a formal model for appropriately describing
how Web services act in the world and change it. The main features of the proposed
model are: (i) language independence to a maximum extent, and (ii) modular and flexi-
ble definitions that can easily be extended to fit the needs for specific applications.

Language independence, in particular, means that our approach is applicable to a
variety of static description language (capturing properties of single states). Thus, it
is especially suitable for application in frameworks like OWL-S and WSMO that de-
scribe the functionality provided by Web services in a state-based manner. On basis

618 U. Keller, H. Lausen, and M. Stollberg

of our model, we have rigorously defined the semantics of functional descriptions. We
demonstrated the applicability and benefit of our model in terms of a concrete use case,
namely the semantic analysis of functional descriptions. Therein, we have illustrated
how to capture several interesting and naturally arising properties of functional descrip-
tions, in particular functional refinement and realizability. We have given mathemati-
cally concise definitions and exemplified how to device a provably correct algorithm
for semantic analysis based on existing algorithms and systems. The use case followed
throughout the explications supports our thesis: the correctness of any sort of symbolic
computation based on functional descriptions of Web services can be analyzed and ex-
posed in our framework.

While this paper presents the basic model, we plan to apply it to frameworks like
WSMO and OWL-S that strive for genericity and independence of specific static lan-
guages for state descriptions. In particular, we plan to develop a matching mechanism
following the defined notion of functional refinement in order to provide a component
with clear defined functionality for functional Web service discovery. Furthermore, we
consider several extensions of the model, namely integrating execution invariants as
properties that are guaranteed not to change during execution of a Web service (see [10]
for details), the distinction between complete and incomplete functional description (i.e.
some sort of closed-world modelling), as well as integrating behavioral descriptions
like choreography and orchestration interfaces that are concerned with the intermediate
states in order to consume, respectively achieve the functionality of a Web service.

The model presented in this paper can be considered as a first small first step to-
wards an adequate mathematical model for service-oriented architectures. For this, one
needs to consider and represent a lot more aspects of the world and its states e.g. mul-
tiple agents interacting in a distributed setting and communicating with each other in
a concurrent fashion and integrate respective elements in the mathematical model. We
expect that the presented model provides a flexible and extensible foundation for such
non-standard extensions. Based on a concise and rich model, we will be able to give
semantics to formal descriptions of such architectures and (similarly to what we dis-
cussed for the simple case of capabilities here) to reason about such descriptions in
a well-understood and verifiably correct way by extension and refinement of the pre-
sented basic model.

Acknowledgements. This material is based upon works supported by the EU within
the Knowledge Web Network of Excellence (FP6-507482), the DIP project (FP6-
507483), and by the Austrian Federal Ministry for Transport, Innovation, and Technol-
ogy under the project RW2 (FFG 809250). The authors would like to thank the members
of the WSMO working group (www.wsmo.org) for fruitful input and discussion to the
presented work.

References

1. P. Blackburn, M. de Rijke, and Y. Venema. Modal Logic. Cambridge University Press, 2001.
2. H. B. Enderton. A Mathematical Introduction to Logic. Academic Press, second edition

edition, 2000.

On the Semantics of Functional Descriptions of Web Services 619

3. G. F. and B. P. Introduction to Contextual Reasoning. An Artificial Intelligence Perspective.
Technical report, ITC-IRST, Technical Report #9705-19, May 1997.

4. M. Fitting. First-Order Logic and Automated Theorem Proving. Springer-Verlag, second
edition edition, 1996.

5. C. A. R. Hoare. An axiomatic basis for computer programming. Commun. ACM, 12(10):576–
580, 1969.

6. C. B. Jones. Systematic Software Development using VDM. Prentice-Hall, Upper Saddle
River, NJ 07458, USA, 1990.

7. U. Keller, R. Lara, H. Lausen, A. Polleres, and D. Fensel. Automatic Location of Services.
In Proceedings of 2nd European Semantic Web Conference (ESWC), pages 1–16, 2005.

8. U. Keller and R. Lara (eds.). WSMO Web Service Discovery. Deliverable D5.1v0.1 Nov 12
2004, WSML Working Group. online: http://www.wsmo.org/TR/.

9. R. Lara, D. Roman, A. Polleres, and D. Fensel. A Conceptual Comparison of WSMO and
OWL-S. In Proc. of the 2nd European Conference on Web Services, 2004.

10. H. Lausen. Functional Description of Web Services. Deliverable D28.1v0.1 Jan 13 2006,
WSML Working Group, 2006. online: http://www.wsmo.org/TR/.

11. H. Lausen, A. Polleres, and D. Roman (eds.). Web Service Modeling On-
tology (WSMO). W3C Member Submission 3 June 2005, 2005. online:
http://www.w3.org/Submission/WSMO/.

12. L. Li and I. Horrocks. A Software Framework for Matchmaking Based on Semantic Web
Technology. In WWW’03, Budapest, Hungary, May 2003.

13. D. Martin (ed.). OWL-S: Semantic Markup for Web Services. W3C Member Submission 22
November 2004, 2004. online: http://www.w3.org/Submission/OWL-S.

14. B. Meyer. Eiffel: the Language. Prentice Hall PTR, 1992.
15. M. Paolucci, T. Kawamura, T. Payne, and K. Sycara. Semantic Matching of Web Service

Capabilities. In ISWC, pages 333–347. Springer Verlag, 2002.
16. J. Spivey. The Z Notation, A Reference Manual. Prentice-Hall International, second edition

edition, 1992.
17. J. van Benthem. Handbook of logic in artificial intelligence and logic programming: epis-

temic and temporal reasoning, volume 4, chapter Temporal logic, pages 241–350. Oxford
University Press, Oxford, UK, 1995.

18. A. M. Zaremski and J. M. Wing. Specification matching of software components. ACM
Transactions on Software Engineering and Methodology, 6(4):333–369, 1997.

A Minimalist Approach to Semantic Annotations for
Web Processes Compositions�

Marco Pistore1, Luca Spalazzi2, and Paolo Traverso3

1 Università di Trento - Via Sommarive 14 - 38050 Povo - Trento - Italy
pistore@dit.unitn.it

2 Università Politecnica delle Marche - Via Brecce Bianche - 60131 Ancona - Italy
spalazzi@diiga.univpm.it

3 ITC-irst - Via Sommarive 18 - 38050 Povo - Trento - Italy
traverso@irst.itc.it

Abstract. In this paper we propose a new approach to the automated compo-
sition of distributed processes described as semantic web services. Current ap-
proaches, such as those based on OWL-S and WSMO, in spite of their expressive
power, are hard to use in practice. Indeed, they require comprehensive and usu-
ally large ontological descriptions of the processes, and rather complex (and often
inefficient) reasoning mechanisms. In our approach, we reduce to the minimum
the usage of ontological descriptions of processes, so that we can perform a lim-
ited, but efficient and useful, semantic reasoning for composing web services. The
key idea is to keep separate the procedural and the ontological descriptions, and
to link them through semantic annotations. We define the formal framework, and
propose a technique that can exploit simple reasoning mechanisms at the ontolog-
ical level, integrated with effective reasoning mechanisms devised for procedural
descriptions of web services.

1 Introduction

The importance of describing web services at the process-level is widely recognized,
a witness being the standard languages for describing business processes, like BPEL

[1], and the most popular standards for semantic web services, like OWL-S [4] and
WSMO [22]. In a process-level description, a web service is not simply represented as
an “atomic” component that can be executed in a single step. Instead, the interface of
the service describes its behavior, i.e., a flow of interactions with other services struc-
tured according to different control constructs, e.g., sequentially, conditionally, and iter-
atively. Behavioral descriptions of web services can be published in standard languages,
e.g., as abstract BPEL specifications, OWL-S process models, and WSMO interfaces.
They constitute a key element for several application domains where web services are
proposed as the basis for interoperability and integration of (business) processes that are
distributed over the network. This is the case, for instance, of several e-Government, e-
Banking, and e-Commerce applications.

� This work is partially funded by the European project FP6-507482 “Knowledge Web” , by
the MIUR-FIRB project RBNE0195K5, “Knowledge Level Automated Software Engineer-
ing”, and by the MIUR-PRIN 2004 project “Advanced Artificial Intelligence Systems for Web
Services”.

Y. Sure and J. Domingue (Eds.): ESWC 2006, LNCS 4011, pp. 620–634, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

A Minimalist Approach to Semantic Annotations for Web Processes Compositions 621

Recent research is focusing on the key problem of the automated composition of web
services described at the process level [10, 7, 3, 20, 15, 13, 14]. However, the research is
still at an early stage. From one side, some approaches do not deal with semantic web
services, and cannot thus exploit the ability to do reasoning about what services do.
This is the case of techniques for composing BPEL processes [15, 13] and of theoretical
frameworks for the composition of services represented as finite state automata [7, 3].
From the other side, the approaches that have been proposed so far to exploit semantic
descriptions (see, e.g., [10, 20, 14, 22]) are based on the idea that processes should be
described by means of comprehensive ontologies. They have the practical disadvantage
to require long descriptions that are time- and effort- consuming, and that are very hard
to propose in practice for industrial applications. Such semantic descriptions of web
services are based on expressive languages such as OWL [9] or WSMO [22], and require
complex reasoning mechanisms. Indeed, for instance, the OWL family of languages are
based on the description logics SHIQ and SHIOQ, that have reasoning services that
are EXPTime and NEXPTime, respectively [19].

In this paper, we propose a practical approach to the composition of semantic web
services. We aim at automated composition techniques that exploit a limited, but still
useful, amount of semantic reasoning. The key idea is to keep separate the procedural
and the ontological descriptions, and to use semantic annotations to link them. First, the
behavior of a web service is defined in languages that have been designed to describe
processes. Then, the semantics of data exchanged and of the operations performed by
the processes is described in a separate ontological language. Finally, the two descrip-
tions are linked by semantic annotations of the behavioral descriptions that map to the
ontological concepts. Annotations are necessary to give semantics to the exchanged data
(e.g., which relations exist between the data given in input to the service and the data
received as answers from the service), as well as to define the effects and outcomes of
the service executions (e.g., to identify the successful executions of the service and dis-
tinguish them from the failures, and to describe the effects associated to the successful
executions).

We apply this idea to the case of processes described in BPEL. More precisely, we
give semantics to abstract BPEL processes in terms of state transition systems, in such
a way that variables that are used in messages exchanged among BPEL processes con-
stitute the state variables of the associated state transition systems. The meaning of
these variables is defined by an annotation function that maps them to an ontological
language, which, in this paper, is based on the ALN description logic and a gener-
alized acyclic TBox [2]. Given this formal framework, we can express composition
requirements as semantic goals, i.e., expressions in a language whose terms refer to
ontological descriptions. We define formally the automated composition problem with
semantic goals and propose an automated composition technique that translates seman-
tic goals into ground goals, i.e., goals that refer to the state variables of the process. We
can thus exploit efficient automated composition algorithms that have been devised for
non-annotated BPEL compositions [15, 13].

The paper is structured as follows. In Section 2, we describe a reference example
that is used all along the paper. In Section 3 we formally define semantic annota-
tions for state transition systems that describe BPEL processes, and the language for

622 M. Pistore, L. Spalazzi, and P. Traverso

describing semantic goals. In Section 4, we formally define the composition problem,
while in Section 5 we describe the automated composition technique. We conclude with
a description of some related work.

2 Overview of the Approach: An Example

We aim at the automated synthesis of a new composite service that interacts with a set
of existing component web services in order to satisfy a given composition require-
ment. More precisely, we assume that we have already identified the services that will
be combined into the composite service1, and that we are now facing the problem of
defining the executable process that can interact with these existing services in order to
achieve the composition requirement.

Example 1. Our running example consists in the composition of existing transport and
accommodation services in order to provide a Virtual Travel Agency (VTA) service. The
VTA is responsible for defining a suitable vacation package, according to the requests
of the user. The selection of the service providers may depend on the constraints given
by the end user and by domain knowledge: for instance, if the destination of the trip
is Paris and the duration is one week, we know that the trip can be done by flight or
by train (but not, e.g., by ship), and that suitable accommodations are in hotel and in
guest houses (but not in apartments). We can hence assume that we have selected four
suitable services (FlightReservation, TrainReservation, HotelReservation, Guesthouse-
Reservation).

According to our approach each web service exploited in the composition defines:

– an ontology defining the relevant terminology,
– an interface process defining the interactions necessary to execute the service, and
– an annotation of the choreography that defines (partial) correspondences between

the ontology and the process.

In the following, we assume that the ontologies provided by the different services have
been mapped into a global common ontology that defines all the relevant concepts of
the composition scenario. We will also assume that the interface processes are annotated
according to this global ontology.

Example 2. The common ontology for the VTA composition scenario discussed in Ex-
ample 1 is depicted in Figure 1 using the standard description logic notation. This
ontology contains a part that is general for the VTA domain (Date, Client, Location,
Trip, Accommodation), and that can be seen as part of the domain knowledge. It also
contains other concepts that are specific of the actual web services that we are going to
exploit in the composition (Flight, Train, Hotel, GuestHouse), and that can be obtained
by mapping the local ontology of each web service into the common ontology.

1 This step is of course very complex. We will not further discuss these steps in the paper, since
our focus is different. We assume that any of the techniques for service discovery and selection
discussed in the literature are applied to these steps.

A Minimalist Approach to Semantic Annotations for Web Processes Compositions 623

Date
.= ∀year.Number � ∀month.Number � ∀day.Number

Client
.= ∀name.String � ∀gender.Gender

Gender � !
Status � !

Location
.= ∀name.String

Trip
.= ∀id.String � (≤ 1id) � (≥ 1id) � ∀date.Date � ∀start.Location �
∀destination.Location � ∀pax.Client � ∀status.Status

Accomodation
.= ∀id.String � (≤ 1id) � (≥ 1id) � ∀date.Date �
∀location.Location � ∀pax.Client � ∀status.Status

Flight � Trip � ∀seatNumber.String

Train � Trip � ∀seatNumber.String

Hotel � Accommodation � ∀roomNumber.String

GuestHouse � Accommodation � ∀roomNumber.String

Fig. 1. The terminology of the running example

male : Gender, female : Gender,
available : Status, notAvailable : Status, booked : Status, cancelled : Status

Fig. 2. The common part of each ABox in the running example

Notice that, in the definition of Trip and Accommodation, we have the role status
whose values are restricted to be of the concept Status. This role captures what is the
current status of the client request. Indeed, when a trip (accommodation) is available,
the status assumes the value available; when a trip (accommodation) is not available,
the status assumes the value notAvailable; and finally, when a trip (accommodation) has
been booked (cancelled), the status assumes the value booked (cancelled). The possible
values (instances) for the concept Status are listed in the ABox in Figure 2.

In our approach, the interface processes defining the interaction behaviors of the com-
ponent services are defined in abstract BPEL. BPEL [1] provides an operational descrip-
tion of the (stateful) behavior of web services on top of the service interfaces defined
in their WSDL specifications. An abstract BPEL description identifies the partners of a
service, its internal variables, and the operations that are triggered upon the invocation
of the service by some of the partners. Operations include assigning variables, invoking
other services and receiving responses, forking parallel threads of execution, and non-
deterministically picking one amongst different courses of actions. Standard imperative
constructs such as if-then-else, case choices, and loops, are also supported.

Example 3. In Figure 3 we report (the relevant parts of) the abstract BPEL specification
of the FlightReservation service in the scenario discussed in Example 1.2

2 The specification contains some annotations in boldface: they are not part of the BPEL lan-
guage, and we will explain their meaning later on in this section.

624 M. Pistore, L. Spalazzi, and P. Traverso

<process name=”FlightReservation”>
<variables>

<variable name=”req” messageType=”flightRequest”/>
<!-- ”req” contains parts ”/req/start”, ”/req/des”, and ”/req/date” -->

<variable name=”pax” messageType=”paxInformation”/>
<!-- ”pax” contains part ”/offer/client” -->

<variable name=”offer” messageType=”flightOffer”/>
<!-- ”offer” part ”/offer/fl” -->

</variables>
<sequence name=”main”>

<receive operation=”request” variable=”req”
semann=”/req/start : Location, /req/dest : Location, /req/date : Date”/>

<switch name=”checkAvailability”>
<case name=”isNotAvailable”>

<invoke operation=”not avail” semann=”/offer/fl : Flight, /offer/fl.status = notAvailable”/>
</case>
<otherwise name=”isAvailable”>

<assign name=”prepareOffer”>
<copy><from opaque=”yes” semann=”/offer/fl : Flight, /offer/fl.start = /req/start,

/offer/fl.destination = /req/dest, /offer/fl.date = /req/date”/>
<to variable=”offer” part=”fl”/></copy>

</assign>
<invoke operation=”offer” inputVariable=”offer” />
<pick name=”waitAcknowledge”>

<onMessage operation=”ack” variable=”pax”
semann=”/pax/client : Client, /offer/fl.pax = /client/pax, /offer/fl.status = booked”/>

<onMessage operation=”nack” semann=”/offer/flight.status = cancelled”/>
</pick>

</otherwise>
</switch>

</sequence>
</process>

Fig. 3. The annotated BPEL process of the FlightReservation service

The process starts with a declaration of the variables that are used in input/output
messages: req is the input variable that specifies the start and destination locations and
the date of the flight; pax specifies the details on the client booking the flight; offer is the
flight offered to the client, including flight identifier and seat number. The messageType
declaration specifies the structure of a variable used for sending/receiving messages.
Such structure is detailed in the WSDL specification associated to the BPEL code, which
we omit for lack of space.

The rest of the abstract BPEL specification describes the interaction flow. The
FlightReservation service is activated by a request from a client (receive instruction
corresponding to operation request). The information on desired flight submitted by the
client is stored in variable req. Depending on its internal availability (switch instruc-
tion named checkAvailability), the flight provider can either send an answer refusing the
request (invoke instruction corresponding to operation not avail), or prepare and send
the information regarding a specific flight. In the latter case, the flight and seat num-
ber are determined and assigned to variable offer within the assign statement named
prepareOffer. The way in which the information is obtained is not disclosed and pub-
lished by the abstract BPEL: the sources of the data, assigned to the variables by the
copy constructs, are “opaque”. The opaqueness mechanism allows for presenting the
external world with an abstract view of the business logic, which hides the portions
that the designer does not intend to disclose, and which is robust to changes with re-
spect to the actual way in which the internal business logic is defined (e.g., calls to

A Minimalist Approach to Semantic Annotations for Web Processes Compositions 625

specific data bases of the flight reservation company). Once the offer has been sent to
the client (invoke instruction corresponding to operation offer), the FlightReservation
service suspends (instruction pick), waiting for the customer either to acknowledge the
acceptance of the flight offer (onMessage specification corresponding to operation ack;
we remark that this message carries the information on the client booking the flight),
or to refuse the offer (onMessage specification corresponding to operation nack). Only
in the former case the interaction with the service is successful, and the flight has been
booked.

Notice that the process described in Figure 3 is only one of the possible interfaces.
Different flight providers could adopt different approaches, e.g., requiring that the in-
formation on the client is given at the beginning of the process rather than during the
acknowledgement, or providing to the user a second choice if the first flight offer is
refused.

A BPEL specification provides a very detailed description of the interactions that need
to be carried out with a web service in order to exploit it. However, this is still not suffi-
cient to allow for the purpose of automatically composing such web service with other
services. Indeed, it is necessary to describe also the “semantic” aspects of such interac-
tions. We do this by extending the BPEL specification with “semantic annotations” (the
semann attributes in Figure 3).

In our example, it is necessary first of all to associate concepts in the ontology to
the (parts of the) input and output messages exchanged by the process. This is the
role, for instance of the semantic annotations “/req/start : Location, /req/dest : Loca-
tion, /req/date : Date” of the receive activity for operation request, at the beginning of
the BPEL process. Moreover, it is necessary to express “semantic” relations among the
input and output data values exchanged during the interaction with the web service,
e.g., between the start and destination locations and dates requested by the client and
the flight returned by the reservation service. This is done in annotation “/offer/fl.start =
/req/start, /offer/fl.destination = /req/dest, /offer/fl.date = /req/date” of the opaque assign-
ment. A further usage of semantic annotations is to define the outcome of an interaction
with a web service. In our example it is clear that a flight has been booked only if a
flight is available, the reservation service sends an offer, and the user acknowledges the
acceptance of the offer. To express this in the BPEL specification, we add annotation
“/offer/status = booked” to the activity corresponding to the reception of the acknowl-
edgement.

The semantic annotations are necessary to compensate the specificities of the inter-
face at hand, and to put it in relation with the common ontology. We remark, however,
that the semantic annotations that have to be added to this purpose are very limited if
compared to processes defined in languages such as OWL-S or WSMO. As we will see,
they are sufficient for the automated composition task we are interested in.

3 BPEL Processes as Annotated STSs

We encode BPEL processes (extended with semantic annotations) as annotated state
transition systems which describe dynamic systems that can be in one of their possible
states (some of which are marked as initial states) and can evolve to new states as a

626 M. Pistore, L. Spalazzi, and P. Traverso

result of performing some actions. We distinguish actions in input actions, output ac-
tions, and τ . Input actions represent the reception of messages, output actions represent
messages sent to external services, and τ is a special action, called internal action, that
represents internal evolutions that are not visible to external services. In other words, τ
represents the fact that the state of the system can evolve without producing any out-
put, and without consuming any inputs. A transition relation describes how the state
can evolve on the basis of inputs, outputs, or of the internal action τ . Concerning the
states, we associate to each state a set of concept assertions and role assertions. This
configures a state as the assertional component (or ABox) of a knowledge representa-
tion system based on a given description logic where the ontology plays the role of the
terminological component (or TBox). Therefore, concept assertions are formulas of the
form a : C (or C(a)) and state that a given individual a belongs to (the interpretation)
of the concept C. Role assertions are formulas of the form a.R = b (or R(a, b)) and
state that a given individual b is a value of the role R for a. As a consequence, each
action can be viewed as a transition from a state consisting in an ABox to a different
state consisting in a different ABox.

Definition 1 (State transition system [16]). A state transition system Σ is a tuple
〈S,S0, I,O,R〉 where:

– S is the finite set of states;
– S0 ⊆ S is the set of initial states;
– I is the finite set of input actions;
– O is the finite set of output actions;
– R ⊆ S × (I ∪ O ∪ {τ})× S is the transition relation.

Definition 2 (Annotated state transition system). An annotated state transition sys-
tem is a tuple 〈Σ, T , Λ〉 where:

– Σ is the state transition system,
– 〈T , Λ〉 is the annotation,
– T is the terminology (TBox) of the annotation,
– Λ : S → 2AT is the annotation function, where AT is the set of all the concept

assertions and role assertions defined over T .

Example 4. Figure 4 shows a textual description of the annotated STS corresponding to
the annotated BPEL code of Figure 3. The set of states S (the section STATE in Figure 4)
models the steps of the process and the evolution of the concept and the role assertions.
pc is a variable that ranges over the set of states S and thus holds the current execution
step of the service (e.g., pc = checkAvailability when it is ready to check whether the flight
is available). The set of initial states S0 is represented by the section INIT in Figure 4.

The concepts used in the annotated STS are listed in the section CONCEPT of Fig-
ure 4. They must be defined in the terminology T .

According to the formal model, we distinguish among three different kinds of actions
(see the sections INPUT and OUTPUT of Figure 4). The input actions I model all the
incoming requests to the process and the information they bring (e.g., request is used for
the receiving of the flight reservation request). The output actionsO represent outgoing

A Minimalist Approach to Semantic Annotations for Web Processes Compositions 627

PROCESS FlightReservation;
STATE pc : { START, receive request, checkAvailability, isNotAvailable, isAvailable, invoke not available,

prepareOffer, invoke offer, waitAcknowledge, END NA, END ACK, END NACK };
INIT pc = {START};
CONCEPT Flight; Location; Date; Client; Status;
INPUT request(Location, Location, Date); ack(Client); nack();
OUTPUT flightOffer(Flight); not avail();
TRANS

pc = START -[TAU]-> pc = receive request;
pc = receive request -[INPUT request(req start,req dest,req dat)]-> pc = checkAvailability
pc = checkAvailability -[TAU]-> pc = isNotAvailable;
pc = checkAvailability -[TAU]-> pc = isAvailable;
pc = isNotAvailable -[TAU]-> pc = invoke not available;
pc = invoke not available -[OUTPUT not avail()]-> pc = END NA;
pc = isAvailable -[TAU]-> pc = prepareOffer;
pc = prepareOffer -[TAU]-> pc = invoke offer,
pc = invoke offer -[OUTPUT offer(offer fl)]-> pc = waitAcknowledge;
pc = waitAcknowledge -[INPUT ack(pax client)]-> pc = END ACK;
pc = waitAcknowledge -[INPUT nack()]-> pc = END NACK;

ANNOTATION FUNCTION
LAMBDA(checkAvailability) = { req start : Location, req dest : Location, req date : Date };
LAMBDA(END NA) = { offer fl : Flight, offer fl.status = notAvailable } ∪ LAMBDA(checkAvailability);
LAMBDA(invoke offer) = { offer fl : Flight, offer fl.date = req date, offer fl.start = req start,

offer fl.destination = req dest } ∪ LAMBDA(checkAvailability);
LAMBDA(END ACK) = { pax client : Client, offer fl.pax = pax client, offer fl.status = booked}

∪ LAMBDA(invoke offer);
LAMBDA(END NACK) = {offer fl.status = cancelled} ∪ LAMBDA(invoke offer);

Fig. 4. The annotated STS corresponding to the FlightReservation process

messages (e.g., flightOffer is used to bid a flight). The action τ is used to model internal
evolutions of the process, such as assignments and decision making.

The evolution of the process is modelled through a set of possible transitions (the
section TRANS in Figure 4). Each transition defines its applicability conditions on the
source state, its firing action, and the destination state. For instance, pc = checkAvail-
ability -[TAU]-> pc = isNotAvailable states that an action τ can be executed in state
checkAvailability and leads to the state isNotAvailable; this transition models the deci-
sion of the reservation service that no flight is available.

The annotation function Λ (see the section ANNOTATION FUNCTION in Fig-
ure 4) models how the assertions vary depending on the states. For instance,
LAMBDA(END NACK) = {req start : Location, req dest : Location, req date : Date,
offer fl : Flight, offer fl.start = req start, offer fl.destination = req dest, offer fl.date =
req date, offer fl.status = cancelled} represents the fact that state END NACK contains,
among others, the concept assertions fl : Flight (i.e., fl is an individual that belongs to the
concept Flight) and the role assertions offer fl.start = req start and offer fl.status = can-
celled (the roles start and destination of the individual fl are filled with the individuals
req start and cancelled).

We remark that each TRANS clause and each LAMBDA clause of Figure 4 corre-
sponds to different elements in the transition relation R and in the annotation func-
tion Λ, respectively. For example, the transition and the LAMBDA clause described
above generate different elements ofR and Λ depending on which individuals req date,
req start, req dest we have in the destination state. Concerning cancel, it has been de-
fined in Figure 2 and, thus, it denotes the same individual in all the states (i.e., all the
ABoxes).

628 M. Pistore, L. Spalazzi, and P. Traverso

The definition of the state transition system provided in Figure 4 is parametric w.r.t.
the individuals that can be associated to concepts Flight, Location, Date, Client. In order
to obtain a concrete state transition system (a set of concrete ABoxes) and to apply the
automated synthesis techniques described in this paper, finite set of individuals have to
be assigned concepts Flight, Location, Date, Client. A possible approach to assign these
individuals consists in defining appropriate concept assertions in the common part of
the ABoxes (e.g., the part of ABoxes depicted in Figure 2). Another, better technique is to
use knowledge level techniques such as the ones in [13] to avoid an explicit enumeration
of the individuals of Flight, Location, Date, Client.

We have formally defined a translation that associates an annotated state transition sys-
tem to each component service, starting from its annotated BPEL specification. In Fig-
ure 4 we have reported the translation for the specific case of the flight booking service,
with minor changes (e.g., in the order of the clauses and in some automatically gener-
ated names) to improve the readability. We omit the formal definition of the translation,
which can be found at http://www.astroproject.org/.

According to the above definitions, when we have to check if a given assertion p is
true in a given state s ∈ S we have to apply instance checking denoted as 〈T , Λ(s)〉 |=
p. On the other hand, ABoxes play no active role when checking subsumption [17],
therefore subsumption can be checked without considering what is the current state (i.e.,
the current ABox). For example, when we have to check 〈T , Λ(s)〉 |= C 	 D, we only
need to check 〈T , ∅〉 |= C 	 D. Furthermore, let us assume to useALN as description
logic and a generalized acyclic TBox as T [2]. This language is expressive enough
to describe non-trivial examples as the VTA domain. The computational complexity
of subsumption w.r.t. an acyclic terminology is NP-complete, while the computational
complexity of instance checking is P [6], which makes the reasoning problems tractable,
and, e.g., less complex than those of OWL-S.

4 Web Process Composition Problem

According to our approach, the inputs of the composition problem are (1) a global
ontology 〈T ,A〉, (2) a set of annotated BPEL processes, or, equivalently, of annotated
STSs 〈Σi, T , Λi〉, defining the component services, and (3) a composition requirement
ρ, that formalizes these desired properties of the composite service to be synthesized.
Inputs (1) and (2) have been already described. We now focus on the definition of the
composition requirement.

Example 5. We want the VTA to define and book a vacation package according to the
request of a client. This means we want the VTA to reach the situation where a trip
has been booked from the start location to the destination specified by the user, and
for the dates specified by the user; moreover, an accommodation has been booked for
the same destination and dates. However, this goal of the VTA may be impossible to
achieve. It might be impossible to book the trip or the accommodation for the given
destination or, in more realistic descriptions of the VTA, the package defined by the
VTA may be too expensive. We cannot avoid these situations, and we therefore cannot
ask the composite service to guarantee that a vacation package is always defined and

A Minimalist Approach to Semantic Annotations for Web Processes Compositions 629

booked. Nevertheless, we would like the VTA to try (do whatever is possible) to satisfy
it. Moreover, in the case the “define and book a vacation package” requirement is not
satisfied, we do not want to book the trip only or the accommodation only. That is,
either trip and accommodation are both booked, or none of them has to be booked. Let
us call this requirement “no booking is pending”. Our global composition requirement
would therefore be something like:

try to define and book a vacation package;
upon failure, guarantee that no booking is pending.

We remark that, when composing web services, it is often the case that composition
requirements have the structure described in the previous example, i.e., they define a
“primary condition” to be achieved whenever possible, and a “recovery condition” that
has to be achieved in all the cases the main condition fails.3

Besides the principal and the recovery conditions, a composition requirement also
defines two sets of concept assertions. The first one, that we call input concept as-
sertions, can be seen as input parameters for the composition requirements, such as
desired trip destination and dates, which can be assumed to exist in the ABox of the
global ontology. The second set, called output concept assertions, describes the ele-
ments that have to be defined by the web service composition, in our case the trip and the
accommodation.

We now give the formal definition of composition requirement.

Definition 3 (Composition requirement). Let T be the terminology for the composi-
tion problem. A composition requirement is a tuple ρ = 〈i, o, p, r〉, where:

– i is a set of input concept assertions for T ;
– o is a set of output concept assertions for T ;
– p is a goal condition on 〈T , i ∪ o〉 specifying the primary condition;
– r is a goal condition on 〈T , i ∪ o〉 specifying the recovery condition.

Goal conditions p and r are expressions in the following grammar:

p ::= a : C | a.R = b | p OR p | p & p | NOT p

where a : C is a concept assertion and a.R = b is a role assertion defined w.r.t. T .

Example 6. The composition requirement of the VTA scenario is based on the following
input concept assertions: start : Location (the starting location for the travel), dest :
Location (the destination of the travel), date : Date (the dates of the travel), and client :
Client (the client who is booking the travel). The output concept assertions are: tr : Trip
(the trip returned by the VTA) and ac : Accommodation (the accommodation returned
by the VTA).

As discussed in Example 5, the principal goal requires to book a suitable trip and a
suitable accommodation:

3 In [15, 16] we consider a more general language for specifying composition requirements.
Composition requirements consisting of a main and of a recovery condition are enough for the
purposes of the paper.

630 M. Pistore, L. Spalazzi, and P. Traverso

tr.date = date & tr.start = start & tr.destination = dest & tr.pax = client
& ac.date = date & ac.location = dest & ac.pax = client &
& tr.status = booked & ac.status = booked

The recovery condition of the composition requirement specifies that neither the trip
not the accommodation has to be booked, and can be represented as follows:

tr.status �= booked & ac.status �= booked

In the composition requirements, the semantic annotations introduced in the BPEL pro-
cesses play a fundamental role for defining conditions on the outcomes of web service
executions. For instance, the semantic annotations defining correspondences between
the input and output messages of the flight reservation service make it clear which val-
ues have to be passed to that service in order to book the flight. Moreover, the value
assigned to offer fl.status in the final activities of the different branches of the process
make it possible to distinguish successful executions (with the flight booked) from fail-
ures (due to non-available flights or to a reservation cancellation).

Now that we have defined all the inputs of the composition, we are ready to provide
a formal definition of composition problem. In the following, we re-use the definitions
already proposed in [15, 16], adapted to the case of annotated STSs.

The first step in the definition of composition problem consists in merging the an-
notated STSs Γi = 〈Σi, T , Λi〉 corresponding to the different component services into
a single STS Γ‖ = 〈Σ‖, T , Λ‖〉 defining the combined behavior of the component
services. More precisely, Σ‖ = Σ1 ‖ Σ2 ‖ · · · ‖ Σn is the STS defining the paral-
lel product of the Σi, where each component evolves independently from the others,
that is, each transition of Σ‖ corresponds to a transition of one of the components (see
[15, 16] for a formal definition). Moreover, Λ‖ associates to each state of Σ‖ all the
annotations of the corresponding states of Σ1, Σ2,. . . , Σn.

The automated synthesis of the composite service consists in generating a new state
transition system Σc that, once connected to Σ‖, satisfies the composition requirement.
We now define formally the state transition system describing the behaviors of Σ when
connected to Σc.

Definition 4 (Controlled system [16]). Let Σ = 〈S,S0, I,O,R〉 and Σc =
〈Sc,S0

c , Ic,Oc,Rc〉 be two state transition systems such that I = Oc and O = Ic.
The state transition system Σc � Σ, describing the behaviors of system Σ when con-
trolled by Σc, is defined as follows:

Σc � Σ = 〈Sc × S,S0
c × S0, I,O,Rc �R〉

where:

– 〈(sc, s), τ, (s′c, s)〉 ∈ (Rc �R) if 〈sc, τ, s
′
c〉 ∈ Rc;

– 〈(sc, s), τ, (sc, s
′)〉 ∈ (Rc �R) if 〈s, τ, s′〉 ∈ R;

– 〈(sc, s), a, (s′c, s′)〉 ∈ (Rc �R), with a �= τ , if 〈sc, a, s′c〉 ∈ Rc and 〈s, a, s′〉 ∈ R.

This definition can be easily extended to the case of an annotated STS. Indeed, the
composite service Σc has no annotations, and hence the annotations of a state of Σc �Γ
are those of the corresponding state in Γ .

A Minimalist Approach to Semantic Annotations for Web Processes Compositions 631

In a web service composition problem, we need to generate a Σc that guarantees the
satisfaction of a composition requirement ρ. This is formalized by requiring that the
controlled system Σc � Γ‖ must satisfy ρ, written Σc � Γ‖ |= ρ.

Definition 5 (goal satisfaction). Let Γ = Σc � Γ‖, and let ρ = 〈i, o, p, r〉 be a compo-
sition requirement.

– We say that Γ strongly satisfies ρ, written Γ |=s ρ if all final states s of Γ are such
that 〈T , Λ(s) ∪ i ∪ o〉 |= p.

– We say that Γ weakly satisfies ρ, written Γ |=w ρ if all final states s of Γ are such
that 〈T , Λ(s) ∪ i ∪ o〉 |= p or 〈T , Λ(s) ∪ i ∪ o〉 |= r.

– We say that Γ satisfies ρ, written Γ |= ρ if:
• Γ |=s ρ, or
• Γ |=w ρ, and there is no Γ ′ = Σ′

c � Γ such that Γ ′ |=s ρ.

According to this definition, a controlled system satisfies a composition goal if: either
(1) all the states reached at the end of the computation satisfy the principal condition (in
this case we say that the goal is satisfied in a strong way), or (2) all the states reached at
the end of the computation satisfy either the principal or the recovery condition (in this
case we say that the goal is satisfied in a weak way) and no strong satisfying controller
can be defined (i.e., a weak satisfaction is the best we can achieve).

Definition 6 (Composition problem [16]). Let Γ1, . . . , Γn be a set of annotated state
transition systems on the same terminology T , and let ρ be a composition requirement.
The composition problem for Γ1, . . . , Γn and ρ is the problem of finding a state transi-
tion system Σc such that4

Σc � (Γ1 ‖ . . . ‖ Γn) |= ρ.

5 Automated Synthesis of the Process Composition

In [15, 16], an algorithm is described that automatically generates the composite ser-
vice Σc starting from the component services Σ1,. . . , Σn and the composition require-
ment ρ. Moreover, the algorithm has been implemented within the ASTRO toolset (see
http://www.astroproject.org/) and applied to different domains, showing that it is able to
compose complex services in a very small amount of time, much smaller than the time
required for a manual implementation of the composite process.

However, in [15, 16] the component STSs did not exploit semantic annotations, and
the composition requirement was based on propositional logic instead of description
logic and ontologies. Our goal is to extend the approach of [15, 16] to the case of pro-
cess composition with semantic annotations. There are different ways to achieve this.

4 The definition of composition problem in [15, 16] takes into account a further requirement for
the composite process, that is, it should be deadlock free. Intuitively, this means that the system
should never reach a state where both the component services and the composite services are
blocked waiting for inputs. For simplicity, we omitted this property from the definition reported
in this paper.

632 M. Pistore, L. Spalazzi, and P. Traverso

Here, we adopt a very simple approach, consisting in transforming the constraints in
the composition requirement into propositional formulas through a grounding process.
Once this has been done, the semantic annotations of the component STSs can be inter-
preted as “syntactic” annotations, that are not subject to subsumption, and the algorithm
of [15, 16] can be reused. We now describe in detail the grounding process.

The aim of the composition process is to define in a suitable way the output individ-
uals of the composition goal, so that the principal or recovery conditions are satisfied.
The grounding process consists in looking in the ontology for all the concepts that are
subsumed by the concepts of the output concept assertions in the goal, and to refor-
mulate the conditions in the goal using the union of all these concepts for the output
individuals, as shown in the following example.

Example 7. The goal in Example 6 defines two output concept assertions, tr: Trip and
ac: Accommodation. In the terminology of Figure 1, there are two concepts subsumed by
Trip, namely Flight and Train, and two concepts subsumed by Accommodation, namely
Hotel and GuestHouse. Taking this into account, the principal goal can be grounded as
follows:

tr: (Trip � Flight � Train) & tr.status = booked
& tr.date = date & tr.start = start & tr.destination = dest & tr.pax = client

& ac: (Accommodation � Hotel � GuestHouse) & ac.status = booked
& ac.date = date & ac.location = dest & ac.pax = client

Similarly, the recovery condition can be grounded as:

tr: (Trip � Flight � Train) & tr.status �= booked
& ac: (Accommodation � Hotel � GuestHouse) & ac.status �= booked

The following result shows the correctness of re-using the existing algorithms of
[15, 16] on the ground requirement.

Theorem 1 (Soundness and completeness w.r.t. composition). Let ρ be a composi-
tion requirement and ρg be the corresponding grounded requirement w.r.t. terminology
T . Then

Σc � (Γ1 ‖ . . . ‖ Γn) |= ρ iff Σc � (Σ1 ‖ . . . ‖ Σn) |=g ρg

where |=g is satisfiability with goal conditions interpreted as propositional formulas.

6 Related Work and Conclusions

In this paper we propose a practical approach to the composition of semantic web ser-
vices. We keep separated the procedural and the ontological description of services, and
link them through semantic annotations. We then integrate reasoning mechanisms at the
ontological and at the process level.

This approach is novel with respect to existing literature. Form the one side, several
works propose approaches to process-level composition that do not address explicitly
the need for (reasoning about) semantic descriptions of web services [7, 3, 15, 13]. From

A Minimalist Approach to Semantic Annotations for Web Processes Compositions 633

the other side, most of the work on automated composition of semantic web services has
focused so far on the problem of composition at the functional level, i.e., composition of
atomic services that can be executed in a single request-response step (see, e.g. [11, 5]).

The work on WSDL-S and METEOR-S [18, 12, 21] provides semantic annotations
for WSDL. It is close in spirit to ours, but does not deal with semantically annotated
(BPEL) process-level descriptions of web services. The work in [8] is also close in
spirit to our general objective to bridge the gap between the semantic web framework
and languages proposed by industrial coalitions. However, [8] focuses on a different
problem, i.e., that of extending BPEL with semantic web technology to facilitate web
service interoperation, while the problem of automated composition is not addressed.

Recently, an increasing amount of work is dealing with the problem of com-
posing semantic web services taking into account their behavioral descriptions
[10, 23, 20, 14, 22]. In this context, the research community is following two related
but different main approaches: OWL-S [4] and WSMO [22]. Approaches based on OWL-
S [10, 23, 20, 14] are different from the one proposed in this paper, since, in OWL-S,
even processes are described as ontologies, and therefore there is no way to separate
reasoning about processes and reasoning about ontologies. The approach undertaken in
WSMO is closer in spirit to ours: processes are represented as Abstract State Machines,
a well known and general formalism to represent dynamic behaviors. The idea under-
lying WSMO is that the variables of Abstract State Machines are all defined with terms
of the WSMO ontological language. Our processes work instead on their own state vari-
ables, some of which can be mapped to a separated ontological language, allowing for
a minimalist and practical approach to semantic annotations and for effective reasoning
to compose services automatically. Indeed, the aim of the work on WSMO is to propose
a general language and representation mechanism for semantic web services, while we
focus on the problem of providing effective techniques for composing automatically
semantic web services.

It would be interesting to investigate how our approach can be applied to WSMO

Abstract State Machines rather than BPEL processes, and how the idea of minimal-
ist semantic annotations can be extended to work with WSMO orchestration languages
and mechanisms, such that we could exploit our automated composition techniques ef-
fectively in this framework. In this context, we plan also to integrate our proposal for
automated composition with techniques for web service discovery, a problem that we
do not address in this paper.

References

1. T. Andrews, F. Curbera, H. Dolakia, J. Goland, J. Klein, F. Leymann, K. Liu, D. Roller,
D. Smith, S. Thatte, I. Trickovic, and S. Weeravarana. Business Process Execution Language
for Web Services (version 1.1), 2003.

2. F. Baader and W. Nutt. Basic Description Logics. In F. Baader, D. Calvanese, D. McGuin-
ness, D. Nardi, and P. Patel-Schneider, editors, The Description Logic Handbook, pages 43–
95. Cambridge University Press, 2003.

3. D. Berardi, D. Calvanese, G. De Giacomo, M. Lenzerini, and M. Mecella. Automatic com-
position of E-Services that export their behaviour. In Proc. ICSOC’03, 2003.

4. The OWL Services Coalition. OWL-S: Semantic Markup for Web Services, 2003.

634 M. Pistore, L. Spalazzi, and P. Traverso

5. I. Constantinescu, B. Faltings, and W. Binder. Typed Based Service Composition. In Proc.
WWW’04, 2004.

6. F. M. Donini. Complexity of Reasoning. In F. Baader, D. Calvanese, D. McGuinness,
D. Nardi, and P. Patel-Schneider, editors, The Description Logic Handbook, pages 96–136.
Cambridge University Press, 2003.

7. R. Hull, M. Benedikt, V. Christophides, and J. Su. E-Services: A Look Behind the Curtain.
In Proc. PODS’03, 2003.

8. D. Mandell and S. McIlraith. Adapting BPEL4WS for the Semantic Web: The Bottom-Up
Approach to Web Service Interoperation. In Proc. of ISWC’03, 2003.

9. D. L. McGuinness and F. van Harmelen. OWL Web Ontology Language Overview. W3C
Recommendation, 2004.

10. S. Narayanan and S. McIlraith. Simulation, Verification and Automated Composition of
Web Services. In Proc. WWW’02, 2002.

11. M. Paolucci, K. Sycara, and T. Kawamura. Delivering Semantic Web Services. In Proc.
WWW’03, 2002.

12. A. Patil, S. Oundhakar, A. Sheth, and K. Verma. METEOR-S Web Service Annotation
Framework. In Proc. WWW’04, 2004.

13. M. Pistore, A. Marconi, P. Bertoli, and P. Traverso. Automated Composition of Web Services
by Planning at the Knowledge Level. In Proc. IJCAI’05, 2005.

14. M. Pistore, P. Roberti, and P. Traverso. Process-level compositions of executable web ser-
vices: on-the-fly versus once-for-all compositions. In Proc. ESWC’05, 2005.

15. M. Pistore, P. Traverso, and P. Bertoli. Automated Composition of Web Services by Planning
in Asynchronous Domains. In Proc. ICAPS’05, 2005.

16. M. Pistore, P. Traverso, P. Bertoli, and A. Marconi. Automated Synthesis of Composite
BPEL4WS Web Services. In Proc. ICWS’05, 2005.

17. A. Schaerf. Query Answering in Concept-Based Knowledge Representation Systems: Algo-
rithms, Complexity, and Semantic Issues. Dottorato di Ricerca in Informatica, Università
degli Studi di Roma “La Sapienza”, Italia, 1994.

18. A. Sheth, K. Verna, J. Miller, and P. Rajasekaran. Enhacing Web Service Descriptions using
WSDL-S. In EclipseCon, 2005.

19. S. Tobies. Complexity Results and Practical Algorithms for Logics in Knowledge Represen-
tation. PhD thesis, RWTH Aachen, 2001.

20. P. Traverso and M. Pistore. Automated Composition of Semantic Web Services into Exe-
cutable Processes. In Proc. ISWC’04, 2004.

21. K. Verma, A. Mocan, M. Zarembra, A. Sheth, and J. A. Miller. Linking Semantic Web
Service Efforts: Integrationg WSMX and METEOR-S. In Proc. SDWP’05, 2005.

22. SDK WSMO working group. The Web Service Modeling Framework - http://
www.wsmo.org/.

23. D. Wu, B. Parsia, E. Sirin, J. Hendler, and D. Nau. Automating DAML-S Web Services
Composition using SHOP2. In Proc. ISWC’03, 2003.

Y. Sure and J. Domingue (Eds.): ESWC 2006, LNCS 4011, pp. 635 – 649, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Protocol Mediation for Adaptation in
Semantic Web Services

Stuart K.Williams1, Steven A. Battle1, and Javier Esplugas Cuadrado2

1 Hewlett-Packard Laboratories, Filton Road,
Stoke Gifford, Bristol, BS34 8QZ, UK

{skw, steve.battle}@hp.com
2 Hewlett-Packard Espanola SL, Jose Echegaray no8,

La Rozas, Spain. 28230
javier.esplugas.cuadrado@hp.com

Abstract. Protocol mediation enables interaction between communicating
parties where there is a shared conceptual model of the intent and purpose of
the communication, and where the mechanics of communication interaction
vary. The communicating partners are using different protocols to achieve the
same or similar ends. We present a description driven approach to protocol
mediation which provides a more malleable approach to the integration of web
services than the current rigid ‘plug-and-socket’ approach offered by descrip-
tion technologies such as WSDL. It enables the substitution of one service
provider with another even though they use different interaction protocols. Our
approach is centred on the identification of common domain specific protocol
independent communicative acts; the description of abstract protocols which
constrain the sequencing of communicative acts; and the description of concrete
protocols that describe the mechanisms by which the client of a web service
interface can utter and perceive communicative acts.1

1 Introduction

Web service technology places powerful tools in the hands of developers enabling
independent invention and re-invention of web service interfaces. Businesses will
develop and deploy web service interfaces to visible aspects of their business process.
Many of these interfaces encapsulate similar if not identical concepts. However the
factoring of otherwise similar interfaces will vary. The mechanics of interaction
protocols will differ. Yet conceptually they encapsulate similar if not identical
interaction metaphors. Consider the familiar catalogue, cart, checkout metaphor of a
typical eCommerce web site. The human user is guided through the process by their
recognition of the metaphor, their intuition about the process they are engaged in and
the continuous guidance provided by the user interface decoration (labels on buttons,
explanatory text etc.). The human user is unconstrained about which of many
available on-line stores they trade with. Our aim is to provide a similar level of
flexibility for automated web service clients in the selection and use of service
providers.

1 This work was conducted as part of the EU funded Semantic Web enable Web Services

project (SWWS EU IST-2002-37134).

636 S.K.Williams, S.A. Battle, and J.E. Cuadrado

By analogy, WSDL [1] supports description of the syntactic operation of
individual user interface controls; BPEL [2] describes the service provider processes
which respond to control invocations; WS-CHOR [3] describes a global view of the
sequencing constraints on externally visible messages exchanged between multiple
parties in web service interactions. However, in the current web service stack there is
no machine readable account of what a particular web service interaction or sequence
of web service interactions actually accomplish.

In this paper we describe a framework for providing rich service descriptions that
enable web service clients to adapt their interaction behaviour to the constraints of a
particular provider’s web service interface. This removes cost and time from the
process of integrating new service providers and enables consumers of web services
greater freedom and flexibility to dynamically choose service providers. For service
providers it also means access to a broader customer base and results in a service
oriented economy where service consumer/provider relationships are formed on the
basis of business fundamentals without requiring an exact fit between the client and
provider sides of a particular web service interface.

In section 2 we introduce the topic of protocol mediation more fully. In section 3
we introduce a case study scenario drawn from the IST EU Semantic Web enabled
Web Services project (SWWS EU IST-2002-37134) which we use as a running
example through the remainder of the paper. Section 4 gives a detailed presentation of
the protocol mediation framework developed in the SWWS project. Section 5
describes our interface description language. Section 6 discusses related work. Finally
section 7 presents our conclusions and ideas for further work.

2 Protocol Mediation

Bridging or gatewaying between compatible protocols has been studied since the
1980’s [11, 13, 14] continuing through a period of considerable work in the field of
Open Systems Interconnection (OSI) [8, 12] and the Internet. Our work on protocol
mediation draws inspiration from that work. We make particular use of the concepts
of abstract service definition [8, 12] and gateways/half-gateways. Much of the
previous work was focussed on mediating between protocols established by standard-
isation processes. In contrast, our work on protocol mediation is focussed on the
dynamic instantiation of description driven mediation behaviour. Our work is moti-
vated by the existence of similarly intentioned, independently created, and evolving
protocols which are an inevitable consequence with the successful adoption of Web
Service technologies.

Figure 1 illustrates protocol mediation the form of a protocol gateway made up of
two half gateways and a relaying function. Two processes, X and Y, wish to
communicate with one another at a business level. Each process adopts some role
with respect to the interaction. For example, process Y may act on behalf of the
provider of some (business) service, while process X may act on behalf of a consumer
of that service. Unfortunately, process X and process Y communicate using two
different protocols, P1 and P2, each of which has capabilities C1 and C2 respectively,
expressed in the abstract as the protocol layer services of P1 and P2.

Clearly if effective communication is to occur between processes X and Y, some
mediation must occur.

 Protocol Mediation for Adaptation in Semantic Web Services 637

MediationProtocol
P1

Protocol
P2

Process
X

Process
Y

Mediated Interactions

P1 Messages P2 Messages
P2 Services
(Capabilities C2)

P1 Services
(Capabilities C1)

C1 ∧ C2

P1 P2

Protocol P1
e.g. EDIFACT

Protocol P2
e.g. RosettaNet

Fig. 1. Protocol Mediation – A conceptual model

It should be equally clear that it is only possible to mediate in the intersection of
the capabilities of the two protocols. If the mediated channel becomes too
impoverished to support the required interaction, some other approach becomes
necessary and either process X or Y or both needs to have their behaviour changed to
address the missing capability in some other way. This is known as “process
mediation” and is not the subject of this paper.

Interface

Protocol
P2P2 Messages

P2 Services
(Capabilities C2)

P1 Services
(Capabilities C1)

P2

Process
X

Process
Y

C1 ∧ C2

Mediation

Shared Ontology
(Business) Domain Concepts
and Communicative Actions

Shared Ontology
(Business) Domain Concepts
and Communicative Actions

Interface
Description

Fig. 2. Description Driven Adaptation

It is possible to associate the mediation element more strongly with one party or
the other. One can slide the mediation element toward, say, process X. At some point,
the presence of P1 in the system becomes somewhat vestigial and the mediation
component becomes logically absorbed within the infrastructure supporting process
X. Figure 2 illustrates this diagrammatic manipulation. Process X continues to make
use of P1’s protocol layer services and capabilities (restricted to those that lie at the
intersection with protocol P2’s capabilities). However, only protocol P2 messages are
exchanged externally. The P2 protocol provider and process Y are unchanged. Figure
2 also introduces the notion of there being an exposed interface at process Y which is
described with a rich behavioural description which is consumed by a mediation
component.

638 S.K.Williams, S.A. Battle, and J.E. Cuadrado

Our behavioural descriptions rely on abstracting the communicative actions [5, 6]
of a protocol from the underlying mechanisms of that communication. This echoes
the practice of the OSI community [8, 12] of specifying the service abstraction
separately from its message vocabulary, encoding and rules of procedure. However
we make our descriptions machine readable and interpretable by a mediation
component. Conceptually we regard an interaction protocol as animating domain
concept instances and the communicative acts which result in changes in their state
are themselves part of the ontological structure of the domain. Thus, the ontology of
the interface description is what needs to be shared between partners rather than prior
agreement on a specific interaction protocol.

The description driven adapter of Figure 2 may be thought of as a ‘half-gateway’
and it should be possible to use two such structures and descriptions of the interfaces
that they each face to create a description driven ‘full-gateway’ or mediator structure
as shown in Figure 1. It should be apparent that rather than relaying protocol
messages between protocol P1 and protocol P2, such a mediator relays the common
communicative actions of protocols P1 and P2.

3 Logistics Scenario

Figure 3 illustrates the supply chain logistics scenario used as a case study in SWWS
to motivate our work [9, 10].

Shipper
Logistic

Coordinator
Receiver

Freight
Forwarding

Service
Provider #1

Freight
Forwarding

Service
Provider #2

Freight
Forwarding

Service
Provider #3

UK RUSSIANORTH SEA

Forwarder Forwarder

or Border
Supplier Customer Unit

Web Service
Interface

Web Service
Interaction(s)

Fig. 3. Multi-leg Shipment Logistics Scenario

The diagram illustrates four different logical roles: Shipper, Logistic Coordinator,
Freight Forwarding Services Provider and the Receiver. The scenario requires
replacement of Freight Forwarder #2. The replacement provider uses RosettaNet [15]
for interacting with the logistics coordinator whereas the replaced provider uses

 Protocol Mediation for Adaptation in Semantic Web Services 639

EDIFACT [16]. This choice of message sets is compounded by local variations in the
way that different businesses use the message formats.

Our goal is to provide a rich description of the interaction protocol use across a
freight forwarding service provider’s web service interface. Our intent is that the user
of an interface has a rich enough description of the syntax and semantics of the
interface to enable it to adapt its behaviour to the constraints of that interface.

4 The SWWS Protocol Mediation Framework

Under the assumption that we are not at liberty to redesign, alter or replace an
existing interaction protocol, our approach is to provide a sufficiently rich machine
readable description of the protocol. A mediation component within the client system
can then adapt its interaction behaviour to meet the interface constraints of the service
provider in much the same way as a human user of an eCommerce web site adapts
their interaction behaviour on the basis of the controls and surrounding UI narrative
presented to them.

Thus, classic web service clients can use classic integration techniques organized
around programmers retrieving WSDL [1] descriptions from UDDI registries in order
to write integration code whilst a semantic web service client containing a protocol
mediation component retrieves a rich description of the interface and adapts its
behaviour to suit.

The following sections introduce the components of our framework: commun-
icative acts [5] and primitives which model the significant domain specific communi-
cations between interacting parties; abstract protocols which describe the
conversational structure of the exchange of primitives used to model communicative
acts and which are used operationally to restrict primitive sequencing; concrete
protocols which elaborate the concrete interaction behaviours required to initiate and
perceive communicative acts across a particular concrete interface; and message
filters which are used to bind inbound messages or web service invocations either to
concrete behaviours within existing active conversation instances or to factories that
create new conversation instances. Interactions between a service provider or
consumer agent and the communication infrastructure are modelled as primitive
events accompanied by knowledge bases containing relevant domain instances.

4.1 Roles and Communicative Acts

Our first step is to identify the communicative acts [5, 6] associated with our domain
and the roles involved in communication which have some correspondence with the
concept of illocutionary particles and roles articulated in the ISLANDER framework
[7]. We regard roles and communicative acts as part of the ontology which structures
concepts within the domain. In our logistics scenario we identify the following 6
communicative acts that occur between a Logistics Coordinator (LC) and a freight
forwarding service provider (FF) about a particular shipment journey leg:

Although only short names are used here, in practice, within a web ontology, the
names of all concepts (and communicative acts) are made global through the use of
URI [21].

640 S.K.Williams, S.A. Battle, and J.E. Cuadrado

Table 1. Communicative acts involved in a Logistics Journey Leg

Communicative Act Direction Communicative intent
informReadyForCollection LC to FF Inform the FF that the shipment is

available for collection.
requestShipmentStatus LC to FF Request an update of the shipment status

from the FF.
informShipmentStatus FF to LC Inform the LP of the shipment status
informReadyToDeliver FF to LC Inform the LP that the FF is ready to

deliver the shipment.
informShipmentDelivered FF to LC Inform the LP (and provide proof) that

the FF has infact delivered the shipment.
requestPayment FF to LC Request payment for delivering the

shipment from the LP.

The utterance and perception of communicative acts by the logistics coordinator
and freight forwarding services provider are significant events in the interaction
between partners as the physical movement of the corresponding shipment prog-
resses. We model these events as the service primitives of a communication protocol
in the style adopted by the OSI Basic Reference Model [8].

<act>.request
<act>.indication

<act>.response
<act>.confirm

time

Initiating Entity Listening Entity

Fig. 4. Sequencing of Abstract Protocol Service Primitives

The occurrence of a communicative act is modelled as the occurrence of 4
primitives illustrated in Figure 4. Two primitive events are experienced at the
initiating party which utters the communicative act and, in the absence of failure, two
primitive events are experienced at a listening party which perceives the communi-
cative act. The four primitives of the communicative act, <act>, model:

• the initiation of the act by the initiating agent, <act>.request;
• the perception of the communicative act by a listening/responding agent,

<act>.indication;
• acknowledgement by the listening/responding agent that the act has been

perceived, <act>.response;
• and reporting the outcome of the communicative act to the initiating agent,

<act>.confirm.

 Protocol Mediation for Adaptation in Semantic Web Services 641

The .response and .confirm primitives effectively model a technical
acknowledgement that the communication has reached its intended recipient. Any
substantive response motivated by the communicative act itself is modelled as a
subsequent communication in the opposite direction. Communicative acts therefore
achieve a single domain level communication, but may correspond to an exchange of
one or more lower level messages or web service operations.

At the initiator, the outcome of a communicative act falls into one of three broad
categories:

• Success: The communication is known (by the initiator) to have
reached the intended recipient.

• Exception: The communication is known (by the initiator) to have
failed to reach the intended recipient.

• Indeterminate: The outcome of the communicative act is unknown (to the
initiator).

This provides the basic framework for modelling communication between agents.
Each communicative act may carry information (a message) from initiating agent to
responding agent and return status information about the outcome of the communi-
cation. An important facet of our model is that the occurrence of a .request pri-mitive
at the initiator is always followed by an occurrence of a .confirm primitive, even if
the latter reports that the outcome of the communication is indeterminate or failure.

4.2 Abstract Protocol

The next step in our process is to observe that the sequencing of communicative acts
is constrained. In our example scenario, the dialog about a given shipment
commences with the utterance of an informReadyForCollection and ends
either with an informShipmentDelivered or a requestPayment. The
structure of these conversational constraints can be captured in the form a monitoring
process which (impractically) takes a global view of the system, the occurrence of a
communicative act only being possible when it is admissible by the monitoring
process. The behaviour of the monitoring process may be expressed in a number of
formalisms, such as the ad-hoc notation in figure 5 or more formally using process
algebra’s such as CCS [18] or UML style Harel State Charts[17] as in figure 6.

seq(informReadyForCollection,
 par(repeat(seq(requestShipmentStatus,
 informShipmentStatus)),
 seq(informReadyToDeliver,
 par(requestPayment,
 informShipmentDelivered)
)
)
)

Fig. 5. Simplifed ad-hoc expression of the Abstract Protocol for Journey Leg monitoring and
execution

642 S.K.Williams, S.A. Battle, and J.E. Cuadrado

informShipmentStatus

stopResponder

requestShipmentStatus

informReadyForCollection

informReadyForDelivery

informShipmentDelivered/
stopResponder

requestPayment

Fig. 6. UML/Harel State Chart expression the Abstract Protocol for Journey Leg monitoring
and execution

Note that as specified here these behavioural expressions treat a communicative act
as an atomic occurrence, however, as stated earlier we have modelled each as a
sequence of four primitives, two of which are experienced by each party to the comm-
unication. The basic patterns above can be specialized to the consumer and provider
roles with appropriate re-labelling of events. In addition, since the primary motivation
for treating a communicative act as four discrete events is to enable explicit consi-
deration of errors handling, different behaviours may be added to cater for the differ-
ent kinds of outcome listed above: success, exception and indeterminate.

Our concept of an abstract protocol corresponds closely with the ISLANDER [7]
concept of a scene and its accompanying dialogical framework.

4.3 Concrete Protocol

In the previous section we considered the role based sequencing constraints on the
occurrence of abstract primitives crossing the boundary between a service provider
agent or a service consumer agent and the underlying entities that realise concrete
interaction behaviours, see figure 7. We now consider the interface specific concrete
protocol description which binds the occurrence of these primitives to concrete pro-
tocol behaviours. Descriptions are divided into initiating and responding behaviours.

Initiating behaviours are associated with the occurrence of a .request primitive
and ultimately giving rise to the corresponding .confirm primitive. Responding
behaviours perceive the occurrence of a communicative act generally through the
arrival of a message or an inbound invocation of a web service operation which gives
rise to a .indication primitive. A responding behaviour may remain active
beyond the occurrence of the corresponding .response primitive in order to absorb
duplicated inbound messages or to repeat apparently lost outbound messages in
accordance with the requirements of the concrete protocol.

 Protocol Mediation for Adaptation in Semantic Web Services 643

Service
Consumer

Service
Provider

Service Consumers
Web Service

Interface

Service Providers
Web Service

Interface

Service Provider initiated
Web Service Operations

Service Consumer initiated
Web Service Operations

Abstract Protocol Service Primitives

Abstract Protocol constrains
Primitive Sequencing

Concrete Protocol
Entities

.req .conf .ind .resp

Initiating
Behaviours

Responding
Behaviours

.req .conf .ind .resp

Initiating
Behaviours

Responding
Behaviours

Fig. 7. Abstract and Concrete Protocols

Both initiating and responding behaviours may involve both the sending and
receiving of one or more messages or the inbound and outbound invocation of one or
more web service operations. For example, in RosettaNet, lost business action
messages may be retransmitted a prescribed number of times at prescribed intervals,
typically 3 times at 30 minute intervals. This behaviour is embedded in the concrete
protocol and is not exposed to the service consumer/provider except in as much as it
may give rise to failed or indeterminate outcomes.

The abstract protocol acts as a guard which ensures that abstract service primitives
cannot occur except when they are admissible. The concrete protocol descriptions
provide an expression of how to initiate and perceive the communicative acts initiated
and perceived. These behaviours can also be described as processes using any of the
formalisms noted earlier. However the actions associated with state transitions need
to be capable of performing simple computations and manipulations on message
content. We use a simple event, guard, and action model to described concrete
behaviours as simple state machine processes. Figure 8, below, illustrates the concrete
RosettaNet protocol behaviour required of a freight forwarding service initiating the
informReadyForCollection communicative act. Similarly, figure 9 illustrates
the corresponding behaviour required of the freight forwarding services provider in
order to perceive the occurrence of the same communicative act. One of the important
complex operations that we hide here is the extraction of domain instance information
from inbound messages and the generation outbound message content from the
instances of the domain ontology. This is the problem of data mediation, and our
approach to this is described elsewhere [19]. The operation of these concrete
behaviours coordinates the lifting and lowering of domain knowledge between
message structure and ontology instances.

644 S.K.Williams, S.A. Battle, and J.E. Cuadrado

informReadyForCollection.request(params)/
msg = RN-EncodePIP3B2(params) //lower - DataMediation!!
startTimer(30mins)
sendMessage(msg)

TimeOut/
startTimer(30mins)
sendMessage(msg);

TimeOut/
startTimer(30mins)
sendMessage(msg);

TimeOut/
startTimer(30mins)
sendMessage(msg);

Timeout/
informReadyForCollection.confirm(Outcome=INDETERMINATE);

receiveMsg(rmsg, RN_SIGNAL_MATCH(msg))
/
if RN-Signal-Type(msg) == ACK {

informReadyForCollection.
confirm(Outcome=SUCCESS);

} else { //RosettaNet Exception
informReadyForCollection.
confirm(Outcome=EXCEPTION);

}

A

A

A

A

A +

Fig. 8. Concrete RossettaNet protocol behaviour associated with a Logistics Coordinator ini-
tiating uttering an informReadyForCollection communicative act

receiveMsg(rmsg, RN_PIP3C3_MATCH(conversation)) /
//Data mediation/Lift
actionParams = RN-Decode-3C3-Request(rmsg);
requestPayment.indication(actionParams);

receiveMsg(rmsg,
RN_PIP3C3_MATCH(conversation)) /

// Do nothing – ignore retransmission
requestPayment.response(Outcome, responseParams) /

if(Outcome==EXCEPTION) {
//Data mediation/lower
msg = RN-Encode-Signal(EXCEPTION, responseParams)

} else { //SUCCESS
//Data mediation/lower
msg = RN-Encode-Signal(ACK, rmsg);

}
sendMessage(msg);

receiveMsg(rmsg,
RN_PIP3C3_MATCH(conversation)) /

sendMessage(msg);
// resend previous signal

Fig. 9. Concrete RosettaNet protocol behaviour associated with a Freight Forwarder perceiving
the occurrence of an informReadyForCollection communicative act

The message driven transitions shown in figures 8 and 9 involve the installation of
message filters specified by the second parameter in the receiveMsg statements.
When a message driven transition is followed the triggering message, which matches
the corresponding filter is made available for computation via the variable nominated
in the first parameter. A given state may have a number of message driven transitions
to the same or to different successor states. Conceptually, on entry to a state with
message driven transitions, the relevant filter expressions are installed to associate
inbound messages with a given instance of a state transition. On transition, concept-
tually, all those filters are removed and on entry to a new state any filters relevant to
that state are installed. In this way, messages are directed towards appropriate
transitions. If multiple transitions are possible from a state, then the choice of which
transition is actually taken is non-deterministic, however the message is only assigned
to the nominated variable and thereby consumed if the particular message driven
transition is actually taken.

 Protocol Mediation for Adaptation in Semantic Web Services 645

5 Rich Service Description

The previous section introduced all the important elements of a rich service interface
description.

• A domain ontology which structures the concepts associated with domain.
• A catalogue of roles adopted by the participants of domain interactions and the

communicative acts which each role utters or perceives.
• On a per role basis, an expression of the abstract protocol which governs of the

sequencing of the occurrence of the primitives modelling communicative acts.
• On a per provider per role basis, an expression of the concrete protocol

associated with the utterance and perception of communicative.
• Associated with each concrete protocol description is an expression of the data

mediation transformations that extract domain instance information from inbound
messages and draw on domain instances in the formulation of outbound
messages.

vscl:State vscl:State

vscl:Transition

rdf:type
rdf:type

vscl:nextStatevscl:transition

vscl:
transitionBehaviour

vscl:
guard

vscl:InternalScript

rdf:type

“JavaScript”

vscl:scriptLang

<JavaScript Statements>

vscl:scriptText

vscl:GuardCondition

rdf:type

vscl:scriptLang

<BooleanValued
JavaScript
Expression>

vscl:scriptText

rdf:type

Fig. 10. A state transition in VSCL

During the course of the SWWS project we devised a “Very Simple Choreography
Language” (VSCL) which embodies these elements. Abstract protocols are described
as a collection of roles and each role is described in terms of the communicative acts
which it initiates or perceives. The occurrence of primitives is constrained by a
monitoring process. On per interface basis a concrete protocol is described in terms of
the required concrete behaviour a peer role must adopt which is scoped by reference
to the corresponding abstract protocol and role. Each primitive that a given role
experiences is bound to the concrete behaviour required to either initiate or perceive
the associated communicative act. Both the monitoring behaviours of abstract
protocols and the concrete behaviours of concrete protocols are described as

646 S.K.Williams, S.A. Battle, and J.E. Cuadrado

processes which are expressed as finite state machines in the manner described
previously.

The abstract syntax of VSCL is expressed as an OWL [4] ontology [22]. A
common part abstract and concrete VSCL descriptions is the description of finite state
machine processes. VSCL descriptions are written in RDF [23] using properties
drawn from the VSCL ontology [22]. Figure 10 illustrates how a transition between
two states is encoded in VSCL.

With respect to the example scenario presented in section 3 the VSCL description
of the abstract journey leg protocol is available at [24] while the corresponding
concrete protocol description provided by a freight forwarding services provider that
uses the RosettaNet [15] protocol is available at [25].

The transition behaviours available in VSCL include: message driven, primitive
driven, event driven and time driven transitions; sending receiving and replying to
messages; raising events and primitives; forking concurrent processes (figures 5 and 6
illustrate the use of concurrency). In order to augment process behaviours with
variables for storage and procedures which can perform computation over those
variable we provide the ability to include scripted behaviours. In our prototype
implementation we used the Mozilla open source embeddable Javascript engine,
Rhino [26].

For protocol mediation, it is important that a description of a service provider’s
interface describes the roles and associated behaviours required of a user of that
interface. The role and behaviour of the interface provider may be made explicit, but
that is not strictly necessary. The assumption we make is that a service provider is
economically motivated to ensure that potential service consumers are able to use the
service provided. Hence, we place the onus is on the service provider to provide a rich
description.

6 Related Work

OWL-S [4], WSMO [28] are two activities in the field of semantic web service
description. We briefly consider the connection between these activities and the ideas
discussed in this paper.

OWL-S is a natural vehicle for capturing the abstract protocols that describe the
interfaces with each logistics provider. The protocol of figure 5 may be translated
straightforwardly into an OWL-S composite process using sequential, iterative and
concurrent process compositions. The leaves of this abstract process are described
here as communicative acts, so can we identify OWL-S processes with such acts.
Communicative acts certainly address the actions performed by agents, except that
the communication is an intrinsic component of the action. This suggests that they
really fit into a service-oriented, rather than a message-oriented, model. OWL-S
processes are also designed to represent the actions of agents so we seem to have a
good match. However, with the standard OWL-S to WSDL grounding, mapping each
atomic process onto a WSDL operation can lead us astray. The problem is that there
is nothing to stop a service provider mapping a pair of communicative acts onto a
single operation, and hence a single atomic process. For example, it is reasonable to
ground the requestShipmentStatus and informShipmentStatus in the

 Protocol Mediation for Adaptation in Semantic Web Services 647

separate request and response messages of a single WSDL operation. The knock-on
effect is that we have to model this with a single atomic-process. This decision
bubbles up through the design of the interface forcing the designer to conflate two
otherwise distinct acts all the way up the model. On the plus side, the current
grounding is not mandated as the only possible grounding. Indeed, the concrete
protocol described by the VSCL of section 5 may be thought of as a description-
driven grounding that allows us to map these conceptually distinct acts to (different
parts of) the same WSDL operation.

The work of the SWWS and WSMO projects are both motivated by the Web
Services Modelling Framework (WSMF) [29] and there has been an on-going
exchange of ideas between both projects. Our work is focussed in the mediation of
interaction protocols and is most closely related to WSMO Orchestration and
Choreography [30]. WSMO uses Abstract State Machines (ASM) as a formalism for
describing both choreography and orchestrations. WSMO choreography is most
closely aligned with our notion of an abstract protocol, whilst WSMO orchestration is
most closely aligned with our notion of concrete protocols. Our work on SWWS has
taken the ‘easier’ path abstracting communicative intent as communicative acts to
which a semantic account could be given. WSMO takes the more challenging path of
goal driven interaction intended to bring about desired change in the partial state of a
world model.

7 Conclusions

Current practice in Web Service integration relies of a rigid plug and socket fit
between the provider and consumer of a web service interface. We have demonstrated
an approach that provides for description driven adaptation. Our approach relies on
the provision of a rich description of the behaviour required of the user of a web
service interface. Whilst this places a significant additional burden on the provider of
the web service interface, it provides for massive leverage, since it vastly reduces the
integration work required of a consumer of that interface. In effect we have provided
a more malleable approach to the description of web service interfaces that enables
interoperability and substitution were there is significant conceptual overlap between
alternate interfaces.

Our approach relies on there being a shared understanding of the semantics of
domain specific communicative acts and requires understanding of the semantics of
individual web service operations on the part of the provider of the enriched interface
description. This obviates the need for a machine readable semantic description of
each web service operation, however, this results in concrete protocol descriptions
that are somewhat imperative with respect to the behaviours associated with state
transitions. Nevertheless, at both the abstract and concrete level, the structure of the
concurrent state machines used to specify behavioural constraints is exposed and
potentially available for more formal analysis with respect to the desired safety and
liveliness properties of the combine abstract/concrete behaviour.

A prototype mediation component which implements the framework described in
this paper has been was developed as part of the SWWS project and used as part of
the logistics case study demonstrator described in [10].

648 S.K.Williams, S.A. Battle, and J.E. Cuadrado

Acknowledgements

The authors gratefully acknowledge the support of the EU who partially funded this
work under SWWS consortium under agreement IST-2002-37134. In addition we
extend particular thanks to Silvestre Losada, Oscar Corcho and Jorge Pérez Bolaño of
Intelligent Software Components S.A. (ISOCO) [32] for their work implementing
protocol mediation component discussed in this paper. Finally we would like to thank
our colleague Chris Preist for his feedback on early drafts of this paper.

References

1. Christensen, E., Cubera, F., Meredith,G., and Weerawarana, S.: “Web Services Descri-
ption Language (WSDL) 1.1”, W3C Note (15 March 2001), <http://www.w3.org/ TR/
2001/ NOTE-wsdl-20010315>

2. Andrews, T., Curbera, F., Dholakia, H., Goland, Y., Klein, J., Leymann, F., Liu, K.,
Roller, D., Smith, D., Thatte, S., Trickovic, I., and Weerawarana, S.: “Business Process
Execution Language for Web Services – Version 1.1” BEA Systems, IBM, Microsoft,
SAP AG and Sibel Systems Whitepaper (5 May 2003), <ftp://www6.software.ibm.com/
software/developer/library/ws-bpel.pdf>

3. Kavantzas, N., Burdett, D., Ritzinger, G., Fletcher, T., and Lafon, Y.: “Web Services
Choreography Description Language Version 1.0”, W3C Working Draft (17 December
2004), <http://www.w3.org/TR/2004/WD-ws-cdl-10-20041217/>

4. Martin, D. et. al: “OWL-S: Semantic Markup for Web Services”, W3C Member
submission (November 2004) <http://www.w3.org/Submission/2004/SUBM-OWL-S-
20041122/>

5. Searle, J.R, “Speech Acts – An essay in the philosophy of language”, Cambridge
University Press, 1969

6. “FIPA Communicative Act Library Specification”, FIPA, 2002. <http://www.fipa.org/
specs/fipa00037/SC00037J.pdf>

7. Esteva, M., Sierra, C.: “ISLANDER 1.0 language definition”, Technicl Report of the
Institut d'Investigació en Intel.ligència Artificial, IIIA-TR-02-02, 2002 <http://www.iiia.
csic.es/~marc/islander-report.pdf>

8. ISO 7498/CCITT X.200, “Open Systems Interconnect Basic Reference Model”, 1994
International Standards Organisation.

9. Esplugas-Cuadrado, J., Preist, C., Williams, S., “Integration of B2B Logistics Using
Semantic Web Services”, Lecture Notes in Computer Science, Volume 3192, Aug 2004

10. Chris Preist, Javier Esplugas-Cuadrado, Steven A. Battle, Stephan Grimm, Stuart
K.Williams, Automated Business-to-Business Integration of a Logistics Supply Chain
Using Semantic Web Services Technology, Lecture Notes in Computer Science, Volume
3729, Oct 2005, Page 987

11. Bochmann, G.V., “Higher-level protocols are not necessary end-to-end”, ACM
SIGCOMM Comput. Commun. Rev., Vol 13, No 2, April 1983.

12. Tomas, J.G., Pavon, J., and Pereda, O., “OSI service specification: SAP and CEP
modelling”, ACM SIGCOMM Comput. Commun. Rev., Vol 17, No 1-2, Jan-Apr 1987

13. Calvert ,L., and Lam, S. S., “Deriving a protocol converter: a top-down method”, ACM
SIGCOMM Comput. Commun. Rev., Vol 19, No 4, Sept. 1989.

 Protocol Mediation for Adaptation in Semantic Web Services 649

14. Tao, Z. , Bochmann, G.V., Dssouli, R., “A formal method for synthesizing optimized
protocol converters and its application to mobile data networks”, Mobile Networks and
Applications, Vol.2 No.3, p.259-269, Dec. 1997

15. “RosettaNet Implementation Framework: Core Specification Version 2.00.01”, March
2002, <http://www.rosettanet.org>

16. ISO 9735, “Electronic data interchange for administration, commerce and transport
(EDIFACT) -- Application level syntax rules”, 2002, International Standards Organisation

17. Harel, D. “Statecharts: A Visual Formalism for Complex Systems”, Science of Computer
Programming, Vol , No 3 p. 231-274 June 1987

18. Milner, R., “Communications and Concurrency”, Prentice-Hall, ISBN 0-13-115007-3,
1989.

19. Battle, S. “Round Tripping between XML and RDF”, Poster ISWC 2004, <http://
iswc2004.semanticweb.org/posters/PID-BRRGVFRE-1090254811.pdf>

20. Berners-Lee, T., Fielding, R., Masinter, L., “Uniform Resource Identifier (URI): Generic
Syntax.”, RFC 3986, IETF, January 2005. <http://www.ietf.org/rfc/rfc3986.txt>

21. Dean, M., Schreiber, G. (eds), “OWL Web Ontology Language Reference” W3C
Recommendation, 10 Feb 2004. < http://www.w3.org/TR/2004/REC-owl-ref-20040210/>

22. VSCL Ontology <http://swws.semanticweb.org/ontologies/protocolMediation/vscl>
23. Beckett, D. (ed), “RDF/XML Syntax Specification (Revised)”, W3C Recommendation,10

February 2004, < http://www.w3.org/TR/2004/REC-rdf-syntax-grammar-20040210/>
24. Sample VSCL Abstract Protocol Description <http://swws.semanticweb.org/ wp8/

logistics>
25. Sample VSCL Concrete Protocol Description<http://swws.semanticweb.org/ontologies/

choreo/rn.owl>
26. Mozilla Rhino: JavaScript for Java <http://www.mozilla.org/rhino>
27. Waldo, J., Wyant, G., Wollrath, A. and Kendal, S., “A Note on Distrubuted Computing”,

Sun Microsystems Laboratories, Inc TR-94-29, Nov. 1994, <http://research.sun.com/
techrep/1994/smli_tr-94-29.pdf>

28. Feier, C. (ed), “WSMO Primer”, DERI Working Draft, Apr 2005, <http://www.wsmo.org/
TR/d3/d3.1/v0.2/>

29. Fensel, D., Bussler, C., “The Web Service Modeling Framework WSMF.” In: Electronic
Commerce Research and Applications, Vol. 1, Issue 2, Elsevier Science B.V., Summer
2002. <http://www.wsmo.org/papers/publications/wsmf.paper.pdf>

30. Roman, D., Scicluna, J., Feier, C. (eds), “Ontology Based Choreography and
Orchestration of WSMO Services”, DERI International, March 2005, <http:// www.
wsmo.org/ TR/d14/v0.2/>

31. BEA, IBM, “BPELJ: BPEL for Java” Joint Whitepaper, March 2004, <ftp://www6.
software.ibm.com/software/developer/library/ws-bpelj.pdf>

32. Intelligent Software Components <http://www.isoco.com>

Ideas and Improvements for Semantic Wikis

Jochen Fischer, Zeno Gantner, Steffen Rendle,
Manuel Stritt, and Lars Schmidt-Thieme

Department of Computer Science, University of Freiburg
Georges-Köhler-Allee 51, D-79110 Freiburg, Germany

{jocfisch, ganter ,stritt, lst}@informatik.uni-freiburg.de,
steffen@rendle.de

Abstract. We present an architecture for combining wikis containing
hypertext with ontologies containing formal, structured information. A
web-based ontology editor that supports collaborative work through ver-
sioning, transactions and management of simultaneous modifications is
used for ontology evolution. In wiki pages, ontology information can be
used to render dynamic content and answer user queries. Furthermore,
query templates are introduced that simplify the use of queries for inex-
perienced users. The architecture allows easy integration with existing
ontology frameworks and wiki engines. The usefulness of the approach is
demonstrated by a prototypical implementation as well as a small case
study.

1 Introduction

A wiki, short for WikiWikiWeb [1], is a website that allows collaborative creation
and editing of hypertext content, usually expressed in a simple markup language.
COW, Combining Ontologies with Wikis1, is a novel approach to build a semantic
wiki, by bringing together two different concepts: easy content evolution with the
help of wikis, and formal knowledge representation using ontologies. We use the
KAON tool suite [2] as back-end for an ontology editor and a query processor; a
simple text wiki engine complements the system’s functionality. Our approach is
different from other semantic wikis in two aspects: The ontology data is edited
and stored outside the text wiki, and we implemented so-called query templates,
which can be particularly useful for inexperienced users (figure 1).

Although there are already some approaches to using wiki-like systems (see
section 2) in the context of ontologies [3] and the Semantic Web [4], still a
lot remains to be explored in this field. Requiring detailed knowledge about
languages like RDF or OWL would contradict an important aspect of the wiki
idea: simplicity and ease of use. It would be comparable to forcing the use of full
HTML in text wikis, instead of a more user-friendly and minimalistic syntax.

1 http://www.informatik.uni-freiburg.de/cgnm/software/cow/, available under the
terms of the GNU General Public License.

Y. Sure and J. Domingue (Eds.): ESWC 2006, LNCS 4011, pp. 650–663, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Ideas and Improvements for Semantic Wikis 651

This paper is structured as follows. In the beginning, we give an overview
on semantic wikis developed so far. Then we present COW’s architecture, and
how ontology editing works in the application, with special focus on problems
that may occur during simultaneous editing. Next, we introduce COW’s query
functionality. Finally, we show how these features could be used in a concrete
application, a small biographical lexicon.

2 Related Work

Platypus Wiki [5] is a wiki engine that allows entering RDF and OWL statements
in addition to natural language text. Unlike our system, it treats the statements
in the ontology language as text, instead of providing information on a conceptual
level. It also lacks ontology querying, which COW offers both interactively and
integrated in the text wiki.

Rhizome2 [6] is a wiki-like content management system built on top of the
RDF application server Raccoon. Metadata is described by the RxML language.
RxPath is used for querying the RDF model. Again, the drawbacks are the
rather complicated RxML, the difficulty of querying, and the lack of support for
collaborative work.

MediaWiki3, the software behind Wikipedia, enables the user to categorize ar-
ticles, or, more generally, wiki pages. Categories themselves can also be included
in other categories. While this is useful for grouping articles, the associations en-
coded directly and indirectly using the category feature are not exploited e.g. for
improving search results. Beyond categorization and links, there is no possibility
of adding formal, well-defined information to the content. COW allows building
ontologies that are more complex than a taxonomy of categories. There is an
approach to extend MediaWiki with so-called “semantic links”, which encode
relations between page subjects [7].

WikSAR [8] and SemWiki4 are wiki engines which allow entering semantic
content in the normal text. Both systems offer query mechanisms, however they
lack query templates. Again semantic information has to be represented in a
formal language and is stored as part of normal wiki pages.

Similar to other wikis COW adopts the web-based user interface from seman-
tic wikis like Platypus or Rhizome. Hence the system can be accessed by any web
browser. In contrast to other semantic wikis like WikSAR, a frame-based view
for ontology editing is implemented, similarly to Protégé [9] or WebODE [10].
The ontology data itself is not stored in a text wiki, but in a separate database,
where it is kept consistent. Several existing text wikis can be adapted to work
with the software. To make use of the ontology data, COW uses the KAON
query language and extends it by query templates, which will be described later
in this article.

2 http://rhizome.liminalzone.org/
3 http://www.mediawiki.org/
4 http://www.dello.net/semwiki/

652 J. Fischer et al.

Fig. 1. COW renders normal text (top and bottom of the page), query templates (the
question with the pull-down menu), and dynamic content (list in the center)

3 Architecture

COW has a multi-tier architecture (fig. 2) consisting of the following parts:
persistence layer, ontology layer, abstraction layer, and an HTML-based user
interface.

Ideas and Improvements for Semantic Wikis 653

Fig. 2. COW Architecture

All end-user interaction with COW is done with a standard web browser
using only plain HTML. Neither Java applets nor JavaScript are used. Thus we
support one of the wiki principles, namely low client-side requirements.

Abstraction and Ontology Layer

An abstraction layer for language refinement and version management separates
the wiki and ontology editor components from a general purpose ontology frame-
work. This layer provides a lightweight, string-based interface to communicate
with the front-end, stores the ontology permanently in a database, and is able
to handle queries.

COW uses the ontology framework KAON [2] to implement the interface of
the abstraction layer. A useful feature of KAON is the evolution log, a list stored
in a meta-ontology where all ontology changes are logged. This log enables us to
restore any previous version of the ontology. The framework does not allow in-
consistent states of the ontology. After applying a change, either the ontology is
consistent or an exception will be thrown (and caught). In combination with the
locking mechanism, which will be described later, this ensures effective collabo-
rative editing of the ontology. Internally COW uses the ontology language RDF
plus extensions like transitive and inverse properties. To support the reusing
ontology information we provide a dynamic page which exports the complete
ontology in OWL.

Integration into Existing Wiki Engines

Although we implemented a minimalistic wiki engine, we designed the other
components of the system to be as independent as possible from the used wiki
engine. Little work is necessary to combine the ontology editor and the query
engine with the text wiki.

654 J. Fischer et al.

To demonstrate the independence of the system, we also integrated COW’s
functionality into JSPWiki5. A small plugin encapsulating the query function-
ality was developed. The linking is realized by taking advantage of the concept
of interwiki links6: E.g., the code [Concept:Person] is rendered to an HTML
link pointing to the ontology view of the concept Person.

4 Ontology Editing and Browsing

In a classical wiki scenario one might identify two groups of users: readers and
contributors. The first ones use information already stored in the system. The
later ones contribute information to the system. Wikipedia reports that at least
99% of its daily visitors are readers and only less than 1% are contributors7.

For semantic wikis, a third group can be detected which we call “experts”:
People with sufficient understanding of knowledge representation mechanisms to
contribute to the semantic data of the web site, especially the ontology structure.
Note that these three groups are not disjoint: Both text contributors and experts
usually also act as readers, although they should not be regarded as typical
members of the group.

For the success of a semantic wiki it is crucial that the system is capable of
serving the needs of all three groups. Because the group of readers is the vast
majority the overall success of a system depends mostly on them. That is why the
systems should be designed to be easy and intuitive for these readers. Secondly
it is important that inexperienced contributors can work on the system, so that
the content can grow fast.

We think that today’s semantic wikis address mostly the group of experts. By
separating the ontology storage from the wiki text, we avoid confusion among
the contributors who are not experts.

In order to allow inexperienced users to help populating the ontology, COW
has a slot-based graphical ontology editor. This way instances may be created
without much expertise. It is important to note that no user has to learn a formal
language like RDF or OWL.

We created a simple web-based ontology editor component, because, at the
time of COW’s initial development, there was no such system available. Today,
we might consider using pOWL [11].

5 Ontology Locking, Transactions, and Versioning

For collaborative work on ontologies, our system supports ontology versioning,
transactions and locking of editing sessions. The objective of these features is to
5 http://www.jspwiki.org/
6 See http://c2.com/cgi/wiki?InterWiki for an explanation.
7 Estimination based on last available visitor statistics of October 2004. There

are 917,000 daily visitors and there are only about 11,000 contributors that
have ever edited more than 5 pages. http://en.wikipedia.org/wikistats/DE/-
TablesWikipediaZZ.htm

Ideas and Improvements for Semantic Wikis 655

Fig. 3. Screenshot of the editor with the ontology browser as active module

keep the ontology consistent and to provide an natural and simple workflow to
the user.

Locking Strategy for Editing Ontology Elements

A central problem of simultaneous editing of ontologies is how to synchronize
different editing sessions. In text wikis, every page is the atomic element for
editing operations. When a user starts to edit a page, the wiki system locks
this page for other editing operations until the user applies his changes or after
a certain time threshold expires. Other wiki engines use a “first come, first
served” strategy for check-ins. Locking mechanisms for ontology systems are
more complicated because of dependencies between several entities. For example
if user A edits instance I of concept C and user B adds a slot with domain
C, the editing session of user B depends on A’s changes. Therefore, locking of
single entities is not sufficient. On the other hand, locking the ontology as a whole
obviously is an obstacle for concurrent editing, especially for large ontologies that
many people want to work on simultaneously. Furthermore, as locking should be
applied only if necessary, and in wikis users sometimes start the edit mode, but
do not apply any changes, any locking mechanism which is applied at check-out
time is unnecessary restrictive.

COW’s checks are performed when the user commits changes. These checks
guarantee that the result of the check-in is comprehensible for the user. The
changes to an entity are refused by the system if the editor view of this entity
has changed in the meantime. With this strategy users always know the exact
effects of their editing operations. All dependencies causing a change of the edit

656 J. Fischer et al.

Fig. 4. Screenshot of the instance editor with instance Albert Einstein in edit mode

view are considered, even inferred ones. Fig. 5 shows how our locking mechanism
works.

We have tested our strategy in our case study, where we have built and pop-
ulated the ontology simultaneously. The system had to refuse editing operations
quite rarely even though our ontology changed often. Generally, our locking mech-
anism stayed in the background and did not disturb working collaboratively.

Transactions for Ontology Modification

In RDF-based knowledge representation, the smallest unit of information is an
RDF triple. As triples of an editing session depend on each other, changes on the
knowledge base should be performed according to the ACID principles8. Thus we
offer a transaction mode for ontologies, which guarantees that either all changes
are applied or none.

Ontology Versioning

The most important design issue with respect to ontology versioning is the gran-
ularity of the versioning method. Versioning every entity – concepts, instances,
properties – on its own would imply that previous versions of each entity could be
restored independently from the rest of the ontology. Unfortunately, this would
be very complicated because of dependencies between ontology entities. Even if
it were possible to find a strategy that can manage different versions of entities

8 Atomicity, consistency, isolation, and durability are the key properties of transactions
in database management systems. See [12].

Ideas and Improvements for Semantic Wikis 657

Fig. 5. Demonstration of the locking mechanism. Saving X is accepted if and only if
the editing view, including possible inferred values, of X has not been changed.

and handles the dependencies in a way that ensures a consistent ontology [13],
it would be everything but comprehensible to the user.

Our approach versions the whole ontology. If users want to restore old ver-
sions, they have to set the complete ontology to the old state. With regard to
simplicity, we think that this is an effective way that is traceable by the users.
Of course a roll-back to an older version of the complete ontology might imply
a lot of changes. It’s out of the focus of this paper to implement state-of-the-art
ontology-versioning, which is still an active topic of research. For example, a
more elabotative approach could version independent domains in an ontology
seperately, which might be an interesting feature for future work.

6 Querying Ontologies Inside the Wiki

An application for browsing and editing both a text collection and an ontology
requires the possibility to search the text as well as query the content of the
ontology. In COW, the users specify queries, either using a dedicated page, or
by directly embedding them into wiki pages. The query results, usually instances,
provide both hyperlinks to the article pages and to the ontology browser.

Normal queries are statements in the KAON query language, which will be
described briefly below. Additionally, we developed query templates that can be
added to wiki pages. These templates are queries with free variable parame-
ters, which have to be filled by the user executing the query. Note that this is
realized by passing queries to the underlying ontology framework. Other query
languages could be supported by using another ontology framework or by adding
components supporting the language.

KAON offers a comfortable language for querying ontologies. In analogy to
SQL, which is a closed language over relations, the language is closed over con-
ceptual descriptions.

658 J. Fischer et al.

The simplest queries are questions about facts that are directly stored in an
ontology, like the property values of a given instance. If a user wants to know
when Albert Einstein was born, he has just to enter

<#day-of-birth> IN:1 !#Albert_Einstein!

Besides this, the system can also answer queries by using its inference mech-
anism:

[#Physicist] AND
SOME(<#is-born-in>.<#located-in>=!#Europe!)

#Albert Einstein will be in the result set, even though it is not directly
stored in the ontology that he was born in Europe. It is not even stored that his
home town, Ulm, is located in Europe, but KAON’s reasoning engine derived
this from the information that Ulm is located in Germany, Germany is located in
Europe, and the <#located-in> property is transitive. As the <#located-in>
property is not reflexive, the query will not yield persons for whom it is only
stated that they were born in Europe. Thus to get correct results, one has to
enhance the query a little bit further:

[#Physicist] AND (SOME(<#is-born-in>.<#located-in>=!#Europe!)
OR SOME(<#is-born-in>=!#Europe!))

While KAON’s query language is fairly simple and offers lots of useful con-
structs, it still has disadvantages for its use in a system that wants to be user-
friendly for non-experts which it will never overcome: It is a formal language with
strict syntax and semantics, and there might be subtle differences between the
user’s conceptual model and the actual ontology which will have a undesirable
or at least unexpected impact on the query results.

Because we do not see a viable alternative to a formal query language, we
decided to use such a language in COW, to empower at least the users having
the necessary expert knowledge to use the query feature.

As the queries are stored on the wiki pages, other users can look them up and
use them as examples or boilerplates for constructing their own queries. By and
by, a collection of useful queries might be accumulated in the wiki.

Query Templates

One way to facilitate the reuse of queries is query templates, queries with place-
holders waiting to be filled by the user with instances or literal values. Expert
users may create typical questions on important concepts of the ontology, e.g.
persons and awards in our case study, which then can be used by all users who
want to get information from the system. As a wiki also serves as a commu-
nication platform for its user community, people also might approach others
for getting certain queries implemented. This can make a semantic wiki a more
useful tool than a normal collaborative editor for ontologies.

Ideas and Improvements for Semantic Wikis 659

A query template is a triple (q, t, s), where

– q is a query containing placeholder variables enclosed in dollar signs (“$”),
each variable may occur several times in the query;

– t is a string containing a natural language phrase - usually a question -
representing the query, each variable in q occurs exactly once in t together
with a type statement;

– s is a set of tuples containing the mappings from all non-string variables to
the queries that yield the set of (property) instances that will be presented
to the user as values to be selected for the variables.

A placeholder variable has the form $NAME$, a variable with a type statement
has the form $NAME:type$, where type can be instance, concept, property,
or literal. For example:

q=’SOME (<#worked-with>=$PERSON$)’
t=’Who worked with $PERSON:instance$’
s={(’PERSON’,’[#Person]’)}

In the wiki, this query template will be displayed as the question formulated
above. All the variables are replaced by pull-down menus or input fields inside the
question. After filling out or selecting all the items, the user will be redirected
to a page where the results of the query are presented. We think that other
semantic wikis can profit from the concept of query templates as well, because
such templates can be implemented on top of any query language.

Queries to the ontology are not limited to question answering. Because the
query results are rendered into the wiki pages, they can also serve as a means
of dynamically displaying content. Changes in the ontology are then directly
reflected on the wiki pages. Possible examples include received awards and lists
of works in biographical articles, and index pages, e.g. “all chemists” or “all
Nobel prize winners”.

So wiki pages can consist of a combination of normal text and ontology data
rendered to text. With respect to our defined user groups the following sce-
nario is possible: A contributor creates a new wiki page describing the life of
Albert Einstein. In this description he writes about the scientists Albert Ein-
stein worked with. When an expert contributor sees this, he might replace the
text formulated in natural language with a semantic query (template). For ex-
ample he could create a query that yields all scientists who worked with Albert
Einstein and further extend the query by a parameter ’country’ so that users
can query the ontology for all scientists who worked with Albert Einstein and
live in a specific country (fig. 8). Such dynamic content depends on the ontology,
but it is accessible transparently for all kinds of users. Even a reader with no
knowledge about ontologies is able to read the natural language text and select
a parameter in a drop down box to get specific information. Fig. 6 shows how a
dynamic page is created and fig. 7 shows how a reader sees it.

660 J. Fischer et al.

Fig. 6. Queries can be used as
dynamic content

Fig. 7. COW renders dynamic
content

7 Case Study: A Biographical Lexicon

We created a small biographical lexicon, containing Nobel Prize winners, their
families and coworkers. The natural language content has been taken from the
Wikipedia. Important information of the content of biographies like day and
place of birth, citizenship and so on have been formalized in the ontology. We
created three main classes: Award, Person and Location each with several sub-
classes. The ontology is populated with 37 instances of Person, 12 of Award and
52 of Location.

The combination of an ordinary wiki together with an ontology leads to an im-
pressive boost of information retrieval. To get a feeling for this extension, we will
examine a small example. The user wants to add a new instance called Albert
Einstein. Einstein worked together with Max Planck, so he adds the instance
Albert Einstein and fills its worked-with property slot with the existing in-
stance Max Planck. As the the property worked-with is symmetric, COW is
able to infer that also Max Planck worked together with Albert Einstein. This
fact is also shown the instance view of Max Planck.

The benefit is that we get additional information through the ontology view
of Max Planck without editing the instance manually. The ontology not only
provides additional information, it also can be used for queries. Queries can
directly be implemented into the articles, which allows the representation of
dynamic content. If you want to add a list of coworkers in the biography of
Albert Einstein, a query can be inserted which updates the list on each page
view, using the ontology data. The walk-through shown in fig. 8 summarizes
how COW can be used for this kind of application and how users can profit
from semantic information.

Ideas and Improvements for Semantic Wikis 661

Fig. 8. Query templates are embedded into normal wiki text (1). COW renders this
query as a question with forms to be filled out by the user (2). The user has the
possibility to execute the query and view the result (3a) or to click on an instance to
see further information (3b). Talk pages allow discussions about any entity (4)

8 Conclusion

We presented an architecture for extending wikis for unstructured information to
also maintain formalized structured information by Combining Ontologies with
Wikis (COW). COW has all features of a common wiki and additionally allows
the collaborative evolution of an ontology. In contrast to existing semantic wiki
systems, it offers an easy-to-use ontology editor and does not confront normal
users with ontology data inside the page source code. The editor’s smart lock-
ing mechanism enables multiple users to work on the knowledge base without
unnecessary conflicts; transactions guarantee the ontology to remain consistent.
By querying the ontology, dynamic content as part of wiki pages can be created
and users can issue queries. Queries can be formulated by means of a formal
query language as well as using simple query templates.

662 J. Fischer et al.

In our future work, we will extend COW by input templates, a complementary
mechanism to query templates. Input templates will allow inexperienced users
to populate the ontology via forms as an alternative to using the web-based
ontology editor. Instead of versioning the complete ontology, we will investigate
more fine-grained version control policies. Other extensions could be automatic
renaming of the entities referenced in a query or a query template when the
ontology is changed, the use of ontology engines other than KAON, and queries
in emerging standard languages like SPARQL [14] or RDQL [15].

Acknowledgements

We would like to thank Ljiljana Stojanovic and Boris Motik (formerly at AIFB
Karlsruhe) for patiently answering our questions regarding KAON, and the three
anonymous reviewers whose comments and suggestions helped to improve this
article.

References

1. B. Leuf, W. Cunningham. The Wiki Way: Quick Collaboration on the Web
Addison-Wesley Longmann, 2001.

2. E. Bozsak, M. Ehrig, S. Handschuh, A. Hotho, A. Maedche, B. Motik, D. Oberle,
C. Schmitz, S. Staab, L. Stojanovic, N. Stojanovic, R. Studer, G. Stumme, Y. Sure,
J. Tane, R. Volz, V. Zacharias. KAON - Towards a large scale Semantic Web. In E-
Commerce and Web Technologies, Third International Conference, EC-Web 2002,
Aix-en-Provence, France, September 2002.

3. T. R. Gruber. A Translation Approach to Portable Ontologies. In Knowledge Ac-
quisition Volume 5 Issue 2, 1993.

4. T. Berners-Lee, J. Hendler, O. Lassila. The Semantic Web. In Scientific American,
May 2001.

5. R. Tazzoli, P. Castagna, S. Campanini. Towards a Semantic Wiki Wiki Web.
Poster Track, 3rd International Semantic Web Conference (ISWC2004), Hi-
roshima, Japan, November 2004.

6. A. Souzis. Building a Semantic Wiki. In IEEE Intelligent Systems, vol. 20, no. 5,
September/October 2005.

7. M. Völkel, M. Krötzsch, D. Vrandecic, H. Haller, R. Studer. Semantic Wikipedia.
In Proceedings of the 15th International Conference on World Wide Web (WWW
2006), Edinburgh, Scotland, May 2006.

8. D. Aumueller, S. Auer. Towards a Semantic Wiki Experience – Desktop Integration
and Interactivity in WikSAR. In Proceedings of the 1st Workshop on The Semantic
Desktop. 4th International Semantic Web Conference, Galway, Ireland, November
2005.

9. N. Noy, M. Sintek, S. Decker, M. Crubézy, R. Fergerson, M. Musen. Creating
Semantic Web Contents with Protégé-2000. In IEEE Intelligent Systems, Volume
16 Issue 2.

10. O. Corcho, M. Fernández-López, A. Gómez-Pérez, O. Vicente. WebODE: An In-
tegrated Workbench for Ontology Representation, Reasoning and Exchange. 13th
International Conference on Knowledge Engineering an Knowledge Management
(EKAW’02), October 2002.

Ideas and Improvements for Semantic Wikis 663

11. S. Auer. pOWL – A Web Based Platform for Collaborative Semantic Web De-
velopment. In Proc. of 1st Workshop Workshop Scripting for the Semantic Web
(SFSW’05), Hersonissos, Greece, 2005.

12. C. J. Date, An Introduction to Database Systems, Seventh Edition, 2000.
13. B. Parsia, E. Sirin, A. Kalyanpur. Debugging OWL Ontologies. In Proceedings of

the 14th International World Wide Web Conference, Chiba, Japan, 2005.
14. E. Prud’hommeaux, A. Seaborne (editors). SPARQL Query Language for RDF.

W3C Working Draft, February 2006.
15. A. Seaborne. RDQL – A Query Language for RDF. W3C Member Submission,

January 2004.

WikiFactory: An Ontology-Based Application
for Creating Domain-Oriented Wikis

Angelo Di Iorio, Valentina Presutti, and Fabio Vitali

University of Bologna, Mura Anteo Zamboni 7, 40127 Italy

Abstract. Wikis play a leading role among the web publishing envi-
ronments, being collaborative tools used for fast and easy writing and
sharing of content. Although powerful and widely used, wikis do not sup-
port users in the aided generation of content specific for a given domain
but they still require manual, time-consuming and error-prone interven-
tions. On the other hand, semantic portals support users in browsing,
searching and managing content related to a given domain, by exploit-
ing ontologies. In this paper we propose a specific application of web
ontologies, applied to the wikis: exploiting an ontological description of
a domain in order to deploy a customized wiki for that specific domain.
We describe the design of an ontology-based framework, named WikiFac-
tory, that aids users to automatically generate a complex and complete
wiki website related to a specific area of interest with few efforts. In or-
der to show the applicability of our framework, we present a specific case
study that describes the main WikiFactory capabilities in constructing
the wiki website for a Computer Science Department in a University.

1 Introduction

Wikis are collaborative tools used for fast and easy writing and sharing of content
on the Web. They provide a simple, quick, informal way to create web sites, web
applications, shared environment for discussion and document collections, tools
for distributed cooperative writing, and so on. The success of grassroot, yet
authoritative, information sources based on wiki technologies (examples include
sites such as Wikipedia [25], Portland Pattern Repository [6] or World66 [28]) is
greatly due to the informal, unimposing, encouraging relaxed attitude towards
open contributions that is the true mark of wiki applications.

Wikis are, at heart, a collection of text documents that are displayed as
HTML pages through a simple server-side collection of scripts. Interfaces for
editing and creating new content, as well as text conventions for expressing
some text styles and hypertext links, allow some complexity in the final result.
Yet wikis remain fundamentally generic tools, and what they are good for, sub-
stantially, is creating large and flat collections of web pages linked to each other.
It is very hard (or, rather, it is very easy but completely manual) to create struc-
tures, especially repeating structures, and preorganizing content and pages for
large scale, structured, systematic expression of organized content.

Thus, while it might be very fascinating that users are allowed to create
fairly sophisticated content and sites without special applications, and without

Y. Sure and J. Domingue (Eds.): ESWC 2006, LNCS 4011, pp. 664–678, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

WikiFactory: An Ontology-Based Application 665

any knowledge of HTML, CSS, HTTP, and any other basic web technologies, it
could be frustrating to discover that all wikis will require that not only the actual
content pages, but navigation lists, intermediate pages, recurring substructures,
etc., need to be specified manually and repeated manually as many times as
required by the complexity of the content to be put on line. For instance, a
university faculty that decides to put on-line a wiki to describe its course offering,
might find appealing that the wiki allows easy editing of each course page to each
individual professor, but also discouraging that it has to create one by one all
individual pages for courses, classes, professors, rooms, events, exams, and so on.

Each domain suggests a basic and natural structure of subsites, naviga-
tion patterns, organization of home and intermediate pages, automatic inter-site
links, down to the content template of each individual page. Current generation
wiki clones do not provide tools for the aided generation of domain-oriented
wikis. Furthermore, since a wiki is a live entity continuously generated and
updated and modified, the need for aided generation of substructures exists
throughout the useful life of the wiki itself.

The creation of domain-oriented publishing environments can be supported
by the emerging Semantic Web technologies. The Semantic Web is an extension
of the current Web where information is given in a machine understandable
form [3] by means of a fundamental ”‘tool”’: the ontology. Web ontologies are
collections of semantic classes and relations that provide us with a powerful way
to express assertions and constraints about the world, and consequently about
every specific domain of knowledge. Some technologies have been introduced to
manage such web ontologies: Web Ontology Language (OWL) [26], that is the
standard language for the definition of Web ontologies, and Resource Description
Framework (RDF) [27], that is the base model of the Semantic Web.

In this paper we propose a specific application of web ontologies, applied to
the wikis: exploiting an ontological description of a domain in order to deliver a
customized wiki for that specific domain. We have designed a framework, named
WikiFactory, that automatically builds a domain-based wiki, taking in input
the description of the world where that wiki will be used. The most relevant
advantage of such approach is clear: simplifying the creation of the wiki pages,
avoiding users to manually set their internal structures and links. Moreover,
these pages are natively decorated with metadata, directly extracted from the
input ontology. As semantic portals do, the domain-oriented wikis simplify the
creation, searching and management of content in a specific domain of interest.

Actually, WikiFactory has another relevant goal, that is the delivery of a
reliable, available and scalable wiki. Another limitation with current generation
wikis, in fact, is that they work in a best effort way with no expectation of these
requirements. Organizations who need strong guarantees in terms of high avail-
ability of the services, or guaranteed support for a large number of users at the
same time, or for robustness of the service in face of hardware or network fail-
ures, would surely decide that no wiki can provide these guarantees, and therefore
turn to different kinds of software. Thus, besides being domain-oriented, wikis

666 A. Di Iorio, V. Presutti, and F. Vitali

produced by WikiFactory are Qos-enabled, that is able to guarantee a given
quality of service. We term these kind of wikis B-Wiki.

In this paper we only focus the attention on the ontological aspects of Wik-
iFactory, by investigating some issues related to the use of ontologies for the
creation of specialized wikis. Issues and solutions about QoS requirements and
the deployment of the complete B-Wiki will not be discussed here. The rest of
the paper is structured as follows. Section 2 discusses some related works. Section
3 describes the proposed WikiFactory framework with its principal components.
Section 4 presents a case study that shows the applicability of the framework.
Section 5 presents some concluding remarks and future works.

2 Related Works

All wiki applications (the so-called WikiClones, to stress that they are derived
from the original and true WikiWikiWeb application [24]) share the same basic
philosophy of open editing and a common approach to simple text-based syntax
for editing and content writing, but distinguish from each other for the addi-
tional services and application modules they offer to their users. These features
cover the most varied areas: PurpleWiki [11] provides a full control on content
fragments, JotSpot[9] integrate collaborative tools, SnipSnap[10] allows users to
in-line organigrams and UML diagrams and a lot of other examples can be cited.

Particularly interesting are those projects that aim at integrating wikis
with Semantic Web technologies, known as ”‘SemanticWikiWikiWebs [23]”’.
Pytypus[19] is a collaborative semantic engine that uses RDF as a base tech-
nology: wiki pages are annoted with RDF and stored in a semantic database,
in order to be easily searched by agents. Platypus Wiki [17] offers a simple user
interface to create wiki pages with metadata based on W3C standards such as
RDF [27] and OWL [26]. Rhizome [2] allows users to create content with explicit
semantics, with little effort. Instead of the common wiki syntax, Rhyzome uses
a specialized plain-text format, called ZML: users can annotate documents and
express statements on resources without using RDF, but simply editing ZML
pages and following simple rules (server-side, a specialized engine transforms
this content in RDF statements and manages a rich network of metadata). Sim-
ilarly, RDFWiki [16] provides users a simple text-based interface to edit content
but stores all data as RDF. Users can express predicates on objects, and all wiki
content can be exported as N-Triples. Similarly PeriPeri[4] allows users to deco-
rate the wiki pages, adding metadata to the top of a page like an email header.
With WikSar[7], authors can also embed on pages commands to gather content
from all the available data in the repository. SemperWiki[12] aims at integrating
such searching and indexing funcionalities with a usable interface and a personal
space for each user.

Other projects deal with the automatic extraction of information and rea-
soning about wikis. In [14] authors propose an implementation to make content
of Wikipedia understandable and processable by machines. They suggest the
introduction of typed links among pages as a simple way to achieve this goal,

WikiFactory: An Ontology-Based Application 667

without loosing the soundness and usability of Wikipedia. WikiSense [13] aims at
applying data-mining techniques to MediaWiki (the wiki-clone which Wikipedia
relies on) in order to automatically extract the underlying web of concepts and
relations.

Even if not directly connected with wikis, many projects by the Semantic
Portals Community share issues and solutions with our work and are worth
to be mentioned and compared each other. For instance, OntoWebber [29] is an
integrated system that exploits ontologies to create different models and views of
data, and present them on the web. The declarative model behind OntoWebber
supports users throughout the whole life-cycle of a web-site and allows them to
easily instantiate web pages from heterogeneous data sources.

Similarly SCWP [21] uses ontologies to generate and manage community web
portals and to make heterogeneous information easily sharable among hetero-
geneous sub-systems. The same research group produced KA2 [20], a flexible
ontology that can be used for different domains and handled by different seman-
tic tools. Based on an artificial intelligence approach, SEAL [1] exploits ontolo-
gies to strengthen searching, import, conversion and managing of data within
web portals too. Particularly interesting is the approach proposed in EnerSearch
[22], whose sub-goal is hiding the complexity of ontologies and providing users
a simplified interface to search and insert data.

WikiFactory adopts a similar approach but designed and implemented for
wikis: hiding the complexity within the system and simplifying the internal data
model, it simplifies the automatic generation and management of content, and
consequently indexing and searching.

3 Using Ontologies to Build a Domain-Oriented Wiki
with WikiFactory

Building a domain-oriented publishing environment (for instance, a wiki) from an
ontological description is not a simple and straightforward process. Two separate
worlds, in fact, need to be merged into the output: on the one hand, we have
the domain, a set of actors, properties and actions strictly related to the reality
we are describing and apparently unrelated to the world of the wikis; on the
other hand, we have the wikis, general tools for writing and sharing content on
the web, that can be used for any domain. In order to present how WikiFactory
works we will explain, firstly, what makes a domain-oriented wiki different from
a generic one (and so, we will outline the features of an ontological description
of such wiki) and then, how WikiFactory actually transforms such ontology into
the final output.

3.1 Describing a Domain-Oriented Wiki

At first glance, a ”‘domain-oriented”’ wiki can be defined as a wiki whose pages
hold data and information useful in that domain. For instance, in a wiki cus-
tomized for a university we expect that any home-page of a lecturer holds his

668 A. Di Iorio, V. Presutti, and F. Vitali

name, his title, office hours, a list of the courses he teaches and so on, while an
enrollment page contains some instructions and a form. In a wiki of a football
team we expect that there’s a page about the league match calendar (formatted
as a set of tables, one for each match-day), a page about the history (consisting
of different paragraphs), a page with the short-list of the team, and so on.

A domain-oriented wiki is also characterized by a set of pages, linked each
other according to some patterns. We expect, for instance, that any wiki about a
football team has a home-page linked with a page about the short-list of a team,
a page about the history of the club, and a page for any player, and so on. In a
wiki for the University, we expect that, for any course, there is a home-page, a
page with a list of exams (linked to another page for the exams enrollment) and
so on. At this level, the wiki is not only composed by some disconnected pages
(whose internal structures and data are described by the ontology), but contains
well-defined sub-areas, composed of a proper set of linked pages.

The data mentioned so far cover only the first installation of a wiki. Although
this automatic deployment saves users’ time and resources, another issues still
remains unsolved: updating wikis once they live on web servers. Today users
have to manually perform these tasks: whenever a university that uses a wiki
plans to provide a new course, for instance, an user manually adds to the wiki
a home-page for that course, creates specific pages for the exams and manually
links all these resources. It should be useful to use a wiki that automatically
creates (or proposes to create) some pages, whenever other pages are manually
created by the authors: in the example of a university course, we expect that all
the pages related to a course are automatically added to the wiki, whenever an
user creates a course home-page.

3.2 Deploying a Domain-Oriented Wiki

In the previous section we have identified three main aspects that a domain-
oriented ontology for wikis can describe: static pages, clusters of pages and run-
time behaviour. The main goal of WikiFactory is just translating these data into
the actual wiki pages and scripts, following the same schema: (i) producing pages
for each element of the domain, composed by a set of internal and structured
components, (ii) producing clusters of pages organized according to a given pat-
tern and (iii) adding to the wiki some scripts that generate clusters of pages or
provide services at run-time.

Before going on discussing about the ontology within WikiFactory and its
internal processing, it is worth giving an overview of the whole framework. The
WikiFactory framework consists of four principal components, namely the On-
tology creation supporting tool, the Repository, the WikiFactory Application, and
the QoS Manager as depicted in Fig 1.

The framework uses two ontologies: the domain specific ontology, which de-
scribes the domain, and the WikiFactory ontology, which describes the generic
wiki elements and contructs. These two input objects are elaborated by a de-
signer with an ontology creation tool (e.g., Protege [18]), in order to produce an
extension of the domain ontology, which describes services and structures of a

WikiFactory: An Ontology-Based Application 669

Fig. 1. The Wiki Factory Framework

wiki useful for that domain. Note that a manual intervention by the designer is
required in order to translate the generic constructs of the WikiFactory ontology
into specialized constructs for a given domain.

After having derived the domain-oriented wiki ontology, the designer simply
saves it into the Repository. Any ontology extension stored in the database (one
for each supported domain) can be processed by the WikiFactory Application.
WikiFactory application is the core of the whole framework, in charge of trans-
lating ontologies into wikis: more details about this component will be provided
in 4.2. The output of WikiFactory Application is then passed to the QoS Man-
ager in order that produces and instantiates the final wiki (or rather, B-Wiki).
As we said, discussing about the QoS Manager is out of the scope of this pa-
per: here we only describe all the components involved in the deployment of a
domain-oriented wiki, by focusing on their internal architecture and interaction.

We have identified two different users (i.e., roles) who use the WikiFactory for
different purposes. Note that we do not want to define a methodology associated
to the use of WikiFactory, but we believe that the description of these roles can
be useful to explain how the framework actually works. The identified roles are:

– the final user, we name Bianca, i.e., an inexperienced user who adds content
to the domain-oriented wiki and uses the final wiki every day for carrying
out her tasks;

670 A. Di Iorio, V. Presutti, and F. Vitali

– an expert ontology designer, we name Andrea, who analyzes the requirements
of the domain expert users in order to produce an extension of the ontology
for that domain;

In order to explain how users (Bianca and Andrea) use WikiFactory, to pro-
vide readers more details about the role of each internal component, and to
show a concrete application of our framework, we present a case study in the
next section.

Actually, many other examples of wikis deployable from an ontological de-
scription could be also mentioned. Consider for instance, a wiki supporting Pub-
lic Administration tasks: given a detailed description of roles, bureaucratic steps
and forms, WikiFactory can create predefined areas and services, which in turn
support and guide employees through their activities on the wiki itself.

Most wikis have also been growing and developing thanks to spontaneous
contribution of different users on a shared interest. In that case, an ontological
approach can be exploited to build structured pages (and clusters of them), that
can be authored afterwards by the users, or partially authored by an automatic
process. A wiki about travel information, for example, is supposed to have some
pages about the amenities, the history, the facilities, the transportation system
and whatever, for each reviewed destination: the structure of such a wiki can be
derived from ontological data about travelling and cities. Similarly, a wiki for a
community of wine lovers can be organized in different sections and subsections,
according to the ontological classification of the reviewed wines, but thousands
of similar examples can be cited.

4 A Case Study: Computer Science Department

The environment of our case study is the Computer Science Department (CSD)
of a university, say the University of Bologna, that manages such common uni-
versity activities as teaching, research projects and locations management, and
bureaucracy. The CSD can use a wiki to make content and services accessible
through the Web, and to support its internal workflows. This wiki is not a generic
wiki but it has internal structures, content and services specific for the Univer-
sity domain, that can be described by an ontology. According to our approach,
the CSD domain is described by an OWL ontology named CSD-Ontology. Fig. 2
shows the use case diagram drawn by Andrea for the CSD. Notice that, these
use cases do not cover all the services the CSD needs and provides the users
with; however, for the purpose of our discussion we can omit some of them.

Andrea has identified three possible actors in the CSD domain: Faculty, Stu-
dents, and Administrative clerks. A Faculty member uses the wiki in order to
reserve classrooms and/or laboratories for lessons and exams, to take a book
from the library and order new books, to upload training aids, and so on. A
student can use the wiki to browse and download training aids, to enroll for
an exam, and to take a book from the library. The Administrative clerk uses
the wiki in order to manage funds (for example a financial plan for a specific

WikiFactory: An Ontology-Based Application 671

Fig. 2. The CSD Use case

research project). Let us show how such a wiki can be produced and deployed
by WikiFactory.

4.1 Creating Ontologies

Any content and service mentioned so far, is delivered or implemented by a
specific service of the CSD wiki. To this end, Andrea has to describe the CSD-
Ontology extension for these custom wiki-services. Consider, for instance, the
concepts depicted by the fragment of the CSD-Ontology shown in Fig. 3: a
Professor holds a Course that is related to a specific Topic, that is, a Professor

Faculty

Professor Courseholds

Topic

aboutteaches

Test

examination

Studentenrolls_to

Fig. 3. The CSD-Ontology (a fragment)

672 A. Di Iorio, V. Presutti, and F. Vitali

teaches that Topic. A Student enrolls for a Test that is an examination for a
Course.

A wiki for this scenario is supposed to have, first of all, a page for each
Professor. That page is linked to other pages, one for each course thaught by the
Professor (the ontology reports this relation, as well as the connection between
a course and its subject). Furthermore, the wiki has some pages for managing
each course, as a syllabus or a page to enroll students to the exam. Note that
also this information can be partially derived from the ontology.

Andrea describes what such a wiki will consist of (which are the pages, how
they are organized, which extra services are provided) and, subsequently, Wiki-
Factory instantiates such a wiki by processing data inserted by Bianca (the final
user). Basically, the task performed by Andrea is merging the CSD-Ontology
concepts (provided him by domain experts) and the WikiFactory Ontology (al-
ready included in WikiFactory) into the CSD-Ontology extension. The ontology
produced for the example, would just describe the above mentioned structure
of a wiki, with pages for professors, courses and exams. As expected such an
ontology follows the schema discussed in 3.1 and describes (i) the internal com-
ponents of each page, (ii) the clusters of inter-connected pages and (iii) the
dynamic behaviour of the wiki, when installed.

The following list briefly summarized a subset of the WikiFactory ontol-
ogy concepts. Specifically the list gives an idea of the ontology and covers the
concepts we need in order to describe the CSD scenario. First of all we need
constructs to describe single pages:

– Topic Component: an element that composes a topic or topic template such
as TextBlock, List or Table;

– Template: a set of topic components, organized according to a given struc-
ture;

– Topic: represents a page of the wiki; it consists of topic components and may
or may not be associated to a template;

In order to describe clusters of pages, we need constructs to express relations
and groups linked resources:

– Structure: a graph where each node is a topic and can be itself the root of a
structure. It is used to model document hierarchies;

– Link: a piece of text associated to a URL address and that gives users the
access to that resource;

Finally we need constructs to describe wiki services, behavior and actions.
Although we are still discussing about this side of the ontology, we probably need
only a construct that gives an high-level description of a service, linked with a
resource that actually describes the service from a procedural perspective:

– Service: is a task performed by the wiki. The service has a reference to a
resource that describes it in terms of a process.

WikiFactory: An Ontology-Based Application 673

Fig. 4. The exam wiki topic

By referring to the above described fragment of the CSD-Ontology, Andrea
derives the description of:

– the structure of a course: that is a predefined graph of topics (i.e., wiki pages)
useful to manage content and resources related to a course (e.g. training aid,
program and test enrollment);

– each topic in the structure;
– the exam enrollment service for the students.

Fig. 4 depicts the Course structure and the Exam topic definition. The struc-
ture Course represents a predefined graph of Topics related to the concept of
course (when a Faculty uses the wiki he simply has to ask a new course area,
and the related wiki pages are automatically created). The course structure con-
sists of three topics: Course (the root of the structure), Exam, Training Aid.
Andrea can also define constraints on the topics: for instance, he can state that
the Exam topic can only exist in the context of the course structure (this means
that the Exam topic cannot exist autonomously).

Moreover, Andrea can describe what each Topic consists of. For example,
Exam is a topic that contains a text area, a form element, and a table element.
The key aspect is that a relatively small set of Topic Component exists, that
can be assembled to produce any final Topic. As we discuss in the following
subsection, WikiFactory is able to produce a wiki, where any kind of page keeps

674 A. Di Iorio, V. Presutti, and F. Vitali

the structure expressed in the ontological description. In our case study, the
CSD-Ontology says that the Exam entity consists of some specific elements, so
any Exam page into the domain-oriented wiki has these elements.

The exam Topic is also associated to some services, i.e. operations to be per-
formed within this topic. For instance, the exam enrollment is a service associated
to the form and the table composing the topic Exam. What usually happens is
summarized as follows: a student wants to enroll to an exam, he/she fills the
form and the system automatically update the table. Andrea does not describe
how the system works to provide this service, but he has to simply indicate a
resource which contains this workflow description. In conclusion, he produces a
description of all the interesting pages into a wiki for the University and all the
services that can be useful in the same context. This description is stored in the
repository, so that any University can produce its own domain-oriented wiki by
giving in input the same RDF description to the WikiFactoryApplication.

4.2 Deploying Wikis with Wiki Factory Application

The WikiFactory Application, as shown in Figure 5, is the core engine of the
system and is in charge of producing the domain-oriented wiki. Note that at
this stage the produced output is not the final B-Wiki yet (domain-oriented
and Qos-enabled); rather the output is a domain-oriented wiki with no QoS
capabilities.

Fig. 5. The Wiki Factory Application

WikiFactory: An Ontology-Based Application 675

The actor involved in using the WikiFactory Application is Bianca, who
wants to configure a wiki: from her perspective, the WikiFactory Application is
a configuration tool that is being used in order to select the services the wiki will
provide users and the topics it will consist of. Bianca, without having any skill
about ontologies and the functioning of the wiki application, selects which wiki
topics and services will be included in the final wiki installation. The internal
process within the WikiFactory Application is completely transparent to Bianca,
who has to simply fill in checkboxes, options and forms by means of a graphical
interface.

She is first asked to select the domain, and then to choose the data to be
included in the domain-oriented wiki. For instance, she indicates the name of
lectures of the Department (and insert data for each of them) and the course
they teach. Since the WikiFactory Application knows (from the ontology pro-
vided by Andrea) that any course has an exam, the final wiki will automatically
have a page for each teacher, subsequently a page for each of his courses, and
finally a page to handle the corresponding exam. Furthermore Bianca can se-
lect other services useful for the community such as forum, bullettin-boards,
calendars.

What Bianca perceives as a simple task of selecting services, structures and
topics and filling them with relevant data, is actually supported by a com-
plex process within the WikiFactory Application. This aspect is worth being
remarked: our framework is designed to minimize the effort required to the users,
by hiding the complexity of the internal system components. The interface used
by Bianca is not only usable but, most of all, it is customized for a specific do-
main: she does not have to learn a different formalism to express content and
relations; neither has she to handle ontologies and wikis. Indeed, the WikiFactory
Application, by taking in input the ontological description provided by Andrea,
will dynamically present her a simple and transparent interface.

Note that our approach does not damage the easy-to-use approach of wikis,
rather it does strenghten its power. The final output of WikiFactory, in fact,
remains a wiki where users can keep on accessing and taking advantages from
such systems (actually, being the application completely independent from the
platform where content will be deployed, users can keep on using their pre-
ferred softwares too). What really changes is the process of authoring repeatable
fragments, pages and clusters of pages which becomes simpler and faster, since
some manual, error-prone and time-consuming actions are replaced by a simple
selection of features and insertion of data.

In order to be processed within the system, the data inserted by Bianca
have to be transformed into something closer to the wiki concepts (she does not
describe them in terms of wiki objects, but as information). An intermediary
output of the whole process is a Wiki Instance Descriptor. The Wiki Instance
Descriptor is a description of what Bianca has selected and filled with data.
There is a difference between a Wiki Instance Descriptor produced by Bianca
and the extended ontology produced by Andrea: while the latter describes all the
elements and services available in a given domain, the first describes only content

676 A. Di Iorio, V. Presutti, and F. Vitali

and services selected by the Department of Computer Science. Another user like
Bianca working in a different department inserts data of different teachers and
exams and probably selects different services. The RDF description stored in the
Repository specifies what a wiki for the University can contain, while the Wiki
Instance Descriptor says what the wiki of the Department of Computer Science
actually contains.

In other words, the Wiki Instance Descriptor gives a high-level description of
the outgoing wiki. The final step performed by the WikiFactory Application, in
particular by a sub-component we termed WikiFactory Engine, is to map such
a description into a specific wiki-clone. WikiFactory Application, in fact, does
not produce a new wiki-clone, but customizes some of the existing wiki-clones
in order to provide the same functionalities. The goal is not to produce another
brother of TWiki [15] or Purple [11] UseMod [8], but to use (if necessary, by
extending) each of them. In our case study, after having inserted data, Bianca
is asked to select a specific wiki-clone on which the outcoming domain-oriented
wiki will be installed.

The solution we propose relies on a strong assumption: it is possible to iden-
tify a set of basic wiki services and content elements available in any wiki-clone
that compose the final pages. Any wiki-page, in fact, can be segmented into a
number of objects like paragraphs, tables, lists and so on, although any clone
uses its own syntax and constructs pages can be easily generated from an high-
level description. Also the services can be combined in order to obtain more
complex services and features. By having an abstract definition of each basic
service and by knowing how they can be combined into a more complex one, the
WikiFactory Engine actually transforms a Wiki Instance Descriptor into a wiki
instance. We are investigating rules and patterns to decompose wiki services and
a language to be used.

5 Concluding Remarks and Future Works

Wikis are a new and exciting technology whose applications are wide and ex-
tremely innovative. On the other hand, before organizations can reliably start
using them for large scale applications, wikis need to improve on the limitations
that the current implementations suffer from.

We have identified two key issues in wikis: on the one hand, support for
automatic generation and maintenance of domain-oriented content and struc-
tures, and on the other hand specification of quality of service parameters that
are honored by wiki applications to provide guarantees of scalability and avail-
ability of the provided services and content. In this paper we have investigated
the automatic deployment of a domain-oriented wiki taking in input ontologi-
cal description of the domain. The development of web applications according to
ontologies, with examples taken from the description of a university department,
has been already described in [5]. Moving off such analysis, we have designed a
modular framework based on Semantic Web technologies that aims at creating
a semantic wiki, minimizing users’ effort.

WikiFactory: An Ontology-Based Application 677

Preliminary implementations of many of the described modules exist and
have been tested independently but we are currently investigating on the inte-
grability of these intermediate results.

WikiFactory is a lively ongoing project, whose content and results have only
been sketched in this paper. More detailed and up-to-date results can be always
found in its web site, justifiably enough a wiki itself, at the address http://swe.
web.cs.unibo.it/WikiFactory/.

Acknowledgements

We wish to thank our colleagues Giorgia Lodi and Andrea Ceccanti who work on
the Quality of Service aspects of WikiFactory and help us with interesting and
fruitful discussions about the whole project. We also wish to thank the Prof.
Fabio Panzieri of University of Bologna and our colleague Jaksa Vuckovic for
their precious comments and suggestions on earlier versions of this paper.

References

1. Maedche A., Staab S., Stojanovic N., Studer R., and Sure Y. A Framework for
Developing SEmantic portALs. In 18th British National Conference on Databases,
Oxford, UK, July 2001. LNCS Springer Verlag.

2. Souzis A. Rhizome position paper. In Proceedings of the 1st Workshop on Friend
of a Friend, Social Networking and the Semantic Web, September 2004.

3. Berners-Lee T., Hendler J., and Lassila O. The Semantic Web. The scientific
american, 2001.

4. Chris Purcell. Periperi. http://www.srcf.ucam.org/ cjp39/Peri/PeriPeri.
5. P. Ciancarini and V. Presutti. Towards Ontology Driven Software Design. In

M. Wirsing, S. Balsamo, and A. Knapp, editors, Proc. 8th ”Monterey Workshop”:
Radical Innovations of Software and Systems Engineering in the Future, pages 158–
168, Venice, Italy, October 2002.

6. Portland community. Portland Pattern Repository’s Wiki.
http://www.c2.com/cgi/wiki?WelcomeVisitors.

7. Aumueller David. Semantic authoring and retrieval within a Wiki. In Demos and
Posters of the 2nd European Semantic Web Conference (ESWC 2005), Heraklion,
Greece, May 2005.

8. Herman. Moin Moin Wiki. http://twistedmatrix.com/users/jh.twistd/moin/
moin.cgi/.

9. JotSpot Inc. Jotspot beta: the application wiki. http://www.jotspot.com/.
10. Jugel Matthias L. and Schmidt Stephan J. Snipsnap: the easy weblog and wiki

software. http://www.snipsnap.org/space/.
11. Kim E. E. Purplewiki. http://purplewiki.blueoxen.net/cgi-bin/wiki.pl.
12. Daniel Kinzler. SemperWiki: a semantic personal Wiki. In The Semantic Desktop -

Next Generation Personal Information Management and Collaboration Infrastruc-
ture at the International Semantic Web Conference, Galway, Ireland, November
2005.

13. Daniel Kinzler. WikiSense Mining the Wiki. In Proceedings of Wikimania 2005,
Frankfurt, Germany, August 2005.

678 A. Di Iorio, V. Presutti, and F. Vitali

14. Krotzch Markus, Denny Vrandecic, and Max Volkel. Wikipedia and the Semantic
Web The Missing Links. In Proceedings of Wikimania 2005, Frankfurt, Germany,
August 2005.

15. Thoeny P. TWiki: Enterprise Collaboration Platform. http://twiki.org.
16. Palmer Sean B. Rdfwiki. http://infomesh.net/2001/rdfwiki/.
17. Platypus Wiki. The Semantic Wiki Wiki Web. http://platypuswiki.sourceforge.

net/.
18. The Protégé Ontology Editor and Knowledge Acquisition System. http://protege.

stanford.edu.
19. Pytypus Home Page. http://www.pytypus.org/.
20. Benjamins V. R., Fensel D., Decker S., and Perez A.G. KA2: Building Ontologies

for the Internet: a Mid Term Report. International Journal of Human-Computer
Studies, (51):687–712, March 1999.

21. Staab S., Angele J., Decker S., Erdmann M., Hotho A., Maedche A., Schnurr H.,
Studer R., and Sure Y. Semantic Community Web Portals. In Proceedings of the
9th International World Wide Web Conference, pages 1–6, Amsterdam, May 2000.
ACM.

22. Staab S. and Studer R. Ontology-based Content Management in a Virtual Orga-
nization. Handbook on Ontologies, pages 687–712, 2003.

23. Semantic Wiki Wiki Web. http://c2.com/cgi/wiki?SemanticWikiWikiWeb.
24. Wiki Wiki Web. Cunningham and Cunningham Inc. http://c2.com.
25. Wikipedia. Wikipedia Home Page. http://www.wikipedia.org.
26. World Wide Web Consortium. OWL Web Ontology Languagefamily of specifica-

tions. http://www.w3.org/2004/OWL/, 2004.
27. World Wide Web Consortium. RDF Resourcs Description Framework family of

specifications. http://www.w3.org/RDF/, 2004.
28. World66. World66 home. http://www.world66.com/.
29. Jin Y., Xu S., and Decker S. Ontowebber: Model-driven ontology-based web site

management. In Proceedings of SWWS’01, The first Semantic Web Working Sym-
posium, California, USA, July 30 - August 1 2001.

Using Semantics to Enhance the Blogging
Experience

Knud Möller, Uldis Bojārs, and John G. Breslin

Digital Enterprise Research Institute, National University of Ireland, Galway
{knud.moeller, uldis.bojars, john.breslin}@deri.org

Abstract. Blogging, as a subset of the web as a whole, can benefit
greatly from the addition of semantic metadata. The result — which
we will call Semantic Blogging — provides improved capabilities with
respect to search, connectivity and browsing compared to current blog-
ging technology. Moreover, Semantic Blogging will allow new ways of
convenient data exchange between the actors within the blogosphere —
blog authors and blog users alike. This paper identifies structural and
content-related metadata as the kinds of semantic metadata which are
relevant in the domain of blogging. We present in detail the nature of
these two kinds of metadata, and discuss an implementation for creating
such metadata in a convenient and unobtrusive way for the user, how to
publish it on the web, and how to best make use of it from the point of
view of a blog consumer.

1 Introduction

Blogs (or weblogs) [19] are online journals or diaries, created by people to express
personal or professional views on their world or on observed items that may
be of interest to others. Blogs are updated habitually by their creators and
are usually presented in reverse chronological order. There are several popular
blogging software publishing tools available at present including Movable Type,
WordPress, Blogger and LiveJournal.

Howevever, these blogging tools lack the means to add any formal semantics to
the blog posts, apart from fixed category topics or free-text keyword tags. There-
fore blogs, and the posts that they contain, lack sufficient semantic information
regarding the topics that they are talking about or how the current topic under
discussion relates to previous blog discussion threads. By augmenting blog posts
with machine interpretable metadata, novel ways of both querying and navigat-
ing blog information become possible. Metadata about a blog or blog post can
be classified as belonging to one of two domains, which we call i) structure and
ii) content. Augmenting a blog with structural and content metadata, as well as
the new possibilities which arise from that, is called Semantic Blogging [5].

Structure generally speaking refers to the form of a blog. Structural metadata
identifies and describes things such as the individual parts of a blog (i.e. posts,
comments, ...) and their relations, as well as relations between blogs or posts
from separate blogs (or any other kind of structured publishing platform).

Y. Sure and J. Domingue (Eds.): ESWC 2006, LNCS 4011, pp. 679–696, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

680 K. Möller, U. Bojārs, and J.G. Breslin

Complementing structural metadata is content metadata, which describes the
topic of a blog post — what the post is about — e.g. a person, an event, a
publication or a webpage. The specific form of content metadata depends on the
nature of the topic described. If the topic is a person the blog post talks about,
then the metadata for this topic would be that person’s name, contact details,
etc. If it is an upcoming meeting, then the metadata would be the start and end
time, location, etc.

1.1 Example Scenario

Consider the following blogging scenario, as it would probably take place using
current web and blogging technology:

Person A works in a research group at a university. One day A’s supervisor
Prof. Gyro Gearloose tells him that he will give a presentation later that week. A
writes the following post in his blog: “On friday, 15h there will be a presentation
on martian numismatics by Gyro in Room 205. He also wrote an interesting
paper on the subject recently, in case you want to read up on it.” He adds links
to an official page announcing the event and to Prof. Gearloose’s paper.

B comes across A’s post on the web. She thinks it’s interesting and mentions it
in her own blog: “I read about this really interesting presentation on martian nu-
mismatics! I wonder how this relates to cytherian heraldics, so I will definitely go.”

C, being an avid reader of B ’s blog, decides he also wants to go to this
presentation. However, B didn’t mention any details about the event, and even
neglected to provide a link back to A’s original post. To get the information
he wants, C now has to search for ”martian numismatics” on the web. With
some luck, he finds A’s post. He manually enters the details for the presentation
into his calendaring application, so that he will be alerted ahead of the event.
Also, because he is currently writing his PhD thesis on martian numismatics, C
downloads the paper and adds the bibliographic details to a database of papers
he keeps on his computer. After some searching on the web he finds out that
“Gyro” actually refers to Prof. Gyro Gearloose, finds his homepage and enters
the professors contact details into his electronic addressbook, in case he has some
more questions on the topic.

While, in this scenario, all three participants eventually get where they want,
it is a long road and requires a lot of searching and manual copying of data, es-
pecially for C. In the ideal world, where the Web has become the Semantic Web
and Blogging has become Semantic Blogging, the scenario would look slightly
different: Aided by a semantic blogging system, A would attach formal semantic
metadata about the presentation (where, when, what, who, ...), Prof. Gearloose
(e.g. his contact details) and his paper (bibliographic details) to his blog post.
When B writes about A’s post, she would add structural metadata, indicating
that this is a reply to some other post, as well as where to find this post. Fi-
nally, C would easily get from B ’s post to A’s post, by navigating the follow-up
structure which is made accessible through structural metadata. From there,
he would simply import the semantic metadata into his own desktop applica-
tions, without having to search for and copy them manually. Spinning the story

Using Semantics to Enhance the Blogging Experience 681

further, C might even have been able to get the metadata directly from B ’s post
(because it is a reply to the original post). Furthermore, another person, let’s
call her D, who is a fan of Prof. Gearloose, would have been able to find A’s post
directly, by performing a conceptual search for upcoming presentations by Prof.
Gearloose, making use of the semantic metadata that is now available within
the blogosphere.

1.2 Problems and Solution Formulation

As illustrated by the previous example, the current blogging experience suffers
from the fact that there is little or no semantic metadata available in blogs. The
topic of a blog post is never made explicit in a machine-interpretable way (with
the exception of flat category or tagging systems).

The RSS family (e.g. RDF Site Summary (RSS1.0)1) and similar newsfeed
technologies are the most popular method for syndicating blog posts or obtaining
metadata about a blog’s internal structure. Syndication allows the copying of one
blog’s content into another blog (or into a news reader or aggregator). However,
these technologies are limited to basic concepts such as title, description and
date as well as a fixed number of the most recently-published blog posts.

In the Semantic Web, meaning can be derived from blogs in a number of ways
if advanced blog features are modelled in an ontology and blog data instances are
then provided using this ontology. By utilising the existing SIOC2 (Semantically-
Interlinked Online Communities) ontology [2], which was designed to describe a
variety of online discussion methods including blogs, we can export more meta-
data from a server about the internal structure of blog posts. By deriving as
much metadata from the underlying blog data stores as possible, connections
between concepts can be maintained in a machine-interpretable format for fu-
ture re-use. Posts on a blog can be linked to their comments, by defining reply
connections in either or both directions. The posts can also be linked to the user
account that created them, and links between related posts within the blog can
be made.

Interlinking within the blogosphere is currently mainly composed of untyped
links between posts and users, as well as trackbacks (a manually created link
from one blog post to another, external blog post) and blog rolls (lists of other
blogs which a blog author wants to point out). However, trackbacks and blog
rolls are limited in that there is no information available on why such a link was
created: if the posts are on a related topic; if the original poster is a friend of the
referencing poster; if the referencing user agrees or disagrees with the original
post; etc.

By using SIOC to materialize the internal structure and also connections
between blogs in the global blogosphere, we can harness data across blogs and
blogging platforms in new ways. Similar blogs may be linked together, either
through explicit links or implicitly through the posts and comments that they

1 http://purl.org/rss/1.0/spec
2 http://rdfs.org/sioc/

682 K. Möller, U. Bojārs, and J.G. Breslin

contain and the users that created them. Posts may have related posts on other
sites, and using SIOC, bidirectional trackback links can be created from the
original post to the follow-up. A set of posts can also be formed if they share
the same topic resource, or if the topic resources are mapped to each other.
Posts and comments by the same user or group of users can be tracked across
different blogs. Threaded discussions can be merged or split across blog sites by
identifying remote child or parent posts. Most importantly, SIOC is not limited
to blog discussions: blog posts or comments can also be related to similar forum
threads, Usenet newsgroup postings or mailing list messages if they have been
made available using the SIOC ontology.

1.3 Paper Overview

This paper will detail how we can overcome some of the limitations outlined in
Sect. 1.1 and how the blogging experience can be augmented using Semantic
Web technologies. We will detail in Sect. 2 how both a blog’s content and struc-
ture can be described using a number of ontologies. Section 3 will describe the
creation steps for this content and structure metadata from a client’s desktop
and blogging platform’s web server respectively. The publishing methods for the
content-related and structural metadata are detailed in Sect. 4, and Sect. 5 will
then show how the metadata can be utilised and consumed by Semantic Web
applications such as an RDF browser or enhanced blog reader. Section 6 will
be a review of related work in this area, and finally in Sect. 7 we will outline
how our work can be further enhanced through custom semantic browsing and
querying applications.

2 Metadata

Metadata in the blogosphere formally describes a blog and its individual posts.
These descriptions are essentially typed assertions about relations between the
blog, its posts, authors, other web-resources — or just about anything that
can be specified using some unique identifier (specifically, a Uniform Resource
Identifier (URI)). The two following sections will in turn look at structural and
content-related metadata.

As regards the choice of metadata format, we suggest the use of the Resource
Description Format (RDF) as the model for making blog metadata explicit.
RDF’s graph model makes it much better suited to represent complex objects
and relations than the simpler tree structure of XML. Furthermore, since RDF
does not impose any specific schema on a given graph and uses URIs as its sole
identification scheme, it allows us to integrate data from various sources and
conforming to various ontologies or vocabularies. This is especially important
with respect to content-related metadata, which can originate from arbitrary
sources and be expressed using arbitrary vocabularies. Also, both structural and
content-related metadata may well come from different sources and eventually
need to be integrated, in order to form a complete graph of blog metadata.

Using Semantics to Enhance the Blogging Experience 683

2.1 Structure

As mentioned in the solution formulation, we have chosen SIOC as the ontol-
ogy for making instances of blog and post structure available. This ontology
is described using RDF Schema (RDFS), and instance data is made available
in RDF.

Blog Concepts in SIOC. The classes in the SIOC ontology of relevance to
blogs are Site, Forum, Post, User and Usergroup, and the main properties
linking these classes are shown in Fig. 1.

Forum

Site

has_host
has_parent

Post has_reply

has_container

User

Role

has_function

Usergroup

has_member

has_scope

has_creator

Fig. 1. Main Terms in the SIOC Ontology

Site is the location of an online community or set of communities, and in the
context of blogs, it will house one or many blogs. This concept is useful since we
can assign a user as the administrator of a site, having moderator control over
all blogs hosted at that site.

Forum can be thought of as a channel or discussion area on which posts are
made. In the context of blogs, it is a single blog channel. A forum is linked to
the site that hosts it. Blog owners can moderate other user’s replies to their own
blog posts. Blogs may also have a set of subscribed users who are notified when
new posts are made.

Post is an article or message posted by a user to a blog. A series of posts may
be threaded if they share a common subject and are connected by reply (within
a site) or trackback (between sites) relationships.

User is an online account belonging to a person who is a member of a com-
munity site, such as a blogging area. They are connected to blog posts that they
create or edit, to blogs that they can post to or have subscribed to, to blog sites
that they administer, and to other users that they know. Users can be organised
in a Usergroup to control post access to blog areas.

684 K. Möller, U. Bojārs, and J.G. Breslin

Making Post Connections. One of the main use cases for SIOC import
involves connecting related post entries between blogs and community sites.
Adding SIOC data to posts would open up the connection possibilities as de-
picted in Fig. 2. Some of these will now be described.

Fig. 2. Structural Relations in the Blogosphere

One of the limitations of trackbacks is that the link is only created in one direc-
tion, i.e. fromanoriginal post to a referencing post.Using therelated_toproperty
of SIOC, two posts can be related to each other (and others) in both directions.
Apart from an explicit linking of posts, there are other methods of linking blog
posts using SIOC, for example, if they share a common topic, creator or container.

A recent development in online discussion methods is an article or post that
appears in multiple blogs, or has been copied from one forum to another relevant
forum. In SIOC, we can treat these copies of posts as siblings of each other if we
think of the posts as non-identical twins that share most characteristics but differ
in some manner. For example, a post is created on one blog and categorised with
the topic “TV”, but has been copied to another blog with multiple topics such
as “Sci-Fi” or“Art”. We can avoid duplication of common data in the creation
of siblings by linking to the new sibling, the instance of which only contains the
changed properties (in the example, the properties has_container and topic
would change). A number of blog engines support blogging in multiple languages.
This leads to multi-language blogs, where the same post can have translations
in two or more languages. Related posts across multiple blogs and community
sites may also be in different languages. The has_sibling property in SIOC
can be used for linking these multiple versions or related posts together, with a
locale property (with values such as en or fr_CA) illustrating what language the
respective sibling posts are in.

The SIOC ontology allows us to annotate blog posts with topic metadata,
allowing the matching of documents on specific topics with each other. While it
may be more difficult to require a user to assign a topic to a post at creation
time, it is more likely that a forum will have an associated topic or set of topics
that can be propagated to the posts it contains. In order to define a topic or cat-
egory hierarchy, we propose to use the SKOS framework [1] and create mappings
between these concepts and a common category system.

Using Semantics to Enhance the Blogging Experience 685

2.2 Content

Content-relatad metadata describes anything a blog-author wishes to converse
about — people, events, books, music, etc. In other words, content metadata
covers a very broad domain, especially when compared to the rather specific
domain of structural metadata. The exact nature of the metadata will therefore
vary significantly between posts: metadata about people might contain their
names, homepage or contact-details, a paper might be described in terms of its
publisher, title, etc., and an event will have properties such as a start and end
time, an organizer, etc. Thus, while it is feasible to define a specific set of con-
cepts and properties to express the whole domain of blog structure, it is difficult
and problematic to define and establish an ontology to cover all possible blog
content. Therefore, we propose the use of small, vertical ontologies or vocabular-
ies to describe blog content. Each of these ontologies only covers a certain kind
of content, such as people, publications or events. Ideally, one will use ontologies
which are already established and widely used — searching, finding and inter-
linking blog content will then be much easier. In the following paragraphs we
will present a number of such small ontologies. All of them are open, well tested
and widely used in their respective domain.

FOAF and vCard. The Friend of a Friend (FOAF) Project [3] is developing
and maintining an RDFS ontology to describe people, mainly from the point
of view of an addressbook context — a person’s name, address, phone number,
homepage, etc. The name of the ontology stems from the fact that FOAF also
has a means to express whom a person knows, who their friends are. This is
achieved by relating one foaf:Person instance to another via the foaf:knows
property. In this way a huge, decentralized network of people — or friends of
friends of friends — is established. In a lot of aspects, FOAF is very close to
the vCard [7] vocabulary, which covers a similiar domain. While vCard doesn’t
have the networking capabilities of FOAF, it allows for more detail with respect
to specifying addresses. Both ontologies are often used together. vCard is not
usually expressed in RDF, but a W3C note exists for representing vCard Objects
in RDF/XML3.

BibTEX. BibTEX [16] is a format for expressing bibliographic metadata, mainly
for scientific publications. It is very well integrated in, but otherwise indepen-
dent from the LATEX system for typesetting. Publications are classified accord-
ing to types such as Proceedings, Book or Article, and further specified using
attributes such as author, title or year, depending on the type of the publica-
tion. Like vCard, BibTEX has its own non-RDF representation format, but sev-
eral implementations in RDF-based ontologies like Semantic Web for Research
Communities (SWRC)4.

3 http://www.w3.org/TR/vcard-rdf
4 http://ontoware.org/projects/swrc/

686 K. Möller, U. Bojārs, and J.G. Breslin

iCalendar. iCalendar [8] is an open format for the specification and exchange
of event metadata, or, more specifically, calendaring and scheduling data. The
iCalendar format has recently gained some attention in the public through Ap-
ple’s iCal calendaring application — hoewever, even though iCal is built on top
of the iCalendar format, the two are completely independent of each other. Sim-
ilar to the vCard and BibTEX formats, iCalendar precedes the definition of RDF
and has its own representation format. However, a W3C workspace5 exists that
is committed to providing an RDF implementation of iCalendar, as well as a
number of tools to provide automatic conversion.

3 Creation Stage

In the previous section we have described the kind of metadata that would be
beneficial to find, search for and interlink information from blogs and other re-
sources on the web. In this section, we are going to discuss how such metadata
are created. A general requirement for any system that involves the use of meta-
data is, that the generation of metadata must involve as little work for the user
as possible. If Semantic Blogging meant that a blog author had to manually
type some RDF/XML code each time they wanted to blog about anything, it
would never be adopted beyond a small group of technologically minded people.
Even the use of forms to enter metadata would still be far too labour-intensive
for Semantic Blogging to achieve any significant impact. Instead, as discussed in
Jim Hendler’s fundamental article [10], metadata should be generated automat-
ically or semi-automatically while the user performs ordinary tasks they would
perform anyway, or even completely without the involvement of the user.

Due to the different nature of structural and content metadata, different
strategies have to be applied, as will be discussed in the rest of this section.
The strategies we intend to adopt for both kinds of metadata are rooted in
previous work done by the authors of this paper.

3.1 Structure

Blogs are usually small scale systems consisting of one or more contributors
and a community of readers, but their power lies in the large amount of blog
data that is available for harvesting. Most blog engines already have RSS export
functionality. Since the majority of these blog engines are based on open source
software, it is straightforward to modify existing export functions to generate
SIOC metadata conforming to the SIOC ontology. In order to retrieve full struc-
tural metadata we need to use more of the information available to the blog
engine. We have created a plugin for the WordPress blog engine that uses the
functions provided by this engine to access its database and export a full set of
structural metadata using the SIOC ontology.

The WordPress SIOC plugin6 exports information about the main blog data
entities — including data about the weblog itself, users creating content, posts
5 http://www.w3.org/2002/12/cal/
6 http://rdfs.org/sioc/wordpress/

Using Semantics to Enhance the Blogging Experience 687

and comments that these users have created, topics of these posts and other
internal and external structural metadata.

SIOC metadata for blog posts consists of a sioc:Post resource and its prop-
erties. A URI used to identify the blog post is generated by the blog engine (and
is identical to its physical URL). In Table 1 we provide details of the various
mappings between entities in WordPress and SIOC metadata, while the central
properties used to express the structure of a blog post are described in Table 2.

Table 1. Mappings of WordPress Concepts to SIOC

Weblog info -> sioc:Site, sioc:Forum, sioc:Usergroup
Author -> sioc:User
Posts -> sioc:Post
Comments -> sioc:Post linked to by sioc:reply

Table 2. Properties of sioc:Post

sioc:has_creator links a post to a user that created it
sioc:title contains title of the post
sioc:created_at creation date and time
sioc:content contents of the post
sioc:topic indicates topics or content of the post
sioc:has_reply links a post to its replies and comments

Additionally, the SIOC properties related_to and links_to are used to
make the connections between posts explicit. Information about resources the
post links to is extracted from the post’s body and expressed using the links_to
property (this might be as simple as collecting hyperlinks within the post). The
related_to property is used to store and reuse links to related articles that are
inferred by consumers of SIOC data.

Finally, the WordPress SIOC plugin also creates rdfs:seeAlso links, which
point consumers of RDF data to additional machine-interpretable metadata (e.g.
created by a tool like semiBlog [14]).

3.2 Content

As discussed in Sec. 2.2, metadata which describes the content of a post can span
over a wide range of domains: metadata about people, events, publications, mu-
sic, etc. Our previous work on the semiBlog blog authoring environment has
shown how reusing existing desktop data can be a successful strategy for gen-
erating content-related semantic metadata for such a variety of domains. One
of the central assumptions is that bloggers will often already have metadata
about the topics of their blog available on their desktop7. A blog author who
blogs about a person will probably already have an entry for that person in
7 We use the term desktop as a metaphor for the entire working environment within

a user’s computer.

688 K. Möller, U. Bojārs, and J.G. Breslin

their electronic addressbook, someone who blogs about an upcoming event will
have this event in their calendaring application, a researcher blogging about an
interesting paper might have a BibTEX-entry of this paper available. While a
blog author composes a new blog post, the data that already exists in some
form on their desktop will be automatically transformed into an RDF graph
using an appropriate ontology or vocabulary. E.g., an addressbook entry would
be transformed into FOAF, while an event from a calendaring application would
be transformed into iCalendar-RDF. The resulting metadata is then attached,
turning an ordinary blog post into a semantic blog post.

Reusing metadata from a blog author’s desktop in an easy and unobtrusive
way requires convenient access to this data. This can best be ensured if the blog
authoring environment is implemented as a desktop application. The authoring
environment can then e.g. make use of public APIs of the various applications
that provide data (electronic addressbook, calendaring application, bibliographic
database, etc.), access the system-wide pasteboard for easy drag-and-drop of
complex data from these applications or make use of the index of a metadata-
enabled file system. For completeness sake, we should note that a desktop-based
implementation has disadvantages such as requiring a manual install, possibly
being tied to one desktop or even operating system, etc.

In the case of semiBlog, application developers can develop plugins for various
data sources. Each plugin can accept data from a specific source and knows how
to transform it from its proprietary, application-specific source format into a set
of RDF triples. This is illustrated in Fig. 3.

A user can write his blog in semiBlog as they would in any other, non-semantic
authoring environment: the application allows to create new posts, write and
format text and add pictures. The blog author can then annotate his entry by
dragging objects from other applications onto the post in semiBlog. The relevant

semiBlog ApplicationDesktop Applications

Wrapper 1: AddressBook
(Contacts)

Wrapper 2: BibTeX
(Publications)

AddressBook

BibTex Tool

Web Browser Wrapper 3: URL
(Web Pages)

Other
Application

Wrapper n: Other Data

A
P

I
P

ar
se

r/
Tr

an
sl

at
or

S
im

pl
e

V
al

ue
?

semiBlog Core

M
et

ad
at

a

Beholenen in ginathe, in scal.
Virnimit fan vilo diroma golt. In an
thinro over, sig stemmen? Also
geblithande ne virnimit guodlikheyt
hitte Irlihtende werthon, over cund
naht in heilig. Behuodende, fuor noh
sunum misdadi drusten stemmen
cund iro, fan fortha ringis.
Ginathe dages, um luzzundon, sinro
an luyt ringis loupom gelicum.

Text

Metadata

Semantic Blog Post

Fig. 3. Creating content metadata from desktop applications

Using Semantics to Enhance the Blogging Experience 689

plugins convert the incoming data and produce equivalent RDF graphs. Finally,
these will be merged into one bigger graph, which contains the content-related
metadata for the complete post.

Naming the Metadata. An interesting general problem arises in the creation
stage of content-related metadata: when generating metadata from desktop ob-
jects, semiBlog is essentially creating RDF resources which represent the topics
of a blog post. E.g., when the post discusses a person A, semiBlog will create
a resource which represents A. Each such resource can be assigned a URI to
make it uniquely identifiable. URIs ensure that data from various sources can be
integrated, since resources with the same URI will be considered identical. The
problem, however, is that semiBlog cannot know which URI to choose for each
resource it creates — it is not obvious what the URI of any given thing in the
world is. We have identified three general naming strategies:

– Random URI - Generating a random URI by using a Universally Unique
IDentifier (UUID) generator algorithm, e.g. [13]. This is the easiest solution
and also the one currently employed by semiBlog. However, it breaks the
idea that resources which represent the same real world object have the same
URI, since different semiBlog instances would create different URIs. Explicit
owl:sameAs statements could still identify equality, however, this equality
would first have to be inferred in some way. A solution might be rules or
heuristics such as the inverse functional property mbox used in FOAF, which
determines that instances of foaf:Person which have the same values for
foaf:mbox are considered equal.

– Desktop URI - Internally semiBlog uses URIs to identify objects on the
desktop, from which the semantic metadata will be generated. However,
these URIs identify information items, and not the real-world entities which
are described by these, and are therefore not used externally.

– URI authority - Instead of deciding itself, semiBlog could gather as much
information as possible about the resource in question, and forward it to
some external service. This service can then determine the URI on the basis
of the given information. However, since such a service doesn’t exist at the
moment, this approach is also not an option.

Even though approaches such as the ‘tag’ URI scheme8, which is “designed to
be unique across space and time while being tractable to humans”, may prove
useful for naming resources, they don’t fully solve the problem we are facing: an
application such as semiBlog would still not be able to figure out which tag URI
to use for a given desktop object.

4 Publishing Stage

Publishing is the stage where semantic metadata is made available to the world,
e.g. to a human reader who is accessing the blog through a browser, or an
8 http://www.faqs.org/rfcs/rfc4151.html

690 K. Möller, U. Bojārs, and J.G. Breslin

automatic agent which is looking for RDF on the web. The following sections
will first briefly describe how content-related metadata generated by semiBlog
is prepared and sent to an arbitrary blogging platform. Then we will illustrate
how the WordPress SIOC plugin can be used to automatically integrate this
data with the structural metadata it produced on a WordPress9 installation.

4.1 Preparing Content Metadata

The general strategy for publishing content-related semantic metadata produced
with the semiBlog application is very simple: a link is created for each object
with which the blog author annotated his post. The link points to some location
on the web where the RDF metadata about this object can be found. All links
are then added to the bottom of the HTML code of the post and typed as mime-
type application/rdf+xml, so that they can be recognized and picked up by
specialized crawlers (e.g. by the WordPress SIOC plugin, see Sec. 4.2). One major
advantage of our approach is that a blog user is not restricted in his choice of a
blogging engine, since it is irrelevant whether or not it accepts upload of RDF or
any method for publishing metadata at all. In fact, the blogging platform won’t
even know it just received a semantic blog post — as far as it is concerned, it
only received some HTML code. What is necessary, however, is that semiBlog
has access to some service that can accept and publish RDF (such as an RDF
repository like YARS [9]), which it would then link to. An example of a post
with added metadata within the WordPress blogging platform can be seen in
the screenshot in Fig. 4.

Fig. 4. Screenshot of a blog post with links to attached metadata

Different blogging platforms require different methods of programmatic ac-
cess for inserting new posts or change existing ones. Some wide-spread methods
9 http://wordpress.org/

Using Semantics to Enhance the Blogging Experience 691

are XML Remote Procedure Call (XML-RPC)10 based APIs like the MetaWe-
blog API11 and the MovableType API12, or Blogger’s Atom API13. semiBlog
acknowledges this situation by offering plugin interfaces for publishing blog con-
tent (three different interfaces for text, metadata and media content). Applica-
tion developers can implement these interfaces for any access method they would
like to use.

4.2 Integration with Structural Metadata

In the following paragraphs we will show step by step how a blog post enriched
with content-related metadata is transferred to a WordPress installation, where
it is automatically integrated with the structural metadata produced by the
WordPress SIOC plugin.

1. After producing the metadata, semiBlog uploads it to an external service
which can receive and publish RDF. This service will provide semiBlog with
a URL where this specific piece of metadata is available. Depending on the
nature of this service, these URLs could point to files which contain RDF
code, or could be complex queries which will return a view on an RDF
repository such as YARS.

2. semiBlog adds links to these URLs to the blog post and transfers it to the
WordPress installation, using the MetaWeblogAPI through XML-RPC.

3. When activated (by requesting data from a specific PHP script), the SIOC
plugin in the WordPress engine will derive SIOC metadata about the desired
post from the blog engine (its database and internal logic).

4. As a part of this process, the plugin will extract the URLs of the content
metadata from the post’s body and link to them using rdfs:seeAlso state-
ments. Using rdfs:seeAlso is common practice to indicate additional in-
formation to a given resource, and allows consumers of the SIOC data to
include the metadata provided by semiBlog.

5. The result is a combined graph of structural and content metadata, as illus-
trated in Fig. 5.

Thus the SIOC plugin integrates all metadata about a blog post and acts as
a bridge between the data generated by semiBlog and users of RDF data that
would not examine a blog post’s body looking for additional content metadata.
This allows semiBlog to be generic and work with any blog engine, while at the
same time it provides an extended functionality if the blog is hosted on a blog
engine that has a SIOC export capability.

10 http://www.xmlrpc.com/
11 http://www.xmlrpc.com/metaWeblogApi
12 http://www.sixapart.com/movabletype
13 http://code.blogger.com/archives/atom-docs.html

692 K. Möller, U. Bojārs, and J.G. Breslin

http://
blog.org/?

p=5

sioc:Post

rdf:
type

Meeting with
Eyal

sioc:
title I sat down

with...

http://
blog.org/?
author=2

sioc:
content

uuid:
1D5FC4E9...

foaf:
topic

foaf:Person

Eyal

Oren

http://
sw.deri.org/

~eyal

rdf:type

foaf:
firstName

foaf:
surname

foaf:
homepage

uuid:
C132875D...

foaf:
holdsAccount

foaf:Person
rdf:
type

Knud

Möller

http://
sw.deri.org/

~knud

foaf:
homepage foaf:

surname

foaf:
firstName

http://stuff.ie/
swforum/?

id=328

http://blog.org/
?p=5#cmmt_2

Sounds like
an...

http://
blog.org/?
author=4

sioc:User
rdf:
type

rdf:
type

sioc:
has_reply

sioc:
content

sioc:
has_creator

sioc:
related_to

rdf:
type

Generated by semiBlog

Generated by the SIOC plugin

sioc:
has_creator

Fig. 5. A combined SIOC and semiBlog graph

5 Consuming Stage

Once semantic metadata has been attached to a blog and made available, there
are a number of ways to consume and make use of this data. We will outline
some scenarios in this section.

5.1 The Semantic Web as a Clipboard

We have suggested that content-related metadata can be generated by accessing
existing desktop data and transforming it into RDF. This can be made to work
both ways, as it has been shown in [15]. Using a metadata-aware blog reader,
a user can detect metadata attached to a blog post, and import it into his own
desktop applications in the way the author had exported it before. This kind
of data exchange through a blog could also be described as using the web as
a clipboard, and would be very useful as a communication channel within any
kind of organizational context.

5.2 Crawling and Browsing the Metadata

Having annotated blog entries with semantic metadata enables the collection,
querying and browsing of this information and the blog entries it describes. First
we collect metadata, and mirror it in an RDF store, where it will be indexed and

Using Semantics to Enhance the Blogging Experience 693

probably be enriched with data from other sources. This data can then be used
by semantic applications built on top the RDF store. Cf. [2] for a closer look at
this scenario.

Crawling. The SIOC plugin provides an auto-discovery link, which functions
as a starting point for RDF crawlers and applications by indicating where to
find RDF data about the blog or a particular post:

<link rel="meta" type="application/rdf+xml" title="SIOC"
href="http://blog.org/wp-sioc.php"/>

The metadata is then collected by an RDF crawler that recursively traverses
rdfs:seeAlso and similar links and submits the data into the RDF store. The
following steps illustrate in more detail how the crawler works in our case:

1. Use auto-discovery hints to find the URL where the SIOC plugin has pub-
lished RDF data.

2. Collect RDF data provided directly by the SIOC plugin.
3. Recursively traverse rdfs:seeAlso links to crawl RDF data provided by

semiBlog or other sources.
4. Submits data into an RDF data store (e.g. YARS).

Query and Browsing. The metadata in the RDF store can then be queried
directly using a RDF query language such as N3QL14 or SPARQL15, and be
displayed in browser applications that are capable of rendering the raw metadata
in a form better suited for human users. We have created the prototype of a node
browser, which displays the content and structural metadata stored in the RDF
store, showing the links between blog posts and the things they are describing
and allowing to navigate these connections by exploiting the RDF graph model.
The browser is still under development, but available for testing online16.

6 Related Work

So-called folksonomies or community-based tagging systems such as Technorati17

or del.icio.us18 provide a simple yet effective way of adding content-related meta-
data to blogs (and web pages in general). However, this flat and string-based
metadata clearly lacks the expressive power of an RDF based solution.

A number of recent papers have specifically investigated the topic of Semantic
Blogging from different angles. [11] discuss a semantic blogging prototype built
on top of the Semantic Web browser Haystack [17]. The authors interpret blog
entries mainly as annotations of other blog entries and web resources in general,
14 http://www.w3.org/DesignIssues/N3QL.html
15 http://www.w3.org/TR/rdf-sparql-query/
16 http://rdfs.org/sioc/browser
17 http://www.technorati.com/
18 http://del.icio.us

694 K. Möller, U. Bojārs, and J.G. Breslin

and devise a platform to realise this in terms of the Semantic Web. The paper also
underlines the inherent semantic structure of blogs and their entries as such, and
presents a way of formalizing these semantics. [4] puts a strong emphasis on the
use of semantic technologies to enhance the possibilities of blog consumption,
by allowing viewing, navigation and querying with respect to semantics. The
paper describes a prototype for both creation and browsing of semantic blogs.
While the prototype only deals with bibliographic metadata as annotations to
blog entries, the authors point out that the same technologies can be used for
any kind of metadata. [18] describes a platform called Semblog. Metadata such
as FOAF descriptions of blog authors are linked to their blogs through the blog’s
RSS1.0 feed. In this way, the blog as a whole is annotated with metadata about
its author. On a more fine-grained level individual blog entries are classified by
linking them to personalised ontology. To implement their platform, the authors
provide both a Perl CGI-based tool called RNA and a standalone Windows-based
tool called Glucose.

7 Future Work

When creating a new post, it would be useful if, as well as being able to copy
and paste content from a blog post, the formal content metadata could also be
transferred. Equally, post references could be dragged and dropped into a new
or edited post (for example, to create a trackback or related to link between
posts) to create typed links between posts. This is along the lines of the RDF
clipboard idea by Tim Berners-Lee19.

Leveraging the full potential of SIOC requires the provision of custom pro-
grams and user interfaces specially tailored towards browsing SIOC data. In the
consuming stage, we discussed how the Node Browser application can be used
to navigate and search for aggregated information from both a blog’s content
and structure - similarly other RDF browsers such as BrownSauce 20 could be
used. However, it would be useful to have a more graphical method for brows-
ing not only this information, but also to allow one to navigate from a post to
its related posts or “distributed conversations” across different blog sites. This
could be a “SIOC explorer” application that would allow users to browse SIOC-
enabled sites transparently without the need for data warehousing, simply by
traversing rdfs:seeAlso and other links in RDF. A similar open source applica-
tion already exists: Foafscape21 is a browser for navigating FOAF-related RDF
data to display hyperlinked graphs of Friend of a Friend data.

Another aspect of future work is in relation to the argumentative nature of
blog discussions, in a similar way that [graphical] issue-based information sys-
tems ([g]IBIS) [6], [12] examined the argumentative nature of design and plan-
ning discussions. At first glance, a user is unable to tell if a blog post and resulting
19 http://www.w3.org/2001/sw/Europe/reports/xml sw prototype math logic/

#Part1
20 http://brownsauce.sourceforge.net/
21 http://foafscape.berlios.de/

Using Semantics to Enhance the Blogging Experience 695

discussion is overall supporting or opposing the topic(s) being discussed. For ex-
ample, a person is researching medicine X for which they have a prescription, but
they only want blog discussions on the negative aspects of X (already knowing
the advantages). It would be desirable to provide details of an argumentative
structure so that the associated meaning of the proposition/counter-proposition
synthesis could be instantly recognised when browsing blog discussion topics.
Some reply types such as agree or disagree have been ontologised by the W3C22,
but these may be augmented with some level or scale of agreement.

8 Conclusions

This paper detailed a means for enhancing a user’s blogging experience by lever-
aging the fusion of two kinds of metadata related to blog posts: content-related
and structural. We described ways of creating such metadata in a convenient
and unobtrusive way for the user, by dragging and dropping object annotations
from a user’s desktop and by instantiating structural metadata that is automat-
ically created during the blogging process. We detailed how such metadata can
be published on the web through a popular blogging platform, and finally we
described how metadata can be reused in posts or utilised for cross-site browsing
by a blog consumer.

Acknowledgements

This material is based upon works supported by the Science Foundation Ireland
under Grant No. SFI/02/CE1/I131.

References

1. A.J.Miles, N.Rogers, and D.Beckett. SKOS Core RDF Vocabulary, 2004.
http://www.w3.org/2004/02/skos/core/ .

2. J. G. Breslin, A. Harth, U. Bojārs, and S. Decker. Towards Semantically-Interlinked
Online Communities. In The 2nd European Semantic Web Conference (ESWC
’05), Heraklion, Greece, Proceedings, LNCS 3532, pages 500–514, May 2005.

3. D. Brickley and L. Miller. FOAF Vocabulary Specification. http://xmlns.com/
foaf/0.1.

4. S. Cayzer. Semantic Blogging and Decentralized Knowledge Management. Com-
munications of the ACM, 47(12):47–52, December 2004.

5. S. Cayzer. Semantic Blogging: Spreading the Semantic Web Meme. In XML Europe
2004, Amsterdam, Netherlands, Proceedings, April 2004.

6. J. Conklin and M. Begeman. gIBIS - A Hypertext Tool for Exploratory Policy
Discussion. In The Conference on Computer-Supported Cooperative Work, Pro-
ceedings, pages 140–152, 1988.

7. F. Dawson and T. Howes. vCard MIME Directory Profile, 1998. RFC 2426:
http://www.ietf.org/rfc/rfc2426.txt.

22 http://www.w3.org/2001/12/replyType

696 K. Möller, U. Bojārs, and J.G. Breslin

8. F. Dawson and D. Stenerson. Internet Calendaring and Scheduling Core
Object Specification (iCalendar), 1998. RFC 2445: http://www.ietf.org/
rfc/rfc2445.txt.

9. A. Harth and S. Decker. Optimized Index Structures for Querying RDF from the
Web. In 3rd Latin American Web Congress, Buenos Aires, Argentina, Proceedings,
pages 71–80, October 31 to November 2 2005.

10. J. Hendler. Agents and the Semantic Web. IEEE Intelligent Systems, 16(2):30–37,
March/April 2001.

11. D. R. Karger and D. Quan. What Would It Mean to Blog on the Semantic Web?
In S. A. McIlraith, D. Plexousakis, and F. van Harmelen, editors, Third Inter-
national Semantic Web Conference (ISWC2004), Hiroshima, Japan, Proceedings,
pages 214–228. Springer, November 2004.

12. W. Kunz and H. W. J. Rittel. Issues as Elements of Information Systems. Technical
Report WP-131, University of California, Berkeley, 1970.

13. P. Leach, M. Mealling, and R. Salz. A Universally Unique IDentifier (UUID) URN
Namespace, 2005. RFC 4122: http://www.ietf.org/rfc/rfc4122.txt.

14. K. Möller, J. G. Breslin, and S. Decker. semiBlog - Semantic Publishing of Desk-
top Data. In 14th Conference on Information Systems Development (ISD2005),
Proceedings, Karlstad, Sweden, August 2005.

15. K. Möller and S. Decker. Harvesting Desktop Data for Semantic Blogging. In 1st
Workshop on the Semantic Desktop at ISWC2005, Galway, Ireland, Proceedings,
pages 79–91, November 2005.

16. O. Patashnik. BibTexIng, February 8 1988. BibTeX Documentation.
17. D. Quan, D. Huynh, and D. R. Karger. Haystack: a Platform for Authoring End

User Semantic Web Applications. In Second International Semantic Web Confer-
ence (ISWC2003), Proceedings, 2003.

18. H. Takeda and I. Ohmukai. Semblog Project. In Activities on Semantic Web
Technologies in Japan, A WWW2005 Workshop, 2005.

19. J. Walker. Weblog. In D. Herman, M. Jahn, and M.-L. Ryan, editors, Routledge
Encyclopedia of Narrative Theory, page 45. Routledge, London and New York,
2005.

Y. Sure and J. Domingue (Eds.): ESWC 2006, LNCS 4011, pp. 697 – 711, 2006.
© Springer-Verlag Berlin Heidelberg 2006

WSTO: A Classification-Based Ontology for Managing
Trust in Semantic Web Services

Stefania Galizia

Knowledge Media Institute & Centre for Research in Computing
The Open University, Milton Keynes, UK

S.Galizia@open.ac.uk

Abstract. The aim of this paper is to provide a general ontology that allows the
specification of trust requirements in the Semantic Web Services environment.
Both client and Web Service can semantically describe their trust policies in
two directions: first, each can expose their own guarantees to the environment,
such as, security certification, execution parameters etc.; secondly, each can de-
clare their trust preferences about other communication partners, by selecting
(or creating) ‘trust match criteria’. A reasoning module can evaluate trust
promises and chosen criteria, in order to select a set of Web Services that fit
with all trust requirements. We see the trust-based selection problem of Seman-
tic Web Services as a classification task. The class of selected Semantic Web
Services (SWSs) will represent the set of all SWSs that fit both client and Web
Service exposed trust requirements. We strongly believe that trust perception
changes in different contexts, and strictly depends on the goal that the requester
would like to achieve. For this reason, in our ontology we emphasize first class
entities “goal”, “Web Service” and “user”, and the relations occurring among
them. Our approach implies a centralized trust-based broker, i.e. an agent able
to reason on trust requirements and to mediate between goal and Web Service
semantic descriptions. We adopt IRS-III as our prototypical trust-based broker.

1 Introduction

With the widespread proliferation of Web Services, trustworthiness will become a de-
termining factor of any given service’s success. Conversely, trust-based automatic
discovery and selection will become a significant requirement from a requester’s
point of view.

In the literature, the notion of “trust” is defined in different ways according to the
application domain. We draw on two major approaches: trust based on ability and
trust based on reliability. The former enacts the requirements based on quality of ser-
vice profiles (data accuracy and precision, timeliness, etc.…); for instance, a requester
may trust more a service that takes acceptable time to perform a given task . The latter
considers mainly the service credibility, which can be measured by a Trusted Third
Party.

In e-commerce, security services – such as authentication, data integrity, confiden-
tiality etc. – are deployed in order to realize the reliability-based aspect of trust. Secu-
rity services are usually implemented in terms of security mechanisms based on
Trusted Third Party (TTP) concepts and Public Key Cryptography.

698 S. Galizia

There are other approaches concerned also with reliability-based trust. In some en-
vironments, it seems appropriate to calculate the trustworthiness by reasoning only on
security issues. At the other extreme, pure reputation-based algorithms have been im-
plemented especially in those fields where all involved parties can express their opin-
ions, as the social networks.

We concentrate on aspects of trust that we claim are fundamental in the Semantic
Web Service context. In the open dynamic environment where the Semantic Web
Services lie, trust-based discovery and selection are crucial issues in order to avoid
invocation of malicious or unreliable services.

Until now, there are no defined protocols by which Semantic Web Services may
expose their trust characteristics. Web Service technology provides only syntactic
statements. The interface definition language WSDL specifies only the syntactic sig-
nature for a Web Service, but does not specify any semantics or non-functional char-
acteristics.

Adding semantic descriptions to services should allow also reliability specifications
and support different notions of trust from both requester and provider perspectives.

Our first assumption is that different users have different demands on trust parame-
ters. Moreover, we believe that in different contexts trust assumes different mean-
ings. Essentially the trust judgement of a service requester will strictly depend on the
goal she intends to achieve.

In this paper, we provide a framework that fulfils given requirements for the de-
scription of trust properties of Semantic Web Services and enables their selection
based on these properties. We represent the notion of trust via an ontology, named
WSTO (Web Service Trust-management Ontology), through which both requester and
Web Service provider can instantiate their individual trust policies. Then, a reasoning
module will activate Web Service selection taking into account trust-related properties.

We characterise trust analysis as a classification process, within which valid solu-
tions are those Web Services that match given classification criteria. Consequently,
we have found beneficial and enlightening to apply an existing classification ontology
[13] to this scheme, creating constructs that adapt the framework for our specific pur-
poses. On the other hand, we preferred to keep our model as general as possible in or-
der to accommodate this extension to a variety of requesters’ preferences and
requirements for trust-related matters.

We chose WSMO [16] as underlying ontology to state the basic concepts of Se-
mantic Web Services. One of the common principles to our ontology and WSMO is
the ontological role separation of client, Web Service and goal.

Our approach implies the concept of delegation to a centralized trusted evaluator,
in order to reason about the criteria expressed by the participants. We adopt IRS-III
[2] as our prototypical trust-based broker. IRS-III is a framework and implemented
platform, which acts as a broker mediating between the goals of a user or client and
available deployed Web Services. Moreover, IRS-III uses WSMO as its basic ontol-
ogy and follows the WSMO design principles.

The paper is organized as follows. First, we provide in Section 2, a rough descrip-
tion of trust assumptions in different contexts. Then we describe in Section 3 our ap-
proach via a brief presentation of the underlying classification ontology, and a
detailed explanation of WSTO. In Section 4 we introduce the execution layer of our

WSTO: A Classification-Based Ontology for Managing Trust in Semantic Web Services 699

approach, by referring to future implementation within IRS-III. Finally, in Section 5
we conclude by summarizing WSTO benefits and proposing future work.

2 Trust Considerations

The meaning of trust is very difficult to catch. Trust is a social phenomenon inherent
to human beings. In that context trust is:

• A means for understanding and adapting to the complexity of the environment;
• A means of providing robustness to independent agents;
• A useful judgement in the light of experience of the behaviour of others
• Applicable to artificial agents.

Trust in an artificial agent is a means of providing an additional tool for the con-
sideration of other agents and the environment in which it exists. The provision of ex-
plicit trust into an agent is still rather a research subject. The current approaches to
trust are more about how to assume trust (to establish a replacement for trust).

The most of the systems that are at present being designed assume trust, i.e., an
agent entering into communication with an other agent (believes absolutely or to a
certain degree) that good (promised or intended) things will happen. In this context,
security is about how to ensure that bad (not intended) things do not happen.

The different existing approaches to trust are about how the trust assumption is
made and its enforcement ensured. The most popular approaches are: i) Reputation-
based; ii) Trusted Third Party; iii) Contract-based.

These general approaches can be refined and/or combined in order to build a con-
crete trust establishment solution that can be deployed in a real system.

Web-based social network models have been one of the first research fields where
trust, in terms of reliability, has become a central issue. Every actor in a social net-
work can express his opinion on another one, by means of an available vocabulary.
Several algorithms for trust propagation and different metrics have been defined in
this field. Some systems use discrete values, for instance “low”, “medium” and
“high”, to express the trustworthiness, others make use of real-valued measures, usu-
ally expressed in the interval [0,1], especially in those algorithms requiring high pre-
cision. At the other extreme, some networks make use of binary rating, either 1 for
trustworthy neighbours, or 0 for who are not trustworthy.

Two main trust properties, modelled in many network systems, are transitivity and
asymmetry. In general, trust is not symmetric; one actor can trusts another one, be-
longing to same network, and the latter can no trust the former. The trust can be tran-
sitive, but many different meanings, not properly mathematical, have been associated
to transitivity [7].

Many new projects based on social networks have arisen in the last few years. The
most famous is perhaps Friend-Of-A-Friend (FOAF), a Semantic Web based social
network with many users distributed on the Web [6]. One application of FOAF
concerns the creation of a trust module is based on users’ rating of each other’s
trustworthiness and expressed on a discrete scale between 1 and 10 [7].

In the last few years, trust has become of crucial importance within peer-to-peer
networks. A peer-to-peer (P2P) computer network is a network that relies on the

700 S. Galizia

computing power and bandwidth of the participants in the network rather than
concentrating it in a relatively few servers. In order to use P2P networks in a useful
setting, it is extremely important to provide security and to prevent unwanted ele-
ments from participating. Several algorithms are available for peer trust rating; most
of them are based on security considerations (e.g., public or private key cryptography)
and on reputation [14, 15, 18]. The basic idea is to assign to each peer a trust rating
based on its credentials, in case provided by trusted third parties, such as certification
authorities, and on its performance in the overlay network and to store it at a suitable
repository. The existing trust algorithms consider different aspects, most of them
monitor the peer behaviour on the time; other ones emphasize the concept of coopera-
tion. In [18], for instance, the authors present an algorithm where all peers in the net-
work cooperate to compute and store the global trust vector. In general, in peer-to-
peer systems, the information propagation and the reputation management are central
issues of trust rating.

On the other hand, to evaluate the Semantic Web Services trustworthiness, several
different approaches are already proposed. Existing technologies for Web Services
only provide descriptions at the syntactic level, making it difficult for requesters and
providers to interpret or represent nontrivial statements. Semantic descriptions of Web
Services are, in fact, necessary in order to enable their automatic discovery, composi-
tion and execution across heterogeneous users and domains. In Semantic Web Service
contexts, when the user expresses the goal she would like to achieve, the actual Web
Service that matches the goal is dynamically discovered and selected, and so its fea-
tures are not completely known a priori. In this environment, semantic annotation of
trust features becomes a considerable parameter during the discovery phase. Most of
existing approaches inherit methodologies from the peer-to-peer networks [11, 15], as
Semantic Web Services provide P2P interaction between services. Several approaches
rely on an external matchmaker that works as repository of service description and
policies [8] and calculates the service trustworthiness according with given algo-
rithms. Trust evaluation algorithms for Semantic Web Services consider especially
security issues, such as confidentiality, authorization, authentication, as rating state-
ments [8, 9, 10, 11]. Even W3C Web Service architecture [22] recommendations
consider trust policies inside security consideration, but the way to disclose their secu-
rity policies is still not clear. UDDI does not refer to security features for Web
Services.

In Semantic Web Services context, some trust algorithms are more generically
Quality of service based [1, 20], by making the service ability the main trust state-
ment. Quality of service (QoS) is defined by a set of properties related to the service
performance. Precision and accuracy of data, timeliness in executing a task, are the
main features, but even security is a part of QoS.

We deem that the key to enable a trust based discovery for Semantic Web Services
lies in a common ontological representation, where Web Service and client perform
their trust requirements. Some QoS taxonomy [17] or service policy ontology [9] al-
ready exist, nevertheless an exploration of how to provide a common means for run-
time monitoring the services trustworthiness is only beginning.

WSTO: A Classification-Based Ontology for Managing Trust in Semantic Web Services 701

3 Our Approach

In this paper, we present an ontology, WSTO (Web Service Trust-management On-
tology), that enables both client and Web Service to express their trust requirements
in a Semantic Web Services environment. Our starting point is to identify the goal
that the requester wishes to achieve, and to describe the trust requirements associated
with this goal.

We have shown that in different contexts trust assumes different meanings. On the
one hand a requester tends to trust a travel agency that proposes to fly by airlines
deemed safe, on the other hand, a banking service is trusted as it provides confidenti-
ality or authentication certifications that promise data privacy.

The more fruitful way to express the actual trust requirements is providing a shared
and common framework that allows both requester and provider to express their poli-
cies, but even enables them to extend the framework according to their needs. Our on-
tology pursues this purpose.

We adopt WSMO [16] as basic vision that provides ontological specifications for
the core elements of Semantic Web Services.

The primary concepts in our ontology are “web-service”, “user” and “goal”. The
ontologically specified concept of “user” is not stated in WSMO. This specification
facilitates the description of the individual policies by a service requester. The user
instantiates a goal during the goal-based invocation process. The expected outcome is
the selection of a class of Web Service that fits the goal and trust requirements of all
transaction participants. It is worth to emphasize that, while the goal specified by the
user is an instance of the class “goal” represented in WSMO, the selected Web Ser-
vices are the instances of the class of Web Services that meet all policies declared by
trading partners involved in the transaction. For this reason, we have characterised the
analysis of trust-related properties and requirements as a classification process, within
which valid solutions are those Web Services that match given criteria.

Selecting one, or a set of Web Services that match a given criterion corresponds to
the task of finding the solutions in a classification problem. The solution will be the
class of Web Services that fit criteria established by requester and provider. The
match criteria represent the trust requirements. This vision, intentionally general, al-
lows also natural application to other fields, not strictly related with trust. In our
framework, in fact, participants (user and Web Services) can easily express any kind
of policies, in particular, their trust policies.

WSTO builds on the classification library, created within the IBROW project [5,
13], then it makes use of the classification mechanisms already defined in that task.
We opportunely extend and adapt it to the Semantic Web Services field, emphasizing
the role of service selection as an important part of goal invocation.

In the following of this section, we expose the main features of the underlying
classification task and then we describe in details WSTO.

3.1 Classification

The classification problem is an important issue in several fields [19]. For example,
identifying a class of symptoms is crucial in the investigation of diseases; or, classifying

702 S. Galizia

goals and requirements is the starting point of a planning process. In general, reasoning
about classes is simpler, especially in the presence of a large set of instances.

In order to find the proper class for a set of objects, it is necessary for an agent to
reason about differences among a given set of features. For instance, we can classify
living beings as separate classes plants and animals – and continue to further
sub-classify the animals as carnivores and herbivores – by identifying different ob-
servable characteristics. This problem can be expressed in terms of search within a so-
lution space, by applying a criterion over a given set of facts.

The classification ontology we extended is a ‘task ontology’ [3, 12, 13], which
specifies the general classification problem. The classification library, as a whole, is
very extensive, being composed by a huge number of classes, relations and functions;
it also provides heuristic evaluations and refinement methods. We extend only a sub-
set of the classification task, useful for our trust requirements. Figure 1 illustrates the
classification framework by means of a UML Class Diagram; the large open-headed
arrows relate classes in is-a relations, the simple arrows represent normal relations
between classes.

Fig. 1. The classification task ontology

The classification-task class is a subclass of the general goal-
specification-task. The optimal-classification-task is a reason-
ing module, it applies match criteria in order to derive the best solutions by evaluating
the facts, stored in the class observable. The observables are a finite set of facts
represented by pairs like (f, v), where f are features and v their associated values. The
solution space is defined by a set of predefined classes (solutions) under which an un-
known object may fall. The match-criterion specifies the methods to find a so-
lution, according to a chosen classification task.

A solution itself can be described as a finite set of feature specifications, which is a
pair of the form (f, c), where f is a feature and c specifies a condition on the values
that the feature can take. Then, we say that an observable (f, v) matches a feature
specification (f, c) if v satisfies the condition c.

WSTO: A Classification-Based Ontology for Managing Trust in Semantic Web Services 703

Several definitions of classification tasks can be provided. In some cases, only an
admissible solution is required, in other cases optimal solutions may be requested. In
Figure 1 we show only optimal-classification-task, which requires a solution to be op-
timal with respect to a given match criterion.

3.2 WSTO: Web Services Trust-Based Selection Ontology

WSTO is composed of two logical levels: a static layer that provides our vision of
Semantic Web Services invocation scenario, and a dynamic level, composed by a rea-
soning module, where every requestor can specify its own trust requirements.

Fig. 2. The Trust Ontology

The former identifies three main components during a service invocation: user,
goal, ws (Web Service); the latter describes how dynamically is established a solving
method to select the Web Service according with all trust requirements.

The user is the client, which can be a human actor or in turn another Web Ser-
vice. The class ws represents the Web Service. A goal specifies the objectives that a
client may have when consulting a Web Service, describing aspects related to user de-
sires with respect to the requested functionality and behaviour. Our goal definition
can be a WSMO goal [16].

704 S. Galizia

In the WSMO vision, a goal specifies the objectives that a client may have when
consulting a Web Service, describing aspects related to user desires with respect to
the requested functionality and behaviour. Ontologies are used as the semantically de-
fined terminology for goal specification. Goals model the user view in the Web Ser-
vice usage process and therefore are a separate top level entity in WSMO.

As shown in figure 2, ws and user are subclasses of participant. We in-
clude the class participant as superclass of user and ws, to compactly specify
common relations involving both user and Web Service entities. User and Web Ser-
vice should be able to express their trust requirements and publish their own guaran-
tees. For instance, they could expose promised execution parameters or security
certifications, as non-functional properties. Several certification authorities, such as
the well-known Verisign [21], may provide either requester or Web Service with se-
curity certification.

We do not intend to provide technical security consideration in this paper, never-
theless, we show how easily the participants can extend WSTO in order to disclose
their security guarantees.

Fig. 3. Security Ontology

In the figure 3 we show a possible ontology extension. Certification-
authority class represents an entity that provides security certification, for
instance, the aforementioned Verisign. There exist different kinds of authorities, in-
ternational, national, university, etc.. Usually the certificates (like the certificates ex-
ploited in the well-known SSL protocol, X509), provide different classes of security.
Authentication verifies whether a potential partner in a conversation is capable of rep-
resenting a person or an organization. Integrity assures that the data must be identi-
cally maintained during any operation. Confidentiality serves to keep the message
secret by using encryption.

A user requesting a service on the Web usually demands authentication and en-
cryptions services (confidentiality). Our general framework allows the participants to
express their individual requirements in a flexible way.

The certification authority may provide other guarantees not mentioned in our frame-
work (non-repudiation, legislative requirements, etc.), and, moreover, we consider

WSTO: A Classification-Based Ontology for Managing Trust in Semantic Web Services 705

explicitly the case in which security requirements could change in the future, due, for
instance to legislative requirements. For this reason both actors, WS and user, are en-
abled to dynamically extend our ontology in accordance with their own needs. Trust
preferences of a requester may also relate to Web Service execution properties. Timeli-
ness, precision and accuracy are all judged with respect to execution data, although of-
ten represented as objective and invariant QoS properties. While security is certificated
by trusted authorities, evaluation of QoS execution properties is inherently more com-
plex. In essence, the provider usually describes its own quality of service, and the re-
questor selection is based on the promised parameters.

In this context, an objective third party performing selection would have to take
into account the historical behaviour of the Web Service, and compare the promised
QoS statements with the properties of actual executions. This mechanism will be one
subject of our future work.

Security or execution parameters can be represented as (f,v), pairs of features and
relative values, as per observable in the general classification task ontology. Thus
the relation has-feature, between the classes participants and observ-
able, stores all of the considered Web Service’s non-functional trust properties (see
Figures 2 and 3).

A goal matches with a number of Web Service; we express the goal in terms of
WSMO notion. Moreover, a classification goal specifies the general goal in the previ-
ously described classification task, and may itself be expressed as a WSMO goal.

In our scenario, the user asks for a goal and establishes its criteria to be applied in
the trust-based selection. The user-trust-profile represents the set of criteria
associated to the user requirements. All criteria are stored in the class match-
criterion, derived from the classification ontology. This class is the core of the
dynamic level of our framework, in the sense that a user can populate it by defining
new methods according to their own particular trust requirements. A user, for in-
stance, can state that authentication has a greater weight than confidentiality certifica-
tion and she can establish furthermore the score for the type of certification
authorities. Furthermore, she can designate a particular given Web Service as trusted,
without relating her choice with any QoS or Security parameters; in this case, she will
instantiate a new criterion in the class match-criterion.

Given a user-profile instance, a selector engine (match-criterion-
selector in figure 2) will select the right criterion associated to requested goal.
Only one match criterion will be executed for a given goal invocation and a given cor-
responding user trust profile.

On the other hand, the Web Service owns its trust policies and can decide what to
disclose. The class ws-trust-profile represents trust policy of the Web Service.
While the user selects both the match criterion and the goal that wishes to achieve, in-
stead, the Web Service is associated to a goal by its capability, and it will select (or
define) only the preferred criterion.

The optimal-classification-goal class, inherited from the general clas-
sification ontology, contains a set of problem solving methods, applied to the class
match-criterion. Essentially, the reasoning module identifies a class of Web
Services that satisfy the requested goal, according with both user and Web Service
trust requirements. The solutions will essentially be a set of pairs (f, c), according to
the classification task, where f expresses the trustworthiness features and c the

706 S. Galizia

conditions established in the match criterion. For example, {(certification-authority,
verisign), (key-length,128)} is a possible solution. In our ontology, the class solu-
tion represents general solutions in the classification task, but we specialize, in
ws-profile, the solutions of our interest. The relation matches between ws and ws-
profile identifies all Web Service descriptions compatible with the solutions.

4 Execution

In this section, we provide more details about WSTO dynamic layer, that is, how ac-
tually the WSTO reasoner works. For example, we outline a scenario where the user
looks for a secure loan Web Service with some security certifications. We assume that
there exist several services fitting with goal and user trust needs. In turn, every loan
service has its trust policies. For instance, concerning financial guarantees we may
specify that the user has to have a bank account, a credit card, a permanent job, etc..

Fig. 4. The anchor to IRS-III

The user could consent to show only bank account and credit card number, but with-
hold information regarding his job. WSTO target is to find the class of loan Web Ser-
vices conformant with both user and Web Services trust policies. Figure 4 shows the
basic idea: both user and WS disclose their policies at two levels, by providing trust
guarantees and requirements. The trust guarantees are stored in the observables, as
discussed above; the requirements are expressed in terms of match criteria. We now
turn our attention to the role of the reasoner that applies the match criteria, according
to each party’s trust policies, in order to find the correct set of Web Services.

Our approach implies a centralized trust-based matchmaker. WSTO has to use the
services of an external broker, to carry out the reasoning. In P2P and Semantic Web
Services community [15, 8], several approaches adopt this centralized matchmaker
idea, especially because the delegation to a trusted third party becomes essential when
more than one entity is involved while taking a decision.

We believe that the centralized approach carries many advantages. First, a broker
can store information and apply reputation-based algorithms that learn from involved

WSTO: A Classification-Based Ontology for Managing Trust in Semantic Web Services 707

parties’ historical behaviours. The second big advantage is the simplicity of interac-
tion, being a one-shot access of the broker.

We plan to use IRS-III (see Figure 4), as trust-based matchmaker for WSTO. In the
following subsections we provide an IRS-III overview and a sketch of a possible exe-
cution example by using IRS-III.

4.1 IRS-III Overview

IRS-III is a tool and an implemented framework with the overall aim of supporting
the automated or semi-automated construction of semantically enhanced systems over
the Internet. The IRS uses WSMO as its basic ontology and follows the WSMO de-
sign principles [16].

IRS-III has three main classes of features, which distinguish it from other work on
Semantic Web Services: Firstly, it supports one-click publishing of ‘standard’ pro-
gram code. In other words, it automatically transforms programming code (currently
we support Java and Lisp environments) into a Web Service, by automatically creat-
ing an appropriate wrapper. Hence, it is very easy to make existing standalone soft-
ware available on the Internet, as Web Services. Secondly, by extending the WSMO
goal and Web Service concepts, clients of IRS-III can directly invoke Web Services
via goals - that is IRS-III supports capability-driven service invocation. Finally, IRS-
III services are Web Service compatible – standard Web Services can be trivially pub-
lished through the IRS-III.

The main components of the IRS-III architecture are the IRS-III Server, the IRS-III
Publisher and the IRS-III Client, which communicate through the SOAP protocol.

IRS-III was designed for ease of use, in fact a key feature of IRS-III is that Web
Service invocation is capability driven. The IRS-III Client supports this by providing
a goal-centric invocation mechanism. An IRS-III user simply asks for a goal to be
solved and the IRS-III broker locates an appropriate Web Service semantic descrip-
tion and then invokes the underlying deployed Web Service. We plan to implement
WSTO in IRS-III, in order to make the client invocation, now capability-based, fur-
ther trust-based. We believe that IRS-III is particularly suitable for our purpose be-
cause it is already a broker between goal and semantically described Web Service.
Moreover, the classification library, to which we refer, is already implemented in
IRS-III.

4.2 Execution Example in IRS-III

We now propose the outlined scenario in the beginning of this section and detail how
IRS-III manages the trust-based Web Service selection.

The client is a construction company that, through IRS-III, asks for a loan service,
specifying its trust policies. In turn, various loan services disclose their trust require-
ments and guarantees. The only data the client intends to disclose is its bank account,
but only to the services that promise given security guarantees. In particular, its con-
straints are that Web Service provider uses encryption algorithm type DES, or one
based on this, and that it owns an authentication certificate released by Verisign or
any American certification authority. This last requirement is a weak constraint: in the
case that are no available Web Services with American authentication certificates, the

708 S. Galizia

client considers certification from German or Italian authorities to be acceptable, in
that order of preference. IRS-III maintains a user trust profile for regular clients,
which contains personal preferences; and it updates their profiles every time those cli-
ents specify new trust policies.

Several Web Services with capabilities functionally fitting the goal are semanti-
cally described in IRS-III, but only a sub class of them will match with the client’s
trust requirements. For instance, those loan services that need the company’s credit
card number as guarantee are automatically excluded, because the client discloses
only its bank account.

Both Web Service and client can extend WSTO. The security extension example,
shown in the section 3.1 is a typical extension that can occur in this case study. In
fact, in order to disclose security guarantees, it makes sense to add to WSTO classes
that store the main certification authorities, or the possible security tokens, as shown
in Figure 3.

The loan services populate the class observable with their trust guarantees. We
consider three different loan Web Services that instantiate the following pairs:

• WS1: (certification-authority, verisign);
 (country-authority, united_states);
 (encryption, AES);
 (certificate-type,X.509);

• WS2: (certification-authority, globalsign-austria);
 (country-authority, austria);
 (encryption, 3DES);

• WS3: (certification-authority, tc-trustCenter);
 (country-authority, germany);
 (encryption, DES);
 (keyType, RSA);

To simplify the case study we do not instantiate any Web Service trust require-
ment, and assume that all those three services accept as clients’ guarantees only their
bank accounts, the only data the construction company wants to disclose. The client,
instead, selects an available parametric match criterion, which allows the client to es-
tablish weighs for parameters, concerning encryption algorithms and certification au-
thorities’ properties.

Our client will provide the following values:

()
()

2.0: ,:

3.0: ,:

5.0: ,:

5.0: ,:

1: ,:

scoreitalianvalue

scoregermanvalue

scoreamericanvalue

ynationalit

scoreveriSignvalueauthority

scoreDESvalueencryption

This criterion provides a trust value in the real interval [0,1] for every parameter.
The score 0 means that there is no trust at all, the score 1 signifies absolute trust, the
values between 0 and 1 represent the linear variation in trust. For values that are
given no score, a score of 0 automatically applies. For instance, it is implicit that the

WSTO: A Classification-Based Ontology for Managing Trust in Semantic Web Services 709

client does not trust any English certification authority. The criterion returns the final
computed trust measure as a real value between 0 and 1, by normalization of some
composition of the scores for all provided values. The optimal classification task pro-
vides the class of best solutions, by reasoning on all match criteria selected or created.
The solutions are a set of valid observables, those represent all features the Web Ser-
vices must have. This set is stored in the class ws-solution. The actual Web Ser-
vices correspond to the valid features are returned by the relation matches, between
ws and ws-solution.

No one among the loan services considered has maximal trustworthiness, i.e. is the
subject of absolute trust. In fact, the only Web Service that matches both the goal and
client trust requirements is WS3. WS1 does not respect the encryption constraint; and
the client does not accept the nationality of the authority that provides WS2 with se-
curity certification.

5 Conclusions

In this paper, we have presented an ontology, WSTO, that facilitates trust based invo-
cation and selection in the Semantic Web Services environment. We have considered
the trust-based selection as a classification problem. This simplifies the problem’s
tractability, especially in presence of a lot of instances. This is of particular relevance
in our context due to the distributed and open nature of the web.
WSTO presents several important benefits that we summarize as follows:

• Generality. Trust has different meanings in different contexts, we differenti-
ated trust on ability and trust reliability and even trust on reputation and trust
through third parties. Often the trust evaluation depends on the perceptions
of the parties involved in a communication. WSTO allows specifying any
trust needs; its general nature makes it adaptable to any scenario.

• Open. Our aim is to make WSTO as open as possible. We intend to imple-
ment it in IRS-III, which is publicly accessible. More significantly, the con-
stituents of WSTO are Semantic Web Services, so they can be represented a)
in term of ontologies e b) in terms of components. All participants can re-
place the main parts of the WSTO, by instantiating new match criteria, or
publishing new semantic descriptions of own trust policies.

• Trust-based invocation. The core purpose of our ontology is to enable trust-
based invocation. We believe that this approach is useful in an open and dis-
tributed environment such as the Semantic Web Services environment.

• Explicitness. Policies and their evaluation mechanism are explicitly formally
described.

We adopt WSMO [16] as basic vision that provides ontological specifications for
the core elements of Semantic Web Services. WSMO specifies a set of and non-
functional properties that describe information that does not affect the functionality of
the element, such as title, authorship, copyrights, etc. Among them “trust” is listed as
a recommended property for web service description. Nevertheless, until now, the
WSMO effort has not specified any process to enable trust-based discovery and

710 S. Galizia

selection. We claim that our approach has a natural fit with the WSMO requirements
and so propose to extend WSMO with our ontology.

Further work is underway on implementation of WSTO in IRS-III.

Acknowledgements

This work is supported by DIP (Data, Information and Process Integration with Se-
mantic Web Services) (EU FP6 - 507483) and AKT (Advanced Knowledge Tech-
nologies) (UK EPSRC GR/N15764/01) projects.

I would like specially to thank John Domingue for his constructive guidance and
feedback. I also have benefited from discussion with Barry Norton and Andreas
Friesen.

References

1. Bilgin, A. S., Singh, M. P. (2004). A DAML-based repository for QoS-aware Semantic
Web Service selection. In Proceedings of the IEEE International Conference on Web Ser-
vices (ICWS’04), Washington, DC, USA, 2004.

2. Domingue, J., Cabral, L., Hakimpour, F., Sell, D., Motta, E. (2004). Irs-III: A platform and
infrastructure for creating WSMO-based Semantic Web Services. In Proceedings of the
Workshop on WSMO Implementations (WIW 2004), Frankfurt, Germany, September
2004.

3. Fensel, D., Benjamins, V. R., Motta, E. and Wielinga, B. J. (1999a). A Framework for
knowledge system reuse. Proceedings of the International Joint Conference on Artificial
Intelligence (IJCAI-99). Stockholm, Sweden, July 31 – August 5, 1999.

4. Fensel, D., Bussler C. (2002). The Web Service Modeling Framework WSMF. Electronic
Commerce Research and Applications, 1(2), 2002.

5. Fensel, D., Motta, E., Benjamins, V. R., Decker, S., Gaspari, M., Groenboom, R., Grosso,
W., Musen, M., Plaza E., Schreiber, G., Studer, R. and Wielinga, B. (1999b). The Unified
Problem-solving Method Development Language UPML. IBROW3 Project Deliverable 1.1.

6. The Friend-Of-A-Friend (FOAF) Project. (2004). Available at http://www.
foaf-project.org/.

7. Golbeck, J. and Hendler, J. (2005). Inferring trust relationships in web-based social net-
works. submitted to ACM Transactions on Internet Technology, 2005.

8. Kagal, L., Paoucci, M., Srinivasan, N., Denker G, Finin, T., Sycara K. (2004). Authoriza-
tion and privacy for Semantic Web Services. In Proceeding of AAAI 2004 Spring Sympo-
sium on Semantic Web Services, Stanford University, Mar. 2004.

9. Kolovski, V., Parsia, B., Katz, Y., Hendler, J. (2005). Representing Web Service Policies
in OWL-DL. in Proceedings of 4th International Semantic Web Conference (ISWC 2005),
November 6-10, 2005, Galway, Ireland.

10. Mani, A., Nagarajan, A. (2002). Understanding quality of service for Web Services: Im-
proving the performance of your Web Services -IBM-report- 2002. (Available at
http://www-128.ibm.com/developerworks/library/ws-quality.html).

11. Maximilien, E. M., Singh, M. P. (2004). Toward Autonomic Web Services Trust and Se-
lection. In Proceedings of 2nd International Conference on Service Oriented Computing
(ICSOC 2004), New York, November 2004.

WSTO: A Classification-Based Ontology for Managing Trust in Semantic Web Services 711

12. Motta E. (1999). Reusable Components for Knowledge Models: Principles and Case Stud-
ies in Parametric Design Problem Solving. IOS Press.

13. Motta, E., Lu, W. (2000). A Library of Components for Classification Problem Solving. In
Proceedings of PKAW 2000 - The 2000 Pacific Rim Knowledge Acquisition, Workshop,
Sydney, Australia, December 11-13, 2000.

14. Ngan, T. W., J, Wallach, D., S., Druschel, P. (2003). Enforcing Fair Sharing of Peer-to-
peer Resources. 2nd International Workshop on Peer-to-Peer Systems (IPTPS) (Berkeley,
California), February 2003.

15. Olmedilla, D., Lara, R., Polleres, A., Lausen, H. (2004). Trust Negotiation for Semantic
Web Services. 1st International Workshop on Semantic Web Services and Web Process
Composition in conjunction with the 2004 IEEE International Conference on Web Ser-
vices, Jul.. 2004, San Diego, California, USA.

16. Roman, D., Lausen, H. and Keller, U. (Eds) (2005). The Web Service Modeling Ontology
WSMO, final version 1.1. WSMO Final Draft D2, 2005.

17. Sabata, B., Chatterjee, S., Davis., M., Sydir, J., Lawrence, T. (1997). Taxonomy for QoS
Specifications. In Proceedings of the 3rd Workshop on Object-Oriented Real-Time De-
pendable Systems (WORDS '97), February 1997.

18. Sepandar D., K., Schlosser, M. T., Garcia-Molina, H. (2003). The EigenTrust Algorithm
for Reputation Management in P2P Networks. In Proceedings of the Twelfth International
World Wide Web Conference. Budapest, Hungary, 20-24 May 2003.

19. Stefik M. (1995). Introduction to Knowledge Systems. Morgan Kaufmann, San Francisco,
CA.

20. Vu L., H., Hauswirth, M. and Aberer, K. (2005). QoS-based Service Selection and Rank-
ing with Trust and Reputation Management. Technical Report IC2005029, Swiss Federal
Institute of Technology at Lausanne (EPFL), Switzerland, June 2005.

21. VeriSign. (2005). Intelligent Infrastructure Services At Work. Information available at:
http://www.verisign.com/.

22. W3C (2004). Web Services Architecture. W3C Working Draft 11 February 2004 (Avail-
able at http://www.w3.org/TR/ws-arch/).

Semantic Web Policies – A Discussion of
Requirements and Research Issues

� P.A. Bonatti1, C. Duma2, N. Fuchs3, W. Nejdl4, D. Olmedilla4,
J. Peer5, and N. Shahmehri2

1 Università di Napoli Federico II, Napoli, Italy
bonatti@na.infn.it

2 Linköpings universitet, Linköpings, Sweden
{cladu, nahsh}@ida.liu.se

3 University of Zurich, Zurich, Switzerland
fuchs@ifi.unizh.ch

4 L3S Research Center and University of Hanover, Hanover, Germany
{olmedilla, nejdl}@l3s.de

5 St. Gallen University, St. Gallen, Switzerland
joachim.peer@unisg.ch

Abstract. Policies are pervasive in web applications. They play crucial
roles in enhancing security, privacy and usability of distributed services.
There has been extensive research in the area, including the Seman-
tic Web community, but several aspects still exist that prevent policy
frameworks from widespread adoption and real world application. This
paper discusses important requirements and open research issues in this
context, focusing on policies in general and their integration into trust
management frameworks, as well as on approaches to increase system
cooperation, usability and user-awareness of policy issues.

Keywords: Integrated heterogeneous policies, Cooperative policy en-
forcement, Lightweight trust, Trust management, Natural language in-
terfaces, Explanation mechanisms.

1 Introduction

Policies are pervasive in web applications. They play crucial roles in enhancing
security, privacy and usability of distributed services, and indeed may determine
the success (or failure) of a web service. However, users will not be able to
benefit from these protection mechanisms unless they understand and are able
to personalize policies applied in such contexts. For web services this includes
policies for access control, privacy and business rules, among others.

In this paper, we summarize research performed over the past years on se-
mantic policies and especially aim to analyse those aspects that did not receive
so much attention so far. We will focus our discussion on the following strategic
goals and lines of research:

� In alphabetical order.

Y. Sure and J. Domingue (Eds.): ESWC 2006, LNCS 4011, pp. 712–724, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Semantic Web Policies – A Discussion of Requirements and Research Issues 713

– Adoption of a broad notion of policy, encompassing not only access control
policies, but also privacy policies, business rules, quality of service, and oth-
ers. We believe that all these different kinds of policies should eventually be
integrated into a single framework.

– Strong and lightweight evidence: Policies make decisions based on properties
of the peers interacting with the system. These properties may be strongly
certified by cryptographic techniques, or may be reliable to some interme-
diate degree with lightweight evidence gathering and validation. A flexible
policy framework should try to merge these two forms of evidence to meet
the efficiency and usability requirements of web applications.

– These desiderata imply that trust negotiation, reputation models, business
rules, and action specification languages have to be integrated into a single
framework at least to some extent. It is crucial to find the right tradeoff
between generality and efficiency. So far, no framework has tried to merge
all aspects into a coherent system.

– Automated trust negotiation is one of the main ingredients that can be used
to make heterogeneous peers effectively interoperate. This approach relies
on and actively contributes to advances in the area of trust management.

– Lightweight knowledge representation and reasoning does not only refer to
computational complexity; it should also reduce the effort to specialize gen-
eral frameworks to specific application domains; and the corresponding tools
should be easy to learn and use for common users, with no particular training
in computers or logic. We regard these properties as crucial for the success
of a semantic web framework.

– The last issue cannot be tackled simply by adopting a rule language. Solu-
tions like controlled natural language syntax for policy rules, to be translated
by a parser into the internal logical format, will definitively ease the adoption
of any policy language.

– Cooperative policy enforcement : A secure cooperative system should (almost)
never say no. Web applications need to help new users in obtaining the
services that the application provides, so potential customers should not be
discouraged. Whenever prerequisites for accessing a service are not met, web
applications should explain what is missing and help the user in obtaining
the required permissions.

– As part of cooperative enforcement, advanced explanation mechanisms are
necessary to help users in understanding policy decisions and obtaining the
permission to access a desired service.

In the remainder of this paper we describe the current state of the art on
these issues, expand on them and point out several interesting research direc-
tions related to them. Section 2 discusses the different types of policies which
must be considered in order to address real world scenarios. The need for strong
and lightweight evidence on the information that policies require is discussed in
Section 3. Section 4 then highlights the importance of trust management as part
of a policy framework, describing in detail negotiations and provisional actions.
Section 5 describes how cooperative systems which explain their decisions to

714 P.A. Bonatti et al.

users as well as policy specification in natural language increase user awareness
and understanding. We finish with conclusions and perspectives in Section 6

2 A Broad Notion of Policy

Policies are pervasive in all web-related contexts. Access control policies are
needed to protect any system open to the internet. Privacy policies are needed
to assist users while they are browsing the web and interacting with web services.
Business rules specify which conditions apply to each customer of a web service.
Other policies specify constraints related to Quality of Service (QoS). In E-
government applications, visas and other documents are released according to
specific eligibility policies. This list is not exhaustive and is limited only by the
class of applications that can be deployed in the world wide web.

Most of these policies make their decisions based on similar pieces of infor-
mation [3] – essentially, properties of the peers involved in the transaction. For
example, age, nationality, customer profile, identity, and reputation may all be
considered both in access control decisions, and in determining which discounts
are applicable (as well as other eligibility criteria). It is appealing to integrate
these kinds of policies into a coherent framework, so that (i) a common in-
frastructure can be used to support interoperability and decision making, and
(ii) the policies themselves can be harmonized and synchronized.

In the general view depicted above, policies may also establish that some
events must be logged (audit policies), that user profiles must be updated, and
that when a transaction fails, the user should be told how to obtain missing
permissions. In other words, policies may specify actions whose execution may
be interleaved with the decision process. Such policies are called provisional
policies. In this context, policies act both as decision support systems and as
declarative behavior specifications. An effective user-friendly approach to policy
specification could give common users (with no training in computer science or
logic) better control on the behavior of their own system (see the discussion in
Section 5).

Of course, the extent to which this goal can be achieved depends on the
policy’s ability to interoperate with legacy software and data – or more gener-
ally, with the rest of the system. Then a policy specification language should
support suitable primitives for interacting with external packages and data in a
flexible way.

The main challenges raised by these issues are then the following:

– Harmonizing security and privacy policies with business rules, provisional
policies, and other kinds of policy is difficult because their standard for-
malizations are based on different derivation strategies, and even different
reasoning mechanisms (cf. Section 4). Deduction, abduction, and event-
condition-action rule semantics need to be integrated into a coherent frame-
work, trying to minimize subtleties and technical intricacies (otherwise the
framework would not be accessible to common users).

Semantic Web Policies – A Discussion of Requirements and Research Issues 715

– Interactions between a rule-based theory and “external” software and data
have been extensively investigated in the framework of logic-based mediation
and logic-based agent programming [18, 17]. However, there are novel issues
related to implementing high-level policy rules with low-level mechanisms
such as firewalls, web server and DBMS security mechanisms, and operat-
ing system features, that are often faster and more difficult to bypass than
rule interpreters [14]. A convincing realization of this approach might boost
the application of the rich and flexible languages developed by the security
community.

3 Strong and Lightweight Evidence

Currently two major approaches for managing trust exist: policy-based and
reputation-based trust management. The two approaches have been developed
within the context of different environments and target different requirements.
On the one hand, policy-based trust relies on “strong security” mechanisms such
as signed certificates and trusted certification authorities (CAs) in order to reg-
ulate access of users to services. Moreover, access decisions are usually based
on mechanisms with well defined semantics (e.g., logic programming) providing
strong verification and analysis support. The result of such a policy-based trust
management approach usually consists of a binary decision according to which
the requester is trusted or not, and thus the service (or resource) is allowed
or denied. On the other hand, reputation-based trust relies on a “soft computa-
tional” approach to the problem of trust. In this case, trust is typically computed
from local experiences together with the feedback given by other entities in the
network. For instance, eBay buyers and sellers rate each other after each trans-
action. The ratings pertaining to a certain seller (or buyer) are aggregated by
eBay’s reputation system into a number reflecting seller (or buyer) trustwor-
thiness as judged by the eBay community. The reputation-based approach has
been favored for environments such as Peer-to-Peer or Semantic Web, where the
existence of certifying authorities can not always be assumed but where a large
pool of individual user ratings is often available.

Another approach – very common in today’s applications – is based on forcing
users to commit to contracts or copyrights by having users click an “accept”
button on a pop-up window. This is perhaps the lightest approach to trust, that
can be generalized by having users utter declarations (on their e-mail address,
on their preferences, etc.) e.g. by filling an HTML form.

Real life scenarios often require to make decisions based on a combination of
these approaches. Transaction policies must handle expenses of all magnitudes,
from micropayments (e.g. a few cents for a song downloaded to your iPod)
to credit card payments of a thousand euros (e.g. for a plane ticket) or even
more. The cost of the traded goods or services contributes to determine the risk
associated to the transaction and hence the trust measure required.

Strong evidence is generally harder to gather and verify than lightweight
evidence. Sometimes, a “soft” reputation measure or a declaration in the sense

716 P.A. Bonatti et al.

outlined above is all one can obtain in a given scenario. We believe that the
success of a trust management framework will be determined by the ability of
balancing trust levels and risk levels for each particular task supported by the
application, adding the following to the list of interesting research directions:

– How should different forms of trust be integrated? Some hints on modelling
context aware trust, recommendation and risk with rules is given in [16] and
a first proposal for a full integration in a policy framework can be found in [6].
However, new reputation models are being introduced, and there is a large
number of open research issues in the reputation area (e.g., vulnerability to
coalitions). Today, it is not clear which of the current approaches will be
successful and how the open problems will be solved. Any proposal should
therefore aim at maximal modularity in the integration of numerical and
logical trust.

– How many different forms of evidence can be conceived? In principle, prop-
erties of (and statements about) an individual can be extracted from any –
possibly unstructured – web resource. Supporting such a variety of informa-
tion in policy decisions is a typical semantic web issue – and an intriguing
one. However, such general policies are not even vaguely as close to become
real as the policies based on more “traditional” forms of evidence (see the
discussion in the next section).

4 Trust Management

During the past few years, some of the most innovative ideas on security poli-
cies arose in the area of automated trust negotiation [2, 7, 5, 9, 22, 23, 24, 25, 1].
That branch of research considers peers that are able to automatically negotiate
credentials according to their own declarative, rule-based policies. Rules specify
for each resource or credential request which properties should be satisfied by
the subjects and objects involved. At each negotiation step, the next credential
request is formulated essentially by reasoning with the policy, e.g. by inferring
implications or computing abductions.

Since about five years frameworks exist where credential requests are formu-
lated by exchanging sets of rules [7, 5]. Requests are formulated intensionally in
order to express compactly and simultaneously all the possible ways in which
a resource can be accessed — shortening negotiations and improving privacy
protection because peers can choose the best option from the point of view of
sensitivity. It is not appealing to request “an ID and a credit card” by enumer-
ating all possible pairs of ID credentials and credit card credentials; it is much
better to define what IDs and credit cards are and send the definition itself.
Another peer may use it to check whether some subset of its own credentials
fulfills the request. This boils down to gathering the relevant concept definitions
in the policy (so-called abbreviation rules) and sending them to the other peer
that reasons with those rules locally.

In [7, 5] peers communicate by sharing their ontologies. Interestingly, typi-
cal policies require peers to have a common a priori understanding only of the

Semantic Web Policies – A Discussion of Requirements and Research Issues 717

predicate representing credentials and arithmetic predicates, as any other predi-
cate can be understood by sharing its definition. The only nontrivial knowledge
to be shared is the X.509 standard credential format. In this framework, inter-
operability based on ontology sharing is already at reach! This is one of the
aspects that make policies and automated trust negotiation a most attractive
application for semantic web ideas.

Another interesting proposal of [5] is the notion of declaration, that has al-
ready been discussed in Section 3. This was the first step towards a more flexible
and lightweight approach to policy enforcement, aiming at a better tradeoff be-
tween protection efforts and risks. According to [15], this framework was one of
the most complete trust negotiation systems. The major limitation was the lack
of distributed negotiations and credential discovery, which are now supported as
specified in [7].

Negotiations. In response to a resource request, a web server may ask for
credentials proving that the client can access the resource. However, the cre-
dentials themselves can be sensitive resources. So the two peers are in a com-
pletely symmetrical situation: the client, in turn, asks the server for credentials
(e.g. proving that it participates in the Better Business Bureau program) before
sending off the required credentials. Each peer decides how to react to incoming
requests according to a local policy, which is typically a set of rules written in
some logic programming dialect. As we pointed out, requests are formulated by
selecting some rules from the policies. This basic schema has been refined along
the years taking several factors into account [2, 7, 5, 9, 22, 23, 24, 25, 1].

First, policy rules may possibly inspect a local state (such as a legacy database)
that typically is not accessible by other peers. In that case, in order to make rules
intelligible to the recepient, they are partially evaluated with respect to the current
state.

Second, policies themselves are sensitive resources, therefore not all relevant
rules are shown immediately to the peer. They are first filtered according to
policy release rules; the same schema may be applied to policy release rules
themselves for an arbitrary but finite number of levels. As a consequence, some
negotiations that might succeed, in fact fail just because the peers do not tell
each other what they want. The study of methodologies and properties that
guarantee negotiation success is an interesting open research issue.

Moreover, credentials are not necessarily on the peer’s host. It may be nec-
essary to locate them on the network [11]. As part of the automated support to
cooperative enforcement, peers may give each other hints on where a credential
can be found [26].

There are further complications related to actions (cf. Section 4). In or-
der to tune the negotiation strategy to handle these aspects optimally, we can
rely on a metapolicy language [7] that specifies which predicates are sensitive,
which are associated to actions, which peer is responsible for each action, and
where credentials can be searched for, guiding negotiation in a declarative fash-
ion and making it more cooperative and interoperable. Moreover, the metapolicy

718 P.A. Bonatti et al.

language can be used to instantiate the framework in different application do-
mains and link predicates to the ontologies where they are defined.

Provisional Policies. Policies may state that certain requests or decisions have
to be logged, or that the system itself should search for certain credentials. In
other words, policy languages should be able to specify actions. Event-condition-
action (ECA) rules constitute one possible approach. Another approach consists
in labelling some predicates as provisional, and associating them to actions that
(if successful) make the predicate true [7]. We may also specify that an action
should be executed by some other peer; this results in a request.

A cooperative peer tries to execute actions under its responsibility when-
ever this helps in making negotiations succeed. For example, provisional predi-
cates may be used to encode business rules. The next rule1 enables discounts on
low selling articles in a specific session:

allow(Srv) ← . . . , session(ID),
in(X , sql:query(′select ∗ from low selling′)),
enabled(discount(X), ID) .

Intuitively, if enabled(discount(X), ID) is not yet true but the other con-
ditions are verified, then the negotiator may execute the action associated to
enabled and the rule becomes applicable (if enabled(discount(X), ID) is al-
ready true, no action is executed). The (application dependent) action can be
defined and associated to enabled through the metapolicy language. With the
metalanguage one can also specify when an action is to be executed.

Some actions would be more naturally expressed as ECA rules. However, it is
not obvious how the natural bottom-up evaluation schema of ECA rules should
be integrated with the top-down evaluation adopted by the current core policy
language. The latter fits more naturally the abductive nature of negotiation
steps. So integration of ECA rules is still an interesting open research issue.

Stateful vs. Stateless Negotiations. Negotiations as described above are in
general stateful, because (i) they may refer to a local state – including legacy
software and data – and (ii) the sequence of requests and counter requests may
become more efficient if credentials and declarations are not submitted again
and again, but kept in a local negotiation state. However, negotiations are not
necessarily stateful because

– the server may refuse to answer counter-requests, or – alternatively – the
credentials and declarations disclosed during the transaction may be included
in every message and need not be cached locally;

– the policy does not necessarily refer to external packages.

Stateless protocols are just special cases of the frameworks introduced so far.
Whether a stateless protocol is really more efficient depends on the application.
Moreover, efficiency at all costs might imply less cooperative systems.
1 Formulated in Protune’s language.

Semantic Web Policies – A Discussion of Requirements and Research Issues 719

Are stateful protocols related to scalability issues? We do not think so. The
web started as a stateless protocol, but soon a number of techniques were imple-
mented to simulate stateful protocols and transactions in quite a few real world
applications and systems, capable of answering a huge number of requests per
time unit. We observe that if the support for stateful negotiations had been cast
into http, probably many of the intrinsic vulnerabilities of simulated solutions
(like cookies) might have been avoided.

New Issues. Existing approaches to trust management and trust negotiation
already tackle the need for flexible, knowledge-based interoperability, and take
into account the main idiosyncrasies of the web – because automated trust ne-
gotiation frameworks have been designed with exactly that scenario in mind.
Today, to make a real contribution (even in the context of a policy-aware web),
we should further perform research on the open issues of trust management,
including at least the following topics:

– Negotiation success: how can we guarantee that negotiations succeed despite
all the difficulties that may interfere: rules not disclosed because of lack of
trust; credentials not found because their repository is unknown. What kind
of properties of the policy protection policy and of the hints (see Section 4)
guarantee a successful termination when the policy “theoretically” permits
access to a resource?

– Optimal negotiations: which strategies optimize information disclosure dur-
ing negotiation? Can reasonable preconditions prevent unnecessary informa-
tion disclosure?

– In the presence of multiple ways of fulfilling a request, how should the client
choose a response? We need both a language for expressing preferences,
and efficient algorithms for solving the corresponding optimization problem.
While this negotiation step is more or less explicitly assumed by most ap-
proaches on trust negotiation, there is no concrete proposal so far.

Additionally, integration of abductive semantics and ECA semantics is an
open issue, as we have pointed out in a previous section.

5 Cooperative Policy Enforcement

Cooperative enforcement involves both machine-to-machine and human-machine
aspects. The former is handled by negotiation mechanisms: published policies,
provisional actions, hints, and other metalevel information (see Section 4) can
be interpreted by the client to identify what information is needed to access a
resource, and how to obtain that information.

Let us discuss the human-machine interaction aspect in more detail: One of
the most important causes of the enormous number of computer security viola-
tions on the Internet is the users’ lack of technical expertise. Users are typically
not aware of the security policies applied by their system, neither of course about
how those policies can be changed and how they might be improved by tailoring

720 P.A. Bonatti et al.

them to specific needs. As a consequence, most users ignore their computer’s vul-
nerabilities and the corresponding countermeasures, so the system’s protection
facilities cannot be effectively exploited.

It is well known that the default, generic policies that come with system
installations – often biased toward functionality rather than protection – are
significantly less secure than a policy specialized to a specific context, but very
few users know how to tune or replace the default policy. Moreover, users fre-
quently do not understand what the policy really checks, and hence are unaware
of the risks involved in many common operations.

Similar problems affect privacy protection. In trust negotiation, credential
release policies are meant to achieve a satisfactory tradeoff between privacy and
functionality – many interesting services cannot be obtained without releasing
some information about the user. However, we cannot expect such techniques
to be effective unless users are able to understand and possibly personalize the
privacy policy enforced by their system.

A better understanding of a web service’s policy makes it also easier for a
first-time user to interact with the service. If denied access results simply in a
“no” answer, the user has no clue on how he or she can possibly acquire the
permission to get the desired service (e.g., by completing a registration proce-
dure, by supplying more credentials or by filling in some form). This is why we
advocate cooperative policy enforcement, where negative responses are enriched
with suggestions and other explanations whenever such information does not
violate confidentiality (sometimes, part of the policy itself is sensitive).

For these reasons, greater user awareness and control on policies is one of
our main objectives, making policies easier to understand and formulate to the
common user in the following ways:

– Adopt a rule-based policy specification language, because these languages are
flexible and at the same time structurally similar to the way in which policies
are expressed by nontechnical users.

– Make the policy specification language more friendly by e.g. developing a
controlled natural language front-end to translate natural language text into
executable rules (see next section).

– Develop advanced explanation mechanisms [4, 12, 13] to help the user under-
stand what policies prescribe and control.

Inference Web (IW) [12, 13] is a toolkit that aims at providing useful expla-
nations for the behavior of (Semantic-) Web based systems. In particular, [12]
propose support for knowledge provenance information using metadata (e.g.,
Dublin Core information) about the distributed information systems involved in
a particular reasoning task. [12] also deals with the issue of representing het-
erogeneous reasoning approaches, domain description languages and proof rep-
resentations; the latter issue is addressed by using PML, the OWL-based Proof
Markup Language [8].

Specifically applied to policies, [4] contains a requirements analysis for expla-
nations in the context of automated trust negotiation and defines explanation

Semantic Web Policies – A Discussion of Requirements and Research Issues 721

mechanisms for why, why-not, how-to, and what-if queries. Several novel aspects
are described:

– Adoption of a tabled explanation structure as opposed to more traditional
approaches based on single derivations or proof trees. The tabled approach
makes it possible to describe infinite failures, which is essential for why not
queries.

– Explanations show simultaneously different possible proof attempts and al-
low users to see both local and global proof details at the same time. This
combination of local and global (intra-proof and inter-proof) information
facilitates navigation across the explanation structures.

– Introduction of suitable heuristics for focussing explanations by removing
irrelevant parts of the proof attempts. A second level of explanations can
recover missing details, if desired.

– Heuristics are generic, i.e. domain independent, they require no manual con-
figuration.

– The combination of tabling techniques and heuristics yields a novel method
for explaining failure.

Explanation mechanisms should be lightweight and scalable in the sense that
(i) they do not require any major effort when the general framework is instanti-
ated in a specific application domain, and (ii) most of the computational effort
can be delegated to the clients. Queries are answered using the same policy
specifications used for negotiation. Query answering is conceived for the follow-
ing categories of users:

– Users who try to understand how to obtain access permissions;
– Users who monitor and verify their own privacy policy;
– Policy managers who verify and monitor their policies.

Currently, advanced queries comprise why/why not, how-to, and what-if
queries. Why/why not queries can be used by security managers to understand
why some specific request has been accepted or rejected, which may be useful for
debugging purposes. Why-not queries may help a user to understand what needs
to be done in order to obtain the required permissions, a process that in general
may include a combination of automated and manual actions. Such features are
absolutely essential to enforce security requirements without discouraging users
that try to connect to a web service for the first time. How-to queries have a
similar role, and differ from why-not queries mainly because the former do not
assume a previous query as a context, while the latter do.

What-if queries are hypothetical queries that allow to predict the behavior
of a policy before credentials are actually searched for and before a request is
actually submitted. What-if queries are good both for validation purposes and
for helping users in obtaining permissions.

Among the technical challenges related to explanations, we mention:

– Find the right tradeoff between explanation quality and the effort for instan-
tiating the framework in new application domains. Second generation expla-
nation systems [19, 20, 21] prescribe a sequence of expensive steps, including

722 P.A. Bonatti et al.

the creation of an independent domain knowledge base expressly for commu-
nicating with the user. This would be a serious obstacle to the applicability
of the framework.

Natural Language Policies. Policies should be written by and understandable
to users, to let them control behavior of their system. Otherwise the risk that
users keep on adopting generic hence ineffective built-in policies, and remain
unaware of which controls are actually made by the system is extremely high –
and this significantly reduces the benefits of a flexible policy framework.

Most users have no specific training in programming nor in formal logics.
Fortunately, they spontaneously tend to formulate policies as rules; still, logical
languages may be intimidating. For this reason, the design of front ends based
on graphical formalisms as well as natural language interfaces are crucial to the
adoption of formal policy languages. We want policy rules to be formulated like:
“Academic users can download the files in folder historical data whenever their
creation date precedes 1942”.

Clearly, the inherent ambiguity of natural language is incompatible with the
precision needed by security and privacy specifications. Solutions to that can be
the adoption of a controlled fragment of English (e.g., the Attempto system2)
where a few simple rules determine a unique meaning for each sentence. This
approach can be complemented with a suitable interface that clarifies what the
machine understands.

6 Conclusions and Perspectives

Policies are really knowledge bases: a single body of declarative rules used in
many possible ways, for negotiations, query answering, and other forms of sys-
tem behavior control. As far as trust negotiation is concerned, we further argue
that transparent interoperation based on ontology sharing can become “every-
day technology” in a short time, and trust negotiation especially will become a
success story for semantic web ideas and techniques.

In addition to stateless negotiation (see [10]), we need stateful negotiation as
well [5]. Even the Web, which started as a stateless protocol, now implements a
number of techniques to simulate stateful protocols and transactions, especially
in applications for accessing data other than web pages.

Cooperative policy enforcement and trust management gives common users
better understanding and control on the policies that govern their systems and
the services they interact with. The closer we get to this objective, the higher
the impact of our techniques and ideas will be.

Policies will have to handle decisions under a wide range of risk levels, perfor-
mance requirements, and traffic patterns. It is good to know that the rule-based
techniques that different research communities are currently converging to are
powerful enough to effectively address such a wide spectrum of scenarios. This
is the level of flexibility needed by the Semantic Web.
2 http://www.ifi.unizh.ch/attempto/

Semantic Web Policies – A Discussion of Requirements and Research Issues 723

Acknowledgment

This research has been partially funded by the European Commission and by the
Swiss State Secretariat for Education and Research within the 6th Framework
Programme project REWERSE number 506779 (cf. http://rewerse.net).

References

1. M. Y. Becker and P. Sewell. Cassandra: distributed access control policies with
tunable expressiveness. In 5th IEEE International Workshop on Policies for Dis-
tributed Systems and Networks, Yorktown Heights, June 2004.

2. M. Blaze, J. Feigenbaum, and M. Strauss. Compliance Checking in the Policy-
Maker Trust Management System. In Financial Cryptography, British West Indies,
February 1998.

3. P. A. Bonatti, N. Shahmehri, C. Duma, D. Olmedilla, W. Nejdl, M. Bal-
doni, C. Baroglio, A. Martelli, V. Patti, P. Coraggio, G. Antoniou, J. Peer,
and N. E. Fuchs. Rule-based policy specification: State of the art and future
work. Technical report, Working Group I2, EU NoE REWERSE, aug 2004.
http://rewerse.net/deliverables/i2-d1.pdf.

4. P.A. Bonatti, D. Olmedilla, and J. Peer. Advanced policy queries. Techni-
cal Report I2-D4, Working Group I2, EU NoE REWERSE, Aug 2005. http://
www.rewerse.net.

5. P.A. Bonatti and P. Samarati. A uniform framework for regulating service access
and information release on the web. Journal of Computer Security, 10(3):241–272,
2002. Short version in the Proc. of the Conference on Computer and Communica-
tions Security (CCS’00), Athens, 2000.

6. Piero A. Bonatti, Claudiu Duma, Daniel Olmedilla, and Nahid Shahmehri. An inte-
gration of reputation-based and policy-based trust management. In Semantic Web
Policy Workshop in conjunction with 4th International Semantic Web Conference,
Galway, Ireland, nov 2005.

7. Piero A. Bonatti and Daniel Olmedilla. Driving and monitoring provisional trust
negotiation with metapolicies. In 6th IEEE International Workshop on Policies
for Distributed Systems and Networks (POLICY 2005), pages 14–23, Stockholm,
Sweden, jun 2005. IEEE Computer Society.

8. Paulo P. da Silva, Deborah L. McGuinness, and Richard Fikes. A proof markup
language for semantic web services. Technical Report KSL Tech Report KSL-04-01,
January, 2004.

9. Rita Gavriloaie, Wolfgang Nejdl, Daniel Olmedilla, Kent E. Seamons, and Mari-
anne Winslett. No registration needed: How to use declarative policies and negoti-
ation to access sensitive resources on the semantic web. In 1st European Semantic
Web Symposium (ESWS 2004), volume 3053 of Lecture Notes in Computer Science,
pages 342–356, Heraklion, Crete, Greece, may 2004. Springer.

10. Vladimir Kolovski, Yarden Katz, James Hendler, Daniel Weitzner, and Tim
Berners-Lee. Towards a policy-aware web. In Semantic Web Policy Workshop
in conjunction with 4th International Semantic Web Conference, Galway, Ireland,
nov 2005.

11. N. Li, W. Winsborough, and J.C. Mitchell. Distributed Credential Chain Discovery
in Trust Management (Extended Abstract). In ACM Conference on Computer and
Communications Security, Philadelphia, Pennsylvania, November 2001.

724 P.A. Bonatti et al.

12. Deborah L. McGuinness and Paulo Pinheiro da Silva. Explaining answers from the
semantic web: The inference web approach. Journal of Web Semantics, 1(4):397–
413, 2004.

13. Deborah L. McGuinness and Paulo Pinheiro da Silva. Trusting answers from web
applications. In New Directions in Question Answering, pages 275–286, 2004.

14. Arnon Rosenthal and Marianne Winslett. Security of shared data in large systems:
State of the art and research directions. In Proceedings of the ACM SIGMOD In-
ternational Conference on Management of Data, Paris, France, June 13-18, 2004,
pages 962–964. ACM, 2004.

15. K. Seamons, M. Winslett, T. Yu, B. Smith, E. Child, J. Jacobsen, H. Mills, and
L. Yu. Requirements for Policy Languages for Trust Negotiation. In 3rd Interna-
tional Workshop on Policies for Distributed Systems and Networks, Monterey, CA,
June 2002.

16. Steffen Staab, Bharat K. Bhargava, Leszek Lilien, Arnon Rosenthal, Marianne
Winslett, Morris Sloman, Tharam S. Dillon, Elizabeth Chang, Farookh Khadeer
Hussain, Wolfgang Nejdl, Daniel Olmedilla, and Vipul Kashyap. The pudding of
trust. IEEE Intelligent Systems, 19(5):74–88, 2004.

17. V. S. Subrahmanian, Piero A. Bonatti, Jürgen Dix, Thomas Eiter, Sarit Kraus,
Fatma Ozcan, and Robert Ross. Heterogenous Active Agents. MIT Press, 2000.

18. V.S. Subrahmanian, S. Adali, A. Brink, R. Emery, J.J. Lu, A. Rajput, T.J. Rogers,
R. Ross, and C. Ward. Hermes: Heterogeneous reasoning and mediator system.
http://www.cs.umd.edu/projects/publications/ abstracts/hermes. html.

19. William Swartout, Cecile Paris, and Johanna Moore. Explanations in knowledge
systems: Design for explainable expert systems. IEEE Expert: Intelligent Systems
and Their Applications, 6(3):58–64, 1991.

20. Michael C. Tanner and Anne M. Keuneke. Explanations in knowledge systems: The
roles of the task structure and domain functional models. IEEE Expert: Intelligent
Systems and Their Applications, 6(3):50–57, 1991.

21. M. R. Wick. Second generation expert system explanation. In J.-M. David, J.-
P. Krivine, and R. Simmons, editors, Second Generation Expert Systems, pages
614–640. Springer Verlag, 1993.

22. W. Winsborough, K. Seamons, and V. Jones. Negotiating Disclosure of Sensi-
tive Credentials. In Second Conference on Security in Communication Networks,
Amalfi, Italy, September 1999.

23. W. Winsborough, K. Seamons, and V. Jones. Automated Trust Negotiation. In
DARPA Information Survivability Conference and Exposition, Hilton Head Island,
SC, January 2000.

24. Marianne Winslett, Ting Yu, Kent E. Seamons, Adam Hess, Jared Jacobson, Ryan
Jarvis, Bryan Smith, and Lina Yu. Negotiating trust on the web. IEEE Internet
Computing, 6(6):30–37, 2002.

25. Ting Yu, Marianne Winslett, and Kent E. Seamons. Supporting structured cre-
dentials and sensitive policies through interoperable strategies for automated trust
negotiation. ACM Trans. Inf. Syst. Secur., 6(1):1–42, 2003.

26. C. Zhang, P.A. Bonatti, and M. Winslett. Peeraccess: A logic for distributed
authorization. In 12th ACM Conference on Computer and Communication Security
(CCS 2005), Alexandria, VA, USA. ACM.

Author Index

Alani, Harith 185
Anzuola, Sergio F. 457
Aroyo, Lora 560
Assem, Mark van 95

Battle, Steven A. 635
Boer, Viktor de 245
Bojārs, Uldis 679
Bonatti, Piero A. 712
Bontcheva, Kalina 215
Borrego-Dı́az, Joaqúın 317
Bouquet, Paolo 4
Breslin, John G. 679
Brockmans, Saartje 303
Brown, Al 472
Bruijn, Jos de 590
Buitelaar, Paul 502

Catenacci, Carola 140
Chávez-González, Antonia M. 317
Chirita, Paul-Alexandru 348
Ciaramita, Massimiliano 140
Costache, Stefania 348
Cuenca-Grau, Bernardo 170
Cunningham, Hamish 215

De Troyer, Olga 200
Denaux, Ronald 560
Devedžić, Vladan 545
Di Iorio, Angelo 664
Dı́az, Oscar 457
Dimitrova, Vania 560
Duma, Claudiu 712

Eiter, Thomas 273
Embury, Suzanne 472
Esplugas Cuadrado, Javier 635

Feier, Cristina 332
Fensel, Dieter 590
Fischer, Jochen 650
Fuchs, Norbert 712

Galizia, Stefania 697
Gangemi, Aldo 140

Gantner, Zeno 650
Garćıa-Castro, Raúl 155
Gašević, Dragan 545
Ghidini, Chiara 50
Giunchiglia, Fausto 80
Gómez-Pérez, Asunción 155, 427
Grimm, Stephan 575

Haase, Peter 303
Harmelen, Frank van 1
Harris, Stephen 185
Harth, Andreas 332
Hartmann, Jens 427
Heß, Andreas 19
Hitzler, Pascal 303
Hoser, Bettina 514
Hotho, Andreas 411, 514, 530
Hovy, Eduard 2

Ianni, Giovambattista 273
Iturrioz, Jon 457

Jameson, Anthony 3
Jäschke, Robert 411, 514, 530
Jin, Binling 472
Jovanović, Jelena 545

Kalyanpur, Aditya 170
Keller, Uwe 605
Kiesel, Malte 363, 502

Lausen, Holger 590, 605
Lehmann, Jos 140
Lei, Yuangui 230
Li, Yaoyong 215
Liu, Shengping 125
Lopez, Vanessa 230, 393
Lukasiewicz, Thomas 288

Ma, Li 125
Malaisé, Véronique 95
Marchese, Maurizio 80
Miles, Alistair 95
Missier, Paolo 472
Möller, Knud 679

726 Author Index

Motik, Boris 575
Motta, Enrico 230, 393

Nejdl, Wolfgang 348, 712
Nováček, Vı́t 65

Olmedilla, Daniel 712
O’Neil, Ben 185

Paiu, Raluca 348
Palma, Raúl 427
Pan, Yue 125
Parsia, Bijan 170
Paslaru Bontas, Elena 427
Pazienza, Maria Teresa 442
Peer, Joachim 712
Pignotti, Edoardo 472
Pinto, H. Sofia 110
Pistore, Marco 620
Plessers, Peter 200
Polleres, Axel 332, 590
Preece, Alun 472
Preist, Chris 575
Presutti, Valentina 664
Pye, Michael 560

Qiu, Zhaoming 125

Reforgiato Recupero, Diego 487
Rendle, Steffen 650

Sabou, Marta 230
Sceffer, Simone 4
Schellhase, Jörg 288
Schindlauer, Roman 273
Schmidt-Thieme, Lars 650
Schmitz, Christoph 411, 514, 530
Schreiber, Guus 95
Serafini, Luciano 4, 50
Shahmehri, Nahid 712

Shvaiko, Pavel 34
Sintek, Michael 363, 502
Sirin, Evren 170
Smrž, Pavel 65
Someren, Maarten van 245
Spalazzi, Luca 620
Staab, Steffen 110
Stead, David 472
Stellato, Armando 442
Stollberg, Michael 605
Straccia, Umberto 378
Stritt, Manuel 650
Stuckenschmidt, Heiner 259
Studer, Rudi 303
Stumme, Gerd 411, 514, 530
Subrahmanian, V.S. 487

Tempich, Christoph 110
Tompits, Hans 273
Traverso, Paolo 620
Troncy, Raphaël 378

Udrea, Octavian 487
Uren, Victoria 230, 393

Vitali, Fabio 664

Wang, Ji 215
Wang, Ting 215
Wielinga, Bob J. 245
Williams, K. Stuart 635

Xie, Guotong 125

Yang, Yang 125

Zaihrayeu, Ilya 80
Zanobini, Stefano 4
Zhdanova, Anna V. 34
Zhu, Jianhan 230

	Frontmatter
	Invited Talks
	Where Does It Break? or: Why the Semantic Web Is Not Just ``Research as Usual''
	Toward Large-Scale Shallow Semantics for Higher-Quality NLP
	Usability and the Semantic Web

	Ontology Alignment
	Matching Hierarchical Classifications with Attributes
	An Iterative Algorithm for Ontology Mapping Capable of Using Training Data
	Community-Driven Ontology Matching
	Reconciling Concepts and Relations in Heterogeneous Ontologies
	Empirical Merging of Ontologies --- A Proposal of Universal Uncertainty Representation Framework

	Ontology Engineering
	Encoding Classifications into Lightweight Ontologies
	A Method to Convert Thesauri to SKOS
	Ontology Engineering Revisited: An Iterative Case Study

	Ontology Evaluation
	Towards a Complete OWL Ontology Benchmark
	Modelling Ontology Evaluation and Validation
	Benchmark Suites for Improving the RDF(S) Importers and Exporters of Ontology Development Tools

	Ontology Evolution
	Repairing Unsatisfiable Concepts in OWL Ontologies
	Winnowing Ontologies Based on Application Use
	Resolving Inconsistencies in Evolving Ontologies

	Ontology Learning
	Automatic Extraction of Hierarchical Relations from Text
	An Infrastructure for Acquiring High Quality Semantic Metadata
	Extracting Instances of Relations from Web Documents Using Redundancy

	Rules and Reasoning
	Toward Multi-viewpoint Reasoning with OWL Ontologies
	Effective Integration of Declarative Rules with External Evaluations for Semantic-Web Reasoning
	Variable-Strength Conditional Preferences for Ranking Objects in Ontologies
	A Metamodel and UML Profile for Rule-Extended OWL DL Ontologies
	Visual Ontology Cleaning: Cognitive Principles and Applicability
	Rules with Contextually Scoped Negation

	Searching and Querying
	Beagle<Superscript> + + </Superscript>: Semantically Enhanced Searching and Ranking on the Desktop
	RDFBroker: A Signature-Based High-Performance RDF Store
	Towards Distributed Information Retrieval in the Semantic Web: Query Reformulation Using the oMAP Framework
	PowerAqua: Fishing the Semantic Web
	Information Retrieval in Folksonomies: Search and Ranking

	Semantic Annotation
	DEMO -- Design Environment for Metadata Ontologies
	An Environment for Semi-automatic Annotation of Ontological Knowledge with Linguistic Content
	Turning the Mouse into a Semantic Device: The {\itshape seMouse} Experience
	Managing Information Quality in e-Science Using Semantic Web Technology
	Annotated RDF
	A Multilingual/Multimedia Lexicon Model for Ontologies

	Semantic Web Mining and Personalisation
	Semantic Network Analysis of Ontologies
	Content Aggregation on Knowledge Bases Using Graph Clustering
	Dynamic Assembly of Personalized Learning Content on the Semantic Web
	Interactive Ontology-Based User Knowledge Acquisition: A Case Study

	Semantic Web Services
	Matching Semantic Service Descriptions with Local Closed-World Reasoning
	The Web Service Modeling Language WSML: An Overview
	On the Semantics of Functional Descriptions of Web Services
	A Minimalist Approach to Semantic Annotations for Web Processes Compositions
	Protocol Mediation for Adaptation in Semantic Web Services

	Semantic Wiki and Blogging
	Ideas and Improvements for Semantic Wikis
	WikiFactory: An Ontology-Based Application for Creating Domain-Oriented Wikis
	Using Semantics to Enhance the Blogging Experience

	Trust and Policies
	WSTO: A Classification-Based Ontology for Managing Trust in Semantic Web Services
	Semantic Web Policies -- A Discussion of Requirements and Research Issues

	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

