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Abstract. This paper uses centrality measures from complex networks to dis-
cuss how to destabilize terrorist networks. We propose newly introduced algo-
rithms for constructing hierarchy of covert networks, so that investigators can 
view the structure of terrorist networks / non-hierarchical organizations, in or-
der to destabilize the adversaries.  Based upon the degree centrality, eigenvector 
centrality, and dependence centrality measures, a method is proposed to con-
struct the hierarchical structure of complex networks. It is tested on the Sep-
tember 11, 2001 terrorist network constructed by Valdis Krebs. In addition we 
also propose two new centrality measures i.e., position role index (which dis-
covers various positions in the network, for example, leaders / gatekeepers and 
followers) and dependence centrality (which   determines who is depending on 
whom in a network).  The dependence centrality has a number of advantages 
including that this measure can assist law enforcement agencies in capturing / 
eradicating of node (terrorist) which may disrupt the maximum of the network. 

1   Introduction 

Many diverse systems in different research fields can be described as complex net-
works, that is, connecting the nodes together by the edges with nontrivial topological 
structures (Strogatz, S. H., 2001). Detailed works have been focused on several    
distinctive statistical properties sharing among a large amount of real world networks, 
to cite examples, the clustering effect (Albert, R. and Barabási, A.L., 2002, 
Dorogovtsev, S.N.; Mendes,J.F.F., 2002) and the right-skewed degree distribution   
(Albert, R. and Barabási, A.L., 1999). In this paper we consider another property    
sharing among many networks, the hierarchical structure of a complex network. 

Hierarchy, as one common feature for many real world networks has attracted    
special attention in recent years (Ravasz, E.,  Barabási, A.L.,  2003). In a network, 
there are usually some groups of nodes where the nodes in each group are highly  
interconnected with each other, while there are few or no links between the groups. 
These groups can induce a high degree of clustering, which can be measured with the 
connectivity probability for a pair of the neighbors of one node. This property coex-
ists usually with the right-skewed degree distributions. The coexistence of these two 
properties tells us that the groups should combine in a hierarchical manner. Hierarchy 
is one of the key aspects of a theoretical model (Ravasz, E.,  Barabási, A.L.,  2003) to 
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capture the statistical characteristics of a large number of real networks, including 
some social networks (Newman, M. E. J., 2003). 

As covert networks share some features with innocent individuals (overt net-
works), they are harder to identify because they mask their transactions.  Another 
complicating factor is that covert / terrorist networks are often embedded in a much 
larger population.  Hence, it is desirable to have tools to correctly classify individuals 
in covert networks so that the resources for destabilizing them will be used more 
efficiently.  

To assist law enforcement and intelligence agencies to ascertain terrorist network 
knowledge efficiently and effectively, we proposed a framework of automated analy-
sis, visualization and destabilization of terrorist networks (Memon, N. et al., 2004).  
Based on this framework, we developed a prototype called iMiner that incorporated 
several advanced techniques, for automatically detecting cells from a network, identi-
fying various roles in a network (e.g., central members, gatekeepers, and   followers), 
and  may also assist law enforcement about the effect on the network after capturing a 
terrorist in a network. 

The three innovative points of our paper are: 

• The use of new measure Position Role Index (PRI) on the pattern of efficiency 
introduced by Vito Latora and Massimo Marchiori. This measure identifies 
leaders / gatekeepers and followers in the network. The algorithms for effi-
ciency, importance of critical nodes in a network and PRI are also presented. 

• The use of another measure known as Dependence Centrality (DC) which dis-
covers who is depending on whom in a network.  The algorithm of DC is also 
presented.  

• Estimate possible hierarchical structure of a complex network by applying de-
gree centrality and Eigenvector centrality from social network analysis (SNA) 
literature and combining it with new measure dependence centrality.  The algo-
rithm for estimating the possible hierarchical structure of the   terrorist network 
is also shown. The all the algorithms presented in the   paper are designed and 
developed by the authors. 

The remainder of the paper is organized as follows: Section 2 briefly describes      
the motivation of this research and existing destabilizing approaches for terrorist net-
works; Section 3 describes fundamentals of networks analysis; whereas Section 4 dis-
cusses algorithms and techniques for destabilizing terrorist networks. Section 5 shows 
how hierarchy is constructed from covert networks and Section 6 concludes the paper. 

2   Motivation 

When intelligence agencies arrest a few members of a terrorist cell, how can they 
know if the cell has been disabled? 

Social scientists have imagined individual terrorists as nodes on a graph, most of 
them are connected to only one or two other nodes.  Using such cellular graphs,   
researchers have proposed ways of estimating whether a chain of relationships has 
been effectively shattered, even when some of its members elude capture. 
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There is a growing amount of literature on modeling terrorist networks as graphs, 
an outgrowth of the existing literature concerning other types of criminal networks 
(Krebs, V., 2002, Klerks, P., 2001).  There is also a small amount of literature on 
destabilizing networks, modeled as graphs, by seeing how connections do or do not 
dissipate when nodes are removed (Carley, K. M., Lee, J-S. and Krackhardt, D., 2002; 
Carley, K. M. et al., 2003). 

A graph model, however, may not be the best one available for representing a   
typical terrorist organization (Farley, J. D., 2003). His views are that modeling terror-
ist networks as graphs does not give us enough information to deal with the threat. 
Lattice theory is the abstract study of order and hierarchy.  In terrorist organizations, 
hierarchy appears to matter.  ”Modeling terrorist cells as graphs ignores an important 
aspect of their structure, namely their hierarchy, and the fact that they are composed 
of leaders and followers"   (Farley, J. D., 2003). 

We have related the concept of hierarchy and graph and predicted the structure of a 
non hierarchical network so that it can be viewed as a hierarchy. Our results for    
September 11 terrorist network (Krebs, V., 2002), are in excellent agreement to   
reality. 

3   Social Network Analysis (SNA)  

In general, the network studied in this paper can be represented by an undirected and 
un-weighted graph G = (V, E), where V is the set of vertices (or nodes) and E is the 
set of edges (or links).  Each edge connects exactly one pair of vertices, and a vertex 
pair can be connected by (a maximum of) one edge, i.e., multi-connection is not 
allowed.   

A terrorist network consists of V set of actors (nodes) and E relations (ties or 
edges) between these actors.  The nodes may be individuals, groups (terrorist cells), 
organizations, or terrorist camps.  The ties may fall within a level of analysis (e.g. 
individual to individual ties) or may cross levels of analysis (individual-to-group 
analysis).  A terrorist network can change in its nodes, links, groups, and even the 
overall structure.  In this paper, we focus on detection and description of node level 
dynamics. 

Mathematically, a network can be represented by a matrix called the adjacency ma-
trix A, which in the simplest case is an n x n symmetric matrix, where n is the number 
of vertices in the network. The adjacency matrix has elements. 

Aij = 1, if there is an edge between vertices i and j, and 0 otherwise. 

The matrix is symmetric since if there is an edge between i and j then clearly there 
is also an edge between j and i. Thus Ai j = Aji. 

3.1   Node Level Measures 

As terrorists establish new relations or break existing relations with others, their 
position roles, and power may change accordingly.  These node dynamics resulting  
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from relation changes can be captured by a set of centrality measures from SNA. 
The centrality measures address the question, “Who is the most important or central 
person in the network?” 

There are many answers to this question, depending on what we mean by impor-
tant. Perhaps the simplest of centrality measures is degree centrality, also called   
simply degree. The degree of a vertex in a network is the number of edges attached to 
it. In mathematical terms, the degree ki of a vertex i is (Newman, M. E. J., 2003): 
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Though simple, degree is often a highly effective measure of the influence or    
importance of a node: in many social settings people with more connections tend to 
have more power. 

A more sophisticated version of the same idea is the so-called eigenvector central-
ity. Where degree centrality gives a simple count of the number of connections a ver-
tex has, eigenvector centrality acknowledges that not all connections are equal. If we 
denote the centrality of vertex i by xi, then we can allow for this effect by making xi 
proportional to the average of the centralities of i’s network neighbors (Newman, M. 
E. J., 2003):  
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where λ is a constant. Defining the vector of centralities x = (x1; x2; : : :), we can 
rewrite this equation in matrix form as:  

                                                      x xλ = Α •                                                          (3) 

Hence we see that x is an eigenvector of the adjacency matrix with eigenvalue λ. 
Assuming that we wish the centralities to be non-negative, it can be shown that λ 
must be the largest eigenvalue of the adjacency matrix and x the corresponding 
eigenvector. 

4   Destabilizing Terrorist Networks 

4.1   The Efficiency E(G) of a Network  

The network efficiency E (G) is a measure to quantify how efficiently the nodes of the 
network exchange information (Latora, V., Marchiori, M., 2004).  To define efficiency 
of G first we calculate the shortest path lengths {dij} between two generic points i and 
j.  Let us now suppose that every vertex sends information along the network, through 
its edges. The efficiency εij in the communication between vertex i and j is inversely 
proportional to the shortest distance: εij = 1/dij ∀ i, j when there is no path in the graph 
between i, and j, we get dij = +∞ and consistently εij = 0.  N is known as the size of the 
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network or the numbers of nodes in the graph. Consequently the average efficiency of 
the graph of G can be defined as (Latora V., Marchiori, M., 2004): 

                                 E(G)
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The above formula gives a value of E that can vary in the range [0, ∞], while it be 
more practical to normalize E in the interval of [0, 1].  

4.2   The Critical Components of a Network 

Latora V. et al recently proposed a method to determine network critical components 
based on the efficiency of the network briefly discussed in the previous subsection.  
This method focuses on the determination of the critical nodes. The general theory 
and all the details can be found in Ref. (Latora V., Marchiori, M., 2004). 

The main idea is to use as a measure of the centrality of a node i the drop in the 
network efficiency caused by deactivation of the node.  The importance I (nodei) of 
the ith node of the graph G is therefore: 
 

           I (nodei) ≡ ∆ E = E  (G) − E (G −   nodei) , i = 1,...,N,                     (5) 
 

Where G −  nodei indicates the network obtained by deactivating nodei in the graph G. 
The most important nodes, i.e. the critical nodes are the ones causing the highest ∆E.  
The results of deactivation of nodes for 9-11 hijackers and their affiliates are shown in 
figure 1 and figure 2. 

4.3   Position Role Index (PRI) 

The PRI is our proposed measure which highlights a clear distinction between follow-
ers and gatekeepers (It is a fact that leaders may act as gatekeepers).  It depends on 
the basic definition of efficiency as discussed in equation (4).  It is also a fact that the 
efficiency of a network in presence of followers is low in comparison to their  absence 
in the network.  This is because they are usually less connected nodes and their pres-
ence increases the number of low connected nodes in a network, thus decreasing its 
efficiency. 

If we plot the values on the graph, the nodes which are plotted below x-axis are    
followers, whereas the nodes higher than remaining nodes with higher values on    
positive y axis are the gatekeepers.  While the nodes which are on the x-axis usually 
central nodes, which can easily bear the loss of any node.  The leaders tend to hide on 
x-axis there. 

We applied this measure on the network of alleged 9-11 hijackers, (Krebs, V., 
2002) and results are shown in figure 1.  The algorithms for PRI, efficiency of net-
work and critical components of network are described in Exhibit 1. 
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Exhibit 1. Algorithms for Efficiency, Delta Efficiency and Position Role Index     

Algorithm for Efficiency E(G) 
Let G be a graph, N is a set of nodes which 
are contained by G and E is the set of edges 
through which the nodes of graph are con-
nected. Let m is the number of elements in 
N 

Input: 
Graph G, N set of its nodes 
Output: 
Efficiency of Graph G 
Let s=0 and e=0 
For each element n1 in N 
 For each element n2 in N 
 Let s = s + 1/ d (n1, n2) 
 Next n1 
 Let e= e + s 
Next n2  
Let e=1/ (m * (m– 1)) * e 
Return e 
Where “e” is the efficiency of the graph 

and d(n1, n2) is the function which gives us 
the distance of shortest path from n1 to n2. 

Algorithm for Finding Delta Efficiency: 
Suppose n is the node for which we are 

finding delta efficiency. Let G’ be a sub-
graph similar to G, only the difference is 
that E is the set of edges through which the 
nodes of graph are connected except the 
edges which originate or point to n. (G’ 
does not contain any edge to or from n). Let 
N is a set of Nodes in G’ and m is the num-
ber of elements in N. 

Input: 
Graph G, N set of its nodes, n is the node 

for which we are finding the value of Delta 
Efficiency and remove edges to or from n in 
G to get G’  

Output: 
 

Delta Efficiency of n in G. 
Let s=0 and de=0 
For each element n1 in N 
 For each element n2 in N 
 Let s = s + 1/ d (n1, n2) 
 Next n1 
 Let de= de + s 
Next n2  
Let de=1/ (m * (m – 1)) * de 
Let efficiency=E (G) 
Let de = ((efficiency – de) / efficiency) 
Return de 

Algorithm for Finding Position Role     
Index 

Suppose n is the node for which we are 
finding delta efficiency. Let G’ be the sub-
graph that is similar to G – n1.  (G’ does not 
contain any edge to or from n and also it 
does not contain n). Let N is a set of Nodes 
in G’ and m is the number of elements in N. 

Input: 
Graph G, N set of its nodes, n is the node 

for which we are finding the value of NI and 
remove n and all the edges coming from or 
to n in G to get G’  

Output: 
NI of n in G. 
Let s=0 and ni=0 
For each element n1 in N 
 ni=0 

For each element n2 in N 
    Let s = s + 1/ d (n1, n2) 
 Next n1 
 Let ni= ni + s 
Next n2  
Let ni = 1/ (m * (m– 1)) * ni 
Let efficiency = E (G) 
Let ni=((efficiency – ni)/efficiency) 
Return ni 
 

4.4   Dependence Centrality (DC) 

The DC is the recently introduced measure by the authors (Memon, N., Legind, H.L., 
2006). The dependence centrality of a node is defined as how much that node is de-
pendent on any other node in the network.  Mathematically it can be written as: 

,

mn
mn

m p p G p

d
DC

N≠ ∈

= + Ω∑                                         (6) 
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Where m is the root node which depends on n by DCmn centrality and Np actually is 
the Number of geodesic paths coming from m to p through n, and dmn is geodesic 
distance from m to n.  The Ω is taken 1 if graph is connected and 0 in case it is dis-
connected.  In this paper we take Ω  as 1, because we consider that graph is con-
nected.  The first part of the formula tells us that: 

 

Fig. 1. The efficiency of the original network is E (G) = 0.395. The removed node is shown on 
x-axis; the efficiency of the graph once the node is removed is reported as E (G – Nodei), while 
the importance of the node (drop of efficiency) is shown as ∆ E. While position role index 
shown as PRI of the removed node. The results prove important aspects of the network and 
confirmed that Mohammed Atta (node # 33) was the ring leader. 

 

Fig. 2. An alternative measure of the importance of the node (k), the degree of (i.e. the number 
of links incident with) the removed node  
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How many times m uses n to communicate other node p of the network?  In      
simple words p is every node of the network, to which m is connected through n (The 
connection represents the shortest path of node m to p, and n is in between).  Np 
represents the number of alternatives available to m to communicate to p and dmn is 
the multiplicative inverse of geodesic distance (1/d). 
 

Algorithm for Dependence Centrality 
 
For each node “n” in graph 
 For each node “nd” in graph other than “n” 
  Compute All shortest paths from “n” to “nd”, and save it in vector “paths” 
  For each path “p” in “paths” 
   For each node “nt” in p 

• Compute the Shortest distance “d” from node “n” to 
“nt”. 

• Find multiplicative inverse 1/”d” of shortest distance 
from “n” to  “nt”.   

• Divide it with the number of paths in vector “paths”. let 
the result  be “Dt. “. 

• Retrieve the value of  “Dmn” from HashMap “mapt” cor-
responding to “nt”, and add it with “Dt” + 1. Then save 
the result again in HashMap “mapt“  against the key “nt”. 

    
Next 

  Next 
 Next 

Next 
 

This measure shows that how much node m is dependent on the node n.  We can 
also say that how much node n is useful to node m in order to communicate with 
other nodes of the network.   

The node which has less in summation of dependence centrality might be key 
player i.e., leader / gatekeeper, who usually direct many other peripherals and control 
communication.  The key players have low dependence centrality (DC) as they have 
large number of direct links with other nodes of the network and they do not depend 
on others to communicate with those nodes. 

When we tabulate the Dependence Centrality (DC), a matrix is obtained; where each 
row corresponds to a particular node, its DC against all the nodes are represented in the 
form of values (1 ≤  values ≥  (total nodes – 1)) at different columns in the same row.  
When we sum up all of these values in a row, the sum shows how much the node is 
dependent on other nodes.  The lower the sum, the less will be the node dependent on 
other nodes or that node is said to be an independent node.  Similarly if we sum each 
column, it will show how much all the nodes depend on that particular node which is 
associated with that column. The dependence centralities of the hijackers and their af-
filiates as shown in figure 3 can be seen at http://cs.aue.aau.dk/~nasrullah/DC_9_11.htm.  
There are some interesting results from this 62x62 matrix that shows, if node 33 is re-
moved, nodes 23 and 28 will also be isolated completely from the network.  Similarly if 
node 38 is eradicated/captured, nodes 20, 22, and 26 are totally isolated from the  
network. The rationale behind that is the nodes (for example, 23, 28; 20, 22, 26) are 
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completely depending on the nodes (for example, 33 and 38 respectively). If the nodes 
are completely depending on the other nodes, they will be isolated (cut-off from the 
network completely) by capturing the node on which those nodes are depending. 

 

Fig. 3. 9/11 hijackers and their affiliates dataset.  The names of terrorists shown in Appendix A 
at the end of paper. 

5   Construction of Hierarchy for 9-11 Terrorists’ Network 

By using algorithms shown in Exhibit 2, we have constructed the hierarchy shown in 
figure 4 (using iMiner), of the hijackers involved in 9/11 terrorist attack and their 
affiliates (from the publicly available dataset as shown in figure 3). 

 

Fig. 4. Hierarchy discovered by iMiner from graph shown in figure 3, using Algorithms shown 
in Exhibit 2 
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The hierarchy clearly suggests that Muhammad Atta (33) was the key leader of the 
plot. While Marvan Al Shehhi (40) was assisting him as he is below in the hierarchy. 
They both were suggested as potential leaders in 9/11 attack and led their respective 
groups. They were also both members of Hamburg Cell.  Fayez Ahmed (31), and 
Mohand Al Shehhi (42), who were in the same hijacked plane with Marvan Al Shehhi, 
are below Marvan Al Shehhi. While Abdul Aziz Alomari (39), Waleed Al Shehhi (38) 
are in 3rd level in the hierarchy.  

The intelligence agencies can easily detect who are potential leaders / gatekeepers 
and even peripheries by using these new algorithms.   

Exhibit 2. Algorithms for Constructing Hierarchy 
 

Algorithm. Converting undirected graph G into directed D 
 

1. Take any node “n” of graph G, and find its neighbors “N”. 
2. Take a node “s” such that s ∈  N (N is set of neighbors of n.). Compare Degree Cen-

trality of s to Degree Centrality of n, 
• if Degree Centrality of s > Degree Centrality of n, Mark a directed edge 

from s to n. 
• if Degree Centrality of s < Degree Centrality of n, Mark a directed edge 

from n to s. 
• if Degree Centrality of s =  Degree Centrality of n 

1. Compare Eigen-Vector Centrality of s to Eigen-Vector Cen-
trality of n, 

• If Eigen-Vector Centrality of s > Eigen-Vector Central-
ity of n, Mark a directed edge from s to n. 

• If Eigen-Vector Centrality of s < Eigen-Vector Central-
ity of n, Mark a directed edge from s to n. 

• If Eigen-Vector Centrality of s = Eigen-Vector Central-
ity of n, Ignore the link. 

3. Repeat Step 2 for every member of N. 
4. Repeat Step 1 for every node of graph G. 

Algorithm. To make Tree T from Directed Graph D 
 

1. Take any node “n” of directed Graph “D”, and find all the nodes “N(n)” adjacent to 
edges originating from node n. and mark them as Children of  n.  Here N(n) is 
neighbors N of node n. 

2. Find all the nodes (parents) “P” adjacent to edges pointing to node n and mark them as 
Parents of n.  

3. Repeat step 1 and 2 for all nodes of Directed Graph D. 
4. Again take any node “n” of directed Graph “D”, 
5. If number of elements in P (where P is the set of Parents of n) is 0, then add “root “of 

Tree “T” as its parent and mark node n as children of “root”. 
6. If number of elements in P > 1, Remove all the nodes except “p1” from P, such that 

(N (p1) ∩ N (n)) is maximum.(Where N (p1) is the set of Neighbors of p1). Also mark 
n as Children of p1. 
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7. If number of elements in P is still > 1, remove all the nodes from P except the node 
p1, for which the n has highest Dependence Centrality. Also mark n as Children of p1. 

8. If number of elements in P is still > 1, Remove all of its parents and then add “root” of 
Tree T as its parent and also mark node n as children of “root”. 

9. Repeat Step 4 to 8, for all nodes of directed graph D. 
10.  Draw Tree T. 

6   Conclusions 

In this paper we have proposed new practical algorithms which can assist law en-
forcement agencies to discover who is under the influence of whom in a network by 
visualizing the hierarchal chart.  The position role index measure assists in finding 
about who is who in a network.  The dependence centrality determines which indi-
viduals are depending on which nodes, in order to help investigators to disrupt the 
network.  All the algorithms discussed in the paper are implemented in the prototype 
iMiner.  The prototype can provide assistance to law enforcement agencies, indicating 
when the capture of a specific terrorist will likely disrupt the terrorist network.  More-
over, using iMiner an investigator has the power to estimate the network’s size,    
determine its membership structure, find who the most important terrorist in the net-
work is, determine the efficiency of the network, unearth the leaders / gatekeepers / 
followers, and determine on which node the maximum nodes in the network depends.  
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