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Abstract. The particle swarm optimization (PSO) has been used to train neural 
networks. But the particles collapse so quickly that it exits a potentially danger-
ous stagnation characteristic, which would make it impossible to arrive at the 
global optimum. In this paper, a hybrid PSO with simulated annealing and 
Chaos search technique (HPSO) is adopted to solve this problem. The HPSO is 
proposed to train radial basis function (RBF) neural network. Benchmark func-
tion optimization and dataset classification problems (Iris, Glass, Wine and 
New-thyroid) experimental results demonstrate the effectiveness and efficiency 
of the proposed algorithm. 

1   Introduction 

Particle swarm optimization (PSO) is a new evolutionary computation technique 
introduced by Kennedy [1], which was inspired by social behaviors of birds. Similar 
to genetic algorithm (GA), PSO is a population based optimization tool [2]. But 
unlike GA, PSO has no evolution operators such as crossover and mutation. Com-
pared with GA, PSO has some attractive advantages. It has memory, so knowledge of 
good solutions is retained by all particles. It has constructive cooperation between 
particles, particles in the swarm share information between them. PSO has been suc-
cessfully applied in many areas: function optimization, artificial neural network train-
ing, fuzzy system control, and other areas [3]. But the particles collapse so quickly 
that it exits a potentially dangerous stagnation characteristic, which would make it 
impossible to arrive at the global optimum. In this paper, a hybrid PSO with simulated 
annealing and Chaos search technique (HPSO) is adopted to solve this problem.  

2   RBF Neural Network 

Radial basis function (RBF) networks were introduced into the neural network by 
Broomhead [4]. Due to the better approximation capabilities, simpler network struc-
tures and faster learning algorithms, RBF networks have been widely used in many 
fields.  

A RBF neural network has a three-layer architecture with on feedback [5]. The  
input layer which consists of a set of source nodes connects the network to the  
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environment. The hidden layer consists of H hidden neurons (radial basis units), with 
radial activation functions. Gaussian function is often selected as the activation func-

tion. The output of i-th hidden neuron, iz , is a radial basis function that defines a 

spherical receptive field given by the following equation: 

))2/(||||exp(||)(|| 22
iiii cxcxz σ−−=−Φ= , i∀ . (1) 

where ic  and iσ  are the center and the width of the i-th hidden unit, respectively. 

Each neuron in the hidden layer has a substantial finite spherical activation region, 
determined by the Euclidean distance between input vector, x , and the center, ic , of 

the function iz  normalized with respect to the scaling factor iσ . The output layer, a 

set of summation units, supplies the response of the network. 

3   Hybird PSO Training RBF Neural Network 

PSO has a strong ability finding the most optimistic result. But it has a disadvantage 
of local optimum. SA has a strong ability finding the global optimistic result, and it 
can avoid the problem of local optimum. Chaos movement can go through all states 
unrepeated according to the rule of itself in some area. So, combining PSO with 
Chaos and SA, learning from other’s strong point and offset one’s weak point each 
other, the hybrid PSO strategy (HPSO) is proposed. 

3.1   Particle Swarm Optimization  

The basic PSO model consists of a swarm of particles moving in an n-dimensional 
search space. Each particle has a position represented by a position-vector X and a 
velocity represented by a velocity-vector V. Particles move to trying to find the solu-
tion for the problem being solved. They find the global best solution by simply adjust-
ing the trajectory of each individual towards its own best location and towards the 
best particle of the swarm at each time step. 

The position and the velocity of the i-th particle in the n-dimensional search space 
can be represented as ],,,[ 21 iniii xxxX L=  and ],,,[ 21 iniii vvvV L= , respectively. 

Each particle has its own best position idP , corresponding to the personal best objec-

tive value obtained so far. The global best particle is denoted by gdP , which repre-

sents the best particle found so far. At each iteration step, the velocity is updated and 
the particle is moved to a new position. The update of the velocity from the previous 
velocity to the new velocity is calculated as follows: 

)(())(()' 21 idgdidididid XPrandGXPrandGVV −⋅⋅+−⋅⋅+⋅= ω . (2) 

where 1G  and 2G  are constants called acceleration coefficients, ω  is called the iner-

tia factor, ()rand  is random number uniformly distributed in the range of [0,1]. 

The new position is determined by the sum of the previous position and the new 
velocity, and it can be calculated according to the following equation: 
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ididid VXX +=' . (3) 

Due to the simple concept, easy implementation and quick convergence, nowadays 
PSO has gained much attention and wide application. But the performance of simple 
PSO greatly depends on its parameters, and it often suffers the problem of being 
trapped in local optima. Researchers have analyzed it empirically [6] and theoretically 
[7], which have shown that the particles oscillate in different sinusoidal waves and 
converging quickly, sometimes prematurely, especially for PSO with small inertia 
factor ω  or acceleration coefficients 1G  and 2G .  

3.2   Chaos Optimization 

Chaos movement can go through all states unrepeated according to the rule of itself in 
some area. Chaos has three important dynamic properties: the sensitive dependence 
on initial conditions, the intrinsic stochastic property and ergodicity. Chaos is in es-
sence deeply related with evolution. In chaos theory, biologic evolution is regarded as 
feedback randomness, while this randomness is not caused by outside disturbance but 
intrinsic element [8].  

Logistic equation [9] is brought forward for description of the evolution of biologic 
populations. It is the most common and simple chaotic function: 

)1(1 nnn xxLx −⋅=+ . (4) 

where, L is a control parameter which is between 0 and 4.0. When L=4.0, the system 
is proved to be in chaotic state. Given arbitrary initial value that is in (0,1) but not 
equal with 0.25, 0.5 and 0.75, chaos trajectory will finally search non-repeatedly any 
point in (0,1). 

If the target function of continuous object problem that to be optimized is: 

)(min)( 33
ii xfxff == , ],[ iii bax ∈ ,  i=1,2,...,n. (5) 

Then the process of the chaos optimization strategy can be described as follows: 

Step 1: algorithm initialization. Let 1=k , 1' =k , )0(i
k
i xx = , )0(3

ii xx = , 

)0(3 ff = , i
k
i aa =' , i

k
i bb =' . Where, k is the iterative symbol of chaos parameters. 

'k  is the refine search symbol. 3
ix  is the best chaos variable found currently. 3f is 

the current best solution that initialized as a biggish number. 

Step 2: map the chaos variable k
ix  to the optimization variable area, get k

imx : 

)( ''' k
i

k
i

k
i

k
i

k
i abxamx −+= . (6) 

Step 3: search according to the chaos optimization strategy. )(3 k
imxff = , k

ii xx =3 , 

if 3)( fmxf k
i < . Otherwise, go on. 

Step 4: let 1+= kk , )1(4 k
i

k
i

k
i xxx −= , repeat step 2 and 3 until 3f  keep unchanged 

in certain steps.  
Step 5: reduce the search scale of chaos variable: 
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where, adjustment coefficient )5.0,0(∈C , 3
imx  is the best solution currently. 

Step 6: revert optimization variable 3
ix : 

)/()( 1'1'1'33 +++ −−= k
i

k
i

k
iii abamxx . (8) 

Repeat step 2 to 5 using new chaos variable k
ii

k
i AxxAy +−= 3)1( , where A is a 

small number. Let 1'' += kk , until 3f  keep unchanged in certain steps. 

Step 7: finish the calculate process after several repeating of step 5 and 6. The final 
3
imx  is the best optimization variable, and 3f  is the best solution. 

3.3   Simulated Annealing 

SA is based on the idea of neighborhood search. Kirkpatrick [10] suggested a form of 
SA could be used to solve complex optimization problems. The algorithm works by 
selecting candidate solutions which are in the neighborhood of the given candidate 
solution. SA attempts to avoid entrapment in a local optimum by sometimes accepting 
a move that deteriorates the value of the objective function. With the help of the dis-
tribution scheme, SA can provide a reasonable control over the initial temperature and 
cooling schedule so that it performs effective exploration and good confidence in the 
solution quality. 

In Annealing function construction, exponential cooling schedule is used to adjust 
the temperature kk tt ⋅=+ μ1 , where ( )1,0∈μ is a decrease rate. It is often believed to 

be a good cooling method, because it provides a rather good compromise between a 
computationally fast schedule and the ability to reach low-energy state. 

3.4   Training Algorithm of HPSO 

HPSO algorithm training RBF neural network can be summarized as follows: 

Step 1: Initialize the structure, activation function and objective function of HPSO. 
Step 2: Initialize the algorithm parameters of HPSO (i.e. initialize velocities  iX  and 

positions  iV  randomly. Initialize temperature 0T  and cooling parameter α . Initialize  

idP , equal to gdP , with the index of the particle with the best position).  Set a limit to 

particles’ velocities and positions.  
Step 3: Evaluate and store initial position and fitness of each particle. Evaluate and 
store the global best position and fitness of the swarm. 
Step 4: Update particles’ velocities iV  and positions iX  by equation (2) and (3). 

Update the individual best position and fitness of each particle.  
Step 5: Implement the Chaos search for the best particle. Decrease the search space 
according to equation (7) and (8). Update the global best position and fitness of the 
swarm. 
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Fig. 1. Average fitness logarithm value curve of function F 

Step 6: Perform annealing operation, Decrease temperature )(1 kk tupdatet =+  and set 

k=k+1. 
Step 7: If the stopping criterion is not satisfied, go to step 4. Otherwise, output the 
best solution found so far. 

4   Experiments 

HPSO was applied to benchmark function optimization and dataset classification 
problems (Iris, Glass, Wine and New-thyroid) experiments in this section. Benchmark 
function optimization experiment was carried to demonstrate the effectiveness of the 
proposed algorithm in detail. 

4.1   Benchmark Function Optimization 

Three algorithms (HPSO, simple PSO [11] and SA) were compared on DeJong 
benchmark function optimization. The DeJong function is following: 

2
1

2
2

2
1 )1()(100 xxxF −+−= . (9) 

where 048.2048.2 ≤≤− ix , (i=1,2). The function is continuous and multimodal; 

x*=1, with 0)1,1( =f . 

From the average fitness logarithm value cure of function F in figure 1, we can see 
HPSO performs PSO and SA in finding the global optimistic result, and it can avoid 
the problem of local optimum effectively. 
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4.2   Benchmark Datasets Experiment 

Four datasets, which are all classification problems and can be got from UCI dataset 
house [12], was selected to carry the experiment. The attribute, class and instance of 
each dataset can be found in table 1. Each method runs 10 times on every dataset, and 
the average value was selected as the experiment result. 

Table 1. Datasets characteristic used for experiment 

Dataset Example 
number 

Input 
attribution 

Output 
attribution 

Iris 150 4 3 
Glass 214 9 7 
Wine 178 13 3 

New-thyroid 215 5 3 

Three training algorithm (HPSO, PSO, and newrb) were compared [11]. The newrb 
routine was included in Matlab neural network toolbox as standard training algorithm 
for RBF neural network. The parameters of PSO and HPSO were set as follows: 
weight ω  decreasing linearly between 0.8 and 0.2, acceleration coefficients 

5.221 == GG . The initiation temperature of HPSO is 1000. The test results have 

been listed on table 2, which are Error rate of three methods on different dataset. 

Table 2. Comparative accuracy rate of three algorithms on different datasets 

HPSO PSO newrb Dataset 
Train Test Train Test Train Test 

Iris 0.9989 0.9875 0.99 0.98 0.9850 0.9560 
Glass 0.9124 0.7572 0.8042 0.6620 0.9850 0.6174 
Wine 0.9991 0.9668 1 0.9631 0.9375 0.6554 

New-thyroid 0.9763 0.9534 0.9650 0.9444 0.9240 0.6204 

From table 2, it can be seen that the accurate rate of train set and test set outper-
form those of simple PSO and newrb. So, the HPSO algorithm proposed for RBF 
neural network in this paper is more effective. 

5   Conclusion 

This paper presents a hybrid PSO with simulated annealing and Chaos search tech-
nique to train RBF neural network. The HPSO algorithm combined the strong ability 
of PSO, SA, and Chaos. They can learn from other’s strong point and offset one’s 
weak point each other. Benchmark function optimization and dataset classification 
problems (Iris, Glass, Wine and New-thyroid) experimental results demonstrate the 
effectiveness and efficiency of the proposed algorithm. 
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