
J. Wang et al. (Eds.): ISNN 2006, LNCS 3971, pp. 577 – 583, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Training RBF Neural Network
with Hybrid Particle Swarm Optimization

Haichang Gao1, Boqin Feng1, Yun Hou1, and Li Zhu2

1 School of Electronics and Information Engineering, Xi’an Jiaotong University,
Xi’an 710049, China

gaohaich@gmail.com
2 School of Software Engineering, Xi’an Jiaotong University, Xi’an 710049, China

Abstract. The particle swarm optimization (PSO) has been used to train neural
networks. But the particles collapse so quickly that it exits a potentially danger-
ous stagnation characteristic, which would make it impossible to arrive at the
global optimum. In this paper, a hybrid PSO with simulated annealing and
Chaos search technique (HPSO) is adopted to solve this problem. The HPSO is
proposed to train radial basis function (RBF) neural network. Benchmark func-
tion optimization and dataset classification problems (Iris, Glass, Wine and
New-thyroid) experimental results demonstrate the effectiveness and efficiency
of the proposed algorithm.

1 Introduction

Particle swarm optimization (PSO) is a new evolutionary computation technique
introduced by Kennedy [1], which was inspired by social behaviors of birds. Similar
to genetic algorithm (GA), PSO is a population based optimization tool [2]. But
unlike GA, PSO has no evolution operators such as crossover and mutation. Com-
pared with GA, PSO has some attractive advantages. It has memory, so knowledge of
good solutions is retained by all particles. It has constructive cooperation between
particles, particles in the swarm share information between them. PSO has been suc-
cessfully applied in many areas: function optimization, artificial neural network train-
ing, fuzzy system control, and other areas [3]. But the particles collapse so quickly
that it exits a potentially dangerous stagnation characteristic, which would make it
impossible to arrive at the global optimum. In this paper, a hybrid PSO with simulated
annealing and Chaos search technique (HPSO) is adopted to solve this problem.

2 RBF Neural Network

Radial basis function (RBF) networks were introduced into the neural network by
Broomhead [4]. Due to the better approximation capabilities, simpler network struc-
tures and faster learning algorithms, RBF networks have been widely used in many
fields.

A RBF neural network has a three-layer architecture with on feedback [5]. The
input layer which consists of a set of source nodes connects the network to the

578 H. Gao, et al.

environment. The hidden layer consists of H hidden neurons (radial basis units), with
radial activation functions. Gaussian function is often selected as the activation func-

tion. The output of i-th hidden neuron, iz , is a radial basis function that defines a

spherical receptive field given by the following equation:

))2/(||||exp(||)(|| 22
iiii cxcxz σ−−=−Φ= , i∀ . (1)

where ic and iσ are the center and the width of the i-th hidden unit, respectively.

Each neuron in the hidden layer has a substantial finite spherical activation region,
determined by the Euclidean distance between input vector, x , and the center, ic , of

the function iz normalized with respect to the scaling factor iσ . The output layer, a

set of summation units, supplies the response of the network.

3 Hybird PSO Training RBF Neural Network

PSO has a strong ability finding the most optimistic result. But it has a disadvantage
of local optimum. SA has a strong ability finding the global optimistic result, and it
can avoid the problem of local optimum. Chaos movement can go through all states
unrepeated according to the rule of itself in some area. So, combining PSO with
Chaos and SA, learning from other’s strong point and offset one’s weak point each
other, the hybrid PSO strategy (HPSO) is proposed.

3.1 Particle Swarm Optimization

The basic PSO model consists of a swarm of particles moving in an n-dimensional
search space. Each particle has a position represented by a position-vector X and a
velocity represented by a velocity-vector V. Particles move to trying to find the solu-
tion for the problem being solved. They find the global best solution by simply adjust-
ing the trajectory of each individual towards its own best location and towards the
best particle of the swarm at each time step.

The position and the velocity of the i-th particle in the n-dimensional search space
can be represented as],,,[21 iniii xxxX L= and],,,[21 iniii vvvV L= , respectively.

Each particle has its own best position idP , corresponding to the personal best objec-

tive value obtained so far. The global best particle is denoted by gdP , which repre-

sents the best particle found so far. At each iteration step, the velocity is updated and
the particle is moved to a new position. The update of the velocity from the previous
velocity to the new velocity is calculated as follows:

)(())(()' 21 idgdidididid XPrandGXPrandGVV −⋅⋅+−⋅⋅+⋅= ω . (2)

where 1G and 2G are constants called acceleration coefficients, ω is called the iner-

tia factor, ()rand is random number uniformly distributed in the range of [0,1].

The new position is determined by the sum of the previous position and the new
velocity, and it can be calculated according to the following equation:

 Training RBF Neural Network with Hybrid Particle Swarm Optimization 579

ididid VXX +=' . (3)

Due to the simple concept, easy implementation and quick convergence, nowadays
PSO has gained much attention and wide application. But the performance of simple
PSO greatly depends on its parameters, and it often suffers the problem of being
trapped in local optima. Researchers have analyzed it empirically [6] and theoretically
[7], which have shown that the particles oscillate in different sinusoidal waves and
converging quickly, sometimes prematurely, especially for PSO with small inertia
factor ω or acceleration coefficients 1G and 2G .

3.2 Chaos Optimization

Chaos movement can go through all states unrepeated according to the rule of itself in
some area. Chaos has three important dynamic properties: the sensitive dependence
on initial conditions, the intrinsic stochastic property and ergodicity. Chaos is in es-
sence deeply related with evolution. In chaos theory, biologic evolution is regarded as
feedback randomness, while this randomness is not caused by outside disturbance but
intrinsic element [8].

Logistic equation [9] is brought forward for description of the evolution of biologic
populations. It is the most common and simple chaotic function:

)1(1 nnn xxLx −⋅=+ . (4)

where, L is a control parameter which is between 0 and 4.0. When L=4.0, the system
is proved to be in chaotic state. Given arbitrary initial value that is in (0,1) but not
equal with 0.25, 0.5 and 0.75, chaos trajectory will finally search non-repeatedly any
point in (0,1).

If the target function of continuous object problem that to be optimized is:

)(min)(33
ii xfxff == ,],[iii bax ∈ , i=1,2,...,n. (5)

Then the process of the chaos optimization strategy can be described as follows:

Step 1: algorithm initialization. Let 1=k , 1' =k ,)0(i
k
i xx = ,)0(3

ii xx = ,

)0(3 ff = , i
k
i aa =' , i

k
i bb =' . Where, k is the iterative symbol of chaos parameters.

'k is the refine search symbol. 3
ix is the best chaos variable found currently. 3f is

the current best solution that initialized as a biggish number.

Step 2: map the chaos variable k
ix to the optimization variable area, get k

imx :

)(''' k
i

k
i

k
i

k
i

k
i abxamx −+= . (6)

Step 3: search according to the chaos optimization strategy.)(3 k
imxff = , k

ii xx =3 ,

if 3)(fmxf k
i < . Otherwise, go on.

Step 4: let 1+= kk ,)1(4 k
i

k
i

k
i xxx −= , repeat step 2 and 3 until 3f keep unchanged

in certain steps.
Step 5: reduce the search scale of chaos variable:

580 H. Gao, et al.

)(''31' k
i

k
ii

k
i abCmxa −−=+ ,)(''31' k

i
k
ii

k
i abCmxb −+=+ . (7)

where, adjustment coefficient)5.0,0(∈C , 3
imx is the best solution currently.

Step 6: revert optimization variable 3
ix :

)/()(1'1'1'33 +++ −−= k
i

k
i

k
iii abamxx . (8)

Repeat step 2 to 5 using new chaos variable k
ii

k
i AxxAy +−= 3)1(, where A is a

small number. Let 1'' += kk , until 3f keep unchanged in certain steps.

Step 7: finish the calculate process after several repeating of step 5 and 6. The final
3
imx is the best optimization variable, and 3f is the best solution.

3.3 Simulated Annealing

SA is based on the idea of neighborhood search. Kirkpatrick [10] suggested a form of
SA could be used to solve complex optimization problems. The algorithm works by
selecting candidate solutions which are in the neighborhood of the given candidate
solution. SA attempts to avoid entrapment in a local optimum by sometimes accepting
a move that deteriorates the value of the objective function. With the help of the dis-
tribution scheme, SA can provide a reasonable control over the initial temperature and
cooling schedule so that it performs effective exploration and good confidence in the
solution quality.

In Annealing function construction, exponential cooling schedule is used to adjust
the temperature kk tt ⋅=+ μ1 , where ()1,0∈μ is a decrease rate. It is often believed to

be a good cooling method, because it provides a rather good compromise between a
computationally fast schedule and the ability to reach low-energy state.

3.4 Training Algorithm of HPSO

HPSO algorithm training RBF neural network can be summarized as follows:

Step 1: Initialize the structure, activation function and objective function of HPSO.
Step 2: Initialize the algorithm parameters of HPSO (i.e. initialize velocities iX and

positions iV randomly. Initialize temperature 0T and cooling parameter α . Initialize

idP , equal to gdP , with the index of the particle with the best position). Set a limit to

particles’ velocities and positions.
Step 3: Evaluate and store initial position and fitness of each particle. Evaluate and
store the global best position and fitness of the swarm.
Step 4: Update particles’ velocities iV and positions iX by equation (2) and (3).

Update the individual best position and fitness of each particle.
Step 5: Implement the Chaos search for the best particle. Decrease the search space
according to equation (7) and (8). Update the global best position and fitness of the
swarm.

 Training RBF Neural Network with Hybrid Particle Swarm Optimization 581

Fig. 1. Average fitness logarithm value curve of function F

Step 6: Perform annealing operation, Decrease temperature)(1 kk tupdatet =+ and set

k=k+1.
Step 7: If the stopping criterion is not satisfied, go to step 4. Otherwise, output the
best solution found so far.

4 Experiments

HPSO was applied to benchmark function optimization and dataset classification
problems (Iris, Glass, Wine and New-thyroid) experiments in this section. Benchmark
function optimization experiment was carried to demonstrate the effectiveness of the
proposed algorithm in detail.

4.1 Benchmark Function Optimization

Three algorithms (HPSO, simple PSO [11] and SA) were compared on DeJong
benchmark function optimization. The DeJong function is following:

2
1

2
2

2
1)1()(100 xxxF −+−= . (9)

where 048.2048.2 ≤≤− ix , (i=1,2). The function is continuous and multimodal;

x*=1, with 0)1,1(=f .

From the average fitness logarithm value cure of function F in figure 1, we can see
HPSO performs PSO and SA in finding the global optimistic result, and it can avoid
the problem of local optimum effectively.

582 H. Gao, et al.

4.2 Benchmark Datasets Experiment

Four datasets, which are all classification problems and can be got from UCI dataset
house [12], was selected to carry the experiment. The attribute, class and instance of
each dataset can be found in table 1. Each method runs 10 times on every dataset, and
the average value was selected as the experiment result.

Table 1. Datasets characteristic used for experiment

Dataset Example
number

Input
attribution

Output
attribution

Iris 150 4 3
Glass 214 9 7
Wine 178 13 3

New-thyroid 215 5 3

Three training algorithm (HPSO, PSO, and newrb) were compared [11]. The newrb
routine was included in Matlab neural network toolbox as standard training algorithm
for RBF neural network. The parameters of PSO and HPSO were set as follows:
weight ω decreasing linearly between 0.8 and 0.2, acceleration coefficients

5.221 == GG . The initiation temperature of HPSO is 1000. The test results have

been listed on table 2, which are Error rate of three methods on different dataset.

Table 2. Comparative accuracy rate of three algorithms on different datasets

HPSO PSO newrb Dataset
Train Test Train Test Train Test

Iris 0.9989 0.9875 0.99 0.98 0.9850 0.9560
Glass 0.9124 0.7572 0.8042 0.6620 0.9850 0.6174
Wine 0.9991 0.9668 1 0.9631 0.9375 0.6554

New-thyroid 0.9763 0.9534 0.9650 0.9444 0.9240 0.6204

From table 2, it can be seen that the accurate rate of train set and test set outper-
form those of simple PSO and newrb. So, the HPSO algorithm proposed for RBF
neural network in this paper is more effective.

5 Conclusion

This paper presents a hybrid PSO with simulated annealing and Chaos search tech-
nique to train RBF neural network. The HPSO algorithm combined the strong ability
of PSO, SA, and Chaos. They can learn from other’s strong point and offset one’s
weak point each other. Benchmark function optimization and dataset classification
problems (Iris, Glass, Wine and New-thyroid) experimental results demonstrate the
effectiveness and efficiency of the proposed algorithm.

 Training RBF Neural Network with Hybrid Particle Swarm Optimization 583

Acknowledgements

The authors would like to thank the anonymous reviewers for their careful reading of
this paper and for their helpful comments. This work was supported by the National
High Technology Development Plan of China (863) under grant no. 2003AA1Z2610.

References

1. Kennedy, J., Eberhart, R.C.: Particle Swarm Optimization. In: Proceedings of IEEE Inter-
national Conference on Neural Networks, Perth, Australia (1995) 1942–1948

2. Eberhart, R.C., Shi, Y.: Comparison between Genetic Algorithm and Particle Swarm Op-
timization. In. Proceedings of 7th Annual Conference on Evolutionary Computation
(1998) 611–616

3. Kennedy, J., Eberhart, R.C., Shi, Y.: Swarm Intelligence. Morgan Kaufmann Publishers,
Inc., San Francisco, CA (2001)

4. Broomhead, D, Lowe, D.: Multivariable Functional Interpolation and Adaptive Networks.
Complex Systems 2 (1998) 321–355

5. Catelani, M., Fort, A.: Fault Diagnosis of Electronic Analog Circuits Using a Radial Basis
Function Network Classifier. Measurement 28(2000)147–158

6. Kennedy, J.: Bare Bones Particle Swarms. In: Proceedings of IEEE Swarm Intelligence
Symposium, (2003)80–87

7. Cristian, T.I.: The Particle Swarm Optimization Algorithm: Convergence Analysis and Pa-
rameter Selection. Information Processing Letters 85(6) (2003)317–325

8. Zhang, T., Wang, H.W., Wang Z.C.: Mutative Scale Chaos Optimization Algorithm and
Its Application. Control and Decision 14(3) (1999)285–288

9. Moon Francis C. Chaotic and Fractal Dynamics, an Introduction for Applied Scientists and
Engineers. New York: John Wiley & Sons, (1992)

10. Kirkpatrick, S., Gelat, J.C.D., Vecchi, M.P.: Optimization by Simulated Annealing. Sci-
ence 4596(220) (1983)671–680

11. Liu, Y., Qing, Z., Shi, Z.W.: Training Radial Basis Function Network with Particle
swarms, ISNN04, Springer-Verlag Berlin Heidelberg (2004)317–322

12. Blake, C., Keogh, E., Merz, C.J.: UCI Repository of Machine Learning Databases,
www.ic.uci.edu/~mlearn/MLRepository.htm (2003)

	Introduction
	RBF Neural Network
	Hybird PSO Training RBF Neural Network
	Particle Swarm Optimization
	Chaos Optimization
	Simulated Annealing
	Training Algorithm of HPSO

	Experiments
	Benchmark Function Optimization
	Benchmark Datasets Experiment

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

