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Abstract. Recently, Particle Swarm Optimization(PSO) has been
widely applied for training neural network. To improve the performance
of PSO for high-dimensional solution space which always occurs in train-
ing NN, this paper introduces a new paradigm of particle swarm opti-
mization named stochastic PSO (S-PSO). The feature of the S-PSO is its
high ability for exploration. Consequently, when swarm size is relatively
small, S-PSO performs much better than traditional PSO in training of
NN. Hence if S-PSO is used to realize training of NN, computational cost
of training can be reduced significantly.

1 Introduction

As an attempt to model the processing power of human brain, artificial neural
network is viewed as an universal approximation for any non-linear function. Up
to now many algorithms for training neural network have been developed, back-
propagation (BP) method is a popular one. Instead of BP, this paper introduces
a new particle swarm optimization (PSO) for training of NN. Since PSO was
firstly developed in 1995 [1], it has been an increasingly hot topic in community
of artificial intelligence. Due to PSO’s advantages in terms of simple structure
and easy implementation in practice, PSO is widely used in many fields which
involve optimization algorithms[2] [3][4].

Up to now there are more and more literatures referring to training of neu-
ral network with PSO. Normally it is accepted that PSO-NN has the following
advantages:

1) There are no restricts for the PSO method which is critical for BP that the
transfer function in hidden layer should be differentiable. So more transfer func-
tions can be selected to fulfill different requirements.
2) Comparing with BP, PSO training algorithm is not easy to be trapped into
local minima.

But as a stochastic method, PSO method suffers from the “curse of dimen-
sionality”, which implies that its performance deteriorates as the dimensionality
of the search space increases. To overcome this problem, a cooperative approach
is proposed in which the solution space is divided into several subspaces with
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lower dimension, and several swarms in these subspaces cooperate with each
other to find the global best solution [5]. But such method induces a problem
named stagnation. Since the performance of PSO is determined by exploration
and exploitation of particles, it is reasonable that improving exploration ability
can make particles explore solution space more efficiently in order to improve
PSO performance. In this paper, we propose a stochastic PSO(S-PSO) to accom-
plish training NN which fulfills requirements with relative small size but high
efficiency.

2 Stochastic PSO with High Exploration Ability

Owing to many literatures involving NN training using PSO, we just introduce
the main idea of PSO training briefly. Given a multi-layer neural network, all its
weights are combined together to form a vector which is viewed as a solution in
a solution space. Then a swarm is proposed whose members (particles) represent
such solution candidates. According to a certain criterion, which is normally in
the form of minimal mean square error between patterns and outputs of NN, all
particles congregate to a position on which the coordinate represents the best
solution they found. Therefore the dimension of solution space is the same as
the number of weights of NN. Take a three-layer fully connected feed-forward
network as an example. If there are five neurons in the hidden layer and bias in
hidden and output layers, even the NN has one input and one output, there are
sixteen weights to be trained. Now let’s estimate the swarm size sufficient for
training.

Consider the traditional PSO updating principle with constriction coefficient
K expressed as follows:

vi(n + 1) = K
[
vi(n) + ci1ri1(n)(P d

i (n) − Xi(n)) + ci2ri2(n)(P g
i (n) − Xi(n))

]

Xi(n + 1) = Xi(n) + vi(n + 1),
(1)

where Xi = [ xi1 xi2 · · · xiD ] denotes current position; vi denotes current
velocity; c1 and c2 represent the acceleration coefficients; P d

i (n) represents the
best position found by particle i so far, P g

i (n) represents the global best position
found by particle i’s neighborhood. Obviously the random exploration ability
is constricted within a subspace spanned by {P d

i (n) − Xi(n), P g
i (n) − Xi(n)}.

That means the direction of exploration is restricted. At the same time, the
intension of exploration behavior is totally determined by rate of decreasing of
P d

i (n)−Xi(n) and P g
i (n)−Xi(n). To maintain exploration ability, there always

need many particles within a swarm so that swarm size is several times, even ten
times as dimension of solution space. For a simple SISO NN with a five neurons
hidden layer, swarm size should be as many as sixteen. Hence the crucial short-
age of PSO-NN is that the swarm size is so large that computational burden is
unacceptable.

Since the relatively low exploration ability is induced by constraints of direc-
tion and intension of relative distance between particles’ current positions and
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the best solutions founded by them and their neighborhood, we try to introduce
a random exploration velocity into updating principle which is independent with
positions. Based on explicit representation (ER) of PSO [6], we propose a new
stochastic PSO (S-PSO) with the following definition.

Definition of Stochastic PSO. A stochastic PSO (S-PSO) is described as fol-
lows: Given a swarm including M particles, the position of particle i is defined as
Xi = [ xi1 xi2 · · · xiD ]T , where D represents the dimension of swarm space.
The updating principle for individual particle is defined as

vi(n + 1) = ε(n)
[
vi(n) + ci1ri1(n)(P d

i (n) − Xi(n))
+ci2ri2(n)(P g

i (n) − Xi(n)) + ξi(n)]
Xi(n + 1) = αXi(n) + vi(n + 1) + 1−α

φi(n) (ci1ri1(n)P d
i (n) + ci2ri2(n)P g

i (n)),
(2)

where c1 and c2 are positive constants; P d
i (n) represents the best solution found

by particle i so far; P g
i (n) represents the best position found by particle i’s neigh-

borhood; φi(n) = φi1(n) + φi2(n), where φi1(n) = ci1ri1(n), φi2(n) = ci2ri2(n).
Applying theory of stochastic approximation, we can prove that if the follow-

ing assumptions hold,

1) ξi(n) is a random velocity with continuous uniform distribution. It has con-
stant expectation denoted by Ξi = Eξi(n),
2) ε(n) → 0 with n increasing, and Σ∞

n=0εn = ∞,
3) 0 < α < 1,
4) ri1(n) and ri2(n) are independent variables satisfying continuous uniform dis-
tribution in [0, 1], whose expectations are 0.5,
then the updating principle must converge with probability one. Let P ∗ =
infλ∈(RD) F (λ) represent the unique optimal position in solution space. Then
swarm must converge to P ∗ if limn P d

i (n) → P ∗ and limn P g
i (n) → P ∗.

Due to limitation of pages, we just introduce the main idea of the proof. If
define Y (n) = X(n)− P ∗, θ(n) = [ v(n) Z(n) ]T = [ v(n) Y (n) − EnQr(n) ]T ,
where Qr(n) = 1

φ(n) [φ1(n)(P d(n)−P ∗)+φ2(n)(P g(n)−P ∗)], updating principle
can be expressed as a standard form of stochastic ODE as

θ(n + 1) = θ(n) + ε(n)H(n). (3)

Applying Lyapunov theory on stochastic process, a Lyapunov function is defined
as

L(θ(n)) = 1
2θT

[
1 0
0 Φ

]
θ = 1

2 (v2(n) + ΦZ2(n)). (4)

After some calculations, we know for n > Nk, where Nk is a large enough integer,
there is a positive non-decreasing function k(θ(n)) such that

EnL(θ(n + 1)) − L(θ(n)) ≤ −k(θ(n)) + E
[
b1(n)(Qr(n) − EnQr(n))2

]
, (5)

where b1(n) = Φ(1−α+ε(n)φ(n))2 +(ε(n)φ(n))2. Therefore θ(n) returns to the
neighborhood of {θ|k(θ(t)) = Φ(1 − α)E(Qr(t) − EnQr(t))2} infinitely often as
n → ∞.
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It can be proved that the following condition for asymptotic rate of change
holds.

lim
n

sup
j≥n

max
0≤t≤T

∣∣M0(jT + t) − M0(jT )
∣∣ = 0, (6)

where M0(t) =
∑m(t)−1

i=0 ε(i)δM(i), δM(n) = H(n)−EnH(n). Hence as n → ∞,
the stochastic factor can not force θ(n) out of the vicinity of Φ(1 − α)E(Qr(t) −
EnQr(t))2} infinitely often. That means θ(n) must converge to the set
{θ|k(θ(t)) = Φ(1 − α)E(Qr(t) − EnQr(t))2} with probability one. And if
limnQr(n) = 0 or P d(n) and P g(n) converge to P ∗, {θ|k(θ(t)) = Φ(1−α)E(Qr(t)
− EnQr(t))2} becomes {θ|k(θ(t)) = 0}, and the swarm must converge to P ∗.

The following properties are obtained.

1) When n is less than Nk which makes equation (5) hold, the updating prin-
ciple is nonconvergent so that particle will move away from the best position
recorded by itself and its neighborhood. This phenomenon can be viewed as a
strong exploration that all particles are exploring in the solution space. And
when n > Nk, particle starts to converge.
2) An additional random velocity ξ(n) independent with particle’s position is
very useful to maintain intension of exploration. That means when particles
congregate too fast, particles can maintain certain exploration behavior to avoid
being trapped into local minimum.

These two properties imply that S-PSO has strong exploration ability than
traditional PSO, so that using S-PSO, we can accomplish training of NN with
relative small swarm size.

3 Neural Network Training with S-PSO

To test the feasibility of S-PSO in training, we propose a test on non-linear artifi-
cial function approximation. As a comparison, other two ways of training, BP and
traditional PSO are chosen. Since the test is to investigate dynamics of learning
for the three algorithms, there is no need to build a complex neural network. So a
standard one input, one output, three layers feed-forwardneural network is chosen,
whose hidden layer includes five neurons, just like Fig. 1 shows. There are sixteen
weights to be optimized. In order to use BP, a differentiable sigmoid function and
a linear function are chosen as transfer function in hidden layers and output layer.
We use the way of batch training, that means in one epoch (iteration) the weights
are updated once after all data are input to the net.

The parameters used in PSO training methods are arranged as follows. For
S-PSO, c1 = c2 = 3.5, α = 0.95, ε(n) is of the form ε(n) = 3.5/(n + 1)0.4. For
traditional PSO, c1 = c2 = 2.05, K = 0.729.

To speed up convergence of BP, a gradient descent with momentum weight is
applied as BP learning, in which the momentum constant is set as 0.9. The NN
toolbox in MATLAB 6.5 is used to build up such BP neural network.

Each weight in three NNs is initialized within [ 0 1 ]. A data set including 40
data is presented to NNs for training, in which data are sampled from a smooth
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Fig. 1. Feed-forward neural network

Table 1. Comparative Results

Algorithm (swarm size) Average of MSE Minimum of MSE Maximum of MSE Std. Dev.

S-PSO (20) 0.6636 × 10−2 0.9527 × 10−3 0.02109 0.1078 × 10−2

S-PSO (35) 0.5465 × 10−2 0.1155 × 10−2 0.01078 0.1040 × 10−2

Traditional PSO (20) 0.01067 0.1408 × 10−2 0.02151 0.1187×−2

Traditional PSO (35) 0.3648 × 10−2 0.6556×−3 0.01056 0.5102 × 10−3

Backpropagation 0.2367 × 10−2 0.7082 × 10−3 0.5743 × 10−2 0.2468×−3
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Fig. 2. Evolution processes for three-path planning and results of function
approximation

continuous curve with little disturbances. Each training algorithm is tested 30
runs. And each run includes 1500 iterations. To investigate performance of PSO
under different swarm sizes, two swarm sizes are tested. The one is 20 which is
a little bit greater than the dimension of solution space, the other is 35 which is
more than twice as the dimension. All test result is listed in Tab. 1.

We observe that S-PSO training with a swarm including 20 particles performs
much better than traditional PSO. We think the random velocity ξ(n) brings
obvious improvement on the performance. But when swarm size increases to 35
which is more than twice as solution dimension, the performance of traditional
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PSO catches up with S-PSO, because larger size make traditional PSO explore
better and originally traditional PSO converges faster than S-PSO. Such fast
convergence can be observed in Fig. 2 (a) in which traditional PSO converges
as fast as BP, while due to divergence property mentioned previously, S-PSO
converges much slower than the other two. The result of function approximation
in one of runs is shown in Fig. 2 (b), in which the black circles denote the data
presented to NN, and the red line and blue line denote outputs of neural networks
after training using S-PSO and BP respectively.

4 Conclusion

PSO is considered as an important evolutionary technique for optimization,
which becomes more and more popular in training neural network due to its
advantages mentioned above. But since the dimension of solution space is the
same as the number of weights in NN, normally the swarm size is so large that
computational cost becomes a large burden. This paper proposes a new stochas-
tic PSO (S-PSO) which has an advantage of including an independent random
velocity ξ(n) to improve the exploration ability of swarm, so that S-PSO with
relative small swarm size can accomplish training of NN. Hence applying such
S-PSO, the computational cost of PSO training can be reduced significantly,
meanwhile the advantages of PSO training are maintained as well.
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