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Abstract. In this paper, a new type of WNN is proposed to enhance the func-
tion approximation capability.  In the proposed WNN, the nonlinear activa-
tion function is a linear combination of wavelets, that can be updated during 
the networks training process.  As a result the approximate error is signifi-
cantly decreased.  The BP algorithm and the QR decomposition based train-
ing method for the proposed WNN is derived.  The obtained results indicate 
that this new type of WNN exhibits excellent learning ability compared to the 
conventional ones. 

1   Introduction 

The approximation of a general continuous function by neural network (NN) has been 
widely studied because of its outstanding capability of fitting nonlinear models for 
input/output data. A three-layer NN is usually represented by the following finite 
sums of the form: 
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where R∈ii bw , , n
i Ra ∈ , )(⋅σ  is a given function from R  to R , nRx ∈  is the input 

vector.  It has been proved that the output, )(xg , is dense in the space of continuous 

function defined on n]1,0[  if )(⋅σ  is a continuous, discriminating function.  Generally, 
)(⋅σ  is adopted as a sigmoid function that is discriminatory. 
Because wavelet decomposition has been emerged as a new powerful tool for rep-

resenting nonlinearity, a class of network combining wavelets and neural networks 
have recently been investigated [1-10].  It has shown that this class of wavelet net-
works can provide better function approximation ability than ordinary basis function 
networks.  

It is noticed that the development of the above WNNs are all theoretically based 
upon the wavelet frame theory given by Daubechies [4] in one-dimensional (1-D) 
case and generalized by Kugarajah and Zhang [7] in a multi-dimensional (M-D) case.  
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A rather complex network architecture is inevitably resulted when the construction of 
an MWNN is solely in accordance with the wavelet frame theory.   For practical ap-
plications, a relative large network size is often required.   

In this paper, we study the possibility of using a 1-D wavelet function for the de-
velopment of an MWNN. Based upon the theories of approximation of nonlinear 
functions using neural networks [8], our proposed WNN theorems are derived in 
accordance with the theories that the sigmoid function can be replaced by any con-
tinuous or discontinuous function [8], if certain conditions are satisfied (the wavelet 
function satisfy these conditions too) [8]. Following the development of this new 
MWNN, we based upon the discrete wavelet transforms to further develop another 
new type of MWNN, called MWNN-DWT.  The activation function of the MWNN-
DWT is a linear combination of wavelet bases rather than the sigmoid function or the 
wavelet function.  

2   Wavelets and Wavelet Neural Networks (WNN) 

Wavelets are functions whose dilations and translations form a frame of )(2 RL .  That 
is, for some 0,0 >> ba , the family  

                            )()( 2/ bkxaax ll
lk −= −− ψψ , for Zkl ∈,                              (2) 

satisfies the frame property [4].  The sufficient conditions of wavelet frames were 
fiven in [4].  For instance, the “Morlet” wavelet with 1,2 == ba  can build a frame of 

)(2 RL .  Hence, the collection of all linear combination of elements of the frame 
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Pati and Krishnaprasad [3] connected the wavelet with NN by applying Daubechies’ 
results [4].  They proposed the following network form 
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where the index set Ι  is the integer translation and the integer dilation, which are 
determined by using the time-frequency localization properties under a given accu-
racy [3-4], [6]. Kugarajah and Zhang [7] firstly built the M-D wavelet frames by a 
single mother wavelet as following form 

                                  )()( 2/
, kxxk baa lnl

l −= −− ψψ   for nZZl ∈∈ k,                           (5) 

where )()( 2 nLx R∈ψ , nRx ∈ , R∈ba, and 1>a .  Also, they gave the sufficient con-
ditions of wavelet frames by generalizing Daubechies’ theorem [4].  In the sequence, 

the dilation index l is a scalar and the scalar dilation parameter al
 is shared by all the 

dimensional of a wavelet.  They proposed a methodology to construct a M-D wavelet 
function leading to frames [7], but not all 1-D wavelet can be extended as a M-D 
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wavelet.  The special conditions can be found in [7].  Zhang and Benveniste [1], and 
Kugarajah and Zhang [7] respectively gave the M-D wavelet frames in the following 
multi-scaling forms: 

                          )()(det)( 2/1
, kxx jkl bDD j −= ψψ   for nZ∈kj, ,                                (6) 

                          )(det)( 2/1
, kxx jjkl TDD −= ψψ   for nZ∈kj, ,                                    (7) 

where ),,( 1 njj
j aadiagD L= , nT

n Zjjj ∈= ),( 1 L  and ),,( 1 nbbdiagT L= , ,1>a  

nibi ,,1,0 L=> , 0>b .  They proved that if a 1-D wavelet function )(xψ  can consti-

tute frames, the tensor product of the 1-D wavelet function can also constitute frames.  
Zhang and Benveniste [1] presented a network structure in the form of  
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where iR  are rotation matrices, and g  is introduced to deal with nonzero mean func-

tions on finite domains.   

3   MWNN Based on Discrete Wavelet Transform (MWNN-DWT) 

In the MWNN described in (12), the activation function is a 1-D mother wavelet func-
tion.  As it is well known that the dilations and translations of wavelet can provide a 
good representation of nonlinearity [4],[6], a 1-D dilations and translations for the 
wavelet in the MWNN is then developed to enhance the approximation capability of 
the network.  In this section we derive a new type of MWNN, called MWNN-DWT,  

a1

aN

+

+

b1

bN

ψ00

ψlk

ψ00

ψlk

wlk +

w00

wlk

+

wN

w1

+x y

w00
........

..........

........................................

ψ
∧

g
−

 

Fig. 1. The architecture of the MWNN 

which is based upon the discrete wavelet transform. The output, )(xg , of MWNN-
DWT depicted in Fig. 1 is represented by the following form: 
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Ι  is the index set of pairs (l,k) of integer translation and integer dilation.  The parame-
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ter g  is introduced so that the approximation of functions with nonzero average is 
possible [1].  It is clear that the activation function in MWNN-DWT (9) is expressed 
in a linear combination of the dilating and translating wavelets.  Through adaptively 
adjusting the 1-D wavelet frames, the MWNN-DWT is capable of providing an excel-
lent approximation capability.   

    The (13) can be rewritten as the following two equivalent forms: 
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To demonstrate the approximate capability of the MWNN-DWT, it is applied to 
approximate the function )6sin(5.0)( xexf x−=  over the domain [-1,1].  The parameter 

g  was initialized by the mean of the function observations, and other parameters 

were simply randomized between -0.5 and 0.5.  It should also be noted that a rather 
special procedure in initializing the parameters is used in [1], while the parameters of 
the proposed MWNN-DWT is simply randomized in a general fashion.  In order to 
compare the approximation capability of the networks described in (8) and (11), the 
initial parameters of these networks are all similarly randomized.  Note that no rota-
tion parameter is required for the wavelet network (8) in a 1-D case [1].  The training 
set consist of 100 points uniformly sampled in )(xf .  The function approximation 
performance of an MWNN-DWT in (11) with 5 neurons and 9 wavelet coefficients is 
compared to an WNN in (8) with 8 wavelons.  In both networks, 25 parameters are 
used and trained by the standard BP algorithm.  Fig.2 is the total squared errors over 
2000 iterations, where the solid line shows the error of the MWNN-DWT and the 
dashed line represents that of the WNN.  Clearly, the proposed MWNN-DWT pro-
vides much better results compared to that of the WNN.   

It is noted that the parameters of the MWNN-DWT consists of two parts: the 
weights of the network and the coefficients of the wavelets.  In order to determine the 
optimal index set I and to speed up the convergence of the MWNN-DWT, we divide 
the training process into two stages.  Firstly, let ,100 =w  0=lkw , 0, ≠kl  and apply 

the BP algorithm for the network training.  In this case, )()(ˆ xx ψψ = , the network  
is the same as the MWNN in (13) but less parameters is required.  In this training 
stage, the activation function is fixed and the standard BP algorithm is used.  After a 
number of iterations and the network converges to a specified level of error, all the 
parameters are fixed.  Therefore, the (11) can be expressed as 
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the coefficients of the wavelets lkw .  As lkw  appears to be linear in the output equa-
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tion (12) of the network, most optimization techniques can be used to minimize the 
measure function if the index set is given.  In this paper, the QR decomposition is 
used to adjust the activation function according to the form in (16).  This process is 
equivalent to solving a least squares minimization problem for a given training set 

P
iiiP fT 1)}(,{( == xx .  By choosing an order of the index set the equation (12) can be 

written as  

                                     GWF = ,                                                    (13) 

where T
PffF ))(,),(( 1 xx L=  is a column vector, ),,ˆ,( 1G LL lkG =  is the )(# IP×  

matrix, #(I) denotes the number of the elements of the index set I, 
T

Plklklk GG ))(,),((ˆ
1 xxG L= , and W is the coefficient vector which needs to be deter-

mined. To obtain the matrix G, search the lkĜ  in accordance with the order: l, k = 

L,2,1,0 ±± . If the rankGGrank lk >)ˆ,( G  and ε>)(max jlkj G x , then ),ˆ,(  1GlkGG ⇐ , 

where ),(  1GG =  and the given ε  is a very small number.  Following the above pro-
cedures, QR decomposition is used to determine the coefficients and the averaged W.  
The weights can then evaluated.  Obviously, the overall convergence rate is substan-
tially speeded up.  In the above example, it required 5000 iterations to converge to a 
total squared error of 0.0112.   In order to speed up the rate of convergence and to 
enhance the approximation capability of our network, the proposed training scheme 
was used for the function )6sin(5.0)( xexf x−= .  The proposed network with 5 hidden 
units was firstly trained by BP algorithm.  After 100 iterations, we obtain the matrix G 
with 12 columns, which implies that there are 12 coefficients of wavelets required to 
be determined by QP decomposition.  Our results show that a total squared error of 
7.9954 510−×  was obtained by only 100 training iterations together with the QR de-
composition.  The computational time required by this training scheme is substan-
tially reduced compared to other MWNN training schemes.   

For the case of a 2-D function given in above section: yyxxyxf /)sin(/)sin(),( = , 
an MWNN-DWT with 50 hidden units was trained by the proposed training 
scheme. In this example, only 400 training iterations (with BP algorithm) together 
with the QR decomposition was required to provide a total squared error of  
0.1688.  Fig. 3 and Fig. 4 show the original function and approximation results 
respectively. 
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Fig. 2. The total squared errors of the WNN (8) and the proposed network for first function 
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 Fig. 3. Original 2-D function                        Fig. 4. Resulting approximation 

4   Conclusion 

In this paper, we use Discrete Wavelet Transform to extend the MWNN to a new type 
of network called, MWNN-DWT. This enables us to minimize the measure function 
by adjusting the wavelet bases activation function.  Our results indicate that the pro-
posed MWNN-DWT can deliver an enhanced function approximation capability. The 
proposed training algorithm, which is based on the standard BP algorithm and QR 
decomposition, has an outstanding convergence rate compared to other MWNN train-
ing algorithms. 
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