Security Protocols Verification

in Abductive Logic Programming:
A Case Study*

Marco Alberti!, Federico Chesani?, Marco Gavanelli®,
Evelina Lamma', Paola Mello?, and Paolo Torroni?

! ENDIF, Universita di Ferrara - Via Saragat, 1 - 44100 Ferrara, Italy
{marco.alberti, marco.gavanelli, evelina.lamma}@unife.it
2 DEIS, Universita di Bologna - Viale Risorgimento, 2 - 40126 Bologna, Italy
{fchesani, pmello, ptorroni}@deis.unibo.it

Abstract. In this paper we present by a case study an approach
to the verification of security protocols based on Abductive Logic
Programming.

We start from the perspective of open multi-agent systems, where the
internal architecture of the individual system’s components may not be
completely specified, but it is important to infer and prove properties
about the overall system behaviour. We take a formal approach based
on Computational Logic, to address verification at two orthogonal levels:
‘static’ verification of protocol properties (which can guarantee, at design
time, that some properties are a logical consequence of the protocol),
and ‘dynamic’ verification of compliance of agent communication (which
checks, at runtime, that the agents do actually follow the protocol).

In order to explain the approach, we adopt as a running example the
well-known Needham-Schroeder protocol. We first show how the protocol
can be specified in our previously developed SOCS-SI framework, and
then demonstrate the two types of verification.

We also demonstrate the use of the SOCS-SI framework for the static
verification of the NetBill e-commerce protocol.

1 Introduction

The recent and fast growth of network infrastructures, such as the Internet, is
allowing for a new range of scenarios and styles of business making and trans-
action management. In this context, the use of security protocols has become
common practice in a community of users who often operate in the hope (and
sometimes in the trust) that they can rely on a technology which protects their
private information and makes their communications secure and reliable. A large

* This paper is a revised version of work discussed at the Twentieth Italian Symposium
on Computational Logic, CILC 2005, whose informal proceedings are available from
the URL: http://www.disp.uniroma2.it /CILC2005/

O. Dikenelli, M.-P. Gleizes, and A. Ricci (Eds.): ESAW 2005, LNAI 3963, pp. 106-[24] 2006.
© Springer-Verlag Berlin Heidelberg 2006

Security Protocols Verification in Abductive Logic Programming 107

number of formal methods and tools have been developed to analyse security pro-
tocols, achieving notable results in determining their strengths (by showing their
security properties) and their weaknesses (by identifying attacks on them).

The need for well defined protocols is even more apparent in the context
of multi-agent systems. By “well defined”, we mean that they guarantee some
desirable properties (assuming that agents act according to them). In order to
achieve reliability and users’ trust, formal proofs of such properties need to
be provided. We call the generation of such formal proofs static verification of
protocol properties.

Open agent societies are defined as dynamic groups of agents, where new
agents can join the society at any time, without disclosing their internals or
specifications, nor providing any formal credential of being “well behaved” [1].
Open agent societies are a useful setting for heterogenous agent to interact;
but, since no assumptions can be made about the agents and their behaviour,
it cannot be assumed that the agents will follow the protocols. Therefore, at
run-time, the resulting agent interaction may not exhibit the protocol properties
that were verified statically at design time. In order to know whether the desired
“static” properties hold at run-time, we need to be able to verify that agents do
follow the protocols. In other words, we can do what Guerin and Pitt call on-the-
fly verification of compliance [2]. This kind of verification should be performed
by a trusted entity, external to the agents.

In previous work, and in the context of the EU-funded SOCS project [3]
we developed a Computational Logic-based framework, called SOCS-SI (where
SI stands for Social Infrastructure), for the specification of agent interaction. In
order to make SOCS-SI applicable to open agent societies, the specifications refer
to the observable agent behaviour, rather than to the agents’ internals or policies,
and do not over-constrain the agents’ behaviour. We have shown that SOCS-ST
is suitable for semantic specification of agent communication languages [4], and
that it lends itself to the definition of a range of agent interaction protocols [5].1

In this paper, we demonstrate by a case study on the well known Needham-
Schroeder security protocol [7] how the SOCS-SI framework supports both static
verification of protocol properties and on-the-fly verification of compliance. The
two kinds of verifications are achieved by means of the operational counterpart of
the SOCS-SI framework, consisting of two abductive proof-procedures (SCIFF
and g-SCIFF). Notably, the same specification of the protocol in our language is
used for both kinds of verification: in this way, the protocol designer is relieved
from a time consuming and error-prone translation step.

SOCS-SI can thus be viewed as a tool for protocol designers, which can be
used to automatically verify: (i) at design time, that a protocol enjoys some
desirable properties, and (ii) at runtime, that the agents follow the protocol, so
making the interaction indeed exhibit the properties.

The paper is structured as follows. In Sect. 2, we describe an implementation
of the well-known Needham-Schroeder Public Key authentication protocol in
our framework, and in Sect. 3 we show how we perform on-the-fly verification

LA repository of protocols is available on the web [6].

108 M. Alberti et al.

of compliance and static verification of properties of the protocol. In Sect. 4, as
a further example, we propose the static verification of the NetBill e-commerce
protocol. Related work and conclusions follow.

2 Specifying the Needham-Schroeder Public Key
Encryption Protocol

In this section, we show how the SOCS-SI framework can be used to represent
the well-known Needham-Schroeder security protocol [7]. The purpose of the
protocol is to ensure mutual authentication while maintaining secrecy. In other
words, once agents A and B have successfully completed a run of the protocol,
A should believe his partner to be B if and only if B believes his partner
to be A.

—

1) A— B : (Na, A)pup key(B)
2) B— A: (Na, NB)pub key(A)
3) A— B: (NB)pub key(B)

—~—~

Fig. 1. The Needham-Schroeder protocol (simplified version)

The protocol consists of seven steps, but, as other authors do, we focus on
a simplified version consisting of three steps, where we assume that the agents
know the public key of the other agents. A protocol run can be represented as
in Figure 1.

A — B: (M)px means that A has sent to B a message M, encrypted with
the key PK. A message of form Nx represents a nonce: a message whose content
is assumed impossible to guess (such as a long binary string), and thus known
only to the agent that synthesized it and to those who received it.

In step (1), A sends to B a new nonce Ng4, together with A’s identifier,
encrypted with B’s public key. In step (2), B sends N4 back to A, together with
anew nonce Np, encrypted with A’s public key. A is now sure about B’s identity,
since only B can have decrypted the first message and know N 4. Similarly, B
is sure about A’s identity after step (3), because only A can have decrypted the
second message and have read Np to send it back to B.

At the end of the protocol, seemingly, A and B are mutually authenticated.

Lowe’s attack on the protocol. Eighteen years after the publication of the
Needham-Schroeder protocol, Lowe [8] proved it to be prone to a security attack.
Lowe’s attack on the protocol is presented in Figure 2, where a third agent
(standing for intruder) manages to successfully authenticate itself as agent a
with a third agent b, by exploiting the information obtained in a legitimate
dialogue with a.

It is important to notice that Lowe’s attack is effective even if the nonces
and keys are not compromised, differently from other kinds of attack (see, for
instance, those exemplified by Denning and Sacco [9]).

Security Protocols Verification in Abductive Logic Programming 109

(1) i 2 (Na, @) pub key(i)
(2) t (Na, @) pub key(v)
(3) b—i: (Na, No)pub key(a)
(4) i — a: (Na, No)pub key(a)
(5) (2 (Nb) pub key(i)

(6) pub key(b)

@
l
f=a
e
5
~ <

Fig. 2. Lowe’s attack on the Needham-Schroeder protocol

2.1 The Social Model

In this section we give a brief summary of the SOCS-STI social framework devel-
oped within the EU-funded SOCS project [3]? to specify interaction protocols
for open societies of agents in a declarative way.

Since in open societies the agents’ internal state is not observable, the SOCS-
SI framework is aimed at specifying and verifying the agents’ observable be-
haviour. The verification is performed by an external entity, the social
infrastructure, which can observe the agent behaviour.

The agent interaction is recorded by the social infrastructure in a set HAP
(called history), of events. Events are represented as ground atoms

H(Event], Time])

The term Fvent describes the event that has happened, according to application-

specific conventions (e.g., a message sent or a payment issued); Time (optional)

is a number, meant to represent the time at which the event has happened.
For example,

H(send(a, b, content(key(ky), agent(a), nonce(ng))), 1)

could represent the fact that agent a sent to agent b a message consisting its
own identifier (a) and a nonce (n,), encrypted with the key kj, at time 1.
While events represent the actual agent behaviour, the desired agent be-
haviour is represented by expectations. Expectations are “positive” when they
refer to events that are expected to happen, and “negative” when they refer to
events that are expected not to happen. The following syntax is adopted

E(Fvent[, Time]) EN(Event[, Time))

for, respectively, positive and negative expectations. Differently from events, ex-

pectations can contain variables (we follow the Prolog convention of representing

variables with capitalized identifiers) and CLP [11] constraints can be imposed

on the variables. This is because the desired agent behaviour may be under-

specified (hence variables), yet subject to restriction (hence CLP constraints).
For instance,

E(send(a, b, content(key(ky), nonce(ny), empty(0))), T)

2 The reader can refer to [10] for a more detailed description.

110 M. Alberti et al.

could represent the expectation for agent a to send to agent b a message consist-
ing of a nonce (np) and an empty part (empty(0)), encrypted with a key kj, at
time T'. A CLP constraint such as T' < 10 can be imposed on the time variable,
to express a deadline.

Explicit negation can be applied to expectations (—E and —EN).

In the SOCS-SI framework, the agent interaction is specified by means of
interaction protocols.

A protocol specification S = (KBg,ZCg) is composed of:

— the Social Knowledge Base (K Bg) is a logic program whose clauses can have
expectations and CLP constraints in their bodies. It can be used to express
domain-specific knowledge (such as, for instance, deadlines);

— a set ZCg of Social Integrity Constraints (also SICs, for short, in the fol-
lowing): rules of the form Body — Head. SICs are used to express how the
actual agent behaviour generates expectations on their behaviour; examples
can be found in the following sections.

In abductive logic frameworks [12], abducibles represent hypotheses, a logic
program specifies which set of hypotheses entail a goal, and integrity constraints
rule out inconsistent set of hypotheses. The abductive reasoning is successful if
it finds a set of hypotheses which entail the goal while not violating the integrity
constraints.

In our (abductive) framework, we map expectations to abducibles, and the
abductive semantics is used to select a desired behaviour which entails a social
goal, while not violating the SICs. In addition, we require the desired behaviour
to be matched by the actual agent behaviour.

In particular, we say that a history HAP is compliant to a specification
S = (KBg,ICg) iff there exists a set EXP of expectations that is

— ICg-consistent: it must entail ZCg, for the given S and HAP;

— —-consistent: for any ground p, EXP cannot include {E(P),-E(p)} or
{EN(p),—-EN(p)} (this requirement implements explicit negation for ex-
pectations);

— E-consistent: for any ground p, EXP cannot include {E(p), EN(p)} (an
event cannot be both expected to happen and expected not to happen);

— fulfilled: for any ground p, EXP cannot contain EN(p) if HAP contains
H(p), and EXP cannot contain E(p) if HAP does not contain H(p) (hap-
pened events are required to match the expectations).

In order to support goal-oriented societies, EXP is also required to entail, to-
gether with K Bg, a goal G which is defined as a conjunction of literals.

2.2 Representing the Needham-Schroeder Protocol in the SOCS-SI
Social Model

In the following, we show a specification of the Needham-Schroeder protocol in
the SOCS-SI language.

Security Protocols Verification in Abductive Logic Programming 111

With the atom:
H(send(X,Y, content(key(K), Term1 Terms)),T1)

we mean that a message is sent by an agent X to an agent Y'; the content of the
message consists of the two terms Term; and Terms and has been encrypted
with the key K. Tj is the time at which Y receives the message.

The interaction of Figure 1, for instance, can be expressed as follows:

H(send(a, b, content(key(ks), agent(a),nonce(na))), 1)
H(send(b, a, content(key(kq), nonce(nq), nonce(ns))), 2)
H(send(a,b, content(key(ks), nonce(nsy), empty(0))), 3)

A first group of SICs, depicted in Figure 3, defines the protocol itself, i.e, the
expected sequence of messages.

H(send(X, B, content(key(KB), agent(A), nonce(NA))), T1)

E(send(B, X, content(key(KA), nonce(NA), nonce(NB))), T2)
/\ NA!=NB /\ T2 > T1.

H(send(X, B, content(key(KB), agent(A), nonce(NA))), T1)
/\ H(send(B, X, content(key(KA), nonce(NA), nonce(NB))), T2)
/\ T2 > T1

E(send(X, B, content(key(KB), nonce(NB), empty(0))), T3)
/\ T3 > T2.

Fig. 3. Social Integrity Constraints defining the Needham-Schroeder protocol

The first SIC of Figure 3 states that, whenever an agent B receives a mes-
sage from agent X, and this message contains the name of some agent A (possi-
bly the name of X himself), and some nonce Ny4, encrypted with B’s public key
Kp, then a message is expected to be sent at a later time from B to X, con-
taining the original nonce N4 and a new nonce Np, encrypted with the public
key of A.

The second SIC of Figure 3 expresses that if two messages have been sent,
with the characteristics that: a) the first message has been sent at the instant
Ty, from X to B, containing the name of some agent A and some nonce Ny,
encrypted with some public key Kp; and b) the second message has been sent
at a later instant 75, from B to X, containing the original nonce N4 and a new
nonce Np, encrypted with the public key of A; then a third message is expected
to be sent from X to B, containing Np, and encrypted with B’s public key.

The second group of SICs consists of the one in Figure 4, which expresses
the condition that an agent is not able to guess another agent’s nonce. The
predicate one of(A, B, C), defined in the K Bg, is true when A unifies with at
least one of B and C. The SIC says that, if agent X sends to another agent Y a

112 M. Alberti et al.

H(send(X, Y, content(key(KY), Terml, Term2)), TO)
/\ one_of (NX, Terml, Term2) /\ not isNonce(X, NX)

E(send(V, X, content(key(KX), Term3, Term4)), T1)
/\ X!=V /\ isPublicKey(X, KX) /\ T1 < TO
/\ one_of (nonce(NX), Terml, Term2)

\/
E(send(V, X, content(key(KY), Terml, Term2)), T2)
/\ T2 < TO

Fig. 4. Social Integrity Constraint expressing that an agent cannot guess a nonce gen-
erated by another agent (after Dolev-Yao [13])

message containing a nonce that X did not create, then X must have received Nx
previously in a message encrypted with X’s public key, or X must be forwarding
a message that it has received.

3 Verification of Security Protocols

In this section we show the application of the SOCS-SI social framework to on-
the-fly verification of compliance and static verification of protocol properties,
adopting the Needham-Schroeder security protocol, specified in 2.2 as a case
study.

By “static verification of protocol properties” we mean a verification (by
means of a formal proof, performed at design time) that a protocol enjoyes
desirable properties. If the agents follow the protocol, then the agent interaction
will itself exhibit the properties. However, since in open agent societies it cannot
be assumed that the agents will follow the protocols, it becomes necessary to
verify the agents’ compliance to the protocol by means of an external trusted
entity, able to observe the agent behaviour at runtime. Following Guerin and
Pitt [2], we call this process “on-the-fly verification of compliance”.

In our approach, both types of verification are applied to the same specifica-
tion of the protocol, without the need for a translation: the protocol designer,
in this way, can be sure that the protocol for which he or she has verified formal
properties will be the same that the agents will be required to follow.

The two types of verification are achieved by means of two abductive proof-
procedures, SCIFF and g-SCIFF, which are closely related. In fact, the proof-
procedure used for the static verification of protocol properties (g-SCIFF) is
defined as an extension of the one used for on-the-fly verification of compliance
(SCIFF): for this reason, we first present on-the-fly verification, although, in the
intended use of SOCS-SI, static verification would come first.

3.1 On-the-Fly Verification of Compliance

In this section, we show examples where the SCIFF proof-procedure is used as
a tool for verifying that the agent interaction is compliant to a protocol.

Security Protocols Verification in Abductive Logic Programming 113

h(send(a, b, content(key(kb), agent(a), nonce(na))), 1).
h(send(b, a, content(key(ka), nonce(na), nonce(nb))), 2).
h(send(a, b, content(key(kb), nonce(nb), empty(0))), 3).

Fig.5. A compliant history

h(send(a, b, content(key(kb), agent(a), nonce(na))), 1).
h(send(b, a, content(key(ka), nonce(na), nonce(nb))), 2).

Fig. 6. A non-compliant history (the third message is missing)

SCIFF verifies compliance by trying to generate a set EXP which fulfils the
four conditions defined in Section 2.1.

The SCIFF proof-procedure [14] is an extension of the IFF proof-procedure?
[15]. Operationally, if the agent interaction has been compliant to the protocol,
SCIFF reports success and the required set EXP of expectations; otherwise, it
reports failure. The proof-procedure has been proven sound and complete with
respect to the declarative semantics. A result of termination also holds, under
acyclicity assumptions.

The following examples can be verified by means of SCIFF. Figure 5 shows
an example of a history compliant to the SICs of Figure 3 and Figure 4.

Figure 6 instead shows an example of a history that is not compliant to such
SICs. The reason is that the protocol has not been completed. In fact, the two
events in the history propagate the second integrity constraints of Figure 3 and
impose an expectation

e(send(a, b, content(key(kb), nonce(nb), empty(0))), T3)

(with the CLP constraint T3>2), not fulfilled by any event in the history.

The history in Figure 7, instead, while containing a complete protocol run,
violates the integrity constraint of Figure 4 because agent a has used a nonce
(nc) that it cannot know, being not one of its own nonces (as defined in the
K Bg), nor one of those a received in any previous message (or better, we have
no evidence of it). In terms of integrity constraints, the history satisfies those in
Figure 3, but it violates the one in Figure 4.

Based on SCIFF, SOCS-SI is able to capture at run-time violation cases such
as these.

Figure 8 depicts Lowe’s attack, which is compliant both to the protocol and
to the SICs in Figure 4.

A number of experiments made on a number of protocols can be downloaded
from the SOCS Protocol Repository [6].

3 Extended because, unlike IFF, it copes with (i) universally quantified variables in
abducibles, (i7) dynamically incoming events, (4i7) consistency, fulfillment and vio-
lations, and (iv) CLP-like constraints.

114 M. Alberti et al.

h(send(a, b, content(key(kb), agent(a), nonce(nc))), 1).
h(send(b, a, content(key(ka), nonce(nc), nonce(nb))), 2).
h(send(a, b, content(key(kb), nonce(nb), empty(0))), 3).

Fig. 7. A non-compliant history (agent a has used a nonce that it cannot hold)

h(send(a, i, content(key(ki), agent(a), nonce(na))), 1).
h(send(i, b, content(key(kb), agent(a), nonce(na))), 2).
h(send(b, i, content(key(ka), nonce(na), nonce(nb))), 3).
h(send(i, a, content(key(ka), nonce(na), nonce(nb))), 4).
h(send(a, i, content(key(ki), nonce(nb), empty(0))), 5).
h(send(i, b, content(key(kb), nonce(nb), empty(0))), 6).

Fig. 8. Lowe’s attack, recognized as a compliant history

3.2 Static Verification of Protocol Properties

In order to verify protocol properties, we have developed an extension of the
SCIFF proof-procedure, called g-SCIFF. Besides verifying whether a history is
compliant to a protocol, g-SCIFF is able to generate a compliant history, given
a protocol. g-SCIFF has been proved sound [16], which means that the histories
that it generates (in case of success) are guaranteed to be compliant to the
interaction protocols while entailing the goal. Note that the histories generated
by g-SCIFF are in general not only a collection of ground events, like the HAP
sets given as an input to SCIFF. They can, in fact, contain variables, which
means that they represent classes of event histories.

In order to use g-SCIFF for verification, we express the property to be verified
as a conjunction of literals. If we want to verify if a formula f is a property of a
protocol P, we express the protocol in our language and —f as a g-SCIFF goal.
Then either:

— g-SCIFF returns success, generating a history HAP. Thanks to the sound-
ness of g-SCIFF, HAP entails —f while being compliant to P: f is not a
property of P, HAP being a counterexample; or

— g-SCIFF returns failure, suggesting that f is a property of P*.

In the following, we exemplify such a use of g-SCIFF by showing the automatic
generation of Lowe’s attack by g-SCIFF, obtained as a counterexample of a
property of the Needham-Schroeder protocol. The property that we want to
disprove is Pipyse defined as trustp(X, A) — X = A, i.e., if B trusts that he is
communicating with A, then he is indeed communicating with A.

Thanks to the properties of public keys (a message encrypted with a public key
can only be decrypted by the owner of the corresponding private key) and nonces
(a nonce cannot be guessed), the notion of trustg (X, A) can be characterized as
follows:

4 If we had a completeness result for g-SCIFF, this would indeed be a proof and not
only a suggestion.

Security Protocols Verification in Abductive Logic Programming 115

Definition 1 (trustp(X, A)). B trusts that the agent X he is communicating
with is A, once two messages have been exchanged at times Ty and Ty, Ty < Ts,
having the following sender, recipient, and content:

(Tl) B — X : {NBw"}pub key(A)
(Tg) X —B: {NBa"'}pub key(B)

where Np is a nonce generated by B.

In order to check whether Py,.,s+ is a property of the protocol, we ground Py st
and define its negation —Py.st as a goal, g, where we choose to assign to A, B,
and X the values a, b and 1:

g < isNonce(NA), NA # nb,
E(send(b, i, content(key(ka),nonce(N A), nonce(nbd))), 3),
E(send(i, b, content(key(kb), nonce(nb), empty(0))), 6).

This goal negates Pyryst, in that b has sent to an agent one of its nonces,
encrypted with a’s public key, and has received the nonce back unencrypted, so
being entitled to believe the other agent to be a; whereas the other agent is, in
fact, 1.

Besides defining g for three specific agents, we also assign definite time points
(3 and 6) in order to improve the efficiency of the proof by exploiting constraint
propagation.

Running the g-SCIFF on g results in a compliant history:

HAP, = { h(send(a,1,content(key(ki), agent(a), nonce(na))),1),
h(send(i, b, content(key(kb), agent(a), nonce(na))), 2),
h(send(b, i, content(key(ka), nonce(na), nonce(nb))), 3),
h(send(i, a, content(key(ka), nonce(na), nonce(nd))), 4),
h(send(a, i, content(key(ki), nonce(nd), empty(0))), 5),
h(send(i, b, content(key(kb), nonce(nb), empty(0))),6)},

that is, we generate Lowe’s attack on the protocol.

HAP, represents a counterexample which shows that the Needham-Schroeder
protocol does not have the property Py s, being a history that is compliant to
the protocol while violating the property.

4 Verifying the NetBill Protocol

In this section, we further demonstrate the specification and verification of
agent interaction protocols in the SOCS-SI framework, on the NetBill (see [17])
protocol.

NetBill is a security and transaction protocol optimized for the selling and
delivery of low-priced information goods, like software or journal articles. The
protocol rules transactions between two agents: merchant and customer. A Net-
Bill server is used to deal with financial issues such as those related to credit
card accounts of customer and merchant.

116 M. Alberti et al.

In the following, we focus on the type of the NetBill protocol designed for non
zero-priced goods, and do not consider the variants that deal with zero-priced
goods.

A typical protocol run is composed of three phases:

1. price negotiation. The customer requests a quote for a good identi-
fied by Prld (priceRequest(PrId)), and the merchant replies with
(priceQuote (PrId,Quote)).

2. good delivery. The customer requests the good (goodRequest (PrId,Quote))
and the merchant delivers it in an encrypted format
(deliver(crypt (PrId,Key),Quote)).

3. payment. The customer issues an FElectronic Payment Order
(EPO) to the merchant, for the amount agreed for the good
(payment (epo (C,crypt (PrId,K),Quote))); the merchant appends the
decryption key for the good to the EPO, signs the pair and forwards it
to the NetBill server (endorsedEP0(epo(C,crypt(PrId,K),Quote),M));
the NetBill server deals with the actual money transfer and returns the
result to the merchant (signedResult(C,PrID,Price,K)), who will, in her
turn, send a receipt for the good and the decryption key to the customer
(receipt(PrId,Price,K)).

The customer can withdraw from the transaction until she has issued the FPO
message; the merchant until she has issued the endorsed EPO message.

4.1 NetBill Protocol Specification in SOCS-SI.

The NetBill protocol is implemented in the SOCS-SI framework by means of
SICs of two types:

— backward integrity constraints (Fig. 9), i.e., integrity constraints that state
that if some set of event happens, then some other set of event is expected
to have happened before.

For instance, the first backward integrity constraints imposes that, if M
has sent a priceQuote message to C, stating that M’s quote for the good
identified by PrId is Quote, in the interaction identified by Id, then C is
expected to have sent to M a priceRequest message for the same good, in
the same interaction, at an earlier time.

— forward integrity constraints (Fig. 10), i.e., constraints that state that if some
conjunction of event has happened, then some other set of event is expected
to happen in the future.

For instance, the first forward integrity constraint in Fig. 10 imposes
that an endorsedEPO message from M to the netbill server be followed by
a signedResult message, with the corresponding parameters.

We only impose forward constraints from the endorsedEP0O message onwards,
because both parties (merchant and customer) can withdraw from the transac-
tion at the previous steps.

Security Protocols Verification in Abductive Logic Programming 117

H(tell(M,C,priceQuote(PrId,Quote),Id),T)
-—>
E(tell(C,M,priceRequest (PrId),Id),T2) /\ T2 < T.

H(tell(C,M,goodRequest (PrId,Quote) ,Id),T)
——=>
E(tell(M,C,priceQuote(PrId,Quote),Id),Tpri) /\ Tpri < T.

H(tell(M,C,goodDelivery (crypt (PrId,K),Quote),Id),T)
-—>
E(tell(C,M,goodRequest (PrId,Quote) ,Id) ,Treq) /\ Treq < T.

H(tell(C,M,payment (C,crypt(Prld,X),Quote),Id),T)

-—=>

E(tell(M,C,goodDelivery(crypt (PrId,K),Quote),Id),Tdel) /\ Tdel <
T.

H(tell(netbill,M,signedResult(C,PrId,Quote,K),Id),Tsign)

/\ M != netbill
——=>

E(tell(M,netbill, endorsedEPQO(epo(C,PrId,Quote),K,M),Id),T) /\ T
< Tsign.

H(tell(M,C,receipt (PrId,Quote,K),Id),Ts)

-_——>
E(tell(netbill,M,signedResult(C,PrId,Quote,K),Id),Tsign) /\
Tsign < Ts.

Fig. 9. NetBill protocol: backward integrity constraints

H(tell(M,netbill, endorsedEPQO(epo(C,PrId,Quote),K,M),Id),T)

—-_—=>

E(tell(netbill,M,signedResult(C,PrId,Quote,K),Id),Tsign) /\ T <
Tsign.

H(tell(netbill,M,signedResult(C,PrId,Quote,K),Id),Tsign)
-—>
E(tell(M,C,receipt (PrId,Quote,K),Id),Ts) /\ Tsign < Ts.

Fig. 10. NetBill protocol: forward integrity constraints

4.2 Verification of NetBill Properties

In this section, we show how a simple property of the NetBill protocol can be
expressed, and verified, in the SOCS-SI framework.

We want to verify the following property: the merchant receives the payment for
a good G if and only if the customer receives the good G, as long as the protocol
is respected.

118 M. Alberti et al.

Since the SCIFF deals with (communicative) events and not with the states
of the agents, we need to express the properties in terms of happened events. To
this purpose, we can assume that merchant has received the payment once the
NetBill server has issued the signedResult message, and that the the customer
has received the good if she has received the encrypted good (with a deliver
message) and the encryption key (with a receipt message).

Thus, the property that we want to verify can be espressed as

H(tell(netbill, M, signedResult(C, Prld, Quote, K), Id), Tsign)
< H(tell(M, C, goodDelivery(crypt(Prld, K), Quote), Id),T) (1)
AH(tell(M, C, receipt(Prld,Quote, K),Id),Ts)

whose negation is

(—=H(tell(netbill, M, signed Result(C, Prild, Quote, K), Id), T sign)
AH(tell(M, C, goodDelivery(crypt(Prld, K), Quote), Id),T)

AH(tell(M, C, receipt(Prld,Quote, K), Id),Ts))

\Y

(H(tell(netbill, M, signedResult(C, Prld,Quote, K), Id), T sign) (2)
N—H(tell(M, C, goodDelivery(crypt(Prld,K), Quote), Id),T)

\Y

(H(tell(netbill, M, signed Result(C, Prid,Quote, K), Id), T'sign)
A=H(tell(M, C, goodDelivery(crypt(Prld, K), Quote), Id),T))

In other words, a history that entails Eq. (2) is a counterexample of the property
that we want to prove. In order to search for such a history, we define a g-SCIFF
goal as follows:

g —EN(tell(netbill, M, signed Result(C, Prid, Quote, K), Id), Tsign),
E(tell(M, C, goodDelivery(crypt(Prld, K), Quote), Id),T),
E(tell(M, C,receipt(Prld,Quote, K),Id),Ts)).

g —E(tell(netbill, M, signedResult(C, Prld,Quote, K), Id), Tsign), 3)
EN(tell(M, C, goodDelivery(crypt(Prld, K), Quote), Id),T).

g —E(tell(netbill, M, signed Result(C, Prld,Quote, K), Id), Tsign),
EN(tell(M, C, goodDelivery(crypt(Prld, K), Quote), Id),T))

and run g-SCIFF.

The result of the call is a failure. This suggests that there is no history that
entails the negation of the property while respecting the protocol, i.e., the prop-
erty is likely to hold if the protocol is respected. However, yet no guarantee can
be given, because g-SCIFF has not been proven complete.

If we remove the second forward integrity constraints (which imposes that
a signedResult message be followed by a receipt message), then g-SCIFF
reports success, and the following history is generated:

Security Protocols Verification in Abductive Logic Programming 119

h(tell(_E,_F,priceRequest(_D),_C),_M),
h(tell(_F,_E,priceQuote(_D,_B),_C),_L),
h(tell(_E,_F,goodRequest(_D,_B),_C),_K),
h(tell(_F,_E,goodDelivery(crypt(_D,_A),_B),_C),_J),
h(tell(_E,_F,payment (_E,crypt(_D,_A),_B),_C),_I),
h(tell(_F,netbill,endorsedEP0O(epo(_E,_D,_B),_A,_F),_C),_H),
h(tell(netbill,_F,signedResult(_E,_D,_B,_A),_C),_G),

_I<_H, _H<_G,

I> M, _K>_L, _I>_J, _J>_K,

The receipt event is missing, which would violate the integrity constraint that
has been removed. In other words, without that integrity constraint, the protocol
no longer has the desired property.

In this way, a protocol designer can make sure that an integrity constraint is
not redundant with respect to a desired property of the protocol.

5 Related Work

The focus of our work is not on security protocols themselves, for which there ex-
ist many efficient specialised methods, but on a language for describing protocols,
for verifying the compliance of interactions, and for proving general properties
of the protocols. To the best of our knowledge, this is the first comprehensive
and fully operational approach addressing both types of verification, and using
the same protocol definition language in both cases. Security protocols and their
proof of flawedness are, in our viewpoint, instances of the general concepts of
agent protocols and their properties.

However, in this section we will discuss some related logic-based approaches
to automatic verification of security properties.

Russo et al. [18] discuss the application of abductive reasoning for analysing
safety properties of declarative specifications expressed in the Event Calculus.
In their abductive approach, the problem of proving that, for some invariant I, a
domain description D entails I (D k= I), is translated into an equivalent problem
of showing that it is not possible to consistently extend D with assertions that
particular events have actually occurred (i.e., with a set of abductive hypotheses
A), in such a way that the extended description entails —I. In other words,
there is no set A such that D U A = —I. They solve this latter problem by a
complete abductive decision procedure, thus exploiting abduction in a refutation
mode. Whenever the procedure finds such a set A, the assertions in A act as a
counterexample for the invariant. Our work is closely related: in fact, in both
cases, goals represent negation of properties, and the proof-procedure attempts
to generate counterexamples by means of abduction. However, we rely on a
different language (in particular, ours can also be used for checking compliance on
the fly without changing the specification of the protocol, which is a demanding
task) and we deal with time by means of CLP constraints, whereas Russo et al.
employ a temporal formalism based on Event Calculus.

In [19] the authors present a new approach, On-the-Fly Model Checker, to
model check security protocols, using two concepts quite related to our approach:

120 M. Alberti et al.

the concept of lazy data types for representing a (possibly) infinite transition sys-
tem, and the use of variables in the messages that an intruder can generate. In
particular, the use of unbound variables reduces the state space generated by ev-
ery possible message that an intruder can utter. Protocols are represented in the
form of transition rules, triggered by the arrival of a message: proving properties
consists of exploring the tree generated by the transition rules, and verifying
that the property holds for each reachable state. They prove results of sound-
ness and completeness, provided that the number of messages is bounded. Our
approach is very similar, from the operational viewpoint. The main difference is
that the purpose of our language is not limited to the analysis of security proto-
cols. Moreover, we have introduced variables in all the messages, and not only
in the messages uttered by the intruder; we can pose CLP constraints on these
variables, whereas OFMC can only generate equality/inequality constraints. On
the downside, OFMC provides state-of-the-art performance for security protocol
analysis; our approach instead suffers for its generality, and its performance is
definitely worse than the OFMC.

A relevant work in computer science on verification of security protocols was
done by Abadi and Blanchet [20,21]. They adopt a verification technique based
on logic programming in order to verify security properties of protocols, such as
secrecy and authenticity in a fully automatic way, without bounding the number
of sessions. In their approach, a protocol is represented in extensions of pi cal-
culus with cryptographic primitives. The protocol represented in this extended
calculus is then automatically translated into a set of Horn clauses [21]. To prove
secrecy, in [20,21] attacks are modelled by relations and secrecy can be inferred
by non-derivability: if attacker(M) is not derivable, then secrecy of M is guar-
anteed. More importantly, the derivability of attacker(M) can be used, instead,
to reconstruct an attack. This approach was later extended in [22] in order to
prove authenticity. By first order logic, having variables in the representation,
they overcome the limitation of bounding the number of sessions. We achieve
the same generality of [20,21], since in their approach Horn clause verification
technique is not specific to any formalism for representing the protocol, but a
proper translator from the protocol language to Horn clause has to be defined.
In our approach, we preferred to directly define a rewriting proof-procedure
(SCIFF) for the protocol representation language. Furthermore, by exploiting
abduction and CLP constraints, also in the implementation of g-SCIFF transi-
tions themselves, in our approach we are able to generate proper traces where
terms are constrained when needed along the derivation avoiding to impose fur-
ther parameters to names as done in [21]. CLP constraints can do this more
easily.

Armando et al. [23] compile a security program into a logic program with
choice lp-rules with answer set semantics. They search for attacks of length k,
for increasing values of k, and they are able to derive the flaws of various flawed
security protocols. They model explicitly the capabilities of the intruder, while
we take the opposite viewpoint: we explicitly state what the intruder cannot do

Security Protocols Verification in Abductive Logic Programming 121

(like decrypting a message without having the key, or guessing the key or the
nonces of an agent), without implicitly limiting the abilities of the intruder.

Our social specifications can be seen as intensional formulations of the possible
(i.e., compliant) traces of communication interactions. In this respect, our way
of modeling protocols is very similar to the one of Paulson’s inductive approach
[24]. In particular, our representation of the events is almost the same, but we
explicitly mention time in order to express temporal constraints. In the inductive
approach, the protocol steps are modeled as possible extensions of a trace with
new events and represented by (forward) rules, similar to our SICs. However, in
our system we have expectations, which allow us to cope with both compliance
on the fly and verification of properties without changing the protocol specifi-
cation. Moreover, SICs can be considered more expressive than inductive rules,
since they deal with constraints (and constraint satisfaction in the proof), and
disjunctions in the head. As far as verification, the inductive approach requires
more human interaction and expertise, since it exploits a general purpose theo-
rem prover, and has the disadvantage that it cannot generate counterexamples
directly (as most theorem prover-based approaches). Instead, we use a special-
ized proof-procedure based on abduction that can perform the proof without
any human intervention, and can generate counterexamples.

Millen and Shmatikov [25] define a sound and complete proof-procedure, later
improved by Corin and Etalle [26], based on constraint solving for eryptographic
protocol analysis. g-SCIFF is based on constraint solving as well, but with a
different flavour of constraint: while the approaches by Millen and Shmatikov
and by Corin and Etalle are based on abstract algebra, our constraint solver
comprises a CLP(FD) solver, and embeds constraint propagation techniques to
speed-up the solving process.

In [27], Song presents Athena, an approach to automatic security protocol
analysis. Athena is a very efficient technique for proving protocol properties:
unlike other techniques, Athena copes well with state space explosion and is ap-
plicable with an unbounded number of peers participating in a protocol, thanks
to the use of theorem proving and to a compact way to represent states. Athena
is correct and complete (but termination is not guaranteed). Like Athena, the
representation of states and protocols in g-SCIFF is non ground, and therefore
general and compact. Unlike Athena’s, the g-SCIFF’s implementation is not
optimised, and suffers from the presence of symmetrical states. On the other
hand, a clear advantage of the SOCS approach is that protocols are written
and analyzed in a formalism which is the same used for run-time verification of
compliance.

Ozkohen and Yolum [28] propose an approach for the prediction of excep-
tions in supply chains which builds upon the well-known commitment-based
approach for protocol specification (see, for instance, Yolum and Singh [29]);
their approach is related in many aspects to our on-the-fly verification. They
represent the expected agent behaviour by means of commitments between
agents; commitments have timeouts, i.e., they must be fulfilled by a deadline, and
can be composed by means of conjunction and disjunction. In this perspective,

122 M. Alberti et al.

commitments are similar to our expectations, which can have deadlines repre-
sented by CLP constraints, and which are composed in disjunctions of conjunc-
tions in the head of the social integrity constraints. However, our expectations
can regard any kind of events expected to happen, not only those that can be
represented as a commitment of a debtor towards a creditor; and we can also
represent negative expectations. Operationally, in [28] the reasoning about com-
mitments is centralized in a monitoring agents; in our framework, a similar task
in performed by the social infrastructure.

6 Conclusion and Future Work

In this paper, we have shown how the SOCS-SI abductive framework can be
applied to the specification and verification of security protocols, using, as a
running example, the Needham-Schroeder Public Key authentication protocol.

The declarative framework is expressive enough to specify both which se-
quences of messages represent a legal protocol run, and constraints about the
messages that a participant is able to synthesize.

Based on the SOCS-SI framework, we have implemented and experimented
with two kinds of automatic verification: on-the-fly verification of compliance (by
means of the sound and complete SCIFF proof-procedure), and static verification
of protocol properties (by means of the sound g-SCIFF proof-procedure). In this
way, our approach tackles both the case of agents misbehaving (which, in an open
society, cannot be excluded) and the case of a flawed protocol (which can make
the interaction exhibit an undesirable feature even if the participants follow the
protocol correctly).

We believe that the main contribution of this work consists of providing a
unique framework to both the two types of verification. The language used for
protocol definition is the same in both the cases, thus lowering the chances of
errors introduced in the protocol translation from one notation to a different
one. The protocol designer can benefit of our approach during the design phase,
by proving properties, and during the execution phase, where the interaction can
be proved to be compliant with the protocol, and thus to exhibit the protocol
properties.

Future work will be aimed to investigate a result of completeness for g-SCIFF,
and to extend the experimentation on proving protocol properties to a number
of security and e-commerce protocols, such as SPLICE/AS [30].

Acknowledgments

This work has been supported by the European Commission within the SOCS
project (IST-2001-32530), funded within the Global Computing Programme and
by the MIUR COFIN 2003 projects La Gestione e la megoziazione automatica
dei diritti sulle opere dell’ingegno digitali: aspetti giuridici e informatici and
Sviluppo e verifica di sistemi multiagente basati sulla logica.

Security Protocols Verification in Abductive Logic Programming 123

References

10.

11.

12.

13.

14.

. Davidsson, P.: Categories of artificial societies. In Omicini, A., Petta, P.,

Tolksdorf, R., eds.: Engineering Societies in the Agents World II. Volume 2203
of Lecture Notes in Artificial Intelligence, Springer-Verlag (2001) 1-9 2nd Inter-
national Workshop (ESAW’01), Prague, Czech Republic, July 7, 2001, Revised
Papers

. Guerin, F., Pitt, J.: Proving properties of open agent systems. In Castelfranchi, C.,

Lewis Johnson, W., eds.: Proceedings of the First International Joint Conference
on Autonomous Agents and Multiagent Systems (AAMAS-2002), Part II, Bologna,
Italy, ACM Press (2002) 557558

. Societies Of ComputeeS (SOCS): a computational logic model for the description,

analysis and verification of global and open societies of heterogeneous computees.
IST-2001-32530 (2001) Home Page: http://lia.deis.unibo.it/Research/SOCS/

. Alberti, M., Ciampolini, A., Gavanelli, M., Lamma, E., Mello, P., Torroni, P.: A

social ACL semantics by deontic constraints. In Maiik, V., Miiller, J., Péchoucek,
M., eds.: Multi-Agent Systems and Applications III. Proceedings of the 3rd In-
ternational Central and Eastern European Conference on Multi-Agent Systems,
CEEMAS 2003. Volume 2691 of Lecture Notes in Artificial Intelligence, Prague,
Czech Republic, Springer-Verlag (2003) 204-213

. Alberti, M., Gavanelli, M., Lamma, E., Mello, P., Torroni, P.: Specification and

verification of agent interactions using social integrity constraints. Electronic Notes
in Theoretical Computer Science 85 (2003)

. The socs protocol repository (2005) Available at http://lia.deis.unibo.it/

research/socs/partners/societies/protocols.html

. Needham, R., Schroeder, M.: Using encryption for authentication in large networks

of computers. Communications of the ACM 21 (1978) 993-999

. Lowe, G.: Breaking and fixing the Needham-Shroeder public-key protocol using

CSP and FDR. In Margaria, T., Steffen, B., eds.: Tools and Algorithms for the
Construction and Analysis of Systems: Second International Workshop, TACAS’96.
Volume 1055 of Lecture Notes in Artificial Intelligence, Springer-Verlag (1996)
147-166

. Denning, D.E., Sacco, G.M.: Timestamps in key distribution protocols. Commu-

nications of the ACM 24 (1981) 533-536

Alberti, M., Gavanelli, M., Lamma, E., Mello, P., Torroni, P.: An Abductive In-
terpretation for Open Societies. In Cappelli, A., Turini, F., eds.: AT*TA 2003:
Advances in Artificial Intelligence, Proceedings of the 8th Congress of the Ital-
ian Association for Artificial Intelligence, Pisa. Volume 2829 of Lecture Notes in
Artificial Intelligence, Springer-Verlag (2003) 287-299

Jaffar, J., Maher, M.: Constraint logic programming: a survey. Journal of Logic
Programming 19-20 (1994) 503-582

Kakas, A.C., Kowalski, R.A., Toni, F.: Abductive Logic Programming. Journal of
Logic and Computation 2 (1993) 719-770

Dolev, D., Yao, A.C.C.: On the security of public key protocols. IEEE Transactions
on Information Theory 29 (1983) 198-207

Alberti, M., Gavanelli, M., Lamma, E., Mello, P., Torroni, P.: The sciff abduc-
tive proof-procedure. In: Proceedings of the 9th National Congress on Artificial
Intelligence, AT*TA 2005. Volume 3673 of Lecture Notes in Artificial Intelligence,
Springer-Verlag (2005) 135-147

124

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

M. Alberti et al.

Fung, T.H., Kowalski, R.A.: The IFF proof procedure for abductive logic program-
ming. Journal of Logic Programming 33 (1997) 151-165

Alberti, M., Chesani, F., Gavanelli, M., Lamma, E., Mello, P., Torroni, P.: On the
automatic verification of interaction protocols using ¢-SCIFF. Technical Report
DEIS-LIA-04-004, University of Bologna (Italy) (2005) LIA Series no. 72.

Cox, B., Tygar, J., Sirbu, M.: Netbill security and transaction protocol. In: Pro-
ceedings of the First USENIX Workshop on Electronic Commerce, New York (1995)
Russo, A., Miller, R., Nuseibeh, B., Kramer, J.: An abductive approach for analys-
ing event-based requirements specifications. In Stuckey, P., ed.: Logic Program-
ming, 18th International Conference, ICLP 2002. Volume 2401 of Lecture Notes in
Computer Science, Berlin Heidelberg, Springer-Verlag (2002) 22-37

Basin, D.A., Médersheim, S., Vigano, L.: An on-the-fly model-checker for security
protocol analysis. In Snekkenes, E., Gollmann, D., eds.: ESORICS. Volume 2808
of Lecture Notes in Computer Science, Springer (2003) 253-270

Blanchet, B.: Automatic verification of cryptographic protocols: a logic program-
ming approach. In: PPDP ’03: Proceedings of the 5th ACM SIGPLAN interna-
tional conference on Principles and practice of declaritive programming, New York,
NY, USA, ACM Press (2003) 1-3

Abadi, M., Blanchet, B.: Analyzing security protocols with secrecy types and logic
programs. J. ACM 52 (2005) 102-146

Blanchet, B.: From secrecy to authenticity in security protocols. In: SAS ’02:
Proceedings of the 9th International Symposium on Static Analysis, London, UK,
Springer-Verlag (2002) 342-359

Armando, A., Compagna, L., Lierler, Y.: Automatic compilation of protocol inse-
curity problems into logic programming. In Alferes, J.J., Leite, J.A., eds.: Logics
in Artificial Intelligence, 9th European Conference, JELIA 2004, Lisbon, Portugal,
September 27-30, 2004, Proceedings. Volume 3229 of Lecture Notes in Artificial
Intelligence, Springer-Verlag (2004) 617-627

Paulson, L.C.: The inductive approach to verifying cryptographic protocols. Jour-
nal of Computer Security 6 (1998) 85-128

Millen, J.K., Shmatikov, V.: Constraint solving for bounded-process cryptographic
protocol analysis. In: CCS 2001, Proceedings of the 8h ACM Conference on
Computer and Communications Security, ACM press (2001) 166-175

Corin, R., Etalle, S.: An improved constraint-based system for the verification
of security protocols. In Hermenegildo, M.V., Puebla, G., eds.: Static Analysis,
9th International Symposium, SAS 2002, Madrid, Spain, September 17-20, 2002,
Proceedings. Volume 2477 of Lecture Notes in Computer Science, Berlin, Germany,
Springer (2002) 326-341

Song, D.X.: Athena: a new efficient automatic checker for security protocol analysis.
In: CSFW ’99: Proceedings of the 1999 IEEE Computer Security Foundations
Workshop, Washington, DC, USA, IEEE Computer Society (1999) 192

Ozkohen, A., Yolum, P.: Predicting exceptions in agent-based supply chains. In
this volume. (2006)

Yolum, P., Singh, M.: Flexible protocol specification and execution: applying
event calculus planning using commitments. In Castelfranchi, C., Lewis Johnson,
W., eds.: Proceedings of the First International Joint Conference on Autonomous
Agents and Multiagent Systems (AAMAS-2002), Part II, Bologna, Italy, ACM
Press (2002) 527-534

Yamaguchi, S., Okayama, K., Miyahara, H.: The design and implementation of an
authentication system for the wide area distributed environment. IEICE Transac-
tions on Information and Systems E74 (1991) 3902-3909

	Introduction
	Specifying the Needham-Schroeder Public Key Encryption Protocol
	The Social Model
	Representing the Needham-Schroeder Protocol in the $SOCS-SI$ Social Model

	Verification of Security Protocols
	On-the-Fly Verification of Compliance
	Static Verification of Protocol Properties

	Verifying the NetBill Protocol
	NetBill Protocol Specification in $SOCS-SI.$
	Verification of NetBill Properties

	Related Work
	Conclusion and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

