

Lecture Notes in Artificial Intelligence 3963
Edited by J. G. Carbonell and J. Siekmann

Subseries of Lecture Notes in Computer Science

Oğuz Dikenelli Marie-Pierre Gleizes
Alessandro Ricci (Eds.)

Engineering
Societies in the
Agents World VI

6th International Workshop, ESAW 2005
Kuşadasi, Turkey, October 26-28, 2005
Revised Selected and Invited Papers

13

Series Editors

Jaime G. Carbonell, Carnegie Mellon University, Pittsburgh, PA, USA
Jörg Siekmann, University of Saarland, Saarbrücken, Germany

Volume Editors

Oğuz Dikenelli
Ege University
Department of Computer Engineering
35100 Bornova, Izmir, Turkey
E-mail: oguz.dikenelli@ege.edu.tr

Marie-Pierre Gleizes
Université Paul Sabatier
IRIT
118 route de Narbonne, 31062 Toulouse Cedex 9, France
E-mail: gleizes@irit.fr

Alessandro Ricci
Università di Bologna
DEIS, Alma Mater Studiorum
Via Venezia 52, 47023 Cesena, Italy
E-mail: aricci@deis.unibo.it

Library of Congress Control Number: 2006926506

CR Subject Classification (1998): I.2.11, I.2, C.2.4, D.1.3, D.2.2, D.2.7, D.2.11, I.6

LNCS Sublibrary: SL 7 – Artificial Intelligence

ISSN 0302-9743
ISBN-10 3-540-34451-9 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-34451-3 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2006
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11759683 06/3142 5 4 3 2 1 0

Preface

ESAW 2005 took place at the Pine Bay Hotel in Kusadasi, Turkey at the end
of the October 2005. It was organized as a stand-alone event as were ESAW
2004 and ESAW 2003. Following the initial ESAW vision, which was set in 1999,
by the members of the working group on “Communication, Coordination and
Collaboration” of Agentlink, ESAW 2005 continued to focus on the engineering
of complex software systems in terms of multi-agent societies, especially the
social and environmental aspects of such societies. The number of participants
(40 researchers from 10 countries) and the highly interactive discussions held
during the workshop showed the augmented importance of the initial vision as
well as the effectiveness of ESAW as a well-established research forum.

It is obvious that today’s interconnected world increases the importance
of approaches concerning the engineering of complex and distributed software
systems. These kinds of large scale systems, made up of massive numbers of
autonomous components, force us to discover new and novel approaches to
model and engineer such systems as agent societies. It is very likely that such
innovations will exploit lessons from a variety of different scientific disciplines,
such as sociology, economics, organizational science and biology: ESAW 2005
included presentations from these domains in addition to its traditional re-
search topics.

The following themes were addressed during the three-day meeting:

– Agent Oriented System Development. The presentations of this session fo-
cused on the environment concept and the role of the environment was dis-
cussed from applied and historical perspectives throughout the session.

– Methodologies for Agent Societies. This session hosted presentations and dis-
cussions on the two critical concepts of agent societies, which are role models
and artifacts, in terms of the usage of these concepts within the methodolo-
gies of agent system development.

– Deliberative Agents and Social Aspects. The papers of this session concen-
trated on the employment of deliberative agents from an architectural
perspective, such as in detecting inconsistencies in reasoning, and from an
applied perspective, such as in realizing human-centric systems using delib-
erative agents.

– Agent Oriented Simulation. This session covered the presentations on the
methodological and architectural issues of specific simulation areas such as
crowd simulation and the evaluation of a population of sexual agents.

– Adaptive Systems. This session elaborated on the techniques and infrastruc-
tures that are designed to make an agent society adaptable against un-
predictable events in its environment and illustrated some case studies of
adaptive systems.

VI Preface

– Coordination, Negotiation, Protocols. This session collected the presentations
about the applications of traditional topics of research on agent societies,
such as coordination, negotiation and interaction protocols.

– Agents, Networks and Ambient Intelligence. This session focused on the us-
age of intelligent agents within two flourishing areas: mobile ad-hoc networks
(MANETs) and ambient intelligence.

Three invited presentations underlined the interdisciplinary nature of research
on agent societies by considering social insects, human economical and social
systems, and privacy issues of MASs. The first invited talk was given by Guy
Theraulaz, who is a professor at the Centre de Recherche sur la Cognition An-
imale group of the Université Paul Sabatier, Toulouse, France. In his talk, he
presented some of the basic coordination mechanisms used by social insects to
collectively make a decision or to build a nest architecture, paying particular
attention to information processing within a colony.

The second invited talk was presented by Peter McBurney, who is a fac-
ulty member of the Agent Applications, Research and Technology (Agent ART)
Group of the Department of Computer Science at the University of Liverpool,
Liverpool, UK. During the talk, he first defined the properties of the anticipa-
tory and reflective systems and then explored the use of recent MAS technolo-
gies for representing and designing anticipatory and reflective complex, adaptive
systems.

The third invited presentation by Federico Bergenti, now senior researcher at
CNIT (Consorzio Nazionale Interuniversitario per le Telecomunicazioni), Parma,
Italia, discussed the latest studies related to management of security, trust and
privacy in real-world multi-agent systems.

The original contributions, the slides of the presentations and more informa-
tion about the workshop are available online on the ESAW 2005 Web site1. These
post-proceedings continue the series published by Springer (ESAW 2000: LNAI
1972, ESAW 2001: LNAI 2203, ESAW 2002: LNAI 2577, ESAW 2003: LNAI
3071, ESAW 2004: LNAI 3451). This volume contains the revised, reworked and
extended versions of selected papers from ESAW 2005.

The ESAW 2005 organization would not have been possible without the fi-
nancial support of the following institutions:

– Agentlink III
– EBILTEM (Ege University of Science and Technology Applications and Re-

search Center)
– EMO (Chamber of Turkish Electrical Engineers)
– TUBITAK (Turkish Scientific and Technical Research Organization)
– Netsis, Turkey.

As well as the scientific support of DEIS, Università di Bologna, and IRIT,
Université Paul Sabatier, and of all the members of the Program Committee, our

1 http://esaw05.ege.edu.tr

Preface VII

thanks also go to Alfred Hofmann and all his Springer crew for their essential
role during the realization of these post-proceedings.

March 2006 Oguz Dikenelli
Marie-Pierre Gleizes

Alessandro Ricci

Organization

ESAW 2005 Workshop Organizers and Program Chairs

Oguz Dikenelli Department of Computer Engineering,
Ege University, Izmir, Turkey

Marie-Pierre Gleizes IRIT, Université Paul Sabatier, Toulouse,
France

Alessandro Ricci DEIS, Università di Bologna, Cesena, Italy

ESAW 2005 Steering Committee

Marie-Pierre Gleizes IRIT, Université Paul Sabatier, Toulouse,
France

Andrea Omicini DEIS, Università di Bologna, Cesena, Italy
Paolo Petta Austrian Research Institute for Artificial

Intelligence, Austria
Jeremy Pitt Imperial College London, UK
Robert Tolksdorf Free University of Berlin, Germany
Franco Zambonelli Università di Modena e Reggio Emilia, Italy

ESAW 2005 Local Organizing Committee

Oguz Dikenelli (Local Chair) Department of Computer Engineering,
Ege University, Izmir, Turkey

Riza Cenk Erdur Department of Computer Engineering,
Ege University, Izmir, Turkey

Özgür Gümüs Department of Computer Engineering,
Ege University, Izmir, Turkey

Ali Murat Tiryaki Department of Computer Engineering,
Ege University, Izmir, Turkey

Önder Gürcan Department of Computer Engineering,
Ege University, Izmir, Turkey

Inanç Seylan Department of Computer Engineering,
Ege University, Izmir, Turkey

ESAW 2005 Program Committee

Ronald Ashri University of Southampton, UK
Patrick Albert ILOG, France
Alexander Artikis Imperial College London, UK

X Organization

Federico Bergenti Università di Parma, Italy
Carole Bernon IRIT, Université Paul Sabatier, France
Monique Calisti Whitestein Technologies, Switzerland
Jacques Calmet University of Karlsruhe, Germany
Valrie Camps IRIT, Université Paul Sabatier, France
Cristiano Castelfranchi CNR Roma, Italy
Luca Cernuzzi Universidad Catòlica de Asunciòn, Paraguay
Vincent Chevrier LORIA, France
Paolo Ciancarini Università di Bologna, Italy
Helder Coelho University of Lisbon, Portugal
Scott Cost R. University of Maryland Baltimore County, USA
Paul Davidsson Blekinge Institute of Technology, Sweden
Riza Cenk Erdur Ege University, Izmir, Turkey
Rino Falcone CNR Roma, Italy
Stephan Flake ORGA Systems, Paderborn, Germany
Zahia Guessoum LIP6/CReSTIC, France
Anthony Karageorgos University of Thessaly, Greece
Barbara Keplicz Polish Academy of Science, Poland
Peter McBurney University of Liverpool, UK
Pablo Noriega IIIA CSIC, Spain
Michel Occello Université Mendés France, Grenoble, France
Eugenio Oliveira University of Porto, Portugal
Sascha Ossowski Universidad Rey Juan Carlos, Spain
Van Dike Parunak ALTARUM, USA
Michal Pechoucek Czech Technical University, Prague,

Czech Republic
Onn Shehory IBM, Haifa Research Labs, Israel
Kostas Stathis City University London, UK
Paola Turci Università di Parma, Italy
Luca Tummolini CNR Roma, Italy
Leon Van der Torre CWI Amsterdam, The Netherlands
Mirko Viroli DEIS, Università di Bologna, Cesena, Italy
Danny Weyns Katholieke Universiteit Leuven, Belgium
Pinar Yolum Bogazici University, Istanbul, Turkey

Table of Contents

Agent Oriented System Development

Developing Multi Agent Systems on Semantic Web Environment Using
SEAGENT Platform

Oguz Dikenelli, Riza Cenk Erdur, Geylani Kardas, Özgür Gümüs,
Inanç Seylan, Önder Gürcan, Ali Murat Tiryaki, Erdem Eser Ekinci . 1

Agent Information Server: A Middleware for Traveler Information
Mahdi Zargayouna, Flavien Balbo, Julien Saunier Trassy 14

A Role Model for Description of Agent Behavior and Coordination
Yunus Emre Selçuk, Nadia Erdoğan . 29

Multi-agent Systems Environment

SODA: A Roadmap to Artefacts
Ambra Molesini, Andrea Omicini, Enrico Denti, Alessandro Ricci 49

From Reactive Robotics to Situated Multiagent Systems: A Historical
Perspective on the Role of Environment in Multiagent Systems

Danny Weyns, Tom Holvoet . 63

Protocols, Verification

Consistency Verification of the Reasoning in a Deliberative Agent with
Respect to the Communication Protocols

Jaime Ramı́rez, Angélica de Antonio . 89

Security Protocols Verification in Abductive Logic Programming:
A Case Study

Marco Alberti, Federico Chesani, Marco Gavanelli, Evelina Lamma,
Paola Mello, Paolo Torroni . 106

Complex Adaptive Systems

Engineering Complex Adaptive Systems Using Situated Multi-agents:
Some Selected Works and Contributions

Salima Hassas . 125

XII Table of Contents

Techniques for Multi-agent System Reorganization
Gauthier Picard, Sehl Mellouli, Marie-Pierre Gleizes 142

Implementing a Multi-agent Organization that Changes Its Fault
Tolerance Policy at Run-Time

Sebnem Bora, Oguz Dikenelli . 153

Predicting Exceptions in Agent-Based Supply-Chains
Albert Özkohen, Pınar Yolum . 168

Agent Oriented Simulation

Preserving Variability in Sexual Multi-agent Systems with Diploidy
and Dominance

Robert Ian Bowers, Emre Sevinç . 184

Towards a Methodology for Situated Cellular Agent Based Crowd
Simulations

Stefania Bandini, Mizar Luca Federici, Sara Manzoni,
Giuseppe Vizzari . 203

Networks, Ambient Intelligence

QoS Management in MANETs Using Norm-Governed Agent Societies
Jeremy Pitt, Pallapa Venkataram, Abe Mamdani 221

Collaborative Agent Tuning: Performance Enhancement on Mobile
Devices

Conor Muldoon, Gregory M.P. O’Hare, Michael J. O’Grady 241

Deliberative Agents and Social Aspect

Cultural Agents: A Community of Minds
Michael D. Fischer . 259

Language Games for Meaning Negotiation Between Human and
Computer Agents

Arnaud Stuber, Salima Hassas, Alain Mille . 275

Using Socially Deliberating Agents in Organized Settings
Ioannis Partsakoulakis, George Vouros . 288

Author Index . 303

Developing Multi Agent Systems on Semantic

Web Environment Using SEAGENT Platform

Oguz Dikenelli1, Riza Cenk Erdur1, Geylani Kardas2, Özgür Gümüs1,
Inanç Seylan1, Önder Gürcan1, Ali Murat Tiryaki1, and Erdem Eser Ekinci1

1 Ege University, Department of Computer Engineering,
35100 Bornova, Izmir, Turkey

{oguz.dikenelli, cenk.erdur, ozgur.gumus, inanc.seylan, onder.gurcan,

ali.murat.tiryaki}@ege.edu.tr, erdemeserekinci@gmail.com
2 Ege University, International Computer Institute,

35100 Bornova, Izmir, Turkey
geylani.kardas@ege.edu.tr

Abstract. In this paper, we discuss the development of a multi agent
system working on the Semantic Web environment by using a new frame-
work called SEAGENT. SEAGENT is a new agent development frame-
work and platform, which includes built-in features for semantic web
based multi agent system development. These features provide semantic
supports such as a new specific content language for transferring semantic
knowledge, specifically designed agent’s internal architecture to handle
semantic knowledge, a new directory facilitator architecture based on
semantic service matching engine and ontology management service to
provide ontology translations within the platform’s ontologies. The im-
plemented case study shows the effectiveness of these features in terms
of semantically enriched multi agent system development.

1 Introduction

The standardization effort on Semantic Web [2] aims to transform the World
Wide Web into a knowledge representation system in which the information
provided by web pages is interpreted using ontologies. This creates an environ-
ment in which knowledge is defined in terms of these ontologies and information
systems are designed and implemented in a way that these ontologies are used,
transferred and regenerated. In these environments, agents place a critical role to
autonomously collect, interpret and use semantic knowledge as a part of future’s
information systems.

In this paper, we discuss how to develop MASs in such semantically enriched
environments with a new framework called SEAGENT. SEAGENT, which is
introduced in [8], is a new agent development framework and platform that
is specialized for semantic web based MAS development. The communication
and plan execution infrastructure of SEAGENT looks like other existing agent
development frameworks such as DECAF [10], JADE [1], and RETSINA [16].
However, to support and ease semantic web based MAS development, SEAGENT

O. Dikenelli, M.-P. Gleizes, and A. Ricci (Eds.): ESAW 2005, LNAI 3963, pp. 1–13, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

2 O. Dikenelli et al.

includes the following built-in features that the existing agent frameworks and
platforms do not have:

* SEAGENT provides a specific feature within the agent’s internal architec-
ture to handle the agent’s internal knowledge using OWL (Web Ontology
Language) [13].

* The directory service of SEAGENT stores agent capabilities using specially
designed OWL based ontologies and it provides a semantic matching engine
to find the agents with semantically related capabilities.

* Based on FIPA-RDF [9], a content language called Seagent Content Lan-
guage (SCL) has been defined to transfer semantic content within the agent
communication language messages.

* SEAGENT introduces a new service called Ontology Management Service
(OMS). The most important feature of this service is to define mappings be-
tween platform ontologies and external ontologies. Then it provides a trans-
lation service to the platform agents based on these defined mappings.

* SEAGENT supports discovery and dynamic invocation of semantic web ser-
vices by introducing a new platform service for semantic service discovery and
a reusable agent behavior for dynamic invocation of the discovered services.

The paper is organized as follows: Section 2 gives a brief overview of the related
work. Section 3 explains the overall architecture of the SEAGENT framework. In
section 4, a case study on MAS development using SEAGENT is discussed in de-
tail. This case study demonstrates the MAS implementation taking into account
of platform initialization, agent plan development using semantic knowledge and
semantic capability matching on platform’s Directory Facilitator (DF). Conclu-
sion is given in section 5.

2 Related Work

The idea of integrating the semantic web and agent research has already been
realized and some systems have been developed. ITtalks [5] system offers access
to information about activities such as talks and seminars related with informa-
tion technology. ITtalks uses DAML+OIL for knowledge representation and lets
agents to retrieve and manipulate information stored in the ITtalks knowledge
base. The smart meeting room system [4] is a distributed system that consists
of agents, services, devices and sensors that provide relevant services and infor-
mation to the meeting participants based on their contexts. This system uses
semantic web languages for representing context ontologies. Both the ITtalks
and the smart meeting room system use a multi-agent development framework
in their underlying infrastructure. For example, ITtalks uses Jackal [6] and smart
meeting room system uses Jade [1]. In these systems, semantic web functionality
is hard coded into the system together with the domain knowledge, because the
agent frameworks used in the implementation of these systems do not have a
built-in support for semantic web. For example, it is difficult for these systems’
developers to support basic semantic web functionalities such as discovering and

Developing MAS on Semantic Web Environment Using SEAGENT Platform 3

dynamically invoking of semantic web services inside an agent or performing
an ontology translation between different platform ontologies. Moreover, it re-
quires knowledge for ordinary developers to handle the semantic web and agent
technology details in addition to the application domain related knowledge.

There have been a few implementations to integrate web services and FIPA com-
pliant agent platforms. WSDL2JADE [22] can generate agent ontologies and agent
codes from a WSDL input file. WSIG (Web Services Integration Gateway) [19]
supports bi-directional integration of web services and Jade agents. WS2JADE
[21] allows deployment of web services as Jade agents’ services at run time. But
these tools only deal with agent and web service integration and do not provide
any mechanism to use semantic web knowledge during MAS development.

There is an attempt called as “JADE Semantic Agent” [20], to integrate FIPA
ACL semantics into a multi agent development framework. It is implemented
on top of the JADE framework and it has a built-in mechanism to interpret
the semantics of FIPA messages. This is a very noble attempt but it is highly
dependent on the FIPA-SL language which seems to be a problem when sending
OWL content between agents. We believe that it still remains a problem to define
ACL semantics in a way compatible with OWL.

We can conclude from this discussion that there must be environments, which
will simplify semantic web based multi agent system (MAS) development for or-
dinary developers and which will support the basic semantic web functionalities.

3 Platform Architecture

In this section, we explain SEAGENT’s layered software architecture briefly. Each
layer and packages of the layers have been specially designed to provide build-in
support for MAS development on Semantic Web environment. The overall archi-
tecture is shown in Fig. 1. Although the given architecture is the implemented
architecture of the SEAGENT platform, we believe that it is generic enough to
be considered as a conceptual architecture of MASs those are developed and de-
ployed for semantic web environment. In the following subsections, we discuss
each layer with an emphasis on the semantic support given by that layer.

3.1 Communication Infrastructure Layer

This bottom layer is responsible of abstracting platform’s communication
infrastructure implementation. SEAGENT implements FIPA’s Agent Commu-
nication and Agent Message Transport specifications [9] to handle agent mes-
saging. Although Communication Infrastructure Layer can transfer any con-
tent using FIPA ACL and transport infrastructure, SEAGENT platform only
supports Seagent Content Language (SCL) by default. SCL itself is a specific
OWL ontology to define the ACL content. It is based on the FIPA-RDF but
extends the FIPA-RDF by defining new concepts and relations. So, the language
itself is not OWL like Zou et. al’s work [18], but it is serialized into OWL.
This allows content to be easily parsed and takes advantage of directly inserting

4 O. Dikenelli et al.

Fig. 1. SEAGENT Platform Overall Architecture

concepts/individuals from OWL ontologies which form the knowledge bases of
services and agents.

In order to be used with FIPA-ACL, a content language must satisfy three
requirements [3]. The first two states that the language must be capable of
representing propositions and actions. This is done in SEAGENT by defining
those two concepts in the SCL ontology. The third requirement is that it must
be capable of representing objects, including identifying referential expressions to
describe objects. To achieve this, we have defined a query and match ontology in
OWL which is called “Seagent Match Ontology”. The concepts of this ontology
are used to define required content and are directly inserted into SCL based
content to represent objects.

3.2 Platform Core Functionality Layer

Agency Package. The second layer includes packages, which provide the core
functionality of the platform. The first package, called as Agency, handles the
internal functionality of an agent. Agency package supports the creation of gen-
eral purpose and goal directed agents. In this sense, Agency package provides
a built-in “agent operating system” that matches the goal(s) to defined plan(s),
which are defined using HTN planning formalism [14]. It then schedules, executes
and monitors the plan(s). From semantic web based development perspective,
an agent’s internal architecture must support semantic web ontology standards
for messaging and internal knowledge handling to simplify semantic based devel-
opment. For this purpose, Agency package provides a build-in support to parse
and interpret SCL content language to handle semantic web based messaging. On
the other hand, Agency provides two interfaces for semantic knowledge handling,
one for local ontology management and the other one for querying. Although the
current version includes the JENA [11] based implementation of these interfaces,

Developing MAS on Semantic Web Environment Using SEAGENT Platform 5

other semantic knowledge management environments and query engines can be
integrated to the platform by implementing these interfaces.

Platform Services. The second package of the Core Functionality Layer in-
cludes service sub-packages, one for each service of the platform. SEAGENT
provides all standard MAS services such as DF Service and Agent Management
Service (AMS) following the previous platform implementations and FIPA stan-
dards. But these standard services are implemented in a different way by using
the capabilities of a semantic web infrastructure.

In SEAGENT implementation, DF uses an OWL ontology to hold agent ca-
pabilities and includes a semantic matching engine to be able to return agent(s)
with semantically similar capabilities to the requested ones. Matchmaking pro-
cess in case is realized within the built-in capability matching engine of the DF
which is called Seagent Matching Engine. This engine matches advertised agent
services with the received service request. It stores agent service definitions in
a database. Actually this database is an ontology model of the agent services
in which agent service ontology individuals are included. Therefore each agent
service that is registered to the DF is also represented in this ontology with an
individual as it is discussed above. The matching engine uses those individuals
and compares them with given service requests semantically. Seagent Match-
ing Engine uses a basic reasoner called Ontolog to determine semantic relation
between agent services. We have adapted the service matching algorithm origi-
nally proposed in [15] for semantic web services into the matchmaking process of
agent services. The Ontolog works on ontology hierarchy tree of service concepts
and finds distance between any given two classes (i.e. service types of requested
and advertised agent services). Based on the results returned from the Ontolog,
Seagent Matching Engine defines and uses a degree of match function named
DoM(C1, C2) which determines semantic match degree between concepts, C1
and C2:

DoM(C1, C2) = EXACT if C1 is a direct subclass of C2 or C1= C2,
DoM(C1, C2) = PLUG-IN if C1 is a distant subclass of C2,
DoM(C1, C2) = SUBSUMES if C2 is a direct or distant subclass of C1,
DoM(C1, C2) = FAIL otherwise.

Matching engine of the agent platform takes the above defined relations into
account and determines the suitability of the advertised agent services with the
requested one. The internal architecture and theoretical base of the engine is
introduced in [12].

Similarly, AMS stores descriptions of agents in OWL using FIPA Agent Man-
agement Ontology [9] and can be queried semantically to learn descriptions of
any agent that is currently resident on the platform.

Besides implementing standard services in a semantic way, SEAGENT plat-
form provides two new services to simplify semantic web based MAS devel-
opment. The first one is called as Semantic Service Matcher (SSM). SSM is
responsible for connecting the platform to the semantic web services hosted
in the outside of the platform. SSM uses “service profile” construct of the Web

6 O. Dikenelli et al.

Ontology Language for Semantic Web Services (OWL-S) [17] standard for service
advertisement and this knowledge is also used by the internal semantic match-
ing engine for discovery of the service(s) upon a request. SSM and DF services
are implemented by extending a generic semantic matching engine architecture,
which are introduced in [7] and [12] in detail.

The second unique service is the Ontology Management Service (OMS). It be-
haves as a central repository for the domain ontologies used within the platform
and provides basic ontology management functionality such as ontology deploy-
ment, ontology updating and querying etc. The most critical support of the OMS
is its translation support between the ontologies. OMS handles the translation
request(s) using the pre-defined mapping knowledge which is introduced through
a specific user interface. Through the usage of the ontology translation support,
any agent of the platform may communicate with MAS and/or services outside
the platform even if they use different ontologies.

3.3 Reusable Behaviour Layer

Third layer of the overall architecture includes pre-prepared generic agent plans.
We have divided these generic plans into two packages. Generic Behavior package
collects domain independent reusable behaviors that may be used by any MAS
such as well known auction protocols (English, Dutch etc.). On the other hand,
Generic Semantic Behaviors package includes only the semantic web related be-
haviors. In the current version, the most important generic semantic behavior is
the one that executes dynamic discovery and invocation of the external services.
This behaviour is defined as a pre-prepared HTN structure and during its execu-
tion, it uses SSM service to discover the desired service and then using OWL-S
“service grounding” construct, it dynamically invokes the found atomic web ser-
vice(s). Detail of this behaviour is explained in [7]. Hence, developers may include
dynamic external service discovery and invocation capability to their plan(s) by
simply inserting this reusable behavior as an ordinary complex task into their
HTN based plan definition(s).

4 Developing a MAS with Using SEAGENT Through a
Case Study

In this section, development of a simple MAS using SEAGENT framework is
discussed to demonstrate semantic knowledge handling capability of the frame-
work. We first describe scenario of the implemented case study. Then initializa-
tion of the MAS on semantic web enviroment, plan and behaviour structure of
the working agents and internal workflow of the system’s semantic DF service
are explained respectively.

4.1 Scenario

The agent environment in case is about Tourism domain in which traveler agents
try to reserve hotel rooms on behalf of their users while some other agents are

Developing MAS on Semantic Web Environment Using SEAGENT Platform 7

offering hotel services for those ones. In our prototype MAS, we have a traveler
agent and four hotel agents. Initially each one is unaware of the others. Those
four hotel agents are registered to the DF of the MAS with their service ad-
vertisements. Those agents use an agent description ontology called “fipa-agent-
management.owl” to advertise themselves (including their services and related
information) in DF. “df-agent-description”and“service-description”concepts de-
fined in this ontology are given in Fig. 2. This ontology involves the concepts
given in FIPA Agent Management Specification [9], thus making the platform
compatible with FIPA Specifications.

Fig. 2. DF Agent Description and Agent Service Description concepts

On the other hand, we use two properties of service description (type and
properties) to define agent services semantically. Values of these properties may
come from various domain ontologies. Therefore they involve URI of related
ontology concepts. For example in our case, hotel agents use “HotelInfoService”
concept which is defined in the OWL ontology called “TourismServices.owl” to
set type property of service description instance and to advertise themselves in
DF. This means that hotel agents provide a service called “HotelInfoService” to
other agents.

According to our scenario, hotel agents in here provide activities to their
customers. Hence, service descriptions include a service property called“activity”
within the set of service description properties. The range of the activity property
is an individual of the concept that comes from another domain ontology called
“Hotel.owl”. TourismServices ontology and a fragment of Hotel Ontology are
given in Fig. 3 and Fig. 4 respectively. Service types and activities available in
each hotel agent’s service description are given in Table 1.

RoomAvailabilityService

Service

HotelServiceAirService

HotelInfoService HotelBookingService

Fig. 3. TourismServices ontology

8 O. Dikenelli et al.

Activity

Adventure Sightseeing Sports

SeaSports WinterSports SaloonSports

Swimming Windsurfing

Hotel

Mountain CityInside Seaside

hasActivity

Fig. 4. A Fragment of Hotel Ontology

Table 1. Four hotel agent services registered into the directory facilitator

Agent’s name Service type Activity type

hotel1@seagent.com TourismServices.owl#HotelInfoService Hotel.owl#Windsurf

hotel2@seagent.com TourismServices.owl#HotelInfoService Hotel.owl#WinterSports

hotel3@seagent.com TourismServices.owl#HotelInfoService Hotel.owl#Swimming

hotel4@seagent.com TourismServices.owl#HotelInfoService Hotel.owl#SeaSports

In the scenario, our traveler agent looks for suitable hotels in which “Sea-
Sports” activity is available. Hence, it first communicates with DF of the MAS,
receives DF descriptions of the suitable agents and then calls “HotelInfoService”
service of those agents to get further information about the hotel.

4.2 Initiating the Platform

To instantiate the platform, the standard platform services are started first.
These are AMS, ACC (Agent Communication Channel) and DF in order. Agents
and services which aren’t registered to an AMS are not considered to be a part
of a platform, therefore registration to AMS is the initial behavior of all entities
(agents and services). The AMS maintains an OWL instance of the FIPA Agent
Management Ontology. When agents register themselves, their agent descriptions
are kept in this instance. The interaction between AMS and the agents are as
stated by FIPA specification [9]. If there is no problem with the content delivered
to AMS, it sends an agree message and if the agent is successfully registered, an
inform message is sent back by the AMS.

After the initialization of AMS, ACC is started. All communication is done
through ACC, thus it is needed when agents send their “register to AMS” mes-
sage. Finally, DF is created. It is not mandatory that agents register themselves
with DF on their creation as in AMS. This is why all entities take AMS and
ACC address in the construction but not the DF address. After the DF starts
its operation, it broadcasts that it is working. Then platform’s AMS and ACC
advertises their service descriptions to the DF. The types of these services are
reserved – fipa-acc and fipa-ams – so no other agent can advertise themselves
with those parameters.

Developing MAS on Semantic Web Environment Using SEAGENT Platform 9

When the instance of the standard Seagent platform is ready, it is then pop-
ulated with five agents mentioned above. These agents are supplied with their
AMS agent descriptions when they are created. They then use these agent de-
scriptions to register to AMS, which is already stated as a mandatory operation.
The agents are also planned to register their services with the DF. As in AMS,
the knowledge base of DF is an OWL ontology. This ontology has instances of
DF agent descriptions. An instance of DF agent description for one of the hotel
agents in N3 format is given in Fig. 5.

@pre f ix t s : <http : // aegeants . ege . edu . t r /ont/Tour i smServ ice s . owl#> .
@pre f ix xsd : <http : //www.w3 . org /2001/XMLSchema#> .
@pre f ix ho t e l : <http : // aegeants . ege . edu . t r /ont/Hote l . owl#> .
@pre f ix am: <http : // aegeants . ege . edu . t r /ont/ f ipa−agent−management . owl#>.
@pre f ix r d f s : <http : //www.w3 . org /2000/01/ rdf−schema#> .
@pre f ix rd f : <http : //www.w3 . org /1999/02/22− rdf−syntax−ns#> .
@pre f ix : <#> .
@pre f ix owl : <http : //www.w3 . org /2002/07/ owl#> .

[] a am: DFAgentDescription ;
am: language ”http : // aegeants . ege . edu . t r /ont/ s c l . owl ” ;
am: name [a am: Age n t I d e n t i f i e r ;

am: name ”hote l4@seagent . com”] ;
am: onto logy : b1 ;
am: s e r v i c e

[a rd f : Bag ;
rd f : 1 [a am: Se rv i c eDe sc r i p t i on ;

ho t e l : a c t i v i t y ho t e l : SeaSports ;
am: name ”sea spo r t s s e r v i c e ” ;
am: onto logy : b1 ;
am: ownership ”Foo Co . ” ;
am: type t s : Hot e l In f o]] .

: b1 a rd f : Bag ;
rd f : 1 ”http : // aegeants . ege . edu . t r /ont/Tour i smServ ice s . owl ” ;
rd f : 2 ”http : // aegeants . ege . edu . t r /ont/Hote l . owl ” .

Fig. 5. DF Agent Description of a Hotel Agent in N3 format

4.3 Internal Plan of the Traveler Agent

In the Seagent Platform, there is a generic plan in which agents query on DF
and evaluate the match results to select agent(s) with appropriate service(s).
This plan simply contains one behaviour called “Find Agent from DF” and this
behaviour is composed of two actions: “Create Query and Send It to DF” and
“Select Agent”. The HTN structure of this plan is given in Fig. 6.

In the first action, the agent retrieves search criteria provision which is cre-
ated according to the previously mentioned Seagent Match Ontology. The search
criteria in here can define anything that can be retrieved from DF such as a ser-
vice description or an agent DF description. To model the criteria, a concept
which is called SeagentMatchRequest as a part of the Seagent Match Ontology
is used [12]. A SeagentMatchRequest has properties such as “hasPremise”, “has-
Query” and “hasSemanticMatch” to define RDF (Resource Description Frame-
work) triples which will be used in semantic match on DF. In “hasPremise” and

10 O. Dikenelli et al.

Fig. 6. HTN strcuture of the generic “Find Agent” plan

“hasQuery” lists, the requester defines RDF sentences of the RDQL (RDF Data
Query Language) [11] query which will be executed before semantic match to
filter result set according to non-semantic parameters. On the other hand, the
requester specifies each semantic parameter and its ontological value in “hasSe-
manticMatch” list to be used during semantic match on filtered query results.
Result type and desired semantic match degree of the match process is given in
“mustBindVariable”and“matchDegree”properties of the SeagentMatchRequest.

In our scenario, the traveler agent prepares the proper SeagentMatchRe-
quest instance in which a DF Agent Description is requested with Tourism-
Services.owl#HotelInfoService service and Hotel.owl#SeaSports activity. In this
request, match degree is emphasized as SUBSUMES and semantic matching is
requested on these two fields. That means the traveler agent accepts all agent ser-
vices which are semantically related with TourismServices.owl#HotelInfoService
service. Likewise the traveler agent also requests hotel activities which are se-
mantically related with Hotel.owl#SeaSports activity.

In order to be sent to DF, the instance of SeagentMatchRequest is serialized
in the outgoing ACL message based on Seagent Match Ontology. The content
of the message is shown in Fig. 7. Due to space limitations, the namespaces in
Fig. 5 are not given here again. As it is seen, the content language (SCL) itself
is an OWL ontology. Therefore the SeagentMatchRequest instance corresponds
to an individual in this ontology. It is the argument of the search action that is
requested from DF.

In the second action, the traveler agent receives DF Agent Descriptions those
are matched with the above request in a SeagentMatchResultSet instance. Each
element in this result set is a SeagentMatchResult and they are ordered accord-
ing to their match degrees. It should be noted that the DF of the MAS uses OWL
representations of those results to put them into the ongoing ACL message. So
the traveler agent parses the content and de-serializes each result object to pro-
ceed on its task. During this de-serialization it uses“seagent-match-ontology.owl”
to understand ontological content of the result objects. Since match results are
also semantically defined in the “seagent-match-ontology”as match requests, the
traveler agent retrieves query results to properly use in its plan execution. After
all, the traveler agent successfully retrieves appropriate services and it commu-
nicates with hotel agents starting from the first element of the result set.

Developing MAS on Semantic Web Environment Using SEAGENT Platform 11

@pre f ix match : <http : // aegeants . ege . edu . t r /ont/
seagent−match−onto logy . owl#> .

@pre f ix s c l : <http : // aegeants . ege . edu . t r /ont/ s c l . owl#> .

[] a s c l : Action ;
s c l : ac t ”search ” ;
s c l : ac tor

[a am: Ag en t I d en t i f i e r ;
am: name ”df@seagent . com”] ;

s c l : argument :m1 .
:m1 a match : SeagentMatchRequest ;

match : hasPremise
[match : ob j e c t ” f ipa−agent−management . owl#Se rv i c eDe sc r i p t i on ” ;
match : p r ed i c a t e ”http : //www.w3 . org/02/22− rdf−syntax−ns#type ”;
match : sub j e c t ”? s ”] ;

match : hasPremise
[match : ob j e c t ” f ipa−agent−management . owl#DFAgentDescription ” ;
match : p r ed i c a t e ”http : //www.w3 . org/02/22− rdf−syntax−ns#type ”;
match : sub j e c t ”?x”] ;

match : hasPremise
[match : ob j e c t ”http : / / . . . / ont/Hote l . owl#Act i v i t y ” ;

match : p r ed i c a t e ”http : //www.w3 . org /02/22− rdf−syntax−ns#type ”;
match : sub j e c t ”? a ”] ;

match : hasQuery
[match : ob j e c t ”? a ” ;

match : p r ed i c a t e ”http : / / . . . / ont/Hote l . owl#ac t i v i t y ” ;
match : sub j e c t ”? s ”] ;

match : hasQuery
[match : ob j e c t ”? s ” ;

match : p r ed i c a t e ”http : / / . . / f ipa−agent−management . owl#s e r v i c e
”;

match : sub j e c t ”? x”] ;
match : hasSemanticMatch

[match : ob j e c t ”http : / / . . . / ont/Tour i smServ ices . owl#Hote l In f o ” ;
match : p r ed i c a t e ”http : / / . . . / f ipa−agent−management . owl#type ” ;
match : sub j e c t ”? s ”] ;

match : hasSemanticMatch
[match : ob j e c t ”http : / / . . . / ont/Hote l . owl#SeaSports ” ;

match : p r ed i c a t e ”http : //www.w3 . org /02/22− rdf−syntax−ns#type ”;
match : sub j e c t ”? a ”] ;

match : matchDegree ”SUBSUMES” ;
match : mustBindVariable ”?x ” .

Fig. 7. N3 formatted Seagent Match Request transferred in the ACL Message content

4.4 Semantic Capability Matching on DF

When DF of the MAS receives request of the traveler agent; it determines proper
hotel agents - that means semantically “right”agents - and returns their descrip-
tions back to the traveler agent. As first, the engine performs an RDQL query
on the advertised hotel agent services and filters them according to the non-
semantic parameters. Then, it uses its reasoner (Ontolog) to determine semantic
relationship between the given request and recently filtered service advertise-
ments. As given in the request of the traveler, semantic query is performed on
service type and activity property of the descriptions. For both semantic param-
eters, match degree is desired as “SUBSUMES” in the request. Semantic match
on service type is straightforward and all the advertised services are acceptable.
However, the traveler agent have asked for the hotel info services those have at
least a subsumes relationship between the given request activity type (SeaSports

12 O. Dikenelli et al.

in case). So, the engine matches the service descriptions hotel1, hotel3 and hotel4
with the given request and sorts the match results starting from the most exact
one(s) in the following order: hotel4, hotel1, hotel3 with EXACT, SUBSUMES
and SUBSUMES match degrees respectively. Each match result is returned in a
SeagentMatchResult object.

5 Conclusion

The main contribution of this study is to present how to develop a MAS running
on the Semantic Web environment. The case study, that is discussed in here, has
been implemented successfully by using the semantic features of the SEAGENT
platform. SEAGENT both presents a new development framework and a plat-
form that developers can use to create semantically enriched MASs. That means
ACL content transfer, agent service discovery and agent planning would all be
performed via processing the semantic knowledge of the environment.

Acknowledgments

This work is supported in part by the Scientific and Technical Research Council
of Turkey (TÜBITAK), Project Number: 102E022. This support is gratefully
acknowledged.

References

1. Bellifemine, F., Poggi, A., and Rimassa, G.: Developing Multi-agent Systems with
a FIPA-compliant Agent Framework, Software Practice and Experience, 31 (2001)
103–128

2. Berners-Lee, T., Hendler, J. and Lassila, O.: The Semantic Web, Scientific
American, 284(5) (2001) 34–43

3. Botelho, L., Willmott, S., Zhang, T., and Dale, J.: A review of Content Languages
Suitable for Agent-Agent Communication, EPFL I&C Technical Report #200233.

4. Chen, H., et al.: Intelligent Agents Meet Semantic Web in a Smart Meeting Room,
in the proc. of Autonomous Agents and Multi Agent Systems 2004 (AAMAS’04),
NY, USA

5. Cost, R. S., et al.: Ittalks: A Case Study in the Semantic Web and DAML+OIL,
IEEE Intelligent Systems, January-February (2002) 40–46

6. Cost, R. S., et al.: Jackal: A Java-Based Tool for Agent Development, in the proc.
workshop tools for Developing Agents (AAAI98), AAAI Pres, Calif. (1998) 73–82

7. Dikeneli, O., Gümüs, O., Tiryaki, A. M. and Kardas, G.: Engineering a Multi
Agent Platform with Dynamic Semantic Service Discovery and Invocation Capa-
bility, Multiagent System Technologies - MATES 2005, Lecture Notes in Computer
Science (Subseries: Lecture Notes in Artificial Intelligence), Springer-Verlag, Vol.
3550 (2005) 141–152

8. Dikeneli, O., Erdur, R. C., Gumus, O., Ekinci, E. E., Gurcan, O., Kardas, G.,
Seylan, I. and Tiryaki, A. M.: SEAGENT: A Platform for Developing Semantic
Web Based Multi Agent Systems, AAMAS’05, ACM AAMAS (2005) 1271–1272

Developing MAS on Semantic Web Environment Using SEAGENT Platform 13

9. FIPA (Foundation for Intelligent Physical Agents): FIPA Specifications, available
at: http://www.fipa.org

10. Graham, J. R., Decker, K. S. and Mersic, M.: DECAF - A Flexible Multi Agent
Systems Infrastructure, Journal of Autonomous Agents and Multi-Agent Systems,
7 (2003) 7–27

11. JENA - A Semantic Web Framework for Java, available at:
http://jena.sourceforge.net

12. Kardas, G., Gümüs, Ö. and Dikeneli, O.: Applying Semantic Capability Matching
into Directory Service Structures of Multi Agent Systems”, Computer and Informa-
tion Sciences - ISCIS 2005, Lecture Notes in Computer Science, Springer-Verlag,
Vol. 3733 (2005) 452–461

13. McGuiness, D. L., and van Harmelen, F.: OWL Web Ontology Language Overview,
(2004), available at: http://www.w3.org/TR/owl-features/

14. Paolucci, M., et al.: A Planning Component for RETSINA Agents, Intelligent
Agents VI, LNAI 1757, N. R. Jennings and Y. Lesperance, eds., Springer-Verlag,
2000

15. Sycara, K., Paolucci, M., Ankolekar, A., and Srinavasan, N.: Automated discovery,
interaction and composition of Semantic Web Services, Journal of Web Semantics,
Elsevier 1 (2003) 27–46

16. Sycara, K., Paolucci, M., Van Velsen, M. and Giampapa, J.: The RETSINA MAS
Infrastructure, Journal of Autonomous Agents and Multi-Agent Systems, 7 (2003)
29–48

17. The OWL Services Coalition: OWL-S: Semantic Markup for Web Services, availabe
at: http://www.daml.org/services/owl-s/1.1/

18. Zou, Y., Finin, T., Ding, L., Chen, H., and Pan, P.: Using Semantic Web Technology
in Multi-Agent Systems: A Case Study in the TAGA Trading Agent Environment,
ICEC 2003, Oct 2003, Pittsburgh PA.

19. Greenwood, D., and Calisti, M.: Engineering Web Service - Agent Integration,
IEEE Systems, Cybernetics and Man Conference, 10–13 October, 2004, The Hague,
The Netherlands.

20. Louis, V. and Martinez, T.: An Operational Model for the FIPA-ACL Semantics,
Proceedings of the AAMAS’05 Workshop on Agent-Communication (AC’2005),
Utrecht, The Netherlands. (2005)

21. Nguyen, T. X. and Kowalczyk, R.: WS2JADE: Integrating Web Service with Jade
Agents, Proceedings of the AAMAS’05 Workshop on Service-Oriented Computing
and Agent-Based Engineering (SOCABE’2005), Utrecht, The Netherlands (2005)

22. Varga, L. Zs., Hajnal, A.: Engineering Web Service Invocations from Agent Sys-
tems, Proceedings of the 3rd International Central and Eastern European Confer-
ence on Multi-Agent Systems, CEEMAS 2003, June 16–18, Prague, Czech Republic
(2003) 626–635

Agent Information Server: A Middleware

for Traveler Information

Mahdi Zargayouna1,2, Flavien Balbo1,2, and Julien Saunier Trassy2

1 Inrets - Gretia, National Institute of Transportation Research and their Security,
2, avenue du Général Malleret-Joinville,

F-94114 Arcueil Cedex
2 Lamsade, Paris Dauphine University,

Place du Maréchal de Lattre de Tassigny,
75775 Paris Cedex 16, France

{zargayou, balbo, saunier}@lamsade.dauphine.fr

Abstract. This paper proposes an Agent Traveler Information Server
(ATIS) for a daily trip in an urban area. It is based on the multi-agent
paradigm and is using the Environment as Active Support of Interaction
(EASI) model. It instantiates the mutual awareness concept. The pur-
pose is to allow services, information sources and human travelers to be
represented by a unified agent structure and to allow them to interact
homogeneously although they are conceptually different. Given that the
whole information process must be envisaged in a real time configura-
tion, the increase of the interactions has to be taken into account and the
classical interaction modes become rapidly inefficient. The EASI model
enables agents to build their interaction interests egocentrically and del-
egates the interaction management to the multi-agent environment.

1 Introduction

Traveler Information Systems (TIS) are applications of great interest for the
multi-agent paradigm. The multiplication of independent transportation ser-
vices and of the information resources in the network are suitable to the design
of distributed systems. These applications and the human users connected to the
system try to achieve independent goals; they correspond to the agent concep-
tion in Multi-Agent Systems (MAS). In a TIS, the main purpose of an agent is
to get the information concerning its context at the right time. The information
flow management is then crucial, especially when the number of agents is very
high (services, information resources and users) and very changing (users’ agents
are present temporarily, just as long as the traveler is not yet at his destination).
The management of interactions between these heterogeneous agents is there-
fore the main task to be fulfilled by the system. The problem is to know which
agent can match the other’s functional needs. In MAS, the use of specialized
agents (called middle-agents) that help others to locate service providers is a
solution that is frequently used. The advantage of this approach is to locate an
agent by its capabilities, thus allowing a matching with the needs of the agents.

O. Dikenelli, M.-P. Gleizes, and A. Ricci (Eds.): ESAW 2005, LNAI 3963, pp. 14–28, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Agent Information Server: A Middleware for Traveler Information 15

During the interaction step, mobile agents can also be used to reduce the com-
munication cost by limiting the number of remote interactions and the amount
of data exchanged over the network. Our proposition combines the advantages
of the middle agents and the mobile agents’ approaches. It solves the problems
dealing with a dynamic informational context and more generally each real time
information management. Such problems include the fact that the information
management process must take into account the reactivity of agents not to in-
formation sources only but to the information content too, and moreover the
reactivity of agents may be based on a combination of information provided by
different sources.

Our middleware belongs to the field of Distributed Agent Environment [18],
and interaction within the platform is based on the EASI - Environment as
Active Support of Interaction - model, which enables each agent to perceive
information that is available in the environment [2]. The remainder of the pa-
per is structured as follows: section 2 presents the traveler information domain,
section 3 presents the EASI model; section 4 shows our Agent Traveler Informa-
tion Server application; and section 5 draws general conclusions.

2 Application Domain

The design of a Traveler Information System (TIS) should meet the growing
needs of travelers, helping them to choose a mode of transportation, and facil-
itating their use of the networks [1]. In fact, travelers’ requirements are on the
rise, since the volume of information sources are increasing rapidly and with
new technologies it should theoretically be possible for everyone to receive the
information wherever he is. Thus, a TIS should provide two types of informa-
tion: first, information before the trip starts providing the global offer over all
transportation modes for a given request; second, it should provide information
during the user’s trip, notifying him about events that could occur on his route.
Conscious of the importance of the traveler information in their relationship with
their customer, the transport operators propose an answer which is adapted to
their needs as it is presented in the next section. However, this answer is het-
erogeneous and disseminated and MAS are a solution to propose an aggregated
answer to this problem as we describe it in the section 2.2.

2.1 The Operators’ Approach

Operators’ responses include passive information - such as variable message
boards - and/or interactive information such as web servers or Personal Assis-
tants. However, the information provided by the operators usually only concerns
their own transportation mode(s): each operator has access to his own data and
provides information to his own customers. The advantage of this type of man-
agement is to facilitate information update and to ensure a good quality service
for their customer. In addition, the operator traveler information is generally
based on existing information provided and used by their operating system. For

16 M. Zargayouna, F. Balbo, and J. Saunier Trassy

instance the Dynasty1 project aims to establish a demonstration of an Inte-
grated Traffic Information Platform in China, including traffic data collection,
modelling and communication. The broadcast of real time traffic information is
one part of the project and will be specific to this information system. In the
ITISS2 project five partner cities share their knowledge and experience. Every
partner has already a number of existing services and databases of travel infor-
mation; and the main emphasis of this project will be to deliver information from
these systems to a range of media, particularly to mobile devices. The project
will also consider making multi-lingual information available and using natural
language interfaces to systems and services. The objective for each of the cities
is to open its databases, but not to propose an information system enabling the
integration of other information sources. However, operator information makes
the mutual management of different sources difficult, and requires the user to be
adaptable, that is why preparing a trip is still a hard task [12]. The multi-agent
paradigme offers solutions for automating certain tasks of the travelers and to
design advanced services that the multi agent paradigm offers solutions.

2.2 The Multi-agent Approach

The multi-agent paradigm offers solutions to these kinds of problems and MAS
are frequently used to develop systems that are adapted to the transportation
domain [16, 5] and particularly to the traveler information domain [4, 6, 11]. Two
European projects are based on a multi-agent approach: Ask-IT3 and Imagine@
IT4 [15]. In the traveler information context, the first function for the system is
to collect the information from heterogeneous and distributed systems. In fact,
the user should have the possibility to express his needs without necessarily
knowing the information sources that are able to answer it. In order to build
a personalised answer, the second function is to integrate the obtained data.
The traveler should be able to specify his preferences and to receive answers
according to his profile. Finally, the last function is to ensure an information
follow-up in order to supervise the good unfolding of the traveler’s move. The
traveler has to be notified about any event that could occur on his route, which
is able to disturb it, and solutions (alternatives) have to be proposed to him.

This adequacy between the traveler information domain and the recognized
characteristics of agents is at the origin of the application part of the work of the
FIPA (Foundation for Intelligent Physical Agents). One example of this formal-
ization allows a human user to book a trip simply by indicating the detail of his
need to his PTA (Personal Travel Assistant) [13]. The organization proposed by
FIPA is efficient for obtaining pre-trip information: it proposes a solution to the
problem of collecting and customizing the information and an advanced function
automating the negotiation phase, all of the process is ensured by a dyadic inter-
action, following a request-response pattern. But though this is essential for the
1 http://www.ertico.com/en/activities/projects and fora/dynasty.htm
2 http://www.itiss-eu.com/
3 http://www.ask-it.org/
4 http://www.imagineit-eu.org/

Agent Information Server: A Middleware for Traveler Information 17

automation of the activities of a travel agency, it is impractical for information
about daily travel. For a traveler in a city or suburban network, the problem
is not to identify the information sources (that are known) but to manage his
moves dynamically, so he can receive personalized information only when the in-
formation concerns him. The second phase of the traveler’s information process,
i.e. providing him with real-time personalized information about a given trip,
cannot efficiently be achieved in the same way as pre-trip information. In a real-
time configuration, the request/response pattern becomes expensive especially
in a very dynamic context like daily information in an urban area. In Im@gine
IT, the MAS forwards events generated by Service and Content Providers to
B2C Operators. B2C Operators will find out the users that are interested in
the particular event by looking at the database of registered user subscriptions,
which is stored together with the user profile. This organisation is close to our
proposition and answers to the efficiency criticism. Nevertheless, the use of a
database limits the personalization possibilities to the traveller profile. The pos-
sibility to link independent events is in this project the task of specialized agents
(service agent) and is not directly possible for the traveller.

To solve this problem, we use the mutual awareness concept to convey the right
information to the right user i.e. the one who is concerned by the information
according to its own preference.

3 The EASI Model

Interaction is in the center of the design of a multi-agent system. It should allow
agents to locate each others corresponding to their needs. Also, as much as it
is possible, it should not be scale sensitive and should avoid message overloads
and communication bottlenecks. In open environments such as internet, where
agents don’t know each others a priori, middle-agents are used mostly as a
service tracker [8]. They are based on the capability-based coordination which
is a preference/ability matching, in order to identify the best provider for a
given capability search. However, assimilating preference and capability is not
sufficient when the problem is not the location of the information but the content
itself. If in [15] a middle-agent is used to find a specialized service, the event
management is done in another way: a push mechanism based on a database,
with the limits that have already been described. The receiver can gain efficiency
by choosing itself its sources and criteria. In addition, with a middle-agent,
dynamic information rapidly increases the number of message exchanges in order
to maintain a valid representation of the world for the agents [3]. This could lead
to the apparition of bottlenecks when the agents’ interactional needs are high and
varying rapidly. Dugdale [9] has proved that, in a dynamic informational context
like regulation, a large part of the interactions derive from the concept of mutual
awareness, the ability of the agents to take into account not only the messages
but also the information itself, as the unit of treatment to be processed. Some
systems provide a partial answer to this problem of dynamic information sharing
through distributed systems, like LIME [14] or Javaspaces[10]. The first is a

18 M. Zargayouna, F. Balbo, and J. Saunier Trassy

system which permits tuple-space sharing among distributed platforms, without
necessarily knowing which tuple-spaces are accessible. The second is a java-
based technology which makes it possible to share spaces containing objects
between distributed agents. It is based on object put and retrieval, with an
inscription/notification system. Even if these two technologies are close to our
interaction needs, LIME doesn’t ensure the consistency of the tuple-space. It
is a sort of distributed blackboard, which means that the agents have to read
the blackboard explicitly instead of receiving their messages, and it does not
correspond to a whole unified communication system. This second statement also
applies to Javaspaces, although there is a template-based notification system.
Because the templates cannot be composed, it is not possible for agents to have
a combined interest for several sources simultaneously. In addition, it has been
proved that the serialisability of the system was not guaranteed.

As an agent knows better than any other agents what its interactional needs
are, it should be able to choose which messages it wants to pay attention to,
decided according to its interests and independently of the sender. As a mirror,
the sender should be given the same possibility about the receivers and, since
broadcast costs a lot, both in terms of network occupation and to every agent of
the system obliged to process it even if it’s not interested in the message content,
mutual awareness should be enabled inside the environment itself. The matching
of the relevant receivers should no longer be based on preference and abilities,
but on the content of the message itself and the interests of the agents.

The solution proposed here is based on distant clients who communicate with
representative agents located on the server-side. This scheme enables
computation-based communication to occur only on the server side and allows
the agents to use local technologies fully, thus making possible to use the mu-
tual awareness interaction model. The Agent Traveler Information Server (ATIS)
proposed in section 4 is based on these features.

3.1 The Interaction Model

Mutual awareness is based on the sharing of interactions. To be efficient, this
principle implies that agents share a common communication media. As a conse-
quence, an agent has to find among all messages only those that it is interested
in. In the reactive agent community, the environment is already used as a com-
mon media of interaction. In the cognitive agent community, we have proposed
the EASI model [2]. It enables cognitive agents to use the environment to ex-
change messages and, more precisely, it enables an agent to send messages to an
other agent that is located by the environment and it enables agents to perceive
every exchanged message. To find useful information from a very large data set,
we have grounded our model on symbolic data analysis theory. This theory is
aimed at discovering information by modelling both qualitative and quantitative
data grouped into what is named symbolic object. In our research, we consider
that environment contains symbolic descriptions of messages and agents. The
interactional problem is to make possible for agents the use of these descriptions
to locate messages according to the environment state.

Agent Information Server: A Middleware for Traveler Information 19

Let us introduce basic symbolic data analysis definitions that we found in [7].
A symbolic object is a triple s = (a, R, d) where R is a comparison operator
between descriptions, d is a description and a is a mapping from Ω (set of
individuals, also called entities) in L (L = {true, false} or L = [0, 1]). An
assertion is a special case of a symbolic object and is written as follows: ∀w ∈
Ω a(w) = ∧i=1,...,p[yi(w)Ridi] where yi(w) is the value of the individual w for
the symbolic variable yi. When an assertion is asked of any particular entity
w ∈ Ω, it assumes a value true (a(w) = 1) if that assertion holds for that entity,
or false (a(w) = 0) if not.

In our EASI model, we have added this notation to formalize the knowledge
about the description of interaction components (messages and agents). Because
it enables to represent the agents, it is possible for agents to create their own in-
teractional context as a set of assertions. In EASI, the set of individuals is the
environment (noted E). It contains two types of entities: agents and messages.
Symbolic variables will be called visible properties and noted Pvj , j = 1, . . . , p.
Let M = (Pvj), j = 1, . . . , r (r <= p) be the definition of the message class and
A = (Pvj), j = r + 1, . . . , p the definition of the agent class. This last one may
be composed of several agent’ subclasses, each of them is described by a subset
of visible properties and has a null value for the other. Each agent description is
updated by the agent itself, modifying dynamically the value of its visible proper-
ties. In E, filters co-exist with agents and messages, this will make possible to link
a particular message with particular agents. Because an assertion concerns only
one entity at the same time, we propose to define a filter as an extension of an as-
sertion. For each agent ea ∈ A, each message em ∈ M and (ej), j = 1, . . . , ll ⊂ E
when the filter fk(ea, em, (ej)) is true, agent ea is interested by message em, and
(ej)j = 1, . . . , ll verify the imposed relations ((ej) is optional).

A message put in the environment will be perceived by every agent that has
a filter that is matched in the current informational context. The next section
describes how we use the dynamicity in the interaction to propose an information
server that is controlled by its users.

3.2 The Middleware Architecture: Agent Information Server (AIS)

Because, in the EASI interactional model, the environment contains filters (cre-
ated by agents) and entities (public description of agents and messages), we
can propose an information middleware dynamically parameterized by its users.
An efficient management of information exchange between several requesters
and providers means taking into account the dynamicity of the interests of the
requesters for heterogeneous providers and also the cost of the information ex-
change. Our architecture meets these requirements. The mutual awareness model
proposed by EASI makes it possible to put together all the information, each
agent perceiving only that information which, according to its filters, concerns its
interests. This Agent Information Server (AIS) architecture does not duplicate
information from the provider but organizes its use in a defined context. Our
server is a common place where requesters and providers exchange information
through a common environment.

20 M. Zargayouna, F. Balbo, and J. Saunier Trassy

Fig. 1. Agent Information Server (AIS)

Within our proposition, according to the dynamicity of their information,
two types of provider behaviours are possible. For static information, a provider
waits for users’ requests. In this case, the server is used by requesters in order
to identify the provider (with the use of the visible properties) and to interact
with it in a normalized way. For dynamic information, a provider puts updated
information into the environment. In this case, the server is used by requesters
to identify which information has some interest for them from among all data
available in the environment. New information is put in the environment once
and is received by all interested users.

The multi-agent system upon which our architecture is based is made up of
three types of agents (Figure 1). The first, Interface agent, is the link between
an existing information server and our own. This agent is used by the others to
interact with the external server in a normalized way (static information) and/or
to gather relevant information for the MAS and to put it in the environment
(dynamic information). Using an Interface agent within our multi-agent system
makes it possible to keep a homogeneous system with heterogeneous components.
Agents do not have to know the external server to interact with it; they only
need to know which kind of service it provides. This implies that the server may
be changed and that the technical means used to interact (http, ftp, SOAP, etc.)
is hidden from the users’ agents.

The second type of agent is the Domain agent. Contrary to Interface agents
which are not interested in using information coming from the environment
(they are only information providers), Domain agents may be requesters and/or
providers of information. These two agent categories are not located on the
server. Using them in our proposal solves the problem of provider identification
and standardizes interaction with heterogeneous information providers. Never-
theless the communication cost remains high because each interaction has to be
carried out with a message exchange between distant agents.

Agent Information Server: A Middleware for Traveler Information 21

Fig. 2. Relation between distant and local agent

To solve this problem our multi-agent system has a third category of agent,
Local agent, which is located on the server. Thus, a part of the processing may be
done on the server, reducing the communication cost (as with mobile agents).
Each distant agent (Interface and Domain agent) has a representative (Local
agent) on the server (Figure 2).

The role of this entity is to manage interaction for the distant agent, by
creating/deleting filters according to the needs of the distant agent. For each
perceived message, it decides what to do with it. Alternative is to deal with it
or to forward it to the distant agent. In that way, the exchanged messages are
limited to those that are essential for distant agents. The role of the Local agent
implies a hybrid architecture, since this agent is the link between the informa-
tional environment (it can put and perceive messages inside the middleware)
and the application environment (it can send and receive messages to and from
distant applications).

Sharing responsibility for interaction processing between local and distant
agents means that distant agents may participate in several MAS. For each
participation they delegate their interaction needs to their local agent.

4 Agent Information Server

4.1 The Software Architecture

In order to use the AIS architecture to implement an agent-traveler informa-
tion server, we have to introduce which agent in our architecture is equivalent
to which agent in AIS. The distant information systems can be Interface or
Domain agents. The MPTA (Mobile Personal Travel Assistants) are Domain
agents, whose role is to “link” the human user to the system. They are the
software interlocutors of our system (Figure 3).

In order to test our proposal, we have implemented three information sys-
tems. The first is an application that is an Interface agent with an existing web
service5 - working following a request/response model - and that creates a trip

5 http://patriceb.users.mcs2.netarray.com

22 M. Zargayouna, F. Balbo, and J. Saunier Trassy

Fig. 3. Preference user interface

as an answer to a request. The result of the http request is an xml file containing
the sequence of transportation modes to be taken by the user to reach his desti-
nation. The second, the traffic system, is also an Interface agent connected to an
existing service [17] that gives information about the traffic (accidents, deceler-
ation, etc.) and the corresponding seriousness of the disruptions. The messages
sent by this service are broadcasted through the environment with no specified
receiver. The third and last system - called “alternative” - is specific to our ap-
plication and gives the nearest alternative station rather than the one which has
been received as a request parameter. This last agent is a Domain agent which
uses information coming from the middleware to find the best alternative for
travelers when there are disruptions.

For each of these distant agents (Interface or Domain), Local agents represent-
ing them are created. Local agents are divided into two categories: the first are
the agents that we called LA which are permanent, because they represent a dis-
tant information system. The second, that we have called PTA (Personal Travel
Assistant), are agents which are transitory because they represent an MPTA:
they are created the first time a user connects to the server and erased at the
end of his session. The first time the user connects, his profile and preferences
are uploaded from his MPTA to the corresponding newly created PTA.

The users’ preferences are entered via a standard interface where he is asked to
determine the categories of services that interest him (warning announcement,
alternative) (figure 3). His choice determines the behaviour of his associated
PTA. For instance, the seriousness of the disturbance determines in which cases
the PTA will warn him. If the value is high, he will only receive the information
on disturbances that changes his travel-plans considerably. The relation between
MPTA and PTA underlines the information filtering process that a Local agent

Agent Information Server: A Middleware for Traveler Information 23

enables. The first level concerns the filters and visible properties. At this level
only useful information (according to the Distant agent preferences) are per-
ceived by the Local agent. To do that, a PTA will use the kind of services the
user needs, the trip properties (departure and arrival location) and the seri-
ousness value. This information will be used to create the personalized filters
like this one: (f2) fPTA (ea, em) = [networkPosition(em) networkPosition(ea)]
[seriousness(ea) ? seriousness(em)]6. The second level concerns the Local agent
behaviour. If the human user chooses the alternative service it will forward not
the filtered information that it receives about a disruption but an alternative to
the initial trip if it exists (see section 4.2).

We focus now on the few technologies used to implement our traveler infor-
mation server. Some problems had to be solved in order to instantiate the EASI
model onto a real implementation. First, a problem is the synchronisation be-
tween distant application and the server. Since in the EASI model, messages are
caught by filters without the intervention of the owner distant agent, we have
to find a way to convey the message to the distant agent asynchronously, what
cannot be done upon http which is a synchronous protocol. We chose to send
our messages via an api (JAXM7) which enables us to send our messages via
a provider in an asynchronous way, which releases our server and the distant
agent of the synchronisation of http. Second, we want to do the same with the
distant users, they shouldn’t be obliged to wait for a response of the server i.e.
to wait for a response to their messages, since the remainder of the interaction
is asynchronous. The solution is to use an intermediate xml page dedicated to
the user, page that is refreshed periodically (e.g. a few seconds, 10 in our test
application). The messages exchanged over the network are SOAP8 messages.

4.2 The Scenario of Execution

Figure 2 illustrates our matter. The numbers show the chronologic order of the
exchanges. Figure 3 focuses on the internal interactions -the messages exchanged
inside the middleware, presented by an AUML diagram. Chronologically, the
traveler connects to the server (via his MPTA) and a PTA representing him is
created. We suppose that our user is interested in the three services described
above. After specifying his departure and destination points, he is asked to wait
until his request is processed. His PTA creates a message with this information
and deposits it in the environment. In this case, the message is intended to the
LAs which have a planning capability - only one in our case (1). When the
planning LA receives the message, it forwards it to the Interface planning agent.
To do so, the request is wrapped into a SOAP message and sent via the Web (2).
Then, the distant Interface agent requests the planning service for a plan (via
http) and the latter sends it back in a message containing an xml trip plan (3).
This is transformed - by the LA - into a message obeying the environment syntax,
6 The visible property networkPosition not really exist but regroups all data that are

useful to locate an information on a network.
7 http://java.sun.com/xml/downloads/jaxm.html
8 http://www.w3.org/TR/SOAP

24 M. Zargayouna, F. Balbo, and J. Saunier Trassy

addressed to the user’s PTA (4). Note here that the presence of the Interface
agent between the LA agent and the planning system has the advantage that
the same Interface agent can have more than one LA agent representing it in
different middleware servers, covering different transportation networks. This
way, the user connects in exactly the same way to different networks, and the
presence of different services is transparent to him.

Fig. 4. Example of messages routing

When the user’s PTA receives the xml plan corresponding to its initial user’s
request, it forwards it to its MPTA to inform the user, then it parses it and
generates a filter for every plan segment (a plan segment is a part of a trip,
provided by only one transport mode). This way, the PTA of a user restricts its
reception conditions just to the information concerning its own trip. For each of
the interaction within the AUML interaction diagram Figure 3, we have noted
the visible properties that an agent uses to receive a message. For instance, each
agent has an identifier and it is a visible property that can be used to address a
message. This diagram is only related to the interaction between agents within
the information server and based on the EASI model.

The Interface traffic agent collects information - via ftp - on CLAIRE SITI
[17] and forwards it to the middleware. If a warning concerns a part of the
user’s trip (which is the case in Figure 2(5)), the message is intercepted by its
PTA (Figure 3 (6)). The type of a message (in this case a warning) is a visible
property. Note that this information is also used by alternative LA to intercept
this message in order not to send another station concerned by a traffic problem.
This interaction is based on the mutual awareness paradigm because this is

Agent Information Server: A Middleware for Traveler Information 25

Fig. 5. Warning management protocol

Fig. 6. Trip information interface

directed by the receiver and not by the sender of the message. This last one gives
several visible properties to its messages and their values are used by receivers
to choose which of the messages has interest for them. The network location
and disturbance seriousness are visible properties for a warning message. Each
PTA according to these values can intercept this information. This interaction
directed by the receiver is also based on the mutual awareness paradigm. That
implies that agents share the global environment knowledge that the visible
properties are. This kind of interaction is represented by the double connection
(Figure 3 (6)).

26 M. Zargayouna, F. Balbo, and J. Saunier Trassy

When there is no problem, the basic behaviour of the Local agent is to update
its filters according to the traveler trip. The figure 4 pictures this comportment
because each event relative to a station being passed corresponds to the corre-
sponding rules removing from the environment. For instance when the station
Charles-de-Gaulle has been passed the filter concerning the trip relative to the
the line 6 has been removed.

In our example, we suppose that the disturbance is serious enough to be in-
tercepted by the user’s PTA (superior to the value of the disturbance seriousness
given by the user). As the alternative service has been chosen by the user, the
PTA puts in the environment a message “addressed” to the agent which has
the alternative capabilities (7–8–9–10). Once the alternative station is received,
the PTA sends an addressed message to the planning LA asking for a plan
with the alternative station as a departure point (1–2). These interactions are
based on a preference ability matching like with a middle-agent and thus EASI
enables the same advantage to dissociate a service from a particular agent. Each
LA has a visible property (called service) that is a list where all their abilities are
recorded. Because each request contains the identifier of the sender, the answer
of a LA to the PTA is based on a dyadic interaction.

When receiving the new plan (3–4), if the additional cost with the alternative
trip is less than the current delay, the PTA proposes it to the human user and
asks him if he wants to avoid the disrupted station. In this case, and if the
new plan is validated by the user, the old filters are replaced by the new ones
concerning the new plan; only the events concerning this new plan will henceforth
be received.

Thus, with the use of EASI model in our application, it is possible, for the
interaction of an agent (representing a user), to be dynamically parameterized
by its context, through the update of its filters. Our middleware enables agent
to interact in a normalized way. The use of existing classical web services is
totally transparent to him; interaction with any kind of service is homogenized
by the environment interaction protocol. Moreover, using the same middleware,
agents can communicate through dyadic and ability matching if the sender and
receiver are interested in the interaction or mutual awareness interaction if only
the receiver is interested. Using AIS also enabled us to build a complex service
based on different sources that had not been pre-defined to offer such a service.

5 Conclusion and Perspectives

The basic principles behind our Agent Information Server (AIS) described in
this paper are principles generally acknowledged to be of interests in the multi-
agent community. The operationalisation of these principles for a dynamic in-
formational context imposes to take into account the update of information
and/or of the agents’ interest. Our proposition to use mutual awareness to cre-
ate a communication space where representative of distant agents interact limits
the communication cost. Our mutual awareness model (called EASI) is based
on a property-based interaction model, which generalizes the capability-based

Agent Information Server: A Middleware for Traveler Information 27

coordination model. In that way, our model enables to take into account the
content of information and so, more specific interaction.

A real application of a Transportation Information System illustrates our
proposition. This specialized middleware integrates several information servers
and enables normalized interaction with them. Because a middleware regroups
services relative to a local network, an information server may be used in a
specific middleware or in several ones. For instance, the planning Interface gives
information for several networks whereas a server for a local taxi network will
have only one representative. On the same idea, a user making a trip between
two towns will have a representative within the two networks.

We have several directions for future works. We plan to investigate the con-
sequences of the admission or the exit of agents on services management that
implies that a distant agent constructs its representative in a dynamic way. We
also plan to propose a management process for taxonomy of available services.
This process will have to take into account that our environment has to remain
open with no specialized agent controlling its activity.

Concerning the implementation perspectives, we plan to apply our work to
other domains whose problems are suitable to our interests. We think about
Agent-Based Marketplaces where the attention of agents according to informa-
tion varies very rapidly during a day, and could suitably be managed using our
approach.

References

1. Adler, J. L., Blue, V. J.: Toward the design of intelligent traveler information
systems. Transportation Research Part C 6 (1998) 157–172

2. Balbo, F., Pinson, S.: Toward a Multi-Agent Modelling Approach for Urban Public
Transportation Systems. Omicini A., Petta P. et Tolksdorf R. (eds), Engineering
Societies in the Agent World II, LNAI 2203, Springer Verlag (2001) 160–174

3. Balbo F.: A new interaction model for agent based simulation. In European Sim-
ulation Multiconference, (2004)

4. Coyle, L., Cunningham, P. and Hayes, C.: A Case-Based Personal Travel Assis-
tant for Elaborating User Requirements and Assessing Offers. Proceedings of the
6th European Conference, ECCBR 2002, Susan Craw, Alun Preece (eds.). LNAI
volume 2416, Springer-Verlag (2002) 505–518

5. Davidsson, P., Henesey, L., Ramstedt, L., Trnquist, J., Wernstedt,F. : An Analysis
of Agent-Based Approaches to Transport Logistics. Transportation Research Part
C: Emerging Technologies, Vol. 13(4), Elsevier, (2005) 255–271

6. Dia, H.: An agent-based approach to modelling driver route choice behaviour under
the influence of real-time information. Transportation Research Part C10 (2002)
331–349

7. Diday, E., Hébrail, G.: Symbolic Data Analysis: some in and out. Kesda’98 Eurostat
Luxembourg, April (1998) 19–24

8. Decker, K., Sycara, K. and Williamson, M.: Middle-Agent for the Internet. In Fif-
teenth International Joint Conference on Artificial Intelligence, Morgane Kaufmann
(1997) 578–583.

28 M. Zargayouna, F. Balbo, and J. Saunier Trassy

9. Dugdale, J., Pavard, J., Soubie, B.: A Pragmatic Development of a Computer
Simulation of an emergency Call Center Designing Cooperative System, Frontiers
in Artificial Intelligence and Applications, Rose Dieng et al., IOS Press’ (2000)

10. Freeman E., Hupfer S., Arnold K. : JavaSpaces(TM) Principles, Patterns, and
Practice. Pearson Education; 1st edition (June 15, 1999)

11. Moraitis, P., Petraki, E. and Spanoudakis, N.: Providing Advanced, Personalised
Infomobility Services Using Agent Technology. Proceedings of the 23rd SGAI In-
ternational Conference on Innovative Techniques and Applications of AI (AI’2003),
Cambridge, UK, 15th–17th 2003.

12. O’Brien, P. D., Nicol, R. C.: FIPA - towards a standard for software agents. BT
Technol J, 16, 3 (1998) 51–59

13. O’Sullivan, D., Nnez-Surez, J., brochoud, H., Cros, P., Moore, C.and Byrne, C.:
Experiences in the use of the FIPA agent technologies for the development of a Per-
sonal Travel Application. In proceeding of international conference on autonomous
agents (Agents), Barcelone, (2000)

14. Picco, G.P., Buschini, M.L.: Exploiting Transiently Shared Tuple Spaces for Loca-
tion Transparent Code Mobility. In Proceedings of the 5th International Conference
on Coordination Models and Languages, York (UK), F. Arbab and C. Talcott, eds.,
LNCS 2315 Springer Verlag (2002) 258–273

15. Raimondi M., Manzato M., Petraki E., Spanoudakis N., Kauber M. : Services
specification design and System architecture. Technical report, January (2004)

16. Schleiffer, R.: Intelligent agents in traffic and transportation. Transportation Re-
search part C: emerging technologies (special issue), Schleiffer R. (Guest) editor,
Volume 10C, Numbers 5–6 (2002)

17. Scemama, G., Carles, O.: CLAIRE-SITI, Public and Road Transport Network
Management Control: A Unified Approach. IEE Road Transport Information and
Control Conference, London (2004)

18. Weyns, D., Parunak, H.V.D., Michel, F., Holvoet, T. Ferber, J.: Environments
for Multiagent Systems, State-of-the-art and Research Challenges. Proceedings
of Workshop on Environments for Multi-Agent Systems (E4MAS) LNAI 3374
Springer Verlag (2004) 1–47

O. Dikenelli, M.-P. Gleizes, and A. Ricci (Eds.): ESAW 2005, LNAI 3963, pp. 29 – 48, 2006.
© Springer-Verlag Berlin Heidelberg 2006

A Role Model for Description of Agent Behavior and
Coordination

Yunus Emre Selçuk and Nadia Erdo an

Istanbul Technical University, Faculty of Electrical and Electronic Engineering,
Computer Engineering Department, Maslak, TR-34469, Istanbul, Turkey

selcukyu@itu.edu.tr, erdogan@cs.itu.edu.tr

Abstract. This paper presents a role model implementation, JAWIRO (JAva
WIth ROles), which enhances Java with role support. After a brief introduction
to role models and the capabilities of JAWIRO, the paper proceeds to a
comparison of our model with another role model and a design pattern for
implementing roles. These three approaches are compared on the basis of their
abilities and performances. It is shown that role models are valuable tools for
modeling dynamic real world entities as they provide many useful abilities
without a significant performance overhead. The dynamic nature of agents
represents a good domain for using roles to describe both behavior and
coordination issues. The paper ends with a sample application for agents that
demonstrates how characteristics of roles may be employed.

1 Introduction

Software systems are constantly getting more complex in order to keep up with the
ever changing, dynamic and heterogeneous nature of the current real world
scenarios. Complex systems become easier to understand when they are described
in terms of acts and responsibilities of the elements they contain [1]. Such a
description leads to a better separation of concerns and therefore to better modeling.
Roles allow agents to dynamically acquire capabilities to perform specific tasks,
and therefore enable separation of concerns and code reusability in software
development and maintenance [2].

Separation of concerns leads to the separation between the algorithmic issues and
the interaction ones [3]. Roles represent a good paradigm for modeling interactions
among agents. A role can be built to represent an interface for interactions, providing
a set of common instruments for dealing with and allowing interactions among
entities. Furthermore, roles help the modularization and the organization of MAS,
separating responsibilities and rights among entities involved [4].

Agent oriented techniques are well suited for modeling complex and distributed
systems [5]. As the notion of role is frequently applied for conceptualizing the
behavior of human individuals, roles can be used for describing the behavior of
individual agents in a multiple agent system [6]. MAS implementations such as [3, 7]
can be found in literature which use roles in their approaches. Roles are also used for
encapsulating the interactions between agents [7, 8]. In ROPE; roles provide a well

30 Y.E. Selçuk and N. Erdo an

defined interface between agents and cooperation processes, which enable an agent to
read and follow the normative rules given by the cooperation process even if not
known to the agent before [8].

This paper presents a role model implementation, JAWIRO, which enhances Java
with role support for better modeling of dynamically evolving real world systems.
JAWIRO provides all expected requirements of roles, as well as providing additional
functionalities without a performance overhead when executing methods. An example
application is also described in order to demonstrate how roles can be used in MAS.

2 Related Work

The BRAIN framework [7] covers the development of agent-based systems while
modeling agent interactions with roles. The RoleX extension [3] introduces an
interaction infrastructure for the BRAIN framework for Java mobile agents using
bytecode manipulation for role operations. Although bytecode manipulation proves
itself to be useful, it can breach the Java security mechanism. Therefore, bytecode
manipulation is not used in JAWIRO.

An agent can be thought as a role or a set of roles [6]. However, having agents as
roles is somewhat controversial. A role is defined as a class that defines a normative
behavioral repertoire of an agent in [9]. We believe that roles are useful for represent-
ing both the coordination and the responsibilities of agents as they provide a good
separation of concerns.

3 The Role Concept from the Role Models’ Viewpoint

The role concept comes from the theoretical definition where it is the part of a play
that is played by an actor on stage. Roles are different types of behavior that different
types of entities can perform. Kristensen [10] defines a role as follows: a role of an
object is a set of properties which are important for an object to be able to behave in a
certain way expected by a set of other objects.

A role model specifies a style of designing and implementing roles. As such,
coding by using roles can be called as role based programming (RBP). RBP provides
a direct and general way to separate internal and external behaviors of objects. When
a role model is built in an object oriented environment, RBP extends the concepts of
OOP naturally and elegantly.

Object oriented programming is based on specialization at the class level, e.g.
(class level) inheritance. However, specialization at the instance level is a better
approach than specialization at the class level when evolving entities are to be
modeled. In this case, an entity is represented by multiple objects, each executing a
different role that the real-world entity is required to perform. In role based
programming, an object evolves by acquiring new roles and this type of specializat-
ion at the instance level is called object level inheritance. When multiple objects are
involved, the fact that all these objects represent the same entity is lost in the
regular OOP paradigm unless the programmer takes extra precaution to keep that
information such as utilizing a member in each class for labeling purposes. Role

 A Role Model for Description of Agent Behavior and Coordination 31

models take this burden from the programmer and provide a mechanism for object
level inheritance.

Object level inheritance successfully models the IsPartOf [11] relation where class
level inheritance elegantly models the IsA [11] relation. As both types of relationship are
required when modeling real world systems, both types of inheritance should coexist in
an object-oriented environment. Therefore, many role models are implemented by
extending an object-oriented language of choice, such as INADA [12], DEC-JAVA
[13], the works of Schrefl and Thalhammer [14] and Lee and Bae [15], etc.

4 Overview of JAWIRO

Our role model JAWIRO extends the Java programming language with role support.
Java has been chosen as the base language because even though it has advanced
capabilities that help to its widespread use, it lacks features to design and implement
roles in order to model dynamic object behaviors. JAWIRO implements all basic
features of roles as well as additional capabilities that can be expected from roles, e.g.
the extended features of roles.

4.1 Features of Roles

Definition of the basic features of roles varies slightly among different researchers
[10, 14]. We believe the basic features of a role model should contain the following:

− Roles can be gained and abandoned dynamically and independently of each
other.

− Roles can be organized in various hierarchical relationships. A role can play
other roles, too.

− The notion that a real world object is defined by all its roles is preserved, e.g.
each role object is aware of its owner and the root of the hierarchy.

− An entity can switch between its roles any time it wishes. This means that any
of the roles of an object can be accessed from a reference to any other role.

− A role can access member variables and methods of other roles by means of the
two previously described features.

− Class level inheritance can be used together with object level inheritance.
− Entities can be queried whether they are currently playing a certain type of role

or a particular role object.
− An entity can have more than one instance of the same role type. Such roles are

called aggregate roles and are distinguished from each other with an identifier.
− Different roles are allowed to have member variables and methods with same

names without conflicts.

In addition to the basic features listed above, JAWIRO implements the following
extended features as well:

− Roles can be suspended and then resumed.
− A role can be transferred to another owner without dropping its sub roles.
− Multiple object level inheritance is supported.

32 Y.E. Selçuk and N. Erdo an

− Any public member variable or method of any participant of a role hierarchy
can be accessed solely by its name, without a direct reference to its owner. In
case of identical names, the most evolved member is returned.

− Previously mentioned behavior can be overridden by setting dominant nodes in
a role hierarchy.

− Both consultation and delegation mechanisms are supported.
− Abnormal role bindings are prevented.
− Persistence is supported, so that users are able to save entire role hierarchies to

secondary storage devices for later use.

More details and usage examples of the features of roles can be found in the
following sections.

Kendall is one of the researchers who pointed out some useful properties of roles
that can be used in MAS [16]. In compliance with Kendall’s statements, the role
model of JAWIRO does not exist to replace class models. On the contrary, JAWIRO
extends the strongly typed and class based nature of Java with the basic and extended
features of roles. Roles are implemented as first class objects so that they can be
instantiated, generalized, specialized and aggregated; just as Kendall stated [16].

Another compliance of JAWIRO with Kendall’s statements [16] is the dynamic
nature of JAWIRO. Role hierarchies can be evolved by means of gaining, transferr-
ing, suspending, resuming and resigning roles. The ability of JAWIRO to access
members of a participant of a role hierarchy without referencing that particular
participant, combined with the dominance ability, ensures this evolution. Roles in
JAWIRO can constrain each other with the use of constraint managers, again as
mentioned in [16].

4.2 Role Model of JAWIRO

JAWIRO models relational hierarchies of roles with a tree representation. Such
hierarchical representation enables better modeling of role ownership relations.
This leads to easier and more robust implementation of roles’ basic and extended
characteristics.

The UML schema of JAWIRO API is given in Figure 1. The Actor class models
the real world objects which can be the root of a role hierarchy. The Role class

Fig. 1. The UML schema of JAWIRO API

 A Role Model for Description of Agent Behavior and Coordination 33

models the role objects. The Actor and Role classes implement the
RoleInterface as these two classes share some characteristics of roles. The
aggregate roles are implemented by deriving a namesake class via class-level
inheritance from Role class. The backbone of the role model is implemented in the
RoleHierarchy class, where each Actor object has one member of this type.

4.3 Using Roles with JAWIRO

This section shows how the basic and extended features of roles can be used with
JAWIRO. The examples in this section use the sample role hierarchy given in Figure 2.

Fig. 2. A system consisting in two intersecting role hierarchies

4.3.1 Building Role Hierarchies Via Gaining and Loosing Roles
A real world entity gains and looses some roles during its lifetime and therefore may
follow a different evolution path than the other entities of the same type. In case of this
object level specialization, a real world entity is defined by all of the roles it currently
plays. In order to build a role hierarchy in JAWIRO, an object of a class which is
created by class level inheritance from the jawiro.Actor class and the necessary

34 Y.E. Selçuk and N. Erdo an

role objects of different types which inherit from the jawiro.Role class are required.
All of these objects can be created any time before they participate in a role hierarchy.
Afterwards, the necessary role adding operations dictated by the requirements of the
modeled system are carried out through the public boolean
RoleInterface.addRole(Role aNewRole) method. If a role is no longer
required, it can be dissociated from the role hierarchy by using the public boolean
Role.resign() method of that role, so that it does not participate in this role
hierarchy. A sample code fragment featuring these operations is given in Figure 3.

import jawiro.*;
class Person extends Actor {

String name, phone;
public Person(String n,

String p)
{ name = n; phone = p; }}

class Teacher extends Role {
String course;
public Teacher(String c)
{ course = c; }
public void teach() {

 /*carry out the role*/ }}

Person peTom;
Teacher teTom;
peTom = new Person("Thomas

Anderson", "843-663");
teTom = new

Teacher("Physics");
peTom.addRole(teTom);
teTom.teach();
teTom.resign();
//Tom is now retired

Fig. 3. Building a role hierarchy

4.3.2 Aggregate Roles
Sometimes it is necessary for a real world entity to be able to play the same kind of
role in different contexts. For example, a person can be the leader of various projects.
Aggregate roles address this need. Unlike regular roles, multiple instances of the same
aggregate role type can participate in the same role hierarchy. JAWIRO uses the
jawiro.AggregateRole class for this purpose. The instances of the same
aggregate role are distinguished from each other with an identifier, namely the
String AggregateRole.identifier member. The code fragment in Figure 4
is an example of using the aggregate roles.

class ProjectManager
extends
AggregateRole {

String projectName;
public ProjectManager

(String id) {
super(id);
projectName = id; } }

Person peTom;
ProjectManager pmAI, pmVR;

 peTom = new Person("Thomas
Anderson", "843-663");

pmAI = new ProjectManager(
"Artificial
Intelligence","AI");

pmVR = new ProjectManager(
"Virtual Reality","VR");

peTom.addRole(pmAI);
peTom.addRole(pmVR);

Fig. 4. Using aggregate roles. The class Person is defined in Figure 3.

4.3.3 Run Time Role Checking and Role Switching
A real world entity is modeled with multiple objects which form a role hierarchy.
Each participant of a role hierarchy can be queried whether that entity is playing a

 A Role Model for Description of Agent Behavior and Coordination 35

particular role or not. If the entity has the desired role type, the user can ask for a
reference to the object representing that role and send it a message with the obtained
reference. This process is called role switching.

The various types of public boolean RoleInterface.canSwitch
method are used for role checking, which return true if the desired role or aggregate
role instance exists in the hierarchy. Afterwards, the user can access the desired role
by using an appropriate version of the public Object RoleInterface.as
method. Figure 5 gives examples of these methods, both for a regular and an aggregate
role.

package test;
Person peTom;
create_hierarchy(); /*Create the role hierarchy*/
if(peTom.canSwitch("test.Teacher"))
 ((Teacher)peTom.as("test.Teacher")).introduce();
if(peTom.canSwitch("test.ProjectManager","VR"))
 ((Teacher)peTom.as("test.ProjectManager", "VR")).manage();

Fig. 5. Role checking and switching. The role classes are defined in Figures 3 and 4.

4.3.4 Using Class Level and Instance Level Inheritance Together
The ProfEmeritus class of Figure 2 shows how class level and instance
level inheritances are supported together in JAWIRO. This class is created via class
level inheritance from the Teacher role, yet it can be a part of an instance level
inheritance relationship by participating in the first role hierarchy of Figure 2.

4.3.5 Suspending and Resuming Roles
According to the rules dictated by the environment, a role can be suspended
temporarily and then resumed without loosing the state information and the subroles
of that role. The code fragment in Figure 6 shows how to suspend and resume a role.

package test;
Person peTom; Teacher teTom;
peTom = new Person("Thomas Anderson","843-663");
teTom = new Teacher("Physics");
peTom.addRole(teTom);
teTom.suspend();
if(peTom.canSwitch("test.Teacher"))

System.out.println("This is not supposed to happen!");
teTom.resume();
if(peTom.canSwitch("test.Teacher"))

teTom.introduce();

Fig. 6. Suspending and resuming role

Person peGordon;
peGordon = new Person("Gordon Freeman","712-257");
pmVR.transfer(peGordon);

Fig. 7. Role transfer

36 Y.E. Selçuk and N. Erdo an

4.3.6 Role Transfer
A real world entity can transfer some of its responsibilities to another entity. JAWIRO
lets a role to be transferred to another owner without dropping its sub roles. Consider
the example in Figure 4 where the person Tom is given the lead of two projects.
However, Tom becomes overwhelmed with his duties and transfers the leadership of
one of those projects to a colleague. This case is shown in Figure 7, which represents
the code fragment that is to follow the code fragment in Figure 4.

4.3.7 Preventing Abnormal Role Bindings
Abnormal role bindings are role relationships which violate the rules of the modeled
system. The following restrictions are hard-coded into the JAWIRO role model as
they contradict with the expected usage of roles:

− A role instance is not added to a hierarchy where that instance already exists.
− A suspended role cannot be used with commands of JAWIRO API, e.g. it

cannot be transferred or switched.
− A role instance can participate in only one hierarchy at the same time.

JAWIRO also allows users to take additional precautions by defining a constraint
manager. The role model implements this mechanism via the strategy design pattern
[17]. If a constraint manager is assigned via Actor.setConstraintStrategy
method, it will be invoked before each addRole, resign, suspend and resume
command to approve the operation. If the manager implemented by the user does not
approve the operation, the operation is cancelled. The interface that a constraint
manager should implement is given in Figure 8.

public interface ConstraintStrategy {
public boolean approveAddRole(String parentClassName, String

childClassName);
public boolean approveResign(String parentClassName, String

childClassName);
public boolean approveSuspend(String parentClassName, String

childClassName);
public boolean approveResume(String parentClassName, String

childClassName);
public void setActor(Actor anActor);}

Fig. 8. The interface for constraint managers

The ConstraintStrategy.setActor method is called automatically when
the Actor.setConstraintStrategy method is executed. The sole parameter
of the setActor method gives the coder of the constraint manager a chance to
obtain a reference to the root of the role hierarchy. That reference enables the user to
access any other participant of the role hierarchy and execute thorough checks when
an operation such as resuming a role is being considered for approval.

4.3.8 Member Access by Name
JAWIRO allows to access a member variable or method of an object which participates
in a role hierarchy, without explicitly referencing the actual object. In this case,

 A Role Model for Description of Agent Behavior and Coordination 37

referencing any participant of the role hierarchy is sufficient. The Object
RoleInterface.bringMember(String name) method searches a member
variable with the given name in all the participants of the role hierarchy and returns a
reference to this variable. If none of the participants has such a variable, bringMember
returns null. The most evolved member is returned if more than one participant of
the role hierarchy have a variable with this name.

A member method is accessed in similar fashion with the Object
RoleInterface.executeMethod(String name, Object...
parameters) method. This time, the method with the given signature is searched
within the role hierarchy. If the desired method is found, it is executed and its result is
returned by the executeMethod method. Figure 9 shows the usage of this feature.

Person p;
Incident anIncident = new Incident("Fire");
Authority anAuthority = new Authority("Fire Brigade");
p = new Person("Yunus Emre Selçuk","212-2891990");
p.add_Teacher_or_ProfEmeritus_Role(); /* Person gains either a
teacher or a professor role, according to the events happened at
run-time. */
p.executeMethod("reportIncident",anIncident,anAuthority);

Fig. 9. Member method access by name

The feature of member access by name is necessary when the types of the
participants of a role hierarchy are not known exactly. Object level multiple inheritance,
which will be explained later, is such a case. This feature can be thought such as an
order in spoken English such as “I am not interested in what you are, just give me that
service if you can”.

4.3.9 Dominant Roles
The previously described behaviour of accessing the most evolved member when a
command of member access by name is issued can be overridden by specifying
some participants of a role hierarchy to be dominant. This is achieved by executing
the RoleInterface.dominateSearch(boolean dominate) method of
a participant. When an Actor instance is dominant, it searches the requested
member firstly in itself and returns immediately if the search succeeds. Otherwise,
the rest of the role hierarchy is searched. A dominant Role instance acts likewise,
but only when the root of its role hierarchy is not also dominant. Otherwise the
search order followed is first the root, then the role itself, and finally the rest of the
role hierarchy.

Figure 10 can be examined in order to understand the rules of dominance. In the
left side of the Figure 10, the root of the role hierarchy is shown as a rectangle, roles
are shown as ellipses and aggregate roles are shown as double ellipses with their
identifiers given after a comma. Members and methods of the objects are also
attached to their right. The right side of Figure 10 shows a sample code and the
outcome of an instruction is shown in its remark.

38 Y.E. Selçuk and N. Erdo an

o=d.bringMember("x");//o=c1.x
b.dominateSearch(true);
o=c1.bringMember("x");//o=b.x
b.executeMethod("y",null);//e.y()
c2.dominateSearch(true);
b.executeMethod("y",null);//c2.y()
a.dominateSearch(true);
b.executeMethod("y",null);//a.y()
c2.executeLocalMethod

("y",null);//c2.y()
b.executeLocalMethod
 ("y",null);//ERROR

Fig. 10. Using dominant roles

4.3.10 Object Level Multiple Inheritance
JAWIRO supports multiple object-level inheritance, where owners from different
classes are allowed to play the same type of role object, whenever it is required for
better modeling of a real world system. This feature will not cause any logical
ambiguities since only one owner can play a particular role instance at the same time.
Moreover, the ability of accessing member methods and variables presented above
removes the typing ambiguities.

class Customer extends Role {

Supplier supplier;
public Customer(Supplier supplier) {this.supplier=supplier;}
public void buy(Goods aGood, int amount) {
 if(supplier.sell(aGood,amount))
 getActor().executeLocalMethod("increaseFunds",

-myGood.getUnitPrice()*amount); }}
class Supplier extends Role {

public boolean sell(Goods aGood, int amount) {
 if(sale_possible()) {
 getActor().executeLocalMethod("increaseFunds",
 +myGood.getUnitPrice()*amount);
 return true;

} else return false; }}
class Person extends Actor { //partial code of the class
 private double funds;
 public void increaseFunds(Double incr) { funds += incr; } }
class Company extends Actor { // partial code of the class
 private double funds;

 public void increaseFunds(Double incr) { funds += incr; } }

Fig. 11. Solving the typing ambiguity created by a multiple object level inheritance case

The Customer role of Figure 2 is an example as both Person and Company
instances can acquire a role of this type. In this example, the cash amount available
for a person and a company are kept in the Company.funds and Person.funds
members, respectively. That amount should be modified after a transaction between a
customer and a supplier, which is initiated by the Customer.buy method. The
increaseFunds(Double incr) method of either the Person or the Company

 A Role Model for Description of Agent Behavior and Coordination 39

class is used for increasing or decreasing the value of the member funds. However,
the type of the entity whose budget is to be modified can only be known at run time.
Figure 11 shows how to overcome this typing ambiguity. An alternative solution is to
move the increaseFunds method to another role such as FundOwner. Yet
another solution would be to have the Person and Company classes to conform to a
common interface such as IntfFundOwner. The disadvantage of these alternative
solutions is their requirement of another type to be added into the modeled system.

4.3.11 Using Delegation and Consultation
By default, JAWIRO works with the consultation mechanism [12] shown in
Figure 12a, where the implicit “this” parameter points to the object that the method
call has been forwarded to. JAWIRO supports the alternative mechanism as well,
where the implicit “this” parameter points to the original receiver of the message.
This is called the delegation mechanism and shown in Figure 12b.

Fig. 12. Delegation (a) and consultation (b) mechanisms

Fig. 13. Different scenarios (i. and ii.) requiring different mechanisms (consultation and dele-
gation, respectively)

JAWIRO allows to change the current mechanism for individual role hierarchies at
run time. Both Actor and Role classes have an Object member named self.
The as role switching command assigns either the former receiver of the message or
the latter to the self member variable of the final recipient of the message, according
to the current mode of operation. When writing “delegation-and-consultation-sensitive”
code, users must send the messages to the self member.

Delegation and consultation mechanisms should not be mutually exclusive, as both
may be needed for better modeling of a real-world system. Consider Figure 13, which
shows a role hierarchy of a person with an employee and a professor role. Both the

40 Y.E. Selçuk and N. Erdo an

ProfEmeritus and the Employee classes have a skill variable and an
increaseSkill method. Two scenarios are defined in Figure 13 with roman
numerals. The first one suggests that the person is in the company at the time being
but he is required to give an academic advice to a student. This means that we need
switching from the employee role to the professor role. The consultation mechanism
should be used in this case in order to have the person’s academic skill increased.

On the other hand, the second scenario suggests that the person is again is in the
company at the time being and he is required to report an incident to authorities. This
action requires the person to give his phone number. As the person is in the office
when the incident happens, the second scenario requires switching to Person role
from Employee role. This time we need to use delegation mechanism in order to
give the correct phone number to the authorities, which is the work phone of the
person. Otherwise, home phone would be stated. The first part of Figure 14 shows the
implementation of the classes and methods mentioned in the two scenarios while
the second part shows how the scenario is executed.

public class Employee extends Role {
double skill; String phone;
public Employee(String p) { phone = p; skill = 1.0; }
public void increaseSkill(Double d) {skill+=d.doubleValue();}
public String givePhone() { return phone; } }

public class ProfEmeritus extends Teacher {
 public double skill;
 public ProfEmeritus(Teacher t) {super(t.course);skill=1.0;}
 public void advice() { //give academic advice

((RoleInterface)self).executeMethod("increaseSkill",0.1);}
 public void increaseSkill(Double
d){skill+=d.doubleValue();}}
public class Person extends Actor {
 String name, phone;
 public Person(String n,String p) {name = n; phone = p;}
 public void reportIncident() { //report the incident

String currentPhone = (String) ((RoleInterface)self).
ExecuteMethod ("givePhone",null);

System.out.println("You can call me from"+currentPhone);}}
//...
Person p; Employee e; Teacher t; ProfEmeritus pre;
p = new Person("Yunus Emre Selçuk","216-7891976");
e = new Employee("212-2853300");
p.addRole(e); pre = new ProfEmeritus(t); p.addRole(pre);
p.enableDelegation(true); p.useConsultation();
((ProfEmeritus)e.as("test.ProfEmeritus")).advice();
p.useDelegation();
((Person)e.as("test.Person")).reportIncident();

Fig. 14. Writing “delegation-and-consultation-sensitive” code

4.3.12 Persistent Role Hierarchies
Persistence capability is added to JAWIRO, so that users are able to save entire role
hierarchies to secondary storage devices for later use. The PersistenceManager
(PM) class is responsible from secure storage and retrieval of role hierarchies. A PM
instance has a persistency table where an entry for each Actor instance that needs to

 A Role Model for Description of Agent Behavior and Coordination 41

be persistent is kept. The persistency table is stored in an encrypted file. The
following information is automatically generated and kept in the table:

− The class name of the Actor object.
− The name of the file where the Actor object is to be serialized.
− The name of the file where the information about the role hierarchy is kept. This

file is called the information file and it is encrypted as well.

If persistency is needed in an application, the first task to do is to create
a PM instance by using the PersistenceManager(String path, String
name) constructor. If the given persistency file does not exist, PM creates a
new file. The second task is to register the root of the hierarchy with the
PersistenceManager.register(Object anActor, String key)
method. The PM instance saves the persistency table after each registration. The final
task for the programmer is to upload the root of the hierarchy to the PM instance with
the correct key, given in the previous step. This procedure is illustrated in Figure 15.
JAWIRO handles the rest as follows:

− The PM instance serializes the Actor object to disk and encrypts the file.
− The Actor.hierarchy member serializes the rest of the hierarchy and

encrypts all files. It creates and encrypts the information file as well.
− The PM instance encrypts all created files with the 64-bit DES algorithm.

PersistenceManager pm;
A a = new A(); //Class A extends Actor
construct_hierarchy(); //create the role hierarchy
pm = new PersistenceManager("C:\\Temp\\", "test_a");
pm.register(a, "key_a");
pm.upload(a, "key_a");

Fig. 15. Code for saving a role hierarchy to disk

If a role hierarchy is no longer needed to be persistent, the public void
PersistenceManager.unregister(String key) method is used. This
method removes the Actor object with the given key from the persistence table and
deletes all associated files from the disk.

When a persistent role hierarchy is needed later, the user creates a PM instance and
a new instance of the root class and then uploads the entire hierarchy by using the
public Object PersistenceManager.download (String key)
method, provided that the correct key is given. Figure 16 gives an example of how
this is done. JAWIRO handles the rest of the procedure as follows:

− The root instance is deserialized from the secondary storage.
− The PM instantiates and deserializes the role objects belonging to the rest of the

hierarchy.
− The PM instance adds the role objects to the role hierarchy in correct order.

The persistence capability of JAWIRO is implemented by using the serialization
API of Java, which has a drawback: suppose that a class A has a member variable of

42 Y.E. Selçuk and N. Erdo an

PersistenceManager pm;
A a = new A();
pm = new PersistenceManager("C:\\Temp\\","test_a");
a = (A) pm.download("key_a");

Fig. 16. Code for loading a role hierarchy from disk

class B. Further assume that another class C has also a member variable of class B.
Let an instance of A named obj_a and an instance of C named obj_c exist and
point to the same instance of B named obj_b. When obj_a and obj_c are
serialized to disk and then deserialized, obj_a and obj_c no longer point to the
same object obj_b but they point to two different objects having the same state as
the object obj_b. The coder must explicitly check the copies and merge those two
copies into one object. As a consequence; if a participant of a role hierarchy has one
or more references to other Role or Actor instances, these references no longer
show the original instances after serialization. The user should write additional code
to correct those references.

5 Evaluating JAWIRO

This section evaluates JAWIRO in terms of both its features and performance. Schrefl
and Thalhammer’s role model [14] for Java and an implementation of a design pattern
for roles, role relationship [18], are used for comparison. The role relationship pattern
is extended from the role object pattern [18].

Schrefl and Thalhammer’s role model [14] is implemented in Java and is available
for academic use. This role model is based on Gottlob, Schrefl and Rock’s previous
work [19] in Smalltalk. Schrefl’s recent work with Thalhammer [14] supports all
primary features of roles.

5.1 Feature Comparison

JAWIRO is an extended role model which supports both the basic and extended
features of roles. Table 1 shows some key features of the compared approaches, as
well as other recent role models for Java.

We have kept the implementation of the role relationship pattern [18] as its
original. This pattern can be extended to support additional features of roles, but we
think this would cause us to loose our focus on JAWIRO. Another important work,
Schrefl and Thalhammer’s role model [14], supports all basic features of roles.
However, it does not support the extended features of roles. This role model is
available for download as a JAR file, together with its documentation.

5.2 Performance Comparison

The objective of the performance comparison is twofold. Firstly, we need to compare
JAWIRO’s performance with that of another role model. Secondly, we need to deter-
mine whether a significant overhead is introduced or not when roles are incorporated
in an application.

 A Role Model for Description of Agent Behavior and Coordination 43

Table 1. Feature based comparison of recent role models in Java

 Jawiro
Schrefl
et al. [14]

Role Rel.
Pattern [18]

Dec-Java
[12]

Lee&
Bae [15]

Base language Java Java Java Java Java
Aggregate roles + + + + –
Hierarchy support + + – + –
Run-time role checking + + + – –
Preventing role binding anomalies + – – – +
Object level multiple inheritance + – – – –
Member/method access without
referring its owner.

+ – – – –

Dominant roles + – – – –
Delegation and consultation support + – – – –
Role transfers + – – – –
Suspending and resuming roles + – – – –
Persistency + – – – –
Role searching optimization + – – – –

The benchmarking code first creates a role hierarchy with a given depth and
degree. The tree representing the hierarchy is a balanced one. However, the role
relationship pattern does not support hierarchies of depth greater than two. In this
case, the code creates an equal number of role objects but adds all of them to the same
object, the root. The benchmarking code then executes commands representing the
basic features of roles.

In order to see how changes in the size of a role hierarchy affect performances, we
should be able to create hierarchies with arbitrary depth and degree. This need leads
to an arbitrary number of role objects as well. Even trees with small values of depth
and degree can lead to thousands of role objects. It is practically impossible to create
such great numbers of different role classes. Therefore, we’ve used aggregate roles,
as defined in Section 3.1 among the basic features of roles and named as qualified
roles in Schrefl’s model [14], as role objects in the benchmark. The results of our
benchmarks are given in Table 2. They are obtained by using an Intel platform with
2.8 GHz Pentium 4 CPU, i865 chipset, 512MB RAM and JDK 1.5.0_03.

There is a slight difference in creating role hierarchies between JAWIRO and
Schrefl’s model [14]. In JAWIRO, role objects are instantiated with an arbitrary
constructor and added to an owner any time the programmer wishes by issuing the
RoleInterface.addRole(Role) call. These two calls represent the first and
the second stages given in Table 2. On the other hand, role objects must be bound
with an owner during instantiation when using Schrefl’s model. This represents the
third stage given in Table 2. For easier comparison, the third stage for JAWIRO is
calculated by adding the execution times of stages 1 and 2 in Table 2. We will name
the first three stages building phase and the others running phase.

JAWIRO uses an optimization mechanism which will be explained shortly. For
now, consider the un-optimized results given in Table 2 first. These results show that

44 Y.E. Selçuk and N. Erdo an

Table 2. Benchmark results in Intel platform. Hierarchy depth is 6 and its degree is 3.

Average exec. time (msec.)
Without Optimization With Optimization

Stages Jawiro Schrefl Pattern Jawiro Schrefl Pattern
Create members 0,009 N/A 0,009 0,0044 N/A 0,000
Add roles 0,009 N/A 0,000 0,004 N/A 0,000
Construct hierarchy 0,017 0,082 0,009 0,009 0,073 0,000
Role checking 0,018 0,009 0,041 0,0002 0,009 0,041
Role switching 0,018 0,030 0,041 0,0002 0,030 0,041
Role execution 0,006 0,005 0,004 0,003 0,003 0,002
Switching execution 0,043 0,047 0,056 0,004 0,033 0,044
Checking switching
execution 0,068 0,092 0,110 0,006 0,065 0,087

using role models instead of a pattern introduces two or three-fold overhead during
the building phase. However, this overhead diminishes as the running phase is more
important than the building phase. The building phase is executed only once at the
beginning of the application code but the operations in the running phase will be
repeated continuously during the lifetime of the application program. Table 2 also
shows that role models are always faster in the running phase and JAWIRO is usually
faster than Schrefl’s model. It is also seen that the overhead of role execution is
virtually zero in all role based approaches.

One of the unique features of JAWIRO is an optimization mechanism for
searching and switching roles. It is a wise choice in dynamic and persistent systems
such as JAWIRO to search for existence of a role before switching to that role.
Whenever the existence of a role is checked, JAWIRO keeps this particular role in a
private member. When handling a following role switching command, JAWIRO
first checks that private member. If the requested role is the one kept in the private
member, that role is returned without searching the role hierarchy. Subsequent
switching requests to this same role also return the role kept in the private member.
The optimized results given in Table 2 show that this mechanism proves itself to be
useful. Execution times of the benchmark stages are either halved or shortened
tenfold when commands are rearranged in an order that makes use of the
optimization mechanism.

The same benchmark code gives different results in AMD platforms. In a PC
with Athlon XP 2500+ CPU, nForce2 chipset, 512MB RAM and JDK 1.5.0_03; per-
formance of Schrefl’s model [14] becomes 25% better and performance of the role
relationship pattern [18] becomes 40% better while JAWIRO’s performance becomes
20% poorer.

In order to investigate how changes in the size of a role hierarchy affect performance,
the benchmarks for the running phase are repeated for trees with different depth values
on the Intel platform. The results obtained for JAWIRO are presented in Table 3.

Table 3 shows that JAWIRO causes no overhead when executing roles, regardless
of the size of the role hierarchy. Even if there are one million roles in the hierarchy,
the biggest overhead that JAWIRO introduces is as small as one tenth of a millisecond.

 A Role Model for Description of Agent Behavior and Coordination 45

Table 4 shows the same benchmark in the Intel platform, using Schrefl’s model and
the role relationship pattern.

Table 4 shows that the results for Schrefl’s model and the role relationship pattern
are similar with the results for JAWIRO, with one exception. Schrefl’s role model
uses hash tables to keep track of roles, therefore its performance for role checking
operations are unaffected with the growing sizes of the role hierarchies.

Table 3. Effects of hierarchy size on JAWIRO, using Intel platform. n represents number of the
role objects in the hierarchy.

Degree=3 (constant)
n=39;

n2=1,521
n=120;

n2=14,400
n=363;

n2=131,769
n=1,092;

n2=1,192,464
Depth 4 5 6 7

Role checking
(n2 operations)

0,003 0,012 0,018 0,058

Role switching
(n2 operations)

0,003 0,003 0,018 0,055

Role execution
(n operations)

0,000 0,000 0,001 0,001

Switching execution
(n2 operations) 0,000 0,011 0,018 0,055

Checking switching
execution (n2 ops.)

0,005 0,003 0,020 0,055

Table 4. Effects of hierarchy size on Schrefl’s role model and the role relationship pattern,
using Intel platform

Degree=3
(constant)

Schrefl’s model Role relationship pattern

Depth 4 5 6 7 4 5 6 7

Role checking 0,008 0,008 0,010 0,011 0,009 0,014 0,041 0,131

Role switching 0,014 0,017 0,030 0,073 0,003 0,017 0,041 0,130

Role execution 0,000 0,000 0,000 0,000 0,000 0,000 0,001 0,002

Switching
execution

0,013 0,017 0,031 0,074 0,008 0,016 0,044 0,135

Checking switching
execution

0,022 0,033 0,061 0,147 0,006 0,031 0,088 0,273

6 Describing Behavior with Roles in a Simple Team Application

This section demonstrates how roles can be employed for a team of agents by using
JAWIRO. Consider a multiplayer shooter game where the team members are computer
controlled entities, i.e. bots. There can be mobile bots representing soldiers, as well as
immobile turrets and medical stations. Figure 14 shows a role hierarchy for modeling
such an environment.

46 Y.E. Selçuk and N. Erdo an

Fig. 14. A role hierarchy for modeling agents in a shooter game

All agent types are created from the Target class which contains the common
properties of different bot types. The Target class extends the jawiro.Actor
class; so that a Target instance can be root of a role hierarchy. Mobile bots are
instances of the BotAgent class, which can play all available roles. The Leader
role can be played by only one member of a team, while there can be multiple bots
playing the Warrior or the Medic role. Moreover, a BotAgent instance in need
of medical treatment can play the Patient role.

There are also immobile bots in the application domain, i.e. medical stations which
heal nearby patients and turrets which attack the enemies in its range. These devices
are modeled with namesake classes. The Medic role can be reused for the medical
stations; therefore a MedicalStation instance can play the Medic role but it
cannot become a Warrior. Similarly, a Turret instance can play the Warrior
role but it cannot become a Medic.

Let’s examine some possible situations where the characteristics of roles can be put
into good use. A warrior who noticed that he is moderately injured broadcasts a call for
a medic and it gains the Patient role. If his health is further dropped, he can become
crippled. In such case, his Warrior role is suspended until he is attended by a bot
playing the Medic role. However, he can heal himself if he plays a Medic role, too.

The behavior of a bot is determined by its current roles. The control loop of each
bot checks the owned roles and determines which actions to be taken. The specific

 A Role Model for Description of Agent Behavior and Coordination 47

commands of the leader are executed in topmost priority, as long as the necessary
roles exist. For example, a bot attacks to or defends a target with an appropriate
weapon if it has the Warrior role. If there are no specific orders, bots make
decisions which fit the current situation. For example, a bot having the Medic role
looks for nearby allies to heal.

The example application domain imposes some rules on role binding operations.
These rules can be enforced by the constraint managers of JAWIRO, given in detail
in [13]. Briefly; constraint managers are called before a role is gained, lost, suspended
or resumed so that they have a chance to allow or disallow the operation. The
BotConstraints class contains the rules of the restricted role bindings previously
described. Moreover, it can automate actions such as resuming the Warrior role
after loosing the Patient role if the soldier was previously crippled.

Roles can be used for representing and/or implementing the coordination of
multiple agents as well. Just as roles representing individual behavior can be added to
individual agents; roles representing cooperation and coordination rules can be added
to agents, too. The way how the individual agents cooperate can be altered according
to the current state of the environment by defining the roles modeling the coordination
rules necessary at that instant as dominant to the rest.

7 Results

Role models provide an abstraction that can unify diverse aspects of an agent system
such as collaboration protocols and task models. Additionally, agents, objects, and
people can all play roles, so that a role model can span multiple layers in a software
system [16]. The results of our assessment show that role models are valuable tools in
modeling dynamically evolving systems. Role models introduce no overhead when
executing roles and the overhead introduced in the running phase is quite
insignificant. As patterns and ad-hoc approaches do not support all features of roles,
they can be only used in situations where they cover all required abilities. When a
project needs the basic features of roles, role models become the obvious choice. Any
role model can be chosen at this stage, considering the platform that the software is
targeted. However, when some of the extended features are needed as well, JAWIRO
becomes a significant alternative with its rich set of extended features. Moreover,
JAWIRO presents a runtime performance good enough for non real-time systems.
The JAWIRO role package, along with its API documentation and usage examples, is
available in http://www.yunusemreselcuk.com/jawiro/index.html. Currently, we are
working on tailoring JAWIRO for agent based systems to be used in describing both
the responsibilities and the coordination of agents.

References

1. Pacheco, O., Carmo, J.: A Role Based Model for the Normative Specification of
Organized Collective Agency and Agents Interaction. Autonomous Agents and Multi-
Agent Systems 6 (2003) 145–184

2. Cabri, G., Ferrari, L., Leonardi, L.: Applying security policies through agent roles: A
JAAS based approach. Science of Computer Programming (Article in Press)

48 Y.E. Selçuk and N. Erdo an

3. Cabri, G., Ferrari, L., Leonardi, L.: Exploiting runtime bytecode manipulation to add roles
to Java agents. Science of Computer Programming. 54 (2005) 73–98

4. Zhu, H.: A Role Agent Model for Collaborative Systems. Proc. Int’l Conf. on Information
and Knowledge Engineering, (2003)

5. Jennings, N.R.: An agent-based approach for building complex software systems.
Communications of the ACM 44/4 (2001) 35–41

6. Odell, J.J., Parunak, H.V.D., Brueckner, S., Sauter, J.: Temporal Aspects of Dynamic Role
Assignment. Proc. 4th Int’l Workshop on Agent-Oriented Software Engineering. (2003)
201–213

7. Cabri, G., Leonardi, L., Zambonelli, F.: BRAIN: a Framework for Flexible Role-based
Interactions in Multiagent Systems. Proc. Conf. On Cooperative Information Systems.
(2003)

8. Becht, M., Gurzkil, T., Klarmann, J., Muscholl, M.: ROPE: Role Oriented Programming
Environment for Multiagent Systems. Fourth IECIS Int’l Conf. on Cooperative
Information Systems. (1999) 325–333

9. Odell, J.J., Parunak, H.V.D., Fleischer, M.: The Role of Roles in Designing Effective
Agent Organizations. In Software Engineering for Large-Scale Multi-Agent Systems,
Springer-Verlag (2003)

10. Kristensen, B.B.: Conceptual Abstraction Theory and Practical Language Issues. Theory
and Practice of Object Systems 2/3 (1996)

11. Zendler, A.M.: Foundation of the Taxonomic Object System. Information and Software
Technology 40 (1998) 475–492

12. Aritsugi, M., Makinouchi, A.: Multiple-Type Objects in an Enhanced C++ Persistent
Programming Language. Software - Practice and Experience. 30/2 (2000) 151–174

13. Bettini, L., Capecchi, S., Venneri, B.: Extending Java to Dynamic Object Behaviours.
Electronic Notes in Theoretical Computer Science. 82/8 (2003)

14. Schrefl, M., Thalhammer, T.: Using roles in Java. Software - Practice and Experience. 34
(2004) 449–464

15. Lee, J-S., Bae, D-H.: An Enhanced Role Model for Alleviating the Role-Binding
Anomaly. Software - Practice and Experience. 32 (2002) 1317–1344

16. Kendall, E.A.: Role Models – Patterns of Agent System Analysis and Design. BT
Technology Journal. 17/4 (1999) 46–57

17. Gamma, E., Helm, R., Johnson, R, Vlissides, J.: Design Patterns Elements of Reusable
Object Oriented Software. AddisonWesley, Massachussets (1994)

18. Fowler, M.: Dealing with Roles. Unpublished paper. http://martinfowler.com/apsupp/
roles.pdf

19. Gottlob, G., Schrefl, M., Röck, B.: Extending object-oriented systems with roles. ACM
Trans. on Information Systems. 14/3 (1996) 268–296

SODA: A Roadmap to Artefacts

Ambra Molesini1, Andrea Omicini2, Enrico Denti1, and Alessandro Ricci2

1 DEIS, Alma Mater Studiorum – Università di Bologna,
Viale Risorgimento 2, 40136 Bologna, Italy

ambra.molesini@unibo.it, enrico.denti@unibo.it
2 DEIS, Alma Mater Studiorum – Università di Bologna a Cesena,

Via Venezia 52, 47023 Cesena, Italy
andrea.omicini@unibo.it, a.ricci@unibo.it

Abstract. An artefact for MASs is an entity not driven by an inner
goal (as agents are), but used by agents to achieve their own goals.
In this paper, we assume agents and artefacts as first-class entities in
MAS engineering, and claim that agent-oriented methodologies should
exploit these two abstractions as the basic bricks for the whole engi-
neering process. As a first testbed, we take the SODA agent-oriented
methodology and draw a possible roadmap for its extension toward the
notion of artefact.

1 Agents and Artefacts for MAS Engineering

Agents never live alone. Agents coexist with other agents in a MAS (multi-agent
system) within an environment where they act and interact. Independently of
the specific agent definition adopted—among the many available—, the agent
abstraction alone is not enough to fully model the environment in a natural
way. In fact, many environmental items, simply, are not agents: instead, they are
something inherently different, entities (objects, instruments, tools) that are to
be used by agents, rather than agents themselves. Following the lexicon originally
introduced by Activity Theory [1] and later borrowed by MAS coordination [2],
we refer to such items as artefacts.

Artefacts are objects explicitly designed to provide some function, which
guides their use [3]. Typically, artefacts take the form of objects or tools that
agents share and use to support their activities, and to achieve their (individ-
ual and social) objectives. By adopting a cognitive perspective over systems [4],
agents are the entities of a system that are characterised by some goals to be
pursued, whereas artefacts are the entities that are not intrinsically characterised
by a goal (they are not goal-oriented). Instead, artefacts are characterised by the
concept of use, where an agent using an artefact for its own goals implicitly (and
temporarily) associates an external goal to the artefact itself.

Coordination artefacts are a case of particular interest in the context of agent
societies, where they are usually exploited to achieve or maintain a global be-
haviour which is coherent with the society’s social goal [5]. As such, a coordina-
tion artefact is an essential abstraction for building social activities, in that it

O. Dikenelli, M.-P. Gleizes, and A. Ricci (Eds.): ESAW 2005, LNAI 3963, pp. 49–62, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

50 A. Molesini et al.

is crucial both for enabling and mediating agent interaction, and for governing
the social activities by ruling the space of agent interaction. Indeed, at a closer
sight, any activity carried on by the components of a system—individually or
cooperatively—cannot be really understood (sometimes, even conceived) with-
out considering the artefacts that govern the components’ actions and interac-
tions [5]. More precisely, on the one hand, coordination artefacts mediate the
interaction between individual agents and their environment (including other
agents); on the other, they capture, express and embody those parts of the en-
vironment that are to be designed and controlled in order to support agent’s
activities.

In the end, along with agents, artefacts constitute the basic building blocks
both for MAS analysis and modelling, and for MAS development and actual
construction—i.e., real first-class abstractions available to engineers throughout
MAS design and development process, down to run-time. So, agents and arte-
facts can be assumed as the two fundamental abstractions required to model
and shape the structure of MASs: a MAS is made by agents speaking with
other agents and using artefacts in order to achieve their goals. However, in or-
der to show this conceptual framework worthwhile, and prove its effectiveness,
we should be able to show how a MAS could be actually built using agents and
artefacts: for instance, experimenting with some well-founded agent-oriented ap-
proach adopting agents and artefacts as its basic abstractions. The fact is that,
no known agent-oriented methodology [6, 7, 8, 9] does this today: as a result, to
put our framework to test, we are required either to invent a new agent-oriented
methodology, or to extend an existing one with the notion of artefact.

Among the many others, SODA [10] (whose basics are recalled in Section 3)
is an agent-oriented methodology for the analysis, design and engineering of
agent-based systems, specifically focussing on inter-agent issues. As such, SODA
heavily relies on the notion of coordination model [11], which deeply influences
its abstractions and mechanisms, leading engineers to build MAS social infras-
tructure on top of a coordination infrastructure. So, in particular, social rules
are expressed as coordination laws, and embedded into coordination media.

Since coordination media are to be seen as a sort of ancestors of coordination
artefacts (and more generally of artefacts for MASs [3]), it seems quite natural to
choose SODA as our testbed methodology for extension toward artfacts. In fact,
the original SODA formulation does not include artefacts explicitly as such—
mostly because the full development of the artefact notion in the MAS context is
subsequent to the first articulated definition of SODA [10]. Furthermore, a recent
research development has lead us to introduce a simple layering principle (called
zooming) in SODA, which makes it possible to scale the representation details
with the complexity of task description (SODA+zoom [12]). This development
has clearly shown that a re-formulation of SODA in terms of artefacts could not
be delayed any longer, for both theoretical and practical reasons, apart from
obvious reasons of coherence and conceptual elegance.

Accordingly, this paper traces a roadmap toward the forthcoming SODA+
artefacts. First, we shortly outline the most relevant features of artefacts and

SODA: A Roadmap to Artefacts 51

discuss a possible taxonomy (Section 2), then we recall SODA basics and briefly
present the novel SODA+zoom (Section 3). In Section 4 we show the impact of the
introduction of artefacts in the SODA approach, sketching a possible re-formulat-
ion which also relies on SODA+zoom. In particular, we investigate the meaning
and the consequences of introducing the artefact notion onto the above-mentioned
zooming principle (Subsection 4.1), and onto the several SODA models—role, so-
ciety, resource, and interaction models (Subsections 4.2 through 4.4). Conclusions
and future lines of research are finally drawn in Section 5.

2 Artefacts: Features and Classification

The sources for a theory of artefacts can be found in a number of different
research fields, ranging from organisational/psychological theories [1] to anthro-
pology [13, 14], and obviously including the area of coordination models [15].
Such a theory, first developed for coordination artefacts [5] then generalised to
artefacts for MASs [3], is shortly sketched in the remainder of this section. In
particular, Subsection 2.1 outlines the main features of artefacts for MAS, and
lists a number of desirable artefact properties. Subsection 2.2 outlines a possi-
ble taxonomy for artefacts, meant to be used both as a classification criterion
and as a model for a well-principled methodology for agent-oriented engineering.
Finally, Subsection 2.3 discusses in principle the impact of the notion of artefact
upon an agent-oriented methodology.

2.1 Features

According to [3], an artefact for MAS exposes (i) a usage interface, (ii) operating
instructions, and (iii) a function/service description.

Usage Interface — The set of operations provided by an artefact defines what
is called its usage interface. Through its usage interface, an artefact is used
by agents (and never the other way round) and is driven by their control,
automatising a specific service in a predictable way, without the freedom of
autonomy.

Operating Instructions — Operating instructions are a (possibly formal) de-
scription of the procedure an agent has to follow to meaningfully interact
with an artefact over time, working as a sort of manual for an agent using
an artefact.

Function Description — A function description is a description of the func-
tionality provided by the artefact, which agents can use essentially for arte-
fact selection. In fact, differently from operating instructions, which describe
how to exploit an artefact, function description tells an agent about what
can be obtained by using an artefact.

In addition, artefacts should exhibit further relevant properties, which enhance
MAS engineers’ but also agents’ ability to use them for their own purposes. For
instance, it should be possible to monitor artefacts as an observable part of the

52 A. Molesini et al.

environment, so as to check the development of the activities, track the system
history, and evaluate the overall system performance. Desirable artefact features
can then be listed as follows:

Inspectability — The state of an artefact, its content, the laws governing its
behaviour, its usage interface, operating instructions and function descrip-
tion might be all or partially inspectable by agents.

Controllability — The operational behaviour of an artefact should be control-
lable so as to allow engineers and agents to monitor its proper functioning:
it should be possible to stop and restart an artefact working cycle, to trace
its inner activity, and to observe and control a step-by-step execution.

Malleability — The behaviour of an artefact should be modifiable at execution
time in order to adapt to the changing needs or mutable external conditions
of a MAS.

Predictability — The behaviour of an artefact should be predictable by an
agent as well as by a MAS engineers—while the same assumption is not
applicable in general to agents, given their autonomy. So, usage interface,
operating instructions and function description of an artefact can be used
by an agent as a contract with an artefact.

Formalisability — Predictability is easily related with formalisability. When a
formal model of the behaviour of an artefact is available, artefact is obviously
predictable. In addition, features like automatic verification of the properties
of the services provided by an artefacts easily follow from formalisability.

Linkability — Artefacts can be used encapsulate and model reusable services in
a MAS. To scale up with complexity of an environment, it might be useful
to compose artefacts, by allowing artefacts to invoke operations on other
artefacts.

Distribution — For the same reasons advocated for linkability, artefacts could
be distributed. In particular, a single, distributed artefact can in principle
be used to model a distributed service, accessible from more nodes of the
network.

As a final remark, it should be noted that all the artefact properties presented
above play a different role when seen from the different viewpoints of agents and
of MAS engineers. For instance, operating instructions are to be seen as mostly
a design tool for engineers, as well as a run-time support for rational agents.

2.2 Taxonomy of Artefacts

Many sorts of different artefacts populate a MAS, providing agents with a num-
ber of different services, embodying a variety of diverse models, technologies and
tools, and addressing a wide range of application issues. So, different categori-
sations could be made. For instance, for coordination artefacts, which entail a
form of mediation among the agents using a given artefact and enact some coor-
dination policy, two basic aims can be identified: the constructive artefact, as an
abstraction aimed at creating and composing social activities; and the norma-
tive artefact, essential for ruling social activities. This distinction is particularly

SODA: A Roadmap to Artefacts 53

relevant when dealing with the concept of norm, however for our purposes a dif-
ferent classification seems more useful. The taxonomy of artefacts presented in [3]
distinguishes among individual artefacts, social artefacts, and resource artefacts.

Individual artefacts are artefacts exploited by one agent, and mediate be-
tween an individual agent and the environment. In general, individual arte-
facts are not directly affected by the activity of other agents, but can, through
linkability, interact with other artefacts in the MAS.

Social artefacts are instead artefact exploited by more than one agent, and
mediate between two or more agents in a MAS. In general, social artefacts
typically provide MASs with a service which is in the first place meant to
achieve a social goal of the MAS, rather than an individual agent goal.

Resource artefacts are artefacts that conceptually wrap external resources,
and mediate between agents of a MAS and the external resources. In prin-
ciple, resource artefacts can be conceived as a means to raise external MAS
resources up to the agent cognitive level. In fact, they can equip external
resources with an usage interface, operating instructions, and a service de-
scription, and realise their task by dynamically mapping high-level agent
interactions upon lower-level interactions.

In the end, individual, social and resource artefacts can be used as the basis
for building the glue keeping agents together in a MAS, and for structuring the
environment where agents live and interact: altogether, they can be taken as the
conceptual, layered foundation for artefact design in MAS engineering.

2.3 Artefacts for AOSE: A First Insight

Looking at the current state of agent technologies and methodologies [16], arte-
facts of many sorts (like web services, coordination media, mailboxes, ontologies,
directory services, and so on) are widespread in MASs today, and are typically
provided as infrastructural abstractions.

However, they lack a shared common model, and as a direct consequence
there is no general methodological approach enabling MAS engineers to design
artefacts for MAS in a systematic way. Once such a model has been devised out,
however (Section 2), the question is how it impacts on the theory and practise
of AOSE (agent-oriented software engineering).

First of all, artefacts are the means for modelling and shaping the agent
environment [3]. This means that any AOSE methodology exploiting the notion
of artefact should in principle model the environment as a first-class entity, and
use then artefacts to this end. SODA is in fact one of the few AOSE methodology
(if not the only one) explicitly modelling MAS environment, and promoting its
engineering (perhaps not surprisingly) through coordination media.

Furthermore, artefacts promote the engineering of the space of interaction
among agents — thus enabling more articulated schemata for agent communi-
cation. AOSE methodologies should then allow for less trivial communication
models than mere conversations between agents, and exploit artefacts to pro-
mote the design and development of complex agent interaction patterns. In the

54 A. Molesini et al.

original SODA formulation, for instance, the interaction model in the analysis
stage accounts for social interaction in terms of the rules governing interactions
within groups of agents, which are then mapped upon coordination laws embed-
ded within coordination media in the design stage.

More generally, artefacts make it easier to enrich MAS design with social/
organisational structures, as well as complex security models: roles, permissions,
policies, commitments, and the like can be represented explicitly as first-class
entities, and encapsulated within artefacts that both embody and enforce them
within a MAS. AOSE methodologies should then enable and promote the design
of specialised artefacts from general-purpose abstractions, which could take in
charge specific MAS aspects such as workflows, topology, security policies, and
so on. An obvious source of inspiration for SODA, for instance, was the notion
of coordination medium as provided by the TuCSoN coordination infrastructure
[17]—which was shown to be expressive enough to capture a number of differ-
ent issues, from organisation to security [18], from intelligent environment to
workflow management.

3 SODA: An Outline

SODA (Societies in Open and Distributed Agent spaces [10]) is an agent-oriented
methodology for the analysis and design of agent-based systems. SODA focuses
on inter-agent issues, like the engineering of societies and infrastructures for
MASs. Since this conceptually covers all the interactions within an agent sys-
tem, the design phase deeply relies on the notion of coordination model [11].
In particular, coordination models and languages are taken as a source of the
abstractions and mechanisms required to engineer agent societies: social rules
are designed as coordination laws and embedded into coordination media, and
the social infrastructure is built upon coordination system.

The analysis phase is characterised by three models: the role model, the re-
source model and the interaction model. In particular:

– in the role model, first the application goals are modelled in terms of the
(individual and social) tasks to be achieved, in turn expressed in terms
of the responsibilities they involve, of the competence they require, and of
the resources they depend upon. Each individual task is associated to an
individual role, analogously, social tasks are assigned to groups. Groups are
defined in terms of the social roles participating in the group. A social role
describes the role played by an individual within a group.

– in the resource model, the application environment is modelled in terms of
available services, associated to abstract resources. These are further associ-
ated to a policy, intended as a set of access permissions/protocols associated
to a role or group.

– the interaction model is aimed at capturing interaction among roles,
groups and resources. Each interaction protocol is defined in terms of the in-
formation required/provided by roles and resources. Analogously, interaction
rules govern interaction within groups.

SODA: A Roadmap to Artefacts 55

The design phase is based on three strictly-related models, deriving from the
models defined in the analysis phase. In particular, the analysis’ role model
maps on the design’s agent model and society model, while the analysis’ resource
model maps on the design’s environment model. So, more precisely:

– in the agent model, individual and social roles are mapped upon agent
classes: each agent class is then characterised by the task, the interaction
protocols associated to its role, and the resources that need be accessed,
with the corresponding set of permissions.

– in the society model, groups are mapped onto agent societies, each or-
ganised around a coordination abstraction [19] along with the corresponding
coordination rules—these are the design counterpart of the analysis’ inter-
action rules.

– in the environment model, the resources identified in the analysis phase
(along with the corresponding policies) are mapped onto concrete resource
at the design phase—for instance, databases, expert systems, physical sen-
sors, and so on. Furthermore concrete resources are associated to topological
abstractions.

For the sake of simplicity, we skip here further details: we forward interested
readers to [10], and to [12] for the tabular representation of SODA+zoom.

3.1 SODA+zoom

The recent extension of SODA is SODA+zoom [12], where we introduce a simple
layering principle with the specific aim of scaling with the complexity of tasks
description.

MAS design in SODA+zoom can be layered. Each layer contains a description
of the models (role, resource, interaction) at a given level of abstraction, and is
labelled with a number: as a convention, the uppermost layer is layer 0—which
represents the most abstract view of the MAS: so, zooming a model at layer L
results in a model at either layer L+1 (in-zooming) or layer L-1 (out-zooming).
The zooming principle comes from the basic intuition that what can be described
as a (complex) individual task T assigned to a role R at layer L, can also be
zoomed into a social task ST assigned to a group Gr at the layer L+1—and
viceversa. That is, zooming allows for different viewpoints over the system at
different levels of abstraction (see Figure 1).

It is worth noting that the zooming rule includes a sort of consistency rule for
which if R is the role at layer L zoomed as group Gr at layer L+1, then (i) the set
IN(R) of the information required characterising the interaction protocol of R
must be a subset of the union of all the sets describing the information required
by the social roles SR of the group Gr; (ii) the set OUT(R) of the information
provided characterising the interaction protocol of R must be a subset of the
union of all the sets describing the information provided by the social roles SR
of the group Gr.

The zooming mechanism provided for the model at the analysis stage directly
impacts on the models and diagrams identified at the design stage. For each

56 A. Molesini et al.

Individual
Task IT

Role R

Social
Role SR

composed of

m

Layer L

Layer L+1

Group GSocial
Task ST Society S

Agent A
Agent A

Agent A

Fig. 1. Zooming: the basic intuition

layer defined at the analysis stage, in fact, there is a corresponding layer at the
design stage, which maps the models described in SODA. As a result, the effect
of the zooming principle at the design stage basically accounts for describing
agent classes C—mapping a role R at the layer L—as a society S at the layer
L+1, mapping the group Gr which results from in-zooming R.

4 Roadmap

As argued in Subsection 2.3, the introduction of the concept of artefact in a
AOSE methodology has several consequences. In this section, we perform a con-
ceptual experiment by discussing the potential impact of artefacts when they
are introduced in the SODA+zoom methodology.

First, here we conceive artefacts mostly as design abstractions, and we conse-
quently choose to introduce them since the design phase. As a result, the models
of the design stage have to be suitably adapted and extended: as one may easily
expect now, we introduce (i) social artefacts in the society model, (ii) resource
artefacts in the environment model, and (iii) individual artefacts in the agent
model. Furthermore, even the models of the analysis stage are not exempted
from the influence of artefacts—in particular, the interaction model. Only the
resource model is essentially left unchanged.

So, in the remainder of this section we outline a possible re-structuring of all
the models used by SODA (in particular, by taking its SODA+zoom extension
as our reference), which works as a practical roadmap for the full exploitation
of the artefact notion in the methodology—toward SODA+artefacts.

4.1 Artefacts and Zoom

As mentioned above, one may expect that artefacts have a relevant impact on
any AOSE methodology, SODA included. What might be not-so-obvious is that

SODA: A Roadmap to Artefacts 57

the very notion of artefact is itself affected by the principles of the methodology,
as it happens when they are introduced in SODA.

This is particularly evident when applying the zooming principle to artefacts.
For instance, a resource artefact at layer L could be zoomed and become a
composition of one or more social artefacts (managing the resource access policy)
and one or more resource artefacts at layer L+1.

Zooming artefacts also allows for different levels of abstraction over resources.
As a simple example, taken from human world, one may think of a simple desktop
computer as an artefact: at layer L, it may be seen as a single resource artefact,
but would become a composition of different resource artefacts (a CPU, a hard-
disk, a DVD unit, wires, and so on) when zoomed at layer L+1. If we further

L L+1

Artefact

op1

op2
Social
Artefact

Resource
Artefact

Resource
Artefact

interface

op1

op2

Zooming out

Zooming in

Fig. 2. Zooming: exploding/imploding artefacts

L L+1

Artefact

op1

op2

interface

Artefact

op1.1

op2

interface

op1.2

op1.3

Zooming out

Zooming in

Fig. 3. Zooming: refining artefacts

58 A. Molesini et al.

zoom in the hard-disk, this could be seen at layer L+2 as the composition of a
case, disks, heads—just to mention a few; and zooming could continue until the
desired/required level of detail/abstraction is reached.

However, zooming artefacts is not restricted only to “exploding” artefacts
(Figure 2)—i.e., an artefact that “generates” several artefacts. Instead, it could
involve a refinement of the artefact’s features (Figure 3), such as its usage inter-
face. So, an artefact could expose at layer L an interface that provides all the
operations required at that layer, whereas at layer L+1 the same artefact could
expose further, more detailed operations according to the level of abstraction re-
quired. For instance, an individual artefact operation could result into a number
of (more refined) artefact operations at layer L+1.

4.2 Artefacts and Role/Society Models

The society model deals with the issues of how to design social rules so as to
make agent societies accomplish their social tasks.

In the following, we re-formulate the model by introducing social artefacts,
which can be roughly assumed as a generalisation of coordination media as
found in the original definition of SODA. A social artefact, in fact, embodies and
extends the facilities of a coordination medium, that is, mainly the automation
of coordination services that allow the activities of a society of agents to be
governed in an effective way. Furthermore, it may provide for a certain quality of
coordination in terms of e.g., performance, robustness, reliability—as well as of
the above-mentioned artefact’s features—, and can also act as a kind of “social
memory”, which could be inspected for analysis of global behaviours.

Back to our re-formulation, the original coordination rules associated to the
coordination medium become here the social rules associated to the social arte-
facts. So, groups are still mapped onto agent societies, but societies are organ-
ised around social artefacts, enforcing social rules—the design counterparts of
the analysis’ interaction rules.

4.3 Artefacts and Resource/Environment Models

The SODA environment model deals with the issues of how to design the envi-
ronment where the agents and societies live.

The introduction of resource artefacts (instead of concrete resources) allows
the SODA environment model to be re-formulated so as to provide MAS en-
gineers with a better tool to represent the environment for a MAS. In fact,
resource artefacts directly represent and embody external MAS resources and
raise them up to the agent cognitive level. However, it is quite frequent that
resource artefacts are strictly connected with social artefacts (for instance, as
a result of a zooming), because they are passive entities not supporting coordi-
nation processes of any sort—relying instead on social artefacts for this. This
re-formulation has no immediate consequence on the resource model, however
the presence of social artefacts as the managers of resource artefacts (through
artefact linkability) emphasises the role played by policies in the resource model,

SODA: A Roadmap to Artefacts 59

i.e., the set of admissible (protocols of) actions associated to the roles. In fact,
given the nature of resource and social artefacts, the definition of a policy in the
resource model at the analysis stage also results in the definition of social rules
embodied in social artefacts that govern the access to shared resource artefacts.

As a consequence of introduction of artefacts, the need for the definition of a
topological model that represents the geography of a MAS environment becomes
even more stringent. Given the nature of artefacts—as design abstractions meant
to survive the whole engineering process down to deployment—, it is almost
mandatory to allow MAS engineers to model the topology of a system since
the design phase. This would make it possible to early understand the MAS
physical constraints, and better face that deployment stage which represents
one of the most trouble-making phases in the engineering of today complex
software systems. However, given the aim of this paper, the definition of a general
topological model for SODA is definitely out of the scope of this work, and will
deserve a treatment on its own in the future.

4.4 Artefacts and Interaction Model

Given that artefacts mostly deal with agent interaction, and that SODA is an
AOSE methodology focussing on agent interaction, it seems quite obvious that
introducing artefacts in SODA requires modifications in the interaction model.

A first distinction comes to be useful, that is, separating the interaction pro-
tocols related to roles from those related to abstract resources: here, we rename
them as role interaction protocols and resource interaction protocols, respectively.
An interaction protocol is a composition of elementary actions for roles, and ele-
mentary operations for resources. What is elementary, however, strictly depends
on the considered layer.

Since agents in a MAS can either (i) speak with other agents or (ii) use
artefacts according to their own goals, actions may take two forms, communica-
tive action and use action: communicative actions model agents speaking with
agents, while use actions model agents using resources (artefacts).

Further consequences come from the application of zooming. For the sake of
discipline, we let zooming be applied on single dimensions only: that is, only a
single sort of abstraction should be in-zoomed at a time. For instance, it is not
allowed to in-zoom a role and an interaction protocol together. So, two different
situations may occur:

In-zooming protocols — If we in-zoom role interaction protocols at layer L, we
obtain a refinement of interaction protocols at layer L+1, which may result in
further actions added, a different action composition, or both things together.

In-zooming roles — If we in-zoom role R at layer L, we obtain a group Gr at
layer L+1, so we should define both social roles and social rules associated
to Gr. Role interaction protocols of R should be exploded into several role
interaction protocols associated to the social roles of Gr: there is no univocal
association between them, in particular a role interaction protocol at layer
L could be exploded into a number (at most n, if n is the number of social

60 A. Molesini et al.

roles of Gr) of role interaction protocols at layer L+1, associated to different
social roles. Furthermore, in-zooming role interaction protocols at layer L
could require the introduction of new social rules to preserve the coherence
of the role interaction protocols originated by the zooming at layer L+1.

Basically, the same happens for abstract resources and resource interaction pro-
tocols: when we zoom on resource interaction protocols we obtain at layer L+1
a refinement of the resource interaction protocols. When we in-zoom an abstract
resource at layer L, we obtain a number (say n) of other abstract resources at
layer L+1, and the resource interaction protocols can be then exploded into
n resource interaction protocols. In addition, in-zooming resource interaction
protocols at layer L may require the introduction of new rules (called resource
rules) to preserve the coherence of the resource interaction protocols at layer
L+1, originated by the zooming.

In the design phase, resource rules can be mapped onto social artefacts that
govern the resource artefacts generated by the zooming of an artefact at a higher
level of abstraction. It is worth noting that this social artefact works essentially
as an access and coordination point aimed at the preservation of the coherence
among resource interaction protocols: if the resource artefacts need resource
access policies, it is then necessary (in principle) to add other dedicated social
artefacts—which may possibly collapse in a unified run-time abstraction after
the development stage. Here, “access and coordination point” means that the
social artefact coordinates the agent access to several resource artefacts so that
the single operation on a single artefact done by the agent at layer L is carried
out correctly once the operation is exploded in a number operations on a number
of artefacts at layer L+1.

Finally, the agent model is to be modified so as to adopt individual arte-
facts, aimed at associating role interaction protocols to the agents playing roles.
Role interaction protocols, in fact, could be suitably embedded within individual
artefacts and so associated to individual agents: each agent would then be con-
nected to a single individual artefact containing all the role interaction protocols
associated to the roles played by agent in the MAS. The choice of individual arte-
fact as the locus where to place role interaction protocols is not only the most
natural and obvious: it also brings some further potential result, in particular
when individual artefacts come equipped with features like inspectability and
malleability—so that, for instance, an intelligent agent could know and under-
stand its admissible actions in the MAS, and possibly reason about it to find
the best possible course of actions. Even more, individual artefacts promote a
systematic approach to the problems of security (as shown by agent coordination
contexts in [20]), allowing for instance the introduction of a Role-Base Access
Control (RBAC) model aimed at developing safe MASs.

5 Conclusions

This paper investigates the impact of assuming the artefact notion as the second
milestone for MAS modelling and engineering, side-by-side to agents, clearly

SODA: A Roadmap to Artefacts 61

distinguishing between agents and the entities they use—i.e., between goal-
driven entities, and entities whose goal is assigned by agents at the time of
their usage. The SODA methodology, in its more advanced version that includes
zooming, is taken as the case study to test the effectiveness of this approach, re-
formulating its original definition in terms of artefacts. In this paper we started
exploring the consequences of this choice onto the analysis and the design mod-
els, with special regard to its adequacy in capturing the effects of zooming. Early
results seem promising: artefacts appear to fit well the SODA role, society, and
environment models—although in the latter case the need of a topological model
arises, indicating one first open issue. Further work will also be needed to better
understand all the implications of the impact of artefacts onto the SODA inter-
action model, since this is where the relationships between most SODA concepts
(roles, protocols, resources—to cite just some) interlace together more strictly—
and also where many other relevant aspects (e.g. RBAC model, security issues)
are likely to insist in the future.

References

1. Nardi, B.: Context and Consciousness: Activity Theory and Human-Computer
Interaction. MIT Press (1996)

2. Ricci, A., Omicini, A., Denti, E.: Activity Theory as a framework for MAS coor-
dination. In Petta, P., Tolksdorf, R., Zambonelli, F., eds.: Engineering Societies in
the Agents World III. Volume 2577 of LNCS. Springer (2003) 96–110 3rd Inter-
national Workshop (ESAW 2002), Madrid, Spain, 16–17 September 2002. Revised
Papers.

3. Omicini, A., Ricci, A., Viroli, M.: Agens Faber: Toward a theory of artefacts
for MAS. Electronic Notes in Theoretical Computer Sciences (2005) 1st Interna-
tional Workshop “Coordination and Organization” (CoOrg 2005), COORDINA-
TION 2005, Namur, Belgium, 22 April 2005. Post-proceedings.

4. Conte, R., Castelfranchi, C.: Cognitive and Social Action. UCL Press Limited,
University College London, UK (1995)

5. Omicini, A., Ricci, A., Viroli, M., Castelfranchi, C., Tummolini, L.: Coordination
artifacts: Environment-based coordination for intelligent agents. In Jennings, N.R.,
Sierra, C., Sonenberg, L., Tambe, M., eds.: 3rd international Joint Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2004). Volume 1. ACM,
New York, USA (2004) 286–293

6. Wood, M.F., DeLoach, S.A.: An overview of the Multiagent Systems Engineering
methodology. In Ciancarini, P., Wooldridge, M.J., eds.: Agent-Oriented Software
Engineering. LNCS, Springer (2001) 207–221 1st International Workshop (AOSE
2000), Limerick, Ireland, 10 June 2000. Revised Papers.

7. Zambonelli, F., Jennings, N.R., Wooldridge, M.: Developing multiagent systems:
The Gaia methodology. ACM Transactions on Software Engineering and Method-
ology (TOSEM) 12 (2003) 317–370

8. Padgham, L., Winikof, M.: Prometheus: A methodology for developing intelligent
agents. In Giunchiglia, F., Odell, J., Weiss, G., eds.: Agent-Oriented Software
Engineering III. Volume 2585 of LNCS. Springer (2003) 174–185 3rd International
Workshop (AOSE 2002), Bologna, Italy, 15 July 2002. Revised Papers and Invited
Contributions.

62 A. Molesini et al.

9. Bresciani, P., Giorgini, P., Giunchiglia, F., Mylopoulos, J., Perini, A.: Tropos:
An agent-oriented software development methodology. Autonomous Agent and
Multi-Agent Systems (8) 3 (2004) 203–236

10. Omicini, A.: SODA: Societies and infrastructures in the analysis and design of
agent-based systems. In Ciancarini, P., Wooldridge, M.J., eds.: Agent-Oriented
Software Engineering. Volume 1957 of LNCS. Springer (2001) 185–193 1st Inter-
national Workshop (AOSE 2000), Limerick, Ireland, 10 June 2000. Revised Papers.

11. Ciancarini, P., Omicini, A., Zambonelli, F.: Multiagent system engineering: The
coordination viewpoint. In Jennings, N.R., Lespérance, Y., eds.: Intelligent Agents
VI. Agent Theories, Architectures, and Languages. Volume 1757 of LNAI. Springer
(2000) 250–259 6th International Workshop (ATAL’99), Orlando, FL, USA,
15–17 July 1999. Proceedings.

12. Molesini, A., Omicini, A., Ricci, A., Denti, E.: Zooming multi-agent systems. In
Müller, J.P., Zambonelli, F., eds.: 6th International Workshop “Agent-Oriented
Software Engineering” (AOSE 2005), AAMAS 2005, Utrecht, The Netherlands
(2005) 193–204 Proceedings.

13. Hewes, G.W.: A history of speculation on the relation between tools and languages.
[14] 20–31

14. Gibson, K.R., Ingold, T., eds.: Tools, Language & Cognition in Human Evolution.
Cambridge University Press (1993)

15. Omicini, A., Zambonelli, F., Klusch, M., Tolksdorf, R., eds.: Coordination of In-
ternet Agents: Models, Technologies, and Applications. Springer (2001)

16. Henderson-Sellers, B., Giorgini, P.: Agent Oriented Methodologies. Idea Group
Publishing, Hershey, PA, USA (2005)

17. Omicini, A., Zambonelli, F.: Coordination for Internet application development.
Autonomous Agents and Multi-Agent Systems 2 (1999) 251–269

18. Cremonini, M., Omicini, A., Zambonelli, F.: Multi-agent systems on the Internet:
Extending the scope of coordination towards security and topology. In Garijo,
F.J., Boman, M., eds.: Multi-Agent Systems Engineering. Volume 1647 of LNAI.
Springer (1999) 77–88 9th European Workshop on Modelling Autonomous Agents
in a Multi-Agent World (MAAMAW’99), Valencia, Spain, 30 June – 2 July 1999.
Proceedings.

19. Ciancarini, P., Omicini, A., Zambonelli, F.: Coordination technologies for Internet
agents. Nordic Journal of Computing 6 (1999) 215–240

20. Ricci, A., Viroli, M., Omicini, A.: An RBAC approach for securing access control
in a MAS coordination infrastructure. In Barley, M., Massacci, F., Mouratidis,
H., Scerri, P., eds.: 1st International Workshop “Safety and Security in MultiA-
gent Systems” (SASEMAS 2004), AAMAS 2004, New York, USA (2004) 110–124
Proceedings.

From Reactive Robotics to Situated Multiagent Systems
A Historical Perspective on the Role of Environment in Multiagent Systems

Danny Weyns and Tom Holvoet

AgentWise, DistriNet, Katholieke Universiteit Leuven,
Celestijnenlaan 200 A, B-3001 Leuven, Belgium

{danny.weyns, tom.holvoet}@cs.kuleuven.be

Abstract. Historically, the idea of situated multiagent systems—in which the en-
vironment gets a prominent role—originates from the domain of reactive
robotics. In this paper, we give a historical perspective of research on agency
that devotes pertinent attention to the environment, and show how the role of the
environment evolved along with subsequent evolutions of agent systems. Today,
it is quite obvious that the environment offers opportunities and challenges for all
types of agency. We discuss recent research in this area, which advocates that the
environment is not only an essential part of every multiagent system, but also pro-
vides an exploitable design abstraction to build multiagent systems. The notion
of environment exceeds specific types of agency, and as such offers opportunities
for synergetic research in the interest of multiagent systems in general.

1 Introduction

Recently, the environment became subject of active research in multiagent system
[1, 2, 3, 4]. Research on environments, however, is not new. In situated multiagent sys-
tems the environment has always been a central part of the system. Historically, the
idea of situated multiagent systems originates from the domain of reactive robotics.
Throughout the different stages in the evolution, from single robotic systems to situ-
ated multiagent systems, the role of the environment evolved along with subsequent
evolutions of agent systems. Whereas the environment was initially considered as “the
external world” in which agents were situated, gradually researchers became aware that
the environment provides a medium that could be exploited for building multiagent sys-
tems. Today, it is quite obvious that the environment offers opportunities and challenges
for all types of agency.

This paper provides a background on the role of the environment in multiagent sys-
tems, aiming to help researchers to improve their understanding of the notion of envi-
ronment in multiagent systems. We give a historical overview of research on agency
that devotes pertinent attention to the environment. We show how the role of the en-
vironment evolved along with subsequent evolutions of agent systems, and we discuss
recent developments in research on environments. The notion of environment exceeds
specific types of agency, and as such offers opportunities for synergetic research in the
interest of multiagent systems in general.

This paper is structured as follows. In Sect. 2, we give an overview of single agent
systems that originate from the principles of reactivity. Section 3 discusses the evolu-
tion of multiagent systems, starting from collective reactive behavior to today’s situated

O. Dikenelli, M.-P. Gleizes, and A. Ricci (Eds.): ESAW 2005, LNAI 3963, pp. 63–88, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

64 D. Weyns and T. Holvoet

multiagent systems. In Sect. 4, we discuss recent developments in research on environ-
ments and we point to a number of challenging domains for future research.

2 Single Agent Systems

Around 1985, several researchers pointed to fundamental problems with deliberative
approaches to build agent systems [5, 6, 7]. Reasoning on internal symbolic models and
action planning turned out to be insufficient for agents that have to operate in a dynamic
and unpredictable environment. These researchers proposed radical new architectures
for building agents. Whereas deliberative approaches emphasize explicit knowledge
and rational choice, the emphasis of these new architectures was on direct coupling
of perception to action, modularization of behavior, and dynamic interaction with the
environment. Initially, the focus of this research was on single agent systems. In this
section, we give an overview of the subsequent evolutions of single agent architectures
and we discuss the role of the environment in this evolution.

2.1 Reactive Robotics

In the mid 1980s, researchers were faced with the problem of how to build autonomous
robots that are able to generate robust behavior in the face of uncertain sensors, an
unpredicted environment, and a changing world [8]. Attempts to build such robots
with traditional techniques from artificial intelligence showed deficiencies such as brit-
tleness, inflexibility, and no real-time reaction [9]. Besides, these systems suffered
from several theoretical problems, such as the frame problem and the problem of non-
monotonic reasoning within realistic time constraints [10]. This brought a number of
researches to the conclusion that reasoning on symbolic internal models, and planning
the sequence of actions to achieve the goals is unfeasible for agents with many—often
conflicting—goals that have to operate in complex, dynamic environments. This con-
clusion led to the development of a radically new approach to build autonomous agents.
The key characteristics of this approach are described by Brooks in [8]:

• Situatedness. The robots are situated in the world, they do not deal with abstract de-
scriptions, but with the here and now of the world directly influencing the behavior
of the system.

• Embodiment. The robots have bodies and experience the world directly, their ac-
tions are part of a dynamic with the world.

• Intelligence. Robots are observed to be intelligent. The source of intelligence is not
limited to the agents internal system, it also comes from physical coupling of the
robot with the world.

• Emergence. The intelligence of the system emerges from the system’s interactions
with the world and from indirect interactions between its components.

Architectures for these robots emphasize a direct coupling of perception to action and
the dynamic interaction with the environment. The environment is not only taken into
account dynamically, but its characteristics are exploited to serve the functioning of the
system. The internal machinery of the robots typically consists of combinatorial cir-
cuits completed with a timing circuitry. Each circuit represents a simple behavior of the

From Reactive Robotics to Situated Multiagent Systems 65

agent. These circuits are hard-wired or pre-compiled from specifications. The resulting
structure allows robots to react in real-time to the changing conditions of the world in
which they are embedded. Representative examples of approaches for reactive agents
are Pengi [6] and Situated Automata [7]. In Pengi, the penguin’s situated actions are
coded in the form of simple rules. The expressions of the rules use so called indexical-
functional representations of the environment. Pengi does not associate symbols with
individual objects in the world, but uses expressions that describe causal relationships
between the agent and indexically or functionally entities in the world. An example of
a situated action is “if there is an ice-cube-besides-me then push ice-cube-besides-me”.
In Situated Automata, an agent is specified declaratively in the Gapps language [11].
From this specification a runtime program is generated, which satisfies the declarative
specification. This program achieves real-time performance, it acts reactively without
doing any symbol manipulation.

As an illustration of reactive robots, we discuss the Subsumption Architecture devel-
oped by Brooks [5]. The Subsumption Architecture is organized as a series of parallel
working layers, each layer is responsible for a specific behavior of the agent. The prior-
ity of layers—behaviors—increases from bottom to top. Higher layers are able to inhibit
lower layers, giving priority to more important behavior. Fig. 1 depicts an example of
a Subsumption Architecture for a simple robot that has to collect packets and deliver
them at a destination. On its way, the robot must avoid obstacles in the environment.

A layer in the architecture directly connects perception to action by means of a fi-
nite state machine augmented with timing elements. Each layer collects its own sensor
data that is written in registers. The arrival of specific data, or the expiration of a timer,
can trigger a change of state in the interior finite state machine and possibly produce
output commands to actuators. Inhibition and suppression mechanisms resolve con-
flicts between actuator commands from different layers. In the original version of the
Subsumption Architecture, finite state machines could not share any state, each layer
encapsulated its registers and clock. Later this restriction was relaxed, allowing clusters
of finite state machines to share state and clocks. The Subsumption Architecture has
successfully been used in many practical robots.

������� ���	�

������
 ���	�

����� ���������

������� ��
��
���������

��������
�������

Fig. 1. Subsumption Architecture for a Simple Robot

66 D. Weyns and T. Holvoet

2.2 Behavior-Based Agents

In the early 1990s, researchers raised important limitations of the initial reactive ap-
proaches. In [9], Maes points to a number of problems with the wired or pre-compiled
action selection structures of reactive architectures. Although these approaches demon-
strate very good performance, they are typically very specific solutions, leaving little
room for reuse. For complex agents in complex environments, the architectures are
very hard to build. Another important shortcoming is the lack of explicit goals and
goal-handling. The designer must anticipate what the best action is to take in all oc-
curring situations. However, for complex systems much of the necessary information
will only be available at runtime. Goals may vary over time and now goals may come
into play.

Different approaches that support run-time decision making have been developed,
usually referred to as behavior-based or situated agents. Prominent examples are Motor
Schemas [12], Distributed Architecture for Mobile Navigation [13] (DAMN), and Free-
Flow Architectures [14, 15]. Motor schemas is based on schema theory that explains a
robot’s motor behavior in terms of the concurrent control of different activities [16].
A schema-based robot consists of a number of parallel executing motor schemas, each
schema providing a behavior. Schemas can be added or removed at runtime. Each motor
schema has as output an action vector that defines the way the robot should move in
response to the perceived stimuli. The sum of output vectors determines the behavior
of the robot. In DAMN different behaviors generate outputs as a collection of votes.
Behavior arbitration is a winner-take-all strategy in which the largest number of votes
for an action is selected for execution. Multiple parallel arbiters for different control
functions can be combined, e.g. for speed, turning, etc. A free-flow architecture consists
of a hierarchy of nodes which receive information from internal and external stimuli in
the form of activity. The nodes feed their activity down through the hierarchy until the
activity arrives at the action nodes (i.e. the leaf nodes of the tree) where a winner-take-
all process decides which action is selected. A free-flow architectures allows an agent
to take into account different preferences simultaneously.

As an illustration of behavior-based agents, we discuss Maes’ Agent Network Ar-
chitecture [9] (ANA). ANA combines the robot-oriented principles of reactivity such
as decomposition along tasks, de-emphasizing of internal world models and emergent
functionality with goal-handling at runtime, and puts this approach in a broader context
of software agent systems. An ANA consists of a network of competence modules. A
competence module is a node in the network with its own specific competence. A com-
petence module has a list of preconditions which have to be true before the competence
module becomes executable. In addition, each competence module has a level of ac-
tivity. When the activation level of an executable competence module reaches a certain
threshold, it may be selected for execution, resulting in some actions. Fig. 2 shows a
simple example of an agent network architecture.

Competence modules are linked through different types of links. Modules use these
links to activate and inhibit each other, so that after some time the activation energy
accumulates in the modules that represent the best actions to take, given the current
situation and goals. The spreading of activation among modules, as well as the input of

From Reactive Robotics to Situated Multiagent Systems 67

���� ������

����	�

�������

�����
�����������

�����

�����

��������������
��������������

�
�� ������

�����

������ �����
����
������� �����

��!

��"������� "�����

Fig. 2. Agent Network Architecture for a Simple Robot [17]

new activation energy into the network is determined by the current observations and
the goals of the agent. Note that goals may change at runtime. Through the cumula-
tive effect of forward and backward spreading of activation energy along sequences of
competence modules, the network exhibits implicit “planning” capabilities. The contin-
uous re-evaluation of environmental input ensures that the action selection easily adapts
with changing situations. However, ANA suffers also from a number of limitations, a
detailed discussion is given by Tyrrell in [15]. One problem is the loss of information
because the approach assumes binary sensor data. However, many properties of real-
istic environments are continuous. Tyrrell has demonstrated that ANA suffers from an
inherent unbalance of competition among competence modules, resulting in inefficient
behavior. Another problem with ANA is the lack of compromise actions, i.e. ANA does
not consider preferences of more then one competence module at a time. From our ex-
periences [17], we learned that it is very difficult to design an agent network architecture
for a non-trivial agent. ANA offers little support for structuring the behavior of com-
plex agents. Moreover, adding a competence module to an existing network is almost
impossible without affecting the existing structure.

2.3 Explicit World Models and Hybrid Agent Architectures

The use of explicit world models in reactive-based agent architectures has been sub-
ject of debate from the early start of reactive agents. Brooks argued against the need
for any kind of world model or cognitive level at all [5]. Other researchers showed
how knowledge may be compiled into non-symbolic implementations, see e.g. [18].
In [19], Steels states that “autonomous agents without internal models will always be
severely limited”. He proposes to use analogical instead of symbolic representations,
and demonstrates his approach for a simple robot that has to acquire a map of the envi-
ronment by wandering around. Another argumentation for the necessity of knowledge
representation was given by Arkin in [20]. Arkin states that “despite the assumptions of

68 D. Weyns and T. Holvoet

early work in reactive control, representational knowledge is important for robot navi-
gation”, and he demonstrates how a priori and dynamically acquired world knowledge
can be exploited to increase flexibility and efficiency of reactive navigation.

Related to the issue of explicit world models is the position of plans. In [21], Agre
and Chapman elaborate on the use of plans in agents’ decision making. The authors con-
trast two views on plans: plans as a resource to the agent versus plans for actions. In the
view of plans as a resource, agents use plans as a resource among others in continually
re-deciding what to do. In the view of plans for action, agents execute plans to achieve
goals, i.e. a plan is a prescription of subsequent actions to achieve a goal. The analysis
of Agre and Chapman laid the foundation for the work on reactive planning [22, 23].

In [24], Malcolm and Smithers introduced the notion of hybrid architecture. A hy-
brid architecture combines a deliberative subsystem with a behavior-based subsystem.
The deliberative subsystem permits representational knowledge to be used for planning
purposes in advance of execution, while the behavior-based subsystem maintains the
responsiveness, robustness, and flexibility of purely reactive systems. Over the years,
many hybrid behavior-based architectures have been developed. Today, the approach is
common in the domain of robotics, for an overview see [25]. A key function in hybrid
architectures is the interface between deliberation and reactivity since it links rapid reac-
tion and long-range planning. A common approach to balance reactivity with planning
is to introduce an explicit third layer that coordinates among the reactive and delibera-
tive layer. In general however, coordination of deliberation and reactivity is not yet well
understood and is subject of active research.

2.4 Reflection

Starting from the initial principles of reactivity, a wide range of architectural approaches
have been developed. Three classes of approaches are identified:

1. Reactive robots emphasize the dynamic interaction with the environment. The inter-
nal machinery of the robots directly couples perception to action, enabling real-time
reaction.

2. Behavior-based agents stress the need for dynamic and flexible action selection,
aiming to cope with complex environments. Architectures for behavior-based
agents support runtime arbitration among parallel executing behaviors and allow
goals to vary dynamically over time.

3. Hybrid agents exploit representational knowledge of static aspects of the environ-
ment. Architectures for hybrid agents integrate cognition (reasoning over internal
representations of the world and planning) with reactivity (real-time reaction to
stimuli) aiming to combine the advantages of planning and quick responsiveness.

These approaches share two properties:

1. The focus is on the architecture of single agents. Architectures differ in the way
they solve the problem of action selection. Architectures do not support social
interaction.

2. The approaches stress the importance of environmental dynamics. However, the
environment itself is considered as external to the system, i.e. the environment is
not an explicit part of the models or architectures.

From Reactive Robotics to Situated Multiagent Systems 69

3 From Collective Reactive Behavior to Situated Multiagent
Systems

Since the early 1990s, researchers which devote pertinent attention to the environment
have been investigating systems in which multiple agents work together to realize the
system’s functionality. In these systems, the agents exploit the environment to share
information and coordinate their behavior. In this section, we take a look at a number
of relevant approaches that have been developed.

3.1 Collective Reactive Behavior

In [26], Reynolds demonstrated flocking behavior between a set of agents. The aggre-
gate behavior of the multiagent system emerged from the interaction of multiple agents
that each follows a set of simple behavioral rules. Mataric adopted these techniques to
real robots [27], showing how a set of robots produced pack behavior. Each robot was
provided with a set of simple behaviors from which it selects the most suitable behavior
according to its current environmental context, i.e. its current position relative to other
robots. In [28], Zeghal demonstrated another form of reactive coordination. Zeghal used
vector fields to control the landing and movements of a large group of aircrafts in a sim-
ulation. In this approach, each agent is guided by a potential field that it constructs based
on attracting and repulsing forces resulting from goals and obstacles (including other
agents) respectively. An advanced example of behavior-based coordination among un-
manned guided vehicles is demonstrated in the DARPA UGV programme.1 In this case,
a DAMN arbiter was used to coordinate the vehicle’s behavior given its position in the
formation. Although very attractive, several researchers have pointed to the complexity
of designing collective reactive behavior, see e.g. [30, 29].

3.2 Stigmergic Agent Systems

In [31], Grassé introduced the term stigmergy to explain nest construction in termite
colonies. The concept indicates that individual entities interact indirectly through a
shared environment: one individual modifies the environment and others respond to
the modification, and modify it in turn. Deneubourgh [32] and Steels [33] demonstrated
how explorer robots can improve the search of target objects by putting marks in the
environment. When a robot finds a source of target objects, it puts a trail of marks in the
environment from the source of objects toward the robot base, while returning home
with an object. This trail allows other exploring robots to find the source of objects
efficiently, similar to ants that inform each other about sources of food by depositing
pheromone trails in the environment. To ensure that the robots are not mislead when
the source becomes exhausted, the marks must be dynamical elements that vanish over
time. This mechanism of indirect coordination through the environment combines posi-
tive feedback (reinforcement of the trail) with negative feedback (decay of the trail over
time).

Stigmergy has been a source of inspiration for many researcher in the multiagent
systems. In [34], Parunak describes how principles of different natural agent systems

1 For a detailed discussion see [29].

70 D. Weyns and T. Holvoet

(ants, wasps, wolves, etc.) can be applied to build self-organizing artificial agent sys-
tems. Example applications of stigmergy are ant colony optimization [35], routing calls
through telecommunication networks [36], supply chain systems [37], manufacturing
control [38], and peer to peer systems [39].

We illustrate the use of marks in the environment with two prominent examples from
literature: first we look at Synthetic Ecosystem developed by Brueckner [38], after that
we briefly discuss the Co-Fields approach proposed by Mamei and Zambonelli [40].

Synthetic Ecosystem. A synthetic ecosystem enables indirect coordination among
software agents in the same way social ants coordinate, the software environment
emulates the “services” provided by the real world of ants. The part of the software en-
vironment realizing the services is called the pheromone infrastructure. The pheromone
infrastructure models a discrete spatial dimension. It comprises a finite set of places and
a topological structure linking the places. A link connecting two places has a down-
stream and an upstream direction. Each agent in a synthetic ecosystem is mapped
to a place, i.e. the current location of the agent, which may change over time. The
pheromone infrastructure models a finite set of pheromone types. A pheromone type is
a specification of a software object comprising a strength-slot (real number) and other
data-slots. For each pheromone type, a propagation direction (downstream or upstream)
is specified. The pheromone infrastructure handles a finite set of software pheromones
for each pheromone type. Every data-slot is assigned a value of a finite domain to form
one pheromone (type, direction, propagation, evaporation, etc.). The strength value (i.e.
the value in the strength-slot) is interpreted as a specific amount of the pheromone.
Different pheromones of a synthetic ecosystem may be stored in each place.

The pheromone infrastructure manipulates the values in the strength-slot of the
pheromones at each place in three different ways:

1. External input (aggregation): Based on a request by an agent, the strength of the
specified pheromone is changed by the specified value.

2. Internal propagation (propagation/diffusion): When an agent injects pheromone at
a place, the input event is immediately propagated to the neighbors of that place
in the direction of the pheromone. There the local strength of the pheromone is
increased with the arriving pheromone value reduced by the propagation parameter.
This process is recursively repeated until the remaining pheromone value crosses a
minimal threshold.

3. Without taking changes caused by external input or propagation into account, the
strength of each pheromone is constantly reduced in its absolute value (evapora-
tion). The reduction is influenced by the evaporation parameter of the pheromone.

The pheromone infrastructure realizes an application-independent support for synthetic
ecosystems designed according to a number of design principles, such as decentral-
ization, locality, parallelism, indirect communication, information sharing, feedback,
randomization and forgetting. In [38, 34], Brueckner and Parunak describe a set of en-
gineering principles for designing synthetic ecosystems, including: agents are things,
not functions – keep agents small – decentralize control – support agent diversity –
enable information sharing – support concurrency.

From Reactive Robotics to Situated Multiagent Systems 71

The principles of synthetic ecosystems and the proposed pheromone infrastructure
are applied to a manufacturing control system [38]. V. Parunak and his colleagues have
applied digital pheromones in many other practical applications, for an overview we
refer to [41].

Co-fields. Computational Fields (Co-Fields) is an approach to model and engineer the
coordinated movements of a group of agents such as mobile devices (possibly carried
by users), mobile robots, or sensors of a dynamic sensor network. In Co-Fields, the
movements of the agents are driven by abstract (computational) force fields. By let-
ting agents follow the shape of the fields, global coordination and self-organization can
emerge.

The Co-Fields model is essentially based on the following three principles:

1. The environment is represented by fields that can be spread by agents or by the en-
vironment itself. These fields convey useful information for the agents to coordinate
their behavior.

2. The coordination among agents is essentially realized by letting the agents follow-
ing the waveform of these fields.

3. Environment dynamics and movements of the agents induce changes in the surface
of the fields, realizing a feedback cycle that influences agents’ movement. This
feedback cycle enables the system (agents and environment) to auto-organize.

A field is defined as a distributed data structure composed of a unique identifier, a value
that represents the field magnitude, and a propagation rule. Fields can be generated by
the agents or by the environment, and are propagated through the space according to the
propagation rule. The propagation rule determines the shape of the field surface. Fields
can be static or dynamic. A field is static if its magnitude does not change over time,
while a the magnitude of a dynamic field may change. Agents combine the values of
the fields they perceive, the resulting new field is called the agents coordination field.
Agents follow (deterministically or probabilistically) the shape of their coordination
field. Agents can follow the coordination field downhill, uphill, or along one of the
equipotential lines of the field. Complex movements are achieved by dynamically re-
shaping the surface of the field.

In principle, the approach can be generalized toward coordination fields spread in
abstract spaces to encode coordination among agents that is related to actions differently
from physical movements. In such a case, the agents follow their coordination field, not
by moving from one place to another, but by making other kinds of actions.

The Co-Fields model is applied to a number of experimental applications, including
a case study in urban traffic management [42] and a video game [43].

3.3 Situated Multiagent Systems

Stigmergic agent systems have proven their value in practice, yet, a number of com-
ments are in order:

• Stigmergic agents are considered as “simple” entities. However, there is little or no
attention for the architecture of agents.

72 D. Weyns and T. Holvoet

• Stigmergic agents are not able to set up explicit collaborations to exploit contextual
opportunities.

• The environment is considered as infrastructure for coordination, typically sup-
porting one particular form of coordination. However, these infrastructures are not
concerned with other environmental aspects such as perception, direct communica-
tion, or synchronization of actions. As for agents, there is little or no attention for
the architecture of the environment.

Motivated by these considerations, researchers have extended the vision of stigmergic
agents and developed architectures for a family of agent systems that is generally re-
ferred to as situated multiagent systems.

Multilayered Multi Agent Situated System. In the Multilayered Multi Agent Situ-
ated System [44, 45] (MMASS) agents and the environment are explicitly modelled.
MMASS introduces the notion of agent type which defines agent state, perceptual
capabilities and a behavior specification. Agent behavior can be specified with a be-
havior specification language [46] that defines a number of basic primitives, such as
emit (starts the diffusion of a field), transport (defines the movement of the agent),
or trigger (specifies state change when a particular condition is sensed in the envi-
ronment). MMASS models the environment as a multi-layered structure, where each
layer is represented as a connected graph of sites. Layers may represent abstractions
of a physical environment, but can also represent logical aspects, e.g. the organiza-
tional structure of a company. Between the layers specific connections (interfaces)
can be defined that are used to specify that information generated in one layer, may
propagate into other layers. In MMASS, agents can (1) interact through a reaction
among adjacent entities, (2) emit fields that are diffused in the environment, and (3)
can be perceived by other agents.

Influence–Reaction Model. In [47], Ferber and Müller propose a basic architecture
for situated multiagent systems. This architecture builds upon earlier work of Gene-
sereth and Nilson [48]. Ferber and Müller distinguish between tropistic and hysteric
agents. Tropistic agents are essentially reactive agents without memory, whereas hys-
teric agents may have complex behaviors that use past experiences for decision making.
Central to the model is the way actions are modelled. The action model distinguishes
between influences and reactions to influences. Influences are produced by agents and
are attempts to modify the course of events in the world. Reactions, which result in state
changes, are produced by the environment by combining influences of all agents, given
the local state of the environment and the laws of the world. This clear distinction be-
tween the products of the agents’ behavior and the reaction of the environment provides
a way to handle simultaneous activity in the multiagent systems. In [49], Ferber uses
the BRIC formalism (Block-like Representation of Interactive Components) to model
situated multiagent systems. In BRIC, a multiagent system is modelled as a set of inter-
connected components that can exchange messages via links. BRIC components encap-
sulate their own behavior and can be composed hierarchically. An interesting model for
action that extends the influence–reaction model with the notion of activity as first-class
concept is proposed in [50].

From Reactive Robotics to Situated Multiagent Systems 73

������� �������	������� �������	

����������

	�

���������

������� ������
���������

�������
���������

��������

����� 	��������

	������
���������

��
��

�������
��

�������������� 	����
�

����� ��������

��������

�������

�����
��		��	����

��������

�����

�����

���������

�����

�����

�����

�

�

� �

�
�

�

�

�

�

������� �������	
��������

���������

�����

�������

�����

� ���

�������

�
�����

�������� �����

Fig. 3. Reference Architecture for Situated Multiagent Systems

Reference Architecture for Situated Multiagent Systems. Inspired by the work of
Ferber and Müller, in our research we have developed a reference architecture for situ-
ated multiagent systems. This reference architecture generalizes and extracts common
functions and structures from various applications we have studied and built, includ-
ing the Packet-World [51], a peer-to-peer file sharing system [52], a number of simple
robot applications [53], and an simulator for Automatic Guided Vehicle systems [54].
Fig. 3 shows a high-level module view of the reference architecture. The architecture
integrates three primary abstractions: agents, ongoing activities and the environment.
We successively look at the architecture of each abstraction.

Agents. The agent architecture models different concerns of the agent (perception, de-
cision making and communication) as separate modules. The Perception module maps
a local representation of the state of the environment to a percept for the agent. We de-
veloped a model for selective perception that enables an agent to direct its perception at
the most relevant aspects in the environment according to its current task [55]. To sense
its environment, the agent selects a set of foci. Sensing results in a representation of the
agent’s surrounding that can be interpret by the agent producing a percept. Finally, the
percept is filtered by a set of selected filters, restricting the perceived data according to
specific context relevant selection criteria.

The CurrentKnowledge module integrates percepts to update the current knowledge
of the agent. The Decision module is responsible for action selection [56, 57]. We

74 D. Weyns and T. Holvoet

developed the decision module as a free-flow architecture. Free-flow architectures allow
flexible and adaptive action selection [15]. Since existing free-flow architectures lack
explicit support for social behavior, we introduced the concepts of a role and a situated
commitment. A role covers a logical functionality of the agent, while a situated commit-
ment allows an agent to adjust its behavior towards the role in its commitment. An agent
can commit to itself, e.g. when it has to fulfill a vital task. However, in a collaboration,
agents commit to one another via communication. Roles and situated commitments are
building blocks for explicit collective behavior. The operator selected by the decision
module is passed to the ActionExecution module that invokes an influence in the en-
vironment. The action model is based on the influence—reaction model of Ferber and
Müller [47].

The Communication module takes care of the communicative interactions. We devel-
oped a communication module that processes incoming messages and produces outgoing
messages according to well-defined communication protocols [58]. The module consists
of three functional modules: message decoding, communicating and message encoding.
The message decoding module extracts the information from the received messages. The
core of the model, the communicating module (1) interprets decoded messages and reacts
to them in accordance with the applicable protocol, and (2) initiates or continues con-
versations when the conditions imposed by the applicable protocol are satisfied. Finally,
the message encoding module encodes new messages and passes them to the message
transport system of the environment. Communication enables agents to exchange infor-
mation, and set up collaborations reflected in mutual situated commitments.

Ongoing Activities. Next to agents, we introduced the concept of an ongoing activ-
ity [59]. An ongoing activity provides an abstraction for an environmental process that
happens independent of agents. An ongoing activity is defined by an Operation that
produces influences in the environment according to the state of the world. Examples
of ongoing activities are an evaporating pheromone, a self-managing gradient field, a
moving object, or a timer. Ongoing activities are generic building blocks for indirect
coordination, and as such it forms a basis for collective behavior.

Environment. The environment architecture decomposes the environment into different
functional modules (perception, communication, action and interaction). The Percept-
Generator module is responsible for perception management [55]. When an agent is
interested in perceiving its surroundings, it invokes a sense command in the environ-
ment. Such a sense command contains a set of foci that expresses the agent’s current
interests of perception. The PerceptGenerator then composes a representation based on
the foci, the current state of the environment and a set of perceptual laws. A perceptual
law constrains the composition of a representation according to the requirements of the
modelled domain. An example of a perceptual law in the context of a simulation is a
law that specifies how an area behind an obstacle is out of scope of a perceiving agent.
However, perceptual laws can also serve as an instrument for the designer to introduce
“synthetic” constraints on perception. E.g., for reasons of efficiency a designer can in-
troduce default limits for perception in order to restrain the amount of information that
has to be processed, or to limit the occupied bandwidth.

From Reactive Robotics to Situated Multiagent Systems 75

The MessageDelivering module is responsible for message transfer. When a message
arrives, the MessageDelivering module passes the message to the list of addressees in-
dicated in the message. It is possible to provide communication laws that are applied
when messages are transferred. An examples is a communication law that specifies the
maximal distance that messages can be delivered. Communication laws are interest-
ing for simulation purposes, but can also be a useful instrument for designers, e.g. to
regulate the message transfer.

The Collector—Reactor—Effector modules take care of action handling [59]. The
Collector collects the influences of simultaneously performed activity in the system
and passes them to the Reactor. Simultaneity of activity can be based on transactional
semantics, or it can be determined by a synchronization mechanism, see e.g. [47, 60].
The Collector passes the influences to the Reactor that calculates, according to a set of
domain specific interaction laws, the reaction, i.e. state changes in the environment. An
example of an interaction law in the context RoboCup soccer is a law that determines
the effects of two football players that kick the ball simultaneously. The Reactor finally
passes the effects to the Effector that applies the outcome of the interaction by updating
the state of the environment.

It is important to notice that the module view of the architecture as depicted in Fig. 3
abstracts from distribution. For a practical application, the state of the environment,
the delivering of messages, ongoing activities, etc., have to be implemented according
to the domain at hand, i.e. centralized or distributed. Another important remark is that
the presented model also abstracts from physical resources, external to the multiagent
system. The state of the environment may represent external resources. Support to keep
the state of the representation consistent with external resources is not covered by the
presented model.

The reference architecture for situated multiagent systems has been applied in an in-
dustrial system for logistics services in warehouses and manufactories. This real-world
application uses a situated multiagent system to control an automated guided vehicle
(AGV) transportation system [61, 62]. We briefly discuss this application in Sect. 4.2.

3.4 Reflection

In multiagent systems, multiple agents work together to realize system functionality.
We identified three classes of systems in which the environment has a central role:

• Agents with collective reactive behavior follow a set of simple behavioral rules.
Each agent is driven by what it perceives in the environment. The aggregate behav-
ior of the multiagent system emerges from the local behavior of agents.

• In stigmergic agent systems, the environment serves as a medium for coordination.
Stigmergic agents coordinate their behavior through the manipulation of marks in
the environment. The environment is an active entity that maintains processes in-
dependent of the activity of the agents. Stigmergic coordination combines positive
feedback (reinforcement of interesting information) with negative feedback (decay
of information over time).

• Situated multiagent systems emphasize the importance of architecture for agents
and the environment. Basic concerns of agent architecture are perception, commu-
nication, and decision making. Advanced types of situated agents support social

76 D. Weyns and T. Holvoet

behavior enabling them to set up explicit collaborations. Basic concerns of the en-
vironment include perception management, message delivering, action handling,
and maintenance of processes independent of agents. Laws represent domain spe-
cific constraints, but can also be used as a design instrument to impose rules in the
multiagent system.

Important characteristics of these multiagent systems are:

• Agents and the environment are explicit parts of the system, each with its specific
responsibilities.

• System functionality emerges from the indirect interactions of agents through the
environment.

Along the evolution from collective reactive behavior to situated multiagent systems,
the role of the environment evolved from (1) the context that drives the agents, to (2)
an active coordination medium, to (3) an explicit abstraction with its specific concerns
that differ from agent concerns.

Today’s situated multiagent systems integrate the architectural perspective of the ear-
lier reactive and behavior-based agent systems with the explicit role of environment of
stigmergic agent systems. Moreover, architectures for situated agents extend the initial
architectures for single agents by (1) providing support not only for action selection,
but for different concerns of agents (perception, communication, etc.), and (2) provid-
ing support for explicit social behavior (roles, situated commitments, etc.). Similarly,
architectures for the environment extend the role of the environment from a an infras-
tructure for coordination to a design abstraction that covers specific concerns that differ
from agent concerns (perception management, action handling, maintenance of pro-
cesses, laws, etc.).

Fig. 4 shows a time line with the introduction of subsequent agent systems, to-
gether with the main steps in the evolution of the role of the environment in the agent
systems.

Fig. 4. Subsequent Agent Systems and the Evolution of the Role of Environment

From Reactive Robotics to Situated Multiagent Systems 77

4 Environment, a First-Order Abstraction in Multiagent Systems

Originating from research on behavior-based agent systems and multiagent systems,
and stimulated by a number of recent efforts [1, 2, 3], the environment is now a focus
of research in multiagent systems in general. In this section, we first zoom in on the
role of the environment in multiagent systems. After that, we discuss a real-world ap-
plication in which the environment is exploited for coordinating agents behavior. The
section concludes with a number of pointers to interesting domains for future research
on environments for multiagent systems.

4.1 Role of the Environment in Multiagent Systems

Today’s research on environments considers a dual role of the environment in multia-
gent systems. On the one hand, the environment is an essential part of every multiagent
system that encapsulates parts of a multiagent system that conceptually do not belong
to agents, such as infrastructure for communication, the topology of a spatial domain,
or laws of an e-institution. Basically, the environment provides the surrounding condi-
tions for agents to exist, it offers an abstraction of the external world to agents in which
they can act and interact. This abstraction bridges the conceptual gap between the agent
abstraction and low-level issues, such as details of communication, or resources ac-
cess. On the other hand, the environment provides an exploitable design abstraction to
build multiagent systems. The environment can serve as a medium for agents to share
information and coordinate their behavior.

Distinguishing between agents and the environment supports separation of concerns
in multiagent systems. A clean separation of agent and environment concerns helps to
manage the huge complexity of engineering complex real-world applications. To clar-
ify the role of the environment in multiagent systems, we list a number of important
functionalities of the environment:

The Environment Structures the Multiagent System. The environment is first of
all a shared “space” for the agents, resources and services, which structures the whole
system. Resources are objects with a specific state. Services are considered as reactive
entities that encapsulate functionality. The agents as well as resources and services are
dynamically interrelated to each other. It is the role of the environment to define the
rules which these relationships have to comply to. As such the environment acts as a
structuring entity for the multiagent system. In general, different forms of structuring
can be distinguished:

• Physical structure refers to spatial structure, topology, and possibly distribution,
see e.g. [38, 44].

• Communication structure refers to infrastructure for message transfer, infrastruc-
ture for stigmergy [38, 40], or support for implicit communication [63, 64].

• Social structure refers to the organizational structure of the environment in terms
of roles, organizations, and societies, e.g. [65, 66].

Structuring is a fundamental functionality of the environment. Structures of the envi-
ronment may be imposed by constraints of the domain at hand, or they may be carefully
considered design choices.

78 D. Weyns and T. Holvoet

The Environment Manages Recourses, Services, and Dynamics. The environment
embeds resources and services. An important functionality of the environment is to
enable and control the access to these resources and services, hiding the complexity of
low-level issues to agents. In general, resources can be read/perceived, written/modified
or generated/consumed by agents. Services on the other hand provide functionality to
the agents on their request. The extent to which agents are able to access a particular
resource or service may depend on several factors such as the nature of the resource
or service, the capabilities of the agent, the (current) interrelationships with other re-
sources, services or agents, etc.

The environment also embeds the agents. The environment may provide support for
maintaining external state of agents, examples are tags for coordination or reputation
mechanisms.

Besides the activity of the agents, the environment can assign particular activities
to resources as well. A digital pheromone, for example, is a dynamic structure as it
aggregates with additional pheromone that is dropped, it diffuses in space and it evap-
orates over time. Other examples of environmental activities are a self-managing field
in a network, or in the context of simulation a rolling ball that moves on, or the local
temperature that evolves over time. Maintaining such dynamics is an important func-
tionality of the environment.

The Environment is Locally Observable to Agents. Contrary to agents, the environ-
ment must be observable. Agents must be able to inspect the different structures of the
environment, as well as resources, services, and possibly external state of other agents.
Observation of a structure is typically limited to the current context (spatial context,
communication context and social context) in which the agent find itself. In general,
agents should be able to inspect the environment according to their current tasks. Ex-
amples of selective perception are [55] where “foci” are proposed to enable agents to
perceive their environment according to their current tasks, and [67, 68] where “views”
are proposed as selector for perception. Perception is constrained not only by agents’
capabilities, but also by environmental properties. In [55], the perceptual constraints are
made explicit in the form of “perceptual laws”.

Related to observability is the semantic description of the domain, which can be de-
fined by an environment ontology, see e.g. [69]. The ontology must cover the different
structures of the environment as well as the observable characteristics of resources, ser-
vices and agents, and possibly the regulating laws. In an open system, it would be useful
for agents to be able to understand at run-time a new environment they are discovering.
For symbolically-oriented agents, an explicit ontology should be available to the agents
to enable them to interpret their environment and reason about it. For non-reasoning
agents, the designer/developer applies the ontology to encode the agents’ internal struc-
tures. As such, these kinds of agents have an implicit ontology that enables them to
make decisions.

The Environment is Locally Accessible to Agents. Agents must be able to access
the different structures of the environment, as well as resources, services, and possibly
external state of other agents. As for observability, accessing a structure is limited to

From Reactive Robotics to Situated Multiagent Systems 79

the current context in which the agent find itself. Access to spatial structure refers to
support for metrics, mobility, etc. Access to communication infrastructure refers to sup-
port for direct communication (message transfer), support for indirect communication
(pheromones, etc.), or support for implicit communication (over-hearing, over-sensing,
etc.). Access to social structures refers to group membership, etc.

The Environment Can Defines Rules for the Multiagent System. The environment
can define different types of rules on all entities in the multiagent system. Rules may
refer to constraints imposed by the domain at hand (e.g. mobility in a network), or refer
to “synthetic laws” imposed by the designer (e.g. limitation of access to neighboring
nodes in a network for reasons of performance). Rules may restrict access to specific
resources or services to particular types of agents, or determine the outcome of agents’
interactions.

Dealing with interactions in multiagent systems in general is a very complex matter.
[70] points out the difficulties to control the activities of agents operating in distributed
systems and propose coordination policies to deal with control. According to the au-
thors, coordination policies need to be formulated explicitly rather than being implicit
in the code of the agents involved and they should be enforced by means of a generic,
broad spectrum mechanism. The environment is the natural candidate to embed such
control mechanism.

In electronic institutions [71], agents interact through agent group meetings that
are called scenes. Interactions in a scene have to follow a well-defined communica-
tion protocol. Scenes can be composed in a performative structure. The specification
of a performative structure contains a description of how the different roles can legally
move from scene to scene. Agents within a performative structure may participate in
different scenes at the same time with different roles. Agent actions in the context of
an institution may have consequences that either limit or enlarge its subsequent acting
possibilities. Such consequences will impose obligations to the agents and affect its
possible paths within the performative structure. The environment can define and en-
force the rules imposed on the movements and interactions of agents in an electronic
institution.

A particular problem is the regulation of simultaneous actions in simulations. To al-
low multiple agents to act in the environment in parallel, explicit models are needed
to deal with actions that range far beyond the scope of state changes based on sim-
ple individual manipulation of objects. [47, 59, 50] discusses models for simultaneous
actions.

4.2 Exploiting the Environment in Practice

In this section, we illustrate how the reference architecture for situated multiagent sys-
tems discussed in Sect. 3.3 is applied to an automated transportation system for ware-
house logistics. This real-world application is developed in a joint R&D project between
the AgentWise research group and Egemin, a manufacturer of automating logistics ser-
vices in warehouses and manufactories [61, 72].

The automated transportation system uses automatic guided vehicles (AGVs) to
transport loads through a warehouse. Typical applications are distributing incoming

80 D. Weyns and T. Holvoet

goods to various branches, or distributing manufactured products to storage locations.
An AGV is provided with a battery as its energy source. AGVs can move through a
warehouse, following fixed paths on the factory floor, typically guided by a laser navi-
gation system, or by magnets or cables that are fixed in the floor. The low-level control
of the AGVs in terms of sensors and actuators (such as staying on track on a path,
turning, and determining the current position, etc.), is handled by the AGV control soft-
ware. Fig. 5 depicts a high-level model of the situated multiagent system. The situated

���

��������
�����	��

������	�
 ����
�

������
��	����

������
������

���
��	����
��������

���������

������
��	����

������
������

���������

������	�
 ����

�	��� ���
��� �����	����
 �	��� ���
���
�����	����

���
���
�����	����

��� ����

���

������
��	����

������
������

���
��	����
��������

���������

�	��� ���
��� �����	����

��� ����

Fig. 5. High-level model of the AGV transportation system

multiagent system consists of two kinds of agents, transport agents and AGV agents.
Transport agents are located at transport bases. AGV agents are located in AGVs that
are situated on the factory floor. The communication infrastructure provides a wireless
network that enables mobile AGVs to communicate with each other and with transport
agents on transport bases.

A transport agent represents a transport that needs to be handled by an AGV. AGV
agents are responsible for executing the assigned transports. AGVs are situated in a
physical environment, however, this environment is very constrained: AGVs cannot
manipulate the environment, except by picking and dropping loads. This restricts how
AGV agents can exploit their environment. Therefore, a virtual environment was intro-
duced for agents to live in. This virtual environment offers a medium that agents can
use to exchange information and coordinate their behavior. Besides, the virtual environ-
ment serves as a suitable abstraction that shields the AGV agents form low-level issues,
such as the physical control of the AGV. The AGV control software that deals with the
low-level control of the AGVs is fully reused. As such, the AGV agents control the
movement and actions of AGVs on a fairly high level.

In the AGV application, the only physical infrastructure available to the AGVs is a
wireless network for communication. In other words, the virtual environment is nec-
essarily distributed over the AGVs and transport bases. In effect, each AGV and each
transport base maintains a local virtual environment, which is a local manifestation of
the virtual environment. Local virtual environments are merged with other local virtual

From Reactive Robotics to Situated Multiagent Systems 81

environments opportunistically, as the need arises. In other words, the virtual environ-
ment as a software entity does not exist; rather, there are as many local virtual environ-
ments as there are AGVs and transport bases. Some of these local virtual environments
may have been synchronized recently with each other, while others may not. From the
agent perspective, the virtual environment appears as one entity. The synchronization
of the state of neighboring local virtual environments is supported by the ObjectPlaces
middleware [68].

We now illustrate the use of the virtual environment with a couple of examples.

Routing. For routing purposes, the virtual environment has a static map of the paths
through the warehouse. This graph-like map corresponds to the layout used by low-
level AGV control software. To allow agents to find their way through the warehouse
efficiently, the virtual environment provides signs on the map that the agents use to find
their way to a given destination. These signs can be compared to traffic signs by the
road that provide directions to drivers. At each node in the map, a sign in the virtual
environment represents the cost to a given destination for each outgoing segment. The
cost of the path is the sum of the static costs of the segments in the path. The cost per
segment is based on the average time it takes for an AGV to drive over the segment. The
agent perceives the signs in its environment, and uses them to determine which segment
it will take next.

Traffic Information. Besides the static routing cost associated with each segment, the
cost is also dependent on dynamic factors, such as congestion of a segment. To warn
other agents that certain paths are blocked or have a long waiting time, agents mark seg-
ments with a dynamic cost on a traffic map in the virtual environment. Agents mark the
traffic map by dropping pheromones on the applicable segments. When AGVs come in
each others neighborhood, the information of the traffic maps is exchanged and merged
to provide up-to-date information to the AGV agents. Since pheromones evaporate over
time, outdated information automatically vanishes over time. AGV agents take the in-
formation on the traffic map into account when they decide how to drive through the
warehouse.

Collision Avoidance. AGV agents avoid collisions by coordinating with other agents
through the virtual environment. AGV agents mark the path they are going to drive
in their environment using hulls. The hull of an AGV is the physical area the AGV
occupies. A series of hulls then describes the physical area an AGV occupies along a
certain path. If the area is not marked by other hulls (the AGV’s own hulls do not inter-
sect with others), the AGV can move along and actually drive over the reserved path.
Afterwards, the AGV removes the markings in the virtual environment. [62] discusses
collision avoidance through the virtual environment in detail.

In summary, the virtual environment serves as a flexible coordination medium, which
hides much of the complexity of the system (distribution, mobility, etc.) from the agents:
agents coordinate by putting marks in the environment, and observing marks from other
agents. The virtual environment creates opportunities beyond a physical environment
that situated AGV agents can exploit.

82 D. Weyns and T. Holvoet

4.3 Challenging for Future Research on Environments

Many issues are open for future research on environments in multiagent systems. [73]
gives an extensive overview of challenges in the domain. One particular challenge we
stress here is environment engineering. Environment engineering poses challenges a
three levels: (1) Architectural design, (2) Detailed design, and (3) Implementation. Suc-
cessively, we zoom in on each level.

Architectural Design. Starting from system requirements, including functional and
quality requirements (robustness, flexibility, openness, etc.) as well as project and
business constraints (budgets, schedules, etc.), the first step in environment engi-
neering is defining a suitable software architecture [74]. Software architecture urges
engineers to think first in abstract terms about the structure of the environment, dis-
tilling away low-level design and implementation details. Software elements of the
software architecture provide the functionality of the environment, while the required
quality requirements are primarily achieved through the structures of the software
architecture. Integration with legacy systems and middleware are important issues
when designing the software architecture of an environment. An important chal-
lenge for research on environments will be the development of reusable architec-
tural approaches for architectural design of environments. Architectural patterns [75]
(or architectural styles) are recurring architectural approaches with particular qual-
ity attributes that can be reused for building software architectures of environments.
A reference architecture combines a set of architectural patterns and can serve as
a blueprint for developing software architectures for a family of environments that
share a common base of functional and quality attributes. One interesting challenge
is to develop support for the architectural design of different environment structures
(physical, communication, social; see Sect. 4). Interesting work on architectural de-
sign of environments is discussed in [76, 62, 77, 78].

Detailed Design. A software architecture constrains the concrete development of an
environment, yet, it does not define it. Detailed design is concerned with the concrete
design of the software architectures of environments. One important challenge here is
the development of suitable description languages. Examples of open problems for de-
tailed design of environments are support for indirect interaction or environmental laws.
Another interesting area for research are the development of specific design and imple-
mentation patterns for environments [79, 80].

Implementation. Support for the implementation of environments can come from
frameworks, libraries, and development platforms. Existing agent tools can be extended
with explicit support for environments, or new tools can be developed that support en-
vironments within which different kinds of agents can interact. An important aspect
of implementation of environments is the integration with middleware platforms. Mid-
dleware hides hardware and platform details, and offers powerful capabilities such as
remote method invocation, threading, transaction, etc. Moreover, middleware provides
a software platform on which distributed environments can run, hiding complex issues

From Reactive Robotics to Situated Multiagent Systems 83

such as low-level details of communication or mobility. A number of proven middle-
ware infrastructures for multiagent systems are [81, 82, 83, 68, 84].

5 Concluding Remarks

In this paper, we discussed the evolution of the role of the environment in multiagent
systems from an historical perspective of situated multiagent systems. We have showed
how the role of the environment evolved along with subsequent types of agent systems.
We identified three phases in the evolution of the role of the environment:

1. Single agent systems emphasize environmental dynamics. The environment is con-
sidered as “the external world”, which is not an explicit part of models and archi-
tectures.

2. In stigmergic agent systems, the environment is considered as coordination infras-
tructure. Stigmergic agents coordinate their behavior through the manipulation of
marks in the environment.

3. In situated multiagent systems, agents and the environment are first-order abstrac-
tions, each with its own specific responsibilities. Basic concerns of the environment
include perception management, message delivering, action handling, and mainte-
nance of processes independent of agents.

Originating from the area of situated multiagent systems, research on environments
today exceeds specific types of agency. Distinguishing between agents and the envi-
ronment supports separation of concerns in multiagent systems. Separating agent and
environment concerns helps to manage the huge complexity of engineering complex
real-world applications. Today’s research on environments considers a dual role of the
environment in multiagent systems:

1. The environment is an essential part of every multiagent system that provides the
surrounding conditions for agents to exist.

2. The environment provides an exploitable design abstraction to build multiagent
systems.

We illustrated how the environment is exploited in a industrial system for logistic ser-
vices in warehouses. This practical application shows how a virtual environment creates
opportunities for agents to share information and coordinate their behavior an a way that
would be impossible in a physical environment.

Environments offers numerous opportunities for future research. Interesting chal-
lenges for environment engineering are the development of reusable architectural ap-
proaches, including architectural patterns and reference architectures for environments;
the development of description languages for environment concerns such as indirect
interaction or laws; and the development of frameworks and libraries to support the
implementation of environments. Developing such reusable tools for environment en-
gineering is the result of extensive practical experiences with building concrete envi-
ronments in practical multiagent system applications.

We hope that this paper helps researchers to improve their understanding of the
notion of environment in multiagent systems. The notion of environment provides a

84 D. Weyns and T. Holvoet

challenging area for synergetic research in multiagent systems, the environment offers
opportunities for all types of agency, from ant systems to rational agent systems such
as BDI agents. Understanding the background of environments is essential to carry on
the exploration and exploitation of environments in multiagent systems.

References

1. Weyns, D., Parunak, V., Michel, F., eds.: Proceedings of the First International Workshop on
Environments for Multi-Agent Systems, New York, 2004. Volume 3374 of Lecture Notes in
Computer Science., Springer-Verlag (2005)

2. Weyns, D., Parunak, V., Michel, F., eds.: Proceedings of the Second International Workshop
on Environments for Multi-Agent Systems, Utrecht, 2005. Volume 3830 of Lecture Notes in
Computer Science., Springer-Verlag (to appear)

3. AgentLink III Technical Forum Group on Environments for Multiagent Systems.
(http://www.cs.kuleuven.ac.be/∼distrinet/events/e4mas/tfg2005/)

4. Weyns, D., Schumacher, M., Ricci, A., Viroli, M., Holvoet, T.: Environment in Multiagent
Systems. Knowledge Engineering Review 20 (2005)

5. Brooks, R.A.: Achieving Artificial Intelligence through Building Robots. AI Memo 899,
MIT Lab (1986)

6. Agre, P.E., Chapman, D.: Pengi: An Implementation of a Theory of Activity. In: Proceedings
of National Conference on Artificial Intelligence, Seattle, WA. (1987)

7. Rosenschein, S.J., Kaelbling, L.P.: The Synthesis of Digital Machines With Provable Epis-
temic Properties. In: Proceedings of the First Conference on Theoretical Aspects of Reason-
ing about Knowledge, Monterey, CA. (1986)

8. Brooks, R.A.: Intelligence Without Reason. In: Proceedings of 12th International Joint
Conference on Artificial Intelligence, Sydney, Australia (1991)

9. Maes, P.: Situated Agents Can Have Goals. Designing Autonomous Agents, MIT Press
(1990)

10. Pylyshyn, Z.: The Robot’s Dilemma. The Frame Problem in Artificial Intelligence. Ablex
Publishing Corp., Norwood, New Jersey (1987)

11. Kaelbling, L.P., Rosenschein, S.J.: Action and Planning in Embedded Agents. Designing
Autonomous Agents, MIT Press (1990)

12. Arkin, R.C.: Motor Schema-Based Mobile Robot Navigation. International Journal of
Robotics Research 8 (1989)

13. Rosenblatt, J.: DAMN: A Distributed Architecture for Mobile Navigation. In: Proceedings
of the Spring Symposium on Lessons Learned from Implemented Software Architectures for
Physical Agents, AAAI Press (1995)

14. Rosenblatt, K., Payton, D.: A Fine Grained Alternative to the Subsumption Architecture
for Mobile Robot Control. Proceedings of the International Joint Conference on Neural
Networks, IEEE (1989)

15. Tyrrell, T.: Computational Mechanisms for Action Selection. University of Edinburgh (1993)
16. Arbib, M.A.: Schema Theory. Encyclopedia of Artificial Intelligence (1992)
17. Custers, R.: The Agent Network Architecture Extended for Cooperating Robots. Master

Thesis, Katholieke Universiteit Leuven, Belgium (2004)
18. Kaelbling, L.P.: Goals as Parallel Program Specifications. In: Proceedings of the Seventh

National Conference on Artifical Intelligence, Minneapolis, Minnesota. (1988)
19. Steels, L.: Exploiting Analogicl Representations. Designing Autonomous Agents (1990)
20. Arkin, R.: Integrating Behavioral, Perceptual, and World Knowledge in Reactive Navigation.

Designing Autonomous Agents, MIT Press (1990)

From Reactive Robotics to Situated Multiagent Systems 85

21. Agre, P.E., Chapman, D.: What are Plans for? Designing Autonomous Agents, MIT Press
(1990)

22. Nilsson, N.J.: Teleo-Reactive Programs for Agent Control. Journal of Artificial Intelligence
Research 1 (1994)

23. Bryson, J.J.: Intelligence by Design, Principles of Modularity and Coordination for Engi-
neering Complex Adaptive Agents. PhD Dissertation: MIT (2001)

24. Malcolm, C., Smithers, T.: Symbol Grounding via a Hybrid Architecture in an Autonomous
Assembly System. Designing Autonomous Agents, MIT Press (1990)

25. Arkin, R.: Bahavior-Based Robotics. MIT Press (1998)
26. Reynolds, C.: Flocks, Herds and Schools: A Distributed Behavior Model. Computer Graph-

ics 21 (1996)
27. Mataric, M.: Leaning to Behave Socially. In: From Animals to Animats, Proceedings of the

3th International Conference on Simulation of Adaptive Behavior, MIT Press (1994)
28. Zeghal, K., Ferber, J.: CRAASH: A Coordinated Collision Avoidance System. In: Proceed-

ings of European Simulation Conference, Lyon, France. (1993)
29. Arkin, R.: Behavior-Based Robotics. Massachusetts Institute of Technology, MIT Press,

Cambridge, MA, USA (1998)
30. Wavish, P.R., Connah, D.M.: Representing Multiagent Worlds in ABLE. Technical Note,

TN2964, Philips Research Laboratories (1990)
31. Grassé, P.P.: La Reconstruction du nid et les Coordinations Inter-Individuelles chez Belli-

cositermes Natalensis et Cubitermes sp. La theorie de la Stigmergie. Essai d’interpretation
du Comportement des Termites Constructeurs. Insectes Sociaux 6 (1959)

32. Deneubourg, J.L., Goss, S.: Collective Patterns and Decision Making. Ecology, Ethology
and Evolution 1 (1989)

33. Steels, L.: Cooperation between Distributed Agents through Self-Organization. Decentral-
ized Artificial Intelligence (1989)

34. Parunak, V.: Go to the Ant: Engineering Principles from Natural Agent Systems. Annals of
Operations Research 75 (1997)

35. Dorigo, M., Gambardella, L.: Ant Colony System: A Cooperative Learning Approach to the
Traveling Salesman Problem. IEEE Transactions on Evolutionary Computation 1 (1997)

36. Bonabeau, E., Hnaux, F., Gurin, S., Snyers, D., Kuntz, P., Theraulaz, G.: Routing in Telecom-
munications Networks with Ant-Like Agents. IATA (1998)

37. Sauter, J., Parunak, H.: ANTS in the Supply Chain. Agent based Decision Support for
Managing the Internet-Enabled Supply Chain, Seattle, WA (1999)

38. Brueckner, S.: Return from the Ant, Synthetic Ecosystems for Manufacturing Control. Ph.D
Dissertation, Humboldt University, Berlin, Germany (2000)

39. Babaoglu, O., Meling, H., Montresor, A.: Anthill: A Framework for the Development of
Agent-Based Peer-to-Peer systems. In: Proceedings of the 22nd International Conference on
Distributed Computing Systems, Vienna, Austria, IEEE Computer Society, Digital Library
(2002)

40. Mamei, M., Zambonelli, F.: Co-Fields: A Physically Inspired Approach to Distributed Mo-
tion Coordination. IEEE Pervasive Computing 3 (2004)

41. V. Parunak, home page. (http://www.erim.org/ vparunak/)
42. Mamei, M., Zambonelli, F., Leonardi, L.: Distributed Motion Coordination with Co-Fields:

A Case Study in Urban Traffic Management. In: 6th IEEE Symposium on Autonomous
Decentralized Systems, Pisa, Italy, IEEE Press (2003)

43. Mamei, M., Zambonelli, F.: Motion Coordination in the Quake3 Arena Environment. In:
Environments for Multiagent Systems, E4MAS. Volume 3374 of Lecture Notes in Computer
Science., Springer (2005)

86 D. Weyns and T. Holvoet

44. Bandini, S., Manzoni, S., Simone, C.: Dealing with Space in Multiagent Systems: A Model
for Situated Multiagent Systems. In: Proceedings of the First International Joint Conference
on Autonomous Agents and Multiagent Systems, ACM Press (2002)

45. Bandini, S., Manzoni, S., Vizzari, G.: MultiAgent Approach to Localization Problems: the
Case of Multilayered Multi Agent Situated System. Web Intelligence and Agent Systems 2
(2004)

46. Bandini, S., Federici, M.L., Manzoni, S., Vizarri, G.: Towards a Methodology for Situated
Cellular Agent Based Crowd Simulations. In: Sixth International Workshop on Engineering
Societies in the Agents World, ESAW. (2005)

47. Ferber, J., Muller, J.: Influences and Reaction: a Model of Situated Multiagent Systems.
Second International Conference on Multi-agent Systems, Japan, AAAI Press (1996)

48. Genesereth, M.R., Nilsson, N.: Logical Foundations of Artificial Intelligence. Morgan Kauf-
manns (1997)

49. Ferber, J.: An Introduction to Distributed Artificial Intelligence. Addison-Wesley (1999)
50. Helleboogh, A., Holvoet, T., Berbers, Y.: Simulating actions in dynamic environments. In:

Conceptual Modeling and Simulation Conference, CMS2005, Track on Agent Based Mod-
eling and Simulation in Industry and Environment. (2005)

51. Weyns, D., Helleboogh, A., Holvoet, T.: The Packet-World: A Test Bed for Investigating
Situated Multiagent Systems. In: Software Agent-Based Applications, Platforms and Devel-
opment Kits, Whitestein Series in Software Agent Technology (2005)

52. P2P Simulator. (http://trappie.studentenweb.org/andy/www/site mai/main.php)
53. Helsen, E., Deschacht, K.: The DELTA Framework for Situated Multiagent Systems. Master

Thesis, Katholieke Universiteit Leuven, Belgium (2005)
54. AGV Simulator.

(http://www.cs.kuleuven.ac.be/∼distrinet/taskforces/agentwise/agvsimulator/)
55. Weyns, D., Steegmans, E., Holvoet, T.: Towards Active Perception in Situated Multi-Agent

Systems. Journal on Applied Artificial Intelligence 18 (2004)
56. Weyns, D., Steegmans, E., Holvoet, T.: Integrating Free-Flow Architectures with Role Mod-

els Based on Statecharts. In: Environments for Multiagent Systems. Volume 3374 of Lecture
Notes in Computer Science., Springer-Verlag (2005)

57. Steegmans, E., Weyns, D., Holvoet, T., Berbers, Y.: A Design Process for Adaptive Behav-
ior of Situated Agents. Agent-Oriented Software Engineering, Lecture Notes in Computer
Science 3382 (2005)

58. Weyns, D., Steegmans, E., Holvoet, T.: Protocol Based Communication for Situated Multia-
gent Systems. 3th Joint Conference on Autonomous Agents and Multi-Agent Systems, New
York (2004)

59. Weyns, D., Holvoet, T.: Formal Model for Situated Multi-Agent Systems. Fundamenta
Informaticae 63 (2004)

60. Weyns, D., , Holvoet, T.: Regional Synchronization for Situated Multi-agent Systems.
In: Third International Central and Eastern European Conference on Multi-Agent Systems,
Prague, Czech Republic. Volume 2691 of Lecture Notes in Computer Science., Springer-
Verlag (2004)

61. EMC2: Egemin Modular Controls Concept. (http://emc2.egemin.com/)
62. Weyns, D., Schelfthout, K., Holvoet, T.: Exploiting a Virtual Environment in a Real-World

Application. Second International Workshop on Environments for Multiagent Systems,
Utrecht (2005)

63. Tummolini, L., Castelfranchi, C., Omicini, A., Ricci, A., Viroli:, M.: “Exhibitionists” and
“Voyeurs” do it Better: a Shared Environment for Flexible Coordination with Tacit Messages.
In: Environments for Multiagent Systems. Volume 3374 of Lecture Notes in Computer Sci-
ence, Springer-Verlag (2005)

From Reactive Robotics to Situated Multiagent Systems 87

64. Platon, E., Sabouret, N., Honiden, S.: Oversensing with a Softbody in the Environment:
Another Dimension of Observation. In: Proceedings of Modeling Others from Obser-
vation at International Joint Conference on Artificial Intelligence, Edinburgh, Scotland
(2005)

65. Ferber, J., Michel, F., Baez, J.: AGRE: Integrating environments with organizations. In:
Environments for Multiagent Systems. Volume 3374 of Lecture Notes in Computer Science,
Springer-Verlag (2005)

66. Zambonelli, F., Jennings, N., Wooldridge, M.: Developing Multiagent Systems: The Gaia
Methodology. ACM Transactions on Software Engineering and Methodology 12 (2003)

67. Julien, C., Roman, G.C.: Egocentric Context-Aware Programming in Ad-Hoc Mobile Envi-
ronments. In: Proceedings of the 10th Symposium on Foundations of Software Engineering,
Charleston, South Carolina, USA, ACM Press, New York, NY, USA (2002)

68. Schelfthout, K., Holvoet, T.: Views: Customizable Abstractions for Context-Aware Applica-
tions in MANETs. Software Engineering for Large-Scale Multi-Agent Systems, St. Louis,
USA (2005)

69. Chang, P., Chen, K., Chien, Y., Kao, E., Soo, V.: From Reality to Mind: A Cognitive
Middle Layer of Environment Concepts for Believable Agents. In: Environments for Mul-
tiagent Systems. Volume 3374 of Lecture Notes in Computer Science., Springer-Verlag
(2005)

70. Minsky, N., Ungureanu, V.: Law-Governed Interaction: A Coordination and Control Mech-
anism for Heterogeneous Distributed Systems. ACM Transactions on Software Engineering
Methodologies 9 (2000)

71. Noriega, P., Sierra, C.: Electronic Institutions: Future Trends and Challenges. In: Proceed-
ings of the 6th International Workshop on Cooperative Information Agents. Volume 2446 of
Lecture Notes in Computer Science., Springer-Verlag, London, UK (2002) 14–17

72. Weyns, D., Schelfthout, K., Holvoet, T., Lefever, T.: Decentralized control of E’GV trans-
portation systems. In: 4th Joint Conference on Autonomous Agents and Multiagent Systems,
Industry Track, Utrecht, The Netherlands, ACM Press, New York, NY, USA (2005)

73. Weyns, D., Parunak, V., Michel, F., Holvoet, T., Ferber, J.: Environments for Multiagent Sys-
tems, State-of-the-Art and Research Challenges. In: Environments for Multiagent Systems.
Volume 3374 of Lecture Notes in Computer Science., Springer-Verlag (2005)

74. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice. Addison Wesley
Publishing Comp. (2003)

75. Shaw, M., Garlan, D.: Software architecture: perspectives on an emerging discipline.
Prentice-Hall (1996)

76. Valckenaers, P., Van Brussel, H.: Holonic Manufacturing Execution Systems. CIRP Annals-
Manufacturing Technology 54 (2005) 427–432

77. Viroli, M., A.Omicini, Ricci, A.: Engineering MAS Environment with Artifacts. In Weyns,
D., Parunak, V., Michel, F., eds.: 2nd International Workshop Environments for Multi-Agent
Systems, AAMAS 2005, Utrecht, The Netherlands (2005)

78. Molesini, A., Omicini, A., Denti, E., Ricci, A.: SODA: A Roadmap to Artifacts. In: Sixth
International Workshop on Engineering Societies in the Agents World, ESAW. (2005)

79. Kendall, E., Jiang, C.: Multiagent System Design Based on Object Oriented Patterns. Journal
of Object Oriented Programming (1997)

80. Schelfthout, K., Coninx, T., Helleboogh, A., Holvoet, T., Steegmans, E., Weyns, D.: Agent
Implementation Patterns. In: OOPSLA Workshop on Agent-oriented Methodologies, Seattle,
WA USA. (2002)

81. Murphy, A., Picco, G., Roman, G.: LIME: a Middleware for Physical and Logical Mobility.
21th International Conference on Distributed Computing Systems (2001)

88 D. Weyns and T. Holvoet

82. Omicini, A., Ossowski, S., Ricci, A.: Coordination infrastructures in the engineering of
multiagent systems. In Bergenti, F., Gleizes, M.P., Zambonelli, F., eds.: Methodologies and
Software Engineering for Agent Systems: The Agent-Oriented Software Engineering Hand-
book. Volume 11 of Multiagent Systems, Artificial Societies, and Simulated Organizations.
Kluwer Academic Publishers (2004) 273–296

83. Mamei, M., Zambonelli, F.: Programming pervasive and mobile computing applications
with the tota middleware. 2nd IEEE International Conference on Pervasive Computing and
Communication (2004)

84. Schelfthout, K., Weyns, D., Holvoet, T.: Middleware for Protocol-based Coordination in
Dynamic Networks. In: Proceedings of the 3rd International Workshop on Middleware for
Pervasive and Ad-hoc Computing, Grenoble, France, ACM Press (2005)

Consistency Verification of the Reasoning in a

Deliberative Agent with Respect to the
Communication Protocols

Jaime Ramı́rez and Angélica de Antonio

Technical University of Madrid,
Madrid, Spain

{jramirez, angelica}@fi.upm.es
http://decoroso.ls.fi.upm.es

Abstract. The paper presents a method that can detect inconsisten-
cies in the reasoning carried out by a deliberative agent in a changing
environment. The verified agent operates on a description of the world
represented by means of an OWL Lite ontology, and utilizes production
rules to take decisions related to its future behaviour. The considered
kind of rules allows for representing non-monotonic reasoning and linear
arithmetic constraints in the rule antecedents. The proposed method can
specify the scenarios in which the agent would deduce an inconsistency.
A scenario is defined to be a description of the initial agent’s state (in the
agent life cycle), a deductive tree of rule firings, and a partially ordered
set of messages and/or stimuli schemas that the agent must receive from
other agents and/or the environment. Besides, the method will make
sure that the scenarios will be valid w.r.t. the communication protocols
in which the agent is involved.

1 Introduction

The aim of this paper is to present a method to detect inconsistencies in the
reasoning that a deliberative agent can perform. We assume the agent to own
a hybrid knowledge base (KB) that comprises an ontology expressed in OWL
Lite, and a set of production rules. These rules not only can add new facts to the
Fact Base (FB), but they can also remove facts from the FB. Hence, a certain
kind of non monotonic reasoning can be represented in the KB.

We suppose that the agent to be verified needs to carry out a reasoning
process in order to decide its next action according to its goals. During this
reasoning process, in order to fire rules, the agent takes into account innate facts
and acquired facts, that is, information coming from its perception or requested
to other agents. It is clear that, as the reasoning process evolves, it would be
perfectly possible and valid that the agent obtains contradictory facts from these
sources w.r.t. previously acquired facts. In this case, the new knowledge would

O. Dikenelli, M.-P. Gleizes, and A. Ricci (Eds.): ESAW 2005, LNAI 3963, pp. 89–105, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

90 J. Ramı́rez and A. de Antonio

replace the obsolete knowledge. However, the agent should not be allowed to
deduce a set of contradictory facts from the acquired facts.

The proposed method finds scenarios in which the agent would deduce an
inconsistency. We define a scenario to be a description of the initial agent’s state
(in the agent life cycle), a deductive tree of rule firings, and a partially ordered set
of messages and/or stimuli (expressed as schemas) that the agent must receive
from other agents and/or the environment. We assume the agent’s state to be
a Fact Base (FB). In addition, the proposed method will make sure that the
partially ordered set of messages and/or stimuli schemas included as part of a
scenario will be valid w.r.t. the communication protocols in which the verified
agent is involved.

Some methods or tools intended to verify the consistency of a Knowledge
Base System (KBS) (mostly rule based systems) build a model of the KBS
(Graph, Petri Net, etc.), and execute the model for each valid input, in order to
identify possible inconsistencies during the reasoning process. This approach in
many cases turns to be computationally very costly. Thus, we decided to follow
another approach in which the starting point is one of the inconsistencies that
might be possibly deduced by the verified KBS, and the goal is to compute a
description of the scenarios in which the KBS included in the agent would deduce
that inconsistency. This approach takes some ideas from the ATMS designed by
de Kleer [1] since it uses the concept of label as a way to represent a description
of a set of FBs. Other methods for verifying rule-based systems that follow a
similar approach were proposed in [2] [3] [4] [5] [6].

In section 2, some aspects are explained related to the agent’s KBS. Section 3
explains how the communication protocols will be specified. Section 4 describes
how to specify the inconsistencies that are verified by this method. In section 5
a case study, which will be used as context in the explanation of the operation
of the method, is presented. Section 6 explains how this method specifies the
way in which an agent can deduce an inconsistency, if possible. In section 7,
the procedure for detecting an inconsistency is outlined. We end with some
conclusions about our work.

2 Characteristics of the Agent’s KBS to be Verified

The agent’s KBS is made up of a KB and an inference engine. In turn, the
agent’s KB consists of an OWL Lite ontology and a set of production rules. Let
us describe each part in more detail.

2.1 OWL Lite Ontology

OWL language1 was intended to associate meaning to the web contents, so as
to improve the performance of applications such as search engines, e-commerce,
1 http://www.w3.org/TR/owl-features/

Consistency Verification of the Reasoning in a Deliberative Agent 91

navigation or web services. In addition, OWL allows for defining a shared vo-
cabulary that several agents can process and utilize to exchange information.

OWL is a layered language because it specifies a hierarchy of three sub-
languages. They are, sorted by decreasing degree of expressiveness, OWL Full,
OWL DL and OWL Lite. Although OWL Full and OWL DL are more expres-
sive than OWL Lite, the utilization of OWL Lite for reasoning purposes is more
recommended, as long as the entailment problem for OWL Full is undecidable,
and quite inefficient for OWL DL.

An OWL Lite ontology consists of a set of axioms and a set of facts. The
axioms define some class taxonomies where each class comprises a set of prop-
erties, whereas each fact defines an individual by specifying the names of the
classes that it belongs to, and the values for some of its attributes. The facts can
be also used to specify synonymous individuals, since by default the individuals
with different names are considered different individuals.

An OWL property is either a data-valued property (or datatype property) or
an object-valued property. In OWL Lite, the cardinality of the properties must
be 0 or 1. Moreover, a property can be defined to be transitive, symmetrical or
inverse of another property. The properties can be arranged to make up tax-
onomies of properties, for example, the property HasFather can be defined as a
subproperty of the property HasRelative.

2.2 Production Rules

The rule form considered by the proposed method is:

(l11, l12, ..., l1w∨ ,..., ∨ lm1, lm2, ..., lms) → a1, a2, ..., at

where the antecedent part contains a disjunction of m conjunctions of literals
(lij), and the consequent part contains a list of actions (ak). A literal is an
atom, a negated atom (except when the atom is Different(I1, I2)) or a linear
arithmetic constraint. The variables must be preceded by ?, and the types of
the variables can be determined taking into account the OWL Lite axioms. The
kinds of atoms that can occur in the antecedent part are outlined in the table
below:

Atom Meaning

SubClass(C1, C2) The class C1 is subclass of the class C2

SubProperty(P1, P2) The property P1 is subproperty of the property P2

Instance(I,C) The individual I is an instance of the class C

Different(I1, I2) The individual I1 is not the same as the individual I2

PROPERTY (I1, V ALUE) The individual I1 has a property PROPERTY with

value VALUE

92 J. Ramı́rez and A. de Antonio

In the table above, each argument written in capital letters can be a variable or
an object name (a numeric constant would be a particular case of object name).
Hence, PROPERTY may be a variable representing any property. Besides, if
any of the arguments of the Different(I1, I2) atom is a variable, it must occur
also in another type of atom.

The intended meaning for the literal ¬PROPERTY (I1, V ALUE) is:
¬PROPERTY (I1, V ALUE) ≡ ∃V ALUE1(PROPERTY (I1, V ALUE1) ∧ Different(V ALUE,

V ALUE1)). This meaning is established taking into account that the maximum
cardinality for the OWL Lite properties is 1.

The linear arithmetic constraints are intended to represent complex relation-
ships over some data-valued properties on real domain. The syntax for these
constraints is the same as the syntax specified for the DL reasoner RACER2.

Basically, we admit actions in the consequent part to be addition actions
or deletion actions. By means of an addition action, a rule can add a fact
to the FB, whereas by means of a deletion action, a rule can remove a fact
from the FB. Syntactically, an action can take the form Add(Individual Atom)
or Del(Individual Atom) where Individual Atom is either Instance(I, C) or
PROPERTY (I1, V alue).

2.3 Dynamic Aspects

The agent’s KBS is assumed to contain an inference engine able to execute the
rules following a forward or backward chaining. Furthermore, the agent’s KBS
must support a DL reasoner able to deal with the entailment problem. When a
rule is fired, we assume that all the actions belonging to the consequent of the
rule are executed sequentially.

As an OWL Lite ontology can be translated into the description logic SHIF
[7], DL reasoners such as RACER can be used to instantiate a literal of a rule
on demand if possible. If a certain literal cannot be instantiated with the facts
entailed by the ontology, and the KBS utilizes a backward chaining, the rule
inference engine will try to find a rule that deduces that literal.

As the logical foundation for OWL Lite is description logic, the way of deal-
ing with the negation is established by open-world semantics (OWS) instead of
closed-world semantics [8] [9]. This means that a fact can have three different
truth values, true, false, or unknown if the ontology does not entail neither the
fact nor the negated fact.

We assume that two kinds of facts can appear during the agent’s execution:
static facts and dynamic facts. A static fact is a fact whose truth value does
not change from true to false or from false to true during the reasoning process,
whereas the truth value of a dynamic fact actually may change those ways. In
this sense, some acquired facts will be dynamic facts. In the table below, the
source of each kind of knowledge is outlined:

2 http://www.franz.com/products/racer/racer features.lhtml

Consistency Verification of the Reasoning in a Deliberative Agent 93

Static Dynamic

Acquired messages/stimuli messages/stimuli (non-monotonically)

Deducible rules rules (non-monotonically)

Innate agent’s developer no allowed

A literal is static/dynamic/deducible/acquired/innate iff any fact derived
from this literal is also static/dynamic/deducible/acquired/innate. For exam-
ple, if F (x, y) is a static literal, then the facts F (a, b), F (c, d), etc. are also
static. The method needs to know both whether a literal is static or dynamic,
and whether a literal is acquired, innate or deduced, so a classification must be
provided.

2.4 Non-monotonicity and Inconsistency

Rules can introduce new facts in the agent’s state, but they can also delete al-
ready existing facts. This provides the agent’s designer with the capability of
building agents with non-monotonic reasoning. Consequently, we could find pro-
duction rules of the form p → Add(¬p) under Open World Assumption (OWA).
This kind of rules (when p is assumed to hold) are not admissible in a mono-
tonic KB, since they are logical inconsistencies. If we admit rules of the form
p → Add(¬p), we situate ourselves quite far from the concept of inconsistency in
monotonic KBS as defined in other works, so we are going to clarify the meaning
of inconsistency in this work:

A deductive tree T that deduces a conjunction of facts F and F ′ is tree
consistent iff:

1. T does not contain a set of contradictory static facts, or
2. the deductive subtree of T that deduces F must not deduce ¬F ′ in the

end, and vice versa.

This definition implies that the deductive subtree that deduces a fact F must
not deny the other fact F ′ that must hold at the same time than F , and vice
versa.

When the agent executes a reasoning process, a deductive tree is evaluated
and a sequence of rules is fired. A deductive tree defines a partial order for firing
rules, so many sequences may match with a certain deductive tree. The defini-
tion showed above is not more than a structural property to be fulfilled by the
deductive trees built by the agent that we want to verify using the method. We
will call this property Tree Consistency(dt) where dt is a tree of rule firings de-
fined recursively by means of the constructor tree(rule firing, list of subtrees)
and the constant NIL TREE (empty tree). As the method will simulate the
agent’s reasoning, it will discard any deductive process that implies the creation
of an invalid deductive tree. Next, we will formally define this property:

94 J. Ramı́rez and A. de Antonio

Tree Consistency(dt) ≡ Tree Consistency Aux1(Boundary(dt))
∧ Tree Consistency Aux2(dt, ∅)

Tree Consistency Aux1(B) ≡
AF =

�
r∈B Assumed Facts(r),

¬(((OWL AXMS ∪ AF) �⊥)∨
(∃is ∈ INCONSISTENT SETS is ⊂ �r∈B Assumed Facts(r)))

Tree Consistency Aux2(dt, scope) ≡ (dt = NIL TREE)∨
∃r∃a1, ∃a2...∃an(dt = tree(r, [a1, a2, ..., an]),

scope in rule = scope \ Deduced Facts(r),
¬(((scope in rule ∪ Assumed Facts(r) ∪ OWL AXMS) �⊥)∨
(∃f ∈ Deduced Facts(r), (f ∪ scope ∪ OWL AXMS) �⊥)∨
(∃acc ∈ Actions(r), (acc = Del(f), f ∈ scope))),

T ree Consistency Aux2(a1, scope in rule ∪ Assumed Facts(r)),
T ree Consistency Aux2(a2, scope in rule ∪ Assumed Facts(r)),

.......................................
T ree Consistency Aux2(an, scope in rule ∪ Assumed Facts(r)))

where INCONSISTENT SETS is the set of the different semantic
inconsistencies to be considered according to the application domain,
the OWL AXMS is the set of the axioms defined in the ontology,
A �⊥ means that A is an inconsistent set of OWL Lite axioms, OWL
Lite facts and linear arithmetic constraints, the function Boundary(dt)
returns the set of rule firings that are leaves of the tree dt, the function
Deduced Facts(r) returns the facts deduced by the rule firing r and the
function Assumed Facts(r) returns all the facts that must hold to execute
the rule firing r except for the acquired dynamic facts.

In the definition above, the property Tree Consistency Aux1 formalizes the
condition (1) in the previous definition of the inconsistent deductive tree, and
the property Tree Consistency Aux2 formalizes the condition (2).

Let us see an example of an inconsistent set of rules. For the sake of clarity, a
simplified notation for the rules will be employed in this example. According to
this notation, ¬p denotes a fact that is contradictory with the fact p w.r.t. the on-
tology axioms. Let us take the production rules R1: r, s → Del(p), Add(¬p); R2:
t → Add(p); R3: ¬p → Add(q) under OWA. In figure 1 we can see the deductive
tree for a conjunction p ∧ q that is supposed to be the antecedent of another
rule. The facts p and q are deducible and all the other facts are static. Obviously
(see rule R3), in order to deduce q, ¬p must be deduced beforehand, and after
having deduced ¬p it is not possible to deduce p.

Lets see an example of a RB that is consistent according to our definition,
but inconsistent according to other definitions. Lets take the production rules
R1: n, u → Add(q); R2: s, ¬q → Add(q); R3: q, m, t → Del(p), Add(¬p); R4:
v → Del(q), Add(¬q) under OWA. In the figure 2 we can see the deductive tree
for the conjunction ¬p ∧ q that is supposed to be the antecedent of another rule.

Consistency Verification of the Reasoning in a Deliberative Agent 95

Fig. 1. Example of an invalid deductive tree

Fig. 2. Example of a valid deductive tree

We assume that ¬p and q are deducible facts, and all the other facts are static. Al-
though the truth value of q changes during the reasoning process (in rule R2, the
antecedent requires ¬q to hold, and in the end, q must hold), it does not matter
w.r.t. the fulfilment of the tree-consistency property since rule R2 is a valid rule,
and it can be used to change the truth value of q without problems. Moreover, no
other rule associated with the reasoning of ¬p can annul the effect of rule R2.

3 Specification of the Communication Protocols

A state machine view for the verified agent must be provided as an input to the
method. Each state transition of the state machine has a label that specifies the
kind of messages that fire the transition. Each kind of message is specified by a
message schema. This state machine will be more complete if the state transitions

96 J. Ramı́rez and A. de Antonio

provoked by the stimuli that the agent may perceive in its environment are
represented as well as the transitions provoked by inter-agent communication
and agent-human communication.

In addition to the state machine, a correspondence between message/stimulus
schemas and queries must be supplied. A query is a conjunction of literals that
contains at least an acquired literal. If a message/stimulus schema corresponds
to a query {li}i=1,..,n, any message/stimulus that matches that schema contains
a model for the formula ∃xk1 . . . ∃xkm

∧
i=1,...,n li where the variables xk1 . . . xkm

are all the free variables in
∧

i=1,...,n li. If the supplied model is empty, the pre-
vious formula is to be interpreted as unsatisfiable. During the reasoning process,
the acquired literals in the rules will be completely instantiated with the objects
provided by the messages/stimuli.

4 Specification of Semantic Inconsistencies

Each semantic inconsistency that must be considered is represented by means
of an Integrity Constraint (IC). The IC form is: ∃x1∃x2...∃xn (l1(scope1) ∧
l2(scope2) ∧ ... ∧ lk(scopek)) ⇒⊥. A scope is associated with each literal to
specify the kind of data referenced in the literal (input or output). A literal with
input scope states something about the initial FB, while a literal with output
scope states something about the final FB (resulting after the execution of the
KBS). Let us see a simple example of IC:

∃?x(Instance(?x,MAN)(I),NumberOfPregnancies(?x, ?n)(O), ?n > 0(O)) ⇒⊥
This IC expresses that it is inconsistent to assume that a man has ever been
pregnant. The information of that the person ?x is a man is provided as input,
and the agent is supposed to deduce that ?x is pregnant.

Moreover, pairs of message/stimulus schemas, called contradictory message/
stimulus schemas, that contain pairs of contradictory models must be also pro-
vided to the proposed method.

5 Case Study

We will present an abstract example that will be used as context for the ex-
planation of the method. let us have rules R1 and R2, and the IC defined in
the figure 4. We assume that literals T (?X, ?Y) and ¬T (?X, ?Z) are deducible
literals; literals R(?X, ?Y) and ¬R(?X, ?Y) are acquired dynamic literals that
correspond to the message schemas M and M ′ respectively, which, in turn, are
contradictory message schemas; literal Instance(?X, A) is an acquired static lit-
eral that corresponds to the stimulus schema S; and the rest of the literals make
up innate knowledge.

We also assume that the OWL Lite ontology encompasses at least the definition
of the class A; the individual a; the object properties R, V and T ; the datatype
property D and some other datatype properties defined to be subproperties of D.

Consistency Verification of the Reasoning in a Deliberative Agent 97

Fig. 3. Fragment of the Agent’s State Machine for the case study

Fig. 4. Deductive tree of the case study

In this example, we suppose that the verified agent communicates with other
agents by exchanging messages, and perceives stimuli coming from its environ-
ment. The communication protocols view of the verified agent is specified by the
state machine of the figure 3.

6 Specification of the Scenarios

6.1 Describing Fact Bases

The proposed method will construct an object called subcontext to specify how
the initial agent’s state must be and which deductive tree must be executed in
order to cause an inconsistency. There can be different initial agent’s states and
different deductive trees that lead to the same inconsistency. An object called
context will gather all the different ways to violate a given IC. Consequently, a

98 J. Ramı́rez and A. de Antonio

context will be composed of n subcontexts. In turn, a subcontext is defined as
a pair (environment, deductive tree) where an environment is composed of a set
of metaobjects, and a deductive tree is a tree of rule firings.

A metaobject describes characteristics that one object that can be present
in the agent’s state should have. For each type of OWL Lite object there will
be a different type of metaobject. In order to describe an OWL Lite object, a
metaobject must include a set of constraints on the characteristics of the OWL
Lite object. All the metaobjects’s attributes are outlined below:

Metaclass = (identifier, subclass of,
metaindividuals)
MetaObjectProperty = (identifier,
pairs of metaindividuals, subproperty of)
MetaDataTypeProperty = (identifier,
pairs of metaindividual-value,
subproperty of)

MetaIndividual = (identifier,
instance of, objectproperties,
datatypeproperties, differentfrom)
MetaValue =(conditions)

Given that certain constraints expressed as arithmetic inequations can restrict
the datatype property values, a different kind of metaobject called condition will
represent them. The attributes of a condition are expression and values.

Let us see an example of an environment describing a FB in which the formula
Instance(?X, House) ∧Belongs(?X, Peter) ∧Costs(?X, ?pr) ∧ ?pr > 120000
holds. If there exists an OWL Lite object in the FB for each metaobject in the
environment, that satisfies all the requirements imposed on it, then the given
formula will hold in the FB. The environment is defined as {CLASS1, IND1,
IND2, OPRO1, DTPRO1, VALUE1, COND1} where:

CLASS1 = (House, , {IND1})
IND1 = (, {CLASS1}, {OPRO1},
{DTPRO},)
IND2 = (Peter,{OPRO1}, ,)
OPRO1 = (Belongs,{(IND1, IND2)},)

DTPRO1 = (Costs,
{(IND1, V ALUE1)},)
V ALUE1 = ({COND1})
COND1 = (”?pr > 120000”, [V ALUE1])

CLASS1 is a metaclass, IND1 and IND2 are metaindividuals, OPRO1 is a
metaobjectproperty, DTPRO1 is a metadatatypeproperty, VALUE1 is a meta
Value1, and finally COND1 is a condition. As defining the metaobjects, two
consecutive commas or a comma just before or after a parenthesis represents an
empty field.

A goal g is a pair (l, A) where l is a literal and A is a set of metaobjects,
associated with the object names and variables in l, that specifies the FBs in
which the literal l is satisfied without using DL reasoning. Moreover, a goal (l, A)
is static/dynamic/deducible/acquired/innate iff the literal l is static/dynamic/
deducible/acquired/innate.

6.2 Dealing with Acquired Information

Sometimes, in order to execute a deductive tree, it may be required that a dy-
namic acquired fact f holds in a rule, and later on, that another fact f ′ in

Consistency Verification of the Reasoning in a Deliberative Agent 99

conflict with f holds in another rule. This situation may yield an apparently
contradictory environment. To determine if it is a real contradiction, temporal
labels (a temporal label identifies a rule firing, and specifies that the constraint
comes from a dynamic acquired fact) will be associated with some constraints
included in the goals (l, A) and (l′, A′) that entail f and f ′ respectively, to
represent that these constraints must be satisfied in different rule firings (or
moments). In addition, the method will specify, as part of the resulting sce-
nario, that a message/stimulus that matches schema M and allows literal l to
hold must be received before a message/stimulus that matches schema M ′ and
allows literal l′ to hold is received, formally M < M ′. Temporal constraints, like
the one stated in the previous sentence, will define a partially ordered set of
messages and/or stimuli schemas, in which the relationship < expresses tempo-
ral precedence. In the example proposed in section 5, we assume the following
sequence of rule firings [R1, R2]. As the message schemas M and M ′ are con-
tradictory, and they allow the acquired dynamic literals R(?X, ?Y) in R1 and
¬R(?X, ?Y) in R2 respectively to hold, the method will compute the temporal
constraint M < M ′.

For each static acquired literal included in the KB, it will be needed to gener-
ate a temporal constraint to express that the message/stimulus schema allowing
the static acquired literal to hold must be received before the end of the de-
ductive process. For this reason, some temporal labels must be also associated
with the constraints derived from static acquired literals, so that the method
can obtain the proper temporal constraints later. In addition, these labels must
specify that the constraints have been obtained from a static acquired fact. For
the example in section 5, a temporal constraint S < End is computed.

Moreover, the method has to generate temporal constraints to express that
some messages/stimuli allowing static acquired literals to hold must be received
before the message/stimulus that allows a certain dynamic acquired literal to
hold. Let (R1, R2, ..., RN) be the sequence of rules that are fired as a result
of evaluating a deductive tree according to the control mechanisms. Let Ri s.t.
1 � i < N be a rule whose antecedent requires the dynamic acquired literal Ld
to hold, and let M be a message/stimulus schema that entails Ld; let Rj s.t.
i < j � N be a rule whose antecedent requires the dynamic acquired literal L′d
to hold, and let M ′ be a message/stimulus schema that entails L′d and that is
contradictory with M . Then, it is clear that any message/stimulus schema M1
that entails a static acquired literal Ls belonging to the antecedent of a rule Rk
s.t. i � k < j must satisfy M1 < M ′. In the example of section 5, a temporal
constraint S < M ′ is computed.

6.3 Contexts Operations

We will define the following contexts operations: creation of a context, concatena-
tion of a pair of contexts and combination of a list of contexts. These operations
will be employed by the method to compute the scenarios, as we will see later on.

100 J. Ramı́rez and A. de Antonio

a) Creation: a context with an unique subcontext is created from an acquired/
innate goal g = (l, A) and a rule r: C(g, r) = {(E, EMPTY TREE)} where
the environment E comprises all the metaobjects included in g. The rule r
must be a rule that comprises the literal l in its antecedent. If the literal
l is not innate (so it is related to a message/stimulus), some constraints of
the metaobjects must be labeled with a temporal label indicating that these
constraints must be satisfied at least in the firing of the rule r; in particular,
the constraints that require: the presence of a pair in an object property or a
datatype property; or an individual to be or not to be an instance of a class.

b) Concatenation of a pair of contexts : let C1 and C2 be a pair of contexts
and Conc(C1, C2) be the context resulting from the concatenation, then:
Conc(C1, C2) = C1 ∪ C2.

c) Combination of a list of contexts : Let C1, C2, ..., Cn be the list of contexts,
and Comb(C1, C2, ..., Cn) be the context resulting from the combination.
The form of this resulting context is: Comb(C1, C2, ..., Cn) = {(Ek1∪Ek2...∪
Ekn, DTk1 ∗ DTk2... ∗ DTkn) s.t. (Ei, DTi) ∈ Ci}
c.1) Union of environments (Ei ∪ Ej): this operation consists of the union

of the sets of metaobjects Ei and Ej . After the union of two sets, it is
necessary to check whether any pair of metaobjects can be merged. A
pair of metaobjects will be merged if they contain a pair of constraints
c1 and c2, respectively, such that (c1 ∧ c2) entail that both metaobjects
represent the same OWL Lite object. This will happen if both metaob-
jects should have the same value in the identifier attribute according to
the ontology axioms. Finally, if the resulting environment represents an
invalid initial agent state, then this environment will also be discarded.
This last check will be carried out with the help of the DL reasoner
RACER.

c.2) Combination of deductive trees (DTi ∗ DTj): let DTi and DTj be de-
ductive trees, then DTi ∗ DTj is the deductive tree that results from
constructing a new tree whose root node represents an empty rule fir-
ing, and whose two subtrees are DTi and DTj .

7 Computing the Scenarios

The process to compute the scenarios associated with an IC is divided into four
steps. Next, these steps will be explained.

7.1 First Step

The first step can be considered as a pre-processing of the set of rules. In the sec-
ond step, a backward chaining simulation of the real rule firings is carried out
without making calls to the DL reasoner (except for consistency checks in the
union of environments, see 6.3, or in the updates of the set of assumed individ-
uals, see 7.2). However, in a real execution of the KBS some literals in the rule

Consistency Verification of the Reasoning in a Deliberative Agent 101

antecedents are instantiated thanks to these DL reasoner calls. In order to fill this
gap in the simulation, some new rules derived from the ontology axioms and al-
ready existing rules are added to the set of rules. In particular, the generation of
new rules is related to the presence of deduced literals in the rules. Sometimes, a
rule adds a new fact to the FB that matches a literal in another rule’s antecedent;
in that case, we will say in the simulation that the first rule can be chained with
the literal. In other cases, a rule adds a new fact to the FB that does not match
directly a literal in a rule antecedent, but it actually does it indirectly, because
the new fact allows the DL reasoner to deduce another fact that does match the
literal. For the purpose of simulating properly this kind of inference situations,
the set of rules must be pre-processed. Next, we will explain how the new rules
are computed from the ontology axioms and already existing rules:

Deducing the Literal ¬Instance(ID1, C):
According to the syntactical restrictions explained in 2.2, no rules can deduce
directly this kind of literals, but KBS actually can indirectly deduce it these
ways:

1. R(ID1, ID2), ¬subclass(C, Domain(R)) → ¬Instance(ID1, C)
2. R(ID2, ID1), ¬subclass(C, Range(R)) → ¬Instance(ID1, C)

Where R is any property. Thus, in each rule whose antecedent contains a con-
junction c where the deducible literal ¬Instance(ID1, C) occurs, the conjunction
c will be replaced with the new conjunctions:

Substitute(c, ”¬Instance(ID1, C)”, ”R(ID1, ID2), ¬subclass(C, Domain(R))”) and,

Substitute(c, ”¬Instance(ID1, C)”, ”R(ID2, ID1), ¬subclass(C, Range(R))”)

where the function Substitute(c, s1, s2) returns the conjunction resulting from
replacing the string s1 with the string s2 in the conjunction c.

Deducing the Literal Instance(ID, C):
Following an analogous reasoning to the previous replacement, in each rule whose
antecedent contains a conjunction c where the deducible literal
Instance(ID1, C) occurs, two new conjunctions must be added:

Substitute(c, ”Instance(ID1, C)”, ”R(ID1, ID2), subclass(C,Domain(R))”) and,

Substitute(c, ”Instance(ID1, C)”, ”R(ID2, ID1), subclass(C,Range(R))”)

Furthermore, given that any individual a that is instance of a class A is also
instance of any superclass of A, then another conjunction must be added:

Substitute(c, ”Instance(ID1, C)”, ”Instance(ID1, C1), subclass(C,C1)”)

Deducing Transitive Object Properties:
If the object property R is defined to be transitive, then in each rule whose
antecedent contains a conjunction c where the deducible literal R(ID1, ID2)
occurs, the new conjunction must be added:

102 J. Ramı́rez and A. de Antonio

Substitute(c, ”R(ID1, ID2)”, ”R(ID1, ?X), R(?X, ID2”) st. the variable X does not

occur in the conjunction c.

Deducing Symmetric Object Properties:
If the object property R is defined to be symmetric, then in each rule whose
antecedent contains a conjunction c where the deducible literal R(ID1, ID2)
occurs, the new conjunction must be added:

Substitute(c, ”R(ID1, ID2)”, ”R(ID2, ID1)”) .

Deducing Inverse Object Properties:
If the object property R−1 is defined to be inverse of the object property R,
then in each rule whose antecedent contains a conjunction c where the deducible
literal R−1(ID1, ID2) occurs, the new conjunction must be added:

Substitute(c, ”R−1(ID1, ID2)”, ”R(ID2, ID1)”) and vice versa.

7.2 Second Step

Basically, the second step can be divided into two phases. In the first phase,
the AND/OR decision tree associated with the IC is expanded following a back-
ward chaining simulation of the real rule firings. The leaves of this tree are rules
that only contain acquired/innate facts in their antecedents. At this point, the
difference between a deductive tree and an AND/OR decision tree should be
explained. While a deductive tree can be viewed as one way and only one way
for achieving a certain goal (that is, for deducing a bound formula or for fir-
ing a rule), an AND/OR decision tree comprises one or more deductive trees,
therefore it specifies one or more ways to achieve a certain goal. During the first
phase, metaobjects are built corresponding with each variable of a rule/IC and
each referenced OWL Lite name, and these metaobjects are propagated from
a rule to another one. In this propagation, some constraints are added to the
metaobjects due to the rule literals, and some constraints are removed from the
metaobjects due to the rule actions, because any constraint deduced by an ac-
tion is not required to be satisfied by the initial FB any more. In addition to
the metaobjects, a set of assumed individuals (SAI) is propagated and updated.
The aim of SAI is to warrant that the expanding deductive tree fulfills the sec-
ond condition of the Tree Consistency property. The first condition of the Tree
Consistency property is checked in the union of environments (see 6.3) during
the next phase.

Figure 4 shows the expanded deductive tree for the example proposed in 5.
This figure shows the names of the metaobjects build for the variables and the
OWL Lite names, as well as the two propagations of metaobjects through the
two goal-action chainings. We will follow the trajectory of metaindividual I2
from the IC, where it is created for the variable ?X , to the rule R1. In the
IC, I2 is created as (, , objectproperties → {OPR1}, ,) (see the format of the
metaobjects in section 6.1). Then, the reference to OPR1 is removed from I2 in

Consistency Verification of the Reasoning in a Deliberative Agent 103

the first chaining, because the action deduces a pair of the object property T in
which I2 is involved. Next, in the rule R2, I2 is required to appear in two pairs,
one of the object property R, and another of the object property T ; therefore
I2 is updated to I2 = (, , objectproperties → {OPR1, OPR2}, ,). Now, I2 is
involved in another chaining, this time from R2 to R1, and in this chaining the
reference to OPR1 is removed from I2 due to the simulation of the action effect.
Finally, in the rule R1, a reference to the object property R and a constraint
stating that the individual I2 is instance of class A are added to I2.

For the example of the figure 4, a SAI is created in the IC, so that SAI =
{SubProperty(DPR1,DPR2),DPR1(I1, V 1), V 1 > 5, T (I2, I3),Different(I3, a)}.
Then, in the first chaining the action removes T (I2, I3) from SAI, and when
SAI gets to the conjunction of R2, it is updated so that SAI = {SubProperty
(DPR1, DPR2), DPR1(I1, V 1), V 1>5, V (a, I3), T (I2, I5), Different(I3, a)}.
Finally, in R1, SAI = {SubProperty(DPR1, DPR2), DPR1 (I1, V 1), V 1 > 5,
V (a, I3), Different(I3, a), Instance(I2, C1)}. As we can just see in this para-
graph, the example of the figure 4 does not raise any inconsistency propa-
gating SAI. However, if the innate literal V (a, a)(I) was added to IC, in the
antecedent of R2, SAI would be {SubProperty(DPR1, DPR2), DPR1(I1, V 1),
V 1 > 5, V (a, I3), T (I2, I5), Different(I3, a), V (a, a)}, which is inconsistent be-
cause it forces the object property V to have two pairs (a, I3) and (a, a) st.
Different (I3, a). If SAI turns to be inconsistent w.r.t. the ontology axioms,
the Tree Consistency property does not hold for the current deductive tree, and
then the current rule must be discarded.

In the second phase, the AND/OR decision tree is contracted by means of
context operations, so that metaobjects in acquired/innate goals and conditions
related to metaobjects in acquired/innate goals are inserted in the subcontexts of
the context associated with the IC. Basically, the creation operation is employed
to work out the context associated with an acquired/innate goal; the combination
operation is employed to work out the context associated with a conjunction of
literals from the contexts associated with the literals; and the concatenation
operation is employed to work out the context associated with a disjunction
from the contexts associated with the formulas involved in the disjunction.

Let us see the context associated with the IC in the example of the figure 4:
C(IC)={SUBC1}={({C1, I1, I2, I3, I5, I5′, I6, DPR1, DPR2, OPR3, OPR5,
V 1, COND1}, tree(R1, [tree(R2, [EMPTY TREE])]))} where:

C1 = (A, , {I2})
I1 = (, , , {DPR1},)
I2 = (, {A(static,R1)}, {OPR5}, ,)
I3 = (, , {OPR3}, , {I6})
I5′ = (, , , , {I5})
I5 = (, , {OPR5}, , {I5′})
I6 = (a, , {OPR3}, , {I3})
/ ∗ I6 = I4 + I3′ ∗ /
DPR1 = (, {(I1, V 1)}, {DPR2})

DPR2 = (D, ,)
OPR3 = (V, {(I6, I3)},)
OPR5 = (R, {(I2, I5)(dynamic,R1),
(I2, I5′)(dynamic, R2)},)
/ ∗ OPR5 = OPR2 + OPR4 ∗ /
V 1 = ({COND1})
COND1 = (′′?U > 5′′, {V 1})

104 J. Ramı́rez and A. de Antonio

The two phases of the second step are explained in detail for a frame-like
knowledge representation formalism called CCR-2 in [10].

7.3 Third Step

In the third step of the method, a different scenario is derived from each sub-
context in the context associated with the IC by adding a partially ordered
set of message and/or stimulus schemas to the subcontext. In this step, some
subcontexts may be discarded if they are impossible w.r.t. the control mecha-
nisms. The partial order on the message/stimulus schemas reflects the temporal
constraints derived from the control mechanisms and the deductive tree. These
temporal constraints are built as it was explained in section 6.2. The temporal
constraints for the example of section 5 were already worked out in section 6.2.
Thus, the partially ordered set is {M < M ′, S < M ′, S < End}, and the scenario
is (SUBC1, {M < M ′, S < M ′, S < End}).

7.4 Fourth Step

Now, the fourth step must be applied. So far, some scenarios have been obtained
for an IC. However, it could happen that some scenario obtained in the previous
step describes impossible sequences of messages or stimuli w.r.t. the communi-
cation protocols. In order to check this, at least one path that satisfies all the
temporal constraints must be found in the state machine. The first state of this
path must be the state in which the agent begins its reasoning process. It is
clear that there is a path in the state machine of the figure 3 that satisfies all
the temporal constraints imposed in the scenario computed in the previous step,
so the scenario in this example is consistent with the state machine.

8 Conclusion and Future Work

In this paper, a formal method to verify the consistency of the reasoning process
of a deliberative agent w.r.t. communication protocols has been presented. To
the best of our knowledge, there is no other method or tool that also addresses
this kind of verification. It is also noteworthy that the agent to be verified encom-
passes a hybrid KB that permits the representation of non-monotonic reasoning
and arithmetic constraints.

We think that the proposed approach can be applied to large deliberative
agents with a reasonable efficiency. As the proposed method only focuses on the
deduction of an inconsistency by using the available rules, the computational
cost will not depend on the size of the whole rule base in the average case, but it
will depend on the size of the decision tree expanded for the IC, which normally
will involve a small percentage of the total set of rules. In addition, as it was
commented in section 1, the proposed method will not need to consider all the
different initial states of the verified agent, as other methods actually would do.

Consistency Verification of the Reasoning in a Deliberative Agent 105

We are currently investigating how to improve the generation of the temporal
constraints from the contexts and the control mechanisms of the KBS. This
works are addressing the treatment of metarules, as control mechanisms, and
the deletion of redundant temporal constraint by using transitive dependencies.

References

1. de Kleer, J.: An assumption based TMS. Artificial Intelligence 28 (1986) 127–162
2. Rousset, M.: On the consistency of knowledge bases: The COVADIS system, Pro-

ceedings ECAI-88, Munich, Alemania (1988) pp. 79–84.
3. Ginsberg, A.: Knowledge-base reduction: A new approach to checking knowl-

edge bases for inconsistency and redundancy, Proceedings of the AAAI-88 (1988)
pp. 585-589.

4. Meseguer, P.: Incremental verification of rule-based expert systems, Proceedings
of the 10th. European Conference on AI (ECAI’92) (1992) pp. 840–844.

5. Dahl, M., Williamson, K.: A verification strategy for long-term maintenance of
large rule-based systems, Workshop Notes of the AAAI92 WorkShop on Verification
and Validation of expert Systems (1992) pp. 66–71.

6. Ayel, M., Laurent, J.P.: Validation, Verification and Test of Knowledge-Based
Systems: SACCO-SYCOJET: Two Different Ways of Verifying Knowledged-Based
Systems. John Wiley publishers (1991)

7. Horrocks, I., Patel-Schneider, P.F.: Three theses of representation in the semantic
web. In: Proc. of the Twelfth International World Wide Web Conference (WWW
2003), ACM (2003) 39–47

8. Baader, F., Nutt, W.: Basic description logics. in [9], chapter 2 (2003) 43–95
9. Baader, F., et al.: The Description Logic Handbook. Cambridge University Press

(2003)
10. Ramı́rez, J., de Antonio, A.: Knowledge base semantic verification based on con-

texts propagation, Notes of the AAAI-01 Symposium on Model-based Validation
of Intelligence (2001) http://ase.arc.nasa.gov/mvi/abstracts/index.html.

Security Protocols Verification

in Abductive Logic Programming:
A Case Study�

Marco Alberti1, Federico Chesani2, Marco Gavanelli1,
Evelina Lamma1, Paola Mello2, and Paolo Torroni2

1 ENDIF, Università di Ferrara - Via Saragat, 1 - 44100 Ferrara, Italy
{marco.alberti, marco.gavanelli, evelina.lamma}@unife.it

2 DEIS, Università di Bologna - Viale Risorgimento, 2 - 40126 Bologna, Italy
{fchesani, pmello, ptorroni}@deis.unibo.it

Abstract. In this paper we present by a case study an approach
to the verification of security protocols based on Abductive Logic
Programming.

We start from the perspective of open multi-agent systems, where the
internal architecture of the individual system’s components may not be
completely specified, but it is important to infer and prove properties
about the overall system behaviour. We take a formal approach based
on Computational Logic, to address verification at two orthogonal levels:
‘static’ verification of protocol properties (which can guarantee, at design
time, that some properties are a logical consequence of the protocol),
and ‘dynamic’ verification of compliance of agent communication (which
checks, at runtime, that the agents do actually follow the protocol).

In order to explain the approach, we adopt as a running example the
well-known Needham-Schroeder protocol. We first show how the protocol
can be specified in our previously developed SOCS-SI framework, and
then demonstrate the two types of verification.

We also demonstrate the use of the SOCS-SI framework for the static
verification of the NetBill e-commerce protocol.

1 Introduction

The recent and fast growth of network infrastructures, such as the Internet, is
allowing for a new range of scenarios and styles of business making and trans-
action management. In this context, the use of security protocols has become
common practice in a community of users who often operate in the hope (and
sometimes in the trust) that they can rely on a technology which protects their
private information and makes their communications secure and reliable. A large

� This paper is a revised version of work discussed at the Twentieth Italian Symposium
on Computational Logic, CILC 2005, whose informal proceedings are available from
the URL: http://www.disp.uniroma2.it/CILC2005/

O. Dikenelli, M.-P. Gleizes, and A. Ricci (Eds.): ESAW 2005, LNAI 3963, pp. 106–124, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Security Protocols Verification in Abductive Logic Programming 107

number of formal methods and tools have been developed to analyse security pro-
tocols, achieving notable results in determining their strengths (by showing their
security properties) and their weaknesses (by identifying attacks on them).

The need for well defined protocols is even more apparent in the context
of multi-agent systems. By “well defined”, we mean that they guarantee some
desirable properties (assuming that agents act according to them). In order to
achieve reliability and users’ trust, formal proofs of such properties need to
be provided. We call the generation of such formal proofs static verification of
protocol properties.

Open agent societies are defined as dynamic groups of agents, where new
agents can join the society at any time, without disclosing their internals or
specifications, nor providing any formal credential of being “well behaved” [1].
Open agent societies are a useful setting for heterogenous agent to interact;
but, since no assumptions can be made about the agents and their behaviour,
it cannot be assumed that the agents will follow the protocols. Therefore, at
run-time, the resulting agent interaction may not exhibit the protocol properties
that were verified statically at design time. In order to know whether the desired
“static” properties hold at run-time, we need to be able to verify that agents do
follow the protocols. In other words, we can do what Guerin and Pitt call on-the-
fly verification of compliance [2]. This kind of verification should be performed
by a trusted entity, external to the agents.

In previous work, and in the context of the EU-funded SOCS project [3]
we developed a Computational Logic-based framework, called SOCS-SI (where
SI stands for Social Infrastructure), for the specification of agent interaction. In
order to make SOCS-SI applicable to open agent societies, the specifications refer
to the observable agent behaviour, rather than to the agents’ internals or policies,
and do not over-constrain the agents’ behaviour. We have shown that SOCS-SI
is suitable for semantic specification of agent communication languages [4], and
that it lends itself to the definition of a range of agent interaction protocols [5].1

In this paper, we demonstrate by a case study on the well known Needham-
Schroeder security protocol [7] how the SOCS-SI framework supports both static
verification of protocol properties and on-the-fly verification of compliance. The
two kinds of verifications are achieved by means of the operational counterpart of
the SOCS-SI framework, consisting of two abductive proof-procedures (SCIFF
and g-SCIFF). Notably, the same specification of the protocol in our language is
used for both kinds of verification: in this way, the protocol designer is relieved
from a time consuming and error-prone translation step.

SOCS-SI can thus be viewed as a tool for protocol designers, which can be
used to automatically verify: (i) at design time, that a protocol enjoys some
desirable properties, and (ii) at runtime, that the agents follow the protocol, so
making the interaction indeed exhibit the properties.

The paper is structured as follows. In Sect. 2, we describe an implementation
of the well-known Needham-Schroeder Public Key authentication protocol in
our framework, and in Sect. 3 we show how we perform on-the-fly verification

1 A repository of protocols is available on the web [6].

108 M. Alberti et al.

of compliance and static verification of properties of the protocol. In Sect. 4, as
a further example, we propose the static verification of the NetBill e-commerce
protocol. Related work and conclusions follow.

2 Specifying the Needham-Schroeder Public Key
Encryption Protocol

In this section, we show how the SOCS-SI framework can be used to represent
the well-known Needham-Schroeder security protocol [7]. The purpose of the
protocol is to ensure mutual authentication while maintaining secrecy. In other
words, once agents A and B have successfully completed a run of the protocol,
A should believe his partner to be B if and only if B believes his partner
to be A.

(1) A → B : 〈NA, A〉pub key(B)

(2) B → A : 〈NA, NB〉pub key(A)

(3) A → B : 〈NB〉pub key(B)

Fig. 1. The Needham-Schroeder protocol (simplified version)

The protocol consists of seven steps, but, as other authors do, we focus on
a simplified version consisting of three steps, where we assume that the agents
know the public key of the other agents. A protocol run can be represented as
in Figure 1.

A → B : 〈M〉PK means that A has sent to B a message M , encrypted with
the key PK. A message of form NX represents a nonce: a message whose content
is assumed impossible to guess (such as a long binary string), and thus known
only to the agent that synthesized it and to those who received it.

In step (1), A sends to B a new nonce NA, together with A’s identifier,
encrypted with B’s public key. In step (2), B sends NA back to A, together with
a new nonce NB, encrypted with A’s public key. A is now sure about B’s identity,
since only B can have decrypted the first message and know NA. Similarly, B
is sure about A’s identity after step (3), because only A can have decrypted the
second message and have read NB to send it back to B.

At the end of the protocol, seemingly, A and B are mutually authenticated.

Lowe’s attack on the protocol. Eighteen years after the publication of the
Needham-Schroeder protocol, Lowe [8] proved it to be prone to a security attack.
Lowe’s attack on the protocol is presented in Figure 2, where a third agent i
(standing for intruder) manages to successfully authenticate itself as agent a
with a third agent b, by exploiting the information obtained in a legitimate
dialogue with a.

It is important to notice that Lowe’s attack is effective even if the nonces
and keys are not compromised, differently from other kinds of attack (see, for
instance, those exemplified by Denning and Sacco [9]).

Security Protocols Verification in Abductive Logic Programming 109

(1) a → i : 〈Na, a〉pub key(i)

(2) i → b : 〈Na, a〉pub key(b)

(3) b → i : 〈Na, Nb〉pub key(a)

(4) i → a : 〈Na, Nb〉pub key(a)

(5) a → i : 〈Nb〉pub key(i)

(6) i → b : 〈Nb〉pub key(b)

Fig. 2. Lowe’s attack on the Needham-Schroeder protocol

2.1 The Social Model

In this section we give a brief summary of the SOCS-SI social framework devel-
oped within the EU-funded SOCS project [3]2 to specify interaction protocols
for open societies of agents in a declarative way.

Since in open societies the agents’ internal state is not observable, the SOCS-
SI framework is aimed at specifying and verifying the agents’ observable be-
haviour. The verification is performed by an external entity, the social
infrastructure, which can observe the agent behaviour.

The agent interaction is recorded by the social infrastructure in a set HAP
(called history), of events. Events are represented as ground atoms

H(Event [,Time])

The term Event describes the event that has happened, according to application-
specific conventions (e.g., a message sent or a payment issued); Time (optional)
is a number, meant to represent the time at which the event has happened.

For example,

H(send(a, b, content(key(kb), agent(a), nonce(na))), 1)

could represent the fact that agent a sent to agent b a message consisting its
own identifier (a) and a nonce (na), encrypted with the key kb, at time 1.

While events represent the actual agent behaviour, the desired agent be-
haviour is represented by expectations. Expectations are “positive” when they
refer to events that are expected to happen, and “negative” when they refer to
events that are expected not to happen. The following syntax is adopted

E(Event [,Time]) EN(Event [,Time])

for, respectively, positive and negative expectations. Differently from events, ex-
pectations can contain variables (we follow the Prolog convention of representing
variables with capitalized identifiers) and CLP [11] constraints can be imposed
on the variables. This is because the desired agent behaviour may be under-
specified (hence variables), yet subject to restriction (hence CLP constraints).

For instance,

E(send(a, b, content(key(kb), nonce(nb), empty(0))), T)
2 The reader can refer to [10] for a more detailed description.

110 M. Alberti et al.

could represent the expectation for agent a to send to agent b a message consist-
ing of a nonce (nb) and an empty part (empty(0)), encrypted with a key kb, at
time T . A CLP constraint such as T ≤ 10 can be imposed on the time variable,
to express a deadline.

Explicit negation can be applied to expectations (¬E and ¬EN).
In the SOCS-SI framework, the agent interaction is specified by means of

interaction protocols.
A protocol specification S = 〈KBS , ICS〉 is composed of:

– the Social Knowledge Base (KBS) is a logic program whose clauses can have
expectations and CLP constraints in their bodies. It can be used to express
domain-specific knowledge (such as, for instance, deadlines);

– a set ICS of Social Integrity Constraints (also SICs, for short, in the fol-
lowing): rules of the form Body → Head. SICs are used to express how the
actual agent behaviour generates expectations on their behaviour; examples
can be found in the following sections.

In abductive logic frameworks [12], abducibles represent hypotheses, a logic
program specifies which set of hypotheses entail a goal, and integrity constraints
rule out inconsistent set of hypotheses. The abductive reasoning is successful if
it finds a set of hypotheses which entail the goal while not violating the integrity
constraints.

In our (abductive) framework, we map expectations to abducibles, and the
abductive semantics is used to select a desired behaviour which entails a social
goal, while not violating the SICs. In addition, we require the desired behaviour
to be matched by the actual agent behaviour.

In particular, we say that a history HAP is compliant to a specification
S = 〈KBS , ICS〉 iff there exists a set EXP of expectations that is

– ICS-consistent : it must entail ICS , for the given S and HAP;
– ¬-consistent : for any ground p, EXP cannot include {E(P), ¬E(p)} or

{EN(p), ¬EN(p)} (this requirement implements explicit negation for ex-
pectations);

– E-consistent : for any ground p, EXP cannot include {E(p),EN(p)} (an
event cannot be both expected to happen and expected not to happen);

– fulfilled : for any ground p, EXP cannot contain EN(p) if HAP contains
H(p), and EXP cannot contain E(p) if HAP does not contain H(p) (hap-
pened events are required to match the expectations).

In order to support goal-oriented societies, EXP is also required to entail, to-
gether with KBS , a goal G which is defined as a conjunction of literals.

2.2 Representing the Needham-Schroeder Protocol in the SOCS-SI
Social Model

In the following, we show a specification of the Needham-Schroeder protocol in
the SOCS-SI language.

Security Protocols Verification in Abductive Logic Programming 111

With the atom:

H(send(X, Y, content(key(K), T erm1,Term2)), T1)

we mean that a message is sent by an agent X to an agent Y ; the content of the
message consists of the two terms Term1 and Term2 and has been encrypted
with the key K. T1 is the time at which Y receives the message.

The interaction of Figure 1, for instance, can be expressed as follows:

H(send(a, b, content(key(kb), agent(a), nonce(na))), 1)

H(send(b, a, content(key(ka), nonce(na), nonce(nb))), 2)

H(send(a, b, content(key(kb), nonce(nb), empty(0))), 3)

A first group of SICs, depicted in Figure 3, defines the protocol itself, i.e, the
expected sequence of messages.

H(send(X, B, content(key(KB), agent(A), nonce(NA))), T1)

--->

E(send(B, X, content(key(KA), nonce(NA), nonce(NB))), T2)

/\ NA!=NB /\ T2 > T1.

H(send(X, B, content(key(KB), agent(A), nonce(NA))), T1)

/\ H(send(B, X, content(key(KA), nonce(NA), nonce(NB))), T2)

/\ T2 > T1

--->

E(send(X, B, content(key(KB), nonce(NB), empty(0))), T3)

/\ T3 > T2.

Fig. 3. Social Integrity Constraints defining the Needham-Schroeder protocol

The first SIC of Figure 3 states that, whenever an agent B receives a mes-
sage from agent X , and this message contains the name of some agent A (possi-
bly the name of X himself), and some nonce NA, encrypted with B’s public key
KB, then a message is expected to be sent at a later time from B to X , con-
taining the original nonce NA and a new nonce NB, encrypted with the public
key of A.

The second SIC of Figure 3 expresses that if two messages have been sent,
with the characteristics that: a) the first message has been sent at the instant
T1, from X to B, containing the name of some agent A and some nonce NA,
encrypted with some public key KB; and b) the second message has been sent
at a later instant T2, from B to X , containing the original nonce NA and a new
nonce NB, encrypted with the public key of A; then a third message is expected
to be sent from X to B, containing NB, and encrypted with B’s public key.

The second group of SICs consists of the one in Figure 4, which expresses
the condition that an agent is not able to guess another agent’s nonce. The
predicate one of(A, B, C), defined in the KBS , is true when A unifies with at
least one of B and C. The SIC says that, if agent X sends to another agent Y a

112 M. Alberti et al.

H(send(X, Y, content(key(KY), Term1, Term2)), T0)

/\ one_of(NX, Term1, Term2) /\ not isNonce(X, NX)

--->

E(send(V, X, content(key(KX), Term3, Term4)), T1)

/\ X!=V /\ isPublicKey(X, KX) /\ T1 < T0

/\ one_of (nonce(NX), Term1, Term2)

\/

E(send(V, X, content(key(KY), Term1, Term2)), T2)

/\ T2 < T0

Fig. 4. Social Integrity Constraint expressing that an agent cannot guess a nonce gen-
erated by another agent (after Dolev-Yao [13])

message containing a nonce that X did not create, then X must have received NX

previously in a message encrypted with X ’s public key, or X must be forwarding
a message that it has received.

3 Verification of Security Protocols

In this section we show the application of the SOCS-SI social framework to on-
the-fly verification of compliance and static verification of protocol properties,
adopting the Needham-Schroeder security protocol, specified in 2.2 as a case
study.

By “static verification of protocol properties” we mean a verification (by
means of a formal proof, performed at design time) that a protocol enjoyes
desirable properties. If the agents follow the protocol, then the agent interaction
will itself exhibit the properties. However, since in open agent societies it cannot
be assumed that the agents will follow the protocols, it becomes necessary to
verify the agents’ compliance to the protocol by means of an external trusted
entity, able to observe the agent behaviour at runtime. Following Guerin and
Pitt [2], we call this process “on-the-fly verification of compliance”.

In our approach, both types of verification are applied to the same specifica-
tion of the protocol, without the need for a translation: the protocol designer,
in this way, can be sure that the protocol for which he or she has verified formal
properties will be the same that the agents will be required to follow.

The two types of verification are achieved by means of two abductive proof-
procedures, SCIFF and g-SCIFF, which are closely related. In fact, the proof-
procedure used for the static verification of protocol properties (g-SCIFF) is
defined as an extension of the one used for on-the-fly verification of compliance
(SCIFF): for this reason, we first present on-the-fly verification, although, in the
intended use of SOCS-SI, static verification would come first.

3.1 On-the-Fly Verification of Compliance

In this section, we show examples where the SCIFF proof-procedure is used as
a tool for verifying that the agent interaction is compliant to a protocol.

Security Protocols Verification in Abductive Logic Programming 113

h(send(a, b, content(key(kb), agent(a), nonce(na))), 1).

h(send(b, a, content(key(ka), nonce(na), nonce(nb))), 2).

h(send(a, b, content(key(kb), nonce(nb), empty(0))), 3).

Fig. 5. A compliant history

h(send(a, b, content(key(kb), agent(a), nonce(na))), 1).

h(send(b, a, content(key(ka), nonce(na), nonce(nb))), 2).

Fig. 6. A non-compliant history (the third message is missing)

SCIFF verifies compliance by trying to generate a set EXP which fulfils the
four conditions defined in Section 2.1.

The SCIFF proof-procedure [14] is an extension of the IFF proof-procedure3

[15]. Operationally, if the agent interaction has been compliant to the protocol,
SCIFF reports success and the required set EXP of expectations; otherwise, it
reports failure. The proof-procedure has been proven sound and complete with
respect to the declarative semantics. A result of termination also holds, under
acyclicity assumptions.

The following examples can be verified by means of SCIFF. Figure 5 shows
an example of a history compliant to the SICs of Figure 3 and Figure 4.

Figure 6 instead shows an example of a history that is not compliant to such
SICs. The reason is that the protocol has not been completed. In fact, the two
events in the history propagate the second integrity constraints of Figure 3 and
impose an expectation

e(send(a, b, content(key(kb), nonce(nb), empty(0))), T3)

(with the CLP constraint T3>2), not fulfilled by any event in the history.
The history in Figure 7, instead, while containing a complete protocol run,

violates the integrity constraint of Figure 4 because agent a has used a nonce
(nc) that it cannot know, being not one of its own nonces (as defined in the
KBS), nor one of those a received in any previous message (or better, we have
no evidence of it). In terms of integrity constraints, the history satisfies those in
Figure 3, but it violates the one in Figure 4.

Based on SCIFF, SOCS-SI is able to capture at run-time violation cases such
as these.

Figure 8 depicts Lowe’s attack, which is compliant both to the protocol and
to the SICs in Figure 4.

A number of experiments made on a number of protocols can be downloaded
from the SOCS Protocol Repository [6].

3 Extended because, unlike IFF, it copes with (i) universally quantified variables in
abducibles, (ii) dynamically incoming events, (iii) consistency, fulfillment and vio-
lations, and (iv) CLP-like constraints.

114 M. Alberti et al.

h(send(a, b, content(key(kb), agent(a), nonce(nc))), 1).

h(send(b, a, content(key(ka), nonce(nc), nonce(nb))), 2).

h(send(a, b, content(key(kb), nonce(nb), empty(0))), 3).

Fig. 7. A non-compliant history (agent a has used a nonce that it cannot hold)

h(send(a, i, content(key(ki), agent(a), nonce(na))), 1).

h(send(i, b, content(key(kb), agent(a), nonce(na))), 2).

h(send(b, i, content(key(ka), nonce(na), nonce(nb))), 3).

h(send(i, a, content(key(ka), nonce(na), nonce(nb))), 4).

h(send(a, i, content(key(ki), nonce(nb), empty(0))), 5).

h(send(i, b, content(key(kb), nonce(nb), empty(0))), 6).

Fig. 8. Lowe’s attack, recognized as a compliant history

3.2 Static Verification of Protocol Properties

In order to verify protocol properties, we have developed an extension of the
SCIFF proof-procedure, called g-SCIFF. Besides verifying whether a history is
compliant to a protocol, g-SCIFF is able to generate a compliant history, given
a protocol. g-SCIFF has been proved sound [16], which means that the histories
that it generates (in case of success) are guaranteed to be compliant to the
interaction protocols while entailing the goal. Note that the histories generated
by g-SCIFF are in general not only a collection of ground events, like the HAP
sets given as an input to SCIFF. They can, in fact, contain variables, which
means that they represent classes of event histories.

In order to use g-SCIFF for verification, we express the property to be verified
as a conjunction of literals. If we want to verify if a formula f is a property of a
protocol P , we express the protocol in our language and ¬f as a g-SCIFF goal.
Then either:

– g-SCIFF returns success, generating a history HAP. Thanks to the sound-
ness of g-SCIFF, HAP entails ¬f while being compliant to P : f is not a
property of P , HAP being a counterexample; or

– g-SCIFF returns failure, suggesting that f is a property of P4.

In the following, we exemplify such a use of g-SCIFF by showing the automatic
generation of Lowe’s attack by g-SCIFF, obtained as a counterexample of a
property of the Needham-Schroeder protocol. The property that we want to
disprove is Ptrust defined as trustB(X, A) → X = A, i.e., if B trusts that he is
communicating with A, then he is indeed communicating with A.

Thanks to the properties of public keys (a message encrypted with a public key
can only be decrypted by the owner of the corresponding private key) and nonces
(a nonce cannot be guessed), the notion of trustB(X, A) can be characterized as
follows:
4 If we had a completeness result for g-SCIFF, this would indeed be a proof and not

only a suggestion.

Security Protocols Verification in Abductive Logic Programming 115

Definition 1 (trustB(X, A)). B trusts that the agent X he is communicating
with is A, once two messages have been exchanged at times T1 and T2, T1 < T2,
having the following sender, recipient, and content:

(T1) B → X : {NB, . . . }pub key(A)

(T2) X → B : {NB, . . . }pub key(B)

where NB is a nonce generated by B.

In order to check whether Ptrust is a property of the protocol, we ground Ptrust

and define its negation ¬Ptrust as a goal, g, where we choose to assign to A, B,
and X the values a, b and i:

g ← isNonce(NA), NA �= nb,

E(send(b, i, content(key(ka), nonce(NA), nonce(nb))), 3),

E(send(i, b, content(key(kb), nonce(nb), empty(0))),6).

This goal negates Ptrust, in that b has sent to an agent one of its nonces,
encrypted with a’s public key, and has received the nonce back unencrypted, so
being entitled to believe the other agent to be a; whereas the other agent is, in
fact, i.

Besides defining g for three specific agents, we also assign definite time points
(3 and 6) in order to improve the efficiency of the proof by exploiting constraint
propagation.

Running the g-SCIFF on g results in a compliant history:

HAPg = { h(send(a, i, content(key(ki), agent(a), nonce(na))), 1),
h(send(i, b, content(key(kb), agent(a), nonce(na))), 2),
h(send(b, i, content(key(ka), nonce(na), nonce(nb))), 3),
h(send(i, a, content(key(ka), nonce(na), nonce(nb))), 4),
h(send(a, i, content(key(ki), nonce(nb), empty(0))), 5),
h(send(i, b, content(key(kb), nonce(nb), empty(0))), 6)},

that is, we generate Lowe’s attack on the protocol.
HAPg represents a counterexample which shows that the Needham-Schroeder

protocol does not have the property Ptrust, being a history that is compliant to
the protocol while violating the property.

4 Verifying the NetBill Protocol

In this section, we further demonstrate the specification and verification of
agent interaction protocols in the SOCS-SI framework, on the NetBill (see [17])
protocol.

NetBill is a security and transaction protocol optimized for the selling and
delivery of low-priced information goods, like software or journal articles. The
protocol rules transactions between two agents: merchant and customer. A Net-
Bill server is used to deal with financial issues such as those related to credit
card accounts of customer and merchant.

116 M. Alberti et al.

In the following, we focus on the type of the NetBill protocol designed for non
zero-priced goods, and do not consider the variants that deal with zero-priced
goods.

A typical protocol run is composed of three phases:

1. price negotiation. The customer requests a quote for a good identi-
fied by PrId (priceRequest(PrId)), and the merchant replies with
(priceQuote(PrId,Quote)).

2. good delivery. The customer requests the good (goodRequest(PrId,Quote))
and the merchant delivers it in an encrypted format
(deliver(crypt(PrId,Key),Quote)).

3. payment. The customer issues an Electronic Payment Order
(EPO) to the merchant, for the amount agreed for the good
(payment(epo(C,crypt(PrId,K),Quote))); the merchant appends the
decryption key for the good to the EPO, signs the pair and forwards it
to the NetBill server (endorsedEPO(epo(C,crypt(PrId,K),Quote),M));
the NetBill server deals with the actual money transfer and returns the
result to the merchant (signedResult(C,PrID,Price,K)), who will, in her
turn, send a receipt for the good and the decryption key to the customer
(receipt(PrId,Price,K)).

The customer can withdraw from the transaction until she has issued the EPO
message; the merchant until she has issued the endorsedEPO message.

4.1 NetBill Protocol Specification in SOCS-SI.

The NetBill protocol is implemented in the SOCS-SI framework by means of
SICs of two types:

– backward integrity constraints (Fig. 9), i.e., integrity constraints that state
that if some set of event happens, then some other set of event is expected
to have happened before.

For instance, the first backward integrity constraints imposes that, if M
has sent a priceQuote message to C, stating that M’s quote for the good
identified by PrId is Quote, in the interaction identified by Id, then C is
expected to have sent to M a priceRequest message for the same good, in
the same interaction, at an earlier time.

– forward integrity constraints (Fig. 10), i.e., constraints that state that if some
conjunction of event has happened, then some other set of event is expected
to happen in the future.

For instance, the first forward integrity constraint in Fig. 10 imposes
that an endorsedEPO message from M to the netbill server be followed by
a signedResult message, with the corresponding parameters.

We only impose forward constraints from the endorsedEPO message onwards,
because both parties (merchant and customer) can withdraw from the transac-
tion at the previous steps.

Security Protocols Verification in Abductive Logic Programming 117

H(tell(M,C,priceQuote(PrId,Quote),Id),T)

--->

E(tell(C,M,priceRequest(PrId),Id),T2) /\ T2 < T.

H(tell(C,M,goodRequest(PrId,Quote),Id),T)

--->

E(tell(M,C,priceQuote(PrId,Quote),Id),Tpri) /\ Tpri < T.

H(tell(M,C,goodDelivery(crypt(PrId,K),Quote),Id),T)

--->

E(tell(C,M,goodRequest(PrId,Quote),Id),Treq) /\ Treq < T.

H(tell(C,M,payment(C,crypt(PrId,K),Quote),Id),T)

--->

E(tell(M,C,goodDelivery(crypt(PrId,K),Quote),Id),Tdel) /\ Tdel <

T.

H(tell(netbill,M,signedResult(C,PrId,Quote,K),Id),Tsign)

/\ M != netbill

--->

E(tell(M,netbill,endorsedEPO(epo(C,PrId,Quote),K,M),Id),T) /\ T

< Tsign.

H(tell(M,C,receipt(PrId,Quote,K),Id),Ts)

--->

E(tell(netbill,M,signedResult(C,PrId,Quote,K),Id),Tsign) /\

Tsign < Ts.

Fig. 9. NetBill protocol: backward integrity constraints

H(tell(M,netbill,endorsedEPO(epo(C,PrId,Quote),K,M),Id),T)

--->

E(tell(netbill,M,signedResult(C,PrId,Quote,K),Id),Tsign) /\ T <

Tsign.

H(tell(netbill,M,signedResult(C,PrId,Quote,K),Id),Tsign)

--->

E(tell(M,C,receipt(PrId,Quote,K),Id),Ts) /\ Tsign < Ts.

Fig. 10. NetBill protocol: forward integrity constraints

4.2 Verification of NetBill Properties

In this section, we show how a simple property of the NetBill protocol can be
expressed, and verified, in the SOCS-SI framework.

We want to verify the following property: the merchant receives the payment for
a good G if and only if the customer receives the good G, as long as the protocol
is respected.

118 M. Alberti et al.

Since the SCIFF deals with (communicative) events and not with the states
of the agents, we need to express the properties in terms of happened events. To
this purpose, we can assume that merchant has received the payment once the
NetBill server has issued the signedResult message, and that the the customer
has received the good if she has received the encrypted good (with a deliver
message) and the encryption key (with a receipt message).

Thus, the property that we want to verify can be espressed as

H(tell(netbill, M, signedResult(C,PrId,Quote, K), Id), T sign)

⇐⇒ H(tell(M, C, goodDelivery(crypt(PrId,K), Quote), Id), T)

∧H(tell(M, C, receipt(PrId,Quote, K), Id), T s)

(1)

whose negation is

(¬H(tell(netbill, M, signedResult(C,PrId,Quote,K), Id), T sign)

∧H(tell(M, C, goodDelivery(crypt(PrId,K), Quote), Id), T)

∧H(tell(M, C, receipt(PrId,Quote,K), Id), T s))

∨
(H(tell(netbill, M, signedResult(C,PrId,Quote, K), Id), T sign)

∧¬H(tell(M, C, goodDelivery(crypt(PrId,K), Quote), Id), T)

∨
(H(tell(netbill, M, signedResult(C,PrId,Quote, K), Id), T sign)

∧¬H(tell(M, C, goodDelivery(crypt(PrId,K), Quote), Id), T))

(2)

In other words, a history that entails Eq. (2) is a counterexample of the property
that we want to prove. In order to search for such a history, we define a g-SCIFF
goal as follows:

g ←EN(tell(netbill, M, signedResult(C,PrId,Quote, K), Id), T sign),

E(tell(M, C, goodDelivery(crypt(PrId,K), Quote), Id), T),

E(tell(M, C, receipt(PrId,Quote,K), Id), T s)).

g ←E(tell(netbill, M, signedResult(C,PrId,Quote, K), Id), T sign),

EN(tell(M, C, goodDelivery(crypt(PrId,K), Quote), Id), T).

g ←E(tell(netbill, M, signedResult(C,PrId,Quote, K), Id), T sign),

EN(tell(M, C, goodDelivery(crypt(PrId,K), Quote), Id), T))

(3)

and run g-SCIFF.
The result of the call is a failure. This suggests that there is no history that

entails the negation of the property while respecting the protocol, i.e., the prop-
erty is likely to hold if the protocol is respected. However, yet no guarantee can
be given, because g-SCIFF has not been proven complete.

If we remove the second forward integrity constraints (which imposes that
a signedResult message be followed by a receipt message), then g-SCIFF
reports success, and the following history is generated:

Security Protocols Verification in Abductive Logic Programming 119

h(tell(_E,_F,priceRequest(_D),_C),_M),

h(tell(_F,_E,priceQuote(_D,_B),_C),_L),

h(tell(_E,_F,goodRequest(_D,_B),_C),_K),

h(tell(_F,_E,goodDelivery(crypt(_D,_A),_B),_C),_J),

h(tell(_E,_F,payment(_E,crypt(_D,_A),_B),_C),_I),

h(tell(_F,netbill,endorsedEPO(epo(_E,_D,_B),_A,_F),_C),_H),

h(tell(netbill,_F,signedResult(_E,_D,_B,_A),_C),_G),

_I<_H, _H<_G,

_L>_M, _K>_L, _I>_J, _J>_K,

The receipt event is missing, which would violate the integrity constraint that
has been removed. In other words, without that integrity constraint, the protocol
no longer has the desired property.

In this way, a protocol designer can make sure that an integrity constraint is
not redundant with respect to a desired property of the protocol.

5 Related Work

The focus of our work is not on security protocols themselves, for which there ex-
ist many efficient specialised methods, but on a language for describing protocols,
for verifying the compliance of interactions, and for proving general properties
of the protocols. To the best of our knowledge, this is the first comprehensive
and fully operational approach addressing both types of verification, and using
the same protocol definition language in both cases. Security protocols and their
proof of flawedness are, in our viewpoint, instances of the general concepts of
agent protocols and their properties.

However, in this section we will discuss some related logic-based approaches
to automatic verification of security properties.

Russo et al. [18] discuss the application of abductive reasoning for analysing
safety properties of declarative specifications expressed in the Event Calculus.
In their abductive approach, the problem of proving that, for some invariant I, a
domain description D entails I (D |= I), is translated into an equivalent problem
of showing that it is not possible to consistently extend D with assertions that
particular events have actually occurred (i.e., with a set of abductive hypotheses
∆), in such a way that the extended description entails ¬I. In other words,
there is no set ∆ such that D ∪ ∆ |= ¬I. They solve this latter problem by a
complete abductive decision procedure, thus exploiting abduction in a refutation
mode. Whenever the procedure finds such a set ∆, the assertions in ∆ act as a
counterexample for the invariant. Our work is closely related: in fact, in both
cases, goals represent negation of properties, and the proof-procedure attempts
to generate counterexamples by means of abduction. However, we rely on a
different language (in particular, ours can also be used for checking compliance on
the fly without changing the specification of the protocol, which is a demanding
task) and we deal with time by means of CLP constraints, whereas Russo et al.
employ a temporal formalism based on Event Calculus.

In [19] the authors present a new approach, On-the-Fly Model Checker, to
model check security protocols, using two concepts quite related to our approach:

120 M. Alberti et al.

the concept of lazy data types for representing a (possibly) infinite transition sys-
tem, and the use of variables in the messages that an intruder can generate. In
particular, the use of unbound variables reduces the state space generated by ev-
ery possible message that an intruder can utter. Protocols are represented in the
form of transition rules, triggered by the arrival of a message: proving properties
consists of exploring the tree generated by the transition rules, and verifying
that the property holds for each reachable state. They prove results of sound-
ness and completeness, provided that the number of messages is bounded. Our
approach is very similar, from the operational viewpoint. The main difference is
that the purpose of our language is not limited to the analysis of security proto-
cols. Moreover, we have introduced variables in all the messages, and not only
in the messages uttered by the intruder; we can pose CLP constraints on these
variables, whereas OFMC can only generate equality/inequality constraints. On
the downside, OFMC provides state-of-the-art performance for security protocol
analysis; our approach instead suffers for its generality, and its performance is
definitely worse than the OFMC.

A relevant work in computer science on verification of security protocols was
done by Abadi and Blanchet [20, 21]. They adopt a verification technique based
on logic programming in order to verify security properties of protocols, such as
secrecy and authenticity in a fully automatic way, without bounding the number
of sessions. In their approach, a protocol is represented in extensions of pi cal-
culus with cryptographic primitives. The protocol represented in this extended
calculus is then automatically translated into a set of Horn clauses [21]. To prove
secrecy, in [20, 21] attacks are modelled by relations and secrecy can be inferred
by non-derivability: if attacker(M) is not derivable, then secrecy of M is guar-
anteed. More importantly, the derivability of attacker(M) can be used, instead,
to reconstruct an attack. This approach was later extended in [22] in order to
prove authenticity. By first order logic, having variables in the representation,
they overcome the limitation of bounding the number of sessions. We achieve
the same generality of [20, 21], since in their approach Horn clause verification
technique is not specific to any formalism for representing the protocol, but a
proper translator from the protocol language to Horn clause has to be defined.
In our approach, we preferred to directly define a rewriting proof-procedure
(SCIFF) for the protocol representation language. Furthermore, by exploiting
abduction and CLP constraints, also in the implementation of g-SCIFF transi-
tions themselves, in our approach we are able to generate proper traces where
terms are constrained when needed along the derivation avoiding to impose fur-
ther parameters to names as done in [21]. CLP constraints can do this more
easily.

Armando et al. [23] compile a security program into a logic program with
choice lp-rules with answer set semantics. They search for attacks of length k,
for increasing values of k, and they are able to derive the flaws of various flawed
security protocols. They model explicitly the capabilities of the intruder, while
we take the opposite viewpoint: we explicitly state what the intruder cannot do

Security Protocols Verification in Abductive Logic Programming 121

(like decrypting a message without having the key, or guessing the key or the
nonces of an agent), without implicitly limiting the abilities of the intruder.

Our social specifications can be seen as intensional formulations of the possible
(i.e., compliant) traces of communication interactions. In this respect, our way
of modeling protocols is very similar to the one of Paulson’s inductive approach
[24]. In particular, our representation of the events is almost the same, but we
explicitly mention time in order to express temporal constraints. In the inductive
approach, the protocol steps are modeled as possible extensions of a trace with
new events and represented by (forward) rules, similar to our SICs. However, in
our system we have expectations, which allow us to cope with both compliance
on the fly and verification of properties without changing the protocol specifi-
cation. Moreover, SICs can be considered more expressive than inductive rules,
since they deal with constraints (and constraint satisfaction in the proof), and
disjunctions in the head. As far as verification, the inductive approach requires
more human interaction and expertise, since it exploits a general purpose theo-
rem prover, and has the disadvantage that it cannot generate counterexamples
directly (as most theorem prover-based approaches). Instead, we use a special-
ized proof-procedure based on abduction that can perform the proof without
any human intervention, and can generate counterexamples.

Millen and Shmatikov [25] define a sound and complete proof-procedure, later
improved by Corin and Etalle [26], based on constraint solving for cryptographic
protocol analysis. g-SCIFF is based on constraint solving as well, but with a
different flavour of constraint: while the approaches by Millen and Shmatikov
and by Corin and Etalle are based on abstract algebra, our constraint solver
comprises a CLP(FD) solver, and embeds constraint propagation techniques to
speed-up the solving process.

In [27], Song presents Athena, an approach to automatic security protocol
analysis. Athena is a very efficient technique for proving protocol properties:
unlike other techniques, Athena copes well with state space explosion and is ap-
plicable with an unbounded number of peers participating in a protocol, thanks
to the use of theorem proving and to a compact way to represent states. Athena
is correct and complete (but termination is not guaranteed). Like Athena, the
representation of states and protocols in g-SCIFF is non ground, and therefore
general and compact. Unlike Athena’s, the g-SCIFF’s implementation is not
optimised, and suffers from the presence of symmetrical states. On the other
hand, a clear advantage of the SOCS approach is that protocols are written
and analyzed in a formalism which is the same used for run-time verification of
compliance.

Özkohen and Yolum [28] propose an approach for the prediction of excep-
tions in supply chains which builds upon the well-known commitment-based
approach for protocol specification (see, for instance, Yolum and Singh [29]);
their approach is related in many aspects to our on-the-fly verification. They
represent the expected agent behaviour by means of commitments between
agents; commitments have timeouts, i.e., they must be fulfilled by a deadline, and
can be composed by means of conjunction and disjunction. In this perspective,

122 M. Alberti et al.

commitments are similar to our expectations, which can have deadlines repre-
sented by CLP constraints, and which are composed in disjunctions of conjunc-
tions in the head of the social integrity constraints. However, our expectations
can regard any kind of events expected to happen, not only those that can be
represented as a commitment of a debtor towards a creditor; and we can also
represent negative expectations. Operationally, in [28] the reasoning about com-
mitments is centralized in a monitoring agents; in our framework, a similar task
in performed by the social infrastructure.

6 Conclusion and Future Work

In this paper, we have shown how the SOCS-SI abductive framework can be
applied to the specification and verification of security protocols, using, as a
running example, the Needham-Schroeder Public Key authentication protocol.

The declarative framework is expressive enough to specify both which se-
quences of messages represent a legal protocol run, and constraints about the
messages that a participant is able to synthesize.

Based on the SOCS-SI framework, we have implemented and experimented
with two kinds of automatic verification: on-the-fly verification of compliance (by
means of the sound and complete SCIFF proof-procedure), and static verification
of protocol properties (by means of the sound g-SCIFF proof-procedure). In this
way, our approach tackles both the case of agents misbehaving (which, in an open
society, cannot be excluded) and the case of a flawed protocol (which can make
the interaction exhibit an undesirable feature even if the participants follow the
protocol correctly).

We believe that the main contribution of this work consists of providing a
unique framework to both the two types of verification. The language used for
protocol definition is the same in both the cases, thus lowering the chances of
errors introduced in the protocol translation from one notation to a different
one. The protocol designer can benefit of our approach during the design phase,
by proving properties, and during the execution phase, where the interaction can
be proved to be compliant with the protocol, and thus to exhibit the protocol
properties.

Future work will be aimed to investigate a result of completeness for g-SCIFF,
and to extend the experimentation on proving protocol properties to a number
of security and e-commerce protocols, such as SPLICE/AS [30].

Acknowledgments

This work has been supported by the European Commission within the SOCS
project (IST-2001-32530), funded within the Global Computing Programme and
by the MIUR COFIN 2003 projects La Gestione e la negoziazione automatica
dei diritti sulle opere dell’ingegno digitali: aspetti giuridici e informatici and
Sviluppo e verifica di sistemi multiagente basati sulla logica.

Security Protocols Verification in Abductive Logic Programming 123

References

1. Davidsson, P.: Categories of artificial societies. In Omicini, A., Petta, P.,
Tolksdorf, R., eds.: Engineering Societies in the Agents World II. Volume 2203
of Lecture Notes in Artificial Intelligence, Springer-Verlag (2001) 1–9 2nd Inter-
national Workshop (ESAW’01), Prague, Czech Republic, July 7, 2001, Revised
Papers

2. Guerin, F., Pitt, J.: Proving properties of open agent systems. In Castelfranchi, C.,
Lewis Johnson, W., eds.: Proceedings of the First International Joint Conference
on Autonomous Agents and Multiagent Systems (AAMAS-2002), Part II, Bologna,
Italy, ACM Press (2002) 557–558

3. Societies Of ComputeeS (SOCS): a computational logic model for the description,
analysis and verification of global and open societies of heterogeneous computees.
IST-2001-32530 (2001) Home Page: http://lia.deis.unibo.it/Research/SOCS/

4. Alberti, M., Ciampolini, A., Gavanelli, M., Lamma, E., Mello, P., Torroni, P.: A
social ACL semantics by deontic constraints. In Mar̆́ık, V., Müller, J., Pĕchouc̆ek,
M., eds.: Multi-Agent Systems and Applications III. Proceedings of the 3rd In-
ternational Central and Eastern European Conference on Multi-Agent Systems,
CEEMAS 2003. Volume 2691 of Lecture Notes in Artificial Intelligence, Prague,
Czech Republic, Springer-Verlag (2003) 204–213

5. Alberti, M., Gavanelli, M., Lamma, E., Mello, P., Torroni, P.: Specification and
verification of agent interactions using social integrity constraints. Electronic Notes
in Theoretical Computer Science 85 (2003)

6. The socs protocol repository (2005) Available at http://lia.deis.unibo.it/
research/socs/partners/societies/protocols.html

7. Needham, R., Schroeder, M.: Using encryption for authentication in large networks
of computers. Communications of the ACM 21 (1978) 993–999

8. Lowe, G.: Breaking and fixing the Needham-Shroeder public-key protocol using
CSP and FDR. In Margaria, T., Steffen, B., eds.: Tools and Algorithms for the
Construction and Analysis of Systems: Second International Workshop, TACAS’96.
Volume 1055 of Lecture Notes in Artificial Intelligence, Springer-Verlag (1996)
147–166

9. Denning, D.E., Sacco, G.M.: Timestamps in key distribution protocols. Commu-
nications of the ACM 24 (1981) 533–536

10. Alberti, M., Gavanelli, M., Lamma, E., Mello, P., Torroni, P.: An Abductive In-
terpretation for Open Societies. In Cappelli, A., Turini, F., eds.: AI*IA 2003:
Advances in Artificial Intelligence, Proceedings of the 8th Congress of the Ital-
ian Association for Artificial Intelligence, Pisa. Volume 2829 of Lecture Notes in
Artificial Intelligence, Springer-Verlag (2003) 287–299

11. Jaffar, J., Maher, M.: Constraint logic programming: a survey. Journal of Logic
Programming 19–20 (1994) 503–582

12. Kakas, A.C., Kowalski, R.A., Toni, F.: Abductive Logic Programming. Journal of
Logic and Computation 2 (1993) 719–770

13. Dolev, D., Yao, A.C.C.: On the security of public key protocols. IEEE Transactions
on Information Theory 29 (1983) 198–207

14. Alberti, M., Gavanelli, M., Lamma, E., Mello, P., Torroni, P.: The sciff abduc-
tive proof-procedure. In: Proceedings of the 9th National Congress on Artificial
Intelligence, AI*IA 2005. Volume 3673 of Lecture Notes in Artificial Intelligence,
Springer-Verlag (2005) 135–147

124 M. Alberti et al.

15. Fung, T.H., Kowalski, R.A.: The IFF proof procedure for abductive logic program-
ming. Journal of Logic Programming 33 (1997) 151–165

16. Alberti, M., Chesani, F., Gavanelli, M., Lamma, E., Mello, P., Torroni, P.: On the
automatic verification of interaction protocols using g-SCIFF. Technical Report
DEIS-LIA-04-004, University of Bologna (Italy) (2005) LIA Series no. 72.

17. Cox, B., Tygar, J., Sirbu, M.: Netbill security and transaction protocol. In: Pro-
ceedings of the First USENIX Workshop on Electronic Commerce, New York (1995)

18. Russo, A., Miller, R., Nuseibeh, B., Kramer, J.: An abductive approach for analys-
ing event-based requirements specifications. In Stuckey, P., ed.: Logic Program-
ming, 18th International Conference, ICLP 2002. Volume 2401 of Lecture Notes in
Computer Science, Berlin Heidelberg, Springer-Verlag (2002) 22–37

19. Basin, D.A., Mödersheim, S., Viganò, L.: An on-the-fly model-checker for security
protocol analysis. In Snekkenes, E., Gollmann, D., eds.: ESORICS. Volume 2808
of Lecture Notes in Computer Science, Springer (2003) 253–270

20. Blanchet, B.: Automatic verification of cryptographic protocols: a logic program-
ming approach. In: PPDP ’03: Proceedings of the 5th ACM SIGPLAN interna-
tional conference on Principles and practice of declaritive programming, New York,
NY, USA, ACM Press (2003) 1–3

21. Abadi, M., Blanchet, B.: Analyzing security protocols with secrecy types and logic
programs. J. ACM 52 (2005) 102–146

22. Blanchet, B.: From secrecy to authenticity in security protocols. In: SAS ’02:
Proceedings of the 9th International Symposium on Static Analysis, London, UK,
Springer-Verlag (2002) 342–359

23. Armando, A., Compagna, L., Lierler, Y.: Automatic compilation of protocol inse-
curity problems into logic programming. In Alferes, J.J., Leite, J.A., eds.: Logics
in Artificial Intelligence, 9th European Conference, JELIA 2004, Lisbon, Portugal,
September 27–30, 2004, Proceedings. Volume 3229 of Lecture Notes in Artificial
Intelligence, Springer-Verlag (2004) 617–627

24. Paulson, L.C.: The inductive approach to verifying cryptographic protocols. Jour-
nal of Computer Security 6 (1998) 85–128

25. Millen, J.K., Shmatikov, V.: Constraint solving for bounded-process cryptographic
protocol analysis. In: CCS 2001, Proceedings of the 8th ACM Conference on
Computer and Communications Security, ACM press (2001) 166–175

26. Corin, R., Etalle, S.: An improved constraint-based system for the verification
of security protocols. In Hermenegildo, M.V., Puebla, G., eds.: Static Analysis,
9th International Symposium, SAS 2002, Madrid, Spain, September 17–20, 2002,
Proceedings. Volume 2477 of Lecture Notes in Computer Science, Berlin, Germany,
Springer (2002) 326–341

27. Song, D.X.: Athena: a new efficient automatic checker for security protocol analysis.
In: CSFW ’99: Proceedings of the 1999 IEEE Computer Security Foundations
Workshop, Washington, DC, USA, IEEE Computer Society (1999) 192

28. Özkohen, A., Yolum, P.: Predicting exceptions in agent-based supply chains. In
this volume. (2006)

29. Yolum, P., Singh, M.: Flexible protocol specification and execution: applying
event calculus planning using commitments. In Castelfranchi, C., Lewis Johnson,
W., eds.: Proceedings of the First International Joint Conference on Autonomous
Agents and Multiagent Systems (AAMAS-2002), Part II, Bologna, Italy, ACM
Press (2002) 527–534

30. Yamaguchi, S., Okayama, K., Miyahara, H.: The design and implementation of an
authentication system for the wide area distributed environment. IEICE Transac-
tions on Information and Systems E74 (1991) 3902–3909

Engineering Complex Adaptive Systems Using

Situated Multi-agents
Some Selected Works and Contributions

Salima Hassas

LIRIS, Nautibus, 8 Bd Niels Bohr,
Université Claude Bernard-Lyon 1,

Bat Nautibus, 43 Bd du 11 Novembre,
Villeurbanne, 69622, France

Abstract. A complex system is a set of entities interrelated in a retroac-
tive way. The system dynamics is held by the retroactive interactions
occuring between its components, making the behaviour, structure or or-
ganisation of the global system emergent and non predictable from/non
reducible to the individual behaviour or structure of its components.This
characteristic of complex systems, makes them more considered from
their organisational point of view rather than from the structural/
behavioural aspects of their components. The multi-agent paradigm pro-
vides a very suitable tool for modeling/engineering such systems. Many
examples exist in the MAS litterature, showing the use of the multi-
agent paradigm to develop such systems. However, existing works pro-
pose ad hoc approaches/mechanisms. In this paper we discuss some of
these works and present a set of intuitive guidelines for engineering self-
organising systems, through their positionning at the heart of 3 domains:
Complex Adaptive Systems, Non Linear Dynamic Systems and Situated
Multi-Agents.

Keywords: Complex Systems, Situated Multi-Agents, Retroactive In-
teractions, Non Linearity, Self-organisation.

1 Introduction

Recent developments in Information Technology (IT) make us change ou way of
thinking computation. Complexity of these systems has grown at a spectacular
rate and speed in last decades. We are faced today to:

– the emergence of new environments such as massively large-scale wide area
computer networks and mobile ad hoc networks;

– the proliferation of new capacities for storage, access and processing of a
huge amount of various kinds of data at lowest costs;

– the emergence of new uses and needs which require the development of so-
phisticated applications, make use of a huge mass of complex and uncertain
data (Genomics, Military/Defence applications, Finance/Economics appli-
cations, etc);

O. Dikenelli, M.-P. Gleizes, and A. Ricci (Eds.): ESAW 2005, LNAI 3963, pp. 125–141, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

126 S. Hassas

– a rising need for Human-Centered applications, where the user of the IT
system is considered as an important component of the system. The system
development and evolution are thus guided by the interactions held between
the user and its other components (e-learning, e-business, assisting systems,
etc);

– the evolution of hardware and software technologies which offers enormous
potential for the development of large scale distributed and flexible systems.

The IT system is thus considered as a set of components, interacting together
and with their environment.

In this context, thinking the engineering of an IT system requires to have
in mind the integration of its complexity as an essential characteristic. The IT
system complexity comes from its openness to its environment, which is itself,
complex, distributed, dynamic, and uncertain. Considering these aspects, the
issue is:

How to Engineer IT Systems, Able to Evolve (Adequately) Accord-
ing to the Evolving of Their Environment?

The systems’s environment is here considered at its widest meaning including
the level of resources and materials necessary for the system functioning and
deployment (physical level) as well as the more abstract higher level of uses and
practices which are developped through the system use (conceptual level). The
physical level of an environment could be a computer network, or a network of
information resources such as the www or a set of documents and ontologies,
etc. The conceptual level in this case, could be users profiles, users communities,
annotations of shared documents, and the relations between resources (comput-
ers, web sites, documents, etc) as traces of actions and interactions. These two
defined levels are interrelated:

– at a highest level, the conceptual environment is considered as a place of
materialisation of uses and practices;

– at a lowest level, the physical environment, representing a set of physical
resources, is considered on one hand as a place of materialization (embodi-
ment) of the computing system, and on the other hand, as a place of marking
traces of uses related to actions and interactions. The physical environment
could thus be viewed as a complex network of resources.

Effects of actions and interactions held at the conceptual environment, let traces/
marks at the lowest physical environment and can influence the topology of the
underlying network of resources. For example, the Web/Internet topology ex-
presses some uses like the formation of virtual communities, which are repre-
sented by clusters (of pages or nodes) formation.

The IT system is thus considered as a set of interacting entities with retroac-
tive interactions. The challenge of such a system is to find an efficient organ-
isation of its components (self-organisation), into structures that implement a
coherent behaviour face to its complex environment dynamics. Natural (living)

Engineering Complex Adaptive Systems Using Situated Multi-agents 127

systems have succeed such a challenge through millions of years. As, defended
by Enactivism [29], we think that this capacity of living systems is due to their
coupling to their environment. In this paper we develop this idea in section 4
and base on it the proposal, of a conceptual framework for engineering complex
adaptive systems using situated multi-agents. Beforehand, we review in section
2 some selected works, taking inspiration from living systems, and point to the
common concepts used in these works and analyse them following an enactivist
vision. Before concluding the paper in section 6, we present an illustration with
a web oriented application in section 5.

2 Review of Some Selected Works Using Living Systems
Inspiration for Engineering IT Systems

Face to the growing complexity of IT systems, seeking inspiration from nature
has been a fruitful track to follow in different fields of computing systems [5].
Indeed, living systems exhibit many interesting properties, that allow them to
adapt to a complex environment. Systems like organisms of cells, colonies of in-
sects or societies of individuals, exhibit global complex behaviours which make
them (self-)organise their components into flexible and robust structures. These
systems are characterised by high reactiveness, robustness face to individual fail-
ures and a high capacity to adapt to a changing environment. In this section, we
review some selected works using the living systems inspiration. Inspiration from
social insects behaviour is one of the most used in different fields of computing,
specially the foraging behaviour metaphor. This metaphor was used to propose
the ACO meta-heuristic to solve optimisation problems [9], and to develop ant-
like systems using mobile agents with applications in several domains such as
computers network routing and load-balancing [30][8][12], computers network
security [11][14], information sharing in peer to peer systems [2], and informa-
tion clustering [16] using social insects collective sorting metaphor [4][19]. Other
examples of social insects inspiration have been developed for image processing
[5] or manufacturing applications [7]. The main idea in theses works is the use
of stigmergy mechanism as a mean to implement a self-organising behaviour as
achieved by social insects behaviours. Stigmergy [15] is a mechanism discovered
by P.P. Grassé in 1959, which is used in social insects to coordinate individ-
ual behaviours, using an environment mediated communication. Coordination
is achieved through the influence exerted by persistent effects left in the envi-
ronment by previous actions, on future actions to be taken by the collective of
agents. These effects are physically represented on a spatio-temporal medium
(the environment) and are amplified through an auto-catalytic process. In the
case of ants foraging behaviour, a pheromone gradient field is used to represent
these effects. The idea of gradient field, that allows stigmergic coordination of
actions has been used in [27][26] to propose a middleware (called TOTA) for
supporting adaptive context-aware activities in dynamic network scenarios. The
main idea in this work is the use of a spacial environment for the represen-
tation of contextual information and its local spreading through the notion of

128 S. Hassas

“computational fields”. This allows adaptive interactions between the applica-
tion components. Other inspirations from biological and living systems are those
using immune systems metaphors[13][17], epidemic spreading, rumour propaga-
tion [6] and gossiping [20]. Characteristics of these approaches are the use of
some mechanisms, that are well-known in biological or natural systems [1], such
as: spreading of information, aggregation and replication, balancing diversity
and reinforcement, etc. The use of a spatial medium for information diffusion,
its aggregation and replication seem to be an important issue in self-organising
approaches. Generally, in multi-agent based approaches, with living systems in-
spiration, agents are used in an ad hoc way, to mimic a natural behaviour. The
coupling of agents to their environment is not made explicit, neither are the con-
sequences of this coupling on their behaviours. In this paper, we base a proposal
of a conceptual framework for engineering complex systems using MAS, on an
enactivist vision [29], through which we explicit this coupling and show how it
is related to self-organisation.

3 Enactivism and Autopoesis: On the System Coupling
to its Environment

The structural coupling of a system to its surroundings (environment) is an idea
developped through the Enactivist philosophy. Enactivism is a philosophical
theory of cognition, rooted in a biological vision so as “from the Enactivist
perspective epistemology and theories of mind and theories of evolution are very
close to being the same thing”. [29]. In an Enactivist vision, a system organisation
is defined as the set of invariant features allowing an observer to distinguish the
system from its surroundings. A system organisation is distinguished from the
system structure. the system organisation includes the invariant features without
which it would cease to be what it is, whereas its structure includes all its
features at a given time. The system tends, during its evolution, to structure its
environment, while it is structured by the environment evolution. As mentionned
in [29]:

Systems that continually create themselves are referred to in Enac-
tivism as autopoetic. The components of autopoetic systems “must be
dynamically related in a network of ongoing interactions”. That is, the
components interact in ways which are continually changing, but which
at the same time allow for the continuation of interactions so that the
system continues to exist. In addition, the interactions of the components
of an autopoetic system are responsible for the production of the com-
ponents themselves. In summary, an autopoetic system is an emergent
phenomenon arising from the interactions of components which, by way
of these interactions, give rise to new interactions and new components,
while preserving the autopoetic character of the system.

Following the perspective of Enactivism and autopoesis, a system as a set of
entities evolving in an environment, produces through the ongoing interactions

Engineering Complex Adaptive Systems Using Situated Multi-agents 129

of its components, structures that feed the production of these interactions, in a
continuous loop. In the next section, we will see how this ideas could be applied
in the context of engineering complex IT systems.

4 Engineering Complex Adaptive Systems Using Situated
Multi-agents: Our Vision

4.1 IT System Coupling to its Environment

As presented above, the complexity of IT systems environment, requires to think
the engineering of the IT system through its coupling with its environment. IT
systems environment presents two levels: a physical lowest level and a conceptual
highest level. The two levels are strongly interconnected making the IT system
coupling to its environment going through two articulations:

– a physical articulation which corresponds to structural coupling, which deter-
mines the IT system structure through its interaction with the environment;

– a conceptual articulation which corresponds to behavioural coupling that
determines actions and interactions producing the IT system structure;

– an organisational articulation, expressing retroactive effects of one coupling
on the other.

Organisation is the set of invariant features that permits to establish the system
identity (autopoesis). It defines rules allowing to couple together, structural and
behavioural coupling of the IT system to its environment, following an autopoetic
vision.

4.2 Implications on the Multi-agents System Used for Engineering
IT Systems

Using Situated Multi-Agents System (MAS) to engineer an IT system which is
structurally and behaviourally coupled to its environment, makes the MAS itself
subject to the same coupling with its environment. Thus, the implications of the
different articulations seen above, have to be considered in the MAS:

– Physical articulation and structural coupling : agents of the MAS represent
structurally the components of the IT system. Thus, the structural coupling
of the system requires to consider the spatial organisation of the MAS ac-
cording to the physical environment;

– Conceptual articulation and behavioural coupling: the system behaviour is
achieved through the collective behaviour of the MAS, which is itself ob-
tained as an aggregation of agents individual behaviours. Coupling the sys-
tem behaviour to the environment, needs to consider the social organisation
of the MAS with respect to the conceptual environment of the system;

– Organisational articulation and retroaction: to make the whole system have
a coherent evolution through its structural and behavioural coupling to the

130 S. Hassas

environment, retroactive effects of one coupling on the other must be cor-
related. In the MAS which implements the system. It is thus necessary to
consider the co-evolution of the MAS social and spatial organisations, during
the system evolution.

The design of the situated MAS to engineer a complex adaptive system must
thus address both MAS spatial and social organisations, and their co-evolution
through the MAS dynamics. This makes self-organisation mandatory.

Example. In the ants foraging behaviour, ants are collectively able to find short-
est paths from their nest to food sources. Shortest paths appear as emergent
structures on the spatial representation of ants environment. These emergent
structures are represented by the spatial organisation of ants on the en-
vironment and are obtained trough a self-catalytic use of paths, which is the
conceptual materialisation of the social organisation. Self-organisation
is the way to ensure co-evolution of both organisations, and make the foraging
behaviour works. It needs to establish a connection (“glue”) between both organ-
isations, to ensure their co-evolution and this is achieved through the stigmergy
mechanism.

4.3 A Generic Framework for Engineering Complex Adaptive IT
Systems Using Situated Multi-agents

The IT system is considered as a complex adaptive system represented by a
situated MAS evolving in the system environment. Agents are parts of the IT
system and are deployed in their living environment. They sense their envi-
ronment and take behavioural decisions allowing them to face the environment
evolution. To engineer such a system, we propose a conceptual framework based
on the following main points:

Spatial Representation of the Environment. As a complex adaptive network,
highly reconfigurable in presence of intrinsic dynamics and environmental evo-
lution. The dynamics is held by processes running on the network. The network
becomes the space of actions and interactions traces and can be used to enhance
the network evolution towards a specific organisational structure, with an effect
on the network topology. Recent researches work on complex networks emitted 2
statements: 1) [10] “complex man-made networks such as Internet and the world
wide web, share the same large-scale topology as many metabolic and protein
networks of various organisms...” and 2) [3] “the emergence of these networks
is driven by self-organizing processes that are governed by simple but generic
laws”. The Internet topology has been recently characterized as scale free [28]. A
scale free network is a class of a non homogeneous wired network. Such topology
is extremely sparse with a few randomly distributed and highly connected nodes
(hubs), and many nodes with few connections. A scale-free network also exhibits
the so-called small world phenomenon [31], meaning that it has a short average
path length allowing each node of the network to reach any other node through
a relatively small number of hops.

Engineering Complex Adaptive Systems Using Situated Multi-agents 131

The scale free topology of the Internet and theworldwideweb are typical expres-
sion instances on a physical level of traces of the use and practices of the conceptual
level. the highly connected nodes (hubs) observed in the topology are the effect of
a mechanism of preferential attachment: the more a node is connected, the more it
gets a chance to be connected in the future. In the world wide web, this expresses
the fact that most popular sites, are more and more referenced.

A Collective Behaviour Based Approach Using the Situated Multi-agents
Paradigm andEmbodied Intelligence. This is characterizedby the following points:

– the world is its own model, meaning that there is no symbolic representation
of the environment. For instance, in a computer network application, the
network is considered as the real environment where agents are launched and
have to evolve autonomously. No symbolic representation of the network is
provided for agents.

– agents embodiement and situatedness: agents are embodied and situated
in their environment following an enactivist vision. Agents’ behaviours are
spatially and conceptually context aware. The agents structure their environ-
ment while their behaviours are themselves structured by the environment
evolution.

– agents’ activity is held through a sensori-motor (perception-action) loop,
meaning that the whole behaviour of the system is coded in terms of non
deliberative perceptions-actions of the system agents.

A Stigmergic Mechanism of Communication and Behaviours Coordination. In
order to provide stigmergy it is necessary to:

– make use of a spatial control structure, physically represented in the environ-
ment. This structure is used to code the system data as well as intermediate
results allowing a form of retroactive guiding of the agents behaviours. In
that sense, this structure serves to bridge the gap (as a glue) between the
agents social and spatial organisation.

– have a set of mechanisms of meta-control allowing the control of the control
information like positive or negative feedbacks, control information persis-
tency, control information spreading rate, etc.

The electronic pheromone and all mechanisms based on the construction of gra-
dient field (magnetic fields, pheromone fields, etc.) are an illustration of a spatial
structure of control. The main electronic pheromone attributes are:

– a label to code the nature of the control information;
– an intensity corresponding to the amount of pheromone. It measures the

importance of the information;
– an evaporation rate evaluating the persistency of the control information;

The higher the evaporation rate, the lower the persistency of the information;
– a spreading rate corresponding to the scope of the control information.

The higher the value of the spreading rate, the greater the information scope.

132 S. Hassas

Balancing Exploration and Exploitation. It is characterized by a strategy for
correlating individual behaviours by balancing diversity (exploration) and re-
inforcement (exploitation) in response to an evolving and unsafe environment.
This balancing is crucial and provides a way to correlate the agents distributed
behaviours and to obtain a coherent collective behaviour.

5 Illustration on a Web Oriented Application

5.1 The Web as a Complex Adaptive System (CAS): Hollands
Properties

As CAS are formed of agents interacting with each other, adapting and co-
evolving in their environment, modelling such systems requires a bottom-up
approach which consists in identifying the different agents and their rules of be-
haviours and interactions. Emergent properties will rise from within the system.
John Holland identified seven basic elements of a CAS [18]:

– Aggregation is the property by which agents group to form categories or
meta-agents that in turn can recombine to a higher level (meta-meta-agents)
leading to the complex system. The emergence of the meta-agent is due to
the interactions between the agents at the lower level. For example on the
www, we group content and links (structure) based on some user needs into
a web page and web pages into websites, and websites into web communi-
ties (meta-agents) that emerge and self organize without centralized control.
This self-organisation is a result of a retroactive interaction between usage,
content and structure. As web users needs are evolving over time, web page
designers are constantly changing the contents and structures of their web
pages and web communities are emerging constantly. Aggregate behaviour
is also observed in the appearance of hubs and authorities in the web [22].

– Tagging is the mechanism that facilitates the formation of aggregates by
assigning attributes or tags used for agent identification. A tag could be the
main topic of a web community or the word vector bags of words of a specific
web page used in text analysis.

– Nonlinearity is the property where the emergent behaviour of the system
is the result of a non-proportionate response to its stimulus. That means
the behaviour resulting from the interactions between aggregate agents is
more complex than a simple summation or average of the simple agents.
The growth of the web is a nonlinear process.

– Flows are physical resources and information circulating through the com-
ponents of the complex systems without any centralised control.

– Diversity. The diversity of skills, experiments, strategies, rules of different
agents ensure the dynamic adaptive behaviour of a CAS. The web has a
large number of interacting constituents and this diversity in the web is
contributing to its robustness. We observe diversity in its usage, structure
and content. In [23], users were classified into random users, rational users
and recurrent users. Web pages are also diverse in their structure, like hubs

Engineering Complex Adaptive Systems Using Situated Multi-agents 133

and authorities pages [22], and web pages were divided into five categories:
Strongly Connected Components SCC, IN, OUT, tendrils and tubes, and
disconnected.

– Internal models or schemas are the functions or rules agents use to interact
with each other and with their environment. These schemas direct agents
behaviours.

– Building blocks are the component parts that can be combined and reused
for each instance of a model. Identifying these blocks is the first step in
modelling a CAS. In [25], the authors showed that sub-graphs motifs form
the building blocks for the WWW network and web services are also building
blocks for distributed web based applications [21].

5.2 The WACO System

The WACO (Web Ants Content organisation) system, illustrates the use of the
conceptual framework described in section 4.3 to engineer a complex adaptive
system using situated multi-agents. The web is considered as a complex envi-
ronment, represented by a complex network of resources (web pages, web sites,
servers, etc) inhabited by artificial creatures called WebAnts. These creatures
implemented by mobile agents, are embodied in the environment, organized in a
colony and mimic some behaviours of natural ants, namely the collective sorting
behaviour and the food foraging behaviour. The content of the web is viewed
by WebAnts as a potential source of food that needs to be organized and be
collected in an efficient way. Four types of WebAnts were created, each assigned
a different task (tags associated with each agent):

1. Explorers WebAnts look randomly for web documents to sort;
2. Collectors WebAnts maintain and organize semantically collected

documents;
3. Searchers WebAnts reinforce clusters of collected documents by searching

the web for similar documents to add to the cluster;
4. Finally, Requests Satisfying WebAnts search for the appropriate cluster

based on user requests.

The different groups of WebAnts achieve their tasks and communicate through
the stigmergy mechanism. There is no central control dictating their actions and
behaviours. Stigmergy is achieved in two ways: 1) using a digital pheromone
representing resources contents and 2) using the size of clusters of homogenous
contents to enforce specialisation of Searchers WebAnts and regulate the pop-
ulation. WebAnts in WACO are created in a dynamic way and they adapt to
their environment and co-evolve. This process requires a mechanism of manag-
ing and regulating the population of agents. To do this, a mechanism of energy
distribution and consumption is used [24]. WebAnts are sensitive to some notion
of order, which is obtained by semantic organisation of the web content. The
higher the disorder on the web, the more active are WebAnts. Activity of agents
is regulated by a mechanism of energy distribution, provided by the environ-
ment and directly associated with the notion of order in the global environment.

134 S. Hassas

Disorder in the environment, generates energy which is captured by agents and
increases their activity and number. Based on their fitness function defined by
order/disorder, two mechanisms direct their life cycle: duplication (birth) and
disappearance (death) (see [16] for more details).

Documents Coding by Synthetic Pheromone Use. Documents contained
by the websites are considered as objects to be sorted following their seman-
tic contents, so as to construct semantic clusters, where a cluster is a set of
semantically closed documents with respect to a predefined similarity measure.
We consider two levels in this application: a higher level corresponding to the
extraction of information from documents using any algorithm of text mining
and a lower level which use a synthetic pheromone based coding of the extracted
information to organise and search the web content. A semantic value is asso-
ciated to each document. This value is used as a label for a specific pheromone
to which WebAnts would be sensitive, when looking for documents with simi-
lar semantic values. Each semantic topic is identified by a kind of pheromone.
Synthetic pheromone is coded by a structure with these different fields:

– Label (W||): characterizes the kind of information coded by the pheromone,
which is in our context the semantic value of a document (weighted keyword).

W|| = LC .HC .TF.IDF

TF is the frequency of the keyword in the current document, the HC is
a Header constant (HC > 1 if the word appears in a title, = 1 otherwise),
which increases the weight of the keyword if it appears in the title of the doc-
ument, and IDF is the inverse of document frequency. The linkage constant
LC(LC > 1 if the word appears in a link, = 1 otherwise).

– Intensity (τij): expresses the pertinence of information; the higher its value,
the greater its attractive power. This value is computed on each site i, for
each topic j, using the number of documents addressing the same topic, each
time (t + 1) a new document is added, as:

τij(t + 1) = ρjτij(t) + Σ
|Dij|
k=1 ∆τijk(t)

ρj represents the persistence rate ((1 − ρj) the evaporation rate), ∆τijk the
intensity of pheromone emitted by a document k, on the site i for a topic j
at time t, and Dij is the set of documents addressing topic j on the site i. -

– Evaporation rate: expresses the persistence rate of information in the en-
vironment. The lower its value is, the longer is the influence of the spread
information in the environment.

ρj =
|Dij |
|Di|

Dij is the set of documents addressing the topic j on the site i, and Di is the
set of all documents on the site i. The idea here is to make the clustering of
documents about a same topic more attractive than isolated documents. If a

Engineering Complex Adaptive Systems Using Situated Multi-agents 135

site contains heterogeneous semantic content, this information is considered
as not sufficiently pertinent. So the associated pheromone will evaporate
more quickly than emitted pheromone by homogenous content.

– Diffusion rate: expresses the distance to which information is spread in the
environment, the higher its value the greater the scope of the information
in the environment. We express this distance using the linkage topology
information. Indeed, when browsing the web looking for a topic, one explores
pages following links addressing the topic of interest. We associate to each
site i, a distance dij for each topic j addressed by i, which is computed as the
longest path from the site i to the last site addressing the topic j, following
a depth first

dij = Maxk(dij)k

k is the number of links addressing topic j, from a site i.

Coupling of Agents to the Environment and the System Dynamics.
The web represents a complex uncertain environment that WebAnts explore, and
structure by interacting with one another. The web structuring, structures the
population of agents in return. The web is also the medium of agents interactions,
through the deposit and smelling of the synthetic pheromone, the perception of
scattered documents and clusters forming. Agents communicate through the stig-
mergic mechanism, using a multi-structured electronic pheromone. The building
blocks are the popuations of WebAnts agents which mimic the collective sorting
behaviour and the foraging behaviour. The use of the digital pheromone for in-
formation coding corresponds to Hollands tagging mechanism and aggregation
is observed through the multi-pheromone structure.

– Explorers WebAnts perceive different kinds of pheromones, corresponding to
different semantic values but are more sensitive to the pheromone value of
the last document collected;

– Collectors WebAnts compute regularly the synthesis of the site pheromone,
and update the values of its associated parameters (label, intensity, persis-
tence rate, diffusion rate);

– Searchers WebAnts are launched, when a cluster reaches a threshold size and
Requests Satisfying WebAnts code the user request into a pheromone value,
and search in the environment the appropriate cluster, to answer the user
request, by following the gradient of the associated pheromone field.

Agents use the collective sorting behaviour through the spreading by sites of
their synthetic pheromone characterising their contents. When this pheromone is
perceived by Explorer WebAnts, during their random path, they collect the URL
of the site and look for an appropriate cluster, by smelling in the environment
the appropriate pheromone. If no pheromone is found after a predefined number
of jumps, they initiate the clustering operation. Searcher WebAnts accomplish
the foraging behaviour through the spreading of a clustering pheromone. When
a cluster size reaches a predefined threshold, Searcher WebAnts are created to
enforce the clustering operation. These agents leave the cluster, to search in

136 S. Hassas

the environment for sites or servers with similar content. During their search
behaviour, they propagate the location of the cluster through the deposit of
pheromone to guide both Explorer WebAnts and Request satisfying WebAnts
in their search for clusters during their collecting or search behaviour. By this
operation, the higher the size of a cluster is, the more its location is propa-
gated. A combination of the collective sorting and foraging behaviour enables a
permanent structuring of the web into clusters representing a concentration of
documents addressing a same semantic topic, and the propagation of this infor-
mation on the web, making easier the search for pertinent documents during the
information retrieval process. This structuring has an effect of the evolution of
agents populations. Specialisation of Searcher WebAnts agents occurs through
their spatial localisation and the semantic content of their surroundings. The size
of agents populations is regulated by the degree of order (efficient clustering) in
the environment, which influences itself the specialisation of agents. Simulations
were conducted to test this approach in [16]. Some of the obtained results are
presented below.

Results

Experiment 1 - Order Increasing and Maintaining in the System: We studied
the notion of order on the web. Then, we associate this notion to the emergence
of clusters with similar semantic contents. Next, we express the function of or-
der locally, for a given site, by the number of sites in its neighborhood, with a
similar content. The similarity is computed with respect to a specified thresh-
old distance between associated weighted keyword vectors. On the figure 1, the
x-axis represents the number of iterations (time scale) and the y-axis represents
the number of documents. As noticed on this figure, disorder decreases regularly
in the system whereas new documents apparition increases. Disorder is measured
by the total number of documents minus the number of clustered documents.
The clustering of documents consists in registering its address with addresses
of pages containing similar content. Thus, a document could be clustered more
than once, that is why we could observe negative value for order value.

Experiment 2 - Clusters Formation and Size Evolution: Figure 2 represents the
evolution during time (x-axis) of the mean size of clusters (y-axis). We can
observe the evolution of clusters formation and the increase of their sizes. This
shows the effectiveness of the clustering operation.

Experiment 3 - Energy Distribution and Evolution in the System: In figure 3, we
show the mean value of energy of specialized agents (Searcher WebAnts). These
agents increase their amount of energy during the formation of clusters. This
allows the speeding of the operation of clustering (high activity of specialised
agents). When clusters are formed (time 80000), Specialised Searcher WebAnts
disappear (energy value = 0). We observe at time 100000, a sudden increase of
energy of specialised agents that is associated to the apparition of new clusters,
as new sites are created or new documents are discovered.

Engineering Complex Adaptive Systems Using Situated Multi-agents 137

Fig. 1. Disorder decreases while new documents are created, and sorting occurs

Fig. 2. Clusters mean size and its standard deviation evolution

Experiment 4 - Evolution of Population of Agents and Regulation of Their Ac-
tivities: Figure 4 (y-axis represents size of population, x-axis represents time)
shows the evolution of agents’ populations in the system and the proportion of
active agents with respect to the whole population.

138 S. Hassas

Fig. 3. Mean values and standard deviation values of Searchers WebAnts energy
evolution

Fig. 4. Population evolution: proportion of active agents/total population of agents

We can observe that until time 80000, which is the time of emergence of a
global order, all agents are active, and after this time, the number of active agents
decreases. This implies that inactive agents disappear, reducing by this way the
number of initial agents. All agents are active again during the formation of new

Engineering Complex Adaptive Systems Using Situated Multi-agents 139

clusters, as new sites are created (time 100000). After this time, we observe the
same phenomenon as at time 80000.

6 Conclusion

In this paper, we have presented a vision for engineering complex adaptive
systems using situated multi-agents, following an Enactivist perspective. IT sys-
tems are characterised by an intrinsic increasing complexity, due to their open-
ness on a complex, distributed and uncertain environment. We argued that the
engineering of such systems need to be focused on their coupling to the envi-
ronment, as done in living systems which are generally taken as a source of
inspiration for engineering such systems. We have identified three articulations
for an IT system coupling to its environment: physical, conceptual and organisa-
tional. The physical articulation concerns the structural coupling (co-evolution
of the system structure with the environment). The conceptual articulation con-
cerns the behavioural coupling (co-evolution of the system’s components be-
haviours and of the whole system with the environment). The organisational
articulation concerns the retroactive effects (autopoesis) of one coupling on the
other (co-evolution of system’s structure and behaviour through the environment
evolution).

When we use a situated multi-agents to engineer an IT system following this
vision, the multi-agent system is itself subject to this same coupling to the sys-
tem environment. As the multi-agent systems are structurally represented by
the spatial deployment of agents in the physical environment, the structural
coupling is expressed through the spatial organisation in the physical environ-
ment. At the conceptual level, the behavioural coupling, which is related to the
structural coupling, is represented in the multi-agent system by the social or-
ganisation and its coupling to the spatial organisation. The multi-agent system
has to maintain its spatial organisation through its social organisation and vice
versa (self-organisation).

From the multi-agent perspective, it is necessary to study:

– The relation between spatial organisation and the environment topology
(and their retro-active effects). The environment topology (physical level)
is generally influenced in its evolution by the conceptual level (cf. scale free
networks). This is a kind of reflective coupling between the system structures
and their generating processes , like in an autopoetic scheme.

– The relation between spatial organisation and social organisation and
their retro-active effects. This expresses the structure-environment coupling,
which is mandatory to self-organisation and achieved through self-
organisation.

– The reflective effects between the two coupling which expresses the co-
evolution of (emergent) organisations and the environment topology.

We believe that understanding these different coupling, and their retroactive
relations, is necessary to provide an effective methodology for engineering self-
organising systems.

140 S. Hassas

References

1. O. Babaoglu, G. Canright, A. Deutsch, G. Di Caro, F. Ducatelle, L. Gambardella,
N. Ganguly, M. Jelasity, R. Montemanni, and A. Montresor. Design patterns from
biology for distributed computing. In Proceedings of the European Conference on
Complex Systems, November 2005. To appear.

2. O. Babaoglu, H. Meling, and A. Montresor. Anthill: A framework for the devel-
opment of agent-based paeer to peer systems. In Proceedings of the ICDCS’02,
Vienna, A., July 2002.

3. A. Barabasi and R. Albert. Emergence of scaling in random networks. Science,
286:509–512, 1999.

4. E. Bonabeau, G. Théraulaz, V. Fourcassié, and J-L. Deneubourg. The phase-
ordering kinetics of cemetery organization in ants. Technical Report 98-01-008,
Santa Fe Institute, 1998.

5. C. Bourjot, V. Chevrier, and V. Thomas. A new swarm mechanism based on social
spiders colonies: from web weaving to region detection. Web Intelligence and Agent
Systems: An International Journal - WIAS, 1(1):47–64, 2003.

6. D. Braginsky and D. Estrin. Rumour routing algorithm for sensor networks. In
Proceedings of the Fisrt Workshop on Sensor Networks and Applications (WSNA),
Atlanta,GA, USA., September 2002.

7. V.A. Cicirello and S. S. Smith. Wasp-like agents for distributed factory coordina-
tion. Journal of Autonomous Agents and Multi-Agent Sytems, 8(3):237–266, 2004.

8. M. Dorigo and G. Di Caro. Ants colonies for adaptive routing in packet-switched
communication networks. Lecture Notes in Computer Science, page 673, 1998.

9. M. Dorigo, V. Maniezzo, and A. Colorni. Ant system: Optimization by a colony of
cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics-Part
B, 26(1):29–41, 1996.

10. M. Faloutsos, P. Faloutsos, and C. Faloutsos. On power-law relationships of the
internet topology. In Proceedings of the ACM SIGCOMM’99, Cambridge, MA,
USA, pages 251–262, 1999.

11. S. Fenet and S. Hassas. A distributed intrusion detection and response system
based on mobile autonomous agents using social insects communication. Electronic
Notes in Theoretical Computer Science, 63:21–31, 2002.

12. S. Fenet and S. Hassas. An ant based system for dynamic multiple criteria bal-
ancing. In Proceedings of the Fisrt Workshop on ANT Systems, Brussels, Belgium,
September 1998.

13. S. Forrest, S. Hofmeyr, and A. Somayaji. Computer immunology. Communications
of the ACM, 1997.

14. N. Foukia, S. Hassas, S. Fenet, and P. Albuquerque. Combining immune sys-
tems and social insect metaphors: a paradigm for distributed intrusion detection
and response systems. In Proceedings of the 5th International Workshop on Mo-
bile Agents for Telecommunication Applications, MATA’03, Marrakech, Morocco,
October 2003. Lecture Notes in Computer Science -Springer Verlag.

15. P.P. Grassé. La reconstruction du nid et les interactions inter-individuelles chez
les bellicoitermes natalenis et cubitermes, la theorie de la stigmergie - essai
d’interpretation des termites constructeurs. Insectes Sociaux, no. 6, pages 41–81,
1959.

16. S. Hassas. Using swarm intelligence for dynamic web content organization. In Pro-
ceedings of the IEEE Swarm Intelligence Symposium, pages 19–25, Los Alamitos,
CA, USA, 2003. IEEE Computer Society.

Engineering Complex Adaptive Systems Using Situated Multi-agents 141

17. S. Hofmeyr and S. Forrest. Architecture for an artificial immune system. Evolu-
tionary Computation 7(1), Morgan-Kaufmann, San Francisco, CA, pp. 1289–1296,
2000.

18. J.H. Holland. Adaptation in natural and artificial systems. MIT Press, Cambridge,
MA, 1992.

19. O. Holland and C. Melhuis. Stigmergy, self-organization and sorting in collective
robotics. Artificial Life, 5(2):173–202, 1999.

20. M. Jelasity, A. Montresor, and O. Babaoglu. Gossip-based aggregation in large
dynamic networks. ACM Trans. Comput. Syst., 23(1):219–252, 2005.

21. M. Kirtland. he programmable web: Web services provides building blocks for the
microsoft .net framework. MSDN Magazine, 15, 2000.

22. J. M. Kleinberg. Authoritative sources in a hyperlinked environment. J. ACM,
46(5):604–632, 1999.

23. J. Liu, S. Zhang, and Y. Ye. Understanding emergent web regularities with infor-
mation foraging agents. In Proceedings of the First International Conference on
Autonomous Agents and Multi-Agents Systems (AAMAS’02), Bologna, Italy, July
2002.

24. F. Menczer and R. K. Belew. Adaptive retrieval agents: Internalizing local context
and scaling up to the web. Machine Learning, 39(2/3):203–242, 2000.

25. R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, and U. Alon. Network
motifs: simple building blocks of complex networks. Science, 298:824–827, 2002.

26. M. Mamei and F. Zambonelli. Programming stigmergic coordination with the tota
middleware. In Proceedings of the Fourth International Conference on Autonomous
Agents and Multi-Agents Systems (AAMAS’05), pages 415–422, Utrecht, Nether-
lands, July 2005.

27. M. Mamei, F. Zambonelli, and L. Leonardi. Tuples on the air: a middleware for
context-aware computing in dynamic networks. In Proceedings of the Fisrt Interna-
tional ICDCS Workshop on Mobile Computing Middleware (MCM03), Providence,
Rhode Island., May 2002.

28. R. Albert and A.-L. Barabasi. Statistical mechanics of complex networks. Reviews
of Modern Physics 74, 2001.

29. David A. Reid. Enactivism. Available at
http://plato.acadiau.ca/courses/educ/reid/enactivism/.

30. R. Schoonderwoerd, O. Holland, and J. Bruten. Ant-like agents for load balancing
in telecommunications networks. In Proceedings of the 1st International Conference
on Autonomous Agents, pages 209–216, February 5–8 1997.

31. D. J. Watts and S. H. Strogatz. Collective dynamics of small-world networks.
Nature, 393:440–442, 1998.

O. Dikenelli, M.-P. Gleizes, and A. Ricci (Eds.): ESAW 2005, LNAI 3963, pp. 142 – 152, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Techniques for Multi-agent System Reorganization

Gauthier Picard1, Sehl Mellouli2, and Marie-Pierre Gleizes1

1 Institut de Recherche en Informatique de Toulouse, Université Paul Sabatier,
118 route de Narbonne, 31062 Toulouse Cedex, France

{gleizes, picard}@irit.fr
2 Département des Systèmes d’Information Organisationnels,

Université Laval, G1K 7P4, Québec, Canada
sehl.mellouli@sio.ulaval.ca

Abstract. A multi-agent system which operates in an open environment must
be able to react to unpredictable events. These events lead, at the system level,
to possible system’s failures and, inside the system, to agents’ failures. Each
agent performs several roles which could be unfulfilled in the system in case of
agents’ failures. To overcome these failure situations, agents could have their
interactions and/or roles change during the multi-agent system execution. Doing
so, we can prevent from system incoherence and possible deadlocks. Hence, we
propose in this paper two techniques such that the first techniques allows to op-
erate changes in agents’ interactions and the second technique allows to operate
changes in agents’ roles in order to build adaptive multi-agent systems. We will
illustrate our techniques by applying them to a case study: a timetable design.

1 Introduction

A Multi-Agent System (MAS) which operates in an open environment must be able to
react to unpredictable events. Because the environment has its own behavior, all situa-
tions a system will be in front of, cannot be exhaustively enumerated. Meanwhile, many
troublesome situations could occur in the environment leading to a MAS failure.
Nevertheless, the MAS should continue properly operating. Hence, the system must be
adaptive to take into account this dynamic. It has to adjust its behavior to its dynamic
environment in order to be functionally adequate [2, 3]. The functional adequacy of a
system can be defined as the following property: a system which realizes during its life
the function which satisfies its environment. For example, the environment can be the
user of the system which is functionally adequate if the user is always satisfied by the
system behavior. We can say that these systems are useful for stakeholders.

Some of the troublesome situations could make agents unavailable, and could be
identified at design level, and hence can be overcome by the designer. Those that
could not be identified at design level must be overcome at runtime. So we propose in
this paper, two techniques to build adaptive systems: the first technique is based on a
dynamic role assignment to agents which is applied at design level by the designer,
the second technique is based on cooperative behavior assessment which is applied at
runtime. The agents have their roles or interactions which change in order to over-
come the troublesome situations.

 Techniques for Multi-agent System Reorganization 143

The first approach aims at proposing a MAS reorganization to recover from fail-
ures that can be identified at design level. Agent’s failures occur when roles are unful-
filled. This approach proposes that other agents enroll the unfulfilled roles and so, an
agent can see its roles change. Hence, we need a role assignment technique that must
be based on parameters describing roles and agents. In this paper, we will provide the
needed description to assign roles to agents.

The second approach aims at proposing a MAS adaptive behavior to recover from
failures that occur at runtime. A MAS behavior is the result of the behavior of its
agents and of their interactions. Changing the interactions between agents induces the
modification of the MAS behavior. An agent possesses the ability of self-organization
i.e. the capacity to locally rearrange its interactions with others depending on the
individual task it has to solve. Self-organization is founded on the capacity an agent
possesses to be locally “cooperative”, this does not mean that it is always helping the
other ones or that it is altruistic but only that it is able to realize cooperative acts if it
can and to recognize cooperation failures called “Non Cooperative Situations” (NCS,
which could be related to exceptions in classical programs) and to treat them.

This paper is organized as follows: section 2 describes the timetable case study
used to illustrate the two techniques. Section 3 presents the technique based on
the role change. Section 4 expounds the technique based on cooperative behavior.
Section 5 gives a comparison of the two techniques and section 6 concludes.

2 The Timetable Case Study

A case study related to an academic timetable problem has been chosen in order to
illustrate the different techniques. In this application, teachers and student groups
have to find partners, time slots and rooms to give or to assist at some courses. The
groups of students are supposed already done, the realisation of the group is out of the
scope of this application and a group stays the same during all the problem solving. A
teacher has some constraints about his availabilities, his capabilities and the require-
ments he possesses about particular pedagogic equipments. A students group must
take a particular teaching made up of a certain number of time slots for a certain
number of teaching topics. A lecture room is equipped or not with specific equip-
ments and can be occupied or not. Moreover, a teacher or the manager of the rooms or
a students group can add or remove constraints at any time during the solving process
via an adapted interface.

Such an application clearly needs adaptation and robustness. The system must be
able to adapt to environmental disturbances (constraints modifications) and not to
compute new solutions at each constraint changing. The correct organization has to
emerge from actors interactions.

We propose to solve this application with two kinds of agents. The first ones are
representative of teachers or of students and are called representative agent
(RA). Moreover, each RA has constraints, ifor each course, which it must take into
account. RA aims at satisfying users’ constraints. Each RA owns several constraints
to fulfill. For example, students must follow many courses during several time slots.

The second ones, called Booking Agents (BA), enable a RA to delegate the task of
searching time slots, rooms and partnership. Therefore, a RA owns as much BAs as it

144 G. Picard, S. Mellouli, and M.-P. Gleizes

has to find a partner for a time slot in a room. In figure 1, all BAs for a teacher are
represented by a geometric shape with the label ‘Ti’ and a colour. For students, one
BA for each specific course to receive is represented by a shape (the type of course), a
colour and the label ‘Si’. For example, the teacher represented by a square has four
BAs because it has to give four hours of his course. The group of students represented
by the colour yellow and labelled S1 has four BA because it must find four given
different lectures (represented by different shape labelled S1).

Fig. 1. An example of timetable grid

BAs have to move in a grid to satisfy their users’ constraints. This grid can be seen
as a set of cells, each of them is constrained (time slots, number of seats, specific
equipment...). In figure 1, the grid is realized for two rooms R1 and R2, four days (D1
to D4) and eight time slots (H1 to H8). The grid corresponds to input data to the prob-
lem and is fulfilled at the beginning of the problem solving. Some modifications can
occur during the solving problem and are reported on the grid, for example a room
can become unavailable because the windows are broken. Consequently, we define
two kinds of agents which will operate in the future system: RA and BA.

3 Role Assessment

A lot of assignment techniques proposed in the literature do not allow a dynamic role
assignment to agents [1, 5, 6, 9, 15]. They do not consider the MAS adaptive behav-
ior. In what follows, we propose a dynamic role assignment to agents that considers
the MAS adaptive behavior.

 Techniques for Multi-agent System Reorganization 145

3.1 Dynamic Role Assessment Technique Based on Role Description

Based on role and agent definitions provided in [1, 5, 6, 9, 15], we provide our role
description. A role is defined with a set of responsibilities. These responsibilities
constitute the objectives of the role. In order to reach its objectives, a role must perform
tasks. Moreover, each task needs resources to be well executed; hence the role needs to
have access to resources. Nevertheless, a role cannot access to all the available
resources due to security and integrity reasons. So, a role has a set of prohibited
resources it cannot access to. Finally, in an organization, there are roles more important
than others, according to the objectives of the organization. So we need to specify a role
priority among roles. The role priority helps to assign unfulfilled roles, in a NCS, to a
particular agent. The role with the highest priority is first assigned to a particular agent.
Since, our strategy deals only with role assignement and not roles execution, we will not
focus on deadlock situations.

Hence, we propose the following role description:

• goals: that are goals the role has to achieve,
• tasks: what the role can do,
• needed resources: the resources needed by the role to be accomplished,
• prohibited resources: the resources the role must not access,
• priority: a role has a priority over roles. This priority can be determined during

MAS design.

A role cannot be assigned to an agent ad-hoc. In real organization, each agent is not
able to enact all different roles. Nevertheless, each agent will be assigned roles based
on some criteria. These criteria are provided by the role and agent descriptions. In the
next section, we will present agent description based on existing ones [1, 5, 9, 15].

3.2 Agent Description for the Role Assesment

Agents can see their roles changing during execution. So agents must be able to adopt
new roles with their current roles. In fact, there are NCS in which roles cannot be
performed. In that case, they must be assigned to existing agents so that the system
continues to well operate. To this end, we need to provide an agent description.

Based on the previous descriptions, we introduce our agent description. For secu-
rity reason, an agent could not be allowed to access resources; it can only access to
its needed resources. Hence, an agent is described by the resources that it can access
to, and by the resources it cannot access to that are considered as its prohibited
resources.

Since we aim at defining a role assignment technique at design level, our agent
description does not consider any element related to its execution such that
agent beliefs or goals since their content is not known at design level. We limit our
agent descriptions to:

• permitted resources: resources it has access to,
• prohibited resources: resources that cannot access to.

146 G. Picard, S. Mellouli, and M.-P. Gleizes

In the timetable case study, there are three types of BA: those having the role to
satisfy a RA time constraints, those having the role to find a partnership, and those
having the role to book a room for lecture.

Now, we have descriptions for roles and agents, we have all the ingredients to
define an assignment technique of roles to agents.

3.3 A Technique to Change Role

A role is assigned to an agent when the agent performs the activities that the role is
supposed to do. The agent must offer all abilities needed by the role to be executed. In
this case, the abilities are the required resources of the roles to be well performed.
Nevertheless, several events could occur during MAS execution leading to NCS in
which there are failures of agents. In the timetable example, such an event could be
one of the NCS to be dealt with is when two agents are in the same cell, and one of
the agents becomes not available (due to a particular problem). In the case of a NCS,
roles could be missing in the system. Hence, the current system’s objectives could not
be reached. For identified NCS at design level, the system designer tries to assign the
unfulfilled agent’s roles to an available agent so that the system continues to correctly
operate. This induces MAS reorganization. Thus, for each agent failure, we propose
MAS reorganization.

Each agent plays a number of roles ri ordered according to their priority in the sys-
tem. For each role ri that will be assigned to other agents, we first need to know what
are its prohibited resources. Doing so, we eliminate all the agents having access to
these prohibited resources. Secondly, we eliminate all the agents that do not have
access to the resources required by role ri. Finally, we have to choose one agent from
the list of the remaining agents. The technique to choose the agents that will perform
the unfulfilled roles is out of the scope of this paper. However, such technique can be
based for example on an evaluation cost to perform a particular role. Each agent, able
to perform an unfulfilled role, evaluates its cost, such as a communication cost or a
bandwidth cost, to enact the unfulfilled role. The agent with the minimum cost will
perform the unfilled role.

Somehow, there could be situations in which, the system reorganization is not pos-
sible since there is not an available agent to which an unfulfilled role can be assigned.
An agent may be unavailable if it is no longer possible to communicate with it.
Hence, the designer has to define a way to overcome this situation so that the system
continues to properly operate. In that case, we propose to first build a list of agents
that are not available but that could enact the role ri, and then evaluate the cost to
provoke events so that the agents’ will be reactivated. The cost evaluation formula
will be provided by the designer. The role assignment algorithm is presented in
Figure 2. In this algorithm, we only considered the priority of the roles as a major
constraint to dynamically assign roles to agents. However, other constraints can be
added to this algorithm such as two roles may be incompatible, and relations between
roles such those defined in [7] and [12]. In this case, an agent cannot perform two
roles which are incompatible.

 Techniques for Multi-agent System Reorganization 147

Fig. 2. An algorithm for role assignment

In the time table example, there are two types of agents: RA, and BA. There are
two types of RA: those having the role to collect a students group’s constraints and
those having the role to collect a teacher’s constraints. It will be associated, for each
course, a RA. Also, there are three types of BA: those having the role to satisfy a
RA’s time constraints, those having the role to find a partnership, and those having
the role to book a room for the lecture. The RAs have not access to the grid of con-
straints. The BAs have access to the grid of constraints.

When designing the MAS, one of the NCS to be dealt with is when two agents are
in the same cell, and one of the agents becomes not available (due to a particular
problem). For example, let us consider two BAs: a BA associated with mathematic
lecture, and a BA associated with English lecture. The two BAs can meet in the same
cell. If they meet, each of them detects the other one. Each of them knows what the
other agent’s role is. One of the NCS that could happen is one of the BA is no longer
available. Using our algorithm, we find that each BA can enroll the role of the other
BA since they need access to the grid (as a resource). Hence, if we suppose that the
mathematics’ BA is in failure, then the English’s BA will be able to enact the two
roles. If an agent has to enroll another agent’s role, it must have access to the neces-
sary knowledge to perform this role.

Moreover, this technique is not adequate to be used at system run-time. It only
helps the designer to overcome NCS identified at design level before system imple-
mentation. In the next section, we will present a technique based on cooperative be-
havior assessment that will be applied at runtime.

4 Cooperative Behaviour Assessment

4.1 Role Description Used in Cooperation Behavior Assessment

Systems we are interest in are systems where all the interactions a system may have
with its environment cannot exhaustively be enumerated; unpredictable interactions
can occur during the system functioning and the system must adapt itself to these

148 G. Picard, S. Mellouli, and M.-P. Gleizes

unpredictable events. The solution provided by the AMAS theory [4,8] is then to rid
ourselves of the global searched goal by building artificial systems for which the
observed collective activity is not described in any agent composing it. Each internal
part of the system (agent) only pursues individual objectives and interacts with agents
it knows by respecting cooperative techniques which lead to avoid failures (like con-
flict, concurrency…), or to act to remove these failures called Non Cooperative Situa-
tions (NCS). A cooperative agent has the following behavior: it tries to anticipate
NCS and to avoid them or faced with a NCS, it acts to come back to a cooperative
state. It permanently adapts itself to unpredictable situations while learning on others.
Interactions between agents depend on their local view and on their ability to “coop-
erate” with each other. Changing these local interactions reorganizes the system and
thus changes its global behavior.

More precisely, three kinds of NCS can be detected by an agent:

1. when a signal perceived from its environment is not understood and not read
without ambiguity;

2. when the information perceived does not induce the agent to an activity
process;

3. when concluding results lead to act in a useless way in the environment.

The first NCS is detected locally by the agent when it receives information (or it
perceives information) that it cannot understand. What is cooperative for an agent
which is sending information (or which is putting information in the environment) is
to inform its acquaintance and, by consequence, to send something understandable by
the receiver. The second NCS is also detected locally by the agent. A cooperative
agent sends information to other agents if it considers that this information can be
useful for the other, otherwise it has no reason to send it. The last one concerns the
evaluation by the agent about its actions done in its environment. A cooperative agent
has to act at the right time and in a right way, so some situations detected such as
conflicts enable it to react in the better way.

In AMAS theory, the role concept is not explicitly present, because the description
of the agents and relations between agents are made at a less abstract level. The defi-
nition of the roles for each agent is not necessary to develop the system because the
agent could change its role during run-time. If the agents in the system can be ob-
served during run-time, the observer can give roles to them.

4.2 Agent Description for the Cooperative Behaviour Assessment

In the timetable application, there are two agent levels: RAs and BAs. In this paper,
only the BA architecture is detailed. Cooperative agents considered here are com-
posed of five parts contributing to their behavior:

• Skills. An agent’s skills represent what it is able to do or what abilities it may bring
to the collective. A BA has several skills implemented by methods, enable it to
move in the grid, to manage its constraints, to manage a room booking, to manage
a partnership, to manage the received messages.

• Representation of itself, of others or of its environment. These representations are
what the agent knows about itself, the others and its environment. A BA has a rep-
resentation of itself about the status of its booking, its constraints and the state of

 Techniques for Multi-agent System Reorganization 149

its partnership (if it has found or not a teacher for a student group or a student
group for a teacher). A BA knows about others the status of the recently met
agents. It knows about other BAs of the same RA as it the status of the constraints.
Its representation of the physical environment is the information about the cell
when it is inside.

• Social attitude. It is what enables the agent to change its interactions with others.
This social attitude is based on what we call cooperation: if an agent detects a non
cooperative situation, it acts to come back to a “cooperative” state. The social is
here described as a set of cooperation rules, which are condition-action pairs to
solve NCS (like exceptions in classical OOP).

• Interaction language. It is what the agent needs to directly communicate or not.
In the Internet system, agents could communicate via message passing. Another
possible means to communicate is achieved by changing the environment. A BA
communicates by message passing when it has a representation of the others. A
BA perceives also an other agent and the room properties when it is inside a cell
of the grid.

• Aptitudes. These attitudes are the capacities an agent possesses to reason on its
representations and on its knowledge. A BA is able to book or to cancel a room, to
negotiate a booking of a room or a partnership, to establish/cancel a partnership, to
send and interpret messages.

4.3 A Technique to Change Interactions

Applying the AMAS theory consists in enumerating, according to the current
problem to solve, all the cooperative failures that can appear during the system
functioning and then defining the actions the system must apply to come back to a
cooperative state [14].

For instance, the NCS for a BA are:

• Partnership incompetence: the BA meets another BA that may be an uninterest-
ing partner. The action realized by the agent is to store in its representation, in-
formation about the agent met and to move in another cell.

• Booking incompetence: the BA is in a cell that is uninteresting to book. The ac-
tion realized by the agent is to store in its representation, information about the
cell and to move in another cell.

• Message unproductiveness: the BA receives a message that is not correctly ad-
dressed. The message is sent back to the sender.

• Partnership conflict: the BA1 meets another BA2 that is interesting, but the BA2
has already a partner. If the BA1 has more difficulty than BA2 to fill up its con-
straints then BA2 removes its partnership, passes a partnership with BA1 and in-
forms the other BA of the same RA as it ; else BA1 moves to find new partners.

• Booking conflict: the BA is in a cell that is interesting to book but this cell is al-
ready booked; It the cost of booking is lower than the previous booking done then
the BA cancels the previous booking, informs its partner if it has and informs the
other BA of the same RA as it ; else .. the BA moves to visit new cells.

• Booking uselessness: the BA meets its partner: they must separate to efficiently
explore more the grid The BA moves to visit new cells.

150 G. Picard, S. Mellouli, and M.-P. Gleizes

The action locally performed by a BA at a given time, under specific conditions,
changes the organization of the system. Each agent has not a defined representation of
the other BAs at the beginning of the execution. This representation is acquired according
to the moves of the agent, on the grid, and according to the meeting with others.

For example, let us consider two BAs: one for Mathematics and one for English. The
two BAs can meet in the same cell, leading to a schedule conflict. They perceive each
other and they know, for instance, that they represent two teachers (one for Mathematics
and the other for English). If one of them (Mathematics teacher) has booked the room,
the other (English teacher) remembers this fact. The English’s BA will move to another
cell. If it meets, in another cell, students’ BA who searches for a Mathematics teacher,
the English teacher BA can inform them that it has met a mathematic teacher’s BA in
another cell. Hence, the students BA will move to the cell in which the Mathematics
teacher’s BA was. So the organization will be changed, and a new interaction will be
created between students’ BA and Mathematics teacher’s BA.

The solution of the timetable problem can be viewed as a given organization on the
grid. This organization evolves during all the time while the solution is built by the
BAs. This evolution, based on a cooperative attitude, guides the locally BAs behav-
iour to enable to reach a global solution.

5 Discussion

5.1 Centralized/Distributed Decision of the Reorganization

The reorganization in a system can be done at several level of granularity, with a
global knowledge or with partial knowledge. In the presented role assessment tech-
nique, the reorganization is realized by replacing an agent which cannot play its role.
The choice of a new one is done in a global list which stores the roles the agents of
the system. In the cooperative behavior assessment, an agent uses a local knowledge
to choose to change the way it interacts with others. For example, an agent which had
a bad answer to its request by another agent changes its local representation of this
agent. Next time for the same request, it will ask another agent.

5.2 Reliability and Robustness

The reliability of a system can be defined as the capability of the system to execute
the function it was developed for. The question underlying by the reliability is:
“does the system converge towards the function it was developed for?” In our sys-
tems, the convergence of the system is linked with the stability of the environment.
If the environment is so dynamic, the system always tries to adapt itself and will be
not optimal to answer the initial requirements. At present, it is very difficult to
prove these properties.

The robustness can be defined by the fact the system continues to run when some
problems are encountered. In the two approaches, it is not so easy to prove that all
system failures will be repaired. We can assume that agents try to remove NCS. So

 Techniques for Multi-agent System Reorganization 151

when a NCS happens, the system continues to correctly operate. So, a system is said
to be robust when it continues to operate despite NCS.

5.3 Design Difficulties and Advantages

The most difficult task for the designers in the assessment role is to evaluate the cost
to provoke events to reactive agents. In fact, the cost depends on the system under
development. Depending on applications under development, the cost can be related
to the used bandwidth for the communication between two agents, to the time needed
to exchange messages between agents, or to the cost to send an agent to reactivate
another one. In the cooperative behavior assessment, the difficulties lie in the fact that
designers must find all possible NCS and it is a crucial task. If some NCS are forgot-
ten the system will not run in an optimal way.

The best advantage of the two approaches is the fact that systems can adapt to change
in running time without the intervention of designers. Making machines more autono-
mous is a way to simplify the task of the designer. The system has autonomy to modify
itself its behavior at the macro level and this enables to counter the difficulties due to the
complexity of the system to be developed. In the role assessment the system has
capability to self-repair if failures occur. In the cooperative behavior assessment, the
behavior changes at the agent level imply a global function change. The system has the
capability to self-repair but also self-adapt to changes in its environment. From a design
point of view, the two techniques can be complementary. In fact, the role assessment
focuses on NCS that enables to replace one agent by another one when the first one
failed, and the cooperative behavior assessment focuses on NCS that leads agents to
change their interactions in order to react to a failure.

6 Conclusion

In this paper, two approaches are described to prevent from MAS failure. A MAS
failure occurs when it is in a NCS. Each approach can be used at different stages of
system development. The first presented approach is used at design level. When the
NCS can be identified at design level, the MAS architecture can be proposed to over-
come this NCS. However, if the NCS cannot be identified at design level, the system
must be able to adapt itself at runtime. The second presented technique allows the
MAS to adapt its behavior at runtime when a NCS happens.

As future work, we identify four axes. The first is how to verify that the system
will correctly behave after using these techniques. The second is how to ensure that
the agents of the system are able to detect a NCS. In fact, in the role assessment tech-
nique, in a NCS, an agent can be made unavailable and hence its roles must be en-
acted by available agents. However, the agent can still be available but for any extra
reasons the other agents deduce that it is no longer available. Using the two tech-
niques, the same role can be performed by two different agents at the same moment.
Can this introduce inconsistency in the system? In the cooperative behavior assess-
ment, if two agents perform the same role and if this is not desired one of the agents
will disappear. The third axe is how to detect the error that induced the NCS, and how
to limit the error propagation. The fourth is how to prove the coherent behavior of the

152 G. Picard, S. Mellouli, and M.-P. Gleizes

system. Finally, we are convinced that the agent-oriented software methodologies
must support adaptive MAS, which is not always the case.

References

[1] Becht, M., Gurzki, T., Klarmann, J., Muscholl, M.: ROPE: Role Oriented Programming
Environment for Multiagent Systems. In Fourth IECIS International Conference on Co-
operative Information Systems, 2–4 September, Edinburgh, Scotland, 1999

[2] Bernon, C., Gleizes, M-P., Peyruqueou, S., Picard, G.: ADELFE, a Methodology for
Adaptive Multi-Agent Systems Engineering. In Third International Workshop on Engi-
neering Societies in the Agents World (ESAW-2002), Madrid, 16–17 September 2002.

[3] Bernon, C., Gleizes, M-P., Picard, G., Glize, P.: The Adelfe Methodology For an Intranet
System Design. In Fourth International Bi-Conference Workshop on Agent-Oriented In-
formation Systems (AOIS-2002), Toronto (Ontario, Canada) at CAiSE’02, 27–28 May,
2002.

[4] Capera, D., Georgé, J-P., Gleizes, M-P., Glize, P.: The AMAS Theory for Complex Prob-
lem Solving Based on Self-organizing Cooperative Agents. In 1st International Workshop
on Theory And Practice of Open Computational Systems (TAPOCS 2003) at 12th IEEE
International Workshops on Enabling Technologies (WETICE 2003), Infrastructure for
Collaborative Enterprises, 9–11 June 2003, Linz, Austria. IEEE CS, pp. 383–388

[5] Cao, S., Volz, R.A., Loerger, T., Zhang, Y: Role-Based and Agent-Oriented Team Mod-
eling. In Proceedings of the International Conference on Artificial Intelligence, IC-AI
’02, June 24–27, Las Vegas, Nevada, USA, 2002.

[6] Dastani, M., Dignum, V., Dignum, F.: Role-assignment in open agent societies. In The
Second Joint International Conference on Autonomous Agents and Mulit-Agent Systems
(AAMAS’03), Sydney, Australia, 2003.

[7] Ferber J., Gutknecht O., Michel F.: From Agents to Organizations: an Organizational
View of Multi-Agent Systems. In The Second Joint International Conference on Autono-
mous Agents and Multi-Agent Systems (AAMAS’03), Sydney, Australia, 2003.

[8] George J.P., Edmonds B. Glize P.: Making self-organizing adaptive multi-agent systems
work. In Bergenti, F., Gleizes, M-P., Zambonelli, F. eds, Methodologies and Software
Engineering for Agent Systems. Kluwer, 2004

[9] Karageorgos A., Mehandjiev N.: Designing Agent Organizations Using Role Models. In
Knowledge Engineering Review, Special Issue on Coordination and Knowledge Engi-
neering, 17(4), 2003, 27 pages.

[10] Kendall, E. A.: Role Modeling for Agent System Analysis, Design, and Implementation.
In Concurrency, Vol 8, No. 2, April–June 2000.

[11] Mellouli, S., Moulin, B., Mineau, W.: Laying the Foundations for an Agent Modelling
Methodology for Fault-Tolerant Multi-Agent Systems. In The Fourth International Work-
shop Engineering Societies in the Agents World. October 29–31 2003, London, UK.

[12] Odell, J., Parunak, H. V. D.: The Roles of Roles. In The Journal of Object Technology,
Vol. 2, No. 1, January–February 2003.

[13] Parunak, H. V. D.: Go to the Ant: Engineering Principles from Natural Agent Systems. In
Annals of Operations Research, 75 (1997) 69–101.

[14] Picard, G., Bernon, C., Gleizes, M-P.: Emergent Timetabling Organization. In CEE-
MAS’05, Budapest, 2005.

[15] Wooldridge, M., Jennings, N.R., Kinny, D.: Developing Multiagent Systems: The Gaia
Methodology. In ACM Transaction on Software Engineering and Methodology 12(3): pp.
317–370. 1999.

O. Dikenelli, M.-P. Gleizes, and A. Ricci (Eds.): ESAW 2005, LNAI 3963, pp. 153 – 167, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Implementing a Multi-agent Organization that Changes
Its Fault Tolerance Policy at Run-Time

Sebnem Bora and Oguz Dikenelli

Computer Engineering Department,
Ege University, Izmir, Turkey

sebnem.bora,oguz.dikenelli@ege.edu.tr

Abstract. In this paper, we present an approach that supports simultaneously
applying different fault tolerance policies in multi-agent organizations. The
main strategy of our approach is to implement fault tolerance policies as
reusable agent plans using HTN (Hierarchical Task Network) formalism. In this
way, different fault tolerance policies such as static and adaptive ones can be
implemented as different plans. In a static fault tolerance policy, all parameters
related to the fault tolerance are set by a programmer before run-time. However,
an adaptive fault tolerance policy requires dynamically adapting resource
allocation and replication mechanisms by monitoring the system. Monitoring of
a system brings some cost to the system. If all agents in an organization apply
the adaptive fault tolerance policy, the monitoring cost will become an
important factor for the system performance. Hence by applying our approach,
the adaptive policy can be applied only to the critical agents whose criticalities
can be observed during the organization’s lifetime and the static one can be
applied to the remaining agents. This reduces the monitoring cost and increases
the overall organization performance. A case study has been implemented to
show the effectiveness of our approach.

1 Introduction

Multi-agent systems have recently been widely employed in solving problems faced
in distributed and dynamic environments. As distributed systems, multi-agent systems
are vulnerable to the failures resulting from the system crash or shortages of system
resources, slow downs or break downs of communication links, and errors in
programming. Consequently, a fault on an agent may spread throughout a multi-
agent system, and cause a degradation of the system performance and even the
multi-agent system to fail. Especially, in multi-agent systems, which consist of a
number of agents that interact with one-another to achieve a common goal, it may not
be possible to achieve the common goal, if a fault occurs on an agent. Therefore, it
seems that fault tolerance is a necessary paradigm that must be inserted to the multi-
agent develop-ment environment.

In most cases, fault-handling mechanisms and resource management are statically
configured in fault tolerant multi-agent systems (MAS). However, effective fault-
handling in emerging complex applications in large-scale MAS requires the ability
to dynamically adapt resource allocation and fault tolerance policies in response to

154 S. Bora and O. Dikenelli

changes in environment, user or application requirements, and available resources.
This adaptation process incorporates an observation mechanism that transparently
monitors the application’s behaviors as well as the resources availability, and
adaptively reconfigures the system resources. However, using such an observation
mechanism in large-scale MAS naturally causes a computational overhead over the
organization and decreases the overall performance of the organization. A better
approach is to apply the static policy to less critical agents and agents that shows
predictable behaviors, and apply adaptive policies to the critical agents, agents with
preknown criticalities, or agents having their criticalities understood during the
organization’s lifetime.

In this paper, we present an approach to apply adaptive and static fault tolerance
policies to different parts of multi-agent organizations at the same time. In order to
implement this approach, fault tolerance policies have been implemented as reusable
plans using HTN formalism [1]. Hence, other agents or administrators can request an
agent to behave as a fault tolerant agent by applying a specific strategy. Moreover,
both fault tolerance policies are simultaneously employed in different replica groups
of an agent organization.

In our approach, in order to apply a static fault tolerance policy in an organization,
the replication degree and strategy is defined before application starts. On the other
hand, in adaptive fault tolerance policies the replication degree and strategy are
defined at the run time. The details of static and adaptive fault tolerance policies are
inserted into reusable agent plans. These plans are designed to implement static and
adaptive fault tolerance policies by using the group communication service, the
membership service and the replication service that are inserted to FIPA based
communication infrastructure of SEAGENT (A Semantic Web Enabled Multi-Agent
Framework) agent development framework [2,3,4]. Adaptive fault tolerance policy is
applied to the replication group by simply including an observation service. This
service was implemented in Agent Communication Channel Module (ACC) defined
in FIPA specifications. The responsibility of this service is to gather the system level
information such as the number of requests coming to each agent, the message size,
and send this information as a FIPA message to the agents applying adaptive fault
tolerance policies. An agent applying the adaptive fault tolerance policy decides about
its replication degree based on this information by executing the adaptive fault
tolerance plan structure.

The remainder of this paper is structured as follows: Section 2 is a review of
related work on fault tolerance in multi-agent systems. Section 3 presents SEAGENT
overall architecture; Section 4 presents how to support the development of fault
tolerant multi-agent system in SEAGENT; Section 5 presents how to embed the
observation mechanism into SEAGENT; Section 6 gives the implementation details
of fault tolerance policies as reusable plans; Section 7 gives the case study and finally
Section 8 gives the conclusion.

2 Related Work

Several approaches to fault-tolerance in MAS are documented in the literature; each
focuses on different aspects of fault-tolerance. Kumar et al. present a methodology

 Implementing a Multi-agent Organization 155

than can be used to specify robust brokered architectures with capability of recovering
from broker failures [5]. Their methodology is based on the theory of teamwork. In
their work, brokers are organized hierarchically in teams. Brokers in teams exchange
information between them and maintain communications between agents. Their
approach can be used for recovering from broker failures but not recovery of agent
failures.

Klein proposes an approach based on a shared exception handling service that is
plugged into existing agent systems [6]. This service monitors the overall progress of
a multi-agent system. When a new agent is created, the “new agent registration” agent
takes a description of its normative behavior and creates sentinels to look for the
evidence of dysfunctional behavior. When a sentinel detects such faulty symptoms,
this information is sent to a “diagnosis” agent that produces a set of candidate
diagnoses. These are sent to the resolution agent that defines a resolution plan to take
corrective actions.

Hagg uses sentinel agents to guard specific functions or to guard against specific
states in the society of agents. The sentinel interacts with other agents using semantic
addressing. Thus, it can build models of other agents by monitoring agent
communication and by interaction. It can also use timers to detect crashed agents or
communication link failures [7].

There are also well-known fault tolerance approaches based on replication
techniques for multi agent systems. In order to increase fault tolerance and improve
availability and reliability of MAS, Fedoruk and Deters implemented transparent
replication via proxies [8]. The proxy as an interface handles all communication
between replicas and other agents in the MAS. The proxy also controls execution in a
replica group and state management of a replica group. Although this proxy approach
handles fault tolerance issues in a multi-agent system, proxy itself is a single point of
failure. There is no recovery mechanism introduced in this work when the proxy fails.
They chose FIPA-OS agent toolkit as a platform for their implementation. Since
FIPA-OS does not provide any replication mechanism, the replication server is
implemented as a standard FIPA-OS agent. Moreover, this approach does not support
the idea of changing fault tolerance policies at run-time. Therefore, replication is
realized by a programmer before the application starts.

Guessoum et al. present an adaptive multi-agent architecture with both agent level
and organization level adaptation [9, 10]. The organization’s adaptation is based on
the monitoring of the system’s behavior. The architecture was implemented with the
DIMA [11] platform and the DarX middleware [12]. In DarX, software components
can be either replicated or un-replicated, and it is possible to change the replication
strategy at run time. Although we use the same techniques to implement fault
tolerance policies within the organization, the main difference of our approach from this
work is that we try to support different fault tolerance policies within the organization at
the same time. In addition to this, the fault tolerance policy of an agent can be changed
at run-time by sending a request to that agent.

These approaches present useful solutions to the problem of fault tolerance in
multi-agent systems. However, the entities used for handling this problem force a
specific multi-agent organization and these approaches lack flexibility and
reusability. On the other hand, in our case, fault tolerance policies are added to
generic behaviors package as reusable plans to make an agent fault tolerant and

156 S. Bora and O. Dikenelli

these plans can be used whenever we need to make an agent fault tolerant. Briefly,
our approach provides flexibility and reusability to multi-agent organizations in
terms of fault tolerance since it is possible to easily modify existing plans, remove
some of plans, or include new plans.

3 SEAGENT Platform Overall Architecture

In this section, SEAGENT’s layered software architecture is briefly introduced. Each
layer and packages of the layers have been specially designed to provide built-in
support for semantic web based multi agent system development. SEAGENT
platform architecture is shown in Fig. 1. The bottom layer of the platform architecture
is responsible of abstracting platform’s communication infrastructure implementation.
SEAGENT implements FIPA’s Agent Communication and Agent Message Transport
specifications [13] to handle agent messaging.

The second layer includes packages, which provide the core functionality of the
platform. The first package, called as Agency, handles the internal functionality of an
agent. Agency package supports the creation of general purpose and goal directed
agents. The second package of the Core Functionality Layer includes service sub-
packages, one for each service of the platform. SEAGENT provides all standard MAS
services such as Directory Facilitator (DF) Service and Agent Management Service
(AMS) following the previous platform implementations and FIPA standards.

Third layer of the overall architecture includes pre-prepared generic agent plans.
We have divided these generic plans into two packages. Generic Behavior package
collects domain independent reusable behaviors that may be used by any MAS such
as well known auction protocols (English, Dutch etc.). On the other hand, Generic
Semantic Behaviors package includes only the semantic web related behaviors.

In our case, fault tolerance plans are added to generic behaviors package to make
an agent fault tolerant and these plans can be used whenever we need to make an
agent fault tolerant.

Fig. 1. SEAGENT Overall architecture

 Implementing a Multi-agent Organization 157

4 Implementing Fault Tolerance Services in SEAGENT Platform

Replication is the most efficient way to improve fault tolerance in the presence of
failures. It is achieved by incorporating redundant copies of system’s hardware or
software components. When one of the system components fails, there exists another
copy to take over. Replicated agents can provide increased fault tolerance to MAS by
adding redundancy. Several replication strategies have been mainly categorized as
active replication and passive replication in [14].

In the active replication, there are extra copies of an agent (called replicas or
clones) processing client requests and synchronizing internal states with every other
replica agents. In order to implement replica coordination in active replication,
replicas must communicate via a group communication service which provides multi-
point-to-multi-point communication [15].

In passive approach, there are also extra copies (replicas) of an agent. However,
primary one responds to client requests. Primary periodically updates replicas’ states.
If primary fails, one replica can be elected as a primary agent. Each strategy has its
own merits. There is a tradeoff between both strategies in terms of recovery speed and
overhead [14].

In SEAGENT, we have implemented both passive replication strategy, and semi-
active replication strategy which is a subtype of active replication due to the non-
deterministic behaviors of agents. In semi-active replication strategy, replicas are
organized in a group, and all replicas execute incoming requests. One replica is
designated as the primary replica (the leader) and responsible for providing responses.

Active and passive approaches mainly focus on the coordination within the group.
In addition to coordination requirements, replication degree which means the number
of the replicas within the group is a critical concept for applying fault tolerance
policies based on replication. The problem is about how the system will decide the
number of replicas at runtime. Replication degree can be identified adaptively or
statically. In a static fault tolerance policy, this number is set to the number defined by
a programmer at initialization. In adaptive fault tolerance policy, the leader of the
group decides the number of replicas based on resources of the system. This process
incorporates an observation mechanism that transparently monitors the agents’
behaviors as well as the availability of resources, and adaptively reconfigures the
system resources by executing the adaptive fault tolerant policy agent plan. The
observation mechanism is embedded into Agent Communication Channel (ACC)
Module of SEAGENT’s communication infrastructure since ACC is responsible from
forwarding messages received for one agent to another agent.

There are large numbers of systems and research projects that have proposed a
range of services to support replication based fault tolerant systems [16, 17] such as
global time service, replication service, group communication service, and member-
ship service. These services form the infrastructure for supporting active or passive
replication strategies in multi-agent systems. In order to integrate these services into
SEAGENT platform, we have to identify the services which may cause performance
bottleneck if they are implemented as reusable plans. These services must be
implemented within the internal architecture.

158 S. Bora and O. Dikenelli

The group membership service maintains a list of agents which are currently in the
replica group and uses the failure detector to reach a decision about the group’s
membership. The membership service incorporates a failure detector which monitors
the group members not only case they should crash but also in case they should
become unreachable due to a communication failure. The failure detector has a periodic
nature based on timeouts that certainly cause performance bottleneck in the case of
modeling as a reusable plan. Hence, it is implemented as a part of SEAGENT’s internal
architecture.

The group communication service provides an ordered multicast to the replication
group and the responsibility of this service must be integrated with the multi-agent
system communication infrastructure functionality. In our case, SEAGENT agent
platform compliant with FIPA standards provides necessary mechanism for multi-
casting FIPA messages between agents. Therefore, this mechanism is naturally
provided by SEAGENT platform. However, SEAGENT platform does not support
the ordering of incoming messages. The ordering of messages is necessary for the
coordination between replicas within the group. Since each message changes the
internal state of agents, executions of the messages in different orders may cause
inconsistencies within the group. Therefore, the ordering scheme is implemented by
the dispatcher module which assigns a group specific ascending number to a new
request whenever it is received from another agent.

The replication service is responsible for creating new replicas and applying
different fault tolerance policies such as static and adaptive fault tolerance policies.
This service must provide some subservices such as cloning [18,19], leader election,
and uses the other services such as the membership service, the group communication
service to achieve its purposes. Internal mechanism of the replication service changes
depending on the applied policies such as static and adaptive fault tolerance policies.
The replication service is implemented as a reusable plan in SEAGENT agent
platform. Therefore, this makes our agents flexible in terms of fault tolerance since it
is possible to change a preset plan at run-time via FIPA-ACL (Agent Communication
Language) message.

Throughout this paper, we assume that the system is an asynchronous environment
and subject to message omissions, agent crashes (fail-silent), and network partitions.
We also assume no message corruptions and no malicious faults.

In SEAGENT, each agent can be replicated many times and with different
replication strategies. SEAGENT provides the group membership service, the group
communication service and replication service to the groups. Each replication
group has only one leader which coordinates the replica group and communicates
with the other agents. When the leader fails, a replica is selected as a new leader in
the replica group. We note that SEAGENT platform itself is not fault tolerant against
its components failures. It only supports developing fault tolerant multi-agent
organizations.

Due to the space limitation of the paper, the integration of the membership service,
group communication and replication strategies to the agency package will not be
presented here. Next Section describes how the observation service which implements
monitoring is embedded to the SEAGENT’s communication infrastructure.

 Implementing a Multi-agent Organization 159

5 Embedding the Observation Mechanism into the SEAGENT’s
Communication Infrastructure

Monitoring is necessary for acquiring information to determine the criticality of
agents in adaptive fault tolerance policies. The information is acquired from either the
system-level information such as communication load, processing time etc. or appli-
cation level information such as the importance of messages, the roles of the agents
etc. [12]. In our approach, the number of requests received by an agent and message
sizes are the sources of information to determine the agent’s criticality.

Monitoring is achieved via an observation mechanism. Next section presents the
observation mechanism.

5.1 Observation Mechanism

The observation mechanism is responsible for monitoring the system-level informat-
ion such as the number of messages and message sizes in our approach. Therefore, we
implemented this mechanism in the Agent Communication Channel Module (ACC)
of the communication infrastructure. All FIPA messages are received by ACC module
and then forwarded to the receiver agents. Since all system-level information can be
acquired in this module, we prefer to modify this module.

In ACC, we implemented a data structure which stores data about each individual
agent who receives requests for a preset period. This data collection period is set
during the initialization of an organization. The data consists of the agent’s name and
address, the number of requests and the total size of messages received by the agents,
its normalized information and criticality from the previous period. The information
in the data structure is updated for every new request received by ACC. In addition,
when a new request is received by ACC module to forward the message to the
receiver agent, it increases the total number of requests and the total size of messages
that are sent in the multi-agent system.

During system initialization, a period is set for the organization and a timer module
is implemented in ACC. Task of the timer is to monitor this period and calculate the
criticality of each agent by using the following formulas:

Ratio=[[k*(req_no)]/(tot_req)]+[[l*(msize)]/ tot_msize] (1)

tot_req: The number of total requests that are sent in a multi-agent system;
req_no: The number of requests that are sent to the individual agent;
tot_msize: The total size of messages received by the agents in a multi-agent

system;
msize: The total size of messages received by an agent;
k,l: Coefficients for contributions of the number of requests and message sizes to

the Ratio. The difference between the new value of Ratio and the old value of Ratio
is given below.

∆Ratio= Ratio(new)- Ratio(old) (2)

Ratio(new): Ratio determined in the recent period;
Ratio(old):Ratio stored in the data structure;

160 S. Bora and O. Dikenelli

Wnew= Wold+ ∆Ratio (3)

Wnew= New criticality value to be applied in the next period;
Wold= Old criticality stored in the data structure and determined in the previous

period;
Before the next period begins, tot_req, tot_msize, and req_no and msize are set to

zero for each agent, then data structure is updated with req_no, msize, Ratio(new),
Wnew. In the next step, we determine the normalized criticality as follows:

W(ratio)=W(new)/Tot_W (4)

W(ratio): Normalized criticality;
Tot_W: Total criticality of all agents in a multi-agent system.
W(ratio) values are sent to the agents to be used in adaptive fault tolerance plan

presented in the next sections.
Fault tolerance mechanisms of an agent are activated when the agent is initialized

by the developer. Next section describes how a replication service is implemented as
a reusable plan.

6 Implementing Replication Service as a Reusable Plan

As we mentioned previously, the implementation of replication service changes
depending on the fault tolerance policies. Fault tolerance policies have been modeled
as reusable HTN plans in our approach. In SEAGENT implementation, the leader and
its replicas execute different plans for static and adaptive fault tolerance. During
system initialization, agent type is set as a leader or replica. Therefore, each agent
executes its plan based on its predefined type.

In order to invoke a fault tolerance plan in SEAGENT, the agent must receive a
FIPA message which is generated by its failure detector. After a failure detector
discards a suspect agent, it generates a specific FIPA message which includes a
replication request within its content and sends it to itself. When the agent receives
this message, it matches the request to the fault tolerance policy plan. In case of static
fault tolerance policy, the replication degree and replication strategy will be set to the
values defined during the creation of the agent but it can be changed by sending a
FIPA request which includes the “Changing Action Request�” within its content such
as “The Increase of Replication Degree”, “The Decrease of Replication Degree”, or
“The Change of Replication Strategy”. In case of an adaptive fault tolerance policy, in
addition to receiving a FIPA message from failure detector, receiving a FIPA message
which includes the agent’s criticality also invokes the fault tolerance policy plan. In
this plan, the replication degree of the group is set to a determined value by
considering the criticality of the agent. This plan structure is presented in the next
section.

6.1 Applying Adaptive Replication Using the HTN Planning Approach

In the adaptive fault tolerance policy, the leader has the “Adaptive Fault Tolerance”
plan in which adaptive replication mechanism is performed. In section 3.1, we

 Implementing a Multi-agent Organization 161

mentioned about the observation mechanism embedded into the communication
infrastructure. The observation mechanism sends the normalized criticality value to
each agent in the content of a FIPA message. When the agent is received this message,
it starts to execute the “Adaptive Fault Tolerance” plan and gets its criticality value as a
provision. The first task of this plan is to determine the replication degree of the group
by using W(ratio) values sent by the ACC module. Since the resources are limited, the
replication degree for each adaptive agent is defined as follows:

R.D=rounded(Wratio*Ra) (5)

Where R.D is the replication degree of a replica group, and Ra is the maximum
number of replicas in an organization,

R.C=N.R-R.D (6)

N.R: The number of replicas in the current group;
R.C: The number of replicas that must be replicated if R.C is a positive integer or

the number of replicas that must be killed if R.C is a negative integer.
If R.C is a positive integer then “Replicate a New Replica” task is executed. The

number of replica to be created is sent as a provision to “Replicate a New Replica”
task. Hence this task is responsible from generating FIPA messages and sending
messages to itself to activate the “Cloning a Replica” plan. This task knows how
many replicas will be created through “the number of replicas” provision, and then
prepares cloning request messages as much as this number, and sends them itself.
After the cloning request messages are received by the leader agent, “Cloning a
Replica” plan begins to execute.

“Cloning a Replica” plan structure is shown in Fig. 2. First task of this plan is to ask
a suitable host to Agent Management Service (AMS) where new replicas will be placed.
(Of course we have changed AMS implementation to make it capable of returning the
most suitable host). After the suitable host’s address is received, the “clone itself�”
complex task begins to execute the cloning process. In the first subtask of “Clone itself ’
complex task, the ‘cloning’ server at the remote host where the replicated agent will
reside is contacted by sending RMI (Remote Method Invocation) message. However,
the cloning server and platform must be ready for hosting a new replicated agent at the
remote host. Before sending RMI messages to the cloning server, object serialization of
the agent state is performed in this subtask. In the “Send Agent State” subtask, several
RMI messages are sent to the cloning server at the remote to transfer necessary agent
knowledge to perform replication. The RMI messages also contain the paths where the
libraries are copied to, and the serialized agent’s state which includes all data at the
membership vectors, hash tables, and queues related to the operation of the agent to a
text file at the host in byte array form. In the last subtask of the “clone itself�” complex
task, the agent identifier(s) of new replica(s) are inserted to the member and
heartbeating vector of the membership service.

When cloning server receives the RMI messages from the original agent, it places
the libraries, agent’s source code to the paths sent in the messages, and then executes
the agent’s source code. Whenever the replicated agent starts as a replicated agent, it
is registered to only AMS and becomes ready for achieving the goals. It has also any

162 S. Bora and O. Dikenelli

Fig. 2. Cloning a replica plan

information and data state that the original agent has. The only constraint related to
the replicated agent is that a replicated agent can not replicate itself and can not give a
service to other agents since it is not registered to DF. However, it will have the
ability of replicating and responding to the other agents, if it is selected as a new
leader when the leader has crashed. Only the leader is registered to the DF, since it
gives its services to the other agents.

If R.C is a negative number, a FIPA request for decreasing replication degree is
sent to the agent itself. After receiving this FIPA request, the “Decreasing Replication
Degree” plan structure is executed. In the first task of this plan, the leader figures out
how many removing operations will be performed by checking the request within the
content of the FIPA message. Then, the leader prepares FIPA messages as much as
the required value and sends each message to itself to activate the “Decreasing
replication Degree” complex task. In the first subtask of this complex task, a FIPA
message is sent AMS to find out the replica on the host with the worst performance.
After AMS returning the agent identifier for the agent to be removed, in the next
subtask, the agent is killed and the information related to this agent is removed from
the membership service.

In order to give an idea about the fault tolerant multi-agent system developed by
using SEAGENT, next we’ll give a case study example.

7 Case Study

Our fault tolerance approach presented in this paper has been implemented within
SEAGENT’s internal architecture. By using our approach, different fault tolerance
policies can be simultaneously applied in different replica groups in a multi-agent
organization.

 Implementing a Multi-agent Organization 163

For the evaluation of our approach, we designed an agent system which includes
some specific agents which are called library assistant agents and some other agents
that are specially designed for querying library assistant agents. A library assistant
agent holds the library ontology for the books which exist in the library of our
department. Instances of this ontology hold the properties of books including name,
ISSBN, authors’ names and keywords of the books. The library assistant agent is
queried by the agents to find out the situation of a specific book. In our case study, the
library assistant agent has only one plan that matches the request to the book ontology
instance(s) and returns the matched books descriptions within a FIPA message. Two
agents have also simple plans that directly query the library assistant agents and
present the result returned by the library assistant agent to the user interface. In this
case study, the other agents depend on the library assistant agent. Therefore, the
library assistant agent is a single of point of failure. Since it is a critical agent for the
system operation, it must be initialized as a fault tolerant agent. Although, our agent
plan is very simple, in this case study its general characteristic is very realistic in
terms of fault tolerance. Therefore it must be implemented as a fault tolerant agent to
make the system more robust.

The agent system based on our approach is implemented in two versions. In both
versions, the library assistant agents are replicated into groups, and static and adaptive
fault tolerance policies are simultaneously applied in different replica groups. In the
first version, there are two library assistant agent leaders with their replicas in the
number range from 10 to 40 within the organization. One of the library assistant agent
leaders applies a static fault tolerance policy, while the other one applies the adaptive
fault tolerance policy. In the second version, the number of library assistant agent
leaders that apply either static or adaptive fault tolerance policies is changed within
the organization in order to show the effectiveness of our approach.

The agent system is implemented in SEAGENT agent platform and Java Version
1.5.0. The tests are performed on nine computers with Intel Celeron CPU running at
1.2 GHz and 256MB of RAM, running Windows 2000. SEAGENT agent platform
including ACC module runs on one of the computers. We distribute up to 80 agents,
which execute the same plan, to nine computers. Particularly, leader agents and their
replicas run on different computers.

The evaluation consists of two tests:

1. In this test, we have evaluated how the increase of the number of replicas effects
the response time in two library assistant agent groups managed by different
fault tolerance policies. Therefore, we implemented a test bed consisting of two
library assistant leaders, their replicas in the number range from 10 to 40, and
two agents that query the library assistant agents. In order to see the effects of
increasing the number of replicas, querying agents send requests to the leaders.
The response time is the time that takes a querying agent to receive the reply
from the leader agent after sending its request to the leader. In this test, we try to
observe the effect of the increase of the number of replicas to the response time
while applying different fault tolerance policies.

2. In this test, we evaluated the effect of the increase of the number of library
assistant agents that apply adaptive fault tolerance policies to the overall system

164 S. Bora and O. Dikenelli

performance. Therefore, we implemented a test bed consisting of a number of
library assistant leaders applying either static or adaptive fault tolerance policies,
their replicas, and two agents which query each library assistant leader with two
hundred requests. In this test, first we observe the multi-agent organization which
consists of 30 library assistant agent leaders that apply the static fault tolerance
policy and their 30 replicas; and 10 library assistant agent leaders that apply the
adaptive fault tolerance policy and their 10 replicas. In order to distinguish this
case from others, we call it as “s30d10”. Then, we observe the multi-agent
organization which consists of 20 library assistant agent leaders that apply the
static fault tolerance policy and their 20 replicas; and 20 library assistant agent
leaders that apply the adaptive fault tolerance policy and their 20 replicas. We call
this case as “s20d20”. Finally, we observe the multi-agent organization which
consists of 10 library assistant agent leaders that apply the static fault tolerance
policy and their 10 replicas; and 30 library assistant agent leaders that apply the
adaptive fault tolerance policy and their 30 replicas. We call this case as “s10d30”.
In this test, we allow the organization clone agents and kill agents in groups
managed by the adaptive fault tolerance policy. We again aim to observe the
effect of the increase of the number of library assistant agent leaders that apply
adaptive fault tolerance to the overall system performance by measuring the time
to complete processing two hundred requests for each.

7.1 Discussion

The results of Test1 are illustrated in Fig. 3. The results show a linear increase in the
response time as more replicas are added to the system. These results are expected,
since the number of messages increases with the number of replicas due to the
multicasting of requests and every replica in library assistant group processes each
coming request. However, we are interested in the monitoring cost in the organization.
We observe that the monitoring cost, which is the difference between the response times
of the library assistant agents that apply static and dynamic fault tolerance policies, is
almost constant as the number of replicas increases. This result was expected, since
there is only one leader library assistant agent that applies adaptive fault tolerance policy
and is monitored by the observation mechanism in ACC module.

The results of Test 2 are illustrated in Fig. 4. As seen from the figure, as the
number of the leader library assistant agent that applies adaptive fault tolerance policy
increases, the overall system performance decreases, i.e. the response time for two
hundred requests increases. This result was also expected since as the number of
leader library assistant agents that apply the adaptive fault tolerance policy increases,
the observation mechanism in ACC module has to continuously monitor more agents,
determine the criticality values for them and send these values to the agents. As soon
as each agent receives FIPA message including the criticality value within the content
of the message, it executes the adaptive fault tolerance policy plan to determine the
new replication degree. According to the new value, the agent starts either cloning
itself or killing its replicas. Therefore, all these operations increase the response time
for certain tasks and decreases overall system performance.

 Implementing a Multi-agent Organization 165

The Cost of Monitoring

0

100000

200000

300000

400000

500000

600000

700000

1 2 3 4

(x5) The Number of Replicas

T
h

e
R

es
p

o
n

se
 T

im
e(

m
s)

static F.T

adaptive F.T

Fig. 3. The Monitoring Cost of the Adaptive Fault Tolerance Policy in a Multi-Agent Organization

The Effect of Adaptive Fault Tolerance
Policy to the Response Time

0
5000000

10000000
15000000
20000000
25000000
30000000
35000000

s30d10 s20d20 s10d30

The Number of Agents That Apply Adaptive
and Static Fault Tolerance Policies

T
h

e
R

es
p

o
n

se

T
im

e(
m

s)

static
adaptive

Fig. 4. The Effect of the Adaptive Fault Tolerance Policy to the Overall System Performance

166 S. Bora and O. Dikenelli

8 Conclusion

In this paper, we presented our approach that allows to simultaneously applying
adaptive and static fault tolerance policies in multi-agent organizations. Thus, while
some of the agents can apply a static fault tolerance policy in their replica groups, the
remaining can apply adaptive one within the organization.

In the applied case study, we observe that applying an adaptive fault tolerance policy
to the groups decreases overall system performance due to the monitoring. Of course,
the adaptive fault tolerance policy is a useful technique in terms of fault tolerance
comparing to the static one. However, instead of applying the adaptive fault tolerance
policy in all organization, applying it when it is certainly necessary under some
conditions such as the agents’ criticalities are not anticipated, or change constantly, etc.,
and applying the static fault tolerance policy to the remaining groups will improve the
overall system performance.

Our approach supports using both policies at the same time within the organizat-
ion. Moreover, it is flexible in terms of fault tolerance since it is possible to easily
modify existing plans, remove some of plans, or include new plans.

References

1. Paolucci M. et al.: A planning component for RETSINA Agents. Intelligent Agents VI,
LNAI 1757, N. R. Jennings and Y. Lesperance, eds., Springer-Verlag, 2000.

2. SEAGENT Agent Platform. http://aegeants.ege.edu.tr/current_projects/seagent/
3. Dikenelli O., Erdur R. C., Gumus O., Ekinci E. E., Gurcan O., Kardas G., Seylan I.,

Tiryaki A. M.: SEAGENT: A Platform for Developing Semantic Web Based Multi Agent
Systems. In AAMAS’05, page 1270, 2005.

4. Dikenelli O., Gumus O., Tiryaki A. M., Kardas G.: Engineering a Multi Agent Platform
with Dynamic Semantic Service Discovery and Invocation Capability.In MATES 2005,
Germany, 2005.

5. Kumar S., Cohen P. R., and Levesque H. J.: The adaptive agent architecture: Achieving fault-
tolerance using persistent broker teams. In Proceedings, Fourth International Conference on
Multi-Agent Systems, July 2000.

6. Klein M. and Dallarocas C.: Exception handling in agent systems. Etzioni O., Muller J. P.
and Bradshaw J. M. editors, Proceedings of the Third International Conference on Agents
(Agents’99) pages 62–68, Seattle, WA, 1999.

7. Hägg. S.: A sentinel approach to fault handling in multi-agent systems. In Proceedings of
the second Australian Workshop on Distributed AI, in conjunction with the Fourth Pacific
Rim International Conference on Artificial Intelligence (PRICAI’96), Cairns, Australia,
August 1996.

8. Fedoruk A. and Deters R.: Improving fault-tolerance by replicating agents. In Proceedings
of 1st International Joint Conference on Autonomous Agents and Multi-Agent Systems,
Bologna, Italy, 2002.

9. Guessoum Z., Ziane M., Faci N.: Monitoring and organizational-level adaptation of multi-
agent systems. AAMAS’04, ACM, pp. 514–522, New York City, July 2004.

10. Guessoum Z., Briot J.-P., Charpentier Z., Aknine S., Marin O. and Sens P.: Dynamic and
Adaptative Replication for Large-Scale Reliable Multi-Agent Systems, Proc. ICSE’02
First International Workshop on Software Engineering for Large-Scale Multi-Agent
Systems (SELMAS’02), ACM, Orlando FL, USA, May, 2002.

 Implementing a Multi-agent Organization 167

11. Guessoum Z. and. Briot J. P.: From active objects to autonomous agents. IEEE Con-
currency, 7(3):68–76, 1999.

12. Guessoum Z., Briot J. P., Sens P., and Marin O.: Toward fault-tolerant multi-agent
systems. In MAAMAW’2001, Annecy. France, 2001.

13. FIPA. FIPA Specifications. http://www.fipa.org
14. Tanenbaum A. S. and van Steen M.: Distributed Systems: Principles and Paradigms,

Prentice-Hall. (2002)
15. G. Chockler V., Keidar I., and Vitenberg R.: Group Communication Specifications: A

Comprehensive Study, ACM Computing Surveys 33(4), pages 1–43. (2001)
16. The Transis Project. http://www.cs.huji.ac.il/labs/transis
17. The Horus Project. http://www.cs.cornell.edu/Info/Projects/HORUS/
18. Shehory O., Sycara K., Chalasani P., and Jha S.: Agent Cloning: An Approach to

Agent Mobility and Resource Allocation. IEEE Communications, Vol. 36, No. 7,
pp. 58–67 (1998).

19. Decker K., Sycara K., and Williamson M.: Cloning for Intelligent Adaptive Information
Agents. In ATAL’97, LNAI, pp. 63–75, Springer-Verlag, (1997).

Predicting Exceptions in Agent-Based Supply-Chains�

Albert Özkohen and Pınar Yolum

Department of Computer Engineering,
Boğaziçi University,

TR-34342, Bebek, Istanbul, Turkey
aozkohen@elitsoft.com.tr, pinar.yolum@boun.edu.tr

Abstract. Exceptions take place when one or more events take place unexpect-
edly. Exceptions occur frequently in supply-chains and mostly result in severe
monetary losses. Consequently, detecting exceptions timely is of great practical
value. Traditional approaches have aimed at detecting exceptions after they have
occurred. Whereas this is important, predicting exceptions before they happen is
of more importance, since it can ease the handling of exceptions.

Accordingly, this paper develops a commitment-based approach for modeling
and predicting exceptions. The participants of the supply-chains are represented
as autonomous agents. Their communication with other agents yields creation
and manipulation of commitments. Violation of commitments leads to excep-
tions. We develop two methods for detecting such violations. The first method
uses an AND/OR tree to analyze situations in small parts. The second method
uses an ontology to generate new information about the environment and checks
whether this information may cause any violations. When applied together, these
methods can predict exceptions in supply-chain scenarios.

1 Introduction

A supply-chain is composed of producers that are responsible for producing and deliv-
ering a service and consumers that receive the produced service [1]. Entities that are
involved in supply-chains are autonomous parties and are thus operated independently.
To be successful in a supply-chain, entities need to be cooperative but this does not
mean that they will not have individual motives or unpredictable operations based on
context. Fox et al. [2] state that properties such as dynamism, reasoning, readiness to
cooperation, interaction and adaptability show us the necessity to use an agent-based
structure while modeling supply-chains. Given these properties of supply-chains, the
most natural way to model the entities in supply-chains are as autonomous agents that
perceive, reason, act and communicate on their own [2, 3]. This is because entities have
to be intelligent and to possess enough initiative in order to reason about their situation
and about the appropriate action plans.

The elements of a supply-chain can vary from one design to another. Generally,
we might say that suppliers, customers, production units, storage units, logistic support
units such as shipping companies, technical support units, management departments, all

� This research was supported by Bogazici University Research Fund under grant BAP05A104.
We thank the anonymous reviewers for their helpful comments.

O. Dikenelli, M.-P. Gleizes, and A. Ricci (Eds.): ESAW 2005, LNAI 3963, pp. 168–183, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Predicting Exceptions in Agent-Based Supply-Chains 169

can be different agents belonging to a multiagent system. Each agent will have its own
set of goals and appropriate action plans to achieve the goal according to the current
context.

As in traditional supply-chains, agents follow a protocol to regulate their activities.
When protocols rules are violated, exceptions occur. The exceptions have various con-
sequences such as productivity drops, increases in various costs or decrease in customer
satisfaction [4, 5]. Because of these consequences, it is crucial to detect and handle ex-
ceptions appropriately. The exception handling process is one which requires complex
reasoning activities under defined and extendable rule sets. In current practice, excep-
tions are managed using brain power of working professionals who use the supply-chain
management tools. But, this is costly and inefficient because human-based operations
are more error prone and more costly compared to automated approaches. For these
reasons, there is an ongoing research on automating exception handling in supply-chain
management systems [6, 4, 7, 8]. These approaches mostly assume that first exceptions
occur and then the approaches recover from these exceptions. What we are proposing
here, on the other hand, is to predict that the exceptions are going to happen before
they actually take place. Depending on how early the exceptions can be predicted, the
corrective actions can be taken more appropriately. For example, if a supplier knows
that a delivery will not reach its destination several hours before the delivery is due, she
might schedule an alternative delivery. However, if she learns that the delivery has not
reached its destination at the scheduled delivery time, it may be too late to schedule an
alternative delivery.

The exception prediction heavily involves receiving data from outer world (through
communication or sensing), which will help the system to infer that an exception is
about to happen. To allow exception prediction, we develop an approach based on par-
ticipants’ commitments to each other [9, 10]. Each commitment between participants is
broken down into smaller commitments and are placed in an AND/OR graph. Violation
of one commitment can lead to violation of other commitments depending on its po-
sition in the AND/OR graph. Detecting the first violation is enough to predict that the
other commitments will be violated. As a further step, we use an ontology and a rule
set to derive facts about the external world. If any one derived facts conflicts with an
existing commitment, we conclude that the commitment cannot be fulfilled as promised
and predict that an exception is going to take place.

The main contribution of this paper is to develop an approach for predicting excep-
tions in supply-chains. The approach models supply-chains as multiagent systems in
order to enable exception handling. It further defines communications between agents
as commitments and detects an exception if a violation of a commitment is perceived.
Commitments are placed within an AND/OR tree in order to decide on exceptional
cases with a better accuracy. An ontology and domain for the rules existing between
agents are defined to reason about the domain and predict if any commitments will be
violated. The ontology is useful to predict the occurrence of exceptional cases even
before any violation of commitment is detected.

The rest of this paper is organized as follows: Section 2 models exceptional situations
using commitments, which exist as nodes within AND/OR trees. Section 3 develops an
ontology to represent knowledge about exception scenarios. Section 4 compares our

170 A. Özkohen and P. Yolum

method with other research done in the area. Section 5 summarizes our main contri-
butions and points at directions for further research. Section 6 gives the listing of the
ontology for our sample case study.

2 Modeling Exceptions

Different kinds of exceptions can take place in supply-chain systems. Huhns et al. [4]
group different exception categories such as missed deadlines, errors in product defini-
tions, late payments, and so on. Most exceptions can be viewed as breach of commit-
ments between some of the parties in the supply chain. If a supplier promises to deliver
the material on a particular date but misses that deadline, we end up with an excep-
tion. Or, if the customer does not pay her debt as he has promised, then again we have
an exception. Based on this intuition, we propose to model exceptions as violations of
commitments.

2.1 Commitments

Commitments are obligations from one party to another to carry out a particular
task [11].

Definition 1. A commitment, denoted by C(debtor, creditor, condition, ADL,
FDL) shows that the debtor has to satisfy the condition in favor of the creditor before
FDL (fulfilling deadline). The commitment has to be activated before the activation
deadline (ADL).

After the activation of the commitment, if the condition is discharged before FDL, the
commitment C is discharged [11, 9].

Note that while the most of the previous definitions of commitments do not incorpo-
rate explicit activation deadlines, because of the domain we are dealing with (supply-
chains) such a condition is necessary. That is, in real life many contracts are valid if
they are accepted in a certain time-frame.

Example 1. A shipping company APS commits to have the goods delivered to Istan-
bul before 17:00 only if the contract is finalized before 12:00. Such a commitment can
be represented as C(APS, Ali, goods, 12 : 00, 17 : 00).

A commitment is violated when the debtor of a commitment does not carry out the
condition of her commitment before the fulfilment deadline. The existence of violated
commitments signal exceptions. Commitments exist in all aspects of communications
between agents (humans or software) [12]. Commitments are created as a result of agent
activities (interaction or communication with outer world).

Commitments can be discharged within time, may be revised, canceled or delegated.
In order to work out exceptional situations, it is sufficient to differentiate between ful-
filled and violated commitments. When commitments are fulfilled successfully there
will not be any exceptions. We exploit this intuition in the paper and develop a method
to detect violated commitments in order to decide on exceptions.

Predicting Exceptions in Agent-Based Supply-Chains 171

Commitments as explained above rarely exist in isolation: they have bonds to other
commitments. In many cases, one commitment may be part of a more extensive com-
mitment. For example, if a supplier commits to deliver goods, then the fulfilment of the
delivery may be dependent on a carrier company’s commitment to deliver the goods. If
the carrier discharges his commitment, so does the supplier. Or, rather than being part
of a more extensive commitment, two commitments may be alternatives to each other.
For example, if both carrier APS or carrier Aras are willing to make a commitment to
deliver, then the supplier can choose to activate one of the two commitments.

2.2 Commitment AND/OR Trees

In business life many tasks can be decomposed into smaller tasks. That is, for finishing
successfully a task we may have to finish a number of other tasks also successfully.
We model this fact by decomposing the commitments into other commitments. For
example, if a driver violates his commitment to show up to work on time, most likely
the company’s commitment of delivering goods at a certain time will be violated, too,
unless there is a backup driver.

To capture such dependencies, we propose two commitment variants, conjunctive
and disjunctive commitments. A conjunctive commitment is a commitment, which can
be fulfilled by fulfilling two separate commitments. These commitments can themselves
be conjunctive.

Definition 2. C(x, y, d, adl, t) is a conjunctive commitment if ∃a, b such that (a �≡ b)∧
(d ≡ a∧b). A conditional commitment can be decomposed as follows: C(x, y, d, adl, t)
≡ C(p, q, a, adl1, t1) ∧ C(r, s, b, adl2, t2) such that (t1 ≤ t) ∧ (t2 ≤ t) ∧ (adl1 ≤
t1) ∧ (adl2 ≤ t2) ∧ (adl1 ≤ adl) ∧ (adl2 ≤ adl).

The two commitments that make up the conjuncts may not be between the same in-
dividuals as the conjunctive commitment. Hence x, p and r may be different agents.
Similarly, y, q and s could be different too: Section 2.4 explains this point in more
depth.

A disjunctive commitment is a commitment, which can be fulfilled in one of several
ways.

Definition 3. C(x, y, d, adl, t) is a disjunctive commitment if ∃a, b such that (a �≡ b)∧
(d ≡ a∨b). A disjunctive commitment can be decomposed as follows: C(x, y, d, adl, t)
≡ C(p, q, a, adl1, t1) ∨ C(r, s, b, adl2, t2) such that (t1 ≤ t) ∧ (t2 ≤ t) ∧ (adl1 ≤
t1) ∧ (adl2 ≤ t2) ∧ (adl1 ≤ adl) ∧ (adl2 ≤ adl).

An AND/OR tree is an n-ary tree where the children of a node are connected with
each other with an AND relationship or an OR relationship. If the children of a node
are connected with an AND relation, then all the propositions in the children have to
be true for the parent proposition to be true. If the children are connected with an OR
relations, then at least one proposition in one of the nodes need to be true for the parent
to be true [13]. We apply the same idea to model commitments.

Definition 4. A commitment AND/OR tree is a n-ary tree where each non-leaf node is
either a conjunctive or a disjunctive commitment and all leaf nodes are commitments
that cannot be decomposed further.

172 A. Özkohen and P. Yolum

The commitments in the leaf nodes are important for hunting down exceptions. The
only way that an exception in the non-leaf nodes can be violated is when one of the leaf
nodes is violated. Hence, the violations of any of the commitments in the leaf nodes
gives us a handle for propagating the error up the tree to detect other exceptions. A
commitment in the leaf node is violated when when the fulfilment deadline has passed
and the condition that has been committed to is still false. When this is the case, the
system easily detects the violation and hence the exceptions. Following this detection,
the commitment AND/OR tree is traversed from bottom to up in order to check if the
violated commitment will have any other consequences. This is used to predict other
exceptions. In other words, if a leaf commitment that has an AND relation with its
siblings is violated, then the commitment that lies in the parent node will certainly
be violated: There is no need to wait for other sibling commitments to be fulfilled or
violated. However, if the leaf commitment has an OR relation with its siblings, then as
soon as a leaf commitment is violated, its siblings need to be checked. This kind of an
OR relation can be used for modeling alternative plans when violation occurs. Because
an alternative plan can be activated when one of the already selected commitments is
violated.

The main reason to use AND/OR trees for modeling exceptions is to let us search
and find the real non-complying commitment in order to execute the proper corrective
action. The system begins with an initial rule configuration. During execution, the sys-
tem creates a parallel structure for each occurrence of an exception and tries to search
within the AND/OR tree for the node(s) where the violation occurs. In system definition
phase, commitments have to be entered and labeled accordingly to form the AND/OR
tree. This decomposition activity can continue until all debtors and creditors of the com-
mitments are within the boundaries of the multiagent system. If sensing the termination
of commitments (successfully or with a violation) cannot be done, then we cannot de-
fine commitments for these debtors or creditors. We conclude in this way because we
need to know if a leaf commitment is discharged successfully or not, in order to under-
stand that if it is an exception or not and in order to reason appropriately with its curing
action plan, or maybe with an alternative OR branch.

2.3 Monitoring Exceptions

To keep track of the commitments that are violated or fulfilled, we envision a mon-
itoring agent (MA) in the multiagent system. The monitoring agent is responsible to
record all commitments persistently with their timeout values. When a commitment is
discharged by the creditor, the MA is notified and the associated commitment drops
form the list of commitments that are waiting to be discharged. Then, MA checks when
a commitment is giving timeout. This means the responsible (debtor) agent has not ful-
filled its obligation, otherwise MA would have received a fulfilment message. In this
case MA sends a message to the creditor that the debtor did not succeed.

2.4 Example

Let us consider the following example depicted in Figure 1, which models the delivery
of some goods between a customer and a supplier using alternative methods:

Predicting Exceptions in Agent-Based Supply-Chains 173

Our simplified MAS contains the following agents:

Supplier: It has a primary goal of arranging that goods reach to the customer on time.
Customer: It waits to receive goods that will be delivered.
Driver-1: Its primary goal is to carry load on time.
Driver-2: Its primary goal is the same as Driver-1.

C
driver-1

C
1

C
2

C
3

C
4

C
deliver

C
driver-2

Fig. 1. A commitment AND/OR tree

1. Assume the following commitment

Cdeliver =C(Supplier, Customer, Deliver-good, ActivationDeadLine, ArrivalTime)

is being created with a FDL value as ArrivalTime. If the commitment is not dis-
charged after ArrivalTime, it will mean that it has not fulfilled its preposition
(Deliver-good) and this will result in an exception. Additionally the commitment
can not be activated after ActivationDeadLine (ADL).

2. Then MA (see Section 2.3) records Cdeliver just after the creation.
3. MA tracks any information from Customer notifying if the commitment is fulfilled.
4. If no appropriate reply comes from Customer, and fulfilment-dead-line

(FDL:ArrivalTime) is reached, then MA understands that Supplier is not complying
and sends a message to Receiver notifying this problem.

5. For better understanding and examining the non-complying situation one may fur-
ther decompose the commitment Cdeliver (or the just happened exception) to linked
commitments such as Cdeliver = Cdriver−1 ∨ Cdriver−2.

6. The delivering commitment can be further decomposed as follows: Cdriver−1 = C1

∧ C2 where

174 A. Özkohen and P. Yolum

C1 = C(Supplier, Driver1, GiveLoad, adl1, t1) and
C2 = C(Driver1, Customer, CarryLoad, adl2, ArrivalT ime) and
t1 < ArrivalT ime and adl1 < ArrivalT ime and adl2 < ArrivalT ime

Alternatively we can state that C2 is not responsible to the Customer , but to the
Supplier. Then we have the following equality

C2 = C(Driver1, Supplier, CarryLoad, adl2, ArrivalT ime)

7. We can also divide (from the main OR branching in Figure 1) the driver commit-
ment as follows: Cdriver−2 = C3 ∧ C4 where

C3 = C(Supplier, Driver2, GiveLoad, adl3, t2)and
C4 = C(Driver2, Customer, CarryLoad, adl4, ArrivalT ime)
t2 < ArrivalT ime and adl3 < ArrivalT ime and adl4 < ArrivalT ime

Alternatively we can state that C4 is not responsible to the Customer , but to the
Supplier. Then we have the following equality

C4 = C(Driver2, Supplier, CarryLoad, adl4, ArrivalT ime)

8. If MA detects that C1 is non-complying, then the system comes to a result that
Cdriver−1 will be false because one of the children resulting false in an AND
branch, which makes the parent false too. So an alternative commitment, namely
Cdriver−2 can be tried before waiting the result of C2. That is an alternative path,
or may be an alternative action instead of a non-complying branch can be selected
in order to fulfill the top-level commitment Cdeliver .

9. Figure 1 shows an example decomposition as an AND/OR graph. The branching
paths that are accompanied by an arc are the AND branches and the rest are OR
branches.

10. The decomposition yields the AND/OR commitment tree where the leaves can
no longer be decomposed. Hence, violation of commitments in the leaves signal
exception.

2.5 AND/OR Tree Usage

Our system is composed of agents, which collect and process information. As it is stated
above, commitments reside in the nodes of the AND/OR tree and each node is decom-
posed in other nodes (i.e. other commitments) where these other (child) commitments
cause the parent commitment to be fulfilled successfully. As our structure is a tree, it
has leaf nodes. Leaf nodes hold these commitments, which are not able to be further
decomposed.

Following our previous example, let us suppose that software agents exist in the
shipping companies, but they do not exist in the trucks or roads. So our system will not
be able to sense about what happened on the roads. It can only know if the driver has
arrived to the destination or not. So boundaries of that multiagent system is the shipping
companies and the leaf commitment is the arrival of the driver to the destination point.

Predicting Exceptions in Agent-Based Supply-Chains 175

2.6 AND/OR Tree Manipulation

A supply chain is hardly ever static: New participants enter, some tasks become obso-
lete, or new operations are added. To keep up with the dynamic structure of the supply-
chain, the AND/OR tree has to be updated frequently. This means that new nodes will
need to be added or removed as desired.

For adding a node (i.e. a commitment) to the structure we need to specify its prospec-
tive parent node in the tree and the operator with the siblings (AND/OR). The rest is a
regular tree insertion algorithm. For instance let us assume that the definition of making
a delivery is changed and a new commitment C0 such as paying in advance comes into
the picture

C0 = C(Customer, Driver1, Pays, adl0, t0) where
(t0 < ArrivalT ime) and (adl0 < t0)
Cdriver−1 = C0 ∧ C1 ∧ C2

The new node C0 has to be inserted as a sibling for C1 and C2.
For deleting a node, the specification of its correct place in the tree is enough. The

system has to check if there were any siblings for the deleted node. If not, that is if
it was the only child of the parent then the parent becomes leaf node. For instance
suppose that the agreement with Driver2 is cancelled and no shipment will be done
with him anymore. In this case we have to correct the structure of the AND/OR tree, so
we have to delete Cdriver−2 . This results in deleting that node and all of its children
from the tree structure. The system in our example becomes then as follows:

Cdeliver = Cdriver−1 = C0 ∧ C1 ∧ C2

A leaf node contains a leaf commitment where further decomposition cannot be
done within the given boundaries of the domain. All subsequent actions and plans for
handling the exceptions will be initiated from the commitments existing on the leaf
nodes.

3 Ontology-Based Exception Prediction

An ontology is a conceptualization of a domain. It is a vocabulary of terms, concepts,
rules of inferences and their inter-relationships [3]. To reason about different situations,
we developed a supply-chain ontology using OWL, a well-known ontology language
[14]. This ontology captures relations between different supply-chain entities, such as
drivers, delivery, and so on. It also allows relations to be specified. On top of that, we
specify rules, such as business rules, in Semantic Web Rule Language [15]. This enables
us to represent a large set of knowledge systematically and effectively. The underlying
idea is that if we can get information that can be related to working of any one entity
in the supply-chain from the outside world, we can derive knowledge as to whether any
one commitment is about to be violated. An illustrative example is that if the system
hears that there is a tremendous traffic jam on the highway, it may derive that the truck
that will follow that highway is going to be late. This reasoning is done much earlier
than the expected arrival time of the truck.

176 A. Özkohen and P. Yolum

3.1 Reasoning Using the Ontology

Let us give an example reasoning, which is related with Figure 1: We can assume that
continuous truck-status information may be given by a truck agent (assuming trucks
have agents detecting about the situation or status and broadcast this information while
our MA receives it using a predefined format) to our multiagent system. This informa-
tion can contain a problem about the truck where the driver was carrying our load.

Given the following facts:

– Delivery are done by drivers.
– Drivers drive trucks.
– Trucks can be either in working mode or stopped.

and the following rules:

– If a truck is stopped, its driver cannot drive it.
– A delivery is canceled when drivers cannot drive their trucks.

We can apply the rules on the facts and reason about which drivers cannot drive their
trucks. If we can figure out that a driver has a commitment to deliver but cannot drive his
truck, we conclude that the driver will not fulfill his commitment. Recall from example
given in Section 2.4 that if a driver cannot fulfill its commitment (leaf node), the delivery
will not succeed (parent node). Hence, we cascade the effects of our findings to other
commitments and predict the violation before it happens.

The inference of the above ontology example can be implemented using various
rule-based reasoning systems to the instances of the created ontology. We have tried
various reasoner systems available and have decided on KAON2 [16]. We have seen
that KAON2 is performing well by combining ontology definition, instance creation,
rule definition and querying the ontology with all the instances and rules. A subset of

del101 is a delivery
del102 is a delivery
del103 is a delivery
del104 is a delivery
John is a driver
George is a driver
fiat50NC is a truck
bmc is a truck
delivery del101 is done by John
delivery del102 is done by George
delivery del103 is done by John
delivery del104 is done by George
John drives fiat50NC
George drives bmc
fiat50NC’s workmode is working
bmc’s work mode is working

Fig. 2. Assignment of individuals to classes

Predicting Exceptions in Agent-Based Supply-Chains 177

the OWL and SWRL specification required to run the following example is given in
Section 6. The developed system first creates an ontology with the properties and actual
instances as shown in Figure 2. The example has four deliveries, namely del01, del02,
del03 and del04. It has two drivers John and George. It has two trucks fiat50NC and
bmc. But this information is not enough for defining the instances. It has to specify the
drivers, which do the deliveries. For instance it says that John delivers del01. Also it
specifies, which trucks are driven by which drivers. Then it mentions the working mode
of the trucks, it reads the rules that should be applied on the instances and applies these
rules. Finally, the system can be queried for various cases. In the example in Figure 4,
when the system is queried for cancelled deliveries, the system responds with the URIs
of the canceled deliveries. The ontology creation, reasoning and querying activities are
performed through a Java program that we developed using SDK 1.5.0.

3.2 Hybrid System

The ontology works simultaneously with the AND/OR tree as follows. The system
receives information from the environment and other agents. Using its inference mech-
anism, the system tries to infer new facts from the set of information it receives. If the
newly derived facts, contradict the proposition of any of the commitments in the system,
then the agent can figure out that, the commitment will not be fulfilled. Note that this
may happen before the commitment timeout has been reached. It may also be the case
that information from the outside world will not help the agents derive facts that violate
any of the existing commitments. In this case, the agent will wait for the MA to signal
timeouts from commitments to decide that one of its commitments has been violated.
Hence, the system can be thought of operating both methods in a hybrid way: Some ex-
ceptions are caught by the rules defined in our ontology even before any violation takes
place and some exceptions are caught when the timeout takes place. If the exceptions
are caught by the ontology rules, then the involved participants have a chance to take
corrective actions before the timeout.

We have developed an algorithm which simulates clock ticks and picks time val-
ues randomly and checks first if any problem reported using the reasoner which infers
based on ruled defined by the ontology. If we have some predictions about any delivery
which will be cancelled, then we go to the commitment tree which is created as par-
allel with the ontology definition and cancel all the commitment which are predict to
cause any violation. Alternative paths are selected from-noncancelled commitments in
the AND/OR tree, using the smallest accepted activation-dead-line(ADL). In this alter-
native path selection point different strategies such that minimum delivery time, cost of
delivery can be used separately or all together to form a utility function.

If the ontology does not report any problem in that specific time interval, then this
time the leave nodes of the tree for all deliveries, four in our example, are searched for a
violating commitment. If any violation is reported, i.e. the FDL is equal or less than the
current time tick, then again a deactivation / reactivation of alternative paths using some
kind of utility function is again performed. Figure 3 shows the initial configuration of
a delivery tree. Here, the delivery is shown with Commitment 1. To realize Commit-
ment 1, two alternative commitments exist; hence either Commitment 2 or Commit-
ment 5 needs to be active at any point in time. Initially, Commitment 5 is active and

178 A. Özkohen and P. Yolum

Initial Tree for delivery del101:

– Commitment 1 =C (Supplier1, Customer1, del01, 10 days as ADL, 40days as FDL) - active
– C1 = C2 OR C5.

Commitment 2 =C (Supplier1, Customer1, Delivery by John, 20 days as ADL, 30days as
FDL) - inactive

– C2 = C3 AND C4.
Commitment 3 =C (Supplier1, John, Load Good, 20 days as ADL, 17days as FDL) - inactive

– Commitment 4 =C (John, Customer1, Deliver Good, 20 days as ADL, 20days as FDL) -
inactive

– Commitment 5 =C (Supplier1, Customer1, Delivery by George, 15 days as ADL, 20days as
FDL) - active

– C5 = C6 AND C7.
Commitment 6 =C (Supplier1, George, Load Good, 15 days as ADL, 18days as FDL) -
active

– Commitment 7 =C (George, Customer1, Deliver Good, 15 days as ADL, 20days as FDL) -
active

Fig. 3. Initial tree definitions for all four deliveries responding to a query

Query results for the cancelled deliveries ... as time = 20

– Violation detected for delivery 1
Tree becomes as follows:

– Commitment 1 =C (Supplier1, Customer1, del01, 10 days as ADL, 40days as FDL) - active
– C1 = C2 OR C5.

Commitment 2 =C (Supplier1, Customer1, Delivery by John, 20 days as ADL, 30days as
FDL) - active

– C2 = C3 AND C4.
Commitment 3 =C (Supplier1, John, Load Good, 20 days as ADL, 17days as FDL) - active

– Commitment 4 =C (John, Customer1, Deliver Good, 20 days as ADL, 20days as FDL) -
active

– Commitment 5 =C (Supplier1, Customer1, Delivery by George, 15 days as ADL, 20days as
FDL) - cancelled

– C5 = C6 AND C7.
Commitment 6 =C (Supplier1, George, Load Good, 15 days as ADL, 18days as FDL) -
cancelled

– Commitment 7 =C (George, Customer1, Deliver Good, 15 days as ADL, 20days as FDL) -
cancelled

Fig. 4. Updates based on exception of not loading the goods

Commitment 2 is inactive. Further, to realize Commitment 5, two separate commit-
ments (Commitments 6 and 7) have to be fulfilled. To enable this, both Commitment 6
and Commitment 7 are marked as active.

After starting the system with the initial configuration, the system can be queried
for possible exceptions. The particular exception that we are interested here is the can-
celing of deliveries. Hence, we formulate our query accordingly. When the system is
queried at time 0, the system does not report any exceptions. However, at time 18 the
system detects that the goods have not been loaded and hence Commitment 6 cannot be

Predicting Exceptions in Agent-Based Supply-Chains 179

fulfilled. This means that no matter whether Commitment 7 is successful or not, Com-
mitment 5 will fail. For this reason, there is no need to wait for Commitment 7. Hence,
the system cancels Commitments 5, 6, and 7. However, notice that even though Com-
mitment 5 fails, this does not mean that Commitment 1 will fail. Since Commitment 1
can be achieved in one of two ways, the system can now activate C2 and its children
commitments as shown in Figure 4.

We are also currently working on an enhanced version of our program in order to
support various types of queries. Additionally, we are creating a user interface, which
lets the user of the system to define number of drivers, deliveries, working modes, and
other properties for configuring the system as well as interfaces for generating various
types of queries.

4 Discussion

Several approaches have been followed in dealing with supply-chain automation and
exception handling supply-chains.

Huhns et al. make use of linguistic models for modeling the coordination in supply-
chain management [4]. They develop interaction diagrams and they identify the con-
versations by giving a use case model. From there, they obtain Dooley Graphs. Finally
they build the state machines in order to generate agent skeletons. Exception handling
is only a step that is taken care in this process. They define the groups of exceptions but
no mechanism is proposed for handling or predicting exceptions.

Dellarocas and Klein propose a knowledge base approach instead of the linguistic
approach [7]. This work seems targeting in a stronger fashion for dealing and handling
exceptions. The taxonomy is an n-ary tree without any relationships between the child
nodes of a parent exception. Moreover the relationship between the exceptions is not
clearly defined.

Kalakota et al. port the supply-chain architecture form static into dynamic archi-
tecture [17]. Instead of collecting historical data from customers, retailers, distribution
centers, production outlets and so on, and to prepare the knowledge-base according to
this gathered information for giving decisions (static infrastructure), they propose to
store all information dynamically in local agents and they intend to give quicker de-
cisions in much smaller time intervals, i.e. more frequently (dynamic infrastructure).
Their assumption on internal operations is based on each individual agent’s definition
about the degree of self-determination by using statistical methods. They also propose
an example supply-chain ontology but they do not develop methods for the automation
of exception handling.

Frey et al. successfully show that multiagent infrastructure is suitable for glob-
ally flexible and locally autonomous business needs where competition and coopera-
tion have to coexist without disrupting each other. They make use of already existing
multiagent projects, which are developed or under development. Each multiagent sys-
tem is responsible for a different group of tasks, such as negotiation, process plan-
ning and scheduling, production planning and controlling. Their work mainly defines
the interactions and integration between those sub-systems. Despite all scheduling,

180 A. Özkohen and P. Yolum

tracking, tracing, reliability building efforts, exceptions are not taken into consideration,
which empowers the need for special care for exceptions in supply-chain management.

Lesser et al. have developed a domain independent coordination framework, namely
Generalized Partial Global Planning (GPGP) based on TAEMS [18]. The framework
is used to coordinate agents so that the utility of each agent in the multiagent system
is maximized. Their proposed coordination framework also make used of AND/OR
graphs as we have done; however, they use agents’ goals as nodes in the AND/OR tree.
This allows their framework to represent decomposition of global goals into local goals
that can be achieved by individual agents. Lesser et al. do not focus on prediction or
handling of exceptions as we have done here.

5 Directions

We have developed an automated tool to predict exceptions in supply-chains. The ex-
ample illustrated in this paper is simple yet important for showing why it is important
to predict exceptions before they occur. We are currently working on more complex ex-
amples in order to cover additional aspects for our proposed system. Our model uses a
hybrid method, which either uses an ontology to detect proactively if an exception will
occur (or conditions show that an exception is about to occur when the relevant time-
out comes), or a structured AND/OR tree holding commitments in its nodes detects
timeouts.

In this work, we worked with deterministic rules. It will be interesting to enhance
this approach by probabilistic rules. For instance if the main road is blocked, the driver
may surprise the customer by using a tiny alternative road for reaching its destination
although this may have low probability. Hence the sensing from the ontology can further
be modeled using a probabilistic approach.

If the system becomes bigger and more complex, it may become difficult and un-
necessary to load all commitment data into a single MA. Communication and storage
capacity constraints can impose problems. A distributed version of MA can be designed
for the performance and privacy reasons. We will investigate these questions in our
future work.

References

1. Swaminathan, J.M., Tayur, S.R.: Models for supply chains in e-business. Management
Science 49 (2003) 1387–1406

2. Fox, M.S., Barbuceanu, M., Teigen, R.: Agent-oriented supply-chain management. Interna-
tional Journal of Flexible Manufacturing Systems 12 (2000) 165–188

3. Singh, M.P., Huhns, M.N.: Service Oriented Computing—Semantics, Processes, Agents.
Wiley (2005)

4. Huhns, M.N., Stephens, L.M., Ivezic, N.: Automating supply-chain management. In: Pro-
ceedings of the 1st International Joint Conference on Autonomous Agents and MultiAgent
Systems (AAMAS), ACM Press (2002) 1017–1024

5. Becker, T.J.: Putting a price on supply chain problems: Study links supply chain glitches
with falling stock price. Georigia Tech Research News (2000) Available at: http://
www.gtresearchnews.gatech.edu/newsrelease/.

Predicting Exceptions in Agent-Based Supply-Chains 181

6. Mallya, A.U., Singh, M.P.: Modeling exceptions via commitment protocols. In: Proceedings
of the 4th International Joint Conference on Autonomous Agents and MultiAgent Systems
(AAMAS), ACM Press (2005) 122–129

7. Dellarocas, C., Klein, M.: A knowledge-based approach for designing robust business pro-
cesses. In van der Aalst et al., W., ed.: Business Process Management, LNCS 1806. (2000)
60–65

8. Dellarocas, C., Klein, M., Rodriguez-Aguilar, J.A.: An exception handling architecture for
open electronic marketplaces of contract net software agents. In: Proceedings of the ACM
Conference on Electronic Commerce. (2000) 225–232

9. Yolum, P., Singh, M.P.: Reasoning about commitments in the event calculus: An approach
for specifying and executing protocols. Annals of Mathematics and Artificial Intelligence 42
(2004) 227–253

10. Fornara, N., Colombetti, M.: Operational specification of a commitment-based agent com-
munication language. In: Proceedings of the 1st International Joint Conference on Au-
tonomous Agents and MultiAgent Systems (AAMAS), ACM Press (2002) 535–542

11. Singh, M.P.: An ontology for commitments in multiagent systems: Toward a unification of
normative concepts. Artificial Intelligence and Law 7 (1999) 97–113

12. Castelfranchi, C.: Modelling social action for AI agents. Artificial Intelligence 103 (1998)
157–182

13. Nilsson, N.J.: Principles of Artificial Intelligence. Springer-Verlag (1980)
14. OWL: Web ontology language specification (2004) Available at: http://www.w3.org/

TR/owl-features/.
15. SWRL: A semantic web rule language combining OWL and RuleML (2004) Available at:

http : //www.w3.org/Submission/2004/SUBM − SWRL − 20040521/.
16. Motik, B.: (Kaon2 infrastructure library for managing owl-dl and swrl ontologies) Available

at: http://kaon2.semanticweb.org/.
17. Kalakota, R., Stallaert, J., Whinston, A.B.: Implementing real-time supply chain optimiza-

tion (1996) Available at: http://cism.mccombs.utexas.edu/jan/sc imp.html.
18. Lesser, V., Decker, K., Wagner, T., Carver, N., Garvey, A., Horling, B., Neiman, D., Podor-

ozhny, R., NagendraPrasad, M., Raja, A., Vincent, R., Xuan, P., Zhang, X.: Evolution of the
GPGP/TAEMS Domain-Independent Coordination Framework. Autonomous Agents and
Multi-Agent Systems 9 (2004) 87–143

6 Appendix

This section outlines the main parts of the ontology used in the system.

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE rdf:RDF [

<!ENTITY owl ’http://www.w3.org/2002/07/owl#’>
]>
<rdf:RDF

xml:base="http://boun.edu.tr/driver"
xmlns:a="http://boun.edu.tr/driver#"
xmlns:owl="http://www.w3.org/2002/07/owl#"
xmlns:rdf="http://www.w3.org/1999/02/

22-rdf-syntax-ns#"
xmlns:rdfs="http://www.w3.org/2000/01/

182 A. Özkohen and P. Yolum

rdf-schema#"
xmlns:swrl="http://www.w3.org/2003/11/swrl#">

<owl:Ontology rdf:about=""/>
<owl:ObjectProperty rdf:ID="cancelled">

<rdfs:domain rdf:resource="#delivery"/>
<rdfs:range rdf:resource="#truck"/>

</owl:ObjectProperty>
<owl:ObjectProperty rdf:ID="doneBy">

<rdfs:domain rdf:resource="#delivery"/>
<rdfs:range rdf:resource="#driver"/>

</owl:ObjectProperty>
<owl:ObjectProperty rdf:ID="drives">

<rdfs:domain rdf:resource="#driver"/>
<rdfs:range rdf:resource="#truck"/>

</owl:ObjectProperty>
<owl:ObjectProperty rdf:ID="workMode">

<rdfs:domain rdf:resource="#truck"/>
</owl:ObjectProperty>
<a:driver rdf:ID="George">

<a:drives rdf:resource="#bmc"/>
</a:driver>
<a:truck rdf:ID="bmc">

<a:workMode rdf:resource="#stopped"/>
</a:truck>
<a:delivery rdf:ID="del01">

<a:doneBy rdf:resource="#George"/>
</a:delivery>
<a:truck rdf:ID="fiat50NC">

<a:workMode rdf:resource="#stopped"/>
</a:truck>
<swrl:Variable rdf:ID="V"/>
<swrl:Variable rdf:ID="T"/>
<swrl:Variable rdf:ID="D"/>
<swrl:Imp>

<swrl:head rdf:parseType="Collection">
<swrl:IndividualPropertyAtom>

<swrl:propertyPredicate
rdf:resource="#cancelled"/>

<swrl:argument1
rdf:resource="#V"/>

<swrl:argument2
rdf:resource="#T"/>

</swrl:IndividualPropertyAtom>
</swrl:head>
<swrl:body rdf:parseType="Collection">

Predicting Exceptions in Agent-Based Supply-Chains 183

<swrl:IndividualPropertyAtom>
<swrl:propertyPredicate

rdf:resource="#doneBy"/>
<swrl:argument1

rdf:resource="#V"/>
<swrl:argument2

rdf:resource="#D"/>
</swrl:IndividualPropertyAtom>
<swrl:IndividualPropertyAtom>

<swrl:propertyPredicate
rdf:resource="#drives"/>

<swrl:argument1
rdf:resource="#D"/>

<swrl:argument2
rdf:resource="#T"/>

</swrl:IndividualPropertyAtom>
<swrl:IndividualPropertyAtom>

<swrl:propertyPredicate
rdf:resource="#workMode"/>

<swrl:argument1
rdf:resource="#T"/>

<swrl:argument2
rdf:resource="#stopped"/>

</swrl:IndividualPropertyAtom>
</swrl:body>

</swrl:Imp>
<owl:Class rdf:ID="delivery"/>
<owl:Class rdf:ID="driver"/>
<owl:Class rdf:ID="truck"/>
</rdf:RDF>

Preserving Variability in Sexual Multi-agent

Systems with Diploidy and Dominance

Robert Ian Bowers and Emre Sevinç

Boğaziçi University, Bebek, İstanbul
ribowers@gmail.com, emres@bilgi.edu.tr

Abstract. Diploidy and allele dominance are two mechanisms whereby
natural organisms preserve genetic variability, in the form of unexpressed
genes, from the conservative sway of natural selection. These may pro-
foundly affect evolution, for it is variability upon which natural selec-
tion operates. Many multi-agent systems rely on evolutionary processes
and sexual reproduction. However, sex in artificial agents often ignores
diploidy and dominance. An agent-oriented modelling platform was used
to compare the evolution of populations of sexual agents under four mod-
els: haploid genetic transmission versus diploid; and with either complete
allele dominance versus none. Diploidy fulfils its promise of preserv-
ing variability, whereas haploidy quickly commits its possessors to the
current niche. Allele dominance too preserves variability, and without
sacrificing adaptivity. These results echo consistent findings in classical
population genetics. Since both these factors strongly affect evolution,
their inclusion in a model may improve both accuracy, and efficacy,
according to the modeller’s motives.

1 Introduction

Natural selection is a conservative sway. By definition, it consumes variability.
It is the favouring of some portion of a distribution of characters over oth-
ers, such that subsequent generations manifest a range that is, whatever else,
shorter than it had been. By this successive shortening of possibilities, if left
unchecked, natural selection will eventually dispense of all variability, and the
evolving entity—whether species, solution, or programme—will have converged.
That is, a population of variants will have been reduced to uniformity.

Though convergence is the aim in most applications of evolutionary comput-
ing, it does mean the end of evolution, and so a commitment to a particular
variant. The obvious risk is that the chosen variant will be other than opti-
mal. Evolutionary algorithms, particularly those that rely exclusively on local
operators, as in natural evolution, carry the risk of converging on a solution
that, whether a local optimum or not, is inferior to alternatives elsewhere in
the search space. In such cases, convergence is said to be premature. Premature
convergence is described as “the preeminent problem” in genetic algorithms [1],
and this sentiment resounds in the literature, not only for genetic algorithms,
but for evolutionary algorithms in general [2], [3], [4], [5].

O. Dikenelli, M.-P. Gleizes, and A. Ricci (Eds.): ESAW 2005, LNAI 3963, pp. 184–202, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Preserving Variability in Sexual MAS with Diploidy and Dominance 185

Evolutionary algorithms reliably reach optimal solutions on the condition
that sufficient variability is maintained [3]. This point has been demonstrated
mathematically for some specific evolutionary algorithms (e.g. [6] for the (µ, λ)-
ES, with a class of convex fitness functions; others in [7]), and more recently, for
the general case, by analysing convergence in an abstraction of the evolutionary
algorithm [5].

The basic approach of dealing with premature convergence by introducing
explicit measures to maintain diversity was incited by [2]. Mauldin’s [2] solution
was to enforce a uniqueness condition on new births: only individuals sufficiently
unlike all existing individuals may enter the population. Though this is made
less attractive in its requirement for a global operator—both expensive com-
putationally, and cumbersome theoretically—it succeeds in its aim to stave off
convergence. Later work corroborates this basic strategy (e.g. [8]).

Nature has its own mechanisms for assuring diversity. Species do not converge,
after all, despite the passage of countless generations. An invariant gene pool
would not allow a species to evolve, and so leave it vulnerable to potential
environmental change [9], or exploitation by parasites [10]. For natural selection
to continue to operate, it requires something to provide it with a stream of
variability. Mutation does this, but inefficiently. As mutation is nothing other
than random copying errors, it is more disruptive than constructive. Hence,
increasing mutation rates can be counterproductive, as it blindly unravels what
benefit evolution has won [2], [3], [4]. Therefore, mutation is constrained to be
slow, and is so in natural organisms [9].

Apart from creating diversity, as mutation does, a second effective strategy
for avoiding genetic stagnation is to merely slow selection down [1], [11]. The
longer the present variability can be held on to, the more thorough will the
search have had the potential to be upon convergence. If the processes that
deplete variability can be slowed, selection is allowed to proceed without un-
ravelling its spoils, unlike with mutation. Sexual organisms have such mecha-
nisms, by which they retain variability, allowing even a slow stream of it to
accumulate.

Here we consider two ways natural sexual organisms preserve variability by
maintaining a reservoir of unused genetic material. Natural selection can only
kill the variability that it can see. Genes that have no effect on their possessors
will not be systematically selected for or against. Unexpressed genes, even those
which are harmful when expressed, remain in circulation in the gene pool. Hence,
mechanisms that allow genetic material to hide silent in the genome shield vari-
ability from the conservative pruning of natural selection, and so promote future
evolution.

One such mechanism is diploidy. The haploid genome, as a data structure,
is a list of values, one for each trait, that determines the particular qualities
of the individual. The diploid genome is a double list, containing two values for
each trait, and the possessor’s qualities are determined by some function of these
two corresponding values. This means that there is a dissociation between the
heritable code (genotype) and the way it is expressed (phenotype). This allows

186 R.I. Bowers and E. Sevinç

some genetic material to remain silent, and so be passed on whatever its effect
might have been had it been expressed. Thus, the diploid genome cautiously
preserves genetic variation in a way that the haploid genome does not. Regarding
the gene pool as a sort of implicit knowledge, the effect of diploidy is to retain
a morsel of memory of the search history [12], [13], [14].

Another such mechanism is allele dominance [15]. Each parent provides an
allele, a corresponding version of each trait value. In some cases, only one of
these alleles is expressed, and the other lies dormant as if in deference: the
dominance of one allele over the other is complete. In other cases, the two alleles
combine to express an intermediate quality. This is known as codominance. An
important difference is that complete dominance shrouds one allele, letting it
remain despite the tests of natural selection, in a manner that co-dominance
does not. A further important difference lies in the way these functions bias
inheritance: complete dominance passes on the most radical interpretation of
the parents’ genes; codominance, the most conservative.

Here we report upon a comparison of the courses of evolution of four versions
of an arbitrary sexual species, the sugar agent, a denizen of the JAWAS agent-
oriented simulation toolkit [16]. Agents inherit traits according to one of two
models of genetic transmission—the haploid versus the diploid genome—and
with either complete allele dominance (“Mendelian dominance”) or no domi-
nance at all (“co-dominance”).

2 Related Literature

Many multi-agent systems rely on evolutionary processes. In many of these, the
model of reproduction is sexual. Apart from most fungi and some algae, almost
all sexual organisms are diploid. However, the haploid pattern of inheritance
is seen in the artificial agents of most of the multi-agent simulation, packages
available for social science research, including JAWAS [16], A-Scape [17], and
others. Similarly, sex in artificial agents often ignores the issue of allele domi-
nance. These mechanisms do appear in the artificial life literature, for example,
when the explicit object is to model some aspect of sex (e.g. [18]). However, given
the ubiquity of these mechanisms in natural organisms, and their significance to
a course of evolution, they are bound to be relevant aspects of any model in
which reproduction is sexual, and it makes sense to wonder what sort of implicit
decisions one is making in leaving them out.

In general, haploidy is the norm in evolutionary computing. Most applica-
tions of genetic algorithms [19], [20], genetic programming [21], and evolutionary
strategies rely on a haploid model of genetic transmission, and it is this that is
given as standard in textbook introductions, e.g. [22], [23]. This model has been
set upon very many problems with success, both derived and applied [23]. When
the solution sought is not apt to change, and the search space is constrained,
as with many situations, haploidy is likely to do well, and the redundancy in
diploidy will offer little benefit [19], [24]. Indeed, attempts to apply diploidy to
such problems have not always found it to offer an improvement [25], [26].

Preserving Variability in Sexual MAS with Diploidy and Dominance 187

The motivation1 for implementing diploidy in genetic algorithms (GAs) came
from an attempt to deal with dynamic, time-varying problem environments, on
which typical GAs fare poorly [13], [27], [28]. Because diploidy holds on to its
variability, it will be more able to adapt to changing demands. If it has begun to
settle on a solution, and the goal changes, a haploid GA may have squandered its
only potential to adapt, and be stuck in an outdated optimum [2]. Goldberg and
Smith [13] demonstrated that diploidy conferred a GA with a sizeable benefit,
over a regular haploid GA, on such a problem. Since then, supplementing GAs
with diploid representations has been done with similar motives, and the basic
findings in [13] have mostly been replicated (e.g. [19]), with various applications
(e.g. [29]); with variations on the implementation of dominance (e.g. [14], [30],
[31]); as well as with variations on the diploid representation itself (e.g. [32]). For
an exception, see [24]. The literature on the use of diploidy in genetic algorithms
is concisely surveyed in [12] and in [27]. Kursawe (1991; cited in [33]) is an exam-
ple of diploidy applied to evolutionary strategies. The overall conclusion to be
drawn from this work is that, in problems that change over time, such as when the
fitness function is made to oscillate, diploidy follows the moving target, whereas
haploidy fails [13], [26], [29]. Survival, to a line of genes, is such a problem.

Evolution for genetic algorithms and evolutionary strategies is unlike that in
our multi-agent setup in some relevant respects. To begin, there is no explicit fit-
ness evaluation function, as in GAs. Fitness in an agent world is, as with natural
organisms, implicitly determined by many factors in the environment, and can
very feasibly change its demands, for instance, at different population densities.
So, though not as much as a line of genes, an artificial lineage may find itself
having to deal with oscillating fitness demands, the sort of problem in which
diploidy most confers an advantage in GAs. Though fitness in the present study
is fairly steady, it is somewhat noisier than the fitness function of a typical GA.

Another reason multi-agent methods might get more out of diploidy than
do most genetic algorithms lies in the frequency of fitness evaluations. In our
artificial world, and others like it, fitness evaluation is continuous. In contrast,
fitness evaluation in genetic algorithms is (usually) as rare as once per generation.
The especial relevance of this to diploidy and dominance lies, again, in its carriage
of unexpressed alleles. As these are unexpressed, they are exempt of evaluation,
and this exemption lasts for the entire generation. The more fitness evaluations
a quality is allowed to pass dormant, the greater the genome can hold on to its
variability, even while exposed qualities are under harsh selection pressures. In
this way, frequent fitness evaluation heightens the effect of genes being permitted
to hide in diploidy. This point was clarified empirically in [26]. Schafer [26] varied
the number of fitness evaluations per generation in a diploid GA. When fitness
was evaluated only once each generation, diploidy offered no advantage. When
fitness was evaluated twice, a stark advantage was seen. It may not, then, be
appropriate to generalise to multi-agent systems, conclusions drawn from work
on GAs.

1 Other researchers choose the diploid model uncritically, for the sake of fidelity
(e.g. [20]).

188 R.I. Bowers and E. Sevinç

As with diploidy, a literature utilising the notion of dominance in genetic
algorithms seems to have begun with [13]. Already the conception of domi-
nance had gone beyond that in the present study, with alleles that remember
their dominance values. Vekaria and Clack [21] is an attempt to apply a sim-
ilar approach to dominance with genetic programming. Following [13], various
dominance schemes were studied in (diploid) GAs. Some studies developed the
representation scheme used (e.g. [30], [34]). The next step was to relax domi-
nance, to begin to allow for incomplete dominance [14]. Then, various schemes
by which dominant-recessive relations undergo change were developed [24], [30],
[31]. Dominance schemes are reviewed in [27]. As with diploidy, the bulk of this
work has been done with GAs, and so attempts to generalise therefrom should
be made with caution.

Work on diploidy and dominance are interwoven. Of the studies mentioned in
the previous paragraph, all except [21] use a diploid representation. Indeed, there
are reasons to think that they would work together, and they largely concur in
nature. However, this is all the more reason to pull these two mechanisms apart,
and vary them independently of each other, as the current study attempts to do.

Mendelian dominance, as modelled here, is the standard among evolutionary
algorithms not explicitly studying dominance. Other studies that approach the
issue of allele dominance take the notion beyond the simple dominance scheme
modelled here. By our model, a gene that dominates in one case might be reces-
sive in the next. By other models, in contrast, particular alleles are consistently
dominant or recessive. Though this is biologically accurate, it skips a computa-
tional step, which turns out to have interesting effects of its own. What seems
not to have been explicitly modelled and tested before is the entire absence of
dominance, as in the case of our codominance condition. The partial dominance
in [14] is not codominance. It does not return intermediate phenotypes, for in-
stance. And like other dominance schemes, it is far more complex and derived
than the implementations in our model.

We have several requirements of our model of diploidy and dominance, beyond
what previous work has provided. We require that it be agent-oriented. Sex is
a multi-agent process at essence: it is something that only works in societies of
interacting agents. Further, it must be true to nature, and as simple as these
processes can be formulated. It must be able to dissociate dominance effects
from ploidy effects. And it must be subjected to experiments designed expressly
for the sake of studying these effects. We report on such a model here.

3 Haploidy and Diploidy

Almost all of the variability between individuals of sexual species is due to the
shuffling of genes in meiosis [15]. Meiosis is the process by which a diploid cell
divides into haploid cells. Diploid and haploid refer to the amount of genetic
material a cell contains. A haploid cell contains a single complement of genes; a
diploid cell contains two. Most species that exclusively reproduce asexually have
only haploid cells at all stages. In animals that reproduce sexually, each parent

Preserving Variability in Sexual MAS with Diploidy and Dominance 189

contributes, via meiosis, a haploid sex cell (gamete), and these fuse to form a
diploid cell (zygote), which is what thereupon grows into the new individual. Its
genome is thus diploid. This is the most familiar form that sexual cycles take,
but other sexual organisms, notably fungi [15], do it slightly differently. In such
organisms, sexual reproduction follows an analogous passage through diploid and
haploid phases, except that it is the haploid cell that develops into the mature,
multicellular individual. We abbreviate these two varieties of sexual cycle as the
diploid pattern, and the haploid pattern, respectively. In the diploid pattern, the
genome of the mature organism is diploid, and the seed or egg is haploid; in the
haploid pattern, the genome of the adult is haploid, and the dormant unicellular
seed-like phase is diploid.

The difference between these, though subtle, is important: It is the mature
organism that must contend with the world—that is to do well or poorly in
it—and so upon which natural selection may operate. By the haploid pattern,
the expression of one set of genes determines the course of evolution; by the
diploid pattern, the expression of two sets of genes does. This has important
repercussions, for it allows a gap to appear between what is passed on to the next
generation (the genotype), and what is expressed (the phenotype). This allows
an allele to remain effectively hidden in the genome, where natural selection
cannot act upon it.

The haploid genome keeps just one set of instructions for each trait, whether
that is the mothers copy, the fathers, or some function of the two. This directly
determines the way the trait is expressed, and so the differentiation between
genotype and phenotype is blurred. Selection is operating directly upon the trait
that earned the selection advantage. There can be no mistakes. If an individual
does well on account of a high score on some trait, it will have nothing other
than that same high score to pass on to its offspring. No low scores can get
through. It can be said that selection is transparent under these circumstances.

In contrast, by the diploid procedure, there is a clear distinction between the
genotype and the corresponding phenotype. The diploid genotype consists of two
sets of instructions, one from each parent. The phenotype is again determined
by the genotype, but being a function of two values is, of course, less direct than
being determined by a single value, as in haploidy. So when a successful agent
reproduces, its offspring may well inherit a quality very unlike that expressed
in the parent. It is this gap between genotype and phenotype in diploidy that
allows it to smuggle unused genes past natural selection.

The algorithms we implemented for haploid-style and diploid-style inheritance
are described below. In both haploidy and diploidy, the parents’ genotypes are
taken as the input to the reproduction function. A genotype and a phenotype
are returned as outputs.

3.1 The Haploidy Algorithm

The genome of the haploid agent consists of a list of values, one for each heritable
trait. Each value is a real number, between 0 and 1, expressing a probability to
behave in a prescribed manner. Recombination, to an agent that is both sexual

190 R.I. Bowers and E. Sevinç

and haploid, consists of combining such a list from each parent into one, and
assigning the resulting array to the offspring as its genotype. Inheritance for such
an agent can be described in two steps:

1. For each trait, take the corresponding gene from each parent’s genotype.
2. Some function, f , of these two values is assigned to the offspring. In principle,

if not in nature, the sort of relation designated by f is not constrained. The
resulting value determines, both, how the trait is expressed in the agent
(i.e. its phenotype), and also what the agent ultimately passes down to its
offspring (i.e. its genotype). For trait X:

genotype[X] (= phenotype[X]) = f(father.genotype[X], mother.genotype[X])

3.2 The Diploidy Algorithm

The diploid genome consists of a 2-dimensional array. It is a list of pairs of
genes. Each heritable trait is represented by a real number for each of two genes,
organised in a 2-element array. Inheritance for a diploid agent is a matter of
combining the mother’s array and the father’s array into that of the offspring.
This can be described in three steps:

1. For each trait, take one value, randomly selected, from the appropriate array
in each parent’s genome. This is the analogue of meiosis.

2. The new agent likewise inherits a 2-element array for each trait. This is
filled with one gene from each parent. This is the analogue of fertilisation.
For trait X:

genotype[X][0] = mother.genotype[X][0] OR mother.genotype[X][1]
genotype[X][1] = father.genotype[X][0] OR father.genotype[X][1]

3. Some function, f, of the two values in the genotype determines how the trait
is expressed in the agent (i.e. its phenotype). For trait X:

phenotype[X] = f(genotype[X][0], genotype[X][1])

4 Dominance

There could be any number of functions for determining how the parents’ genes
combine to give the offspring’s phenotype. One item that differentiates such
functions in carbon-based organisms is the issue of trait dominance. In some
cases, a disagreement between two genes trying to manifest different values for
the same character is resolved by compromising upon an intermediate value. In
other cases, one allele dominates over the other. When this happens, only one
allele is expressed; the other, recessive allele is carried silently. It is this silent
allele by which dominance shields genetic variability from natural selection.

Traits differ in the degree to which alleles dominate over others, from complete
dominance, to codominance. Each of these suggest a function for determining

Preserving Variability in Sexual MAS with Diploidy and Dominance 191

trait expression — the f in the above algorithms. By simulating both of these
extremes, we attempt to capture this dimension. These functions differ in the
way they bias inheritance: complete dominance passes on the most radical in-
terpretation of the parents’ genes; codominance, the most conservative.

Note that our model does not include alleles that are consistently dominant
or recessive to each other, as in natural organisms. In our model, which value
dominates is decided anew with every birth. In pea plants, in contrast, the al-
lele for purple flowers always dominates over the allele for white flowers. This
omission makes a difference in the degree that certain genes are shielded. Since
consistently recessive alleles are only exposed to selection pressures under spe-
cific circumstances, such as when two come together, this insulating effect is
heightened as the allele becomes rarer. This means that such alleles are very
resistant to extinction. Thus, the results of our model should be regarded as
conservative.

4.1 Mendelian Dominance

Some traits are all-or-none. If pea plant A has purple flowers, and pea plant B
has white flowers, their offspring would express one of these petal colours, rather
than a mixture of the two. This is the famous discovery of Gregor Mendel from
1865 (cited in [15]). In our simulation, under this sort of trait expression, agents
express only one of the values that represent each trait: either that inherited
from the mother, or that inherited from the father. Hence:

f(x, y) = x OR y

4.2 Codominance

Some traits are the culmination of very many genes. Some of the relevant genes
that the mother contributed will dominate; some of the father’s will. Overall,
the child’s phenotype is expected to be the average. If agent C has red petals,
and agent D has white petals, and if they are a certain species of snapdragon, all
their offspring will have pink petals [15]. This sort of trait expression is simulated
here by simply taking the average of the two values that make up the genome
for that trait. That is:

f(x, y) = (x + y)/2

5 The Simulation Environment and Agents

Simulations are conducted in VUScape [35], an environment in the JAWAS
framework [16]. JAWAS (Java Artificial Worlds and Agent Societies) is an object-
oriented, multi-agent systems development framework for implementing artifi-
cial societies. The system is implemented in the Java programming language
and agents in that system are Java objects. VUScape is based heavily on the
SugarScape environment of Epstein & Axtell [36].

192 R.I. Bowers and E. Sevinç

VUScape is a virtual world, a 2-dimensional torus-shaped grid, populated by
virtual agents all clamouring about in search of a limited, but replenishing re-
source, essential for their survival. They can sense a unit of the resource at some
distance, and consume it when it is near. They spend their acquired stores of nu-
trients with each time step in order to maintain their existence, as if fuel. In the
simulation, time is discrete. Each cycle allows each agent to execute, after which
the world’s resources are replenished. Each simulation begins with a fixed number
of individual agents (1000), scattered randomly over a 50 x 50 cell grid. At the be-
ginning of the simulation, each cell is randomly assigned an amount of resource.
Consumed resources are replenished at a fixed rate up to a given maximum.

Those agents that fail to maintain a store of resources expire. Given that the
agents also reproduce, the population is continually being added to, and so the
resource will be scarce, meaning that the lot of the agents is one of perpetual
competition. Competition assures that the agents are being evaluated upon an
implicit criterion for differential survival. At the beginning of a simulation, each
initial agent is randomly assigned a value for each heritable trait, defining the
analogue of a gene pool. Since offspring inherit select traits from parents, differ-
ential reproduction is autocatalytic — the more an agent reproduces, the more
potential its code will have for further reproduction. Evolution is expected to oc-
cur in such a situation upon each trait that is both heritable, and allowed to vary.

The genome of agents in VUScape consists of two traits: Talk and Listen.
The simulation is set up to encourage cooperation among the agents. To harvest
the resource found in a given cell, there must be enough agents present, working
in tandem. Depending on the quantity of the resource present, to harvest a cell
might require the combined efforts of up to four agents. To such an agent, “talk”
is a plea for help, and “listen” is the act of responding to another agent’s plea.
Each agent has a Talk value, which indicates the probability that the agent will
issue a plea for help whenever it happens upon a cell that is too big for it to
harvest alone. Each agent also has a Listen value, which indicates the probability
that it will preferentially move to a cell in which another agent has talked. Under
such circumstances, natural selection favours individuals that talk and listen
more frequently [35], [37]. This is how communication works in VUScape.

For the experiments reported herein, we supplemented the reproductive func-
tion of VUScape agents with the methods for genetic transmission described
above. The implementation of the haploid-codominant condition (Haploid-CoD)
was already present in JAWAS. VUScape’s default settings were used, with one
exception: we raised the resource growback rate (from 1 to 1.3), so that simula-
tions would support larger populations of agents. Each run was initialised with
1000 agents. Simulations were run for 3000 timesteps each.

6 Design

Two criteria are measured for comparing populations: 1) the average values of
each trait, Talk and Listen; and 2) the variance seen in these values. These two
numbers represent the way each trait is distributed at each timestep over the

Preserving Variability in Sexual MAS with Diploidy and Dominance 193

course of each simulation. In this way, the behaviour of these two dependent
measures for each trait is a good description of how the different models of
genetic transmission implemented effect evolution.

Simulations were run with one of two implementations of genetic transmis-
sion (haploid versus diploid), and with one of two functions for trait expression
(Mendelian versus codominant). These are our two independent variables, for
a 2 x 2 experimental design. This yields four sorts of populations: haploid and
Mendelian (Haploid-Or); haploid and codominant (Haploid-CoD); diploid and
Mendelian (Diploid-Or); and diploid and codominant (Diploid-CoD). Each of
these population types were run 15 times (4 of the Haploid-CoD runs were
excluded from analyses, on account of early extinction). Each simulation was
continued for 3000 timesteps. The mean and variance of each trait (Talk and
Listen) were sampled at every 100 iterations.

These data are subjected to two sorts of repeated-measures, 2-factor ANOVA.
The factor of primary interest is the sort of population, whether Haploid-Or,
Diploid-Or, or Diploid-CoD (3 conditions). The haploid-codominant condition
is excluded from analyses on account of the much lower variance in this group —
approaching, sometimes reaching, zero. Its inclusion would muddy the statistics
used, and unnecessarily, for with no variance, one does not need a statistical test
to say that it is different! This condition is highly dissimilar from the other three
conditions on all measures.

The other factor is time. When looking at trajectories of evolution over time,
or interactions of conditions with time, the entire trend, from initialisation to
end, is analysed. Such tests include 31 timesteps (timestep 1, then every 100
iterations). Where the interest is to analyse the end results of evolution, after
populations have somewhat settled, only data from the last 6 time samples—
from timestep 2500 to 3000—are considered. In previous work with JAWAS (e.g.
[37], [38]), simulations were run for 2000 timesteps. Our simulations were run for
3000 timesteps. Bonferroni post hoc tests are used, as a standard test for post
hoc effects.

7 Results and Discussion

Both of the heritable traits in our agents’ genomes were unambiguously advanta-
geous to their survival. Average trait values were expected to increase over gener-
ations. But would they do so at the expense of variability? Figures 1 and 3 show
the evolution of Talk, one of the two traits allowed to evolve in the simulations.
At the beginning of each simulation, each agent is randomly assigned a number
between 0 and 1, which indicates its Talk value. Random assignment of trait val-
ues assures two initial conditions: that the average trait value will be roughly 0.5
(Figure 1); and that variance will be artificially high (Figure 3). So the action of
evolution over the first several hundred timesteps can be thought of as correcting
these impositions. How do these different algorithms make this correction?

First note that the algorithm followed in the Haploid-CoD condition, does
not correct it. It rather consolidates the population’s initial average trait values.

194 R.I. Bowers and E. Sevinç

Fig. 1. Mean Talk values for each condition, over time

If these values are good, all is well, but in the present case, agents clearly could
have done better. Within the first few hundred timesteps, all agents in the sim-
ulation have identical trait values. Traits converged to as low as 0.456 and only
as high as 0.577, over 11 simulations (Listen: M = .515, SD = .034, ranging
from 0.456 to 0.577; Talk: M = .512, SD = .031, from 0.471 to 0.556). Evolu-
tion, for these populations, acts to stifle evolution! This cannot be an apt model
for an evolutionary process. However, let us note that despite its poor perfor-
mance, it does initially strike one as somewhat accurate. Indeed, this is the only
method of genetic transmission that we took unaltered from the JAWAS simula-
tion framework. It is in retrospect that we see how it necessarily kills variability.
Its comparison with the other three methods is instructive, for it accentuates
what is happening differently there.

All of the other three methods allow natural selection to act, and directional
evolution is seen to occur. Given that both of the traits that may be so affected
are set up to be advantageous to the agents, we expect average values to in-
crease over many generations. This may be regarded as an implicit goal of each
of our algorithms: to evolve better harvesters, who use Talk and Listen more
often. This clearly occurs in all of these three methods, as can be readily seen
in Figures 1 and 2.

Our primary concern, however, is how each method performs on a second im-
plicit goal: retaining variability. This conflicts with the pressure to score highly,
for the nearer agents come to some ideal value, the less variable will the popu-
lation become with respect to that trait. If a population would evolve such that
all agents come to have the same top value, it may be said that they are more

Preserving Variability in Sexual MAS with Diploidy and Dominance 195

Fig. 2. Mean Listen values for each condition, over time

adapted to their environment, but the species would be vulnerable to potential
environmental change [9], or exploitation by parasites [10]. How will each model
of genetic transmission resolve these conflicting demands?

7.1 Means

A progressive increase of Listen and Talk values was seen in all Haploid-Or,
Diploid-Or, and Diploid-CoD simulations (see Figures 1 and 2). Since the first-
generation agents are assigned trait values randomly from 0 to 1, as each simu-
lation begins, the average score is roughly 0.5 (in our 56 simulations, for Listen,
M = 0.498, SD = 0.030). At the end of the simulations, with the passage of 3000
timesteps, mean Listen values had increased to 0.965 for Haploid-Or populations
(N = 15, SD = 0.025, from 0.898 to 0.993); 0.929 for Diploid-Or (N = 15, SD
= 0.044, from 0.847 to 0.996); and 0.926 for Diploid-CoD (N = 15, SD = 0.032,
from 0.879 to 0.996). The corresponding increase in Talk is charted in Figure 1.
This rise lagged behind that of Listen, on account of the nature of these capac-
ities, but was no less consistent. At timestep 3000, the average Talk values had
risen to 0.829 for Haploid-Or populations (N = 15, SD = 0.071, from 0.716 to
0.923); 0.799 for Diploid-Or (N = 15, SD = 0.064, from 0.668 to 0.893); and
0.743 for Diploid-CoD (N = 15, SD = 0.068, from 0.638 to 0.872).

A repeated-measures, 2-factor ANOVA (31 timesteps × 3 conditions) for each
trait, showed main effects and interactions around. Mean values of the two herita-
ble traits increased over generations (Listen: F(30)= 886.7; Talk: F(30)= 170.5,

196 R.I. Bowers and E. Sevinç

p’s < .001). The interaction between population type and time proved signifi-
cant as well (p’s < .001), meaning that traits developed according to dissimi-
lar trajectories over time. For both traits, the highest values were obtained in
the haploid-Mendelian condition. Furthermore, these heights are achieved more
quickly than in other conditions. This is starker in the case of Listen (Figure 2),
but apparent in Talk as well, as seen in Figure 1. That groups ultimately reached
dissimilar heights was confirmed with a 2-factor ANOVA (6 timesteps × 3 con-
ditions) for each trait, on the latter portion of the simulations (Listen: F(2) =
7.09, p = .002; Talk: F(2) = 8.16, p = .001). Post hoc tests show that Haploid-Or

Table 1. Summary of inferential statistics. Results of all eight analyses of variance
reported above are summarised here. Two tests were applied to both mean scores
(Means) and variance of mean scores (Variance) for each dependant variable (Talk and
Listen). One test considers the entire span of the simulations, from the first timestep
to the 3000th (T1-T3000). The other considers only the last 500 timesteps, from the
2500th to the 3000th (T2500-T3000). Each test is a 2-factor ANOVA (3 groups x a
number of timesteps, 31 or 6). F statistics, degrees of freedom (in parentheses), and
probabilities of type 1 errors (p) are listed for each main effect (Groups, Time), and
the interaction of these (Groups x Time), as well as for post hoc tests between groups
(Bonferroni). Three post hoc comparisons are relevant in each case, one between each
pair of groups (e.g. “H-Or & D-Or” is to abbreviate a post hoc comparison between
Haploid-Or and Diploid-Or groups).

Talk Listen
T1-T3000 T2500-3000 T1-T3000 T2500-T3000

Means

Groups F(2) = 12.45 F(2) = 8.16 F(2) = 49.73 F(2) = 7.09
p < .001 p < .001 p < .001 p < .002

Post hoc comparisons
H-Or & D-Or p = .041 p = .513 p < .001 p = .012
H-Or & D-CoD p < .001 p = .001 p < .001 p = .004
D-Or & D-CoD p = .061 p = .040 p = 1 p = 1

Time F(30) = 170.50 F(5) = 2.81 F(30) = 886.70 F(5) = 15.06
p < .001 p = .018 p < .001 p < .001

Groups x Time F(60) = 2.35 F(10) = 0.43 F(60) = 25.50 F(10) = 2.12
p < .001 p = .930 p < .001 p < .024

Variance

Groups F(2) = 29.76 F(2) 6.23 F(2) 94.23 F(2) = 11.64
p < .001 p = .004 p < .001 p < .001

Post hoc comparisons
H-Or & D-Or p < .001 p = .005 p < .001 p < .001
H-Or & D-CoD p = .122 p = .045 p < .001 p = .025
D-Or & D-CoD p < .001 p = 1 p < .001 p = .145

Time F(30) = 223.63 F(5) = 1.67 F(30) = 784.08 F(5) = 2.06
p < .001 p = .142 p < .001 p = .072

Groups x Time F(60) = 11.69 F(10) = 0.36 F(60) = 41.28 F(10) = 0.64
p < .001 p = .961 p < .001 p = .783

Preserving Variability in Sexual MAS with Diploidy and Dominance 197

populations evolved notably higher Listen scores than both diploid conditions
(p’s < .02), which were similar to each other (p = 1.000). A similar pattern is
seen in the evolution of Talk, except that the diploid-Mendelian condition rose to
levels nearer to the haploid-Mendelian condition (p > .5), and both of these were
significantly higher than the diploid-codominant (p’s < .05). Populations that
inherited Talk according to the Mendelian function evolved to possess higher
trait values than those using the codominance model, though this was not seen
in Listen. All inferential statistics are summarised in Table 1.

7.2 Variance

In each condition, as evolution proceeds and trait values go up, variance goes
down. Agents become more homogeneous. This is expected, but to what extent
will each algorithm relinquish variability for high scores? Two differences can
be seen between the trends plotted in Figure 3 and in Figure 4: the rate of
their decline; and the extent that they dip to. In both codominance conditions
variance drops very rapidly. This is striking in comparison to the much more
gradual declines seen in the corresponding Mendelian conditions. Secondly, in
both diploid conditions, the decline levels off at a notably higher level than in
either of the haploid conditions. (Haploid-Or: M = .007, SD = .006, ranging
from 0.000 to 0.022; Diploid-Or: M = .017, SD = .009, from 0.002 to 0.030;
Diploid-CoD: M = .016, SD = .010, from 0.000 to 0.040).

Tests conducted on the variance of trait values confirm both of these obser-
vations. Groups displayed significantly dissimilar rates of evolution, as indicated

Fig. 3. Mean variance of Talk values for each condition, over time

198 R.I. Bowers and E. Sevinç

Fig. 4. Mean variance of Listen values for each condition, over time

by strong interaction effects with time (Listen: F(60) = 41.3; Talk: F(60) = 11.7,
p’s < .001). What level of variability does each method leave one with? Tests
just looking at the end of the simulation, from timestep 2500 through 3000,
showed significant differences between the three sorts of populations (Listen:
F(2) = 11.64, p < .001; Talk: F(2) = 6.23, p = .004). Post hoc tests reveal
that Haploid-Or populations had less variable trait values than in either sort of
diploid population (for Diploid-Or, p < .006; for Diploid-CoD, p < .05), which
did not differ significantly from each other (p > .1). See Table 1 for a summary
of all the analyses conducted.

Another curious difference that appeared in the Haploid-CoD condition was
that it supported fewer agents than any of the other groups (p’s < .001). On
the 3000th time step, the average size of Haploid-CoD populations was 474.9, as
opposed to 592.4, 588.5, and 587.2 for Haploid-Or, Diploid-Or, and Diploid-CoD,
respectively.

8 Applying Diploidy and Dominance

Since the influences of diploidy and dominance promote evolution, they may ben-
efit certain engineering applications that utilise evolutionary mechanisms. The
advantage for finding solutions to problems that these processes are anticipated
to confer is in insulating a search from getting stuck at some local optimum.
Diploidy does this by preserving a reservoir of variation. The anti-conservative
bias in Mendelian dominance will add further reach to the process.

Preserving Variability in Sexual MAS with Diploidy and Dominance 199

The point that a diploid representation offers benefits in dynamic, time-
dependent problem situations with moving optima has been aptly made with
the work on diploidy in GAs [27], treated above. The other situation in which
diploidy especially helps is when the problem is complex. It is not only mov-
ing optima that can trap evolution that moves too quickly, but those that take
very much evolution to achieve. “A harder problem requires a larger diversity of
structures in the population” [8]. Consider the Listen scores charted in Figure 2.
None of the four sorts of populations reached what might be supposed to be the
optimum score of 100%, yet at the end of the simulation, haploid populations
had entirely converged.

In simpler problems, with fitness definitions that are unambiguous, unimodal,
and unmoving, a haploid algorithm may outperform a diploid version [24]. Even
the haploid-Mendelian version reported upon here achieved higher scores than
the corresponding diploid version, which would most often be the goal (though
not, for example, here!). In cases where they perform equally, the haploid is to
be preferred as it is somewhat cheaper in terms of, both, time and space.

The redundancy in the diploid genome means that it occupies twice as much
memory as the haploid. Though it entails no significant hike in processing costs
over the same period, if the intent is to bring it to convergence, the processing
demands for the diploid representation will, naturally, be greater. However, it
will anyway be of the same order of complexity as the haploid. Dominance, as
described here, adds neither space nor time costs over codominance.

The practical benefits afforded by diploidy and dominance invite inventive
bastardisations of these ideas. For instance, accepting that the benefit of com-
plete dominance lies in its radical bias, try making the bias even more radi-
cal. Instead of “A or B”, try “A or B +/−10%”. Likewise, in the way diploidy
maintains a store, this study invites the engineer to try triploidy or other poly-
ploid strategies. This is not without precedent in nature. In some animals, the
sexes even have dissimilar ploidy amounts, demonstrating how fractions are
possible, as well, such as the heritability of hymenoptera. Dasgupta and Mc-
Gregor [32] is such an example of an innovative response to diploidy in genetic
algorithms.

9 Conclusions

Some distinct overall conclusions can be drawn from the pattern of results ac-
quired, about how each of the four methods modelled allow evolution to pro-
ceed.

Diploidy fulfils its promise of preserving variability. The haploid-Mendelian
condition heads for high ground early in the simulation. It compromises
variability for high scores. It is easy to imagine situations in which this would be a
good strategy, however, it commits its possessors to the current niche. Diploidy,
however, seems to make its possessors somewhat shy of the top. Trait values
stabilised at a markedly lower level in the diploid conditions. In the face of the

200 R.I. Bowers and E. Sevinç

conflicting implicit goals of scoring highly, and preserving variability, haploidy
chooses the former; diploidy, the latter.

Mendelian dominance, likewise, was seen to preserve variability. The difference
is particularly striking nearer to the beginning of the simulations, in the first 1000
time steps (see Figures 3 and 4). Just as the haploid-codominant species loses its
ability to improve by throwing away all its variability, the diploid-codominant
species, too, squanders much of its initial variability early in the simulation,
and ultimately fails to match the average trait value levels achieved in either
Mendelian condition (see Figure 1). Much more gradual declines in variability
are seen in the corresponding Mendelian conditions. Nor does this insulation
of variability come with a compromise to adaptivity. Diploid-Mendelian pop-
ulations scored at least as highly as the diploid-codominant, and significantly
higher in Talk scores. So by both criteria, complete dominance appears to be an
improvement over codominance.

The improvement that Mendelian dominance imparts over codominance to
the haploid species is more extreme. Indeed, the haploid-codominant species
must be faulty, for it forbids directional evolution. The lesson of the haploid-
codominant agent seems to be that either of these ways of preserving variability,
either dominance or diploidy, rescues it from stagnation. Hence, both the diploid-
codominant and haploid-Mendelian conditions performed well.

Mutation was left out of our model. To the extent that diploidy preserves
variability, and mutation creates it, the differences observed between the ultimate
variability in the haploid genome versus that in the diploid would have been
greater had mutation been included. Mutation would have given the diploid
genome more diversity to hide; and the haploid, more to squander.

These results echo consistent findings in classical population genetics.
Diploidy and dominance strongly affect evolution. If they did not, one would
not be obliged to include them in a model. As they do, where accuracy is an
issue, a modeller should consider these aspects of sex, particularly where study-
ing evolution in sexual agents. Further, since these influences promote evolution,
their addition to a model may benefit certain engineering applications.

References

1. Lin, S-C., Punch, W.F., and Goodman, E.D.: Coarse-grain parallel genetic algo-
rithms: Categorization and new approach. In 6th IEEE Symposium on Parallel
and Distributed Processing. IEEE Computer Society Press, (1994)

2. Mauldin, M.L.: Maintaining diversity in genetic search. Proceedings of the National
Conference on Artificial Intelligence (AAAI-84), pp. 247–250, (1984)

3. Potts, J.C., Giddens, T.D., Yadav S.: The development and evaluation of an im-
proved genetic algorithm based on migration and artificial selection. IEEE Trans-
actions On Systems, Man, And Cybernetics, Vol. 24, No. I (1994)

4. Herrera, F., and Lozano, M.: Adaptation of genetic algorithm parameters based
on fuzzy logic controllers. In F. Herrera and J. L. Verdegay, editors, Genetic Algo-
rithms and Soft Computing, pp. 95–125. Physica-Verlag, Heidelberg, (1996)

Preserving Variability in Sexual MAS with Diploidy and Dominance 201

5. Leung, K-S., Duan, Q-H., Xu, Z-B., & Wong, C. K.: A new model of simulated evo-
lutionary computation-convergence analysis and specifications. IEEE Transactions
on Evolutionary Computation, Vol. 5, No. 1 (2001)

6. Rudolph, G.: Convergence of non-elitist strategies. Proc. 1st IEEE Conf. Evolu-
tionary Computation. Piscataway, NJ: IEEE, pp. 63–66 (1994)

7. Fogel, D.B.: Evolutionary Computation: Toward a New Philosophy of Machine
Intelligence, 2nd Ed. IEEE Press: New York, USA, (2000)

8. Shimodaira, H.: A diversity-control-oriented genetic algorithm (DCGA): Per-
formance in function optimization. In L.D. Whitley, D.E. Goldberg, E. Cant,
L. Spector, I.C. Parmee, & H-G. Beyer (Eds.), Proceedings of the Genetic and
Evolutionary Computation Conference (GECCO 2000), Las Vegas, USA, July 8–
12, 2000, p. 366, Morgan Kaufmann (2000)

9. Smith, John Maynard: Games, Sex and Evolution. Harvester Wheatsheaf: Hert-
fordshire, UK (1988)

10. Ridley, M.: The Red Queen: Sex and the Evolution of Human Nature. Maxwell
Macmillan: Toronto (1995)

11. Gao, Y.: An Upper Bound on the Convergence Rates of Canonical Genetic Algo-
rithms. Complexity International, vol. 5 (1998)

12. Branke, J.: Memory-enhanced evolutionary algorithms for changing optimization
problems. In Congress on Evolutionary Computation (CEC’99), IEEE, Band 3, S.
1875–1882 (1999)

13. Goldberg, D. E., and Smith, R. E.: Nonstationary function optimization using
genetic algorithms with diploidy and dominance. In J.J. Grefenstette, editor, Pro-
ceedings of the Second International Conference on Genetic Algorithms, 59–68.
Lawrence Erlbaum Associates (1987).

14. Ryan, C.: The degree of oneness. In Proceedings of the ECAI workshop on Genetic
Algorithms. Springer-Verlag, (1996)

15. Campbell, N.A., Reece, J.B., Mitchell, L.G.: Biology, 5th Edition. Addison Wesley:
Amsterdam (1999)

16. JAWAS: Java Artificial Worlds & Agent Societies. Vrije Universiteit,
http://www.cs.vu.nl/ci/eci/jawas/ (last seen on 2005-04-14)

17. A-Scape. Brookings Institution, http://www.brook.edu/es/dynamics/models/
ascape/ (last seen on 2005-04-14)

18. Jaffe, K.: The dynamics of the evolution of sex: Why the sexes are, in fact, always
two? Interciencia 21(6), pp. 259–267 http://www.interciencia.org.ve (1996)

19. Kurup, M.M.: A study of dominance and diploidy as long term memory in genetic
algorithms. http://www.kurups.org/papers/GA.ps (last seen on 2006-01-11)

20. dos Santos, J.P.P.R.: Universal service: Issues on modelling and computation. DSc.
Thesis, Universite Catholique de Louvain, (1996)

21. Vekaria, K., and Clack, C.: Haploid genetic programming with dominance. Depart-
mental Research Note (RN/97/121) (1997)

22. Langdon, W.B., Poli, R.: Foundations of Genetic Programming, Springer (2002)
23. Russell, S., and Norvig, P.: Artificial Intelligence: A modern approach, 2nd Ed.,

Prentice-Hall: New Jersey (2003).
24. Yılmaz, A.S. and Wu, A.S.: A comparison of haploidy and diploidy without dom-

inance on integer representations. In the Proceedings of the 17th International
Symposium on Computer and Information Sciences, Orlando, FL, October 28–30,
2002, pp. 242–248 (2002)

25. Branke, J.: Evolutionary approaches to dynamic optimization problems: Updated
survey. GECCO Workshop on Evolutionary Algorithms for Dynamic Optimization
Problems, pp. 27–30 (2001)

202 R.I. Bowers and E. Sevinç

26. Schafer, R.: Using a genetic algorithm with diploidy to create and maintain a
complex system in dynamic equilibrium. In J.R. Koza (Ed.), Genetic Algorithms
and Genetic Programming at Stanford 2003, pp. 179–186 (2003)

27. Singh, A.: Giving genes their voice: A survey of information expression mechanisms
in genetic algorithms. http://computing.breinestorm.net/natural+ paradigms+
gas+competent+genetic/ (last seen on 2006-01-11). (2002)

28. Simões, A. & Costa, E.: Using genetic algorithms to deal with dynamic envi-
ronments: A comparative study of several approaches based on promoting di-
versity. Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO’02), W. B. Langdon et alli (Eds.), Morgan Kaufmann Publishers, New
York, 9–13 July, 2002 (2002)

29. Osmera, P.: Evolvable controllers using parallel evolutionary algorithms. Proceed-
ings of MENDEL ’2003, Bmo, Czech Republic pp. 126–132 (2003)

30. Ng, K. P. & Wong, K. C.: A new diploid scheme and dominance change mechanism
for non-stationary function optimization. In L. J. Eshelman (ed.), Proceedings of
the Sixth International Conference on Genetic Algorithms, Morgan Kaufmann: San
Francisco, pp. 159–166 (1995)

31. Lewis, J., Hart, E., and Ritchie, G.: A comparison of dominance mechanisms and
simple mutation on non-stationary problems. In Parallel Problem Solving from
Nature (PPSN V), pp. 139–148 (1998)

32. Dasgupta, D., and McGregor, D. R.: sGA: Structured Genetic Algorithm. Univer-
sity of Strathclyde, Technical Report no. IKBS-8-92 (1992)

33. Ghosh, A., and Dehuri, S.: Evolutionary algorithms for multi-criterion optimiza-
tion: A survey. International Journal of Computing and Information Sciences, 2
(1), (2004)

34. Schnier, T., and Gero, J.: Dominant and recessive genes in evolutionary systems
applied to spatial reasoning. Australian Joint Conference on Artificial Intelligence,
127–136 (1997)

35. Buzing, P.C.: Vuscape: Communication and cooperation in evolving artificial soci-
eties. Masters’ thesis, Department of Computer Science, Vrije Universiteit, Ams-
terdam, The Netherlands (2003).

36. Epstein, J. M., Axtell, R.L.: Growing Artificial Societies: Social Science From the
Bottom Up. MIT Press (1996)

37. Buzing P.C., Eiben A.E., and Schut M.C., Emerging communication and coopera-
tion in evolving agent societies. Journal of Artificial Societies and Social Simulation,
vol. 8(1), (2005)

38. Eiben A.E., Nitschke G., and Schut M.C.: Comparison of reproduction schemes in
an artificial society for cooperative gathering. AISB Socially Inspired Computing:
Engineering with Social Metaphors Symposium (AISB-SIC 2005), (2005)

Towards a Methodology for Situated Cellular

Agent Based Crowd Simulations

Stefania Bandini, Mizar Luca Federici, Sara Manzoni, and Giuseppe Vizzari

Dipartimento di Informatica, Sistemistica e Comunicazione,
Università degli Studi di Milano–Bicocca,

Via Bicocca degli Arcimboldi 8, 20126 Milano, Italy
{bandini, mizar, manzoni, vizzari}@disco.unimib.it

Abstract. This paper introduces a research activity aimed at the defi-
nition of a methodology to provide a solid conceptual framework for the
development of simulation systems focused on crowd dynamics and based
on the Situated Cellular Agent (SCA) model. After a brief introduction
of the SCA Model, the general methodological approach is described.
The main steps provide the definition of the spatial abstraction of the
environment, the definition of its active elements, and the specification of
types of mobile agents, the related behaviours with particular attention
to their movement by means of the notion of utility. A case study is also
briefly described in order to show how the methodology was applied in
the modelling of crowd behaviour in an underground station.

1 Introduction

The Situated Cellular Agents (SCA) model [1] is a formal and computational
framework for the definition of complex systems characterized by the presence of
a set of autonomous entities interacting in an environment whose spatial struc-
ture represents a key factor in their choices on their actions and in determining
their possible interactions. The model has been successfully applied in different
contexts, and in particular its focus on the modelling of the environment as well
as its inhabiting agents and their interactions, make it particularly suitable for
simulation of actual physical systems. In particular, crowd modelling and sim-
ulation requires to model the autonomous behaviour of individuals interacting
among themselves (e.g. because they compete over a shared resource, but also
because of crowding effects) and the interaction among pedestrian and the en-
vironment. In fact in this situation the concept of perception must have a very
precise meaning, and it influences the modelling activities as well as the design
and implementation of the simulation system.

There are several computational approaches to crowd modelling, ranging from
analytical ones, which generally consider humans as particles subject to various
forces modelling interactions among pedestrian (see, e.g., [2]), to CA-based mod-
els which provide a discrete abstraction of the environment, whose cells encapsu-
late the possible presence of pedestrian and whose transition rules represent the
rules that govern pedestrian movement (see, e.g., [3, 4]). Agent based models are

O. Dikenelli, M.-P. Gleizes, and A. Ricci (Eds.): ESAW 2005, LNAI 3963, pp. 203–220, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

204 S. Bandini et al.

more suited than the previous ones to be applied to situations characterized by a
certain degree of heterogeneity and dynamism of agents and environment. More-
over, several indirect interaction models provide the possibility of situated agents
to leave marks in the environment to influence the behaviour of other mobile en-
tities. This metaphor has been often exploited to model the movement of animals
but also humans (see, e.g., [5]). Also situated agents were successfully applied in
this context [6], but to our knowledge a methodology for the analysis, modelling
and design of crowd simulations through situated agent models does not exist.

Several methodologies for the analysis and design of multi-agent systems have
been defined (see, e.g., GAIA [7], INGENIAS [8] and SODA [9]) but they are
more focused to the design of general purpose software systems analyzed and
structured using the notion of agent, and thus they lack focus to simulate spe-
cific issues. Some specific methodological approaches to multi–agent simulation
can also be found (see, e.g., [10]) but they are still very abstract and do not
provide specific support to crowd modelling. In this paper the first proposal of
a methodology for the modelling of SCA based crowd simulations is introduced.
In particular, the methodology provides a set of phases for the definition of an
abstraction of the structure of the simulated environment, the specification of
active elements of the environment able to generate signals facilitating the move-
ment of pedestrian, and types of agents, with the related perceptive capabili-
ties and behavioural specifications. The following Section will briefly introduce
the SCA model, while the proposed methodology is defined in Section 3. A spe-
cific case study focused on the modelling of pedestrian in an underground sta-
tion adopting the proposed methodology is described in Section 4. This scenario
was chosen in the wider domain of crowd modelling and simulation because it
presents very complex behaviours that are not easily found in other typical sim-
ulation scenarios such as room evacuation. Conclusions and future developments
will end the paper.

2 Situated Cellular Agent Model

The Situated Cellular Agent model is a specific class of Multilayered Multi-Agent
Situated System (MMASS) [11] providing a single layered spatial structure for
agents environment and some limitations to the field emission mechanism. A
thorough description of the model is out of the scope of this paper, and this aim
of Section is to briefly introduce it to give some basic notion of the elements that
are necessary to describe the methodology.

A Situated Cellular Agent is defined by the triple
〈
Space, F, A

〉
where Space

models the environment where the set A of agents is situated, acts autonomously
and interacts through the propagation of the set F of fields and through reaction
operations. Figure 1 shows a diagram of the two interaction mechanisms provided
by the model.

Space is defined as a not oriented graph of sites. Every site p ∈ P (where P
is the set of sites of the layer) can contain at most one agent and is defined by
the 3-tuple

〈
ap, Fp, Pp

〉
where:

Towards a Methodology for SCA Based Crowd Simulations 205

B

A

A

B

C

Fig. 1. A diagram showing the two interaction mechanisms provided by the SCA model:
two reacting agents on the left, and a field emission on the right

– ap ∈ A ∪ {⊥} is the agent situated in p (ap = ⊥ when no agent is situated
in p that is, p is empty);

– Fp ⊂ F is the set of fields active in p (Fp = ∅ when no field is active in p);
– Pp ⊂ P is the set of sites adjacent to p.

A SCA agent is defined by the 3-tuple < s, p, τ > where τ is the agent type,
s ∈ Στ denotes the agent state and can assume one of the values specified by
its type (see below for Στ definition), and p ∈ P is the site of the Space where
the agent is situated. As previously stated, agent type is a specification of agent
state, perceptive capabilities and behaviour. In fact an agent type τ is defined by
the 3-tuple

〈
Στ , P erceptionτ , Actionτ

〉
. Στ defines the set of states that agents

of type τ can assume. Perceptionτ : Στ → [N×Wf1] . . . [N×Wf|F |] is a function
associating to each agent state a vector of pairs representing the receptiveness
coefficient and sensitivity thresholds for that kind of field. Actionτ represents
instead the behavioural specification for agents of type τ . Agent behaviour can
be specified using a language that defines the following primitives:

– emit(s, f, p): the emit primitive allows an agent to start the diffusion of field
f on p, that is the site it is placed on;

– react(s, ap1 , ap2 , . . . , apn , s′): this kind of primitive allows the specification
a coordinated change of state among adjacent agents. In order to preserve
agents’ autonomy, a compatible primitive must be included in the
behavioural specification of all the involved agents; moreover when this coor-
dination process takes place, every involved agents may dynamically decide
to effectively agree to perform this operation;

– transport(p, q): the transport primitive allows to define agent movement
from site p to site q (that must be adjacent and vacant);

– trigger(s, s′): this primitive specifies that an agent must change its state
when it senses a particular condition in its local context (i.e. its own site
and the adjacent ones); this operation has the same effect of a reaction, but
does not require a coordination with other agents.

For every primitive included in the behavioural specification of an agent type
specific preconditions must be specified; moreover specific parameters must also
be given (e.g. the specific field to be emitted in an emit primitive, or the condi-
tions to identify the destination site in a transport) to precisely define the effect
of the action, which was previously briefly described in general terms.

206 S. Bandini et al.

Each SCA agent is thus provided with a set of sensors that allows its interac-
tion with the environment and other agents. At the same time, agents can consti-
tute the source of given fields acting within a SCA space (e.g. noise emitted by a
talking agent). Formally, a field type t is defined by

〈
Wt,Diffusiont, Comparet,

Composet

〉
where Wt denotes the set of values that fields of type t can assume;

Diffusiont : P ×Wf ×P → (Wt)+ is the diffusion function of the field computing
the value of a field on a given space site taking into account in which site (P is
the set of sites that constitutes the SCA space) and with which value it has been
generated. It must be noted that fields diffuse along the spatial structure of the
environment, and more precisely a field diffuses from a source site to the ones
that can be reached through arcs as long as its intensity is not voided by the dif-
fusion function. Composet : (Wt)+ → Wt expresses how fields of the same type
have to be combined (for instance, in order to obtain the unique value of field
type t at a site), and Comparet : Wt ×Wt → {True, False} is the function that
compares values of the same field type. This function is used in order to verify
whether an agent can perceive a field value by comparing it with the sensitivity
threshold after it has been modulated by the receptiveness coefficient.

3 Methodology for SCA-Based Crowd Modelling

In SCA agents’ actions take place in a discrete and finite space. Entities pop-
ulating the environment are classified in types, which represent templates for
the specification of active elements of the environment. The latter are not only
mobile entities, but also specific elements of the environment which the mod-
eller wishes to exploit to influence the former (e.g. with attraction or repulsion
effects). To model an agent type in SCA means to define the allowed states, per-
ceptive capabilities and behavioural specification. In the proposed methodology,
agent’s states represent attitudes, in terms of perceptions (in fact, as previously
introduced, the state determines the current agent’s perceptive capabilities), but
also conditions which determine its choices on actions to be selected and carried
out. These actions include the definition of influences of the agent on other en-
tities of the environment (e.g. crowding effects) by means of field emissions, the
specification of its motory system and movement preferences by means of the no-
tion of movement utility, but also the transitions from one state to another (i.e.
a change of attitude towards the perception and action in the environment).
While some agents related to active parts of the environment may present a
very simple type specifications, mobile entities with different possible movement
attitudes might require several states and complex behavioural specifications.

The diagram shown in Figure 2 shows the main phases of the methodology,
while in the following subsections the steps that bring to the definition of a com-
plete model for crowding simulations will be introduced. It must be emphasized
that the first three steps lead to the development of a computational model
which can be adopted in several experiments on an analogous scenario. The
last two phases are those that effectively characterize the specific experiment.

Towards a Methodology for SCA Based Crowd Simulations 207

Abstract scenario
specification

Definition of the MMASS
spatial structure

Definition of active elements
of the environment and

field types

Definition of mobile agents
(types, states, perceptive

capabilities and behavioural
specification)

Specific simulation configuration
(number, type, position and

initial state of mobile agents,
other parameters)

Definition of monitored
parameters and specification
of monitoring mechanisms

Experiment-specific
parameters

Computational model
for the scenario

Fig. 2. A diagram showing the main phases of the methodology

Section 4 will then present a concrete case study in which the proposed method-
ology has been applied.

3.1 Definition of the MMASS Spatial Structure

In order to obtain an appropriate abstraction of space suitable for the SCA
model, we need a discrete abstraction of the actual space in which the simu-
lation will take place. This abstraction is constituted of nodes connected with
non-oriented arcs (i.e. a non oriented graph). Nodes represent the positions that
can be occupied by single pedestrian once per time. Some of the nodes can be
occupied by some agents that constitute part of the environment (doors, ex-
its, shops etc), and that cannot be occupied by other individuals. Arcs connect
nodes, representing the adjacency of one node to another. Individuals can move
by single steps only from one node to other nodes that are in its immediate
adjacency, so arcs and adjacency constraint agents’ movement. However, as pre-
viously mentioned, the spatial structure of the environment also constraints field
diffusion.

SCA space represents thus an abstraction of a walking pavement, but it has
to be sufficiently detailed to be considered a good approximation of the real
environment surface, and it allows a realistic representation of the movements
and paths that individuals would follow. As for other crowd modelling and sim-
ulation systems we assume that a single node is associated to the space occupied
by a still person [3], but the choice on the dimension of what must be considered
the atomic element of the environment (a single cell) depends on the specific
simulation scenario and on the related goals.

In general, in the definition of SCA space, different solutions can be adopted to
represent agents’ environment. For example, physical constrains such as obstacles
could be represented by adjacent nodes occupied by unmoveable, inactive agents,
but one could also choose simply not to represent them. In other words they can

208 S. Bandini et al.

W

W

W

Fig. 3. Two possible ways to model a wall. The one on the left does not block field
diffusion.

be represented by gaps of the discrete structure and by the absence of arcs among
nodes, as shown in Figure 3. The difference between the two approaches is that
in the first case the occupied node does not stop field diffusion. Thus this choice
is less suited to represent hard obstacles, such as walls, which should not only
prevent movement of agents but also the diffusion of signals.

3.2 Definition of Active Elements of the Environment and Field
Types

As previously introduced, in this framework we assume that specific elements of
the environment can be perceived as reference points influencing (or even deter-
mining) the movement of pedestrians. The SCA model provides a simple mean
of generating at-a-distance effects that can be exploited to generate attraction
or repulsion effects: the field diffusion-perception-action mechanism. However,
only an agent can be the source of a field, and thus the proposed methodology
requires the reification of objects or abstractions exploited to generate attrac-
tion/repulsion effects as immobile agents that are able to emit fields.

In this phase active objects in the environment have to be selected, and field
types have to be assigned. Attention must be paid not only to physical objects
of the environment which constraint agent movement (and that can thus be
considered as reference points), but also to objects that somehow transmit con-
ceptual information (e.g. exit signs or indications). This phase comprises two
main operations:

– selection of active elements : the objects of the environment that are consid-
ered relevant for our simulation have to be identified. An element is consid-
ered relevant if, by a process of abstraction from reality, it can be considered
as representing a target, or if it is possible to assume that it does exert an
influence on the individuals that act in the environment;

– assignment and design of field types : the type of the fields emitted by the
objects must be specified, in terms of emission intensity, diffusion and com-
position function, in relation to the desired extent of influence.

It must be noted that a field represents a signal and per se it does not imply
an effect on agents’ behaviours, in fact the possible reaction to the perception
of a signal is provided by the agent type specification; moreover the actual be-
haviour of an agent is influenced by its current state. In this way, it is possible

Towards a Methodology for SCA Based Crowd Simulations 209

to model an environment as a source of different indications that are exploited
in different ways by different agents to determine their paths. For instance, the
window of a shop could be modelled as the source of a field diffusing outside the
shop; such a field could cause a movement towards the shop for agents which con-
sider interesting the represented goods, but could also be completely ignored by
other agents. Moreover, different fields can be spread over the environment, and
thus agents may perceive them and combine their effects according to a private
criteria for action selection. In this way agents are not provided with a sort of
script specifying their movement paths, a predefined map, or in general a strict
behavioural specification, but they are provided a simple mean for evaluating
the available actions against their current attitude in a more autonomous way.

In order to effectively exploit this approach to generate agent movement, the
number, position and diffusion range of these fields generated by active objects
must be carefully designed. This activity is strictly related to the definition of
the spatial abstraction: first of all it defines the positions that can be occupied
by active objects, and moreover it deeply influences the definition of field types
(which in turn provide the specification of diffusion functions) and the choice
on field emission intensity. In fact, the diffusion of fields is guided by the spatial
structure of the environment, and the set of sites involved in a diffusion operation
is determined by the emission intensity, the diffusion function for the related field
type, and by the morphology of the space. This activity is strongly dependant
on domain and simulation specific factors, so a general strategy for the choice
of field types and active objects, their placement in spatial abstraction of the
environment, and the definition of their parameters cannot be given. However,
specific modules of the SCA platform, supporting a visual definition of active
elements of the simulation environment, is currently being designed.

3.3 Definition of Mobile Agents

Once the spatial abstraction has been defined, and the active elements of the
environment and the related fields have been specified, the third phase of the
methodology is to define the behaviour of the pedestrian. The model allows to
define heterogenous agents thanks to the notion of agent type, which comprises
the definition of related state, perceptive capabilities and behavioural specifica-
tion. However, the modelled behaviour can be quite complex, as an individual
may be endowed with several distinct attitudes towards movement and action
selection that are activated in different contexts.

The behaviour of an agent type can thus be segmented in relevant states. The
more complex is the behaviour that we want to capture, the higher will be the
number of states that an agent can assume. This definition can be summarized
in the two phases below:

– definition of agent type’s states : in this phase of the modelling it must be
established the number of states that each agent can assume. Each state rep-
resents diverse priorities, and a different attitude of the agent. For each state
must be determined the field emissions of the agent type (i.e. the influence of

210 S. Bandini et al.

agents of this type towards other entities in the system), and the sensitivity
to fields emitted by other agents. In addition to these elements, that are
required for every SCA agent type, this methodology also provides the defi-
nition of the utility value for every field type, as a measure of the relevance
of the perception of this field on agent’s choices on its own movement;

– definition of conditions for states transition: the change of the state of an
agent is related to the perception of a specific condition in its current context
that determines a transition from a movement attitude towards a different
one. These conditions must thus be carefully defined and modelled by means
of a react or a trigger operation.

To exemplify these phases, the case of a student moving in a University will be
considered. Different behaviours will be activated according to the current state
and goals of the related agent: a student situated in a lecture hall during a lesson
is not sensitive to fields emitted by doors. By changing state, at the end of the
lesson, the student may become sensitive (and more precisely) attracted by, exit
doors. To deal with such a composite kind of behaviour, the methodology exploits
specific agents states to partition their behavioural specifications. According to
the model, the state of an agent determines its current perceptive capabilities,
but it also influences its behaviour. In fact it can be included in the preconditions
of actions that compose the behavioural specification Actionτ for agent type τ .
In the model, Actionτ is made up of a flat set of actions and an action selection
strategy. In this framework, we propose to reify the possible attitudes of that
type of agent as specific states and to specify the actions that can be selected
only for agents in that state. For instance, an agent related to the previously
introduced student would require three states: GoingToLesson, AttendingLesson,
GoingHome.

In these states its perceptive capabilities can be differentiated, but also its
preferences on possible available moves. This can be modelled by means of a
utility function which computes a sort of “desirability” value for every site in
which the agent might move, in relation to its current state. Utility functions
represent a flexible mean of combining different aspects influencing the selection
of actions [12] and in this specific case these aspects are represented by different
fields. In fact, fields are related to entities, either mobile (i.e. other pedestrian)
or immobile (e.g. doors), that influence mobile agents’ motion in a different way
according to their context. It is thus necessary to specify, for each agent state,
what is the impact of the perception of each field type on the desirability of
the related place. The overall utility of a place is the aggregation of all these
influences, that can have a positive, negative or null impact on the total value.
The basic agent strategy for the choice on single movement action is thus to
select the adjacent free place with highest utility value. According to the specific
scenario, the possibility to remain still could be considered acceptable, penalized
or even not allowed.

Before the conclusion of this paragraph we must specify that the specification
of utility values and the action modelling are not properly phases, but are activ-
ities that permeate the whole process of the construction of a simulation. The

Towards a Methodology for SCA Based Crowd Simulations 211

focus of these activities is the constant revision of the simulation (a process that
in some cases is referred to as simulation calibration) in relation to realism con-
siderations and to the comparison of the simulation results with data collected
by means of empirical observations.

3.4 Specific Simulation Configuration

The configuration for an experiment in a specific simulation scenario, not only in
the case of crowd simulation, is a crucial phase that has to be performed carefully.
In particular the effort of conceptualization carried out in the previous passages
is wasted unless a realistic configuration for the experiment is defined. In fact,
the data that are obtained through the execution of simulations are obviously
strongly dependant on the starting conditions, as well as on the modelling of the
simulated reality.

To configure a crowd simulation means to set the following parameters:

– agents number and starting positions : the number of the mobile agents that
will populate the simulation must be decided in relation to the crowd scenery
that is being represented; their positions must also be specified;

– agents’ initial states: the initial state of every agent has to be specified. The
decision to assign to an agent an initial state or another is taken in relation
to the goals of the specific simulation: in fact, this parameter determines the
initial movement attitude of the agent in the environment;

– field emission intensity : field emission intensity is a parameter that allows to
modulate stronger or weaker influence effects; the choice on this parameter
(together with the diffusion functions to be adopted for various field types)
also determines the extent of the effects. The possibility to tune these pa-
rameters is a key factor in the definition of specific effects, both at individual
level (e.g. amplifying or attenuating the field emission intensity of a specific
agent) as well as on the collective scale (for instance modifying the intensity
of fields related to elements of the environment).

3.5 Definition of Monitored Parameters and Specification
of Monitoring Mechanisms

This phase represents a formal statement of what is the goal of the simulation,
a precise specification of what has to be observed and how. When simulating
crowd dynamics in an evacuation scenario, the average number of turns required
for agents to exit from a room is a crucial parameter to be monitored, while it
can be of no interest when the goal of simulation is to observe the behaviour
of pedestrian in a shopping centre. Other possible observable parameters could
be average crowd density, average (or maximum) number of people waiting in a
queue, occurrence of specific events, and many others dependant on the specific
simulation context.

The variety of possibly monitored parameters, and thus also the number and
heterogeneity of distinct monitoring mechanisms, does not allow to define specific
guidelines for this phase.

212 S. Bandini et al.

4 A Case Study: The Underground Station

An underground station is an environment where various crowd behaviours take
place. In such an environment passengers’ behaviours are difficult to predict, be-
cause the crowd dynamics emerges from single interactions between passengers,
and between single passengers and parts of the environment, such as signals (e.g.
current stop indicator), doors, seats and handles. The behaviour of passengers
changes noticeably in relation to the different priorities that characterize each
phase of their trips. That means for instance that passengers close to each other
may display very different behaviours because of their distinct aims in that mo-
ment. In a crowd dynamic behaviours of the singles can also constitute a hin-
drance for the purpose of someone else. Passengers on board may have to get off
and thus try to reach for the door, while other are instead looking for a seat or
standing beside a handle. Moreover when trains stop and doors open very com-
plex crowd dynamics happen, as people that have to get on the train have to
allow the exit of passengers that are getting off. Passengers have to match their
own priority with the obstacles of the environment, with the intentions of other
passengers, and with implicit behavioural rules that govern the social interac-
tion in those kind of transit stations, in a complex mixture of competition over a
shared resource and collaboration to avoid stall situations. Given the complexity
of the overall scenario, we decided to focus on a specific portion of this environ-
ment in which some of the most complex patterns of interaction take place: the
part of platform in presence of a standing wagon from which some passengers
are attempting to get off while other waiting travellers are trying to get on.

However the value of the realized simulation is not the main goal of this work,
as our main aim is to show how the proposed methodology was applied in this
case study. The goal of a complete simulation system in this context would be
the possibility to support expert users in the detection of critical problems of
the structure of the station, as bottlenecks, wrong disposition of the exits and
so on, by offering the modelling instruments able to capture interaction between
passengers and the environment, simultaneously on board and on the waiting
platform. Such a tool would be of great aid for the prediction of security measure
in situations of overcrowding or in presence of an unexpected hazard.

To build up our simulation we made some behavioural assumptions, now we
will make some brief examples of the kind of behaviours we wanted to capture.
Passengers that do not have to get off at a train stop tend to remain still, if they
do not constitute obstacle to the passengers that are descending. Passengers
will move only to give way to descending passenger, to reach some seat that has
became available, or to reach a better position like places at the side of the doors
or close to the handles. On the other hand in very crowded situations it often
happens that people that do not have to get off can constitute an obstacle to
the descent of other passengers, and they “are forced to” get off and wait for
the moment to get on the wagon again. Passenger that have to get off have a
tendency to go around still agents to find their route towards the exit, if it is
possible. Passengers on the platform enter the station from the ingress points
(station entrances) and tend to distribute along the threshold line while waiting

Towards a Methodology for SCA Based Crowd Simulations 213

Fig. 4. Discretization of a portion of the environment for the underground station
scenario

for a train. Once the train is almost stopped they identify the entrance that is
closer to them and move towards it. If they perceive some passenger bound to
get off, they first let them get off and then get on the wagon.

4.1 Environment Abstraction: An Underground Station

To build an environment suitable for SCA platform, first of all we need to define
a discrete structure representing the actual space in which the simulation is set.
In our case study we started from an available diagram of an underground wagon.
A discrete abstraction of this map was defined, devoting to each node the space
generally occupied by one standing person; as shown in Figure 4 this activity is
supported by software. Arcs connecting nodes are not necessarily uniform across
the space: in fact we decided to allow some specific movement opportunities to
agents in critical positions of the environment. However a thorough analysis of
the effects of this kind of heterogeneity in the spatial structure on field diffusion
is needed, and will be the object of future works.

4.2 Active Elements of the Environment: Train and Station

In our simulation fields are generated by elements of the environment but also
by agents that represent passengers. We identified the following objects as active
elements of the environment: Exits, Doors, Seats and Handles (see Figure 5 for
their disposition).

Now we give a brief description of the kind of fields that those static agents
emit. Station exits emit fixed fields, constant in intensity and in emission, that
will be exploited by agents headed towards the exit of the station. Exits could
also constitute entry points for agents that arrive on the platform. Agent-doors
emit another field which can guide passengers that have to get off towards the
platform, and the same field can guide passengers that are on the platform and
are bound to get in the wagon. Seats may have two states: occupied and free.
In the second state they emit a field that indicates their presence. An analogous

214 S. Bandini et al.

Fig. 5. Immobile active elements of the environment defined for the underground sta-
tion scenario

Fig. 6. Extension of fields diffused by door agents in the underground station scenario

field is emitted by handles, which however are sources of fields characterized by
a minor intensity. As shown in Figure 6, the positioning of field sources and
the definition of parameters for field emission is partly supported by a software
module.

4.3 Mobile Entities: Passengers

We have identified the following states for agent of type passengers: waiting (w),
passenger (p), get-off (g), seated (s), exiting (e). In relation to its state, an agent
will be sensitive to some fields, and not to others, and attribute different relevance
to the perceived signals. In this way, the changing of state will determine a change
of priorities. A state diagram for passenger agents is shown in Figure 7. State w is

Towards a Methodology for SCA Based Crowd Simulations 215

E

W

G

SP

Fig. 7. A diagram showing various states of agent type passenger

associated to an agent that is waiting to enter in the wagon. In this state agents
perceive the fields generated by the doors as attractive, but they also perceive as
repulsive the fields generated by passengers that are getting off, in other words
those in state g. In state w the agent “ignores” (is not sensitive to) the fields
generated by other active elements of the environment, such as exits’ attractive
fields, chairs attractive field and so on. Once inside the wagon, the agent in state
w changes its state in p (passenger), through a trigger function activated by
the perception of the maximum intensity of field generated by agent-door type.
Agent in state passenger is attracted by fields generated by seats and handles,
and repulsed by fields related to passengers that are getting off. It does not have
any sensitivity for the attraction field of the doors. In state g the agent will
instead emit a field warning other agents of its presence, while it is attracted
by fields generated by the doors. Once passed through the wagon door, or in
immediate proximity (detected by means of specific thresholds on related field
intensity), the agent in state g changes its state to e (exiting) and its priority
will become to find the exits of the station. The agent in state e is thus attracted
by fields related to exits.

Table 1 summarizes the sensitivity of the passenger to various fields and it
also sketches a first attribution of the utility of the presence of these field types
on empty nodes considered as destination of a transport action. In particular,
cells provide the indication of the fact that the related field is perceived as at-
tractive or repulsive and the priority level (i.e. relevance) associated to that field
type.

Table 1. The table shows, for every agent state, the relevance of perceived signals

State Exits Doors Seats Handles Presence Exit press.

W (getting on) not perc. attr. (2) not perc. not perc. rep. (3) rep. (1)
P (on board) not perc. not perc. attr. (1) attr. (2) rep. (3) rep. (2)
G (getting off) not perc. attr. (1) not perc. not perc. rep. (2) not perc.
S (seated) not perc. attr. (1)* not perc. not perc. not perc. not perc.
E (exiting) attr. (1) not perc. not perc. not perc. rep. (2) not perc.

∗The door signal also conveys the current stop indication.

216 S. Bandini et al.

Fig. 8. Two screenshots of the underground simulation. On the first one light gray
agents are inside the train and going to get off, while dark agents are standing outside
and are going to get on. On the second, the latter have made some rooms for the former
to get off.

Towards a Methodology for SCA Based Crowd Simulations 217

All passengers except those in state g emit a presence field that generally has
a repulsive effect, but a lesser one with respect to the “exit pressure” generated
by agents in get-off state.

4.4 Preliminary Results and Lessons Learned

A sample simulation based on this case study was designed and implemented
exploiting the MMASS framework [13] (please note that SCA is a particular
class of MMASS model): only a subset of the overall introduced model was
implemented, and more precisely active objects of the environment and passenger
agents in state w, g, e, p. Figure 8 shows a screen-shot of this simulation system,
in which waiting agents move to generate room for passenger agents which are
going to get off the train.

The system is synchronous, meaning that every agent performs one single ac-
tion per turn; the turn duration is about one third of second of simulated time.

The goal of this small experimentation was to qualitatively evaluate the mod-
elling of the scenario and the developed simulator. The execution and analysis
of several simulations showed that the behaviour of the agents in the environ-
ment is consistent with a realistic scenario, and fits with our expectations. In
particular, we executed over 50 simulations in the same starting configuration,
which provides 6 passengers located on a underground train in state g (i.e. will-
ing to get off), and 8 agents that are outside the train in state w (i.e. waiting to
get on). This small simulation campaign is motivated by the fact that an agent
having two or more possible destination sites characterized by the same utility
value makes a non deterministic choice. In all simulations the agents achieved
their goals (i.e. get on the train or get out of the station) in a number of turns
between 40 and 80, with an average of around 55 turns.

Nonetheless we noticed some undesired transient effects and more precisely:

– oscillations and “forth and back” movements;
– static forms providing “groups” facing themselves for a few turns, until the

groups dispersed because of the movement of a peripheral element.

These phenomena, which represent minor glitches under the described ini-
tial conditions, could lead to problems in case of high pedestrian density in the
simulated environment. This points out the need of additional mechanisms cor-
recting the movement utility. In particular, some possible improvements to the
basic movement utility mechanisms are:

– introduce a notion of agent facing: the SCA model does not provide an
explicit facing for agents because is not always relevant or even applicable
(consider for instance the modelling of immune system cells [14]); however
in this specific simulation scenario this is a relevant factor for agents’ choices
on their movement. Instead of modifying the general model, a possible way
of introducing this notion is to allow agents to keep track of their previous
positions, in order to understand if a certain movement is a step back. The
utility of this kind of movement should be penalized, in order to discourage
this choice;

218 S. Bandini et al.

– penalize immobility: in order to avoid stall situations, or simplify the solu-
tion of this kind of situation, an agent should generally move, unless it has
attained the goal for a movement attitude (i.e. agent state). To obtain this
effect, the memory of the past position, introduced in the previous point,
could be exploited to penalize the utility of the site currently occupied by
the agent whenever it was also its previous position.

While these correctives can be easily modelled and implemented, to apply this
approach to problems in larger scale scenarios, such as those related to malls or
multi-floor buildings, it could be necessary to introduce some additional elements
for the specification of agents’ behaviours. In particular, in order to endow agents
with the possibility to select in a more autonomous way those signals that are
relevant to direct their movement, it could be necessary to introduce some form
of abstract map of the environment. However the introduced methodology is
focused on supporting the modelling of situations in which there is a strong focus
on specific spots of a spatial structure, such as a hall or a part of a building floor,
in specific situations (e.g. evacuation).

5 Conclusions and Future Developments

This work has presented the first proposal of a methodology for the modelling
of crowds through the SCA model. The main phases of this methodology were
introduced, and in particular the first two provide the definition of an “active
environment”, able to support simple reactive agents in the navigation of its
spatial structure according to their behavioural specification. A case study re-
lated to a complex modelling scenario was introduced in order to show how the
proposed methodology can be applied in a concrete case study.

Future developments are aimed at refining both the methodology and the
MMASS platform, in order to better support the modeller/user, in the con-
struction of complex simulation scenarios. In particular the platform provides
basic user interfaces and modules aimed at supporting the definition of an ac-
tive environment, and parameters for specific simulations, but improvements are
under development. Moreover specific libraries for active objects and paradig-
matic pedestrian behaviours could be defined after a thorough analysis of psy-
cho/sociological studies of crowd behaviors.

Another part of the project in which this work has been developed provides the
generation of effective forms of visualization of simulation dynamics to simplify
its analysis by non experts in the simulated phenomenon. In particular, the
developed simulator can be integrated with a 3D modelling and rendering engine
(more details on this integration can be found in [15]), and a sample screenshot of
the animation of the simulation dynamics is shown in Figure 9. A more through
analysis of modifications to the basic utility approach that must be introduced
to correct minor glitches in agents’ movement (i.e. oscillations) is particularly
relevant in this case. The analysis of the most suited mechanisms to correct these
issues are thus object of current and future work.

Towards a Methodology for SCA Based Crowd Simulations 219

Fig. 9. A screenshot of the 3D modelling of the simulation dynamics

Acknowledgements

This work is preliminary result of the Social Mobile Entities in Silico (SMES)
project, and was partly funded by the New and Old Mobility Analysis and
Design for the Information Society (NOMADIS) laboratory, in the context of the
Quality of Life in the Information Society (QUA SI) multi-disciplinary research
programme in Information Society.

References

1. Bandini, S., Mauri, G., Vizzari, G.: Supporting Action-at-a-distance in Situated
Cellular Agents. Fundamenta Informatic Fundamenta Informaticae 69 (2006)
251–271

2. Helbing, D.: A Mathematical Model for the Behavior of Pedestrians. Behavioral
Science (1991) 298–310

3. Schadschneider, A., Kirchner, A., Nishinari, K.: CA Approach to Collective
Phenomena in Pedestrian Dynamics. In Bandini, S., Chopard, B., Tomassini, M.,
eds.: Cellular Automata, 5th International Conference on Cellular Automata for
Research and Industry, ACRI 2002. Volume 2493 of Lecture Notes in Computer
Science, Springer (2002) 239–248

4. Dijkstra, J., Jessurun, J., Timmermans, H.J.P.: A Multi-Agent Cellular Automata
Model of Pedestrian Movement. In: Pedestrian and Evacuation Dynamics.
Springer-Verlag (2001) 173–181

220 S. Bandini et al.

5. Helbing, D., Schweitzer, F., Keltsch, J., Molnár, P.: Active Walker Model for the
Formation of Human and Animal Trail systems. Physical Review E 56 (1997)
2527–2539

6. Bandini, S., Manzoni, S., Vizzari, G.: Situated Cellular Agents: a Model to
Simulate Crowding Dynamics. IEICE Transactions on Information and Systems:
Special Issues on Cellular Automata E87-D (2004) 669–676

7. Zambonelli, F., Wooldridge, M.J., Jennings, N.R.: Developing Multiagent Sys-
tems: The GAIA Methodology. ACM Transactions on Software Engineering and
Methodology 12 (2003) 317–370

8. Pavón, J., Gómez-Sanz, J.J.: Agent Oriented Software Engineering with INGE-
NIAS. In Maŕık, V., Müller, J., Pechoucek, M., eds.: CEEMAS. Volume 2691 of
Lecture Notes in Computer Science, Springer-Verlag (2003) 394–403

9. Omicini, A.: SODA: Societies and Infrastructures in the Analysis and Design of
Agent-based Systems. In Ciancarini, P., Wooldridge, M., eds.: Agent-Oriented
Software Engineering: First International Workshop, AOSE 2000. Volume 1957 of
Lecture Notes in Computer Science, Springer-Verlag (2001) 185–193

10. Campos, A.M.C., Canuto, A.M.P., Fernandes, J.H.C.: Towards a Methodology
for Developing Agent-based Simulations: The MASim Methodology. In: 3rd
international Joint Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2004), Washington, DC, USA, ACM Press (2004) 1494–1495

11. Bandini, S., Manzoni, S., Simone, C.: Dealing with Space in Multi–Agent Systems:
a Model for Situated MAS. In: Proceedings of the first international joint confer-
ence on Autonomous agents and multiagent systems, ACM Press (2002) 1183–1190

12. Russell, S.J., Norvig, P.: Artificial Intelligence: A Modern Approach (2nd ed.).
Prentice Hall (2002)

13. Bandini, S., Manzoni, S., Vizzari, G.: Towards a Specification and Execution Envi-
ronment for Simulations Based on MMASS: Managing At–a–distance Interaction.
In Trappl, R., ed.: Proceedings of the 17th European Meeting on Cybernetics and
Systems Research, Austrian Society for Cybernetic Studies (2004) 636–641

14. Bandini, S., Celada, F., Manzoni, S., Puzone, R., Vizzari, G.: Modelling the
Immune System with Situated Agents. In: International Workshop on Natural and
Artificial Immune Systems. Lecture Notes in Computer Science, Springer–Verlag
(2006) (in press)

15. Bandini, S., Manzoni, S., Vizzari, G.: Crowd Modelling and Simulation: Towards
3D Visualization. In: Recent Advances in Design and Decision Support Systems
in Architecture and Urban Planning, Kluwer Academic Publisher (2004) 161–175

QoS Management in MANETs

Using Norm-Governed Agent Societies

Jeremy Pitt1, Pallapa Venkataram2, and Abe Mamdani1

1 Intelligent Systems & Networks Group,
Dept. of Electrical & Electronic Engineering,

Imperial College London, London, SW7 2BT, UK
2 Protocol Engineering & Technology Unit,
Dept. of Electrical Communication Eng.,

Indian Institute of Science, Bangalore 560012, India

Abstract. Mobile ad-hoc networks (MANETs) are self-created and self-
organized by a collection of mobile nodes, interconnected by multi-hop
wireless paths in a strictly peer-to-peer fashion. Such networks offer
unique benefits and versatility with respect to bandwidth spatial re-
use, intrinsic fault tolerance, and low-cost rapid deployment. However,
Quality of Service (QoS) provisioning to applications running in such net-
works is intrinsically difficult. In this paper, we consider a QoS frame-
work for MANETs which monitors network resources and application
requirements, and feeds information to agents, who coordinate efficient
resource allocation on a social basis (in this case, decision-making ac-
cording to normative policies and protocols). Thus we propose a frame-
work for QoS management in MANETs which converges network-centric
events, metrics and parameters with organizational intelligence offered
by norm-governed multi-agent systems, as a step towards realising a vi-
sion of ubiquitous networking.

1 Introduction

Mobile ad-hoc networks (MANETs) are self-created and self-organized by a col-
lection of mobile nodes, interconnected by multi-hop wireless paths in a strictly
peer-to-peer fashion. Such networks offer unique benefits and versatility with
respect to bandwidth spatial re-use, intrinsic fault tolerance, and low-cost rapid
deployment. However, Quality of Service (QoS) provisioning to multimedia ap-
plications running in such networks is intrinsically difficult, since the dynamic
network topology renders centralised solutions based on complete and perfect
information out of scope.

In this paper we propose a framework for efficient Quality of Service (QoS)
management in Mobile Ad Hoc Networks (MANETs). The framework consists of
two main components: underneath, the Multimedia Network Support Platform
(MNSP), which is an advanced multimedia transport service for transmission
and reception in mobile multimedia application, and, running over MNSP, a
norm-governed multi-agent system (MAS) which effectively constitutes a deliber-
ative assembly. The MNSP communicates information about network events and

O. Dikenelli, M.-P. Gleizes, and A. Ricci (Eds.): ESAW 2005, LNAI 3963, pp. 221–240, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

222 J. Pitt, P. Venkataram, and A. Mamdani

behaviour to the MAS, the MAS makes decisions according to norm-governed
policies and protocols, and these decisions are communicated to the MNSP for
implementation.

The paper is structured as follows. In Section 2 we describe in more detail
the particular features and challenges of MANETs for QoS provisioning of mul-
timedia services and applications. In Section 3 we discuss why norm-governed
multi-agent systems (open agent societies) are an appropriate technology for
addressing these features and challenges. In Section 4 we present the architec-
ture of our proposed QoS management framework, including discussion of the
MNSP layer and the agents layer, and in Section 5 we give an example of a
session-sharing mechanism which can be addressed in this framework. These
sections collectively motivate the application domain (ad hoc networks), the
specific problem (QoS provisioning), and the proposed solution (a two layer QoS
framework). For this paper, Section 6 then gives a correspondingly detailed con-
sideration of the norm-governed protocols for enacting this solution in the agents
layer of the framework. Finally, we conclude with a discussion of some areas of
further research, and comment that this proposed framework, which converges
network-centric events, metrics and parameters with organizational intelligence
offered by norm-governed multi-agent systems, has significant potential for QoS
management in MANETs. In particular it can serve as a contribution towards
realising a vision of ubiquitous networking.

2 MANETs and Multimedia

Wireless networking technologies, as well as the widespread use of mobile devices
such as PDAs, cell phones, and laptops, are making pervasive (or ubiquitous)
networking a reality. Many applications such as email and micro-browsers can
now successfully run in mobile wireless networks. However, while issues such
as ad hoc routing [1] and security [5] have been well researched, the issue of
QoS for mobile multimedia over MANETs needs further consideration. There
are three main sources of problems: mobility, wireless-ness, and multimedia [24].
It is well-known that multimedia contents, especially audio and video, require
a much higher network bandwidth. The topology of mobile ad-hoc networks is
likely to be highly dynamic, due to unpredicted mobility of network nodes and
consequent dynamic topology of the network itself. The limited bandwidth of
wireless channels between nodes further exacerbates the situation, as message
exchange over-heads of any QoS-provisioning algorithms must be kept to a min-
imum. In addition, other wireless and mobility features cause further problems,
such as varying bandwidth, variable bit error rate, possibly asymmetric connec-
tivity, and unexpected quality degrade during handoff.

For smooth running of mobile multimedia application four QoS parameters:
bandwidth, cost, delay bounds, and security, need to be appropriately set (or al-
located) so that throughout the application the end-user gets the data as per
his/her requirement. These factors are the important parameters for making
adaptation decisions in MANETs. Among these four parameters, bandwidth is

QoS Management in MANETs Using Norm-Governed Agent Societies 223

the most important measure and is usually monitored in any type of applica-
tions. Cost and security factors are rarely mentioned in literature about mobile
applications, and it is difficult to measure them too. Delay bound is another
important measure, especially for mobile multimedia applications, since stream-
ing media is very sensitive to latency. Besides bandwidth and latency, error rate
is also a very important measure for mobile multimedia applications because
multimedia compression is very sensitive to errors.

In order to achieve QoS guarantee for mobile multimedia applications in
MANETs, at least three network measurements, namely bandwidth, latency and
error rates, need to be monitored. To precisely represent these network quality
measures in applications, a standard measure of application-level data quality
for mobile multimedia applications is also required, as well as a mapping scheme
between this application measure and the network measures. For example, the
degree to which a data item used by a mobile client matches a reference copy, is
used as a measure of data quality. It is mapped to the available bandwidth of a
MANET.

Since network conditions may change very quickly in MANETs, to measure
these parameters we need network monitoring methods for mobile multimedia
applications to be able to detect changes as fast as possible. Active monitoring,
in addition to competing with applications for scarce bandwidth, causes large
delay to get results, therefore it is inappropriate for agile network monitoring.

Besides network monitoring, we need also some special requirements for mo-
bile multimedia applications. For example, streaming media applications require
timely delivery of data and use protocols like RTP and RTSP [19]. Therefore,
many TCP-based network monitoring techniques cannot be applied to stream-
ing media applications. The RTP Control Protocol (RTCP) can be used to get
feedback including packet loss and jitter information from the receivers of an
RTP media stream. However, packet loss or jitter can be found in the feedback
from a MANET, caused by either congestion or error in the radio links. If the
sender cannot distinguish congestion from error, it may apply inappropriate QoS
adaptation methods and the problem will remain.

Some of the key requirements of QoS adaptation for mobile multimedia ap-
plications are: automated data format adaptation without user intervention,
graceful quality degradation, seamless handoffs across networks during roaming,
and high QoS with low jitter, delay, and guaranteed bandwidth. To fulfil these
requirements, a number of different approaches can be applied to achieve QoS
adaptation for mobile multimedia. Given the nature of the problem, some at-
tempts have been made to deploy mobile agents for solving these dynamically
adaptable problems [14, 15]. This is the basis of the multimedia network support
platform (MNSP) [25].

However, as with routing, QoS provisioning critically depends on cooperation
between nodes. However, it is possible that some nodes can behave ‘selfishly’ and
drop other applications’ traffic in order to preserve its own multimedia service and
application requirements and/or resources (cf. [27]). Since nodes in a MANET
communicate on a peer-to-peer basis and operate without a centralised authority

224 J. Pitt, P. Venkataram, and A. Mamdani

(which could monitor, detect and prevent/punish ‘selfish’ behaviour), we need a
distributed approach to achieving a ‘fair’ allocation of resources. Naturally agents
are a compelling paradigm for this style of distributed problem solving, but in this
case the notions of ‘selfishness’, ‘fairness’, ‘judgement’ and ‘punishment’ are all
socio-legal concepts determined relative to a ‘code of conduct’ (which presumably
a node agrees to when it joins a MANET). Therefore we also require a conceptual
understanding of agents at a higher level abstraction: in this case, we use the
abstraction offered by norm-governed multi-agent systems.

3 Norm-Governed Multi-agent Systems

A software agent is generally considered to be a software process embedded
in an electronic environment, which encapsulates a state, reacts to changes in
the environment depending on that state, and asynchronously communicates
with other embedded agents. A multi-agent system is a useful design abstrac-
tion which focuses on the logical distribution of responsibility and control (as
opposed to the physical distribution of resources and methods), interoperability
between heterogeneously designed components and composition of independent
services, interaction at the knowledge level (rather than mere data transfer), and
autonomic policies (i.e. policies which deal with recovery from errors or other
unexpected events).

A norm-governed multi-agent system refers to any set of interacting agents
whose behaviour is regulated by norms, where a norm is a rule which prescribes
organizational concepts like permission, obligation, sanction, and so on [11]. The
advantages of norm-governed systems are the abilities to provide formal (logical)
definitions of responsibility and control, to represent interoperability in terms of
external, executable specifications, and to reason about non-ideal states of the
system (i.e. the system state as it is, not as it should be), and so facilitate
self-repair.

Any set of networked nodes with a dynamic topology that features distributed
functionality, asynchronous communication decentralised command and con-
trol, partial knowledge, local decision-making, delegated responsibility and au-
tonomous action can be regarded as an instance of a multi-agent system. These
are all general features of mobile ad hoc networks. Therefore it is reasonable to
consider an agent-based approach to MANETs.

There are however three further characteristics of MANETs. Firstly, each
component is opaque (there is no direct access to its internal state), so there is
no notion of global utility (components may act in their own self-interest), and
behaviours and interactions are unpredictable in advance. For these reasons, it
may be that a component in a MANET fails to comply with the system specifi-
cations, either by design, by accident or from necessity. Secondly, because of the
dynamic, open and even volatile nature of the system, the design-time specifi-
cations may need to be modified at run-time; and thirdly, because of the com-
plex and unpredictable nature of the system, the system specifications may only
be partially given at design-time, and the components themselves complete the

QoS Management in MANETs Using Norm-Governed Agent Societies 225

specifications at run-time. Dealing with non-compliant behaviour, self-modifying
code and incomplete specifications can be addressed by the norm-governed ap-
proach, where appropriate behaviour can be stipulated using concepts stemming
from the study of legal and social systems: e.g. permissions, obligations and other
normative relations such as power, right and entitlement. Therefore it is reason-
able to consider a norm-governed multi-agent system for MANETs.

What we propose here is to converge ‘heavyweight’ agents, which operate
in the domain of norms and ‘codes of conduct’ about QoS provision, with the
multimedia network support platform (MNSP) whose processes operate in the
domain of network-centric events and parameters in providing QoS itself. This
is the basis of our QoS Management Framework presented in the next section.

4 QoS Management Framework

4.1 Design Challenges

To build agents for QoS management in MANETs that should combine their cog-
nitive and reactive abilities for QoS management tasks. Furthermore, designed
agents should be self-adaptive (i.e., capable of playing several roles). Such an
agent-based system will provide automated provisioning of QoS that relies on
an intelligent analysis of network QoS events and a corresponding automatic
reconfiguration of agents in order to ensure guaranteed QoS (cf. [20, 26]). Effec-
tively we are trying to solve a type of dynamic consensus problem in MANETs
(cf. [7]).

In order to meet system’s functional requirements, modelling of multi-agent
system for QoS management is faced with several design challenges. The pro-
visioning and support of adequate QoS for a large and diverse user population
(running many different applications with different wireless devices) is not a sim-
ple process. Agents should track the QoS distribution of observed flows, compare
the QoS-related parameters of real-time flows against the negotiated QoS, detect
and locate possible QoS degradation, and then tune and reconfigure network re-
sources accordingly to sustain the delivered QoS. In order to accomplish that goal
a multi-agent system has to use QoS distribution monitoring that provides infor-
mation about QoS characteristics experienced by the real-time flow in different
network segments. In contrast to conventional end-to-end QoS monitoring, QoS
distribution monitoring is able not only to detect possible QoS degradation, but
also to provide more information for locating and predicting that degradation.

The designed agents for QoS management should satisfy different kinds of ser-
vice level agreements/policies that define qualitative and/or quantitative char-
acteristics of QoS between service providers and application users as well as
among service providers themselves. One of the main issues regarding the im-
plementation of service level agreements is the diversity of used architectures,
technologies and protocols in MANETs as well as their continuous change. It is
evident that such a trend in development of communication networks makes it
difficult to guarantee agreed QoS to a user application.

226 J. Pitt, P. Venkataram, and A. Mamdani

4.2 MANET Structure

The proposed multi-agent system based QoS framework assumes that the struc-
ture (topology) of the MANET is that it has been clustered and each cluster
has a Cluster-Head (CH) to administer the activities of the cluster. Some of the
assumptions are:

– The CH is selected based on its rich network resources availability and its
communication range covers all the hosts in the cluster.

– The CH in the set of clusters effectively provide the MANET backbone,
other nodes in range of more than one CH are gateways between clusters.

– If the CH moves out of the cluster or is running short of resources, another
host will be selected as CH [9].

– The CH is aware of all the applications running on all the hosts of the
applications.

– The multi-agent system based QoS framework is implemented on the CH.

Figure 1 shows a cluster of MANET with a cluster-head (CH) and four hosts.
The CH supports different sets of multimedia applications running on all its
hosts but their data pass through the cluster-head of the cluster, CH.

Fig. 1. MANET with Clusters; Cluster with Hosts

Note that one of these assumptions, the appointment of the Cluster Head, is
a classical problem for norm-governed systems. In particular, the appointment
of a node to Cluster Head is a role assignment, which if correctly performed
assigns certain powers, permissions and obligations to the node (by virtue of it
occupying this role, cf. [2]).

4.3 Architecture of the QoS Framework

The multi-agent based QoS framework consists of two layers: the top layer is a
a norm-governed multi-agent system (MAS), which runs over the bottom layer
which is the multimedia network support platform (MNSP) [25] (itself running
over a modified TCP (M-TCP) protocol, which we do not consider further here).

In the top layer, one process for each host, there are the socially-organized
‘intelligent’ agent who coordinate their activities according to the norms of the
society and the needs of the applications running on their respective host. In

QoS Management in MANETs Using Norm-Governed Agent Societies 227

operation, the Cluster Head creates an agent which is called the chair-process
(CHCP), for reasons which will be discussed below, and initialises a number
of processes for running the communications between the MAS-layer and the
MNSP-layer (see below).

The bottom layer, the MNSP, is an intelligent multimedia transport service
for transmission and reception in mobile multimedia applications like VoIP and
video conferencing, Education-on-Demand (EoD), etc., but can also be used as a
general service for a multimedia market place. Services offered include specialised
Video-on-Demand (VoD), hypervideo, video-rating, conventional publishing ser-
vices (infography, animation, design assembling, etc.,) and electronic commerce
on virtual gallery and education.

The MNSP consists of five components which runs at the cluster-head (CH).
Each of these components is designed with Intelligent Network based concepts
and real time communication features. These components are: Synchronization
API, Quality of Service (QoS) API, Call Admission Control (CAC) API, Buffer
Management (BM) API and Playout system. These components allow the MNSP
to support in implementation the decisions taken by the agents in the MAS-layer.

Communication between the MAS-layer and the MNSP-layer is through a
number of lightweight processes, some of which are ‘static’ and some of which are
mobile (and can either be implemented as intelligent packets or mobile ‘agents’).
These processes include:

– Resource-monitoring process (RM-proc), is a static process which monitors
regularly the host’s multimedia applications’ requirements and reports to
the Cluster Head RM-Proc;

– Session-Registry process (SR-proc) is a static process which registers all the
sessions established on all the hosts of the cluster;

– Network Status collection process (NStat-proc), which is a mobile process1

[14, 15] which visits all the hosts and collects network status information,
including congestion, data loss, delays, etc. for a specified duration;

– Request-collection process (Req-proc), which are mobile processes that de-
liver the resource requests from the hosts. These include the requirements
for immediate needs and predicted requirement.

– Vote processes (V-proc), which are mobile processes that collects votes (on
requests) from each host in the cluster and communications the outcomes of
each vote.

Note that static processes RM-proc and SR-proc run at each Host, the mobile
processes are initiated at the Cluster Head and execute at each of the hosts.

In the next section, we illustrate the functioning of the QoS framework
through a shared-session mechanism, and then show how the need for sharing
sessions can be identified in the MNSP-layer, communicated to the MAS-layer
by the lightweight processes, and resolved in the MAS-layer by the intelligent,
‘normative’ agents.

1 We use the term process to distinguish these from the normative agents in the MAS-
layer, but in [14, 15] these processes are referred to as (mobile) agents.

228 J. Pitt, P. Venkataram, and A. Mamdani

5 Session-Sharing Mechanism

Mobile multimedia applications generally carry huge data from the source to
the destination, while either the source or destination or both are on the move.
Generally, these applications are divided into set of sessions for the better man-
agement of the data in the MANETs. Sometimes, a single host may be receiving
the data from a single server for its set of end-users by creating separate parallel
sessions which costs heavily for service providers.

To discuss session sharing, let us assume a user starts watching a football
match (live) on a PC. This transaction may be broadly divided into the fol-
lowing events: the capturing video and audio at the ground, A/D conversion,
Receiving and on-line editing at studio, data-recording, sending on the Inter-
net, audio/video stream is read, demultiplexed, decoded, and played-out. In other
words, this system has ten events in its event-flowgraph (see Fig. 2).

Fig. 2. Event Flowgraph

Figure 2 depicts an event-flowgraph of watching of a football match, a mo-
bile multimedia application. However, there is a possibility of several end-users
scenarios: two of them are:

– the user that initiated the playback simultaneously wants to watch the foot-
ball match using a second device as audio/video output – for instance a
mobile system. Or another user wants to join watching the match on a dif-
ferent system, maybe at a different location.

– two users want to watch the match on the same screen while listening to
different audio tracks (e.g. different languages) with a mobile device.

In both cases, there are events in the flowgraphs for the delivery of multime-
dia content to the second device which are shared with the flowgraph depicted
in Fig. 2. Sharing of sessions is necessary in cases where only a single device

QoS Management in MANETs Using Norm-Governed Agent Societies 229

exists to perform a certain operation, but sharing can also be used to leverage
efficiency by sharing computational resources among tasks. Therefore, we create
an event-flowgraph for every registered session. Events of this flowgraph and
implicitly edges connecting events can be marked as sharable to be reused by
other applications within their event-flowgraphs as shared sessions (cf. [6]).

We have therefore designed a session sharing mechanism (SSM) in the QoS
framework. The SSM can initiated by the CHCP whenever it gets the signal
for session sharing from the session registry processes (SR-proc). The general
mechanism is as follows:

– New session request Si arrives at host Hm

– SR-proc at Hm derives the the event flowgraph of Si

– if the derived event-sequence matches with an existing session Sj , then SR-
proc at Hm requests to SR-proc at CHCP for a shared session; otherwise it
registers Si as an individual session with SR-proc at CHCP;

– SR-proc at CHCP passes the request to the multi-agent deliberative assem-
bly (see the next section).

Session sharing is the mechanism which allows new requests of a host to join
in the middle of a session to cater the requests of its end-users. For example,
consider that a session S1 as illustrated in Fig. 2 which is in progress, and S2 is
another session which needs to be started but has the last four events in common.
The Registry agent analyses the event-flowgraph of S2 and determines that parts
are shareable with S1. It then signals to signals SR-proc for SSM initiation. The
SR-proc defers the decision to the MAS-layer using a Req-proc process, and if
a favourable outcome is achieved (as discussed in the next section) the SSM
waits for an appropriate session event on both event-flowgraphs and starts the
session S2 from that event onwards.

6 Multi-agent Deliberative Assemblies

This section gives a (partial) formal specification of the norm-governed MAS
layer. We begin with an overview of the treatment of the MAS layer as a multi-
agent deliberative assembly, consider the interaction between the MNSP and the
MAS layer, and then define the actions required to make decisions in the MAS
layer. This definition will use axioms specified in the Event Calculus [12]: while
the exposition here is (or tries to be) self-contained the work in [18, 17] does
provide useful background. We conclude this section with a broad discussion of
a number of open issues.

6.1 Overview

All the requests for session sharing or individual sessions are passed up to the
MAS-layer for deliberation and decision. Essentially we are doing resource allo-
cation and coordination, but by passing requests from the MNSP-layer to the
MAS-layer, we are decentralising the decision-making process and allowing local

230 J. Pitt, P. Venkataram, and A. Mamdani

network conditions to determine the outcome. In this way, the MAS-layer acts
as a kind of deliberative assembly as studied in [18, 17], but the decisions about
whether to accept shared sessions (or not) are taken collectively, based on local
decision-making and/or other policies. There are a number of policy decisions
that can be made here, in particular we need to determine:

– Under what conditions do we want to manage resource allocation in existing
sessions based on some kind of appointed chair, floor control protocol and
system of entitlements (cf. [2])?

– Under what conditions do we want to manage resource allocation in existing
sessions based on voting protocols (cf. [17])?

With each of these options, there are further questions: for example, with the
floor control approach, do we want the floor assignment to be chaired or non-
chaired. With the voting protocol approach, do we want specially-designated
(e.g. heavily-loaded) hosts get a veto rather than a vote? Fine-tuning the precise
operation of the resource allocation decision-making mechanics is a subject for
further investigation. Finessing these finer details for the moment, the rest of
this section is concerned with establishing the broad details of the operation of
the MAS-layer, which can be used as a base from which these finer details can
be ‘tweaked’.

6.2 MNSP-Layer to MAS-Layer

All the hosts collect information on their new applications to be scheduled and
their resource requirement, existing running applications and their usage, re-
maining net resources, etc. This information is periodically sent by each host by
its RM-proc to the RM-proc at CHCP. The SR-agent assists the CHCP in reg-
istering all the sessions created by all the hosts of the cluster. The chair-process
collects the host requests and network status, and periodically calls a meeting.
The meeting schedule is broadcast by a V-proc to all the hosts with an agenda.
At the time of meeting, the chair initiates discussion and optionally gives an
opportunity for every host to present their case to all the other hosts. Later
the CHCP sends a V-proc to collect the vote on the decision (i.e. their opinion
on resource allocation). The CHCP concludes the meeting by giving the rulings
based on the consensus and this is communicated by a V-proc to all hosts. The
decisions are passed to MNSP to implement in the next time interval.

The primary decisions which need to taken are over session sharing. Ab-
stractly, the problem is this. Suppose agent a1 has established a session with a
flowgraph of x events thus:

e1
1 e1

2 e1
3 . . . e1

x

Now suppose agent a2 requests a new session and the derived flowgraph for
the sessions has y events, thus:

e2
1 e2

2 e2
3 . . . e2

y

QoS Management in MANETs Using Norm-Governed Agent Societies 231

e1
1 e1

2 . . . e1
i−1

e2
1 e2

2 . . . e2
m−1

e1
i . . . e1

j

e2
m . . . e2

n

e1
j+1 . . . e1

x

e2
n+1 . . . e2

y

a1 a1

a2 a2

{a1, a2}
�

��

�
��

�
��

�
��

Fig. 3. Shared Flowgraphs

and suppose further that the flowgraph shares events e2
m . . . e2

n in common with
e1

i . . . e1
j . We now want to set up a collective flowgraph as shown in Figure 3, in

which the event chains e1
i . . . e1

i−1 and e1
j+1 . . . e1

x are ‘owned’ by a1, the event
chains e2

1 . . . e2
m−1 and e2

n+1 . . . e2
y are ‘owned’ by a2, and the shared events are

owned jointly by a1 and a2. Then, when new sessions are started, it is only those
agents who ‘own’ specific events who get to vote on whether or not they should
be shared.

The CHCP operation is specified in Algorithm 1. A voting protocol required
for steps 8-10 has been analysed and specified in [18, 17], while a resource allo-
cation protocol required step 11 has been similarly analysed and specified in [2].
In the next section, we consider a formal specification which effectively merges
these these two protocols and allows the agents to organise the sharing of sessions
between themselves.

6.3 Formal Specification

For the sake of simplicity, we will not consider the complete voting protocol as
defined in [18, 17]. For our purposes here, we can define (informally) the required
steps as:

– a session is opened;
– a number of motions are tabled;
– each motion in turn is proposed;
– the chair calls for a vote on each motion (opens a ballot);
– the agents empowered to vote (in a sense made explicit below) cast their

votes;
– the chair closes the ballot;
– the motion is declared carried, or not, as determined by the votes cast and

the standing rules (e.g simple majority);
– after all motions are processed, the chair closes the session.

232 J. Pitt, P. Venkataram, and A. Mamdani

Algorithm 1. Functioning of CHCP
1: Begin
2: Chair-process of CH (CHCP) is activated
3: while true do
4: if a Req-proc arrives or NStat-proc reports on MANET changes then
5: Begin
6: Initiate the meeting.
7: Inform the hosts: H1, H2,....Hn, about the meeting time.
8: During the meeting consider the following: Urgent requests(URs) and/or

Shared Sessions(SSs) and/or Individual Requests(IRs).
9: Chair-process requests for vote and is collected by V-agent.

10: Chair-process gives a ruling on allowing: URs and/or SSs and/or IRs.
11: The decision is implemented by the MNSP as per the ruling.
12: End
13: else
14: Wait for next set of requests.
15: end if
16: end while
17: End

In particular, note we do not anticipate motions being seconded or open for
discussion, e.g. for agents to present their cases.

Given this informal specification, all that remains is to modify the formal
specification given in [18, 17] to accommodate these changes. The modifications
required are as follows:

– to request a shared session: this requires proposing a motion to share each
event in the flowgraph;

– to grant sharing an event: the event in the flowgraph is shared and the
requesting agent is now a joint ‘owner’ of the event (this is equivalent to
gaining shared access to a controlled resource, as in the resource allocation
protocol studied in [2]);

– to enforce sharing an event: this can be ‘dictated’ by the chair in response
to Urgent Requests or in the case where there is an entitlement to share an
event which pre-empts a vote;

– to release ownership of an event: on session termination an agent voluntarily
gives up ownership of a shared event;

– to revoke ownership of an event: the chair may also revoke ownership of an
event, e.g. as a sanction on an agent for inappropriate behaviour.

We next give axiomatic specifications in the Event Calculus for each of these
actions.

Shared Session Request. The session is started with the status of each motion
tabled to be pending, e.g. for the sharing of events in the two sessions above, we
would have:

QoS Management in MANETs Using Norm-Governed Agent Societies 233

initially status(share(a2, e
1
i)) = pending

initially status(share(a2, e
1
i+1)) = pending

...
initially status(share(a2, e

1
j)) = pending

From the derived flowgraph for a2’s session, it is known that event e1
i is to be

shared with e2
m, and if this motion is carried, it is that sharing of the two event

that is communicated to the MNSP layer.
Then, for each motion, the propose action sets in train the sequence of steps

in the protocol outlined above, for example, a specific instance of this axiom
would be:

propose(a2, share(a2, e
1
i)) initiates status(share(a2, e

1
i)) = proposed at T ←

pow(a2, propose(a2, share(a2, e
1
i))) holdsAt T

In other words, if a2 has been empowered (by some role assignment protocol,
not discussed here) to make proposals in this MANET, the action above will
change the status of a tabled motion so that the chair can call for a vote on it.
Note that a2 is empowered if it occupies the role of proposer, and the motion
has the appropriate status, i.e.:

pow(a2, propose(a2, share(a2, e
1
i))) holdsAt T ←

status(share(a2, e
1
i)) = pending holdsAt T ∧

role of (a2, proposer) = true holdsAt T

Granting Shared Event. Once a motion has been voted on, and if it has enough
votes (according to the standing rules of the MANET) to carry, then the chair
is empowered to declare that it has carried (indeed, in the formalisation given in
[18, 17], the chair is not just empowered but also obliged to exercise that power).
As a result, we also want the declaration to grant (joint) ownership of the event,
as follows. (Note unlike the axiom given above, this is a generic instance, where
A and C take the value of an agent, E the value of an event, and so on.)

declare(C, share(A, E), carried) initiates granted(A, E) = true at T ←
pow(C, declare(C, share(A, E), carried)) holdsAt T

Whether or not an agent has been granted ownership of an event determines if
the agent has (or has not) the power to vote on a motion when the chair opens
the ballot on that motion. Recall that agents only vote on shared events that
they ‘own’ (have been granted), so the required axiom is:

pow(V, vote(V, share(A, E))) holdsAt T ←
status(share(A, E)) = voting holdsAt T ∧
role of (V, voter) = true holdsAt T ∧
granted(V, E) = true holdsAt T

234 J. Pitt, P. Venkataram, and A. Mamdani

Enforcing Shared Event. There may be occasions when the agents are required
to circumvent the ‘niceties’ of the voting protocol and the chair can simply
override the rules. Two occasions are firstly, when there is an urgent request, and
secondly, when there is an entitlement (to a resource or event) which may have
been established by some pre-existing contract like a Service Level Agreement
(SLA). On such occasions, we want to allow that the chair agent may simply
assert that the requesting agent be granted ownership of the event, as follows:

assert(C, share(A, E)) initiates granted(A, E) = true at T ←
status(share(A, E)) = pending at T

pow(C, assert(C, share(A, E))) holdsAt T

C is empowered in situations specified by the following axioms:

pow(C, assert(C, share(A, E))) holdsAt T ←
role of (C, chair) = true holdsAt T ∧
status(share(A, E)) = pending holdsAt T ∧
urgent(share(A, E)) = true holdsAt T

pow(C, assert(C, share(A, E))) holdsAt T ←
role of (C, chair) = true holdsAt T ∧
status(share(A, E)) = pending holdsAt T

entitled(A, E) = true holdsAt T

Note that the assert action also immediately updates the status of a motion
to be resolved, without going through all the intermediary steps of the voting
protocol:

assert(C, share(A, E)) initiates status(share(A, E)) = resolved at T ←
status(share(A, E)) = pending at T

pow(C, assert(C, M, carried)) holdsAt T

Release Shared Event. Once an agent’s session has terminated it no longer has
need of the event/resources allocated to that session. It can ‘gracefully’ withdraw
by releasing its ownership, so that it no longer gets a vote on sharing this event:

release(A, E) initiates granted(A, E) = false at T ←
pow(A, release(A, E)) holdsAt T

pow(A, release(A, E)) holdsAt T ←
granted(A, E) = true holdsAt T

Revoke Shared Event. Finally, we want to allow for the chair agent to revoke
‘ownership’ of an event, e.g. to reclaim resources or as a sanction applied as
a consequence of ‘inappropriate’ behaviour on the part of the granted agent.

QoS Management in MANETs Using Norm-Governed Agent Societies 235

Therefore we also require the axiom:

revoke(C, A, E) initiates granted(A, E) = false at T ←
pow(C, revoke(C, A, E)) holdsAt T

and the chair is empowered to revoke under the conditions outlined above.

6.4 Further Issues

A key advantage of MANETs is that the nodes communicate directly in peer-to-
peer fashion; it then follows that the agents do too. Arguably, this then becomes
a disadvantage, because there is an absence of any stable infrastructure com-
ponents, in particular the cluster head (the chair agent). This complicates the
issue of handoff: if the cluster head becomes unavailable it has to be replaced.
One way to do this of course is to organise a candidate election, however, the
existing voting protocol can be used directly. In such an election, it is possible
for candidates to have a manifesto: one issue is to examine whether cluster head-
handoff should include continuity of the existing management policies or could
encompass a vote on alternatives. This might allow other ‘QoS attributes’ to be
evaluated: e.g. responsiveness, fairness, and so on.

The specification can be animated to reason dynamically about the agents’
normative positions (i.e. a characterisation of their powers, permissions, obliga-
tions and so on). One aspect of further research is to link the agents’ knowledge
of their normative positions with respect to the ‘code of conduct’ for the MANET
(which may also get a formal, contractual representation) to their actual QoS
resource commitments (current and predicted) to inform the decision-making
algorithm which outputs the actual vote (‘yes’ or ‘no’). There are also strategic
considerations which could be accommodated in this decision. Some of these
aspects are addressed by related works considered in the next section.

7 Related Work

The issue of QoS in general and in MANETs in particular has received consider-
able attention since the technology has been deployed and ever greater demands,
especially for multimedia, has been placed on it. Several research groups have
adopted a multi-agent approach to developing a solution. In this section, we
consider a representative cross-section of this work and relate it the current
proposal.

7.1 Strategy-Centric Adaptive QoS

Suganuma et al. [21] develop a multi-agent system architecture with a strategy-
centric adaptive QoS control mechanism. The application considered is video-
conferencing, and the problem addressed is to ensure smooth operation in the
light of changing user requirements, system and network environments. In par-
ticular, it was inappropriate to demand that users manage this operation for

236 J. Pitt, P. Venkataram, and A. Mamdani

themselves. Therefore the ‘intelligence’ to respond to changes was to be found in
agents, and the developed system worked by tailoring the QoS control strategy
to the characteristics of detected changes.

The system architecture model conceptually comprised two layers:

– the domain cooperation layer: specific knowledge and protocols (to interact
between agents) are applied to satisfying QoS, as determined by the currently
selected strategy; and

– the strategy selection layer: given a class of problems and library of strategies,
agents select the most appropriate strategy for a ‘given’ problem (current
operating conditions). The strategy is selected by negotiation.

The strategy-centric QoS control operates by transitions between the two modes
of operation, according to event which change the parameters and/or class of
‘problem’.

This two layer architecture broadly corresponds to the two-layer framework
proposed here. The MNSP corresponds to the domain cooperation layer, i.e. it
is concerned with multimedia transport; and the MAS layer corresponds to the
strategy selection layer, i.e. it is concerned with the meta-level decision-making
with respect to the cooperative behaviour that is essential for multimedia QoS
provisioning in MANETs.

Note, however, that the norm-governed specification described above needs to
be informed by an appropriate decision-making module which effectively deter-
mines the way in which to vote. These strategies and associated algorithms to
implement them have not been addressed in the current work. However, we could
expect that the strategies could be derived from this work, suitably moderated
to take into account the normative aspects of cooperative behaviour, and indeed
other socio-cognitive and/or socio-economic factors (e.g. trust, reputation and
recommendation [16].

7.2 3-Level QoS Control

Iraqi et al. [10] present a 3-level multi-agent architecture. Their application is
wireless ATM and the specific problem is network congestion control. While
ATM and congestion control are only loosely related to our concerns here, the
agent architecture for a self-regulating control mechanism does relate closely to
our proposal.

The 3 layers of this proposed architecture are hierarchically organised as:

– a ‘lower’ system level layer, composed of switch agents, which monitor net-
work component behaviour (i.e. the local ATM switch and its associated
buffers) and control that behaviour according to directives stemming from
the ‘upper’ layer;

– an ‘upper’ domain level layer, composed of domain agents, which are respon-
sible for intelligent processing and decision-making based on more global
knowledge about network conditions;

– a ‘super agent’, which is responsible for an entire management domain and
the implementation of management policies within that domain.

QoS Management in MANETs Using Norm-Governed Agent Societies 237

The advantages of this architecture are that, firstly, the delegation ‘down’ the
hierarchy of performance management to the appropriate level (i.e. the switches)
and so minimising control information exchange; and secondly the aggregation
‘up’ the hierarchy of information which provides end-to-end knowledge which
informs management decisions which become delegated actions. It is precisely
these advantages that we seek to leverage by having lightweight mobile agents in
our ‘lower’ layer (the MNSP) and heavier normative agents in the ‘upper’ layer.

Thus this 3 layer architecture also broadly corresponds to the framework
proposed here. Clearly the switch agents correspond to the mobile agents in the
MNSP, and the domain agents correspond to the normative agents in the MAS
layer. The super agent corresponds to the chair agent running on the cluster
head (CHCP).

However, the most substantive difference is in the perception of the chair agent
versus that of super agent. The 3-layer model views the super agent as having
a management policy it can delegate to other agents to enact. Our model views
the chair agent as a primus inter pares (first amongst equals) and so neutral
with respect to decisions made by the cluster. It can only coordinate decisions,
it cannot dictate them (except, as we have seen, in the case of entitlements).

As an aside, Iraqi et al. note that for the task (we would say ‘role’) of a
super agent “The DAs [domain agents] can also elect one special agent for this
task. This process is out of the scope of this study.” The mechanisms for robust
voting/election are precisely those outlined here and in [18, 17].

7.3 QoS Routing in MANETs

Mantilla and Marco [13] address the problem of QoS routing in MANETs, i.e.
finding a source-destination path with the necessary resource available, meeting
constraints on bandwidth, delay, packet loss, etc., subject to the dynamically
changing link conditions of the network.

In this work, two classes of agent are identified, Solicitor Agents and Supplier
Agents. The solicitor agent consults routing tables and sends out messages (calls
for proposals, or cfp) to adjacent nodes (and so on until the destination), while
Supplier Agents consult available resources at the node to determine how to
respond.

In our terms, agents consulting routing tables and checking available resources
are pro-active functions of the MNSP. Furthermore, we would not distinguish
between classes of agent, these are both agents who happen to occupy different
roles in the contract-net protocol (of which the cfp is the initiating message).
Note that a full and comprehensive analysis of the contract-net protocol, using
norm-governed agents, is given in [3].

7.4 MAS for QoS Management

Trzec and Huljenic [22] apply an agent-oriented software engineering methodol-
ogy to QoS management, using MESSAGE (an agent-oriented extension of
UML). This work gives a functional definition of the system from the organiza-
tional, goal, role, interaction and domain perspectives. From this analysis, they

238 J. Pitt, P. Venkataram, and A. Mamdani

draw a 4-layer architecture, with communication, QoS, collaboration and service
layers. In our framework, we would expect that the functionality of the commu-
nication and QoS layers to be supported by the MNSP, while the functionality of
the collaboration and service layers should be provided by the MAS layer. The
use of Service Level Agreements, like management policies, is a very interesting
idea.

However, leaving aside the fact that we find it very difficult to take an orga-
nizational perspective without considering any form of norm, the main problem
here is what happens to the system when agreements are not fulfilled. One of the
major motivations for the norm-governed approach is the requirement to deal
with behaviour that deviates from the ideal. In other words, malfunctioning,
either by intent or circumstance, is to be expected. The application of software
engineering methodologies is generally concerned with the development of ‘cor-
rect’ systems which function correctly, and don’t consider that a system can still
function, even if that functioning is sub-ideal or non-normative. How to detect
and recover from such situations is essential; detection is of course an an integral
part of the norm-governed approach; but for recovery we use the idea sanctions;
while there is also a link here to related work on forgiveness [23].

8 Summary, Further Work and Conclusions

We have proposed a framework to provide QoS management to multimedia ap-
plications in MANETs (cf. [4]). In particular this framework was based on a two-
layer architecture; a MAS-layer which made decision according to norm-governed
policies and protocols, and a network-layer (the MNSP) which provided network-
centric information up to the the MAS-layer and enacted decisions made at the
MAS-layer. The glue between the two layers were a number of static and mobile
processes. We believe that the mobile multimedia applications and wireless Inter-
net services can significantly benefit from the framework. The framework exhibits
several enabling properties: QoS awareness, to manage service components ac-
cording to agreed-on QoS levels; location awareness, to enable runtime decisions
based on network topology; and the current status of involved resources.

At this stage of our research we emphasise that in effect this paper is a speci-
fication of a proposed system. Quite clearly, what is required in the next stage of
research is experimental evaluation, simulation and mathematical modelling and
analysis. We are in the process of implementing this proposed QoS framework
with the intention of pursuing two further lines of inquiry: firstly, simulation ex-
periments; and secondly, physical implementation. Simulation can be performed
with respect to existing protocols, e.g. RSVP, for comparative evaluation; while
actually building and running the system should provide unexpected insights and
highlight issues that are in need of further investigation (it has been reported
before that real world operation of MANETs can be substantially different from
simulated networks, e.g. [8]). This will also permit consideration of the many
issues involved in handover, e.g. of roles, sessions, and powers (by delegation).

QoS Management in MANETs Using Norm-Governed Agent Societies 239

Furthermore, the present telecom/datacom services will have to meet a num-
ber of QoS requirements resulting from rapidly changing markets and technolo-
gies. Within this open market of services, the aspects of their customisation and
instant provision are of fundamental importance. The intrinsic features of norm-
governed multi-agent systems make it possible to address a number of problems
related to the diversity of telecom/datacom infrastructure and services. In par-
ticular, in this paper has initiated an investigation into the extent to which
norm-governed multi-agent systems can be used for self-determination of QoS
management in MANETs. As such this is a contribution to the realisation of
the vision of ubiquitous networking, the idea that (unlike ubiquitous computing,
where essentially the devices are invisible) we acknowledge the presence (and
limitations) of the device, and seek to render the network itself invisible and yet
ensure the device is transparently, and permanently connected.

Acknowledgements

This Indo-UK collaboration has been supported with the assistance of UK EP-
SRC Overseas Travel Grant (OTG) GR/T20328. The comments of the anony-
mous reviewers have been especially useful and this is gratefully acknowledged.

References

1. M. Abolhasan, T. Wysocki, and E. Dutkiewicz. A review of routing protocols for
mobile ad hoc networks. Ad Hoc Networks, 2:1–22, 2004.

2. A. Artikis, L. Kamara, J. Pitt, and M. Sergot. A protocol for resource sharing
in norm-governed ad hoc networks. In J. Leite, A. Omicini, P. Torroni and Pinar
Yolum, editors, Proceedings of the Declarative Agent Languages and Technologies
(DALT) Workshop. LNCS 3476, pp. 221–238, Springer-Verlag, 2005.

3. A. Artikis, J. Pitt, and M. Sergot. Animated specifications of computational soci-
eties. In C. Castelfranchi and L. Johnson, editors, Proceedings AAMAS’02, pages
1053–1062. ACM Press, 2002.

4. J. Bolliger and T. Gross. A framework-based approach to the development of
network-aware applications. IEEE Trans. on Software Eng., 24:376–390, 1998.

5. S. Capkun, J.-P. Hubaux, and L. Buttyan. Mobility helps security in ad hoc
networks. In MobiHoc’03: Proceedings of the 4th ACM international symposium
on Mobile ad hoc networking & computing, pages 46–56, 2003.

6. D. Carlson and A. Schrader. Seamless media adaptation with simultaneous pro-
cessing chains. In ACM International Conference on Multimedia., pp. 781–788.
2002.

7. D. Cavin, Y. Sasson, and A. Schiper. Consensus with unknown participants or
fundamental self-organization. In I. Nikolaidis, M. Barbeau, and E. Kranakis, edi-
tors, Proceedings Third International Conference on Ad-Hoc, Mobile, and Wireless
Networks, ADHOC-NOW, pages 135–148, 2004.

8. K.-W. Chin, J. Judge, A. Williams, and R. Kermode. Implementation experience
with manet routing protocols. SigComm Comput. Commun. Rev., 32(5):49–59,
2002.

9. X. Du. Qos routing based on multi-class nodes for mobile ad hoc networks. Ad
Hoc Networks, 2(3):241–254, 2004.

240 J. Pitt, P. Venkataram, and A. Mamdani

10. Y. Iraqi, R. Boutaba, and A. Leon-Garcia. QoS control in wireless ATM. Mobile
Networks and Applications, 5:137–145, 1999.

11. A. Jones and M. Sergot. On the characterization of law and computer systems: The
normative systems perspective. In J.-J. Meyer and R. Wieringa, editors, Deontic
Logic in Computer Science. John Wiley and Sons, 1993.

12. R. Kowalski and M. Sergot. A logic-based calculus of events. New Generation
Computing, 4(1):67–96, 1986.

13. C. Mantilla and J. Marzo. A QoS framework for heterogeneous wireless networks
using a multiagent system. In 5th European Wireless Conference, pp. 61–67. 2004.

14. S. Manvi and P. Venkataram. Qos management by mobile agents in multimedia
communication. In DEXA Workshop, pages 407–411, 2000.

15. S. Manvi and P. Venkataram. Mobile agent based online bandwidth alloca-
tion scheme for multimedia communication. In GLOBECOM 2001 IEEE Global
Telecommunications Conference, pages 2622–2626. IEEE, 2001.

16. B. Neville and J. Pitt. A computational framework for social agents in agent
mediated e-commerce. In A. Omicini, P. Petta, and J. Pitt, editors, ESAW, volume
3071 of Lecture Notes in Computer Science, pages 376–391. Springer, 2004.

17. J. Pitt, L. Kamara, M. Sergot, and A. Artikis. Formalization of a voting protocol
for virtual organizations. In F. Dignum, V. Dignum, S. Koenig, S. Kraus, M. Singh,
and M. Wooldridge, ed., Proc. 4th AAMAS’05, pp. 373–380. ACM, 2005.

18. J. Pitt, L. Kamara, M. Sergot, and A. Artikis. Voting in online deliberative as-
semblies. In A. Gardner and G. Sartor, editors, Proceedings 10th ICAIL, pages
195–204. ACM, 2005.

19. H. S. A. Rao and R. Lanphier. RFC 2326 Real Time Streaming Protocol (RTSP).
IETF RFC2326.txt (http://www.ietf.org).

20. S. Choi and K. Shin. Predictive and adaptive bandwidth reservation for hand-
offs in qos-sensitive cellular networks. In Proceedings ACM SIGCOMM’98, pages
155–166. AAAI Press, 1998.

21. T. Suganuma, S. Lee, T. Kinoshita, and N. Shiratori. An agent architecture for
strategy-centric adaptive QoS control in flexible videoconference system. New Gen-
eration Computing, 19(2):173–192, 2001.

22. K. Trzec and D. Huljenic. Intelligent agents for QoS management. In C. Castel-
franchi and L. Johnson, editors, AAMAS’02, pages 1405–1412. ACM Press, 2002.

23. A. Vasalou and J. Pitt. Reinventing forgiveness: A formal investigation of moral
facilitation. In iTrust, pages 146–160, 2005.

24. P. Venkataram, editor. Wireless Communications for the next Millennium.
McGraw-Hill, 1998.

25. P. Venkataram, R. Rajavelsamy, S. Chaudhari, T.Ramamohan, and H. Ramakr-
ishna. A wireless rural education and learning system based on disk-oriented
MPEG streaming. International Journal of Distance Education Technologies,
1(4):20–38, 2003.

26. P. Venkataram and P. Sureshbabu. A QoS adaptation algorithm for multimedia
wireless networks. Journal of Indian Institute of Science, 80(3):195–215, 2000.

27. Y. Wang, V. Giruka, and M. Singhal. A fair distribution solution for selfish nodes
problem in wireless ad hoc networks. In I. Nikolaidis, M. Barbeau, and E. Kranakis,
editors, Proceedings Third International Conference on Ad-Hoc, Mobile, and Wire-
less Networks, ADHOC-NOW, pages 211–224, 2004.

O. Dikenelli, M.-P. Gleizes, and A. Ricci (Eds.): ESAW 2005, LNAI 3963, pp. 241 – 258, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Collaborative Agent Tuning: Performance Enhancement
on Mobile Devices

Conor Muldoon1, Gregory M.P. O’Hare2, and Michel J. O’Grady2

1 Practice & Research in Intelligent Systems & Media (PRISM) Laboratory,
School of Computer Science & Informatics, University College Dublin (UCD),

Belfield, Dublin 4, Ireland
{conor.muldoon}@ucd.ie

2 Adaptive Information Cluster (AIC), School of Computer Science & Informatics,
University College Dublin (UCD), Belfield, Dublin 4, Ireland
{gregory.ohare, michael.j.ogrady}@ucd.ie

Abstract. Ambient intelligence envisages a world saturated with sensors and
other embedded computing technologies, operating transparently, and accessible
to all in a seamless and intuitive manner. Intelligent agents of varying capabilities
may well form the essential constituent entities around which this vision is
realized. However, the practical realization of this vision will severely exacerbate
the complexity of existing software solutions, a problem that autonomic
computing was originally conceived to address. Thus we can conjecture that the
incorporation of autonomic principles into the design of Multi-Agent Systems is
indeed a desirable objective. As an illustration of how this may be achieved, a
strategy termed Collaborative Agent Tuning is described, which seeks to
optimise agent performance on computationally limited devices. A classic
mobile computing application is used to illustrate the principles involved.

1 Introduction

Complexity: in a word, the primary reason for the recent upsurge of interest, both
academic and commercial, in the area of autonomic and self-managing systems.
Autonomic implies a number of fundamental features including: self-configuring,
self-healing, self-optimising and self-protecting [1]. Augmenting software with such
properties is seen as essential to addressing this critical issue of complexity. It is
anticipated that the arrival of the ubiquitous computing era will give rise to a radical
reappraisal of how software should be developed, managed and optimised in an era of
unparallel pervasive access to computational technologies.

A spectatular rise in the use of mobile computing technologies has been witnessed in
recent years. Various interpretations of the mobile computing paradigmn, for example
ubiquitous and pervasive computing and more recently, Ambient Intelligence (AmI)
[2], have all been the subject of much research. Revenue projections suggest the
provision of applications and services to mobile users will become an increasingly
important revenue generator for many enterprises in the coming years. Thus the task
of differentiating products and services is one that will increasingly challenge and

242 C. Muldoon, G.M.P. O’Hare, and M.J. O’Grady

preoccupy service providers. One approach to this may well involve the utilisation
of intelligent techniques. While a number of candidate technologies exist, intelli-
gent agents are being increasingly seen as offering a viable approach towards realiz-
ing intelligent solutions within the technological confines that characterize mobile
computing.

A mobile computing landscape populated with multiple agent communities is
characterized by complexity and heterogeneity. Conceptually, this landscape could be
viewed as consisting of agents operating in small ecosystems, which themselves may
be perceived as nodes in a much larger networked agent society. Such nodes would be
invariablely mobile as they would predominantly operate on people’s mobile phones
and PDAs. Overtime, however, an increasingly static component would emerge, as
small dedicated Multi-agent Systems (MASs) would be increasingly embedded within
objects in the environment, as per the AmI vision. Both mobile and static communities
would increasingly have to interact and cooperate so as to realize a world of pervasive
and transparent service provision, as well as facilitate seamless and intuitive end-user
interaction.

Both AmI and standard mobile computing operating environments are characterized
by limited computational resources, at least when compared to a classic desktop
scenario. To address the problem of executing agents within such environments a
strategy termed Collaborative Agent Tuning is introduced. The Tuning approach aims
at providing a methodology by which agents can collaborate to optimize the limited
computational resources available to them.

The remainder of the paper is structured as follows: In Section 2, some sources of
complexity in mobile computing are explored in further detail. The intelligent agent
paradigm is considered in Section 3, including related research in resource optimization
using agents. The Collaborative Agent Tuning approach is illustrated in Section 4.
Experimental results are presented in Section 5. A discussion of the pertinent issues is
presented in Section 4 after which the paper is concluded.

2 Some Sources of Complexity in Mobile Computing

Engineering applications and services for mobile users both exacerbates
acknowledged difficulties with the software development process and introduces a
new set of problems for resolution. As an example, consider the dynamic nature of the
end-users’ situation. It is well known that the possibility of ascertaining a user’s status
at any given time provides significant opportunities for enhancing and personalizing
applications or services resulting in a more satisfactory end-user experience. In
academic circles, the entwined concepts of context and context-aware computing have
been proposed as a framework through which the identification and incorporation of
various aspects of a user’s current situation can be incorporated into applications and
services. Though capturing all aspects of a user’s context is impractical, it is feasible
to capture salient aspects and to use these in a prudent and intelligent manner to adapt
the behavior of an application or service appropriately. In the case of the mobile user,
the following aspects of a user’s context might be considered:

• Device: A plethora of multiple devices exist – all differing in fundamental ways
including operating system, CPU, memory, interaction modality and screen size.

 Collaborative Agent Tuning: Performance Enhancement on Mobile Devices 243

The onus is on the application developer or service provider to ensure that their
products can adapt to the various device contexts. How best to achieve this, of
course, remains an open question.

• Network: A wireless network is essential for mobile computing. However, the
Quality of Service (QoS) supported by individual networks can vary
considerably. Again, this is an aspect of a potential end-user’s context that needs
careful consideration. Unfortunately, end-users, conditioned by the reliability
and performance of fixed network applications, may find wireless networking
an unsatisfactory experience. A key challenge facing the designer is to adopt
strategies that seek to give the illusion of low latency and infinite bandwidth.
One approach to this, termed intelligent precaching, may be found in [3].

• User: No two users are alike. This indisputable fact is the basis of ongoing
research in areas like personalization and user-adapted interaction. In each case,
various aspects of a user’s context are considered, for example, their language,
previous experience and current objectives. Using these characteristics, models
can be constructed for individual users, which in turn provide a basis for further
system adaptation.

Incorporating the necessary logic that captures the context in these three cases alone is
a significant undertaking and fraught with difficulty. Yet it is obvious that
successfully capturing and intelligently interpreting the rich and diverse aspects of a
user’s context, will result in a more rewarding end-user experience, and potentially, a
satisfied customer. However, modeling an effective solution is a non-trivial task and
this problem becomes more acute when the limited computational resources of the
average mobile device are considered. Such resources are at a premium in mobile
computing and their effective management is of paramount importance. Thus the use
of autonomic precepts offers significant scope for effective resource management.
Though traditionally associated with large scale computing clusters, such precepts can
be applied in alternative domains. In this paper, discussion will focus on the
intelligent agent paradigm in a mobile computing scenario.

3 Intelligent Agents

Intelligent agents encapsulate a number of characteristics that make them an attractive
and viable option for realizing AmI applications. At a basic level, their autonomous
nature, ability to react to external events, as well as an inherent capability to be
proactive in fulfilling their objectives, make them particularly suitable for operating in
complex and dynamic environments. Should an agent be endowed with a mobility
capability, its ability to adapt and respond to unexpected events is further enhanced.

More advanced agents may possess a sophisticated reasoning facility. An example
of such agents includes those that conform to the Belief-Desire-Intention (BDI)
architecture [4]. BDI agents follow a sense-deliberate-act cycle that, in conjunction
with their other attributes, makes them particular adept and flexible in many situations
or, to coin a phrase: agile.

Agents rarely exist in isolation but usually form a coalition of agents in what is
usually termed a Multi-Agent System (MAS). Though endowed with particular
responsibilities, each individual agent collaborates with other agents to fulfill the

244 C. Muldoon, G.M.P. O’Hare, and M.J. O’Grady

objectives of the MAS. Fundamental to this collaboration is the existence of an Agent
Communications Language (ACL), which is shared and understood by all agents.
The necessity to support inter-agent communication has led to the development of an
international ACL standard, which has been ratified by the Foundation for Intelligent
Physical Agents (FIPA). More recently, FIPA has been subsumed into the IEEE
computer society and forms an autonomous standards committee with the objective of
facilitating interoperability between agents and other non-agent technologies. As shall
be demonstrated in Section 4.2, it is this innate communications ability that provides
the basis for realizing autonomic behavior in intelligent agents.

3.1 Collaborating Agents: A Basis for Autonomic Behavior

Agents, through their collaborative nature, inherent intelligence and awareness of
their environment (and themselves), are particularly suitable for modeling the
complex situations that frequently arise in mobile computing. As an illustration of
this, a number of prototypes have been developed here in our laboratories including
Gulliver’s Genie [5], EasiShop [6] and the ACCESS architecture [7]. However, it
became apparent that maximum use was not being derived from the limited
processing power of the average mobile device, and as such, a more holistic and
altruistic approach was demanded. It was therefore necessary to identify a strategy
that would allow agents cooperate in such a manner that they could operate
satisfactorily within the prevailing operating conditions on the mobile devices without
compromising their individual goals and objectives. One strategy that has been
developed for achieving this has been termed Collaborative Agent Tuning.

3.2 Related Research

A number of approaches seeking to optimize the use of computational resources are
reported in the literature. In [8] the authors describe a system in which agents
negotiate and collaborate to gain access to computational resources. The agents use
Case Based Reasoning (CBR) to learn, select and apply negotiation strategies. The
negotiation protocol described is argumentation-based whereby the initiating agent
attempts to persuade the responding agent to give up a resource by iteratively
supplying supporting arguments.

The NOMADS mobile agent framework [9] provides support for controlling the
rate and quantity of resources consumed by agents. The system has been build on top
of a modified Java Virtual Machine (JVM) and an agent execution environment
known as Oasis. Control over the CPU in NOMADS is handled by a scheduler thread
that converts the amount of CPU percentage assigned to an agent to the number of
bytecodes that may be executed per millisecond. If the scheduler thread observes that
the CPU utilization of an agent has increased, the number of bytecodes per
millisecond limit is lowered and vice-versa. A Guard agent is provided that performs
high-level monitoring of agent consumption. If an agent is excessively using the CPU
the Guard agent reduces the amount of computational resources assigned to it.

AutoTune [10] is a generic agent developed for performance tuning that has been
built on top of the ABLE [11] agent development environment. AutoTune uses a
control loop to manage various tuning parameters within the system. Users interact

 Collaborative Agent Tuning: Performance Enhancement on Mobile Devices 245

with the target system by issuing work requests and receiving services. The controlled
target system is exposed to the AutoTune agent by providing interfaces to its tuning
controls and metrics. The AutoTune agent inputs these metrics and based on policies
specified by system administrators determines new values of the tuning control
settings as the application executes.

The DIOS++ architecture [12] consists of sensors and actuators, which monitor and
adjust system state. An autonomic agent permits self-management and dynamic
adjustment of rules and policies at runtime to allow the system to alter and optimize
its performance. A decentralized market based protocol in which agents compete for
scarce computational resources is described in [13]. An automated auction procedure
is used to determine prices of tasks and resources traded between agents. Empirical
evidence is presented that exhibits how the system converges to a solution when the
consumers’ bids are sufficiently high.

Though sharing the same broad objectives of these systems, Collaborative Agent
Tuning differs in that it is based on the BDI paradigm and employs the formal notions
of joint intentions and mutual beliefs. Joint Intention Theory [14][15] prescribes a
way by which a team of agents may execute an action jointly. It requires the
establishment of mutual belief within the team that the joint action is starting and
subsequently another mutual belief about the completion, irreverence, or impossibility
of the action. Joint Intentions are expressed here in terms of joint commitments. Joint
commitments differ from the concept of a social commitment [16]. Within a social
commitment a debtor agent has a one-way commitment toward a creditor agent to
perform an action but the creditor does not have the same commitment toward the
debtor. When two agents are jointly committed to one of them performing an action
the commitment is binding on both agents. If either of the agents comes to privately
believe that the action is completed, irreverent or impossible, a similar response for
both agents is prescribed. Thus if one of the agents believes that an action is no longer
possible, it is in its interest to inform the other agent of this fact because it is jointly
committed to the action. It is for this reason that joint commitments reduce resource
wastage and are resilient to failure.

Thus the Collaborative Agent Tuning approach to the development of a resource
optimization mechanism differs from the other systems mentioned above in that it
coerces agents to communicate with each other and to act as a team. In this manner joint
commitments increase the utility of the system by enforcing a collaborative approach
rather than a non-cooperative competitive one. For the purposes of this discussion, we
focus on the case of a MAS operating on a mobile device. The particular case of load
balancing and the general case of applying the tuning approach to a MAS that
incorporates a fixed network component is beyond the scope of this paper.

Deploying agents on mobile devices has been receiving increasing attention over
the last few years. A number of platforms have been documented in the literature that
claim to enable the deployment of solutions based on intelligent agents on PDAs and
such devices. Some have been designed as extensions of well-known agent
development environments thus enabling interoperability with legacy systems while
others have been designed specifically for a mobile device context. MicroFIPA-OS
[17] is a classic example of a platform that evolved from a system that was originally
designed for a traditional workstation setting, namely the well-known open source
platform FIPA-OS [18]. Tacoma [19], LEAP-JADE [20] and 3APL-M [21] are other

246 C. Muldoon, G.M.P. O’Hare, and M.J. O’Grady

examples. From a BDI perspective, JACK [22] and AgentSpeak [23] are additional
examples. For the purposes of this research, Agent Factory [24][25] was augmented
with explicit support for Collaborative Agent Tuning. In next section, a brief
overview of Agent Factory is presented.

3.3 Agent Factory

The Collaborative Agent Tuning approach has been developed using a pre-existing
deliberative agent framework, namely Agent Factory. Agent Factory supports the
development of a type of software agent that is: autonomous, situated, socially able,
intentional, rational, and mobile. In practice, this has been achieved through the design
and implementation of an agent programming language - Agent Factory Agent
Programming Language (AF-APL), and an associated interpreter. Together, the
language and interpreter facilitate the expression of the current behaviour of each agent
through the mentalistic notions of belief and commitment. These are augmented with a
set of commitment rules that describe the dynamics of the agents’ behaviour through the
definition of the conditions under which the agent should adopt commitments. This
approach is consistent with the well-documented Belief-Desire-Intention (BDI) agent
model. The framework itself is comprised of four-layers that deliver:

1. an agent programming language;
2. a distributed run-time environment;
3. an integrated development environment;
4. a development methodology.

Additionally, the system contains an Agent Management System (AMS) agent and a
Directory Facilitator (DF) agent in compliance with the FIPA specifications. Agent-
oriented applications implemented using Agent Factory use these prefabricated agents
to gain access to the infrastructure services provided by the run-time environment, for
example, a yellow and white pages service and a migration service.

Agent Factory supports the development of abstract agent roles that developers
may use to capture generic agent functionality. Agent implementations may extend
these abstract roles with application specific functionality. The roles contain a list of
commitment rules that govern the behavior of agents that use the role. Additionally,
they specify perceptors and actuators that enable the agents to perceive and act upon
their environment respectively. When extending abstract roles, developers add
additional commitment rules, actuators, and perceptors as necessitated by the
application. In this manner Agent Factory provides a mechanism to enable the reuse
of abstract application functionality.

4 Collaborative Agent Tuning

Collaborative Agent Tuning is an autonomic procedure by which agents collectively alter
their response times to adapt to the dynamic performance requirements of their
environment. Computational overhead is used as a metric to indicate an agent’s workload
and as a trigger in altering its response time. Once an agent’s computational load
changes, rather than taking unilateral action, the agent adopts a commitment to make its
desire to alter its response time mutually believable. The framework is based on Joint

 Collaborative Agent Tuning: Performance Enhancement on Mobile Devices 247

Intention Theory, which coerces agents into forming coalitions and to act as a team. This
prevents the creation of prisoner dilemma type scenarios whereby agents making locally
optimal decisions espouse socially unacceptable behaviour patterns as an inevitable
consequence of rational choice. With Joint Intention Theory, agents are forced to
communicate with each other to prevent such situations occurring, and in doing so, create
a system that is resilient to failure and that reduces resource wastage [26][27].

To elucidate further: consider an agent with a high computational load. To
maintain an adequate QoS, it must of necessity have a fast response time. In other
words, the time interval between its deliberation cycles must be small. Once this
agent’s load drops, it may not need to deliberate as often to maintain a satisfactory
Quality-of-Service (QoS). Thus, it may seek to decrease its response time (increase
the time between deliberation cycles!) and, in this way, free resources for other uses.
Acting in an altruistic manner, it begins a collaborative process with other agents on
the platform to have its response time decreased, that is, the time it takes the agent to
process requests will be increased. Other agents may not necessarily want the agent to
respond in a slower manner and may autonomously reject the request, despite the fact
that additional computational resources would be made available to them. This is
because if they needed to collaborate with the agent in the future, they would have to
wait a longer time to receive a response! Thus if the requesting agent’s response time
was decreased, it would have the subsequent effect of reducing their own
responsiveness, since collective decisions can only be made as fast as the slowest
decision maker! Therefore, it would not be in the interest of the MAS if the agent
were to decrease its response time even though this may seem counter-intuitive to the
requesting agent. Had the agent taken unilateral action, even if it were attempting to
act in the best interest of the team, the overall utility of the system would be lower as
the agent would be unaware of its teammates’ own internal beliefs and commitments.

Fig. 1. Collaborative Tuning Process

248 C. Muldoon, G.M.P. O’Hare, and M.J. O’Grady

Fig. 1 outlines the pseudo code for the collaborative tuning process. Initially an agent
communicates with the other agents on the platform to create a joint commitment to
have its response time altered. If all agents agree, the commitment is adopted and the
agent will adjust the time between deliberation cycles appropriately. The agent will then
continue to execute at this new deliberation-cycle frequency until the particular task that
it is performing is completed, impossible, or irreverent. Conversely, if any of the agents
on the platform do not agree to adopt a joint commitment, the requesting agent has two
options. It either iteratively attempts to repeat the process altering the values of the
tuning parameters until agreement is reached, or drops the commitment to have its
response time altered. The choice made is application specific and is determined by how
the particular agent has actually been implemented. During execution, if any of the
agents comes to believe that the requesting agent should no longer be operating at the
new deliberation-cycle frequency, the joint commitment will be dropped. The agent that
causes the commitment to be dropped subsequently maintains a persistent goal to
achieve mutual belief on this issue.

4.1 Example: Video Rendering on a Mobile Device

To illustrate collaborative agent tuning, we shall describe a multi-agent system that is
delivering a context-sensitive service on a mobile device, and that requires dynamic

Spatial
Agent

Comms
Agent

GUI Agent

Fig. 2. Architecture of the MAS

 Collaborative Agent Tuning: Performance Enhancement on Mobile Devices 249

allocation of computational resources. The service delivered by the MAS is simple,
namely the rendering of video at various physical locations. It can be easily envisaged
how such a service could form a constituent part of numerous applications, a mobile
tourist guide and mobile learning system being two obvious candidates.

The application comprises three agents, namely the GUI Agent, the Spatial Agent,
and the Communications Agent (Fig. 2). As the user explores some city or other
physical environment, the Spatial Agent perceives the user’s position through the use of
a GPS device. This information is channeled to the Communication Agent, which uses
it in pre-caching content (available on a fixed networked server) based on the user’s
current context. The GUI Agent signals to the user when content becomes available. As
this content is in the form of a video clip, and should the user decide to view it, the
device will typically not have the requisite processing capabilities. This is true even if
the agents are operating with a reasonably slow response time. Thus all three agents on
the device must collaboratively degrade their processor utilization in order to make
additional computational resources available for the video rendering process. In addition
to reducing their deliberation cycles, the agents must also alter other aspects of their
behavior so as to adapt to the new environmental conditions created due to the
temporary lack of resources. For example the Communications Agent will refrain from
downloading emails while the video is playing.

In summary: throughout execution, the beliefs and intentions of the agents change,
thus at various stages an agent may no longer wish to adhere to previously negotiated
agreements. When this occurs, the agent adopts a commitment to make its intention to
alter the tuning parameters known to the other agents. In BDI-type agents, the
deliberation component often consumes most resources. Therefore, the timeout, or
sleep parameter, between deliberation cycles must be increased if resources are to be
increased. Other parameters may be adjusted according the particular implementation
of the agent in question. Ultimately, if consensus is achieved, the agents will adjust
their response times accordingly.

4.2 Tuning Agent Role

The requisite behavior patterns that enables agents to collaborate with each other and
to alter their response times is encoded within a generic tuning role that application-
specific agents must extend so as to make use of the framework. The initial version of
this tuning role has been designed for use with agents operating on the Sony Ericsson
P800 mobile phone (Fig. 3), hosting the Connected Limited Device Configuration
(CLDC) Java platform augmented with the Mobile Information Device Profile (MIDP).

To illustrate the various issues related to collaborative agent tuning, three scenarios
are now considered. In each case, it is assumed that the application incorporates a
video component. Issues facing a prospective software engineer are also considered.

4.2.1 Scenario I: Each Agent Adopts a Unilateral Approach
In this case, each agent acts in a unilateral approach in the fulfillment of its tasks.
Granted, the agents are interdependent in that information is shared. However, when
undertaking a task, a selfish approach is adopted and the agent proceeds to fulfill its
immediate objective, irrespective of the effect of its actions on the performance of its
fellow agents. Thus the responsive-ness of the application as a whole will be degraded in
an unpredictable manner.

250 C. Muldoon, G.M.P. O’Hare, and M.J. O’Grady

Fig. 3. An illustration of the commitment rules for implementing a Tuning Agent Role on using
the Agent Factory runtime environment on a Sony Ericsson P800 emulator

From the software engineer’s prospective, this scenario is straightforward to design
and implement. In circumstances where computation resources are not foreseen as
being at a premium, this approach may well be adequate. However, in a normal
mobile computing space, this is most certainly not the case. Resources are scarce and
must be used efficiently. If not, the usability of the resultant application will be
adversely affected, with the negative usability, and ultimately financial consequences.
By carefully identifying the essential tasks during the design, a software engineer may
well alleviate some of the performance difficulties. Ultimately, however, they cannot
guarantee that the software will operate even in a sub-optimum manner.

4.2.2 Scenario II: A Singular Tuning Approach is Adopted
An agent may adopt a policy of modifying its deliberation cycle in accordance with
ongoing activities. In this case, once a video has started to play, the agent decreases
its own deliberation cycle for the duration of the video. Some performance benefits
may accrue from this approach. Should the agent pause its deliberation cycle for the
entire duration, there is a risk of a bottleneck arising elsewhere in the system.
Ultimately, the performance will deteriorate but not as much as in the previous

 Collaborative Agent Tuning: Performance Enhancement on Mobile Devices 251

scenario. As to whether the improvement will be discernable will depend on a number
of factors. However, it is unlikely to be predictable or prolonged, as the other agents
remain ignorant of what is happening and have no policy in place to alter their
behavior while a resource-intensive task is being performed.

Such an approach can be adopted during implementation without any significant
effort on the software engineer’s behalf. However, the key problem of coordinating
the optimum use of system resources remains.

4.2.3 Scenario III: A Collaborative Agent Tuning Approach is Adopted
Collaboration is an essential activity in a Multi-Agent System (MAS) if the MAS is to
fulfill its objectives as a whole. In the video rendering example, the goal of the MAS
is to ensure that the video is rendered appropriately and it is the responsibility of each
agent in the MAS to contribute this by adopting suitable polices and strategies.
Ultimately, it is the responsibility of the software designer to ensure that each agent is
imbued with a strategy to facilitate this. In this case, it is envisaged that each agent in
the MAS implements what has been termed the agent tuning role. In enabling the
agent to fulfill its role, the designer must carefully consider the tasks each agent will
perform in the MAS, as well as the temporal relationship between the tasks. After
doing this, the designer can derive the necessary rules for each agent such that the
goals of the MAS are not compromised and the limited resources are used efficiently.

To demonstrate the collaborative agent tuning process, the key steps are now
described and illustrated through the documentation of the appropriate rules that must
be adopted at various stages in the process. A summary may be seen in Fig. 4(a).

Spatial Agent

Comms Agent

GUI Agent
3

1 2

4

4

3

5

6

 (a) (b)

Fig. 4. (a) The GUI agent initializes and completes the tuning process in collaboration with the
Communications Agent and the Spatial Agent. (b) Video playing in the Nokia emulator.

1. During the course of the agents’ execution, some event may trigger the
commencement of the agent tuning process. A commitment rule is then
triggered by the appropriate agent:

BELIEF(tuningEvent(?responseTime,?val)) &
BELIEF(resident(?agent)) & !BELIEF(name(?agent)) =>

252 C. Muldoon, G.M.P. O’Hare, and M.J. O’Grady

COMMIT(Self,Now,BELIEF(true), PAR(request(?agent,
tune(?responseTime,?val)), processTune)).

On adopting this rule, two processes commence in parallel: the first causes the
agent to request the other collaborating agent(s) to adjust their tuning
parameters accordingly. Tuning parameters represent dynamically self-
configurable agent characteristics. In this case, it is the time between
deliberation cycles that is the principal tuning parameter. Note that there could
be others, depending on the domain in question. The second process causes the
agent to prepare for forthcoming responses from the other agent(s)
collaborating in the process. In the video-rendering example, prior to the user
making a request to view a video, this rule is fired. This causes the GUI Agent
to issue a tuning request to both the Communications Agent and the Spatial
Agent. In parallel the GUI agent will prepare to process the responses from
both these agents.

2. The requesting agent uses a second rule to store the requested response time in
a persistent internal object. The agent changes its response time to this value
when the requested tuning parameters have been accepted1 by all collaborators:

 BELIEF(tuningEvent(?responseTime,?val))=>
 COMMIT(Self,Now,BELIEF(true),newTune(?reponseT
 ime,?val));

In the case of the GUI Agent, the time between deliberation cycles will be
increased thus freeing additional computation resources for rendering.

3. In the case of an agent agreeing to the tuning request, it proceeds to inform the
requesting agent of its assent:

BELIEF(fipaMessage(request,sender(?agent,?addresses),
tune(?responseTime,?val))) & !BELIEF(reject(?agent,?val))=>

COMMIT(Self,Now,BELIEF(true),PAR(inform(?agent,response(acce
pt(?val)))));

It may of course engage on an appropriate course of action that reflects the new
situation. For example, it may be only feasible to undertake a subset of those
tasks that it would perform under normal circumstances. On receiving the
tuning request from the GUI Agent, both the Spatial Agent and the
Communications Agent will fire this rule if the requested tuning parameters do
not contradict their own objectives and adjust their individual response times
accordingly.

4. Alternatively, if an agent anticipates difficulties with the requested tuning
parameter, it will reject the request:

BELIEF(fipaMessage(request,sender(?agent,?addresses),
tune(?responseTime,?val)))& BELIEF(reject(?agent,?val)) =>
COMMIT(Self,Now,BELIEF(true),
PAR(inform(?agent,response(reject)))).

Should the Communications Agent or Spatial Agent be unhappy with the
request, they will inform the GUI agent of their rebuff.

1 Acceptance in this case is a predicate rather than proposition and thus the system supports

variable levels of acceptance rather than a fixed Boolean truth-value.

 Collaborative Agent Tuning: Performance Enhancement on Mobile Devices 253

5. When the agent receives a tuning response, the following rule is triggered
causing the agent to process the informed values. After verifying that all
responses have been received, the agent can determine whether to proceed with
the tuning process or otherwise.

BELIEF(fipaMessage(inform,?sender,response(?val)))=>
COMMIT(Self,Now,BELIEF(true),tuneResponse(?val));

When the GUI Agent has received a response from both the Communications
Agent and the Spatial Agent, it determines whether the process has been
successful or not.

6. Assuming that the agents all respond positively to the initial tuning request, the
requesting agent is now in a position to proceed and adjust its response time:

BELIEF(accepted(?val,?responseTime)) & BELIEF(?val)=>
COMMIT(Self,Now,BELIEF(true),tune(?responseTime));

When both the Spatial Agent and the Communication Agent indicate their
acceptance of the tuning request (by reducing their response times), the GUI
Agent can now proceed to decrease its own response time. The video rendering
process can now commence.

7. Should one of the agents respond negatively and another positively, the tuning
event cannot take place. This fact must be broadcast so that those agents who
gave prior approval to the original tuning request can reset their parameters to
their original states.

8. After the process that caused the tuning procedure is complete, it beholds the
agent that initiated the process to monitor it and to inform the other agents of its
completion, thus allowing them to reset their tuning parameters to their original
values. In the video rendering scenario, the GUI Agent thus informs the Spatial
Agent and the Communications Agents when the video process has terminated,
in order that they may restore their previous tuning parameters. On completion,
the Spatial Agent resumes interpreting the user’s spatial context and the
Communications Agent start processing normal communications requests again.

5 Experimental Results

To test the validity of the collaborative agent tuning approach, some initial
experiments were undertaken using one popular smartphone currently on the market,
namely the Nokia 6630. Periodic measurements of the responsiveness of the system
were taken at regular intervals. To do this, a control point was placed in the code and
associated with point at which the deliberative process began. The time at which each
subsequent cycle commenced was then recorded. This was repeated 20 times for each
agent, after which the results were calibrated and averaged.

When tuning is disabled (Fig. 5), the responsiveness of the system remains
reasonably consistent throughout. This is as expected. However, it should be recalled
that a number of trade-offs may have been necessary to achieve this. The designer
may have been obliged to experiment with a number of different settings for the
deliberation-cycle parameter before finding a combination that gave a satisfactory
response. Because of this, the overall responsiveness of the system is quite low

254 C. Muldoon, G.M.P. O’Hare, and M.J. O’Grady

though the video will render at an appropriate rate. The responsiveness decreases
further albeit momentarily, when the video buffering process commences.

Two different strategies were implemented to demonstrate the collaborative agent
tuning approach. In the first case, a pre-emptive approach was followed. The agents
mutually negotiated a collaborative agent-tuning strategy when the program was
launched and this was adhered to for its entire duration. In the second case, a Just-in-
Time (JIT) approach was adopted and the agents negotiated immediately prior to the
video being rendered. The results obtained in each case may be seen in Fig. 6. Some
critical points have been enumerated on the graph and these are now described.

Fig. 5. Measured responsiveness without Collaborative Agent Tuning enabled

Fig. 6. Measured responsiveness with Collaborative Agent Tuning enabled

1. When the application is launched, it can be seen from the graph that there is a
noticeable latency between the two strategies. The JIT approach launches faster
while the pre-emptive approach is slower as the agents must negotiate their

 Collaborative Agent Tuning: Performance Enhancement on Mobile Devices 255

tuning strategy during the startup phase. Once this completed, there will be no
need for further negotiation, at least concerning collaborative tuning.

2. At some point during the execution, it will be necessary to play a video. In the
pre-emptive case, the tuning approach is agreed between the agents so they can
now proceed to immediately implement their tuning strategy. In contrast, the
agents that have adopted a JIT approach must complete some negotiations
before the tuning policy can be implemented.

3. In each case, the responsiveness drops. In the pre-emptive case, pre-loading and
rendering of the video can commence immediately. This is not the case with the
JIT approach. The responsiveness drops somewhat slower but, more
importantly, there is an additional delay as a result of the late negotiation before
preloading of the video can occur and the rendering process commence.

4. As a vivid illustration of the differences between the two approaches, the video
is being already played in the pre-emptive approach while in the case of JIT
collaborative tuning, the video is still being buffered.

5. In the pre-emptive case, the video is now completed and the status quo is
restored quickly. The video is still playing in the JIT scenario.

6. Only now is the video complete in the JIT case. However, the agents must then
collaboratively reset their tuning parameters. In a pre-emptive scenario, the
response times are already restored to their original values.

7. Now, the agents in both cases are operating with their original parameters intact
and with identical response times.

In both pre-emptive and JIT collaborative agent tuning scenarios, agents can now
operate with a far quicker overall response time as they can now respond to particular
events and adjust their responsiveness accordingly. Thus, the agents’ performance can
be significantly increased over the lifetime of the application, rather than being
artificially restricted to operating with a lower response time in anticipation of certain
events that would consume processor cycles. Once the agents have completed the
collaborative tuning process, the responsiveness of the system is approximately the
same as the situation when no tuning occurred. However, once the video has been
displayed, the tuning parameters are reset and the responsiveness of the system
returns to its original value.

6 Discussion and Future Work

Collaborative agent tuning has been conceived as a strategy for maximizing agent
performance over the lifetime of an application. In particular, it is perceived as being
useful in environments of limited computational capacity, mobile phones being one
particular instance. The two strategies examined – pre-emptive and JIT, offer the
software designer some options for consideration; their ultimate choice is dependent
on the application in question as well as its target deployment environment. In the
video rendering example, it could be that an end-user may not always choose to play
the video. In this case, the JIT approach would be appropriate as computational
resources would not be wasted on the negotiation process in cases where the user does
not play the video. Alternatively, the video component may be an indispensable
feature of the application in which case a pre-emptive approach would be preferred as

256 C. Muldoon, G.M.P. O’Hare, and M.J. O’Grady

it would reduce the latency of video execution. Agents could also proactively monitor
user behavior and decide between pre-emptive and JIT tuning based on a model of
user behavior developed over time.

While satisfied that collaborate agent tuning is, in principle, an approach that
would yield performance benefits, there is one key difficulty that limits its potential.
A metric describing computational load needs to be identified. At a minimum, such a
metric would be a tuple of processor state and system memory. The Java Runtime
object provides a mechanism to determine the amount of free memory available to the
JVM however no such metric exists for computational load. The likely reason for this
is because the JVM hides processor specific implementation details from the
programmer to facilitate platform independent development. J2ME does not support
the Java Native Interface and therefore does not provide a mechanism to enable the
developer to write platform specific native code to access such data. To get around
this problem future work will associate additional meta-data with tasks being
performed by agents. This meta-data will provide and an indication of a tasks
computational overhead and will be obtained by the software engineer through system
profiling. Using the meta-data and a model of their processing capabilities agents will
be empowered with true autonomic behavior. In future work it is also planned to
conduct further experiments that compare the collaborative agent tuning approach
with other approaches, for example that adopted by DIOS++.

In the broader context of agent communities and societies, there are a number of
aspects of collaborative agent tuning that warrant further investigation First of all, it is
a unilateral process by the MAS as a whole. Further investigation is needed as to the
implications of using a subset of the MAS for the process. For example, are there any
measurable gains from allowing a subset of the MAS collaborate in the tuning
process, what are the tradeoffs? The implications for scalability need to be
considered. In the small ecosystems that comprise ambient intelligent services, this is
not necessarily a significant problem. However, it is not clear at this time what the
implications would be if the population of the MAS increased.

7 Conclusion

Within this paper we have explored how ambient intelligent systems may be imbued
with autonomic properties. The paper draws upon work undertaken by the authors in
the use of BDI agents in the delivery of personalized content to mobile users.
Accommodating such strong agents on computationally challenged devices places
ever increasing demands on the computational real estate that is typically available.

Specifically, collaborative agent tuning is a process whereby cohabiting agents may
collaboratively negotiate access to the processor. This process delivers system
adaptivity by which agents may voluntarily permit the degradation of their deliberative
deductive cycle in order to facilitate the activities of fellow agents. Such benevolence is
typified when mutual benefit is derived from such negotiations. Collaborative agent
tuning offers a glimpse into those autonomic properties that may be delivered via an
agent collective and, furthermore, illustrates how relatively simple autonomic properties
may yield important performance enhancements in environments that are computat-
ionally limited such as the broad mobile and ubiquitous application sector.

 Collaborative Agent Tuning: Performance Enhancement on Mobile Devices 257

Acknowledgements

Gregory O’Hare and Michael O’Grady gratefully acknowledges the support of
Science Foundation Ireland under Grant No. 03/IN.3/1361.

References

1. Kephart, J.O., Chess, D.M. The Vision of Autonomic Computing, IEEE Computer, 36 (1),
January 2003, pp. 41–50.

2. Aarts, E., Marzano, S. (editors), The New Everyday: Views on Ambient Intelligence, 010
Publishers, Rotterdam, The Netherlands, 2003.

3. O’Grady, M.J., O’Hare, G.M.P.: Just-in-Time Multimedia Distribution in a Mobile
Computing Environment, IEEE Multimedia, vol. 11, no. 4, pp. 62–74, 2004.

4. Rao, A.S., Georgeff, M.P.: Modelling Rational Agents within a BDI Architecture. In:
Principles of Knowledge Representation. & Reasoning, San Mateo, CA. 1991.

5. O’Hare, G.M.P., O’Grady, M.J.: Gulliver’s Genie: A Multi-Agent System for Ubiquitous
and Intelligent Content Delivery, Computer Communications, 26 (11), 2003, 1177–1187.

6. Keegan, S., & O’Hare, G.M.P., EasiShop – Agent-Based Cross Merchant Product
Comparison Shopping for the Mobile User. Proceedings of 1st International Conference on
Information & Communication Technologies: From Theory to Applications (ICTTA ’04),
Damascus, Syria, 2004.

7. ACCESS: An Agent based Architecture for the Rapid Prototyping of Location Aware
Services, Strahan, R., O’Hare, G.M.P., Phelan, D., Muldoon, C., Collier, R. Proceedings of
the 5th International Conference on Computational Science (ICCS 2005), Emory
University Atlanta, USA. 2005.

8. Soh, L.-K., Tsatsoulis, C.: Agent-Based Argumentative Negotiations with Case-Based
Reasoning, AAAI Fall Symposium Series on Negotiation Methods for Autonomous
Cooperative Systems, North Falmouth, Mass, 16–25, 2001.

9. Groth, P. T., Suri, N., CPU Resource Control and Accounting in the NOMADS Mobile
Agent System, Technical Report, Institute for Human & Machine Cognition, University of
West Florida, 2002.

10. Bigus, J.P., Hellerstein, J.L., Squillante, M.S. Auto Tune: A Generic Agent for Automated
Performance Tuning, Proceedings of the International Conference on Practical Application
of Intelligent Agents and Multi-Agents (PAAM), 2000.

11. Bigus, J.P., Schlosnagle, D.A., Pilgrim, J.R., Mills III, W.N., Diao, Y., ABLE: A Toolkit for
Building Multiagent Autonomic Systems, IBM Systems Journal, 41 (3), 350–371, 2002.

12. Liu, H., Parashar, M., DIOS++: A Framework for Rule-Based Autonomic Management of
Distributed Scientific Applications, Proceedings of the 9th International EuroPar
Conference (Euro-Par 2003), LNCS. 2790, 66–73, 2003.

13. Walsh, W.E., Wellman, M.P. A market protocol for decentralized task allocation:
Extended version. Proceedings of the Third International Conference on Multi-Agent
Systems (ICMAS-98), 1998.

14. Cohen, P.R. and Levesque, H.J. Intention Is Choice with Commitment. Artificial Intelli-
gence, 42, 213–261, 1990.

15. Levesque, H.J., Cohen, P.R., and Nunes, J.H.T. On Acting Together, Proceedings of
AAAI-90, 94–99, 1990.

16. Singh, M. P. 2000. ASocial Semantics for Agent Communication Languages. In Issues in
Agent Communication, Vol. 1916. Edited by F. Dignum and M. Greaves. Springer-Verlag,
Berlin, pp. 31–45.

258 C. Muldoon, G.M.P. O’Hare, and M.J. O’Grady

17. Tarkoma, S., Laukkanen, M. Supporting Software Agents on Small Devices, Proceedings
of the First International Joint Conference on Autonomous Agents and Multi-Agent
Systems (AAMAS-2002), Bologna, Italy, July 2002.

18. Foundation for Intelligent Physical Agents (FIPA), http://www.fipa.org.
19. Johansen, D., Lauvset, K., Van Renesse, R., Schneider, F., Sudmann, N., Jacobsen. K., A

Tacoma Retrospective, Software Practice and Experience, 32 (6), 2002, pp. 605–619.
20. F. Bergenti, F., Poggi, A., LEAP: A FIPA Platform for Handheld and Mobile Devices,

Proceedings of the 8th International Workshop on Agent Theories, Architectures and
Languages (ATAL-2001), Seattle, WA, USA, August 2001.

21. The Agent Oriented Software Group, http://www.agent-software.com.
22. Koch, F., Meyer, J-J., Dignum, F., Rahwan, I., Programming Deliberative Agents for

Mobile Services: the 3APL-M Platform, AAMAS’05 Workshop on Programming Multi-
Agent Systems (ProMAS05), Utrecht, Netherlands, July 2005.

23. Rahwan, T., Rahwan, T., Rahwan, I., Ashri, R., Agent-based Support for Mobile Users
using AgentSpeak(L), Agent Oriented Information Systems (AOIS2003), LNAI 3030,
45–60, 2004, Springer-Verlag.

24. O’Hare G.M.P., Agent Factory: An Environment for the Fabrication of Multi-Agent
Systems, in Foundations of Distributed Artificial Intelligence (G.M.P. O’Hare and N.
Jennings eds) pp. 449–484, John Wiley and Sons, Inc., 1996.

25. Collier, R.W., O’Hare, G.M.P., Lowen, T., Rooney, C.F.B., (2003), Beyond Prototyping in
the Valley of the Agents, in Multi-Agent Systems and Applications III: Proceedings of the
3rd Central and Eastern European Conference on Multi-Agent Systems (CEEMAS’03),
Prague, Czech Republic, Lecture Notes in Computer Science (LNCS 2691), Springer-
Verlag.

26. Jennings, N.R. Controlling Cooperative Problem Solving in Industrial Multi-Agent
Systems using Joint Intentions. Artificial Intelligence, 75(2):195–240, 1995.

27. Kumar, S., P. R. Cohen, and H. J. Levesque. 2000a. The Adaptive Agent Architecture:
Achieving Fault-Tolerance Using Persistent Broker Teams. In Proceedings of Fourth
International Conference on Multi-Agent Systems (ICMAS 2000), Boston, MA. IEEE
Press, pp. 159–166.

O. Dikenelli, M.-P. Gleizes, and A. Ricci (Eds.): ESAW 2005, LNAI 3963, pp. 259 – 274, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Cultural Agents: A Community of Minds

Michael D. Fischer

University of Kent

Abstract. Intelligent agents embedded in cultural processes demonstrate
remarkable powers of creation, transformation, stability and regulation. As
G.P. Murdock said in his 1971 Huxley Lecture, culture and social structure are
not divine law within which individuals simply satisfy their assigned objectives
and then die. Culture gives agents the power to hyper-adapt: not only can they
achieve local minima and maxima, they modify or create the conditions for
adaptation. Culture transcends material and behavioural contexts. Cultural
solutions are instantiated in material and behavioural terms, but are based in
large part on ‘invented’ symbolic constructions of the interaction space and its
elements. Although the level of ‘intelligence’ required to enact culture is
relatively high, agents that enact culture create conditions to which other, less
intelligent, agents will also adapt. A little culture goes a long way. We will
consider culture design criteria and how these can be represented in agent-based
models and how culture-based solutions might contribute to our global
management of knowledge.

1 Introduction

Human culture is a creative and transformative natural force. Although culture is
associated mainly with humans, and in a sense had to be ‘created’ by humans in the
course of their evolution, it is nevertheless a natural force that has tremendous
potential to affect every physical system that humans contact.

From the standpoint of the sciences, culture has emerged from being an exotic
curiosity in the 1930s associated with South Seas islands, tropical Africa or Highland
New Guinea to underlying practical workaday methods, first in economic development
projects, then industrial settings and more recently in software systems design relating
to human-computer interfaces and human factors design.

As evidenced by this meeting, in the development of agent-based software design a
natural approach to organising agents is implementing concepts such as society within
which to embed agents. However, culture, the system of activities and resources that
support human social organisation, is scantly considered in the computational agent
literature outside anthropological, sociological and occasionally economic or business
models. Where culture does arise in the literature, it is most likely to relate to agents that
relate directly or on behalf of people as cultural agents. So while there is some relevant
literature that demonstrates considerable potential for the inclusion of culture-related
concepts in mathematical and computational modelling, this is the product of a very
small group of researchers. Even among anthropologists formal work exploring how
culture ‘works’ is undertaken by few and explicitly eschewed by a sizable minority.

260 M.D. Fischer

As an anthropologist I have to consider these issues. Is culture, despite its tenure in
anthropology, just too ‘fuzzy’? Or is it perhaps suitable for describing actual human
groups, but not really as a means for constructing artificial, purposeful, systems? At
the same time, there is no doubt that human behaviour driven by culture is responsible
for the collective achievements of humans - transcending the technologies of stick,
stone and bone a million years ago towards the technologies of genetic engineering,
nanoengineering and quantum level computing which will permit us to further
radically modify our lives, the world, and some day perhaps the universe.

I will argue that culture is indeed represented, implicitly, within many agent-based
systems. It appears in the form of solutions that are inspired by the cultural knowledge
of the system designers, in the conception of how agent societies should operate, and
by including some of the mechanisms of communication, peer reaction and defining
values that we can associate with cultural systems. Making explicit representations of
cultural systems will bring these ‘hidden’ design elements into view as a formal part
of the agent framework, making possible more powerful agent-based solutions.

2 The Culture Concept

2.1 A (Very) Brief History of the Culture Concept

Anthropologists generally conceptualise societies as groups composed of individuals
who coordinate in a holistic distributed manner through elaborated social behaviour and
shared patterns of values. Culture is the term used to describe the resources requred to
support this interaction. Anthropologists have proposed a range of definitions for culture
over the past century. The development of the ‘culture concept’ is illustrated in Figure 1.
In The shift from exclusively behavioural criteria to the inclusion of ideational
components represents both development in anthropological theory as well as the
impact of cybernetics and systems theory. In particular, culture must:

maintain and distribute knowledge in a population of agents
produce the conditions by which cultural knowledge is useful
set the terms of reference within which behaviours or actions take place

Prior to WWII cultural properties often traded under the descriptor “superorganic”.
Murdock [1] argued that culture was “superindividual ... beyond the sphere of
psychology ... It is a matter of indifference to psychology that two persons, instead of
one, possess a given habit. It is precisely this fact that becomes the starting point of the
science of culture” [1](207). When the concept of a system became available in the
1940s [2], anthropologists were able to progress their framework considerably as they
now had a language for describing the relationship between complex unseen systems of
thought and the expression of these as behaviour. Behaviour could be conceptualised as
an inscription of individuals interacting driven by complex systems of thought.

2.2 Culture-Based Systems

Culture as a systemic concept has rapidly become pervasive outside anthropology in
many cognate social sciences and humanities subjects. Despite this anthropologists
are generally unable to define precisely what is meant by culture, nor do those who do

 Cultural Agents: A Community of Minds 261

precisely define culture agree. One explanation for difficulty in definition is that
culture is not defined by a single process or system, but is the conjunction of many
aspects of human cognition and organization [3]. These would include processes or
systems relating to communication, learning, adaptation, representation and trans-
formation. In short, what anthropologists, and increasingly others, now refer to as
culture is an emergent phenomena (or perhaps even an apparent category of
phenomena) - the result of interaction of different systems which are, at least in part,
orthogonal to each other [4].

This was not unanticipated. Fischer, Lyon and Read [5] note that:

G. P. Murdock, in ... “Anthropology’s Mythology”, argued that neither culture nor
social structure can be reified to serve as an explanation. Rather these are our
characterization of patterns of interactions between individuals, not the source of
these interactions. ... Murdock was introducing a program ... focusing ... theory on
diversity of individual experience and choice, not commonality and conformance.
Fischer and Lyon [6] on Murdock [7].

Marvin Minsky, in The Society of Mind, commented, “What magical trick makes us
intelligent? The trick is that there is no trick. The power of intelligence stems from
our vast diversity, not from any single, perfect principle” [8](308). Of course Minsky
is referring to a single mind. To represent the diverse principles underlying cultural
systems we might conceptualize culture as “the community of minds”.

As Murdock and Minsky argue, culture cannot be represented in terms of uniform
static structures; culture is dynamically enacted and constituted differently by
different culture-enacting agents, but with results that are comprehensible, if not
acceptable, to other agents. It is critical that we understand how cultural systems
become distributed within a population in such a way that most agents can agree on
what is a part of a culture and what is idiosyncratic. To connect a diverse community
of minds culture must be relational; different agents will behave differently based on
their relationship to other agents. Culture is enacted differently by different cultural
agents, each of which has an understanding of how the other agents operate under
different projections with respect to different relationships.

Fischer [9] relates some of the context for how implicit and explicit theories of
culture have changed in recent decades, in particular the tensions between those who
see structure and pattern and those who deny these in favour of performance,
improvisation and smorgasbord emergent culture. Fischer observes this tension is
resolved if we recognize that not least of the outcomes of cultural processes is to
recreate the conditions for cultural technologies of thought and objects to operate,
symbolically and materially. From this Fischer develops the principle of ‘powerful
knowledge’, knowledge that is deontic, enabling the management and exploitation of
processes which emerge from interacting cultural agents and their knowledge.

Fischer and Read [10] outline an approach to focusing on culture in a way that the
duality between ideation and behaviour could be represented in concrete models. The
basic concept is simple; that we can represent culture as a collection of discrete
symbolic systems, possibly not logically consistent with each other. These systems of
symbols are shared between agents to varying degrees of detail and consistency. It is
when agents instantiate these within a common interaction space into a set of
behaviours that commonalities and inconsistencies are reconciled. Indeed, the patterns

262 M.D. Fischer

of behaviour that emerge that are recognised as culture may emerge from underlying
symbolic systems that are apparently at odds with each other, both within the same
agent and between agents.

2.3 Hyperadaptation

One of the properties of a cultural system is that it supports hyperadaptation.
Hyperadaption basically refers to a process of behaviourally modifying the local
material context so that a range of new adapations become possible. Hyperadaption
occurs in species other than humans, such as ‘social’ insects, birds or higher primates,
but is the principle form of human adaptation.

Adaption involves optimising around some set of resources. Hyperadaptation
effectively ‘changes the rules’, reordering or reorganising the relationship between agent
and ‘environment’ to support a new adaptation. This can be done by reconceptualisation
or classification (e.g. learning to exploit features of the environment), but more
usually hyperadaptation will involve some modification that must be repeated to
support the new adaptation.

The repeated effect can be considered as a technology. Tools are associated with
many technologies, themselves probably the product of further adaptation to the
original hyperadaptation. Tools are difficult to develop and replicate - only humans
have done so with minor exceptions. Technologies often lead to distribution of the
replication process.

Human hyperadaptivity appears to be unique both in its character and pervasiveness.
There is hardly a aspect of human life that does not rest on a hyperadaptation.

2.4 Approaches to Computational Culture

The 2004 European Meetings for Cybernetics and System Research included sessions
relating to cultural systems with contributions exploring the use of culture in
mathematical and computational models. These were not new approaches in the sense
that the researchers concerned have been working with and promoting these ideas for
some time. They are finally beginning to have traction.

Reynolds and Peng [11] demonstrate how a simple model of culture can be instantiated
in an agent population to adaptively solve ‘real world’ optimization problems. They
outline a method based on the evolutionary Cultural Algorithms approach originated by
Reynolds [12] that models an agent population using diverse symbolic knowledge to
adaptively converge towards solutions to optimization problems. In this case they
demonstrate that CA can be applied to solving problems in engineering design as a result
of emergent features based on adaptive cultural systems with the ability to learn and
adapt at a more abstract level than conventional genetic algorithms.

Reynolds and Peng situate culture within the evolutionary process by expanding an
agent’s phenotype to include acquired characteristics associated with knowledge-
based solutions; an individual’s fitness is now associated with both their hereditary
fitness and their cultural fitness. The latter includes their individual ability to use
cultural resources and the fitness bestowed on them by others within the cultural
‘swarm’ by others’ modifying and expanding the knowledge and belief resources in

 Cultural Agents: A Community of Minds 263

the system adaptively over time. Thus individual fitness is not only about individual’s
transmitting their individual phenotypes across generations, but about transmitting
their knowledge adaptations as well. Furthermore, individual fitness is directly linked
to modifications that the individual agent and other agents introduce.

Using the three principles of cognitive relativity, rationality and clarity, Ezhkova
[13] addresses culture by an examination of shared experience and how asymmetric
but inter-adapted ‘clarity’ emerges from these shared experiences. Taking culture as a
self-organizing complex phenomenon, she notes that as a result of cognitive relativity
a culture can be examined from a number of different observer perspectives, where a
culture is observed as a unitary ‘actor’, the community of individual actors who enact
a culture, or indeed in a comparative sense as one of a set of cultural systems.
Furthermore, these different perspectives can be nested by a single observer such that
all are available simultaneously, producing a continuum of composite perspectives
and potential actions to be taken.

Ezhkova argues that rationality is thus a relative condition: “Rationality rests on the
particular nest of action in which one must exercise decision.” Clarity is how Ezhkova
denotes the ability to differentiate and classify the variety of inputs agents are exposed
to; effectively underlying the ability to create categories. She outlines several
approaches to measuring and implementing clarity. Ezhkova proposes the process of
seeking clarity as a key cognitive navigational tool, the driver for adaptation in order to
maximize success. Culture is a tool for recognition of key stable patterns, using clarity
to situate culture in an evolutionary context: “the evolutionary meaning of clarity: what
is clear survives”. This is a very important point, particularly in a cultural context.
Culture emerges, in large part, because of the distribution of a shared sense of clarity
rather than specific shared bits of knowledge which tends to be distributed.

Ballonoff [14] presents a three level framework of measurements relating to a
culture driven system, i) corresponding to material processes, ii) the impacts of cultural
operators on i), and iii) measurements relating to the evolution of ii). That is, in an
“ethnographic view”, population and genetic statistics are the base phenomena (I),
culture modifies these measures over time as events (II), and the pattern of change is
governed by measurements of II (as per work of Ezhkova). With respect to a “real”
system G related to some set of cultural systems C instantiation is “prediction or
computation from the cultural system to create a particular instance of the real system”.
G evolves forward under evolutionary operators, and C under cultural evolutionary
operators, and the effects of both these must occur on the same real systems in concert,
clearly constraining each other. He concludes that these constraints can filter the huge
lattice of possible relationships between G and C, making it possible to predict possible
future cultural structures realizable in the real system.

Hunters and gatherers in Arctic societies undergo strong selection in an
adaptationist paradigm. Read [15] uses one such society, the Netsilik, in his formal
analysis of the role of resilience and robustness in increasing the adaptive capacity of
human societies. Read uses Netsilik Inuit data as an extreme example of the cultural
adaptations which allows individuals to modify environmental constraints; their
adaptation to an Arctic environment exemplifies the way in which behaviour has both
a material and an ideational/cultural dimension. Human societies, Read argues, have
developed both resilient and robust responses to shocks in order to satisfy environmental
imperatives and cope with culturally generated tensions. Using the basic subsistence

264 M.D. Fischer

challenges of living in inhospitable Arctic conditions along Hudson Bay, Canada, Read
shows how relatively simple cultural solutions to real problems sometimes have longer
term consequences which require some kind of resolution. The resolution to one problem,
in turn, may lead to further dilemmas which then need some form of resolution.

Read stresses the importance of self-monitoring of a system as part of the system’s
resilience, particularly cultural systems with group level benefits due to difficulty
maintaining a stable configurations of behaviour with respect to social and cultural
relationships between individuals. Behaviours such as seasonal fishing and hunting
are relatively stable while ideational behaviours are far less so, requiring repeated and
frequent monitoring by individuals of their relationships with other individuals.
“People do what is required to make a cultural model work in the real world” even if
it means violating ordinary norms of behaviour. Individual instantiation of cultural
models results in group-level behaviour that benefits those individuals.

Read presents a dynamic mathematical approach for studying “real world” systems
with interacting material and ideational processes and an insightful explanation for
specific cultural behaviours which, when taken in isolation, may seem difficult to
fathom; when understood as part of a complex cultural system that provided the
Netsilik Inuit with sufficiently robust responses to shocks to retain some continuity of
collective notions of who and what the Netsilik were, with resilient responses that
provided the flexibility to survive unstable situations.

Employing the deontic logic of permissions and obligations rather than the
imperative logic of possibility and necessity, Fischer [9] argues that domain
knowledge need not be true, it need only be enabling or effective - what he calls
“powerful knowledge”. Transforming information or experience into knowledge is a
role associated with culture but people embedded in a culture have many ways of
carrying out these transformations. An understanding of culture cannot be derived
from treating an instantiation as if it were an underlying principle. Indeed, he suggests
that when looking at the level of instantiation it is both plausible and sometimes likely
that underlying principles will not be expressed in favour of contingent events.

Reynold’s and Peng, Ezhkova, Ballonoff and Read advance our understanding of
cultural systems of agents, demonstrating that models based on diverse symbolic
knowledge in concert with a population that uses this knowledge can apply that
knowledge in a dynamic manner to solve new material problems. They identify
additional requirements for this knowledge: diverse knowledge domains that are
distributed across the population. There are adaptive advantages to having a
distributed and diverse knowledge environment both for the population as a whole
and the individuals within it, even those that are themselves less adapted. These
models demonstrate that even in a highly constrained environment with somewhat
unforgiving evolutionary forces at work, cultural systems require more than one type
and distribution of knowledge to learn and adapt.

3 Cultural Instantiation

Fischer and Read [10] initiates a programme to develop instantiation of an ideational
system as a basis for formally describing relationships between ideational and

 Cultural Agents: A Community of Minds 265

material processes and increasing the efficacy of using more integrated models and
agent-oriented simulations for understanding cultural processes in particular.

In the crudest terms an instantiation of an ideational system is the production of an
instance of behaviour conditioned by an ideational system within a given material
context, which may include other agents each instantiating the same or a different
ideational systems of their own - the reduction of the possible to a presence.
Instantiation is an interface between ideas and action, conception and creation,
thinking and doing. Models embedding both material and ideational themes are
important if we are to advance our understanding of human lives embedded in the
world. Many of the problems anthropologists investigate relate to an ideational
structure or process embedded within a material context (or vice versa).

Ideational models are critical in human groups to support hyperadaption. Basically
hyperadaptive agents need a ‘story’ to go with the actions that replicate the conditions
for hyperadaptation. The critical feature the story must have is that it is logically
consistent, otherwise it is difficult to transmit with fidelity within a group. If the story
can be reproduced with fidelity this helps to stabilise the associated knowledge of
technique and translation (instantiation) necessary to produce behaviours from the
story.

It is the behaviours that actually produce the effects that agents have adapted to.
Instantiation is the process of translating these ‘stories’ to actions - what I call
‘powerful knowledge’. Powerful knowledge is not true or false (nor are the stories)
but is valued with respect to its effects. Powerful knowledge changes more easily than
the stories.

Other, non-cultural, agents also adapt to the changes that hyperadaptive agents
introduce. This includes both other humans (in other groups), as well as members of a
group, and other ‘species’ of agent altogether. This is, in part a consequence of the need
to distribute ‘expertise’ that is necessary to maintain the hyperadaptive invention.

Ideational systems considered in isolation are difficult to evaluate. Behavioural
processes are difficult to interpret. By embedding material and ideational components
within an integrated model, the properties of ideational systems, and observable
indices of these, may be identified. In this way we can create models that both take
account of how the physical context limits the application of ideational resources and
how ideational resources influence the structure and recreation of important aspects of
the physical context. This is important because considering ideational resources in the
context of their application solves many of the philosophical problems that arise when
considering the ideational or material issues alone (such as infinite regress, reflection,
non-determinism, non-essentialism). Although there are a large number of ways for
an ideational resource to be instantiated in a given material context, these will
generally be far fewer than the number of ways in which it can be imagined to
instantiate. Additionally, the same basic ideational resource can/will be instantiated
differently in different contexts.

In modelling instantiation, we represent a group of people as a collection of
individual agents, not an abstract aggregate. This makes it possible to study why and
how patterns emerge, which cannot be done if we only consider the aggregate that
exhibits the pattern. Instantiation is a process that mediates the mapping from
ideational structures to physical effects. Behaviour is not a direct result of ideational
systems, but of the ‘rules’ of instantiation of an ideational system. Cultural schema

266 M.D. Fischer

need not be directly linked to behaviour, nor need they be functionally dependent on
‘what works’, at least until a system of instantiation can no longer reliably connect
cultural schema to material requirements - a condition that we posit is relatively
infrequent. Thus cultural schema can be relatively stable and conservative while being
adaptive to context and supporting relatively rapid adaptation by modifying the
pattern of instantiation rather than the pattern of fundamental ideas and thought. Also,
instantiation occurs whenever idea contacts the world. The result may stem more from
the external context than from what was ‘intended’ or ‘desired’. That is, cultural
instantiation is a process of ideational principles of multi-agents interacting together,
often within a material context. The result, whatever it is, is the instantiation. Agents
rarely fulfil their goals in full, and sometimes not at all.

For example, Read [18] relates our use of instantiation in research on a universal
cultural category, kinship terminologies. In the course of developing a computer
program, Kinship Algebra Expert System (KAES) [19], to assist in the production of
algebraic models of kinship terminology we made a number of important discoveries.
Following Leaf [20], a kinship terminology can be represented entirely in terms of
native thinker judgements of the relationships between terms without reference to
external genealogical concepts [18].

KAES identifies an underlying algebraic structure for this representation of the
terminology (if there is one... so far all complex terminologies we have tried are
amenable). Based on graphical input relating to a given kinship terminology and
knowledge about the relationships between terminologies (in terms of the terminology
only) KAES produces results that can be instantiated in a given real or model
population, based exclusively on internal properties of the kinship terms and
indigenous judgements of lexical properties of the terms and very basic relationships
between terms based on entirely internal criteria. Unlike most attempts at formal
modelling our approach make no recourse to hypothetical external reference
frameworks such as a genealogical grid.

This is not the first model to be based on lexical properties of kinship terms. The
componential systems developed in the 1960s (cf. [21]) were based on lexical
properties associated with kin terms, and were formal in a trivial sense. They did not
result in structures which were general because the formal model used had no analytic
capacity beyond establishing that the relationships in a given terminology were
consistent. Fischer [22] implemented a general formal representation suitable for
instantiation, but while formally based, the fundamental properties it depended on
were assumed to be given. Other algebraic approaches to terminological analysis have
be extant for 50 years, but have either fitted terminologies to prescribed structures, or
been difficult to instantiate on actual populations... there was no easy way to relate the
algebraic account and the instantiation of kin terms in groups of people. Additionally
these systems tended to depend on considerable algebraic creativity and
understanding on the part of the analyst.

Our model is algebraic and algorithmic. That is, the models are algebras, and
producing these algebras is done following a algorithm. We have developed a
computer program loosely based on Read and Behren’s earlier KAES [23], but rather
than an expert system which assists in making decisions towards creating an
appropriate algebraic account, our program generates the algebras directly from the
source data (lists of terms and indigenous judgements on relationships between

 Cultural Agents: A Community of Minds 267

terms), with only a single decision in the process whether to represent sex as a feature
of individual terms, or whether to treat sex as a bifurcation whose associated
productions are structurally equivalent. We have retained the KAES label for
historical continuity.

Although doubtless a bit abstract for some, KAES is significant. Most important is
the result that is emerging from using KAES: the strong suggestion that most, if not
all, elementary and complex kinship terminologies can be described in terms of an
algebraic structure. This is significant, because there are many more terminologies
possible that do not possess such a structure. That the human mind should settle on
the more limited set implies some deep commonalities in the forms of logic that
humans employ. It is also significant because:

it is a formal model of an ideational system derived entirely from judgements on
terminological relationships, not on an instantiation in a population,

the ideational model contains possibilities that specific populations (e.g. American,
Shipebo and Trobrian groups) do not exhibit,

this model can be instantiated over a specific population, and
will produce results that are predictive of the set of instantiated relationships in

specific populations.

It is also significant because it is a good example of how the results of the analysis of
an ideational system can be directly introduced into subsequent models without
transformation or ‘tailoring’ for the purpose. That is, it provides a means of
representing the potentialities of a cultural system and relating these to specific
contexts without performing the reductions a particular context would normally
require - reductions are properties of the process of instantiation.

One thing that almost all kinship terminological systems have in common is that
they must be instantiable to be useful and to reproduce themselves. Being instantiable
implies certain properties that an instantiable system must have to ‘become present’.
Among these is some extent of stability. Most systems can change relatively easily
and remain a system. Although it is possible to modify an algebra and have a result
that is an algebra, this is much ‘harder’ to do. Therefore systems that must be stable
will benefit if they must also be logically equivalent to an algebra (this would not be
unique to algebras but a property to any system of symbols with internally defined
rules of production). Beyond this we found that the approach that Read used to
identify the algebraic structures underlying terminologies itself could be improved
and better understood by taking instantiation into account. That is, by taking into
account the need to be instantiable and stable, the algorithm became simpler and more
understandable, and this could be used as an evaluation metric for choosing one
approach over another. The resulting algorithm from this approach was much more
unified than Read’s earlier attempts, suggested ways of dealing with terminological
systems that had previously been resistant to explanation (classificatory
terminologies) and the role of gender was significantly improved.

The most remarkable outcome, from our perspective at least, is that by combining
a small subset of knowledge about the ideational properties of the terminology, the
generating terms of the algebra, and a small subset of the knowledge about
instantiation, how the generating terms are instantiated, that the structure of the
complete terminology can be generated [19] precisely. To our knowledge this is the

268 M.D. Fischer

first example of a predictive model of a symbolic system that can be based entirely on
data consisting of relational judgements of the relationships between tokens. This
result is not possible by looking at the behavioural data alone, nor by construction of
an ideational model alone, only by combining aspects of both in a single model.

In some ways this returns to the distinction between competence and performance
proposed by Chomksy [24]. Perhaps this is where we often go wrong. He notes that
we cannot simply analyse the structures that occur, because there are ‘errors’ and little
variants that will ‘spoil’ any formal description. But this is not the real reason. We
cannot analyse narrow behaviour because it is only a tiny fragment of what is going
on, and a single behaviour can potentially impact many different ideational schemas,
but is what results because of instantiation. That is, contrary to Chomsky’s conjecture
that separated the analysis of competence from that of performance, the point of
instantiation between these is critical in analysis from either ideational or material
perspective. Ideational analyses that ignore altogether issues of instantiation cannot
account for either the variation or stability in culture, nor can materialist analyses that
ignore the principles of instantiation of practice or behaviour.

4 Describing Cultural Processes Using Deontic Logic

Most cultural systems cannot as easily be represented by ‘pure’ algebrae as kinship
terminologies. However, our conjecture regarding cultural domains [9] only requires
that a significant component of a cultural domain be logically equivalent to a model
governed by an internally consistent set of principles.

The logics generally underlying models based on statistically derived aggregated
variables and their interactions operates on the assumption of direct or indirect
causality where probability is an integral property of variables. Either a variable
causes effects on another variable (e.g. number of calories ingested and energetic
capacity), or the variable’s value is proportional to another (perhaps unknown)
variable that causes (is responsible for) some of the variation in the second (e.g. age
and grey hair). The result is a causal logic operating on probabilistic relationships.
While this approach is tractable with small models, it does not scale up well to larger
models, and often leads to confusion in interpreting the contingent results of the
model - whether these are to be attributed to the model or to factors outside the model.
The resulting models are not well suited to supporting multi-agent models.

We can enhance this logic by adding deontic principles in addition to causal
principles. Deontic argumentation originally grew out of moral philosophy, with the
first modern formulation as a logic by Mally ([25]. See Lokhorst and Gobel [26] for a
discussion of Mally’s logic), who developed a logic based on propositions that assert
that certain actions or states of affairs are morally obligatory, morally permissible,
morally right or morally wrong - a logic of what ought to be given moral principles.
There were serious problems with Mally’s logic, but other deontic approaches have
been developed (e.g. Endorsing [27], Maibaum [28]) with respect to obligations and
permissions. Deontic logic can be applied both to ideational domains with respect to
knowledge-based rules (Fischer and Finkelstein [29], Fischer [22]), as well as to
material systems [28]. Deontic logic as I am using it follows Maibaum [28], which
implements it by adding modal operators to a conventional predicate logic.

 Cultural Agents: A Community of Minds 269

Deontic operations (obliged and permitted) are based on enablement and constraint
as the basic principles for describing relationships, and can account for some apparent
indeterminacy in a phenomena in terms of enabling and constraining the application
of logical formulae (some f leading to actions or states). Weak determinism is denoted
using the operator obliged (‘do f when permitted’), stronger determinism by OBL (‘do
everything possible to do f ’) and constraints on statements by ~not permitted
(~permitted) to prohibit a future instantiation of an action or result. The permitted
operation is likewise indeterminant.- permitted does not require an action, it only
allows (or enables) it at some future point. For example, if we have the following
model of a process:

~permitted B -- constrain B
Loop:generate A -- a generator of condition A
if A then obliged B -- if condition A the proposition B iif B not constrained.
if B then halt -- exit this segment
generate C -- a generator of condition A
if C then permitted B - enable B
if B then halt -- exit this segment
goto loop

Fig. 2. A simple deontic model

Using deontic principles to interpret the statements, the model will execute Loop
once, but halt at the second halt statement, since at the first conditional B is
constrained, and cannot be expressed until the constraint is lifted. However, once B is
permitted, B is expressed (if the first conditional is still valid) because it then obliged.
In a variant formulations it is possible to use a weaker definition of oblige that applies
only at the time of the conditional. In this case the model would execute Loop twice,
and exit at the first halt statement on the second iteration. The first approach is
representative of a parallel/declarative architecture. The second (weaker) is typically
procedural.

The practical consequences of the deontic approach for modelling is that it
provides tools for incrementally building models of processes, is adaptable to
incorporation of agent-based description as well as aggregates, and more cleanly
separates contingency accounted for within the model from contingency external to
the model.

Fischer and Finkelstein [29] employed a deontic logic developed by Maibaum
[28] called Modal Action Logic (MAL). Rules are expressed ‘(IN CONTEXT c)
WHEN agent is performing action a THEN result’.

For example, ignoring some details of quantification, one observation derived from
our case study of arranged marriages in Pakistan was:

in_public(girl) : [sing(girl,suggestive(lyrics))] -> character(girl, bad).
(gloss: if the girl is singing suggestive lyrics in public then the girl
has bad character).

In essence there is a governing proposition that is action related, defining a context
frame for further conditions, which in turn contextualise the action. The use of this
formulation solved a number of problems in representing processes because

270 M.D. Fischer

conditions and outcomes could be better organized in terms of the actions in the
process. More important, it facilitates a formal representation of ethnographic data in
a manner that is closer to the data as it is collected. Ethnographic data are not usually
collected in the form of rules - rules are the result of analysis. Ethnographic data are
more often in the form of sequences of declarative propositions. It is only after
considerable observation and inquiry that the preconditions and results of these
actions in specific contexts can be assessed. Thus we can further explore the action:
sing(girl, suggestive(lyrics)) in:

at_mindhi_of(girl,bro):[sing_to(girl,family(bride))]->
permit(sing(girl,suggestive(lyrics)))
(gloss: when a girl is attending the mindhi (pre-marriage eve) cere-
mony of her brother and the girl is singing about the brides’ family
then the girl is permitted to sing songs with suggestive lyrics).

This approach facilitates the incremental development of rules from propositions.
Processes with many concurrent actions can be represented. There is independence
between the logic and the possibly stochastic events the logic applies to. These
features make this formulation ideal for multi-agent modelling.

We can quantitatively evaluate these models without resort to aggregation by using
evaluating changes in entropy between the expanded ideational structure and the
instantiated structures (see Fischer [31] following Gatlin [30]). Of course, applying
information theory [32] to our analysis depends on our capacity at some point to at
least enumerate states possible for a given variable (to determine maximum
uncertainty), and ideally to identify probabilities (or statistical proxies) for each state
to calculate the minimum uncertainty. Deontic logic has no direct capacity to process
this information. So why is it relevant to using information theory as a means to
assess the interrelationships between the variables used to monitor or describe a
particular context?

Within a flow of independent (or external) stochastic events, a logical model
employing the deontic operators obliged, ~obliged, permitted and ~permitted to
actions/states can modulate the flow of logic in response to these events using much
simpler models that than would be required if we were to insist on a local causal
model incorporating both variable values and variable degrees of applicability.

Deontic logic thus provides tools for representing not only direct causality, but also
to describe in greater detail the context or conditions under which a causal
relationship operates. For example, in Figure 2. if we designate stochastic parameters
for the generate statements for A and C, their correlation with B is co-dependent.
Given a data set consistent with Figure 2. the outcome of this co-dependence as
expression of B might be described using only conventional statistical methods (such
as multiple or partial correlation). However, Figure 2. proposes that the intrinsic
correlation between A and B should approach 1 in isolation, (and the correlation
between A and C could be zero) but within the wider model this expression is
mediated by C. C thus controls the expression of the relationship between A and B,
and the relation between B and C can only be expressed (in Figure 2.) given A. The
deontic framework for modelling allows us to express in greater detail how the
different variables interact with each other than simpler structural logics such as
typically underlay causal path analysis or other conventional quantitative analysis in

 Cultural Agents: A Community of Minds 271

use. But, importantly, deontic logic is consistent with these; it merely permits more
mechanical detail in processes which have structural constraints.

A deontic model formulation requires finding/constructing absolute enabling
conditions, which can have a complex underlying aetiology. In other words, we have to
either have enough detail on the process under investigation to posit and test constraints,
or we have to attempt to predict constraints from the ‘holes’ in the conventional structure.
However, constructing deontic models can be done incrementally in its concurrent/
declarative formulation which makes it convenient to implement as independent
statements that ‘communicate’ based on changes by the statements to the global data
set. Such models are typically easier to produce and interpret than models based on first
order linear causal interactions. Indeed the use of a distributed deontic framework for
situating data collection and analysis may prove to be a useful starting point for
progressing more detailed quantitative approaches.

5 Conclusion: Applications to Multi-agent Modelling

Most of this paper has related a view of how human agents utilise cultural resources
to produce technical effects on the environment. This reflects much of my experience
with multi-agent modelling, which has been principally oriented to modelling human
agents in different social and environmental contexts.

Does this approach have anything to offer to multi-agent modelling in general,
particularly for the production of engineering applications and the production of
useful software systems? Drawing on my prior experience as a software developer
and engineer, I will argue that it does for most non-trivial classes of applications.

The weaker argument is that most applications are oriented to results that are
embedded in cultural processes, be these traffic control, language understanding,
regulating nuclear reactors or operating a factory. If the cultural processes are
complex, then the application must take that complexity into account in some way.
One potentially powerful way is to identify the principle cultural systems and their
organisation, and to incorporate this into the applications. I argue that this is implicitly
what is done in any case.

Applications are created using some combination of techniques that work together
for a desired result. The gross combination and sequence is often known for an
application type, but detailed implementation usually requires some considerable
adjustment in configuring the technology to the specific conditions of the
implementation, especially in the early stages of a technology. For example, in
microelectronics it takes one to two decades for a new technical development to make
the transition from first implementation to wide application [22]. Part of this delay
simply reflects the development and diffusion of knowledge relating to a new
technology, but perhaps more important, it is over this time that the technology itself
is refined to make it more adapted to a wider range of contexts of application by
practitioners who possess less and less knowledge by incorporating accumulated
knowledge of these contexts of use into the technology itself. This is similar to the
pattern of development of scientific innovations, where initial demonstration of an
effect often appears in a very restricted and difficult to produce context, but as the
context becomes better understood, so is the effect easier to demonstrate. This process

272 M.D. Fischer

in engineering is a result of gradually describing the many contingencies that make
applications difficult, and adapting the technology so that the materials, tools and
techniques incorporate knowledge relating to these contingencies and thus tend to
work better across the contingent range.

Technology is often a blend of knowledge about how to interact with material
systems, knowledge about the interaction and knowledge about what can and can’t be
done in different circumstances and how to adapt to different circumstances (deontic
or instantiating knowledge, usually referred to as ‘contextual’ knowledge, although
the latter usage is descriptive rather that analytic). Circumstantial adaptations are
more often in need of revision as the kinds of circumstances that can arise change
often in contrast to underlying principles, which may not change at all during the
period of adaptation. Instantiating knowledge is necessary to produce results from the
former two, and thus must be kept dynamically in ‘tune’ with contemporary
circumstances. But perhaps more significantly, without incorporation of instantiating
knowledge, we are in fact not importing useful knowledge at all because the powerful
things that the knowledge enacts in its origin context are not present.

The stronger argument takes this point further. I suggest that multi-agent modelling
as a method operates under similar constraints to human groups. If we are developing
an application that performs some simple task for which an accepted mathematical
model exists, then we are perhaps free of this constraint, but then we do not require
multi-agent modelling this these cases. Multi-agent models are used in situations
where we perceive complexity and a need for non-linear, non-sequential response in
order to produce the application desired. This is precisely the area where our usual
ways of expressing relationships and processes fails. Conventional propositional
calculus and mathematics can only approximate results in these cases, often in a
highly fragile form. Multi-agent models are not directed by a single logical system,
but by many interacting with each other. In some cases these different systems are
logically independent in the sense that each system interacts with the overall
application process in ways that do not directly impact each other. However, in most
real-world cases these different systems are not independent, and the interaction
between systems usually requires considerable tuning and even ‘hacking’ to produce
the desired behaviour in the application, and this often limits the case use of the
application.

The cultural-based architecture I have described is a working example of how
human groups deal with the problem of adaptively ‘tuning and hacking’ in
maintaining a group over time. By separating the logic of ideation from the logic of
instantiation we make explicit the adjustments necessary to produce a consistent
solution. The logic of instantiation represents the part of the application that
corresponds to the ‘real-world’ task at hand, producing satisfactory results in different
contexts. The logics of the different ideational systems corresponds to the data
structures combined with the relationships between the data items and the constraints
on their use. Formally separating the two produces a system that is far easier to debug,
develop and maintain.

Designing along these lines for each type of agent we should have two different
systems, one that formally defines the ideational component and another that formally
defines the instantiation of the former. Deontic logic is ideal for describing the
ideational logics and procedural logic more suited for describing instantiation, though

 Cultural Agents: A Community of Minds 273

there are cases where the deontic extensions may be suitable. Deontic logic is well
suited for explicitly mixing ideational frameworks with instantiation frameworks,
keeping the two apart but permitting one to act on the other. It is also a way to
formally represent what is already a major part of what practitioners do in engineering
and software design. Although the story is ‘science’, the instantiation often is not. In
this way we can separate the story from the instantiation.

To conclude, in reverse order - you are already doing ‘cultural’ programming.
Cultural agents refers to design which permits a wide range of stories with ways of
mapping these to actions. Hyperadaption is essential for intelligent adaptive systems.

References

Murdock, George Peter (1932). The Science of Culture. American Anthropologist 34(2):200–215.
D’Andrade, Roy G. (1995). The Development of Cognitive Anthropology. Cambridge

University Press: Cambridge.
Leaf, Murray (2005). The Message Is The Medium: Language, Culture, And Informatics.

Cybernetics and Systems 36:8.
Chit Hlaing, F. K. L. (2005) On the “Globality Hypothesis” About Social-Cultural Structure:

An Algebraic Solution. Cybernetics and Systems 36:8.
Fischer, Michael D., Stephen Lyon and Dwight Read (2005). Introduction to Special Issue on

Cultural Systems. Cybernetics and Systems 36:8.
Fischer, M. D. and Lyon, S. M. (2004). George Peter Murdock. In V. Amit (ed) Biographical

Dictionary of Social and Cultural Anthropology. London: Routledge. pp. 367–369.
Murdock, G. P. (1971). Anthropology’s Mythology. Proceedings of the Royal Anthropological

Institute of Great Britain and Ireland:17–24.
Minsky, M. (1988). The Society of the Mind.
Fischer, Michael(2005). Culture and Indigenous Knowledge Systems: Emergent Order and the

Internal Regulation of Shared Symbolic Systems. Cybernetics and Systems 36:8.
Fischer, M.D. & D. Read (2001). Final report to the ESRC on Ideational and Material Models.

Canterbury: CSAC.
Robert G. Reynolds and Bin Peng (2005). Cultural Algorithms: Computational Modeling of

How Cultures Learn to Solve Problems: an Engineering Example. Cybernetics and Systems
36:8.

Reynolds, G. R. 1994. An Introduction to Cultural Algorithms. In Proceedings of the 3rd
Annual Conference on Evolutionary Programming, 131–139: World Scientific Publishing.

Ezhkova, Irina (2005). Nesting Perspectives: Self-Organizing Representations. Cybernetics and
Systems 36:8.

Ballonoff, Paul (2005). Correspondence Among Mathematical Treatments Of Culture Theory.
Cybernetics and Systems 36:8.

Read, Dwight (2005). Some Observations on Resilience and Robustness in Human Systems.
Cybernetics and Systems 36:8.

Klover, Jorgen and Christina Stoica (2005). On The Nature Of Culture And Communication: A
Complex Systems Perspective. Cybernetics and Systems 36:8.

Lyon, Stephen (2005). Culture And Information: An Anthropological Examination Of
Communication In Cultural Domains In Pakistan. Cybernetics and Systems 36:8.

Read, Dwight (2006). Kinship Algebra Expert System (KAES): A Software Implementation of
a Cultural Theory. Social Science Computer Review 24:1.

274 M.D. Fischer

Read, Dwight and Michael Fischer (2004). Kinship Algebra Expert System. Centre for Social
Anthropology and Computing, Canterbury. http://kaes.anthrosciences.net (accessed
10/10/2005)

Leaf, Murray (1971) The Punjabi Kinship Terminology as a Semantic System. American
Anthropologist 73:545–554.

Lounsbury, Floyd (1964). The Structural Analysis of Kinship Semantics. In Proceedings of the
Ninth International Congress of Linguists. H. Hunt, ed. Pp. 1073–1093. The Hague:
Mouton.

Fischer, M. D. (1994). Applications in computing for social anthropologists. London: Routledge.
Read, Dwight W., and Clifford Behrens (1990). KAES: An Expert System for the Algebraic

Analysis of Kinship Terminologies. Journal of Quantitative Anthropology 2:353–393.
Chomsky, Noam (1957). Syntactic Structures. Mouton, The Hague.
Mally, Ernst (1926). Grundgesetze des Sollens: Elemente der Logik des Willens. Graz:

Leuschner und Lubensky, Universit ts-Buchhandlung, viii+85 pp. Reprinted in Ernst
Mally, Logische Schriften: Groles Logikfragment, Grundgesetze des Sollens, edited by Karl
Wolf and Paul Weingartner, pp. 227–324, Dordrecht: D. Reidel, 1971.

Lokhorst, Gert-Jan C., and Lou Goble (2004) Mally’s deontic logic, Grazer philosophische
Studien, vol. 67, pp. 37–57.

Anderson, Alan Ross (1967) Some nasty problems in the formal logic of ethics, No×s, vol. 1,
pp. 345–360.

Maibaum, T. S. E. (1986) A Logic for the Formal Requirements specification of Real-
Time/Embedded Systems. Alvey FOREST Deliverable Report 3. Chelmsford:GEC Research
Laboratories.

Fischer, M. D. & A. Finkelstein (1991). Social knowledge representation: A case study. In
Using Computers in Qualitative Research. N. G. Fielding & R. M. Lee. London, Sage.
119–135.

Gatlin, L. (1972). Information theory and the living system. Columbia University Press: New
York and London.

Fischer, M.D. (2004). Integrating anthropological approaches to the study of culture : The
‘Hard’ and the ‘Soft’. in ‘Cybernetics and Systems’. 35:2/3 pp. 147–162

Shannon, C. E. & Weaver, W. (1963) The Mathematical Theory of Communication. First
published 1949. Urbana: University of Illinois Press.

Language Games for Meaning Negotiation

Between Human and Computer Agents

Arnaud Stuber, Salima Hassas, and Alain Mille

CExAS Team - LIRIS,
Université Claude Bernard Lyon 1,

Bâtiment Nautibus - 8 bd Niels Bohr,
69622 Villeurbanne

{astuber, hassas, amille}@liris.cnrs.fr
Tel./Fax number: (+33/0) 4 72 43 26 51/4 72 44 83 64

Abstract. We present a hybrid system that allows an actor to reuse her
individual experience during a cooperative activity. The actor is mem-
ber of a community which share a computer environment to assist their
work. Firstly, an operational issue exists to capture, to represent and to
manipulate the experience: we propose an formal grammar-based model.
A semantic issue then exists to express the meaning of the experience:
we detail our approach based on the mechanisms of the emergence of
language. A prototype is presented to illustrate our proposal, some ex-
periments are to come.

Keywords: Emergence of Language, Multi-Agent System, Trace Based-
Reasoning.

1 Introduction

In this paper, we consider a human actor who performs a task using a computer
environment. We intend to help the actor to achieve her task by providing a con-
textual access to her individual experience; more precisely, the problem treated
here is to build a personal assistant which helps the actor to reuse her past expe-
rience in the context of the current task. The individual experience is represented
by use traces, which are the observations of the actor activity, expressed as the
system’s state changes, produced by occurring events. Before to retrieve past
experiences, the assistant has to identify the elements of the current trace which
are significant for the current task. To do so, some meanings need to be shared
by the actor and her assistant to allow their mutual understanding during this
interpretation of the current trace.

In consequence, the fundamental issues are 1) to model the experience cap-
tured by observing the interactions between the actor and the computer envi-
ronment, and mostly 2) to have a way to share the interpretations of the traces
in the context of the current activity. The first approach to adapt information
retrieval is to personalize the assistance. The personalization relies on some di-
mensions of adaptability defined beforehand; however, in our case, we do not

O. Dikenelli, M.-P. Gleizes, and A. Ricci (Eds.): ESAW 2005, LNAI 3963, pp. 275–287, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

276 A. Stuber, S. Hassas, and A. Mille

know initially what will be significant for the actor. On the other hand, the
amount of interactions required before the assistant starts retrieval constitutes
a condition of its usefulness. Our proposal is to transpose the principles of the
emergence of language to achieve the meaning negotiation between the actor
and her assistant, reusing by this way the past negotiations, and without any
predefined interpretation.

Here, the emergence of language is chosen to obtain a shared communication
system between an actor and her personal assistant. This problematic is a partic-
ular case of a more general one: the assistance to a group of human actors, who
are concerned about a common task, to share, to exchange and to co-construct
a common experience. Our system is the first step of this line of research. Its
principles could be extended to the communication between personal assistants
in order to assist cooperation.

In the rest of the paper, we first detail the principles of our approach, we
situate it in comparison to related works. Next we explain how the experience
is represented by use traces, and the structure of the language symbols relies
on this representation. The mechanism for meaning identification by the assis-
tant is then introduced, defining the representation of meaning in the language.
The mechanisms of negotiation are finally detailed, and the language games are
presented to explicit how common symbols and meanings are obtained.

2 Experience Tracing in a Hybrid Context with Human
and Computer Agents

2.1 Principles

To manage the individual experience base, we use the trace-based reasoning
(TBR) paradigm, an extension of the case-based reasoning (CBR) paradigm to
unstructured cases, i.e., the traces. The individual experience is captured by
observing interactions between the user and the system, and it is represented in
the system by use traces. To retrieve past experience, a reasoning by analogy
between the current trace and the past ones is performed considering a given
interpretation.

On the other hand, the multi-agent paradigm is adopted to directly represent
the actor interacting with her personal computer assistant (further called alter
ego agent): the system we consider is a hybrid system. More specifically, in or-
der to obtain an interpretation shared by the actor and her alter ego agent, we
apply the mechanisms of the emergence of language considering the interactions
between them as a negotiation process about trace meaning. This approach
requires a symbolic representation of the trace, the construction of symbols
from trace sequences to have a medium of communication, the identification
of assistance meanings and the agreement between the actor and her alter ego
agent on some symbol-meaning relations to be able to talk about meanings using
symbols. The resulting language contains all the interpretations used for trace
retrieval.

Language Games for Meaning Negotiation 277

2.2 Related Works

Our trace model relies on the MUSETTE model defined in [1]. We enrich it
with some control elements to ease the trace handling. The syntactical level
for trace description, presented in section 3.2, has similar principles of those
presented in [2] for intrusion detection systems (IDS). With a CBR approach,
[3] presents an ascendant mechanism to elaborate cases, which has similarities
with the mechanism of signature identification presented in section 3.3.

The assistance personalization, we are aiming by introducing the alter ego
agents, leads to the problematic of interface agent presented in [4, 5]. However,
in our case, the user modeling is not defined beforehand since we do not know
what will characterized the actor in the context of the collective task. We pro-
pose to get the required adaptivity by generating a communication system. The
mechanisms of emergence of language are presented in [6]. They constitute a
frame for the interactive behaviour of the alter ego agent with its actor. In this
line of research, applied to ontology alignment between agents, [7] presents dif-
ferent strategies of reinforcement used to build a shared communication vocabu-
lary; these strategies can be applied to the mechanism of reinforcement learning
detailed in section 3.4 and used for the signature identification presented in
section 3.3.

Concerning the reasoning by analogy in a collaborative context, several stud-
ies [8, 9] and also [10] are some important starting points for structured cases;
indeed, several efficient case sharing policies are studied. However, in our context,
a collaborative experience is made up of a set of individual experiences (stored
in traces), and there is any dimension known beforehand to isolate cases, and to
exploit them in a Case-Based Reasoning (CBR) framework. Thus, the alter ego
agents need some tools to manipulate the traces, and have to consider actors’
interactions as the preferential way to construct contextual case structures.

In the field of recommendation systems, our approach differs from the sys-
tems for implicit culture support (SICS) [11] by the fact that it is based on the
principles of the emergence of language. Thus, the underlying rule-based do-
main theory used in SICS to suggest actions have no direct counterpart in our
approach.

3 Experience Representation

3.1 Environment Representation

The environment is composed of a software used by each actor during the con-
sidered activity, in order to manipulate some documents. The documents are
supports for the different tasks of the activity; they gather the potentially useful
informations for the actors, according to their roles.

Document and Activities: The documents are activity dependant. They are stan-
dardized and made up of different fields, which contain activity-specific keywords.
A keyword represents a concept, and all the concepts are organised hierarchically

278 A. Stuber, S. Hassas, and A. Mille

Fig. 1. The computer environment: a prototype of portal for document management.
The activity considered is a collective administrative procedure in our laboratory. On
the left, the different steps of the collective process; on the right, a document repre-
senting a step. The documents are described by a set of fields, which contain keywords
defined in a thesaurus.

in a thesaurus. This is introduced to have a measure of semantic similarity be-
tween keywords and concepts.

Target Application: The actions that an actor can perform in the environment
introduced above are: edition, consultation and research. We do not make any
restrictive assumption on how works the target application; thus several actions
can be jointly performed. An illustration of environment is given on the fig-
ure 1, we consider this environment in the rest of the paper to illustrate our
proposal.

3.2 Use Trace Modeling

The trace model presented here is based on the MUSETTE model [1], pro-
posed by our team, for assistance systems. A use trace is defined by an alternate
sequence of states and transitions. The objects of interest observable for the
considered task are described in a use model, they are either entities or events.
A use trace describes the changes that occur in the system, and that are ob-
servable by the actor. A state is made up of the observable objects considered
as stable. The transitions correspond to the action of an actor, and they are
defined by events and eventually some additional entities. To manipulate the
traces, the assistant must recognize some situations; an explained task signature

Language Games for Meaning Negotiation 279

Fig. 2. The MUSETTE model

(or signature) is a recurrent pattern in the traces, made up of at least one signif-
icant event for a given situation. When a part of a use trace verifies a signature,
it constitutes an episode which can be reused in similar situations. The prin-
ciples of the MUSETTE model for assistance systems are represented on the
figure 2.

However, consider an actor performing an action on a given document. To
do his action, he has a personal method to use the functionalities of the com-
puter environment. Thus a use trace has a high variability if we consider two
actors performing the same action by different ways. This variability is an issue
for use traces manipulation and constitutes a limit for the comparison of traces.
However, the functionalities constitute a common basis for the users’ operations.
In [12], we present a formal grammar-based trace structure where the call of a
functionality is represented by a tag added in the trace. Operators are intro-
duced to define the sequences of observations, which are employed to construct
the symbols presented in section 3.3. The trace structure presented below ex-
presses explicitly the call of a functionality to perform an action; the operators
and their properties express the similar forms of use traces for a given action. A
filtering of the trace can also be done in order to extract the actions we want to
consider.

For the actions we take into account, it is possible to decompose an ac-
tion in: an initial sequence, a set of sequences representing the use of func-
tionalities of this action, and a final sequence. Among the intermediate
sequences, some are permutable between themselves, they are called alternative
sequences ; others express events which can not be permutated, they are called
static sequences. This description is added to the use model of the MUSETTE

280 A. Stuber, S. Hassas, and A. Mille

framework; so, when a trace is constructed, the appropriate tag is associated to
each sequence.

Below the formal definition of these properties using a formal language.

A Formalism Based on a Formal Language to Interpret Use Traces

– Sentence: a sentence is a series of actions. If the actions are performed
jointly in several windows, the same approach is applied to each window.
These sentences are called traces.

– Terminal symbols: the transitions (T) and the states (S) are considered as
terminal symbols. Among them TI , TA, TS, et TF represent some transitions
containing respectively the tags for the initial sequence, some alternative
sequences, some static sequences and the the final sequence of an action.

– Operators: the operators between terminal symbols are · and +, with the
properties that · is not commutative, et that · has priority on +. A series
of states and transitions only separated by · is then indivisible, the notion
of sequence is so formally defined. Conversely, + is used between sequences;
the commutativity between sequences depends on their respective status as
it is defined is the introduction of this grammar.

– Non-terminal symbols: a trace is a series of actions; it is made up of
an initial sequence (SequenceI), some intermediate sequences and a final
sequence (SequenceF). The intermediate sequences are either alternative
(SequenceA) or static (SequenceS); the alternatives can be permuted only
if they constitute an uninterrupted series.

– Production rules:

Trace ::= Action∗

Action ::= SequenceI + IntermSeq∗ + SequenceF

IntermSeq ::= PermSeq | SequenceS

PermSeq ::= SequenceA | PermSeq + SequenceA| Action

Sequencex ::= Tx · S [·T · S]∗ with x ∈ {I, A, S, C}
The figure 3 illustrates the use trace structure. In a sequence, here of minimal
size (i.e., one transition and one state), where at least one transition contains the
tag of functionality and where all elements contain a description of the changes
in the environment caused by the functionality; these changes are represented
by the difference between the next state and the previous state. Thus the states
describe the context between significant events. The trace is bounded by two
transitions representing the login and the logout in the environment by the actor.

However, with this trace structure, we do not know the elements that we have
to take into account to express an experience.

3.3 Symbolic Trace Representation

An explained task signature represents a situation known by the alter ego agent
and having a meaning for the actor. To express the signatures, we introduce an

Language Games for Meaning Negotiation 281

Fig. 3. An instance of trace respecting the formal grammar

intermediate layer made up of local patterns, called symbols; a symbol comes
from a sequence, where the actor has specified the elements to consider using an
appropriated GUI. A signature is defined by a group of symbols. The symbols
and the signatures evolve during the interactions, according to the negotiation
mechanisms detailed in section 3.4. A symbol replicates the structure of the
sequence it comes from: a series of state and transitions, with a tag, and where
the observations are partial with the generic dimension defined below.

Through the assistant GUI, the actor has the possibility to specify to his
alter ego agent which element of sequence is important for his current task. An
element is important either by itself (any other is interesting) or for its type

Fig. 4. Principles of ascendant signature recognition: the tags guide symbol identi-
fication which is finally obtained by matching the different partial observations of a
candidate symbol on the considered sequence. When some symbols are identified, a
signature including enough symbols is candidate for episode retrieval. The result is
proposed to the actor. A label is associated to each symbol (here, α, β...) and each
signature (here, task A) to express their respective meaning.

282 A. Stuber, S. Hassas, and A. Mille

(elements of the same type are interesting). To match a partial observation of
a symbol with an observation of a sequence, we require a way to express this
abstraction. We introduce generic nodes to express it in the observations of a
symbol: to match, a generic node must have the same type of the target node;
the type definition is domain dependant.

The signature recognition is ascendant and starts by observing the tags
present in the current use trace. For a given tag in a sequence, the associated
symbols are tested by matching their partial observations to the observations of
the sequence. After the identification of symbols in the the trace, the signatures
including enough identified symbols are candidates for episode retrieval. The
figure 4 gives an illustration of this recognition process. A label is associated to
each symbol and each signature to express their respective meaning in natural
language. The current trace is reformulated with the recognized symbols and
presented to the actor with their labels. The labels of the signatures are use to
explain the task identification and to situate the retrieved episodes. For a sig-
nature, the retrieved episodes are order by semantic similarity with the current
trace and proposed to the actor (see Fig. 6 for an illustration).

3.4 Emergence of Meaning

The principles for the episode extraction presented above do not ensure the
meaning adequacy between a recognized signature and actor’s intentions. The
signature have to ensure this adequacy in order to provide a suitable assistance.
However, the alter ego agent can use the interactions with the user to reduce
the ambiguities. To do so, we propose to consider the interactions between the
actor and her assistant as negotiation process about meanings of the manipu-
lated objects. We then transpose the mechanisms of the emergence of language
presented in [6].

In this section, we describe the principles of the emergence of meaning with
a use scenario. We consider an actor who performs a series of operations on a
document until he needs an assistance to continue his activity. Then he calls
his alter ego, which has interpreted his operations according to the ascendant
process detailed above. The interpretation is done using current symbols and
signatures. Firstly, the interpretations of the current trace are proposed to the
actor, so that he can compare them, and finally select one. The figure 5 gives
the GUI associated to this step, we consider a list of signatures and the detail
of an interpretation on the current trace.

By selecting on a signature, the actor can access to the retrieved episodes
in a second interface. In this window, the selected interpretation of the current
trace is displayed on the top; below, a list of the retrieved episodes is proposed
to the actor. When an episode is chosen, the detail of its interpretation with the
considered signature is displayed. The symbols which are not yet found in the
current trace are present in the episodes; this constitutes the contextual assis-
tante proposed to the actor, who can then benefit from indications to continue
his activity. In the lower part, two panes gives the descriptions of symbols se-
lected either in the current trace or in an episode; the definition of a symbol

Language Games for Meaning Negotiation 283

Fig. 5. The interpretation GUI: a list of signature (three signtaures are proposed here)
and the detail of the interpretation of the current trace for the selected signature (here,
two symbols with their labels in boldface)

or of a not identified section is displayed in a hierarchical form. The user can
interact with this description, and thus modify the definition of the associated
symbol. After some interactions, the actor calls his alter ego to refresh its pro-
posal. Then, a negotiation starts between them in order to disambiguate the
modified or new symbols and the new signature definition, this is done in com-
parison to last alter ego’s language state. Indeed, the interactions can lead to
symbols that are similar or equal to already existing ones, the same situation
can occur with the signature. This negotiation is done to indicate to the alter
ego how to consider the new language elements. After this negotiation, the ele-
ments are included in the language and a new interpretation can start. See the
figure 6 for an illustration of the signature negotiation GUI.

The Language Games. The emergence of language is based on the agreement
between agents (here, the actor and his alter ego agent) on:

– a repertoire of symbols, used as a “communication medium” between the
agents;

– a repertoire of meanings (i.e., signatures), representing some abstractions of
the reality;

– a repertoire of symbol-meaning pairs, to be able to “talk” about meanings
using symbols.

The agreement is obtained automatically by executing iterations of language
games, which are respectively the imitation game, the discrimination game and

284 A. Stuber, S. Hassas, and A. Mille

Fig. 6. The negotiation GUI. From top: the label of the signature considered by the
assistant, the current trace with a symbolic representation, the list of episodes retrieved
by the assistant, the symbolic representation of a selected episode, and in the lower
part two trees describing the instantiation of the selected symbol: on the current trace
(left) and on the selected episode (right). When the user asks his alter ego agent to
update its proposals, he has to disambiguate the modified symbols and to verify the
definition of the signature.

the naming game. [6] surveys recent work on modeling the origins of communi-
cation systems.

We introduced above two symbolic levels: the signatures and the symbols in
the symbolic trace. Since a meaning is expressed using several symbols, we can
not exactly talk about symbol-meaning pairs but rather about a relation of 1..n
cardinality.

During signature recognition, an iteration of imitation game is initiated for
each recognized symbol, and an iteration of naming game for each symbol-
signature relation. At the time of assistance refresh, the iterations are completed
according user’s reactions. The symbols successfully recognized (i.e., accepted by
the user in the new definition of the considered signature) are reinforced, the re-
jected symbols are inhibited, otherwise the iterations are not completed since
we do not know how to consider the symbols that are recognized but not used.

Language Games for Meaning Negotiation 285

Some symbols can be created, their scores are set to an initial value. During the
interactions with the symbols definitions, the user can define an already existing
symbol; in this case, the identical symbols are merged after the user has defined
a common label. Symbols with low score are eliminated.

With the symbols accepted by the user to define the signature, the iterations
of naming are completed. The relations between the considered signature and
the accepted symbols are reinforced, the relations with rejected symbols are
inhibited, otherwise the iterations are not completed. For new symbols or for
the existing symbols added for the first time to the signature, new relations are
created with an initial score. By this way, a signature is defined by numerous
relations with respective scores; in the mechanism for signature identification (see
section 3.3), we only consider the relations with a score above a given threshold
as the relations defining a signature. During the signature definition, the user
can define an already existing signature (i.e., a signature made up of the same
symbols with scores above the threshold); in this case, the signature are merged
and the relations of the previous signatures are merged to define the resulting
signature with a user defined label. New signatures can be created.

In [6], the discrimination game is done to obtain a conceptualization of the
world, and is performed individually by each agent. In our case, the signatures
(the meanings expressed by strings in natural language) are defined by the user,
but are shared with the alter ego agent. We consider that only the user can per-
form the discrimination, for this reason any discrimination game is introduced.

On the basis of the analysis detailed in [6], we discuss the introduced mech-
anisms. Four principles are considered to allow the emergence of a communica-
tion system, namely reinforcement learning, self-organisation, selectionism and
structural coupling. The principle of reinforcement learning does not allow only
in itself the emergence of symbols and symbol-meaning relations.

For the imitation game, the principle of self-organisation is obtained with the
positive feedback between the correctness of symbol recognition and its utility for
the actor. The selectionism is expressed by the score of the symbols, which have
a tendency to survive in the repertoire when they have high scores; the variation
comes from unknown user actions, where objects of interest are consider as
significant for a symbol.

The naming game for symbol-meaning relations also requires these principles:
reinforcement learning is based on success or failure in the assistance as a whole,
which corresponds to a communication attempt about an assistance meaning
using symbols. The self-organisation is due to the positive feedback loop between
use and success: when a symbol-meaning relation is successful, its score goes up.
The score of a relation between a recognized symbol and a signature influences
the signature relevance, and so, they are likely to be reuse; this leads to their
greater success. The selectionism is expressed by the limits of the alter ego
agent: if a situation cannot be reliably recognized, the signatures and symbols
introduced to capture its description have less chance of survival. In addition,
the structural coupling due to the iterations of language games, which generate
symbols and meanings reinforced or not according to their success, leads to a

286 A. Stuber, S. Hassas, and A. Mille

co-evolution between the repertoire of symbol and the repertoire of meaning; this
is the adaptivity we are looking for to capture efficiently experience meaning.

The emergence of a language is not yet experimentally demonstrated. Never-
theless, the conditions of this emergence as they are defined in [6] are fulfilled.
The experimentation has to rely on an appropriate use scenario since the emer-
gent language, we intend to obtain, would have the property to evolve and to
adapt to the use.

4 Conclusion and Future Work

We present a personal and contextual assistant which provides to an actor a per-
sonalized access to her individual experience. The actor is member of a commu-
nity, its activity is situated in a complex collective task. A computer environment
is shared by the community to report its activity. A formalism to represent ac-
tor’s experience as individual use traces is presented. The use traces are obtained
by observing actor’s interactions with the common computer environment.

We then detail our proposal for emergence of meaning in the trace, which con-
stitutes the critical issue to allow access to experience. To obtain this emergence,
we propose to consider the interactions between an actor and her assistant as
meaning negotiations, and to apply the principles of the emergence of language
in order to benefit from their adaptation properties. The mechanisms (reinforce-
ment learning, selectionism, auto-organisation, structural coupling), which are
necessary for this adaptation, are implemented in a prototype. Some experiments
are to come.

In this line of research, the sharing of individual experience between actors
will be studied with the principles of language games between alter ego agents.
For the collective experience, we will have to consider it as a combination of
individual traces, and some internal agents may be introduced to build collective
traces. The results of the research on implicit culture may also be useful to build
a collective experience. Finally, the research on the emergence of grammar has
also to be considered in order to improve the expressivity of the signatures.

References

1. Champin, P.A., Prié, Y.: Musette: uses-based annotation for the Semantic Web.
In: Annotation for the Semantic Web. OIS Press (2003)

2. Gorodetski, V., Kotenko, I.: Attacks against computer network: Formal grammar-
based framework and simulation tool. In: Proceedings of the 5th International
Conference “Recent Advances in Intrusion Detection”, Zrich, Switzerland, Springer
Verlag (2002) 219–238

3. Mart́ın, F.J., Plaza, E.: Ceaseless case-based reasoning. In Funk, P., González-
Calero, P.A., eds.: ECCBR. Volume 3155 of LNCS. (2004) 287–301

4. Maes, P.: Agents that reduce work and information overload. Communications of
the ACM 37 (1994) 30–40, 146

5. Lieberman, H.: Autonomous interface agents. ACM Conference on Human-
Computer Interface [CHI-97], Atlanta, March 1997 (1997)

Language Games for Meaning Negotiation 287

6. Steels, L.: Language as a complex adaptative system. Lecture Notes in Computer
Science. Parallel Problem Solving from Nature - PPSN 4 (2000)

7. van Diggelen, J., Beun, R.J., Dignum, F., van Eijk, R.M., Meyer, J.J.: A de-
centralized approach for establishing a shared communication vocabulary. In: In-
ternational workshop on agent mediated knowledge management 2005, held with
AAMAS2005. (2005)

8. Martin, F.J., Plaza, E., Arcos, J.L.: Knowledge and experience reuse through
communication among competent (peer) agents. International Journal of Software
Engineering and Knowledge Engineering (1998)

9. Ontan, S., Plaza, E.: Learning when to collaborate among learning agents. In:
Machine Learning: EMCL 2001. Lecture Notes in Artificial Intelligence 2167. (2001)
394–405

10. Kanawati, R., Malek, M.: A multi-agent system for collaborative bookmarking. In:
Proceedings of the first international joint conference on Autonomous agents and
multiagent systems, ACM Press (2002) 1137–1138

11. Blanzieri, E., Giorgini, P., Massa, P., Recla, S.: Implicit culture for multi-agent
interaction support. In: Cooperative Information Systems, 9th International Con-
ference – CoopIS 2001. Volume 2172 of LNCS, Springer-Verlag (2001)

12. Stuber, A., Hassas, S., Mille, A.: Combining multiagents systems and experience
reuse for assisting collective task achievement. In McGinty, L., ed.: ICCBR-2003
Workshop : From structured cases to unstructured problem solving episodes for
experience-based assistance. (2003)

O. Dikenelli, M.-P. Gleizes, and A. Ricci (Eds.): ESAW 2005, LNAI 3963, pp. 288 – 302, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Using Socially Deliberating Agents in Organized Settings∗

Ioannis Partsakoulakis and George Vouros

Department of Information and Communication Systems Engineering,
83200 Karlovassi, Samos, Greece

{jpar, georgev}@aegean.gr

Abstract. Recently there is an increased interest in social agency and in
designing and building agent organizations. In this paper we view an
organization as a set of interrelated groups. Each group has an explicit structure
in terms of positions and their interrelations. Agents in groups deliberate
socially, distinguishing between their individual and group attitudes: Each agent
is able to agree on and accept certain attitudes as attitudes of the groups it
belongs. Acting as group member, an agent must be able to act on the basis of
these group mental attitudes rather than on the basis of its individual beliefs and
goals. This issue, although ultimately important, it has not given much attention
in agent community. The objective of this paper is (a) to propose a generic
design pattern for building agent organizations in which the constituting groups
build and maintain their own group goals and beliefs according to their needs
and the environmental conditions, (b) to present the functionality of social
deliberating agents that act as group members in organized settings, and (c) to
report on the development of a prototype system that comprises agents that
implement such a kind of social deliberation.

1 Introduction

Recently there is an increased interest in social agency, as well as in designing and
building agent organizations. Unfortunately, there is no wide consensus on the
definition of an organization [5]. In this paper we view an organization as a set of
interrelated groups that pose specific constraints on the behaviour of their members.
We are focusing on groups that have an explicit structure in terms of positions and
interrelations between them. Each agent occupies one or more positions and each
position corresponds to a specific role. More precisely, a group can be defined as in
[18]: A group or multiagent system is a system of agents that are somehow
constrained in their mutual interactions. Typically, these constraints arise because
the agents play different roles in the group, and their roles impose requirements on
how they are to behave and interact with others.

In this paper we distinguish between individual and group attitudes. On the one hand,
each individual has a set of beliefs and a set of goals. On the other hand, each group has
a set of group beliefs and a set of group goals. In organized settings, group goals are not

∗ This research is supported by the Pythagoras grant no. 1349 under the Operational Program

for Education and Initial Training.

 Using Socially Deliberating Agents in Organized Settings 289

always in correspondence to the individual goals of group members, since they may
have been formed by a (typically small) subset of “authorized” members that determine
the goals and the beliefs of the group as a whole. However, it is usually required that in
organized settings groups to act as single entities. Successful group action presupposes
the acceptance of group goals and the acceptance of group beliefs from each agent.
Furthermore, agents must be able to act as group members rather than as individuals.
Acting as a group member [22] each agent must be able to distinguish between the goals
and beliefs that it holds individually, from the goals and beliefs that it accepts as a group
member. This issue, although ultimately important, has not been given much attention
within agent community.

The concept of acceptance has been discussed lately in the philosophical literature
[2, 26, 6, 21] and two kinds of acceptances have been identified [21]: One that aims at
truth and one that aims at utility. According to Tuomela [21], when we are talking
about group belief of structured groups, the utility-based concept of acceptance is
more applicable (called proper group belief). Acceptance of this kind differs from
individual belief in important ways. What if of most importance here is the fact that
(a) acceptance is voluntary (or intentional) in contrast to belief that is a kind of
disposition and (b) the set of acceptances (in contrast to the set of beliefs) is not
subject to an ideal of integration or agglomeration. Therefore, an agent can hold
conflicting acceptances, when it participates in different groups. We do not claim here
that consistency is not important. An agent should seek to participate in groups that
are close to its personal beliefs and goals. However, we assume that once an agent is a
member of a group then it does not “select” the group attitudes that fit best to its
personality, but it is a group member in the core sense.

The objective of this paper is threefold:

(a) to propose a generic design pattern for building agent organizations in which
the constituting groups build and maintain their own group goals and beliefs
according to their needs and the environmental conditions,

(b) to present the functionality of social deliberating agents, acting as group
members in organized settings, and

(c) to report on the development of a prototype system that comprises agents that
implement such a kind of social deliberation.

Agents live in a social context that comprises a set of groups that affect their
behaviour or that agents have an interest in. The social position of agents is specified
by the roles they play in one or more groups inside their social context. Agents must
be able to exploit the specific organizational structures and policies in order to pro-
actively participate on the formation of group beliefs and goals, and to act on the basis
of these group attitudes.

The aim of our research is to build a design methodology for human-centred
systems towards empowering humans to deliberatively form and manage their social
context and position via socially deliberating agents. It must be emphasized that
designing and implementing human-centred systems is a hard task: Our approach
does not aim to tackle all the related issues: In [4] it has been argued that the
development of human-centred systems must take the triple people-machine-context
as the unit of analysis. It involves studying people capacities, capabilities and goals,
computational mechanisms, interface capabilities and context. Our approach does not

290 I. Partsakoulakis and G. Vouros

focus on human-computer interaction, but rather on empowering humans to act in
organized contexts, according to their capabilities, goals and context. Particularly, we
investigate the social deliberation abilities of software agents that represent humans
and form their “digital analogue” within organizations. Agents exploit two types of
contexts:

(a) The social context, which comprises the organizations that exist in agent’s
environment, the roles that an agent plays in one or more organizations, the
relations between roles, responsibilities and certain organizational policies, and

(b) The context of action or intentional context, which comprises the intentional
activities that agents follow in order to play their roles.

The rest of this paper is organized as follows. Section 2 presents a real-life scenario
that motivates our research towards empowering humans to act consistently as group
members. Section 3 presents a normative model for the specification of the structural
and behavioural elements of an organization, describes the overall architecture of a
prototypical implemented system, and presents the architecture and the overall
functionality of a socially deliberating agent. Section 4 presents related works and
finally, section 5 concludes the paper.

2 Motivating Scenario and Requirements

This section presents a real-life scenario that motivates our work and is representative
of most of our considerations for incorporating socially deliberating agents in human-
centred systems.

Mike is a newcomer engineer in a large company and he is employed in the
engineering department. A short time ago, the personal agent of Mike found a new
position in this company. This position was found to be consistent with other roles
that Mike plays (e.g. the role of student and the role of patient in the local Medical
Treatment institution). The agent presented this new position to Mike, who gave the
authority to his personal agent to inform the organization and settle the details of
undertaking this role. Mike communicated with the company for the last details and
now he is one of the newest members in the company.

The job of Mike consists of getting customer orders, designing custom products by
gathering the best available parts according to regulations and standards, and, together
with more experienced colleagues, providing instructions to the manufacturing unit
for getting the final product. The company, as well as the department in which Mike
belongs, has certain responsibilities. Some of these responsibilities are addressed to
individuals while others are responsibilities of departments or of the company as a
whole. The latter are called collaborative responsibilities and, in contrast to the
individual responsibilities, they require every group member to contribute and
collaborate towards their fulfilment.

Being a newcomer, Mike is not aware of his colleagues’ regular activities, has not
hands-on experience on the tasks he must perform and he does not posses proper
knowledge on how problems are handled when they arise. Mike’s capabilities (e.g.
designing and engineering products), permissions (e.g. access to information sources),
organizational context (e.g. individual responsibilities and collaborative responsibilities

 Using Socially Deliberating Agents in Organized Settings 291

that he shares with colleagues, roles he plays and groups he participates in) and
intentional context (individual and group activities, constraints and permissions related
to these activities) drive the way Mike fulfils his responsibilities.

The digital representative of Mike is an agent that holds knowledge concerning the
capabilities of Mike, as well as his social and intentional context. This agent
represents Mike in the digital counterpart of the company, which is a multi-agent
system comprising the digital representatives of company members. When Mike
enters or leaves the company, then his digital representative enters or leaves this
multi-agent system as well. It is this agent that presents to Mike all the necessary
information about the organization (e.g. the organizational structure, roles and
responsibilities of associated roles, methods for achieving these responsibilities etc.)
and helps him achieve his goals individually or in collaboration with his colleagues.

Due to security restrictions or to constraints imposed by the organization,
information is distributed to company members. This affects organization member’s
decision-making: They must combine different pieces of information in order to reach
agreements about the need to achieve certain goals. For instance, let us assume that
according to organizational policies, Mike, as well as all the members of the
engineering department, need different and complimentary pieces of information to
reach a decision about the design of a product. When group members in the
engineering department receive these pieces of information, then they must form a
commonly accepted view about the design of this product. As already pointed, this is
an important prerequisite for the group to act as a single entity, especially when group
members posses conflicting pieces of information. Having an agreed view of the
world, representative agents can help humans to pursue their responsibilities, exploit-
ing the organizational structure and the organizational practices.

Concluding the above, we distinguish between three modes of helpful behaviour
that a personal agent can offer to its user towards the fulfilment of a specific
responsibility. In the first mode, the user decides to fulfil the responsibility alone. In
this case, the personal agent helps its user by keeping an agenda of his responsibilities
and it does not act on behalf of the user. To exhibit helpful behaviour, the personal
agent must be knowledgeable about the organizational and intentional context of its
user. In the second mode, the user delegates the responsibility to the agent. In this
case, the personal agent must not only be knowledgeable about the organizational
context of the user, but it must also have the appropriate capabilities and knowledge
to fulfil the delegated responsibility. In case the delegated responsibility is a
collaborative one, then the agent must have collaboration abilities and must be able to
cope with the distribution of knowledge. Finally, in the third mode, the user
collaborates with the agent for the fulfilment of the responsibility. This collaboration
is independent on whether the responsibility is collaborative, as it concerns the
relation between the user and his representative. In this case the user and the agent
commit to proceed to the fulfilment of the responsibility together. The agent must be
able to track the activity of the user and must form decisions with him about the
fulfilment of responsibilities. In this paper we concentrate on the fulfilment of
responsibilities and the collaboration between agents that is a major step towards the
realization of the above modes of helpful behaviour.

292 I. Partsakoulakis and G. Vouros

3 The Overall Architecture

Although there are many methodologies for designing distributed systems as well as
human-centred systems (e.g. [28]), complimentarily to these we propose a generic
design pattern that incorporates personal agents acting as representatives of human
agents: A personal agent that represents a human is “surrounded” by organizations to
which it participates via role-playing. These organizations constitute the social
context of the agent. A personal agent helps its user to undertake and play these roles
in the corresponding human organizations.

The structure of each organization can be the subject of deliberation of
“authorized” organizational members. Therefore, it can be dynamic. In this paper, we
are working on a specific snapshot of an organization and therefore we do not deal
with the dynamics of the organizational structure but rather with the dynamics of the
agents towards achieving group goals and forming beliefs while they operate in a
given organizational structure.

3.1 Specification of an Organization

The structure of an organization is defined in terms of organizational positions and is
based on a formal organizational model that is specified in terms of interrelated roles.
Positions are defined as formally recognized role assignments and are important for
the design of effective agent organizations [11]. Fig. 1 shows an example of the
specification of an organization. The organizational model defines a generic
organizational structure. For example, the organizational model in Fig. 1 specifies that
a group of type “company” can contain three types of departments, and each
department type can contain specific types of individuals. This organizational model
specifies that a customer department contains sellers and customers, but the exact
number of positions that correspond to each role is determined in the organizational
structure. A more detailed description of the model can be found in [13].

Paying special attention to the specification of collaborative behaviour, our model
incorporates roles that can be played not only by individuals but also by groups. Roles
comprise social laws and applicability conditions, which are necessary for checking
consistency between roles [15], as well as responsibilities and recipes for fulfilling
responsibilities. A responsibility comprises a condition s and a goal state g1 and can
be represented by a rule of the form s => g. When s is considered to hold by an agent
or by a group with the corresponding responsibility, then the agent or the group must
attempt to achieve g.

As already pointed, due to the inherent distribution of information and to access
restrictions to information sources, an organization needs to have policies in order
agents to act coherently as a group. Recognition recipes (r-recipes) represent
organizational policies for groups to form acceptances concerning world states (e.g.
voting, or accepting the opinion of the more experienced group member). These
policies help agents to reconcile individual views and form a common view that
comprises a set of acceptances [23, 26] shared by the group members. Achievement
recipes (a-recipes) represent policies (organizational practices) for the group to achieve

1 States are atomic first-order logic formulae.

 Using Socially Deliberating Agents in Organized Settings 293

goal states collaboratively. As it will be explained in subsequent paragraphs, both
types of recipes are necessary for groups to pursue collaborative responsibilities.

A recipe is assigned to a specific role (called the relevant role) and comprises a
recipe state and the recipe body. Additionally, a-recipes have applicability conditions.
The body of a recipe consists of elements of the form ρind:Q, where ρ is a recipe
internal role, ind is an indicator, and Q is a set of states for r-recipes and a set of
responsibilities assigned to the role ρ for a-recipes. Each internal-role in a recipe is
either contained (via the relation “contains”) to the relevant role or is the relevant role
of the recipe indicated by “self”. The indicator is a quantifier for the players of ρ and
it can take the value all, one or most, indicating all the players of ρ, at least one of
them, or most of them respectively. Examples of recipes are provided in the
paragraphs that follow.

Roles layer
(model)

company

seller

engineer

customer
customer

department

Seller2

Customer

Seller1C- dept

The Company

Positions layer
(structure)

Engineer1

Engineer2

Manufacturer1

engineering
department

manufacturing
department manufacturer

E- dept

M- dept

Manufacturer2

contains

Notation

role
occupied
position

empty position

correspondance

Mike

1

2

Fig. 1. The structure of an organization is defined in terms of positions and follow a formal
organizational model specified in term of roles

Dealing with responsibilities of groups, we must distinguish the case where a
group is considered as a list of individuals and the case where it is considered as a
single meta-agent entity [17]. Based on this distinction, we distinguish between three
types of responsibilities associated to organizational roles corresponding to groups:
individual, collaborative and hybrid.

If s => g is an individual responsibility of a role and Gr is a group that plays this
role, then every agent that is a member of Gr must check whether it recongized that
state s holds, i.e. whether it believes s. In such a case, it must attempt to establish g.

294 I. Partsakoulakis and G. Vouros

No communication or coordination is required between group members during the
elaboration of their individual responsibilities.

If s => g is a collaborative responsibility, then the group members, using an r-
recipe, must attempt to form a group belief and accept s. If this happens, then the
group members must attempt to achieve g collaboratively.

Finally, if s => g is a hybrid responsibility, then group members attempt to form an
a group belief and accept s. When they accept s, group members attempt to establish g
individually.

For example, let us assume that “pending-order(p,c)” denotes the fact that a specific
product p has been ordered by a specific customer c and it has not been processed yet.
The state “m&s(p,c)” denotes the fact that the product p has been manufactured and it
has been shipped to the customer c. Then the responsibility “pending-order(P,C) =>
m&s(P,C)”, where P and C are variables, represents the responsibility of a company to
manufacture and ship every product that has been ordered by some customer, when the
order is pending.

It must be noticed that certain roles in an organizational model comprise managerial
responsibilities. Such responsibilities enable the changing of the organizational structure
under certain circumstances, by opening new positions, closing opened positions and
deciding on the assignment of agents to positions.

3.2 Overall Architecture

The overall architecture of the system is shown in Fig. 2 and comprises personal
agents and facilitator agents. We describe the functionality of each agent type in the
following section.

User Agent

Agent

Agent

User

User

Agent

User

top-level
groups

DF

DF

Fig. 2. The overall architecture comprises personal agents (ovals), and facilitator agents with
newspaper services (smiley faces) and yellow-page services (triangles). Solid arrows represent
communication links. Dotted arrows represent registrations to yellow-page services.

3.2.1 Personal Agents
Personal agents serve/represent specific humans, occupy organizational positions, and
populate groups that act in organizational positions. When an agent takes a position in
the digital organization, then the corresponding human is assigned to that position in
the corresponding human organization, and vice versa. Personal agents help their
owners to play their roles (i.e. pursue the role responsibilities), maintain their social
context and manage their position in their social contexts, providing a quite intuitive

 Using Socially Deliberating Agents in Organized Settings 295

analogue of human organizations. Personal agents, acting as representatives, may
search for new roles within organizations and further check the consistency of the
roles played. The minimum conditions for a set of roles to be consistent are specified
in [15].

The main functionality of a personal agent acting as a role player is to pursue the
responsibilities of the role it plays. However, an agent that plays a role ρ is considered
to be a member of each group that plays the roles in which ρ is contained. So, when
the personal agent of Mike plays the role “engineer”, it must also contribute to the
responsibilities of the role “engineering-department” and of the role “company”.

The general functionality of a personal agent related to the pursuit of
responsibilities is shown in Fig 3: An agent possesses mechanisms for the individual
and collaborative recognition of responsibility conditions, and mechanisms for
achieving goal states individually or collaboratively (depending on whether the
responsibility is an individual or a collaborative one). The following sections present
in more detail the process of collaborative recognition that a state holds and the
process of the collaborative achievement of a goal state.

Collaborative
recognition

Group formationRecipe selection
Responsibility

allocation

Individual
achievement of

goal states

Collaborative/
Hybrid

responsibility

New responsibilities for
subgroups/individuals

Responsibilities
Individual

responsibility
Individual
recognition

Collaborative achievement of goal states

Instances of hybrid
responsibilities

Instances of individual
responsibilities

Instances of
collaborative

responsibilities

Fig. 3. The elaboration of the different types of responsibilities

Collaborative Recognition of Whether a State Holds. The collaborative recognition of
whether a state holds, i.e. the formation of a group belief for a state and its acceptance
as a belief of the group by all group members, is based on policies specified by
r-recipes and on the contributions of agents towards the state in question. A state may
contain free variables. In this case it is a template and there may be many instances
that hold simultaneously. In this case group members shall recognize all instances of
the state that hold. For example, having the responsibility “pending-order(P,C) =>
m&s(P,C)”, where P and C denote variables for products and customers respectively,
group members shall try to contribute towards forming group beliefs for instances of
the state “pending-order(P,C)” that refer to specific products and customers. At the
end of this process the group will share a common view of the pending orders, i.e. a
set of ground instances that are shared by all group members concerning the specific
products that have been ordered by specific customers.

For agents to form a group belief about a ground state of the form “pending-
order(p,c)” they must know specific r-recipes for the state “pending-order(P,C)”.

296 I. Partsakoulakis and G. Vouros

Fig. 4(a) shows two r-recipes that serve as the building blocks for constructing the
policy shown in Fig. 4 (b). In [13] we present specific algorithms for the formation of
group beliefs that are based on the concept of personal and group contribution.

A personal contribution of an agent to a state s is a path in a policy for s, from s to
a leaf state unified with a belief of the agent. The leaf node must correspond to a role
played by the agent. Personal contributions are communicated between agents that
play the same role (e.g. sellers). Personal contributions that are identified by a
sufficient number of agents (according to r-recipes’ elements indicators) are called
group contributions because they can affect the beliefs of a group. Group
contributions are communicated between the agents that share the same policy. This
makes possible for agents to check whether the requirements of the policy are
satisfied. This is done by checking whether the distinguished paths of a policy can be
unified with the set of group contributions (as Fig. 4 (c) shows). This method aims to
be applied in distributed settings and does not assume any agent playing a
coordination role during the formation of acceptances. Although this is more robust
for functioning in open settings, it is difficult to be applied for large teams of agents
due to the quadratic magnitude of messages required [14].

company:
pending-order(P,C)

customerone

pending(P,C)want-product(P,C)

sellerall

pending(P,C)

customer-
departmentone

company:

C2C1

(c)
pending-order(P,C)

customerone

pending(P,C)want-product(P,C)

sellerall

pending(P,C)

customer-
departmentone

(b)

customerone

pending(P,C)

customer-department:
pending(P,C)

want-product(P,C)

sellerall

rec2

(a)
company:

pending-order(P,C)

rec1

customer-
departmentone

pending(P,C)

Fig. 4. (a) Examples of state recognition recipes (r-recipes): Relevant roles are underlined and
recipe states are in bold typeface. A recipe element is represented by an arc. (b) A policy
constructed by these recipes and (c) Group contributions C1 , C2 that are unified with the
distinguished paths of the policy.

Collaborative Achievement of a Goal State. When an instance of the condition of a
collaborative responsibility is accepted by a group of agents, then this group will
attempt to establish the corresponding instance of the goal state of the responsibility
collaboratively. In this section we assume that when a group recognizes that an
instance of a condition holds, then the resulting goal state is a group state, i.e. a state
that contains no free variables. In the following, when we refer to a goal state we
mean a ground state.

Towards the collaborative achievement of goal states, we assume a multi-step
protocol incorporating group formation, where agents recognize that the goal state
does not hold, recipe selection, where agents select an a-recipe for achieving the goal
state, and responsibility allocation, where agents adopt additional responsibilities
specified in the a-recipe in order to achieve the goal state.

When agents enter in the group formation state they attempt to form a group belief
on the negation of the goal state of the responsibility. Accepting, as a group, that the
goal state does not hold is a pre-requisite for the group to try to achieve that goal

 Using Socially Deliberating Agents in Organized Settings 297

state. When such an acceptance is made, group members proceed to the next step of
the protocol, which is the selection of an appropriate recipe for the establishment of
the goal state.

Fig. 5 shows an example of an a-recipe for the goal state “m&s(P,C)”. This recipe
contains variables and can be used for the establishment of every instance of state
“m&s(P,C)”. For an a-recipe to be selected by a group, its applicability condition
must be accepted by this group. To achieve this we assume that each agent that enters
the recipe selection step it tries to contribute to the acceptance of the applicability
condition of each recipe that can be used for the establishment of the state
“m&s(P,C)” i.e. for each relevant recipe. During this state, agents may recognize one
or more applicable recipes for achieving the goal state. There are many different ways
to select one of the recipes that are accepted as applicable. For simplicity, we assume
that each group has a recipe manager that can be determined dynamically by some
convention. That agent selects one of the applicable recipes and announces its
selection to all group members. When a recipe has been selected, group member
proceed to the next step of the protocol, which is the allocation of responsibilities of
the selected recipe.

true
mready(P,S)

company: m&s(P,C) true

mready(P,S)
mp(P,S)

mp(P)
shipped(P,C)

engineering
departmentone

manufacturing
departmentone

customer
departmentone

Fig. 5. An example of an a-recipe: Relevant roles are underlined and recipe states are in bold
typeface. A recipe element is represented by an arc.

Subsidiary responsibilities according to a-recipe specifications are assigned to
individuals and/or subgroups and can by individual, collaborative or hybrid. For
example, for the achievement of the state “m&s(P,C)”, the group “The Company”
may select the recipe specified in Fig. 5. According to this recipe, the responsibility of
seeing to it that the manufacturing instructions are ready for the product
(“mready(P,C)”) is assigned to one of the engineering departments, the responsibility
of seeing to it that the product has been manufactured according to the specifi-
cations of the engineering department (“mp(P,S)”) are assigned to a manufacturing
department, and finally the responsibility of seeing to it that the product has been
shipped to the appropriate customer (“shipped(P,C)”) is assigned to a customer
department. In case “The Company” has many applicable recipes and/or many depart-
ments, then it must select one recipe for achieving the goal state and one department
according to recipe specifications.

Currently, the selection of an appropriate sub-group is done by a group member
that is selected by convention, similarly to the selection of an applicable recipe. This
agent collects the preferences of group members and it announces the selected
subgroup or agent. We call the selection of sub-groups for pursuing responsibilities as
responsibility allocation stage.

298 I. Partsakoulakis and G. Vouros

If a subsidiary responsibility of an a-recipe is a collaborative one, then a new
collaboration cycle begins for the subgroup that undertakes this collaborative
responsibility. This subgroup will recognize instances of the condition of the
responsibility and must select an a-recipe for the achievement of the corresponding
goal states. In that way, every group member constructs a tree composed by
responsibilities and goals, as shown in Fig. 6. This is an intentional context towards
the top-level responsibility and it is built incrementally.

responsibility

goal

pending-order(P,C)
m&s(P,C)

m&s(p1,c1)
m&s(p0,c0) m&s(p2,c2)

true
mready(p1,S)

mready(p1)
mp(p1)

mready(p1,s1)

best_dp(p1)
cmi(p1)

mp(p1,c1)
shipped(p1,c1)

s(p1,c1)

cmi(p1)

Engineer2

E-dept C-deptM-dept

m(p1)

The company

capable(p1,s1)
dpp(p1)

dpp(p1)

Fig. 6. An intentional context towards fulfilling a responsibility. The agent “Mike” records only
the nodes and arcs in black.

The collaborative achievement of a goal state is not a linear process [10, 25]. When
a group is in the recipe selection or the responsibility allocation step, group members
continue to monitor whether the negation of the goal state continuous to hold, and if
that is not the case, then the group stops its attempt to achieve the goal state.
Similarly, when the group is in the responsibility allocation step, it continues to
monitor the applicable recipes, and since the set of applicable recipes may change, the
selected recipe may change as well.

3.2.2 Facilitator Agents
Facilitator agents offer two important services: A yellow-page service and a
newspaper service. Subsections that follow describe these services.

The Yellow-Page Service. Directory facilitators provide yellow-page services for agents
to locate each other based on the services they provide. A directory-facilitator agent, as
shown in Fig. 2, is not in the scope of any organization. Directory facilitators keep
records for the registration of agents in different organizations, and their lifecycle is
independent from any of the organizations. A yellow-page service is essential in open
settings in order new agents to be able to search and locate other agents. The
functionality of a yellow-page service is according to the FIPA specifications.

 Using Socially Deliberating Agents in Organized Settings 299

The Newspaper Service. Typically, the positions in a human organization, the agents
in each position and their responsibilities are kept in regulatory documents and
contracts. Such documents enable agents to know the organization, keep their
knowledge about the organizational structure and population consistent, circumscribe
their responsibilities and regulate their behaviour within the organization. A
newspaper service, shown in Fig. 2, provides information to the agents that are
interested about the state of an organization: The organizational structure, the sub-
groups within each group and the assignments of personal agents to positions. For an
organizational change to be valid within the organization, it must be announced by the
newspaper service.

Using the yellow-page services, an agent can locate agents that provide newspaper
services. Agents can ask up-to-date information from a newspaper service, or register
to it, in order to be kept informed about an organization. A typical request of this type
concerns new positions of a certain role in the organization. It must be pointed out
that a newspaper service is not a bottleneck for an organization, because each agent
maintains organizational knowledge in a local repository. Therefore, if for some
reason the newspaper service malfunctions, the organization can keep functioning
although no organizational changes can be announced.

4 Related Work

The development of tools and systems that support humans to work together
effectively has found much attention in the last few years: Workflow management
systems (WfMS) as well as agent-based systems for supporting humans to accomplish
common tasks are emerging paradigms. The research reported in this paper
complements efforts for the development of WfMS, as in a greater extend than these
systems it aims to cover collaborative activity in settings where flexibility to the
fulfilment of responsibilities is important and where information is inherently
distributed among members of a group. Agents, in our approach, acting in organized
settings must recognize the potential for fulfilling collaborative responsibilities in a
distributed way, agree on the appropriate recipe to be used, and allocate
responsibilities for the achievement of commonly accepted goal states dynamically.
Doing so, they incrementally build a shared intentional context that is distributed
among individuals.

As already mentioned, several multi-agent systems aim to support humans to
perform collaboratively or at least in coordination. Unlike WfMS that aim to support
humans in tasks with well-defined structure in terms of predefined information flow
and communication paths, multi-agent systems typically support ill-structured tasks,
in which steps to be followed, coordination and information flow cannot be totally
specified in advance.

E-ELVES [1] is a sophisticated multi-agent system that integrates a range of
technologies that can support a variety of tasks within a human organization:
scheduling meetings, arranging lunch, and locating other people. In E-ELVES each
human owns a personal agent that interacts with its user and communicate with the
others agents. Agents in E-ELVES coordinate using TEAMCORE [16], a domain-independent,
decentralized, teamwork-based integration architecture. Although in E-ELVES agents

300 I. Partsakoulakis and G. Vouros

are organized using a role aggregation hierarchy like the one defined in our model,
this organization structure is hidden from the participants. Furthermore, although E-
ELVES agents collaborate to each other, the aim of the system is not to support human
collaborative problem solving activity.

There are several efforts and approaches for building systems of collaborating
agents (or teams of agents). Closer to our approach are systems like GRATE* [9],
STEAM [20], RETSINA-MAS [19], and CAST [27], in which collaboration is based on a
general model of collaborative activity. Although STEAM, RETSINA-MAS, and CAST use
the role concept in modelling teamwork, none of them (including GRATE*) offers an
adequate model for representing human organizations. Roles in these systems are not
interconnected to form a concrete role model and are not used to build more complex
organization units. This paper specifies complex organization structures using
composite roles and provides separate models for building an organizational model.
Also, none of the above systems makes a distinction between beliefs and acceptances.
This enables our systems to incorporate several real life situations met in human
organizations.

Grosz points on the importance of having specific decision-making mechanisms
for establishing group decisions [8]. According to Grosz, the definition of a group
decision-making mechanism specifies the legal inputs that a participant can make, the
conditions under which an agent can make each kind of input, and rules for how
certain combinations of agent inputs serve to establish a group decision. Such a
mechanism is analogous to that of a finite state machine with the transitions of the
machine corresponding to communicative acts and the final states corresponding to
established group decisions. These mechanisms can be considered similar to the
policies for accepting a group state proposed in [14]. However, in [8] those
mechanisms are not formally specified and are not integrated to any formally defined
organizational model. Therefore, this approach seems more suitable for small and
unstructured groups rather than organizations.

5 Concluding Remarks

Collaborative activity between agents is a complex group activity that requires
sharing of knowledge and communication. Although there are generic models that
concern several aspects of collaborative activity [3, 7, 12, 25], building systems with
generic mechanisms for collaborative problem-solving and action is quite
complicated. In this paper we focus mainly on collaborative activity in well-
organized, distributed and dynamic settings. In such settings, agents must not only
coordinate their activities for the achievement of their shared goals, but must be able
(a) to establish common views of the world based on organization policies, (b)
distribute responsibilities dynamically among members of the organization based on
specific needs that arise during the course of action and (c) share a context of action
that binds the members of groups together towards the achievement of their goals.

The objective of this paper is (a) to propose a generic design pattern for building
agent organizations in which the constituting groups build and maintain their own
group goals and beliefs according to the needs and the environmental conditions, (b)
to show the required social deliberation that is needed for agents to act as group

 Using Socially Deliberating Agents in Organized Settings 301

members in such settings, and (c) to report on the development of a prototype system
that comprises agents that implement such a kind of social deliberation. Our research
aim is to build systems that empower humans to manage their social context, reason
about their responsibilities, create common awareness about important states of the
world, form agreed goals, and achieve goal states.

This paper emphasizes, more widely than the existing approaches, on the
deployment of organizational structures in group activity. It describes how an
explicitly stated and shared organization structure can enhance collaborative activity
in a distributed and dynamic setting via the specification of role responsibilities and
policies (recipes) for the recognition of the need for collaboration and achievement of
goal states.

The organizational elements presented are by no means complete. There are many
aspects of a real-world organization that can not be modelled using the constructs
proposed. For instance, different types of relations between roles, resources available
to groups and agents, benefits and utilities of agents are not taken into account. The
emphasis in this paper is on the role construct, roles’ responsibilities and policies of
groups for pursuing their agreed goals. The enrichment of the organization model
towards building systems that support more complex human organizations is an
ongoing research.

A prototype system has been implemented in Prolog that comprises the
mechanisms for elaborating responsibilities and for checking the consistency of a set
of roles. The elaboration of responsibilities comprises mechanisms for groups of
agents to form acceptances and intentional contexts.

References

 [1] H. Chalupsky, Y. Gil, C. A. Knoblock, K. Lerman, J. Oh, D. V. Pynadath, T. A. Russ,
and M. Tambe. Electric Elves: Agent Technology for Supporting Human Organizations.
AI Magazine, 23(2), 11–24, 2002.

 [2] J. Cohen. An Essay on Belief and Acceptance, Oxford University Press, Oxford, 1992.
 [3] P. R. Cohen and H. J. Levesque. Teamwork, Nous, 25, 487–512, 1991.
 [4] R. Hoffman, P. Hayes and K. M. Ford. The triples rule. IEEE Intelligent Systems,

May/June 2002, pp. 62–65.
 [5] K. M. Carley and L. Gasser. Computational Organization Theory. In Gerhard Weiss (ed.)

Mutliagent Systems: A Modern Approach to Distributed Artificial Intelligence, MIT
Press, 1999.

 [6] P. Engel. Believing, Holding True, and Accepting. Philosophical Explorations, I, 2,
pp. 140–151, 1998.

 [7] B. J. Grosz and S. Kraus. Collaborative plans for complex group action. Artificial
Intelligence, 86, 269–357, 1996.

 [8] B. J. Grosz and L. Hunsberger. The Dynamics of Intention in Collaborative Activity.
2004.

 [9] N. R. Jennings. Controlling cooperative problem solving in industrial multi-agent systems
using joint intentions. Artificial Intelligence, 75, 1995.

[10] B. Dunin-Keplicz and R. Verbrugge. Evolution of Collective Commitment during
Teamwork. Fundamenta Informaticae 56, pp. 329–771, 2003.

302 I. Partsakoulakis and G. Vouros

[11] J. J. Odell, H. Van Dyke Parunak, and Mitchell Fleischer. The Role of Roles in Designing
Effective Agent Organizations. In Software Engineering for Large-Scale Multi-Agent
Systems, A. Garcia, C. Lucena, F. Zambonelli, A. Omicini, J. Castro (eds.), LNCS 2603,
2003.

[12] P. Panzarasa, N. R. Jennings, and T. J. Norman. Formalizing Collaborative Decision-
making and Practical Reasoning in Multi-Agent Systems. Journal of Logic and
Computation, 11(6), pp. 1–63, 2001.

[13] I. Partsakoulakis and G. Vouros. Building common awareness in agent organizations. In
Proceeding of the AMKM workshop (AAMAS), 2005.

[14] I. Partsakoulakis and G. Vouros. Policies for common awareness in organized settings. In
Proceeding of the CEEMAS conference, 2005.

[15] I. Partsakoulakis and G. Vouros. Personal agents for Reliable Participation in Social
Context. In Proc. of the Coordination in Emergent Agent Societies workshop (ECAI),
Spain, 2004.

[16] D. Pynadath, M. Tambe, N. Chauvat, and L. Cavedon. Towards team-oriented
programming. In Intelligent Agents VI: Agents Theories Architectures and Languages,
Springer, pp. 233–247, 1999.

[17] N. Rescher. The logic of commands. Routledge, 1966.
[18] M. P. Singh, A. S. Rao, and M. P. Georgeff. Formal Methods in DAI: Logic-Based

Representation and Reasoning. In Gerhard Weiss (ed.) Mutliagent Systems: A Modern
Approach to Distributed Artificial Intelligence, MIT Press, 1999.

[19] K. Sycara, K. Decker, A. Pannu, M. Williamson, and D. Zeng. Distributed intelligent
agents. IEEE Expert, Intelligent Systems and Applications, 11(6), pp. 36–45, 1996.

[20] M. Tambe. Towards flexible teamwork. Journal of Artificial Intelligence Research, 7,
1997.

[21] R. Tuomela. Belief Versus Acceptance. Philosophical Explorations, 2, pp. 122–137,
2000.

[22] R. Tuomela and M. Tuomela. Acting as a Group Member and Collective Commitment. In
Protosociology, 18–19, pp. 7–65, 2003.

[23] R. Tuomela. Group Knowledge Analyzed. Episteme 1(2), 2004.
[24] G. Vouros, I. Partsakoulakis and V. Kourakos-Mavromichalis. Realizing Human-Centred

Systems via Socially Deliberating Agents. In Proc. of the HCI International, vol. 4,
pp. 1223–1227, 2003.

[25] M. Wooldridge and N. R. Jennings. Cooperative problem solving. Journal of Logic and
Computation, 9, 563–592, 1999.

[26] K. Brad Wray. Collective Belief and Acceptance. Synthese 129, pp. 319–333, 2001.
[27] J. Yen, J. Yin, T. R. Ioerger, M. S. Miller, D. Xu, and A. Volz. CAST: Collaborative

Agents for Simulating Teamwork. In Seventeenth Proceedings of the Joint International
Conference on Artificial Intelligence (IJCAI), pp. 1135–1142, 2001.

[28] J. Zhang, V. L. Patel, K. A. Johnson, J. W. Smith and J. Malin. Designing Human-
Centered Distributed Information Systems. IEEE Intelligent Systems, pp. 42–47,
September/October 2002.

Author Index

Alberti, Marco 106

Balbo, Flavien 14
Bandini, Stefania 203
Bora, Sebnem 153
Bowers, Robert Ian 184

Chesani, Federico 106

de Antonio, Angélica 89
Denti, Enrico 49
Dikenelli, Oguz 1, 153

Ekinci, Erdem Eser 1
Erdoğan, Nadia 29
Erdur, Riza Cenk 1

Federici, Mizar Luca 203
Fischer, Michael D. 259

Gavanelli, Marco 106
Gleizes, Marie-Pierre 142
Gümüs, Özgür 1
Gürcan, Önder 1

Hassas, Salima 125, 275
Holvoet, Tom 63

Kardas, Geylani 1

Lamma, Evelina 106

Mamdani, Abe 221
Manzoni, Sara 203
Mello, Paola 106

Mellouli, Sehl 142
Mille, Alain 275
Molesini, Ambra 49
Muldoon, Conor 241

O’Grady, Michael J. 241
O’Hare, Gregory M.P. 241
Omicini, Andrea 49
Özkohen, Albert 168

Partsakoulakis, Ioannis 288
Picard, Gauthier 142
Pitt, Jeremy 221

Ramı́rez, Jaime 89
Ricci, Alessandro 49

Saunier Trassy, Julien 14
Selçuk, Yunus Emre 29
Sevinç, Emre 184
Seylan, Inanç 1
Stuber, Arnaud 275

Tiryaki, Ali Murat 1
Torroni, Paolo 106

Venkataram, Pallapa 221
Vizzari, Giuseppe 203
Vouros, George 288

Weyns, Danny 63

Yolum, Pınar 168

Zargayouna, Mahdi 14

	Frontmatter
	Agent Oriented System Development
	Developing Multi Agent Systems on Semantic Web Environment Using SEAGENT Platform
	Agent Information Server: A Middleware for Traveler Information
	A Role Model for Description of Agent Behavior and Coordination

	Multi-agent Systems Environment
	{\sf SODA}: A Roadmap to Artefacts
	From Reactive Robotics to Situated Multiagent Systems

	Protocols, Verification
	Consistency Verification of the Reasoning in a Deliberative Agent with Respect to the Communication Protocols
	Security Protocols Verification in Abductive Logic Programming: A Case Study

	Complex Adaptive Systems
	Engineering Complex Adaptive Systems Using Situated Multi-agents
	Techniques for Multi-agent System Reorganization
	Implementing a Multi-agent Organization that Changes Its Fault Tolerance Policy at Run-Time
	Predicting Exceptions in Agent-Based Supply-Chains

	Agent Oriented Simulation
	Preserving Variability in Sexual Multi-agent Systems with Diploidy and Dominance
	Towards a Methodology for Situated Cellular Agent Based Crowd Simulations

	Networks, Ambient Intelligence
	QoS Management in MANETs Using Norm-Governed Agent Societies
	Collaborative Agent Tuning: Performance Enhancement on Mobile Devices

	Deliberative Agents and Social Aspect
	Cultural Agents: A Community of Minds
	Language Games for Meaning Negotiation Between Human and Computer Agents
	Using Socially Deliberating Agents in Organized Settings

	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f00640075006300650073002000500044004600200062006f006f006b00200069006e006e006500720077006f0072006b002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

