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Abstract. The analysis described in this article detects about two real
and uncorrected deadlock situations per thousand C source files or mil-
lion lines of code in the Linux kernel source, and three accesses to freed
memory, at a few seconds per file. In distinction to model-checking tech-
niques, the analysis applies a configurable “3-phase” Hoare-style logic to
an abstract interpretation of C code to obtain its results.

1 Introduction

The pairing of formal methods practitioners and the Linux kernel has some-
times seemed more than unlikely. On the one hand kernel contributors have
preferred to write elegant code rather than elegant specifications; “the code is
the commentary” has been one of the mantras of the Linux kernel development,
meaning that the code should be so clear in its own right that it serves as its
own specification. That puts what is usually the first question of formal meth-
ods practitioners, “what should the code do” out of bounds. And on the other
hand, formal methods practitioners have not been able to find a way into the six
million lines of ever-changing C code that comprises the Linux kernel source.

This article describes the application of post-hoc formal logical analysis to the
Linux kernel. The technology detects real coding errors that have been missed by
thousands of eyes over the years. The analyser itself is written in C (thus making
it easy to compile and distribute in an open source environment) and is itself
licensed under an open source license. The analysis is configurable, which means
that it is possible to re-program and extend it without rewriting its source.

By way of orientation, note that static analysis is in general difficult to apply
to C code, because of pointer arithmetic and aliasing, but some notable efforts
to that end have been made. David Wagner and collaborators in particular have
been active in the area (see for example [7], where Linux user space and kernel
space memory pointers are given different types, so that their use can be dis-
tinguished, and [8], where C strings are abstracted to a minimal and maximal
length pair and operations on them abstracted to produce linear constraints on
these numbers). That research group often uses model-checking to look for vi-
olations in possible program traces of an assertion such as “chroot is always
followed by chdir before any other file operations”. In contrast, the approach
in this article assigns a (customisable) approximation semantics to C programs,
via a (customisable) program logic for C. A more lightweight technique still is
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that exemplified by Jeffrey Foster’s work with CQual [5, 6], which extends the
type system of C in a customisable manner. In particular, CQual has been used
to detect “spinlock under spinlock”, a variant of the analysis described here.
The technology described in this article was first described in prototype in [3],
being an application of the generic “three-phase” program logic first described
in [1] and developed in [2]. The tool itself now works at industrial scales, treating
millions of lines of code in a few hours when run on a very modest PC.

In the analysis here, abstract interpretation [4] forms a fundamental part,
causing a simplification in the symbolic logic description of state that is prop-
agated by the analysis; for example, “don’t know” is a valid abstract literal,
thus a program variable which may take any of the values 1, 2, or 3 may be
described as having the value “don’t know” in the abstraction, leading to a state
s described by one atomic proposition, not a disjunct of three.

To be exact, the analysis constructs two abstract approximations, a state s
and a predicate p describing the real state x such that

x ∈ s ∩ p (1)

The approximated state s assigns a range of integer values to each variable.
Predicates are restricted to the class of disjunctions of conjuncts of simple

ordering relations x ≤ k, and there is a simple decision procedure for implication.
In [3] we focussed on checking for a particular problem in SMP systems –

“sleep under spinlock”. A function that can sleep (i.e., that can be scheduled
out of the CPU) ought never to be called from a thread that holds a “spinlock”,
the SMP locking mechanism of choice in the Linux kernel. Trying to take a
locked spinlock on one CPU provokes a busy wait (“spin”) that occupies the
CPU completely until the spinlock is released on another CPU. If the thread
that has locked the spinlock is scheduled out while the lock is held, then the
only thread that likely has code to release the spinlock is not running. If by
chance that thread is rescheduled in to the CPU before any other thread tries
for the spinlock then all is well. But if another thread tries for the spinlock first, it
will spin uselessly, keeping out of that CPU the thread that would have released
the spinlock. If yet another thread tries for the spinlock, then on a 2-CPU SMP
system, the machine is dead, with both CPUs spinning waiting for a lock that
will never be released. Such vulnerabilities are denial of service vulnerabilities
that any user can exploit to take down a system. 2-CPU machines are also
common – any Pentium 4 of 3.2GHz or above has a dual “hyper-threading”
core. So, calling a function that may sleep while holding the lock on a spinlock
is a serious matter. Detecting it is one application of the abstract logic that may
be applied by the analyser.

2 Example Run

About 1000 (1055) of the 6294 C source files in the Linux 2.6.3 kernel were
checked for spinlock problems in a 24-hour period by the analyser running on
a 550MHz (dual) SMP PC with 128MB ram. About forty more files failed to
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files checked: 1055
alarms raised: 18 (5/1055 files)
false positives: 16/18
real errors: 2/18 (2/1055 files)
time taken: ˜24h
LOC: 7̃00K (unexpanded)

1 instances of sleep under spinlock
in sound/isa/sb/sb16 csp.c

1 instances of sleep under spinlock
in sound/oss/sequencer.c

6 instances of sleep under spinlock
in net/bluetooth/rfcomm/tty.c

7 instances of sleep under spinlock
in net/irda/irlmp.c

3 instances of sleep under spinlock
in net/irda/irttp.c

Fig. 1. Testing for sleep under spinlock in the 2.6.3 Linux kernel

File & function Code fragment
sb/sb16 csp.c:
snd sb csp load

619 spin lock irqsave(&p->chip->reg lock, flags);
. . . . . .
632 unsigned char *kbuf, * kbuf;
633 kbuf = kbuf = kmalloc (size, GFP KERNEL);

oss/sequencer.c:
midi outc

1219 spin lock irqsave(&lock,flags);
1220 while (n && !midi devs[dev]->outputc(dev, data)) {
1221 interruptible sleep on timeout(&seq sleeper,HZ/25);
1222 n--;
1223 }
1224 spin unlock irqrestore(&lock,flags);

Fig. 2. Sleep under spinlock instances in kernel 2.6.3

parse at that time for various reasons (in one case, because of a real code error,
in others because of the presence of gnu C extensions that the analyser could
not cope with at that time, such as attribute declarations in unexpected
positions, case statement patterns matching a range instead of just a single
number, array initialisations using “{ [1,3,4] = x }” notation, enumeration
and typedef declarations inside code blocks, and so on). Five files out of that
selection showed up as suspicious under the analysis, as listed in Fig. 1.

Although the flagged constructs are indeed calls of the kernel memory allo-
cation function kmalloc (which may sleep) under spinlock, the arguments to
the call sometimes render it harmless, i.e. cause it not to sleep after all. The
kmalloc function will not sleep with GFP ATOMIC as second argument, and such
is the case in several instances, but not in the two instances shown in Fig. 2.

3 Analytic Program Logic

The C code analyser is based on a compositional program logic called NRBG (for
“normal”, “return”, “break”, “goto”, reflecting its four principal components).
The four components, N, R, B, G, represent different kinds of control flows: a
“normal” flow and several “exceptional” flows.
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Program fragments are thought of as having three phases of execution: initial,
during, and final. The initial phase is represented by a condition p that holds
as the program fragment is entered. The only access to the internals of the
during phase is via an exceptional exit (R, B, G; return, break, goto) from the
fragment. The final phase is represented by a condition q that holds as the
program fragment terminates normally (N).

The N part of the logic represents the way control flow “falls off the end”
of one fragment and into another. I.e., if p is the condition that holds before
program a; b runs, and q is the condition that holds after, then

p N(a; b) q = p N(a) r ∧ r N(b) q (2)

To exit normally with q, the program must flow normally through a, hitting an
intermediate condition r, then enter fragment b and exit it normally.

The R part of the logic represents the way code flows out of the parts of a
routine through a “return” path. Thus, if r is the intermediate condition that is
attained after normal termination of a, then:

p R(a; b) q = p R(a) q ∨ r R(b) q (3)

That is, one may either return from program fragment a, or else terminate a
normally, enter fragment b and return from b.

The logic of break is (in the case of sequence) equal to that of return:

p B(a; b) q = p B(a) q ∨ r B(b) q (4)

where again r is the condition attained after normal termination of a.
Where break and return logic differ is in the treatment of loops. First of all,

one may only return from a forever while loop by returning from its body:

p R(while(1) a) q = p R(a) q (5)

On the other hand, (counter-intuitively at first reading) there is no way of leaving
a forever while loop via a break exit, because a break in the body of the loop
causes a normal exit from the loop itself, not a break exit:

p B(while(1) a) F (6)

The normal exit from a forever loop is by break from its body:

p N(while(1) a) q = p B(a) q (7)

To represent the loop as cycling possibly more than once, one would write for
the R component, for example:

p R(while(1) a) q = p R(a) q ∨ r R(while(1)a) q (8)

where r is the intermediate condition that is attained after normal termination
of a. However, in practice it suffices to check that r → p holds, because then (8)
reduces to (5). If r → p does not hold, p is relaxed to p′ ≥ p for which it does.
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Typically the precondition p is the claim that the spinlock count ρ is below
or equal to n, for some n: ρ ≤ n. In that case the logical components i = N, R, B
have for each precondition p a strongest postcondition p SPN (a), p SPR(a),
p SPB(a), compatible with the program fragment a in question. For example, in
the case of the logic component N:

p N(a) q ↔ p SPN (a) ≤ q (9)

Each logic component X can be written as a function rather than a relation by
identifying it with a postcondition generator no stronger than SPX . For example:

(ρ ≤ n) N

(
spin lock(&x)

spin unlock(&x)

)
=

(
ρ ≤ n + 1
ρ ≤ n − 1

)
(10)

Or in the general case, the action on precondition p is to substitute ρ by ρ±1 in
p, giving p[ρ−1/ρ] (for spin lock) and p[ρ+1/ρ] (for spin unlock) respectively:

p N

(
spin lock(&x)

spin unlock(&x)

)
=

(
p[ρ − 1/ρ]
p[ρ + 1/ρ]

)
(11)

The functional action on sequences of statements is then described as follows:

p N(a; b) = (p N(a)) N(b) (12)
p R(a; b) = p R(a) ∨ (p N(a)) R(b) (13)
p B(a; b) = p B(a) ∨ (p N(a)) B(b) (14)

The G component of the logic is responsible for the proper treatment of goto
statements. To allow this, the logic – each of the components N, R, B and G –
works within an additional context, e. A context e is a set of labelled conditions,
each of which are generated at a goto x and are discharged/will take effect
at a corresponding labelled statement x: .... The G component manages this
context, first storing the current pre-condition p as the pair (x, p) (written x:p)
in the context e at the point where the goto x is encountered:

p Ge(goto x) = {x:p} ∪+ e (15)

The {x:p} in the equation is the singleton set {(x, p)}, where x is some label
(e.g. the “foo” in “foo: a = 1;”) and p is a logical condition like “ρ ≤ 1”.

In the simplest case, the operator ∪+ is set theoretic disjunction. But if an
element x:q is already present in the context e, signifying that there has already
been one goto x statement encountered, then there are now two possible ways
to reach the targeted label, so the union of the two conditions p and q is taken
and x:q is replaced by x:(p ∪ q) in e.

Augmenting the logic of sequence (12-14) to take account of context gives:

p Ne(a; b) = (p Ne(a)) NpGe(a)(b) (16)
p Re(a; b) = p Re(a) ∨ (p Ne(a)) RpGe(a)(b) (17)
p Be(a; b) = p Be(a) ∨ (p Ne(a)) BpGe(a)(b) (18)
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The N, R, B semantics of a goto statement are vacuous, signifying one cannot
exit from a goto in a normal way, nor on a break path, nor on a return path.

p Ne(goto x) = p Re(goto x) = p Be(goto x) = F (19)

The only significant effect of a goto is to load the context for the logic with
an extra exit condition. The extra condition will be discharged into the normal
component of the logic only when the label corresponding to the goto is found
(ex is the condition labeled with x in environment e, if any):

p N{x:q}∪e(x:) = p ∨ q p Re(x:) = F
p Be(x:) = F p Ge(x:) = e − {x:ex} (20)

This mechanism allows the program analysis to pretend that there is a “short-
cut” from the site of the goto to the label, and one can get there either via
the short-cut or by traversing the rest of the program. If label foo has already
been encountered, then we have to check at goto foo that the current program
condition is an invariant for the loop back to foo:, or raise an alarm.

The equations given can be refined by introducing temporal logic (CTL).
Consider the return logic of sequence, for example. If EFp is the statement that
there is at least one trace leading to condition p at the current flow point, then:

pR(a)EFr1 pN(a)EFq qR(b)EFr2

pR(a; b)(EFr1 ∧ EFr2)
(21)

The deduction that EFr1 ∧ EFr2 holds is stronger than r1 ∨ r2, which is what
would be deduced in the absence of CTL.

The above is a may semantics, because it expresses the possible existence
of a trace. A must semantics can be phrased via the the operator AFp, which
expresses that all traces leading to the current point give rise to condition p here:

pR(a)AFr1 pN(a)AFq qR(b)AFr2

pR(a; b)(AF(r1 ∨ r2))
(22)

In general, the deduction systems prove pXAFq1, pXq2, pXEFq3 with q1 ≤ q2
and q2 ≤ q3, which brackets the analysis results between forced and possible.

4 Configuring the Analysis

The static analyser allows the program logic set out in the last section to be
specified in detail by the user. The motive was originally to make sure that the
logic was implemented in a bug-free way – writing the logic directly in C made
for too low-level an implementation for what is a very high-level set of concepts.
Instead, a compiler into C for specifications of the program logic was written
and incorporated into the analysis tool.

The logic compiler understands specifications of the format

ctx precontext, precondition :: name(arguments) =
postconditions with ctx postcontext ;
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Table 1. Defining the single precondition/triple postcondition NRB logic of C

ctx e, p::for(stmt) = (n∨b, r, F) with ctx f
where ctx e, p::stmt = (n,r,b) with ctx f;

ctx e, p::empty() = (p, F, F) with ctx e;
ctx e, p::unlock(label l) = (p[n+1/n], F, F) with ctx e;
ctx e, p::lock(label l) = (p[n-1/n], F, F) with ctx e;
ctx e, p::assembler() = (p, F, F) with ctx e;
ctx e, p::function() = (p, F, F) with ctx e;
ctx e, p::sleep(label l) = (p, F, F) with ctx e;
ctx e, p::sequence(s1, s2) = (n2, r1∨r2, b1∨b2) with ctx g

where ctx f, n1::s2 = (n2,r2,b2) with ctx g
and ctx e, p::s1 = (n1,r1,b1) with ctx f;

ctx e, p::switch(stmt) = (n∨b, r, F) with ctx f
where ctx e, p::stmt = (n,r,b) with ctx f

ctx e, p::if(s1, s2) = (n1∨n2, r1∨r2, b1∨b2) with ctx f1∨f2

where ctx e, p::s1 = (n1,r1,b1) with ctx f1

and ctx e, p::s2 = (n2,r2,b2) with ctx f2;
ctx e, p::while(stmt) = (n∨b, r, F) with ctx f

where ctx e, p::stmt = (n,r,b) with ctx f;
ctx e, p::do(stmt) = (n∨b, r, F) with ctx f

where ctx e, p::stmt = (n,r,b) with ctx f;
ctx e, p::goto(label l) = (F, F, F) with ctx e∨{l::p};
ctx e, p::continue() = (F, F, p) with ctx e;
ctx e, p::break() = (F, F, p) with ctx e;
ctx e, p::return() = (F, p, F) with ctx e;
ctx e, p::labeled(label l) = (p∨e.l, F, F) with ctx e\\l;

Legend
assembler – gcc inline assembly code;
sleep – calls to C functions which can sleep;
function – calls to other C functions;
sequence – two statements in sequence;

if – conditional statement;
switch – case statement;
while – while loop;
do – do while loop;
labeled – labelled statements.

where the precondition is an input, the entry condition for a code fragment,
and postconditions is an output, a tuple consisting of the N, R, B exit condi-
tions according to the logic. The precontext is the prevailing goto context. The
postcontext is the output goto context, consisting of a set of labelled conditions.

For example, the specification of the empty statement logic is:

ctx e, p::empty() = (p, F, F) with ctx e;

signifying that the empty statement preserves the entry condition p on normal
exit (p), and cannot exit via return (F) or break (F). The context (e) is unaltered.
The full set of logic specifications is given in Table 1. To translate back into the
logic presentation in Section 3, consider that

ctx e, p :: k = (n, r, b) with ctx e′;
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means
p Ne(k) = n p Re(k) = r
p Be(k) = b p Ge(k) = e′

when written out in the longer format.

5 Software

The source code of the software described here is available for download from
ftp://oboe.it.uc3m.es/pub/Programs/c-1.2.13.tgzunder the conditions of
the Gnu Public Licence, version 2.

6 Summary

A C source static analyser for the Linux kernel has been created, capable of
dealing with the millions of lines of code in the kernel on a reasonable timescale,
at a few seconds per file. It is based on a “three-phase” logic of imperative
programming, as described in this article.
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