
JADE-Based A-Team Environment

Piotr Jȩdrzejowicz and Izabela Wierzbowska

Department of Information Systems, Gdynia Maritime University
Morska 83, 81-225 Gdynia, Poland

{pj, iza}@am.gdynia.pl

Abstract. The paper proposes a JADE-based A-Team environment
(JADE-A-Team) as a middleware supporting the construction of the ded-
icated A-Team architectures used for solving variety of computationally
hard optimization problems. The paper includes a general overview of
the functionality and structure of the proposed environment and a more
detailed description of optimization agents including their standard func-
tions, ontology, construction requirements and activation procedure. Fur-
ther sections explain how to create and activate an A-Team agent and
how the communication between agents is handled. Conclusions focus
on advantages of the JADE-A-Team environment and on suggestions for
further research.

1 Introduction

Recently, a number of agent-based approaches have been proposed to solve differ-
ent types of optimization problems [1], [4], [5]. One of the successful approaches
to agent-based optimization is the concept of A-Teams. An A-Team is composed
of simple agents that demonstrate complex collective behavior.

The A-Team architecture was originally proposed by Talukdar [9] as a set
of objects including multiple agents and memories which through interactions
produce solutions of optimization problems. The advantage of the A-Team ar-
chitecture is that it combines a population of solutions with domain specific
algorithms and limited agent interaction. A sophisticated A-Team architecture
was proposed in [7]. Some dedicated A-Teams were proposed in [6], [8]. Accord-
ing to [9] an A-Team is a problem solving architecture in which the agents are
autonomous and co-operate by modifying one another’s trial solutions.

In this paper we propose a JADE-based A-Team environment (in short:
JADE-A-Team) as a middleware supporting the construction of the dedicated A-
Team architectures used for solving variety of computationally hard optimization
problems. JADE is an enabling technology, for the development and run-time
execution of peer-to-peer applications which are based on the agents paradigm
and which can seamless work and interoperate both in wired and wireless envi-
ronment [2]. From the functional point of view, JADE provides the basic services
necessary to distributed peer-to peer applications in the fixed and mobile envi-
ronment. JADE allows each agent to dynamically discover other agents and to
communicate with them according to the peer-to-peer paradigm.

V.N. Alexandrov et al. (Eds.): ICCS 2006, Part III, LNCS 3993, pp. 719–726, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

720 P. Jȩdrzejowicz and I. Wierzbowska

The paper contains a general overview of the functionality and structure of the
JADE-A-Team and a more detailed description of optimization agents includ-
ing their standard functions, ontology, construction requirements and activation
procedure. Further sections explain how to create and activate A-Team agents.
Final section explains how the communication between agents is handled. Con-
clusions focus on advantages of the proposed environment and on suggestions
for further research.

2 Overview of the JADE-A-Team

The central problem in the design of a multi-agent system is how much intelli-
gence to place in the system and at what level. As it was observed in [3], the vast
majority of the work in this field has focused on making agents more knowledge-
able and able. This has been achieved by giving the deliberative agent a deeper
knowledge base and ability to reason about data, giving it the ability to plan ac-
tions, negotiate with other agents, or change its strategies in response to actions
of other agents. At the opposite end of the spectrum lie agent-based systems
that demonstrate complex group behavior, but whose individual elements are
rather simple. The JADE-A-Team belongs to the latter class.

Its main functionality is searching for the optimum solution of a given problem
instance through employing a variety of the solution improvement algorithms.
The search involves a sequence of the following steps:

- Generating an initial population of solutions placing them in the common
memory.

- Applying solution improvement algorithms which draw individuals from the
common memory and store them back after an improvement, using some
user defined replacement strategy.

- Continuing reading-improving-replacing cycle until a stopping criterion is
met.

To perform the above two classes of agents are used. The first class includes
OptiAgents, which are implementations of the improvement algorithms. The sec-
ond class includes SolutionManagers, which are agents responsible for mainte-
nance and updating of individuals in the common memory. All agents act in
parallel. Each OptiAgent is representing a single improvement algorithm (simu-
lated annealing, tabu search, genetic algorithm, local search heuristics etc.). An
OptiAgent has two basic behaviors defined. The first is sending around messages
on readiness for action including the required number of individuals (solutions).
The second is activated upon receiving a message from some SolutionManager
containing the problem instance description and the required number of indi-
viduals. This behavior involves improving fitness of individuals and resending
the improved ones to the sender. A SolutionManager is brought to life for each
problem instance. Its behavior involves sending individuals to OptiAgents and
updating the common memory.

JADE-Based A-Team Environment 721

Main assumption behind the proposed solution is its independence from a
problem definition and solution algorithms. Hence, main classes Task and Solu-
tion upon which agents act, have been defined at a rather general level. Interfaces
of both classes include function ontology(), which returns JADE’s ontology de-
signed for classes Task and Solution, respectively. Ontology in JADE is a class
enabling definition of the vocabulary and semantics for the content of message
exchange between agents. More precisely, an ontology defines how the class is
transformed into the text message exchanged between agents and how the text
message is used to construct the class (here either Task or Solution).

The interface of the main class Task is composed of the following three func-
tions: Task() - class constructor, Solution createSolution() - function generating
an initial solution which can be either randomly drawn or empty, TaskOntology
ontology() - function returning task ontology.

The interface of the main class Solution is composed of the following func-
tions: Solution() - class constructor, Solution(Task t) - constructor producing
solution to the given task, SolutionOntology ontology() - function returning so-
lution ontology, Object clone() - function producing copy of the object, boolean
equals(Solution s) - function returning the result of comparison between two so-
lutions, void evaluate() - procedure evaluating the fitness of a solution (stored
as a value of the variable fitness).

To obtain a solution of the particular problem instance the following actions
should be carried out:

- Defining own classes MTask and MSolution inherited from Task and Solu-
tion, respectively. In these new classes constructors and other functions need
to be over-ridden to assure compatibility between actions and the problem
instance requirements.

- Defining own ontologies MTaskOntology and MSolutionOntology inherited
from TaskOntology and SolutionOntology, respectively. Both are responsible
for translating classes MTask and MSolution into text messages. Messages
are more complex than a single task or solution but to produce them the
outcome of MTaskOntology and MSolutionOntology class functions are used.

- Defining auxiliary classes and functions as, for example, the Compare func-
tion, which could be used by the SolutionManager to compare and sort thus
far obtained solutions.

JADE-Based A-Team environment includes a number of objects shown in
Fig. 1. In this paper the focus is on optimization agents.

3 Optimization Agents

To better illustrate the role of the above described elements, this section focuses
on an OptiAgent actions upon receiving the OPTIMIZE command with respect
to a list of solutions (individuals) to a particular problem instance. An OptiAgent
is brought to life to deal with a predefined type of task through applying certain
improvement algorithm to obtain the improved solutions. Such an agent (for

722 P. Jȩdrzejowicz and I. Wierzbowska

Fig. 1. JADE-Based A-Team environment

example the TSPOptiAgent dealing with traveling salesman problem instances)
over-rides three important functions from the OptiAgent interface:

- taskOntology() - a function returning class, which defines ontology of the
given task type.

- solutionOntology() - a function returning class which defines ontology of the
solution for the task with the given TaskOntology().

- optimise() which is a particular improvement algorithm for the given task
type.

Responsibility for carrying out OPTIMIZE command stays with the Opti-
mizeSolution class, which is a private class of each OptiAgent. The class is an
extension of the cyclic action class available within JADE. In each cycle an Op-
tiAgent reads the forwarded message (if any), processes it using the optimize()
function and sends back the results, announcing also readiness for further action.

Example 1: Interface of the Data class

Task t;
ArrayList ss;
// constructors
public Data() {}
public Data(Task t, ArrayList ss) { }
// ontology functions
public Task getOpttask() { }
public void setOpttask(Task x) { }
public jade.util.leap.ArrayList getOptsolutions() { }
public void setOptsolutions(jade.util.leap.ArrayList l) { }

Receiving the forwarded message and resending the response requires two
public classes - Data and DataOntology. Data is a public class. Its interface is

JADE-Based A-Team Environment 723

shown in Ex. 1. It consists of two fields representing a task and a list of solutions,
constructors and several functions required to use JADE’s ontology mechanism.
These are setX and getX, where X is defined in the DataOntology.

DataOntology defines the structure of a message and binds its parts with
relevant classes. A message is a command named OPTIMIZE, bounded to the
Data class and divided into OptTask and OptSolutions. The OptTask part is
bounded to the class representing a task and the OptSolutions part is a list of
solutions. Each solution is bounded to the class representing a single solution.
The code of the discussed fragment of the DataOntology is shown in Ex. 2.

Example 2: Fragment of the Data ontology

// vocabulary
public static final String OPTIMIZE = "Optimise";
public static final String OPTIMIZE_SOLUTIONS = "OptSolutions";
public static final String OPTIMIZE_TASK = "OptTask";
// schemes
// ontology sets values of the Data class fields
add(new AgentActionScheme(OPTIMIZE), Data.class);
// add schemes of the solution ontology s and the task ontology t
s.addSchemes((Ontology) this);
t.addSchemes((Ontology) this);
// solutions field of the Data class is a list of solutions
// with structure defined by s
as = (ConceptScheme)getScheme(OPTIMIZE);
as.add(OPTIMISE_SOLUTIONS, (ConceptScheme)

s.getScheme(SolutionOntology.SOLUTION),
0, ObjectScheme.UNLIMITED);

// task field of the Data class has the structure defined by the t
as.add(OPTIMIZE_TASK, (ConceptScheme)

t.getSchema(TaskOntology.TASK));

The above definition does not contain a detailed task and solution descriptions.
These are taken from t and s ontology prepared for each instance of task and
solution. It should be observed that when DataOntology is constructed both -
t and s are already known. Each OptiAgent has been brought to life with a
view to optimize a particular task, which implies defining t and s which, in turn,
can be accessed using functions TaskOntology() and SolutionOntology() from the
interface of the OptiAgent class.

Finally, the code of the OptimizeSolutions class is shown in Ex. 3.

Example 3: Class OptimizeSolutions

private class OptimizeSolutions extends CyclicBehaviour {
public void action() {
ACLMessage msg = receive();
if (msg != null) {
try {ContentElement ce=getContentManager().extractContent(msg);

724 P. Jȩdrzejowicz and I. Wierzbowska

Concept cc = ((Action) ce).getAction();
if(cc instanceof Data) {
// the forwarded data are stored in the field o_data
o_data =(Data)cc;
optimize ();
sendSolutions(msg.getSender()); }
} catch(CodecException ce) { ce.printStackTrace(); }

catch(OntologyException oe) { oe.printStackTrace(); }
};
ready(); //procedure of announcing agent readiness
block(1000); // blocking agent for a period of time
}

}

4 Creating Agents

The proposed JADE-A-Team allows to create a variety of optimization agents
searching, in parallel, for improved solutions to instances of one or more prob-
lem types and using various improvement algorithms. In Ex. 4 the operation of
creating and activating an optimization agent and a solution manager is shown
(in a working system there would be more agents of both types).

Example 4: Creating and activating an TSPOptiAgent and a SolutionManager

AgentController a=c.createNewAgent("AgentOpti1",
"ASOP.TSP.TSPOptiAgent", null);

a.start();
Task z = new TaskTSP("D:\\tasks\\TSP\\task1.txt");
// task will be forwarded to the SolutionManager as a parameter,
// preparation of the one-element list of parameters
Object[] _args=new Object[1];
_args[0]=(Object)z;
AgentController a=c.createNewAgent("SolutionManager",

"ASOP.SolutionsManager", _args);
a.start();

The example TSPOptiAgent deals with improving solutions to the traveling
salesman problem (TSP). The TSPOptiAgent class is defined in such a way that
it uses a particular task type (here TaskTSP class), a particular task solution
(SolutionTSP) and one particular improvement algorithm for optimizing.

The SolutionManager is created with a view to solving an instance of this
particular TSP problem, which is send as a parameter. However, this class does
not need to ”know” that the task is an instance of the TSP. It will simply call
relevant functions defined in main classes interfaces. For example, to create an
initial solution manager can call the function Solution createSolution() from the
interface of its task parameter.

JADE-Based A-Team Environment 725

The TSPTask instance parameters are read from the file task1.txt. TSPTask
class has all the required objects defined including ontology, which can be used
in the DataOntology.

In the present version all agents are created and activated to live a single and
unique life by a special agent called TaskManager.

5 Managing Communication Between Agents

Solution manager, responding to announcements knows precisely to which Opti-
Agent its message should be forwarded. Communication in the opposite direction
is not that simple since optimization agents do not now which SolutionManagers
operate on compatible tasks and solutions. To solve the problem a ”yellow pages”
service mechanism available in JADE has been used. It is provided by an agent
called DF (Directory Facilitator) available in every FIPA compliant platform.
Each SolutionManager provides the DF with its ID, the service name (”solution
management”) and the service type. In our case the service type is a label con-
structed from the names of ontologies of the task and solutions that the manager
operates on. The respective part of the code is shown in Ex. 5.

Example 5: Registration of a manager in the yellow pages service

DFAgentDescription dfd = new DFAgentDescription();
dfd.setName(getAID());
ServiceDescription sd = new ServiceDescription();
sd.setType("solutions management");
// t is the task and s is a solution
sd.setName(t.ontologia().getName()+";"+s.ontologia().getName());
dfd.addServices(sd);
try { DFService.register(this, dfd);
} catch (FIPAException fe) {fe.printStackTrace();}

Services of the DF are used by optimization agents to dynamically read the list
of solution managers who could be a potential addressee of messages containing
announcements of readiness to act. On the list, only solution managers offering
”solution management” service for tasks and solutions with an ontology known
to the optimization agent, are placed.

6 Conclusions

The proposed JADE-based A-Team environment is a ”middleware plus” sup-
porting development of A-Team systems. Its advantages have been inherited
from JADE. The most important advantage which is preserved in the proposed
JADE-A-Team is its ability to simplify the development of the distributed A-
Teams composed of autonomous entities that need to communicate and collabo-
rate in order to achieve the working of the entire system. A software framework
that hides all complexity of the distributed architecture plus a set of predefined

726 P. Jȩdrzejowicz and I. Wierzbowska

objects are made available to users, who can focus just on the logic of the A-
Team application and effectiveness of optimization algorithms rather than on
middleware issues, such as discovering and contacting the entities of the system.
It is expected that such an approach will result in achieving scalable, flexible,
efficient, robust, adaptive and stable A-Team architectures.

During the test and verification stages JADE-A-Team has been used to im-
plement several A-Team architectures dealing with well known combinatorial
optimization problems. Functionality, ease of use and scalability of the approach
have been confirmed. Further research will concentrate on providing a friendly
human computer interface and developing a set of auxiliary agents that can be
used to support the construction of dedicated A-Teams architectures.

Acknowledgement. The research was supported by the KBN, grant
no. 3T11C05928

References

1. Aydin, M.E., T.C.Fogarty (2004) Teams of autonomous agents for job-shop schedul-
ing problems: An Experimental Study, Journal of Intelligent Manufacturing, 15(4),
p. 455-462

2. Bellifemine, F., G. Caire, A. Poggi, G. Rimassa (2003) JADE. A White Paper, Exp,
3(3), p. 6-20

3. Lerman, K. (2001) Design and Mathematical Analysis of Agent-Based Systems, J.L.
Rash et al. (Eds.): FAABS 2000, Springer, LNAI 1871, p. 222-234

4. Marinescu, D.C., L. Boloni (2000) A component-based architecture for problem
solving environments, Mathematics and Computers in Simulation, 54, p. 279-293

5. Parunak, H.V.D. (2000) Agents in Overalls: Experiences and Issues in the Develop-
ment and Deployment of Industrial Agent-Based Systems.International Journal of
Cooperative Information Systems, 9(3), p. 209-228

6. Rabak, C.S., J.S. Sichman (2003) Using A-Teams to optimize automatic insertion
of electronic components, Advanced Engineering Informatics 17, p. 95-106

7. Rachlin, J., R.Goodwin, S. Murthy, R. Akkiraju, F. Wu, S. Kumaran, R. Das
(1999) A-Teams: An Agent Architecture for Optimization and Decision-Support,
J.P. Muller et al. (Eds.): ATAL’98, LNAI 1555, Springer, p. 261-276

8. Randall, M., A. Lewis (2002) A Parallel Implementation of Ant Colony Optimiza-
tion, Journal of Parallel and Distributed Computing 62, p. 1421-1432

9. Talukdar, S., L. Baerentzen, A.Gove, P. de Souza (1996) Asynchronous Teams:
Co-operation Schemes for Autonomous, Computer-Based Agents, Technical Report
EDRC 18-59-96, Carnegie Mellon University, Pittsburgh

	Introduction
	Overview of the JADE-A-Team
	Optimization Agents
	Creating Agents
	Managing Communication Between Agents
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

