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Abstract. Co-evolutionary techniques for evolutionary algorithms are aimed at
overcoming their limited adaptive capabilities and allow for the application of
such algorithms to problems for which it is difficult or even impossible to formu-
late explicit fitness function. In this paper the idea of co-evolutionary multi-agent
system with host-parasite mechanism for multi-objective optimization is intro-
duced. In presented system the Pareto frontier is located by the population of
agents as a result of co-evolutionary interactions between species. Also, results
from runs of presented system against test functions are presented.

1 Introduction

Evolutionary algorithms (EAs) are techniques for finding suboptimal solutions of global
optimization and adaptation problems, which are based on analogies to biological evo-
lutionary processes. Evolutionary algorithms, however, often suffer from premature loss
of population diversity. This results in premature convergence and may lead to locating
local optimum instead of a global one. In the case of multi-modal problem landscapes
EA without any special mechanisms will inevitably locate basin of attraction of single
optimum. The loss of diversity also limits the adaptive capabilities of EAs in dynamic
environments.

In co-evolutionary algorithms the fitness of each individual depends not only on
the quality of solution to the given problem but also (or solely) on other individuals’
fitness. This makes such techniques applicable in the cases where the fitness function
formulation is difficult (or even impossible). Co-evolutionary techniques, are aimed
at improving adaptive capabilities and introducing open-ended evolution into EAs by
maintaining population diversity [8].

High quality approximation of Pareto frontier should fulfill at least three distinguish-
ing features: first of all it of course should be “located” as close to the ideal Pareto
frontier as possible what is very natural and common condition for both single- and
multi- objective optimization, secondly it should include as many alternatives as pos-
sible and, at last, all proposed non-dominated alternatives should be evenly distributed
over the whole ideal Pareto set.

In consequence, in the case of multi-objective optimization, premature loss of pop-
ulation diversity can result not only in lack of drifting to the ideal Pareto frontier but
also in obtaining approximation of Pareto set that is focused around its selected
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area(s) — what of course is very undesirable assuming that preference-based multi-
objective optimization is not considered in this place.

Evolutionary multi-agent systems (EMAS) have proved their grate usefulness for
solving a lot of different discrete, continuous, combinatorial and non-combinatorial
multi-objective optimization problems [12, 11]. Co-evolutionary mechanisms are aimed
at maintaining population diversity and improving adaptive capabilities of EMAS sys-
tems — especially in dynamic environments. This paper introduces the idea of
co-evolutionary multi-agent system with host-parasite mechanism for multi-objective
optimization. The process of locating Pareto frontier in such system emerges as a re-
sult of co-evolutionary interactions between species of agents. The results from runs of
co-evolutionary multi-agent system for multi-objective optimization against commonly
used test functions are also presented and the comparison to classical multi-objective
evolutionary algorithms is made.

2 Evolutionary and Co-evolutionary Multi-objective Optimization

During most real-life decision processes a lot of different (often contradictory) factors
have to be considered, and the decision maker has to deal with an ambiguous situation:
the solutions which optimize one criterion may prove insufficiently good considering
the others. From the mathematical point of view such multi-objective (or multi-criteria)
problem can be formulated as follows [13].

Let the problem variables be represented by a real-valued vector:

x = [x1, x2, . . . , xN]T ∈ IRN (1)

where N gives number of the variables. Then a subset of IRN of all possible (feasible)
decision alternatives (options) can be defined by a system of:

– inequalities (constraints): gk(x) ≥ 0 and k = 1,2, . . . ,K,
– equalities (bounds): hl(x) = 0, l = 1,2, . . . ,L

and denoted by D. The alternatives are evaluated by a system of M functions (objec-
tives) denoted here by vector F =

[
f1, f2, . . . , fM

]T :

fm : IRN → IR, m = 1,2, . . . ,M (2)

The key issue of optimality in the Pareto sense is the weak domination relation.
Alternative xa is dominated by xb (which is often denoted by xb � xa) if and only if
(assuming maximization of all objectives):

∀m fm(xa) ≤ fm(xb) and ∃m fm(xa) < fm(xb) (3)

A solution in the Pareto sense of the multi-objective optimization problem means de-
termination of all non-dominated (in the sense of the defined above weak domination
relation) alternatives from the setD, which is sometimes called a Pareto-optimal set.

The Pareto-optimal set consists of globally optimal solutions, however there may
also exist locally optimal solutions, which constitute locally non-dominated set (local
Pareto-optimal set) [2]. The set Plocal ⊆ D is local Pareto-optimal set if [13]:

∀xa ∈ Plocal : �xb ∈ D such that xb � xa∧
∥∥∥xb − xa

∥∥∥ < ε∧
∥∥∥F(xb)−F(xa)

∥∥∥ < δ (4)
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where ‖·‖ is a distance metric and ε > 0, δ > 0.
The set P ⊆ D is global Pareto-optimal set if [13]:

∀xa ∈ P : �xb ∈ D such that xb � xa (5)

These locally or globally non-dominated solutions create (in the criteria space) so-
called local (PF local) or global (PF ) Pareto frontiers that can be defined as follows:

PF local =
{
y = F (x) ∈ IRM | x ∈ Plocal

}
(6a)

PF =
{
y = F (x) ∈ IRM | x ∈ P

}
(6b)

Multi-objective problems with one global and many local Pareto frontiers are called
multi-modal multi-objective problems [2].

For the last 20 years a variety of evolutionary multi-criteria optimization techniques
have been proposed. In the Deb’s typology of evolutionary multi-objective algorithms
(EMOAs) firstly the elitist and non-elitist ones are distinguished [3]. The main
difference between these two groups of techniques consists in utilizing the so-called
elite-preserving operators that give the best individuals (the elite of population) the op-
portunity to be directly carried over to the next generation regardless of the actual selec-
tion mechanism used. Deb’s typology includes also so-called constrained EMOAs—i.e.
algorithms and techniques that enable handling constraints connected with problem that
is being solved.

Laumanns, Rudolph and Schwefel proposed co-evolutionary algorithm with
predator-prey model and spatial graph-like structure for multi-objective optimization
[6]. Deb introduced modified algorithm in which predators eliminated preys not only
on the basis of one criteria but on the basis of the weighted sum of all criteria [3]. Li
proposed other modifications to this algorithm [7]. The main difference was that not
only predators were allowed to migrate within the graph but also preys could do it.

Co-evolution is the biological mechanism responsible for biodiversity and sympatric
speciation. However it was not widely used as a mechanism of maintaining useful ge-
netic diversity of population for evolutionary algorithms. It seems that co-evolution
should introduce open-ended evolution, improve adaptive capabilities of EA (especially
in dynamic environments) and allow speciation (the formation of species located within
different areas of Pareto frontier or within local and global Pareto-frontiers in case of
multi-modal multi-objective problems) but this is still an open issue and the subject of
ongoing research.

3 Co-evolutionary Multi-agent System for Multi-objective
Optimization

The main idea of co-evolutionary multi-agent system (CoEMAS) is the realization of
species and sexes co-evolution in multi-agent system (MAS) [4]. CoEMAS model, as
opposed to the basic evolutionary multi-agent system (EMAS) model [1], allows for the
existence of several species and sexes which can interact with each other and co-evolve.
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CoEMAS is especially suited for modeling different co-evolutionary interactions, such
as resource competition, predator-prey and host-parasite co-evolution, sexual prefer-
ences, etc. Systems based on CoEMAS model can be applied, for example, to multi-
modal function optimization and multi-objective optimization because such systems
maintain population diversity and easily adapt to changing environment.

3.1 Co-evolutionary Multi-agent System with Host-Parasite Model

The essence of host-parasite approach consists in common evolutionary process (co-
evolution) of two populations: population of hosts — representing problem solutions
and population of parasites — representing tests that should be passed by hosts. Hosts’
fitness value is proportional to the number of tests that each of them passed whereas
parasites’ fitness function value depends on number of hosts that do not pass test rep-
resented by given parasite. Of course each population can be characterized by its own:
size, selection type, type of representation, genetic operators, probabilities of crossover
and mutation etc. So, in another words, these are co-evolving but simultaneously inde-
pendent populations.

Presented co-evolutionary multi-agent system for multi-objective optimization with
host-parasite mechanism has been developed using JagWorld platform — a kind of
Java-based infrastructure supplying basic mechanisms such as communication, paral-
lelization etc. required during implementation systems according to both EMAS and
CoEMAS model.

Realization of presented system required implementation of two kinds of agents:
host-agents (representing solutions of problem that is being solved) and parasite-agents
(representing ”tests” for host-agents or rather for solutions represented by host-agents).
The behavior of host-agent is similar to the behavior of ”standard” agents characteristic
for EMAS-based systems. So, host-agent ”lives” in a place, it can move between places,
and in every step it consumes resources needed for its life-activity. The fitness value is
not directly assigned to the host-agent but it depends indirectly on interactions with
population of parasites (host-agents representing worse solutions are more likely to be
infected by parasite-agents). Each parasite-agent, similarly to the host-agent, consumes
resources needed for living in the system in every step of simulation, but these agents do
not receive resources from the environment, as it takes place in the case of host-agents
but it takes resources from infected host.

The most distinguishing feature of parasite-agent is its possibility to infecting host-
agents. In every step each parasite-agent that does not infect any host-agent tries to
infect non-infected host. To infect a host-agent the parasite-agent performs specific test
consisting in comparing objectives values represented by its genotype with objectives
values of host-agent that is being infected. The probability of infection is higher or
lower depending on performed test.

Both host-agents and parasite-agents can reproduce if they posses enough amount
of resources. Host’s reproduction consists in creating one descendant from two ready-
for-reproduction individuals using crossover operator and then mutation operator is ap-
plied to created descendant. Parental individuals survive reproduction process but they
loss some of their resources in aid of their offsprings. Parasite’s reproduction consists
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Table 1. Comparison of proposed CoEMAS approach with selected classical EMOA’s according
to the Coverage of two sets metrics

Coverage of two sets δ(A,B)
SPEA VEGA NPGA CoEMAS

SPEA � 0.08 0.00 0.04
VEGA 0.92 � 0.30 0.32
NPGA 1.00 0.62 � 0.40
CoEMAS 0.96 0.70 0.58 �

in creating two descendants from one parental individual using mutation operator.
Parental parasite-agent transfers half of its life-energy to each of its descendants and
then dies.

At last, mentioned above test that is being performed by parasite-agent on host-agent
before infection consists in comparing — in the sense of domination relation (see eq.
(3)) — solutions represented by assaulting parasite-agent and host-agents that is being
assaulted. The more solution represented by host-agent is dominated by parasite-agent
the higher is the probability of infection.

3.2 Simulation Experiments — Preliminary Qualitative Results

After implementation some experiments have been performed, but because of space
limitations only some qualitative conclusions (not quantitative results) will be here pre-
sented. Namely, proposed co-evolutionary multi-agent system for multi-objective op-
timization with host-parasite mechanism has been tested using, inter alia, Binh and
slightly modified Schaffer test functions that are defined as follows:

F1(Binh) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

f1(x,y) = x2+ y2

f2(x,y) = (x−5)2+ (y−5)2

where −5 ≤ x,y ≤ 10

F2(Modi f ied S cha f f er) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

f1(x) = x2

f2(x) = (x−2)2

where −32 ≤ x ≤ 32

Additionally, on the same JagWorld platform there have been implemented also some
“classical” evolutionary algorithms for multi-objective optimization i.e. Vector Evalu-
ated Genetic Algorithm (VEGA) [9, 10], Niched-Pareto Genetic Algorithm (NPGA) [5]
and Strength Pareto Evolutionary Algorithm (SPEA) [13].

To compare proposed approach with implemented classical algorithms also some
metrics have been used. Obtained values of these metrics are presented in Table 1,
Table 2 and Table 3.

Assuming the following meaning of used below symbols: P—Pareto set defined in
eq. (5), A,B ⊆ D—two sets of decision vectors, σ ≥ 0—appropriately chosen neigh-
borhood parameter and ‖·‖—the given distance metric, then the measures presented in
these tables are defined as follows [13]:
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Table 2. Comparison of proposed CoEMAS approach with selected classical EMOA’s according
to the Coverage difference of two sets metrics

Coverage difference of two sets ξ(A,B)
SPEA VEGA NPGA CoEMAS

SPEA � 8 0 6
VEGA 116 � 3 13
NPGA 154 42 � 25
CoEMAS 197 27 7 �

Table 3. Comparison of proposed CoEMAS approach with selected classical EMOA’s according
to another four metrics

Size of dominated
space (℘)

Average distance
to the model
Pareto set (M1)

Distribution (M2) Spread (M3)

SPEA 39521 0.8 0.21 10.2
VEGA 39405 2.3 0.11 10.3
NPGA 39368 3.2 0.18 10.1
CoEMAS 39324 3.7 0.15 9.9

– δ(A,B)—the coverage of two sets maps the ordered pair (A,B) to the interval [0,1]
in the following way:

δ(A,B) =
|{b ∈ B | ∃a ∈ A : a � b}|

|B| (7)

– ξ(A,B)—the coverage difference of two sets (℘ denotes value of the size of domi-
nated space measure):

ξ(A,B) = ℘(A+B)−℘(B) (8)

– M1—the average distance to the Pareto-optimal set P:

M1(P) =
1
|P|
∑

p∈P
min {‖p− x‖ | x ∈ P} (9)

– M2—the distribution in combination with the number of non-dominated solutions
found:

M2(P) =
1

|P−1|
∑

p∈P
|{r ∈ P | ‖p− r‖ > σ}| (10)

– M3—the spread of non-dominated solutions over the set A:

M3(P) =

√√√ N∑

i=1

max {‖pi− ri‖ | p,r ∈ P} (11)
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Basing on defined above test functions and measures, some comparative studies of
proposed co-evolutionary agent-based system and mentioned above very well known,
and commonly used algorithms (i.e. VEGA, NPGA and SPEA) could be performed and
conclusions from such experiments can be formulated as follows:

– Within the group of implemented algorithms SPEA has turned out to be definitely
the best one;

– NPGA has turned out to be slightly worse than SPEA if the distance to the model
Pareto frontier has been considered, and they have been very similar if distribution
non-dominated individuals over the whole Pareto frontier has been considered;

– VEGA-based solutions have been almost as close to the model Pareto frontier as
they have been in case of SPEA — however these solutions have been focused
around some parts of Pareto set — what confirms the tendency of VEGA for prefer-
ring chosen objective(s);

– proposed CoEMAS system with host-parasite mechanism has turned out to be com-
parable to the classical algorithms according almost all considered metrics except
for Average distance to the model Pareto set (see. Table 3);

It has to be mentioned here that preliminary experiments have been performed using
very simple test functions and some potential advantages of proposed co-evolutionary
system could not be here observed — but of course further experiments especially
with very difficult multi-dimensional and dynamic testing problems will be conducted
and proposed approach should turn out especially useful in case of multi-modal multi-
objective problems such as Zitzler’s t4 test function [13].

4 Concluding Remarks

Evolutionary algorithms often suffer from premature loss of population diversity what
limits their adaptive capabilities and possible application to hard problems like multi-
modal and multi-objective optimization. To avoid such problems niching and co-evo-
lutionary techniques for evolutionary algorithms are proposed and applied. However,
co-evolutionary techniques are rather rarely used as mechanisms of maintaining useful
population diversity.

The model of co-evolutionary multi-agent system allows co-evolution of several
species and sexes. This results in maintaining population diversity and improves adap-
tive capabilities of systems based on CoEMAS model. In this paper the co-evolutionary
multi-agent system with host-parasite mechanism for multi-objective optimization has
been presented. The system was run against commonly used test problems and com-
pared to classical VEGA, SPEA, and NPGA algorithms. Presented results show that
SPEA is the best of all compared algorithms. Proposed CoEMAS with host-parasite
mechanism was comparable to the other classical algorithms, except for average dis-
tance to the model Pareto set metric. This fact results from the tendency to maintain
high population diversity what could be very useful in the case of hard dynamic and
multi-modal multi-objective problems.

Future work will include more detailed comparison to other classical algorithms
with the use of hard multi-dimensional, dynamic, and multi-modal multi-objective test



878 R. Dreżewski and L. Siwik

problems. Also the application of other co-evolutionary mechanisms like sexual selec-
tion and predator-prey are included in future plans.
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H.-P. Schwefel, editors, Parallel Problem Solving from Nature — PPSN V, volume 1498 of
LNCS. Springer-Verlag, 1998.

7. X. Li. A real-coded predator-prey genetic algorithm for multiobjective optimization. In
C. M. Fonseca, P. J. Fleming, E. Zitzler, K. Deb, and L. Thiele, editors, Evolutionary Multi-
Criterion Optimization, Second International Conference (EMO 2003), Proceedings, volume
2632 of LNCS, pages 207–221. Springer-Verlag, 2003.

8. J. Paredis. Coevolutionary algorithms. In T. Bäck, D. Fogel, and Z. Michalewicz, editors,
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