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Abstract. In this paper, an improved negative selection procedure to handle 
constraints in a multi-criterion evolutionary algorithm has been proposed. The 
problem that is of interest to us is the complex task assignment for a distributed 
computer system. Both a workload of a bottleneck computer and the cost of 
system are minimized; in contrast, a reliability of the system is maximized. 
Moreover, constraints related to memory limits and computer locations are im-
posed. Finally, an evolutionary algorithm with tabu search procedure and the 
improved negative selection is proposed to provide effective solutions. 

1   Introduction 

Evolutionary algorithms (EAs) have to exploit a supplementary procedure to incorpo-
rate constraints into fitness function in order to conduct the search precisely. An ap-
proach based on the penalty function is the most commonly used to satisfy con-
straints. Likewise, this technique is frequently used to handle constraints in multi-
criteria evolutionary algorithms. However, it has some limitations, from which the 
most remarkable is the complicatedness to identify penalty coefficients. 

The homomorphous mapping has been proposed as the constraint-handling proce-
dure of EA to deal with parameter optimisation problems in order to avoid some im-
penetrability of the penalty function [10]. After that, a constrained-handling negative 
selection has been tested to optimisation problems with one criterion [3].  

As a result, we propose an improved negative selection to handle constraints in 
multi-criterion optimisation problems. Both a workload of a bottleneck computer and 
the cost of machines are minimized; in contrast, a reliability of the system is maxi-
mized. Furthermore, constraints related to computer memory limits are imposed on 
the feasible task assignment. After all, an evolutionary algorithm with a tabu search 
procedure [12] and the negative selection is proposed to provide Pareto-optimal task 
assignments for the distributed systems. To avoid a limitation of the negative selec-
tion, we suggest introducing some distance measures from the state of an antibody to 
the state of the selected antigen, according to the constraints. In consequence, an im-
proved negative selection with ranking procedure can be designed. 
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2   Negative Selection Algorithm 

The immune system can be seen as a distributed adaptive system that is capable for 
learning, using memory, and associative retrieval of information in recognition [9]. 
Many local interactions provide, in consequence, fault tolerance, dynamism and 
adaptability [2]. The model of immune network and the negative selection algorithm 
are major outcomes on which most of the current works are based [8].  

The negative selection algorithm (NSA) for detection of changes has been devel-
oped by Forrest at el. [6]. This algorithm is based on the discrimination principle that 
is used to know what a part of the immune system is and what it is not [5]. Detectors 
are randomly generated to reduce those detectors that are not capable of recognising 
themselves. Subsequently, detectors proficient to distinguish trespassers are kept. An 
adjusted detection is performed probabilistically by the NSA.  

The negative selection can be used to manage constraints in an evolutionary algo-
rithm by isolating the contemporary population in two groups [13]. Feasible solutions 
called “antigens” create the first cluster, and the second cluster of individuals consists 
of “antibodies” – infeasible solutions. For that reason, the NSA is applied to generate 
a set of detectors that verify the state of constraints.  

We assume the fitness for antibodies is equal to zero. Then, a randomly chosen an-
tigen G ¯  is compared to the selected antibodies. After that, the distance S between the 
antigen G ¯  and the antibody B ¯  is calculated due to the amount of similarity at the 
genotype level [1]: 
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The measure of genotype similarity between the antigen and the antibody depends 
on their representation. This assessment of similarity for the binary representation (1) 
can be re-defined for the integer version, as follows:  
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The negative selection is a modified genetic algorithm in which infeasible solu-
tions that are similar to feasible ones are preferred in the current population. Al-
though, almost all the random choices are based on the uniform distribution, the pres-
sure is directed to improve the fitness of appropriate infeasible solutions. 

3   Ranking Procedure for Negative Selection 

The situation that the fitness of the winner is increased by adding the magnitude of the 
similarity measure may pass over a non-feasible solution with the relatively small 
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value of this assessment. Nevertheless, some constraints may be satisfied by this al-
ternative. What is more, if a constraint is exceeded and the others are performed, the 
value of a similarity measure may be low for some cases. That is, the first of two 
similar solutions, in genotype sense, may not satisfy this constraint and the second 
one may satisfy it.  

To avoid this limitation of the NSA, it was suggested introducing some distance 
measures from the state of an antibody to the state of the selected antigen, according 
to the constraints. Equalities and inequalities that are of interest to us are, as follows: 
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The distance measures from the state of an antibody B ¯  to the state of the selected 
antigen G ¯  are defined, as below: 
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The distance fn(B ¯ ,G ¯ )  is supposed to be minimized for all the constraint numbers 

n. If the antibody B ¯  is marked by the smaller assessment fn(B ¯ ,G ¯ ) to the selected 
antigen than the antibody C ¯ , then B ¯  ought to be preferred to C ¯  due to the im-
provement of the nth constraint. Moreover, if the antibody B ¯  is characterized by all 
the shorter distances to the selected antigen than the antibody C ¯ , then B ¯  should be 
preferred for all constraints. However, situations may occur when B ¯  is characterized 
by the shorter distances for some constraints and the antibody C ¯  is marked by the 
shorter distances for the others. In this case, it is difficult to select an antibody.  

In this paper, we suggest introducing a ranking procedure to calculate fitness of an-
tibodies and then to select the winner. In the previous works, a ranking idea for non-
dominated individuals has been applied to avoid the prejudice of the interior Pareto 
alternatives [1, 3].  

Now, we adjust this procedure to the negative selection algorithm (NSA*). Firstly, 
distances between the chosen antigen and some antibodies are calculated. Afterwards, 
the nondominated antibodies are determined according to their distances (5) to the 
antigen, and then, they get the rank equal to 1. Next, they are temporary eliminated 
from the population. Next, the new nondominated antibodies are found from the re-
duced population and they get the rank equal to 2. In this procedure, that level is in-
creased and it is repeated until the subset of antibodies is exhausted. All the non-
dominated antibodies have the same fitness because of the equivalent rank.  

If B ¯  is the antibody with the rank r(B ¯ ) and 1 ≤ r(B ¯ ) ≤ rmax , then the increment 
of the fitness function value is estimated, as below: 
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Afterwards, the fitness of all the chosen antibodies are increased by adding their 
increments. The antibodies are returned to the current population and this process is 
repeated typically three times the number of antibodies. Each time, a randomly cho-
sen antigen is compared to the same subset of antibodies. Next, the same procedure as 
for the NSA is carried out. Afterwards, a new population is constructed by reproduc-
tion, crossover and mutation without calculations of fitness. That process is repeated 
until a convergence of population emerges or until a maximal number of iterations is 
exceeded. At the end, the final population of the negative selection algorithm is re-
turned to the external evolutionary algorithm.  

4   Task Assignment in Distributed Computer System 

To test the ability of NSA* for handling constraints, we consider a multi-criterion 
optimisation problem for task assignment in a distributed computer system [1].   

Finding allocations of program modules may decrease the total time of a program 
execution by taking a benefit of the particular properties of some workstations or an 
advantage of the computer load. An adaptive evolutionary algorithm has been consid-
ered for solving multi-objective optimisation problems related to task assignment that 
minimize Zmax – a workload of a bottleneck computer and F2 – the cost of machines 
[1]. The total numerical performance of workstations is another criterion for assess-
ment the quality of a task assignment and it has been involved to multi-criterion prob-
lem formulated in [1]. Moreover, a reliability R of the system is an additional criterion 
that is important to assess the quality of a task assignment.  

In the considered problem, both a workload of a bottleneck computer and the cost 
of machines are minimized; in contrast, a reliability of the system is maximized. In 
addition, constraints related to memory limits and computer locations are imposed on 
the feasible task assignment. A set of program modules {M1,...,Mm,...,MM} communi-
cated to each others is considered among the coherent computer network with com-
puters located at the processing nodes from the set },...,,...,{ 1 Ii wwwW = . A set of 

program modules is mapped into the set of parallel performing tasks {T1,...,Tv,...,TV}. 
Some modern scheduling algorithms for tasks are proposed in [12]. 

Let the task Tv be executed on computers taken from the set of available computer 
sorts },...,,...,{ 1 Jj πππ=Π . The overhead performing time of the task Tv by the 

computer πj is represented by an item vjt . Let jπ  be failed independently due to an 

exponential distribution with rate jλ . We do not take into account of repair and re-

covery times for failed computer in assessing the logical correctness of an allocation. 
Instead, we shall allocate tasks to computers on which failures are least likely to occur 
during the execution of tasks. Computers and tasks can be allocated to nodes in pur-
pose to maximize the reliability function R defined, as below [1]: 
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A computer with the heaviest task load is the bottleneck machine and its workload 
is a critical value that is supposed to be minimized [1]. The workload Zmax(x) of the 
bottleneck computer for the allocation x is provided by the subsequent formula: 
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where vuikτ – the total communication time between the task Tv assigned to the  ith 

node and the Tu assigned to the kth node. 
Figure 1 shows the workload of the bottleneck computer in the distributed com-

puter system for generated task assignments in a systematic way. The function Zmax 
takes value from the period [40; 110] for 256 solutions. What is more, even a small 
change in task assignment related to the movement of a task to another computer or 
a substitution of computer sort can cause a relatively big alteration of its workload. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Workload of the bottleneck computer for generated solutions 
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A computer should be equipped with necessary capacities of resources for 
a program execution. Let the following memories z1,...,zr,...,zR be available in an entire 
system and let djr be the capacity of memory zr in the workstation πj . We assume the 
task Tv reserves cvr units of memory zr and holds it during a program execution. Both 
values cvr and djr are nonnegative and limited. The memory limit in a machine cannot 
be exceeded in the ith node, what is written, as bellows:  
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The other measure of the task assignment is a cost of computers [1]: 
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where κj corresponds to the cost of the computer πj.  

5   Adaptive Evolutionary Algorithm with NSA* and Tabu 
Mutation 

The total computer cost is in conflict with the numerical performance of a distributed 
system, because the cost of a computer usually depends on the quality of its compo-
nents. The faster computer or the higher reliability of it is the more expensive it is. 
Additionally, the workload of the bottleneck computer is in conflict with the cost of 
the system. Let (X, F, P) be the multi-criterion optimisation question for finding the 
representation of Pareto-optimal solutions [7]. It is established, as follows:  

1) X - an admissible solution set 
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where B = {0, 1} 

2) F - a quality vector criterion 

3   : RX →F  (11) 

where 
R  – the set of real numbers, 

F(x) = [–R(x), Zmax(x), F2(x)] T for x∈X, 

R(x), Zmax(x), F2(x) are calculated by (7), (8) and (10), respectively 

3) P - the Pareto relation [14]. 
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An overview of evolutionary algorithms for multi-objective optimisation problems 
is submitted in [3], [4]. An analysis of the task assignments has been carried out for 
two evolutionary algorithms. The first one was an adaptive evolutionary algorithm 
with tabu mutation AMEA+ [1]. Tabu search procedure was applied as an additional 
mutation operator to decrease the workload of the bottleneck computer. However, 
some numerical examples indicated that obtained task assignments have not satisfied 
constraints in many cases. Therefore, we suggest introducing a negative selection 
algorithm with ranking procedure to improve the quality of obtained solutions.  

Better outcomes from the NSA* are transformed into improving of solution quality 
obtained by the adaptive multi-criterion evolutionary algorithm with tabu mutation 
AMEA*. This adaptive evolutionary algorithm with the NSA* gave better results than 
the AMEA+. After 200 generations, an average level of Pareto set obtaining was 
1.5% for the AMEA*, 1.9% for the AMEA+ (Fig. 2). 

Fifty test preliminary populations were prepared, and each algorithm started from 
these solutions. For integer constrained coding of chromosomes there were 12 deci-
sion variables in the test optimisation problem. The binary search space consisted of 
1.0737x109 chromosomes and included 25 600 admissible solutions. 

 

 

 

 

 

 

 

Fig. 2. Convergence for outcomes of the AMEA* and the AMEA+ 

6   Concluding Remarks 

The adaptive evolutionary algorithm with the improved negative selection and tabu 
mutation can be applied for finding Pareto-optimal task allocations in a three-
objective optimisation problem. In this problem, the workload of the bottleneck com-
puter and the cost of computers are minimized. Moreover, the system reliability is 
maximised. 

The negative selection algorithm can be used to handle constraints and improve 
a quality of the outcomes obtained by an evolutionary algorithm. Our future works 
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will concern on a development the AMEA* for finding Pareto-optimal solutions of 
the multi-objective optimisation problems. 
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