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Abstract. This paper introduces the new Open Trace Format. The first part pro-
vides a small overview about Trace Format Libraries in general and existing
Formats/Libraries and their features. After that the important requirements are
discussed. In particular it concerns efficient parallel and selective access to trace
data. The following part presents design decisions and features of OTF compre-
hensively. Finally, there is some early evaluation of OTF. It features comparison
of storage size for several examples as well as sequential and parallel I/O bench-
marks. At the end, a conclusion will summarize the results and give some outlook.

1 Introduction

Today, there are many established trace formats already. Let’s name for example Epilog
[11], Pajé’s trace format [3], Pablo Self-Defining Data Format (SDDF) [1], Structured
Trace Format (STF) [4], TAU trace format [2, 10] and Vampir Trace Format 3 (VTF3)
[8]. All of them share the basic principle storing event information in so called event
records which are sorted by time. Special definition records deliver auxiliary informa-
tion and allow more efficient storage. Event types usually supported by all formats are:
function call events, point to point message events, collective communication events,
performance counter samples and few more. Usually, there are only minor differences
in representation. The general functionality is the same.

To all trace formats there is a trace format library as well1. It serves as read/write
layer and passes trace records from/to files. Although all formats could be written or
read directly with more or less effort it is not recommended. Instead, one should always
use the supplied library. It will perform parameter checking, parsing, data filtering etc.
Most of the time this will be easier, safer, faster and more complete.

In High Performance Computing (HPC) there are some special requirements for
trace formats and their support libraries. Access speed and storage efficiency are im-
portant. Furthermore, both properties must scale well with very huge amounts of data.
Parallel I/O is one necessary concept to accomplish this on today’s HPC platforms. To
incorporate parallel I/O efficiently the trace format library must provide special support.

It turns out, that even the trace formats are affected. Only with data management and
storage scheme adapted towards parallel I/O maximum performance becomes achiev-
able. This feature is missing from all but one of the trace file formats mentioned above.

1 The terms “trace format” and “trace format library” are often used synonymously.
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STF [4] implements parallel I/O and advanced selective access. Unfortunately, that for-
mat is not available on all platforms and for all purposes (anymore).

This paper presents the OTF format itself and especially the trace format library.
It is not intended as comprehensive programming documentation but an overview of
functionality. In the first part of the paper there will be a definition of requirements. It
is followed by a presentation of the design considerations and main features. Finally,
there are some (early) performace data as well as comparisons with the state of the art.

2 Requirements to a Modern Trace Format

First of all, a complete set of record types for the usual purposes has to be provided.
The interface should use the same basic form as all existing trace format libraries: It
provides record type specific write functions and a call-back mechanism for reading.

The format must be platform independent, especially with respect to endianness and
word size (32bit/64bit). Of course, economical storage size is very important. Last but
not least, read/write access needs to be fast and efficient. This involves both, selective
access and sequential linear read/write operations. The former is the key to parallel I/O
which relies on selecting disjoint parts of a trace to be read independently. The latter is
relevant for sequential and parallel performance as it determines sustained I/O speed.

Selective access is to be provided with respect to three criteria: First, selection per
record type as supported by all existing trace formats. This simply means to ignore un-
wanted record types. Second, selection per trace process. This must not read everything
dropping unwanted parts because it would overstress I/O. Loading only worthwhile
data saves a lot of effort. In case a single process contains still too much data the third
selection facility can reduce this further. It allows to select a certain time interval (per
process). Again, it is important that only the requested data is loaded rather than the
whole process trace.

The last part of selective access requires another new facility. In order to start reading
at an arbitrary time stamp additional helper information is necessary. Otherwise, the
initial state at that time stamp would be unknown, rendering all following events useless.
Therefore, a special class of records has to provide resumption points, i.e. full state
information at selectable time stamps.

In order to provide a clue what processes resp. time intervals to select before reading
the whole trace there should be another kind of auxiliary information. This is to provide
statistical overview information about what happens on certain processes and in certain
time intervals. Those information should be small and concise and yet allow arbitrary
granularity.

3 Design Decisions and Features

Based on above requirements the following basic design was chosen: OTF uses multi-
ple streams per trace. It uses an ASCII encoding which allows binary search on files
for time intervals. Furthermore, it supports optional auxiliary information. Please, see
below for a comprehensive description.
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3.1 Multiple Streams

The most important point regarding parallel I/O is the distribution of a single trace to
multiple streams. Those streams are separate files that can be accessed independently. A
stream contains events of one or more processes in temporal order. But every trace pro-
cess/thread is mapped to one stream exclusively, i.e. a process cannot span over multiple
streams. This is necessary to maintain the original order of events with identical time
stamp in one process. Thus, a trace of n processes can be stored with 1 ... n streams.
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Fig. 1. OTF storage scheme. Index file, global
definitions file as well as event files are manda-
tory. All local definitions, snapshots and statis-
tics are optional.

In addition, there is an index file with
suffix .otf that stores the mapping of pro-
cesses to streams. It can be set or queried
via the trace format library, too. During
tracing it might be very convenient to use
n independent streams. Simply adding
the index file as well as a global defini-
tions file will produce a perfectly valid
trace without explicit merging2. Later, it
might be convenient to reduce the num-
ber of streams. Perhaps several thousands
of files are undesirable for massive par-
allel traces. The otfmerge tool is able
to translate this to any number 1, ..., n of
streams or to a fixed number of processes
per stream.

When writing a trace, the process
to stream mapping can either be spec-
ified explicitly or created automatically.
With respect to reading event records the
process-to-stream mapping is completely transparent. The user specifies which pro-
cesses are to be read. Then, the OTF library accesses only streams containing those
processes. If multiple streams are read they are merged on-the-fly to provide a single
sorted input stream to the caller. Furthermore, an arbitrary number of streams can be
handled with limited numbers of file handles. Figure 1 gives an impression of OTF’s
storage scheme.

3.2 ASCII Encoding

The internal representation of records in OTF uses an ASCII encoding. This makes OTF
platform independent in the purest way. Of course, this is a slight disadvantage in terms
of storage size which is compensated later. This encoding makes OTF human readable
and accessible via tools like grep, awk, perl, etc.

With this ASCII representation every record is stored as a single line of text. Infor-
mation about time stamp and process of event records is separated from the records

2 Merging and post-processing of trace data are frequently used for several purposes. It might
still be necessary for timer-synchronization, token renaming, etc.
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and managed by a state machine where every stream keeps track of current time and
process. Special records update those values which then remain until the next update.
Ordinary event records contain no time stamp or process but simply refer to the current
state of the stream. By this means redundant time stamp and process specifications are
eliminated within streams.

Another advantage of the ASCII representation is the ability to recover reading at ar-
bitrary file positions. After a fseek() operation to any file position a simple forward
search for the next newline character will produce a valid resumption point. Further
search will deliver an update of the stream’s state machine such that reading can be
started at that point in a reliable way. This is most important for selective access as in-
troduced below. Unlike for pure binary formats there is no need for anchor information,
escape sequences, padding, etc.

3.3 Efficient Selective Access

OTF provides selective access to traces according to three aspects: by record types, by
processes and by time intervals.

Selection by record types is possible by disabling a certain record type’s call-back
handler. The OTF library will then skip all records of that type. It will even avoid fully
parsing such records.

For selective reading by processes the user requests a set of processes to be read.
This may range from a single process to all. Based on that, OTF accesses only affected
streams. If a stream contains enabled as well as disabled processes, it is read and filtered.
Thus, only records of the enabled process(es) are passed to the consumer. Again, records
of disabled processes are skipped without parsing.

The OTF interface allows only to select by processes but not by streams. However,
the user can query the process-to-stream mapping and derive an optimal selection. This
is highly recommended for parallel reading.

By this means, multiple processes or threads of a parallel application can read/write
disjoint parts of a trace concurrently. OTF does not do any parallelism internally but
adapts to the parallel paradigm of the user application. The OTF library is thread-safe
but doesn’t contain any explicit multi-threading or multi-process parallelism internally.
User applications need to take care of race-conditions during parallel OTF output!

Finally, OTF also supports selective access with respect to arbitrary time intervals.
From the user interface point of view this works by simply restricting the time interval
to be read. Internally, OTF performs a binary search for the start time stamp on all
according files. With O(log n) effort for total record count n this scales very well for
large files. Once the start position is found the OTF library performs standard reading
until the end of the time interval is reached or all streams are exceeded.

3.4 ZLib Support

For the sake of efficient storage size OTF supports transparent ZLib [6] data compres-
sion as an experimental feature. This will compensate for the ASCII encoding which is
not most economical by itself.
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Every file that is part of an OTF trace can be compressed by itself, it is automatically
detected when reading. OTF uses a rather small compression level which allows fast
compression and yet good data reduction to 20% - 35% of the original size on average.

ZLib compression is achievable directly during trace file creation or later via the
otfcompress tool, which also supports de-compression. In order to support random
access even for compressed files OTF uses a blockwise compression scheme as directly
supported by ZLib. Default block size is 10 mathrmKB which allows good compres-
sion and fine-grained access at the same time.

So far, this paper mentioned event records only. Of course, there are definition
records, too. They specify certain global properties, like timer resolution and token
definitions. Such global definitions are never performance critical and are stored in a
single global file (see Figure 1).

OTF supports local definitions for convenience. They are attached to streams but
not to individual processes inside a stream. This is provided for trace libraries which
might want to store local definitions at trace time. However, local definitions should be
translated into preferred uniform global definitions.

Besides definition records there are two more classes of auxiliary records. First, there
are so called snapshot records which assist user applications when reading arbitrary
time intervals. They provide information about the complete state of a trace process at
a certain time. This includes the function call stack, pending messages, etc.

Second, so called summary records allow a reasonable guess about which processes
resp. time intervals to chose for selective access. They provide a variety of properties
for certain event record types. For example number of calls and exclusive/inclusive run-
time per function. Alternatively, it can be summarized for groups of functions instead
of single functions.

Summary information at a time stamp t covers the time interval [0, t), i.e. from the
beginning of the trace to the current time. All properties S can be derived for the interval
[a, b) by the simple transformation

S
(
[a, b)

)
= S

(
[0, b)

)
− S

(
[0, a)

)
. (1)

By this scheme of representation only n summary points are sufficient to cover n·(n−1)
intervals of time.

Both, snapshot and summary records are optional and reside in separate files per
stream (see Figure 1). This allows to generate, re-create or remove them without chang-
ing the event information. Snapshots and summaries can be supplied by a trace library,
by any user application or by the otfaux tool which adds both to an existing trace
with selectable granularity.

4 Early Evaluation

Below early performance evaluation is shown. It was performed on a commodity work-
station (AMD Athlon 64 3200+, 2GB main memory) and on a brand-new super com-
puter (SGI Altix 3700, 128x Intel Itanium2 1500MHz, 490GB shared memory, very
fast I/O).
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Fig. 2. Storage sizes for STF and VTF3 vs. plain
and compressed OTF

Storage Size. The first interesting issue
concerns storage size which is a platform
independent issue. Fig. 2 compares stor-
age size for identical traces in STF [4]
and VTF3 [8] formats to plain and com-
pressed OTF. The examples are original
STF traces with 18 MB, with 1.8 GB and
with 2.3 GB size from well known ASCI
benchmarks [5, 9].

Both, compressed and even plain OTF
traces are much smaller than binary
VTF3, i.e. even a pure ASCII encod-
ing results in a quite efficient storage
scheme. Yet, plain OTF is 30% to 60% larger than STF. However, ZLib compressed
OTF format turns out to use < 50% of STF’s storage volume. Thus, in terms of storage
size compressed OTF provides a notable advantage over two well established binary
trace formats.

Read Performance. The second issue of interest is raw read performance of the trace
format libraries. Traces are read, parsed and send to dummy handlers measuring the
formats’ read performance including internal overhead.

Figure 3 shows reading speed in million records per second for the 3 example traces
in the 4 traces formats. On the AMD 64 platform (Figure 3 left) there is an obvious
difference between small traces (18 MB), where I/O is noncritical, and huge traces
(> 1 GB), where I/O becomes the limiting factor.

For the small example uncompressed OTF speed is almost double of STF despite
the larger storage size. Reading compressed OTF is no advantage here. Instead, the
additional computation decreases performance while reduced input amount (≈ 1/3)
brings only minor benefit.

For large traces the situation is different. Now, the run-time behavior looks perfectly
reciprocal to the storage size diagrams. The I/O effort determines the read performance
and thus, compressed OTF is fastest by far.

Fig. 3. Read speed for three real-life traces on AMD Athlon 64 3200+ (left) and on SGI Altix
3700 (right). Figures are normalized relative to STF.
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Fig. 4. Parallel input speed on SGI Altix 3700: total (left) and normalized (right)

On the Altix platform (Figure 3 right) all three examples behave similar to the small
case on AMD 64 platform. Because of this machine’s excellent I/O capabilities input
speed is just not critical, not even for traces of 2.3 GB size. Because of that, uncom-
pressed OTF is fastest for all three examples. It is followed by compressed OTF which
is still faster than STF and VTF3. Nevertheless, OTF compression should be used by
default because of the reduced storage footprint.

Parallel Read Performance. Finally, Figure 4 shows parallel performance for plain
and compressed OTF on the Altix platform. It was evaluated with a very huge trace
containing 128 processes and 1 280 000 000 records. This results in ≈ 19 GB uncom-
pressed or ≈ 5.4 GB compressed total storage size. This same trace was stored with
n = 1 ... 128 streams and read with n processes.

The left hand side of Figure 4 shows the aggregated total read performance (in mil-
lion records per second), the right hand side the normalized counterpart (in million
records per second per process).

The diagrams reveal a very nice scaling parallel input speed when reading uncom-
pressed OTF. The sustained input speed of 3 000 000 records/s/process scales almost
linearly up to 16 processes. At 32 processes the total input speed is saturated and the
uncompressed read performance per process drops notably.

The normalized speed when reading compressed OTF reaches only ≈ 2/3 of the un-
compressed speed for small processor counts. When scaling to larger processor counts
uncompressed OTF reading speed declines at > 16 processes. Compressed OTF read-
ing keeps scaling linearly up to 64 processes! This relates to the average compression
ratio ≈ 4 : 1, i.e. 1/4 input size.

For n = 128 processes even compressed OTF will overcharge total I/O bandwidth
reducing the sustained input speed. Always, there is a point where total I/O performance
limits input speed. As soon as this happens compressed OTF provides a big performance
advantage.

5 Conclusion

OTF is a fast and efficient trace format library with special support for parallel I/O. It
provides a convenient interface similar to existing trace format’s ones. In addition it
offers extended selective access along with some support features.
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It achieves very good performance on single processor workstations as well as on
massive parallel super computers. It delivers fast sequential and parallel access which
scales very well depending on raw I/O capacity.

Experimental transparent blockwise ZLib compression allows to reduce storage size
notably and improves parallel scalability on the same time.

OTF is available at [7] under BSD open source license that allows free usage for
academic and commercial applications. Future work will include porting and tuning for
additional platforms. Furthermore, a carefully extention of record types supported by
OTF will be done according to user feedback. This might involve new MPI-2 related
record types, for example.
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