
Exploiting Real-Time 3d Visualisation to
Enthuse Students: A Case Study of Using Visual

Python in Engineering

Hans Fangohr

University of Southampton, Southampton SO17 1BJ, United Kingdom
hans.fangohr@physics.org

Abstract. We describe our experience teaching programming and nu-
merical methods to engineering students using Visual Python to exploit
three dimensional real time visualisation. We describe the structure and
content of this teaching module and evaluate the module after its de-
livery. We find that the students enjoy being able to visualise physical
processes (even if these have effectively only 1 or 2 spatial degrees of
freedom) and this improves the learning experience.

1 Introduction

Computer controlled devices are used in virtually every area of science and tech-
nology, and often carry business and safety critical [1, 2] roles. A substantial part
of the work of engineers and scientist – both in academia and industry – is to use
and to develop such devices and their controlling software. This requires design-
ing and maintaining software in subject areas including control, data analysis,
simulations and design optimisation.

While students are generally given a broad education on mathematics which
includes basics as well as advanced material, it is often the case that the sub-
ject of software engineering is not taught. Instead, it is assumed that engineers
and scientists will be able to pick up software engineering skills by learning a
programming language (for example by reading a book) at the point of their
career where software development is required. While this may be justified for
very small programs it is inappropriate for larger projects. It is unrealistic to
assume someone would be able to master solving differential equations if they
have only learned about polynomials (but not differential operators).

There are two cost factors attached to not having appropriate software engi-
neering skills: (i) often not the most efficient approach to solve a given problem
is chosen, and (ii) the written code is unlikely to be re-usable.

However, there are practical constraints on the amount of time that can be
dedicated to learning software engineering in non-computer science degree pro-
grammes such as mathematics, physics, chemistry, biology and engineering. Thus
it is important to provide a thorough introduction to the fundamental ideas in
very short time. As always in education, this will be most efficient if students
enjoy the material and the way in which it is learned. That summarises the
motivation for the work presented in this paper.

V.N. Alexandrov et al. (Eds.): ICCS 2006, Part II, LNCS 3992, pp. 139–146, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

140 H. Fangohr

In section 2 we explain what motivates us to use Visual Python. Section 3
reports from teaching a module using Visual Python, and evaluates feedback
from students and teachers. We suggest that virtual reality tools should be used
more broadly in section 4 and close with a summary in section 5.

2 Background

2.1 What is Python?

Python [3] is an interpreted, interactive, object-oriented programming language.
It is often compared to Tcl, Perl, Scheme or Java and combines remarkable power
with very clear syntax. It has been argued that Python is an excellent choice of
programming language for beginners both in computer science [4] and in other
disciplines [5, 6, 7].

2.2 What is Visual Python?

Visual Python (VPython) [8] is a 3d graphics system that is an extension of
the Python language. Its main usage has been in the area of demonstration of
physical systems in physics, chemistry, and engineering. VPython was initially
written by David Scherer under the supervision of Bruce Sherwood and Ruth
Chabay and is is released under the GNU Public License.

2.3 Motivation for Using Visual Python

Scientists in all stages of their career like solving puzzles: curiosity and the strong
desire to understand the world drive them. We argue that this is not too distant
from the keen young student who might like to play computer games: here, too,
the player needs to solve a puzzle (to win the game). Some of the attractiveness
of computer games stems from (i) their interactivity and (ii) the real time virtual
reality graphics.

It is well known that the learning process is more successful if learners enjoy
the learning activity and even more so if they start to explore the subject fol-
lowing their own ideas. We therefore strive to inspire the learners’ imagination
and provide them tools that encourage experimentation in computational sci-
ence. We pick up the two points made above and make computational science
(i) interactive and (ii) employ virtual reality graphics.

The interactivity can be achieved in programming by using an interpreted
language (such as Python): a student’s command is dealt with immediately,
and the computer “responds” with an answer or action (or an error message).
It can, of course, be argued that the edit-compile-run cycle is interactive, too
(although slightly less direct than using an interpreted language). The use of
3d-graphical programming (often referred to as virtual reality) can be used to
make exercises far more attractive (if the 3d programming is easy to use). Visual
Python provides such an environment.

Exploiting Real-Time 3d Visualisation to Enthuse Students 141

In a historical context, 2d visualisation has been introduced into teaching
programming (and mathematics) via the “turtle” within the LOGO program-
ming language more than 25 years ago [9]. More recently, “Alice” [10] provides
an environment which allows the student to be the director of a movie or the
creator of a video game and to create highly sophisticated 3d scenes with very
little effort. Again, the aim is to allow traditional programming concepts to be
more easily taught and more readily understood [11].

We have chosen Visual Python because it offers true 3d graphics (with simple
building blocks such as spheres, boxes, cones etc), it is extremely easy to learn,
and it is sufficiently “serious” to be used in real-life tasks in engineering and
science.

3 Case Study

3.1 Module Layout and Structure

In 2004/2005 the 85 second year Aerospace students at the University of
Southampton were taught a computing module [12] as outlined and evaluated
in this section.

The course consists of 12 lectures (one a week) and 6 associated practical
sessions in a computer laboratory equipped with standard PCs running MS
Windows. The practical laboratories take place every two weeks, last 3 hours,
and every student is doing one self-paced assignments using their computer.
Demonstrators are available in the laboratories (approximately one demonstrator
per 10 students) to provide help if necessary. In each of the first four laboratory
sessions students have to complete one self-paced assignment. When completed,
they are asked to explain their work (both computer programmes and any other
notes) to a demonstrator in a mini-viva between one demonstrator and one
student lasting between 10 and 15 minutes (in front of the student’s computer).
The fifth assignment is slightly larger and students have to submit a written
report to be marked off-line by the lecturer (without the student being present).
The fifth assignment is also used as a report writing exercise.

3.2 Content

Students’ background in numerical methods: This module is preceded
by 12 lectures (each lasting 45 minutes) providing a theoretical introduction to
numerical methods (including elementary linear algebra, root finding, numerical
integration of ordinary differential equations) without practical exercises. Due to
time-tabling constraints it has not been possible to combine the more problem-
solving based module described here with these theory lessons (although this is
desirable).

Students’ background in programming: The students have had some ex-
posure to the Matlab [13] environment and programming language in their first
year. This included four computer based exercises introducing fundamental con-
cepts such as if-then statements, for-loops and functions on a very basic level.

142 H. Fangohr

A sphere at position r = (rx, ry, rz) of mass m = 1kg is
subject to a horizontal force Fspring = (−krx, 0, 0) and to a
vertical force due to gravity Fgrav = (0, −mg, 0). The ini-
tial position is r(t0) = (3, 5, 0)m, initial velocity v(t0) =
(0, 0, 0)m/s and k = 5N/m. Compute the time development
of the system, assuming that the sphere will bounce elastically
when it touches the ground at ry = 0.

Fig. 1. (Left) An example problem and (right) a snapshot of an animation of the
solution. The faint line which starts filling a rectangular is the trajectory of the sphere
and updated as the sphere moves.

The content of this module is given in table 1 and ordered by lectures
(numbered from 1 to 12) and laboratory sessions (numbered from 1 to 6).

As can be seen, we have combined a repetition of numerical methods with the
introduction of the Python programming language (laboratories 1 and 2) and
Visual Python (laboratories 3, 4 and 5).

Required Software: Apart from Python [3], we require Numeric [14], Scientific
Python [15], Pylab (formerly Matplotlib) [16] and Visual Python [8]. All of these
can be installed on the major three platforms MS Windows, Linux and
Mac OS X.

For MS Windows, we have found the ”Enthought Python” edition [17] of great
value which bundles Python with all the extra packages we need (apart from Vi-
sual Python which can be installed afterwards) and simplifies the installation of
the software both for IT personnel at the university as well as for students at home.

3.3 Results and Discussion

A visualisation example is shown in figure 1 and has been created by the
program shown in figure 2. It is outside the scope of this paper to explain the
workings of the program detail. However, hopefully this demonstrates that it
encourages experimentation to support understanding the system. (This problem
could be tackled by the students in laboratory session 4).

Feedback from students was obtained using an anonymous questionnaire to
evaluate the student experience at the end of this module. One of the questions
posed was “Did Visual Python improve the learning process?” and possible rat-
ings range from 1 (“Not at all”) to 5 (“Very much”). The average student rating
was 4.2 with a standard deviation of 0.68. This is clear evidence that the stu-
dents considered the use of Visual Python useful or very useful to improve the
learning process.

Feedback from the teacher includes the following observations:

� The overall reception of the module was very good, in particular taking into
account that within the student body the subject of “computing” is often
regarded as difficult and boring.

Exploiting Real-Time 3d Visualisation to Enthuse Students 143

Table 1. Overview of material taught in lectures and rehearsed in laboratory sessions

Lecture Lab. Content
1 & 2 Introduction & formalities, Using IDLE, basic data types: strings,

floats, ints, boolean, lists, type conversion, range, for-loop, if-then, im-
porting modules, the math module, the pylab module, plotting simple
functions y = f(x), defining python functions, basic printing, importing
python files as modules.

1 Programs to write:
1. computer chooses random integer, user has to guess
2. finding the plural of (regular) English nouns automatically
3. plotting mathematical functions y = f(x)
4. retrieve current weather conditions in Southampton from Internet

(i.e. processing of text file)
3 & 4 Ordinary Differential Equations (ODEs), Euler’s method in Python,

Use of Numeric and scipy, use of scipy.integrate.odeint to solve
ODEs

2 Programs to write:
1. proving that

∑n
i=1 i = 1

2n(n + 1) for n = 1000
2. currency conversion (exercise functions)
3. implement composite trapezoidal rule for integration of f(x) and

evaluate convergence properties empirically
4. use of scipy’s quad for integration
5. automatic integration of function and plotting of integrand

5 & 6 Introduction to Visual Python, finite differences for differentiation,
Newton method for root finding. Calling Python functions with key-
word arguments, name spaces, exceptions. Example code for dealing
with 3d vectors and scalars.

3 Programs to write:
1. implement a 2nd order Runge Kutta integrator for ODEs
2. solve given 1d ODE using scipy.integrate.odeint
3. visualise r(t) ∈ IR3 in real-time using Visual Python
4. compute and visualise solution to 2nd order ODE with two degrees

of freedom using Visual Python
7 & 8 Finding ODEs to describe a given system. Example code dealing with

time dependent 3d problems and visualisation.
4 Programs to write:

1. Use scipy’s root finding tools (bisect) to find root of f(x)
2. Use root finding and integration of ODE to solve boundary value

problem (“shooting method”) visualised with Visual Python
3. (Exercise on LATEX– therefore only 2 other tasks.)

9 & 10 Explanation of laboratory assignment 5
5 Larger assignment requiring written report. Tasks include implement-

ing root finding using Newton’s method, making Newton’s method safe,
integrating ODEs, visualising 3d time-dependent data. All examples
from space exploration (mainly trajectories).

11 & 12 Introduction to Object Orientation
6 Time available to complete assignment 5

144 H. Fangohr

from Numeric import array, concatenate
import scipy, visual

def rhs(y,t):
"""function that returns dy/dt(y,t) for system of ODE"""
vx, vy, vz, rx, ry, rz = y
mass = 1.0 #mass of object in kg
g = 9.81 #acceleration from Earth in N/kg
F_grav = array([0,-g, 0])*mass
spring_x = 0 #spring equilibrium at x=0 (in m)
k = 5 #spring stiffness in N/m
F_spring = k*array([spring_x-rx,0,0])
dvdt = (F_spring + F_grav)/mass
drdt = (vx,vy,vz)
return concatenate([dvdt,drdt])

#main program starts here
r = array([3,5,0]) #initial position of object in m
v = array([0,0,0]) #initial velocity of object in m/s
t = 0 #current time in s
dt = 1/30.0 #time step in seconds, to match framerate

#visualisation
visual.scene.autoscale = False #don’t zoom in and out
visual.scene.center = (0,3,0) #focus camera it this point
base = visual.box(pos=(0,-0.5,0), length=10, height=0.1, width=4)
pole_x = -5 #position arbitrarily chosen
cylinder= visual.cylinder(pos=(pole_x,-1,0),axis=(0,7,0),radius=0.3)
ball = visual.sphere(pos=r,radius=0.5,color=visual.color.white)
spring = visual.helix(pos=r,axis=(pole_x-r[0],-1,0),thickness=0.1)
path = visual.curve() #initiate drawing path of trajectory

while True: #infinite time loop starts
y = concatenate([v,r])
#integrate the system from time t to t+dt
y = scipy.integrate.odeint(rhs,y,array([t,t+dt]))
t = t + dt #advance time
v = y[-1,0:3] #extract last row from output from odeint
r = y[-1,3:6] #for visualisation

if r[1] < 0: #if below base plate
v[1] = -v[1] #then reverse velocity (elastic bounce)

visual.rate(30) #visualisation: keep frame rate constant
ball.pos = r # update position of ball
path.append(r) # update trace
spring.pos=r # update spring head
spring.axis = (pole_x-r[0],0,0) #update spring tail

Fig. 2. Source code to generate animated visualisation shown in figure 1

Exploiting Real-Time 3d Visualisation to Enthuse Students 145

� A number of students wrote programs unrelated to the module and in their
spare time because they enjoyed the process. These included an analog clock
(using Visual Python for the central knob, hands and hour-ticks) and a
visualisation of the orbits of planets within the solar system.

� Visual Python can render its 3d graphics for coloured anaglyph glasses (here
red-cyan) with the following command visual.scene.stereo=’redcyan’.
This allows seeing the scene with spacial depth and simple glasses can be
bought for about one US dollar or Euro. This proved popular with students
and has clearly boosted the motivation.

� This module was previously taught in Matlab [13] using a similar content
and structure. However, it turned out that it was not possible to simple
’re-write’ the learning materials and lectures to be delivered in Python. For
example, previously a complete laboratory session was used to introduce the
correct syntax (in Matlab) to pass a function to a function. This is required
if, say, general purpose integrators are written. With Python, a function is
an object as is any other object, and can be passed to a function and then
used as if it was defined elsewhere in the code (see also [6]). This change
immediately freed up several hours of time in the laboratory sessions and
allowed us to proceed further in terms of numerical methods.

� The real-time integration of ordinary differential equations (ODEs) and the
real-time display of the simulated process allows students to gain a deeper un-
derstanding of the physical process in comparison to looking at 2d graphs show-
ing the displacement of an object against time. We are not able to quantify this
but have got the impression that this was supporting the learning process.

4 Outlook

There are a number of topics in Physics [18], Mathematics [19] and elsewhere
which could benefit from being taught together with virtual reality tools such as
Visual Python. For example, when the topic of Vibrations (or “normal modes”) is
taught, the lecturer often demonstrates with an experimental set up how energy
transfers from one pendulum to another when these are coupled by a spring. The
students could be given a Visual Python program which allows to repeat this
experiment and to vary the initial conditions and system parameters as much as
they like outside the lecture.

While often there is good reason for fundamental mathematics being taught
by mathematicians, programming being taught by computer scientists and de-
sign being taught by engineers, in many real-life situations engineers and scien-
tists need to combine knowledge from all areas to solve problems. Programming,
computational methods and visualisation provide opportunities to bring the dis-
ciplines together already in the teaching curriculum.

5 Summary

In summary we describe our experiences of using Visual Python to enthuse engi-
neering students when learning the fundamental concepts of software engineering

146 H. Fangohr

and programming. Feedback from students and staff shows that the real-time
virtual reality environment has improved the learning experience. We link exer-
cises to other parts of their curriculum (such as ordinary differential equations)
to contextualise the new skills. We argue that there are a number of areas which
naturally allow (and would benefit from) the integration of computation and
visualisation into the existing curriculum.

References

1. Je’ze’quel, J.M., Meyer, B.: Design by contract: The lessons of Ariane. IEEE
Computer 30(2) (1997) 129–130

2. Leveson, N.G., Turner, C.S.: An investigation of the Therac-25 accidents. IEEE
Computer 26(7) (1993) 18–41

3. van Rossum, G.: Python tutorial. Centrum voor Wiskunde en Informatica (CWI),
Amsterdam. (1995) http://www.python.org.

4. Downey, A., Elkner, J., Meyers, C.: How to Think Like a Computer Scientist:
Learning with Python. Green Tea Press (2002) http://www.greenteapress.com/
thinkpython/html.

5. Donaldson, T.: Python as a first programming language for everyone. In: Western
Canadian Conference on Computing Education. (2003) http://www.cs.ubc.ca/
wccce/Program03/papers/Toby.html.

6. Fangohr, H.: A comparison of C, Matlab and Python as teaching languages in
engineering. Lecture Notes on Computational Science 3039 (2004) 1210–1217

7. Roberts, S., Gardner, H., Press, S., Stals, L.: Teaching computational science using
vpython and virtual reality. Lecture Notes on Computational Science 3039 (2004)
1218–1225

8. Scherer, D., Sherwood, B., Chabay, R.: (2005) http://www.vpython.org.
9. Papert, S.: Mindstorms: Children, Computers and Powerful Ideas. Prentice Hall

Europe (1980)
10. Carnegie Mellon University: (2005) http://www.alice.org.
11. Dann, W., Cooper, S., Pausch, R.: Learning to Program with Alice. Prentice Hall

(2005)
12. Fangohr, H.: Computing module SESA2006, Aerospace Engineering, University of

Southampton (2004) The complete learning materials are available from the author
on request.

13. The Mathworks: Matlab (2005) www.mathworks.com.
14. http://numeric.scipy.org.
15. http://scipy.org.
16. http://matplotlib.sourceforge.net.
17. http://www.enthought.com/python.
18. Chabay, R.W., Sherwood, B.A.: Matter and Interactions: Modern Mechanics and

Electric and Magnetic Interactions. John Wiley and Sons (2003)
19. Urner, K.: Python in the mathematics curriculum. (2004) http://www.python.

org/pycon/dc2004/papers/15.

	Introduction
	Background
	What is Python?
	What is Visual Python?
	Motivation for Using Visual Python

	Case Study
	Module Layout and Structure
	Content
	Results and Discussion

	Outlook
	Summary

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

