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Abstract. This work presents a mathematical model and its parallel
implementation via two parallel paradigms for the simulation of three–
dimensional bursting phenomena. The mathematical model consists of
four nonlinearly coupled partial differential equations and includes fast
and slow subsystems. The differential equations have been discretized by
means of a linearly–implicit finite difference method in equally–spaced
grids. The resulting system of equations at each time level has been solved
by means of an optimized Preconditioned Conjugate Gradient (PCG)
method. The proposed mathematical model has been implemented via:
(1) a message passing paradigm based on the standard MPI and (2) a
shared address space paradigm based on SPMD OpenMP. The two im-
plementations have been evaluated on two current parallel architectures,
i.e., a cluster of biprocessors Xeon and an SGI Altix 3700 Bx2 based on
Itanium. It is shown that better performance and scalability are obtained
on the second platform.

1 Introduction

Bursting phenomena occur in physiology and biology. For example, neurons com-
municate by firing and transmitting action potentials. Usually, action potentials
occur in a periodic fashion, as in response to a constant applied current of suf-
ficiently large magnitude. In addition, many cell types, e.g., pancreatic β-cells,
exhibit more complex behavior characterized by brief bursts of oscillatory activ-
ity interspersed with quiescent periods during which the cell membrane poten-
tial changes slowly. Models of bursting electrical activity can be classified into
two main groups. The first and earliest one was based on the assumption that
bursting was caused by an underlying slow oscillation in the intracellular Ca2+

concentration [1, 2]; however, recent experiments indicate that this assumption
is not entirely correct and, as a consequence, models relying on alternative mech-
anisms have been developed [3]. The different known bursting mechanisms can
be classified into three main groups. In type I, bursts arise from hysteresis and
bistability as in the pancreatic β–cell model. In type II, bursts arise from an
underlying slow oscillation, while, in type III, bursting arises from a subcritical
� This work was supported by the Ministerio de Educación y Ciencia of Spain under

Projects TIN2005-00447, FIS2005–03191 and Fondos FEDER.

V.N. Alexandrov et al. (Eds.): ICCS 2006, Part II, LNCS 3992, pp. 106–113, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Parallel Simulation of Three–Dimensional Bursting with MPI and OpenMP 107

Hopf bifurcation [1, 2, 4, 5]. This classification is by no means complete, for it
is based on knowledge acquired with nonlinear ordinary differential equations.
In extended systems, i.e., spatio–temporal systems, one can easily show that
bursting occurs through one of the three types mentioned above provided that
the system is homogeneous. However, when the system is not initially homo-
geneous and the diffusion coefficients are not nil, the homogeneous bursting
solution may bifurcate and result in spatio–temporal nonhomogeneities and/or
quenching.

The objective of this paper is several–fold. First, a three–dimensional model
of bursting consisting of four, nonlinearly coupled partial differential equations
is proposed. This model has been selected so that it exhibits bursting under ho-
mogeneous conditions, and both bursting and quenching for non–homogeneous
initial conditions. The source or reaction terms of these partial differential equa-
tions can be classified into two subsystems exhibiting fast and slow behavior.
The accurate simulation of the fast processes demands the use of small time
steps, while the extended system considered here requires the use of sufficiently
small spatial step sizes in order to accurately resolve the steep gradients of the
dependent variables.

Second, a parallel implementation of the finite difference equations result-
ing from the discretization of the three–dimensional bursting model equations
is developed and analyzed using two parallel paradigms: (1) a message passing
paradigm where all communications between processors are established via MPI
and (2) a shared address space paradigm based on SPMD OpenMP. An efficient
parallel conjugate gradient (CG) solver has been used to solve the system of lin-
ear equations. Both parallel implementations are then evaluated on two parallel
platforms: (1) a cluster of biprocessors Intel(R) Xeon(TM) and (2) a SGI Altix
3700 Bx2 system based on Itanium.

2 Formulation and Numerical Method

Bursting in extended systems has been simulated by means of the following
nonlinearly coupled system of partial differential equations

∂U
∂t

= D
(

∂2U
∂x2 +

∂2U
∂y2 +

∂2U
∂z2

)
+ S(U) (1)

where U = (u, v, w, p)T , D is a diagonal matrix with components equal to
Du, Dv, Dw and Dp, t is time, x, y and z are Cartesian coordinates, S =
(Su, Sv, Sw, Sp)T is the vector of the source/reaction terms given by

⎧⎪⎪⎨
⎪⎪⎩

Su = f(u) − v − gw(u − u0)
Sv = 1

5 (v∞(u) − v)
Sw = fw(w) + αw(p − 0.3)
Sp = βp((1 − p)H(u) − p)

(2)
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and ⎧⎪⎪⎨
⎪⎪⎩

f(u) = 1.35u(1 − u2

3 )
fw(w) = −0.2(w − 0.2)(w − 0.135)(w − 0.21)
v∞(u) = tanh(5u)
H(u) = 3

2 (1 + tanh(5u − 2.5))

(3)

with u0 = 2, αω = 0.002, βz = 0.00025 and g = 0.73. The functions f(u)
and fω(ω) have three zeros each, whereas v∞(u) and H(u) are monotonically
increasing functions of their arguments.

Eq. 1 is a simplified model of bursting electrical activity in cells, where u
and w are the fast system and represent the currents of activated and voltage–
dependent channels, respectively, whereas w and p constitute the slow subsystem
and represent a current and its activation, respectively.

Eq. 1 have been solved in a parallelepiped Ω ≡ [−Lx, Lx] × [−Ly, Ly] ×
[−Lz, Lz] and homogeneous Neumann boundary conditions have been used on
all the boundaries. The initial conditions used in the computations are

u = −2.5, v = −0.2, ω = −0.5, z = 0.5 in ω
u = 2.5, v = −0.2, ω = 0.5, z = −0.5 in Ω − ω

where ω = [−Lx

2 , Lx

2 ] × [−Ly

2 ,
Ly

2 ] × [−Lz

2 , Lz

2 ]. These initial conditions were
selected so that, under homogeneous conditions, Eq. 1 exhibits bursting oscilla-
tions. By discretizing the time variable in Eq. 1 by means of the (second–order
accurate) Crank-Nicolson technique, one can obtain a nonlinear system of el-
liptic equations at each time step. These elliptic equations can be linearized
with respect to time in order to obtain a system of linear elliptic equations at
each time step, i.e., the nonlinear terms Sn+1 are approximated by means of
the second-order accurate terms Sn + JnΔU where J denotes the Jacobian of
the source terms, the superscript n denotes the n–th time level, i.e., tn = nΔt,
n = 0, 1, 2, 3, . . ., Δt is the time step, and ΔU ≡ Un+1 − Un. The resulting
system of linear elliptic equations was discretized in space by means of second–
order accurate central finite difference formulae in a regular grid of Nx×Ny ×Nz

points, and the resulting system of linear algebraic equations can be written as

(I − k
2J

n
i,j,k)ΔUi,j,k

−αx(ΔUi+1,j,k − 2ΔUi,j,k + ΔUi−1,j,k)
−αy(ΔUi,j+1,k − 2ΔUi,j,k + ΔUi,j−1,k)
−αz(ΔUi,j,k+1 − 2ΔUi,j,k + ΔUi,j,k−1) = Tn

i,j,k

(4)

where I is the identity or unit matrix, αx = k
2Δx2 D, αy = k

2Δy2 D, αz = k
2Δz2 D,

Δx, Δy and Δz are the grid spacings in the x, y and z directions, respectively,
and

Tn
i,j,k = 2αx(Ui+1,j,k − 2Ui,j,k + Ui−1,j,k)

+2αy(Ui,j+1,k − 2Ui,j,k + Ui,j−1,k)
+2αz(Ui,j,k+1 − 2Ui,j,k + Ui,j,k−1) + Sn

i,j,k

(5)

Since the finite difference discretization of a system of Ne(= 4) partial differential
equations results in Ne ×Nx ×Ny ×Nz nodal variables and algebraic equations,
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a main issue when solving systems of linear algebraic equations such as Eqs. 4 is
the ordering of the equations and variables. A natural ordering of the grid points
and blocking of nodal variants has been chosen here to obtain a well structured
matrix, and because of its better cache behavior. For this ordering, Eq. 1 can be
expressed in matrix form as Ax = b, where A is an heptadiagonal block matrix,
with 4 × 4 blocks, because Ne = 4 in Eq 1, and x = ΔU. We have used the
conjugate gradient method with Jacobi preconditioner to solve the linear system
of equations Ax = b. The sequential algorithm can be described as follows:

Initialize the source/reaction terms according to Eqs. 2 and 3.
Initialize the solution U0 according to the initial conditions considered.
do n=1,2,3,...

• Update the matrix A and right–hand–side b according to Eqs. 4 and 5,
respectively.

• Solve the system of equations A · ΔU = b.
• Update the solution Un = Un−1 + ΔU .

end do

Preliminary profiling of the serial simulation has shown that solving the system
of equations is the most computationally consuming step. Therefore, the effi-
ciency of the whole code depends mainly on the efficiency of the solution of the
system of linear equations. In addition, the storage format of the matrix has a
large influence on the performance of the solver used [12]. For this reason, an
optimized preconditioned Conjugate Gradient (PCG) method for banded matri-
ces, designed by Ortigosa et al. [7], has been used. The optimized PCG is based
on a maximum exploitation of the locality of data and message-computation
overlap. Moreover, The matrix has been stored using a compressed diagonal for-
mat which takes into account the sparsity pattern of the Jacobian term, and
the implementation of the sparse matrix-vector product includes a consequent
hand-unrolled product which exploits the pipelined floating point units.

In this paper, all computations have been performed on (coarse) 51 × 51 ×
51 and (fine) 101 × 101 × 101–point equally-spaced meshes. The coarse mesh
represents the largest step size for which accurate results can be obtained, and
the time step is equal to 0.0001 s .

Some sample results corresponding to Lx = Ly = Lz = 15 are presented in
Fig. 1 which shows the time history of u at two monitor points: one (identified
with asterisks) in ω and the other (identified with squares) in Ω −ω. This figure
shows that, for the initial conditions considered in this paper, the time history of
u in Ω − ω exhibits an oscillatory behavior characterized by periods of intensive
variations in u starting from t = 0, whereas the time history of u in ω takes a
while before it starts oscillating. The oscillations observed in Fig. 1 are typical
of relaxation oscillations.

Fig. 1 also shows that the oscillations of u in ω and Ω − ω are not in phase,
but nearly coincide at about t = 1370 a.u.; thereafter, the one that was lagging
overcomes the other, and, after some time, both time histories reach the same
slowly varying value. Similar trends to those shown in Fig. 1 have also been
observed at other six monitoring locations.
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Fig. 1. u versus time t (in a.u.), in ω (∗) and Ω − ω (�)

Although not shown here, three–dimensional, time–dependent visualizations of
u indicate that there are inward and outward propagating waves in ω before the
outward ones propagate in Ω − ω, i.e., there is an interplay between the values of
u in ω and Ω − ω caused by the diffusion of the dependent variables. This back–
and–forth play between the inner and outer domains is a consequence of the initial
conditions, the source/reaction terms, and the diffusion coefficients of Eqs. 1.

3 Parallel Implementation

CLUsters of MultiProcessors (CLUMPs) have become today’s dominant plat-
forms. Such architectures support three parallel programming paradigms, i.e.,
message passing paradigm, shared address space paradigm and hybrid paradigm.
Here, we propose two parallel implementations of the three–dimensional burst-
ing model described above; the first is based on the message passing paradigm
using MPI, while the second is based on a shared address space using OpenMP.
Both implementations are based on SPMD style, whereby each processor works
on its own sub-domain.

3.1 MPI Code

At each time-step, each processor updates its sub-matrix and local right–hand–
side. Then, the parallel solution of the system A · ΔU = b is performed by the
PCG solver as in [7]. Using a Jacobi preconditioner, each iteration of the PCG
method includes two inner products and one sparse matrix vector product; there-
fore, three communications and their corresponding synchronizations are needed.
In this implementation, computations and communications have been overlapped
using asynchronous messages in order to minimize the communications overhead,
specially in the matrix vector product. In this way, after the iterations of the PCG
are completed, a message with the boundary values of U is sent to the neighboring
processors and this is overlapped with the last update of ΔU .

3.2 OpenMP Code

We have chosen the SPMD style instead of the loop level one because it reduces
overhead and results in better scalability [10]. In this implementation, only one
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parallel section covers the whole dynamic extent of the code and, therefore, only
OpenMP synchronization directives have been used. The ordering of the com-
putations employed in the MPI implementation to minimize the communication
overhead is also employed here to reduce the waits in the synchronizations points.
For the inner product, the synchronization events have been implemented by us-
ing counters protected by lock variables. Additional flags have been included in
order to grant permission for accessing shared data. As soon as a processor has
computed the data on its borders, it enables the flag. If other processor requires
these data, it waits for this flag to be enabled. Reset of counters and flags has
been carefully implemented by means of odd and even sense-reversing flags to en-
hance performance and avoid data race conditions. In both massage-passing and
shared space address paradigms, global barriers have been avoided to minimize
waiting times.

4 Evaluation of the Parallel Implementation

We have assessed the performance of both parallel codes for the coarse and fine
grids on the architectures described below:

• A cluster of Intel(R) Xeon(TM) biprocessors at 3.06 GHz with 2 GB RAM
and 512 KB cache. The nodes of the cluster are interconnected via two gigabit
Ethernet networks: one for data (NFS) and the other for computation.

• An SGI Altix 3700 Bx2 of 64 processors at 1600 MHz Intel Itanium 2 Rev
with 128 GB RAM and 6 MB L3. The Altix 3700 computer system is based
on a Distributed Shared Memory architecture [8] and uses a cache–coherent
Non-Uniform Memory Access (NUMA) where the latency of processors to
access the local memory is lower than the latency to access the global (or
remote) memory [9].

Preliminary evaluation has shown that for both codes, the computational cost
is similar for each time step; therefore, in this section, we show and analyze the
average execution time for only one time step.

On the cluster of biprocessors, the parallel performance and the scalability of
the code based on MPI paradigm are better when the dimension of the matrix
is large as shown in Table 1. One of the underlying reasons is the increase in the
computation–communication ratio, i.e., a finer grid or a large matrix involves
more computation, but also requires more communications. The evaluation of
the code based on OpenMP cannot be completed in more than two processors;
therefore, no significative conclusions can be made for this case.

On a SGI Altix 3700 Bx2 system, both paradigms yield very good performance
for both coarse and fine grids as shown in Table 2. This is due to the high speed
interconnection technology used in this architecture [9] and to its good shared
memory features. Besides, both codes includes pipelining techniques, which allow
to reach very good performance on VLIW architectures such those based on
Itanium [12]. Moreover, the scalability for both codes is slightly better for the
coarse grid; this can be explained by two reasons, first, the good behavior of the
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Table 1. Performance and speedup of the parallel simulation per time step on a cluster
of biprocessors, for the coarse and fine grids

coarse grid fine grid
openMP MPI openMP MPI

proc runtime speedup runtime speedup runtime speedup runtime speedup
(s) (s) (s) (s)

1 0.61 1.00 0.61 1.00 6.20 1.00 6.20 1.00
2 0.50 1.20 0.58 1.05 5.05 1.23 3.02 1.99
4 0.32 1.88 1.64 3.66
6 0.24 2.52 1.26 4.76
8 0.20 3.03 1.03 5.83

Table 2. Performance and speedup of the parallel simulation per time step on a SGI
Altix 3700 Bx2, for the coarse and fine grids

coarse grid fine grid
openMP MPI openMP MPI

proc runtime speedup runtime speedup runtime speedup runtime speedup
(s) (s) (s) (s)

1 0.258 1.00 0.258 1.00 2.001 1.00 2.001 1.00
2 0.135 1.91 0.135 1.91 1.010 1.98 1.025 1.97
4 0.070 3.68 0.072 3.59 0.591 3.39 0.855 2.36
6 0.047 5.50 0.044 5.91 0.407 4.91 0.459 4.43
8 0.035 7.44 0.035 7.42 0.2789 6.19 0.336 6.01

memory management, since the percentage of data that fits in the cache memory
in this case is higher than that for the fine grid; second, both implementations use
a reorganization of the computations in order to minimize the communications
overhead (in MPI-code) and the synchronizations overhead in (OpenMp-code),
the penalty of this reordering on the locality accesses is higher for the fine grid.

Finally, it should be mentioned that the performance of both sequential codes
on the platform based on Itanium is 2 to 3 times better than that on the platform
based on Xeon, and this is in accord with the results of the Standard Performance
Evaluation Corporation (SPEC) [11].

5 Conclusions

A mathematical model for three–dimensional bursting phenomena and two par-
allel implementations of it have been presented. The model is described by four,
nonlinearly coupled partial differential equations which have been discretized
by means of a second–order accurate, linearly–implicit finite difference method
in equally–spaced grids. The resulting system of linear algebraic equations at
each time level has been solved by means of the PCG solver optimized for
banded matrices and implemented using two parallel paradigms: (1) a message
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passing paradigm with a message-computation overlap and (2) a SPMD OpenMP
style. Both implementations have been evaluated on two parallel platforms: a
DSM platform based on Itanium and a cluster of biprocessors Xeon. The perfor-
mance of both implementations depends on the mesh size, the parallel paradigm
used and the architecture of the platform. It has been shown that both parallel
paradigms are suitable for the platform based on Itanium, especially for coarse
grids, whereas for clusters based on Xeon processors, only with fine grids and
using the message passing paradigm one can achieve the expected performance.
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