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Abstract. The capability of the lattice Boltzmann method as an accurate
mesoscopic solver for unsteady non-Newtonian flows is shown by investigating
pulsatile shear-thinning blood flow in a three-dimensional idealised vessel. The
non-Newtonian behaviour of blood flow is modelled by the Carreau-Yasuda vis-
cosity model. Higher velocity and shear stress magnitudes, relative to Newtonian
cases, are observed for the shear-thinning simulations in response to changes in
the shear-rate dependent Womersley parameter. We also investigate the flexibil-
ity of the method through the shear-thinning behaviour of the lattice Boltzmann
relaxation parameter at different Deborah numbers.

1 Introduction

The role of hemodynamics on the development of cardiovascular diseases and the high
rate of failure in vascular implantation of artificial devices is still under research focus,
as these diseases are a major cause of mortality in the world [1]]. Since long, analytical,
numerical and experimental investigations of steady and pulsatile blood flow of New-
tonian and non-Newtonian models have been carried out (see e.g. [2] for a review). It
is now well established that localised low and oscillatory shear stress and high shear-
rate gradients promote, among other factors, most of the diseases of the cardiovascular
system.

With recent advances in mathematical modelling and computer technology, research
in this field is now very active, targeting a better understanding of the complex nature
of the fluid and the transporting vessels. Blood is a heterogeneous suspension of small
deformable red blood cells, white blood cells, platelets and other matter in plasma.
Red blood cells characterise the main rheological behaviour of the fluid. These cells
aggregate and deform in response to the applied shear rate, change the fluid viscosity
and relax back within about 100 msec. The non-Newtonian behaviour of many fluids,
including blood, may be well described by the shear-thinning Carreau-Yasuda viscosity
model

N =Ne+ Mo — M) (1 + (A))° (1)
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where 19 and N.. are the asymptotic low and high shear-rate viscosities, respectively,
A is a characteristic viscoelastic time of the fluid, ¥ is the shear rate and the parame-
ters a and b are determined from experimental data, with b < 0 for the shear thinning
fluids. For blood, ng = 0.022 Pa S, N = 0.0022 Pa S, A =0.11 S, a = 0.644 and
b = —0.944099 (see e.g. [3]). The fluid behaves as Newtonian for small ¥ or negligible
values of A and also whena =0 or b = 0.

In addition to hemodynamics, many industrial activities involve shear-thinning fluid
processing and numerical simulations are found viable. In most numerical studies, ac-
curate and robust conventional Navier-Stokes solvers are required to simulate flow of
shear-thinning fluids [4]. However, these solvers yield three major difficulties: the non-
trivial and time consuming grid generation, the necessity to solve the Poisson equation
for the pressure field with additional corrective terms, and the approximations involved
in computing the shear rate from computed velocity field. All these shortcomings are
eliminated with the newly established lattice Boltzmann method (LBM). Firstly, LBM
works with a Cartesian grid, making it highly suitable for high performance computing.
Secondly, the pressure is directly computed from the linear equation of state without
a need to solve the Poisson equation. Last and more important in computational rhe-
ology is that the shear rate is directly obtained from the non-equilibrium part of the
distribution functions, independent of the velocity field. This adds a great flexibility to
the LBM in modelling and simulation of most non-Newtonian fluids, as it is easy to
establish constitutive equations with the use of simple equations. This will be explained
in the next section.

In a previous article [3]], it has been demonstrated that LBM is an accurate and ro-
bust hemodynamic numerical solver for unsteady Newtonian flows in realistic geome-
tries. Localised shear stress and velocity field have well compared with values in the
available literature. Following arguments that the non-Newtonian influence should not
be ignored, the main objective of this study is to explore in general the capability of
the lattice Boltzmann method in simulating shear-thinning flows. A number of lattice
Boltzmann simulations of shear-thinning flows using the Casson viscosity model have
been reported in the literature[6,7]]. Results on LBM simulations of 3D Carreau- Yasuda
flows are lacking. Due to the limitations of Casson model for blood in particular, the
Carreau-Yasuda model is adopted in this study.

In the rest of this paper, we will briefly describe the adaptation of LBM to non-
Newtonian shear-thinning fluids and present our simulation results for a benchmark
test of three-dimensional pulsatile blood flow in a straight tube. Gijsen et al.[3] have
compared shear thinning results with analytical Newtonian solutions, finite elements
simulations and experimental results and demonstrated the deviation of shear-thinning
flow from Newtonian solutions. Taking this procedure into account, here we compare
the obtained results with analytical and simulated results. Comparison with other CFD
methods is a subject of ongoing research.

2 The Lattice Boltzmann Method for Shear-Thinning Flows

The lattice Boltzmann method is a special finite difference discretisation of the simpli-
fied Boltzmann equation [8L9L[10] which describes transport phenomena at the
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mesoscale level. The dynamics of the fluid is modelled by the transport of simple fic-
titious particles on the nodes of a Cartesian grid. Simulations with this method involve
two simple steps; streaming to the neighbouring nodes and colliding with local node
populations represented by the probability f; of a particle moving with a velocity e;
per unit time step ot. Populations are relaxed towards their equilibrium states during a
collision process. The equilibrium distribution function
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is a low Mach number approximation to the Maxwellian distribution. Here, w; is a
weighting factor, v = dx/dr is the lattice speed, and dx is the lattice spacing.
The lattice Boltzmann equation

fi(x+e;ot,e;,t+0t) — fi(x,e;,1) = —i[fi(X,ei,f) _fi(O)(Xaeiat)] 3)

can be obtained by discretizing the evolution equation of the distribution functions in
the velocity space using a finite set of velocities e;. In this equation, T is the dimen-
sionless relaxation time. By Taylor expansion of the lattice Boltzmann equation up to
O(8t?) and application of the multiscale Chapman-Enskog technique [[10], the Navier-
Stokes equations and the momentum flux tensor up to second order in the Knudsen
number are obtained. The hydrodynamic density, p, and the macroscopic velocity, u,
are determined in terms of the particle distribution functions from the laws of conser-
vation of mass and momentum: p =, fi = >; fl-(eq> and pu=>3%;e;fi=2; eg‘feq) . The
pressure is given by p = pc? and the kinematic viscosity is v = ¢28(t — } ), where ¢y is
the lattice speed of sound. A number of lattice Boltzmann models have been introduced,
being characterised by the choice distribution functions, the number of moving parti-
cles and the lattice speed of sound. Furthermore, by expanding f; about its equilibrium
distribution f?

ﬁ:ﬁ0+€ﬁ<l>+€2ﬁ<2>+m 4)

where € is of the order of the Knudsen number and in the limit of small €, the momentum
flux tensor is obtained by [10]

1) = Vet = 2055.C(5p). ®

where C is a lattice-dependent constant (for the three-dimensional model with 19 parti-
cles (D3Q19), C = 1/3). The momentum flux is therefore directly computed from the
non-equilibrium part of the distribution functions and therefore, the strain rate tensor is

_ 1 M,
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In constitutive equations of shear-thinning generalised Newtonian fluids the viscosity
depends on the magnitude or the second invariant of the strain rate tensor which can be
computed from the double inner product of Syg by itself

NEr e \/zsaB - Sop- (8)

More specifically, for the D3Q19 model, after making use of the symmetry of the strain
rate tensor, this is locally computed during collision from the simple relation

Y=oy JO.5(S%+ S5+ S2) + (S5 + S% + %) ©)

where Y, = 2315 could be used as a characteristic shear rate. In this study we propose
that T, = 1 to benefit from the simplicity and the accuracy of the scheme at T =1
since the relaxation towards equilibrium in this case (for Newtonian fluids) is direct.
This will allow us to avoid rescaling dimensionless numbers when Newtonian solutions
are simulated for comparison. In this article the Carreau-Yasuda model is used (see
Eq. 1) to model non-Newtonian blood viscosity. Other non-Newtonian characteristics
of blood may be ignored [3]]. In LBM simulations, we can implement the Carreau-
Yasuda model in terms of the dimensionless relaxation time. Making use of the fact
that 1 = pv = p(21 — 1) /6, the Carreau-Yasuda model in its dimensionless form is

T =T+ (To — Too) (1 + (AP)D)° (10)

where 7o and T.. correspond to Ng and M., respectively. The stability of the method is
controlled by the difference (To — T..) which is normally large for shear-thinning fluids.
This slightly enhances the stability of the LBM scheme as one more free parameter is
introduced. However, T.. shall be in the working stability region if ¢ is small. Another
way to avoid instability is to tune the material relaxation time (in lattice units) by grid-
refinement (or coarsening) in time.

The variety of numerous dimensionless numbers defined for the shear-thinning fluids
implies great restrictions on the choice of working free parameters and has motivated
research towards specialised LBM schemes for viscoelasticity [11]]. However, for shear-
thinning fluids, the standard BGK [8]] algorithm allows us to introduce two additional
parameters, one for the high shear-rate viscosity and the other for the difference between
high-shear rate and low-shear rate viscosities. This adds a great flexibility to the lattice
BGK method and it would not be necessary to go beyond the BGK for shear-thinning
fluids. This might not be the case for other viscosity models.

3 Simulations

We have conducted a number of benchmark simulations for pulsatile shear-thinning
blood flow in a three-dimensional rigid straight tube with circular cross-section of
constant radius. The main objective of this simulation is to investigate the influence
of non-Newtonian behaviour on the velocity field and the shear stress. The shear-
thinning behaviour is captured by the Carreau-Yasuda model explained in the previ-
ous section. The diameter D of the tube is represented by 20 lattice points and the
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Fig.1. (a) Pressure pulse and (b) LBM unsteady shear-thinning velocity profiles at 0.2 T (up-
per dots, lower values) and 0.3 T (upper dots, higher values) compared to analytical Newtonian
solutions (lines). Shown are also Newtonian simulations (lower dots attached to the lines).
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Fig.2. LBM shear stress results (dots) for pulsatile shear-thinning blood flow at the mid-diastole
compared to the analytical Newtonian solution (line)
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Fig. 3. Simulated (dots) harmonic velocity components compared to the analytical Newtonian
solutions (lines)

period T of the pressure pulse by 100 time steps. The dimensionless numbers are
De = % =0.1164,Cr=0.2,Re =UD/v =42 and 0. = D/Z\/%TL 6.2 at their maxi-

A%
mum values, where A is the material parameter, De is the Deborah number, Cr is the Car-
reau number, Re is the Reynolds number and o is the Womersley number. The boundary
conditions are applied as follows. The bounce-back boundary condition is applied on
the walls. A pressure gradient computed from a pulse (see Fig. 1 (a)) measured at the en-
trance of the human carotid artery is Fourier transformed into a steady and 16 harmonic
terms and applied at the entrance of the tube as an inlet condition [5]. At the out-

let, a constant pressure is implemented. The velocity and unknown distributions at the
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Fig.4. Deviation from Newtonian profile for simulated (dots) harmonic shear-stress at (a) the
begining of systole and (b) at the mid-diastole
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Fig. 5. Shear-thinning behavior of the LBM relaxation time for different material relaxation times

boundaries are computed from the implemented pressure boundary conditions. Figure
1 (b) shows simulation results for the shear-thinning (upper dots) flow case compared
to the analytical Newtonians (lines). Newtonian simulation results are also shown as
dots on the lines demonstrating an excellent agreement with the theory. The unsteady
non-Newtonian profile is almost parabolic with slightly varying amplitudes throughout
the cardiac cycle. The difference between Newtonian and non-Newtonian results varies
in time and across the tube with a maximum of 20% at the centerline. We have ob-
served significant deviations from the non-Newtonian in the shear stress close to the
walls through the whole cardiac cycle, with a maximum difference at the mid-diastole
(see Fig. 2), in qualitative agreement with shear-thinning results compared to Newto-
nian solutions and experiments in Ref. [3]. The comparison with Newtonian cases is
not meant for direct validation but by transitivity as the study by Gijsen et al. [3]] have
compared numerical and experimental values for velocity and shear stress deviation of
Carreau-Yasuda fluids with Newtonian solutions.

The pressure pulse can be splitted into a steady mean component and oscillatory
components. For better understanding of the problem, we have performed a number of
steady and oscillatory simulations. The steady component produced a simple parabolic
profile for the Newtonian case and a semi-parabolic profile with higher amplitude for
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the shear-thinning case (data not shown). However, the flow derived by oscillatory com-
ponents shows significant deviation from the Newtonian behavior for both velocity
(Fig.3) and shear stress (Figs. 4 (a) and (b)). These deviations are attributed to changes
in o in response to changes in the computed shear rate. For small values of o, the dif-
ference is more significant in the center for velocity (see Fig. 3) and close to the walls
for the shear stress (see Figs. 4 ). For larger o (as in the aorta) the situation is reversed;
more flattened profiles in the center with differences close to the walls for the velocity
and shear stress (data not shown).

In general, for this specific benchmark, the non-Newtonian shear-thinning flow gives
higher velocities and higher shear stress values than when the fluid is considered New-
tonian. The oscillatory profile of the shear stress, controlled by the Womersley number
behaves almost similarly, with peaks more distant from the walls than for the Newtonian
cases, as is clearly shown in Fig. 4.

To investigate the flexibility of LBM in simulating flow of a shear-thinning fluid, we
have explored possible stable solutions at different shear rates with different values of
AL (different De numbers) and recorded the dimensionless LBM relaxation time. Figure
5 shows the shear-thinning behavior of the LBM relaxation time. From this figure we
observe that the dimensionless relaxation time is flexible enough in simulations of shear
thinning flows as the shear rate changes six orders of magnitude. For a fluid like blood,
at most three orders of magnitude changes in the shear rate have been reported and
therefore, the scheme is quite suitable as a shear-thinning hemodynamic solver. For
other polymeric fluids we can argue similar conclusions.

4 Conclusions

Unsteady non-Newtonian shear-thinning blood flow in a straight rigid tube is investi-
gated using the Carreau- Yasuda model and simulated with the lattice Boltzmann method.
A characteristic relaxation time has been added to the standard BGK scheme to avoid im-
plicit dependency of the strain rate and the relaxation parameter. The capabilities of the
method as an efficient and accurate numerical solver for this type of problems have been
successfully demonstrated and benefits over the commonly used Navier-Stokes solvers
have been highlighted. The most relevant advantage in using this numerical solver lies
in the fact that the shear rate is directly computed from the non-equilibrium part of the
distribution functions without a need for computing the velocity gradients. This enables
more sophisticated shear-rate dependent fluid viscosities to be modeled accurately and
efficiently. Comparison with other numerical methods is underway. Future work would
involve simulating shear-thinning fluid flows in realistic geometries from hemodynam-
ics and industrial applications.
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