
V.N. Alexandrov et al. (Eds.): ICCS 2006, Part I, LNCS 3991, pp. 530 – 538, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Benchmarking and Adaptive Load Balancing of the
Virtual Reactor Application on the Russian-Dutch Grid

Vladimir V. Korkhov1,2 and Valeria V. Krzhizhanovskaya1,2

1 University of Amsterdam, Faculty of Science, Section Computational Science
2 St. Petersburg State Polytechnic University, Russia
{vkorkhov, valeria}@science.uva.nl

Abstract. This paper addresses a problem of porting a distributed parallel ap-
plication to the Grid. As a case study we use the Virtual Reactor application on
the Russian-Dutch Grid testbed. We sketch the Grid testbed infrastructure and
application modular architecture, and concentrate on performance issues of one
of the core parallel solvers on the Grid. We compare the performance achieved
on homogeneous resources with that observed on heterogeneous computing and
networking infrastructure. To increase the parallel efficiency of the solver on
heterogeneous resources we developed an adaptive load balancing algorithm.
We demonstrate the speedup achieved with this technique and indicate the ways
to further enhance the algorithm and develop an automated procedure for opti-
mal utilization of Grid resources for parallel computing.

Keywords: Grid, benchmarking, adaptive load balancing, heterogeneous
resources, parallel distributed application, Virtual Reactor, PECVD.

1 Introduction

The importance of fully integrated simulators is recognized by various research
groups and scientific software companies [1]. Our Virtual Reactor application [2,3]
was developed for simulation of plasma enhanced chemical vapour deposition
(PECVD) reactors, multiphysics systems spanning a wide range of spatial and tempo-
ral scales. Simulation of three-dimensional flow with chemical reactions and plasma
discharge in complex geometries is one of the most challenging and demanding prob-
lems in computational science and engineering, requiring both high-performance and
high-throughput computing. This application serves as a test-case driving and validat-
ing the development of the Russian-Dutch computational Grid (RDG) for distributed
high performance simulation [4]. The Virtual Reactor is particularly suitable for
“gridification” since it can be decomposed into a number of functional components.
Moreover, this application requires large parameter space exploration, which can be
efficiently organized on the Grid. For that we rely upon the Nimrod-G parameter
sweep middleware [5]. Our work on porting the Virtual Reactor to the Grid started
within the CrossGrid EU project [6]. Some results of these efforts were reported in
[2]. The RDG Grid is the successor of the CrossGrid as it is based on CrossGrid soft-
ware and serves as a testbed for the Virtual Reactor.

In this paper we present the results of ongoing work on porting the Virtual Reactor
application to the Russian-Dutch Grid. We demonstrate the results of benchmarking

 Benchmarking and Adaptive Load Balancing of the Virtual Reactor Application 531

of one of the parallel solvers on the RDG, indicate the bottleneck of the parallel algo-
rithm used on heterogeneous Grid resources, and propose a generic approach for
adaptive workload balancing that takes into account the processors power and inter-
processor communications. Further we show the results of implementation of the load
balancing algorithm, and conclude the paper with discussion and future plans.

2 Russian-Dutch Grid Testbed Infrastructure

Generally a site within a Grid testbed can be of one of the four types depending on
homo- or heterogeneity of underlying resources: homogeneous worker nodes on uni-
form (I) or non-uniform (II) links; and heterogeneous nodes on uniform (III) or non-
uniform (IV) links. Currently the Russian-Dutch Grid testbed consists of five sites
with different infrastructures: Amsterdam (3 nodes, 4 processors) and St. Petersburg
(4 nodes, 6 processors) – type IV; Novosibirsk (3 processors) – type II; Moscow1 (12
nodes, 24 processors) and Moscow2 (14 processors) – type I.

The Russian-Dutch Grid testbed is built with the CrossGrid middleware [6] based
on the LCG-2 distributions, and sustains the interoperability with the CrossGrid test-
bed. More information on the RDG testbed can be found in [4].

3 Porting of the Virtual Reactor to the Grid

The Virtual Reactor application includes the basic components for reactor geometry
design; computational mesh generation; plasma, flow and chemistry simulation;
editors of chemical processes and gas properties connected to the corresponding data-
bases; pre- and postprocessors, visualization and archiving modules [2]. This is
schematically shown in Fig. 1, where we emphasize the simulation components.

Fig. 1. Functional scheme of the Virtual Reactor application

The aim of our research is to virtualize separate components of the application to
run them as services and combine on the Grid. The core components are modules
simulating gas flow, chemical reactions and film deposition processes occurring in a
PECVD reactor. The details on numerical methods and parallel algorithm employed
in the solver are described in [7]. The most important features are the following: for

532 V.V. Korkhov and V.V. Krzhizhanovskaya

stability reasons, implicit schemes were applied, thus forcing us to use a sweep-type
algorithm for solving equations in every “beam” of computational cells in each spatial
direction of the Cartesian mesh. A special parallel algorithm was developed with
beams distribution among the processors with communications exploiting a synchro-
nous Master-Slave model [7]. The algorithm was implemented using the MPI mes-
sage passing interface. In the testbed we use generic MPICH-P4 built binaries that can
be executed on all the testbed machines using Globus job submission service.

In order to make a Grid application more efficient it is necessary to perform initial
benchmarking of the application modules on Grid resources to reveal existing bottle-
necks in the application architecture and possible mismatch with the Grid environ-
ment. The results of this benchmarking activity are described in the next section.

4 Benchmarking of the Virtual Reactor on the Grid

The tests performed on the CrossGrid testbed showed that most of the interactive
components of the Virtual Reactor do not set restrictions on the environment and can
be effectively run on distributed Grid resources. Here we concentrate on benchmark-
ing of the simulation modules. Each simulation consists of two basic components: one
for plasma simulation and another for reactive flow simulation (see Fig. 1). These two
components exchange only a small amount of data every hundred or thousand time
steps, therefore the network bandwidth is not critical for their communication. Next,
we focus on benchmarking the individual parallel solvers, starting from a 2D reactive
flow solver. To measure the dependency of solver performance upon the input data,
multiparameter variation (of the computational mesh size, number of simulation time
steps, and number of processors) has been applied. We started from a light-weighted
problem not simulating the chemical and plasma processes, with a simplified reactor
geometry consisting of a single block that allows easy tracking of parameter influence
on the execution time. In these tests, a single-block topology was used. The block was
subdivided into a (ncell x ncell) number of computational mesh cells, with ncell run-
ning from 40 to 100, thus forming 1600–10000 cells.

4.1 Benchmark Results for Homogeneous Sites

The measurements were carried out on the five Grid sites within the RDG testbed.
Figures 2 and 3 demonstrate the total execution time and speedup of the parallel
solver for different computational mesh sizes on the Moscow site of Type I (homo-
geneous cluster). The speedup decreases for larger problem size (with more computa-
tional mesh cells). This fact indicates that the ratio of the interprocess communica-
tions bandwidth to the processor performance is not high enough for the
light-weighted problems with relatively small number of operations per computational
cell. To get insight into the computation/communication relations within the solver
we measured the communication time for different types of the problem and for vary-
ing mesh sizes. We observed that for light-weighted problems interprocess communi-
cation time grows super-linearly with increasing the mesh size, although the amount
of data transferred is linearly proportional to the number of mesh cells. This behav-
iour shall be studied further by extensive benchmarking of the network links. Some

 Benchmarking and Adaptive Load Balancing of the Virtual Reactor Application 533

peculiarities in the communication time can be seen in Fig. 4: (1) The communication
time grows non-monotonically with the number of processors, but drops down on
every processor with an even number; and (2) The time of MPI Receive calls is an or-
der of magnitude higher for the first few processors.

Fig. 2. Dependency of the total execution time
on the number of processors

Fig. 3. Speedup achieved by the solver for
different computational mesh sizes

Fig. 4. Dependency of the communication time on the number of processors for different
computational mesh sizes

These results reflect the topology, network and nodes features of the tested Grid
site:

(1) Since the site consists of two-processor nodes, the network channels work more
efficiently for data transfers between the Master and a Slave processor if a con-
nection was already established with another Slave processor on the same node.
This can be explained by implementation of the MPI library which saves network
resources while opening and maintaining connections for concurrent processes on
the same node.

(2) The “peaks” of the MPI Receive time for the first few processors (see Fig. 4
right) are caused by the constraints on the portions of data that could be accom-
modated at once. The constraining factors could be the network bandwidth distri-
bution, the processor cache size, the memory available on the node, or a combina-
tion of these factors.

MPI_Send MPI_Recv

534 V.V. Korkhov and V.V. Krzhizhanovskaya

In Figure 5 the total execution time is presented along with the contributions of
calculation and communication. For a smaller mesh (Fig. 5 left), the communication
time makes a relatively small contribution into the total execution time even for a
large number of processors involved. For a larger mesh (Fig. 5 right), communication
makes up to 30% of the execution time. This result confirms that the network band-
width is not sufficient for this type of problem (see also explanations to Fig. 3).

Fig. 5. Total execution time and contributions of the calculation and communication depending
on the number of processors for different computational mesh sizes

All the previous results were shown for a light-weighted problem not simulating
the chemical processes. Figure 6 demonstrates the influence of taking into account the
chemistry on the solver performance. Here we plot the ratio of computation to com-
munication time for different mesh sizes. The higher this ratio, the better the parallel
efficiency is. One can see that for the chemistry-enabled simulations the ratio behav-
iour does not depend on the mesh size in the tested range of parameters, while this
behaviour for the chemistry-disabled simulations significantly differs for small and
large mesh sizes. For a small mesh size, the ratio stays decently high, and for 6 proc-
essors and more it reaches the level of the chemistry-enabled simulations. For a larger
mesh, the computation/communication ratio for the no-chemistry simulations is very
low, thus diminishing the overall parallel efficiency.

Fig. 6. The ratio of computation to communication time for chemistry-enabled and chemistry-
disabled simulations

Mesh 40x40 Mesh 100x100

Mesh 40x40 Mesh 80x80

 Benchmarking and Adaptive Load Balancing of the Virtual Reactor Application 535

4.2 Heterogeneous Sites: Load Balancing and Benchmarking

The parallel algorithm was originally developed for homogeneous computer clusters
with equal processor power, memory and interprocessor communication bandwidth.
In case of submitting equal portions of a parallel job to the nodes with different per-
formance, all the fast processors have to wait at the barrier synchronization point till
the slowest ones get the job done. The same problem occurs if the network connection
from the Master processor to some of the Slave processors is much slower than to the
others. As we have shown in the previous section, for communication-bound simula-
tions (chemistry-disabled simulation with large computational meshes), the commu-
nication time on low-bandwidth networks is of the order of calculation time, therefore
the heterogeneity of the interprocessor communication links is a hindrance as consid-
erable as the diversity of the processor power. One of the natural ways to adapt the
solver to the heterogeneous Grid resources is to distribute the portions of job among
the processors proportionally to the processor performance and network connections.

The issue of load balancing in Grid environment is addressed by a number of re-
search groups. Generally studies on load balancing consider distribution of processes
to computational resources on the system/library level with no modifications in the
application code [11]. Less often load balancing code is included into the application
source code to improve performance in specific cases [12]. Some research projects
concern load balancing techniques that use source code transformations to improve
the execution of the application [10]. We employ the application-centric approach
where the balancing decisions are taken by the application itself, however the algo-
rithm and the code estimating available resources and suggesting the optimal load
balancing of a parallel job is generic and can be employed in any parallel application
to be executed on heterogeneous resources.

We developed a mechanism for estimating the “weight” of a processor according
to its processing power and network connection to the Master processor. The values
of the weights determine how much work will be executed by each processor. Similar
approach was used in [9] for heterogeneous computer clusters, however the same
tools can not be used in Grid environments, where the weights shall be calculated
every time the solver is started on a new set of dynamically assigned processors.

The link bandwidth between the Master and Slave processors is estimated using
MPI_Send transfers of a predefined data block (MPI buffer size is 106 of
MPI_DOUBLEs) in the beginning of the solver execution, after the resources were al-
located. The CPU power was obtained by a function from the perfsuite library [8].
The node weights were calculated as follows:

iii NETweightNETcCPUweightCPUcweight ⋅+⋅= __ ;

∑=∑= −−

j
jii

j
jii SendTimeMPISendTimeMPINETweightCPUCPUCPUweight 11 __;

The main factor in distributing the load was the processor power (c_CPU=1.0), and
to take into account the influence of the network connections we introduced the cn pa-
rameter (cn=c_NET=[0.0 … 2.0]). The value of cn=0 means that the diversity of
communication links is not taken into account, and cn=1 means that influence of the
links bandwidth is considered as important as the processor power.

536 V.V. Korkhov and V.V. Krzhizhanovskaya

To illustrate the approach described above, we present the results obtained for a
light-weighted problem of chemistry-disabled simulation of a real reactor geometry
with 10678 cells on St. Petersburg Grid site, which is heterogeneous in both CPU
power and network connections of the nodes (Type IV). There are two 3 GHz nodes
and two dual 450 MHz nodes. One of the dual nodes is placed in a separate network
segment with 10 times lower bandwidth (10 Mbit/s against 100 Mbit/s in the main
segment). Figures 7 and 8 illustrate the speedup achieved by applying the workload
balancing technique with different values of the network influence parameter cn. The
speedup was calculated as the ratio of the execution time without load balancing to
that applying the balancing algorithm. The most noticeable speedup is observed for 3
and 4 processors in the considered resource configuration. This is explained by the
fact that in these cases the solver was run on equal-performance processors connected
with the network links of different bandwidth (Type II infrastructure). Figure 8 shows
that in this case the speedup grows linearly with the increase of the network influence
coefficient cn. The slowdown observed on 2 processors with our balancing algorithm
is discussed in the next section (item 4).

Fig. 7. Speedup of the load-balanced version
compared to the non-balanced solver

Fig. 8. Dependency of speedup on the net-
work influence parameter cn

5 Discussion

Analysis of the results achieved with the workload balancing algorithm suggests that
the following issues shall be addressed in order to optimize the balancing technique:

1. The type of resources assigned to the parallel solver shall play a role in choosing
the c_CPU and cn coefficients: for the Type II resources (homogeneous worker
nodes with heterogeneous interconnections) c_CPU shall be set to 0.0, as only the
network heterogeneity shall be compensated by load balancing. For the Type III
(heterogeneous worker nodes with uniform interconnections) cn shall be 0.0; and
only for the Type IV (heterogeneous nodes with heterogeneous interconnections)
both c_CPU and cn parameters shall be adjusted optimally. This can be done
automatically by enriching the weighting algorithm with a function analyzing the
CPU and network responses of the nodes participating in the simulation.

2. To choose optimal values of the network weighting coefficient cn for the Type IV
resources, for each particular problem to be simulated we shall analyze the ratio of

 Benchmarking and Adaptive Load Balancing of the Virtual Reactor Application 537

the computation to communication time. This can be also theoretically estimated
as a function of the CPU power to the network bandwidth ratio.

3. To measure the interprocess communication rate, we sent a fixed amount of data
from the Master to each Slave processor. However the response of the communi-
cation channels to increasing amount of data is not scaled linearly. For the slower
networks this tendency is even more pronounced. This brings us to a conclusion
that the amount of data sent to measure the links performance shall be close to the
amount really transferred within the solver for every particular problem, mesh
size, geometry and number of processors in a parallel job.

4. To calculate the weight of the Master processor, we used a fixed artificial value of
the MPI_SendTime for this processor. Often it was much lower than the values of
measured connections to the Slaves. It caused assigning excessive load for the
Master processor, which slowed down the simulation because the Master shall
perform co-ordination and execute some additional functions. A simple solution
would be to dynamically set this parameter to the value of a Slave processor with
the fastest link to the Master.

7 Conclusions and Future Work

In this paper we addressed the issue of porting a cluster-based problem solving envi-
ronment to the Grid using as a test case a distributed parallel Virtual Reactor on the
Russian-Dutch Grid testbed. We illustrated the performance issues that occur while
porting computational components from homogeneous cluster environment to the
Grid. To adapt the parallel programs to the heterogeneous Grid resources, we devel-
oped a generic workload balancing technique that takes into account specific pa-
rameters of the Grid resources dynamically assigned to a parallel job. We plan to en-
hance the algorithm and create a library for automatic load balancing on the Grid..

Benchmarking the components of a distributed application allowed us to evaluate
their performance dependencies. Applying these results to improve Grid resource
management for the Virtual Reactor is another direction of our future work.

Acknowledgments. The authors would like to thank Irina Shoshmina, Breanndán
Ó Nualláin and the RDG Grid deployment team for their assistance. The research was
conducted with financial support from the NWO/RFBR projects 047.016.007 and
047.016.018, and from the Virtual Laboratory for e-Science project (www.vl-e.nl).

References

1. www.cfdrc.com, www.fluent.com, www.semitech.us, www.softimpact.ru
2. V.V. Krzhizhanovskaya et al. Grid -based Simulation of Industrial Thin-Film Production.

Simulation: Transactions of the Society for Modeling and Simulation International, V. 81,
No. 1, pp. 77-85 (2005)

3. V.V. Krzhizhanovskaya et al. A 3D Virtual Reactor for Simulation of Silicon-Based Film
Production. Proceedings of the ASME/JSME PVP Conference. ASME PVP-Vol. 491-2,
pp. 59-68, PVP2004-3120 (2004)

4. Project "High performance simulation on the Grid" http://grid.csa.ru/
5. Nimrod-G: http://www.csse.monash.edu.au/~davida/nimrod/

538 V.V. Korkhov and V.V. Krzhizhanovskaya

6. CrossGrid EU Science project: http://www.eu-CrossGrid.org
7. V.V. Krzhizhanovskaya et al. Distributed Simulation of Silicon-Based Film Growth. Pro-

ceedings of the 4th PPAM conference, LNCS, V. 2328, pp. 879-888. Springer-Verlag 2002
8. R. Kufrin. PerfSuite: An Accessible, Open Source Performance Analysis Environment for

Linux. 6th International Conference on Linux Clusters. Chapel Hill, NC. (2005)
9. J.D. Teresco et al. Resource-Aware Scientific Computation on a Heterogeneous Cluster.

Computing in Science & Engineering, V. 7, N 2, pp. 40-50, 2005
10. R. David et al. Source Code Transformations Strategies to Load-Balance Grid Applica-

tions. LNCS vol. 2536, pp. 82-87, Springer-Verlag, 2002
11. A. Barak et al. The MOSIX Distributed Operating System, Load Balancing for UNIX,

LNCS, vol. 672, Springer-Verlag, 1993
12. G. Shao et al. Master/Slave Computing on the Grid. Proceedings of Heterogeneous Com-

puting Workshop, pp 3-16, IEEE Computer Society (2000)

	Introduction
	Russian-Dutch Grid Testbed Infrastructure
	Porting of the Virtual Reactor to the Grid
	Benchmarking of the Virtual Reactor on the Grid
	Benchmark Results for Homogeneous Sites
	Heterogeneous Sites: Load Balancing and Benchmarking

	Discussion
	Conclusions and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

