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Abstract. This paper addresses a problem of porting a distributed parallel ap-
plication to the Grid. As a case study we use the Virtual Reactor application on 
the Russian-Dutch Grid testbed. We sketch the Grid testbed infrastructure and 
application modular architecture, and concentrate on performance issues of one 
of the core parallel solvers on the Grid. We compare the performance achieved 
on homogeneous resources with that observed on heterogeneous computing and 
networking infrastructure. To increase the parallel efficiency of the solver on 
heterogeneous resources we developed an adaptive load balancing algorithm. 
We demonstrate the speedup achieved with this technique and indicate the ways 
to further enhance the algorithm and develop an automated procedure for opti-
mal utilization of Grid resources for parallel computing. 
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1   Introduction 

The importance of fully integrated simulators is recognized by various research 
groups and scientific software companies [1]. Our Virtual Reactor application [2,3] 
was developed for simulation of plasma enhanced chemical vapour deposition 
(PECVD) reactors, multiphysics systems spanning a wide range of spatial and tempo-
ral scales. Simulation of three-dimensional flow with chemical reactions and plasma 
discharge in complex geometries is one of the most challenging and demanding prob-
lems in computational science and engineering, requiring both high-performance and 
high-throughput computing. This application serves as a test-case driving and validat-
ing the development of the Russian-Dutch computational Grid (RDG) for distributed 
high performance simulation [4]. The Virtual Reactor is particularly suitable for 
“gridification” since it can be decomposed into a number of functional components. 
Moreover, this application requires large parameter space exploration, which can be 
efficiently organized on the Grid. For that we rely upon the Nimrod-G parameter 
sweep middleware [5]. Our work on porting the Virtual Reactor to the Grid started 
within the CrossGrid EU project [6]. Some results of these efforts were reported in 
[2]. The RDG Grid is the successor of the CrossGrid as it is based on CrossGrid soft-
ware and serves as a testbed for the Virtual Reactor. 

In this paper we present the results of ongoing work on porting the Virtual Reactor 
application to the Russian-Dutch Grid. We demonstrate the results of benchmarking 
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of one of the parallel solvers on the RDG, indicate the bottleneck of the parallel algo-
rithm used on heterogeneous Grid resources, and propose a generic approach for 
adaptive workload balancing that takes into account the processors power and inter-
processor communications. Further we show the results of implementation of the load 
balancing algorithm, and conclude the paper with discussion and future plans. 

2   Russian-Dutch Grid Testbed Infrastructure 

Generally a site within a Grid testbed can be of one of the four types depending on 
homo- or heterogeneity of underlying resources: homogeneous worker nodes on uni-
form (I) or non-uniform (II) links; and heterogeneous nodes on uniform (III) or non-
uniform (IV) links. Currently the Russian-Dutch Grid testbed consists of five sites 
with different infrastructures: Amsterdam (3 nodes, 4 processors) and St. Petersburg 
(4 nodes, 6 processors) – type IV; Novosibirsk (3 processors) – type II; Moscow1 (12 
nodes, 24 processors) and Moscow2 (14 processors) – type I.  

The Russian-Dutch Grid testbed is built with the CrossGrid middleware [6] based 
on the LCG-2 distributions, and sustains the interoperability with the CrossGrid test-
bed. More information on the RDG testbed can be found in [4].  

3   Porting of the Virtual Reactor to the Grid  

The Virtual Reactor application includes the basic components for reactor geometry 
design; computational mesh generation; plasma, flow and chemistry simulation;  
editors of chemical processes and gas properties connected to the corresponding data-
bases; pre- and postprocessors, visualization and archiving modules [2]. This is  
schematically shown in Fig. 1, where we emphasize the simulation components.  

 

Fig. 1. Functional scheme of the Virtual Reactor application 

The aim of our research is to virtualize separate components of the application to 
run them as services and combine on the Grid. The core components are modules 
simulating gas flow, chemical reactions and film deposition processes occurring in a 
PECVD reactor. The details on numerical methods and parallel algorithm employed 
in the solver are described in [7]. The most important features are the following: for 
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stability reasons, implicit schemes were applied, thus forcing us to use a sweep-type 
algorithm for solving equations in every “beam” of computational cells in each spatial 
direction of the Cartesian mesh. A special parallel algorithm was developed with 
beams distribution among the processors with communications exploiting a synchro-
nous Master-Slave model [7]. The algorithm was implemented using the MPI mes-
sage passing interface. In the testbed we use generic MPICH-P4 built binaries that can 
be executed on all the testbed machines using Globus job submission service. 

In order to make a Grid application more efficient it is necessary to perform initial 
benchmarking of the application modules on Grid resources to reveal existing bottle-
necks in the application architecture and possible mismatch with the Grid environ-
ment. The results of this benchmarking activity are described in the next section. 

4   Benchmarking of the Virtual Reactor on the Grid  

The tests performed on the CrossGrid testbed showed that most of the interactive 
components of the Virtual Reactor do not set restrictions on the environment and can 
be effectively run on distributed Grid resources. Here we concentrate on benchmark-
ing of the simulation modules. Each simulation consists of two basic components: one 
for plasma simulation and another for reactive flow simulation (see Fig. 1). These two 
components exchange only a small amount of data every hundred or thousand time 
steps, therefore the network bandwidth is not critical for their communication. Next, 
we focus on benchmarking the individual parallel solvers, starting from a 2D reactive 
flow solver. To measure the dependency of solver performance upon the input data, 
multiparameter variation (of the computational mesh size, number of simulation time 
steps, and number of processors) has been applied. We started from a light-weighted 
problem not simulating the chemical and plasma processes, with a simplified reactor 
geometry consisting of a single block that allows easy tracking of parameter influence 
on the execution time. In these tests, a single-block topology was used. The block was 
subdivided into a (ncell x ncell) number of computational mesh cells, with ncell run-
ning from 40 to 100, thus forming 1600–10000 cells. 

4.1   Benchmark Results for Homogeneous Sites 

The measurements were carried out on the five Grid sites within the RDG testbed. 
Figures 2 and 3 demonstrate the total execution time and speedup of the parallel 
solver for different computational mesh sizes on the Moscow site of Type I (homo-
geneous cluster). The speedup decreases for larger problem size (with more computa-
tional mesh cells). This fact indicates that the ratio of the interprocess communica-
tions bandwidth to the processor performance is not high enough for the  
light-weighted problems with relatively small number of operations per computational 
cell. To get insight into the computation/communication relations within the solver 
we measured the communication time for different types of the problem and for vary-
ing mesh sizes. We observed that for light-weighted problems interprocess communi-
cation time grows super-linearly with increasing the mesh size, although the amount 
of data transferred is linearly proportional to the number of mesh cells. This behav-
iour shall be studied further by extensive benchmarking of the network links. Some 
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peculiarities in the communication time can be seen in Fig. 4: (1) The communication 
time grows non-monotonically with the number of processors, but drops down on 
every processor with an even number; and (2) The time of MPI Receive calls is an or-
der of magnitude higher for the first few processors.  

Fig. 2. Dependency of the total execution time
on the number of processors 

 

Fig. 3. Speedup achieved by the solver for 
different computational mesh sizes 

 

Fig. 4. Dependency of the communication time on the number of processors for different 
computational mesh sizes 

These results reflect the topology, network and nodes features of the tested Grid 
site:  

(1) Since the site consists of two-processor nodes, the network channels work more 
efficiently for data transfers between the Master and a Slave processor if a con-
nection was already established with another Slave processor on the same node. 
This can be explained by implementation of the MPI library which saves network 
resources while opening and maintaining connections for concurrent processes on 
the same node.  

(2) The “peaks” of the MPI Receive time for the first few processors (see Fig. 4 
right) are caused by the constraints on the portions of data that could be accom-
modated at once. The constraining factors could be the network bandwidth distri-
bution, the processor cache size, the memory available on the node, or a combina-
tion of these factors.  

MPI_Send MPI_Recv 
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In Figure 5 the total execution time is presented along with the contributions of 
calculation and communication. For a smaller mesh (Fig. 5 left), the communication 
time makes a relatively small contribution into the total execution time even for a 
large number of processors involved. For a larger mesh (Fig. 5 right), communication 
makes up to 30% of the execution time. This result confirms that the network band-
width is not sufficient for this type of problem (see also explanations to Fig. 3). 

 

Fig. 5. Total execution time and contributions of the calculation and communication depending 
on the number of processors for different computational mesh sizes 

All the previous results were shown for a light-weighted problem not simulating 
the chemical processes. Figure 6 demonstrates the influence of taking into account the 
chemistry on the solver performance. Here we plot the ratio of computation to com-
munication time for different mesh sizes. The higher this ratio, the better the parallel 
efficiency is. One can see that for the chemistry-enabled simulations the ratio behav-
iour does not depend on the mesh size in the tested range of parameters, while this 
behaviour for the chemistry-disabled simulations significantly differs for small and 
large mesh sizes. For a small mesh size, the ratio stays decently high, and for 6 proc-
essors and more it reaches the level of the chemistry-enabled simulations. For a larger 
mesh, the computation/communication ratio for the no-chemistry simulations is very 
low, thus diminishing the overall parallel efficiency. 

 

Fig. 6. The ratio of computation to communication time for chemistry-enabled and chemistry-
disabled simulations 

Mesh 40x40 Mesh 100x100 

Mesh 40x40 Mesh 80x80
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4.2   Heterogeneous Sites: Load Balancing and Benchmarking 

The parallel algorithm was originally developed for homogeneous computer clusters 
with equal processor power, memory and interprocessor communication bandwidth. 
In case of submitting equal portions of a parallel job to the nodes with different per-
formance, all the fast processors have to wait at the barrier synchronization point till 
the slowest ones get the job done. The same problem occurs if the network connection 
from the Master processor to some of the Slave processors is much slower than to the 
others. As we have shown in the previous section, for communication-bound simula-
tions (chemistry-disabled simulation with large computational meshes), the commu-
nication time on low-bandwidth networks is of the order of calculation time, therefore 
the heterogeneity of the interprocessor communication links is a hindrance as consid-
erable as the diversity of the processor power. One of the natural ways to adapt the 
solver to the heterogeneous Grid resources is to distribute the portions of job among 
the processors proportionally to the processor performance and network connections.  

The issue of load balancing in Grid environment is addressed by a number of re-
search groups. Generally studies on load balancing consider distribution of processes 
to computational resources on the system/library level with no modifications in the 
application code [11]. Less often load balancing code is included into the application 
source code to improve performance in specific cases [12]. Some research projects 
concern load balancing techniques that use source code transformations to improve 
the execution of the application [10]. We employ the application-centric approach 
where the balancing decisions are taken by the application itself, however the algo-
rithm and the code estimating available resources and suggesting the optimal load 
balancing of a parallel job is generic and can be employed in any parallel application 
to be executed on heterogeneous resources.   

We developed a mechanism for estimating the “weight” of a processor according 
to its processing power and network connection to the Master processor. The values 
of the weights determine how much work will be executed by each processor. Similar 
approach was used in [9] for heterogeneous computer clusters, however the same 
tools can not be used in Grid environments, where the weights shall be calculated 
every time the solver is started on a new set of dynamically assigned processors. 

The link bandwidth between the Master and Slave processors is estimated using 
MPI_Send transfers of a predefined data block (MPI buffer size is 106 of 
MPI_DOUBLEs) in the beginning of the solver execution, after the resources were al-
located. The CPU power was obtained by a function from the perfsuite library [8]. 
The node weights were calculated as follows: 

iii NETweightNETcCPUweightCPUcweight ⋅+⋅= __ ;  

∑=∑= −−

j
jii

j
jii SendTimeMPISendTimeMPINETweightCPUCPUCPUweight 11 __;  

The main factor in distributing the load was the processor power (c_CPU=1.0), and 
to take into account the influence of the network connections we introduced the cn pa-
rameter (cn=c_NET=[0.0 … 2.0]). The value of cn=0 means that the diversity of 
communication links is not taken into account, and cn=1 means that influence of the 
links bandwidth is considered as important as the processor power.  
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To illustrate the approach described above, we present the results obtained for a 
light-weighted problem of chemistry-disabled simulation of a real reactor geometry 
with 10678 cells on St. Petersburg Grid site, which is heterogeneous in both CPU 
power and network connections of the nodes (Type IV). There are two 3 GHz nodes 
and two dual 450 MHz nodes. One of the dual nodes is placed in a separate network 
segment with 10 times lower bandwidth (10 Mbit/s against 100 Mbit/s in the main 
segment). Figures 7 and 8 illustrate the speedup achieved by applying the workload 
balancing technique with different values of the network influence parameter cn. The 
speedup was calculated as the ratio of the execution time without load balancing to 
that applying the balancing algorithm. The most noticeable speedup is observed for 3 
and 4 processors in the considered resource configuration. This is explained by the 
fact that in these cases the solver was run on equal-performance processors connected 
with the network links of different bandwidth (Type II infrastructure). Figure 8 shows 
that in this case the speedup grows linearly with the increase of the network influence 
coefficient cn. The slowdown observed on 2 processors with our balancing algorithm 
is discussed in the next section (item 4).  

Fig. 7. Speedup of the load-balanced version
compared to the non-balanced solver 

 

Fig. 8. Dependency of speedup on the net-
work influence parameter cn 

5   Discussion 

Analysis of the results achieved with the workload balancing algorithm suggests that 
the following issues shall be addressed in order to optimize the balancing technique: 

1. The type of resources assigned to the parallel solver shall play a role in choosing 
the c_CPU and cn coefficients: for the Type II resources (homogeneous worker 
nodes with heterogeneous interconnections) c_CPU shall be set to 0.0, as only the 
network heterogeneity shall be compensated by load balancing. For the Type III 
(heterogeneous worker nodes with uniform interconnections) cn shall be 0.0; and 
only for the Type IV (heterogeneous nodes with heterogeneous interconnections) 
both c_CPU and cn parameters shall be adjusted optimally. This can be done 
automatically by enriching the weighting algorithm with a function analyzing the 
CPU and network responses of the nodes participating in the simulation.  

2. To choose optimal values of the network weighting coefficient cn for the Type IV 
resources, for each particular problem to be simulated we shall analyze the ratio of 
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the computation to communication time. This can be also theoretically estimated 
as a function of the CPU power to the network bandwidth ratio. 

3. To measure the interprocess communication rate, we sent a fixed amount of data 
from the Master to each Slave processor. However the response of the communi-
cation channels to increasing amount of data is not scaled linearly. For the slower 
networks this tendency is even more pronounced. This brings us to a conclusion 
that the amount of data sent to measure the links performance shall be close to the 
amount really transferred within the solver for every particular problem, mesh 
size, geometry and number of processors in a parallel job.  

4. To calculate the weight of the Master processor, we used a fixed artificial value of 
the MPI_SendTime for this processor. Often it was much lower than the values of 
measured connections to the Slaves. It caused assigning excessive load for the 
Master processor, which slowed down the simulation because the Master shall 
perform co-ordination and execute some additional functions. A simple solution 
would be to dynamically set this parameter to the value of a Slave processor with 
the fastest link to the Master. 

7   Conclusions and Future Work 

In this paper we addressed the issue of porting a cluster-based problem solving envi-
ronment to the Grid using as a test case a distributed parallel Virtual Reactor on the 
Russian-Dutch Grid testbed. We illustrated the performance issues that occur while 
porting computational components from homogeneous cluster environment to the 
Grid. To adapt the parallel programs to the heterogeneous Grid resources, we devel-
oped a generic workload balancing technique that takes into account specific pa-
rameters of the Grid resources dynamically assigned to a parallel job. We plan to en-
hance the algorithm and create a library for automatic load balancing on the Grid.. 

Benchmarking the components of a distributed application allowed us to evaluate 
their performance dependencies. Applying these results to improve Grid resource 
management for the Virtual Reactor is another direction of our future work. 
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