
Clause Shortening Combined with Pruning
Yields a New Upper Bound for
Deterministic SAT Algorithms

Evgeny Dantsin1, Edward A. Hirsch2,�, and Alexander Wolpert1

1 Roosevelt University, 430 S. Michigan Av., Chicago, IL 60605, USA
{edantsin, awolpert}@roosevelt.edu

2 Steklov Institute of Mathematics, 27 Fontanka, St. Petersburg 191023, Russia
hirsch@pdmi.ras.ru

Abstract. We give a deterministic algorithm for testing satisfiability
of Boolean formulas in conjunctive normal form with no restriction on
clause length. Its upper bound on the worst-case running time matches
the best known upper bound for randomized satisfiability-testing algo-
rithms [6]. In comparison with the randomized algorithm in [6], our de-
terministic algorithm is simpler and more intuitive.

1 Introduction

The problem of satisfiability of a propositional formula in conjunctive normal
form (SAT) can be easily solved in 2n polynomial-time steps, where n is the
number of variables in the input formula. Since the early 1980s, this upper bound
has been successively improved for k-SAT (the restricted case of SAT where
clauses have at most k variables). The best bound to date for deterministic k-
SAT algorithms is (2−2/(k+1))n up to a polynomial factor [3]. For randomized
k-SAT algorithms, the currently best known bound is due to [8]; a close bound
is given in [11]. These general bounds are improved for k = 3 in [2, 7].

The list of successive improvements for SAT (with no restriction on clause
length) is shorter:

deterministic algorithms randomized algorithms

2
n

�
1− 2√

n log n

�
[4] 2n

�
1− 1

2
√

n

�
[10]

2n(1− 1
log(2m)) [5] 2n(1− 1

log(2m)) [12]

2n(1− 1
ln(m/n)+O(ln ln m)) [6]

Here n and m are respectively the number of variables and the number of clauses.
For simplicity, we give the bounds above omitting polynomial factors; such a

� Supported in part by Russian Science Support Foundation, Russian Foundation for
Basic Research, and INTAS grant 04-77-7173.

T. Calamoneri, I. Finocchi, G.F. Italiano (Eds.): CIAC 2006, LNCS 3998, pp. 60–68, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Clause Shortening Combined with Pruning Yields a New Upper Bound 61

factor is typically linear in the length of the input formula (yet there are several
exceptions).

In this paper we give a deterministic algorithm for SAT with no restriction
on clause length. Its upper bound on the worst-case running time is

2n(1− 1
ln(m/n)+O(ln ln m))

up to a polynomial factor. This bound matches the best known upper bound for
randomized SAT algorithms [6]. In comparison with the randomized algorithm
in [6], our deterministic algorithm is simpler and more intuitive.

Clause shortening approach. Our algorithm employs the clause shortening tech-
nique first used by Schuler [12] in his randomized algorithm. This technique is
based on the following idea:

For any “long” clause (longer than some k), either we can shorten this
clause by choosing any k literals in the clause and dropping the other
literals, or we can substitute false for these k literals in the entire formula.

Schuler’s algorithm shortens every clause to its first k literals and applies the
k-SAT algorithm [9] to the resulting k-CNF formula. If no satisfying assignment
is found, Schuler’s algorithm simplifies the initial formula by choosing a long
clause at random and substituting false for its first k literals. This procedure is
recursively applied to the simplified formula until no clause contains more than
k literals. The upper bound in [12] is obtained when taking k = log(2m).

The derandomization [5] of Schuler’s algorithm uses the same idea. Let F
be an input formula consisting of clauses C1, . . . , Cm. Assume that the first m′

clauses are longer than k and the other clauses have length ≤ k. For each Ci

where i ≤ m′, let Di be the clause that is made up from the first k literals of
Ci. Then F is equivalent to the disjunction of the following m′ + 1 formulas:

F1 = F [D1 = false]
...
Fm′ = F [Dm′ = false]
Fm′+1 = D1 ∧ . . . ∧ Dm′ ∧ T

where T is Cm′+1 ∧ . . . ∧ Cm, i.e., T is the “tail” consisting of “short” clauses.
The derandomized algorithm first tests satisfiability of Fm′+1 using a k-SAT
subroutine. If no satisfying assignment is found, the algorithm is recursively
applied to each of F1, . . . , Fm′ .

Clause shortening combined with pruning. There is some inefficiency in the de-
randomized version of Schuler’s algorithm. Namely, when testing Fi, we may
have to test its subformula corresponding to Dj = false. On the other hand, when
testing Fj , we may come to the same subformula. To eliminate this inefficiency,
we prune the tree of recursively tested formulas as follows: for each formula Fi,

62 E. Dantsin, E.A. Hirsch, and A. Wolpert

we replace all clauses C1, . . . , Ci−1 by their counterparts D1, . . . , Di−1. In other
words, we use the fact that F is equivalent to the disjunction of the following
formulas:

F1 = (C1 ∧ C2 ∧ C3 ∧ . . . ∧ Cm′−1 ∧ Cm′ ∧ T) [D1 = false]
F2 = (D1 ∧ C2 ∧ C3 ∧ . . . ∧ Cm′−1 ∧ Cm′ ∧ T) [D2 = false]
F3 = (D1 ∧ D2 ∧ C3 ∧ . . . ∧ Cm′−1 ∧ Cm′ ∧ T) [D3 = false]
...
Fm′ = (D1 ∧ D2 ∧ D3 ∧ . . . ∧ Dm′−1 ∧ Cm′ ∧ T) [Dm′ = false]
Fm′+1 = (D1 ∧ D2 ∧ D3 ∧ . . . ∧ Dm′−1 ∧ Dm′ ∧ T)

Similarly to the derandomization above, our algorithm first tests Fm′+1 and then,
if no satisfying assignment is found, it tests each of F1, . . . , Fm′ . We give details
of our algorithm in Sect. 3 and prove its worst-case upper bound in Sect. 4.

2 Definitions and Notation

We deal with Boolean formulas in conjunctive normal form (CNF). By a variable
we mean a Boolean variable that takes truth values true or false. A literal is a
variable x or its negation ¬x. A clause C is a set of literals such that C contains
no complementary literals. A formula F is a set of clauses; n and m denote,
respectively, the number of variables and the number of clauses in F . If each
clause in F contains at most k literals, we say that F is a k-CNF formula.

An assignment to variables x1, . . . , xn is a mapping from {x1, . . . , xn} to
{true, false}. This mapping is extended to literals: each literal ¬xi is mapped to
the complement of the truth value assigned to xi. We say that a clause C is
satisfied by an assignment A if A assigns true to at least one literal in C. The
formula F is satisfied by A if every clause in F is satisfied by A. In this case, A
is called a satisfying assignment for F . We consider substitutions of truth values
for some variables in a formula. If D is a set of literals, we write F [D = false]
to denote the formula obtained from F as follows: any clause that contains the
negation of a literal in D is removed from F , the literals occurring in D are
deleted from the other clauses.

Here is a summary of the notation used in the paper.

– F denotes a CNF formula; n denotes the number of variables in F ; m denotes
the number of clauses in F .

– If C is a clause then |C| denotes its length (the number of literals).
– We write log x to denote log2 x.
– H(x) denotes the entropy function: H(x) = −x log x − (1 − x) log(1 − x).

3 Algorithm

We describe an algorithm parameterized by a function k(n, m). This function
determines the length to which input clauses are to be shortened. The algorithm

Clause Shortening Combined with Pruning Yields a New Upper Bound 63

computes the value of k(n, m) for particular n and m, then it runs a recursive
procedure that implements the clause shortening approach combined with prun-
ing. This recursive Procedure S described below uses a k-SAT algorithm of [3]
as a subroutine.

Lemma 1 ([3]). There exists a deterministic algorithm that tests satisfiability
of an input formula F in time at most

m · q(n) ·
(

2 − 2
k + 1

)n

where q(n) is a polynomial in n, and k is the maximum length of clauses in F .

Procedure S
Input: a CNF formula F and a positive integer k.

1. Assume F consists of clauses C1, . . . , Cm. Change each clause Ci to a clause
Di as follows: If |Ci| > k then choose any k literals in Ci and drop the other
literals; otherwise leave Ci as is, i.e., Di = Ci. Let F ′ denote the resulting
formula.

2. Test satisfiability of F ′ using the algorithm defined in Lemma 1.
3. If F ′ is satisfiable, output “satisfiable” and halt. Otherwise, for each i, do

the following:
(a) Convert F to Fi as follows:

i. Replace Cj by Dj for all j < i;
ii. Assign false to all literals in Di.

(b) Recursively invoke Procedure S on (Fi, k).
4. Return “unsatisfiable”.

Algorithm Ak(n,m)

Parameter: a positive integer function k(n, m)
Input: a CNF formula F with m clauses over n variables (n ≤ m)

1. Compute k = k(n, m).
2. Invoke Procedure S on (F, k).

4 Upper Bound

First we give an upper bound for Algorithm Ak(n,m). Then we find a particular
function k(n, m) that approximately minimizes this upper bound.

Theorem 1. Let k(n, m) be an integer function such that:

3 ≤ k(m, n) ≤ log m. (1)

Then Algorithm Ak(n,m) runs in time

O(
√

m) · n
k · q(n) · 2n(1− log e

k+1)+O(m·2−k), (2)

where q(n) is the polynomial appearing in Lemma 1.

64 E. Dantsin, E.A. Hirsch, and A. Wolpert

Proof. Let t(F) be the running time of Procedure S on (F, k). It is not difficult
to see that t(F) can be estimated as follows:

t(F) ≤ t0(F ′) +
m∑

i=1

t(Fi) (3)

where F ′ and Fi are as described in Procedure S, and t0(F ′) is the running
time of the k-SAT algorithm from Lemma 1 on F ′. Let T (n, m, m′) denote the
maximum of the running time of Procedure S on (G, k) where G is a formula
with ≤ n variables and ≤ m clauses such that at most m′ of its clauses contain
> k literals. For the k-SAT algorithm, we define T0(n, m) as the maximum
running time on a different set of formulas, namely let T0(n, m) be the maximum
running time of the algorithm from Lemma 1 on the set of formulas F ′ such that
each F ′ has ≤ m clauses over ≤ n variables and the maximum length of clauses
is not greater than k.

Then for any n and m, inequality (3) implies the following recurrence relation:

T (n, m, m′) ≤ T0(n, m) +
m−1∑
i=0

T (n − k, m, m′ − i). (4)

If we iteratively substitute T (n − L, m, m′ − i) into this recurrence, we turn its
right-hand side into the sum of terms of the form T0(n − lk, m) for l ≤ n/k.

Our proof strategy is as follows. We consider the recursion tree of our algo-
rithm and estimate the total amount Tl of work done at its l-th level (i.e., the
sum of terms T0(n − lk, m)). We then find l∗ that maximizes this estimation.
The total running time is then at most n/k times the estimation for the level l∗.

To estimate Tl, we note that the number of nodes at the l-th level

m∑
i1=1

i1∑
i2=1

. . .

il−1∑
il=1

1

is the number of ways to choose l possibly equal elements out of m, i.e.,
(

m+l−1
l

)
(see, e.g., [13, Sect. 1.2]). Then

Tl ≤ m · q(n) ·
(
2 − 2

k+1

)n−lk

·
(
m+l−1

l

)
. (5)

Let El denote the right-hand side of the estimation (5). It is straightforward to
see that El+1 ≤ El if and only if

m+l
l+1 ·

(
2 − 2

k+1

)−k

≤ 1,

which is equivalent to
m+l
l+1 · 2−k ·

(
1 + 1

k

)k ≤ 1.

Therefore, the maximum of El over l is attained at the following integer l∗:

l∗ = mα−2k

2k−α
+ δ,

where α = (1 + 1/k)k and −1 < δ < 1.

Clause Shortening Combined with Pruning Yields a New Upper Bound 65

The next step is to give lower and upper bounds on l∗. We prove that

m · 2−k ≤ l∗ ≤ 5.12 · m · 2−k (6)

To prove the lower bound, we use k ≤ log m and α ≥ (1 + 1/3)3 ≈ 2.37 (which
follows from k ≥ 3):

l∗ = mα−2k

2k−α
+ δ

≥ m · 2−k ·
(

α−2k/m
1−α/2k

)
− 1

≥ m · 2−k ·
(

α−1
1

)
− 1

≥ m · 2−k.

The upper bound is proved using condition (1) and α < e. Indeed,

l∗ = mα−2k

2k−α
+ δ

≤ m · 2−k ·
(

α−2k/m
1−α/2k

)
+ 1

≤ m · 2−k ·
(

e
1−e/8

)
+ 1

≤ m · 2−k ·
(

e
1−e/8 + 1

)

≤ 5.12 · m · 2−k.

Now we estimate the total amount of work done at the level l∗:

El∗ = m · q(n) · 2n−kl∗ ·
(
1 − 1

k+1

)n−kl∗

·
(
m+l∗−1

l∗

)
. (7)

The last factor in the right-hand side of (7) can be estimated using Stirling’s
approximation as in [1, page 4]:

(
m+l∗−1

l∗

)
= O

(
1√

m+l∗

)
· 2H(l∗

m+l∗−1)(m+l∗−1)

= O
(

1√
m

)
· e−l∗ ln l∗

m+l∗−1−(m−1) ln m−1
m+l∗−1 .

Using l∗ − 1 < m and ln(1 + x) < x, we have

(
m+l∗−1

l∗

)
= O

(
1√
m

)
· e

l∗ ln m
l∗ +l∗ ln

�
1+ l∗−1

m

�
+(m−1) ln(1+ l∗

m−1)

= O
(

1√
m

)
· el∗(ln m

l∗ +2).

The factor
(
1 − 1

k+1

)n−kl∗

in (7) can be estimated using the inequality ln
(1 − x) < −x:

(
1 − 1

k+1

)n−kl∗

= e(n−kl∗) ln(1− 1
k+1) ≤ e−

n−kl∗
k+1 < e−

n
k+1+l∗ .

66 E. Dantsin, E.A. Hirsch, and A. Wolpert

Hence, we can estimate El∗ as follows:

El∗ ≤ O(
√

m) · q(n) · 2n−kl∗ · e−
n

k+1+l∗ · el∗(ln m
l∗ +2)

= O(
√

m) · q(n) · 2n · 2−
n log e

k+1 · e−kl∗ ln 2 · el∗ · el∗(ln m
l∗ +2)

= O(
√

m) · q(n) · 2n(1− log e
k+1) · eβl∗ ,

where
β = 3 + ln m

l∗ − k ln 2 = 3 + ln m
2k·l∗ .

The lower bound on l∗ in (6) implies β < 3. Therefore, using the upper bound
in (6), we have

El∗ ≤ O(
√

m) · q(n) · 2n(1− log e
k+1) · e3l∗

≤ O(
√

m) · q(n) · 2n(1− log e
k+1) · e3·(5.12·m·2−k)

≤ O(
√

m) · q(n) · 2n(1− log e
k+1) · 2O(1)·m·2−k

.

Remark 1. What value of k minimizes bound (2)? Straightforward differentiation
of the exponent

n
(
1 − log e

k+1

)
+ O(m · 2−k)

gives the following equation:

k = log(m/n) + 2 log(k + 1) + O(1).

We can approximate a fix-point solution to this equation taking

k = log(m/n) + d · log log m

where d > 1 is a constant close to 1.

Theorem 2. For any number d > 1, let Ad be an algorithm obtained from
Algorithm Ak(m,n) by taking the following function k(m, n):

k(m, n) =
{

�log(m/n) + d · log log m� if log m < n1/d,
�log m� otherwise.

Then Ad runs in time

O(
√

m) · n
k · q(n) · 2n(1− 1

ln(m/n)+d·ln log m
+o(1

k)) (8)

on formulas such that log m < n1/d and runs in time

O(
√

m) · n
k · q(n) · 2n(1− 1

ln(2m)) (9)

on all other formulas, where q(n) is the polynomial from Lemma 1.

Clause Shortening Combined with Pruning Yields a New Upper Bound 67

Proof. We prove both bounds by applying Theorem 1. Note that the function
k(m, n) defined in the claim satisfies the inequality k ≤ log m required by The-
orem 1. This is obvious for k = �log m� and follows from log m < n1/d for

k = �log(m/n) + d · log log m�. (10)

To prove bound (8), we first write the upper bound given by Theorem 1 in
the following form:

O(
√

m) · n
k · q(n) · 2n(1−γ), where γ = log e

k+1 − O(1)·m
n·2k .

Substituting the value of k from (10) in the second term of γ, we have

γ ≥ log e
k+1 − O(1)

(log m)d

≥ log e
k − log e

k(k+1) − O(1)
(log m)d

≥ log e
k − o

(1
k

)
using k ≤ log m and d > 1

≥ 1
ln(m/n)+d·ln log m − o

(1
k

)
.

Bound (9) is easily obtained from the upper bound given by Theorem 1 by
substitution of �log m� for k.

Remark 2. Both bounds (8) and (9) hold for all formulas. Bound (8) is asymp-
totically better for formulas such that log m < n1/d, while bound (9) is better
for all other formulas.

Remark 3. What is the best value of d? On the one hand, the smaller d is, the
smaller k we have, which yields a better asymptotics of bound (8). In addition,
the smaller d is, the weaker the log m ≤ n1/d restriction becomes. On the other
hand, the smaller d we take, the slower o(1/k) tends to zero (or, equivalently,
the asymptotic behavior starts with lager values of m).

Remark 4. The randomized algorithm for SAT in [6] runs in time

2n(1− 1
ln(m/n)+O(ln ln m))

up to a polynomial factor. It is straightforward to check that for any d > 1, the
exponential part of the bound in Theorem 2 also can be written in this form,
i.e., our upper bound for deterministic algorithms matches the best known upper
bound for randomized algorithms.

Acknowledgement. We thank Natalia Tsilevich for her contribution to the proof
of Theorem 1 and for helpful discussions.

68 E. Dantsin, E.A. Hirsch, and A. Wolpert

References

1. B. Bollobás. Random Graphs. Cambridge University Press, 2nd edition, 2001.
2. T. Brueggemann and W. Kern. An improved local search algorithm for 3-SAT.

Theoretical Computer Science, 329(1-3):303–313, December 2004.
3. E. Dantsin, A. Goerdt, E. A. Hirsch, R. Kannan, J. Kleinberg, C. Papadimitriou,

P. Raghavan, and U. Schöning. A deterministic (2 − 2/(k + 1))n algorithm for
k-SAT based on local search. Theoretical Computer Science, 289(1):69–83, 2002.

4. E. Dantsin, E. A. Hirsch, and A. Wolpert. Algorithms for SAT based on search
in Hamming balls. In Proceedings of the 21st Annual Symposium on Theoreti-
cal Aspects of Computer Science, STACS 2004, volume 2996 of Lecture Notes in
Computer Science, pages 141–151. Springer, March 2004.

5. E. Dantsin and A. Wolpert. Derandomization of Schuler’s algorithm for SAT.
In Proceedings of the 7th International Conference on Theory and Applications
of Satisfiability Testing, SAT 2004, volume 3542 of Lecture Notes in Computer
Science, pages 80–88. Springer, 2005.

6. E. Dantsin and A. Wolpert. A faster clause-shortening algorithm for SAT with
no restriction on clause length. Journal on Satisfiability, Boolean Modeling and
Computation, 1:49–60, November 2005.

7. K. Iwama and S. Tamaki. Improved upper bounds for 3-SAT. In Proceedings of the
15th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2004, page
328, January 2004.

8. R. Paturi, P. Pudlák, M. E. Saks, and F. Zane. An improved exponential-time
algorithm for k-SAT. In Proceedings of the 39th Annual IEEE Symposium on
Foundations of Computer Science, FOCS’98, pages 628–637, 1998.

9. R. Paturi, P. Pudlák, and F. Zane. Satisfiability coding lemma. In Proceedings of
the 38th Annual IEEE Symposium on Foundations of Computer Science, FOCS’97,
pages 566–574, 1997.

10. P. Pudlák. Satisfiability – algorithms and logic. In Proceedings of the 23rd Interna-
tional Symposium on Mathematical Foundations of Computer Science, MFCS’98,
volume 1450 of Lecture Notes in Computer Science, pages 129–141. Springer-
Verlag, 1998.

11. U. Schöning. A probabilistic algorithm for k-SAT and constraint satisfaction prob-
lems. In Proceedings of the 40th Annual IEEE Symposium on Foundations of
Computer Science, FOCS’99, pages 410–414, 1999.

12. R. Schuler. An algorithm for the satisfiability problem of formulas in conjunctive
normal form. Journal of Algorithms, 54(1):40–44, January 2005. A preliminary
version appeared as a technical report in 2003.

13. R. P. Stanley. Enumerative Combinatorics, volume 1. Wadsworth & Brooks/Cole,
1986.

	Introduction
	Definitions and Notation
	Algorithm
	Upper Bound

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

