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Abstract. We give a deterministic algorithm for testing satisfiability
of Boolean formulas in conjunctive normal form with no restriction on
clause length. Its upper bound on the worst-case running time matches
the best known upper bound for randomized satisfiability-testing algo-
rithms [6]. In comparison with the randomized algorithm in [6], our de-
terministic algorithm is simpler and more intuitive.

1 Introduction

The problem of satisfiability of a propositional formula in conjunctive normal
form (SAT) can be easily solved in 2n polynomial-time steps, where n is the
number of variables in the input formula. Since the early 1980s, this upper bound
has been successively improved for k-SAT (the restricted case of SAT where
clauses have at most k variables). The best bound to date for deterministic k-
SAT algorithms is (2−2/(k+1))n up to a polynomial factor [3]. For randomized
k-SAT algorithms, the currently best known bound is due to [8]; a close bound
is given in [11]. These general bounds are improved for k = 3 in [2, 7].

The list of successive improvements for SAT (with no restriction on clause
length) is shorter:

deterministic algorithms randomized algorithms
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Here n and m are respectively the number of variables and the number of clauses.
For simplicity, we give the bounds above omitting polynomial factors; such a
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factor is typically linear in the length of the input formula (yet there are several
exceptions).

In this paper we give a deterministic algorithm for SAT with no restriction
on clause length. Its upper bound on the worst-case running time is

2n(1− 1
ln(m/n)+O(ln ln m) )

up to a polynomial factor. This bound matches the best known upper bound for
randomized SAT algorithms [6]. In comparison with the randomized algorithm
in [6], our deterministic algorithm is simpler and more intuitive.

Clause shortening approach. Our algorithm employs the clause shortening tech-
nique first used by Schuler [12] in his randomized algorithm. This technique is
based on the following idea:

For any “long” clause (longer than some k), either we can shorten this
clause by choosing any k literals in the clause and dropping the other
literals, or we can substitute false for these k literals in the entire formula.

Schuler’s algorithm shortens every clause to its first k literals and applies the
k-SAT algorithm [9] to the resulting k-CNF formula. If no satisfying assignment
is found, Schuler’s algorithm simplifies the initial formula by choosing a long
clause at random and substituting false for its first k literals. This procedure is
recursively applied to the simplified formula until no clause contains more than
k literals. The upper bound in [12] is obtained when taking k = log(2m).

The derandomization [5] of Schuler’s algorithm uses the same idea. Let F
be an input formula consisting of clauses C1, . . . , Cm. Assume that the first m′

clauses are longer than k and the other clauses have length ≤ k. For each Ci

where i ≤ m′, let Di be the clause that is made up from the first k literals of
Ci. Then F is equivalent to the disjunction of the following m′ + 1 formulas:

F1 = F [D1 = false]
...
Fm′ = F [Dm′ = false]
Fm′+1 = D1 ∧ . . . ∧ Dm′ ∧ T

where T is Cm′+1 ∧ . . . ∧ Cm, i.e., T is the “tail” consisting of “short” clauses.
The derandomized algorithm first tests satisfiability of Fm′+1 using a k-SAT
subroutine. If no satisfying assignment is found, the algorithm is recursively
applied to each of F1, . . . , Fm′ .

Clause shortening combined with pruning. There is some inefficiency in the de-
randomized version of Schuler’s algorithm. Namely, when testing Fi, we may
have to test its subformula corresponding to Dj = false. On the other hand, when
testing Fj , we may come to the same subformula. To eliminate this inefficiency,
we prune the tree of recursively tested formulas as follows: for each formula Fi,
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we replace all clauses C1, . . . , Ci−1 by their counterparts D1, . . . , Di−1. In other
words, we use the fact that F is equivalent to the disjunction of the following
formulas:

F1 = (C1 ∧ C2 ∧ C3 ∧ . . . ∧ Cm′−1 ∧ Cm′ ∧ T ) [D1 = false]
F2 = (D1 ∧ C2 ∧ C3 ∧ . . . ∧ Cm′−1 ∧ Cm′ ∧ T ) [D2 = false]
F3 = (D1 ∧ D2 ∧ C3 ∧ . . . ∧ Cm′−1 ∧ Cm′ ∧ T ) [D3 = false]
...
Fm′ = (D1 ∧ D2 ∧ D3 ∧ . . . ∧ Dm′−1 ∧ Cm′ ∧ T ) [Dm′ = false]
Fm′+1 = (D1 ∧ D2 ∧ D3 ∧ . . . ∧ Dm′−1 ∧ Dm′ ∧ T )

Similarly to the derandomization above, our algorithm first tests Fm′+1 and then,
if no satisfying assignment is found, it tests each of F1, . . . , Fm′ . We give details
of our algorithm in Sect. 3 and prove its worst-case upper bound in Sect. 4.

2 Definitions and Notation

We deal with Boolean formulas in conjunctive normal form (CNF). By a variable
we mean a Boolean variable that takes truth values true or false. A literal is a
variable x or its negation ¬x. A clause C is a set of literals such that C contains
no complementary literals. A formula F is a set of clauses; n and m denote,
respectively, the number of variables and the number of clauses in F . If each
clause in F contains at most k literals, we say that F is a k-CNF formula.

An assignment to variables x1, . . . , xn is a mapping from {x1, . . . , xn} to
{true, false}. This mapping is extended to literals: each literal ¬xi is mapped to
the complement of the truth value assigned to xi. We say that a clause C is
satisfied by an assignment A if A assigns true to at least one literal in C. The
formula F is satisfied by A if every clause in F is satisfied by A. In this case, A
is called a satisfying assignment for F . We consider substitutions of truth values
for some variables in a formula. If D is a set of literals, we write F [D = false]
to denote the formula obtained from F as follows: any clause that contains the
negation of a literal in D is removed from F , the literals occurring in D are
deleted from the other clauses.

Here is a summary of the notation used in the paper.

– F denotes a CNF formula; n denotes the number of variables in F ; m denotes
the number of clauses in F .

– If C is a clause then |C| denotes its length (the number of literals).
– We write log x to denote log2 x.
– H(x) denotes the entropy function: H(x) = −x log x − (1 − x) log(1 − x).

3 Algorithm

We describe an algorithm parameterized by a function k(n, m). This function
determines the length to which input clauses are to be shortened. The algorithm



Clause Shortening Combined with Pruning Yields a New Upper Bound 63

computes the value of k(n, m) for particular n and m, then it runs a recursive
procedure that implements the clause shortening approach combined with prun-
ing. This recursive Procedure S described below uses a k-SAT algorithm of [3]
as a subroutine.

Lemma 1 ([3]). There exists a deterministic algorithm that tests satisfiability
of an input formula F in time at most

m · q(n) ·
(

2 − 2
k + 1

)n

where q(n) is a polynomial in n, and k is the maximum length of clauses in F .

Procedure S
Input: a CNF formula F and a positive integer k.

1. Assume F consists of clauses C1, . . . , Cm. Change each clause Ci to a clause
Di as follows: If |Ci| > k then choose any k literals in Ci and drop the other
literals; otherwise leave Ci as is, i.e., Di = Ci. Let F ′ denote the resulting
formula.

2. Test satisfiability of F ′ using the algorithm defined in Lemma 1.
3. If F ′ is satisfiable, output “satisfiable” and halt. Otherwise, for each i, do

the following:
(a) Convert F to Fi as follows:

i. Replace Cj by Dj for all j < i;
ii. Assign false to all literals in Di.

(b) Recursively invoke Procedure S on (Fi, k).
4. Return “unsatisfiable”.

Algorithm Ak(n,m)

Parameter: a positive integer function k(n, m)
Input: a CNF formula F with m clauses over n variables (n ≤ m)

1. Compute k = k(n, m).
2. Invoke Procedure S on (F, k).

4 Upper Bound

First we give an upper bound for Algorithm Ak(n,m). Then we find a particular
function k(n, m) that approximately minimizes this upper bound.

Theorem 1. Let k(n, m) be an integer function such that:

3 ≤ k(m, n) ≤ log m. (1)

Then Algorithm Ak(n,m) runs in time

O(
√

m) · n
k · q(n) · 2n(1− log e

k+1 )+O(m·2−k), (2)

where q(n) is the polynomial appearing in Lemma 1.
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Proof. Let t(F ) be the running time of Procedure S on (F, k). It is not difficult
to see that t(F ) can be estimated as follows:

t(F ) ≤ t0(F ′) +
m∑

i=1

t(Fi) (3)

where F ′ and Fi are as described in Procedure S, and t0(F ′) is the running
time of the k-SAT algorithm from Lemma 1 on F ′. Let T (n, m, m′) denote the
maximum of the running time of Procedure S on (G, k) where G is a formula
with ≤ n variables and ≤ m clauses such that at most m′ of its clauses contain
> k literals. For the k-SAT algorithm, we define T0(n, m) as the maximum
running time on a different set of formulas, namely let T0(n, m) be the maximum
running time of the algorithm from Lemma 1 on the set of formulas F ′ such that
each F ′ has ≤ m clauses over ≤ n variables and the maximum length of clauses
is not greater than k.

Then for any n and m, inequality (3) implies the following recurrence relation:

T (n, m, m′) ≤ T0(n, m) +
m−1∑
i=0

T (n − k, m, m′ − i). (4)

If we iteratively substitute T (n − L, m, m′ − i) into this recurrence, we turn its
right-hand side into the sum of terms of the form T0(n − lk, m) for l ≤ n/k.

Our proof strategy is as follows. We consider the recursion tree of our algo-
rithm and estimate the total amount Tl of work done at its l-th level (i.e., the
sum of terms T0(n − lk, m)). We then find l∗ that maximizes this estimation.
The total running time is then at most n/k times the estimation for the level l∗.

To estimate Tl, we note that the number of nodes at the l-th level

m∑
i1=1

i1∑
i2=1

. . .

il−1∑
il=1

1

is the number of ways to choose l possibly equal elements out of m, i.e.,
(

m+l−1
l

)
(see, e.g., [13, Sect. 1.2]). Then

Tl ≤ m · q(n) ·
(
2 − 2

k+1

)n−lk

·
(
m+l−1

l

)
. (5)

Let El denote the right-hand side of the estimation (5). It is straightforward to
see that El+1 ≤ El if and only if

m+l
l+1 ·

(
2 − 2

k+1

)−k

≤ 1,

which is equivalent to
m+l
l+1 · 2−k ·

(
1 + 1

k

)k ≤ 1.

Therefore, the maximum of El over l is attained at the following integer l∗:

l∗ = mα−2k

2k−α
+ δ,

where α = (1 + 1/k)k and −1 < δ < 1.
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The next step is to give lower and upper bounds on l∗. We prove that

m · 2−k ≤ l∗ ≤ 5.12 · m · 2−k (6)

To prove the lower bound, we use k ≤ log m and α ≥ (1 + 1/3)3 ≈ 2.37 (which
follows from k ≥ 3):

l∗ = mα−2k

2k−α
+ δ

≥ m · 2−k ·
(

α−2k/m
1−α/2k

)
− 1

≥ m · 2−k ·
(

α−1
1

)
− 1

≥ m · 2−k.

The upper bound is proved using condition (1) and α < e. Indeed,

l∗ = mα−2k

2k−α
+ δ

≤ m · 2−k ·
(

α−2k/m
1−α/2k

)
+ 1

≤ m · 2−k ·
(

e
1−e/8

)
+ 1

≤ m · 2−k ·
(

e
1−e/8 + 1

)

≤ 5.12 · m · 2−k.

Now we estimate the total amount of work done at the level l∗:

El∗ = m · q(n) · 2n−kl∗ ·
(
1 − 1

k+1

)n−kl∗

·
(
m+l∗−1

l∗

)
. (7)

The last factor in the right-hand side of (7) can be estimated using Stirling’s
approximation as in [1, page 4]:

(
m+l∗−1

l∗

)
= O

(
1√

m+l∗

)
· 2H( l∗

m+l∗−1 )(m+l∗−1)

= O
(

1√
m

)
· e−l∗ ln l∗

m+l∗−1−(m−1) ln m−1
m+l∗−1 .

Using l∗ − 1 < m and ln(1 + x) < x, we have

(
m+l∗−1

l∗

)
= O

(
1√
m

)
· e

l∗ ln m
l∗ +l∗ ln

�
1+ l∗−1

m

�
+(m−1) ln(1+ l∗

m−1 )

= O
(

1√
m

)
· el∗(ln m

l∗ +2).

The factor
(
1 − 1

k+1

)n−kl∗

in (7) can be estimated using the inequality ln
(1 − x) < −x:

(
1 − 1

k+1

)n−kl∗

= e(n−kl∗) ln(1− 1
k+1 ) ≤ e−

n−kl∗
k+1 < e−

n
k+1+l∗ .
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Hence, we can estimate El∗ as follows:

El∗ ≤ O(
√

m) · q(n) · 2n−kl∗ · e−
n

k+1+l∗ · el∗(ln m
l∗ +2)

= O(
√

m) · q(n) · 2n · 2−
n log e

k+1 · e−kl∗ ln 2 · el∗ · el∗(ln m
l∗ +2)

= O(
√

m) · q(n) · 2n(1− log e
k+1 ) · eβl∗ ,

where
β = 3 + ln m

l∗ − k ln 2 = 3 + ln m
2k·l∗ .

The lower bound on l∗ in (6) implies β < 3. Therefore, using the upper bound
in (6), we have

El∗ ≤ O(
√

m) · q(n) · 2n(1− log e
k+1 ) · e3l∗

≤ O(
√

m) · q(n) · 2n(1− log e
k+1 ) · e3·(5.12·m·2−k)

≤ O(
√

m) · q(n) · 2n(1− log e
k+1 ) · 2O(1)·m·2−k

.

Remark 1. What value of k minimizes bound (2)? Straightforward differentiation
of the exponent

n
(
1 − log e

k+1

)
+ O(m · 2−k)

gives the following equation:

k = log(m/n) + 2 log(k + 1) + O(1).

We can approximate a fix-point solution to this equation taking

k = log(m/n) + d · log log m

where d > 1 is a constant close to 1.

Theorem 2. For any number d > 1, let Ad be an algorithm obtained from
Algorithm Ak(m,n) by taking the following function k(m, n):

k(m, n) =
{

�log(m/n) + d · log log m� if log m < n1/d,
�log m� otherwise.

Then Ad runs in time

O(
√

m) · n
k · q(n) · 2n(1− 1

ln(m/n)+d·ln log m
+o( 1

k )) (8)

on formulas such that log m < n1/d and runs in time

O(
√

m) · n
k · q(n) · 2n(1− 1

ln(2m) ) (9)

on all other formulas, where q(n) is the polynomial from Lemma 1.



Clause Shortening Combined with Pruning Yields a New Upper Bound 67

Proof. We prove both bounds by applying Theorem 1. Note that the function
k(m, n) defined in the claim satisfies the inequality k ≤ log m required by The-
orem 1. This is obvious for k = �log m� and follows from log m < n1/d for

k = �log(m/n) + d · log log m�. (10)

To prove bound (8), we first write the upper bound given by Theorem 1 in
the following form:

O(
√

m) · n
k · q(n) · 2n(1−γ), where γ = log e

k+1 − O(1)·m
n·2k .

Substituting the value of k from (10) in the second term of γ, we have

γ ≥ log e
k+1 − O(1)

(log m)d

≥ log e
k − log e

k(k+1) − O(1)
(log m)d

≥ log e
k − o

( 1
k

)
using k ≤ log m and d > 1

≥ 1
ln(m/n)+d·ln log m − o

( 1
k

)
.

Bound (9) is easily obtained from the upper bound given by Theorem 1 by
substitution of �log m� for k.

Remark 2. Both bounds (8) and (9) hold for all formulas. Bound (8) is asymp-
totically better for formulas such that log m < n1/d, while bound (9) is better
for all other formulas.

Remark 3. What is the best value of d? On the one hand, the smaller d is, the
smaller k we have, which yields a better asymptotics of bound (8). In addition,
the smaller d is, the weaker the log m ≤ n1/d restriction becomes. On the other
hand, the smaller d we take, the slower o(1/k) tends to zero (or, equivalently,
the asymptotic behavior starts with lager values of m).

Remark 4. The randomized algorithm for SAT in [6] runs in time

2n(1− 1
ln(m/n)+O(ln ln m) )

up to a polynomial factor. It is straightforward to check that for any d > 1, the
exponential part of the bound in Theorem 2 also can be written in this form,
i.e., our upper bound for deterministic algorithms matches the best known upper
bound for randomized algorithms.
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