
Approximation Algorithms for Capacitated
Rectangle Stabbing

Guy Even1, Dror Rawitz2, and Shimon (Moni) Shahar1

1 School of Electrical Engineering, Tel-Aviv University, Tel-Aviv 69978, Israel
{guy, moni}@eng.tau.ac.il

2 Caesarea Rothschild Institute, University of Haifa, Haifa 31905, Israel
rawitz@cri.haifa.ac.il

Abstract. In the rectangle stabbing problem we are given a set of axis
parallel rectangles and a set of horizontal and vertical lines, and our
goal is to find a minimum size subset of lines that intersect all the rec-
tangles. We study the capacitated version of this problem in which the
input includes an integral capacity for each line that bounds the number
of rectangles that the line can cover. We consider two versions of this
problem. In the first, one is allowed to use only a single copy of each line
(hard capacities), and in the second, one is allowed to use multiple copies
of every line provided that multiplicities are counted in the size of the
solution (soft capacities).

For the case of d-dimensional rectangle stabbing with soft capacities,
we present a 6d-approximation algorithm and a 2-approximation algo-
rithm when d = 1. For the case of hard capacities, we present a bi-criteria
algorithm that computes 16d-approximate solutions that use at most two
copies of every line. For the one dimensional case, an 8-approximation
algorithm for hard capacities is presented.

1 Introduction

Understanding the combinatorial and algorithmic nature of capacitated cover-
ing problems is still an open problem. Only a few capacitated problems were
studied including the general case of set-cover [1] and the restricted case of
vertex-cover [2, 3]. Capacity constraints appear naturally in many applications,
for example, bounded number of clients an antenna can serve. In this paper we
consider a capacitated version of a covering problem, called rectangle stabbing.
The geometric nature of the problem is used to obtain approximation algorithms.

The problems. The rectangle stabbing problem (rs) is a covering problem. The
input is a finite set U of axis parallel rectangles and a finite set S of horizontal
and vertical lines. A cover is a subset of S that intersects every rectangle in U .
The goal is to find a cover of minimum size. We denote the set of rectangles
that a line S intersects by U(S). Using this notation, an rs instance is a set-
cover instance in which the goal is to find a collection of subsets U(S), the union
of which equals U . W.l.o.g., we assume that the rs instance is discrete in the
following sense [4]: rectangle corners have integral coordinates and lines intersect

T. Calamoneri, I. Finocchi, G.F. Italiano (Eds.): CIAC 2006, LNCS 3998, pp. 18–29, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Approximation Algorithms for Capacitated Rectangle Stabbing 19

the axes at integral points. In the one-dimensional version, the set U consists
of horizontal intervals and the set S consists of points. This is the well known
polynomial clique cover problem in interval graphs. rs can be extended to d
dimensions (drs). For d ≥ 3, U consists of axis parallel d-dimensional rectangles
(“boxes”) and the set S consists of hyper-planes that are orthogonal to one of
the d axes (“walls”). In the sequel we stick to the two-dimensional terminology,
that is, we refer to U as a set of rectangles and to S as a set of lines.

In the capacitated d-dimensional rectangle stabbing problem the input includes
an integral capacity c(S) for every line S ∈ S. The capacity c(S) bounds the
number of rectangles that S can cover. This means that in the capacitated case
one has to specify which line covers each rectangle. The assignment of rectangles
to lines may not assign more than c(S) rectangles to a line S. We discuss two
variants of capacitated d-dimensional rectangle stabbing, called covering with
hard capacities (hard-drs) and covering with soft capacities (soft-drs).

A soft-drs cover is formally defined as follows. An assignment is a function
A : S → 2U where A(S) ⊆ U(S), for every S. A rectangle u is covered by a line
S if u ∈ A(S). An assignment A is a cover if every rectangle is covered by some
line, i.e.,

⋃
S∈S A(S) = U . The multiplicity (or number of copies) of a line S ∈ S

in an assignment A equals �|A(S)|/c(S)�. We denote the multiplicity of S in A
by α(A, S). The size of a cover A is

∑
S∈S α(A, S). We denote the size of A by

|A|. The goal is to find a cover of minimum size.
Given the multiplicities of every line in a cover A, one can compute a cover

with the same multiplicities by solving a flow problem. We therefore often refer
to a cover as a multi-set of lines. The support of an assignment A is the set of
lines {S ∈ S : A(S) �= ∅}. Note that the support is a set and not a multi-
set. We denote the support of A by σ(A). In hard-drs, a line may appear at
most once in a cover. Hence, in this case, a cover is an assignment A for which
|A(S)| ≤ c(S), (or α(A, S) ≤ 1) for every S ∈ S. In this setting, we refer to
a cover as the set of lines it contains (i.e., its support). Note that soft-drs

is a special case of hard-drs, since given a soft-drs instance one can always
transform it into a hard-drs instance by duplicating each line |U| times.

All the problems mentioned above have weighted versions, in which we are
given a weight function w defined on the lines. In this case the cost of a cover A
is w(S) =

∑
S α(S) · w(S), and the goal is to find a cover of minimum weight.

Previous results. Since 1-rs is equivalent to clique cover in interval graphs, it can
be solved in linear time [5]. Hassin and Megiddo [6] showed that rs is NP-hard,
for d ≥ 2. Gaur et al. [4] presented a d-approximation algorithm for drs that
uses linear programming to reduce d dimensions to one dimension.

Capacitated covering problems (even with weights) date back to Wolsey [1]
(see also [7, 2]). Wolsey presented a greedy algorithm for weighted set-cover with
hard capacities that achieves a logarithmic approximation ratio. Guha et al. [3]
presented a 2-approximation primal-dual algorithm for the weighted vertex cover
problem with soft capacities. Chuzhoy and Naor [2] presented a 3-approximation
algorithm for vertex cover with hard capacities (without weights) which is based
on randomized rounding with alterations. They also proved that the weighted

20 G. Even, D. Rawitz, and S. Shahar

version of this problem is as hard to approximate as set cover. Gandhi et al. [8]
improved the approximation ratio for capacitated vertex cover to 2.

Our results. We present a 2-approximation algorithm for soft-1rs. This algo-
rithm is a dynamic programming algorithm that finds an optimal solution of a
certain form. In the full paper we show that this algorithm extends to weighted
soft-1rs. We present a 6d-approximation algorithm for soft-drs, where d is
arbitrary. This algorithm solves an LP relaxation of the problem, and rounds it
using the geometrical structure of the problem. For the case of hard capacities
we show that the same technique can be used to obtain a bi-criteria algorithm
for hard-drs. Our algorithm computes solutions that are 16d-approximate and
use at most two copies of each line. An 8-approximation algorithm for the one
dimensional case is also presented. In the full paper, we present two hardness
results. The first mimics the hardness result given in [2] to show that weighted
hard-2rs is set-cover-hard, even if all weights are in {0, 1}. The second result
proves that it is NP-hard to approximate drs with a ratio of c · log d, for some
constant c. Note that the dimension d is considered here to be part of the input.

2 Interval Stabbing with Soft Capacities

In this section we present a 2-approximation algorithm for soft-1rs. In the
one-dimensional case rectangles are simply intervals that we draw as horizontal
intervals. To facilitate the task of drawing overlapping intervals, we separate
intervals by drawing them at different heights. Hyper-planes in the one dimen-
sional case are simply points. Since intervals are drawn as horizontal intervals
with different heights, we refer to the hyper-planes as vertical lines instead of
points. To summarize, the input in soft-1rs consists of a set U of horizontal
intervals, and a set S of vertical lines with capacities c(S).

The presentation is divided into two parts. First, we define special covers,
called decisive covers. We show that restricting the cover to be a decisive cover
incurs a penalty that is bounded by a factor of two. Second, we present a dynamic
programming algorithm that computes an optimal decisive cover.

Definition 1. The total order ≺ is defined over the set S of lines as follows:
S ≺ S′ if either (i) c(S) > c(S′) or (ii) c(S) = c(S′) and S is to the left of S′.

Consider a cover A. Suppose that the support σ(A) of a cover A is
{S1, S2, . . . , Sk}, where S1 ≺ S2 ≺ · · · ≺ Sk.

Definition 2. A cover A is called decisive if A(Si) = U(Si) \ ∪j<iU(Sj), for
every 1 ≤ i ≤ k.

In a decisive cover each interval u is covered by the smallest (according to ≺)
line S ∈ σ(A) that intersects u. Hence, “preference” is given to lines of higher
capacity. Given a cover A, the decisive cover A′ induced by A is the cover ob-
tained by assigning each interval u to the first line S ∈ A that intersects it. Note
that if A′ is the decisive cover induced by a cover A, then σ(A′) ⊆ σ(A).

Approximation Algorithms for Capacitated Rectangle Stabbing 21

Claim 1. The decisive cover A′ induced by a cover A satisfies |A′| ≤ 2|A|.

Proof. We prove the slightly stronger inequality |A′| ≤ |A| + |σ(A)| using a
charging scheme. Suppose that the purchasing power of a coupon is one copy
of a vertical line. We say that a fractional distribution of coupons to intervals
and lines is valid with respect to a cover Ã, if: (i) each line S ∈ σ(Ã) holds at
least one coupon, and (ii) each interval u ∈ Ã(S) holds at least 1/c(S) coupons.
Note that if a distribution of coupons is valid with respect to a cover Ã then
the number of coupons distributed to the intervals and lines is not less than the
size of Ã. Indeed, if we consider each line S ∈ σ(Ã) separately, then the intervals
together with S have at least 1 + |Ã(S)|/c(S) ≥ α(Ã, S) coupons.

We now consider the following distribution of coupons. Every line S ∈ σ(A)
gets one coupon and every interval u ∈ A(S) gets α(A, S)/|A(S)| coupons. Note
that (i) the number of coupons distributed to the intervals equals the size of A,
(ii) the number of coupons distributed to the vertical lines equals the size of the
support σ(A). To complete the proof, we show that this distribution of coupons
is valid with respect to A′. Consider an interval u. The number of coupons given
to u is α(A, S)/|A(S)| ≥ 1/c(S). Let S′ denote the line assigned to u in A′,
namely, u ∈ A′(S′). Since S′ ≺ S, it follows that c(S′) ≥ c(S), and hence the
number of coupons assigned to u is at least 1/c(S′), as required. �

Next, we present a dynamic programming algorithm that finds an optimal deci-
sive cover. According to Claim 1 this cover is 2-approximate.

We use the following notation. Given an interval u, we denote the coordinates
of its endpoints by �(u) < r(u). We assume, without loss of generality, that
the coordinates are integers between 1 and 2|U|. Indeed, if two vertical lines
intersect the same set of intervals, then we can unite them into one line by
deleting the line with the smaller capacity. For every two integers i < j, let
U(i, j) denote the set of intervals contained in the range [i, j], namely, U(i, j) =
{u ∈ U | i ≤ �(u) < r(u) ≤ j}. Also, let S(i, j, k) denote the set of vertical lines
of capacity at most k whose x-coordinate is in the range [i, j].

The dynamic programming table Π of size O(n3) is defined as follows. The
entry Π(i, j, k) equals the size of an optimal decisive cover Ai,j,k that covers
the intervals in U(i, j) by lines from S(i, j, k). We initialize the table as follows
Π(i, j, k) = 0 if U(i, j) = ∅, and Π(i, j, k) = ∞ if there exist an interval u ∈
U(i, j) that is not intersected by lines in S(i, j, k). The remaining table entries
Π(i, j, k) are calculated in polynomial time as follows. Let xS denote the x-
coordinate of a vertical line S ∈ S. Let α(S, i, j) denote the number of copies of
S required to cover all the intervals it intersects in U(i, j); namely, α(S, i, j) =
�| {u ∈ U(i, j) | �(u) ≤ xS ≤ r(u)} |/c(S)�. The following recurrence is used:

Π(i, j, k) ← min{Π(i, j, k − 1),
min

S∈S(i,j,k)
c(S)=k

{Π(i, xS − 1, k − 1) + α(S, i, j) + Π(xS + 1, j, k)}}

Note that, if i = xS then Π(i, xS − 1, k − 1) = 0. Similarly, if xS = j then
Π(xS + 1, j, k) = 0.

22 G. Even, D. Rawitz, and S. Shahar

The justification for the recurrence is as follows. Consider two integers i < j.
If Π(i, j, k) < Π(i, j, k − 1), then the cover Ai,j,k must contain a line of capacity
k. Consider the leftmost line S of capacity k in Ai,j,k. Since Ai,j,k is decisive, the
line S must cover all the intervals that it intersects. Hence, α(S, i, j) copies of
S are required. The remaining intervals are partitioned into intervals to the left
of S and intervals to the right of S. The intervals in U(i, xS − 1) are covered in
Ai,j,k by lines of capacity strictly less than k. The recurrence simply considers
all possible lines of capacity k between i and j.

3 Fractional Rectangle Stabbing

In this section we present LP relaxations of d-dimensional rectangle stabbing
with soft and hard capacities. We then show that the LP relaxations can be seen
as network flow problems.

3.1 LP Formulation

Following [2], we consider the linear programming relaxation for hard-drs. To
simplify notation we write u ∈ S instead of u ∈ U(S).

min
∑

S∈S x(S)
s.t.

∑
S |u∈S y(S, u) ≥ 1 ∀u ∈ U (1)

∑
u∈S y(S, u) ≤ c(S)x(S) ∀S ∈ S (2)

y(S, u) ≤ x(S) ∀S, u (3)
x(S) ≤ 1 ∀S ∈ S (4)
x(S), y(S, u) ≥ 0 ∀S, u (5)

We denote this LP by lp-hard. The variable x(S) indicates the “portion” of
S that belongs to the cover. The variable y(S, u) indicates the portion of u
that is covered by S. Constraints of type (1) are covering constraints. Capacity
constraints are formulated using constraints of types (2) and (3). Constraints
of type (4) and (5) are fractional relaxations of x(S), y(S, u) ∈ {0, 1}. Note
that there is a variable y(S, u) only if u ∈ S. However, to simplify notation, we
consider all pairs (S, u). If u �∈ S, we assign y(S, u) = 0.

An LP-relaxation of soft-drs is obtained by omitting constraints of type (4).
We denote the LP-relaxation by lp-soft.

The integrality gap of both lp-hard and lp-soft is at least 2 − o(1) even
in the one-dimensional case. Consider an instance that contains k + 1 rectangles
and two lines of capacity k that intersect all the rectangles. A fractional optimal
solution is x∗(S) = (k + 1)/(2k) for each line S and y∗(S, u) = 1/2 for every
line S and rectangle u. This means that the value of the fractional minimum is
1 + 1

k , while the integral optimum is 2.
The following definitions apply to both lp-hard and lp-soft. We refer to a

pair (x, y) as a partial cover if it satisfies all the constraints, except (perhaps)
constraints of type (1). A rectangle is covered if its type (1) constraint is satisfied.

Approximation Algorithms for Capacitated Rectangle Stabbing 23

If
∑

S |u∈S y(S, u) ≥ α, we refer to u as α-covered. If
∑

S |u∈S y(S, u) > 0 we say
that u is positively covered.

We denote an optimal solution by (x∗, y∗). The sum
∑

S∈S x∗(S) is denoted
by opt

∗. W.l.o.g. we assume that the covering constraints are tight, i.e., that∑
S |u∈S y∗(S, u) = 1 for every u ∈ U .

3.2 A Network Flow Formulation

This section is written in hard-drs terms, but similar arguments can be made
in the case of soft-drs. It is very useful to view the LP relaxation as a network
flow problem [7, 2]. Here we are given a (fractional) set of lines x and wish to
find the best possible assignment y.

The network Nx is the standard construction used for bipartite graphs. On
one side we have all the lines and on the other side we have all the rectangles.
There is an arc (S, u) if u ∈ S. The capacity of an arc (S, u) equals x(S). There is
a source s that feeds all the lines. The capacity of each arc (s, S) emanating from
the source equals x(S) · c(S). There is a sink t that is fed by all the rectangles.
The capacity of every arc (u, t) entering the sink equals 1.

Observation 1. There is a one-to-one correspondence between vectors y such
that (x, y) is a partial cover and flows f in Nx. The correspondence y ↔ fy

satisfies fy(u, t) =
∑

S|u∈S y(S, u), for every rectangle u ∈ U , and fy(s, S) =
∑

u∈S y(S, u), for every line S ∈ S.

Proof. Given y simply define fy as follows.

fy(e) �=

⎧
⎪⎨

⎪⎩

∑
u∈S y(S, u) if e = (s, S),

y(S, u) if e = (S, u),
∑

S |u∈S y(S, u) if e = (u, t).

The mapping from flows to vectors is defined similarly. �

We refer to fy(s, S) as the flow supplied by S and to fy(u, t) as the flow delivered
to u. For simplicity, we denote fy(s, S) by fy(S) and fy(u, t) by fy(u). We say
that y is maximum with respect to x if fy is a maximum flow in Nx.

Next, we show that we can identify infeasible instances of hard-drs.

Observation 2. Feasibility of a hard-drs instance can be verified by computing
a maximum integral flow in a network Nx, where x(S) = 1, for every S ∈ S.

The following observation implies that it suffices to compute a feasible cover
(x, y), where x is integral.

Observation 3. Let (x, y) be a feasible solution of lp-hard. If x is integral
then an integral y′ such that (x, y′) is a feasible solution can be computed in
polynomial time.

24 G. Even, D. Rawitz, and S. Shahar

Definition 3. Let (x, y) and (x, y′) be partial covers. We say that y′ dominates
y if (i) fy′(u) ≥ fy(u), for every u ∈ U , and (ii) fy′(S) ≥ fy(S), for every
S ∈ S. We write y′ � y to denote that y′ dominates y.

Observation 4. Let (x, y) denote a partial cover. Then one can find in polyno-
mial time a maximum vector y′ with respect to x that also dominates y.

Proof. We use an augmenting path algorithm to compute a maximum flow f ′

in Nx starting with fy. The flow f ′ induces the desired vector y′ � y since
saturating an augmenting path from s to t never decreases the flow in edges
exiting s, or in edges entering t. �
Let aug-flow be an efficient algorithm that given a partial cover (x, y), finds
a vector y′ � y that is maximum with respect to x. Note that aug-flow may
change the assignment of lines to rectangles. In terms of the network flow, the
flow of certain edges may decrease, but the sum of flows that enters (exits,
respectively) every rectangle (line, respectively) does not decrease.

4 Rectangle Stabbing with Soft Capacities

In this section we present a 6d-approximation algorithm for soft-drs. The al-
gorithm is based on solving lp-soft, and then rounding the solution. For the
sake of simplicity, the algorithm is presented for the 2-dimensional case (d = 2).

Let ε = 1/6d and let (x∗, y∗) be an optimal solution of lp-soft. We define
H

�= {S | x∗(S) ≥ ε} and L
�= {S | x∗(S) < ε}. Let L = Lh∪Lv denote a partition

of L into horizontal and vertical lines. We partition the horizontal line in Lh

into “contiguous blocks” by accumulating lines in Lh from “left” to “right”
until the sum of fractional values x(S) in the block exceeds ε. We denote the
blocks by Lh

1 , Lh
2 , . . . , Lh

b(h) and the (possibly empty) leftover block by L̃h. By the
construction, ε ≤

∑
S∈Lh

j
x∗(S) < 2ε for every j ≤ b(h) and

∑
S∈L̃h x∗(S) < ε.

The same type of partitioning is applied to the vertical lines in Lv to obtain the
blocks Lv

1, . . . , L
v
b(v) and the leftover block L̃v.

Observation 5. The number of blocks (not including the leftover block) in each
dimension satisfies b(h) ≤ 1

ε ·
∑

S∈Lh x∗(S) and b(v) ≤ 1
ε ·

∑
S∈Lv x∗(S).

Let S∗
h,j and S∗

v,j denote lines of maximum capacity in Lh
j and Lv

j , respectively.

Let L∗ �= {S∗
h,j | 1 ≤ j ≤ b(h)} ∪ {S∗

v,j | 1 ≤ j ≤ b(v)}.

Definition 4. We define the partial cover (x, y) as follows. The support of the
cover is H ∪ L∗. For every S ∈ H and u ∈ U(S), we keep x(S) = x∗(S) and
y(S, u) = y∗(S, u). For every S ∈ L∗ and u ∈ U(S), let B(S) denote the block that
contains S. Then, x(S) =

∑
S′∈B(S) x∗(S′) and y(S, u) =

∑
S′∈B(S) y∗(S′, u).

The remaining components of the solution (x, y) are set to zero.

Note that if S = S∗
h,j and u ∈ S∗

h,j, then y(S∗
h,j, u) covers u to the same extent

that u is covered by lines in Lh
j according to y∗. Hence, rectangles that are

intersected by S∗
h,j are “locally satisfied”. Also notice that

∑
S x(S) =

∑
S x∗(S).

We now prove that (x, y) is a indeed partial cover.

Approximation Algorithms for Capacitated Rectangle Stabbing 25

Claim 2. (x, y) is a partial cover.

Proof. We first show that constraints of type (3) are satisfied. Clearly, this is
true for S �∈ L∗. Consider a line S∗ ∈ L∗, and let B denote the block of lines in
L that contains S∗. For every rectangle u ∈ S∗, the following holds: y(S∗, u) =∑

S′∈B y∗(S′, u) ≤
∑

S′∈B x∗(S′) = x(S∗). Next, we show that constraints of
type (2) are satisfied. This trivially holds for S �∈ H ∪ L∗ since both x(S) = 0,
and y(S, u) = 0. Constraint (2) holds for S ∈ H , since x(S) = x∗(S), and
y(S, u) = y∗(S, u). It remains to consider lines in S∗ ∈ L∗. Let B denote the
block of lines in L that contains S∗. It follows that
∑

u∈S∗ y(S∗, u) =
∑

u∈S∗
∑

S∈B y∗(S, u) ≤
∑

S∈B

∑
u∈S y∗(S, u)

≤
∑

S∈B c(S)x∗(S) ≤ maxS∈B c(S)
∑

S∈B x∗(S) = c(S∗)x(S∗).

where the first inequality follows from the fact that some rectangles may lose
part of their flow, the second inequality is due to the feasibility of (x∗, y∗), and
the third inequality follows from Def. 4. �

Claim 3. The coverage of every rectangle u is greater than (1 − 4dε) in the
partial cover (x, y).

Proof. Consider a rectangle u. We show that, in each dimension, the coverage
of u decreases by less than 4ε due to the transition from y∗ to y. By definition,
coverage by lines in H is preserved. In addition, if a rectangle u intersects all the
lines in a block Lh

j , then the coverage of u by lines in Lh
j is now covered by S∗

h,j .
Namely,

∑
S∈Lh

j
y∗(S, u) = y(S∗

h,j , u). It follows that u may lose coverage only
in the “leftmost” and “rightmost” blocks that u intersects. In each such block,
the coverage of u is bounded by 2ε. Since u is covered in (x∗, y∗), it follows that∑

S y(S, u) > 1 − d · 4ε, and the claim follows. �

Since ε = 1/6d, by Claim 3 we get that each rectangle is 1/3-covered by (x, y).
A cover is obtained by scaling as follows. Let x′(S) = �3x(S)� for every S ∈ S,
and y′(u) = 3y(u) for every u ∈ U . Clearly, every rectangle is covered by (x′, y′).
Moreover, by Obs. 3 an integral y′′ such that (x′, y′′) is a cover can by computed
in polynomial time. It remains to show that (x′, y′′) is a 6d-approximation. It
suffices to show that x′(S) ≤ 6d · x(S), for every S ∈ H ∪ L∗. If x(S) ≥ 1/3
then, x′(S) ≤ 3x(S) + 1 ≤ 6x(S). If x(S) < 1/3, then x′(S) = 1 and x(S) ≥ ε
for every line S ∈ H ∪ L∗. Therefore x′(S) = 1 = 6dε ≤ 6d · x(S), as required.

5 Rectangle Stabbing with Hard Capacities

We present a bi-criteria approximation algorithm for hard-drs that computes
16d-approximate cover that uses at most two copies of each line. The algorithm
is similar to the 6d-approximation algorithm for soft-drs. We first computed
an optimal solution for lp-hard. Afterwards, we set ε = 1

8d and compute H and
L∗ using the same algorithm defined in the previous section. Finally, we take
two copies of each line in H ∪ L∗ and use flow to compute an integral cover.

26 G. Even, D. Rawitz, and S. Shahar

We first show that this a cover. The rounding of the LP-solution yields a
(1 − 4dε)-cover according to Claim 3. We obtain a 1/2-cover simply by setting
ε = 1

8d . Note that x(S) ≤ 1, for every line S, hence two copies are not less than
scaling by two and rounding up. Note that we rely on Obs. 2 to insure that there
is an integral cover using these two copies of each line in the support of x.

The approximation ratio of 16d is proved as follows. Note that x(S) > 0 only
if S ∈ H ∪ L∗. Since we take two copies of lines in H ∪ L∗, it suffices to prove
that |H ∪ L∗| ≤ 8d ·

∑
S∈S x∗(S). Clearly, |H | ≤ 1

ε ·
∑

S∈H x∗(S). Due to the
bound on the number of blocks (Obs. 5) we obtain, |L∗| ≤ 1

ε ·
∑

S∈L x∗(S). It
follows that |H ∪ L∗| ≤ 1

ε ·
∑

S∈S x∗(S), as required.

6 Interval Stabbing with Hard Capacities

In this section we present an 8-approximation algorithm for hard-1rs. The
algorithm augments the positive cover obtained by Claim 3 with ε = 1/4. A
local greedy rule is used to select the line to be added to the partial cover.

6.1 Thirsty Lines and Dams

Throughout this section we consider a partial cover (x, y) such that x is integral
and y is maximum with respect to x.

Definition 5. Let (x, y) be a partial cover such that x is integral and y is maxi-
mum with respect to x. A line S ∈ x is a dam with respect to (x, y) if y remains
maximum with respect to x even if the capacity c(S) is (arbitrarily) increased.
Otherwise, S is thirsty with respect to (x, y).

Note that if S is not saturated (i.e., fy(S) < x(S) · c(S)), then obviously S is
not thirsty, so S is a dam. However, S may be saturated (i.e., fy(S) = c(S)) and
yet not thirsty. Such a case is easily described using the network flow formalism:
the arc (s, S) belongs to a min-cut in Nx but not to every min-cut.

Lemma 1. Let (x, y) be a partial cover such that x is integral and y is maximum
with respect to x. If S ∈ x and S is a dam, then (1) every interval u ∈ S is covered
(i.e., fy(u) = 1), and (2) if u ∈ S and y(S′, u) > 0, then S′ is also a dam.

Proof. Proof of (1). If u is not covered, then an increase in c(S) can be used to
increase y(S, u), contradicting the assumption that S is a dam.

Proof of (2). First, S′ ∈ x since x is integral and y(S′, u) > 0. We show that
if S′ is thirsty, then S is also thirsty. Loosely speaking, we show that increasing
c(S) enables an increase in the flow, since y(S′, u) can be decreased and this
“released” flow can be used to serve another interval. We show this formally by
presenting an augmenting path in the residual graph of Nx after the capacity
of S is increased. Let p be an augmenting path in Nx obtained when c(S′) is
increased (p exists since S′ is thirsty). Obviously, the first arc in p is (s, S′).
Observe that the three arcs (s, S), (S, u), and (u, S′) are in the residual graph of
Nx after c(S) is increased. This follows since: (i) fy(S) is less than the increased

Approximation Algorithms for Capacitated Rectangle Stabbing 27

capacity of S, (ii) fy(S, u) ≤ 1−y(S′, u) < 1 = x(S), and (iii) y(S′, u) > 0. Thus
the path s → S → u → S′ concatenated with p \ (s, S′) is an augmenting path
in the residual of Nx after the capacity of S is increased, as required. �

The following corollary is directly implied by Lemma 1.

Corollary 1. Let (x, y) be a partial cover such that x is integral and y is max-
imum with respect to x. Define: D

�= {S ∈ x | S is a dam} and UD
�= {u ∈ U |

∃S ∈ D such that u ∈ S}. Then, for every u ∈ UD,
∑

S∈D y(S, u) = 1.

Next, we show that if no thirsty lines exist in a positive partial cover, then the
cover is feasible.

Corollary 2. Let (x, y) be a partial cover such that x is integral and y is max-
imum with respect to x. If every interval is positively covered and no line is
thirsty, then (x, y) is a feasible cover.

Proof. Since every interval is positively covered and there are no thirsty lines, it
follows that UD = U , and by Coro. 1, every rectangle is covered. �

6.2 Decomposition into Strips

Let (x, y) be a partial cover, where x is integral and y is maximum with respect
to x. Consider two consecutive dams S1 and S2 (i.e., there is no dam between
S1 and S2). The subproblem induced by S1 and S2 consists of the following
lines and intervals: (i) the vertical lines that are strictly between S1 and S2 and
(ii) the intervals that are contained in the open strip, the boundaries of which
are S1 and S2. We refer to the subproblem induced by two consecutive dams as a
strip and denote it by B = (SB , UB). Note that extreme dams induce marginal
strips that are bounded just from one side.

Definition 6. The residual capacity of a line S ∈ SB in a strip B = (SB , UB)
is defined by cB(S) = min{c(S), |S ∩ UB |}.

Definition 7. Let (x, y) be a partial cover, where x is integral and y is maximum
with respect to x. Let B = (SB , UB) denote a strip with respect to (x, y). The
flow supplied by fy to strip B is defined by fy(B) �=

∑
S∈SB

∑
u∈UB y(S, u). The

deficit in strip B of a partial cover (x, y) is defined by Δy(B) �= |UB | − fy(B).
A strip B is called active if Δy(B) > 0.

Let (x, y) denote a partial cover with an integral x and y that is maximum
with respect to x. Let {Bi}i∈I denote the set of strips induced by the dams
corresponding to (x, y). The following observation uses a “flooding” argument
to show that feasibility follows from lack of active strips.

Observation 6. Δy(Bi) ≤ 0, for every i ∈ I, if and only if (x, y) is feasible.

28 G. Even, D. Rawitz, and S. Shahar

6.3 The Approximation Algorithm

The approximation algorithm for hard-1rs begins like the bi-criteria approxi-
mation algorithm and then applies a new augmentation procedure, called make-
feasible. The algorithm proceeds as follows: (i) Solve lp-hard. (ii) Set ε = 1/4.
Fix x0 to be the indicator function of the set H ∪ L∗. Fix y0 to be the round-
ing of the LP solution as described in Def. 4. (iii) Apply aug-flow(x0, y0) to
compute a maximum flow y′

0 with respect to x0 that dominates y0. (iv) Run
make-feasible(x0, y

′
0) to obtain a cover (xI , yF) in which xI is integral but

yF is fractional. (v) Obtain an integral cover (xI , yI) using a maximum flow
algorithm (Obs. 4).

Algorithm make-feasible iteratively augments the partial cover until a cover
is obtained. Since a new line is added to the cover in each iteration, the output
component x is integral. By Obs. 6, Algorithm make-feasible stops when there
are no active strips. Otherwise, a new line is added to the cover as follows:
(i) pick an active strip B and a line Smax with the largest residual capacity in
B, (ii) add Smax to the partial cover x to obtain x′, and (iii) find a maximum
flow y′ � y with respect to x; by calling aug-flow(x′, y). The algorithm then
recurses with (x′, y′). Throughout this section, the x-component of every partial
cover is integral. To simplify notation, we treat the x-component as the subset
itself. So x′ ← x ∪ {S} means that x′ is the indicator function of the subset
corresponding to x together with {S}.

Algorithm 1. make-feasible(S, U , x, y)
1: Termination condition: If (x, y) is feasible then Return(x, y).
2: Let B = (SB, UB) denote an active strip with respect to (x, y).
3: Find a max-residual-capacity line Smax ← argmax{cB(S) : S ∈ SB \ x}.
4: Add Smax to x: x′ ← x ∪ {Smax}.
5: Augment flow: y′ ← aug-flow(x′, y).
6: Recurse: Return make-feasible(S ,U , x′, y′).

First, we show that Algorithm make-feasible finds a feasible cover if one
exists. Observe that as long as there is an active strip, we add a line Smax to
x. As soon as every strip is not active, the cover is feasible by Obs. 6. Hence, it
remains to prove that Smax is well defined.

Claim 4. If B = (SB , UB) is an active strip, then SB \ x �= ∅.

Proof. We assume that the problem is feasible. Hence (S, y∗) is a feasible cover
and (SB , y∗

B) is a feasible cover of B, where y∗
B is the restriction of y∗ to SB ×UB.

Assume for the sake of contradiction that SB ⊆ x. Since y is maximum with
respect to x, it follows that (x, y) is feasible in B, which means by Obs. 6 that
B is not active, a contradiction. �

The algorithm runs in polynomial time, since there are at most |S| recursive
calls, and the running time of each recursive call is polynomial by Obs. 4.

Approximation Algorithms for Capacitated Rectangle Stabbing 29

Theorem 1. The approximation ratio of the algorithm for hard-1rs is 2
ε = 8.

The proof is omitted for lack of space. The main idea in the proof is that each
line added by Algorithm make-feasible to the partial cover becomes a dam
together with at least one of the original thirsty lines. Since there are no more
than 1

εopt
∗ lines in H ∪ L∗, we reach a total of at most 8opt

∗ lines.

7 Open Problems

We list a few open problems. The hardness of the one-dimensional rectangle
stabbing (soft or hard) is open. An O(d) approximation algorithm for hard-drs

is also open, as well as an O(d) approximation algorithm for weighted soft-drs.
In the full version, we show that weighted hard-drs is set-cover hard.

Gaur et al. [4] presented a d-approximation algorithm for weighted drs that
uses linear programming to reduce the problem to d one-dimensional instances.
Their analysis relies on the integrality of the LP relaxation in the one dimensional
case. Our 2-approximation for weighted soft-1rs does not prove a bound on the
integrality gap. Our 6-approximation algorithm for unweighted soft-1rs proves
that integrality gap of the one-dimensional case is bounded by 6. Hence another
6d-approximation ratio follows by combining a reduction similar to the Gaur et
al. [4] and our 6-approximation algorithm for soft-1rs.

Acknowledgment. We thank Alexander Ageev for pointing out an error in an
earlier version of the paper.

References

1. Wolsey, L.A.: An analysis of the greedy algorithm for the submodular set covering
problem. Combinatorica 2 (1982) 385–393

2. Chuzhoy, J., Naor, J.: Covering problems with hard capacities. In: 43nd IEEE
Symposium on Foundations of Computer Science. (2002) 481–489

3. Guha, S., Hassin, R., Khuller, S., Or, E.: Capacitated vertex covering. Journal of
Algorithms 48(1) (2003) 257–270

4. Gaur, D.R., Ibaraki, T., Krishnamurti, R.: Constant ratio approximation algorithms
for the rectangle stabbing problem and the rectilinear partitioning problem. Journal
of Algorithms 43 (2002) 138–152

5. Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Academic Press,
New York (1980)

6. Hassin, R., Megiddo, N.: Approximation algorithms for hitting objects with straight
lines. Discrete Applied Mathematics 30(1) (1991) 29–42

7. Bar-Ilan, J., Kortsarz, G., Peleg, D.: Generalized submodular cover problems and
applications. Theoretical Computer Science 250 (2001) 179–200

8. Gandhi, R., Halperin, E., Khuller, S., Kortsarz, G., Srinivasan, A.: An improved
approximation algorithm for vertex cover with hard capacities. In: 30th Annual
International Colloquium on Automata, Languages and Programming. Volume 2719
of LNCS. (2003) 164–175

	Introduction
	Interval Stabbing with Soft Capacities
	Fractional Rectangle Stabbing
	LP Formulation
	A Network Flow Formulation

	Rectangle Stabbing with Soft Capacities
	Rectangle Stabbing with Hard Capacities
	Interval Stabbing with Hard Capacities
	Thirsty Lines and Dams
	Decomposition into Strips
	The Approximation Algorithm

	Open Problems

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

