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Abstract. In this paper we construct two distributed algorithms for
computing approximations of a largest matching and a minimum dom-
inating set in planar graphs on n vertices. The approximation ratio in
both cases approaches one with n tending to infinity and the number of
synchronous communication rounds is poly-logarithmic in n. Our algo-
rithms are purely deterministic.

1 Introduction

The distributed model of computation has gained a lot of attention after the pio-
neering work by Awerbuch et. al. [AGLP89] and many others in the mid eighties
of the last century. The most fundamental challenge in distributed networks is
how the local structure of a network impacts its global properties. This leads to
a completely different computational paradigm than the sequential model or the
parallel PRAM model. Not surprisingly many problems which admit efficient se-
quential protocols, as maximum matching or maximal independent set, to name
a few, require a completely new algorithmic approach and yield interesting open
problems in discrete mathematics.

The model considered in this paper was introduced by Linial in [L92] and
named LOCAL in [P00]. In this model, the network is represented by an undi-
rected graph, each vertex of which corresponds to a processor, and each edge
corresponds to a communication channel between two processors. The network
is synchronized and computations proceed in discrete rounds. In a single round
a vertex can send and receive messages to and from its neighbors, and per-
form some local computations. Neither the amount of local computations nor
the lengths of messages are restricted in any way. In addition, we assume that
vertices have unique identifiers. There are several measures of efficiency of dis-
tributed protocols but we will concentrate on its time complexity, that is, a
maximum number of rounds needed to find a solution. An algorithm is efficient
if its time complexity is poly-logarithmic in n.
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Very few classical graph-theoretic problems admit efficient distributed algo-
rithms. For example, even the maximal independent set problem, for which an
efficient deterministic PRAM algorithm exists [L86], still has an unknown distrib-
uted complexity. Another approach towards a better understanding of a compu-
tational model, is to study the approximability of problems in that model. This
has motivated intensive research on approximation algorithms in the distributed
model. For the state of the art of distributed approximation we refer the reader
to an excellent survey by Elkin [E04].

In this paper we design distributed algorithms for planar graphs and exploit
the fact the planar graphs are minor monotone. In a given graph G = (V, E)
every set of pairwise disjoint edges constitutes a matching. Let β(G) denote the
cardinality of a largest matching in G. The maximum matching problem is to
find a matching M in graph G of size β(G). A dominating set in a graph G
is a subset D of vertices such that for every vertex v /∈ D a neighbor u of v
belongs to D. By γ(G) we will denote the cardinality of a smallest dominating
set in G, also known as the domination number . The minimum dominating set
problem is to find a dominating set D in graph G of size γ(G). We propose
two purely deterministic distributed algorithms with the poly-logarithmic time
complexity. For every planar graph on n vertices, our first algorithm finds a
matching M such that |M | ≥ (1 − O( 1

log n ))β(G) (see Theorem 1). The second
algorithm works for planar graphs that do not contain K2,log n as a subgraph.
In every such graph on n vertices it finds a dominating set D such that |D| ≤
(1+O( 1

log n ))γ(G) (see Theorem 2). Although this technical assumption certainly
restricts the applicability of the method, the subclass of K2,log n-free planar
graphs is quite large and contains, for example, outer-planar graphs (they do
not contain K2,3).

To give an overview of previous research, let us mention that there exists no
efficient distributed protocol for finding a maximum matching or a minimum
dominating set even when restricted to very particular families of networks. As
shown by Linial in [L92], finding a maximum matching in a cycle on n ver-
tices requires Ω(n) rounds and the same bound holds for minimum dominating
set. More recently, it has been shown in [KMW04] that the number of rounds
required in order to achieve a constant or even only a poly-logarithmic approx-
imation ratio for constructing an inclusion maximal matching and a minimum
dominating set is at least Ω(

√
log n/ log log n) or Ω(log Δ/ log log Δ), where Δ

denotes the maximum degree of the graph.
A maximal matching problem admits a O(log n) time randomized distributed

algorithm ( see, for example [L86]). Later, in [HKP99] a deterministic, poly-
logarithmic time algorithm for this problem was given. The techniques from
[HKP99] were applied in [CHS04] and [CHSz04] to give a 2/3-approximation for
maximum matching in general graphs. Moreover, based on these ideas, in [CH03]
a (1 − ε)-approximation (for any fixed ε > 0) for bipartite graphs was derived.

For the minimum dominating set problem, Kutten and Peleg [KP95] gave an
efficient distributed algorithm which finds a dominating set of size at most n/2 in
general graphs. The first non-trivial approximation ratio, O(log Δ) was achieved
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in [JRS01] by a randomized method. Further, in [KW03] a O(kΔ2/k log Δ)-
approximation in constant time was obtained using the LP relaxation techniques
with randomization. Similar, randomized result for the connected dominating set
can be found in [DPRS03]. In contrast, our results are purely deterministic and
are among only few examples of distributed protocols where the poly-logarithmic
time complexity with a very good approximation ratio is achieved without the
use of random bits.

Approximations of weighted versions of the maximum matching and minimum
dominating set problems were recently studied in [CH04]. Our proof techniques
rely on a clustering procedure introduced in [CH04]. We further develop the
method in this work and hope that it might be applied for other problems. By
a cluster we mean a subset of the vertex set that induces a connected subgraph.
The clustering procedure partitions the nodes of the input graph into clusters. If
the diameter of a cluster is poly-logarithmic in n, then, in the LOCAL model, we
can compute every function efficiently. Therefore, having the vertices grouped
into clusters we find the maximum matching in every cluster. The union of the
matchings yields a matching of size approximating β(G). The situation is similar
but more complicated in the case of the minimum dominating set. We first make
sure that all vertices of large degree are included in the dominating set. Then the
clustering is performed and a set of vertices dominating the remaining vertices
is constructed within the clusters.

In both problems the number of rounds of our algorithms is a poly-logarithmic
function determined by the diameters of the clusters. At the same time, we
control the number of edges connecting different clusters and based on that value
the approximation ratio is derived. For both algorithms, better approximation
ratios can be achieved at the expense of higher running times.

The rest of the paper is organized as follows. In Section 2, we present the
clustering algorithm. Sections 3 and 4 contain the description and analysis of
the approximation algorithms for the maximum matching and the minimum
dominating set, respectively.

2 Clustering Algorithm

In this section, we give a clustering algorithm which will be applied to find
matchings as well as dominating sets. We will use the low-degree decomposition
of a planar graph from [CH04].

Definition 1. A low-degree decomposition of a planar graph G = (V, E) is a
partition of V into K independent sets V1, . . . , VK that satisfies two conditions:

1. K = O(log |V |).
2. For every i = 1, . . . , K − 1, if v ∈ Vi then deg(v,

⋃K
l=i+1 Vl) ≤ 6.

It is not difficult to prove that every planar graph admits a low-degree decom-
position. In addition, as shown in [CH04], such a decomposition can be found
efficiently by a distributed algorithm.
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Decomposition

Input: Planar graph G, number n such that |V (G)| ≤ n.
Output: Low-degree decomposition V1, . . . , Vlogk n of G with k = 36/35.

1. Let U := V (G), i := 1.
2. Iterate log36/35 n times:

(a) Let A be the set of vertices in G[U ] of degree at most 6.
(b) Use the Cole-Vishkin algorithm from [CV86] to find a maximal indepen-

dent set I in the subgraph of G[U ] induced by A.
(c) Vi := I, i := i + 1, U := U \ I.

Lemma 1. [CH04] Let G = (V, E) be a planar graph such that the identifiers
of V are in {1, . . . , n}. Then the procedure Decomposition finds a low-degree
decomposition of G in O(log∗ n log n) rounds.

Our approximation algorithms will use a similar clustering strategy as the one
in [CH04]. In addition to procedure Clustering we introduce a subprocedure
SmallClusters. The latter computes clusters of a constant diameter and in
each cluster finds a set of vertex disjoint stars with special properties that can
be used by Clustering to compute ”big clusters”. Thanks to this approach we
save on the time complexity for constructing the clusters (see Lemma 4).

SmallClusters

Input: Planar graph G = (V, E) with weights on edges ω : E �→ R+ and number
n such that |V | ≤ n and ID(v) ≤ n.
Output: Set of vertex-disjoint stars in G.

1. H := G.
2. Iterate log 10/ log 12

11 times:
(a) Call Decomposition to find a partition W1, . . . , Wlog36 n of H . In addi-

tion, let Zi :=
⋃

l>i Wl.
(b) For every vertex w, in parallel, if w ∈ Wi and N(w) ∩ Zi �= ∅ then:

– Let u(w) be a vertex in N(w) ∩ Zi such that

ω({w, u(w)}) = max
v∈N(w)∩Zi

ω({w, v}).

– Add {w, u(w)} to the auxiliary graph F .
(c) Each connected component of F is a tree of diameter O(log n). For each

tree T in F , in parallel, find a set of disjoint stars S1, S2, . . . , in T of the
maximum weight.

(d) Modify H as follows:
– In each star, contract vertices to create a new vertex. Let V (H)

consist of new vertices and those vertices which were not contracted.
– For every v, w ∈ V (H) set the weight of {v, w} to be the sum of

weights of edges between vertices contracted to v and vertices con-
tracted to w.
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3. If V (H) = {v1, ..., vM} then for each vi let Vi be the set of vertices contracted
to vi in all of the above iterations.

4. In each G[Vi], in parallel, compute a set of disjoint stars Q
(i)
1 , . . . , Q

(i)
M(i) of

the largest possible weight.
5. Return the set of stars Q

(i)
j , for i = 1, . . . , M ; j = 1, . . . , M(i).

Let κ be the supremum of all real numbers r such that every weighted planar
graph G contains a set of vertex-disjoint stars with the total weight of at least
an r fraction of the weight of G. We need the following lemma.

Lemma 2. κ ≥ 1
5 .

Proof. A star forest is a forest in which every connected component is a star
and the star arboricity of a graph G, st(G), is the minimum number of star
forests that partition E(G). Hakimi et al. [HMS96] showed that if G is planar
then st(G) ≤ 5 and so there is a set of vertex-disjoint stars with weight of at
least ω(G)/5 where ω(G) =

∑
e∈E ω(e).

Lemma 3. Let Q1, . . . , QL be the disjoint stars in G obtained from Small-

Clusters. Then
ω(

⋃

i

Qi) ≥ 9
10

κω(G).

Proof. Let σi be the maximum diameter of a subgraph of G which corresponds
to a vertex of H in the ith iteration. Then σi ≤ 3σi−1 + 2 with σ0 = 0 which
gives σi < 2 · 3i and so σk < 2 · 327 for k = log 10/ log 12

11 . Therefore each sub-
graph G[Vi] in step 4 has a constant diameter and its optimal set of stars can
be computed in a constant number of rounds. Let Pi be the sum of weights
of edges in H in the ith iteration. In the next iteration w(F ) is at least Pi/6
and the stars S1, S2, . . . , in each tree of F have the weight of at least ω(T )/2.
Consequently, the weight of the graph in the (i + 1)st iteration, Pi+1, is at most
11
12Pi and P0 = ω(G). This gives Pk ≤ 1

10ω(G) for k = log 10/ log 12
11 . By Lemma

2, the weight of stars in G[Vi] is larger then 9
10κω(G).

The procedure SmallClusters is now used in Clustering given below.

Clustering

Input: Planar graph G = (V, E) and number n such that |V | ≤ n and ID(v) ≤
n. Number c ≥ 1.
Output: Partition of V into L sets V1, . . . , VL.

1. H := G and let ω(e) := 1 for any e ∈ E(H).
2. Iterate c log log n/ log 1

1− 9
10 κ

times:
(a) Call SmallClusters to find set of disjoint stars S1, S2, . . . in H .
(b) Modify H as in step 2(d) of SmallClusters
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3. If V (H) = {v1, ..., vL} then for each vi let Vi be the set of vertices contracted
to vi in all of the above iterations.

4. Return sets V1, . . . , VL.

We summarize the Clustering in the next lemma.

Lemma 4. Let V1, . . . , VL be the clusters in G obtained from Clustering.
Then

1. For every i, G[Vi] is a subgraph of diameter O(logd n), where

d = c log 3/ log
1

1 − 9
10κ

< 5.54c.

2. The number of edges connecting different clusters is O(|E(G)|/ logc n).
3. Clustering can be performed in O(log log n log∗ n log1+d n) rounds.

Proof. Analogously to the proof of Lemma 3 we have σi < 2 · 3i and so
σk < 2 logd n for k = c log log n/ log 1

1−κ 9
10

. Then, for the second part, we have

Pi+1 ≤ (1 − κ 9
10 )Pi and P0 = |E(G)|, and so Pk = O(|E(G)|/ logc n). Finally,

the third part of the lemma follows from the fact that we have O(log log n) it-
erations of step 2 and in each iteration we invoke SmallClusters that calls
the Decomposition a constant number of times. Decomposition, in turn,
needs O(log∗ n log n) rounds. Since the diameter of each cluster (which corre-
sponds to a vertex of H) is O(logd n), Clustering needs O(log∗ n log1+d n)
rounds.

3 Maximum Matching

In this section, we will give a distributed algorithm which approximates a max-
imum matching in a planar graph G. The algorithm consists of two main parts.
First we modify the graph G to obtain a new graph Ḡ and then we invoke the
clustering algorithm for Ḡ and find a maximum matching locally in each clus-
ter. Recall that the total number of edges connecting different clusters is small
in comparison with the number of vertices in the graph. However, a maximum
matching in a planar graph can be much smaller than the number of vertices
and so if clustering is invoked in such a graph its result would not yield a good
approximation. The preprocessing phase addresses this issue. It obtains from a
graph G a subgraph Ḡ with the property that β(G) = β(Ḡ) = Ω(|V (Ḡ)|).

The first phase of the algorithm, the preprocessing, eliminates (by deleting
some of the vertices) two special subgraphs of G: the stars and the double-stars.
We say that G contains a k-star if for some v, v1, . . . , vk ∈ V (G), {v, vi} ∈ E(G)
for every i, and degG(vi) = 1 for every i. In a similar way, we say that G
contains a k-double-star if for some u, v, v1, . . . , vk ∈ V (G), {u, vi} ∈ E(G) and
{v, vi} ∈ E(G) for every i, and degG(vi) = 2 for every i. Every such structure
contributes at most two edges to any maximum matching in G. In the next two
lemmas we shall show that if H contains neither 2-stars nor 3-double-stars then
β(H) = Ω(|V (H)|).
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Lemma 5. Let H = (V, E) be a planar graph and let τ = |{v ∈ V : deg(v) ≥ 3}|.
Then β(H) ≥ (τ + 4)/6.

Proof. Let M be a matching in H with |M | = β(H). Let V1 be the set of M -
saturated vertices. Then, since M is a maximum matching, V \ V1 induces the
empty subgraph of H . Let V2 := (V \ V1) ∩ {v ∈ V : deg(v) ≥ 3}. Consider the
bipartite graph F = H [V1, V2]. As F is planar, |E(F )| ≤ 2(|V1| + |V2|) − 4. On
the other hand, 3|V2| ≤ |E(F )|. Thus |V2| + 4 ≤ 2|V1|. However, |V1| = 2β(H)
and |V2| ≥ τ − 2β(H) yields β(H) ≥ (τ + 4)/6.

Lemma 6. Let G = (V, E) be a planar graph with n = |V | and no isolated
vertices. If G contains neither 2-stars nor 3-double-stars then β(G) = Ω(n).

Proof (Sketch). By Lemma 5 we may concentrate only on the set W = {v ∈
V (G) : deg(v) = 2} and the case when, say |W | ≥ 14n/15. Then, for a subset
W ′ ⊆ W such that if w ∈ W ′ then deg(w, W ) ≥ 1, using planarity and the
assumption about the absence of 2-stars and 3-double-stars, we have |W ′| ≥
|W |/2 and β(G) ≥ |W ′|/3 = 7n/45.

Preprocess

Input: Planar graph G.
Output: Planar graph Ḡ with no 2-stars and no 3-double stars.

1. For every vertex v, in parallel, find the largest k-star v, v1, . . . , vk with the
center in v. If k > 1 then delete v2, . . . , vk.

2. For every pair of vertices u, v which are at distance two, in parallel, find the
largest k-double-star u, v, v1, . . . , vk with centers in u and v. If k > 2 then
delete v3, . . . , vk.

3. Return the new graph Ḡ.

Clearly Ḡ contains neither 2-stars nor 3-double-stars, as in the second step we
did not create any vertices of degree one. Thus, by Lemma 6, β(Ḡ) = Ω(|V (Ḡ)|).
In addition, it is easy to see that

β(Ḡ) = β(G). (1)

We can now describe our approximation algorithm.

ApproxMaxMatching

Input: Planar graph G.
Output: Matching M in G.

1. Call Preprocess to obtain Ḡ.
2. Call Clustering with c = 1 to partition V (Ḡ) into clusters V1, . . . , VL.
3. For every i, in parallel, find a maximum matching Mi in Ḡ[Vi].
4. Return M := M1 ∪ M2 ∪ · · · ∪ ML.
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Theorem 1. ApproxMaxMatching finds in a planar graph G on n vertices
a matching M with

|M | ≥ (1 − O(1/ log n)) β(G).

The algorithm runs in O(log log n log∗ n log1+d n) rounds, where d = 5.54.

Proof. Consider a maximum matching M∗ in Ḡ and let M∗
i be the subset of

M∗ which contains all edges with both endpoints in Vi. In addition, let C be the
set of edges that connect different clusters. We have

|M∗| ≤ |C| +
L∑

i=1

|M∗
i | ≤ |C| +

L∑

i=1

|Mi| = |C| + |M |.

By Lemma 4 (part 2), |C| ≤ |V (Ḡ)|/ log n which in view of Lemma 6 gives
|C| ≤ O(β(Ḡ))/ log n. Consequently,

|M | ≥ β(Ḡ) − |C| = β(Ḡ)(1 − O(1/ log n))

which by (1) gives |M | ≥ (1 − O(1/ logn))β(G).

4 Minimum Dominating Set

We will now turn our attention to the minimum dominating set problem. We
assume that G = (V, E) is a planar graph on n vertices such that for any two
vertices u, v ∈ V |N(u) ∩ N(v)| ≤ log n. Again the algorithm has two phases.
In the first phase we add to a dominating set vertices with degrees of at least
log2 n. Then we consider two sets of vertices. Let VSN be the set of vertices of
degree smaller than log2 n which do not have neighbors of degree at least log2 n,
that is

VSN = {v ∈ V : ∀u∈N [v]deg(u) < log2 n}.

Let VBN ⊂ V \ VSN be the set of vertices which have degree smaller than log2 n
but have a neighbor in VSN , that is

VBN = {v ∈ V \ VSN : deg(v) < log2 n, ∃u∈VSN {u, v} ∈ E}.

In the second phase of the algorithm we shall find a clustering using Clustering

in the graph induced by VSN ∪ VBN and locally, in each cluster Vi, we will find
a set of the smallest size which dominates Vi ∩ VSN .

ApproxMinDS

Input: Planar graph G = (V, E).
Output: A dominating set D in G.

1. Let D := ∅.
2. For every vertex v, in parallel, if deg(v) ≥ log2 n then add v to D.
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3. Let G′ = G[VBN ∪ VSN ]. Call Clustering with constant c = 5 to partition
V (G′) into clusters V1, . . . , VL. Let V ′

i be the set of vertices v in V (G′) \ Vi

such that for some u ∈ Vi, {v, u} ∈ E and let V ′′
i be the set of vertices v ∈ Vi

such that for some u ∈ V ′
i , {v, u} ∈ E.

4. For every i = 1, . . . , L, in parallel, find a smallest set D′
i ⊆ Vi which domi-

nates (VSN ∩ Vi) \ V ′′
i . Let Di := D′

i ∪ V ′
i .

5. For every i = 1, . . . , L, in parallel, add all vertices from Di to D.
6. Return D.

In the lemma below we analyze the first phase of the algorithm where vertices
of degree at least log2 n are added to D.

Lemma 7. Let G = (V, E) be a planar graph such that for any two distinct
vertices u, v ∈ V , |N(u) ∩ N(v)| ≤ log n and let B = {v ∈ V : deg(v) ≥ log2 n}.
If D∗ is a dominating set in G then |B \ D∗| = O (|D∗|/ logn) .

Proof. We will show that |D∗| = Ω(|B \ D∗| log n). For that we first prove that
there is a subset {w1, . . . , wk} ⊆ B \ D∗ of at least k = |B \ D∗|/10 vertices
such that each wi has a set Si ⊆ (N(wi) \ {w1, . . . , wk}) of log2 n

4 neighbors and
Si ∩ Sj = ∅ whenever i �= j. Indeed, note that as G[B \ D∗] is planar there is an
independent set I in G[B \ D∗] of at least 2k vertices. Take w1 ∈ I arbitrarily
and let S1 be a set of log2 n

4 neighbors of w1. Now suppose that {w1, . . . , wl} have
been selected with l < k. Consider the bipartite subgraph of G with bipartition
W = I \ {w1, . . . , wl} and S =

⋃l
i=1 Si. Then G[W, S] is a planar graph and so

|E(W, S)|≤2(|W |+ |S|)−4=2
(

|W |+ l log2 n

4

)
−4 < 2

(
|W | + |W | log2 n

4

)
−4.

Consequently,

|E(W, V \ S)| > log2 n|W | − 2
(

|W | + |W | log2 n

4

)
+ 4 =

|W |
(

log2 n

2
− 2

)
+ 4 ≥ |W | log2 n

4

and we can select wl+1 from W which is connected with at least log2 n/4 vertices
from V \ S.

Let (w1, S1), . . . , (wk, Sk) be as above. Let D be a subset of V \ {w1, . . . , wk}
which dominates S =

⋃k
i=1 Si in G. We claim that |D| = Ω(k log n). Consider

D′ = D ∩S. If |D′| ≥ k log n then we are done. Otherwise, let S′
i = Si \D. Since

|S| − |D′| ≥ k
(

log2 n
4 − log n

)
at least k/2 of wi’s have |S′

i| ≥ log2 n
8 . Otherwise

k∑

i=1

|S′
i| <

k

2

(
log2 n

8
+

log2 n

4

)
< |S| − |D′|
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which is not possible. Without loss of generality, we can assume that for i =
1 . . . , k/2, |S′

i| = log2 n
8 . Note that

⋃
i≤k/2 S′

i ∩ D = ∅. Consider the auxiliary
bipartite graph H = (V1, V2) obtained by setting V1 = D and contracting each
S′

i to one vertex and adding it to V2. Put an edge between v ∈ V1 and S′
i ∈ V2

if v dominates at least one vertex from S′
i in G. First observe that H is planar

as all edges correspond to edges in G and so a subdivision of K3,3 or K5 in H
will yield the subdivision of K3,3 or K5 in G. Thus |E(H)| ≤ 2(|V1| + |V2|) −
4 = 2

(
k
2 + |D|

)
− 4. Degree of each S′

i in H is at least log n
8 as if for some i,

there are less than log n
8 vertices dominating S′

i then one of them has more than
8|S′

i|/ log n = log n neighbors in S′
i and so more than log n common neighbors

with wi. Thus,
k log n

8
≤ |E(H)| ≤ k + 2|D| − 4

and so

|D∗| ≥ |D| ≥
(

log n

8
− 1

)
k

2
+ 2 = Ω(k log n) = Ω(|B \ D∗| log n).

In the next lemma, we analyze the second phase.

Lemma 8. Let G = (V, E) be a planar graph and let D′ =
⋃L

i=1 Di be the union
of sets obtained by ApproxMinDS in step four. Let D∗

SN be a set of the smallest
size which dominates VSN in G . Then |D′| ≤ (1 + O (1/ logn)) |D∗

SN |.

Proof. First note that D∗
SN ⊆ VSN ∪VBN . Since every vertex in VSN ∪VBN has

degree of at most log2 n we have

|D∗
SN | ≥ |VSN |/ log2 n and |VBN | ≤ |VSN | log2 n.

On the other hand, by Lemma 4, the number of edges connecting different clus-
ters eclusters is at most

|E(G[VSN ∪ VBN ])|/ log5 n < 3(log2 n + 1)|VSN |/ log5 n ≤

3 log2 n(log2 n + 1)|D∗
SN |/ log5 n = O(|D∗

SN |/ log n).

Thus
eclusters = O(|D∗

SN |/ logn). (2)

We claim that
|D′| ≤ |D∗

SN | + 2eclusters. (3)

Indeed, vertices from D∗
SN ∩ Vi dominate all vertices from (VSN ∩ Vi) \ V ′′

i as
any vertex in the latter set has all of its neighbors in Vi. Thus

L∑

i=1

|D′
i| ≤

L∑

i=1

|D∗
SN ∩ Vi| = |D∗

SN |,
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and so

|D′| ≤
L∑

i=1

(|D′
i| + |V ′

i |) ≤ |D∗
SN | +

L∑

i=1

|V ′
i | ≤ |D∗

SN | + 2eclusters

which verifies (3). Finally, by (3) and (2),

|D′| ≤ (1 + O (1/ logn)) |D∗
SN |.

We can now summarize the performance of ApproxMinDS.

Theorem 2. Let G = (V, E) be a planar graph on n vertices such that for any
two distinct vertices u, v, |N(u) ∩ N(v)| ≤ log n. Then ApproxMinDS finds a
dominating set D in G with

|D| ≤ (1 + O(1/ log n))γ(G).

Procedure ApproxMinDS runs in O(log log n log∗ n log1+d n) rounds, where
d = 27.7.

Proof. To see that D is a dominating set note that after the second step of Ap-

proxMinDS all vertices with degree of at least log2 n or which have a neighbor
of such a degree are dominated by D. Therefore, only vertices from VSN are not
dominated at this moment. However Di := D′

i ∪ V ′
i dominates all vertices in

VSN ∩ Vi and so D is a dominating set in G. Now let D∗ be a dominating set
in G of the minimum size and, as in Lemma 7, let B = {v : deg(v) ≥ log2 n}.
We have D = B ∪ D′ where D′ =

⋃L
i=1 Di and so |D| ≤ |B| + |D′|. By virtue of

Lemma 7,

|B| = |B ∩ D∗| + |B \ D∗| = |D∗ ∩ B| + O

(
|D∗|
log n

)
.

In addition, |D∗
SN | ≤ |D∗ ∩S| as every vertex in VSN can be dominated only by

vertices of degree less than log2 n. Consequently, be Lemma 8,

|D′| ≤ (1 + O (1/ logn)) |D∗
SN | ≤ (1 + O (1/ logn)) |D∗ ∩ S|.

Thus

|D| ≤ |D∗∩B|+O

(
|D∗|
log n

)
+(1 + O (1/ logn)) |D∗∩S| = (1 + O (1/ logn)) |D∗|.

Finally, by Lemma 4, the number of rounds is O(log log n log∗ n log1+d n).
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