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Abstract. We consider the problem of sharing the cost of scheduling n jobs
on m parallel machines among a set of agents. In our setting, each agent owns
one job and the cost is given by the makespan of the computed assignment. We
focus on α-budget-balanced cross-monotonic cost-sharing methods since
they guarantee the two substantial mechanism properties α-budget-balance and
group-strategyproofness and provide fair cost-shares. For identical jobs on related
machines and for arbitrary jobs on identical machines, we give (m + 1)/(2m)-
budget-balanced cross-monotonic cost-sharing methods and show that this is the
best approximation possible. As our major result, we prove that the approxima-
tion factor for cross-monotonic cost-sharing methods is unbounded for arbitrary
jobs and related machines. We therefore develop a cost-sharing method in the
(m + 1)/(2m)-core, a weaker but also fair solution concept. We close with a
strategyproof mechanism for the model of arbitrary jobs and related machines
that recovers at least 3/5 of the cost. All given solutions can be computed in
polynomial time.

1 Introduction

Motivation and Framework. We consider the scenario, in which a service provider
owns a set of machines and receives requests from agents to execute their jobs. Each
agent has a non-publicly observable preference for his job to be processed. He submits
a bid to the service provider that indicates the amount of money he is willing to pay.
If his job is processed, he has to make a payment to the service provider. We refer to
a payment as cost-share. The utility of an agent expresses his valuation of receiving
the service at a certain cost-share. The aim of an agent is to maximize his utility. We
assume that agents are selfish. Therefore the provider can generally not rely on receiving
truthful bids, i.e. bids that equal the private preferences.

In our model, the provider’s cost of assigning jobs to his machines is given by the
makespan, i.e. the time needed until all machines have processed their assigned jobs.
The provider’s problem is to determine the set of served agents, their cost-shares, and a
valid assignment for the served agents. He would like to recover as much of the cost as
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possible. Furthermore, he aims to minimize the makespan for reasons of efficiency and
he wants to prevent being manipulated by the agents. To be practicable, his problem has
to be computable in polynomial time. Since his scheduling problem is NP -hard in gen-
eral, he has to apply approximation algorithms. The proposed scenario is of particular
importance for commercial computing centers as well as for the evolving commercial
grid computing offerings.

The problem of scheduling a set of n jobs on a set of m parallel machines with
the objective of minimizing the makespan is an extensively studied problem. The most
commonly used models are the models of related and unrelated machines. In the model
of related machines, the completion time of a job on a machine does only depend on
its workload and on the speed of the machine, where in the model of unrelated ma-
chines, machines have player-specific completion times. Recently, these models have
been considered in the context of game theory. In this branch of research, there is no
central authority that assigns the jobs, but selfish agents themselves assign their jobs
to machines. The objective is to obtain an assignment in Nash equilibrium in which
no agent can profit by assigning his job to another machine, given that all other agents
leave the assignment of their jobs unchanged.

We recall the provider’s problem, which is to determine a set of served agents, their
cost-shares, and an assignment for the set of served agents. We can utilize assignment
algorithms to compute the assignment but need different tools for determining the set
of service-receiving agents and their cost-shares.

The theory of mechanism design proposes cost-sharing mechanisms that provide a
solution to the problem of choosing the set of served agents and their payments. These
mechanisms apply cost-sharing methods to determine the cost-shares. Two important
fairness properties of cost-sharing methods are cross-monotonicity and the core prop-
erty. Cross-monotonic cost-sharing methods require that the cost-share of an agent can
only decrease if more agents receive the service. The weaker core property assures, that
a coalition is always charged not more than the optimal cost of exclusively assigning
the jobs of the coalition. This implies that no coalition is overcharged. Furthermore,
a cost-sharing method can be α-budget-balanced, which guarantees that the service
provider covers an α-fraction of his cost and assures the serviced agents that their
collective cost-share is not larger than the cost of an optimal solution. If it addition-
ally satisfies the core-property, we say that it is in the α-core. Significant properties of
cost-sharing mechanisms are strategyproofness and group-strategyproofness, demand-
ing that an agent or a group of agents can not improve their utility by submitting un-
truthful bids. This keeps them from manipulating the service provider. Cross-monotonic
cost-sharing methods play a very important role in the design of cost-sharing mecha-
nism, since they can be applied to design group-strategyproof mechanisms [25, 18].

Contribution and Significance. The main contributions of this paper are results on
cost-sharing methods that are both α-budget-balanced and cross-monotonic. To the
best of our knowledge, this paper is the first to introduce cross-monotonic cost-sharing
methods for scheduling jobs on parallel machines. We prove that cross-monotonic cost-
sharing methods that are α-budget-balanced do not exist for α > (m + 1)/(2m), not
even for identical jobs and machines, and give cross-monotonic methods with factor
α = (m+1)/(2m) for arbitrary jobs and identical machines or identical jobs and related
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machines. For arbitrary jobs and related machines, cross-monotonicity is impracticable.
Our results show, that it is impossible to obtain cross-monotonic cost-sharing methods
that recover more than a 1/d-fraction of the cost, and that it is possible to recover a
1/(2d)-fraction, where d is the number of different workloads.

In order to achieve a better approximation, we design a weaker but also fair cost-
sharing method that is in the (m + 1)/(2m)-core. In addition, we propose a strate-
gyproof mechanism that recovers at least 3/5 of the cost and makes no agent pay more
than if his job were solely processed. All proposed methods run in polynomial time and
compute Nash equilibria.

Related Work. The assignment problem for the model of unrelated [30, 22, 16] and
related [8, 10, 12, 14, 15] machines has been extensively studied in the past. We focus
on the model of related machines. Hochbaum and Shmoys [15] give a PTAS for this
model. In this paper, we frequently apply the LPT algorithm proposed by Graham [12].
LPT is optimal for identical jobs, achieves an approximation ratio of 4/3− 1/(3m) for
identical machines [12] and an approximation ratio of 5/3 for related machines [9].
It is explained in Section 2. For results on computing Nash equilibria, we refer to the
surveys of Gairing et al. [11] and Czumaj [4].

Cost-sharing mechanisms have mainly been designed for multicast [7, 6, 1], set cover
[5], facility location [5, 27, 23], Steiner trees [19, 18], Steiner forests [20, 21], multicom-
modity rent-or-buy [3], and single-source rent-or-buy [27, 13]. Penna and Ventre [28]
study algorithmic properties of cost-sharing mechanisms that among other properties
satisfy group strategyproofness and budget-balance.

Cross-monotonic cost-sharing methods have been investigated for facility location
[27, 23], single-source rent-or-buy [27, 13], and Steiner trees and forests [19, 18, 20].
Impossibility results are given by Immorlica et al. [17]. Moulin and Shenker [25] study
the relations between group-strategyproofness and cross-monotonicity. One of their
central results is a mechanism that is group-strategyproof if it applies a cross-monotonic
cost-sharing method. The core is a well studied solution concept that stems from coali-
tional games with transferable payoffs and has for example been considered by
Shapley [29].

Results on scheduling in the mechanism design context exist for other scheduling
models. With regard to the fairness concept of the Shapley value, Mishra et al. [24]
investigate the case in which there is only one server that can serve only one job at
a time. Nisan and Ronen [26] consider unrelated parallel machines. In contrast to our
model, machines are owned by agents that submit bids on execution times. They give
a strategyproof mechanism that computes an assignment with makespan smaller than
m times the optimal makespan and conjecture that this is the best possible. They prove
that there is no strategyproof mechanism that computes an assignment with makespan
smaller than 2 times the optimal makespan. Archer and Tardos [2] consider the scenario
in which agents own related machines and give a strategyproof mechanism whose com-
puted assignment yields a makespan that is smaller than 3 times the optimal makespan.

Road Map. Section 2 gives the basic definitions from mechanism design and defines the
scheduling problem. Our results on cross-monotonicity are given in Section 3. Finally,
Section 4 mainly focuses on results for the core and gives a strategyproof mechanism.
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2 Definitions

Let N be the set of potential customers with |N | = n. The set of machines owned by
the service provider is denoted by M . Agent i ∈ N has a private preference vi ∈ R≥0
for his job to be processed. If his job is processed at a certain cost-share xi ∈ R≥0 his
utility is defined as ui = vi − xi. Otherwise, his cost-share and his utility are zero.
In his request of being served, he submits a bid bi that corresponds to the amount of
money he is willing to pay. Since he is guided by self-interest, he chooses his bid such
as to maximize his utility. The provider experiences a certain cost by scheduling a set of
jobs. We assume that this cost is given by the makespan as defined in Section 2.2. His
problem is to determine a set of served agents U ⊆ N , their cost-shares xi(U) ∈ R≥0,
that recover as much of his cost as possible, and a valid assignment for U .

We give the basic definitions and results on cost sharing methods and mechanisms
for an unspecified service in Section 2.1. This section provides solutions on how the
provider can extract the agents’ real preferences while recovering a certain fraction of
his cost. Section 2.2 specifies the service of scheduling the agents’ jobs. Throughout
the paper, we use [k], k ∈ IN, to denote the set {1, . . . , k} of integers.

2.1 Mechanism Design for Cost-Sharing

Let cA(U) be the cost of a solution computed by some algorithm A to provide the
service to U ⊆ N . In many cases, this algorithm is an approximation algorithm to
assure polynomial time. We write opt(U) for the cost of an optimal solution to provide
the service to U . For a given set U ⊆ N , a cost-allocation function ξ : N → IR for the
set U ⊆ N specifies the cost-shares of each i ∈ U . It satisfies ξ(i) ≥ 0 for all i ∈ U and
ξ(i) = 0 for all i /∈ U . Let ξ(U) =

∑
i∈U ξ(i). A cost-sharing method is a collection

of cost-allocation functions:

Definition 1 (cost-sharing method). A cost-sharing method x is defined as a function
x : N × 2N → IR satisfying for all U ⊆ N , that x(i, U) ≥ 0 for all i ∈ U and
x(i, U) = 0 for all i /∈ U . We will denote x(i, U) by xi(U). Let x(U) =

∑
i∈U xi(U).

Ideally, we would like to have budget-balance, i.e. cA(U) = x(U) = opt(U) for all
U ⊆ N . In many cases it is not possible to achieve budget-balance if the cost-sharing
method is to meet other properties as well, or it is computationally hard to compute.
Therefore, this condition is relaxed. A cost-sharing method x(·) is α-budget-balanced
for α ≤ 1 if it satisfies αcA(U) ≤ x(U) ≤ opt(U) for all U ⊆ N . A cost-allocation
function for U ⊆ N is α-budget-balanced, if the above condition holds for U . Observe,
that dividing the cost-shares by α results in cost-shares that guarantee the full coverage
of the actual cost and an overall cost-share of less than α−1 times the optimal solution.
Although this is the more intuitive definition we use the definition given first for reasons
of clearness.

Both α-budget-balanced cost-sharing methods and cost-allocation functions can
have the property to be in the α-core. Intuitively, no coalition is overcharged:

Definition 2 (the α-core property). A cost-allocation function ξ(·) for U ⊆ N is in
the α-core iff it is α-budget-balanced and for all U ′ ⊆ U : ξ(U ′) ≤ opt(U ′). A cost-
sharing method x(·) is in the α-core iff for all U ⊆ N, x(·, U) is in the α-core.
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The provider’s problem can be solved by a cost-sharing mechanism and it’s underlying
cost-sharing method. A cost sharing mechanism is an algorithm that is given the agents’
bids {bi}i∈N . It outputs the set of agents U ⊆ N that receive the service and cost-
shares xi(U) ∈ IR with 0 ≤ xi(U) ≤ bi for all i ∈ U and xi(U) = 0 for all i /∈ U .
Furthermore, it outputs a solution with cost cA(U) to provide the service to U . We focus
on assuring the following mechanism properties:

– strategyproofness: Agent i ∈ N maximizes his utility by bidding bi = vi.
– group-strategyproofness: A coalition U ⊆ N of users cannot collude and submit

untruthful bids such that as a result, each of them has at least the same utility and at
least one of them has a strictly larger utility compared to the outcome that results if
each of them bids truthfully.

– α-budget-balance, α ≤ 1 : αcA(U) ≤ x(U) ≤ opt(U) holds for the set U of
service-receiving agents.

Cross-monotonic cost-sharing methods play a crucial role in the context of how to
achieve α-budget-balance and group-strategyproofness.

Definition 3 (cross-monotonicity). A cost-sharing method x(·) is cross-monotonic if
for all U, U ′ ⊆ N, U ′ ⊆ U : xi(U ′) ≥ xi(U) ∀i ∈ U ′.

If the underlying cost sharing method is cross-monotonic and α-budget-balanced, a
simple mechanism given by Moulin and Shenker [25] is α-budget-balanced and group-
strategyproof [18].

It is easy to see that each α-budget-balanced cross-monotonic cost sharing method
is in the α-core. From this we can conclude that if there is no cost-allocation function
for some set U ⊆ N in the α-core, then no α-budget-balanced cross-monotonic cost-
sharing method can exist. On the other hand, there can be cost-sharing methods that are
in the α-core and are not cross-monotonic.

2.2 The Scheduling Problem

Let N be the set of n agents with |N | = n. Each agent i ∈ N owns exactly one
job of workload wi ∈ IN. Therefore, we will use U ⊆ N to denote agents and jobs
interchangeably. For U ⊆ N , let W (U) =

∑
i∈U wi and wmax(U) = maxi∈U wi. Let

d(U) denote the number of different workloads in U . Moreover, there is a set M of m
machines. Each machine j ∈ M has speed sj ∈ IN. We assume that s1 ≥ . . . ≥ sm. For
M ′ ⊆ M , let S(M ′) =

∑
j∈M ′ sj . If all speeds are the same, we say that the machines

are identical. Otherwise we call them related. Jobs are identical, if all workloads are
the same. Without loss of generality we assume that identical machines and jobs have
speeds and workloads of one respectively.

An assignment allocates each job to exactly one machine. For a given assignment,
let δj be the sum of the workloads of the jobs assigned to machine j. Then the com-
pletion time of a job assigned to machine j is (δj/sj). The makespan is defined as
maxj∈M (δj/sj). We call the machines whose completion time is equal to the makespan
makespan machines. The optimal solution for a set of jobs U ⊆ N is an assignment with
minimal makespan, denoted by opt(U).
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To compute an assignment, we apply Graham’s LPT algorithm [12]. LPT processes
the jobs in decreasing order and assigns each job to a machine on which it experiences
the smallest completion time (taking into account the jobs that have been assigned al-
ready). For a set U ⊆ N we use lpt(U) to denote the makespan resulting from LPT,
i.e. lpt(U) = cLPT (U). For an assignment for jobs U ⊆ N computed by LPT , let
m(U) be the set of machines that jobs are assigned to. The running time of LPT is
O(n) for identical jobs and identical machines, O(n log m) for identical jobs and re-
lated machines, and O(n log n) otherwise. Even though there are better approximation
algorithms for the assignment problem [8, 10, 14, 15], our main results cannot be im-
proved by switching to another algorithm. A nice additional property of LPT that we
exploit in most proofs is that in each iteration, the current assignment is in Nash equilib-
rium. An assignment is in Nash equilibrium, if no agent can improve by deviating from
the current assignment, i.e. for each job i from the set of served agents U ⊆ N that is
assigned to machine j ∈ M it holds that (δk + wi)/sk ≥ δj/sj for all k ∈ M\{j}.

There are three LPT specific assignment properties that we will utilize in our proofs.
Lemma 1 states these well-known properties.

Lemma 1. Let U ⊆ N and let Û ⊆ U be the jobs assigned by LPT until the makespan
first occurs, and let τ = |m(Û)|. Then it holds, that:

1. For identical machines, W (U)/m ≤ opt(U) .
2. For related machines, W (Û)/S(m(Û)) ≤ opt(Û) .
3. If machines are identical and there are at least two jobs assigned to a makespan

machine, then lpt(U) ≤ 2m
m+1

W (U)
m .

4. If there are at least two jobs assigned to some machine, then
– for related machines: lpt(U) ≤ 2τ

τ+1
W (Û)

S(m(Û))
.

– for identical jobs: lpt(U) ≤ 2m(U)
m(U)+1

|U|
S(m(U)) .

3 Results on Cross-Monotonicity

In this section, we give α-budget-balanced cross-monotonic cost-sharing methods that
yield α-budget-balanced group-strategyproof mechanisms if used as input for the mech-
anism by Moulin and Shenker [25]. All proposed methods rely on solving the assign-
ment problem via LPT. The property that LPT computes a Nash equilibrium is uti-
lized frequently. We say that an algorithm computes a cost-sharing method x(·) in time
f(m, n) if for each set U ⊆ N the cost-shares {xi(U)}i∈U are computed in time
f(m, n). The mechanism by Moulin and Shenker runs in time O(nf(m, n)+g(m, n)),
where g(m, n) is the running time of LPT . Proofs omitted due to space restrictions are
provided in the full version of this paper.

Theorems 1 and 2 propose (m + 1)/(2m)-budget-balanced cross-monotonic cost-
sharing methods for the scheduling problem with identical jobs and for the scheduling
problem with identical machines. Due to Theorem 5 in Section 4, these cross-monotonic
methods achieve the best budget-balance factor possible.

Theorem 1. There is an m+1
2m -budget-balanced cross-monotonic cost-sharing method

for the scheduling problem with arbitrary jobs and identical machines computable in
time O(n).
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Theorem 2. There is an m+1
2m -budget-balanced cross-monotonic cost-sharing method

for the scheduling problem with identical jobs and related machines computable in time
O(n log m).

The central Theorem 4 states, that the approximation factor for cross-monotonic cost-
sharing methods is unbounded for arbitrary jobs and related machines. It depends on
d(N), the number of different workloads in the set N . By Theorem 3, it is possible to
achieve (2d(N))−1-budget-balance:

Theorem 3. There is a (2d(N))−1-budget-balanced cross-monotonic cost-sharing
method for the scheduling problem with arbitrary jobs and related machines com-
putable in time O(n log n).

Theorem 4. For the scheduling problem with arbitrary jobs and related machines,
there is no α-budget-balanced cross-monotonic cost-sharing method for the factor α
with α > (d(N) + ε)−1, ∀ε > 0.

Proof. We proceed as follows: we fix a set of machines and consider classes of schedul-
ing instances in which the job workloads equal their speeds. Classes are defined by
specifying the number of agents and jobs respectively of a certain job workload. For
average cost-shares on these instances, we derive properties that are met by all cross-
monotonic cost-sharing methods. Afterwards, we derive a bound on α-budget balance
where α will be determined later.

Instances. The considered classes consist of instances with d = d(N) different work-
loads 1, a, . . . , ad−1, with a ∈ N>1. There are mj machines having a speed of ad−j

with j ∈ [d]. Let m1 = 1 and mj = (a − 1)
∑j−1

l=1 mla
j−l for j ≥ 2. It holds that

mj = a2mj−1 for j ≥ 3, which can easily be proved by induction. We use the more
complicated formulation that simplifies later arguments. For j ∈ [d], let Nj be the set
of all agents with jobs of workload ad−j and nj = |Nj|. Then, N = ∪j∈[d]Nj . For
U ⊆ N , let Uj = U ∩ Nj . Uj extracts from U all jobs with workload ad−j . Let the
profile (u1, . . . , ud) denote the class of all sets U with uj = |Uj| for all j ∈ [d].

Optimal Assignments. First, consider the class (m1, . . . , md). Obviously, for every
instance of this class consisting of the set of jobs U , opt(U) = 1. Now change the jth
entry to rj = amj . We show, that opt(U) = a for every instance with the set of jobs
U of the class (m1, . . . , rj , . . . , md) for all j ∈ [d]. First, we give an assignment with
makespan a. Then we show that it is impossible to obtain a makespan smaller than a.

The assignment is computed as follows. Assign all jobs of workload ad−l, l ∈ [d] to
the machines of speed ad−l. This results in a completion time of one on machines with
speed ad−l, l 
= j and a completion time of a on machines with speed ad−j .

Now we show a lower bound for the optimal assignment. Assume, that there exists
an assignment with makespan smaller than a. Observe, that all jobs with workload
larger than ad−j have to be assigned to the machines with speed larger than ad−j . Now
look at the jobs with workload ad−j . They can only be assigned to the machines with
speed at least ad−j . At most (a − 1)mj of them can be assigned to the machines with
speed ad−j . Now, all jobs of workload larger than ad−j and the mj remaining jobs of
workload ad−j have to be assigned to the machines with speed larger than ad−j . The
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makespan cannot be smaller than a, because a lower bound for the optimal assignment
for these jobs on these machines is given by a:

∑j−1
l=1 (mla

d−l) + mja
d−j

∑j−1
l=1 (mlad−l)

=
∑j−1

l=1 (mla
d−l) + (a − 1)

∑j−1
l=1 (mla

d−l)
∑j−1

l=1 (mlad−l)
= a . (1)

Cross-Monotonicity. In the following, we assume, that there is a cross-monotonic cost-
sharing method x(·). Let Γ (m1, . . . , md) =

∏d
l=1

(
nl

ml

)
. For all instances of the class

(m1, . . . , md), the average cost share of the agents with jobs in Nk, k ∈ [d] is

χk := χk((m1, . . . , md)) := Γ (m1, . . . , md)−1
∑

U⊂N
∀l:|Ul|=ml

∑

i∈Uk

xi(U) . (2)

Now change the jth profile entry to rj = amj . Then, the average cost-share for agents
with jobs in Nk is χk((m1, . . . , rj , . . . , md)). Define Γ = Γ (m1, . . . , md) and also
Γj = Γ (m1, . . . , rj , . . . , md). We will utilize cross-monotonicity to bound it from
above in terms of χk.

Consider the set Uj ⊆ Nj with |Uj | = rj and Uj ⊆ U ⊆ N . First, let k = j. Every
single cost-share of an agent i ∈ Uj for the set U is not larger than his cost-share for
the set (U\Uj) ∪ {i} ∪ Ũ , with Ũ ⊂ Uj\{i}, |Ũ | = mj − 1. Especially, it is not larger
than the average value of the cost-shares for i for each of these

(
rj−1
mj−1

)
sets. Therefore

an upper bound of χj((m1, . . . , rj , . . . , md)) is given by:

χ
(j)
j := Γ−1

j

∑

U⊆N
∀l �=j:|Ul|=ml

|Uj |=rj

∑

i∈Uj

∑

Ũ⊂Uj\{i}
|Ũ|=mj−1

xi((U\Uj) ∪ {i} ∪ Ũ)
(

rj−1
mj−1

) . (3)

Now, let k 
= j. Every single cost-share of an agent i ∈ U\Uj for U is not larger
than the cost-share for i for (U\Uj) ∪ Ũ , Ũ ⊂ Uj , |Ũ | = mj . With the same argument
as above, the following upper bound of χk((m1, . . . , rj , . . . , md)) results:

χ
(j)
k := Γ−1

j

∑

U⊆N
∀l �=j:|Ul|=ml

|Uj |=rj

∑

i∈Uk

∑

Ũ⊂Uj

|Ũ|=mj

xi((U\Uj) ∪ Ũ)
(

rj

mj

) . (4)

We now give a lemma on the relationship between the average cost-shares and their
bounds.

Lemma 2. aχj = χ
(j)
j and χk = χ

(j)
k for j ∈ [d] and k ∈ [d], k 
= j.

Proof. We first look at χj and χ
(j)
j , j ∈ [d]. Observe, that both sums are over the same

subsets of Nl with ml elements for l ∈ [d]\{j}. It therefore suffices to consider both
sums for fixed subsets Ul ⊂ Nl, |Ul| = ml, l ∈ [d]\{j} only. Let U = ∪l∈[d]\{j}Ul.
Define:
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χ̃j := Γ−1
∑

Ũ⊂Nj

|Ũ|=mj

∑

i∈Ũ

xi(U ∪ Ũ) and (5)

χ̃
(j)
j := Γ−1

j

(
rj − 1
mj − 1

)−1 ∑

U′⊆Nj

|U′|=rj

∑

i∈U ′

∑

Ũ⊂U′\{i}
|Ũ|=mj−1

xi(U ∪ {i} ∪ Ũ) . (6)

χ̃j and χ̃
(j)
j are related to each other the same way than χj and χ

(j)
j . Now,

χ̃
(j)
j = Γ−1

j

(
rj−1
mj−1

)−1 ∑
U′⊂Nj
|U′|=rj

∑
Ũ⊂U′

|Ũ|=mj

∑
i∈Ũ xi(U ∪ Ũ) (7)

= Γ−1
j

(
rj−1
mj−1

)−1(nj−mj

rj−mj

) ∑
Ũ⊂Nj

|Ũ|=mj

∑
i∈Ũ xi(U ∪ Ũ) . (8)

Equation (7) is a simple combinatorial observation. To obtain (8), we investigate how
often each subset of Nj with mj elements occurs. For each subset Ũ with mj elements,
to determine a superset U ′ ⊃ Ũ with rj elements, we have

(
nj−mj

rj−mj

)
possibilities. Com-

bining Equations (5) and (8) we get:

χ̃
(j)
j = Γ−1

j Γ

(
rj − 1
mj − 1

)−1(
nj − mj

rj − mj

)

χ̃j =
rj

mj
χ̃j = aχ̃j . (9)

Therefore, aχj = χ
(j)
j for j ∈ [d]. With similar argumentation, we can conclude that

χk = χ
(j)
k for j ∈ [d] and k ∈ [d]\{j}. �

Budget-Balance. Let us now assume, that x(·) is not only cross-monotonic but also α-
budget-balanced. We have seen that the optimal cost for all instances of (m1, . . . , md)
and therefore the average optimal cost is one. With the same argument, the average
optimal cost of all instances in class (m1, . . . , rj , . . . , md) for j ∈ [d] is a. Then we
can conclude:

d∑

k=1

χk ≤ 1 and
j−1∑

k=1

χk + aχj +
d∑

k=j+1

χk ≥ aα ∀j ∈ [d] . (10)

Summation of these equations yields α ≤ a−1+d
da . For every ε > 0 and a sufficient

large a, this results in α ≤ 1/(d + ε). Note, that it suffices to consider the optimal cost
instead of the LPT cost in Equation (10). If an α-fraction of the optimal cost cannot be
recovered, in particular it cannot be recovered for a non-optimal cost. �

4 The Core and Other Solution Concepts

Since an α-budget-balanced cross-monotonic cost-sharing method is in the α-core, The-
orem 5 tells us that the cost-sharing methods defined in the proofs of Theorems 1 and 2
yield the best approximation factor possible. Theorem 6 provides us with a cost-sharing
method in the (m + 1)/(2m)-core for the scheduling problem with arbitrary jobs and
related machines.
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Theorem 5. For the scheduling problem with identical jobs and machines, there is no
cost-sharing method in the α-core for α > (m + 1)/(2m).

Proof. We show that for α > (m + 1)/(2m), there is no cost-allocation function in the
α-core for the set U with |U | = m + 1. Let U ′ ⊂ U, |U ′| = m. Assume, there is a
cost-allocation function ξ(·) : N → IR for the set U in the α-core. Since we have that∑

i∈U ′ ξ(i) ≤ opt(U ′) = 1, there is an agent k ∈ U ′ with ξ(k) ≤ 1/m. Then,

∑

i∈U

ξ(i) = ξ(k) +
∑

i∈U\{k}
ξ(i) ≤ 1/m + opt(U\{k}) = 1/m + 1 . (11)

From 2α ≤
∑

i∈U ξ(i) ≤ (1 + m)/m, we can conclude that α ≤ (m + 1)/(2m). �

Theorem 6. There is a cost-sharing method in the (m+1)/(2m)-core of the scheduling
problem with arbitrary jobs and related machines computable in time O(n log n).

Proof. Let U ⊆ N . Let Û ⊂ U be the set of jobs, that LPT assigns until the makespan
is reached and let τ = |m(Û)|. Furthermore, we denote by mopt(U) the machines that
an optimal assignment uses to assign the set U .

To define the cost-sharing method, we look at two different cases. In the first case
τ < |Û |, i.e. if the makespan first occurs, there is at least one machine that is assigned
more than one job. Then, define xi(U) = wi/S(m(Û)) for all i ∈ Û and xi(U) = 0 for
all i /∈ Û . In the second case τ = |Û |, i.e. if the makespan first occurs, LPT has assigned
at most one job to each machine. Let τ ≥ 3. We will omit the proof of the subcase
τ ∈ {1, 2} due to space restrictions . We define A(U) = S(m(Û))opt(U) − W (Û).
Let xi(U) = 0 for i /∈ Û . For i ∈ Û , let

xi(U) =

{
wi

S(m(Û))
if A(U) < τ−1

τ+1W (Û)
wi

S(m(Û))−sτ
otherwise .

First observe, that LPT determines the running time. We have to show for the given
cost-sharing method x(·) that x(·, U) is in the α-core for all U ⊆ N . We start with
the first case in which τ < |Û |. x(U) is smaller than opt(U), since by Lemma 1 it
holds, that x(U) = W (Û)/S(m(Û)) ≤ opt(Û) ≤ opt(U). Lemma 1 also provides the
approximation factor. Next, we show the core condition. Let U ′ ⊆ U . From the proof
of Lemma 1 we can conclude, that m(Û) ⊇ mopt(Û). Therefore,

∑

i∈U ′

xi(U) =
W (U ′ ∩ Û)
S(m(Û))

≤ W (U ′ ∩ Û)
S(mopt(Û))

≤ W (U ′ ∩ Û)
S(mopt(U ′ ∩ Û))

≤ opt(U ′) . (12)

Consider the second case, τ = |Û |. Then, lpt(U) = opt(U) = wτ/sτ . Due to space
restrictions, we omit the case A(U) < (τ − 1)/(τ + 1)W (Û) and for the remaining
case only show the core condition. If A(U) ≥ (τ − 1)/(τ + 1)W (Û), then x(U) =
W (Û)/(S(m(Û)) − sτ ).

Let U ′ ⊆ U . If U ′ = Û , then
∑

i∈U ′ xi(U) = x(U) ≤ opt(U) = opt(U ′). Oth-

erwise, (U ′ ∩ Û) ⊂ Û . Since lpt(U) = opt(U), it holds that m(Û) = mopt(Û) and
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mopt(U ′ ∩ Û) ⊆ mopt(Û)\{τ}, since an optimal assignment for a proper subset of Û
does not use the machine τ anymore. Thus,

∑

i∈U ′

xi(U) =
W (U ′ ∩ Û)

S(mopt(Û)) − sτ

≤ W (U ′ ∩ Û)
S(mopt(U ′ ∩ Û))

≤ opt(U ′) . (13)

�

Finally, we state Theorem 7, whose proof is available in the full version.

Theorem 7. There is a 3/5-budget-balanced strategyproof cost-sharing mechanism for
the scheduling game with arbitrary jobs and related machines. It is 3m/(4m − 1)-
budget-balanced for the scheduling game with identical jobs and related machines and
1-budget-balanced for identical jobs and identical machines. Its running time is the
running time of LPT.
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