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Abstract. The network discovery (verification) problem asks for a min-
imum subset Q ⊆ V of queries in an undirected graph G = (V, E) such
that these queries discover all edges and non-edges of the graph. In the
distance query model, a query at node q returns the distances from q to
all other nodes in the graph. In the on-line network discovery problem,
the graph is initially unknown, and the algorithm has to select queries
one by one based only on the results of previous queries. We give a ran-
domized on-line algorithm with competitive ratio O(

√
n log n) for graphs

on n nodes. We also show lower bounds of Ω(
√

n) and Ω(log n) on the
competitive ratio of deterministic and randomized on-line algorithms,
respectively. In the off-line network verification problem, the graph is
known in advance and the problem is to compute a minimum number of
queries that verify all edges and non-edges. We show that the problem
is NP-hard and present an O(log n)-approximation algorithm.

1 Introduction

The growing interest in decentralized networks such as the Internet or peer-to-
peer networks has introduced many new algorithmic challenges. A key property
of these networks is that there is no central authority that maintains a map
of the network. Obtaining an accurate map, usually represented as a graph,
is not easy due to the dynamic growth of the network. A common approach
to obtain a map of a network, or at least a good approximation, is to make
some local measurements, which could be seen as local views of the network
from selected nodes, and combine these in an appropriate manner. There is an
extensive body of related work studying various aspects of this approach, see
e.g. [14, 9, 15, 12, 13, 11, 3, 16, 8, 1, 6, 7].

As making measurements at a node is usually costly, the problem of mini-
mizing the number of such measurements arises naturally. Nevertheless, it was
proposed only recently to study this problem from a combinatorial optimization
point of view: Beerliova et al. [4] introduce the network discovery and verification
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problems, which ask to find a map of a network with a small number of queries
(measurements). In the on-line network discovery problem only the nodes V of
a graph G are known in the beginning. An algorithm can make queries at nodes
of the graph, and each query returns a local view of the graph. The task of the
algorithm is to choose a minimum subset Q ⊆ V of queries, such that the whole
graph is discovered, i.e., all edges and non-edges are known. The network verifi-
cation problem is the off-line version of the problem: The whole graph is known
to the algorithm, and the task is to compute a minimum set Q of queries that
verify all edges and non-edges. One motivation for the off-line version is checking
with as few measurements as possible whether a given map is still correct.

In order to discover a graph, it may seem sufficient to discover only its edges.
However, especially in view of the on-line setting, it is also necessary to have
a proof (i.e., discover) for each unconnected node pair that indeed there is no
edge between them. An on-line algorithm can only know that it has finished
discovering the graph when both edges and non-edges have been discovered.
Considering both also makes it possible to quantify how much knowledge about
the network is revealed by a given set of queries. This could also be helpful
e.g. when investigating the quality of previously published maps of the Internet.

In [4], a very strong query model was used: A query at a node v reveals all
edges and non-edges whose endpoints have different distances from v. This model
was motivated by the consideration that in certain scenarios one can identify all
edges on shortest paths between the query node and all other nodes. In this
paper, we study network discovery and network verification in the model where
a query q ∈ V gives all distances from q to any other node of the investigated
graph G. We refer to the on-line problem as Dist–All–Discovery and to
the off-line problem as Dist–All–Verification. This distance query model is
much weaker than the model used in [4], in the sense that typically a query
reveals much less information about the network.

There are several reasons that motivate us to study the distance query model.
First, in many networks it is realistically possible to obtain the distances between
a node and all other nodes, while it is difficult or impossible to obtain information
about edges or non-edges that are far away from the query node. For example,
so-called distance-vector routing protocols work in such a way that each node
informs its neighbors about upper bounds on the distances to all other nodes
until these values converge; in the end, the routing table at a node contains
the distances to all other nodes, and a query in our model would correspond to
reading out the routing table. Another scenario is the discovery of the topology
of peer-to-peer networks such as Gnutella [5]. With the Ping/Pong protocol it
is possible to use a Ping command to ask all nodes within distance k (the TTL
parameter of the Ping) to respond to the sender [2]. Repeated Pings could be
used to determine the distances to all other nodes. Real peer-to-peer networks,
however, are often so large that it becomes prohibitive to send Pings for larger
values of k, and there are also many other aspects that make the actual discovery
of the topology of a Gnutella network very difficult [2]. Nevertheless, we believe
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that our model is a good starting point for studying fundamental issues in the
discovery of networks that support Ping/Pong-like protocols.

Related Work. There are several ongoing large-scale efforts to collect data rep-
resenting local views of the Internet. The most prominent one is probably the
RouteViews project [15] by the University of Oregon. It collects data (in the
form of lists of paths) from a large number of so-called border gateway protocol
routers. More recently, and due to good publicity very successfully, the DIMES
project [9] has started collecting data with the help of a volunteer community.
Users can download a client that collects paths in the Internet by executing
successive traceroute commands. A central server can direct each client individ-
ually by specifying which routes to investigate. Data obtained by these or similar
projects has been used with heuristics to obtain maps of the Internet, basically by
simply overlaying the paths found by the respective project, see e.g. [13, 15, 9, 14].
Another line of research aims at inferring from such local views the types of the
economic relationships between nodes in the Internet graph [11, 16, 8].

Beerliova et al. [4] propose the problem of network discovery (verification)
and study it for the “layered graph” query model: A query q ∈ V returns all
edges and non-edges between nodes of different distance from q. They give an
o(log n) inapproximability result for the off-line version and a randomized on-line
algorithm with competitive ratio O(

√
n log n). The on-line algorithm we present

in this paper is based on a similar approach, but requires new ideas.

Our Results. In Sect. 2 we give basic definitions concerning network discovery and
verification in the distance query model. We then characterize the queries that
discover an individual non-edge and the sets of queries that together discover an
individual edge. (At first sight, it may seem that the only way to discover an edge
in the distance query model is to query one of its incident nodes. It turns out,
however, that more intricate deductions are possible and edges at a larger dis-
tance from the query nodes can be discovered.) In Sect. 3 we show lower bounds
on the number of queries needed to discover or verify a graph, based on the
independence number α, clique number ω, and size of the edge set of the graph.
For Dist–All–Verification we present in Sect. 4 polynomial-time algorithms
for basic graph classes: chains, cliques, trees, cycles, and hypercubes. For general
graphs, the problem turns out to be NP-hard, and an O(log n)-approximation
algorithm is presented. For Dist–All–Discovery we show in Sect. 5 that no
deterministic on-line algorithm can be better than O(

√
n)-competitive and no

randomized on-line algorithm can be better than O(log n)-competitive. Finally,
we present our main result, a randomized on-line algorithm with competitive
ratio O(

√
n log n). Proofs omitted due to space restrictions can be found in [10].

2 Definitions and Preliminaries

Throughout this paper we assume graphs to be undirected and connected. For
a given graph G = (V, E), we denote the number of nodes by n = |V | and the
number of edges by m = |E|. For two distinct nodes u, v ∈ V , we say that {u, v}
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is an edge if {u, v} ∈ E and a non-edge if {u, v} /∈ E. The set of non-edges is
denoted by E. By G we denote the complement of G, i.e., G = (V, E).

A query is specified by a node v ∈ V and is called a query at v or simply the
query v. In the distance query model the answer of a query at v consists of the
distances from v to every node of G. We refer to sets of nodes with the same dis-
tance from v as layers. We use Li or simply layer i to refer to the layer of nodes
at distance i from the query node. By dG(u, v) we denote the distance from u
to v in G. We may omit the subscript G if it is clear from the context to which
graph the distance refers. Let DG(Q), for Q ⊆ V , be a collection of distance
vectors, one vector dG(Q, v) for each node v ∈ V . The vector dG(Q, v) has di-
mension |Q|, and each component gives the distance dG(q, v) of one of the (query)
nodes q ∈ Q to v; the i-th component corresponds to the i-th query node. Thus, we
write DG(Q) �= DG′(Q), for G′ = (V, E′), if there exists at least one query q ∈ Q
and a node v ∈ V such that dG(q, v) �= dG′(q, v). Conversely, DG(Q) = DG′(Q),
if dG(q, v) = dG′(q, v) holds for all queries q ∈ Q and all nodes v ∈ V .

As opposed to the layered query model studied in [4], in the distance query
model a query at node v does not explicitly return edges or non-edges. We shall
show, however, how the information about the distances of nodes to (possibly a
combination of several) queries can be utilized for discovering individual edges
or non-edges of the graph. First we give a formal notion of what we mean by
“discovering” a graph in this model. We use the two terms discover and verify
to distinguish between the on-line and the off-line setting, they are otherwise
equivalent (and we sometimes use the word “discover” also in the off-line setting).
The following definitions hold for both terms but for simplicity are stated only
for the network discovery setting.

A query set Q ⊆ V for the graph G = (V, E) discovers the edge e ∈ E
(discovers the non-edge e ∈ E), if for all graphs G′ = (V, E′) with DG(Q) =
DG′(Q) it holds that e ∈ E′ (e ∈ E′). Q ⊆ V discovers the graph G, if it
discovers all edges and non-edges of G.

If Q discovers G, this implies that any graph G′ with DG(Q) = DG′(Q) must
have the same edges and non-edges as G, i.e., G′ = G. Conversely, if a query set
Q for G yields DG(Q) = DG′(Q) only for G′ = G and for no other graph, then
Q discovers G. This gives an equivalent definition: A query set Q ⊆ V discovers
the graph G = (V, E), if for every graph G′ = (V, E′) �= G at least one of the
resulting distances changes, i.e., DG(Q) �= DG′(Q). Intuitively, the queries Q
that discover a graph G can distinguish it from any other graph G′ (sufficient
and necessary condition).

Observation 1. For G = (V, E) the query set Q ⊆ V discovers a non-edge
{u, v} ∈ E if and only if there exists a query q ∈ Q with |d(q, u) − d(q, v)| ≥ 2.

Proof. The implication “⇐” is obvious. To see the second implication “⇒”, as-
sume that {u, v} is a non-edge and that (for a contradiction) every query node
q gives |d(q, u)−d(q, v)| ≤ 1. Then, if {u, v} was an edge, the distances returned
by Q would not change, as u and v are either in the same layer or in consecutive
layers of each query q ∈ Q. 
�
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For a query q and {u, v} ∈ E with |d(q, u)− d(q, v)| ≥ 2, we say that q discovers
the non-edge {u, v}.
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Fig. 1. Edge {v3, v4} of a graph (left) is discovered by the combination of queries at
nodes v1 and v6; the distances to the query node v1 (middle) and v6 (right) are depicted
as layers of the graph

An edge may be discovered by a combination of several queries; this is a major
difference to the layered graph query model of [4], where the set of edges and
non-edges discovered by a set of queries is simply the union of the edges and
non-edges discovered by the individual queries. If a node w is in layer i + 1 of a
query q, this shows that w must be adjacent to at least one node from layer i. If
layer i has more than one node, then it is not necessarily clear which node from
layer i is adjacent to w. Figure 1 shows an example of how a combination of
two queries can discover an edge even if each of the two queries alone does not
discover the edge: The edge {v3, v4} is neither discovered by a query at v1 nor
by a query at v6 alone. The query at v1 reveals that v4 is connected to v2 or to
v3 (or both). The query at v6 identifies {v2, v4} as a non-edge. From these two
facts one can deduce that v4 must be connected to v3, i.e., {v3, v4} is an edge.
This discussion is generalized by the following observation [10].

Observation 2. For G = (V, E) the queries Q ⊆ V discover an edge {u, v} ∈ E
if and only if there is a query q ∈ Q with the following two properties:

(i) The nodes u and v are in consecutive layers of query q, say, u in the i-th
layer Li and v in the (i + 1)-th layer Li+1, and Li \ {u} does not contain
any neighbor of v.

(ii) The queries Q discover all non-edges between v and the nodes in Li \ {u}.
We say that a query for which (i) holds is a partial witness for the edge {u, v}.
The word “partial” indicates that the query alone is not necessarily sufficient to
discover the edge; additional queries may be necessary to discover the non-edges
required by (ii).

We conclude that a set of queries discovers a graph G if and only if it discovers
all non-edges and contains a partial witness for every edge.

3 Lower Bounds

In this section we show lower bounds on the number of queries needed to discover
(or verify) a graph G, based on the independence number α, the clique number
ω, and the number of edges m.
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Lemma 1. For any graph G with independence number α and diameter diam >
2, at least log� diam

2 � (α) − 1 queries are needed to discover G. If diam = 2, we
need at least α − 1 queries.

Lemma 2. For any graph G with clique number ω at least ω − 1 queries are
necessary to discover G.

Proof. Consider a clique K of size ω in G. Let q be the first query. The nodes
of K appear in at most two consecutive layers i and i + 1 of query q. Observe
that q is a partial witness of an edge from K if and only if there is exactly
one node v from K in layer i and the remaining nodes of K are in layer i + 1.
Moreover, q is a partial witness only for edges incident with v. After query q,
there is still a clique K ′ of size ω −1 for which no query has been made that is a
partial witness of any of its edges. Therefore, by induction (using the fact that
one query is necessary for a clique of size 2 as the base case), it follows that we
need at least ω − 1 queries to discover G. 
�

Lemma 3. Any graph G with n nodes and m edges needs at least m/(n − 1)
queries to be discovered.

Proof. Consider the layers of an arbitrary query q ∈ V . For each node v on
layer i, q can be a partial witness for at most one edge {u, v} with u in layer i−1.
Therefore, q can be a partial witness for at most n−1 edges. Since a set of queries
that discovers G must contain a partial witness for each of the m edges of G,
the bound follows. 
�

4 Network Verification

Polynomially Solvable Cases. We discuss some classes of graphs for which the
optimal number of queries for network verification can be determined in poly-
nomial time.

Lemma 4. G can be verified with 1 query if and only if G is a chain. A clique
Kn on n vertices needs n − 1 queries to be verified.

The example of the cycle with 4 nodes C4 shows that there is a graph that needs
n − 1 queries to be verified and is not a clique. The same holds for graphs that
are obtained from Kn by deleting one edge, for n ≥ 4. In general, for cycles the
following lemma holds.

Lemma 5. A cycle Cn, n > 6, can be verified optimally with 2 queries.

Now we characterize the optimal query sets for trees. For this, we define a leg to
be a maximal path in the tree starting at a leaf and containing only vertices of
degree at most 2, see Fig. 2. If the tree is not a chain, there must be a node u of
degree greater than 2 adjacent to the last vertex of the leg. We call u a body and
we say that the leg is adjacent to its body u. The body u with all its adjacent
legs is called a spider. Nodes that are not part of a spider are called connectors
(i.e., nodes that are not in a leg and have no adjacent leg).
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leg connectors

spider

bodies

Fig. 2. Legs, bodies, spiders and connectors in a tree

Lemma 6. Let T = (V, E) be a tree that is not a chain. Denote by B ⊂ V the
set of bodies of the graph. Let lb, for b ∈ B, be the number of legs adjacent to b.
Let T [B] be the induced subgraph of T on vertex set B. Let V C(T [B]) denote a
minimum vertex cover of T [B]. Then the minimum number of queries to verify
T is

∑
b∈B(lb − 1) + |V C(T [B])|.

Proof. We show first that we indeed need at least this many queries. Observe
that if there is no query in two legs adjacent to a body, then we cannot verify
the non-edges formed by vertices of the two legs at the same distance from
the body. So, for each body, there must be at least one query in every leg
except one. Moreover, if there are two legs of two different bodies which are
connected by an edge then there must be at least one query in one of these
legs. Otherwise we cannot verify the non-edge between vertices of the legs at the
same distance from their bodies. Therefore, for any two bodies connected by an
edge, at least one of them has a query in every leg. The bodies all of whose legs
contain a query form a vertex cover of T [B], and therefore a minimum vertex
cover gives a lower bound on the number of spiders that have a query in every
leg.

To prove that the claimed number of queries is sufficient, we construct a query
set Q in the following way. We compute a minimum vertex cover of T [B] (which
can be done in polynomial time on trees). Let u be a body. We add the leaves
of lu − 1 of its legs to Q. If u is in the vertex cover, we add also the leaf of the
last (the lu-th) leg to Q.

We show now that Q verifies T . We start with non-edges. Let {v, w} be
a non-edge. We distinguish several cases. First, consider the case that both
v and w are from legs. Consider the following subcases. If v and w are from
the same leg, the non-edge is clearly verified by any query. If v and w are
from different legs, and there is a query q in the leg where v or w is, then
this query verifies the non-edge. (Note that there must be a query in the leg
of v or w if they are in different legs of the same spider, or in legs of spi-
ders whose bodies are adjacent.) Now assume that v and w are from different
spiders with bodies u and u′, which are not neighbors, and there is no query
in the legs containing v and w. Let the path from u to u′ be u, x, . . . , y, u′,
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where x = y is possible. Let q be a query from a leg adjacent to a body b
such that the path from b to u does not contain x, possibly b = u. Let dv be
the distance from u to v, dw be the distance from u′ to w and let d ≥ 2 be
the distance between u and u′. If q does not verify the non-edge {v, w} then
|d(q, v) − d(q, w)| = |dv − (d + dw)| ≤ 1. Then a query q′ from a leg adjacent to
a body b′ such that the path from b′ to u′ does not contain y, possibly b′ = u′,
satisfies |d(q′, v) − d(q′, w)| = |(dv + d) − dw| ≥ 3 and thus q′ verifies the non-
edge.

Now, consider the case that at least one of the two nodes, say, the node
v, is not from a leg. Then any query in a tree of the forest T \ {v} that
does not contain w verifies the non-edge. Observe that such a query always
exists.

Therefore Q verifies all non-edges. We claim now that Q verifies all edges. For
this observe that for a tree T any query is a partial witness for every edge. To
see this, imagine the tree rooted at the query node. So, Q verifies T . 
�

Lemma 7. A query set that verifies a d-dimensional hypercube Hd is a vertex
cover, and any vertex cover verifies a d-dimensional hypercube Hd for d ≥ 4. A
minimum vertex cover verifies H3. Therefore, the optimal number of queries is
2d−1 (size of a minimum vertex cover in Hd) for d ≥ 3.

Complexity and Approximability. We can show that Dist–All–Verification
is NP-hard by a reduction from the Vertex–Cover problem (see [10]).

Theorem 1. The problem Dist–All–Verification is NP-hard.

An O(log n)-approximation algorithm for Dist–All–Verification can be ob-
tained using the well-known greedy algorithm for the set cover problem: Each
vertex v corresponds to a set containing the non-edges a query at v verifies and
the edges for which a query at v is a partial witness, and the goal is to cover all
edges and non-edges.

Theorem 2. For the problem Dist-All-Verification, there is an O(log n)-
approximation algorithm.

5 Network Discovery

Lower Bounds for On-line Algorithms. We present lower bounds on the compet-
itive ratio of on-line algorithms for Dist–All–Discovery. Consider the graph
Gk from Fig. 3. It is a tree built recursively from a smaller tree Gk−1 as depicted
in the figure. Alternatively, Gk can be described as follows. Start with a chain of
length 2k−1 from x to vk. For 1 ≤ i ≤ k, the node on the chain at distance 2i−1
from x is labeled as vi. To each such node vi, 1 ≤ i ≤ k, we attach another chain
(which we call arm) of length 2i − 1, starting at vi. The number nk of nodes of
Gk satisfies nk = nk−1 + 1 + 2k for k > 1 and n1 = 3. Hence, nk = k2 + 2k.

Gk is a non-trivial tree and, by Lemma 6, the optimum number of queries is 2.
Now consider any deterministic algorithm A. As all vertices are indistinguishable
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Fig. 3. Graph used in the proof of the lower bound Ω(
√

n) for on-line algorithms (left
and middle); layers after query at vertex vk (right)

to A, we may assume that the initial query q0 made by A is at vk. This sorts the
vertices into layers according to their distance from vk. No non-edge is discovered
within the layers. In particular, the non-edge {x, y} in G1 (see Fig. 3) is not
discovered. We now show that A needs at least k additional queries to discover
{x, y}. Observe that in the rightmost arm (attached to vk) we have vertices from
every layer. A picks a vertex from some layer j and, because all the vertices in
this layer are indistinguishable for A, we may force A to pick the vertex from
the rightmost arm. Such a query in the rightmost arm does not reveal any
new information within Gk−1. The vertices within one layer of Gk−1 remain
indistinguishable for A. Thus, when A places its first query in Gk−1, we can
force it to be at a node from Gk−1’s rightmost arm. We can continue recursively
in this manner and therefore we can force A to query in every arm before it
discovers {x, y}. Hence, A needs at least 1 + k queries to discover Gk.

Since nk = k2 + 2k, we have that k = Θ(
√

nk). Together with the fact that
the optimum needs 2 queries, we get a lower bound of Ω(

√
n) for deterministic

algorithms. Furthermore, from the same construction we can also derive a lower
bound for randomized on-line algorithms, see [10] for details.

Theorem 3. For Dist–All–Discovery, there is no o(
√

n)-competitive deter-
ministic and no o(log n)-competitive randomized on-line algorithm.

Randomized On-line Algorithm. We present a randomized algorithm for Dist–
All–Discovery. Its competitive ratio O(

√
n log n) is very close to the lower

bound Ω(
√

n) for deterministic algorithms, but leaves a gap to the lower bound
Ω(log n) for randomized algorithms.

Theorem 4. There is a randomized on-line algorithm with competitive ratio
O(

√
n log n) for Dist–All–Discovery.

Proof. The algorithm runs in two phases. In the first phase it makes 3
√

n ln n
queries at nodes chosen uniformly at random. In the second phase, as long as
there is still an undiscovered pair {u, v} (i.e., the queries executed so far have
not discovered whether {u, v} is an edge or non-edge), the algorithm executes
the following. First, it queries both u and v. This discovers whether {u, v} is
an edge or non-edge. In case it is a non-edge, the algorithm then knows from
the queries at u and v the set S of all queries that discover {u, v}: S is the set
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of vertices w for which |d(u, w) − d(v, w)| ≥ 2. The algorithm then queries the
whole set S. In case {u, v} is an edge, the algorithm distinguishes three cases.
First, if the queries at u and v discover a non-edge, say, {u, w}, that had not
been discovered before, the algorithm proceeds with the pair {u, w} instead of
{u, v} and handles it as described above. Second, if the number of neighbors of u
and the number of neighbors of v is at most

√
n/ lnn, then the algorithm queries

also all neighbors of u and v (notice that after querying u and v we know all
their neighbors). With this information we know the set S of vertices that are
partial witnesses for {u, v}: a vertex w is in S if and only if the two vertices are
at distances i and i + 1 from w and all the other neighbors of the more distant
vertex are at distances i+1 or i+2. The algorithm then queries all vertices in S.
Third, if the number of neighbors of u or the number of neighbors of v is larger
than

√
n/ lnn, the algorithm does not do any further processing for this pair

(i.e., this iteration of the second phase is completed) and proceeds with choosing
another undiscovered pair {u′, v′} (if one exists).

The algorithm can be viewed as solving a HittingSet problem. For every
non-edge {u, v} let Suv be the set of vertices that discover {u, v}. Similarly, for
every edge {u, v} let Suv denote the set of all partial witnesses for {u, v}. The
algorithm discovers the whole graph G if it hits all sets Suv, for {u, v} ∈ E∪E. In
the first phase, the algorithm aims to hit all the sets Suv of size at least

√
n ln n.

Then, in the second phase, as long as there is an undiscovered pair {u, v}, the
algorithm attempts to query the whole set Suv; if {u, v} is an edge, it also queries
all the neighbors of u and v in order to determine Suv, except in the case where
the degree of u or v is too large. In the case that the undiscovered pair {u, v} is
an edge for which a partial witness has already been queried before, the query
at u or v must discover a new non-edge, and the algorithm uses that non-edge
instead of {u, v} to proceed.

We analyze the algorithm as follows. Let OPT be the optimal number of
queries. Consider a pair {u, v} for which the set Suv has size at least

√
n ln n.

In each query of the first phase, the probability that Suv is not hit is at most
1−

√
n ln n/n = 1−

√
(ln n)/n. Thus, standard calculations show that the prob-

ability that Suv is not hit throughout the first phase is at most 1/n3. There are
at most

(
n
2

)
sets Suv of cardinality at least

√
n ln n. The probability that at least

one of them is not hit in the first phase is at most
(
n
2

)
· 1

n3 ≤ 1
n .

Now consider the second phase, conditioned on the event that the first phase
has indeed hit all sets Suv of size at least

√
n ln n. If the undiscovered pair {u, v}

is a non-edge, after querying u and v we know Suv, and querying the whole set
Suv requires at most

√
n lnn queries (note that |Suv| ≤

√
n ln n if {u, v} is a non-

edge that has not been discovered in the first phase). If the pair {u, v} is an edge
and the queries at u and v discover a new non-edge, the algorithm proceeds with
that non-edge and makes at most

√
n ln n further queries (as above), hence at

most
√

n lnn+2 queries in total for this iteration of the second phase. Otherwise,
if the number of neighbors of u and of v is bounded by

√
n/ ln n, we query also

all neighbors of u and v to determine the set Suv, amounting to at most 2
√

n/ lnn
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queries, and then the set Suv, giving another
√

n lnn queries (since Suv has not
been hit in the first phase). In total, we make at most

√
n ln n+2

√
n/ lnn queries

in this iteration of the second phase. Consider the remaining case, i.e., the case
where the undiscovered pair {u, v} is an edge, no partial witness for the edge
has been queried before, and u or v has degree larger than

√
n/ lnn. Assume

that there are k iterations of the second phase in which the undiscovered pair
falls into this case. Note that no node can be part of an undiscovered pair in
two such iterations. Hence, we get that 2|E| ≥ k

√
n/ lnn and, by Lemma 3,

OPT ≥ |E|
n ≥ k

√
n

2n
√

ln n
= k

2
√

n ln n
and therefore k ≤ 2

√
n ln n · OPT.

Let � denote the number of iterations of the second phase in which the set
Suv was determined and queried (i.e., all iterations except the k iterations
discussed above). We call such iterations good iterations. The overall cost of
the second phase is at most �

√
n lnn + 2�

√
n√

ln n
+ 2k. Clearly, OPT ≥ �, be-

cause no two undiscovered pairs {u, v} considered in different good iterations
can be discovered by the same query (or have the same partial witness). So
the cost of the algorithm is at most 3

√
n lnn + �

√
n lnn + 2�

√
n√

lnn
+ 2k =

O(
√

n log n) · OPT.
We have that with probability at least 1 − 1

n , the first phase succeeds and
O(

√
n log n) · OPT queries are made by the algorithm. If the first phase fails,

the algorithm makes at most n queries (clearly, the algorithm need not repeat
any query). This case increases the expected number of queries made by the
algorithm by at most 1

nn = 1. Thus, we have that the expected number of
queries is at most O(

√
n log n) · OPT + 1

nn = O(
√

n log n) · OPT.

�

6 Conclusions and Future Work

In this paper, we have studied network discovery and network verification in
the distance query model. The network verification problem is NP-hard and
admits an O(log n)-approximation algorithm. For certain graph classes there
exist polynomial optimal algorithms or easy characterizations of optimal query
sets. For the network discovery problem, we have presented lower bounds of
Ω(

√
n) and Ω(log n) on the competitive ratio of deterministic and randomized

on-line algorithms, respectively, and designed a randomized on-line algorithm
that achieves competitive ratio O(

√
n log n).

The query model studied in this paper is motivated by real-world scenarios
such as discovering the topology of a network that uses a distance-vector routing
protocol by analyzing selected routing tables. An interesting direction for future
work would be to consider a more realistic model where queries can only be
executed at certain nodes of the network; this is motivated by the fact that
only a rather small subset of the nodes in the Internet or in a network such as
Gnutella can actually be used for queries. While our off-line results translate
to such a model with forbidden query nodes in a straightforward way, it is not
clear whether our on-line algorithm can be adapted to this model or a different
approach needs to be employed.
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