

Lecture Notes in Computer Science 3998
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Tiziana Calamoneri Irene Finocchi
Giuseppe F. Italiano (Eds.)

Algorithms
and Complexity

6th Italian Conference, CIAC 2006
Rome, Italy, May 29-31, 2006
Proceedings

13

Volume Editors

Tiziana Calamoneri
Irene Finocchi
Dipartimento di Informatica
Università degli Studi di Roma “La Sapienza”
Via Salaria 113, 00198 Roma, Italy
E-mail: {calamo,finocchi}@di.uniroma1.it

Giuseppe F. Italiano
Dipartimento di Informatica, Sistemi e Produzione
Università di Roma “Tor Vergata”
Via del Politecnico 1, 00133 Roma, Italy
E-mail: italiano@disp.uniroma2.it

Library of Congress Control Number: 2006925893

CR Subject Classification (1998): F.2, F.1, E.1, I.3.5, G.2

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-540-34375-X Springer Berlin Heidelberg New York
ISBN-13 978-3-540-34375-2 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2006
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11758471 06/3142 5 4 3 2 1 0

Preface

The 6th International Conference on Algorithms and Complexity (CIAC 2006)
was held in Rome, Italy during May 29–31, 2006. These proceedings contain all
contributed papers presented at CIAC 2006, together with the invited lectures
delivered at the conference. The Program Committee consisted of:

– Nicola Galesi, Univ. of Rome “La Sapienza”, Italy
– John Iacono, Brooklyn Polytechnic, USA
– Giuseppe F. Italiano (Chair), Univ. of Rome “Tor Vergata”, Italy
– Pascal Koiran, ENS Lyon, France
– Jaroslav Nešetřil, Charles University, Czech Republic
– Sotiris Nikoletseas, CTI and Univ. of Patras, Greece
– Stephan Olariu, Old Dominion Univ., USA
– Anna Ostlin Pagh, ITU, Denmark
– Andrzej Pelc, Université du Québec en Outaouais, Canada
– Peter Sanders, Universitaet Karlsruhe, Germany
– Bruno Simeone, Univ. of Rome “La Sapienza”, Italy
– Uri Zwick, Tel-Aviv Univ., Israel

In response to a call for papers, the Program Committee received 80 submis-
sions, and selected 33 papers for inclusion in the scientific program. In addition
to the contributed papers, Kurt Mehlhorn (MPI, Germany), Franco P. Preparata
(Brown Univ., USA) and Pavel Pudlák (Academy of Sciences, Czech Republic)
were invited to give plenary lectures at the conference. All the work of the Pro-
gram Committee was done electronically. The selection was based on originality,
quality and relevance to theoretical computer science. The submissions were ref-
ereed as carefully as time permitted; it is expected that many of them will appear
in a more polished form in scientific journals in the future.

We wish to thank all authors who submitted papers for consideration, the
Program Committee for its hard work, as well as those external reviewers who
assisted the Program Committee in the evaluation process. A special thanks to
the Organizing Committee for a very dedicated work.

May 2006 Tiziana Calamoneri
Irene Finocchi

Giuseppe F. Italiano

Organization

External Reviewers

Zoe Abrams Spiros Kontogiannis
Alexander Ageev Guy Kortsarz
Amitai Armon Dimitris Koukopoulos
Pablo Arrighi Dariusz Kowalski
Adi Avidor Dan Král
Amotz Bar-Noy Evangelos Kranakis
Luca Becchetti Jan Kratochv́ıl
Stéphane Bessy Fabian Kuhn
Philip Bille Oliver Kullmann
Somenath Biswas Moshe Lewenstein
Maria Blesa Chaim Linhart
Avrim Blum Zvi Lotker
Jeremy Buhler Rune Bang Lyngsø
John Byers Christos Makris
Ioannis Caragiannis David Manlowe
Massimiliano Caramia Euripides Markou
Nicolò Cesa-Bianchi Elvira Mayordomo
Marco Cesati Xavier Messeguer
Bogdan Chlebus Pat Morin
Marek Chrobak Dhruv Mubayi
Andrea Clementi Marcin Mucha
Pierluigi Crescenzi Maurizio Naldi
Gianluca De Marco Giri Narasimhan
Christoph Dürr Alantha Newman
Fritz Eisenbrand Sara Nicoloso
Lene Favrholdt Rolf Niedermeier
Henning Fernau Bengt J. Nilsson
Fedor Fomin Gianpaolo Oriolo
Dimitris Fotakis Andrea Pacifici
Leszek Ga̧sieniec Rasmus Pagh
Ricardo Gavalda Viki Papadopoulou
Inge Li Gørtz Evi Papaioannou
Fabrizio Grandoni Kunsoo Park
Joachim Gudmundsson Christian N. S. Pedersen
Leonid Gurvits David Peleg
Esben Rune Hansen Paolo Penna
Michael Hoffmann Ugo Pietropaoli
Jan Hubička David Pisinger
Costas Iliopoulos Tomasz Radzik

VIII Organization

Peter Jonsson R. Ravi
Alex Kaporis Oded Regev
Jyrki Katajainen Milan Ruzic
Claire Kenyon Miklos Santha
Nicolas Schabanel Peter Tiedemann
Elad Schiller Jacobo Toran
Uwe Schöning Ugo Vaccaro
Maria José Serna Gabriel Valiente
Asaf Shapira Tasos Viglas
Micha Sharir Paola Vocca
Riccardo Silvestri Magnus Wahlström
Maurizio Strangio Michele Zito
Stéphan Thomassé

Table of Contents

Invited Talks

Reliable and Efficient Geometric Computing
Kurt Mehlhorn . 1

Beware of the Model: Reflections on Algorithmic Research
Franco P. Preparata . 3

On Search Problems in Complexity Theory and in Logic (Abstract)
P. Pudlák . 5

Session 1

Covering a Set of Points with a Minimum Number of Lines
Magdalene Grantson, Christos Levcopoulos . 6

Approximation Algorithms for Capacitated Rectangle Stabbing
Guy Even, Dror Rawitz, Shimon (Moni) Shahar 18

In-Place Randomized Slope Selection
Henrik Blunck, Jan Vahrenhold . 30

Session 2

Quadratic Programming and Combinatorial Minimum Weight Product
Problems

Walter Kern, Gerhard Woeginger . 42

Counting All Solutions of Minimum Weight Exact Satisfiability
Stefan Porschen . 50

Clause Shortening Combined with Pruning Yields a New Upper Bound
for Deterministic SAT Algorithms

Evgeny Dantsin, Edward A. Hirsch, Alexander Wolpert 60

Session 3

Network Discovery and Verification with Distance Queries
Thomas Erlebach, Alexander Hall, Michael Hoffmann,
Matúš Mihaľák . 69

X Table of Contents

Deciding the FIFO Stability of Networks in Polynomial Time
Maik Weinard . 81

Heterogenous Networks Can Be Unstable at Arbitrarily Low Injection
Rates

Dimitrios Koukopoulos, Stavros D. Nikolopoulos 93

Session 4

Provisioning a Virtual Private Network Under the Presence of
Non-communicating Groups

Friedrich Eisenbrand, Edda Happ . 105

Gathering Algorithms on Paths Under Interference Constraints
Jean-Claude Bermond, Ricardo Corrêa, Minli Yu 115

On the Hardness of Range Assignment Problems
Bernhard Fuchs . 127

Session 5

Black Hole Search in Asynchronous Rings Using Tokens
S. Dobrev, R. Královič, N. Santoro, W. Shi . 139

On Broadcast Scheduling with Limited Energy
Christian Gunia . 151

A Near Optimal Scheduler for On-Demand Data Broadcasts
Hing-Fung Ting . 163

Session 6

Fair Cost-Sharing Methods for Scheduling Jobs on Parallel Machines
Yvonne Bleischwitz, Burkhard Monien . 175

Tighter Approximation Bounds for LPT Scheduling in Two Special
Cases

Annamária Kovács . 187

Inapproximability Results for Orthogonal Rectangle Packing Problems
with Rotations

Miroslav Chleb́ık, Janka Chleb́ıková . 199

Table of Contents XI

Session 7

Approximate Hierarchical Facility Location and Applications to the
Shallow Steiner Tree and Range Assignment Problems

Erez Kantor, David Peleg . 211

An Approximation Algorithm for a Bottleneck Traveling Salesman
Problem

Ming-Yang Kao, Manan Sanghi . 223

On the Minimum Common Integer Partition Problem
Xin Chen, Lan Liu, Zheng Liu, Tao Jiang . 236

Session 8

Matching Subsequences in Trees
Philip Bille, Inge Li Gørtz . 248

Distance Approximating Trees: Complexity and Algorithms
Feodor F. Dragan, Chenyu Yan . 260

How to Pack Directed Acyclic Graphs into Small Blocks
Yuichi Asahiro, Tetsuya Furukawa, Keiichi Ikegami, Eiji Miyano 272

Session 9

On-Line Coloring of H-Free Bipartite Graphs
H.J. Broersma, A. Capponi, D. Paulusma . 284

Distributed Approximation Algorithms for Planar Graphs
Andrzej Czygrinow, Micha�l Hańćkowiak, Edyta Szymańska 296

A New NC-Algorithm for Finding a Perfect Matching in d-Regular
Bipartite Graphs When d Is Small

Raghav Kulkarni . 308

Session 10

Fixed-Parameter Tractability Results for Feedback Set Problems in
Tournaments

Michael Dom, Jiong Guo, Falk Hüffner, Rolf Niedermeier,
Anke Truß . 320

XII Table of Contents

Parameterized Algorithms for Hitting Set: The Weighted Case
Henning Fernau . 332

Fixed-Parameter Tractable Generalizations of Cluster Editing
Peter Damaschke . 344

Session 11

The Linear Arrangement Problem Parameterized Above Guaranteed
Value

Gregory Gutin, Arash Rafiey, Stefan Szeider, Anders Yeo 356

Universal Relations and #P-Completeness
Hervé Fournier, Guillaume Malod . 368

Locally 2-Dimensional Sperner Problems Complete for the Polynomial
Parity Argument Classes

Katalin Friedl, Gábor Ivanyos, Miklos Santha, Yves F. Verhoeven 380

Author Index . 393

Reliable and Efficient Geometric Computing�

Kurt Mehlhorn

Max-Planck-Institut für Informatik, Stuhlsatzenhausweg 85,
66123 Saarbrücken, Germany

Reliable implementation of geometric algorithms is a notoriously difficult task.
Algorithms are usually designed for the Real-RAM, capable of computing with
real numbers in the sense of mathematics, and for non-degenerate inputs. But,
real computers are not Real-RAMs and inputs are frequently degenerate.

In the first part of the talk we illustrate the pitfalls of geometric comput-
ing by way of examples [KMP+04]. The examples demonstrate in a lucid way
that standard and frequently taught algorithms can go completely astray when
naively implemented with floating point arithmetic.

Forbidden
Areas

Possible
Perturbations

t

Fig. 1. The figure illustrates the concept of controlled perturbation for an incremental
Delaunay diagram algorithm. A diagram of six points is already constructed and a
seventh point t is to be inserted. The point is replaced by a random point t′ in a δ
disk centered at t. When t′ is inserted, it is subject to sidedness tests with respect
to edges of the current diagram and incircle tests with respect to faces of the current
diagram. Each edge and each face defines a forbidden region for t′. The forbidden region
is either a strip around the edge or an annulus around a circle. If t′ lies outside the
forbidden regions, the floating point evaluation of the geometric predicates gives the
correct results. It is also necessary to guarantee a certain minimal distance between
any pair of perturbed points.

In the second part of the talk, we discuss approaches to reliable and effi-
cient geometric computing, in particular the controlled or active perturbation
� Partially supported by the IST Programme of the EU under Contract No IST-2005-

TODO, Algorithms for Complex Shapes (ACS).

T. Calamoneri, I. Finocchi, G.F. Italiano (Eds.): CIAC 2006, LNCS 3998, pp. 1–2, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

2 K. Mehlhorn

approach introduced by D. Halperin and co-workers [HS98, HR, HL03]. It pro-
poses to slightly perturb the given input in a carefully chosen way so as to avoid
degeneracies and so as to reduce the arithmetic demand. The exact solution on
the perturbed input (not the original input!) is then computed. The scheme only
applies when an approximate result suffices. This is the case whenever inputs
are only approximately known.

We build on the work of Halperin et. al. and show that controlled pertur-
bation is a general and simple technique for making a large class of geometric
algorithms reliable. We also quantify the relation between the amount of pertur-
bation and the precision of the floating point system. We exemplify the method
on examples [FKMS05, MO]. Figure 1 illustrates the technique for the case of a
Delaunay diagram computation.

References

[FKMS05] S. Funke, Ch. Klein, K. Mehlhorn, and S. Schmitt. Controlled per-
turbation for Delaunay triangulations. SODA, pages 1047–1056, 2005.
www.mpi-sb.mpg.de/~mehlhorn/ftp/ControlledPerturbation.pdf.

[HL03] D. Halperin and E. Leiserowitz. Controlled perturbation for arrangements
of circles. In SoCG, pages 264–273, 2003.

[HR] D. Halperin and S. Raab. Controlled perturbation for arrangements of
polyhedral surfaces with application to swept volumes. available from
Halperin’s home page; a preliminary version appeared in SoCG 1999, pages
163–172.

[HS98] Halperin and Shelton. A perturbation scheme for spherical arrangements
with application to molecular modeling. CGTA: Computational Geometry:
Theory and Applications, 10, 1998.

[KMP+04] L. Kettner, K. Mehlhorn, S. Pion, S. Schirra, and C. Yap. Classroom ex-
amples of robustness problems in geometric computations. In ESA, volume
3221 of LNCS, pages 702–713, 2004. www.mpi-sb.mpg.de/~mehlhorn/ftp/
ClassRoomExample.ps

[MO] K. Mehlhorn and R. Osbild. Reliable and efficient computational geome-
try via controlled perturbation (extended abstract). www.mpi-sb.mpg.de/
~mehlhorn/ftp/ControlledPerturbationGeneralStrategy.pdf

Beware of the Model: Reflections
on Algorithmic Research

Franco P. Preparata

Department of Computer Science, Brown University
franco@cs.brown.edu

Over the past four decades the design and analysis of algorithms has been a vi-
brant area of computer science research, since it was early realized that adoption
of a superior algorithm could achieve accelerations unattainable by conceivable
technological improvements.

Evaluation of the performance of algorithms must dispense with the details
of different platforms and refer to a sort of abstract machine that effectively
captures the important features of concrete computers. This abstraction is the
computation model, which is intended to be simple to ease formal analysis but
at the same time reflective of reality to afford reliable predictions. Indeed, the
dialectics of simplicity and reflectivity is the essence of model development.

The Random-Access-Machine (RAM) is the standard model of the sequential
processor, and its simplicity has unleashed vigorous algorithmic research. How-
ever, simplification means selection of features to be represented in the model, so
that details originally judged secondary or irrelevant are likely to reassert their
significance when, under the pressure of technological innovations, the model
reaches beyond its intended confines.

The first danger is that a model may take a life of its own, thereby becoming
itself the reality and defining the “rules of the game”. An obvious illustration
of this potential danger is the occasional misuse of the “asymptotic-analysis
viewpoint”, whereby some algorithms declared “optimal” are unlikely to be ever
translated into programs. However, there are more subtle shortcomings. Indeed,
being remiss in critically scrutinizing the applicability of the model to specific
situations may be the source of very serious disappointments. There are sev-
eral such incidents in the history of algorithmic research. A sample is described
below:

1. Computational Geometry adopted (with not much scrutiny) the model of
the real-RAM, obtained by endowing the RAM with real-number (exact)
arithmetic. Inaccurate results may result fatal in the evaluation of the sign
of predicates. For example, the efficient BentleyOttmann algorithm for re-
porting the intersections of a set of segments in the plane, involves a predi-
cate represented by the sign of a thirddegree polynomial in the coordinates.
Inaccuracies may invalidate the result. The shortcoming may be avoided,
however, by adding integer arithmetic capabilities of specified degree to the
original RAM model, i.e., by adopting a sort of the bounded-degree-RAM.

T. Calamoneri, I. Finocchi, G.F. Italiano (Eds.): CIAC 2006, LNCS 3998, pp. 3–4, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

4 F.P. Preparata

2. The feasibility of parallel computation posed the question of the correspond-
ing model. The discussion centered on the interconnection of modules of the
RAM type and an important performance goal was the achievementt of
polylog-time computations (NC-class). As usual, processing elements were
assumed to have unit-time arithmetic capabilities. In this context, Csanky’s
algorithm, achieving O(log2 n) time for matrix inversion, was an exhilarat-
ing surprise. A closer look reveals that, since approximate arithmetic is not
known or likely to be applicable to Csanky’s method, integer arithmetic re-
quires operand length of O(n) bits for inverting n× n matrices. Here again,
overlooking the arithmetic details of the model, leads to the invalidation of
this result.

3. Very-Large-Scale-Integration opened up the possibility of massive parallel-
lism, whose typical model was an interconnection of RAM-type processors
with unit-time interprocessor communication. Therefore the emphasis was
directed towards small-diameter networks, i.e., trees and hypercubes. How-
ever, the area-time theory of layouts reveals that such networks have links of
length linear in the problem size. Since in future technologies transmission
time is bound to grow with wirelength, hypercubic connections are mani-
festly nonscalable.

4. Finally, a case study from Computational Biology is not directly concerned
with a computation model, but rather with the modeling of the process
to which algorithmic research is applied. Sequencingby-Hybridization was
presented as a potential alternative for DNA-sequencing. A microarray con-
taining a complete library of oligonucleotides of length k is the platform of a
biochemical experiment intended to yield all substrings of length k of a tar-
get sequence. The algorithmic task is the reconstruction of the target from
its substrings. A number of very interesting results were obtained based on
the hypothesis of ideal “noiseless” hybridization: a substring is reported if
and only if present in the target. A closer look at the biochemical behavior
reveals an enormously more complex noisy reality, which casts a negative
shadow on the future of the technology.

On Search Problems in Complexity
Theory and in Logic (Abstract)

Pavel Pudlák

Mathematical Institute of the Academy of Sciences,
Prague, Czech Republic
pudlak@math.cas.cz

Abstract. A search problem is given by a binary relation B(x, y) in
P, such that ∀x∃y, |y| ≤ poly(|x|)B(x, y). The computational task is for
given x find such a y. We believe that in general this is not possible in
polynomial time and oracles are known for which this is the case.

Many-to-one and Turing reductions between search problems are de-
fined in a natural way. We conjecture that there is no complete search
problem.

Our aim is to classify search problems and show relations between the
computational complexities of them and the proof complexities of the
sentences ∀x∃y, |y| ≤ poly(|x|)B(x, y). A typical example of a class of
search problems is the class Polynomial Local Search defined as follows.

A PLS problem is given by a P-time relation R(p, x) and a P-time
function F (p, y) such that R(n, n) holds for all n. The search problem is
for every p and x ≤ p to find a y ≤ p such that

R(p, y) ∧ (¬F (p, y) < y ∨ ¬R(p, F (p, y))).

A typical result relating proof complexity and computational com-
plexity of search problems is the following theorem of Buss and Kraj́ıček.

Theorem 1. A search problem B(x, y) is reducible to a PLS problem
iff

T 1
2 � ∀x∃yβ(x, y),

for a Σb
0 formula β(x, y) defining the relation B(x, y), (where T 1

2 is a
theory that formalizes induction for NP sets.)

In this lecture we shall present some recent results in this field.

T. Calamoneri, I. Finocchi, G.F. Italiano (Eds.): CIAC 2006, LNCS 3998, p. 5, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Covering a Set of Points with a Minimum
Number of Lines

Magdalene Grantson and Christos Levcopoulos

Department of Computer Science, Lund University,
Box 118, 221 Lund, Sweden

{magdalene, christos}@cs.lth.se

Abstract. We consider the minimum line covering problem: given a
set S of n points in the plane, we want to find the smallest number l
of straight lines needed to cover all n points in S. We show that this
problem can be solved in O(n log l) time if l ∈ O(log1−ε n), and that
this is optimal in the algebraic computation tree model (we show that
the Ω(n log l) lower bound holds for all values of l up to O(

√
n)). Fur-

thermore, a O(log l)-factor approximation can be found within the same
O(n log l) time bound if l ∈ O(4

√
n). For the case when l ∈ Ω(log n) we

suggest how to improve the time complexity of the exact algorithm by a
factor exponential in l.

1 Introduction

We consider the minimum line covering problem: given a set S of n points in the
plane, we want to find the smallest number l of straight lines needed to cover all
n points in S. The corresponding decision problem is: given a set S of n points
in the plane and an integer k, we want to know whether it is possible to find k
(or fewer) straight lines that cover all n points in S.

Langerman and Morin [7] showed that the decision problem can be solved in
O(nk + k2(k+1)) time. In this paper we show that the decision problem can be
solved in O(n log k + (k/2.2)2k) time.

Kumar et al. [6] showed that the minimum line covering problem is APX-hard.
That is, unless P = NP , there does not exit a (1 + ε)-approximation algorithm.
In their paper they pointed out that the greedy algorithm proposed by Johnson
[5], which approximates the set covering problem within a factor of O(log n),
is the best known approximation for the minimum line covering problem. In
this paper we show that a O(log l)-factor approximation for the minimum line
covering problem can be obtained in time O(n log l + l4 log l).

We also present an algorithm that solves the line covering problem exactly in
O(n log l + (l/2.2)2l) time. This simplifies to O(n log l) if l ∈ O(log1−ε n), and
we show that this is optimal in the algebraic computation tree model. That is,
we show that the Ω(n log l) lower bound holds for all values of l up to O(

√
n).

We also suggest more asymptotic improvements for our exact algorithms when
l ∈ Ω(logn).

T. Calamoneri, I. Finocchi, G.F. Italiano (Eds.): CIAC 2006, LNCS 3998, pp. 6–17, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Covering a Set of Points with a Minimum Number of Lines 7

2 Preliminaries

Lemma 1. Any set S of n points in the plane can be covered with at most �n
2 �

straight lines.

Proof. A simple way to show this upper bound is to pick two points at a time,
to construct a line through the pair, and then to remove the pair from the set.
For the special case when n is odd, we can draw an arbitrary line through the
last point. The time complexity of this algorithm is obviously O(n).

Lemma 2. If a set S of n points can be covered with k lines (k minimal or not),
then: for any subset R ⊆ S of at least k + 1 collinear points (i.e., |R| ≥ k + 1
and ∀r1, r2, r3 ∈ R : r1 �= r2 ⇒ ∃α ∈ IR : r3 = α · (r2 − r1) + r1), the line
through them is in the set of k covering lines.

Proof. Suppose the line through the points in R was not among the k lines
covering S. Then the points in R must be covered with at least k+1 lines, since
no two points in R can be covered with the same line. (The only line covering
more than one point in R is the one through all of them, which is ruled out.)
Hence we need at least k+ 1 lines to cover the points in R. This contradicts the
assumption that S can be covered with k lines.

Lemma 3. If a set S of n points can be covered with k lines (k minimal or not),
then: any subset of S containing at least k2 +1 points must contain at least k+1
collinear points.

Proof. Suppose there is a subset R ⊆ S containing at least k2 + 1 points, but
not containing k + 1 collinear points. Then each of the k covering lines must
contain at most k points in R. Hence with these at most k covering lines, each
containing at most k points, we can cover at most k2 points. Thus we cannot
cover R (nor any superset of R, like S) with the k lines. This contradicts the
assumption that S can be covered with k lines.

Corollary 1. If in any subset of S containing at least k2 + 1 points we do not
find k+1 collinear points, we can conclude that S cannot be covered with k lines.

Lemma 4. If a set S of n points can be covered with l lines, but not with l − 1
lines (i.e., if l is the minimum number of lines needed to cover S) and k ≥ l,
then: if we generate all lines containing more than k points, the total number of
uncovered points will be at most l · k.
Proof. Let R be the set of uncovered points in S after all lines containing more
than k points have been generated. Since S can be covered with l lines and
R ⊆ S, R can be covered with l (or fewer) lines. None of the lines covering
points in R can cover more than k points in R (as all such lines have already
been generated). Hence there can be at most l · k points in R.

3 General Procedure

Given a set S of n points in the plane, we already know (because of Lemma 1)
that the minimum number l of lines needed tocover S is in {1, . . . , �n

2 �}. In our

8 M. Grantson and C. Levcopoulos

algorithm, we first check whether l = 1, which can obviously be decided in time
linear in n. If the check fails (i.e., if the points in S are not all collinear and thus
l ≥ 2), we try to increase the lower bound for l by exploiting Lemmas 2 and 3,
which (sometimes) provide us with means of proving that the set S cannot be
covered with a certain number k of lines. In the first place, if for a given value
of k we find a subset R ⊆ S containing k2 + 1 points, but not containing k + 1
collinear points, we can conclude that more than k lines are needed to cover S
(because of Corollary 1). On the other hand, if we find k + 1 collinear points
(details of how this is done are given below), we record the line through them
(as it must be among the covering lines due to Lemma 2) and remove from S
all points covered by this line. This leads to second possible argument: If by
repeatedly identifying lines in this way (always choosing the next subset R from
the remaining points), we record k lines while there are points left in S, we can
also conclude that more than k lines are needed to cover S.

We check different values of k in increasing order (the exact scheme is dis-
cussed below), until we reach a value k1, for which we fail to prove (with the
means mentioned above) that S cannot be covered with k1 lines. On the other
hand, we can demonstrate (in one of the two ways outlined above) that S cannot
be covered with k0 lines, where k0 is the largest value smaller than k1 that was
tested in the procedure. At this point we know that l > k0.

Suppose that when processing S with k = k1, we identified m1 lines, m1 ≤ k1.
We use a simple greedy algorithm to find m2 lines covering the remaining points.
(Note that m2 may or may not be the minimum number of lines needed to cover
the remaining points. Note also that m2 = 0 if there are no points left to be
covered.) As a consequence we know that S can be covered with m1 + m2 lines
(since we have found such lines) and thus that k0 < l ≤ m1+m2. We show below
that m1 + m2 ∈ O(l log l) and thus that with the m1 + m2 lines we selected we
obtained an O(log l) approximation of the optimum.

In a second step we may then go on and determine the exact value of l by
drawing on the found approximation (see below for details).

Although in this paper we concentrate on the two-dimensional case, we note
that even for higher dimensions one might be able to obtain some improvements
by selecting a sample of size O(kd), using in a similar way the set systems (and
applications of those) discussed by Langerman and Morin, see Lemma 4 in [7].

4 Algorithms

In this section we propose approximate and exact algorithms to solve the mini-
mum line covering problem. We use two already known algorithms as subroutines
in our algorithms:

1. An algorithm proposed by Guibas et al. [4], which finds all lines containing
at least k + 1 points in a set S of n points in time O

(
n2

k+1 log n
k+1

)
.

2. An algorithm proposed by Langerman and Morin [7], which takes as input
a set S of n points and an integer k, and outputs whether S can be covered
with k lines in O(nk + k2(k+1)) time.

Covering a Set of Points with a Minimum Number of Lines 9

4.1 Finding at Most k Lines Covering More Than k Points

(In all pseudo-code var in the declaration of a function’s arguments is used to
indicate that an argument is passed by reference, not just by value.)

function Lines (var S: set of points, k: int) : int;
var m: int; (∗ number of lines found ∗)

L1, . . . , Lk: set of points; (∗ points on straight lines found ∗)
R: set of points; (∗ pool of points for line finding ∗)

begin
m := 0; R := ∅; (∗ init. line counter and point pool ∗)
while m < k do begin (∗ try to find at most k lines ∗)

while |R| < k2 + 1 and S �= ∅ do begin
choose p ∈ S; (∗ collect at most k2 + 1 points ∗)
S := S − {p}; (∗ into the point pool R ∗)
if ∃i; 1 ≤ i ≤ m : p is collinear with the points in Li

then Li := Li ∪ {p}; (∗ point is on already found line ∗)
else R := R ∪ {p}; (∗ point is on no found line ∗)

end
Lm+1 := FindLine(R, k); (∗ Guibas et al.’s algorithm [4] ∗)
if Lm+1 = ∅ then begin (∗ if no line with k + 1 points found ∗)

if |R| ≤ k2 (∗ return the number of lines found ∗)
then begin S := S ∪R; return m; end;
else return −1; (∗ if there are more than k2 points, ∗)

end (∗ there should be such a line ∗)
R := R− Lm+1; m := m + 1; (∗ remove the covered points and ∗)

end (∗ increment the line counter ∗)
if |R| + |S| = 0 return m; (∗ return the number of lines found ∗)
return −1; (∗ if there are uncovered points, ∗)

end (∗ more than k lines are needed ∗)

4.2 Approximation for Minimum Line Covering

To greedily cover the at most k · l points (see Lemma 4) that may be left after
we removed lines with more than k points, we use the following function:

function GreedyCover (S: set of points, k: int) : int;
var m: int; (∗ number of lines found ∗)

L: set of points; (∗ buffer for points on found line ∗)
begin

m := 0; (∗ initialize the line counter ∗)
while S �= ∅ do begin (∗ while not all points are covered ∗)

L := FindLine(S, k); (∗ Guibas et al.’s algorithm [4] ∗)
if L = ∅ then k := k − 1; (∗ reduce the number of points ∗)
else begin m := m + 1; S := S − L; end;

end; (∗ count the line found and ∗)
return m; (∗ remove the covered points ∗)

end (∗ return the number of lines found ∗)

10 M. Grantson and C. Levcopoulos

The approximation algorithm for the line covering problem then is:

function ApxLineCover (S: set of points) : int;
var k, m, n : int; (∗ numbers of lines/points ∗)

R : set of points; (∗ remaining uncovered points ∗)
begin

if all points in S are collinear then return 1;
k := 2; n := |S|; (∗ initialize variables ∗)
while k ≤ 8

√
n do begin

R := S; m := Lines(R, k); (∗ see Subsection 4.1 ∗)
if m ≥ 0 then return m + GreedyCover(R, k − 1);
k := k2;

end;
R := S; m := Lines(R, 4

√
n); (∗ see Subsection 4.1 ∗)

if m ≥ 0 then return m + GreedyCover(R, 4
√
n− 1);

end;
k := 2 4

√
n;

while k <
⌈

n
2

⌉
do begin

R := S; m := Lines(R, k); (∗ see Subsection 4.1 ∗)
if m ≥ 0 then return m + GreedyCover(R, k − 1);
k := 2k;

end;
return

⌈
n
2

⌉
; (∗ see Lemma 1 ∗)

end

4.3 Analysis

Approximation ratio. Let k1 be the value of k in function ApxLineCover, for
which the call to function Lines succeeds, i.e., for which it returns a value ≥ 0.
Let m1 be the number of lines found by the function Lines in this case, nR = |R|
the total number of points that are left uncovered, and m2 the number of lines
found by the algorithm GreedyCover applied to these nR remaining points.

From Lemma 4 we know nR ≤ k1 · l. We also know that the maximum value of
k1 is (l−1)2, namely when we tried k0 = l−1, could prove that we cannot cover
S with k0 lines, and then computed k1 = k2

0 . Running the greedy algorithm
on the at most nR ≤ k1 · l ≤ (l − 1)2 · l ∈ O(l3) remaining points gives an
O(log l3) = O(log l) approximation of the optimum number lR of lines, with
which the nR remaining points can be covered (as shown by Johnson [5]). Since
certainly lR ≤ l, we have m2 ∈ O(l log l). The maximum value of m1 is clearly l,
namely when m2 = 0. Thus m1 + m2 ∈ O(l + l log l) = O(l log l).

Time complexity of function Lines. For each point p chosen from S, we
need to check whether it lies on an already found line or not. This is a funda-
mental problem in computational geometry called the point location problem. A
planar subdivision with m lines is called an arrangement. Such an arrangement
can be preprocessed in time O(m2 logm) into a linear size data structure so
that a query whether a given point p lies on any of the lines can be answered

Covering a Set of Points with a Minimum Number of Lines 11

in O(logm) time [2, 9]. In principle, we have to construct at most k such data
structures, namely each time we find a new line. Thus in the worst case it takes
O(k3 log k) time to construct all such data structures. (This could be improved,
but we do not elaborate it, because it does not affect the overall time com-
plexity.) Since we perform at most n queries—checking whether a chosen point
lies on an already constructed line—it takes O(n log k) to perform all queries.
The function FindLine, which is the algorithm by Guibas et al. [4] for identi-
fying at least k + 1 collinear points, is called at most k times. Each call takes
time O

(
(k2+1)2

k+1 log k2+1
k+1

)
= O(k3 log k). Thus the total time complexity of the

function Lines is O
(
k3 log k + n log k + k · k3 log k

)
= O(n log k + k4 log k).

Time complexity of function GreedyCover. Note that in the function
GreedyCover it always holds that all lines covering more than k+ 1 points have
already been found and the covered points removed. Hence we know, because of
Lemma 4, that there are always no more than l · (k + 1) points remaining in S.
Let k1 − 1 be the value of k with which GreedyCover is called. We group the
calls to the function FindLine (which is the algorithm by Guibas et al. [4] for
identifying at least k + 1 collinear points) according to the values of k: group j,
1 ≤ j ≤ �log2 k1�, contains the values of k with (k1 − 1)2−j < k ≤ (k1 − 1)21−j .
Since all points covered by lines covering more than k + 1 points have been
removed, we know that for any value of k in the j-th group there are at most
l · ((k1 − 1)21−j + 1) ≤ l k121−j points left to cover. Thus the time bound for a
call to the function FindLine with k in the j-th group is

O

(
(l k121−j)2

k121−j
log

l k121−j

k121−j

)
= O

(
2−j l2k1 log l

)
.

To estimate the number of calls to function FindLine in the j-th group we have
to distinguish two cases: either FindLine returns a line (productive call) or not
(unproductive call). Since for each unproductive call we decrement k, there can
be at most one unproductive call for each k in the group and thus there are
(k1 − 1)21−j − (k1 − 1)2−j = (k1 − 1)2−j unproductive calls in the j-th group.
Each productive call removes at least (k1 − 1)2−j + 1 ≥ k12−j points from S.
Thus, since there are at most l k121−j points left for any k in the j-th group, there
can be at most l·k121−j

(k1−1)2−j+1 ≤ 2l productive calls. Therefore function FindLine
is called at most 2l+(k1 − 1)2−j times in the j-th group and hence a worst case
upper bound on the time required for all calls in the j-th group is

O
(
(2l + (k1 − 1)2−j)2−j l2k1 log l

)
= O

(
(l3k12−j + l2k2

12
−2j) log l

)
We observe that this upper bound gets smaller by a constant factor, which is
smaller than 1

2 , for successive groups (as j increases for successive groups). Hence
the total time complexity (sum over all groups) is bounded by twice the above
time complexity for j = 1. Therefore a worst case bound on the time complexity
of the function GreedyCover is O((l3k1 + l2k2

1) log l).

12 M. Grantson and C. Levcopoulos

Time complexity of function ApxLineCover. ApxLineCover calls function
Lines each time the value of k is incremented. There are three cases we have
to consider, in each of which k is incremented differently. In any case, let k1 be
the value of k, for which the call to function Lines succeeds, i.e., for which Lines
returns a value ≥ 0 (just as above). In addition, let m1 be the number of lines
found by function Lines in this case.

Case 1: k ≤ 8
√
n. In this case we always square k. Immediately before squaring

the value of k, we know that k < l. Each call to function Lines takes at most
O(n log k+k4 log k) time (see above). We observe that this time bound increases
by a factor of at least 2 for successive values of k (since we start with k = 2
and keep squaring k), leading to a geometric progression of the time complexity.
Thus the total time is asymptotically dominated by the last term, which is
O(n log k1 + k4

1 log k1). Thus the overall time complexity for ApxLineCover is
O(n log k1 + k4

1 log k1 + (l3k1 + l2k2
1) log k1) = O((n + k4

1 + l3k1 + l2k2
1) log k1).

Since we squared the value of k at each step, we know k1 < l2 (actually
k1 ≤ (l − 1)2). Thus the total time complexity simplifies to O(n log l + l8 log l).
This leads to the following lemma:

Lemma 5. We can approximate the minimum line covering problem within a
factor of O(log l) in O(n log l) time if l ≤ 8

√
n.

However, if we did not succeed in finding a value of k < 8
√
n, such that function

Lines succeeded, we proceed to the second case.

Case 2: k = 4
√
n. Let k0 be smallest value of k before it became greater than

8
√
n. We know that k0 ≤ 8

√
n < l, trivially implying k = 4

√
n < l2. Suppose

the function Lines succeeds for k = 4
√
n, yielding m1 ≥ 0 lines. Then the total

time invested is the time spent in Case 1, the time for the successful call to
function Lines, plus the time for calling function GreedyCover. For the first term
(Case 1), we computed above that the worst case time bound is O(n log k +
k4 log k), which we have to apply for k = k0 ≤ l, which yields O(n log l +
l4 log l). For the second term (function Lines) we have (see above) O(n log k +
k4 log k) = O(n log l+l8 log l) = O(n log l). Finally, calling function GreedyCover
takes O((l3k+ l2k2) log l) = O((l5 + l6) log l) = O(l6 log l) time. Thus the overall
time complexity is O(n log l + l4 log l + n log l + l6 log l) = O(n log l + l6 log l).

Lemma 6. We can approximate the minimum line covering problem within a
factor of O(log l) in O(n log l) time if l ≤ 4

√
n.

However, if we do not succeed with k = 4
√
n, we proceed to the third case:

Case 3: 4
√
n < k < �n

2 �. In this case l > 4
√
n. The time we spent up to this

point consists of the time spent in Case 1, that is, O(k4
0 log k0 + n log k0) =

O(n log l + l4 log l) (see above) plus the time for the (unsuccessful) call to func-
tion Lines for k = 4

√
n < l, which took at most O(n log k+k4 log k) = O(n log l+

l4 log l) time. Together this yields O(n log l + l4 log l) time. Afterwards we pro-
ceed by doubling the value of k. For each k we call function Lines, spending
O(k4 log k + n log k) time, which simplifies to O(k4 log k) for k > 4

√
n. We ob-

serve that this calculated worst case upper time bound increases by a factor of

Covering a Set of Points with a Minimum Number of Lines 13

at least 24 = 16 for successive calls, leading to a geometric progression of the
time complexity. Thus the total time is asymptotically dominated by the last
term, which is O(k4

1 log k1+n log k1+k2
1l

2 log k1+k1l
3 log k1), which simplifies to

O(l4 log l), since k ≤ 2l. Summarising all the three cases we obtain the following
theorem:

Theorem 1. We can approximate the minimum line covering problem within a
factor of O(log l) in time O(n log l + l4 log l).

Corollary 2. We can approximate the minimum line covering problem within
a factor of O(log l) in O(n log l) time if l ∈ O(4

√
n).

4.4 Exact Minimum Line Covering

Drawing on the total number m1 + m2 of lines obtained by the approximation
algorithm, we can determine the exact value of the minimum number of lines
l needed to cover a given set S of n points. Let m = m1 + m2. If we know
m, we use function Lines to repeatedly identify lines containing at least m + 1
collinear points from subsets R ⊆ S containing m2 + 1 points. Since m ≥ l,
all lines found in this way must be in the optimal solution (see Lemma 2).
Hence we can find the optimal solution by running any optimal line covering
algorithm on the remaining points, of which there can be no more then l ·m (see
Lemma 4). An example of such an optimal algorithm is the algorithm proposed
by Langerman and Morin [7]. More formally, our algorithm works as follows: To
find the minimum number of lines needed to cover the remaining nR = m·l points
we use the following function, which calls the algorithm proposed by Langerman
and Morin [7].

function ExactCover (S : set of points) : int;
var n, k: int; (∗ current number of lines ∗)
begin

n = |S|; k := 1; (∗ traverse possible numbers of lines ∗)
while k <

⌈
n
2

⌉
do begin

if IsCoverable(S, k) (∗ Langerman and Morin’s algorithm [7] ∗)
then return k; (∗ if S can be covered with k lines ∗)
k := k + 1; (∗ return the current k, ∗)

end; (∗ otherwise go to the next k ∗)
return

⌈
n
2

⌉
; (∗ S can always be covered with

⌈
n
2

⌉
lines ∗)

end

The algorithm itself works as follows:

function ExactLineCover (S: set of points) : int;
var m: int; (∗ approximate solution ∗)
begin

m := ApxLineCover(S); (∗ find approximate solution ∗)
m := Lines(S,m); (∗ find lines that must be in the solution ∗)
return m + ExactCover(S);

end (∗ cover the rest with an exact algorithm ∗)

14 M. Grantson and C. Levcopoulos

Theorem 2. The minimum line covering problem can be solved exactly in
O(n log l + l2l+2) time. In particular, if l ∈ O(log1−ε n), the minimum line cov-
ering problem can be solved in O(n log l) time.

Proof. We already argued above that the approximation algorithm takes
O(n log l+ l8 log l) time if l < 8

√
n. It finds m lines that cover S. Finding all lines

containing at least m + 1 points takes O(n logm + m4 logm) time as analyzed
above. Recall that the approximation algorithm yields at most m = O(l log l)
lines. Therefore the time complexity of finding the lines can also be written as

O(n log(l log l) + (l log l)4 log(l log l))
= O(n log l + n log log l + l4 log5 l + l4 log4 l · log log l)
= O(n log l + l4 log5 l).

Finally, we use the algorithm proposed by Langerman and Morin [7] to find the
minimum number of lines covering the most O(m · l) = O(l2 log l) points. Their
algorithm takes at most O(nk + k2k+2) time to decide whether n points can be
covered with k lines. It has to be applied for all values k, 1 ≤ k ≤ l−m3, where
m3 is the number of lines identified by applying function Lines with k = m. In
the worst case, it is m3 = 0. The sum over the time complexities for the different
values of k is clearly dominated by the last term, that is, for k = l. Thus the time
complexity for this step is O(l3 log l+ l2l+2) time. As a consequence, the overall
time complexity is O(n log l+ l4 log5 l+ l3 log l+ l2l+2) = O(n log l+ l2l+2). This
simplifies to O(n log l) if l ≤ log n

2 log log n .

Theorem 3. Given a set S of n points in the plane and an integer k, we can
answer whether it is possible to find k lines that cover all the points in the set
in O(n log k + k2k+2) time.

Proof. We apply the approximation algorithm (function ApxLineCover) as de-
scribed above, but endowing it with the integer k as an additional argument.
The algorithm proceeds basically as before, but it terminates and returns −1
(meaning that the set cannot be covered with k lines) if it tries to build the
point location structure with more than k2 lines. Otherwise, it proceeds to the
end, to find m lines as described above. Next we call function Lines to find m3
lines, each covering at least m+1 points. We know that these m3 lines are in the
optimal solution. So our next step will be to determine, whether we can cover the
remaining points with k−m3 lines. This can be done by calling the algorithm by
Langerman and Morin [7], with k −m3 as the input. (Their algorithm answers
whether the remaining points can be covered with k −m3 lines.)

4.5 Producing the Optimal Set of Lines

We remark that after computing the optimal number of lines l, we can also pro-
duce the actual lines covering the input point set within the same time bounds.
One way is to first use the algorithm proposed by Guibas et al. [4] to produce
lines covering at least l+ 1 points. Let l′ denote the number of lines covering at

Covering a Set of Points with a Minimum Number of Lines 15

least l + 1 points and n′ the number points left to be covered. We observe that
at least one of the remaining l− l′ lines cover at least n′

l−l′ points. A line is called
a candidate line if it covers at least n′

l−l′ points. Next, we repeat the following
step to produce the remaining l− l′ lines: If n′ ≤ 2(l− l′) then any line covering
at least two points can be included in the optimal solution. Otherwise, for each
candidate line we tentatively (temporarily) remove the points covered by it and
call Langerman and Morin’s algorithm [7] to see whether the remaining points
can be covered by l − l′ − 1 lines. Clearly, the candidate can be included in the
optimal solution if and only if the answer is yes.

To calculate the time bound we show that there are at most 3
2 · (l − l′)2

candidate lines. Any point can be covered by no more than 3
2 · (l− l′) candidate

lines. (The factor 3
2 comes from the extreme case when l − l′ = n′

3 , so that
each candidate line covers only three points and the point is covered by n′−1

2
candidates.) Hence, if we sum for each point the number of candidates it is
covered by, we thus get an upper bound of n′ · 3

2 (l− l′). But we observe that this
sum equals the sum we obtain by adding for each candidate line the number of
points it covers. Since each candidate line covers at least n′

l−l′ points, the number
of candidate lines cannot be larger than (n′ · 3

2 (l− l′))/ n′
l−l′ and hence not larger

than 3
2 (l− l′)2. Therefore we call Langerman and Morin’s algorithm [7] at most

3
2 (l− l′)2 times before we produce one more optimal line. In subsequent calls to
their algorithm, the number of optimal lines to be produced gets smaller and
hence the time complexity gets smaller each time by at least a constant factor,
since it is exponential in the number of optimal lines. This results in a geometric
progression of the time complexity. Therefore the worst-case bound for the first
call asymptotically dominates all subsequent calls.

4.6 Improving the Time Bound When l ∈ Ω(log n)

The following theorem is shown.

Theorem 4. For any input set of n points, it can be decided whether there is
a set of lines of cardinality at most k covering the n points in time O(n log k +
(k
2.2194...)

2k). Moreover, an optimal set of covering lines with minimum cardinal-
ity l can be produced in time O(n log l + (l

2.2194...)
2l)

Remaining details of this section have been removed in this conference version
because of page limits. The interested reader can download the full technical
report, see [3]. There we also suggest how to further improve the asymptotic
bounds stated in the above theorem.

5 Lower Bound

In this section we give a lower bound on the time complexity for solving the
minimum line cover problem. We make the assumption that the minimum num-
ber of lines l needed to cover a set S of n points is at most O(

√
n). (For larger

16 M. Grantson and C. Levcopoulos

values of l our lower bound may not be very interesting, since the best known
upper bounds on the time complexity of the minimum line cover problem are
exponential anyway.)

The main result we prove in this section is as follows:

Theorem 5. The time complexity of the minimum line cover problem is
Ω(n log l) in the algebraic decision tree model of computation.

We prove Theorem 5 with a reduction from a special variant of the general set
inclusion problem [1], which we call the k-Array Inclusion problem. Set inclusion
is the problem of checking whether a set of m items is a subset of the second set
of n items with n ≥ m. Ben-Or [1] showed a lower bound of Ω(n log n) for this
problem using the following important statement.

Statement 1. If YES instances of some problem Π have N distinct connected
components in �n, then the depth of the real computation tree for this problem
is Ω(logN − n).

Applying Statement 1 to the complement of Π , we get the same statement for
NO instances. We define the k-array inclusion problem as follows:

Definition 1. k-Array Inclusion Problem: Given two arrays A[1 . . . k] of
distinct real numbers and B[1 . . .m] of (not necessarily distinct) real numbers,
k ≤ m, m+ k = n, determine whether or not each element in B[1 . . .m] belongs
to A[1 . . . k].

Corollary 3. Any algebraic computation tree solving k-array inclusion problem
must have a depth of Ω(n log k).

Proof. This lower bound can be shown in a corresponding way as the lower
bound for the set inclusion problem [1]. As already pointed out by Ben-Or, any
computational tree will correctly decide the case when A[1 . . . k] = (1 . . . k). The
number of disjoint connected components, N , for YES instances of the k-array
inclusion problem is km. This is because, in order to create a YES instance, for
each element mi in B[1 . . .m], there are k choices concerning which of the k
fixed elements in A[1 . . . k], mi could be equal to. Since these choices are inde-
pendent for each mi, the total number of YES-instances becomes km. Applying
Statement 1, we get a lower bound of Ω(m log k), which is also Ω(n log k), since
m > n

2 .

To establish the lower bound in Theorem 5 for the minimum line cover problem,
we convert (in linear time) the input of the k-array inclusion problem into a
suitable input to the minimum line cover problem as follows: Each real number
ai, 1 ≤ i ≤ k, in the array A[1 . . . k] becomes k points with coordinates (ai, j)
(in total we obtain k2 points), 1 ≤ j ≤ k and each real number bj in the
array B[1 . . .m], 1 ≤ j ≤ m, becomes a point with coordinates (bj,−j), all
points are in two dimensional space. None of the constructed sets of n = k + m
points coincide. If we use any algorithm for the minimum line cover problem to
solve the constructed instance, the output will be a set of lines covering these

Covering a Set of Points with a Minimum Number of Lines 17

points. To obtain an answer to the k-array inclusion problem, we check whether
the total number of lines, denoted by l, obtained for the minimum line cover
problem is greater than k. If l = k then each element in B[1 . . .m] belongs
to A[1 . . . k], otherwise at least one element in B[1 . . .m] does not belong to
A[1 . . . k]. Since the k-array inclusion problem requires Ω(n log k) time, it follows
that the minimum line cover problem requires Ω(n log k) time as well.

According to this construction, if it would be possible to compute the number
l in o(n log l) time, for some l = O(

√
n), then it would also be possible to solve

the k-array inclusion problem in time o(n log k) for the case when k = l, which
would contradict our lower bound for the k-array inclusion problem.

Acknowledgment. The authors wish to thank Dr. Christian Borgelt for his
detailed reading and comments on the paper.

References

1. M. Ben-Or. Lower Bounds for Algebraic Computation Trees. Proc. 15th Ann. ACM
Symp. on Theory of Comp., 80–86. ACM Press, New York, NY, USA 1983

2. H. Edelsbrunner, L. Guibas and J.Stolfi. Optimal Point Location in a Monotone
Subdivision. SIAM J. Comput. 15:317–340.Society for Industrial and Applied Math-
ematics, Philadelphia, PA, USA 1986

3. M. Grantson and C. Levcopoulos. Covering a Set of Points with a Minimum Number
of Lines. Technical Report LU-CS-TR:2005-236, ISSN 1650-1276 Report 156. Also
at: http://www.cs.lth.se/home/Magdalene Grantson/line.pdf

4. L. Guibas, M. Overmars, J. Robert. The Exact Fitting Problem in Higher Dimen-
sions.Computational Geometry: Theory and Applications, 6:215–230. 1996

5. D. Johnson. Approximation Algorithms for Combinatorial Problems. J. of Comp.
Syst. Sci. 9:256-278. 1974

6. V. Kumar, S. Arya, and H. Ramesh. Hardness of Set Cover With Intersection 1.
Proc. 27th Int. Coll. Automata, Languages and Programming, LNCS 1853:624–635.
Springer-Verlag, Heidelberg, Germany 2000

7. S. Langerman and P. Morin. Covering Things with Things. Proc. 10th Annual
Europ. Symp. on Algorithms (Rome, Italy), LNCS 2461:662–673. Springer-Verlag,
Heidelberg, Germany, 2002

8. N. Megiddo and A. Tamir. On the Complexity of Locating Linear Facilities in the
Plane.Operation Research Letters 1:194–197. 1982

9. N. Sarnak, and R.E. Tarjan. Planar Point Location Using Persistent Search Tree.
Comm. ACM 29:669-679. ACM Press, New York, NY, USA 1986

Approximation Algorithms for Capacitated
Rectangle Stabbing

Guy Even1, Dror Rawitz2, and Shimon (Moni) Shahar1

1 School of Electrical Engineering, Tel-Aviv University, Tel-Aviv 69978, Israel
{guy, moni}@eng.tau.ac.il

2 Caesarea Rothschild Institute, University of Haifa, Haifa 31905, Israel
rawitz@cri.haifa.ac.il

Abstract. In the rectangle stabbing problem we are given a set of axis
parallel rectangles and a set of horizontal and vertical lines, and our
goal is to find a minimum size subset of lines that intersect all the rec-
tangles. We study the capacitated version of this problem in which the
input includes an integral capacity for each line that bounds the number
of rectangles that the line can cover. We consider two versions of this
problem. In the first, one is allowed to use only a single copy of each line
(hard capacities), and in the second, one is allowed to use multiple copies
of every line provided that multiplicities are counted in the size of the
solution (soft capacities).

For the case of d-dimensional rectangle stabbing with soft capacities,
we present a 6d-approximation algorithm and a 2-approximation algo-
rithm when d = 1. For the case of hard capacities, we present a bi-criteria
algorithm that computes 16d-approximate solutions that use at most two
copies of every line. For the one dimensional case, an 8-approximation
algorithm for hard capacities is presented.

1 Introduction

Understanding the combinatorial and algorithmic nature of capacitated cover-
ing problems is still an open problem. Only a few capacitated problems were
studied including the general case of set-cover [1] and the restricted case of
vertex-cover [2, 3]. Capacity constraints appear naturally in many applications,
for example, bounded number of clients an antenna can serve. In this paper we
consider a capacitated version of a covering problem, called rectangle stabbing.
The geometric nature of the problem is used to obtain approximation algorithms.

The problems. The rectangle stabbing problem (rs) is a covering problem. The
input is a finite set U of axis parallel rectangles and a finite set S of horizontal
and vertical lines. A cover is a subset of S that intersects every rectangle in U .
The goal is to find a cover of minimum size. We denote the set of rectangles
that a line S intersects by U(S). Using this notation, an rs instance is a set-
cover instance in which the goal is to find a collection of subsets U(S), the union
of which equals U . W.l.o.g., we assume that the rs instance is discrete in the
following sense [4]: rectangle corners have integral coordinates and lines intersect

T. Calamoneri, I. Finocchi, G.F. Italiano (Eds.): CIAC 2006, LNCS 3998, pp. 18–29, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Approximation Algorithms for Capacitated Rectangle Stabbing 19

the axes at integral points. In the one-dimensional version, the set U consists
of horizontal intervals and the set S consists of points. This is the well known
polynomial clique cover problem in interval graphs. rs can be extended to d
dimensions (drs). For d ≥ 3, U consists of axis parallel d-dimensional rectangles
(“boxes”) and the set S consists of hyper-planes that are orthogonal to one of
the d axes (“walls”). In the sequel we stick to the two-dimensional terminology,
that is, we refer to U as a set of rectangles and to S as a set of lines.

In the capacitated d-dimensional rectangle stabbing problem the input includes
an integral capacity c(S) for every line S ∈ S. The capacity c(S) bounds the
number of rectangles that S can cover. This means that in the capacitated case
one has to specify which line covers each rectangle. The assignment of rectangles
to lines may not assign more than c(S) rectangles to a line S. We discuss two
variants of capacitated d-dimensional rectangle stabbing, called covering with
hard capacities (hard-drs) and covering with soft capacities (soft-drs).

A soft-drs cover is formally defined as follows. An assignment is a function
A : S → 2U where A(S) ⊆ U(S), for every S. A rectangle u is covered by a line
S if u ∈ A(S). An assignment A is a cover if every rectangle is covered by some
line, i.e.,

⋃
S∈S A(S) = U . The multiplicity (or number of copies) of a line S ∈ S

in an assignment A equals �|A(S)|/c(S)�. We denote the multiplicity of S in A
by α(A,S). The size of a cover A is

∑
S∈S α(A,S). We denote the size of A by

|A|. The goal is to find a cover of minimum size.
Given the multiplicities of every line in a cover A, one can compute a cover

with the same multiplicities by solving a flow problem. We therefore often refer
to a cover as a multi-set of lines. The support of an assignment A is the set of
lines {S ∈ S : A(S) �= ∅}. Note that the support is a set and not a multi-
set. We denote the support of A by σ(A). In hard-drs, a line may appear at
most once in a cover. Hence, in this case, a cover is an assignment A for which
|A(S)| ≤ c(S), (or α(A,S) ≤ 1) for every S ∈ S. In this setting, we refer to
a cover as the set of lines it contains (i.e., its support). Note that soft-drs
is a special case of hard-drs, since given a soft-drs instance one can always
transform it into a hard-drs instance by duplicating each line |U| times.

All the problems mentioned above have weighted versions, in which we are
given a weight function w defined on the lines. In this case the cost of a cover A
is w(S) =

∑
S α(S) · w(S), and the goal is to find a cover of minimum weight.

Previous results. Since 1-rs is equivalent to clique cover in interval graphs, it can
be solved in linear time [5]. Hassin and Megiddo [6] showed that rs is NP-hard,
for d ≥ 2. Gaur et al. [4] presented a d-approximation algorithm for drs that
uses linear programming to reduce d dimensions to one dimension.

Capacitated covering problems (even with weights) date back to Wolsey [1]
(see also [7, 2]). Wolsey presented a greedy algorithm for weighted set-cover with
hard capacities that achieves a logarithmic approximation ratio. Guha et al. [3]
presented a 2-approximation primal-dual algorithm for the weighted vertex cover
problem with soft capacities. Chuzhoy and Naor [2] presented a 3-approximation
algorithm for vertex cover with hard capacities (without weights) which is based
on randomized rounding with alterations. They also proved that the weighted

20 G. Even, D. Rawitz, and S. Shahar

version of this problem is as hard to approximate as set cover. Gandhi et al. [8]
improved the approximation ratio for capacitated vertex cover to 2.

Our results. We present a 2-approximation algorithm for soft-1rs. This algo-
rithm is a dynamic programming algorithm that finds an optimal solution of a
certain form. In the full paper we show that this algorithm extends to weighted
soft-1rs. We present a 6d-approximation algorithm for soft-drs, where d is
arbitrary. This algorithm solves an LP relaxation of the problem, and rounds it
using the geometrical structure of the problem. For the case of hard capacities
we show that the same technique can be used to obtain a bi-criteria algorithm
for hard-drs. Our algorithm computes solutions that are 16d-approximate and
use at most two copies of each line. An 8-approximation algorithm for the one
dimensional case is also presented. In the full paper, we present two hardness
results. The first mimics the hardness result given in [2] to show that weighted
hard-2rs is set-cover-hard, even if all weights are in {0, 1}. The second result
proves that it is NP-hard to approximate drs with a ratio of c · log d, for some
constant c. Note that the dimension d is considered here to be part of the input.

2 Interval Stabbing with Soft Capacities

In this section we present a 2-approximation algorithm for soft-1rs. In the
one-dimensional case rectangles are simply intervals that we draw as horizontal
intervals. To facilitate the task of drawing overlapping intervals, we separate
intervals by drawing them at different heights. Hyper-planes in the one dimen-
sional case are simply points. Since intervals are drawn as horizontal intervals
with different heights, we refer to the hyper-planes as vertical lines instead of
points. To summarize, the input in soft-1rs consists of a set U of horizontal
intervals, and a set S of vertical lines with capacities c(S).

The presentation is divided into two parts. First, we define special covers,
called decisive covers. We show that restricting the cover to be a decisive cover
incurs a penalty that is bounded by a factor of two. Second, we present a dynamic
programming algorithm that computes an optimal decisive cover.

Definition 1. The total order ≺ is defined over the set S of lines as follows:
S ≺ S′ if either (i) c(S) > c(S′) or (ii) c(S) = c(S′) and S is to the left of S′.

Consider a cover A. Suppose that the support σ(A) of a cover A is
{S1, S2, . . . , Sk}, where S1 ≺ S2 ≺ · · · ≺ Sk.

Definition 2. A cover A is called decisive if A(Si) = U(Si) \ ∪j<iU(Sj), for
every 1 ≤ i ≤ k.

In a decisive cover each interval u is covered by the smallest (according to ≺)
line S ∈ σ(A) that intersects u. Hence, “preference” is given to lines of higher
capacity. Given a cover A, the decisive cover A′ induced by A is the cover ob-
tained by assigning each interval u to the first line S ∈ A that intersects it. Note
that if A′ is the decisive cover induced by a cover A, then σ(A′) ⊆ σ(A).

Approximation Algorithms for Capacitated Rectangle Stabbing 21

Claim 1. The decisive cover A′ induced by a cover A satisfies |A′| ≤ 2|A|.

Proof. We prove the slightly stronger inequality |A′| ≤ |A| + |σ(A)| using a
charging scheme. Suppose that the purchasing power of a coupon is one copy
of a vertical line. We say that a fractional distribution of coupons to intervals
and lines is valid with respect to a cover Ã, if: (i) each line S ∈ σ(Ã) holds at
least one coupon, and (ii) each interval u ∈ Ã(S) holds at least 1/c(S) coupons.
Note that if a distribution of coupons is valid with respect to a cover Ã then
the number of coupons distributed to the intervals and lines is not less than the
size of Ã. Indeed, if we consider each line S ∈ σ(Ã) separately, then the intervals
together with S have at least 1 + |Ã(S)|/c(S) ≥ α(Ã, S) coupons.

We now consider the following distribution of coupons. Every line S ∈ σ(A)
gets one coupon and every interval u ∈ A(S) gets α(A,S)/|A(S)| coupons. Note
that (i) the number of coupons distributed to the intervals equals the size of A,
(ii) the number of coupons distributed to the vertical lines equals the size of the
support σ(A). To complete the proof, we show that this distribution of coupons
is valid with respect to A′. Consider an interval u. The number of coupons given
to u is α(A,S)/|A(S)| ≥ 1/c(S). Let S′ denote the line assigned to u in A′,
namely, u ∈ A′(S′). Since S′ ≺ S, it follows that c(S′) ≥ c(S), and hence the
number of coupons assigned to u is at least 1/c(S′), as required. ��

Next, we present a dynamic programming algorithm that finds an optimal deci-
sive cover. According to Claim 1 this cover is 2-approximate.

We use the following notation. Given an interval u, we denote the coordinates
of its endpoints by �(u) < r(u). We assume, without loss of generality, that
the coordinates are integers between 1 and 2|U|. Indeed, if two vertical lines
intersect the same set of intervals, then we can unite them into one line by
deleting the line with the smaller capacity. For every two integers i < j, let
U(i, j) denote the set of intervals contained in the range [i, j], namely, U(i, j) =
{u ∈ U | i ≤ �(u) < r(u) ≤ j}. Also, let S(i, j, k) denote the set of vertical lines
of capacity at most k whose x-coordinate is in the range [i, j].

The dynamic programming table Π of size O(n3) is defined as follows. The
entry Π(i, j, k) equals the size of an optimal decisive cover Ai,j,k that covers
the intervals in U(i, j) by lines from S(i, j, k). We initialize the table as follows
Π(i, j, k) = 0 if U(i, j) = ∅, and Π(i, j, k) = ∞ if there exist an interval u ∈
U(i, j) that is not intersected by lines in S(i, j, k). The remaining table entries
Π(i, j, k) are calculated in polynomial time as follows. Let xS denote the x-
coordinate of a vertical line S ∈ S. Let α(S, i, j) denote the number of copies of
S required to cover all the intervals it intersects in U(i, j); namely, α(S, i, j) =
�| {u ∈ U(i, j) | �(u) ≤ xS ≤ r(u)} |/c(S)�. The following recurrence is used:

Π(i, j, k) ← min{Π(i, j, k − 1),
min

S∈S(i,j,k)
c(S)=k

{Π(i, xS − 1, k − 1) + α(S, i, j) + Π(xS + 1, j, k)}}

Note that, if i = xS then Π(i, xS − 1, k − 1) = 0. Similarly, if xS = j then
Π(xS + 1, j, k) = 0.

22 G. Even, D. Rawitz, and S. Shahar

The justification for the recurrence is as follows. Consider two integers i < j.
If Π(i, j, k) < Π(i, j, k− 1), then the cover Ai,j,k must contain a line of capacity
k. Consider the leftmost line S of capacity k in Ai,j,k. Since Ai,j,k is decisive, the
line S must cover all the intervals that it intersects. Hence, α(S, i, j) copies of
S are required. The remaining intervals are partitioned into intervals to the left
of S and intervals to the right of S. The intervals in U(i, xS − 1) are covered in
Ai,j,k by lines of capacity strictly less than k. The recurrence simply considers
all possible lines of capacity k between i and j.

3 Fractional Rectangle Stabbing

In this section we present LP relaxations of d-dimensional rectangle stabbing
with soft and hard capacities. We then show that the LP relaxations can be seen
as network flow problems.

3.1 LP Formulation

Following [2], we consider the linear programming relaxation for hard-drs. To
simplify notation we write u ∈ S instead of u ∈ U(S).

min
∑

S∈S x(S)
s.t.

∑
S |u∈S y(S, u) ≥ 1 ∀u ∈ U (1)∑
u∈S y(S, u) ≤ c(S)x(S) ∀S ∈ S (2)

y(S, u) ≤ x(S) ∀S, u (3)
x(S) ≤ 1 ∀S ∈ S (4)
x(S), y(S, u) ≥ 0 ∀S, u (5)

We denote this LP by lp-hard. The variable x(S) indicates the “portion” of
S that belongs to the cover. The variable y(S, u) indicates the portion of u
that is covered by S. Constraints of type (1) are covering constraints. Capacity
constraints are formulated using constraints of types (2) and (3). Constraints
of type (4) and (5) are fractional relaxations of x(S), y(S, u) ∈ {0, 1}. Note
that there is a variable y(S, u) only if u ∈ S. However, to simplify notation, we
consider all pairs (S, u). If u �∈ S, we assign y(S, u) = 0.

An LP-relaxation of soft-drs is obtained by omitting constraints of type (4).
We denote the LP-relaxation by lp-soft.

The integrality gap of both lp-hard and lp-soft is at least 2 − o(1) even
in the one-dimensional case. Consider an instance that contains k+ 1 rectangles
and two lines of capacity k that intersect all the rectangles. A fractional optimal
solution is x∗(S) = (k + 1)/(2k) for each line S and y∗(S, u) = 1/2 for every
line S and rectangle u. This means that the value of the fractional minimum is
1 + 1

k , while the integral optimum is 2.
The following definitions apply to both lp-hard and lp-soft. We refer to a

pair (x, y) as a partial cover if it satisfies all the constraints, except (perhaps)
constraints of type (1). A rectangle is covered if its type (1) constraint is satisfied.

Approximation Algorithms for Capacitated Rectangle Stabbing 23

If
∑

S |u∈S y(S, u) ≥ α, we refer to u as α-covered. If
∑

S |u∈S y(S, u) > 0 we say
that u is positively covered.

We denote an optimal solution by (x∗, y∗). The sum
∑

S∈S x∗(S) is denoted
by opt∗. W.l.o.g. we assume that the covering constraints are tight, i.e., that∑

S |u∈S y∗(S, u) = 1 for every u ∈ U .

3.2 A Network Flow Formulation

This section is written in hard-drs terms, but similar arguments can be made
in the case of soft-drs. It is very useful to view the LP relaxation as a network
flow problem [7, 2]. Here we are given a (fractional) set of lines x and wish to
find the best possible assignment y.

The network Nx is the standard construction used for bipartite graphs. On
one side we have all the lines and on the other side we have all the rectangles.
There is an arc (S, u) if u ∈ S. The capacity of an arc (S, u) equals x(S). There is
a source s that feeds all the lines. The capacity of each arc (s, S) emanating from
the source equals x(S) · c(S). There is a sink t that is fed by all the rectangles.
The capacity of every arc (u, t) entering the sink equals 1.

Observation 1. There is a one-to-one correspondence between vectors y such
that (x, y) is a partial cover and flows f in Nx. The correspondence y ↔ fy

satisfies fy(u, t) =
∑

S|u∈S y(S, u), for every rectangle u ∈ U , and fy(s, S) =∑
u∈S y(S, u), for every line S ∈ S.

Proof. Given y simply define fy as follows.

fy(e) �=

∑

u∈S y(S, u) if e = (s, S),
y(S, u) if e = (S, u),∑

S |u∈S y(S, u) if e = (u, t).

The mapping from flows to vectors is defined similarly. ��

We refer to fy(s, S) as the flow supplied by S and to fy(u, t) as the flow delivered
to u. For simplicity, we denote fy(s, S) by fy(S) and fy(u, t) by fy(u). We say
that y is maximum with respect to x if fy is a maximum flow in Nx.

Next, we show that we can identify infeasible instances of hard-drs.

Observation 2. Feasibility of a hard-drs instance can be verified by computing
a maximum integral flow in a network Nx, where x(S) = 1, for every S ∈ S.

The following observation implies that it suffices to compute a feasible cover
(x, y), where x is integral.

Observation 3. Let (x, y) be a feasible solution of lp-hard. If x is integral
then an integral y′ such that (x, y′) is a feasible solution can be computed in
polynomial time.

24 G. Even, D. Rawitz, and S. Shahar

Definition 3. Let (x, y) and (x, y′) be partial covers. We say that y′ dominates
y if (i) fy′(u) ≥ fy(u), for every u ∈ U , and (ii) fy′(S) ≥ fy(S), for every
S ∈ S. We write y′ � y to denote that y′ dominates y.

Observation 4. Let (x, y) denote a partial cover. Then one can find in polyno-
mial time a maximum vector y′ with respect to x that also dominates y.

Proof. We use an augmenting path algorithm to compute a maximum flow f ′

in Nx starting with fy. The flow f ′ induces the desired vector y′ � y since
saturating an augmenting path from s to t never decreases the flow in edges
exiting s, or in edges entering t. ��
Let aug-flow be an efficient algorithm that given a partial cover (x, y), finds
a vector y′ � y that is maximum with respect to x. Note that aug-flow may
change the assignment of lines to rectangles. In terms of the network flow, the
flow of certain edges may decrease, but the sum of flows that enters (exits,
respectively) every rectangle (line, respectively) does not decrease.

4 Rectangle Stabbing with Soft Capacities

In this section we present a 6d-approximation algorithm for soft-drs. The al-
gorithm is based on solving lp-soft, and then rounding the solution. For the
sake of simplicity, the algorithm is presented for the 2-dimensional case (d = 2).

Let ε = 1/6d and let (x∗, y∗) be an optimal solution of lp-soft. We define
H

�= {S |x∗(S) ≥ ε} and L
�= {S |x∗(S) < ε}. Let L = Lh∪Lv denote a partition

of L into horizontal and vertical lines. We partition the horizontal line in Lh

into “contiguous blocks” by accumulating lines in Lh from “left” to “right”
until the sum of fractional values x(S) in the block exceeds ε. We denote the
blocks by Lh

1 , L
h
2 , . . . , L

h
b(h) and the (possibly empty) leftover block by L̃h. By the

construction, ε ≤
∑

S∈Lh
j
x∗(S) < 2ε for every j ≤ b(h) and

∑
S∈L̃h x∗(S) < ε.

The same type of partitioning is applied to the vertical lines in Lv to obtain the
blocks Lv

1, . . . , L
v
b(v) and the leftover block L̃v.

Observation 5. The number of blocks (not including the leftover block) in each
dimension satisfies b(h) ≤ 1

ε ·
∑

S∈Lh x∗(S) and b(v) ≤ 1
ε ·
∑

S∈Lv x∗(S).

Let S∗
h,j and S∗

v,j denote lines of maximum capacity in Lh
j and Lv

j , respectively.

Let L∗ �= {S∗
h,j | 1 ≤ j ≤ b(h)} ∪ {S∗

v,j | 1 ≤ j ≤ b(v)}.
Definition 4. We define the partial cover (x, y) as follows. The support of the
cover is H ∪ L∗. For every S ∈ H and u ∈ U(S), we keep x(S) = x∗(S) and
y(S, u) = y∗(S, u). For every S ∈ L∗ and u ∈ U(S), let B(S) denote the block that
contains S. Then, x(S) =

∑
S′∈B(S) x

∗(S′) and y(S, u) =
∑

S′∈B(S) y
∗(S′, u).

The remaining components of the solution (x, y) are set to zero.

Note that if S = S∗
h,j and u ∈ S∗

h,j, then y(S∗
h,j, u) covers u to the same extent

that u is covered by lines in Lh
j according to y∗. Hence, rectangles that are

intersected by S∗
h,j are “locally satisfied”. Also notice that

∑
S x(S) =

∑
S x∗(S).

We now prove that (x, y) is a indeed partial cover.

Approximation Algorithms for Capacitated Rectangle Stabbing 25

Claim 2. (x, y) is a partial cover.

Proof. We first show that constraints of type (3) are satisfied. Clearly, this is
true for S �∈ L∗. Consider a line S∗ ∈ L∗, and let B denote the block of lines in
L that contains S∗. For every rectangle u ∈ S∗, the following holds: y(S∗, u) =∑

S′∈B y∗(S′, u) ≤
∑

S′∈B x∗(S′) = x(S∗). Next, we show that constraints of
type (2) are satisfied. This trivially holds for S �∈ H ∪ L∗ since both x(S) = 0,
and y(S, u) = 0. Constraint (2) holds for S ∈ H , since x(S) = x∗(S), and
y(S, u) = y∗(S, u). It remains to consider lines in S∗ ∈ L∗. Let B denote the
block of lines in L that contains S∗. It follows that∑

u∈S∗ y(S∗, u) =
∑

u∈S∗
∑

S∈B y∗(S, u) ≤
∑

S∈B

∑
u∈S y∗(S, u)

≤
∑

S∈B c(S)x∗(S) ≤ maxS∈B c(S)
∑

S∈B x∗(S) = c(S∗)x(S∗).

where the first inequality follows from the fact that some rectangles may lose
part of their flow, the second inequality is due to the feasibility of (x∗, y∗), and
the third inequality follows from Def. 4. ��

Claim 3. The coverage of every rectangle u is greater than (1 − 4dε) in the
partial cover (x, y).

Proof. Consider a rectangle u. We show that, in each dimension, the coverage
of u decreases by less than 4ε due to the transition from y∗ to y. By definition,
coverage by lines in H is preserved. In addition, if a rectangle u intersects all the
lines in a block Lh

j , then the coverage of u by lines in Lh
j is now covered by S∗

h,j .
Namely,

∑
S∈Lh

j
y∗(S, u) = y(S∗

h,j , u). It follows that u may lose coverage only
in the “leftmost” and “rightmost” blocks that u intersects. In each such block,
the coverage of u is bounded by 2ε. Since u is covered in (x∗, y∗), it follows that∑

S y(S, u) > 1 − d · 4ε, and the claim follows. ��

Since ε = 1/6d, by Claim 3 we get that each rectangle is 1/3-covered by (x, y).
A cover is obtained by scaling as follows. Let x′(S) = �3x(S)� for every S ∈ S,
and y′(u) = 3y(u) for every u ∈ U . Clearly, every rectangle is covered by (x′, y′).
Moreover, by Obs. 3 an integral y′′ such that (x′, y′′) is a cover can by computed
in polynomial time. It remains to show that (x′, y′′) is a 6d-approximation. It
suffices to show that x′(S) ≤ 6d · x(S), for every S ∈ H ∪ L∗. If x(S) ≥ 1/3
then, x′(S) ≤ 3x(S) + 1 ≤ 6x(S). If x(S) < 1/3, then x′(S) = 1 and x(S) ≥ ε
for every line S ∈ H ∪ L∗. Therefore x′(S) = 1 = 6dε ≤ 6d · x(S), as required.

5 Rectangle Stabbing with Hard Capacities

We present a bi-criteria approximation algorithm for hard-drs that computes
16d-approximate cover that uses at most two copies of each line. The algorithm
is similar to the 6d-approximation algorithm for soft-drs. We first computed
an optimal solution for lp-hard. Afterwards, we set ε = 1

8d and compute H and
L∗ using the same algorithm defined in the previous section. Finally, we take
two copies of each line in H ∪ L∗ and use flow to compute an integral cover.

26 G. Even, D. Rawitz, and S. Shahar

We first show that this a cover. The rounding of the LP-solution yields a
(1 − 4dε)-cover according to Claim 3. We obtain a 1/2-cover simply by setting
ε = 1

8d . Note that x(S) ≤ 1, for every line S, hence two copies are not less than
scaling by two and rounding up. Note that we rely on Obs. 2 to insure that there
is an integral cover using these two copies of each line in the support of x.

The approximation ratio of 16d is proved as follows. Note that x(S) > 0 only
if S ∈ H ∪ L∗. Since we take two copies of lines in H ∪ L∗, it suffices to prove
that |H ∪ L∗| ≤ 8d ·

∑
S∈S x∗(S). Clearly, |H | ≤ 1

ε ·
∑

S∈H x∗(S). Due to the
bound on the number of blocks (Obs. 5) we obtain, |L∗| ≤ 1

ε ·
∑

S∈L x∗(S). It
follows that |H ∪ L∗| ≤ 1

ε ·
∑

S∈S x∗(S), as required.

6 Interval Stabbing with Hard Capacities

In this section we present an 8-approximation algorithm for hard-1rs. The
algorithm augments the positive cover obtained by Claim 3 with ε = 1/4. A
local greedy rule is used to select the line to be added to the partial cover.

6.1 Thirsty Lines and Dams

Throughout this section we consider a partial cover (x, y) such that x is integral
and y is maximum with respect to x.

Definition 5. Let (x, y) be a partial cover such that x is integral and y is maxi-
mum with respect to x. A line S ∈ x is a dam with respect to (x, y) if y remains
maximum with respect to x even if the capacity c(S) is (arbitrarily) increased.
Otherwise, S is thirsty with respect to (x, y).

Note that if S is not saturated (i.e., fy(S) < x(S) · c(S)), then obviously S is
not thirsty, so S is a dam. However, S may be saturated (i.e., fy(S) = c(S)) and
yet not thirsty. Such a case is easily described using the network flow formalism:
the arc (s, S) belongs to a min-cut in Nx but not to every min-cut.

Lemma 1. Let (x, y) be a partial cover such that x is integral and y is maximum
with respect to x. If S ∈ x and S is a dam, then (1) every interval u ∈ S is covered
(i.e., fy(u) = 1), and (2) if u ∈ S and y(S′, u) > 0, then S′ is also a dam.

Proof. Proof of (1). If u is not covered, then an increase in c(S) can be used to
increase y(S, u), contradicting the assumption that S is a dam.

Proof of (2). First, S′ ∈ x since x is integral and y(S′, u) > 0. We show that
if S′ is thirsty, then S is also thirsty. Loosely speaking, we show that increasing
c(S) enables an increase in the flow, since y(S′, u) can be decreased and this
“released” flow can be used to serve another interval. We show this formally by
presenting an augmenting path in the residual graph of Nx after the capacity
of S is increased. Let p be an augmenting path in Nx obtained when c(S′) is
increased (p exists since S′ is thirsty). Obviously, the first arc in p is (s, S′).
Observe that the three arcs (s, S), (S, u), and (u, S′) are in the residual graph of
Nx after c(S) is increased. This follows since: (i) fy(S) is less than the increased

Approximation Algorithms for Capacitated Rectangle Stabbing 27

capacity of S, (ii) fy(S, u) ≤ 1−y(S′, u) < 1 = x(S), and (iii) y(S′, u) > 0. Thus
the path s → S → u → S′ concatenated with p \ (s, S′) is an augmenting path
in the residual of Nx after the capacity of S is increased, as required. ��

The following corollary is directly implied by Lemma 1.

Corollary 1. Let (x, y) be a partial cover such that x is integral and y is max-
imum with respect to x. Define: D �= {S ∈ x | S is a dam} and UD

�= {u ∈ U |
∃S ∈ D such that u ∈ S}. Then, for every u ∈ UD,

∑
S∈D y(S, u) = 1.

Next, we show that if no thirsty lines exist in a positive partial cover, then the
cover is feasible.

Corollary 2. Let (x, y) be a partial cover such that x is integral and y is max-
imum with respect to x. If every interval is positively covered and no line is
thirsty, then (x, y) is a feasible cover.

Proof. Since every interval is positively covered and there are no thirsty lines, it
follows that UD = U , and by Coro. 1, every rectangle is covered. ��

6.2 Decomposition into Strips

Let (x, y) be a partial cover, where x is integral and y is maximum with respect
to x. Consider two consecutive dams S1 and S2 (i.e., there is no dam between
S1 and S2). The subproblem induced by S1 and S2 consists of the following
lines and intervals: (i) the vertical lines that are strictly between S1 and S2 and
(ii) the intervals that are contained in the open strip, the boundaries of which
are S1 and S2. We refer to the subproblem induced by two consecutive dams as a
strip and denote it by B = (SB ,UB). Note that extreme dams induce marginal
strips that are bounded just from one side.

Definition 6. The residual capacity of a line S ∈ SB in a strip B = (SB ,UB)
is defined by cB(S) = min{c(S), |S ∩ UB |}.

Definition 7. Let (x, y) be a partial cover, where x is integral and y is maximum
with respect to x. Let B = (SB ,UB) denote a strip with respect to (x, y). The
flow supplied by fy to strip B is defined by fy(B) �=

∑
S∈SB

∑
u∈UB y(S, u). The

deficit in strip B of a partial cover (x, y) is defined by ∆y(B) �= |UB | − fy(B).
A strip B is called active if ∆y(B) > 0.

Let (x, y) denote a partial cover with an integral x and y that is maximum
with respect to x. Let {Bi}i∈I denote the set of strips induced by the dams
corresponding to (x, y). The following observation uses a “flooding” argument
to show that feasibility follows from lack of active strips.

Observation 6. ∆y(Bi) ≤ 0, for every i ∈ I, if and only if (x, y) is feasible.

28 G. Even, D. Rawitz, and S. Shahar

6.3 The Approximation Algorithm

The approximation algorithm for hard-1rs begins like the bi-criteria approxi-
mation algorithm and then applies a new augmentation procedure, called make-
feasible. The algorithm proceeds as follows: (i) Solve lp-hard. (ii) Set ε = 1/4.
Fix x0 to be the indicator function of the set H ∪ L∗. Fix y0 to be the round-
ing of the LP solution as described in Def. 4. (iii) Apply aug-flow(x0, y0) to
compute a maximum flow y′0 with respect to x0 that dominates y0. (iv) Run
make-feasible(x0, y

′
0) to obtain a cover (xI , yF) in which xI is integral but

yF is fractional. (v) Obtain an integral cover (xI , yI) using a maximum flow
algorithm (Obs. 4).

Algorithm make-feasible iteratively augments the partial cover until a cover
is obtained. Since a new line is added to the cover in each iteration, the output
component x is integral. By Obs. 6, Algorithm make-feasible stops when there
are no active strips. Otherwise, a new line is added to the cover as follows:
(i) pick an active strip B and a line Smax with the largest residual capacity in
B, (ii) add Smax to the partial cover x to obtain x′, and (iii) find a maximum
flow y′ � y with respect to x; by calling aug-flow(x′, y). The algorithm then
recurses with (x′, y′). Throughout this section, the x-component of every partial
cover is integral. To simplify notation, we treat the x-component as the subset
itself. So x′ ← x ∪ {S} means that x′ is the indicator function of the subset
corresponding to x together with {S}.

Algorithm 1. make-feasible(S,U , x, y)
1: Termination condition: If (x, y) is feasible then Return(x, y).
2: Let B = (SB, UB) denote an active strip with respect to (x, y).
3: Find a max-residual-capacity line Smax ← argmax{cB(S) : S ∈ SB \ x}.
4: Add Smax to x: x′ ← x ∪ {Smax}.
5: Augment flow: y′ ← aug-flow(x′, y).
6: Recurse: Return make-feasible(S ,U , x′, y′).

First, we show that Algorithm make-feasible finds a feasible cover if one
exists. Observe that as long as there is an active strip, we add a line Smax to
x. As soon as every strip is not active, the cover is feasible by Obs. 6. Hence, it
remains to prove that Smax is well defined.

Claim 4. If B = (SB ,UB) is an active strip, then SB \ x �= ∅.

Proof. We assume that the problem is feasible. Hence (S, y∗) is a feasible cover
and (SB , y∗B) is a feasible cover of B, where y∗B is the restriction of y∗ to SB×UB.
Assume for the sake of contradiction that SB ⊆ x. Since y is maximum with
respect to x, it follows that (x, y) is feasible in B, which means by Obs. 6 that
B is not active, a contradiction. ��

The algorithm runs in polynomial time, since there are at most |S| recursive
calls, and the running time of each recursive call is polynomial by Obs. 4.

Approximation Algorithms for Capacitated Rectangle Stabbing 29

Theorem 1. The approximation ratio of the algorithm for hard-1rs is 2
ε = 8.

The proof is omitted for lack of space. The main idea in the proof is that each
line added by Algorithm make-feasible to the partial cover becomes a dam
together with at least one of the original thirsty lines. Since there are no more
than 1

εopt∗ lines in H ∪ L∗, we reach a total of at most 8opt∗ lines.

7 Open Problems

We list a few open problems. The hardness of the one-dimensional rectangle
stabbing (soft or hard) is open. An O(d) approximation algorithm for hard-drs
is also open, as well as an O(d) approximation algorithm for weighted soft-drs.
In the full version, we show that weighted hard-drs is set-cover hard.

Gaur et al. [4] presented a d-approximation algorithm for weighted drs that
uses linear programming to reduce the problem to d one-dimensional instances.
Their analysis relies on the integrality of the LP relaxation in the one dimensional
case. Our 2-approximation for weighted soft-1rs does not prove a bound on the
integrality gap. Our 6-approximation algorithm for unweighted soft-1rs proves
that integrality gap of the one-dimensional case is bounded by 6. Hence another
6d-approximation ratio follows by combining a reduction similar to the Gaur et
al. [4] and our 6-approximation algorithm for soft-1rs.

Acknowledgment. We thank Alexander Ageev for pointing out an error in an
earlier version of the paper.

References

1. Wolsey, L.A.: An analysis of the greedy algorithm for the submodular set covering
problem. Combinatorica 2 (1982) 385–393

2. Chuzhoy, J., Naor, J.: Covering problems with hard capacities. In: 43nd IEEE
Symposium on Foundations of Computer Science. (2002) 481–489

3. Guha, S., Hassin, R., Khuller, S., Or, E.: Capacitated vertex covering. Journal of
Algorithms 48(1) (2003) 257–270

4. Gaur, D.R., Ibaraki, T., Krishnamurti, R.: Constant ratio approximation algorithms
for the rectangle stabbing problem and the rectilinear partitioning problem. Journal
of Algorithms 43 (2002) 138–152

5. Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Academic Press,
New York (1980)

6. Hassin, R., Megiddo, N.: Approximation algorithms for hitting objects with straight
lines. Discrete Applied Mathematics 30(1) (1991) 29–42

7. Bar-Ilan, J., Kortsarz, G., Peleg, D.: Generalized submodular cover problems and
applications. Theoretical Computer Science 250 (2001) 179–200

8. Gandhi, R., Halperin, E., Khuller, S., Kortsarz, G., Srinivasan, A.: An improved
approximation algorithm for vertex cover with hard capacities. In: 30th Annual
International Colloquium on Automata, Languages and Programming. Volume 2719
of LNCS. (2003) 164–175

In-Place Randomized Slope Selection

Henrik Blunck and Jan Vahrenhold

Westfälische Wilhelms-Universität Münster, Institut für Informatik,
48149 Münster, Germany

{blunck, jan}@math.uni-muenster.de

Abstract. Slope selection is a well-known algorithmic tool used in the
context of computing robust estimators for fitting a line to a collection
P of n points in the plane. We demonstrate that it is possible to perform
slope selection in expected O(n log n) time using only constant extra
space in addition to the space needed for representing the input. Our
solution is based upon a space-efficient variant of Matoušek’s random-
ized interpolation search, and we believe that the techniques developed
in this paper will prove helpful in the design of space-efficient random-
ized algorithms using samples. To underline this, we also sketch how to
compute the repeated median line estimator in an in-place setting.

1 Introduction

Computing a line estimator, i.e., fitting a line to a collection P of n data points
{p1, . . . , pn} in the plane is a frequent task in statistical analysis. Some estima-
tors (such as the least squares estimator) can be determined with little com-
putational effort, they suffer, however, from corruption of the estimate by data
outliers. Therefore, the robustness of an estimator is considered essential, and
the additional computational cost needed to compute robust estimators is widely
accepted [10]. A frequently used, robust line estimator is the so-called Theil-Sen
estimator (see [14] and the references therein) which considers all

(
n
2

)
lines in-

duced by the pairs of points in P and selects the line with median slope. In
the Computational Geometry community, this problem is known as the slope
selection problem for which an Ω(n logn) lower bound has been established [6].

To obtain efficient algorithms, the slope selection problem is studied in the
dual setting where each point (x, y) is identified with the line {(ξ, υ) | υ = x·ξ−y}
and vice versa. Using properties of this duality transform [8], it is easy to show
that selecting the k-th smallest slope is dual to the following problem: Given
a set of n lines in the plane, find the k-th leftmost intersection point in the
arrangement induced by these lines.

While the slope selection problem has been solved optimally both using de-
terministic and randomized algorithms, we revisit it in the space-efficient model
of computation, where the main focus is to use as little extra space as possible
over and above the space needed for representing the input. Besides the fact
that investigating a possible dependency between time complexity and space
requirement is of its own theoretical interest, there are also practical consider-
ations that motivate the design and analysis of space-efficient algorithms. First

T. Calamoneri, I. Finocchi, G.F. Italiano (Eds.): CIAC 2006, LNCS 3998, pp. 30–41, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

In-Place Randomized Slope Selection 31

and foremost, algorithms with little space overhead have the potential of using
the different stages of hierarchical memory, e.g., caches, to a much higher degree
of efficiency. Another motivation, especially for designing algorithms for statisti-
cal data analysis, comes from the recently increased interest in sensor networks
where small-scale computing devices are used to collect large amounts of data.
Since the memory of such sensor devices usually is limited, and since transmit-
ting data is more costly than local computation, it is desirable to process as
much data as possible locally before transmitting (intermediate) results.

Related Work. A variety of deterministic algorithms for solving the slope selec-
tion problem in optimal O(n logn) running time have been presented [4, 6, 11],
however, as noted by Matoušek et al. [14], all of them are based on relatively com-
plicated concepts such as parametric search, sorting network, expander graphs,
or cuttings. To obtain more practical results, randomized approaches have been
taken which resulted in several algorithms with expected O(n logn) running
time [7, 13, 17]. Due to space constraints, we refer the reader to the article by
Matoušek et al. [14] (and to the references therein) for a discussion of how the
slope selection problem relates to the computation of robust estimators.

The Model. The goal of investigating space-efficient algorithms is to design al-
gorithms that use very little extra space in addition to the space used for rep-
resenting the input. The input is assumed to be stored in an array A of size n,
thereby allowing random access. We assume that a constant size memory can
hold a constant number of words and that each word can hold one pointer, or
an O(log n) bit integer, and a constant number of words can hold one element of
the input array. An in-place algorithm uses O(1) extra words of memory. Some
fundamental geometric problems such as 2D convex hulls and closest pairs can
be solved in-place and in optimal time [1, 2, 5]. More involved problems such as
range searching and line-segment intersection (currently) can be solved in-place
only in near-optimal running time [3, 18], or, as for the case of 3D convex hulls
and related problems, using both (poly-)logarithmic extra space and time [3].

Our Results. In this paper we show how to solve the slope selection problem in
expected O(n logn) running time while at the same time using only constant
extra space. Our algorithm follows the approach of Matoušek [13], and thus we
also devise an in-place variant of his randomized interpolation search technique.
This variant, together with a algorithmic subroutine for efficiently constructing
and storing a set of randomly sampled intersections, is of independent interest,
since it was introduced by Matoušek to substitute Meggiddo’s parametric search
technique [15]. Furthermore, we sketch how to use these results to obtain an
in-place algorithm for computing the repeated median line estimator.

2 Space-Efficient Algorithmic Tools

Space-efficient algorithms have been investigated since the 1960’s, and there
exists a variety of algorithmic building blocks that require little extra space

32 H. Blunck and J. Vahrenhold

in addition to the space needed for representing the input. Heapsort [19] sorts
n elements in-place performing O(n log n) operations. Also, we can do linear-time
median-finding in-place—even while maintaining the data sorted according to
some other total order [1]. Finally, we will use the linear-time merging algorithm
by Geffert et al. [9] that merges two sorted subarrays using constant extra space.

A standard technique in the design of space-efficient algorithms is to encode
a single bit by a permutation of two objects q and r [16]. In our case, for lines
q, r with q <ξ r (i.e., with q preceding r in the vertical order at x = ξ) the
permutation qr encodes a binary zero, and the permutation rq encodes a binary
one (by the nature of the problem setting, the input does not contain duplicates).
Given this representation, we can encode any integer in the range [0, . . . , n− 1],
e.g., an index referencing an array entry, using 2·logn lines, and the time needed
for decoding or modifying any such pointer is O(log n).

As a subroutine of our algorithm, we will need to sort a set of encoded pointers
according to some order imposed on the elements referenced by these pointers. If
we use heapsort to sort a set of r elements (pointers), we perform O(r log r) op-
erations. Since we may need to decode and dereference O(1) pointers to perform
one such operation, the overall running time is O(r log r logn). Note, that some
pointers may reference lines that are part of a pointer encoding, and thus, when-
ever the sorting algorithm tells us to swap two pointers, we must not move around
the lines representing these pointers. Instead, we simply swap the encoded values
by making the first pointer reflect the value of the second and vice versa. As a
consequence, no line will be more than one position off its correct location (and
we can check this in constant time per access). Each swap resp. update can be
done in-place and in O(logn) time. This results in the following corollary:

Corollary 1. We can sort r binary encoded pointers of size O(logn) bits each
in-place and in O(r log r logn) time while preserving the referenced information.

3 Randomized Interpolation Search

Due to the duality transform discussed in the introduction, the problem of se-
lecting the line with median slope translates to selecting the intersection with
median x-coordinate in the arrangement induced by the lines dual to the points
in P . Since the duality transform is done read-only by simply reinterpreting the
coordinate-based representation of a point as the slope-intercept representation
of a line, we assume that our input is given as a set P of lines in the plane.

Since the arrangement induced by a set of n lines contains Θ(n2) intersections,
it is infeasible (both with respect to the desired O(n log n) running time and
with respect to the in-place setting) to compute all intersections. Instead, the
algorithm of Matoušek [13] maintains a vertical strip 〈b, e〉 := [b, e] × IR ⊂ IR2

that is guaranteed to contain the k-th smallest intersection point. This strip
is iteratively refined by first constructing a sample R of r intersection points
(r is a parameter to be defined later) and by then constructing a (narrower)
candidate strip 〈b′, e′〉 based upon the x-coordinates of two appropriately chosen
sampled intersection points. The algorithm then checks whether 〈b′, e′〉 indeed

In-Place Randomized Slope Selection 33

contains the k-th smallest intersection point. If this is not the case, the process
is repeated for 〈b, e〉 but using a new sample R, else the algorithm iterates with
the refined strip 〈b′, e′〉. Since the above technique refines the strip 〈b, e〉 based
upon a non-constant number of randomly selected samples, it is referred to as
randomized interpolation search, and Matoušek observes that it can be used as
a randomized substitute for Megiddo’s parametric search technique [15].

The efficiency of the resulting algorithm for slope selection is based upon the
following lemma which (applied iteratively) implies that the number |I(b, e)|
of intersections that lie inside 〈b, e〉 can be reduced to O(r) using an expected
constant number of iterations:

Lemma 1 (Lemma 2.1 in [14]). Given a set of numbers Θ = {θ1, θ2, . . . , θN},
an index k (1 ≤ k ≤ N), and an integer r > 0, we can compute in O(r) time
an interval [θlo, θhi], such that, with probability 1 − 1/Ω(

√
r), the k-th smallest

element of Θ lies within this interval, and the number of elements in Θ that lie
within the interval is at most N/Ω(

√
r).

We use the algorithm implied by the above lemma to compute the intersection
with the k-th smallest x-coordinate among the N =

(
n
2

)
intersections induced

by the lines in P . Since Matoušek et al. [14] proved that it is possible to choose
r := �Nβ� for any 0 < β < 1 while maintaining the asymptotic efficiency of
the resulting algorithm, we set r := �

√
n� as opposed to the original choice of

r := n [13]. As Matoušek [13] computes [θlo, θhi] using O(r) sampled intersec-
tions, the bound on the running time given in Lemma 1 will be replaced by the
O(n logn) time bound for the in-place sampling algorithm discussed in the next
section. In any case, we note that the probability and the bound on the size of
the elements within [θlo, θhi] is independent of whether or not the algorithm is
implemented in-place. The main algorithm for slope selection (as presented by
Matoušek [13]) is given below as Algorithm 1.

It remains to describe how to construct (and store!) the sampled set R of
r = �

√
n� intersections in an in-place setting, i.e., using only constant extra

space. Furthermore, we need to discuss how to compute |I(b, e)|. To this effect,
we describe an algorithm for the former task, which also provides a solution for
the latter task. Anticipating the results presented in the next section, we combine
them with the above lemma and the original analyses of Matoušek et al. [13, 14]:

Theorem 1. The slope selection problem for a set of n input points in the plane
can be solved in-place and in expected O(n logn) running time.

4 Constructing a Random Sample R of r Intersections

In this section, we describe an algorithmic subroutine that will be invoked from
Line 5 of the overall slope selection algorithm (Algorithm 1) with three parame-
ters b, e, and r. Its purpose is to draw a random sample (with replacement) of
size r := �

√
n� from the set of all intersections induced by the lines in P and

falling within 〈b, e〉. We demonstrate that we can compute and represent these r

34 H. Blunck and J. Vahrenhold

Algorithm 1. Algorithm Select(A[0, . . . , n − 1], k, r) for selecting the k-th
leftmost intersection point in the arrangement induced by the lines in A [13]
1: Let κ := k. Let b := −∞ and e := ∞. {Initial “guess” for the candidate strip.}
2: while not finished do
3: Let N := |I(b, e)|. {Number of intersections inside 〈b, e〉.}
4: if N > r then
5: Draw (with replacement) a random sample R of size r from I(b, e).
6: Let κ := (r/N)(k − |I(−∞, b)|), κb′ := max(1, �κ − 3

√
r/2�), and

κe′ := min(r, �κ + 3
√

r/2�).
7: Compute the intersections with ranks κ, κb′ , κe′ in R (ranks are with respect

to the order of the x-coordinates).
8: Let b′ be the x-coordinate of the intersection in R with rank κb′ , and let e′ be

the x-coordinate of the intersection with rank κe′ .
9: if |I(−∞, b′)| < k < |I(−∞, e′)| then

10: Let b := b′ and e := e′. {The k-th leftmost intersection point is in 〈b′, e′〉;
update b and e.}

11: end if
12: else
13: Report the intersection with rank κ in R as the k-th leftmost intersection

point and finish.
14: end if
15: end while

intersections in-place and in time O(n log n+ r2 logn). Due to space constraints,
we refer the reader to the full version of this paper for the proofs of the respective
running times.

4.1 An Overview of the Algorithm

Our subroutine follows the approach of Matoušek [13, Lemma 1]: we first draw
(with replacement) a set of r random integers from {0, . . . , |I(b, e)| − 1} where
|I(b, e)| is the number of intersections in 〈b, e〉 and sort these numbers. These
numbers give the ranks of the intersections with respect to the order in which
they are found. The main ingredient used for efficiently computing intersections
in 〈b, e〉 is the following well-known observation: the number of intersections
inside 〈e, b〉 is exactly the number of inversions between the permutation of P
that arranges the lines in sorted <b-order (the vertical order at x = b) and the
permutation that arranges the lines in sorted <e-order (the vertical order at
x = e) [12]. Thus, to efficiently compute |I(b, e)|, we can run the classic divide-
and-conquer algorithm for inversion counting (see, e.g., [12]). While doing so,
we keep track of the total number of inversions/intersections seen so far and
“record” an intersection if its rank matches one of the r given ranks. Since we
have sorted the ranks, we can process each of them in constant extra time.

Running Matoušek’s algorithm in an in-place setting is complicated by two
facts: (1) The recursion stack of an divide-and-conquer algorithm may require
Ω(log n) extra words, and (2) we need to store the r ranks and the intersections
computed so far. The problem of performing a recursive algorithm in-place has

In-Place Randomized Slope Selection 35

been discussed earlier [1], and we choose to process the “recursion tree” implicitly
in a bottom-up, level-by-level traversal. We overcome the second problem by
running the algorithm in three phases: in the first phase, we process the lines
stored in A[0, . . . , �n/2�− 1] and use A[�n/2�, . . . , n− 1] to encode the ranks and
the intersections found so far, and in the second phase, we reverse the roles of
both subarrays. We finalize the algorithm with a third phase that processes the
intersections induced by lines stored in different halves of the array.

4.2 In-Place Data Structures for Recording Intersections

Employing the encoding technique described in Section 2, we use the subarray
of size n/2 that does not contain the lines to be processed in the current phase
to represent three (implicit) data structures DR, DL, and DI . Each of these data
structures is represented in a subarray containing 4 · r logn lines. For reasons
that will become evident in Section 4.3, we also reserve a scratch space of the
same size as the data structure DL.1 The array thus is partitioned as follows:

Lines to be processed DR Scratch DL DI

0 1
2n n − 1

Storing ranks. The randomly generated ranks in the range [0, . . . , n2 − 1] are
encoded in a “sorted-list” data structure DR. During the initialization of DR,
these ranks are sorted using heapsort in O(r log r log n) time (see Section 2).
Thus, our algorithm will be able to traverse the list and report each rank to
be processed in O(log n) time.

Storing lines involved in intersections. We use a “sorted-list” data struc-
ture DL to record (references to) lines involved in all of the sampled inter-
sections found so far. These (references to) lines are maintained in sorted
<b-order. Every reference is inserted into DL using insertion sort (ignoring
duplicates), leading to a O(r2 logn) global cost for maintaining DL.

Storing intersections. The “linked-list” data structure DI records the inter-
sections found so far by indexing into DL. To add an intersection induced by
two lines �1 and �2 to DI , we first insert (references to) �1 and �2 in sorted
<b-order into DL and then append the pair (i, j) referencing (the references
in DL to) these two lines at the end of DI . The cost for performing a single
insertion into DI is in O(logn), and thus the global cost is in O(r logn).

As a consequence, we have the following lemma:

Lemma 2. The global cost for maintaining the data structures DR, DL, and DI

needed to record the r intersections in an in-place manner is O(r2 log n).

4.3 Processing One Half of the Subarray

The algorithms for processing the halves of A[0, . . . , n − 1] are symmetric, and
thus we present the algorithm for processing the subarray A[0, . . . , �n/2� − 1].
1 We may need to adjust r by a constant factor such as to ensure that 16·r log n ≤ n/2.

36 H. Blunck and J. Vahrenhold

Counting Inversions. The algorithm for counting all inversions in 〈b, e〉 is an
extension of the iterative mergesort algorithm: starting from the set of lines in
sorted <b-order, the algorithm iteratively merges the lines into <e-order while
counting inversions. During each merge-step of the algorithm, two subarrays
already in sorted <e-order are merged into a single <e-sorted subarray. Each of
these subarrays has been processed during the previous iteration, and thus all
inversions involving lines from only one of these subarrays have been processed.
Since all elements in A1 precede any element in A2 with respect to the <b-order,
the inversions induced by lines from different subarrays can be computed using
the following observation [12, 13]: Each element ai ∈ A1 induces an inversion
with all elements in A2 preceding it in sorted <e-order. Thus, to compute the
number of inversions it is sufficient to maintain a counter that records how
many elements from A2 have been written into sorted <e-order. An obvious, yet
crucial, fact guaranteeing the correctness of the inversion counting algorithm
is that any two subarrays A1 and A2 that are merged in the j-th iteration of
processing the m-th bottom-most level of the recursion tree are of the form
A1 := A[j · 2m, . . . , (j + 1) · 2m − 1] and A2 := A[(j + 1) · 2m, . . . , (j + 2) · 2m − 1].2

This leads to the following corollary which we can prove using induction and
the fact that the algorithm starts with all lines in sorted <b-order:

Corollary 2. Let A1 and A2 be two subarrays of A that are merged in one step of
the algorithm for inversion counting. Furthermore, define �min to be the minimal
line of A1 ∪ A2 with respect to the <b-order and define �max to be the maximal
line of A1 ∪ A2 with respect to the <b-order. Then, A1 ∪ A2 consists exactly of
those lines � in A for which �min ≤b � ≤b �max holds.

The algorithm CountAndRecord (Algorithm 2) extends the above inversion
counting algorithm to also record all intersections inside 〈b, e〉 whose ranks are
recorded in DR.

Algorithm 2 can be implemented using constant extra space, and excluding
the cost for recording the relevant intersections, the cost for running Algorithm 2
is linear in the size of the union of the two subarrays to be merged. Furthermore,
Algorithm 2 can be simplified (by leaving out the code in Lines 6–9) to compute
|I(b, e)| as required in Lines 3 and 9 of Algorithm 1. Afterwards, A1 and A2 can
be merged using, e.g., the linear-time merging algorithm of Geffert et al. [9].
In combination with a bottom-up divide-and-conquer approach, this gives an
in-place O(n logn) implementation for the “inversion counting” in Algorithm 1.

Merging Two Subarrays into Sorted <e-order. When actually merging
A1 and A2 into sorted <e-order, we also need to update the values stored in DL,
since they reference the lines involved in the intersections found so far by directly
indexing into A. Merging A1 and A2 seems to corrupt the information recorded
in DL, but fortunately the information of what goes where can be computed
on the fly while running CountAndRecord. To see this, observe that the

2 As noted earlier [1], the in-place divide-and-conquer scheme can be modified easily
to correctly handle instances where the problem size is not a power of two.

In-Place Randomized Slope Selection 37

Algorithm 2. Algorithm CountAndRecord(A1, A2, 〈b, e〉 , c,DI) for incre-
menting the count c of intersections seen so far by the number of intersections
induced by lines in A1 and A2 while recording all relevant intersections in DI .
Only intersections that fall inside 〈b, e〉 are considered.

Require: A1 and A2 are sorted according to <e. Each element in A1 precedes all ele-
ments in A2.

Ensure: A1 and A2 have not been modified, all intersections within 〈b, e〉 induced by
lines from A1 and A2 have been recorded, and c reflects the number of intersections
seen so far.

1: Let i1 := 0 and i2 := 0. {Current position in subarray.}
2: for i = 0 to length(A1 ∪ A2) − 1 do
3: Let �1 := A1[i1] and �2 := A2[i2]. {The i-th element in sorted order is �1 or �2.}
4: if �1 <e �2 then
5: Let ci1 := i2. {�(inversions induced by �1) = �(elements in A2 preceding �1).}
6: for each rank ρ in DR ∩ [c, . . . , c + ci1] do
7: Let � be the line stored at A2[ρ − c].
8: Update DI to record the pair (�1, �) as the intersection with rank ρ.
9: end for

10: Let c := c + ci1 . {Count intersections.}
11: i1 := i1 + 1. {Advance i1.}
12: else
13: i2 := i2 + 1. {Advance i2 but do not do anything else.}
14: end if
15: end for

algorithm CountAndRecord is an iterative algorithm that computes, during
the i-th iteration the element with rank i in the final sorted order (Line 3 of
Algorithm 2). Thus we only need to be able to find out whether the line � that
will be the i-th element in sorted order is an element involved in an intersection.
If this is the case, we simply update the reference pointing to � to point to �’s
position after the merge step: the i-th position in the union of A1 and A2. In
order not to corrupt the values of DL that are needed for correctly updating DI ,
we do not directly modify DL to record the “new” position of each referenced
entry. Instead, prior to processing each level of the recursion tree, we copy DL

into the scratch space that has been reserved earlier (see Section 4.2) and denote
this copy as D′

L. This copy will be used to record the updated values of DL.

Selecting the lines in A1 and A2 referenced from DL. Our algorithm for efficiently
determining whether a line � to be processed is one of the lines referenced from
DL is based upon Corollary 2. This corollary states that the entries in DL that
reference lines in the union of A1 and A2 are stored consecutively in a (possibly
empty) sublist DL[a1, . . . , a2 − 1].

DL References to A1 ∪ A2

0 a1 a2 2r − 1

38 H. Blunck and J. Vahrenhold

We obtain this sublist as follows: Prior to running the algorithm CountAnd-
Record on two subarrays A1 and A2, we scan A1 ∪ A2 to determine (in linear
time) the highest and lowest line of A1 ∪ A2 with respect to the <b-order. Using
this information, we determine the (possibly empty) sublist DL[a1, . . . , a2 − 1]
that contains all elements in DL that reference any line in A1 ∪ A2. Corollary 2
guarantees that the index a1 used when merging the next two adjacent subarrays
is obtained by setting a1 := a2 and that a2 can be updated by scanning forward
from DL[a2], i.e., a1 and a2 can be updated iteratively.

To efficiently use this sublist, we sort both DL[a1, . . . , a2 − 1] and its copy
D′

L[a1, . . . , a2 − 1] according to the <e-order. This order allows us to process not
only A1 and A2 but also all references in DL[a1, . . . , a2−1] during a synchronized
scan. All of the above operations can be done in a (globally) efficient way:

Lemma 3. The global cost for updating a1 and a2 is O(n logn + r log2 n).

Updating the relevant references in DL. Recall that the merging algorithm de-
termines, during its i-th iteration, the line � that is the i-th line of A1 ∪ A2
in sorted <e-order (Line 3 of Algorithm 2). During the synchronized scan, we
keep track of the lowest line µ referenced from DL[a1, . . . , a2 − 1] not lower
than �; µ is the next line for which we need to record its new position. Let j
be the index such that DL[j] references µ. In case � equals µ, we record that µ
will reside at the i-th position of A1 ∪ A2 in sorted <e-order by updating D′

L[j]
accordingly.

To make Algorithm 2 reflect these updates, we need to modify Lines 11
and 13 such as to compare the current line to µ and to update the index j
as needed. This results in O(log n) time spent per step in which the index
j is updated, i.e., in O(r logn) time per level of the recursion tree, since we
can store the current value of µ using constant extra space and thus allow for
constant-time access to µ. Thus, the overall extra time spent in these steps is
in O(r log2 n).

Caveat: Updating DI and DL. Adding a new intersection to DI involves adding
up to two (references to) lines to DL, and this is the sole reason for working with
the copy D′

L of DL and thus requiring extra scratch space. First of all, since
all intersections recorded involve lines from A1 ∪ A2, any (reference to a) line �
that is added to DL will increase the value of a2 by one. Furthermore, to keep
DL[a1, . . . , a2 − 1] in sorted <e-order, we need to change the order with respect
to which we insert into DL from the <b-order to the <e-order as soon as the
insertion process reaches DL[a1, . . . , a2−1]. These operations are simultaneously
performed on D′

L as well.
For each component of a pair of indices that is added to DI to record a newly-

found intersection, we need to make sure that it encodes the correct position of
the referenced line � in DL, i.e., the correct position of � w.r.t. the sorted <b-
order. To compute this position, we scan DL[a1, . . . , a2−1] to count the number of
lines preceding � in sorted <b-order. (Note that this computation is only possible
because, during the inversion counting step, we have updated the references in
D′

L instead of the references in DL; thus, the entries in DL still correctly reference

In-Place Randomized Slope Selection 39

the relevant lines at their current position.) If j lines precede �, we update all
indices in DI referencing entries in DL[a1 + j, . . . , |DL| − 1].

After having run the merging algorithm on A1 and A2, we reestablish the
correct relation between entries in DI and entries in DL: We replace the values
encoded in DL[a1, . . . , a2 − 1] with the values encoded in D′

L[a1, . . . , a2 − 1] and
sort them according to <b. This finishes processing the subarrays A1 and A2.

Lemma 4. The global extra cost incurred by updating the references stored in
the data structure DL while merging subarrays is in O(r log r log2 n).

4.4 Finishing Up

After we have processed the first half of the input array using the second half
to maintain the data structures DR, DL, and DI , we now reverse the roles of
the two subarrays. To do so, we first need to copy the contents of the data
structures to the first half of the array. The important detail to keep in mind is
that, as a result of the inversion-counting algorithm, the first half of the array is
sorted according to <e. Thus, when copying the contents of the data structures
to the first half of the array, the order according to which we have to decide
whether two adjacent elements encode a binary zero or a binary one, is the
<e-order.

After we have run our subroutine on A[�n/2�, . . . , n − 1], we need to finalize
the algorithm by processing all intersections induced by lines stored in different
halves of the array. As it turns out, however, we do not need to actually merge
the lines in A[0, . . . , �n/2� − 1] and A[�n/2�, . . . , n− 1]—it is sufficient to count
the inversions and to construct the relevant intersections. This means that we
can simply run the algorithm CountAndRecord (Algorithm 2) without the
modifications needed to record the “what-goes-where” information. As discussed
in Section 2, the lines used to encode the data structures DR, DL, and DI

are at most one position off their correct position (in sorted <e-order), and
thus we can process them in sorted <e-order with constant extra (look-ahead)
space.

As a result of this final invocation of the algorithm CountAndRecord, the
data structure DI will reference r pairs of entries in DL which in turn reference
pairs of lines in A. To select the intersections with rank κ, κb′ , and κe′ (Line 7
of Algorithm 1), we could invoke a linear-time median-find algorithm. However,
since we have chosen r small enough, we can simply use the algorithm implied
by Corollary 1 to sort the pairs in DI according to the x-coordinate of their
intersection. The running time (including the time needed for resolving one level
of indirection) is O(r log r logn). Combining this with Lemmas 2, 3, and 4 and
the fact that r ∈ O(

√
n), we obtain the following lemma:

Lemma 5. A random sample R of r = �
√
n� intersections inside a strip 〈b, e〉

can be constructed in-place and in O(n log n) time.

The same algorithm can be used to explicitly construct all of the at most r inter-
section points that are considered in the last iteration of Algorithm 1 (Line 13).
This finishes the proof of Theorem 1.

40 H. Blunck and J. Vahrenhold

5 Computing the Repeated Median Line Estimator

The repeated median line estimator is an estimator for line-fitting, which is even
more robust with respect to data outliers—see [14] and the references therein.
The repeated median line estimator is obtained by first computing, for each
input point pi the line mi with median slope among all n−1 lines induced by pi

and another point in P \ {pi}. Among all such lines mi, the line m that realizes
the line with median slope is selected as the repeated median line estimator.
In the dual setting this corresponds to finding, for each line �, the intersection
point on � with the median x-coordinate and then to compute the median of
these medians. Since the underlying algorithm is considerably more involved
and maintains a much larger amount of statistical information, we are unable
to match the expected running time of the original algorithm, and our in-place
implementation exhibits an expected near-optimal running time.

Matoušek et al. [14] describe multiple variants of a randomized algorithm for
computing a repeated median line estimator using O(n) extra space. The general
approach is to proceed using randomized interpolation search in an only slightly
different setting than the one described for slope selection (Section 3). In their
case, the set R of samples drawn in each iteration is drawn from the set P ,
i.e., from the set of input lines. Then, they compute the repeated median line
estimator for all (points dual to) lines in R and a candidate strip 〈b, e〉 that is
supposed to contain the (global) final result. To verify that 〈b, e〉 indeed contains
the median-of-median intersection, the algorithm of Matoušek et al. then counts
the number of medians that lie to the left, inside, and to the right of 〈b, e〉,
respectively. They do so by computing all of these counts during a single run
of a modification of the inversion-counting algorithm. During this run, counters
Li and Ii are maintained for each line �i that record the number intersections
involving �i left of, resp. inside 〈b, e〉.

The main purpose of computing the counters Li and Ii is to determine, for
each line �i independently, whether its median intersection lies inside 〈b, e〉.
Processing all n lines in one batch (as described above) is done for the sole pur-
pose of efficiency. Since, in an in-place setting, we cannot accommodate O(n)
counters in a subarray of size n, we need to process the lines in smaller batches.
If we choose the batch size to be O(n/ logn), we can compute all counts in-place.
This, however, increases the number of runs needed for checking whether 〈b, e〉 is
a valid candidate from one to O(log n). Additionally, each step of the algorithm
for updating the counters now takes O(logn) extra time for updating a binary-
encoded value, and thus we loose another O(log n)-factor in the overall running
time. Finally, the most efficient strategy for constructing the candidate strip
〈b, e〉 described in [14], computing the repeated median line by range search-
ing and counting techniques, seems to be unavailable in an in-place setting. As
a consequence, we have to resort to an in-place variant of a less efficient ran-
domization technique, that (in contrast to the situation described in Section 3)
results in an expected number of O(log n) iterations of the global algorithm.
Lemma 6. The repeated median line estimator can be computed in-place and in
expected O(n log4 n) time.

In-Place Randomized Slope Selection 41

References

1. P. Bose, A. Maheshwari, P. Morin, J. Morrison, M. Smid, and J. Vahrenhold.
Space-efficient geometric divide-and-conquer algorithms. Computational Geome-
try: Theory & Applications, 2006. To appear, accepted November 2004.

2. H. Brönnimann and T. M.-Y. Chan. Space-efficient algorithms for computing the
convex hull of a simple polygonal line in linear time. Computational Geometry:
Theory & Applications, 2006. In press.

3. H. Brönnimann, T. M.-Y. Chan, and E. Y. Chen. Towards in-place geometric
algorithms. In Proc. 20th Symp. Computational Geometry, pp. 239–246, 2004.

4. H. Brönnimann and B. M. Chazelle. Optimal slope selection via cuttings. Com-
putational Geometry: Theory and Applications, 10(1):23–29, 1998.

5. H. Brönnimann, J. Iacono, J. Katajainen, P. Morin, J. Morrison, and G. T. Tous-
saint. Space-efficient planar convex hull algorithms. Theoretical Computer Science,
321(1):25–40, 2004.

6. R. Cole, J. S. Salowe, W. L. Steiger, and E. Szemerédi. An optimal-time algorithm
for slope selection. SIAM J. Computing, 18(4):792–810, 1989.

7. M. B. Dillencourt, D. M. Mount, and N. S. Nethanyahu. A randomized algorithm
for slope selection. Intl. J. Computational Geometry and Applications, 2(1):1–27,
1992.

8. H. Edelsbrunner. Algorithms in Combinatorial Geometry. Springer, Berlin, 1987.
9. V. Geffert, J. Katajainen, and T. Pasanen. Asymptotically efficient in-place merg-

ing. Theoretical Computer Science, 237(1–2):159–181, 2000.
10. P. Huber. Robust Statistics. Wiley, New York, 1981.
11. M. J. Katz and M. Sharir. Optimal slope selection via expanders. Information

Processing Letters, 47(3):115–122, 1993.
12. J. Kleinberg and É. Tardos. Algorithm Design. Addison-Wesley, Boston, 2006.
13. J. Matoušek. Randomized optimal algorithm for slope selection. Information

Processing Letters, 39(4):183–187, 1991.
14. J. Matoušek, D. M. Mount, and N. S. Nethanyahu. Efficient randomized algorithms

for the repeated median line estimator. Algorithmica, 20(2):136–150, 1998.
15. N. Megiddo. Applying parallel computation algorithms in the design of serial

algorithms. J. ACM, 30(4):852–865, 1983.
16. J. I. Munro. An implicit data structure supporting insertion, deletion, and search

in O(log2 n) time. J. Computer and System Sciences, 33(1):66–74, 1986.
17. L. Shafer and W. L. Steiger. Randomizing optimal geometric algorithms. In Proc.

5th Canadian Conference on Computational Geometry, pp. 133–138, 1993.
18. J. Vahrenhold. Line-segment intersection made in-place. In Proc. 9th Work-

shop Algorithms and Data Structures, Lecture Notes in Computer Science 3608,
pp. 146–157, 2005.

19. J. W. J. Williams. Algorithm 232: Heapsort. Comm. ACM, 7(6):347–348, 1964.

Quadratic Programming and Combinatorial
Minimum Weight Product Problems

Walter Kern1 and Gerhard Woeginger2

1 Faculty of Electrical Engineering, Mathematics and Computer Science,
Department of Applied Mathematics,

University of Twente, P.O.Box 217, NL-7500 AE Enschede
kern@math.utwente.nl

2 Department of Mathematics and Computer Science,
Eindhoven University of Technology,

P.O. Box 513, NL-5600 MB Eindhoven
gwoegi@win.tue.nl

Abstract. We present a fully polynomial time approximation scheme
(FPTAS) for minimizing an objective (aT x + γ)(bT x + δ) under lin-
ear constraints Ax ≤ d. Examples of such problems are combinatorial
minimum weight product problems such as, e.g., the following: Given a
graph G = (V, E) and two edge weights a,b : E → R+ find an s− t path
P that minimizes a(P)b(P), the product of its edge weights relative to
a and b.

Keywords: Quadratic Programming, approximation scheme, shortest
path.

AMS-Class: 90C20, 90C26, 90C27.

1 Introduction

The problem of minimizing a quadratic objective function xT Qx + cT x under
linear constraints Ax ≤ d is well-known to be NP-hard ([4]), even when Q has
only a single negative eigenvalue ([9]). In case Q is positive semidefinite, the
problem can be solved efficiently ([6] or [12]). Here, we focus on the case where
the objective is the product of two affine functions:

z∗ = min (aT x + γ)(bT x + δ)
Ax ≤ d. (1.1)

The complexity status of this (in general non-convex) problem is open (cf.
[9]). We present a fully polynomial time approximation scheme (FPTAS) for this
class. More precisely, we present an algorithm which correctly decides whether
z∗ < 0, z∗ = 0 or z∗ > 0 holds and, in addition, computes for any given ε > 0
an ε-approximate solution, i.e., a feasible solution of (1.1) whose objective value
differs from the optimum z∗ by at most ε|z∗|. (In case z∗ ≤ 0 we can even solve
the problem exactly in polynomial time.) The running time of the algorithm is
polynomially bounded in 1/ε and the size of (1.1).

T. Calamoneri, I. Finocchi, G.F. Italiano (Eds.): CIAC 2006, LNCS 3998, pp. 42–49, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Quadratic Programming and Combinatorial Minimum Weight 43

In Section 3 we discuss possible applications of our result to combinatorial
minimum weight product problem such as the following: Given a graph G =
(V,E) with two non-negative edge weights a, b : E → R+, find an s− t path P
minimizing a(P)b(P), the product of its edge weights relative to a and b.

Remark. Vavasis ([11]) presents a FPTAS for (more general) quadratic objec-
tives q(x) = xT Qx + cT x with a bounded number of negative eigenvalues. His
work, however, is based on a different concept of “ε-approximate solution”: In
[11], a feasible x is ε-approximate if its objective value differs from the optimum
z∗ by at most

ε(max
Ax≤d

q(x) − min
Ax≤d

q(x)).

This concept of “ε-approximation” is not suited for the combinatorial applica-
tions that we discuss in Section 3. It is unclear whether our results can somehow
be extended to the case of bounded number of negative eigenvalues.

2 The Algorithm

Relative to (1.1), we consider the related system

α− aT x − γ = 0
β − bT x − δ = 0

Ax ≤ d
(2.1)

of m + 2 (in-)equalities in variables (α, β,x) ∈ Rn+2.
Let P ⊆ Rn+2 denote the polyhedron defined by (2.1) and let

P̂ := {(α, β) | ∃x : (α, β,x) solves (2.1)} ⊆ R2

denote its projection into R2.
With f(α, β) := αβ, our problem can thus be restated as

z∗ = min
(α,β)∈P

f(α, β). (2.2)

Note that P̂ , being a projection of P , may have exponentially many describing
inequalities. Yet we can clearly solve linear optimization problems over P̂ , as
these reduce to LP’s over P . Indeed, for c ∈ R2, we have

min
α
β

∈P

cT

(
α
β

)
=̂ min

α
β
x

∈P

(cT ,0T)

α
β
x

 (2.3)

Equivalently (cf., e.g., [10]), we can efficiently solve the separation problem for
P̂ . As a consequence of this, we may apply the ellipsoid method to check whether

44 W. Kern and G. Woeginger

P̂ is full-dimensional or not and – and in case it is not – determine the (possibly
infinite) line segment that equals P̂ . Thus, in case P̂ is not full-dimensional, (2.2)
reduces to a 1-dimensional quadratic problem, which is readily solved.

In what follows, we therefore assume throughout that P̂ is full-dimensional.
Next we can check (by means of linear programming) which of the four quadrants
in R2 is (properly) intersected by P̂ . This allows us to distinguish between the
following three cases

z∗ = 0, z∗ < 0 and z∗ > 0,

which we treat separately.

z∗ = 0. This is tantamount to P̂ ⊆ R2
+ or P̂ ⊆ R2

− and P̂ intersecting (touching)
one of the coordinate axes. Assume, say, that P̂ ⊆ R2

+ and

min
α
β

∈P

β = 0.

In this case an optimal solution x∗ of (2.2) is obtained by solving the second
problem in (2.3) with cT = (0, 1).

z∗ < 0, i.e., P̂ contains some (α, β) ∈ P̂ with αβ < 0.

Let P̂± :=
{(

α
β

)
∈ P̂ | α ≤ 0, β ≥ 0

}
and P̂∓ :=

{(
α
β

)
∈ P̂ | α ≥ 0, β ≤ 0

}
.

Then (2.2) basically reduces to two separate “convex” problems on P± resp. P∓.
Indeed, for z < 0 let

Lz :=
{(

α
β

)
| α < 0, β > 0, αβ ≤ z

}
and Cz := Lz ∩ P̂± (cf. figure 2.1).

Clearly,
min
α
β

∈P ±

f(α, β) = min
Cz �=∅

z (2.4)

holds. Now Cz is a convex set for z < 0 and it is straightforward to design
a separation algorithm for Cz (cf., e.g., [3], section 10.6). It is then routine
wor k to verify that we may use the ellipsoid algorithm to determine (exactly)
the optimum value z∗± in (2.4). (Note that the KKT conditions imply that the
optimum is achieved in a rational point.)

Applying the same arguments to P̂∓ (in case this is non-empty), we obtain a
corresponding z∗∓ and observe that z∗ = min

{
z∗±, z

∗
∓
}

solves (2.2).

z∗ > 0. This case occurs when P̂ ⊆ R2
+ (or P̂ ⊆ R2

−) and P̂ does not touch any
coordinate axes. This case may be considered as “essentially concave”, as several
local minima may exist (cf. figure 2). In what follows we assume w.l.o.g. that
P̂ ⊆ R2

+.

Quadratic Programming and Combinatorial Minimum Weight 45

β

α

P̂ ±

Cz

Fig. 1. Lz and Cz

Lemma 1. The minimum in (2.2) is achieved at a vertex of P̂ .

Proof: This is an immediate consequence of the fact that f(α, β) = αβ is quasi-
concave on R2

+ (cf. [2]), i.e., for any x1,x2 ∈ R2
+, f achieves its minimum on the

line segment [x1,x2] in one of the endpoints:

f(λx1 + (1 − λ)x2) ≥ min {f(x1), f(x2)} , λ ∈ [0, 1]. (2.5)

�

It is well-known that the vertices of a polyhedron have components with size
polynomially bounded in the size of the describing system of inequalities. Thus
the vertices of P and, the more, the vertices (α, β) of P̂ satisfy α, β < 2p with p
polynomial in the size of the problem instance (1.1). In particular, we conclude
that

z := 2−2p ≤ z∗ ≤ 22p =: z. (2.6)

holds.
We seek to determine the value z∗ approximately by binary search. Given z <

z < z we check whether z∗ < z holds (approximately) or not by approximating
the level curve

�z =
{(

α
β

)
| αβ = z, α, β ≥ 0

}
by finitely many tangent lines at the points (αk, βk) = (

√
z(1 + ε)k,

√
z(1 +

ε)−k), k = 0,±1, . . . ,±K, where K > 0 is chosen so that αK > 2p (hence K is
polynomially bounded in 1/ε and the size of (1.1)).

46 W. Kern and G. Woeginger

α

P̂

β

Fig. 2. P ⊆ R2
+

More precisely, to determine whether z∗ < z holds approximately, we solve
polynomially (in 1/ε and the size of (1.1)) many linear optimization problems

zk = min
x∈P

(βk, αk)x.

(Note that (βk, αk) is the gradient of f(α, β) = αβ in (αk, βk).)

Lemma 2. If zk ≤ 2z for some k, |k| ≤ K, then z∗ ≤ z. If zk > 2z for all k,
|k| ≤ K, then z ≤ (1 + ε)z∗.

Proof: The first claim is obvious.
As to the second claim, assume zk > 2z for all k. Let z∗ = αβ, (α, β) ∈ P

and assume w.l.o.g. that α ≥ β. Let k be the smallest k such that α ≤ αk. If
k ≤ 0, then β ≤ α ≤ α0 = β0 implies

z0 ≤ β0α + α0β ≤ 2α0β0 = 2z,

a contradiction. Hence k ≥ 1. By assumption, we have

2z < zk ≤ βkα + αkβ ≤ βkαk + αkβ = z + αkβ.

Hence αkβ > z, i.e., β > βk. But then

αβ > αk−1βk = (1 + ε)−1z,

as claimed. �

Quadratic Programming and Combinatorial Minimum Weight 47

This enables us to perform a binary search for z∗ on [z, z], solving (2.2)
approximately in time polynomially bounded in 1/ε and the size of (1.1).

3 Minimum Weight Product Problems

Every combinatorial minimum weight problem

min
{
cT x | x ∈ D

}
(3.1)

where D ⊆ {0, 1}n has a corresponding minimum ratio version, where the ob-
jective cT x is replaced by a quotient pT x/qT x with q > 0. Probably the best
known example is the socalled “tramp steamer problem”, where D ∈ {0, 1}E is
the set of directed circuits through a given node in a digraph G = (V,E) (cf.,
e.g., [1]). Typically such minimum ratio problems seek to model multicriteria
objective functions (e.g., “maximize profit versus time”). Such minimum ratio
version are well-studied in the literature and it is known since long ([8]) that
the minimum ratio version is (modulo polynomial time computation) at most as
difficult as the original minimum weight problem.

In the context of multicriteria objectives it is often equally natural to con-
sider other combinations of weights such as, e.g., product versions with objective
(aT x)(bT x). For example, if D ⊆ {0, 1}E is the set of s − t paths in a graph,
then a ∈ RE

+ may define failure probabilities and b ∈ RE
+ may define edge costs

([7]). In contrast to minimum ratio problems, however, such product versions of
minimum weight problems appear to be more difficult in general.

Our FPTAS from Section 2 can be used to approximately solve minimum
weight product problems in case D ⊆ {0, 1}n is the vertex set of a polyhedron
Ax ≤ d and we are able to solve (3.1) efficiently. Thus, for example, our result
applies when D is the set of s− t paths, spanning trees or perfect matchings in
a graph.(Note that our arguments in Section 2 rely only on the assumption that
we can efficiently optimize a linear objective over Ax ≤ d.)

For simplicity, we restrict our discussion to minimum weight product s − t
paths as a generic example. Consider a directed graph G = (V,E) with two
given edge weights a,b : E → R+ and assume we are to find an s − t path p
minimizing the product a(p)b(p) of its edge weights relative to a and b. We first
seemingly relax our problem, replacing the path p by an s − t flow of value 1.
Let A ∈ Rn×m denote the node-arc incidence matrix of G and let d ∈ Rn have
coordinates ds = 1, dt = −1 and dv = 0 else. Then our relaxation can be written
as

z∗ = min(aT x)(bT x)
Ax = d

x ≥ 0
(3.2)

Clearly z∗ ≥ 0 holds. Furthermore, z∗ = 0 holds only in the trivial case where
an s− t path p with a(p) = 0 or b(p) = 0 exists. Hence we may assume z∗ > 0.
In this case, the minimum in (3.2) is achieved at a vertex of the feasible region
(due to Lemma 1), which corresponds to an s − t path. So (3.2) is an exact
restatement of our original problem.

48 W. Kern and G. Woeginger

As our FPTAS from section 2 obtains the ε-approximate solution x of (3.2)
via linear programming, we may assume w.l.o.g. that x is an s− t path. (Alter-
natively, decompose x = λ1x1 + . . . + λkxk into a convex combination of s − t
paths xi and use (2.4) to exhibit one of the s− t paths xi as an approximately
optimal solution.)

We like to remark that a similar approach also works for slightly different
objective functions like, e.g., f̃(x) = (aT x)

√
bT x. All we need is that the level

curves of f̃ can be nicely approximated by piecewise linear functions.
We conclude our discussion by commenting on the complexity of the (exact)

problem (3.2). Its complexity status (P versus NP) is open and only two special
cases are known to be efficiently solvable: a = b (trivial) and a = 1 ([7]). The
latter also follows from our approach by observing that it suffices to approximate
the level curves only in the points α1 = 1, . . . , αn−1 = n − 1, corresponding to
the possible values α = aT x for an s− t path x ∈ {0, 1}E.

Alternatively, the case a = 1 may also be settled directly by computing for
each possible path length k = 1, . . . , n− 1 the corresponding minimum b-weight
bk over all s − t paths of length k (and observing that z∗ = min

k
kbk). The

computation of bk can be accomplished as follows. Let V0, . . . , Vk be k+1 copies
of V and let Gk denote the directed graph on V0 ∪ . . .∪ Vk with arcs going from
Vt to Vt+1, joining vertices as in G. More precisely, the arc set Ek of Gk is given
by

Ek = {(it, jt+1) | (i, j) ∈ E, 0 ≤ t ≤ k − 1} ,

where it is the copy of i in Vt.
The edge weights b : E → R+ give rise to edge weights b : Ek → R+ by

setting bit,jt+1 = bij . Now bk, the minimum b-weight of an s − t path of length
k in G is simply the minimum b-weight of an s0 − tk path in Gk.

For general a, b : E → R+, (3.2) can be solved by computing all vertices of
P̂ ⊆ R2 that minimize a linear function (α, β) → α + λβ, λ ∈ R+, over P̂ .
(Each local minimizer of f(α, β) = αβ over P must be such a vertex.) These
vertices can be determined successively: Let λ > 0 and consider the parametric
minimum s − t problem with edge costs cλ = a + λb. For λ > 0 sufficiently
small, a min cost s − t path relative to cost cλ will be an s − t path x0 that
is minimal relative to a and, among all such a-minimal paths, has minimum b-
weight. Standard sensitivity analysis then allows us to exhibit a largest interval
[λ0 = 0, λ1] such that x0 is optimal relative to cλ for each λ ∈ [λ0, λ1]. We then
proceed by chosing λ > λ1 sufficiently small and a min cost path x1 relative to
cλ = a + λb to determine the next interval [λ1, λ2] for which x1 is optimal etc.

The running time of this procedure basically equals the number of breakpoints
λ1, λ2, . . . in the parametric min cost s− t path problem with parametrized cost
function c = a + λb, λ ≥ 0. Gusfield ([5]) has shown that this number has a
subexponential bound O(nlog n). For this reason, we do not expect (3.2) to be
NP-hard.

To make our presentation selfcontained we briefly sketch the argument form
[5]. Let Bn denote the number of breakpoints in the parameteric min cost path

Quadratic Programming and Combinatorial Minimum Weight 49

problem. Furthermore, we let Bk
n denote the number of breakpoints if only paths

of length k are allowed, i.e., if we replace G by Gk as defined above.
For fixed k we estimate Bk

n as follows. Fix a node r in the middle layer
V	k/2
 of Gk and let Bk

n(r) denote the number of breakpoints if only s− t paths
through r are allowed. As λ varies, the costs of s− r and r− t paths in Gk vary
independently. So we can conclude that

Bk
n(r) ≤ 2B	k/2

n .

This proves
Bk

n ≤
∑

r

Bk
n(r) ≤ 2nB	k/2

n

and Bk
n = O(nlog n) follows inductively. Hence also Bn ≤

∑
k B

k
n = O(nlog n), as

claimed.

References

1. R. Ahuja, T. Magnanti and J. Orlin: Network Flows: Theory, Algorithms and Ap-
plications, Prentice Hall, 1993.

2. M. Avriel, W.E. Dievert, S. Schaible and I. Zhang: Generalized Convexity, Plenum
Press, New York, 1988.

3. U. Faigle, W. Kern and G. Still: Algorithmic Principles of Mathematical Program-
ming, Kluwer, 2001.

4. M. Garey and D. Johnson: Computers and Intractability, A Guide to the Theory
of NP-Completeness, Freeman, San Francisco, 1979.

5. D. Gusfield: Sensitivity analysis for combinatorial optimization, Memorandum
UCB/ERL M80/22, Electronics Research Laboratory, Berkeley, 1980.

6. M. Kozlov, S. Tarasov and L. Hacijan: Polynomial Solvability of Convex Quadratic
Programming, Soviet Math. Doklady 20, 1108–1111, 1979.

7. T. Kuno: Polynomial algorithms for a class of minimum rank-two cost path prob-
lems, Journal of Global Optimization 15, 405–417, 1999.

8. N. Megiddo: Combinatorial Optimization with rational objective functions, Math-
ematics of OR 4(4), 414–424, 1979.

9. P. Pardalos and S. Vavasis: Quadratic Programming with One Negative Eigenvalue
is NP-hard, Journal of Global Optimization 1, 15–22, 1991.

10. A. Schrijver: Theory of linear and Integer Programming, Wiley, 1986.
11. S. Vavasis: Approximation algorithms for indefinite quadratic programming, Math.

Prog. 57, 279–311, 1992.
12. S. Vavasis: Nonlinear optimization: complexity issues, Oxford University Press,

1991.

Counting All Solutions of Minimum Weight
Exact Satisfiability

Stefan Porschen

Institut für Informatik, Universität zu Köln, Pohligstr. 1 D-50969 Köln, Germany
porschen@informatik.uni-koeln.de

Abstract. We show that the number of all solutions of minimum weight
exact satisfiability can be found in O(n2 ·‖C‖+20.40567·n) time, for a CNF
formula C containing n propositional variables equipped with arbitrary
real-valued weights. In recent years merely the unweighted counterpart
of this problem has been studied [2, 3, 7].

Keywords: Minimum weight exact satisfiability, minimum weight set
partition, maximum weight independent set, counting problem.

1 Introduction

Besides decision and optimization problems, counting problems are interesting
and important objects of computational complexity theory. For a search - or
optimization problem S, its counting version denoted #S searches for the number
of solutions of S (which is less than enumerating all solutions explicitly). In this
paper we deal with the counting versions of two NP-hard optimization problems,
namely minimum weight set partition (MINW-SP) and minimum weight exact
satisfiability (MINW-XSAT). Both underlying decision problems, namely set
partition (SP) [4] and exact satisfiability (XSAT) [9] are NP-complete. Therefore
the counting versions are #P-complete [10]. MINW-SP takes as input a collection
M of subsets of a finite set M , where each T ∈ M is equipped with a weight
w(T) ∈ R. A solution of MINW-SP is a subfamily T ⊆ M of lowest total weight
such that each m ∈ M is contained in exactly one T ∈ T . In other words,
a solution T , if existing, provides a partition of M of least possible weight.
MINW-XSAT takes as input a conjunctive normal form (CNF) formula C, such
that each Boolean variable x ∈ {0, 1} is equipped with a weight w(x) ∈ R.
MINW-XSAT searches for a truth assignment setting to 1 exactly one literal in
each clause of C such that the total weight of all variables set to 1 is minimal
(for a precise definition cf. Section 2).

Counting problems have attracted some attention during the last years. Dahlöf
et al. in [2], e.g., construct an algorithm that solves the unweighted #XSAT prob-
lem in O(20.81131·n) time based on an O(20.40567·n) time algorithm for solving
#MAXW-IS, i.e., for counting all maximum (positive integer) weighted indepen-
dent sets in a finite graph (n is the number of Boolean variables, resp. vertices).
Their bound for unweighted #XSAT has been improved to O(20.40567·n) in [7].
And in [3] the up to now best bound of O(20.2857·n) is shown for #XSAT. None

T. Calamoneri, I. Finocchi, G.F. Italiano (Eds.): CIAC 2006, LNCS 3998, pp. 50–59, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Counting All Solutions of Minimum Weight Exact Satisfiability 51

of the algorithms solving #XSAT mentioned so far is able to enumerate all exact
models of the input formula; each of them outputs the number of solutions only.
Hence, there is no evidence whether or how these algorithms can be adapted for de-
termining the number of all solutions of MINW-XSAT when arbitrary real-valued
weights are assigned to the variables. However, in this paper, refining the tech-
niques in [7], we provide an algorithm that also solves #MINW-XSAT in O(n2 ·
‖C‖+20.40567·n) time, where ‖C‖ is the length of input formulaC. This algorithm,
essentially benefits fromamonotonizationprocedure that reduces#MINW-XSAT
for arbitrary formulas to #MINW-XSAT for positive monotone formulas. The lat-
ter problem is attacked by an appropriate adaptation of the #MAXW-IS algo-
rithm in [2]. #MINW-SP can be solved in the same manner as it turns out to be
identifiable with the monotone #MINW-XSAT problem in a dual sense.

It should be noted that the weighted variant of a problem can increase its
computational complexity considerably. For instance, in case of 2-SAT, i.e., the
satisfiability problem for formulas only containing clauses of length at most two, a
solution can be found in linear time [1]. Whereas, finding a minimum weight truth
assignment for variable-weighted formulas is NP-hard. This can be seen by a
straightforward reduction from the vertex cover problem to 2-SAT for monotone
formulas via the formula graph (as defined below). Thus we are motivated to
consider the weighted exact satisfiability counting problem. For the optimization
problem MINW-XSAT recently the bound O(20.2441·n) has been found [8].

2 Basic Notions and Notation

A literal is a propositional variable x ∈ {0, 1} or its negation x := ¬x (negated
variable). The complement of a literal l is denoted as l. A clause c is the disjunction
of different literals and thus is represented as a finite set. A CNF formula C is a
conjunction of different clauses and is thus represented as a finite clause set. For
short, we throughout use the term formula meaning a clause set as defined. For a
given formula C, clause c, by V (C), V (c) we denote the set of variables contained
in C, c, respectively. Vε(C), Vε(c), for ε ∈ {+,−}, denotes the set of variables oc-
curing positive, resp. negative in C, c. We distinguish between the length ‖C‖ of a
formula C and the number |C| of its clauses. Let CNF denote the set of all formu-
las, and let CNF+ denote the set of all positive monotone formulas, i.e., no clause
contains a negated variable. For a formula C ∈ CNF and a literal l, we denote by
C(l) := {c ∈ C : l ∈ c} the set of all clauses in C containing l.

Exact satisfiability (XSAT) is a variant of the prominent satisfiability prob-
lem, and asks whether input formula C ∈ CNF admits a truth assignment
t : V (C) → {0, 1} mapping exactly one literal in each clause of C to 1. Such a
truth assignment, for short, is called an x-model (of C). The empty set also is a
formula: ∅ ∈ CNF which is exactly satisfiable. However, a formula C containing
the empty clause (∅ ∈ C) is never satisfiable. For solving #XSAT, one has to
determine the number of all x-models of an input formula C ∈ CNF. The mini-
mum weight XSAT problem (MINW-XSAT) is defined as follows: For C ∈ CNF
and weight function w : V (C) → R, find a x-model of minimal weight, minimum

52 S. Porschen

x-model for short. For any X ⊆ V (C), we set w(X) :=
∑

x∈X w(x). The weight
of a model t is defined as w(t) := w(t−1(1)) =

∑
x∈V (C) t(x)w(x). The counting

problem #MINW-XSAT is to determine the number of all minimum x-models of
a weighted input formula. For C ∈ CNF, let X(C) denote the set of all x-models
of C. Similarly, given w : V (C) → R, let Xmin(C,w) ⊆ X(C) denote the set of
all minimum x-models of C with respect to w.

We shall make use of a simple graph concept assigned to a formula. For a
monotone formula C ∈ CNF+, we define its formula graph GC with vertex set
V (C). Two vertices are joined by an edge if there is a clause containing the
corresponding variables.

3 Solving #MINW-XSAT Restricted to Monotone
Formulas

This section is devoted to provide an algorithm solving #MINW-XSAT re-
stricted to the class CNF+, also called monotone #MINW-XSAT, in O(n2 ·
‖C‖ + 20.40567·n) time, for formulas C containing n weighted variables. By a
dualization argument presented below it will turn out that such an algorithm
also solves #MINW-SP. In [2], Dahlöf and Jonsson proved an upper bound of
O(20.40567·n) for calculating the number of all maximum weight independent
sets in a graph of n vertices each equipped with a positive integer weight. For
convenience, we refer to that algorithm as to the DJ-Algorithm. Recall that the
maximum weight independent set problem (MAXW-IS) gets as input a finite
(simple) graph G = (V,E), and a vertex weight function w : V → N. It asks
whether there is an independent set in G, i.e., a set of pairwise non-adjacent ver-
tices of maximal weight. Observe that MAXW-IS is NP-hard even if all weights
are equal to 1 which follows from the vertex cover problem [4], because a mini-
mum cardinality vertex cover in G is the complement of a maximum cardinality
independent set.

For attacking monotone #MINW-XSAT we reduce it to a conditional vari-
ant of #MAXW-IS called #MINW-MAXW-IS. The underlying optimization
problem MINW-MAXW-IS is defined as follows, for arbitrary weight functions
f1 : V → N, f2 : V → R:

Input: G = (V,E), f : V → N × R with f(x) =: (f1(x), f2(x)), x ∈ V .
Output:X ⊆ V such that f2(X) = min{f2(Y) : Y ∈ Fmax

1 (G)}, where Fmax
1 (G)

is the set of all independent sets Y in G such that f1(Y) is maximal, with
fi(S) :=

∑
x∈S fi(x), i = 1, 2, for any S ⊆ V (G).

Thus, an algorithm solving #MINW-MAXW-IS, has to count all independent
sets X in G of minimal weight w.r.t. the second component under the condition
that f1(X) is maximal.

Proposition 1. Counting all solutions of MINW-MAXW-IS is possible in
O(20.40567·|V (G)|) time, for input instances G, f = (f1, f2), where f1 : V (G) → N,
f2 : V (G) → R.

Counting All Solutions of Minimum Weight Exact Satisfiability 53

Sketch of Proof. In [2] an adaptation of the DJ-algorithm (not affecting its
running time) is outlined for counting among all maximum weighted indepen-
dent sets in a graph only those that have minimal cardinality (cf. [2], proof
of Prop. 5.2). Clearly that variant corresponds to #MINW-MAXW-IS where
f2(x) = 1 for each vertex x ∈ V (G). In this adapted version, the return function
of the algorithm is employed by a separate component reserved for the cardi-
nality of the current independent set under consideration. It is obvious that the
mentioned adaptation carries over also to the generalization where f2 is an ar-
bitrary real-valued function: Simply take the value f2(X) in the corresponding
component of the return function. It is not hard to see that the resulting recur-
sive algorithm works as desired with this modification. ��

Now, Monotone #MINW-XSAT can be identified as a subproblem of
#MINW-MAXW-IS in the following way. For C ∈ CNF+ with formula graph
G := GC , consider variable weight function w : V (C) → R. Recall that each
variable x ∈ V (C) constitutes a vertex in G and that two vertices are joined
by an edge if the corresponding variables occur together in a clause. Since
we have positive literals only, C(x) = {c ∈ C|x ∈ c} is the subformula of
all clauses in C containing x. As vector-valued weight function f = (f1, f2)
we define f : V (C) → N × R, by f1(x) := |C(x)|, f2(x) := w(x), for each
x ∈ V (C). Now, t is a minimum weight x-model of C if and only if vertex
set t−1(1) is a solution of MINW-MAXW-IS for G, f . Indeed, let t be any x-
model of C, then each x ∈ t−1(1) is the unique variable exactly satisfying
subformula C(x), hence the corresponding vertex contributes first component
weight f1(x) = |C(x)| in G. Clearly, variables in t−1(1) must yield a partition
C =

⋃
x∈t−1(1) C(x), thus f1(t−1(1)) = |C| which is maximum, because a larger

weight meant that there are clauses in which more than one variable is set to
1. Conversely, it is easy to see that each independent set X ⊂ V (G) of weight
w(X) = f1(X) = |C| defines a x-model of C assigning 1 to exactly those vari-
bles corresponding to vertices in X , and 0 to the remaining variables. Observe
that an independent set of weight larger than |C| cannot exist, because oth-
erwise there are two variables occuring in the same clause and corresponding
vertices are adjacent in G. Hence such an independent set indeed has maximal
first component weight. Therefore, t is a minimum x-model, if and only if it
satisfies w(t) = f2(t−1(1)) = min{f2(t̂−1(1)) : t̂ ∈ X(C)} which is equivalent to
the fact that t−1(1) provides a solution of MINW-MAXW-IS for input instance
G, f = (f1, f2) as defined above.

Theorem 1. #MINW-XSAT for positive monotone formulas C of n variables
(resp. #MINW-SP for a collection C of n input sets c), where variables (resp.
input sets) are equipped with arbitrary real-valued weights, can be solved in O(n2 ·
‖C‖ + 20.40567·n) time, with ‖C‖ =

∑
c∈C |c|.

Proof. First, we show that the reduction provided above from #MINW-XSAT
to #MINW-MAXW-IS can be executed in O(n2 · ‖C‖) time, where n := |V (C)|
and C ∈ CNF+. This confirmes the claim of the theorem regarding #MINW-
XSAT relying on Proposition 1. So, for computing the weighted formula graph

54 S. Porschen

(GC , f), we first have to determine the vertex weights, for which an array W is
maintained. Each position of W stores a variable occuring in C together with
both weight components. Regarding the first component f1, we have to determine
the number of occurences |C(x)| of each variable x in C. This can be done by
running once through the formula. Each variable x found in C is compared
to all variables already stored in W , for each of which we maintain a counter
corresponding to the number of its occurences in C. If we find a match the
counter for x is incremented by 1, otherwise the variable is stored in the next
position of W , and its counter is initialized by value one, finally the second
weight component w(x) is assigned. Therefore a running time proportional to
n2 · ‖C‖ results. Next we have to form the edges of the formula graph. Clearly,
this can be done by building a clique K|c| for each clause c ∈ C. As there are
|C| ≤ ‖C‖ clauses and each clause contains at most n2 variables, the time needed
for constructing all edges of GC is upper bounded by O(n2 · ‖C‖).

It remains to verify the claim of the theorem regarding #MINW-SP. First
observe that MINW-SP and MINW-XSAT for monotone formulas essentially
are the same, as the following dualization argument shows: Let (M,M, w) be
an input instance of MINW-SP with weight function w : M → R. Assigning
to each T ∈ M a Boolean variable xT ∈ {0, 1} equipped with weight w(T),
and assigning to each m ∈ M a clause cm that contains variable xT if and
only if m ∈ T yields a variable-weighted positive monotone input formula of
MINW-XSAT. It is easy to see that solving MINW-XSAT for this formula is
the same as solving MINW-SP for (M,M, w). The converse direction reducing
monotone MINW-XSAT to MINW-SP proceeds analogously. For completing the
proof it is left to verify that the reduction previously described can be done in
at most O(n2 · ‖C‖) time: To that end we hold a table Am(T) of Boolean having
size |M | · ‖M‖ storing Am(i) = 1 iff m ∈ Ti, where M := {T1, . . . , T|M|}
and M = {m1, . . . ,m|M|} are assumed to be ordered. After having filled this
table we row-wise assign to each clause cm all xTi with Am(i) = 1 needing
O(|M | · |M|) time. For filling the table, we run once through M starting with
T1 working column-wise. In column i, we and assign value 1 one to entry Aj(i) if
we find mj ∈ Ti. So, table filling needs O(‖M‖) time overall. Thus in summary
we obtain O(‖M‖ + |M | · |M|) = O(‖C‖ + |C| · n) = O(n · ‖C‖), where we
took into account that M is in bijection to C, M is in bijection to V (C), and
‖C‖ = ‖M‖ > |C| = |M|. ��

Observe that monotone MINW-XSAT more directly can be identified with the
minimum weight exact hitting set problem. Corresponding input instances consist
of a base set S of arbitrarily weighted elements (which are the variables of a
formula C ∈ CNF+) and a collection T of subsets of S (corresponding to the
clauses in C). Then one searches for a minimum weight subset X ⊆ S such
that X contains exactly one element of each T ∈ T . Clearly a minimum weight
x-model t of C via t−1(1) ⊆ V (C) yields a minimum weight hitting set and vice
versa, correspondingly. We thus obtain:

Counting All Solutions of Minimum Weight Exact Satisfiability 55

Corollary 1. Counting all solutions of minimum weight hitting set takes O(n2 ·
‖C‖+20.40567·n) time, for a base set of n arbitrarily weighted elements and subset
collection C. ��

4 Solving #MINW-XSAT for CNF

In this section we provide a polynomial time reduction from #MINW-XSAT
for arbitrary CNF formulas to #MINW-XSAT restricted to the class CNF+
of monotone formulas. This enables us also to solve the unrestricted #MINW-
XSAT problem in O(20.40567·n) time. The main idea is, to establish a sequence of
polynomial time computable mappings that, iteratively, transform an arbitrary
input instance (C,w) into (C′, w′) where C′ is positive monotone and such that
the number of minimum x-models of the original instance is preserved, i.e., equals
the number of minimum x-models of the transformed instance.

Since for the empty formula ∅ holds V (∅) = ∅, we have |X(∅)| = 20 =1.
The next lemma states a useful connection between the x-model spaces and the
minimum x-model spaces of variable-weighted CNF formulas; it has been proven
in [8].

Lemma 1. For C,C′ ∈ CNF and arbitrary real-valued weight functions w,w′

defined on V (C) resp. V (C′), assume that there exists a bijection

F : X(C) � t → t′ := F (t) ∈ X(C′)

such that (∗): w(t) = w′(t′)+α, where α ∈ R is a constant independent of t and
t′. Then the restriction Fmin := F |Xmin(C,w) is a bijection between Xmin(C,w)
and Xmin(C′, w′); and we have |Xmin(C,w)| = |Xmin(C′, w′)|.

If a clause contains more than one complemented pairs, then it can never be
exactly satisfiable, hence a formula containing such a clause has 0 x-models.
However, clauses containing exactly one complemented pair can be removed from
the formula such that the number of (minimum) x-models can be recovered, as
stated in the following lemma:

Lemma 2. For C ∈ CNF with weight function w : V (C) → R, let c ∈ C contain
exactly one complemented pair: x, x ∈ c. Let Cc be the formula obtained from C
by removing c and assigning all literals to 0 that occur in c′ := c − {x, x} and
finally removing all duplicate clauses. Let wc be defined as the restriction of w
to V (Cc) = V (C) − V (c′). Then the following holds true:

(i) |X(C)| = 2|X(Cc))| if x �∈ V (Cc) and |X(C)| = |X(Cc)| if x ∈ V (Cc),
(ii) |Xmin(C,w)| = |Xmin(Cc, wc)|.

Proof. Obviously V (Cc) = V (C)−V (c′), because by removing duplicate clauses
no other variable can be removed from the formula. For proving (i) and (ii), first
assume that x ∈ V (Cc). Then a bijection F : X(C) → X(Cc) obviously is given
by F (t) := t|V (C) − V (c′) if the reverse is defined by extending t′ ∈ X(Cc)
to V (C) by assigning all literals in c′ to 0, which, clearly, is required for every

56 S. Porschen

truth assignment to be a x-model for C. So, we have (i) in that case. Moreover,
one easily gets w(t) = wc(F (t)) + α, where α =

∑
y∈V−(c′) w(y)t(y) which is a

constant since each t ∈ X(C), if existing at all, assigns all literals in c′ to 0. Thus
(ii) follows by Lemma 1.

If x �∈ V (Cc), then x occurs in C in clause c′ only. Let Xi(C) be the set of
x-models of C which assign x = i ∈ {0, 1}. Clearly, X(C) = X0(C) ∪ X1(C) as
disjoint union. And both X0(C) and X1(C) are in bijection via Fi to X(Cc), as
above, by restriction. Hence, we have (i) in this case. Obviously, Xmin(C,w) ⊂
Xi(C), for either i = 0 (in case w(x) > 0) or i = 1 (in case w(x) ≤ 0).
Relation (∗) in Lemma 1 is easily seen to be satisfied, for Fi, i ∈ 0, 1, hence
(ii) is proven. ��

In the following, we call a formula cp-free if none of its clauses contains a com-
plemented pair of variables. The transformation in the next lemma removes pure
negative literals:

Lemma 3. For a cp-free formula C ∈ CNF with weight function w : V (C) → R,
let x ∈ V (C) be a variable that exclusively occurs negated in C. Let Cx be the
formula obtained from C by replacing each occurence of x by x and let wx :
V (C) → R be defined as w except for wx(x) := −w(x). Then:

(i) |X(C)| = |X(Cx)|,
(ii) |Xmin(C,w)| = |Xmin(Cx, wx)|.
Proof. (i) follows, since we have V (C) = V (Cx) and obviously every t ∈ X(C)
yields a t′ ∈ X(Cx) defined as t except for t′(x) = 1 − t(x) and vice versa.
In other words, the mapping F : X(C) � t → F (t) := t′ ∈ X(Cx) with t′ as
defined above, is a bijection of x-model spaces. To prove (ii), we assume that
C ∈ XSAT otherwise we are done. From w(t) =

∑
y∈V (C) w(y)t(y), and the fact

that t and t′ := F (t) as well as w and wx are distinct at x only, we easily obtain
w(t) = wx(t′)+w(x) = wx(t′)+ c. Due to relation (∗) of Lemma 1 the assertion
follows, as F is a bijection of x-model spaces. ��

Next we state a transformation called simple resolution which in a different form
was used in [6]. Given a formula C and a literal l, recall that C(l) denotes the set
of all clauses containing l. The following lemma is proven in [8]. The proof rests
on the fact that the simple resolution transforming a CNF formula C into CNF
formula Cij , as defined below, provides a bijection between X(C) and X(Cij) as
shown in [7]. Moreover, a corresponding transformation on the weight function
w yielding wij : V (Cij) → R, as defined below, satisfies relation (∗) of Lemma 1
finishing the proof sketch.

Lemma 4. Let C ∈ CNF be a cp-free formula and w : V (C) → R be an
arbitrary weight function. Let ci = {x} ∪ u, cj = {x} ∪ v ∈ C where x ∈
V (C) and u, v are literal sets. Let Cij be the formula obtained from C as
follows:

(1) Replace every clause c ∈ C(x) by the clause c− {x} ∪ v,
(2) replace every clause c ∈ C(x) by the clause c− {x} ∪ u,

Counting All Solutions of Minimum Weight Exact Satisfiability 57

(3) set all literals in u ∩ v to 0,
(4) remove all duplicate clauses from the current clause set.
Let wij := V (Cij) → R be the weight function defined as follows: for each
y ∈ V (Cij) − V (u⊕ v), set wij(y) := w(y), and
(1’) if V+(u⊕v)∩V−(u⊕v) = {z}, then set ∀y ∈ V (u⊕v)−{z} : wij(y) := w(y)
and

wij(z) :=
{
w(z) + w(x), if z ∈ u, z ∈ v
w(z) − w(x), else

(2’) if V+(u ⊕ v) ∩ V−(u ⊕ v) = ∅, then set ∀y ∈ V (v − u) : wij(y) := w(y)
and ∀y ∈ V+(u − v) : wij(y) := w(y) − w(x) and ∀y ∈ V−(u − v) : wij(y) :=
w(y) + w(x).
Then we have V (Cij) = V (C) − {x} − V (u ∩ v), |Cij | ≤ |C| − 1 and:
|Xmin(C,w)| = |Xmin(Cij , wij)|.

Now we are ready to present Procedure Monotonization which as input gets a
non positive monotone CNF formula C and recursively calls itself until C is
positive monotone thereby it computes a multiplicator N ∈ {0, 1} for C. N gets
value 0 iff C turns out to be not exactly satisfiable during the monotonization
process:

Procedure. Monotonization(C,w;N)
Input: C ∈ CNF, w : V (C) → R

Output: C′ ∈ CNF+, w
′ such that |Xmin(C,w)| = |Xmin(C′, w′)|, N ∈ {0, 1}

begin
(1) N ← 1
(2) if ∅ ∈ C then return N ← 0
(3) if ∃c ∈ C containing ≥ 2 complemented pairs then return N ← 0
(4) if ∃c ∈ C containing 1 complemented pair {x, x}} then

C ← Cc, w ← wc,Monotonization(C,w;N)
(5) if ∃x ∈ V (C) occuring only negated in C then

C ← Cx, w ← wx,Monotonization(C,w;N)
(6) if ∃ci = {x} ∪ u, cj = {x} ∪ v ∈ C, x ∈ V (C) then

if |V+(u⊕ v) ∩ V−(u ⊕ v)| > 1 then return N ← 0
C ← Cij , w ← wij , Monotonization(C,w;N)

(7) return C,w,N
end

Theorem 2. For C ∈ CNF, w : V (C) → R, Procedure Monotonization, in
O(n2 · ‖C‖) time, correctly computes a monotone formula C′ ∈ CNF+ with
w′ : V (C′) → R such that |Xmin(C,w)| = |Xmin(C′, w′)|.
Proof. Correctness of Steps (1) to (3) is obvious. Correctness of Steps (4) to
(6) follows by Lemmas 2 to 4, and by the fact that the current formula is cp-free
when Step (5) is executed for the first time. Thus the current formula C returned
in Step (7) is positive monotone and the weight function is such that the number
of minimum weight x-models is preserved with respect to the original input.

Adressing the claim for the running time we assume that we can rely on
appropriate data structures, such as doubly linked lists: For each variable x, we

58 S. Porschen

maintain a list containing pointers to all clauses containing x, carrying additional
information whether x appears negative or not. Similarly, for each clause we
hold a list, containing pointers to all variables contained, and assume that these
lists are doubly linked. It is not hard to verify that these data structures, for
given input instance, can be filled in O(n2 · ‖C‖) time, and that this bound also
dominates the running time of Procedure Monotonization relying on these data
structures. ��
Now we are ready for presenting the main algorithm solving #MINW-XSAT for
arbitrary formulas with variable weights:

Algorithm. #MINW-XSAT(C,w; |Xmin(C,w)|)
Input: C ∈ CNF, w : V (C) → R

Output: number of all minimum weight x-models |Xmin(C,w)| of C,w
begin
(1) if C is not positive monotone then
(2) Monotonization(C,w;N)
(3) if N = 0 then return |Xmin(C,w)| ← 0
(4) if C = ∅ then return |Xmin(C,w)| ← 1
(5) solve monotone #MINW-XSAT (∗ let r be its result ∗)
(6) return |Xmin(C,w)| ← r
end

Theorem 3. Algorithm #MINW-XSAT correctly calculates the number of all
minimum weight x-models in time O(n2 ·‖C‖+20.40567·|V (C)|), for arbitrary input
C ∈ CNF, w : V (C) → R.

Proof. Theorem 2 establishes the correctness of statement (2) which needs to
be executed only if the input formula does not be monotone. By the correctness
of Prodecure Monotonization it is guaranteed that the multiplicator N is 0 iff
C �∈ XSAT in which case the number of x-models is 0, hence (3) is correct.
Correctness of (4) is due to the fact mentioned above that the empty formula
has only one x-model. Correctness of Step (5) is due to Theorem 1, based on
the reduction of monotone #MINW-XSAT to #MINW-MAXW-IS via the for-
mula graph of the weighted positive monotone formula as output by Procedure
Monotonization.

Adressing the running time, observe that the test in (1) needs O(‖C‖) time,
and Procedure Monotonization can be executed O(n2 ·‖C‖) time due to Theorem
2. Finally, Step (5) solving monotone #MINW-XSAT performs in O(n2 · ‖C‖+
20.40567·|V (C)|) time according to Theorem 1 completing the proof. ��

5 Concluding Remarks

We proposed an algorithm for #MINW-XSAT running in O(n2 ·‖C‖+20.40567·n)
time, for input formulas C ∈ CNF of n real-valued weighted variables. Observe
that testing all possible truth assignments in a brute-force manner needs O(n2 ·
‖C‖ · 2n) time.

Counting All Solutions of Minimum Weight Exact Satisfiability 59

An open question is whether all solutions can be enumerated explicitly with
polynomial delay only, which is not provided by an algorithm merely counting
solutions. Such an enumeration algorithm running with polynomial delay only,
in the number of solutions, has been provided, e.g., by Johnson et al. [5] for
enumerating all maximal independent sets in a finite graph.

Whether faster algorithms solving unweighted #XSAT like that in [3] can be
adapted also to treat the weighted case without affecting the running time, is
also an open problem.

References

1. B. Aspvall, M. R. Plass, and R. E. Tarjan, A linear-time algorithm for testing
the truth of certain quantified Boolean formulas, Inform. Process. Lett. 8 (1979)
121-123.

2. V. Dahllöf, P. Jonsson, An Algorithm for Counting Maximum Weighted Indepen-
dent Sets and its Applications, in: Proceedings of the 13th ACM-SIAM Symposium
on Discrete Algorithms, pp. 292-298, 2002.

3. V. Dahllöf, P. Jonsson, and R. Beigel, Algorithms for four variants of the exact
satisfiability problem, Theoretical Comp. Sci. 320 (2004) 373-394.

4. M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the
Theory of NP-Completeness, W. H. Freeman and Company, San Francisco, 1979.

5. D. S. Johnson, M. Yannakakis, and C. H. Papadimitriou, On Generating All Max-
imal Independent Sets, Inform. Process. Lett. 27 (1988) 119-123.

6. B. Monien, E. Speckenmeyer, and O. Vornberger, Upper Bounds for Covering Prob-
lems, Methods of Operations Research 43 (1981) 419-431.

7. S. Porschen, On Some Weighted Satisfiability and Graph Problems, in: “P. Vojtas,
et al. (Eds.), Proceedings of the 31st Conference on Current Trends in Theory
and Practice of Informatics”, Lecture Notes in Comp. Sci., Vol. 3381, pp. 278-287,
Springer-Verlag, Berlin, 2005.

8. S. Porschen, Solving Minimum Weight Exact Satisfiability in Time O(20.2441n),
in: “X. Deng, et al. (Eds.), Proceedings of the 16th International Symposium on
Algorithms and Computation (ISAAC 2005)”, Lecture Notes in Comp. Sci., Vol.
3827, pp. 654-664, Springer-Verlag, Berlin, 2005.

9. T. J. Schaefer, The complexity of satisfiability problems, in: Proceedings of the
10th ACM Symposium on Theory of Computing, pp. 216-226, 1978.

10. L. Valiant, The complexity of enumeration and reliability problems, SIAM J. Com-
put. 9 (1979) 410-421.

Clause Shortening Combined with Pruning
Yields a New Upper Bound for
Deterministic SAT Algorithms

Evgeny Dantsin1, Edward A. Hirsch2,�, and Alexander Wolpert1

1 Roosevelt University, 430 S. Michigan Av., Chicago, IL 60605, USA
{edantsin, awolpert}@roosevelt.edu

2 Steklov Institute of Mathematics, 27 Fontanka, St. Petersburg 191023, Russia
hirsch@pdmi.ras.ru

Abstract. We give a deterministic algorithm for testing satisfiability
of Boolean formulas in conjunctive normal form with no restriction on
clause length. Its upper bound on the worst-case running time matches
the best known upper bound for randomized satisfiability-testing algo-
rithms [6]. In comparison with the randomized algorithm in [6], our de-
terministic algorithm is simpler and more intuitive.

1 Introduction

The problem of satisfiability of a propositional formula in conjunctive normal
form (SAT) can be easily solved in 2n polynomial-time steps, where n is the
number of variables in the input formula. Since the early 1980s, this upper bound
has been successively improved for k-SAT (the restricted case of SAT where
clauses have at most k variables). The best bound to date for deterministic k-
SAT algorithms is (2−2/(k+1))n up to a polynomial factor [3]. For randomized
k-SAT algorithms, the currently best known bound is due to [8]; a close bound
is given in [11]. These general bounds are improved for k = 3 in [2, 7].

The list of successive improvements for SAT (with no restriction on clause
length) is shorter:

deterministic algorithms randomized algorithms

2
n 1− 2√

n log n [4] 2n 1− 1
2

√
n [10]

2n(1− 1
log(2m)) [5] 2n(1− 1

log(2m)) [12]

2n(1− 1
ln(m/n)+O(ln ln m)) [6]

Here n and m are respectively the number of variables and the number of clauses.
For simplicity, we give the bounds above omitting polynomial factors; such a

� Supported in part by Russian Science Support Foundation, Russian Foundation for
Basic Research, and INTAS grant 04-77-7173.

T. Calamoneri, I. Finocchi, G.F. Italiano (Eds.): CIAC 2006, LNCS 3998, pp. 60–68, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Clause Shortening Combined with Pruning Yields a New Upper Bound 61

factor is typically linear in the length of the input formula (yet there are several
exceptions).

In this paper we give a deterministic algorithm for SAT with no restriction
on clause length. Its upper bound on the worst-case running time is

2n(1− 1
ln(m/n)+O(ln ln m))

up to a polynomial factor. This bound matches the best known upper bound for
randomized SAT algorithms [6]. In comparison with the randomized algorithm
in [6], our deterministic algorithm is simpler and more intuitive.

Clause shortening approach. Our algorithm employs the clause shortening tech-
nique first used by Schuler [12] in his randomized algorithm. This technique is
based on the following idea:

For any “long” clause (longer than some k), either we can shorten this
clause by choosing any k literals in the clause and dropping the other
literals, or we can substitute false for these k literals in the entire formula.

Schuler’s algorithm shortens every clause to its first k literals and applies the
k-SAT algorithm [9] to the resulting k-CNF formula. If no satisfying assignment
is found, Schuler’s algorithm simplifies the initial formula by choosing a long
clause at random and substituting false for its first k literals. This procedure is
recursively applied to the simplified formula until no clause contains more than
k literals. The upper bound in [12] is obtained when taking k = log(2m).

The derandomization [5] of Schuler’s algorithm uses the same idea. Let F
be an input formula consisting of clauses C1, . . . , Cm. Assume that the first m′

clauses are longer than k and the other clauses have length ≤ k. For each Ci

where i ≤ m′, let Di be the clause that is made up from the first k literals of
Ci. Then F is equivalent to the disjunction of the following m′ + 1 formulas:

F1 = F [D1 = false]
...
Fm′ = F [Dm′ = false]
Fm′+1 = D1 ∧ . . . ∧Dm′ ∧ T

where T is Cm′+1 ∧ . . . ∧ Cm, i.e., T is the “tail” consisting of “short” clauses.
The derandomized algorithm first tests satisfiability of Fm′+1 using a k-SAT
subroutine. If no satisfying assignment is found, the algorithm is recursively
applied to each of F1, . . . , Fm′ .

Clause shortening combined with pruning. There is some inefficiency in the de-
randomized version of Schuler’s algorithm. Namely, when testing Fi, we may
have to test its subformula corresponding to Dj = false. On the other hand, when
testing Fj , we may come to the same subformula. To eliminate this inefficiency,
we prune the tree of recursively tested formulas as follows: for each formula Fi,

62 E. Dantsin, E.A. Hirsch, and A. Wolpert

we replace all clauses C1, . . . , Ci−1 by their counterparts D1, . . . , Di−1. In other
words, we use the fact that F is equivalent to the disjunction of the following
formulas:

F1 = (C1 ∧ C2 ∧ C3 ∧ . . . ∧ Cm′−1 ∧ Cm′ ∧ T) [D1 = false]
F2 = (D1 ∧ C2 ∧ C3 ∧ . . . ∧ Cm′−1 ∧ Cm′ ∧ T) [D2 = false]
F3 = (D1 ∧ D2 ∧ C3 ∧ . . . ∧ Cm′−1 ∧ Cm′ ∧ T) [D3 = false]
...
Fm′ = (D1 ∧ D2 ∧ D3 ∧ . . . ∧ Dm′−1 ∧ Cm′ ∧ T) [Dm′ = false]
Fm′+1 = (D1 ∧ D2 ∧ D3 ∧ . . . ∧ Dm′−1 ∧ Dm′ ∧ T)

Similarly to the derandomization above, our algorithm first tests Fm′+1 and then,
if no satisfying assignment is found, it tests each of F1, . . . , Fm′ . We give details
of our algorithm in Sect. 3 and prove its worst-case upper bound in Sect. 4.

2 Definitions and Notation

We deal with Boolean formulas in conjunctive normal form (CNF). By a variable
we mean a Boolean variable that takes truth values true or false. A literal is a
variable x or its negation ¬x. A clause C is a set of literals such that C contains
no complementary literals. A formula F is a set of clauses; n and m denote,
respectively, the number of variables and the number of clauses in F . If each
clause in F contains at most k literals, we say that F is a k-CNF formula.

An assignment to variables x1, . . . , xn is a mapping from {x1, . . . , xn} to
{true, false}. This mapping is extended to literals: each literal ¬xi is mapped to
the complement of the truth value assigned to xi. We say that a clause C is
satisfied by an assignment A if A assigns true to at least one literal in C. The
formula F is satisfied by A if every clause in F is satisfied by A. In this case, A
is called a satisfying assignment for F . We consider substitutions of truth values
for some variables in a formula. If D is a set of literals, we write F [D = false]
to denote the formula obtained from F as follows: any clause that contains the
negation of a literal in D is removed from F , the literals occurring in D are
deleted from the other clauses.

Here is a summary of the notation used in the paper.

– F denotes a CNF formula; n denotes the number of variables in F ; m denotes
the number of clauses in F .

– If C is a clause then |C| denotes its length (the number of literals).
– We write log x to denote log2 x.
– H(x) denotes the entropy function: H(x) = −x log x− (1 − x) log(1 − x).

3 Algorithm

We describe an algorithm parameterized by a function k(n,m). This function
determines the length to which input clauses are to be shortened. The algorithm

Clause Shortening Combined with Pruning Yields a New Upper Bound 63

computes the value of k(n,m) for particular n and m, then it runs a recursive
procedure that implements the clause shortening approach combined with prun-
ing. This recursive Procedure S described below uses a k-SAT algorithm of [3]
as a subroutine.

Lemma 1 ([3]). There exists a deterministic algorithm that tests satisfiability
of an input formula F in time at most

m · q(n) ·
(

2 − 2
k + 1

)n

where q(n) is a polynomial in n, and k is the maximum length of clauses in F .

Procedure S
Input: a CNF formula F and a positive integer k.

1. Assume F consists of clauses C1, . . . , Cm. Change each clause Ci to a clause
Di as follows: If |Ci| > k then choose any k literals in Ci and drop the other
literals; otherwise leave Ci as is, i.e., Di = Ci. Let F ′ denote the resulting
formula.

2. Test satisfiability of F ′ using the algorithm defined in Lemma 1.
3. If F ′ is satisfiable, output “satisfiable” and halt. Otherwise, for each i, do

the following:
(a) Convert F to Fi as follows:

i. Replace Cj by Dj for all j < i;
ii. Assign false to all literals in Di.

(b) Recursively invoke Procedure S on (Fi, k).
4. Return “unsatisfiable”.

Algorithm Ak(n,m)

Parameter: a positive integer function k(n,m)
Input: a CNF formula F with m clauses over n variables (n ≤ m)

1. Compute k = k(n,m).
2. Invoke Procedure S on (F, k).

4 Upper Bound

First we give an upper bound for Algorithm Ak(n,m). Then we find a particular
function k(n,m) that approximately minimizes this upper bound.

Theorem 1. Let k(n,m) be an integer function such that:

3 ≤ k(m,n) ≤ logm. (1)

Then Algorithm Ak(n,m) runs in time

O(
√
m) · n

k · q(n) · 2n(1− log e
k+1)+O(m·2−k), (2)

where q(n) is the polynomial appearing in Lemma 1.

64 E. Dantsin, E.A. Hirsch, and A. Wolpert

Proof. Let t(F) be the running time of Procedure S on (F, k). It is not difficult
to see that t(F) can be estimated as follows:

t(F) ≤ t0(F ′) +
m∑

i=1

t(Fi) (3)

where F ′ and Fi are as described in Procedure S, and t0(F ′) is the running
time of the k-SAT algorithm from Lemma 1 on F ′. Let T (n,m,m′) denote the
maximum of the running time of Procedure S on (G, k) where G is a formula
with ≤ n variables and ≤ m clauses such that at most m′ of its clauses contain
> k literals. For the k-SAT algorithm, we define T0(n,m) as the maximum
running time on a different set of formulas, namely let T0(n,m) be the maximum
running time of the algorithm from Lemma 1 on the set of formulas F ′ such that
each F ′ has ≤ m clauses over ≤ n variables and the maximum length of clauses
is not greater than k.

Then for any n and m, inequality (3) implies the following recurrence relation:

T (n,m,m′) ≤ T0(n,m) +
m−1∑
i=0

T (n− k,m,m′ − i). (4)

If we iteratively substitute T (n− L,m,m′ − i) into this recurrence, we turn its
right-hand side into the sum of terms of the form T0(n− lk,m) for l ≤ n/k.

Our proof strategy is as follows. We consider the recursion tree of our algo-
rithm and estimate the total amount Tl of work done at its l-th level (i.e., the
sum of terms T0(n − lk,m)). We then find l∗ that maximizes this estimation.
The total running time is then at most n/k times the estimation for the level l∗.

To estimate Tl, we note that the number of nodes at the l-th level

m∑
i1=1

i1∑
i2=1

. . .

il−1∑
il=1

1

is the number of ways to choose l possibly equal elements out of m, i.e.,
(

m+l−1
l

)
(see, e.g., [13, Sect. 1.2]). Then

Tl ≤ m · q(n) ·
(
2 − 2

k+1

)n−lk

·
(
m+l−1

l

)
. (5)

Let El denote the right-hand side of the estimation (5). It is straightforward to
see that El+1 ≤ El if and only if

m+l
l+1 ·

(
2 − 2

k+1

)−k

≤ 1,

which is equivalent to
m+l
l+1 · 2−k ·

(
1 + 1

k

)k ≤ 1.

Therefore, the maximum of El over l is attained at the following integer l∗:

l∗ = mα−2k

2k−α
+ δ,

where α = (1 + 1/k)k and −1 < δ < 1.

Clause Shortening Combined with Pruning Yields a New Upper Bound 65

The next step is to give lower and upper bounds on l∗. We prove that

m · 2−k ≤ l∗ ≤ 5.12 ·m · 2−k (6)

To prove the lower bound, we use k ≤ logm and α ≥ (1 + 1/3)3 ≈ 2.37 (which
follows from k ≥ 3):

l∗ = mα−2k

2k−α
+ δ

≥ m · 2−k ·
(

α−2k/m
1−α/2k

)
− 1

≥ m · 2−k ·
(

α−1
1

)
− 1

≥ m · 2−k.

The upper bound is proved using condition (1) and α < e. Indeed,

l∗ = mα−2k

2k−α
+ δ

≤ m · 2−k ·
(

α−2k/m
1−α/2k

)
+ 1

≤ m · 2−k ·
(

e
1−e/8

)
+ 1

≤ m · 2−k ·
(

e
1−e/8 + 1

)
≤ 5.12 ·m · 2−k.

Now we estimate the total amount of work done at the level l∗:

El∗ = m · q(n) · 2n−kl∗ ·
(
1 − 1

k+1

)n−kl∗

·
(
m+l∗−1

l∗
)
. (7)

The last factor in the right-hand side of (7) can be estimated using Stirling’s
approximation as in [1, page 4]:(

m+l∗−1
l∗

)
= O

(
1√

m+l∗

)
· 2H(l∗

m+l∗−1)(m+l∗−1)

= O
(

1√
m

)
· e−l∗ ln l∗

m+l∗−1−(m−1) ln m−1
m+l∗−1 .

Using l∗ − 1 < m and ln(1 + x) < x, we have

(
m+l∗−1

l∗
)

= O
(

1√
m

)
· el∗ ln m

l∗ +l∗ ln 1+ l∗−1
m +(m−1) ln(1+ l∗

m−1)

= O
(

1√
m

)
· el∗(ln m

l∗ +2).

The factor
(
1 − 1

k+1

)n−kl∗

in (7) can be estimated using the inequality ln
(1 − x) < −x:(

1 − 1
k+1

)n−kl∗

= e(n−kl∗) ln(1− 1
k+1) ≤ e−

n−kl∗
k+1 < e−

n
k+1+l∗ .

66 E. Dantsin, E.A. Hirsch, and A. Wolpert

Hence, we can estimate El∗ as follows:

El∗ ≤ O(
√
m) · q(n) · 2n−kl∗ · e− n

k+1+l∗ · el∗(ln m
l∗ +2)

= O(
√
m) · q(n) · 2n · 2−

n log e
k+1 · e−kl∗ ln 2 · el∗ · el∗(ln m

l∗ +2)

= O(
√
m) · q(n) · 2n(1− log e

k+1) · eβl∗ ,

where
β = 3 + ln m

l∗ − k ln 2 = 3 + ln m
2k·l∗ .

The lower bound on l∗ in (6) implies β < 3. Therefore, using the upper bound
in (6), we have

El∗ ≤ O(
√
m) · q(n) · 2n(1− log e

k+1) · e3l∗

≤ O(
√
m) · q(n) · 2n(1− log e

k+1) · e3·(5.12·m·2−k)

≤ O(
√
m) · q(n) · 2n(1− log e

k+1) · 2O(1)·m·2−k

.

Remark 1. What value of k minimizes bound (2)? Straightforward differentiation
of the exponent

n
(
1 − log e

k+1

)
+ O(m · 2−k)

gives the following equation:

k = log(m/n) + 2 log(k + 1) + O(1).

We can approximate a fix-point solution to this equation taking

k = log(m/n) + d · log logm

where d > 1 is a constant close to 1.

Theorem 2. For any number d > 1, let Ad be an algorithm obtained from
Algorithm Ak(m,n) by taking the following function k(m,n):

k(m,n) =
{
�log(m/n) + d · log logm� if logm < n1/d,
�logm� otherwise.

Then Ad runs in time

O(
√
m) · n

k · q(n) · 2n(1− 1
ln(m/n)+d·ln log m

+o(1
k)) (8)

on formulas such that logm < n1/d and runs in time

O(
√
m) · n

k · q(n) · 2n(1− 1
ln(2m)) (9)

on all other formulas, where q(n) is the polynomial from Lemma 1.

Clause Shortening Combined with Pruning Yields a New Upper Bound 67

Proof. We prove both bounds by applying Theorem 1. Note that the function
k(m,n) defined in the claim satisfies the inequality k ≤ logm required by The-
orem 1. This is obvious for k = �logm� and follows from logm < n1/d for

k = �log(m/n) + d · log logm�. (10)

To prove bound (8), we first write the upper bound given by Theorem 1 in
the following form:

O(
√
m) · n

k · q(n) · 2n(1−γ), where γ = log e
k+1 − O(1)·m

n·2k .

Substituting the value of k from (10) in the second term of γ, we have

γ ≥ log e
k+1 − O(1)

(log m)d

≥ log e
k − log e

k(k+1) −
O(1)

(log m)d

≥ log e
k − o

(1
k

)
using k ≤ logm and d > 1

≥ 1
ln(m/n)+d·ln log m − o

(1
k

)
.

Bound (9) is easily obtained from the upper bound given by Theorem 1 by
substitution of �logm� for k.

Remark 2. Both bounds (8) and (9) hold for all formulas. Bound (8) is asymp-
totically better for formulas such that logm < n1/d, while bound (9) is better
for all other formulas.

Remark 3. What is the best value of d? On the one hand, the smaller d is, the
smaller k we have, which yields a better asymptotics of bound (8). In addition,
the smaller d is, the weaker the logm ≤ n1/d restriction becomes. On the other
hand, the smaller d we take, the slower o(1/k) tends to zero (or, equivalently,
the asymptotic behavior starts with lager values of m).

Remark 4. The randomized algorithm for SAT in [6] runs in time

2n(1− 1
ln(m/n)+O(ln ln m))

up to a polynomial factor. It is straightforward to check that for any d > 1, the
exponential part of the bound in Theorem 2 also can be written in this form,
i.e., our upper bound for deterministic algorithms matches the best known upper
bound for randomized algorithms.

Acknowledgement. We thank Natalia Tsilevich for her contribution to the proof
of Theorem 1 and for helpful discussions.

68 E. Dantsin, E.A. Hirsch, and A. Wolpert

References

1. B. Bollobás. Random Graphs. Cambridge University Press, 2nd edition, 2001.
2. T. Brueggemann and W. Kern. An improved local search algorithm for 3-SAT.

Theoretical Computer Science, 329(1-3):303–313, December 2004.
3. E. Dantsin, A. Goerdt, E. A. Hirsch, R. Kannan, J. Kleinberg, C. Papadimitriou,

P. Raghavan, and U. Schöning. A deterministic (2 − 2/(k + 1))n algorithm for
k-SAT based on local search. Theoretical Computer Science, 289(1):69–83, 2002.

4. E. Dantsin, E. A. Hirsch, and A. Wolpert. Algorithms for SAT based on search
in Hamming balls. In Proceedings of the 21st Annual Symposium on Theoreti-
cal Aspects of Computer Science, STACS 2004, volume 2996 of Lecture Notes in
Computer Science, pages 141–151. Springer, March 2004.

5. E. Dantsin and A. Wolpert. Derandomization of Schuler’s algorithm for SAT.
In Proceedings of the 7th International Conference on Theory and Applications
of Satisfiability Testing, SAT 2004, volume 3542 of Lecture Notes in Computer
Science, pages 80–88. Springer, 2005.

6. E. Dantsin and A. Wolpert. A faster clause-shortening algorithm for SAT with
no restriction on clause length. Journal on Satisfiability, Boolean Modeling and
Computation, 1:49–60, November 2005.

7. K. Iwama and S. Tamaki. Improved upper bounds for 3-SAT. In Proceedings of the
15th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2004, page
328, January 2004.

8. R. Paturi, P. Pudlák, M. E. Saks, and F. Zane. An improved exponential-time
algorithm for k-SAT. In Proceedings of the 39th Annual IEEE Symposium on
Foundations of Computer Science, FOCS’98, pages 628–637, 1998.

9. R. Paturi, P. Pudlák, and F. Zane. Satisfiability coding lemma. In Proceedings of
the 38th Annual IEEE Symposium on Foundations of Computer Science, FOCS’97,
pages 566–574, 1997.

10. P. Pudlák. Satisfiability – algorithms and logic. In Proceedings of the 23rd Interna-
tional Symposium on Mathematical Foundations of Computer Science, MFCS’98,
volume 1450 of Lecture Notes in Computer Science, pages 129–141. Springer-
Verlag, 1998.

11. U. Schöning. A probabilistic algorithm for k-SAT and constraint satisfaction prob-
lems. In Proceedings of the 40th Annual IEEE Symposium on Foundations of
Computer Science, FOCS’99, pages 410–414, 1999.

12. R. Schuler. An algorithm for the satisfiability problem of formulas in conjunctive
normal form. Journal of Algorithms, 54(1):40–44, January 2005. A preliminary
version appeared as a technical report in 2003.

13. R. P. Stanley. Enumerative Combinatorics, volume 1. Wadsworth & Brooks/Cole,
1986.

Network Discovery and Verification
with Distance Queries�

Thomas Erlebach1, Alexander Hall2, Michael Hoffmann1, and Matúš 1

1 Department of Computer Science, University of Leicester
{te17, mh55, mm215}@mcs.le.ac.uk

2 Institute for Theoretical Computer Science, ETH Zürich
alex.hall@inf.ethz.ch

Abstract. The network discovery (verification) problem asks for a min-
imum subset Q ⊆ V of queries in an undirected graph G = (V, E) such
that these queries discover all edges and non-edges of the graph. In the
distance query model, a query at node q returns the distances from q to
all other nodes in the graph. In the on-line network discovery problem,
the graph is initially unknown, and the algorithm has to select queries
one by one based only on the results of previous queries. We give a ran-
domized on-line algorithm with competitive ratio O(

√
n log n) for graphs

on n nodes. We also show lower bounds of Ω(
√

n) and Ω(log n) on the
competitive ratio of deterministic and randomized on-line algorithms,
respectively. In the off-line network verification problem, the graph is
known in advance and the problem is to compute a minimum number of
queries that verify all edges and non-edges. We show that the problem
is NP-hard and present an O(log n)-approximation algorithm.

1 Introduction

The growing interest in decentralized networks such as the Internet or peer-to-
peer networks has introduced many new algorithmic challenges. A key property
of these networks is that there is no central authority that maintains a map
of the network. Obtaining an accurate map, usually represented as a graph,
is not easy due to the dynamic growth of the network. A common approach
to obtain a map of a network, or at least a good approximation, is to make
some local measurements, which could be seen as local views of the network
from selected nodes, and combine these in an appropriate manner. There is an
extensive body of related work studying various aspects of this approach, see
e.g. [14, 9, 15, 12, 13, 11, 3, 16, 8, 1, 6, 7].

As making measurements at a node is usually costly, the problem of mini-
mizing the number of such measurements arises naturally. Nevertheless, it was
proposed only recently to study this problem from a combinatorial optimization
point of view: Beerliova et al. [4] introduce the network discovery and verification

� Work partially supported by European Commission - Fet Open project DELIS IST-
001907 Dynamically Evolving Large Scale Information Systems, for which funding
in Switzerland is provided by SBF grant 03.0378-1.

T. Calamoneri, I. Finocchi, G.F. Italiano (Eds.): CIAC 2006, LNCS 3998, pp. 69–80, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Mihǎlák

70 T. Erlebach et al.

problems, which ask to find a map of a network with a small number of queries
(measurements). In the on-line network discovery problem only the nodes V of
a graph G are known in the beginning. An algorithm can make queries at nodes
of the graph, and each query returns a local view of the graph. The task of the
algorithm is to choose a minimum subset Q ⊆ V of queries, such that the whole
graph is discovered, i.e., all edges and non-edges are known. The network verifi-
cation problem is the off-line version of the problem: The whole graph is known
to the algorithm, and the task is to compute a minimum set Q of queries that
verify all edges and non-edges. One motivation for the off-line version is checking
with as few measurements as possible whether a given map is still correct.

In order to discover a graph, it may seem sufficient to discover only its edges.
However, especially in view of the on-line setting, it is also necessary to have
a proof (i.e., discover) for each unconnected node pair that indeed there is no
edge between them. An on-line algorithm can only know that it has finished
discovering the graph when both edges and non-edges have been discovered.
Considering both also makes it possible to quantify how much knowledge about
the network is revealed by a given set of queries. This could also be helpful
e.g. when investigating the quality of previously published maps of the Internet.

In [4], a very strong query model was used: A query at a node v reveals all
edges and non-edges whose endpoints have different distances from v. This model
was motivated by the consideration that in certain scenarios one can identify all
edges on shortest paths between the query node and all other nodes. In this
paper, we study network discovery and network verification in the model where
a query q ∈ V gives all distances from q to any other node of the investigated
graph G. We refer to the on-line problem as Dist–All–Discovery and to
the off-line problem as Dist–All–Verification. This distance query model is
much weaker than the model used in [4], in the sense that typically a query
reveals much less information about the network.

There are several reasons that motivate us to study the distance query model.
First, in many networks it is realistically possible to obtain the distances between
a node and all other nodes, while it is difficult or impossible to obtain information
about edges or non-edges that are far away from the query node. For example,
so-called distance-vector routing protocols work in such a way that each node
informs its neighbors about upper bounds on the distances to all other nodes
until these values converge; in the end, the routing table at a node contains
the distances to all other nodes, and a query in our model would correspond to
reading out the routing table. Another scenario is the discovery of the topology
of peer-to-peer networks such as Gnutella [5]. With the Ping/Pong protocol it
is possible to use a Ping command to ask all nodes within distance k (the TTL
parameter of the Ping) to respond to the sender [2]. Repeated Pings could be
used to determine the distances to all other nodes. Real peer-to-peer networks,
however, are often so large that it becomes prohibitive to send Pings for larger
values of k, and there are also many other aspects that make the actual discovery
of the topology of a Gnutella network very difficult [2]. Nevertheless, we believe

Network Discovery and Verification with Distance Queries 71

that our model is a good starting point for studying fundamental issues in the
discovery of networks that support Ping/Pong-like protocols.

Related Work. There are several ongoing large-scale efforts to collect data rep-
resenting local views of the Internet. The most prominent one is probably the
RouteViews project [15] by the University of Oregon. It collects data (in the
form of lists of paths) from a large number of so-called border gateway protocol
routers. More recently, and due to good publicity very successfully, the DIMES
project [9] has started collecting data with the help of a volunteer community.
Users can download a client that collects paths in the Internet by executing
successive traceroute commands. A central server can direct each client individ-
ually by specifying which routes to investigate. Data obtained by these or similar
projects has been used with heuristics to obtain maps of the Internet, basically by
simply overlaying the paths found by the respective project, see e.g. [13, 15, 9, 14].
Another line of research aims at inferring from such local views the types of the
economic relationships between nodes in the Internet graph [11, 16, 8].

Beerliova et al. [4] propose the problem of network discovery (verification)
and study it for the “layered graph” query model: A query q ∈ V returns all
edges and non-edges between nodes of different distance from q. They give an
o(logn) inapproximability result for the off-line version and a randomized on-line
algorithm with competitive ratio O(

√
n logn). The on-line algorithm we present

in this paper is based on a similar approach, but requires new ideas.

Our Results. In Sect. 2 we give basic definitions concerning network discovery and
verification in the distance query model. We then characterize the queries that
discover an individual non-edge and the sets of queries that together discover an
individual edge. (At first sight, it may seem that the only way to discover an edge
in the distance query model is to query one of its incident nodes. It turns out,
however, that more intricate deductions are possible and edges at a larger dis-
tance from the query nodes can be discovered.) In Sect. 3 we show lower bounds
on the number of queries needed to discover or verify a graph, based on the
independence number α, clique number ω, and size of the edge set of the graph.
For Dist–All–Verification we present in Sect. 4 polynomial-time algorithms
for basic graph classes: chains, cliques, trees, cycles, and hypercubes. For general
graphs, the problem turns out to be NP-hard, and an O(log n)-approximation
algorithm is presented. For Dist–All–Discovery we show in Sect. 5 that no
deterministic on-line algorithm can be better than O(

√
n)-competitive and no

randomized on-line algorithm can be better than O(log n)-competitive. Finally,
we present our main result, a randomized on-line algorithm with competitive
ratio O(

√
n logn). Proofs omitted due to space restrictions can be found in [10].

2 Definitions and Preliminaries

Throughout this paper we assume graphs to be undirected and connected. For
a given graph G = (V,E), we denote the number of nodes by n = |V | and the
number of edges by m = |E|. For two distinct nodes u, v ∈ V , we say that {u, v}

72 T. Erlebach et al.

is an edge if {u, v} ∈ E and a non-edge if {u, v} /∈ E. The set of non-edges is
denoted by E. By G we denote the complement of G, i.e., G = (V,E).

A query is specified by a node v ∈ V and is called a query at v or simply the
query v. In the distance query model the answer of a query at v consists of the
distances from v to every node of G. We refer to sets of nodes with the same dis-
tance from v as layers. We use Li or simply layer i to refer to the layer of nodes
at distance i from the query node. By dG(u, v) we denote the distance from u
to v in G. We may omit the subscript G if it is clear from the context to which
graph the distance refers. Let DG(Q), for Q ⊆ V , be a collection of distance
vectors, one vector dG(Q, v) for each node v ∈ V . The vector dG(Q, v) has di-
mension |Q|, and each component gives the distance dG(q, v) of one of the (query)
nodes q ∈ Q to v; the i-th component corresponds to the i-th query node. Thus, we
write DG(Q) �= DG′(Q), for G′ = (V,E′), if there exists at least one query q ∈ Q
and a node v ∈ V such that dG(q, v) �= dG′(q, v). Conversely, DG(Q) = DG′(Q),
if dG(q, v) = dG′(q, v) holds for all queries q ∈ Q and all nodes v ∈ V .

As opposed to the layered query model studied in [4], in the distance query
model a query at node v does not explicitly return edges or non-edges. We shall
show, however, how the information about the distances of nodes to (possibly a
combination of several) queries can be utilized for discovering individual edges
or non-edges of the graph. First we give a formal notion of what we mean by
“discovering” a graph in this model. We use the two terms discover and verify
to distinguish between the on-line and the off-line setting, they are otherwise
equivalent (and we sometimes use the word “discover” also in the off-line setting).
The following definitions hold for both terms but for simplicity are stated only
for the network discovery setting.

A query set Q ⊆ V for the graph G = (V,E) discovers the edge e ∈ E
(discovers the non-edge e ∈ E), if for all graphs G′ = (V,E′) with DG(Q) =
DG′(Q) it holds that e ∈ E′ (e ∈ E′). Q ⊆ V discovers the graph G, if it
discovers all edges and non-edges of G.

If Q discovers G, this implies that any graph G′ with DG(Q) = DG′(Q) must
have the same edges and non-edges as G, i.e., G′ = G. Conversely, if a query set
Q for G yields DG(Q) = DG′(Q) only for G′ = G and for no other graph, then
Q discovers G. This gives an equivalent definition: A query set Q ⊆ V discovers
the graph G = (V,E), if for every graph G′ = (V,E′) �= G at least one of the
resulting distances changes, i.e., DG(Q) �= DG′(Q). Intuitively, the queries Q
that discover a graph G can distinguish it from any other graph G′ (sufficient
and necessary condition).

Observation 1. For G = (V,E) the query set Q ⊆ V discovers a non-edge
{u, v} ∈ E if and only if there exists a query q ∈ Q with |d(q, u) − d(q, v)| ≥ 2.

Proof. The implication “⇐” is obvious. To see the second implication “⇒”, as-
sume that {u, v} is a non-edge and that (for a contradiction) every query node
q gives |d(q, u)−d(q, v)| ≤ 1. Then, if {u, v} was an edge, the distances returned
by Q would not change, as u and v are either in the same layer or in consecutive
layers of each query q ∈ Q. ��

Network Discovery and Verification with Distance Queries 73

For a query q and {u, v} ∈ E with |d(q, u)− d(q, v)| ≥ 2, we say that q discovers
the non-edge {u, v}.

v1

v2

L0 L1 L2 L3 L2

v2v2
v1

v3 v3

v3v1

v5

v6 v4

v5

v6

v4

v5

v6

L0L1L3L4

v4

Fig. 1. Edge {v3, v4} of a graph (left) is discovered by the combination of queries at
nodes v1 and v6; the distances to the query node v1 (middle) and v6 (right) are depicted
as layers of the graph

An edge may be discovered by a combination of several queries; this is a major
difference to the layered graph query model of [4], where the set of edges and
non-edges discovered by a set of queries is simply the union of the edges and
non-edges discovered by the individual queries. If a node w is in layer i+ 1 of a
query q, this shows that w must be adjacent to at least one node from layer i. If
layer i has more than one node, then it is not necessarily clear which node from
layer i is adjacent to w. Figure 1 shows an example of how a combination of
two queries can discover an edge even if each of the two queries alone does not
discover the edge: The edge {v3, v4} is neither discovered by a query at v1 nor
by a query at v6 alone. The query at v1 reveals that v4 is connected to v2 or to
v3 (or both). The query at v6 identifies {v2, v4} as a non-edge. From these two
facts one can deduce that v4 must be connected to v3, i.e., {v3, v4} is an edge.
This discussion is generalized by the following observation [10].

Observation 2. For G = (V,E) the queries Q ⊆ V discover an edge {u, v} ∈ E
if and only if there is a query q ∈ Q with the following two properties:

(i) The nodes u and v are in consecutive layers of query q, say, u in the i-th
layer Li and v in the (i + 1)-th layer Li+1, and Li \ {u} does not contain
any neighbor of v.

(ii) The queries Q discover all non-edges between v and the nodes in Li \ {u}.
We say that a query for which (i) holds is a partial witness for the edge {u, v}.
The word “partial” indicates that the query alone is not necessarily sufficient to
discover the edge; additional queries may be necessary to discover the non-edges
required by (ii).

We conclude that a set of queries discovers a graph G if and only if it discovers
all non-edges and contains a partial witness for every edge.

3 Lower Bounds

In this section we show lower bounds on the number of queries needed to discover
(or verify) a graph G, based on the independence number α, the clique number
ω, and the number of edges m.

74 T. Erlebach et al.

Lemma 1. For any graph G with independence number α and diameter diam >
2, at least log� diam

2 (α) − 1 queries are needed to discover G. If diam = 2, we
need at least α− 1 queries.

Lemma 2. For any graph G with clique number ω at least ω − 1 queries are
necessary to discover G.

Proof. Consider a clique K of size ω in G. Let q be the first query. The nodes
of K appear in at most two consecutive layers i and i + 1 of query q. Observe
that q is a partial witness of an edge from K if and only if there is exactly
one node v from K in layer i and the remaining nodes of K are in layer i + 1.
Moreover, q is a partial witness only for edges incident with v. After query q,
there is still a clique K ′ of size ω−1 for which no query has been made that is a
partial witness of any of its edges. Therefore, by induction (using the fact that
one query is necessary for a clique of size 2 as the base case), it follows that we
need at least ω − 1 queries to discover G. ��

Lemma 3. Any graph G with n nodes and m edges needs at least m/(n − 1)
queries to be discovered.

Proof. Consider the layers of an arbitrary query q ∈ V . For each node v on
layer i, q can be a partial witness for at most one edge {u, v} with u in layer i−1.
Therefore, q can be a partial witness for at most n−1 edges. Since a set of queries
that discovers G must contain a partial witness for each of the m edges of G,
the bound follows. ��

4 Network Verification

Polynomially Solvable Cases. We discuss some classes of graphs for which the
optimal number of queries for network verification can be determined in poly-
nomial time.

Lemma 4. G can be verified with 1 query if and only if G is a chain. A clique
Kn on n vertices needs n− 1 queries to be verified.

The example of the cycle with 4 nodes C4 shows that there is a graph that needs
n− 1 queries to be verified and is not a clique. The same holds for graphs that
are obtained from Kn by deleting one edge, for n ≥ 4. In general, for cycles the
following lemma holds.

Lemma 5. A cycle Cn, n > 6, can be verified optimally with 2 queries.

Now we characterize the optimal query sets for trees. For this, we define a leg to
be a maximal path in the tree starting at a leaf and containing only vertices of
degree at most 2, see Fig. 2. If the tree is not a chain, there must be a node u of
degree greater than 2 adjacent to the last vertex of the leg. We call u a body and
we say that the leg is adjacent to its body u. The body u with all its adjacent
legs is called a spider. Nodes that are not part of a spider are called connectors
(i.e., nodes that are not in a leg and have no adjacent leg).

Network Discovery and Verification with Distance Queries 75

leg connectors

spider

bodies

Fig. 2. Legs, bodies, spiders and connectors in a tree

Lemma 6. Let T = (V,E) be a tree that is not a chain. Denote by B ⊂ V the
set of bodies of the graph. Let lb, for b ∈ B, be the number of legs adjacent to b.
Let T [B] be the induced subgraph of T on vertex set B. Let V C(T [B]) denote a
minimum vertex cover of T [B]. Then the minimum number of queries to verify
T is

∑
b∈B(lb − 1) + |V C(T [B])|.

Proof. We show first that we indeed need at least this many queries. Observe
that if there is no query in two legs adjacent to a body, then we cannot verify
the non-edges formed by vertices of the two legs at the same distance from
the body. So, for each body, there must be at least one query in every leg
except one. Moreover, if there are two legs of two different bodies which are
connected by an edge then there must be at least one query in one of these
legs. Otherwise we cannot verify the non-edge between vertices of the legs at the
same distance from their bodies. Therefore, for any two bodies connected by an
edge, at least one of them has a query in every leg. The bodies all of whose legs
contain a query form a vertex cover of T [B], and therefore a minimum vertex
cover gives a lower bound on the number of spiders that have a query in every
leg.

To prove that the claimed number of queries is sufficient, we construct a query
set Q in the following way. We compute a minimum vertex cover of T [B] (which
can be done in polynomial time on trees). Let u be a body. We add the leaves
of lu − 1 of its legs to Q. If u is in the vertex cover, we add also the leaf of the
last (the lu-th) leg to Q.

We show now that Q verifies T . We start with non-edges. Let {v, w} be
a non-edge. We distinguish several cases. First, consider the case that both
v and w are from legs. Consider the following subcases. If v and w are from
the same leg, the non-edge is clearly verified by any query. If v and w are
from different legs, and there is a query q in the leg where v or w is, then
this query verifies the non-edge. (Note that there must be a query in the leg
of v or w if they are in different legs of the same spider, or in legs of spi-
ders whose bodies are adjacent.) Now assume that v and w are from different
spiders with bodies u and u′, which are not neighbors, and there is no query
in the legs containing v and w. Let the path from u to u′ be u, x, . . . , y, u′,

76 T. Erlebach et al.

where x = y is possible. Let q be a query from a leg adjacent to a body b
such that the path from b to u does not contain x, possibly b = u. Let dv be
the distance from u to v, dw be the distance from u′ to w and let d ≥ 2 be
the distance between u and u′. If q does not verify the non-edge {v, w} then
|d(q, v) − d(q, w)| = |dv − (d + dw)| ≤ 1. Then a query q′ from a leg adjacent to
a body b′ such that the path from b′ to u′ does not contain y, possibly b′ = u′,
satisfies |d(q′, v) − d(q′, w)| = |(dv + d) − dw| ≥ 3 and thus q′ verifies the non-
edge.

Now, consider the case that at least one of the two nodes, say, the node
v, is not from a leg. Then any query in a tree of the forest T \ {v} that
does not contain w verifies the non-edge. Observe that such a query always
exists.

Therefore Q verifies all non-edges. We claim now that Q verifies all edges. For
this observe that for a tree T any query is a partial witness for every edge. To
see this, imagine the tree rooted at the query node. So, Q verifies T . ��

Lemma 7. A query set that verifies a d-dimensional hypercube Hd is a vertex
cover, and any vertex cover verifies a d-dimensional hypercube Hd for d ≥ 4. A
minimum vertex cover verifies H3. Therefore, the optimal number of queries is
2d−1 (size of a minimum vertex cover in Hd) for d ≥ 3.

Complexity and Approximability. We can show that Dist–All–Verification
is NP-hard by a reduction from the Vertex–Cover problem (see [10]).

Theorem 1. The problem Dist–All–Verification is NP-hard.

An O(log n)-approximation algorithm for Dist–All–Verification can be ob-
tained using the well-known greedy algorithm for the set cover problem: Each
vertex v corresponds to a set containing the non-edges a query at v verifies and
the edges for which a query at v is a partial witness, and the goal is to cover all
edges and non-edges.

Theorem 2. For the problem Dist-All-Verification, there is an O(log n)-
approximation algorithm.

5 Network Discovery

Lower Bounds for On-line Algorithms. We present lower bounds on the compet-
itive ratio of on-line algorithms for Dist–All–Discovery. Consider the graph
Gk from Fig. 3. It is a tree built recursively from a smaller tree Gk−1 as depicted
in the figure. Alternatively, Gk can be described as follows. Start with a chain of
length 2k−1 from x to vk. For 1 ≤ i ≤ k, the node on the chain at distance 2i−1
from x is labeled as vi. To each such node vi, 1 ≤ i ≤ k, we attach another chain
(which we call arm) of length 2i− 1, starting at vi. The number nk of nodes of
Gk satisfies nk = nk−1 + 1 + 2k for k > 1 and n1 = 3. Hence, nk = k2 + 2k.

Gk is a non-trivial tree and, by Lemma 6, the optimum number of queries is 2.
Now consider any deterministic algorithm A. As all vertices are indistinguishable

Network Discovery and Verification with Distance Queries 77

G1

x y

v1

vk

Lj

Gk−1
Gk

x

vk

v1

v2

y

Fig. 3. Graph used in the proof of the lower bound Ω(
√

n) for on-line algorithms (left
and middle); layers after query at vertex vk (right)

to A, we may assume that the initial query q0 made by A is at vk. This sorts the
vertices into layers according to their distance from vk. No non-edge is discovered
within the layers. In particular, the non-edge {x, y} in G1 (see Fig. 3) is not
discovered. We now show that A needs at least k additional queries to discover
{x, y}. Observe that in the rightmost arm (attached to vk) we have vertices from
every layer. A picks a vertex from some layer j and, because all the vertices in
this layer are indistinguishable for A, we may force A to pick the vertex from
the rightmost arm. Such a query in the rightmost arm does not reveal any
new information within Gk−1. The vertices within one layer of Gk−1 remain
indistinguishable for A. Thus, when A places its first query in Gk−1, we can
force it to be at a node from Gk−1’s rightmost arm. We can continue recursively
in this manner and therefore we can force A to query in every arm before it
discovers {x, y}. Hence, A needs at least 1 + k queries to discover Gk.

Since nk = k2 + 2k, we have that k = Θ(
√
nk). Together with the fact that

the optimum needs 2 queries, we get a lower bound of Ω(
√
n) for deterministic

algorithms. Furthermore, from the same construction we can also derive a lower
bound for randomized on-line algorithms, see [10] for details.

Theorem 3. For Dist–All–Discovery, there is no o(
√
n)-competitive deter-

ministic and no o(log n)-competitive randomized on-line algorithm.

Randomized On-line Algorithm. We present a randomized algorithm for Dist–
All–Discovery. Its competitive ratio O(

√
n logn) is very close to the lower

bound Ω(
√
n) for deterministic algorithms, but leaves a gap to the lower bound

Ω(log n) for randomized algorithms.

Theorem 4. There is a randomized on-line algorithm with competitive ratio
O(

√
n logn) for Dist–All–Discovery.

Proof. The algorithm runs in two phases. In the first phase it makes 3
√
n lnn

queries at nodes chosen uniformly at random. In the second phase, as long as
there is still an undiscovered pair {u, v} (i.e., the queries executed so far have
not discovered whether {u, v} is an edge or non-edge), the algorithm executes
the following. First, it queries both u and v. This discovers whether {u, v} is
an edge or non-edge. In case it is a non-edge, the algorithm then knows from
the queries at u and v the set S of all queries that discover {u, v}: S is the set

78 T. Erlebach et al.

of vertices w for which |d(u,w) − d(v, w)| ≥ 2. The algorithm then queries the
whole set S. In case {u, v} is an edge, the algorithm distinguishes three cases.
First, if the queries at u and v discover a non-edge, say, {u,w}, that had not
been discovered before, the algorithm proceeds with the pair {u,w} instead of
{u, v} and handles it as described above. Second, if the number of neighbors of u
and the number of neighbors of v is at most

√
n/ lnn, then the algorithm queries

also all neighbors of u and v (notice that after querying u and v we know all
their neighbors). With this information we know the set S of vertices that are
partial witnesses for {u, v}: a vertex w is in S if and only if the two vertices are
at distances i and i + 1 from w and all the other neighbors of the more distant
vertex are at distances i+1 or i+2. The algorithm then queries all vertices in S.
Third, if the number of neighbors of u or the number of neighbors of v is larger
than

√
n/ lnn, the algorithm does not do any further processing for this pair

(i.e., this iteration of the second phase is completed) and proceeds with choosing
another undiscovered pair {u′, v′} (if one exists).

The algorithm can be viewed as solving a HittingSet problem. For every
non-edge {u, v} let Suv be the set of vertices that discover {u, v}. Similarly, for
every edge {u, v} let Suv denote the set of all partial witnesses for {u, v}. The
algorithm discovers the whole graph G if it hits all sets Suv, for {u, v} ∈ E∪E. In
the first phase, the algorithm aims to hit all the sets Suv of size at least

√
n lnn.

Then, in the second phase, as long as there is an undiscovered pair {u, v}, the
algorithm attempts to query the whole set Suv; if {u, v} is an edge, it also queries
all the neighbors of u and v in order to determine Suv, except in the case where
the degree of u or v is too large. In the case that the undiscovered pair {u, v} is
an edge for which a partial witness has already been queried before, the query
at u or v must discover a new non-edge, and the algorithm uses that non-edge
instead of {u, v} to proceed.

We analyze the algorithm as follows. Let OPT be the optimal number of
queries. Consider a pair {u, v} for which the set Suv has size at least

√
n lnn.

In each query of the first phase, the probability that Suv is not hit is at most
1−

√
n lnn/n = 1−

√
(lnn)/n. Thus, standard calculations show that the prob-

ability that Suv is not hit throughout the first phase is at most 1/n3. There are
at most

(
n
2

)
sets Suv of cardinality at least

√
n lnn. The probability that at least

one of them is not hit in the first phase is at most
(
n
2

)
· 1

n3 ≤ 1
n .

Now consider the second phase, conditioned on the event that the first phase
has indeed hit all sets Suv of size at least

√
n lnn. If the undiscovered pair {u, v}

is a non-edge, after querying u and v we know Suv, and querying the whole set
Suv requires at most

√
n lnn queries (note that |Suv| ≤

√
n lnn if {u, v} is a non-

edge that has not been discovered in the first phase). If the pair {u, v} is an edge
and the queries at u and v discover a new non-edge, the algorithm proceeds with
that non-edge and makes at most

√
n lnn further queries (as above), hence at

most
√
n lnn+2 queries in total for this iteration of the second phase. Otherwise,

if the number of neighbors of u and of v is bounded by
√
n/ lnn, we query also

all neighbors of u and v to determine the set Suv, amounting to at most 2
√
n/ lnn

Network Discovery and Verification with Distance Queries 79

queries, and then the set Suv, giving another
√
n lnn queries (since Suv has not

been hit in the first phase). In total, we make at most
√
n lnn+2

√
n/ lnn queries

in this iteration of the second phase. Consider the remaining case, i.e., the case
where the undiscovered pair {u, v} is an edge, no partial witness for the edge
has been queried before, and u or v has degree larger than

√
n/ lnn. Assume

that there are k iterations of the second phase in which the undiscovered pair
falls into this case. Note that no node can be part of an undiscovered pair in
two such iterations. Hence, we get that 2|E| ≥ k

√
n/ lnn and, by Lemma 3,

OPT ≥ |E|
n ≥ k

√
n

2n
√

ln n
= k

2
√

n ln n
and therefore k ≤ 2

√
n lnn · OPT.

Let � denote the number of iterations of the second phase in which the set
Suv was determined and queried (i.e., all iterations except the k iterations
discussed above). We call such iterations good iterations. The overall cost of
the second phase is at most �

√
n lnn + 2�

√
n√

ln n
+ 2k. Clearly, OPT ≥ �, be-

cause no two undiscovered pairs {u, v} considered in different good iterations
can be discovered by the same query (or have the same partial witness). So
the cost of the algorithm is at most 3

√
n lnn + �

√
n lnn + 2�

√
n√

lnn
+ 2k =

O(
√
n logn) · OPT.

We have that with probability at least 1 − 1
n , the first phase succeeds and

O(
√
n logn) · OPT queries are made by the algorithm. If the first phase fails,

the algorithm makes at most n queries (clearly, the algorithm need not repeat
any query). This case increases the expected number of queries made by the
algorithm by at most 1

nn = 1. Thus, we have that the expected number of
queries is at most O(

√
n logn) · OPT + 1

nn = O(
√
n logn) · OPT.

��

6 Conclusions and Future Work

In this paper, we have studied network discovery and network verification in
the distance query model. The network verification problem is NP-hard and
admits an O(log n)-approximation algorithm. For certain graph classes there
exist polynomial optimal algorithms or easy characterizations of optimal query
sets. For the network discovery problem, we have presented lower bounds of
Ω(

√
n) and Ω(logn) on the competitive ratio of deterministic and randomized

on-line algorithms, respectively, and designed a randomized on-line algorithm
that achieves competitive ratio O(

√
n logn).

The query model studied in this paper is motivated by real-world scenarios
such as discovering the topology of a network that uses a distance-vector routing
protocol by analyzing selected routing tables. An interesting direction for future
work would be to consider a more realistic model where queries can only be
executed at certain nodes of the network; this is motivated by the fact that
only a rather small subset of the nodes in the Internet or in a network such as
Gnutella can actually be used for queries. While our off-line results translate
to such a model with forbidden query nodes in a straightforward way, it is not
clear whether our on-line algorithm can be adapted to this model or a different
approach needs to be employed.

80 T. Erlebach et al.

References

1. D. Achlioptas, A. Clauset, D. Kempe, and C. Moore. On the bias of traceroute
sampling; or, power-law degree distributions in regular graphs. In Proc. 37th Ann.
ACM Symp. Theory of Computing (STOC’05), pages 694–703, 2005.

2. V. Aggarwal, S. Bender, A. Feldmann, and A. Wichmann. Methodology for
estimating network distances of Gnutella neighbors. In Proceedings of the Work-
shop on Algorithms and Protocols for Efficient Peer-to-Peer Applications, INFOR-
MATIK 2004, 2004.

3. P. Barford, A. Bestavros, J. Byers, and M. Crovella. On the marginal utility of
deploying measurement infrastructure. In Proc. ACM SIGCOMM Internet Mea-
surement Workshop, November 2001.

4. Z. Beerliová, F. Eberhard, T. Erlebach, A. Hall, M. Hoffmann, M. Mihaľák, and
L. S. Ram. Network discovery and verification. In Proc. 31st International Work-
shop on Graph-Theoretic Concepts in Computer Science (WG’05), LNCS 3787,
pages 127–138. Springer, 2005.

5. Clip2. The Gnutella protocol specification v0.4, 2001. http://www9.limewire.com/
developer/gnutella_protocol_0.4.pdf.

6. L. Dall’Asta, I. Alvarez-Hamelin, A. Barrat, A. Vázquez, and A. Vespignani. Sta-
tistical theory of internet exploration. Physical Review E, 71, 2005.

7. L. Dall’Asta, I. Alvarez-Hamelin, A. Barrat, A. Vázquez, and A. Vespignani. Ex-
ploring networks with traceroute-like probes: theory and simulations. Theoretical
Computer Science, 2006. To appear.

8. G. Di Battista, T. Erlebach, A. Hall, M. Patrignani, M. Pizzonia, and T. Schank.
Computing the types of the relationships between autonomous systems. Submitted
to IEEE/ACM Transactions on Networking, 2005.

9. DIMES. Mapping the Internet with the help of a volunteer community. http://
www.netdimes.org/.

10. T. Erlebach, A. Hall, M. Mihal’ák, and M. Hoffmann. Network discovery and
verification with distance queries. Research Report CS-06-002, Department of
Computer Science, University of Leicester, March 2006.

11. L. Gao. On inferring autonomous system relationships in the internet. IEEE/ACM
Transactions on Networking, 9(6):733–745, December 2001.

12. R. Govindan and A. Reddy. An analysis of internet inter-domain topology and
route stability. In Proc. IEEE INFOCOM 1997, April 1997.

13. R. Govindan and H. Tangmunarunkit. Heuristics for Internet map discovery. In
Proc. IEEE INFOCOM 2000, pages 1371–1380, Tel Aviv, Israel, March 2000.

14. Internet Mapping Project. Lucent Bell Labs. http://www.cs.bell-labs.com/who/
ches/map/.

15. Oregon RouteViews Project. University of Oregon. http://www.routeviews.org.
16. L. Subramanian, S. Agarwal, J. Rexford, and R. Katz. Characterizing the internet

hierarchy from multiple vantage points. In Proc. IEEE INFOCOM 2002, 2002.

Deciding the FIFO Stability of Networks
in Polynomial Time

Maik Weinard

Institut für Informatik
Johann Wolfgang Goethe–Universität Frankfurt am Main

Robert-Mayer-Straße 11-15
60054 Frankfurt am Main, Germany

weinard@thi.informatik.uni-frankfurt.de

Abstract. FIFO is the most prominent queueing strategy due to its
simplicity and the fact that it only works with local information. Its
analysis within the adversarial queueing theory however has shown, that
there are networks that are not stable under the FIFO protocol, even
at arbitrarily low rate. On the other hand there are networks that are
universally stable, i.e., they are stable under every greedy protocol at
any rate r < 1.

The question as to which networks are stable under the FIFO protocol
arises naturally. We offer the first polynomial time algorithm for deciding
FIFO stability and simple-path FIFO stability of a directed network,
answering an open question posed in [1, 4]. It turns out, that there are
networks, that are FIFO stable but not universally stable, hence FIFO
is not a worst case protocol in this sense. Our characterization of FIFO
stability is constructive and disproves an open characterization in [4].

1 Introduction

The issue of queueing arises in communication networks. Communication net-
works can be naturally modeled as graphs with the vertices representing the
access points of the network and the edges represent the established connec-
tions. Users insert data, organized in packets of roughly the same size. These
packets travel along a path to their destination where they are absorbed. Natural
goals are to keep the number of packets in the system at the same time small
and to prevent long transportation times.

The connections have certain capacities and if the number of packets seeking
to continue their journey along a specific edge exceeds this capacity, a choice
must be made as to which packet may proceed immediately and which ones
have to wait – the problem of queueing.

The adversarial queueing theory [5] was introduced to provide a formal frame-
work that allows worst case analyses of queueing policies and network topologies:
the insertion of packets and the assignment of a path and a destination is done
by an adversary who is only restricted to not straight-forwardly overload an

T. Calamoneri, I. Finocchi, G.F. Italiano (Eds.): CIAC 2006, LNCS 3998, pp. 81–92, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

82 M. Weinard

edge. A good queueing policy or a good network topology will keep the number
of packets, that are in the system at the same time, limited. This ability will be
referred to as stability.

There are queueing policies that perform well in all networks, like Longest−
In− System that prefers packets that have so far spent the longest time in the
system. FIFO however is by far the most prominent queueing policy due to its
simplicity and its restriction to local information (as opposed to the packets age,
that a packet must bring along and that must be trusted). Unfortunately it has
been shown, that there are graphs (even planar ones) [3, 6], so that the FIFO
protocol allows to pile up an unlimited number of packets even if the rate r at
which packets are inserted is arbitrarily small. Of course, these are worst-case
graphs.

On the other hand there are networks, that are stable under every queueing
policy – universally stable graphs. Recently a characterization of these graphs
together with an algorithm to decide universal stability has been introduced [1].
There the question was posed as to how FIFO stable networks can be character-
ized and whether it can be efficiently decided if a given network is FIFO stable.
So far stability of FIFO has only been observed on universally stable graphs,
giving rise to the question if FIFO is in this sense a worst case policy.

A partial answer has been provided in [4], where an open characterization is
presented. These results namely prove, that one of two presented polynomial time
algorithms correctly classifies FIFO stability. Hence the existence of a polynomial
time algorithm is established.

We provide the missing piece of the classification and correct an erroneously
classified set of graphs in [4]. Therefore we are able to present the first con-
structive classification and a polynomial time algorithm for both FIFO stability
and FIFO simple-path stability of directed multigraphs. We show that FIFO is
not a worst case queueing strategy, namely, that there are networks, that are
FIFO stable but not universally stable and that there are networks, that are
simple-path FIFO stable but not universally simple-path stable.

2 Preliminaries

Throughout this paper we consider directed graphs without loops but with mul-
tiple edges. As usual in adversarial queueing theory we assume, that the network
operates in consecutive non-overlapping steps and that each step breaks down
into three substeps. First new packets together with their assigned paths are
inserted by the adversary, then packets chosen by the queueing strategy traverse
edges, and finally packets that have traversed their last edge are absorbed. Hence
packets that are inserted in a step t can traverse their first edge in the same step
if they are chosen by the queueing strategy. We will use Qe to denote the queue
of edge e and Qe(t) as the set of candidate-packets that the queueing strategy
chooses from in step t for edge e.

In this paper our focus is on the FIFO protocol. FIFO always picks a packet
of maximum waiting time breaking ties arbitrarily.

Deciding the FIFO Stability of Networks in Polynomial Time 83

We work with the leaky bucket adversarial model of [5, 2] and consider two
types of adversaries: the (r, b)-adversary and the (r, b)-simple-path-adversary.
During every interval of t consecutive steps and for every edge e both adversaries
may insert at most rt + b packets with e in the assigned path. Parameter r ≤ 1
is called the rate and b is the burstiness. The (r, b)-simple-path-adversary is
furthermore restricted to assign only simple paths, i.e., paths, in which no vertex
appears more than once. The paths assigned by the (r, b)-adversary may have
multiple appearances of a vertex, multiple appearances of edges however are
forbidden.

Definition 1. 1. A network G is stable under a queueing strategy P against a
(r, b)-[simple-path]-adversary, if, starting with an empty initial configuration,
the number of packets in the system is upper bounded by some B(r, b,G) that
depends on the network topology and the parameters of the [simple-path]-
adversary but not on the time that the network is exposed to the [simple-
path]-adversary.

2. A network G is [simple-path] FIFO stable if it is stable against every (r, b)-
[simple-path]-adversary with r < 1 under the FIFO protocol.

We first note, that it suffices to classify strongly connected digraphs as to their
stability.

Lemma 1. Let G = (V,E) be a digraph and let V1, V2, . . . , Vk constitute the
strongly connected components of G. Set Ei = {e ∈ E|head(e), tail(e) ∈ Vi} and
Gi = (Vi, Ei).

1. G is FIFO stable if and only if every Gi is FIFO stable.
2. G is simple-path FIFO stable if and only if every Gi is simple-path FIFO

stable.

The idea is, that an adversary equipped with extra burstiness can mimic the
surrounding graph of a component. For a proof see [7]. From here on we may
hence concentrate on strongly connected digraphs.

3 Sources of Instability

Instability is usually shown by providing an inductive sequence of insertions for
an adversary: it is assumed, that an initial set S0 of packets is already in the
system, usually concentrated in one specific queue. Then a sequence of insertions
is described, such that after these insertions a larger set S of packets takes
the place of the original packets. As such a sequence of insertions can then
be repeated arbitrarily often, the number of packets exceeds every bound and
instability follows.

Often the initial set S0 needs to have a certain minimal size. Observe, that for
FIFO a set S0 of arbitrary constant size can be inserted by an adversary with
sufficiently high burstiness.1

1 This argument is sometimes used without the appropriate care. Observe that it only
applies for protocols, such as FIFO, that are ignorant of a packets history.

84 M. Weinard

D

e3

e4e1

p1

p2

p3

e2

E

BA

C F

A

D

e4e1

p1

p2
e2

BA

C F

E

B

e3 p3

A

B

E

e2
p3

F

e4
I

p1

C

p4
H

p2 D
e3

e1

D

e3

e1

p2

p3

e2

E

BA

F

A+ e4

e5
p1

G
C

D

e4e1

p1

e5

BA

C F

E

B+

e3 p3

p2 G
e2

B
e1

C

p2
E

e2
e5

p1

D

A

p3
F

e3G

p4
e4

e6

H I

A′

p

C+

p′

Fig. 1. Our families of unstable or simple-path unstable graphs. In all our diagrams
an interrupted line indicates a simple path of an arbitrary number (including 0) of
edges. If a path has 0 edges, the vertices at its ends coincide. We demand that within
each graph the depicted paths pi are edge disjoint. (p and p′ in C+ may have common
edges.) We further demand, that none of the explicitly depicted edges ei is a part of
any simple path pj .

All the instability results we need in the following sections have been previ-
ously obtained for example in [2] or [4]. We therefore only introduce our families
of unstable graphs (Fig.1). The complete set of proofs can be found in [7].

Lemma 2. A digraph from family A,B or C is not FIFO stable. A digraph from
family A+,B+ or C+ is not simple-path FIFO stable.

4 Deciding FIFO Stability

We now concentrate on FIFO stability, before discussing simple-path stability
in the next section.

4.1 The Special Case of 2-Vertex Components

Strongly connected digraphs with two vertices are a special case that needs spe-
cific arguments. Let G = ({X,Y }, E) be a strongly connected digraph. Observe,
that at least one edge from X to Y and one edge from Y to X must exist.

Lemma 3. A strongly connected graph G = ({X,Y }, E) is FIFO stable, if and
only if at least one of the vertices has out-degree 1.

Proof. First assume, that at least two edges in both directions are present. Then
we have a graph of family C with X = A = B = F , Y = D = E = H = I and
empty p1, p2, p3 and p4. Observe that the sequence of insertions in the instability
proof is still legal as we allow vertices to appear several times in a path, the edge
disjointness of simultaneous insertions is not affected.

It remains to be shown, that graphs of the family D are FIFO stable.
We introduce De(t) where e is an edge. De(t) is the set of packets in the

system after the insertions of step t and before the transportation of step t that
have to traverse edge e and have not yet done so.

Deciding the FIFO Stability of Networks in Polynomial Time 85

e1

e2

ek

f

A B

D

Fig. 2. Family D of FIFO stable networks with two vertices. k ≥ 1 holds.

At first we verify, that it suffices to show, that the size of Df never reaches
a certain bound B(r, b) < ∞: If the network was unstable it could be forced to
contain an arbitrary number of packets. Using further insertions we could move
these packets to Qf and only lose a constant fraction.

So from here on we assume, that T0 is the first time, so that after step T0
Df (T0) holds at least B(r, b) packets. We will see, that when B(r, b) is picked
sufficiently high, we reach a contradiction. Namely we see, that Df must have
consisted of more than B(r, b) packets in an earlier time. Consequently |Df |
is bounded and by the previous observation the system is stable. We choose
B(r, b) = 2b

(1−r)2 and use the following properties of this choice

B(r, b) − b

r
− b

1 − r
> B(r, b) (1)

(1 − r)
B(r, b) − b

r
− b ≥ 0 (2)

Let p be the oldest packet in Df (T0) and let T1 be the time, when p was
inserted into the system. The packets in Df (T0) have a common edge f . Conse-
quently in the T0 −T1 +1 steps of the period [T1, T0], at most r(T0 −T1 +1)+ b
packets requiring edge f have been inserted. Our assumption thus leads to
r(T0 − T1 + 1) + b ≥ B(r, b) and consequently

T0 − T1 + 1 ≥ B(r, b) − b

r
. (3)

Let us assume p is ready to cross f at some time T ′ with T1 ≤ T ′ ≤ T0. Hence
if p is inserted directly into Qf , then T ′ = T1 and if T ′ > T1 then p is inserted
into Qei for some 1 ≤ i ≤ k at time T1 and traverses ei in step T ′ − 1. Of course
p might also remain in Qei , in this case we set T ′ = T0 + 1.

In the period [T ′, T0] a packet traverses f in every step. At most r(T0 − T ′ +
1) + b packets join Df by new insertions. As T0 is picked minimally, we get
|Df (T ′)| < |Df (T0)| ≤ |Df (T ′)|+ r(T0−T ′+1)+ b− (T0−T ′+1). This leads to

b

1 − r
> T0 − T ′ + 1. (4)

Adding inequalities (3) and (4) we get the following bound for T ′ − T1:

T ′ − T1 >
B(r, b) − b

r
− b

1 − r
≥ B(r, b) (5)

86 M. Weinard

The last bound is due to property (1) of B(r, b). Thus we know, that packet
p was inserted in Qei and stayed in this queue for more than B(r, b) steps. As
p was present but not allowed to traverse ei we know that another packet did
in each of these steps. As FIFO is applied a set of packets of size more than
B(r, b) must have been in the queue of ei when p was inserted in step T1. Hence
|Qei(T1)| > B(r, b) holds.

Choose T2 < T1 maximal such that Qei(T2) = ∅. Between T2 and T1 at most
r(T1 −T2) + b packets requiring edge ei were newly inserted into the system. As
T2 is chosen maximal, a packet traversed ei in every step. We may conclude, that
at least |Qei(T1)|+ (T1 − T2)− (r(T1 − T2) + b) of those packets that constitute
Qei(T1) were already in the system at time T2 but not yet in Qei . As f is the
only possible predecessor of ei in any path, these packets must have required f
at time T2. By definition they were in Df(T2). We continue

|Df (T2)| ≥ |Qei(T1)| + (T1 − T2) − (r(T1 − T2) + b)
= |Qei(T1)| + (1 − r)(T1 − T2) − b

> B(r, b) + (1 − r)(T1 − T2) − b

Finally we need a lower bound for T1 − T2. During the interval (T2, T1] at most
r(T1 − T2) + b packets requiring ei can be inserted newly and at most T1 − T2
old packets may arrive in Qei via f . T1 − T2 packets leave Qei via ei. We thus
get r(T1 − T2) + b+ (T1 − T2)− (T1 − T2) ≥ B(r, b) yielding T1 − T2 ≥ B(r,b)−b

r .
We can now complete our lower bound of |Df (T2)|:

|Df (T2)| > B(r, b) + (1 − r)(T1 − T2) − b

≥ B(r, b) + (1 − r)
B(r, b) − b

r
− b ≥ B(r, b)

The last inequality is due to property (2) and completes the proof. ��

This completes the classification of two node components. Lemma 3 contradicts
a claim in [4]: there the network from family D with k = 2 (named U1 in [4])
is left unclassified, and the network with k = 3 (named U1

1) is claimed to be
unstable. This leads to a faulty open classification of FIFO stability in [4]. As
the networks from D with k ≥ 2 are not universally stable [1], we have the
following corollary.

Corollary 1. Networks that are FIFO stable but not universally stable exist.

4.2 The Case of Three and More Vertices

Lemma 4. A strongly connected digraph G = (V,E) with |V | ≥ 3 is FIFO
stable if and only if G is the simple directed cycle of k vertices.

Proof. The simple directed cycle is universally stable under any greedy protocol
as has been shown in [2]. It remains to show that all other digraphs of n vertices
are FIFO unstable.

Deciding the FIFO Stability of Networks in Polynomial Time 87

In a strongly connected graph of more than three vertices, there must exist a
vertex B with an incoming edge from A and an outgoing edge to C with A �= C.
As A must be reachable from C, there is a simple path from C to A. If this path
contains B, we have a subgraph of family C. Hence the graph is unstable.

If the simple path from C to A does not contain B, we have a simple directed
cycle with at least 3 vertices in our graph. Let us rename the vertices of this
cycle v1, v2, . . . vl so that edges are of the form (vi, vi+1) and (vl, v1). If this cycle
is not the entire graph, one vertex of the cycle (w.l.o.g. v1) must have a further
outgoing edge to a node w that may or may not be another node of the cycle.
The cycle however must be reachable from w and hence a simple path p from w
to a vertex vi of the cycle must exist. We choose p so that vi is the first node
of the cycle on p. If w itself is on the cycle, p is empty and we have w = vi.
Now the value of i yields three cases, that lead to a subgraph of family A,B or
C respectively.

For i = 1 we have w �= vi since otherwise the graph contained a loop and
hence p is not empty. We have a subgraph of family C with v1 taking the role
of A. The cycle p1, e1, p2, e2 is constituted by our cycle v1, . . . , vl. p3 is empty,
hence F = A = v1. (v1, w) serves as e3 and the simple path from w back to v1
is p4, ee.

For 2 ≤ i ≤ l−1 we get a subgraph of the family A. Node v1 is A and vi is B.
Path (v1, w)p is p2e2. The path (v1, v2), . . . , (vl−1, vl) constitutes p3e3. Finally F
is vi+1, C is vl and e4p1e1 is the path from vi to v1 on the cycle. i < l guarantees,
that this path consists of at least two edges (e4 and e1).

For i = l we get a subgraph of family B. v1 serves as B, vl is A. Path p2 is
empty, (vl, v1) is e2 and (v1, w)p constitutes p3e3. The path e4p1e1 is the path
along the cycle from v1 to vl. Observe that it consists of at least two edges. ��

Theorem 1. A directed graph with multiple edges but without loops is FIFO
stable if and only if all of its strongly connected components with more than two
vertices are simple directed cycles and in all of its strongly connected components
with exactly two vertices X and Y there is at most one edge from X to Y or at
most one edge from Y to X.

Proof. Lemma 1 establishes, that a network is FIFO stable if and only if all
of its strongly connected components are FIFO stable. A strongly connected
component of one vertex does not contain an edge and is hence stable. Lemma 3
characterizes stability for digraphs with two nodes and Lemma 4 delivers the
characterization for components with more than two nodes. ��

For strongly connected graphs with at least three vertices, FIFO stability and
universal stability coincide. Hence even though FIFO is not a worst case queueing
strategy – it is close to being one. The algorithm to decide FIFO stability for a
given network is now straightforward.

Theorem 2. Algorithm 1 decides the FIFO stability of a directed multigraph in
polynomial time.

88 M. Weinard

Algorithm 1. Deciding FIFO stability

1. INPUT: A directed multigraph G without loops
2. Find all graphs G1 = (V1, E1), . . . , Gk = (Vk, Ek) induced by the strongly

connected components of G. Let outdegi(v) be the out-degree of vertex v
within Gi.

3. FOR i from 1 to k DO
(a) IF |Vi| = 2 THEN

i. Let Vi={u,v}
ii. IF outdegi(u) > 1 and outdegi(v) > 1 THEN RETURN(FALSE)

(b) IF |Vi| ≥ 3 DO
i. FOR all v ∈ Vi DO

A. IF outdegi(v) > 1 RETURN(FALSE)
4. RETURN(TRUE)

Proof. Finding the strongly connected components can be done with two depth
first searches, one with reversed edges. Counting nodes, edges and determining
the out-degree of a node is standard. Correctness is established by Theorem
1. Observe, that the simple cycle of l vertices is the only strongly connected
directed multigraph with l vertices in which every vertex has out-degree 1. ��

5 Deciding Simple-Path FIFO Stability

Crucial for deciding simple-path stability is the maximal size of a simple cycle in
G – the circumference of the graph. We call u a neighbor of v, if there exists an
edge from u to v or from v to u. For a directed strongly connected multigraph G
we define core(G) as the graph obtained from G by removing vertices with just
one neighbor (and their incident edges) until no such vertex remains. We start
with a simple observation.

Lemma 5. A directed strongly connected graph is simple-path FIFO stable, if
and only if core(G) is simple-path FIFO stable.

Proof. If G is simple-path FIFO stable, then core(G) as a subgraph is simple-
path FIFO stable.

Assume X is a vertex of G with only one neighbor Y . No simple path passes
through X : all simple paths touching X either start in X or end in X . Hence X
can be replaced by two nodes X ′ with only the incoming edges and X ′′ with only
outgoing edges and the set of simple paths in the graph does not change. Lemma
1 now yields the claim, as X ′ and X ′′ each constitute a one vertex component
that is trivially simple-path stable. Hence simple-path stability of the core graph
implies simple-path stability of the original graph. ��

We may hence concentrate on deciding the simple-path FIFO stability of cores
of strongly connected digraphs.

Deciding the FIFO Stability of Networks in Polynomial Time 89

Fig. 3. A oriented multi-tree and a decorated cycle as discussed in Lemma 7. The thick
edges are to represent a collection of at least one upward and one downward edge. The
black vertices and the edges between them constitute the core of the graph.

5.1 Circumference 2

If a strongly connected graph has a maximal cycle length of 2, it holds that for
every (u, v) ∈ E, (v, u) is also in E, since u must be reachable from v and a path
from v to u with more than one edge completes a longer cycle. Hence strongly
connected graphs with maximal cycle length two are trees with at least one
edge from each father to his son and back. Following [1] we call such digraphs
oriented multitrees (Fig.3). Their core is the empty graph and using Lemma 5
we get:

Lemma 6. A strongly connected directed graph with circumference 2 is simple-
path FIFO stable.

5.2 Circumference ≥ 4

For strongly connected digraphs with circumference ≥ 4 it turns out, that here
as well universal stability and FIFO stability coincide. We are lead to a set of
graphs called decorated directed cycles in [1]. Figure 3 shows an example.

Lemma 7. A strongly connected digraph G with circumference k ≥ 4 is simple-
path FIFO stable if and only if its core is the ring v0, . . . , vk−1 with exactly one
edge (vi, vi+1)2 for 0 ≤ i ≤ k− 1. Furthermore there may be multiple backwards
edges from vi to vi−1 as long as the backwards edges do not complete a backward
cycle themselves. If the backwards edges also constitute a cycle, there must be
exactly one edge between all vertices vi and vi−1.

Proof. Graphs of the described shape are universally simple-path stable by [1],
hence we only need to show, that every FIFO stable strongly connected digraph
G with circumference at least four is of the above shape. G is simple-path FIFO
stable if and only if core(G) is. The cycle of length at least four, that is in G by
case assumption, is also in core(G).

Assume there was a simple path (possibly a single edge) from vi to vj with
j /∈ {i− 2, i− 1, i} that is edge disjoint to the edges of the cycle. Then we have
a subgraph of family A+ with vi = A, vj = B, p3, e3 is the extra path and
p2, e2, e4, e5, p1, e1 is the cycle.

2 We always assume index-arithmetics are performed modulo the cycle length.

90 M. Weinard

A B

C1

C2

C3

A B

C1

C2

X

Fig. 4. An example of a graph from family E , the graph S2 considered in [1] and an
illustration for the proof of Lemma 10

If there is a path (possibly a single edge) from vi to vi−2 we have a subgraph
of family B+. (p2 is empty, p3, ee is this extra path and e2, e5, e4, p1, e1 constitute
the cycle.)

We also have a subgraph from family B+ if there is a path from vi to vi−1
that consists of at least two edges. In this case p3 is empty, e3, p2, e2, e5 is the
cycle and e4, p1, e1 the extra path.

So there are no connections between the vertices of the cycle except the edges
along the cycle and possibly backward edges. Hence removing the edges of the
cycle and the backward edges, breaks up the graph into k independent compo-
nents. Assume there was a cycle of size at least three in any of these components,
then this cycle and the cycle of the vi-vertices share at most one vertex and no
edges. We thus have a subgraph from family C+ yielding instability. Hence all
these components have a maximal cycle length of two and are therefore oriented
multitrees that vanish when constructing the core of G. ��

5.3 Circumference 3

For digraphs with circumference 3 there are simple-path FIFO stable networks,
that are not universally simple-path stable. We start by introducing family E .

Definition 2. A directed multigraph G=(V,E) with V ={A,B,C1, C2, . . . , Ck}
is of family E, if and only if

– there is exactly one edge from A to B,
– there is at least one edge from B to each Ci,
– there is at least one edge from each Ci to A,
– there are no edges between Ci and Cj for any i,j,
– for each i there are no edges from A to Ci or no edges from Ci to B. I.e.,

there is no path A → Ci → B.

Figure 4 gives an example of a graph from E .

Lemma 8. Directed multigraphs from family E are simple-path FIFO stable.

Lemma 9. Directed multigraphs with just three vertices are simple-path FIFO
stable.

The proofs follow principal ideas similar to the proof of Lemma 3 and are pre-
sented in [7].

Deciding the FIFO Stability of Networks in Polynomial Time 91

Corollary 2. There are networks, that are simple-path FIFO stable but not uni-
versally simple-path stable.

Proof. In [1] a graph S2, that is not universally stable, is presented (see Fig. 4).
This graph is in our set E . ��

Lemma 10. A directed multigraph G with circumference three is simple-path
FIFO stable if and only if core(G) is in E or consists of only three vertices.

Proof. If core(G) ∈ E , Lemma 5 and 8 show stability. If the core consists of just
three vertices Lemma 5 and 9 yield stability.

For the only if part, consider an arbitrary stable graph G with circumference
3. We need to show that its core is of the shape described in the lemma. We call
a cycle of length three a triangle. We call two triangles different, if they do not
share exactly the same vertices. If core(G) does not contain different triangles, it
consists of a ring with three vertices (possibly with backward edges) and core(G)
is of the shape described in the lemma.

core(G) cannot contain two edge disjoint different triangles: they would yield
a graph from C+ contradicting core(G)’s stability (If a vertex is shared by the
triangles, we have A = A′ in C+ and if two vertices are shared we have A = A′

as well as E = I in C+. Observe that the paths used in the instability proof
remain simple under these assumptions.)

Hence all pairs of different triangles in core(G) share an edge. Consequently
one edge is shared by all different triangles. We call this edge (A,B) and the
other vertices of the triangles in core(G) Ci (i ≥ 2 holds). There is exactly one
edge from A to B (otherwise there would be edge disjoint different triangles).
Furthermore there is at least one edge from B to each Ci and one from each Ci

to A. There are no edges from Ci to Cj , since if there are, A,B,Ci, Cj , A is a
cycle of length 4. Furthermore there is no i with edges from A to Ci and Ci to B
(A,Ci, B, Cj , A with i �= j constitutes a cycle of length four otherwise.) So the
set S := {A,B,C1, . . . , Ck} and its internal edges are of the shape as described
in the lemma.

Finally assume there was another vertex X in core(G), that is not part of
a triangle. Then removing X and its incident edges must split core(G) into
separate graphs. Only one of them can contain triangles, as there are no edge
disjoint triangles in core(G). The other graphs are hence oriented multitrees that
cannot occur in core(G) – a contradiction (see Fig. 4, right). Hence G is of the
shape described in the lemma. ��

Theorem 3 summarizes the previous lemmas and justifies the following algorithm
whose tests can obviously be made in polynomial time.

Theorem 3. A strongly connected directed multigraph is simple-path FIFO sta-
ble, if and only if its core has at most three vertices, is in family E or it is a
simple directed cycle with backward edges, that either constitute another simple
directed cycle or do not form a cycle at all.

92 M. Weinard

Algorithm 2. Deciding simple-path FIFO stability

1. INPUT: A directed multigraph G without loops
2. Find all graphs G1 = (V1, E1), . . . , Gk = (Vk, Ek) induced by the

strongly connected components of G.
3. FOR i from 1 to k DO

(a) Compute G′ = (V ′, E′) the core of Gi

(b) IF (|V ′| > 3) AND G′ /∈ E THEN
i. Test if G′ is the simple cycle. Backward edges may exist arbi-

trarily if they do not form a cycle themselves. If the backward
edges form a cycle, this cycle must be simple. If this test fails,
RETURN(FALSE)

4. RETURN(TRUE)

6 Conclusion and Open Problems

We have classified directed multigraphs as to their FIFO stability and simple-
path FIFO stability and provided efficient algorithms for these problems. It
turned out, that FIFO is not a worst case policy, but rather close to being
one. The problem remains open for undirected graphs and the different packet
trajectories considered on them.

References

1. Àlvarez, C., Blesa, M., Serna, M., A Characterization of Universal Stability in the
Adversarial Queuing Model, SIAM J. Comput, Vol. 34, No 1, 2004, pp. 41-66

2. Andrews, M., Awerbuch, B., Fernández, A., Leighton, T., and Liu, Z., Universal-
Stability Results and Performance Bounds for Greedy Contention-Resolution Pro-
tocols, Journal of the ACM, Vol. 48, No 1, January 2001, pp. 39-69

3. Bhattacharjee, R. and Goel, A., Instability of FIFO at arbitrarily low rates in the
adversarial queueing model, Proc. of the 44th Symposium on Foundations of Com-
puter Science, 2003, pp. 160-167

4. Blesa, Maria J., Deciding Stability in Packet-Switched FIFO Networks Under the
Adversarial Queuing Model in Polynomial Time, Proc. of the 19th International
Symposium on Distributed Computing, 2005, LNCS Vol. 3724, pp 429-441

5. Borodin, A., Kleinberg, J., Raghavan, P., Sudan, M., and Williamson, D. P. Adver-
sarial queueing theory, J. of the ACM, Vol. 48, No 1, January 2001, pp. 13-38

6. Koukopoulos, D., Mavronicolas, M., Spirakis, P., FIFO is Unstable at Arbitrarily
Low Rates (Even in Planar Networks), Electronic Colloq. on Computational Com-
plexity, 2003

7. Weinard, Maik, Deciding the FIFO Stability of Networks in Polynomial Time
(full version), Technical report: Frankfurter Informatik-Berichte, No 3/2005, ISSN
1616-9107

Heterogenous Networks Can Be Unstable
at Arbitrarily Low Injection Rates�

Dimitrios Koukopoulos1 and Stavros D. Nikolopoulos2

1 Department of Cultural Heritage Management & New Technologies,
University of Ioannina, GR-30100 Agrinio, Greece

koukopou@ceid.upatras.gr
2 Department of Computer Science, University of Ioannina,

GR-45110 Ioannina, Greece
stavros@cs.uoi.gr

Abstract. A distinguishing feature of today’s large-scale platforms for
distributed computation and communication, such as the Internet, is
their heterogeneity, predominantly manifested by the fact that a wide
variety of communication protocols are simultaneously running over dif-
ferent distributed hosts. A fundamental question that naturally poses
itself for such common settings of heterogeneous distributed systems
concerns their ability to preserve or restore an acceptable level of per-
formance during link failures. In this work, we address this question for
the specific case of stability properties of greedy, contention-resolution
protocols operating over a packet-switched communication network that
suffers from link slowdowns. We focus on the Adversarial Queueing The-
ory framework, where an adversary controls the rates of packet injections
and determines packet paths. In addition, the power of the adversary is
enhanced to include the manipulation of link slowdowns. Within this
framework, we show that the composition of LIS (Longest-in-System)
with any of SIS (Shortest-in-System), NTS (Nearest-to-Source) and FTG
(Furthest-to-Go) protocols is unstable at rates ρ > 0 when the network
size and the link slowdown take large values. These results represent the
current record for instability bounds on injection rate for compositions of
greedy protocols over dynamic adversarial models, and also suggest that
the potential for instability incurred by the composition of two greedy
protocols may be worse than that of some single protocol.

1 Introduction

Motivation-Framework. Some of the most important features of contempo-
rary large-scale platforms for distributed communication and computation, such
as the Internet, is their robustness and heterogeneity. Robustness is the ability of

� This research was co-funded by the European Union in the framework of the program
“Pythagoras II” of the “Operational Program for Education and Initial Vocational
Training” of the 3rd Community Support Framework of the Hellenic Ministry of
Education, funded by national sources and the European Social Fund (ESF).

T. Calamoneri, I. Finocchi, G.F. Italiano (Eds.): CIAC 2006, LNCS 3998, pp. 93–104, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

94 D. Koukopoulos and S.D. Nikolopoulos

communication despite network link failures, while heterogeneity comes around
in many different flavors. For example, the specifics of how the computers in
different parts of the network are connected with each other, and the properties
of the links that foster the interconnection, is difficult to characterize uniformly.
Moreover, although, conceptually, the Internet uses a unified set of protocols,
in practice each protocol has been implemented with widely varying features
(and of course bugs) [9, 11]. As the Internet evolves into a ubiquitous communi-
cation infrastructure that supports multiple protocols running on different net-
work hosts, its dependability in the presence of various failures becomes critical.
These failures can degrade system performance and lead to service disruption.
Thus, the study of performance and correctness properties of heterogeneous dis-
tributed systems which suffer from link failures becomes a necessity. This study
could help on detecting, understanding and overcoming the conditions leading
to these mentioned negative effects, as well as helping to their prevention.

Objectives. We are interested in the behavior of packet-switched networks in
which packets arrive dynamically at the nodes and they are routed in discrete
time steps across the links. Recent years have witnessed a vast amount of work on
analyzing packet-switched networks under non-probabilistic assumptions (rather
than stochastic ones); we work within a model of worst-case continuous packet
arrivals, originally proposed by Borodin et al. [7] and termed Adversarial Queue-
ing Theory to reflect the assumption of an adversarial way of packet generation
and path determination. A major issue that arises in such a setting is that of
stability– will the number of packets in the network remain bounded at all times?
The answer to this question may depend on the rate of injecting packets into
the network, the slowdown of the links, which is the time delay which is suffered
by outgoing packets in order to be forwarded on a link, and the composition
of protocols running on different network hosts in order to resolve packet con-
flicts. The underlying goal of our study is to establish the stability properties of
heterogeneous networks when packets are injected by an adversary and the link
slowdowns are chosen by the same adversary in a dynamic way.

Model of Quasi-Static Slowdowns. Most studies of packet-switched networks as-
sume that one packet can cross a network link (an edge) in a single time step.
This assumption is well motivated when we assume that all network links are
identical. However, a packet-switched network can contain different types of
links, which is common especially in large-scale networks like Internet. Also, a
real network can suffer from link failures due to natural disasters (like hurri-
canes), human action (like hacker attacks) or by unintentional software failures.
Then, it is well motivated to assign a slowdown to each link. Furthermore, if
each link slowdown takes on values in the two-valued set of integers {1,D} for
D > 1, D takes on large values and each value remains fixed for a long time, then
we can consider approximately as a link failure the assigning of slowdown D to
a link, while the assigning of unit slowdown to a link can be considered as the
proper service rate. Therefore, the study of the stability behavior of networks
and protocols under our model of quasi-static slowdowns can be considered as an

Heterogenous Networks Can Be Unstable 95

approximation of the fault-tolerance of a network where links can temporarily
fail (infinite slowdown)1. The goal of this study is to provide an insight towards
detecting, understanding, and overcoming the conditions leading to performance
degradation and service disruption of today’s communication networks during
network attacks or failures.

In this work, we embark on a study of the impact of heterogeneity of dis-
tributed systems on their performance properties if the adversary can determine
the paths of packet injections along with the slowdowns of network edges in
each time step. More specifically, we wish to pose the general question of which
performance properties of heterogeneous packet-switched networks (where com-
positions of protocols are running on different network hosts) are maintained
and which are not in the presence of link failures. This subfield of study was
initiated by Borodin et al. in [8] in the case of networks where a single protocol
is responsible for the resolution of packet conflicts. Note that we continue to
assume uniform packet sizes.

Stability. Roughly speaking, a protocol P is stable [7] on a network G against an
adversary A of rate ρ if there is a constant B (which may depend on G and A)
such that the number of packets in the system is bounded at all times by B.
On the other hand, a protocol P is universally stable [7] if it is stable against
every adversary of rate less than 1 and on every network. Here, we consider four
greedy, universally stable, contention-resolution protocols under the Adversarial
Queueing Theory (Table 1).

Table 1. Greedy protocols considered in this paper (USstands for universally stable)

Protocol name Which packet it advances: US
SIS (Shortest-In-System) The most recently injected packet

√
[4]

LIS (Longest-In-System) The least recently injected packet
√

[4]
FTG (Furthest-To-Go) The furthest packet from its destination

√
[4]

NTS (Nearest-To-Source) The nearest packet to its origin
√

[4]

Contribution. We define here the weakest possible adversary of dynamically
changing network link slowdowns in the context of Adversarial Queueing Theory
(AQM) where the adversary may set link slowdowns to any of two integer values
1 and D (D > 1 is a parameter called high slowdown).2 Moreover, once a link
slowdown takes on a value, the value stays fixed for a continuous time period
proportional to the number of packets in the system at the time of setting the
slowdown to the value. We call this the Adversarial, Quasi-Static Slowdown
Queueing Theory model (AQSSQM). In this framework, we establish that the
1 However, infinite link slowdown is only an approximation of link failure, because in

a slowdown the packet has left the queue and is being transmitted; however, when a
failure occurs, the packet is not being transmitted but stored somewhere, and thus
it participates later in the queue scheduling.

2 In AQM only one slowdown value is available to the adversary.

96 D. Koukopoulos and S.D. Nikolopoulos

composition of LIS with any of SIS, NTS and FTG protocols is unstable for
arbitrarily low injection rates. We prove that increasing the network size along
with dynamic changing of link slowdowns can drop to arbitrarily low values
the lower bound on injection rate that guarantees instability for heterogeneous
networks. To show this, we provide interesting combinatorial constructions of a
size-parameterized network where we specify the contention-resolution protocol
to be used to each queue. For purpose of completeness and comparison, we
summarize, in Table 2, all results that are shown in this work and, also, in [16] (for
AQM) and [18] (for the Adversarial Quasi-Static Queueing Model - AQSQM),
concerning instability bounds on the injection rate for the composition pairs
LIS-SIS, LIS-NTS and LIS-FTG.

Table 2. Instability bounds of the compositions of LIS with any of the SIS, NTS, and
FTG protocols in AQM vs. AQSQM vs. AQSSQM

Instability (AQM) Instability (AQSQM) Instability (AQSSQM)
LIS − SIS ρ > 0.5 [16, Thm. 3.1] ρ >

√
2 − 1 [18, Thm. 2] ρ > 0 [Thm. 1]

LIS − NTS ρ > 0.5 [16, Thm. 3.1] ρ >
√

2 − 1 [18, Thm. 2] ρ > 0 [Thm. 2]
LIS − FTG ρ > 0.5 [16, Thm. 3.1] ρ >

√
2 − 1 [18, Thm. 2] ρ > 0 [Thm. 3]

The combinatorial constructions of networks and adversaries that we have em-
ployed for showing that certain compositions of universally stable protocols can
be unstable for arbitrarily low injection rates when link slowdowns can change
dynamically, significantly extend ones that appeared before in [7, 15, 16, 18]. In
more detail, some of the tools we devise in order to obtain constructions of
networks and adversaries that imply improved bounds are the following:

– We employ combinatorial constructions of networks with multiple
successively pairs of parallel queues; we judiciously use such paths for the
simultaneous injection of various non-overlapping sets of packets. Also, this
construction allows the adversary to inject a set of packets at a time period
over a path with unit slowdown edges, while the previously injected sets of
packets are delayed in another queue due to its high slowdown D.

– We use the technical notions of investing flow and short flow; these are some
special cases of packet flows used in our adversarial constructions consisting
of inductive phases. Roughly speaking, an investing flow injects packets in a
phase some of which will remain in the system till the beginning of the next
phase, in order to guarantee the inductive hypothesis for the next phase; on
the other hand, short flows consist of packets injected on judiciously chosen
links of the network and their role is to delay the investing flows.

Related Work. The issue of composing distributed protocols (resp., objects)
to obtain other protocols (resp., objects), and the properties of the resulting
(composed) protocols (resp., objects), has a rich record in Distributed Comput-
ing Theory (see, e.g., [20]). For example, Herlihy and Wing [13] establish that

Heterogenous Networks Can Be Unstable 97

a composition of linearizable memory objects (possibly distinct), each managed
by its own protocols, preserves linearizability. Robustness has been extensively
studied in the context of fault-tolerant distributed systems. A landmark paper
on failures in Tandem systems and the techniques to prevent them is [12]. In
parallel and even earlier, a mathematical framework was developed in the Oper-
ations Research world to manage the robustness and risk in systems composed
of various components [5].

Adversarial Queueing Theory [7] received a lot of interest in the study of sta-
bility and instability issues (see, e.g., [2, 4, 10, 15, 17, 21]). The universal stability
of various natural greedy protocols (SIS, LIS, NTS and FTG) was established
by Andrews et al. [4]. Also, several greedy protocols such as NTG (Nearest-To-
Go) have been proved unstable at arbitrarily low rates of injection in [21]. The
subfield of study of the stability properties of compositions of universally sta-
ble protocols was introduced by Koukopoulos et al. in [15, 16, 17] where lower
bounds of 0.683, 0.519 and 0.5 on the injection rates that guarantee instability
for the composition pairs LIS-SIS, LIS-NTS and LIS-FTG were presented.

Borodin et al. in [8] studied for the first time the impact on stability when
the edges of a network can have capacities or slowdowns. They proved that
many well-known universally stable protocols (SIS, NTS, FTG) do maintain their
universal stability when the link capacity or slowdown is changing dynamically,
whereas the universal stability of LIS is not preserved. This work was further
extended by Koukopoulos et al. in [18, Theorems 2, 3] proving lower bounds of√

2−1 on the injection rates that guarantee instability for the LIS protocol and its
compositions with the SIS, NTS and FTG protocols under dynamically changing
link capacities. Also, Koukopoulos in [14] studied the impact of link slowdowns
on network stability when a single protocol is used or a forbidden subgraph for
universal stability is induced. Moreover, in [1, 3] there have been generalizations
of the adversarial queueing theory to networks with dynamic failures. Finally,
in [6] it is proposed a generalization of the adversarial queueing theory where
the network traffic flow is continuous in time and arbitrary packet lengths, link
speeds and link propagation delays are allowed.

2 Preliminaries

The model definitions are patterned after those in [7, Section 3], adjusted to
reflect the fact that the edge slowdowns may vary arbitrarily as in [8, Section 2],
but we address the weakest possible model of changing slowdowns. We consider
that a routing network is modelled by a directed graph G = (V,E). Each node
u ∈ V represents a communication switch, and each edge e ∈ E represents a link
between two switches. In each node, there is a buffer (queue) associated with
each outgoing link. Time proceeds in discrete time steps. Buffers store packets
that are injected into the network with a route, which is a simple directed path
in G. A packet is an atomic entity that resides at a buffer at the end of any step.
It must travel along paths in the network from its source to its destination, both
of which are nodes in the network. When a packet is injected, it is placed in the
buffer of the first link on its route. When a packet reaches its destination, we say

98 D. Koukopoulos and S.D. Nikolopoulos

that it is absorbed. During each step, a packet may be sent from its current node
along one of the outgoing edges from that node. Edges can have different integer
slowdowns, which may or may not vary over time. Denote De(t) the slowdown of
the edge e at time step t. That is, we assume that if a packet p is scheduled to
traverse the edge e at time t, then packet p completes the traversal of e at time
t + De(t) and during this time interval, no other packet can be scheduled on e.

Let D > 1 be an integer parameter. We demand that ∀e and ∀t De(t) ∈ {1,D}.
We also demand for each edge e that De(t) stays at some value for a continuous
period of time at least equal to f(ρ,D)s time steps, where s is the number of
packets in the system at the time of setting the link slowdown to the value and
f(ρ,D) is a function of the injection rate ρ of the adversary in the network and
the high link slowdown D. We call this the Adversarial, Quasi-Static Slowdown
Queueing Theory Model. Our model is different from the failure model in [1, 3]
because in our model a packet p is delayed after leaving the queue of the edge
e, while in the failure model p waits in the queue of e.

Any packets that wish to travel along an edge e at a particular time step, but
are not sent, wait in a queue for e. At each step, an adversary generates a set
of requests. A request is a path specifying the route that will be followed by a
packet.3 We say that the adversary generates a set of packets when it generates
a set of requested paths. Also, we say that a packet p requires an edge e at time
t if e lies on the path from its position to its destination at time t.

Fix any arbitrary positive integer w ≥ 1. For any edge e of the network and
any sequence of w consecutive time steps, define N(w, e) to be the number of
paths that are injected by the adversary during the time interval of w consecutive
time steps requiring to traverse the edge e. For any constant ρ, 0 < ρ ≤ 1, a
(w, ρ)-adversary is an adversary that injects packets subject to the following load
condition: For every edge e and for every sequence τ of w consecutive time steps,
N(τ, e) ≤ ρ

∑
t∈τ

1
De(t)

. We say that a (w, ρ)-adversary injects packets at rate ρ

with window size w. The assumption that ρ ≤ 1 ensures that it is not necessary
a priori that some edge of the network is overloaded.

In order to formalize the behavior of a network, we use the notions of system
and system configuration. A triple of the form 〈G,A,P〉 where G is a network, A
is an adversary and P is the used protocol (or list of protocols) on the network
queues is called a system. In every time step t, the current configuration Ct of
a system 〈G,A,P〉 is a collection of sets {St

e : eεG}, such that St
e is the set of

packets waiting in the queue of the edge e at the end of step t.
In the adversarial constructions we study here for proving instability, we split

time into phases. In each phase, we study the evolution of the system configura-
tion by considering corresponding time rounds. For each phase, we inductively
prove that the number of packets of a specific subset of queues in the system
increases in order to guarantee instability. This inductive argument can be ap-
plied repeatedly, thus showing instability. Furthermore, we assume that there is
a sufficiently large number of packets s0 in the initial system configuration. This

3 In this work, it is assumed, as it is common in packet routing, that all paths are
simple paths where edges cannot be overlapped, while vertices can be overlapped.

Heterogenous Networks Can Be Unstable 99

will imply instability results for networks with an empty initial configuration,
as it was established in [4, Lemma 2.9]. For simplicity, and in a way similar to
that in [4], we omit floors and ceilings from our analysis, and we, sometimes,
count time steps and packets only roughly. This may only result to loosing small
additive constants, while it implies a gain in clarity.

3 Unstable Compositions of Protocols

In this section, we prove that the composition of the LIS protocol with any of
SIS, NTS and FTG protocols can become unstable for arbitrarily low injection
rates. Before proceeding to the adversarial constructions for proving instability
we give two basic definitions.

Definition 1. We denote by Xi the set of packets that are injected into the
system in the ith round of a phase. These packet sets are characterized as in-
vesting flows because only packets from these sets will remain in the system at
the beginning of the next phase contributing in packet accumulation.

Definition 2. We denote by Si the set of packets the adversary injects into the
system in the ith round of a phase. These packet sets are characterized as short
flows because they are injected on judiciously chosen links of the network for
delaying investing flows.

3.1 A Parameterized Network Family Gl

We provide here a parameterized family of networks Gl (see Figure 1). The
motivation that led us to such a parameterization in the network topology is
two-fold: (a) The existence of many pairs of parallel queues in the network al-
lows the adversary to inject an investing flow at a time round over a path with
unit slowdown edges, while the previously injected investing flows are delayed in
another queue due to its high slowdown D. Also, this structure permits the si-
multaneous injection of an investing flow on one queue of a pair, and a short flow
on the other, without violating the rule of the restricted adversarial model. (b)
Such a parameterized network topology construction, enables a parameterized
analysis of the system configuration evolution into distinguished rounds whose
number depends on the parameterized network topology. In LIS-FTG composi-
tion, the parameterization, besides the parallel edges, includes additional chains
of queues for the exploitation of FTG in blocking investing flows.

3.2 Parameterized Adversarial Constructions

The main ideas of the adversarial constructions we present are: (a) the accurate
tuning of the duration of each round of every phase j (as a function of the high
slowdown D, the injection rate ρ and the number of packets in the system at the
beginning of phase j, sj) to maximize the growth of the packet population in the
system, (b) the careful setting of the slowdowns of some edges to D for specified
time intervals in order to accumulate packets, and (c) the careful injections of
packets that guarantee that the load condition is satisfied.

100 D. Koukopoulos and S.D. Nikolopoulos

Fig. 1. The network Gl

Theorem 1. Let ρ′ = 0.0056. For the network Gl where l > 1000 is a parameter
linear to the number of network queues there is an adversary A1 of rate ρ that
can change the link slowdowns of Gl between the two integer values 1 and D >
1000 such that the system 〈Gl,A1, LIS, SIS〉 is unstable for every ρ > ρ′. When
{D, l} → ∞ the system 〈Gl,A1, LIS, SIS〉 is unstable for ρ > 0.

Proof. Consider an instance of the parameterized network family (network Gl,
see Figure 1). The edges e0, e1, f1, f3, f5, . . . , f4l−7 f

′
1, f

′
3, f

′
5, . . . , f

′
4l−7 of Gl use

the LIS protocol, while the remaining edges of Gl use the SIS protocol. The
construction of the adversary A1 is broken into phases.

Inductive Hypothesis. At the beginning of phase j (suppose j is even), there
are sj packets that are queued in the queues f

′
4l−9, f

′
4l−6 (in total) requiring to

traverse the edges e0, f1.

Induction Step. At the beginning of phase j + 1, there will be sj+1 > sj packets
that will be queued in the queues f4l−9, f4l−6 (in total) requiring to traverse the
edges e1, f

′
1.

We will construct an adversary A1 such that the induction step will hold.
Proving that the induction step holds, we ensure that the inductive hypothesis
will hold at the beginning of phase j + 1 for the symmetric edges with an in-
creased value of sj , sj+1 > sj . By the symmetry of the network, repeating the
phase construction an unbounded number of times, we will create an unbounded
number of packets in the network.

From the inductive hypothesis, initially, there are sj packets (that constitute
the set of packets S) in the queues f

′
4l−9, f

′
4l−6 requiring to traverse the edges

e0, f1. In order to prove the induction step, it is assumed that the set S has
a large enough number of |S| = sj packets in the initial system configuration.
During phase j, the adversary plays l rounds of injections as follows:

Round 1: It lasts |T1| = sj time steps. During this round the edge f1 has high
slowdown D, while all the other edges have unit slowdown. The adversary injects
a set X1 of |X1| = ρ|T1| packets in the queue e0 wanting to traverse the edges
e0, f2, f3, f6, f7, f10, . . . , f4l−9, f4l−6, e1, f

′
1.

Heterogenous Networks Can Be Unstable 101

Evolution of the system configuration. The packets of the set S delay the packets
of the set X1 in the queue e0 that uses the LIS protocol because they are longer
time in the system than the packets of the set X1. At the same time, the packets
of the set S are delayed in f1 due to the high slowdown of the edge f1. At the end
of this round, the remaining packets of the set S in f1 are |S′ | = |S| − |T1|/D.

Round 2: It lasts |T2| = |S′ | time steps. During this round the edge f2 has high
slowdown D, while all the other edges have unit slowdown. The adversary injects
a set X2 of |X2| = ρ|T2| packets in the queue f1 requiring to traverse the edges
f1, f3, f6, f7, f10, . . . , f4l−9, f4l−6, e1, f

′
1 and a set S2 of |S2| = ρ|T2|/D packets in

the queue f2 requiring to traverse the edge f2.

Evolution of the system configuration. The packets of the set X2 are delayed by
the packets of the set S

′
in the queue f1 that uses the LIS protocol because the

packets of the set S
′

are longer time in the system than the packets of the set
X2. At the same time, the packets of the set X1 are delayed in the queue f2 that
uses the SIS protocol due to its high slowdown D and the packets of the set S2
that are shorter time in the system than the packets of the set X1. Therefore,
the remaining packets of the set X1 in the queue f2 are |X1| + |S2| − |T2|/D =
|X1| + (ρ− 1)|T2|/D.

Round 3: It lasts |T3| = |X1| + |X2| + (ρ − 1)|T2|/D time steps. During this
round the edge f6 has high slowdown D, while all the other edges have unit
slowdown. The adversary injects a set X3 of |X3| = ρ|T3| packets in the queue
f3 requiring to traverse the edges f3, f5, f7, f10, . . . , f4l−9, f4l−6, e1, f

′
1 and a set

S3 of |S3| = ρ|T3|/D packets in the queue f6 requiring to traverse the edge f6.

Evolution of the system configuration. The packets of the sets X1, X2 delay the
packets of the set X3 in the queue f3 that uses the LIS protocol because they
are longer time in the system than the packets of the set X3. At the same time,
the packets of the sets X1, X2 are delayed in f6 that uses the SIS protocol due to
the high slowdown of the edge f6 and the packets of the set S3 that are shorter
time in the system than the packets of the sets X1, X2. Therefore, the remaining
packets of the sets X1, X2 in the queue f6 are |X1| + |X2| + (ρ− 1) |T2|+|T3|

D .

Round l: It lasts |Tl| =
∑l−1

i=1 |Xi| − (ρ − 1)
∑l−1

i=2 |Ti|/D time steps. During
this round the edge f4l−6 has high slowdown D, while all the other edges have
unit slowdown. The adversary injects a set Xl of |Xl| = ρ|Tl| packets in the
queue f4l−9 requiring to traverse the edges f4l−9, f4l−7, e1, f

′
1 and a set Sl of

|Sl| = ρ|Tl|/D packets in the queue f4l−6 requiring to traverse the edge f4l−6.

Evolution of the system configuration. The packets of the sets X1, . . . , Xl−1 delay
the packets of the set Xl in the queue f4l−9 that uses the LIS protocol because
they are longer time in the system than the packets of the set Xl. At the same
time, the packets of the sets X1, . . . , Xl−1 are delayed in f4l−6 that uses the SIS
protocol due to the high slowdown of the edge f4l−6 and the packets of the set
Sl that are shorter time in the system than the packets of the sets X1, . . . , Xl−1.

102 D. Koukopoulos and S.D. Nikolopoulos

Therefore, the remaining packets of the sets X1, . . . , Xl−1 in the queue f4l−6 are∑l−1
i=1 |Xi| + (ρ− 1)

∑l
i=2 |Ti|/D.

Thus, the number of packets in the queues f4l−9, f4l−6 requiring to traverse
e1, f

′
1 at the end of this round is sj+1 = ρsj + (ρ + ρ−1

D)
∑l

i=2 |Ti|. Moreover,∑l
i=3 |Ti| = (ρ+ D+ρ−1

D)
∑l−1

i=3 |Ti|+(2ρ− 1
D − ρ−1

D2)|T1|. Thus, sj+1 = ρsj +(ρ+
ρ−1
D)D−1

D sj+(ρ+ ρ−1
D)(2ρ− 1

D−
ρ−1
D2)1−(ρ+ D+ρ−1

D)l−2

1−(D+1)ρ
D

sj . In order to have instability,

we must have sj+1 > sj. Therefore, for instability it suffices ρ+ (ρ+ ρ−1
D)D−1

D +

(ρ+ ρ−1
D)(2ρ− 1

D − ρ−1
D2)1−(ρ+ D+ρ−1

D)l−2

1−(D+1)ρ
D

> 1. If we let ρ = 0.0056, D = 1000 and

l = 1000, the inequality holds. Thus, for {D, l} > 1000 the inequality holds, too.
When D → ∞, it holds that 1

Dk → 0 for all k ≥ 1. Then, our inequality
becomes 2ρ(ρ+1)l−2 > 1. Thus, ρ > 1

2(ρ+1)l−2 . When l → ∞ and x > 0, it holds
that (1 + x)l−2 → ∞. Therefore, for {D, l} → ∞ the inequality ρ > 1

2(ρ+1)l−2

holds for ρ > 0. Note that if we have a sequence of equations fD,l(ρ) and there
exists the limit lim{D,l}→∞ fD,l(ρ) = f∞(ρ), then it holds fundamentally by
the theory of function limits that if ρ(D, l) is the root of fD,l(ρ) = 0, then
lim{D,l}→∞ ρ(D, l) is the root of f∞(ρ). Therefore, for ρ > 0 the system is un-
stable. This argument can be repeated for an infinite number of phases showing
that the number of packets in the system increases forever for ρ > 0. ��

With a similar adversarial construction to Theorem 1, we show that the com-
position of the LIS and NTS protocols can become unstable for arbitrarily low
injection rates considering an instance of the parameterized network family (net-
work Gl, see Figure 1). The network Gl is also used for proving the instability
of the composition of the LIS and SIS protocols. However in this case, the edges
f2, f4, f6, . . . , f4l−6 f

′
2, f

′
4, f

′
6, . . . , f

′
4l−6 of Gl use the NTS protocol instead of the

SIS protocol, while the remaining edges of Gl use the LIS protocol. Thus, the
following theorem, analogous to Theorem 1, holds.

Theorem 2. Let ρ′ = 0.0056. For the network Gl where l > 1000 is a parameter
linear to the number of network queues there is an adversary A2 of rate ρ that
can change the link slowdowns of Gl between the two integer values 1 and D >
1000 such that the system 〈Gl,A2, LIS,NTS〉 is unstable for every ρ > ρ′. When
{D, l} → ∞ the system 〈Gl,A2, LIS,NTS〉 is unstable for ρ > 0.

Similarly, we show that the composition of the LIS and FTG protocols can be-
come unstable for arbitrarily low injection rates considering an instance G′

l of
the parameterized network family Gl (see Figure 2). The topology of the net-
work G′

l has a significant difference with the networks that are used for proving
Theorems 1, and 2. The network G′

l contains additional paths, comparing to the
other three cases, that start at queues that use the FTG protocol. These paths
have sufficient lengths, such that the injected short flows have the same blocking
effects over the injected investing flows when they conflict in queues that use
FTG, as happens in LIS-SIS and LIS-NTS cases. Thus, the following theorem,
analogous to Theorem 1 and Theorem 2, holds.

Heterogenous Networks Can Be Unstable 103

Fig. 2. The network G′
l

Theorem 3. Let ρ′ = 0.0056. For the network G′
l where l > 1000 is a parame-

ter linear to the number of network queues there is an adversary A3 of rate ρ
that can change the link slowdowns of G′

l between the two integer values 1 and
D > 1000 such that the system 〈G′

l ,A3, LIS,FTG〉 is unstable for every ρ > ρ′.
When {D, l} → ∞ the system 〈G′

l ,A3, LIS,FTG〉 is unstable for ρ > 0.

4 Conclusions

In this work, we studied how the dynamic changing of link slowdowns affects
the instability properties of compositions of contention-resolution protocols that
include LIS. However, we do not have any clue what happens with compositions
of protocols that do not include LIS. Also, our results suggest that, for every
unstable network, its instability bound in the model of quasi-static slowdowns
may be lower than for the classical adversarial queueing model or other dynamic
adversarial model. Proving (or disproving) this remains an open problem.

References

1. C. Alvarez, M. Blesa, J. Diaz, A. Fernandez, M. Serna, Adversarial Models for
Priority-Based Networks, Proc. of the 28th Int’l Symposium on Mathematical Foun-
dations of Computer Science, 2003, LNCS. 2747, pp. 142–151.

2. C. Alvarez, M. Blesa, M. Serna, A Characterization of Universal Stability in the
Adversarial Queuing model, SIAM Journal on Computing, 34 (2004) 41–66.

104 D. Koukopoulos and S.D. Nikolopoulos

3. C. Alvarez, M. Blesa, M. Serna, The Impact of Failure Management on the Stability
of Communication Networks, Proc. of the 10th Int’l Conference on Parallel and
Distributed Systems, 2004, pp. 153–160.

4. M. Andrews, B. Awerbuch, A. Fernández, J. Kleinberg, T. Leighton, Z. Liu, Uni-
versal Stability Results for Greedy Contention-Resolution Protocols, Journal of the
ACM, 48 (2001) 39–69.

5. R. Barlow and F. Proschan, Statistical Analysis of Reliability and LifeTesting
Models, New York: Holt, Rinehart and Winston, 1975.

6. M. Blesa, D. Calzada, A. Fernández, L. López, A. Mart́ınez, A. Santos, M. Serna,
Adversarial Queueing Model for Continuous Network Dynamics, Proc. of the
30th Int’l Symposium on Mathematical Foundations of Computer Science, 2005,
LNCS. 3618, pp. 144–155.

7. A. Borodin, J. Kleinberg, P. Raghavan, M. Sudan, D. Williamson, Adversarial
Queueing Theory, Journal of the ACM, 48 (2001) 13–38.

8. A. Borodin, R. Ostrovsky, Y. Rabani, Stability Preserving Transformations: Packet
Routing Networks with Edge Capacities and Speeds, Proc. of the 12th Annual
ACM-SIAM Symposium on Discrete Algorithms, 2001, pp. 601–610.

9. D. Clark, The Design Philosophy of the DARPA Internet Protocols, ACM Com-
puter Communication Reviews, 18 (1988) 106-114.

10. J. Diaz, D. Koukopoulos, S. Nikoletseas, M. Serna, P. Spirakis, D. Thilikos, Sta-
bility and Non-Stability of the FIFO Protocol, Proc. of the 13th Annual ACM
Symposium on Parallel Algorithms and Architectures, 2001, pp. 48–52.

11. S. Floyd and V. Paxson, Difficulties in Simulating the Internet, IEEE/ACM Trans-
actions on Networking, 9 (2001) 392–403.

12. J. Gary, Why do computers stop and what can be done about it?, Symposium on
Reliability in Distributed Software and Database Systems, 1986.

13. M. P. Herlihy and J. Wing, Linearizability: A Correctness Condition for Concurrent
Objects, Proc. of the ACM Transactions on Programming Languages and Systems,
1990, Vol. 12, No. 3, pp. 463–492.

14. D. Koukopoulos, The Impact of Dynamic Link Slowdowns on Network Stability,
Proc. of the 8th Int’l Symposium on Parallel Architectures, Algorithms and Net-
works, 2005, pp. 340–345.

15. D. Koukopoulos, M. Mavronicolas, S. Nikoletseas, P. Spirakis, On the Stability
of Compositions of Universally Stable, Greedy, Contention-Resolution Protocols,
Proc. of the 16th Int’l Symposium on DIStributed Computing, 2002, LNCS. 2508,
pp. 88–102.

16. D. Koukopoulos, M. Mavronicolas, S. Nikoletseas, P. Spirakis, The Impact of Net-
work Structure on the Stability of Greedy Protocols, Theory of Computing Sys-
tems, 38 (2005) 425–460.

17. D. Koukopoulos, S. Nikoletseas, P. Spirakis, Stability Issues in Heterogeneous and
FIFO Networks under the Adversarial Queueing Model, Proc. of the 8th Int’l Con-
ference on High Performance Computing, 2001, LNCS. 2228, pp. 3–14.

18. D. Koukopoulos, M. Mavronicolas, P. Spirakis, Instability of Networks with Quasi-
Static Link Capacities, Proc. of the 10th Int’l Colloquium on Structural Information
and Communication Complexity, Carleton Scientific, 2003, pp. 179–194.

19. Z. Lotker, B. Patt-Shamir, A. Rosén, New Stability Results for Adversarial Queu-
ing, SIAM Journal on Computing, 33 (2004) 286–303.

20. N. Lynch, Distributed Algorithms, Morgan Kaufmann, 1996.
21. P. Tsaparas, Stability in Adversarial Queueing Theory, M.Sc. Thesis, Computer

Science Department, University of Toronto, 1997.

Provisioning a Virtual Private Network
Under the Presence of Non-communicating

Groups

Friedrich Eisenbrand1 and Edda Happ2

1 University of Dortmund, Otto Hahn Str. 14,
D-44221 Dortmund, Germany

Friedrich.Eisenbrand@cs.uni-dortmund.de
2 Max-Planck-Institut für Informatik, Stuhlsatzenhausweg 85,

D-66123 Saarbrücken, Germany
edda@mpi-sb.mpg.de

Abstract. Virtual private network design in the hose model deals with
the reservation of capacities in a weighted graph such that the terminals
in this network can communicate with one another. Each terminal is
equipped with an upper bound on the amount of traffic that the terminal
can send or receive. The task is to install capacities at minimum cost and
to compute paths for each unordered terminal pair such that each valid
traffic matrix can be routed along those paths.

In this paper we consider a variant of the virtual private network
design problem which generalizes the previously studied symmetric and
asymmetric case. In our model the terminal set is partitioned into a
number of groups, where terminals of each group do not communicate
with each other.

Our main result is a 4.74 approximation algorithm for this problem.

1 Introduction

Suppose that a large globally operating company wants to connect all of its
branch-offices into a common network to ensure communication between the
offices. One approach to do so is to build the network on top of an existing public
network by buying a certain amount of link capacities which is then reserved
exclusively for the use of this company. In this way the company has established
a virtual private network. The capacity reservation on links comes with certain
costs which we assume to be linear in the amount of reserved capacity.

The network can be modeled as an undirected graph G = (V,E) with edge
costs c : E −→ R+ reflecting the cost of reserving one unit of capacity on an
edge. The branch-offices are a subset T ⊆ V of the nodes which are the terminals
of this network design problem. A solution to the problem is an assignment
of capacities to the edges and paths Pij for each unordered pair {i, j} ⊆ T of
terminals such that all possible traffic between the terminals can be routed along
those paths over the network.

T. Calamoneri, I. Finocchi, G.F. Italiano (Eds.): CIAC 2006, LNCS 3998, pp. 105–114, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

106 F. Eisenbrand and E. Happ

Predicting the amount of traffic that pairs of terminals exchange is often
illusive. In the so-called hose model [1, 2] the knowledge of the exact amount of
traffic which is exchanged between the terminal pairs is relaxed into a prediction
of how much traffic occurrs at each terminal. Here, each terminal v ∈ T has an
threshold b(v) ∈ Z≥0 which is an upper bound on the amount of network traffic
that this terminal can interchange with other terminals.

A traffic matrix D ∈ QT×T
≥0 is a symmetric rational matrix which represents

the amount of communication between terminals. The traffic matrix is valid,
if it respects the upper bounds, i.e., if the following holds for each terminal
i ∈ T ∑

j∈T,j �=i

D(i, j) ≤ b(i) . (1)

Virtual private network design is the optimization problem that searches a min-
imum cost assignment of capacities to the edges and specifies for each unordered
terminal pair i, j ∈ T a path Pij in the network such that each valid traffic
matrix can be routed along these paths without exceeding the capacities.

This virtual private network design problem has received a considerable
amount of attention. Gupta et al. [3] provided a 2-approximation algorithm
for this problem and showed that it can be solved in polynomial time when the
graph stemming from the edges with nonzero capacity reservation is supposed to
form a tree. It is a well known conjecture that there always exists an optimal tree
reservation. Hurkens, Keijsper and Stougie [4] have recently shown that this is
the case in ring networks. Computational evidence that it also holds in arbitrary
networks is for example presented in [5, 6].

In the asymmetric variant of virtual private network design, one distinguishes
between traffic which is sent and traffic which is received by a terminal. A traffic
matrix then has to respect these upper bounds on each vertex in order to be
valid. Via duplicating each terminal into two terminals, where one copy can
only send and the other can only receive traffic, the asymmetric variant can be
formalized as follows. The terminal set T is partitioned into two sets R and
S, representing receivers and senders, respectively. The terminals are equipped
with upper bounds b(v) as above. A traffic matrix is valid, if it satisfies (1) and
if D(i, j) = 0 whenever i and j are both senders or both receivers.

The asymmetric virtual private network design problem is NP-hard [3] which
follows from a reduction to the steiner tree problem. Gupta et al.[3] gave the
first constant factor approximation algorithm for this problem. Gupta, Kumar
and Roughgarden [7] presented a randomized approximation algorithm. Their
algorithm samples terminals which are then connected into a high bandwidth
core. The remaining terminals are connected along their shortest paths to this
core. The approximation ratio of this algorithm is 5.55. This result was refined
to a 4.74 approximation [8] which also finds a tree solution. The first non-tree
approximation algorithm achieves an approximation factor of 3.55 [9]. Italiano,
Leonardi and Oriolo [10] consider the setting in which the sums of the sender
and receiver thresholds are equal.

Provisioning a Virtual Private Network 107

1.1 A Setting in Which Some Terminals Do Not Communicate

In this paper we consider a variant of the virtual private network design problem
which generalizes both the symmetric and asymmetric version of virtual private
network design.

The terminals T are partitioned into disjoint sets T1, . . . , Tk. Network traffic
only occurs between terminals i and j if i and j are in different sets Ti �= Tj .
This means that a traffic matrix Q is now valid if D(i, j) = 0 for all i, j ∈ T�

and all 1 ≤ � ≤ k and ∑
j∈T,j �=i

D(i, j) ≤ b(i) for all i ∈ T .

The goal is now to determine paths between each unordered pair of terminals
belonging to different sets and to reserve capacities on the edges such that each
valid traffic matrix can be routed and the capacity reservation has minimum
cost. In the following we refer to this combinatorial optimization problem as
virtual private network design (VPND).

If the terminal sets T1, . . . , Tk are singletons, then we are dealing with the
symmetric virtual private network design problem. If the terminals are parti-
tioned into two sets only, then this is the setting of the asymmetric case. Thus,
our model is flexible enough to capture both variants of network design which
have previously been studied in the literature.

A possible application scenario where this more general model is relevant is
as follows (Fig. 1). Some companies want to cooperate and to connect all their
branch-offices via a common virtual private network. The companies themselves
are already connected.

Fig. 1. Companies having internal networks have established a joint network

One possible approach would be to use these connections and to treat the ex-
isting small networks as one terminal. Thus, all communication leaving a com-
pany network would have to be collected in one selected node and then sent
outside. This might cause congestion in the small networks and might lead to
a necessary renegotiation for new contracts with the providers of the small net-
works. It could be cheaper to consider the VPND problem in which the terminal
sets correspond to the companies which are already connected.

108 F. Eisenbrand and E. Happ

... ...

t1t2

t3

tn/2

tn/2+1 tn/2+2

tn/2+3

tn

0

0 0

0

0
00

0
11 s

Fig. 2. A network which demonstrates that the optimal solution can differ considerably
depending on the partitioning of the terminals. The edges are labeled with their costs.

We would also like to mention that the network design problem of building a
minimum cost virtual private network connecting one terminal of each company
is hard to approximate with a factor of less than log(n) since it is a generaliza-
tion of the group steiner tree problem [11] which is known to have this bound
[12, 13].

The following example (Fig. 2) shows that the optimal solution can differ
considerably on the same graph and the same terminals depending on the parti-
tioning of the terminals. The terminals are the set {s, t1, . . . , tn}. The threshold
on each node is one.

A solution to the corresponding symmetric problem requires a reservation of
n
2 on the edges adjacent to s which has cost n while a solution to the asymmetric
problem where the set of senders is {s} and the set of receivers is R = {t1, . . . , tn}
requires only a reservation of 1. It is easy to see there exists a partitioning of the
terminals for each even natural number i ∈ {1, . . . , n} such that the optimum
value of the corresponding VPND problem is exactly i.

Contribution of This Paper

The above example shows that an arbitrary reduction to the symmetric or asym-
metric case does not yield a constant factor approximation. Our main result
however is a proof that ignoring the terminal partitions, i.e. solving the corre-
sponding symmetric case, yields a constant factor approximation to VPND unless
the problem is unbalanced. This is the case if the size of one terminal partition
is larger than the sum of the remaining partitions. In this case we show that
an optimal tree solution of the asymmetric problem stemming from identifying
the large terminal partition as the set of receivers and collecting the remain-
ing terminals from the other partitions into a set of senders yields a constant
factor approximation.

Assume without loss of generality that the terminal sets are ordered in de-
creasing cardinality, i.e., |Ti| ≥ |Tj| for i < j. We call the VPND instance unbal-
anced if |T1| ≥

∑
i>1 |Ti| − 1.

We show that the following algorithm is a 4.74 approximation algorithm for
VPND.

Provisioning a Virtual Private Network 109

Algorithm 1. VPND (G,
⋃k

i=1 Ti, c)
1. If the VPND-instance is unbalanced then return an approximate tree solution for

the asymmetric problem with senders T1 and receivers T2 ∪ . . . ∪ Tk.
2. Otherwise output an approximate solution of the symmetric VPND-instance with

terminal set T1 ∪ . . . ∪ Tk.

We show that if we use the randomized approximation algorithm [8] in step 1
and the algorithm [3] in step 2, then we achieve an overall approximation ratio
of 4.74 which coincides with the approximation ratio of the algorithm in [8].

2 Subinstances and Their Optimal Solutions

By duplicating terminals we can assume that b(i) = 1 for all i ∈ T . Suppose that
the paths P are given along which the flow has to be routed. We can compute the
corresponding necessary capacity assignment as follows. Consider the complete
k-partite graph B = (T1 ∪ · · · ∪ Tk, E

B) and the set of matchings M of B. Each
M ∈ M corresponds to a valid traffic matrix. We have to make sure that for all
M all paths can be packed. Therefore we compute the capacity u(e) of an edge
e as

u(e) = max
M∈M

|{Prs ∈ P | e ∈ Prs and rs ∈ M}| . (2)

The following is a generalization of a similar statement for the asymmetric
case [9].

Lemma 1. Let H1, . . . , H� be a partitioning of the terminals T . We denote the
VPND-instance on graph G with Terminals T ∩Hi and corresponding partitioning
T1 ∩Hi, . . . , Tk ∩Hi by Ii. Then one has

k∑
i=1

OPTi ≤ OPT ,

where OPTi is the optimum cost of instance Ii.

Proof. Let P be an optimal set of paths for the original VPND-instance with
resulting capacity reservation u : E → Z+. The subset Pi ⊆ P of paths with
both endpoints in Hi defines a solution to instances Ii with the corresponding
capacity reservation ui : E → Z+. It suffices to show that

∑k
i=1 ui(e) ≤ u(e) for

each edge e ∈ E.
It follows from (2) that for each i = 1, . . . , k

ui(e) = max
Mi∈Mi

∣∣{Prs ∈ Pi | e ∈ Prs and rs ∈ Mi}
∣∣ .

110 F. Eisenbrand and E. Happ

Let M̃i denote the matching for which the maximum is attained. Then, the
disjoint union M̃ :=

⋃k
i=1 M̃i is a matching of B. It thus follows from (2) that

k∑
i=1

ui(e) =
k∑

i=1

∣∣{Prs ∈ Pi | e ∈ Prs, rs ∈ M̃i}
∣∣

=
∣∣{Prs ∈ P | e ∈ Prs, rs ∈ M̃}

∣∣ ≤ u(e)

for each edge e ∈ E. This concludes the proof. ��

3 An Unbalanced Terminal Set

Let us first consider unbalanced instances of VPND with |T1| ≥
∑

i>1 |Ti| − 1
which is the case in step 1 of the algorithm.

Theorem 1. Let (G,
⋃k

i=1 Ti, c) be an unbalanced VPND instance. Then any tree
solution to the corresponding asymmetric virtual private network design problem
with R = T1 and S =

⋃
i>1 Ti is a valid solution to the VPND-instance.

Proof. Assume the opposite. Then there exists a valid traffic matrix correspond-
ing to a k-partite matching M that cannot be routed on the tree solution
to the asymmetric virtual private network design problem. Since any bipar-
tite matching on S ∪ R can be routed, M contains matched pairs titj with
ti, tj /∈ T1. Let M∗ be a non-routable matching having the minimal number
of such pairs. Consider matching M ′ := M∗ \ {titj} where ti, tj /∈ T1. Since
|T1| ≥

∑
i>1 |Ti| − 1 > |

⋃
i>1 Ti \ {ti, tj}| =

∑
i>1 |Ti| − 2 there is at least one

terminal t∗ ∈ T1 which is idle in M ′. So M ′ ∪ {tit∗} and M ′ ∪ {tjt∗} must be
routable since the number of pairs with neither terminal in T1 is smaller than in
M∗. That means that on the path from ti to t∗ and on the path from tj to t∗

one unit of capacity must be free, and therefore also on the unique path from ti
to tj . So M∗ is routable. ��

We have to require tree solutions to guarantee an unambiguous path from ti
to tj independent of t∗. Figure 3 shows a non-tree solution to the asymmetric
virtual private network design problem with R = {t∗1, t∗2} and S = {t1, t2, t3}. If

t∗
1 t∗

2

t1 t2 t3

Fig. 3. Non-tree solution of asymmetric problem version not sufficient for VPND

Provisioning a Virtual Private Network 111

we consider the corresponding VPND with T1 = R, T2 = {t1, t2}, and T3 = {t3},
then the condition |T1| ≥ |T2| + |T3| − 1 holds, but however we fix the path
between t1 and t3 (e.g. as given in gray in Fig. 3) there is a valid traffic matrix
(e.g. t∗2t2, t1t3) that is not routable even though there is a path between t1 and
t3 with free capacity (but it is not the fixed path).

The current best tree approximation algorithm to the asymmetric virtual
private network design problem has an approximation factor of 4.74 [8]. Since
any solution to the VPND (G,

⋃k
i=1 Ti, c) is also a solution to the problem when

we replace some sets by their union we have OPTasym ≤ OPTVPND implying that
the above is also a 4.74 approximation to VPND for unbalanced instances.

4 A Balanced Terminal Set

In the following we denote the shortest path distance between i and j in the
Graph G = (V,E) with edge costs c : E −→ R+ by �(i, j). Finding the termi-
nal t that minimizes

∑
t′∈T �(t, t′) and adding one unit of capacity along each

shortest path gives a valid solution to the symmetric virtual private network
design problem (G, T, c) where every terminal can communicate with any other
[3]. Obviously, it is also a solution to VPND where we restrict the communication
to be only between terminals of different sets.

Let us now consider VPND instances where |T1| ≤
∑

i>1 |Ti| − 2 which we will
call balanced. We use the following theorem which is proven in [9, Theorem 2] to
show that in this case the cheapest shortest path tree is a factor 3 approximation
to the optimum solution.

Theorem 2 ([9]). Consider an instance of VPND with two terminal sets T1, T2
with |T1| = |T2|. Let M be an arbitrary matching of the complete graph on T1∪T2.
Then ∑

uv∈M

�(u, v) ≤ OPT .

To prove the approximation factor for VPND we use the following lower bound.

Theorem 3. Let OPT be the optimal cost of a balanced VPND and M an
inclusion-wise maximal matching of the terminals. Then∑

t1t2∈M

�(t1, t2) ≤
|M |

|M | − 1
· OPT .

Proof. Recall that |T1| ≤
∑

i>1 |Ti| − 2. If the number of terminals is odd, then
one terminal node is free and we have |T1| ≤

∑
i>1 |Ti| − 3. Thus, if we discard

the one possibly free node and the endpoints of the lightest edge in the matching
from the terminal set, we obtain a new instance where |T1| ≤

∑
i>1 |Ti|. Thus,

we can assume that |T1| ≤
∑

i>1 |Ti| holds, |M | is even and all terminals are
matched. We will now show that we have∑

t1t2∈M

�(t1, t2) ≤ OPT .

112 F. Eisenbrand and E. Happ

The assertion then follows since we removed the lightest edge from the matching.
We proceed by showing that the edges of M can be paired in such a way that

each pair of edges t1t2, t3t4 satisfies one of the following conditions.

(i) There exists a terminal set Ti such that t1, t2 ∈ Ti and t3, t4 /∈ Ti, or
(ii) there does not exist a terminal set Ti such that t1, t2 ∈ Ti or t3, t4 ∈ Ti.

Let Mi ⊆ M be the set of those edges of M having both endpoints in Ti. In
other words

Mi = {uv ∈ M | u, v ∈ Ti}
and assume that the cardinality of Ml is maximal. The endpoints of the re-
maining edges of M belong to different sets. We partition them into the set M
containing edges having one node in Tl and the set M̃ containing edges that do
not comprise nodes of Tl.

We now distinguish two cases. Suppose first that |Ml| >
∑

j �=l |Mj|. Since
|Tl| ≤

∑
j �=l |Tj | this implies

|Ml| ≤
∑
j �=l

|Mj | + |M̃ | .

This allows us to pair each edge of Ml with an edge from
⋃

j �=l Mj ∪ M̃ such
that all edges of

⋃
j �=l Mj are paired. These pairs will satisfy Condition (i). The

remaining edges of M̃ and the edges of M are then paired arbitrarily and satisfy
Condition (ii).

In the second case one has

|Ml| ≤
∑
j �=l

|Mj | . (3)

Consider an ordering e1, . . . , eµ of the edges of M1 ∪ · · · ∪ Mk in which the
elements of Mi precede the elements of Mj whenever i < j. If µ is odd, we can
find an edge ei that can be paired with an edge from M∪M̃ such that Condition
(i) holds and (3) still holds. So assume that µ is even. The pairings {ei, eµ/2+i}
for 1 ≤ i ≤ µ/2 satisfy Condition (i) and are of the left type in Figure 4. The
remaining edges can be paired arbitrarily.

Let {t1t2, t3t4}, . . . , {t4 s+1t4 s+2, t4 s+3t4 s+4} be such a pairing where each
pair satisfies either condition (i) or condition (ii). We now partition T into the
sets Hi = {t4 i+1, t4 i+2, t4 i+3, t4 i+4} for i = 0, . . . , s and show that

�(t4 i+1t4 i+2) + �(t4 i+3t4 i+4) ≤ OPTi , (4)

where we use the terminology of Lemma 1.
If the paired edges satisfy condition (ii), then the edges correspond to a valid

traffic matrix and (4) clearly holds.
There are two possibilities on how the terminals in a paired set of edges

satisfying Condition (i) can be colored, see Fig. 4. Here membership to a terminal
set is interpreted as a color. In the first case, the endpoints of the first edgeshare

Provisioning a Virtual Private Network 113

Fig. 4. The possible colorings of nodes in paired edges satisfying condition (i)

the same color as well as the endpoints of the second edge. The assertion then
follows from Theorem 2. We further constrain the problem of the second case
by recoloring the gray node white. In other words, we forbid communication
between the gray and white node. The optimal solution to this problem is at
most as expensive as the optimal solution to the original one. This settles (4).

Applying Lemma 1 concludes the proof. ��

Consider the complete graph K = (T,EK) on the terminals T with edge costs
equal to the shortest path distances between the terminals in the original graph
G. The cost of the shortest path tree of a terminal t in G is equal to the cost
of the star of t in the graph K. The edges EK can be covered by at most |T |
matchings. Therefore there exists a star whose cost is bounded by 2·�(M), where
M is a maximum weight matching of K. By Theorem 3 one has

�(M) ≤
� |T |

2 �
� |T |

2 � − 1
· OPT ≤ 3

2
· OPT

for |T | ≥ 6 which is the case whenever any |Ti| ≥ 2. If Ti = 1 for all i it is a
symmetric virtual private network design problem for which this tree is known
to be a 2 approximation.

This implies the following theorem.

Theorem 4. Let (G,∪k
i=1Ti, c) be a balanced VPND-instance. The cheapest

shortest path tree yields a tree-solution whose cost is at most 3 · OPT.

By combining Theorem 1 and Theorem 4 we obtain our main result.

Theorem 5. There exists a 4.74 randomized approximation algorithm for VPND.

References

1. Duffield, N.G., Goyal, P., Greenberg, A., Mishra, P., Ramakrishnan, K.K., van der
Merive, J.E.: A flexible model for resource management in virtual private networks.
In: Proceedings of the conference on Applications, technologies, architectures, and
protocols for computer communication, ACM Press (1999) 95–108

2. Fingerhut, J.A., Suri, S., Turner, J.S.: Designing least-cost nonblocking broadband
networks. Journal of Algorithms 24(2) (1997) 287–309

114 F. Eisenbrand and E. Happ

3. Gupta, A., Kleinberg, J., Kumar, A., Rastogi, R., Yener, B.: Provisioning a vir-
tual private network: a network design problem for multicommodity flow. (2001)
389–398

4. Hurkens, C., Keijsper, J., Stougie, L.: Virtual private network design: A proof
of the tree routing conjecture on ring networks. In: Proceedings of the eleventh
Conference on Integer Programming and Combinatorial Optimization, IPCO XI.
(2005) to appear.

5. Erlebach, T., Regg, M.: Optimal bandwidth reservation in hose-model vpns with
multi-path routing. In: INFOCOM. (2004)

6. Altin, A., Amaldi, E., Belotti, P., Pinar, M.: Provisioning virtual private networks
under traffic uncertainty. In: Proceedings of the 3rd Cologne Twente Workshop
on Graphs and Combinatorial Optimization (CTW’04). Volume 17 of Electronic
Notes in Discrete Mathematics. (2004) 19–22

7. Gupta, A., Kumar, A., Roughgarden, T.: Simpler and better approximation al-
gorithms for network design. In ACM, ed.: Proceedings of the Thirty-Fifth ACM
Symposium on Theory of Computing, San Diego, CA, USA, June 9–11, 2003, New
York, NY, USA, ACM Press (2003) 365–372

8. Eisenbrand, F., Grandoni, F.: An improved approximation algorithm for virtual
private network design. In: Proceedings of the sixteenth annual ACM-SIAM sym-
posium on Discrete algorithms, SODA 05. (2005) 928–932

9. Eisenbrand, F., Grandoni, F., Oriolo, G., Skutella, M.: New approaches for virtual
private network design. (to appear in the proceedings of ICALP 05)

10. Italiano, G., Leonardi, S., Oriolo, G.: Design of networks in the hose model. In:
Proceedings of ARACNE 2002. (2002) pp 65–76

11. Reich, G., Widmayer, P.: Beyond Steiner’s problem: A VLSI oriented generaliza-
tion. In: Graph-Theoretic Concepts in Computer Science WG-89. Volume 411 of
Lecture Notes in Computer Science. (1990) 196–210

12. Ihler, E.: The complexity of approximating the class Steiner tree problem. Tech-
nical report, Institut für Informatik, Albert-Ludwigs-Universität Freiburg (1991)

13. Feige, U.: A threshold of ln n for approximating set cover. In: Proc. of the ACM
sympository on the Theory of Computing. (1996) 314–318

Gathering Algorithms on Paths Under
Interference Constraints

Jean-Claude Bermond1,�, Ricardo Corrêa2,��, and Minli Yu3,���

1 MASCOTTE, joint project CNRS-INRIA-UNSA, 2004 Route des Lucioles, BP 93,
F-06902 Sophia-Antipolis, France

bermond@sophia.inria.fr
2 Universidade Federal do Ceará, Departamento de Computação, Campus do Pici,

Bloco 910, 60455-760 Fortaleza, CE, Brazil
correa@lia.ufc.br

3 University College of the Fraser Valley, Department of Mathematics and Statistics,
Abbotsford, BC, Canada V2S 4N2

joseph.yu@ucfv.ca

Abstract. We study the problem of gathering information from the
nodes of a multi-hop radio network into a pre-determined destination
node under interference constraints which are modeled by an integer
d ≥ 1, so that any node within distance d of a sender cannot receive calls
from any other sender. A set of calls which do not interfere with each
other is referred to as a round. We give algorithms and lower bounds on
the minimum number of rounds for this problem, when the network is
a path and the destination node is either at one end or at the center of
the path. The algorithms are shown to be optimal for any d in the first
case, and for 1 ≤ d ≤ 4, in the second case.

Keywords: Gathering, interference, multi-hop radio network, path.

1 Introduction

1.1 Problem Statement

The problem that we consider in this paper was motivated by a question asked
by France Telecom about “how to provide Internet to villages” (see [3]) and
is related to the following scenario. Suppose we are given a set of communication
devices (for instance, network interfaces that connect computers to the Internet)
which are placed in houses in a village. They require access to a gateway (for in-
stance, a satellite antenna) to send and receive data through a multi-hop wireless
network. The nodes communicate exclusively by means of radio transmissions,

� Partially supported by the CRC CORSO with France Telecom, by the european
FET project AEOLUS, by the cooperation with Brazil project REGAL and by
the INRIA associated team RESEAUXCOM with S.F.U.

�� Partially supported by the Conselho Nacional de Desenvolvimento Cient́ıfico e
Tecnológico, CNPq, Brazil.

��� Partially supported by the INRIA associated team RESEAUXCOM.

T. Calamoneri, I. Finocchi, G.F. Italiano (Eds.): CIAC 2006, LNCS 3998, pp. 115–126, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

116 J.-C. Bermond, R. Corrêa, and M. Yu

referred to as calls. A call involves two nodes, the sender and the receiver, and
is subject to the following constraints:

Reachability constraint: since every node has limited transmission power,
the receiver must be close enough to the sender.

Interference constraint: unlike wired networks, a call can interfere with re-
ception at certain nodes beyond the receiver. A node that is within interfer-
ence distance of one call cannot be the receiver of another call.

Considering these two constraints, a message transmitted in a call can only
be properly received if the receiver is reachable from the sender and there is
no interference by another message being simultaneously transmitted. In this
context, we study the following problem:

t-gathering problem: suppose each node of the network has a piece of infor-
mation. The t-gathering problem consists of collecting (gathering) all these
pieces of information into a special node t, called the gathering node.

In this paper, we propose solutions to this problem for the particular case of a
path. Before going into details about our results, let us introduce the mathemat-
ical formulation of the problem.

1.2 Model and Assumptions

According to the model adopted in [1], the network described above is repre-
sented by an undirected graph G = (V,E), where V is the set of nodes, each
of them representing a communication device that is able to send and receive
messages, and E is the set of edges, representing the possible communications.
Let dG(s, r) indicate the distance in G, defined as the length of a shortest path
between s and r. We model the reachability and the interference constraints by
two positive integers dT ≥ 1 and dI ≥ dT . A node r ∈ V is reachable from s ∈ V
if and only if dG(r, s) ≤ dT . An important case is dT = 1, which means that a
node is able to communicate only with its neighbors in the graph. The second
parameter dI models the interference constraint as follows: if s sends a message
to r, then no node w ∈ V such that dG(s, w) ≤ dI can receive another message.

Denote by Xs,r a call where a node s ∈ V sends message X to node r ∈ V .
We assume that every call takes one unit of time (or one slot) to transmit one
unit-length message. Two calls are said to be compatible if they do not interfere
with each other. More precisely, two calls Xs1,r1 and Ys2,r2 are compatible if
dG(s1, r2) > dI and dG(s2, r1) > dI . Observe that a consequence of the interfer-
ence constraint is that s1 �= r2 and s2 �= r1, which implies that a node is not
able to send and receive messages simultaneously. A round is a set of compatible
calls, whereas an algorithm is a sequence of rounds.

In this paper, our aim is to find a t-gathering protocol using a minimum
number of rounds in the specific case where G is a path. In fact, this stems from
the assumption that the village consists of one main street. To our great surprise,
the gathering problem is not so simple in this case, if one wants to obtain an
exact optimal algorithm.

Gathering Algorithms on Paths Under Interference Constraints 117

1

2

3

4

5

6

7

21t = 0 3 4 5 6
2 6

21t = 0 3 4 5 6
3

3
21t = 0 3 4 5 6

21t = 0 3 4 5 6
3

4

4

5

5

5

4

6

21t = 0 3 4 5

21t = 0 3 4 5

8

9

6

6

10

11

12

13

14

15

16

18

21t = 0 3 4 5

21t = 0 3 4 5

21t = 0 3 4 5

21t = 0 3 4 5

21t = 0 3 4 5

21t = 0 3 4 5

21t = 0 3 4 5

17
21t = 0 3 4 5

21t = 0 3 4 5

6

6

6

6

6

6

6

6

6

6

6

6

5

2

1

21t = 0 3 4 5

21t = 0 3 4 5

6

6

4
21t = 0 3 4 5 6

5

6

Fig. 1. Algorithm for a graph of 7 nodes and dI = 2

In the algorithm shown in Figure 1 (where dT = 1 and dI = 2), the call
11,0 interferes with 44,3 because dG(1, 3) ≤ 2 = dI . This is the reason why they
do not appear in the same round. On the other hand, the calls 11,0 and 55,4
are compatible. All the rounds shown in the figure consist of a single call or
two compatible calls. It will be shown later that the algorithm consisting of this
sequence of 18 rounds is in fact optimal.

A final remark with respect to the model adopted in this paper is that
another possibility would be to represent the radio devices as nodes in the
plane, and to state the reachability and interference constraints according to
the euclidean distances. However, since we only consider paths, the two models
are equivalent.

1.3 Related Work

The broadcasting and gossiping problems in radio networks with dT = dI = 1
are studied in [6, 8] and [4, 5, 7], respectively. Note that, in a broadcast, the same
information has to be transmitted to all the other nodes and therefore flooding

118 J.-C. Bermond, R. Corrêa, and M. Yu

techniques can be used. When a node needs to send different messages to the
other nodes of the network, we have the personalized broadcasting problem, which
is equivalent to the gathering problem as it suffices to reverse the calls in the
solution of one problem to get a solution of the other one.

Some gathering problems have already been studied. For example, in [2] op-
timal solutions are provided for the two-dimensional square grid. In [1], general
results are given (with the possibility of various sizes of messages in each node);
in particular, an algorithm working on any graph with an approximation factor
of at most 4 is presented. It is also shown that the problem of finding an op-
timal gathering algorithm (one that uses a minimum number of rounds) does
not admit a Fully Polynomial Time Approximation Scheme if dI > dT , unless
P=NP, and is NP-hard if dI = dT . Another related model can be found in [9],
where the authors study the case in which steady-state flow demands between
each pair of nodes have to be satisfied.

1.4 Our Results

The results of this paper are presented in the remaining sections as follows. We
assume dT = 1 and denote dI simply by d. In Section 2, we deal with the case
where the gathering node is at one end of the path. This case is simple and
we describe an optimal algorithm. In Section 3, we consider the case where the
gathering node is at the center of the path with 2p + 1 nodes. We first give a
lower bound (this bound is also valid for the flow model of [9]). Then, we design
an algorithm which meets the lower bound for p ≤ p1 = d + 1 + k(k+1)

2 . In the
next subsection, we show how to strengthen the preceding lower bound. In fact,
we show that, for p ≥ d+ 2, any algorithm for the path with the gathering node
at the center needs 2�(d−1)/2�+1 more rounds than that for the path of length
p with the gathering node at one end. Our algorithm meets this strengthened
lower bound for d = 1, 2, 3, 4 (which correspond to the practical cases). We close
the paper with some concluding remarks in Section 4.

2 Paths with the Gathering Node at One End

Let Πp be the path of length p (consisting of p edges and p+1 nodes). The nodes
are denoted 0, 1, 2, · · · , p, and the edges are of the type (i, i − 1). Assume that
the gathering node is t = 0. To simplify the notation, we denote the call Xi,i−1
by Xi and the minimum number of rounds by gd(p). The recursive scheduler
depicted in Algorithm 1 is used to prove the result below (see Figure 1 for an
example with p = 6 and d = 2).

Theorem 1. For the path Πp and d ≥ 1,

gd(p) =
{
p(p + 1)/2, if p ≤ d + 1
(d + 2)(2p− d− 1)/2, otherwise

Gathering Algorithms on Paths Under Interference Constraints 119

Algorithm 1. Gathering scheduler on Πp

1: if p > 0 then
2: Call recursively the gathering scheduler on Πp−1

3: for j ← p, . . . , d + 3 do
4: Let x = p − (d + 2) and i = j − (d + 2)
5: Schedule Pj in the same round as Xi

6: for j ← min{p, d + 2}, . . . , 1 do
7: Schedule Pj in a new round

Proof. The upper bound is given by Algorithm 1. Suppose that all calls involving
messages smaller then P are scheduled in existing rounds as indicated in line 2.
The calls involving the message P leaving a node j ≥ d + 3 are scheduled as
indicated in lines 3-5. New rounds are then created for the remaining calls. Hence,
proceeding by recurrence, we find that

gd(p) ≤
p∑

i=1

min{i, d+ 2},

which gives the upper bound of the theorem.
To show the lower bound, note that the information X of a node x must be

transmitted via the calls Xj , 1 ≤ j ≤ x. Furthermore, the interference constraint
implies that at most one call Xj , for 1 ≤ j ≤ d+ 2, can occur in a round. So, to
send X , for 1 ≤ x ≤ d+ 1, from node x to the gathering node, we need at least
x rounds, all containing a call in the interval [0, d+2]. It follows that the rounds
used for two distinct nodes x and x′, 1 ≤ x, x′ ≤ d + 1, are disjoint. Therefore,
if p ≤ d + 1, then at least 1 + 2 + · · · + p = p(p + 1)/2 rounds are required.

Now, consider x ≥ d + 2. To bring X to the gathering node, all the d + 2
calls Xj , 1 ≤ j ≤ d + 2, for X must occur at different rounds. Moreover, these
rounds must be different from those used for Yj , X �= Y and 1 ≤ j ≤ d + 1.
Consequently, at least (d+2)[p− (d+1)] calls are required for X , d+2 ≤ x ≤ p,
thus we have the lower bound for the case p ≥ d + 2. ��

3 Paths with the Gathering Node at the Center

3.1 Preliminaries

Let us denote by Π−pΠp the path of length 2p with the 2p+ 1 nodes −p,−(p−
1), · · · ,−1, 0, 1, 2, · · · , p, and with edges (−i,−(i− 1) and (i, i− 1). Assume that
the gathering node is t = 0. We write d = 2k + 1 or d = 2k + 2, depending
whether d is odd or even, respectively, and denote the minimum number of
rounds by gd(p, p). Clearly, gd(p, p) ≥ gd(p) since Π−pΠp is composed by two
symmetric paths of length p. However, in order to attain any tight lower bound,
it often requires the calls on one side of the paths to be paired with calls on the
other side. When p is small, all the calls are incompatible and every algorithm
is optimal.

120 J.-C. Bermond, R. Corrêa, and M. Yu

Proposition 1. If p ≤ k + 1, then gd(p, p) = 2gd(p) = p(p + 1).

In the sequel, we consider p > k+1, in which case an optimal algorithm requires
some compatible calls to be appropriately paired. Special attention needs to be
devoted to the critical calls, that is the calls in the critical interval [−(d+2), d+2]
of nodes. A round is called an obstruction if it contains only one critical call. Like
in the previous section, write Xi and −Xi for the calls Xi,i−1 and −X−i,−(i−1),
respectively.

In the critical interval, two calls Xi and Yj interfere, and so do two calls −Xi

and −Yj . Moreover, two calls −Xi and Yj interfere if and only if i + j ≤ d + 1
because the distance between −i and j − 1 is i+ j − 1. For example, a call −X1
can be paired only with calls Yd+1 or Yd+2. Consequently, every round contains
at most two critical calls and, in addition, a round contains two critical calls
−Xi and Yj only if i + j ≥ d+ 2.

Let

A+ =
k+1⋃
i=1

{Xi | i ≤ x ≤ p} and A− = {−Xi | Xi ∈ A+}. (1)

Observe that these two sets are such that a call in A+ cannot be paired with
any call in A−. The remaining critical calls define the sets

B+ =
p′⋃

i=d−k+1

{Xi | i ≤ x ≤ p} and B− = {−Xi | Xi ∈ B+}, (2)

where p′ = min{p, d + 2}. When d is odd, these sets partition the set of possible
calls. But when d is even, there are also all the calls−Xk+2 andXk+2. Observe that
two critical calls can be paired only if one of them belongs to neither A+ nor A−.

3.2 A Lower Bound When p ≥ k + 2

Let us turn our attention to a lower bound which will turn to be optimal when
p is not too large.

Theorem 2. gd(p, p) ≥ p(k + 2) + �d/2� (p− k − 1).

Proof. To obtain the lower bound, we count the maximum number M of pairs
{−Xi, Yj} which can be formed and we get gd(p, p) ≥ 2gd(p) − M . It can be
checked from (1) and (2) that |A−| ≥ |B+| and |A+| ≥ |B−|. Since the calls of
A− (resp. A+) can only be paired with calls in B+ (resp. B−), the maximum
number of pairs involving calls in A+ , A−, B+ and B− occurs when all calls
in B+ and B− are paired with A− and A+, respectively. In addition, if d is
even, we can also pair −Xk+2 with Xk+2 , for k + 2 ≤ x ≤ p. Thus, M =
|B+| + |B−| + (d− 2k − 1)(p− k − 1).

First consider the case p ≤ d + 1. Then gd(p) = p(p+1)
2 by Theorem 1. If d is

odd, then |B+| = |B−| =
∑

k+2≤i≤p p−i+1 = (p−k−1)(p−k)
2 and so 2gd(p)−M =

p(p + 1) − (p − k − 1)(p − k) = p(k + 2) + k(p − k − 1). Otherwise, d is even,

Gathering Algorithms on Paths Under Interference Constraints 121

and |B+| = |B−| =
∑

k+3≤i≤p p − i + 1 = (p−k−2)(p−k−1)
2 . This leads to M =

(p−k−1)2 and 2gd(p)−M = p(p+1)−(p−k−1)2 = p(k+2)+(k+1)(p−k−1).
For the case p ≥ d+ 2, we have to use the value of gd(p) given in Theorem 1

and observe that gd(p) increases by d + 2 as p increases by 1. To compute M ,
we also observe that now p′ = d + 2. So, when p increases by 1, |B+| increases
by k+ 2 and M by d+ 3. Therefore, 2gd(p)−M increases by d+ 1 = k+ �d/2�,
ending the proof. ��

3.3 An Optimal Algorithm

In this subsection, we present an algorithm whose number of rounds meets the
lower bound described in the previous subsection. This algorithm corresponds
to the sequence of rounds obtained with Algorithm 2. In the next subsection,
we will show that this algorithm also gives optimal solution for larger values of
p and 1 ≤ d ≤ 4.

Algorithm 2. Gathering scheduler for Π−pΠp

1: if p > 0 then
2: Call recursively the gathering scheduler for Π−(p−1)Πp−1

3: for j ← p, . . . , d + 3 do
4: Let x = p − (d + 2) and i = j − (d + 2)
5: Schedule Pj in the same round as Xi

6: Schedule −Pj in the same round as −Xi

7: for j ← min{p, d + 2}, . . . , k + 2 do
8: if There is obstruction compatible with Pj then
9: Schedule Pj in the smallest round that is compatible with Pj

10: else
11: Schedule Pj in a new round
12: Schedule −Pj in the smallest round that is compatible with −Pj

13: for j ← min{p, k + 1}, . . . , 1 do
14: Schedule Pj in a new round
15: Schedule −Pj in a new round

Algorithm 2 schedules the calls in a sequence of pairs of symmetric rounds
in such a way that, if a pair of compatible critical calls {Xi,−Yj}, with x �= y,
is scheduled in a certain round, then the round immediately after consists of
the symmetric counterpart {−Xi, Yj}. Similarly, if a round consists of a single
positive call Xi, the next round consists of the single negative call −Xi. The
algorithm for d = 3 and d = 4 are illustrated in Table 1 and 2, respectively.

The rounds in Algorithm 2 are scheduled recursively in the sense that the
rounds involving the calls Pj and −Pj , for all j ∈ {1, 2, . . . , p}, are scheduled
after all the calls associated with the path consisting of p−1 positive and negative
nodes are scheduled in line 2. This is done without modifying the order of rounds,
but only by including the new calls in existing rounds, when possible, or creating

122 J.-C. Bermond, R. Corrêa, and M. Yu

Table 1. Pairs and obstructions in the rounds derived from Algorithm 2 for d = 3. For
every round shown in the table but those between horizontal lines, the algorithm also
includes its symmetric counterpart.

Round p = 1 p = 2 p = 3 p = 4 p = 5 p = 6 p = 7 p = 8 p = 9 p = 10 p = 11
1 11 −44 66 −99 1111

3 22 −33 77 −88

5 21 −55 76 −1010

7 32 −43 87 −98

9 31 −54 86 −109

11 42 −53 97 −108

13 41 −65 96 −1110

15 52 −64 107 −119

17 51 −75 106

19 {−63, 63} {−118, 118}
20 62 −74 117

22 61 −85 116

24 {−73, 73}
25 72 −84

27 71 −95

new pairs and obstructions. In addition, the new calls are scheduled greedly in
lines 9 and 12. More precisely, for the new calls outside the critical interval, they
are included in existing rounds. Then, the critical calls are handled. First, the call
Pmin{p,d+2} is paired with the first available and compatible obstruction −Xi.
Next, the symmetric counterpart is created by pairing −Pmin{p,d+2} with Xi. The
call Pmin{p,d+2}−1 is then paired with the next available and compatible positive
obstruction and so on, until −Pk+2 is paired with either the first available and
compatible obstruction (which will turn to be (P − 1)d−k) or with −Pk+2.

Algorithm 2 leads to the following upper bound for gd(p, p).

Theorem 3. gd(p, p) ≤ p(k+2)+�d/2� (p−k−1)+max{0, p−p1}, for p ≥ k+1,
where p1 = d + 1 + k(k+1)

2 .

Sketch of the proof. To prove the theorem, we count the number rd(p) of rounds
scheduled with Algorithm 2. First let us consider the odd case d = 2k + 1. The
proof is by induction on p. We indicate only half of the rounds (the other being
obtained by symmetry) which consist either of an obstruction or of a pair of
critical calls exclusively. The calls outside the critical interval are easily handled
in lines 5 and 6.

If p = k+1, all rounds are scheduled in lines 13-15. So, rd(k+1) = (k+1)(k+2).
Next, we consider p ≥ k + 2 and give the sequence Ap

d of obstructions left after
line 2 which have to be paired with the sequence

〈−P�,−P�−1, . . . ,−Pk+2〉, � = min{p, d+ 2}.

The first element of Ap
d is paired with −P�, the second with −P�−1 and so

on. When p is large enough (as can be seen in Table 1) the last element of

Gathering Algorithms on Paths Under Interference Constraints 123

Table 2. Similar to Table 1, but for d = 4

Round p = 1 p = 2 p = 3 p = 4 p = 5 p = 6 p = 7 p = 8 p = 9
1 11 −55 77

3 22 −44 88

5 21 −66 87

7 {−33, 33} {−99, 99}
8 32 −54 98

10 31 −65 97

12 {−43, 43}
13 42 −64

15 41 −76

17 {−53, 53}
18 52 −75

20 51 −86

22 {−63, 63}
23 62 −74

25 61 −85

27 {−73, 73}
28 72 −84

30 71 −96

32 {−83, 83}
33 82 −95

35 81

37 {−94, 94}
38 {−93, 93}
39 92

41 91

Ap
d is not an obstruction at step p − 1 but, in fact, Pk+2 which is paired with

−Pk+2.
First assume that p ≤ 2k + 2 = d + 1. It turns out that

rd(p) = rd(p− 1) + 2 (p− |Ap
d|) . (3)

Let p = k + 1 + i, where 1 ≤ i ≤ k + 1. Then,

Ak+1+i
d = 〈(k − i + 2)k−i+2, (k − i + 4)k−i+3, ..., (k + i)k+1〉,

which gives |Ap
d| = p− k − 1 and rd(p) = rd(p− 1) + 2 (k + 1).

When p ≥ d + 2, write s = k(k − 1)/2 and let ⊕ denote a concatenation of
sequences. In the two cases considered in the sequel, we replace 2 (p− |Ap

d|) by
2 (d + 2 − |Ap

d|) in (3) and obtain |Ap
d| = k + 2, as follows:

1. 2k + 3 ≤ p ≤ 2k + 2 + s. Let p = 2k + 2 + i, where 1 ≤ i ≤ s. The definition
of Ap

d in this case is recursive:

A2k+2+i
d =

〈21, 31, 42〉, if p = 5 and d = 3
〈(P − 2)1, (P − 1)2, P3〉, if p ≥ 6 and d = 3
A2k+i

d−2 ⊕ 〈(2k + 1 + i)k+1〉, otherwise

124 J.-C. Bermond, R. Corrêa, and M. Yu

The recurrence for the number of elements in A2k+2+i
d is

|Ap
d| =

{
3, if p ≥ 5 and d = 3
|Ap−2

d−2| + 1, otherwise

whose solution gives the desired result.
2. 2k + 3 + s ≤ p ≤ 3k + 2 + s = p1. Let p = 2k + 2 + s + i, where 1 ≤ i ≤ k.

Then, the cardinality of Ap
d follows directly from

A2k+2+i
d = 〈(s + k + i)1, (s + k + 1 + i)2, ..., (s + 2k)k−i+1〉⊕

〈(s + 2k + 1)k−i+1, (s + 2k + 2)k−i+2, ..., (s + 2k + i + 1)k+1〉.

Finally, assume p ≥ 3k+ 3 + s, in which case we write p = 3k+ 2 + s+ i, where
i ≥ 1. In this case, the last element of Ap

d is Pk+2, which is paired with −Pk+2.
Then, rd(p) = rd(p− 1) + 2 (d+ 2 − |Ap

d|) + 1 and

Ap
d = 〈(s + 2k + i + 1)1, (s + 2k + i + 2)2, ..., (s + 3k + i + 2)k+2〉.

Putting the pieces together, we get the recurrence

rd(p) ≤

(k + 1)(k + 2), if p = k + 1
rd(p− 1) + d + 1, if k + 1 < p ≤ p1
rd(p− 1) + d + 2, if p > p1.

(4)

When d is even (d = 2k+2, illustrated in Table 2), we obtain the result from the
case d−1 odd. First, observe that, if p < 3k+3+s, then Ap

2k+2 = Ap−1
2k+1⊕〈Pk+2〉.

Otherwise, Ap
d includes Pk+2 and pairs kept from Ap−1

2k+1 and Ap
2k+1 depending

on the call Xk+2, where x = 3k + 3 + s. A call Yj is kept from Ap−1
2k+1 if y < x

or (y = x and j > k+ 2), and from Ap
2k+1 otherwise. The recurrence is then the

same as above. The solution of (4) concludes the proof. ��
Combining Theorem 2 and Theorem 3, we get

Theorem 4. gd(p, p) = p(k + 2) + �d/2� (p− k − 1), for k + 1 ≤ p ≤ p1, where
p1 = d+ 1 + k(k+1)

2 .

3.4 A Lower Bound for p ≥ d + 2

Both Algorithm 1 and Algorithm 2 have a common property: Xi (resp. −Xi) ap-
pears in a round occurring before that of Xj (resp. −Xj) if i > j, and Xi (resp.
−Xi) appears after Yi (resp. −Yi) if x > y. Indeed, one can easily modify any
algorithm in order to satisfy such a property. For this reason, and without loss of
generality, we suppose that the obstructions are maximal in the following sense.

Assumption 1. If Xi (resp. −Xi) is an obstruction, then the following condi-
tions hold:

1. either x = p or (X + 1)i (resp. −(X + 1)i) is an obstruction; and
2. either i = 1 or −Xi−1 (resp. −Xi−1) is an obstruction.

Gathering Algorithms on Paths Under Interference Constraints 125

87654321

1

2

3

4

5

6

7

8

−8 −7 −6 −5 −4 −3 −2 −1

−1

−2

−3

−4

−5

−6

−7

−8

B+B−

A− A+

Fig. 2. Partial order � on the calls of an algorithm for p = 8 and d = 3

Moreover, the property mentioned above naturally defines a partial order %,
illustrated in Figure 2, in which Xi % Yj if x ≤ y and i ≥ j and −Xi % −Yj if
x ≤ y and i ≥ j. We may use the notation Xi ≺ Yj when x �= y or i �= j.

In the rest of this subsection, we present a lower bound for p ≥ d + 2. This
lower bound is based on the minimum number of obstructions that are induced
by %. The proofs are omitted due to space limitations.

Lemma 1 (Non-Crossing Lemma). An algorithm cannot have two different
pairs {−Xi,Wj} and {−Yk, Z�} with either −Yk ≺ −Xi and Wj ≺ Z�, or −Xi ≺
−Yk and Z� ≺ Wj.

The previous lemma is applied in the results that follow.

Lemma 2. P1 and −P1 are obstructions.

An immediate consequence is the optimality of Algorithm 2 for d = 1, 2. In
addition, we have

Lemma 3. If p ≥ d + 2, then every algorithm has at least 2k + 1 positive and
2k + 1 negative obstructions.

This leads to our final result

Theorem 5. If p ≥ d+ 2, then gd(p, p) = gd(p) + 1, for d = 1, 2 and gd(p, p) =
gd(p) + 3, for d = 3, 4.

4 Concluding Remarks

We presented algorithms for gathering information from nodes of a path with
2p+1 nodes to its center or one end node, satisfying reachability and interference

126 J.-C. Bermond, R. Corrêa, and M. Yu

constraints. Optimal solutions are given for the first case, and for the second case
when the interference distance d is at most 4. We conjecture that the algorithm
for the second case is also optimal for larger values of d, leading to gd(p, p) =
gd(p) + (k+1)(k+2)

2 , for p ≥ p1.
The results in this paper can be extended for more general cases; for instance,

when the gathering node is placed anywhere in the path. However, the choice of
the center of the path is the one that minimizes the number of rounds.

Acknowledgements

The two last authors thank the MASCOTTE project where some of the research
was done during their visits. Also, the authors would like to thank the anonymous
referees for the useful suggestions.

References

1. J-C. Bermond, J. Galtier, R. Klasing, N. Morales, and S. Pérennes. Hardness and
approximation of gathering in static radio networks. In FAWN06, Pisa,Italy, March
2006.

2. J.-C. Bermond and J. Peters. Efficient gathering in radio ids with interference. In
AlgoTel’05, pages 103–106, Presqu’le de Giens, May 2005.

3. P. Bertin, J-F. Bresse, and B. Le Sage. Accs haut dbit en zone rurale: une solution
”ad hoc”. France Telecom R&D, 22:16–18, 2005.

4. M. Christersson, L. Gasieniec, and A. Lingas. Gossiping with bounded size messages
in ad-hoc radio networks. In Proceedings of ICALP’02, volume 2380 of LNCS, pages
377–389. Springer-Verlag, 2002.

5. M. Chrobak, L. Gasieniec, and W. Rytter. Fast broadcasting and gossiping in radio
networks. Journal of Algorithms, 43(2):177–189, 2002.

6. M. L. Elkin and G. Kortsarz. Logarithmic inapproximability of the radio broadcast
problem. Journal of Algorithms, 52(1):8–25, 2004.

7. I. Gaber and Y. Mansour. Centralized broadcast in multihop radio networks. Journal
of Algorithms, 46(1):1–20, 2003.

8. L. Gasieniec and I. Potapov. Gossiping with unit messages in known radio networks.
In Proceedings of the IFIP 17th World Computer Congress, pages 193–205. Kluwer,
B.V., 2002.

9. R. Klasing, N. Morales, and S. Pérennes. On the complexity of bandwidth allocation
in radio networks with ste ady traffic demands. Technical report, INRIA Research
Report RR-5432 and I3S Research Report I3S/RR-2 004-40-FR, 2004.

On the Hardness of Range Assignment Problems

Bernhard Fuchs

Zentrum für Angewandte Informatik Köln,
Universität zu Köln, Weyertal 80, 50931 Köln, Germany

bfuchs@zpr.uni-koeln.de

Abstract. We investigate the computational hardness of the Connec-
tivity, the Strong Connectivity and the Broadcast type of Range
Assignment Problems in R2 and R3. We present new reductions for the
Connectivity problem, which are easily adapted to suit the other two
problems. All reductions are considerably simpler than the technically
quite involved ones used in earlier works on these problems. Using our
constructions, we can for the first time prove NP-hardness of these prob-
lems for all real distance-power gradients α > 0 (resp. α > 1 for Broad-
cast) in 2-d, and prove APX-hardness of all three problems in 3-d for
all α > 1. Our reductions yield improved lower bounds on the approx-
imation ratios for all problems where APX-hardness was known before
already. In particular, we derive the overall first APX-hardness proof for
Broadcast. This was an open problem posed in earlier work in this area,
as was the question whether (Strong) Connectivity remains NP-hard for
α = 1. Additionally, we give the first hardness results for so-called well-
spread instances.

1 Introduction

1.1 Problem Definition

Let S be a finite set of n points in the Euclidean space Rd. A range assignment
for S is a function r : S → R+. For convenience, we write rv instead of r(v). The
cost of a range assignment is defined as

cost(r) =
∑
v∈S

rα
v

for some real constant α > 0.
The underlying intuition is that the elements of S are given radio stations,

and one can choose for each station v ∈ S a corresponding data transmission
range (radius) rv. Sending data at radius rv consumes energy proportional to
rα
v . A prominent example for this setting is a wireless network. The parameter
α is called the distance-power gradient, and realistic values for α range from 1
to more than 6, according to [13], where the reader is directed to for further
reading on the background behind this model.

Let dist(u, v) denote the Euclidean distance between two points u, v ∈ Rn. A
range assignment r directly defines two kinds of graphs, which reflect communi-
cation properties of r:

T. Calamoneri, I. Finocchi, G.F. Italiano (Eds.): CIAC 2006, LNCS 3998, pp. 127–138, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

128 B. Fuchs

– Let �Gr = (S,Ar) be the directed communication graph of range assignment
r, where an arc (u, v) is contained in Ar iff u can send to v, i.e., the radius
of u is at least as large as the distance between u and v. In short, (u, v) ∈
Ar ⇔ ru ≥ dist(u, v).

– Let Gr = (S,Er) be the undirected communication graph of range assignment
r. Here, an edge {u, v} is included in Er iff u can send to v and v can send to
u, i.e., {u, v} ∈ Er ⇔ min{ru, rv} ≥ dist(u, v). In other words, Gr contains
exactly the antiparallel arcs of �Gr.

We can now define which kinds of requirements we might demand of a range
assignment r, and define the according optimization problems, i.e. the problem
to find a range assignment r with the respective property that has minimal
cost(r) among all range assignments satisfying this property.

– Connectivity (C): Gr must be connected.
– Strong Connectivity (SC): �Gr must be strongly connected.
– Broadcast (B): given a source node s, �Gr must contain an arborescence

rooted at s.

One can also consider each of these problems with an additional integer para-
meter h, which indicates the maximal number of hops a message may make on
its way from one station to another, i.e. there must be a path of length at most
h from s (resp. all nodes) to each other. We do not address this problem here,
which can also be regarded as setting h = n− 1.

In this context, the notion of well-spread instances in 2-d was defined in [7],
and approximation results for constant h for these special instances were shown
therein. Define

D(S) = max{dist(u, v) | u, v ∈ S}
δs(S) = min{dist(s, v) | v ∈ S \ {s}}
δ(S) = min{δs(S) | s ∈ S}

As in [7], we say that a family S of 2-dimensional instances is well-spread if there
exists some positive constant c such that, for any S ∈ S, δ(S) ≥ cD(S)/

√
|S|

holds. A possible generalization for other dimensions is to call a family S of
d-dimensional instances well-spread if there exists some positive constant c such
that, for any S ∈ S, δ(S) ≥ cD(S)/ d

√
|S| holds. Orthogonal regular grids of

full dimension are the prototypical well-spread instances. In the following, we
sometimes omit the specific set of stations S if it is clear from the context which
S is meant.

We are going to use reductions from Vertex Cover problems in graphs with
low degree. A vertex cover of a graph G = (V,E) is a subset V ′ ⊆ V of its nodes
that contains at least one endpoint of each edge e ∈ E. The Vertex Cover
problem (VC for short) is to find a vertex cover of minimum cardinality. VC is
among Karp’s original NP-complete problems [11]. It remains hard on various
restricted graph classes: Let k-Vertex Cover (or k-VC for short) denote the
Vertex Cover problem on graphs with maximum degree k. k-VC is APX-hard for

On the Hardness of Range Assignment Problems 129

k ≥ 3 [14]. Planar VC remains NP-complete (in fact even Planar k-VC for k ≥ 3)
[9], but admits a PTAS [1]. In [2], Berman and Karpinski gave the first explicit
inapproximability results for low degree VC. Quite some progress has been made
since then, and we are going to use the inapproximability results for 3-VC, 4-VC
and 5-VC by Chleb́ık and Chleb́ıková [4], which are (to our knowledge) currently
the best such results for these problems.

1.2 Previous Work and Our Contribution

For an introduction to this subject, we refer the reader to the survey [6], which
to our knowledge is still the current state of affairs on this subject, at least the
hardness results presented there. In table 1, previously known and our results
for these problems for certain ranges of α and d are listed. New results in this
paper are listed in bold print. Note that in the literature, the distance-power
gradient α is often implicitly assumed to be an integer. In this paper, we allow
α to be any positive real number.

All APX-hardness results, both in [7] and this article, are obtained by re-
ductions from low degree Vertex Cover problems. An entry ρ means that no
ρ-approximation algorithm can exist for the respective optimization problem,
unless P = NP. The actual numbers given here are obtained by combining our
resp. the construction in [7] with the inapproximability results for 3-, 4- resp.
5-VC by Chleb́ık and Chleb́ıková [4].

The first NP-hardness result for 3-d Range Assignment Problems was given
by Kirousis et al in [12]. Clementi et al [7] showed NP-hardness in 2-d and APX-
hardness in 3-d of SC for α ≥ 2. It was noticed by Calinescu et al [3] that their
constructions also work for C. In [5], these construcions were modified to prove
NP-hardness of B.

In this paper, we prove NP-hardness of C and SC for all constants α > 0,
and APX-hardness of C, SC and B for all α > 1. Note that B is trivially in P for
0 < α ≤ 1, as setting rs = maxv∈S{dist(s, v)} and rv = 0 for v �= s is an optimal
range assignment for this problem.

The case α = 1 for SC, i.e. SC with the Euclidean distance, was formulated as
an open problem in [6].1 Another open question in the same survey was if there
exists a PTAS for B in general dimension, which we answer negatively here by
giving the first APX-hardness result for this problem in 3-d. When α � 1, the
term for ρ in the APX-hardness result for SC remains larger than 1 + 1

702 . We
can also for the first time provide NP-hardness results for well-spread instances
for these problems, and, for α > d, the first APX-hardness results for these
problems.

The paper is organized as follows: We first review the techniques of Garey
and Johnson, and adapt their reduction for our purposes. In the sections there-
after, we describe the particular reduction for the different Range-Assignment
problems that we address here.

1 In the PhD-thesis of G. Rossi [15], it is stated without proof that the results in [7]
can be applied also when α = 1.

130 B. Fuchs

Table 1. List of previous and new results for different Range Assignment Problems

d = 2 (old) d ≥ 3 (old) d = 2 (new) d ≥ 3 (new)

C, 0 < α ≤ 1 — —
NP-hard
(also for w.s.i.)

NP-hard
(also for w.s.i.)

C, α > 1 — ∗ — ∗ NP-hard
(also for w.s.i.)

APX-hard
(ρ = 1 + 1

260)
C, α > d (also for w.s.i.)

SC, 0 < α < 1 — —
NP-hard
(also for w.s.i.)

SC, α = 1 —
NP-hard
(also for w.s.i.)

NP-hard
(also for w.s.i.)

SC, 1 < α < 2 — NP-hard [12]
APX-hard
(ρ = 1 +

√
2α−1

(7−√
2α)·52

)

SC, α ≥ 2 NP-hard [7]
APX-hard [7]
(ρ=1+ 1

495)
NP-hard
(also for w.s.i.)

APX-hard
(ρ = 1 + 1

260)
SC, α > d (also for w.s.i.)

B, 1 < α < 2 — —
NP-hard
(also for w.s.i.)

APX-hard
(ρ = 1 + 1

50)

B, α ≥ 2 NP-hard [5] NP-hard [5]
NP-hard
(also for w.s.i.)

B, α > d (also for w.s.i.)
(∗ NP-hardness for α ≥ 2 is implicit in [7].)

2 The Reduction of Garey and Johnson

Given a finite set of points S lying in the real plane R2, the Rectilinear Steiner
Tree problem seeks to find a tree interconnecting S using only horizontal and
vertical lines of shortest possible total length. In 1977, Garey and Johnson pub-
lished the first proof of the NP-hardness of this problem [9]. They also needed to
employ the result of Garey, Johnson and Stockmeyer that the planar version of
Vertex Cover still remains NP-hard, which was published one year earlier [10].

The line of reductions in [9] is the following:

Planar VC → Planar 3-VC → Planar Connected 4-VC → Rectilinear
Steiner Tree Problem in R2

where a connected vertex cover is a vertex cover whose node set induces a con-
nected graph.

In the last reduction of this line, an orthogonal drawing of a planar graph
with maximum degree 4 is needed; quite efficient methods for this have been
developed in graph drawing. Roughly speaking, in an orthogonal drawing of
a graph G, all vertices have integer coordinates, all edges are represented by
orthogonal polylines (i.e. piecewise axis-parallel lines between points with integer
coordinates), and polylines intersect only at their end-vertices.

On the Hardness of Range Assignment Problems 131

Lemma 1. It is possible to efficiently construct polynomial orthogonal draw-
ings of planar graphs with maximum degree 4 in 2-d and arbitrary graphs with
maximum degree 6 in 3-d with maximum edge-length O(n).

In fact, in [8] a 3-d orthogonal drawing with maximum edge length O(
√
n) is

constructed, and further references in this field can be found therein.
Let us now take a closer look at the reduction from Planar 3-Vertex Cover to

Planar Connected 4-Vertex Cover. Variations of this step will be included in all
later proofs.

Fig. 1. An instance D of 3-VC Fig. 2. The reduced Connected 4-VC in-
stance D̄. Backbone edges are dashed.

Maybe this construction is best explained by a picture. Figures 1 and 2,
taken from [9], show a planar drawing D of an example instance of 3-VC and
our reduced Connected 4-VC instance D̄, which is almost but not entirely the
same as DGJ , which we call the graph constructed in [9]. D̄ is constructed in
the following way (for a rigorous proof, the reader is of course invited to refer to
the original proof in [9]):
Let D = (V,E) be a planar graph with maximum degree 3 with a fixed planar
embedding. All through this paper, n = |V | and m = |E| are the number of
vertices resp. edges of the original VC-instance D.

– First, split each edge e = {x, y} ∈ E into three edges {x, xe}, {xe, ye} and
{ye, y} by adding two new vertices xe, ye per edge. Call those new vertices
C (“connectors”) and the split edges E′. We call this intermediate graph
D′ = (V ∪C,E′).

– For each vertex c ∈ C, place one new vertex bc,R in each adjacent region R
(one or two), and connect bc,R to c. For each vertex v ∈ V of the original
graph, place one new vertex bv,R in any neighboring region R, and connect
bv,R to v.

– In each region R, connect all vertices b·,R by a walk along the border of the
region, like in figure 2. Collect the additional edges of this and the previous
step in the set Ē, and the nodes in the set B (“backbone”).

Now we have described the construction of the planar graph D̄ = (V ∪ C ∪
B,E′ ∪ Ē) with a fixed embedding.

132 B. Fuchs

The following lemma is implicit in the construction of Garey and Johnson:

Lemma 2. D has a vertex cover of size k ⇔ D′ has a vertex cover of size k+m.

The constructed graph D̄ that we present here is in fact slightly different from
the graph DGJ constructed in [9]: In DGJ , each backbone node b ∈ B has a
“spike”, i.e., it is additionally connected to a copy of itself which has no other
neighbor. The single purpose of these spikes is to ensure that, wlog., the whole
set of backbone nodes B is included in every vertex cover of D̄. Additionally, one
connector per edge in D must lie in every vertex cover, providing connectivity of
the backbone. As every node has a backbone neighbor, all feasible vertex covers
for D̄ are wlog. connected. So the size of a minimum vertex cover for D is k iff
a minimum connected vertex cover of DGJ has size k + m + |B|.

In the context of range assignments for radio stations, we will not need these
spikes to ensure that the backbone is connected.

3 Hardness Results for Connectivity

3.1 NP-Hardness of Connectivity in 2-d

After this preparatory work, which is exactly the same as in [9] (except for leaving
out the spikes), we complete the construction for our first Range Assignment
Problem:

– As in [9], construct an orthogonal drawing of D̄ in the plane.
– Scale the whole drawing by factor 3.
– Replace each line in the drawing by a set of equidistant points in the following

way: Place one station at one end of the line, and:
• For each polyline representing an edge originally in E′, place stations on

every point with integer coordinates, i.e. points at distance one.
• For each line representing some part of a backbone edge (those in Ē),

place stations at distance 3
4 .

By scaling by a factor c we mean multiplying the coordinates of each point with
c. By a vertex (or node) station we mean a station representing a node of the
graph D′. By an edge-end we mean the last station on an edge before the vertex
station.

Note that because of the scaling step, the first and last station on a straight
line segment always have integer coordinates, and the minimum distance between
two vertex stations is 3. See figures 3 and 4 for an illustration of this reduction.

Originally given a planar instance D of 3-Vertex Cover with a fixed embed-
ding, we have constructed a blown-up version D̄ and, by our last step, associated
a set of points S in the plane with D. We now claim that a solution for the Con-
nectivity problem for S also automatically yields a minimal vertex cover for D.

Theorem 1. For any α > 0, Connectivity in R2 is NP-hard.

On the Hardness of Range Assignment Problems 133

Fig. 3. A small part of an orthogonal
drawing of a graph D̄

Fig. 4. The resulting set of stations, with
a minimal configuration and the induced
communication graph

Before we begin to sketch the proof of this theorem, we formulate a simple
lemma, which is fundamental in the hardness proofs for the Connectivity and
Strong Connectivity types of problems.

Lemma 3. In a range assignment r for a set of stations S that satisfies the
Connectivity or the Strong Connectivity property, rs ≥ δs(S) must hold
for all s ∈ S.

Proof. If there was a station s with rs < δs(S), it could not send data to any
other station, meaning that there cannot be an arc/edge leaving s. So Gr cannot
be connected, and �Gr cannot be strongly connected, a contradiction.

As a direct consequence of Lemma 3, it makes sense to define a minimal con-
figuration rmin in the following way: For all s ∈ S, set rmin(s) = δs. A feasible
range assignment r for Connectivity or Strong Connectivity will satisfy
r ≥ rmin.

Proof. of Thm. 1: (Sketch) Let us look at the minimal configuration rmin for S:
All stations on edges in E′ have rmin = 1, and all stations on edges in Ē, the
backbone edges, have rmin = 3

4 . As all vertex stations have at least one adjacent
edge from the backbone, all those stations also have rmin = 3

4 .
Observe that the undirected communication graph of the minimal configura-

tion, Grmin , already has quite large connected components (cf. fig. 4): There is
one connected component corresponding to each edge in E′, and the backbone
is one connected component already. For notational convenience, we refer to a
component corresponding to an edge e ∈ E′ as an edge-component. We also use
the terms incident or adjacent with edge-components or vertex stations when we
mean that the corresponding edges or vertices have this property.

Let M = cost(rmin) be the cost of the minimal configuration, and let k be
the number of vertices in a minimal vertex cover for D. One has to argue that a
minimal range assignment with property Connectivity has cost M+γ(m+k),

134 B. Fuchs

Fig. 5. An unwanted connection szenario Fig. 6. The cheapest way to connect
edges. Automatically, all incident edges
are attached.

where γ = 1 −
(3

4

)α. Roughly speaking, one has to convince him-/herself that
it is always best to use vertex stations to get edge components connected to
the backbone (Fig. 6), and in particular, it never pays to connect adjacent edge
components directly (Fig. 5).

3.2 NP-Hardness for Well-Spread Instances

Notice that the construction above is already “nearly” well-spread: The minimal
distance is a constant. So each set of stations on a straight line segment already
is a well-spread instance in R. But for S being well-spread (in R2), there may be
“too few” points in S. In order to ensure that the construction is well-spread we
fill it up in such a way that the additional stations play no role in the reduction,
i.e. they are never increased above their minimal distance in a minimal solution,
and so only contribute to the cost of the minimal configuration.

To do so, we use the following trick: By construction, the outer face is bounded
completely by backbone edges, all lying on a grid with mesh distance 3

4 . We now
simply “fill up” the outer face with stations of this grid in such a way that
the outer stations of this grid form a square of some desired size. For instance,
twice the maximum of the width and height of the drawing would suffice to
produce well-spread instances with constant c ≥ 3

4
1√
2
. Obviously, in a minimal

configuration the additional vertices all have radius 3
4 and all are in the same

connected component as the backbone, and it does not make sense to increase
any of their radii. It is obvious how to fill up such a well-spread square to a
well-spread cube.

Theorem 2. For any α > 0, Connectivity on well-spread instances in R2

and R3 is NP-hard. ��

On the Hardness of Range Assignment Problems 135

3.3 APX-Hardness of Connectivity in 3-d

The construction in the NP-hardness proof for Connectivity is far from being
approximation-preserving: The fixed cost M of the minimal configuration is far
larger than the variable cost of the vertex cover. More precisely, M would have to
be bounded by some (preferably low) constant factor times the number of vertices
n. To the best of our knowledge, no orthogonal 3-d graph drawing method is
known that uses only O(n) total length, so we cannot hope to achieve this goal
with this construction when α ≤ 1. However, the situation changes when α > 1:
Because the power function is now strictly convex, smaller radii cost far less than
big radii. This means we can make the power of the internal radii on the edges
negligible by inserting a large number of stations on every edge at a very small
distance. A polynomial number of stations suffices. This fact has already been
exploited by Clementi et al in their constructions [7], and is not proved here.

Lemma 4. For α > 1, we can achieve that for the total power consumption of
a minimal configuration, we have M = rmin < c for any constant c > 0 with a
polynomial number s of stations.

Before we begin with the construction, we state the results of Chleb́ık and
Chleb́ıková [4] for the non-approximability of 3–, 4– and 5–Vertex-Cover, which
are to our knowledge currently the best results for these problems.

Lemma 5 (Chleb́ık and Chleb́ıková, [4]). It is NP-hard to approximate the
solutions of:

– 3–Vertex Cover to within 1 + 1
99 ,

– 4–Vertex Cover to within 1 + 1
52 ,

– 5–Vertex Cover to within 1 + 1
50 ,

even on 3-, 4- resp. 5-regular graphs.

Given a low-degree instance of Vertex Cover D = (V,E), we describe now how
to build the graph D̄ which later gets drawn in the Euclidean space R3. Note
that we cannot use our reduction to prove APX-hardness of Range Assignment
Problems in 2-d, because Planar Vertex Cover is not APX-hard, but there exists
a PTAS for this problem [1]. This time, as we do not have to observe planarity,
the construction of the backbone becomes very simple: Let the vertices of V
be given in some arbitrary order V = {v1, . . . , vn}. The backbone vertices B
contain one copy of each original vertex: B = {v′1, . . . , v′n}, and the backbone
edges consist of one edge between each original node and its copy, and a cycle
through all backbone nodes: Ē = {{vi, v

′
i} | 1 ≤ i ≤ n} ∪ {{v′i, v′i+1} | 1 ≤ i ≤

n − 1} ∪ {{v′n, v′1}}. Call D̄ = (V ∪ B,E ∪ Ē). Given a constant 0 < ε < 1,
choose s according to Lemma 4 and construct a polynomial set of stations S in
the following way:

– Construct an orthogonal drawing of D̄ in R3.
– Scale the drawing by factor 3.

136 B. Fuchs

– For all polylines representing original edges e ∈ E, remove the first and last
open unit interval of the polyline (i.e. do not erase any integer points).

– Replace all remaining unit line segments with s + 1 stations along this line
at distance 1/s.

Here, the scaling step is needed to ensure that at least one length unit of each
edge remains. Note that when the maximum degree in D is ∆, the maximum
degree of D̄ will be ∆ + 1. So according to Lemma 1, we must have ∆ ≤ 5. We
use this set of stations in order to prove

Theorem 3. For any α > 1, it is NP-hard to approximate Connectivity in
R3 within 1 + 1

260 . For α > d ≥ 3, approximating Connectivity within 1 + 1
260

remains NP-hard even when restricted to well-spread instances.

Proof. The components of the minimal configuration are still the backbone and
the original edges. Additionally to the vertex stations of a VC in D, one edge-end
per edge has to have radius 1. As the VC is at least as big as m/∆, we have an
L-reduction with factor ∆+ 1. Setting ∆ = 4 produces the claimed result.

We can embed a reduced instance in a cube, containing a grid of small enough
mesh distance. One can check that for α > d, the power consumption of such a
cube can be made arbitrarily small using a polynomial number of stations.

4 Hardness Results for Strong Connectivity

In the remainder of this article, we will adapt our reductions for Connectivity
for the Strong Connectivity and Broadcast problems. In fact, the reduc-
tion for NP-hardness will be exactly the same as for Connectivity, but the
proof will slightly differ. The main difference is that now directed links are estab-
lished already when one of the two stations has a large enough radius. Despite
this difference, for α ≥ 1 the proof is very similar to the connected case. For
α < 1, some additional scaling will be needed.

Theorem 4. For any α > 0, Strong Connectivity in R2 is NP-hard, al-
ready for well-spread instances.

Concerning APX-hardness, the only difference to the construction for Connec-
tivity is that now the outgoing arc of an edge does not have to be parallel to
the ingoing arc. If some edge-end is increased to 1, and the incident vertex is
not, it could indeed be cheaper to increase the border station further to

√
2 and

send to another adjacent edge. This could indeed be cheaper if α < 2, and as
this is the only thing we have to worry about, let us assume in the following that
1 < α < 2.

We will now present a slightly changed reduction: To the original Vertex Cover
instance D = (V,E), no new vertices but only new edges will be added. For vertex
set V = {v1, . . . , vn}, add a directed Hamiltonian cycle Ē = {(vi, vi+1) | 1 ≤
i ≤ n− 1} ∪ {(vn, v1)} as the backbone, already completing the construction of
D̄ = (V,E ∪̇ Ē). The direction of the added arcs is needed only for notational

On the Hardness of Range Assignment Problems 137

convenience later on. Note that D̄ may contain parallel backbone and original
edges, which is not a problem.

The construction is now similar to the one before; the new thing is we also
erase some part of backbone lines. We begin with the same construction as in
Theorem 3, and choose β = α

√
2 −

√
2

α
. We additionally erase the first2 open

interval of length β on every backbone edge. This ensures that all vertex stations
have, wlog., at least radius β. The parameter β is chosen so that it is no longer
cheaper to use non-vertex stations to connect components. Using this set of
stations, one can prove

Theorem 5. It is NP-hard to approximate Strong Connectivity in R3

within 1 + 1
260 , if α ≥ 2, and within 1 +

√
2α−1

(7−
√

2α)·52 , if 1 < α < 2.

5 Hardness Results for Broadcast

As the optimal solution when 0 < α ≤ 1 is to have s directly broadcast to all
stations, and all other stations have radius 0, we assume α > 1. To prove NP-
hardness, we use the Garey-Johnson backbone construction, draw it in the plane,
and replace the lines with stations at a small enough distance as in the APX-type
construction. This ensures that the overhead is small enough without arguing
via a minimal configuration. APX-hardness is proven by the same construction
as for APX-hardness of Connectivity. Exactly the vertex nodes of a vertex
cover will have a significant radius.

Theorem 6. For any α > 1, Broadcast in R2 is NP-hard, already for well-
spread instances.

Theorem 7. For any α > 1, approximating Broadcast in R3 better than
1 + 1

50 is NP-hard. For α > 3, approximating Broadcast in R3 within 1 + 1
50

remains NP-hard even when restricted to well-spread instances.

6 Open Problems and Acknowledgements

It is still an intriguing question if the above problems remain APX-hard in the
plane or allow a PTAS. A similar reduction as in this paper from a planar APX-
hard problem might produce such a result.

An interesting question in Graph Drawing would be whether graphs of low
degree could be drawn with total length in O(n) in 3-d. If so, this would imply
APX-hardness of C and SC in 3-d even for α = 1. On the other hand, a PTAS
for this case would imply that such drawings cannot exist, unless P = NP.

The author would like to thank Walter Kern for suggesting this problem,
Dominique Andres and Christoph Buchheim for helpful discussions, Therese
Biedl for reference [8] and Marek Karpinski for reference [4].

2 i.e. the interval starting at the tail of e.

138 B. Fuchs

References

1. B. Baker, Approximation Algorithms for NP-Complete Problems on Planar Graphs,
Journal of the ACM 41 (1): 153–180, 1994.

2. P. Berman and M. Karpinski, On Some Tighter Inapproximability Results, in: Proc.
26th ICALP, pp. 200–209, 1999. Also available as ECCC Report TR98-065 at
http://eccc.uni-trier.de/eccc/.

3. G. Călinescu, I. Măndoiu and A. Zelikovsky, Symmetric Connectivity with Minimum
Power Consumption in Radio Networks, Proc. IFIP TCS 223, pp. 119–130, 2002.

4. M. Chleb́ık and J. Chleb́ıková, Inapproximability results for bounded variants of
optimization problems, Proc. FCT (2003), LNCS 2751: 27–38, 2003. Also available
as ECCC Report TR03-026.

5. A. Clementi, P. Crescenzi, P. Penna, G. Rossi and P. Vocca, A Worst-Case Analysis
of an MST-based Heuristic to Construct Energy-Efficient Broadcast Trees in Wire-
less Networks. Technical Report 010, University of Rome “Tor Vergata”, Math. De-
partment, 2001.

6. A. Clementi, G. Huiban, P. Penna, G. Rossi and Y. Verhoeven, Some Recent Theo-
retical Advances and Open Questions on Energy Consumption in Ad-Hoc Wireless
Networks, in: Proc. 3rd Workshop on Approximation and Randomization Algo-
rithms in Communication Networks (ARACNE): 23–38, 2002.

7. A. Clementi, P. Penna and R. Silvestri, On the Power Assignment Problem in
Radio Networks, Mobile Networks and Applications 9 (2): 125–140, April 2004.
Also available as ECCC Report TR00-054.

8. P. Eades, C. Stirk and S. Whitesides, The techniques of Kolmogorov and Bardzin
for three-dimensional orthogonal graph drawings, Information Processing Letters
60 (2): 97–103, 1996.

9. M. Garey and D. Johnson, The Rectilinear Steiner Tree Problem is NP-Complete,
SIAM Journal of Applied Mathematics 32 (4): 826–834, 1977.

10. M. Garey, D. Johnson and L. Stockmeyer, Some simplified NP-Complete Problems,
Theoretical Computer Science 1: 237–267, 1976.

11. R. Karp, Reducibility among combinatorial problems, in: R. Miller and J. Thatcher
(eds.), Complexity of Computer Computations, 85–103, 1972.

12. L. Kirousis, E. Kranakis, D. Krizanc and A. Pelc, Power consumption in packet
radio networks, Theoretical Computer Science 243: 289–305, 2000.

13. K. Pahlavan and A. Levesque, Wireless Information Networks, Wiley-Interscience,
1995.

14. C. H. Papadimitriou and M. Yannakakis, Optimization, approximation, and com-
plexity classes, Journal of Computer and System Sciences 43, 425–440, 1991.

15. G. Rossi, The Range Assignment Problem in Static Ad-Hoc Wireless Networks
(PhD-thesis), University of Siena, 2003.

Black Hole Search in Asynchronous Rings
Using Tokens

S. Dobrev1, R. Královič2, N. Santoro3, and W. Shi3

1 School of Information Technology and Engineering, University of Ottawa,
Ottawa, K1N 6N5, Canada

2 Dept. of Computer Science, Comenius University, Mlynska dolina,
84248 Bratislava, Slovakia

3 School of Computer Science, Carleton University,
Ottawa, K1S 5B6, Canada

Abstract. A black hole is a highly harmful host that disposes of visiting
agents upon their arrival. It is known that it is possible for a team of
mobile agents to locate a black hole in an asynchronous ring network if
each node is equipped with a whiteboard of at least O(log n) dedicated
bits of storage. In this paper, we consider the less powerful token model:
each agent has has available a bounded number of tokens that can be
carried, placed on a node or removed from it. All tokens are identical
(i.e., indistinguishable) and no other form of communication or coordi-
nation is available to the agents. We first of all prove that a team of
two agents is sufficient to locate the black hole in finite time even in
this weaker coordination model. Furthermore, we prove that this can be
accomplished using only O(n log n) moves in total, which is optimal, the
same as with whiteboards. Finally, we show that to achieve this result
the agents need to use only O(1) tokens each.

1 Introduction

1.1 The Framework

Whereas exploration problems by mobile agents have been extensively studied
in the context of safe networks, the reality of networked systems supporting
mobility agents is that these systems are highly unsafe. Indeed, the most pressing
concerns are all about security issues and mainly in regards to the presence of
a harmful host (i.e., a network node damaging incoming agents) or of a harmful
agent (e.g., a mobile virus infecting the network nodes) [2, 10, 11, 13, 14].

The computational and algorithmic research has just recently started to con-
sider these issues. The computational issues related to the presence of a harmful
agent have been explored in the context of intruder capture and network decon-
tamination; in the case of harmful host the focus has been on the black hole (Bh),
a node that disposes of any incoming agent without leaving any observable trace
of this destruction [3, 5, 6, 7, 12]. In this paper, we continue the investigation of
the black hole search problem.

T. Calamoneri, I. Finocchi, G.F. Italiano (Eds.): CIAC 2006, LNCS 3998, pp. 139–150, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

140 S. Dobrev et al.

As mentioned, a black hole is a network site that disposes of any incoming
agent without leaving any observable trace of this destruction. It models e.g.
a node where a resident process (e.g., an unknowingly installed virus) deletes
visiting agents or incoming data; furthermore, any undetectable crash failure
of a site in an asynchronous network transforms that site into a black hole. In
presence of a black hole, the first important goal is to determine its location. To
this end, a team of mobile system agents is deployed; their task is completed if,
within finite time, at least one agent survives and knows the links leading to the
black hole. The research concern is to determine under what conditions and at
what cost mobile agents can successfully accomplish this task, called the black
hole search (Bhs) problem. The main complexity parameter is the size of the
team; i.e., the number of agents used in the search. Another important measure
is the amount of moves performed by the agents in their search.

Both solvability and complexity of Bhs depend on a variety of factors, first
and foremost on whether the system is asynchronous [4, 5, 6, 7] or synchronous
[3, 12]. Indeed the nature of the problem changes drastically and dramatically.
For example, both in synchronous and asynchronous systems, with enough agents
it is possible to locate the black hole if we are aware of its existence; however, if
there is doubt on whether or not there is a black hole in the system, in absence
of synchrony this doubt can not be removed. In fact, in an asynchronous system,
it is undecidable to determine if there is a black hole [6]. The consequences of
this fact are numerous and render the asynchronous case considerably difficult.
In this paper we continue the investigation of the asynchronous case.

Other important factors influencing solvability and complexity are the amount
of a priori knowledge held by the agents (e.g., number n of nodes, map of net-
work, etc.) and the means offered by the system for agents communication and
coordination (e.g., whiteboard, blackboard, reliable message passing, etc). In
particular, all existing investigations on Bhs in asynchronous systems have as-
sumed the presence of a powerful inter-agent communication mechanism, white-
boards, at all nodes. In the whiteboard model, each node has available a local
storage area (the whiteboard) accessible in fair mutual exclusion to all incoming
agents; upon gaining access, the agent can write messages on the whiteboard and
can read all previously written messages. This mechanism can be used by the
agents to communicate and mark nodes or/and edges, and has been commonly
employed in several mobile agents computing investigations (e.g. see [1, 8, 9]).

Although many research questions are still open, the existing investigations
have provided a strong characterization of the asynchronous Bhs problem using
whiteboard. In particular, it is possible for two agents with a map of the network
to determine the location of the black hole in any bi-connected graph1 using
O(n log n) moves, provided there are O(log2 n) bits whiteboards [6].

In this paper we consider an asynchronous ring network. The ring is the
sparsest bi-connected graph and the one for which the cost (in terms of number
of moves) for black hole search with whiteboards is the worst: Ω(n log n). Using

1 Edge bi-connectivity is required for Bhs in asynchronous systems [6].

BH Search in Asynchronous Rings Using Tokens 141

quite a different protocol, two agents can however locate the black hole with
O(n log n) moves using O(log n) bits whiteboards [5].

We consider ring networks in the less powerful token model, often employed in
the exploration of safe graphs. In this model, each agent has available a bounded
number of tokens that can be carried, placed on a node or on a port or removed
from it. All tokens are identical (i.e., indistinguishable) and no other form of
communication or coordination is available. Some natural questions immediately
arise: is the Bhs problem is still solvable with this weaker mechanism, and if so
under what conditions and at what cost. Notice that the use of tokens introduces
another complexity measure: the number of tokens. Indeed, if the number of
tokens is unbounded, it is possible to simulate a whiteboard environment; hence
the question immediately arises of how many tokens are really needed.

1.2 Our Results

The network under consideration is an asynchronous ring network with a black
hole. In such a network, in presence of whiteboards, the black hole search prob-
lem can be solved with team of just two agents, and performing only Θ(n log n)
moves [5]. We consider the same topology and examine the Bhs problem using
tokens.

We first of all prove that a team of two agents is sufficient to locate the black
hole in finite time even in this weaker coordination model. Furthermore, we
prove that this can be accomplished using only O(n log n) moves in total, which
is optimal, the same as with whiteboards. Finally, we show that the agents need
to use only O(1) tokens. These results are established constructively: we do
present protocols that allow a team of two agents to correctly locate the Bh
with that number of moves and with those few tokens. The first protocol uses a
total of ten tokens, while in the second that number is reduced to 3.

Hence we show that, although tokens are a weaker means of communication
and coordination, their use does not negatively affect solvability and it does
not even lead to a degradation of performance. On the contrary, whereas the
protocols using whiteboards assumed at least O(log n) dedicated bits of storage
at each node, the ones proposed here use only three tokens in total.

2 Model and Basic Tools

2.1 The Model and Basic Observations

Let R be a anonymous ring of n nodes (i.e. all the nodes look the same, they do
not have distinct identifiers). Operating on R is a set of k agents a1, a2, ..., ak.
The agents are anonymous (do not have distinct identifiers), mobile (can move
from a node to a neighbouring node) and autonomous ; each has computing and
limited memory capabilities (O(log n) bits suffice for all our algorithms). All
agents have the same behaviour, i.e. follow the same protocol, and start at the
same node (however, they may start at different and unpredictable times), called
homebase (Hb for brevity). The agents do not know k, nor do they know how

142 S. Dobrev et al.

many agents have been awaken before. Since all agents start at the same node,
we can assume that the ring is oriented, i.e. all ports are labelled left and right
consistently in the whole ring2.

The agents can interact with their environment and with each other only
through the means of tokens. A token is an atomic entity that the agents can
see, place it in the middle of a node or on a port and/or remove it. Several tokens
can be placed on the same place. The agents can detect the multiplicity, but the
tokens themselves are undistinguishable from each other. Initially, there are no
tokens placed in the network, and each agent starts with some fixed number of
tokens (depending on the algorithm).

The basic computational step of an agent (executed either when the agent
arrives to a node, or upon wake-up) is to examine the node (returns a triple
of non-negative integers - multiplicity of tokens at the middle of the node, on
the right port and on the left port, respectively), modify the tokens (by plac-
ing/removing some of the tokens at the current node) and either fall asleep or
leave the node through either left or right port. The whole computational step
is performed as an atomic action, i.e. as if it took no time to execute it.

The computation is asynchronous in the sense that the time an agent sleeps
or is on transit is finite but unpredictable. The links obey FIFO rule, i.e. the
agents do not overtake each other when traveling over the same link in the same
direction.

Note that the tokens are the only means of inter-agent communication we
consider. There is no read/write memory (whiteboards) in the nodes the agents
can access, nor is there face-to-face communication. In fact, the agents do not
even need to be capable of seeing each other - they only see the tokens.

One of the nodes of the ring R is highly harmful – it disposes of every agent
that enters it, without leaving any trace of this destruction observable from the
outside. Due to this behaviour, this node is called Black Hole (or Bh for brevity).
All the agents are aware of the presence of the Bh, but at the beginning the
location of the Bh is unknown. The goal is to locate the Bh, i.e. at the end there
must be at least one agent that has not entered the Bh and knows the location
of the Bh.

The primary complexity measure is size: the number of agents needed to
locate the Bh. Other complexity measures we are interested in are token size:
the number of tokens each agent starts with, cost : the total number of moves
executed by the agents (worst case over all possible timings) and time: the time
it takes to locate the black hole, from the moment the second3 agent wakes-up
until the black hole is located, assuming transiting an edge takes at most one
time step.

2 The agents can simply use the notions of left/right according to the port labelling
at the Hb, remembering as they move how does the labelling at the current node
relate to the labelling at the Hb.

3 The first agent might immediately enter the black hole, and the second agent might
wake-up arbitrarily late, resulting in unbounded time complexity if we measure from
the time the first agent wakes up.

BH Search in Asynchronous Rings Using Tokens 143

Since the first move of an agent can end up in the Bh, we immediately get:

Lemma 1. [5] At least two agents are needed to locate the black hole.

Because of the asynchrony, the agents can not distinguish a slow node from the
Bh. From this we get:

Lemma 2. [5] It is impossible to find the Black Hole if the size of the ring is
not known.

2.2 Basic Tools and Techniques

Cautious Walk with Token. At any moment of execution, the ports can
be classified as unexplored – no agent has exited or arrived via this port yet,
dangerous – an agent has exited via this port, but no agent has arrived yet via
it, or safe – an agent has arrived via this port.

As our primary complexity measure is the number of agents needed, we aim
to prevent unnecessary agent disappearances by making sure that no two agents
enter the Bh over the same link. This is achieved by forbidding the agents to
leave a node via a dangerous port. This means the agents have to mark the
dangerous ports. In order to facilitate progress, the agents are also required to
remove the dangerous marks whenever they learn that a port marked dangerous
in fact leads to a non-Bh node: When an agent that left dangerous mark on a
port of node u arrives at node v, it immediately returns to u, and removes the
dangerous mark to signal that the link from u to v has became safe. Afterwards
(provided it is not interrupted by a message in u) the agent returns to v and
proceeds from there.

This technique has been introduced in [5] and named Cautious Walk. In [5]
the whiteboards have been used to mark dangerous and safe ports. In this paper,
the tokens placed on a port (one or two, depending on context) mean the port
is dangerous (however, there will be cases where tokens might appear also on
non-dangerous ports); by default, there are no tokens on safe and unexplored
ports and the agents distinguish them from the context. (As we aim to use O(1)
tokens overall, while O(n) ports will eventually become safe, we cannot afford
to mark the safe ports by tokens.)

Elimination Technique. In order to minimize the cost, i.e. the total number of
moves executed by all agents, we use elimination technique to effectively reduce
the number of active agents to two – the first two agents to wake-up. The idea
is to have the first two agents mark the Hb by their tokens, the agents waking
up later check the marks at the Hb and become passive if they see there are
already two agents active.

3 Algorithm Divide with Token

3.1 General Description and Ideas

A node is called explored if it has been visited by an agent, unexplored otherwise.
The set of the explored nodes is called explored region; the part of the ring

144 S. Dobrev et al.

consisting of unexplored nodes the unexplored region. As all agents start at the
Hb, the explored region (and thus also the unexplored region) is connected. The
two extremal explored nodes having an unexplored neighbour are called Last-
Safe-Place (LSP) (at the very beginning, the Hb is the sole LSP). The LSPs
keep changing while the explored region is getting larger and larger.

The main technique for locating the Bh is borrowed from [5]: The two agents
logically partition the unexplored region into two connected parts of (almost)
equal size, and then each agent goes to explore its part using Cautious Walk.
Since there is only one Bh, exactly one agent (say agent a) will finish exploring
its part. The agent a then traverses the explored part until it reaches the LSP of
agent b. At this moment, a knows the distance between LSPs, i.e. the size of the
explored part. Since n is known, a also knows the size of the unexplored part.
If the unexplored part consists of a single node v, a determines that the Bh is
located at v and terminates the algorithm (b has already been terminated by
entering the Bh). Otherwise, a logically divides the remaining unexplored region
into two connected, almost-equally sized work assignments Wa and Wb for a and
b, such that Wb contains the node to which b is currently heading. Afterwards,
a leaves a message for b informing it about Wb and goes on to explore Wa.
The process is repeated until the unexplored region contains single node – the
Bh.

The above general description omits details of how the agents communicate
– the format of the message, identifying the LSP, implementing Cautious Walk.
In [5] whiteboards were used to store the message (and the status of the ports).
In this paper, we aim to implement the above approach using only tokens, and
in fact using three tokens in total.

The first step in this direction is to use tokens only for dangerous ports, not
for safe or unexplored ones. This can be easily achieved, as all ports between the
dangerous ports leaving from LSPs are implicitly safe. The second step – using
tokens to encode the message is trickier. Note that it is sufficient to leave as a
message for b not the size of Wb, but the number of times a has finished its part
before b has made any progress. b can re-compute the size of its part by that
many times halving the size of its last work assignment (and being careful to
use the same rounding as a used when the unexplored area had odd size). This
means the message needs only to be of size at most log n and allows a to update
its message by simply incrementing it4.

The basic technique we use is to encode the message by the distance between
the LSP of b and a token (end-of-message marker) left by a in the explored area.
In fact, in order to minimize the number of tokens used, a leaves a message
x by moving b’s cautious walk token x nodes in the direction opposite to b’s
exploring. This way, when/if b returns to move its token and does not find it
there, it knows there is a message waiting for it. The basic technical difficulty

4 An alternative approach of leaving Wb has synchronization problems: Updating Wb

means making it smaller, which would be unsafe if the other agent is reading the
message in the same time. This can be solved by leaving n/2 − Wb as a message, as
Wb is always at most n/2.

BH Search in Asynchronous Rings Using Tokens 145

lies in the fact that the tokens are undistinguishable and seeing a token might
mean very different things, depending on the context. Careful case analysis is
applied, moreover the algorithm crucially relies on the FIFO requirement and
the atomicity of actions (so the agents cannot overtake each other on a link or
in a node).

3.2 Detailed Description

The following variables(local to the agent) are maintained by each agent through-
out the execution:

– Steps – the size of the remaining work assignment
– HBpos and LSPpos – relative position with respect to the Hb and the LSP

of the agent; this allows the agent to know when it is at the Hb or its LSP
without using tokens for marking them

– MsgILeft – the last message left by this agent
– DistC – used to calculate the distance between LSPs
– Msg4Me – the message left for me by the other agent

The tokens are used to mark dangerous ports during cautious walk (a token
on a port), as end-of-message marks (a token in the middle of a node), and in
the Hb to limit the number of active agents to two. As the number of possible
situations at the Hb is quite high, the following careful encoding at the Hb is
used to limit the number of tokens used: (the triplet represents the number of
tokens on the left port, middle, and right port of the Hb, respectively):

– (0, 0, 2) – the right port is dangerous (i.e. the Hb is the LSP of the right
agent), the left port is unexplored (the second agent has not woken-up yet)

– (0, 0, 1) – the right port is safe (the LSP of the right agent already moved to
the right), the left port is unexplored

– (2, 1, 0) – both the right and the left port are dangerous, there is a message 0
waiting for the right agent (the second agent woke up before the first agent
explored its first port, in the initial step it would have changed (0, 0, 2) to
(2, 0, 1), but then immediately in Seeking transformed that to (2, 1, 0)),

– (1, 0, 1) – the right port is dangerous, the left port is safe
– (2, 0, 0) – the left port is dangerous, the right port is safe
– (1, 0, 0) – both ports are safe
– (1, 1, 0) – if seen by the right agent whose LSP is the Hb: the left port is

safe, there is message 0 waiting for me; if seen by the left agent whose LSP
is the Hb: the right port is safe, there is message 0 waiting for me

– other configurations do not occur

Note that although configuration (1, 1, 0) has two possible meanings, there will
never be confusion as it does not occur in the case where the Hb is LSP for both
agents (at least one agent must have finished its assignment in order to leave a
message).

The algorithm is described for the right agent a. The algorithm for the left
agent b is almost identical, the only differences are using opposite directions, and
using the floor function instead of ceil when calculating the work assignment.

146 S. Dobrev et al.

In the initialization step, the elimination technique is used to limit the num-
ber of active agents to two, as well as to choose the right agent a and the
left agent b. Note that unlike in [5], the initial work assignment of the first
agent is the whole unexplored part – we do not want to deal with the case
that the first agent explored its part, while the second agent has not started
the algorithm yet. When the second agent starts the algorithm, it will seek the
first agent to divide the workload based on what remains unexplored at that
moment.

The procedure Checking is executed by an agent that finds a notice that a
message has been left for it. The agent reads the message by traversing leftward
until an end-point marker of the message (a token in the middle of a node) is
found. Note that for the first message this means zero leftward moves. Moreover,
a message is left only when both agents are active, therefore there is no confusion
if the end-of-message marker is found at the Hb.

Algorithm 1. Initialization and Checking
1: Initialization:(upon initial wake-up in the Hb)
2: if the right port has no token on it then
3: put two tokens on the right port
4: execute procedure Explore(n − 1) as the right agent a
5: else if the left port has no token on it then
6: move one token from the right port to the left port and add additional token

to the left port
7: execute procedure Seeking() as the left agent b
8: else become Passive immediately
9: end if

10: procedure Checking
11: go left until a token is found in the middle of a node u, counting in Msg4Me

the number of steps
12: remove the token, return to your LSP and put the token on the right port
13: for (i = 0; i ≤ Msg4Me; i++) do // compute the new work assignment
14: Steps = �Steps/2� // again floor by the left agent
15: end for
16: execute Explore(Steps)
17: end procedure

In procedure Explore an agent explores its work assignment using Cautious
Walk, checking in the progress for messages from the other agent.

5 The number of tokens there might have changed from 2 to 1 if u is the Hb and
the second agent had waken-up meanwhile, but that still does not mean a message
notification. Note that this is a place where the code for the left agent is not simple
translation of the code for the right agent. The test by the left agent will be: there
is a token on the left port of u, or u is the Hb and there are two tokens on the left
port of u.

BH Search in Asynchronous Rings Using Tokens 147

Algorithm 2. Explore, Seeking and Check&Split

1: procedure Explore(Steps)
2: while true do
3: // might enter the Bh in this step
4: go from the current node u to its right neighbour v
5: return back to node u // doing the Cautious Walk here
6: if there is a token on the right port of u5 then // no message for me yet
7: remove one token from the right port of u
8: move to v, put a token on the right port of v and decrement Steps.
9: if Steps = 0 then

10: // finished exploring my assignment, now find the other agent
11: exit the loop and execute procedure Seeking()
12: end if
13: else // there is no token on the right port, i.e. message waiting for me
14: exit the loop and execute procedure Checking()
15: end if
16: end while
17: end procedure

18: procedure Seeking
19: go left until a token is found at node u, counting in DistC the distance travelled
20: if found a token on the left port of a non-Hb node, or two tokens on the left

port of the Hb then
21: // u is the LSP of the other agent, leave a message 0
22: move a token from the left port to the middle of u
23: execute Check&Split(DistC)
24: else if found one token in the middle of a node u then
25: // this is the endpoint of my last message, agent b did not read it yet
26: // update/increment the message
27: move the token one step to the right and increment MsgILeft
28: execute Check&Split(DistC + MsgILeft −1)
29: else if found one token on the left port of the Hb then // Hb, ignore
30: ignore and continue on l.19 as if nothing found
31: end if
32: end procedure

33: procedure Check&Split(Dist)
34: if Dist = n − 2 then // single unexplored node remaining
35: the Bh is in the remaining unexplored node, terminate
36: else
37: return to your LSP and execute Explore(�(n − Dist)/2�)
38: end if
39: end procedure

In procedure Seeking the agent determines the distance between the LSPs
and either locates the Bh (if there is single unexplored node remaining) or
leaves/updates the message for the other agent.

148 S. Dobrev et al.

3.3 Correctness and Complexity Analysis

Lemma 3. At most two agents will become active and put a token somewhere.

Proof. By construction: The second agent to wake-up places two tokens on the
left port of the Hb (line 6 of Initialization) and one of these tokens stays there
for the whole execution. Due to line 8 no other agent becomes active.

Lemma 4. If there is a message left for an agent, the agent detects the presence
of the message and correctly computes its contents.

Proof. We prove the lemma for the agent a exploring to the right. The proof
for agent b is analogous. When a finds out that there is a message waiting
for it (by not finding its token when returning from cautious walk, lines 13-
14 of Explore), according to line 11. of Checking it travels to the left to
locate the end-of-message token placed in the middle of a node. Due to FIFO
and atomicity, it cannot overtake the agent b laying the message, i.e. it will
always find the end-of-message token (even if b is concurrently incrementing the
message). Moreover, the searching for the end-of-message token is safe, i.e. a will
not travel past b’s LSP: A non - 0 message is left only by an agent that already
explored its assignment, i.e. the distance between LSPs must be at least �n/2�.

Let us define the work assignment of the right/left agent as follows:

– If the agent is traversing the dangerous link from its LSP and there is a
message waiting for it, the work assignment of the agent is only the node on
the other side of the dangerous port

– Otherwise, the work assignment of the agent is the Steps nodes to the
right/left of agent’s LSP.

Lemma 5. At any moment, the work assignments of the right and left agents
are disjoint. Moreover, if there is no message waiting for an agent then the work
assignments form a partition of the part of the ring delimited by the LSPs (or
the LSP of the right agent and the Hb, if there is single agent active) and not
containing the Hb.

Proof. By induction over the execution. According to line 4 in Initialization,
the initial work assignment of the right agent a covers all nodes between the Hb
and a’s LSP (which is the Hb). This property is maintained by construction of
Explore, until the second agent b leaves a message for a.

If there is a message waiting for an agent (say a), the agent b at the moment
it left the message computed its work assignment as half of the part remaining
unexplored between the LSPs. Since this part contains at least two nodes (oth-
erwise b would terminate), half of it (= b’s assignment) does not contain the
node a is currently heading to.

Finally, if there are no messages waiting, it is either at the very beginning
when there is only one agent (already dealt with) or after one agent (say a) read
a message m and recomputed its Steps according to lines 13-14 of Checking.

BH Search in Asynchronous Rings Using Tokens 149

Consider the value d of variable DistC of agent b at the moment when it left the
first message (containing 0) for agent a. Since b has just finished its assignment,
by induction hypothesis the current value of a’s Steps equals to n − d (i.e. the
value b started with halving). At the moment a reads the messagem, b had halved
its Steps m+1 times (line 37 in Check&Split), and that is exactly what a does
in lines 13-14 of Checking (also applying Lemma 4). The partitioning works
properly even when halving odd-sized workloads because one agent uses ceiling
and the other uses floor. Afterwards, the invariant of the lemma is maintained
by construction of Explore until another message is left.

Since, by construction, the only previously unexplored nodes an agent enters are
in its work assignment, we immediately get:

Corollary 1. At most one agent enters the Bh.

Another consequence of Lemma 5 is that at any moment there is at most one
message present, and at most one agent executing Seeking or Check&Split.

From construction (line 37 of Check&Split and lines 13-16 or Checking)
it follows that the parameter Steps is at least halved in each consecutive call to
Explore (i.e. the unexplored area is at least halved). Since no waiting is specified
in any place of the algorithm; Seeking, Check&Split and Checking each take
at most n − 2 moves and either terminate or are followed by a call to Explore,
the algorithm terminates in O(n logn) steps. As the only way to terminate is to
detect there is a single unexplored node, this node must contain the Bh.

Note that at any moment at most three tokens are present in the system: one
remaining at the Hb and one by each agent used for marking the dangerous port
and messaging. This follows from:

- the first agent puts two tokens (line 3 of Initialization), the second agent
adds one more token (line 6) and no more agents become active (line 8)
- at any other place of the algorithm an agent puts a token that it has previously
removed from some other place (moving the dangerous port mark, leaving a
message, incrementing a message or reading a message).

Putting all together we obtain:

Theorem 1. Algorithm Divide with Token correctly locates the Bh employing
two agents and three tokens in total, spending O(n logn) moves.

4 Conclusions

In this paper we answered the following question: Is it possible to locate a black
hole in an asynchronous ring network using tokens instead of whiteboards?

We answered this question affirmatively, showing that this can actually be
achieved without any loss of performance. In fact, we present two algorithms,
both using O(1) tokens, that allow a team of two agents to determine the location
of the black hole with Θ(n logn) moves.

150 S. Dobrev et al.

This result constitutes is a significant improvement over previous results,
which used both stronger communication media (whiteboards) and more mem-
ory in the network (O(n), resp. O(log n) after some modifications).

The second protocol presented here uses only three tokens in total, while
still maintaining the optimal cost of Θ(n log n) moves. An intriguing question
is whether it is possible to further reduce the number of tokens to 2, and what
would be the cost in such case.

References

1. L. Barriere, P. Flocchini, P. Fraigniaud, and N. Santoro. Election and rendezvous
in fully anonymous systems with sense of direction. Theory of Computing Systems,
2006. To appear. Preliminary version in Proc. of SIROCCO 2003.

2. D. M. Chess. Security issues in mobile code systems. In Proc. Conf. on Mobile
Agent Security, LNCS 1419, pages 1–14, 1998.

3. J. Czyzowicz, D. Kowalski, E. Markou, and A. Pelc. Searching for a black hole in
tree networks. In Proc. 8th International Conference on Principles of Distributed
Systems (OPODIS 2004), pages 35–45, 2004.

4. S. Dobrev, P. Flocchini, R. Kralovic, G. Prencipe, P. Ruzicka, and N. Santoro.
Optimal search for a black hole in common interconnection networks. Networks,
2006. To appear. Preliminary version in Proc. of OPODIS 2002.

5. S. Dobrev, P. Flocchini, G. Prencipe, and N. Santoro. Mobile search for a black
hole in an anonymous ring. Algorithmica, 2006. To appear. Preliminary version in
Proc. of DISC 2001.

6. S. Dobrev, P. Flocchini, G. Prencipe, and N. Santoro. Searching for a black hole
in a arbitrary networks: optimal mobile agent protocols. Distributed Computing,
2006. To appear. Preliminary version in Proc. of PODC 2002.

7. S. Dobrev, P. Flocchini, and N. Santoro. Improved bounds for optimal black hole
search in a network with a map. In Proc. of 10th International Colloquium on
Structural Information and Communication Complexity, pages 111–122, 2004.

8. P. Fraigniaud, L. Gasieniec, D. Kowalski, and A. Pelc. Collective tree exploration.
In 6th Latin American Theoretical Informatics Symp., pages 141–151, 2004.

9. P. Fraigniaud and D. Ilcinkas. Digraph exploration with little memory. In 21st
Symp. on Theoretical Aspects of Computer Science, pages 246–257, 2004.

10. M.S. Greenberg, J.C. Byington, and D. G. Harper. Mobile agents and security.
IEEE Commun. Mag., 36(7):76 – 85, 1998.

11. F. Hohl. A model of attacks of malicious hosts against mobile agents. In Proc. of
the ECOOP Workshop on Distributed Object Security and 4th Workshop on Mobile
Object Systems, LNCS 1603, pages 105 – 120, 1998.

12. R. Klasing, E. Markou, T. Radzik, and F. Sarracco. Hardness and approximation
results for black hole search in arbitrary graphs. In Proc. 12th Coll. on Structural
Information and Communication complexity (SIROCCO’05), pages 200–215, 2005.

13. R. Oppliger. Security issues related to mobile code and agent-based systems. Com-
puter Communications, 22(12):1165 – 1170, 1999.

14. T. Sander and C. F. Tschudin. Protecting mobile agents against malicious hosts.
In Proc. of Conf on Mobile Agent Security, LNCS 1419, pages 44–60, 1998.

On Broadcast Scheduling with Limited Energy

Christian Gunia�

University of Freiburg, Georges-Köhler-Allee 79,
79110 Freiburg, Germany

gunia@informatik.uni-freiburg.de

Abstract. Given a set of requests, we tackle the problem of finding
‘good’ broadcast schedules aiming at the minimization of their total flow
time. While running at a fixed speed, in the considered model the server
is only allowed to use a certain amount of energy to perform these broad-
casts. For this task we present optimal and approximation algorithms,
respectively, depending on the number of distinct request types and their
transmission lengths. The problem is solvable within polynomial time in
the offline setting if the transmission lengths of all request types are iden-
tical and the number of distinct request types is constant. The presented
algorithm can be generalized to obtain an approximation on instances
without identical transmission lengths. Regarding the online version, we
show lower and upper bounds on the competitive ratio of an optimal al-
gorithm, including randomized algorithms and algorithms using resource
augmentation. These lower and corresponding upper bounds match (at
least asymptotically).

Keywords: Algorithms, Computational complexity, Mobile and net
computing.

1 Introduction

In recent years, taking nature as archetype multi-agent systems consisting of
dozens of autonomous agents are used to solve various kinds of problems. These
range from problems of industrial manufacturing [13] to distributed constraint
satisfaction problems [12]. Typically, the agents require a solid and dependable
communication among each other in order to work efficiently. This is often pro-
vided by means of a wireless network. Using this medium communication is
implicitly done via broadcasts. As battery power of these agent is strongly lim-
ited and sending a message requires a significant amount of energy, strategies
to realize energy savings are inevitable. We consider situations in which such
a system has to offer its service at least for a given period of time; the sys-
tem’s operation time. Furthermore, we focus on situations where agents request
information from other agents. Have a look at one single agent, which can be
seen as a server. Since many other agents potentially want to cooperate with it,
usually the same piece of information—called a page—is requested by a large
� The author was supported by the German Research Foundation (DFG) by the re-

search training program (Graduiertenkolleg) No 1103 ‘Embedded Microsystems’.

T. Calamoneri, I. Finocchi, G.F. Italiano (Eds.): CIAC 2006, LNCS 3998, pp. 151–162, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

152 C. Gunia

number of agents. One single broadcast could answer all of these requests at
a single blow. Unfortunately, the requests are typically not issued at the same
point of time. One could envisage accumulating all requests and broadcast only
once afterwards. As the energy consumption for broadcasting the page is inde-
pendent of the number of clients waiting for it, the energy saving compared to
many single broadcasts can be significant. Therefore, the lifetime of an agent
can be prolonged or its manufacturing costs and weight can be reduced due to a
smaller battery. However, by following this strategy requests that arrived early
have to wait an unreasonable amount of time until being satisfied. Likely, this
slows down solving the task the multi-agent system was designed for. In other
words, the provided Quality of Service (QoS) decreases. Hence, the server tries
to find a tradeoff between the obtained QoS and the energy consumption needed
to provide it.

We obtain a similar situation by observing the current developments con-
cerning mobile devices, like handheld computers (e. g., PDAs). In recent years,
their computational power, storage capacity and possibilities of communication
(via bluetooth, wireless lan, etc.) significantly extended. One could imagine, run-
ning a peer-to-peer application like eDonkey1 or BitTorrent2 on it, sharing small
files like pictures or articles. The communication between them is established
via a wireless connection to the Internet. Requests for the same file can be an-
swered via broadcasts. Therefore, a file transmitted through the Internet could
be tagged with multiple addresses. Hence, it is only sent once to an access-point
and accordingly multiplicated on its way through the Internet. Consequently,
the energy consumption within the PDA is (almost) independent of the actual
number of receivers. Once again, a tradeoff between the QoS and the energy
consumption within the PDA has to be found. A quite common and mostly ad-
equate measure of the QoS is the flowtime: the accumulated waiting time of the
requests until they are satisfied, which ought to be minimized.

Both presented examples show that we have to deal with additional problems
when designing algorithms for mobile systems. Probably the most outstanding
one is the significantly limited energy capacity. Reducing the energy consumption
can be seen as an architectural design constraint for stationary applications
([8],[11]) but it becomes a crucial issue for mobile applications.

Notations. We will have a look at the model described in the following: Given a
set of requests for a server, minimize their total flow time while not exceeding the
server’s predetermined amount of energy C; there exists one broadcast channel,
i. e., only one page can be transmitted simultaneously, thereby satisfying all
requests for that page issued so far. The server is allowed to select its broadcast
schedule but always transmits at a fixed speed. For the rest of this work m
defines the number of pages stored on the server while n denotes the number of
requests. We refer to wi as the transmission length of the i-th page and define
W := (w1, . . . , wm) and dim(W) = m. Since it consumes one energy unit to
broadcast a page of unit length, W also identifies the vector of the pages’ energy
1 http://www.edonkey.com
2 http://www.bittorrent.com

On Broadcast Scheduling with Limited Energy 153

consumption. W denotes
∑m

i=1 wi and C the server’s energy capacity. The j-th
request is abbreviated by rj := (tj , pj), meaning it arrives at time tj and is
requesting page pj . We assume all requests to be issued within the time interval
[0, T] which represents the system’s operation time (otherwise, all requests not
issued within [0, T] would be neglected). A schedule S := (σ1, . . . , σk) with
σi := (τi, πi) broadcasts page πi at time τi. We consider only feasible schedules,
i. e., schedules respecting the following three conditions:

1. The broadcasts do not overlap, i. e., ∀i ∈ {1, . . . , k − 1} : τi+1 − τi ≥ wπi .
2. Each request is answered, i. e., ∀i∈{1, . . . , n}∃j∈{1, . . . , k} :ti ≤ τj∧pi = πj .
3. Respect the energy capacity, i. e.,

∑k
i=1 wπi ≤ C.

Let γi denote the beginning of the broadcast that answers ri. Then S yields a
total flow time of

f(S) :=
n∑

i=1

γi − ti + wpi . (1)

Since we tackle only feasible schedules, f(S) is defined properly. In both the
offline and online version we provide the algorithm with the time interval [0, T].
It is not difficult to verify that this parameter does not present any additional
information to an offline algorithm—remember that all requests are issued within
[0, T]. However, it can contain worthwile information for an online algorithm.
Therefore, we denote the given offline problem by BCOff,W

C , where C denotes
the available energy capacity. In the online version, abbreviated by BCOn,W

T,C , the
algorithm knows the latest point of time at which a request can occur. Since it
is not clairvoyant, it can only take T , the requests issued till time t and its past
behavior into account when deciding what to do at time t.

Previous Work. While Clementi et al. [3] deal with topological aspects of broad-
cast problems and present an approximation algorithm for the energy consump-
tion by choosing appropriate transmission ranges, we focus on the timing aspect
of the problem: When to send which page to ensure a certain QoS? Results
of empirical studies on this as well as valuable background information can be
found in [1]. Bansal, Coppersmith and Swiridenko presented an O(log2(T +n))-
approximation algorithm for this problem without regarding an energy limit.
Erlebach and Hall [5] showed the NP-hardness of this problem even if all
stored pages require the same transmission time. However, since they use a
linear number of distinct pages this does not rule out the possibility to find
an optimal schedule if the number of distinct pages is constant. Kalyanasun-
daram, Pruhs and Velauthapillai presented an O(1)-speed O(1)-approximation
algorithm for the offline version of this problem in [7] using the principle of
resource-augmentation (see, [6]). They also considered the online version and
provided a worst-case analysis for different QoS measures. In this context, the
term s-speed means that the online algorithm is allowed to send s pages within
one time unit while the offline algorithm has to get by on one page per time
unit. In [10] various strategies of client-side caching and server-side ordering
are discussed, if—according to our terminology—the pages consist of different

154 C. Gunia

segments. The paper shows that broadcasting segments out of order does not
improve any reasonable QoS measure, while the capability of receiving them out
of order has a great impact on them. The aspects of preemption, i. e., interrupt-
ing the broadcast of a page and later return to that point, are discussed in [4]
by providing a O(4 + ε)-speed O(1 + 1/ε)-approximation algorithm.

Our Results. To our best knowledge none of the previous works on timing aspects
of broadcast problems directly tackle the trade-off between QoS and energy con-
sumption. This is the first comprehensive analysis of timing aspects on broadcast
problems considering energy consumption. The paper is divided into two main
parts: offline and online versions of the introduced problem. Throughout each
of both sections, we start by dealing with an easy version of the problem and
extend the scenario step by step. Therefore, we introduce three different input
classes: We have a look at situations when there exists a) just one page, b) m
pages with equal transmission length and c) m pages with variable transmission
lengths. For the offline version, we present a polynomial time algorithm com-
puting the optimal solution for any instance of BCOff,W

C with dim(W) = 1, i. e.,
just one page. Afterwards, this algorithm is extended to provide the same result
on instances with W = (w, . . . , w) and, finally, give an approximation algorithm
for general BCOff,W

C , i. e., input class c) with variable transmission length.
In Section 3 we turn to the online version. After starting by analyzing the

competitive ratio of deterministic algorithms, we will also look at the influ-
ence of randomization and resource-augmentation. The table in Figure 1 gives
an overview of our results for the online case (for the definition of the aug-
mentation factor λ we refer to Section 3). Thereby, each line corresponds to

deterministic randomized

m = 1
UB T

λC + 1 UB 5
8 · T

λC−w + 2

LB T
λC + 1 LB 1

4 · T
λC−w + 1

m > 1
UB m · T

λC−(m−1)w + 1 UB m · T
λC−(m−1)w + 1

LB m
3 · T

λC−mw LB m
32 · T

λC−mw

variable
UB 3m · T

λC−W + 1 UB 3m · T
λC−W + 1

LB m
3 · T

λC−W LB m
32 · T

λC−W

Fig. 1. Overview of lower (LB) and upper bounds (UB) for the competitive ratio

one of the introduced input classes. Once more first taking care of instances
with dim(W) = 1, we obtain lower and upper bounds on the competitive ratio
of an optimal, deterministic, resource-augmented online algorithm that match
up to a constant additive. For randomized online algorithms on this problem
as well as for resource-augmented, randomized online algorithms on BCOn,W

T,C

On Broadcast Scheduling with Limited Energy 155

with W = (w, . . . , w) these bounds match asymptotically. Finally, generalizing
the ideas used for the former results leads to asymptotically matching lower
and upper bound on the competitive ratio of an optimal, randomized, resource-
augmented online algorithm on BCOn,W

T,C for general W . As broadcasts are typi-
cally used in wireless communication environments receiving a message is almost
as expensive (in terms of energy) as sending it. Therefore, it is important for
the clients to (roughly) know the point of time their request will be answered,
so that they can deactivate their receiver until then and save energy. Hence, we
also point out in Section 3 that this can be guaranteed for the online version of
the problem without negatively affecting the provided QoS. Section 4 concludes
and presents problems left open.

2 Offline-Algorithms

We suppose the reader to be familiar with the concept of dynamical program-
ming. Some proofs within this paper are omitted due to space limitations. We
start by constructing an optimal schedule, i. e., a schedule that provides a mini-
mal total flow time while sticking to the energy limit. Note that in BCOff,w

C one
broadcast of the page keeps the channel busy for w time units and consumes
w energy units. Hence, this induces a number of available broadcasts, namely
C/w. We assume this to not exceed n; otherwise, we round it down to n. Since
an optimal schedule at most broadcasts once per request, this does not change
the situation significantly. Therefore, the following theorem proves the problem
to be in P .

Input: input instance for BCOff,w
C

Result: flowtime of optimal schedule

create a table holding the optimal flowtime for each feasible (i, j, b, c, k).1

initialize table acccording to2

(i, j, b, c, 0) :=
Pj

α=i((tα+1 − tα) · Pα
β=b hβ) and (i, i, b, c, k) := (i, i, b, c, 0)3

for increasing j − i and k do4

T (l, d′, b′, k′) := (i, l − 1, b, b′, k′) +
Pm−1

α=b′ fl(tα) · hα + (m, j, c′, c, k − k′ − d′)5

where c′ := min{β | tl + (d′ − 1) · w < tβ}6

and m := min{β | tl + d′ · w ≤ tβ}7

and fl(tα) := minβ{f := tl + β · w − tα | f ≥ 0} − tα holds.8

(i, j, b, c, k) := min{T (l, d′, b′, k′) | feasible l, d′, b′, k′}9

end10

return the minimum of:11

{(1, n − 1, 0, b, C/w − 1) +
Pn

α=b fn(tα) · hα} ∪12

{(1, i − 1, 0, b, C/w − �(tn − ti)/w� − 1) +
Pn

α=b fi(tα) · hα} for all feasible b, i.

Fig. 2. The algorithm BcOpt

Theorem 1. Let n ∈ N and C,w ∈ R+. The optimal solution of BCOff,w
C for n

requests is computable in time O((C/w)3n7) and space O((C/w)n4).

156 C. Gunia

Proof. (sketched) It is not difficult to see that an optimal schedule consists of
blocks of broadcasts; each one of these blocks starts at a request time ti. The main
idea of algorithm BcOpt is to partition a given problem into three parts: the
broadcast block, one subproblem ‘before’ the block and one ‘after’ the block; by
using dynamical programming the optimal solutions of these ‘smaller’ subprob-
lems are already known. We have to ensure that we obtain an optimal solution
for the given problem from the the concatenation of the optimal solutions of
these parts. Therefore, we specify the interfaces between the three parts.

Thinking this out, we define (i, j, b, c, k) to represent the subproblem where
broadcasts are only valid within [ti, tj], the requests rb, rb+1, . . . , rc−1 have to
be regarded and k broadcasts are available. We call such a tuple feasible if it
represents a ‘senseful’ subproblem (details are omitted from this sketch). How-
ever, there are O(kn4) feasible tuples. For i = j and k = 0 the subproblems can
be solved directly as seen in Step 3 of algorithm BcOpt (Figure 2). The other
entries of the table in Step 1 can be computed iteratively: if we fix the broadcast
block and the first unanswered request rb′ and rc′ at its beginning and ending, re-
spectively, we obtain the situation shown in Figure 3. Hence, we can compute the
solution for (i, j, b, c, k) from smaller instances, i. e., instances that contain less re-
quests or have less broadcasts available, by computing the solution for each possi-
ble broadcast block with each possible carryover and choosing the best one (Step
4). The value we are interested in is either (i, n− 1, 0, b, C/w− 1)+

∑n
j=b fn(tj)

if the last broadcast is done at time tn, or the second term in Step 11. The
latter is the case if the last broadcast is performed after T because it constitutes
the ending of a broadcast block beginning at tα and, consequently, containing
�(tn − tα)/w� + 1 broadcasts.

ti tl−1 tl tm−1 tm tj

b b′ c′ c

(i, l − 1, b, b′, k′) (m, j, c′, c, k − k′ − d′)d′ BCs

time

Fig. 3. Partition of the problem (i, j, b, c, k) into subproblems

The runtime of BcOpt derives directly from the number of feasible tuples
and the fact that each iteration in Step 4 can be done in O(k2n2) time steps. By
storing not only the flowtime for (i, j, b, c, k) but also the choice made in Step 9
we use backtracking to obtain the actual schedule. �

By presenting an algorithm that solves BCOff,w
C optimally, the previous theorem

shows the problem is in P . The next theorem shows properties of an approx-
imation algorithm for that problem, although the actual algorithm is omitted

On Broadcast Scheduling with Limited Energy 157

from this paper due space limitations. We cite it since the upper bounds on its
running time and memory requirements differ by a factor Ω(n2) compared to
BcOpt.

Theorem 2. Let n ∈ N and C,w ∈ R+. A 2-approximation of BCOff,w
C for n

requests is computable in time O((C/w)2n3) and space O((C/w)2n).

We aim at generalizing Theorem 1 to situations where more than one page exists.
Its main idea was the creation of optimal broadcast blocks of ‘right lengths’ at
‘right times’. This was quite simple in the case m = 1 since fixing the starting
point, the carryover and the length of a broadcast block completely determines
it. Specifying these values in the situation of m > 1, fixes the starting points of
the broadcasts within the broadcast block. However, the question remains which
page to send at which time point.

In the general situation, there are requests r1, . . . , rn for the m pages given.
The broadcast block starts at tl and spends C energy units. Let b′ be the vector
consisting of the number of unsatisfied requests at time tl and c′ is the corre-
sponding vector at time tl+C . Both vectors, the starting point of the broadcast
and its length are given. Therefrom, the starting points of the broadcasts, namely
τ1, . . . , τC/w, fulfill τi = tl+i·w. The task is to find an assignment of σ1, . . . , σC/w

minimizing the total flow time while satisfying all given constraints.

Lemma 1. Considering the above stated problem, it is possible to decide whether
there exists a schedule satisfying all constraints and to compute the one mini-
mizing the total flow time within time O((C/w)mn3m+2) and space O(n2m+2).

Theorem 3. Let m,n ∈ N, C ∈ R+ and W := (w, . . . , w) with w ∈ R+ and
dim(W) = m. The optimal solution of BCOff,w

C for n requests is computable in
time O((C/w)3n4m+3) and space O((C/w)mn2m+2).

Proof. (sketched) A slight modification of algorithm BcOpt will do the trick.
We still partition the problem into three parts: two subproblems PL and PR,
and a broadcast block B between them. By combining the proofs of Lemma 1
and Theorem 1 it is possible to identify the subproblems by 5-tuples, namely
(i, j, b, c, k), whereas i and j define the valid interval for broadcasts, b and c spec-
ify the carryover at the beginning and the end of the subproblem, and k identifies
the number of broadcasts available. In comparison to BcOpt the carryovers b
and c are vectors containing one component for each page type. Let b′ and c′

denote the carryover at the broadcast block’s beginning and end, respectively.
According to Lemma 1, the optimal schedule and flow time is computable

given the block’s starting point, length, b′ and c′. Hence, the following equation
holds:

(i, j, b, c, k) = min
B,k′

{
(i, l − 1, b, b′, k′) + flow(B)+

(m, j, c′, c, k − k′ − d′)
}
, (2)

whereas flow(B) denotes the flow time of the requests satisfied by B. The
problem’s solution is computed in two steps. First, the optimal schedules for all

158 C. Gunia

broadcast blocks are determined using Lemma 1. This is done in time
O((C/w)2mn5m+3) by using a table of size O((C/w)n2m+1). Afterwards, we com-
pute all 5-tuples in time O((C/w)2n4m+4) with a table of size O((C/w)n2m+3)
using (2). The values we are interested in are very similar to the ones of algorithm
BcOpt but are omitted here. �

Finally we show that for general instances at least an approximation can be
obtained within polynomial time.

Theorem 4. Let m,n ∈ N, C ∈ R+ and W = (w1, . . . , wm) ∈ (R+)m. A (1 +
3m + 3m · wmax/wmin)-approximation of BCOff,W

C for n requests is computable
in pseudopolynomial time, i. e., poly(C/wmin, n).

3 Online-Algorithms

Definition 1. For λ ∈ N we call an online algorithm λ-augmented if it does at
most λ · C broadcasts on a problem BCOn,W

T,C .

The idea behind resource augmentation is to compensate for the loss of clairvoy-
ance an online algorithm experiences in comparison with an offline algorithm by
allowing it to use more resources. Note that an 1-augmented online algorithm
is not augmented at all. In our considered model, giving an algorithm more
resources, obviously results in a better competitive ratio. Have a look at the
probably easiest algorithm for this problem: Independent of the requests, broad-
cast each T/(wC) time units. Even this algorithm improves its competitive ratio
nearly by a factor of λ−1 when provided with λC instead of C energy units.
However, the next theorem proves this factor λ−1 to be the most any optimal
algorithm can gain from resource augmentation.

Input: input instance for BC
On,(w,...,w)
C

α := 1 − m + λC/w1

for i = 1, . . . , α do2

pi := (i mod m) + 13

ti := iT/α4

broadcast page pi at time ti5

end6

broadcast page i = 1, . . . , m at time T + (i − 1) · w.7

Fig. 4. The algorithm BcDetm

Theorem 5. Let λ ∈ N and C, T,w ∈ R+ with C ≤ T . The competitive ra-
tio of each deterministic, λ-augmented online algorithm for BCOn,w

T,C is at least
T/(λC) + 1. The competitive ratio of BcDet1 is T/(λC) + 1.

As already mentioned in the introduction, broadcasts are often done via wire-
less communication devices where sending and receiving of a message is nearly

On Broadcast Scheduling with Limited Energy 159

equally expensive in terms of energy usage. Regarding this, Theorem 5 shows
that using algorithm BcDet1 (Figure 4)—whose predictable broadcasts allow
clients to turn off their receivers within the ‘idle-periods’—is worst-case optimal.

Since resource augmentation for itself does not yield a major advantage, let
us have a look at randomization.

Input: input instance for BCOn,w
C

α := λC/w − 11

for i = 1, . . . , α do2

draw ti uniformly at random from [w + iT/α , (i + 1)T/α)3

broadcast at time ti4

end5

broadcast at time T6

Fig. 5. The algorithm BcRand

Theorem 6. Let λ ∈ N and C, T,w ∈ R+ with C ≤ T . The competitive ratio of
each randomized, λ-augmented online algorithm for BCOn,w

T,C is at least (T/(λC−
w) + 1)/4. The competitive ratio of algorithm BcRand is at most (5T/(λC −
w) + 2)/8.

Proof. The algorithm BcRand (Figure 5) obviously creates a feasible schedule.
We identify the flow time of the i-th request with the random variable Xi. If we
show that E(Xi) ≤ α holds, we will get n · α/(n · w) = α/w as an upper bound
for the competitive ratio. Hence, it is sufficient to show E(Xi) ≤ w · (5T/(λC −
w) + 2)/8.

Let us have a look at some arbitrary request i. This request is located in
some interval I with length |I| and let x denote the request’s distance from
the beginning of I. With probability (|I| − x)/|I| the request is answered by
I’s broadcast, since it takes place after x with this probability. The expected
flow time created in this case is at most (|I| − x)/2 + w, where we added w to
compensate for the exclusion of the first w time units. With probability x/|I| it
is answered by the broadcast of the next interval yielding an expected flow time
of 3/2|I| − x + w/2. According to the Total Probability Theorem [9], we can
compute the expected flow times of these two cases separately and afterwards
construct their weighted sum. Hence, we get

E(Xi) =
|I| − x

|I| ·
(
|I| − x

2
+ w

)
+

x

|I| ·
(

3
2
|I| − x +

w

2

)
≤ |I|2 + x|I| − x2

2|I| +w.

This reaches for x = |I|/2 its maximum of |I| · 5/8 + w. Substituting |I| by
T/((λC/w)− 1) and adding another w to regard the transmission time omitted
up to now, reveals a total flow time of at most ((5/8) · T/(λC − w) + 2) · w as
desired.

160 C. Gunia

To show the lower bound we consider an arbitrary, feasible, randomized al-
gorithm A. We partition T into intervals of length Tw/(2λC − w), i. e., into
(2λC−w)/w parts—which we, w. l. o. g., assume to be a natural number. At the
beginning of the i-th interval we request the page ai times. Next, we specify the
ai one by one. Since we know A, we can compute its probability of broadcasting
within each interval if we fix the worst-case instance constructed so far. Let pai

i

denote the probability of a broadcast within the i-th interval and p∞i its limit3

for growing ai. If p∞i < 1/2 holds, it is possible to find an ai guaranteeing that
(i) the influence of the first i−1 intervals on the total flow time is bounded by an
arbitrarily small constant and (ii) A performs no broadcast within this interval
with probability at least 1/2. Stopping the construction after ai leads to

ai · (Tw/(2λC − w) + w) + O(1)
ai · w + O(1)

as a lower bound on the competitive ratio since the ai requests are waiting a
complete interval to be satisfied. However, in the optimal schedule they can be
satisfied immediately yielding a total flow time of ai · w +O(1). This shows the
claim if ai is chosen sufficiently large and p∞i < 1/2 holds.

Now we show that there has to be an interval with p∞i < 1/2. Assume all pi

to be at least 1/2 and define random variables Xi ∈ {0, 1} with Xi = 1 ⇔ A
broadcasts in the i-th interval. The number of broadcasts performed by A is
obviously

∑
Xi and, hence, at least (1/2) · (2λC −w)/w. Therefore, the energy

used by the algorithm before time T exceeds the limit λC − w—recall that one
broadcast has to be possible at T to guarantee a feasible schedule. This leads to
a contradiction and completes the proof of the theorem. �
We have seen that randomization and resource augmentation do not provide a
major effect on the competitive ratio of an optimal online algorithm as far as
problem instances with just one page are concerned. Furthermore, we have seen
that algorithms BcRand and BcDetm are asymptotically worst case optimal
for m = 1. Next, we want to generalize these results to instances that contain
m ≥ 1 pages.

Theorem 7. Let λ ∈ N and C, T ∈ R+ with λC ≤ T/3. Further assume W =
(w, . . . , w) ∈ (R+)m and W < C. The competitive ratio of each deterministic,
λ-augmented online algorithm for BCOn,W

T,C is at least (mT/(λC −mw))/3. The
competitive ratio of BcDetm is at most 1 + mT/(λC − (m− 1)w).

As already observed in the case of one available page resource-augmentation
does only yield a trivial impact on the competitive factor in this situation as
well. Therefore, we have a look at the effect of randomization.

Theorem 8. Let λ ∈ N and C, T ∈ R+ with λC ≤ T/8. Further assume W =
(w, . . . , w) ∈ (R+)m and W < C. The competitive ratio of each randomized,
λ-augmented online algorithm for BCOn,W

T,C is at least (mT/(λC −mw))/32.

3 We assume pai
i to be monotonically decreasing with respect to ai. However, this

limitation is due to technical reasons and can be removed easily.

On Broadcast Scheduling with Limited Energy 161

Theorem 9. Let λ ∈ N and C, T ∈ R+ with λC ≤ T . Further assume W =
(w1, . . . , wm) ∈ (R+)m with w1 ≤ w2 ≤ · · · ≤ wm,W < C and w1 ≥ W (λC −
W)/(mT). The competitive ratio of each deterministic, λ-augmented online al-
gorithm for BCOn,W

T,C is at least (mT/(λC−W))/3. There exists a deterministic
online algorithm A whose competitive ratio is at most 1 + 3mT/(λC −W).

Proof. Once again, we start by showing the upper bound first. Instead of writing
the algorithm A down in pseudo-code, we explain its behavior. In order to make
sure the presented schedule is feasible A will use at most λC −W energy units
until T . To perform the broadcasts of page i it will use C′ := (λC−W)/m energy
and spend it ‘equally’ distributed. Assume for one moment, there would be m
distinct channels so that m broadcasts could be done simultaneously. Hence, the
algorithm dedicates each page one channel, and broadcasts each Twi/C

′ time
units page i on channel i, starting at time Twi/C

′. Observe, that consequently
the last broadcast of each page takes place after T . When merging all broad-
casts canonically to one channel, there could be conflicts as two broadcasts might
overlap. Nevertheless, we are merging them canonically to one channel and de-
scribe how to resolve these conflicts. We use the broadcasts of page 1, i. e., the
page broadcasted most frequently, as alignments for the others and enumerate
the arising intervals chronologically by I1, . . . , Ia. Each of these intervals has at
least length W according to our preconditions and the choice of the original
schedule. Imagine a group of conflicting broadcasts that are all starting within
I ∈ {I1, . . . , Ia}. Since the interval’s size is at least W , they all can be relocated
within I solving their conflicts. Particularly, they all can finish within I. Hence,
we can solve all conflicts sequentially starting in interval I1. Thus, we get a
feasible schedule.

Let us regard the resulting schedule’s QoS. Each request for page 1 starts
receiving its answer within mTw1/(λC−W) time units. On the other hand, each
request for page i > 1 starts receiving its answer within 3 ·mTwi/(λC−W) time
units since the distance between two broadcasts of page type i is at most trebled
during the conflict resolution. This bounds A’s total flow time from above by

m∑
i=1

3ni ·
(

mTwi

λC −W
+ wi

)
= 3

(
mT

λC −W
+ 1

)
·

m∑
i=1

(ni · wi),

whereas ni denotes the number of requests for page i. The optimal flow time is
trivially bounded below by at least

∑m
i=1 ni ·wi and, therefore, the proof of the

upper bound is completed. The proof of the lower bound of Theorem 7 can be
adapted to show this lower bound as well by replacing mw by W . �

4 Conclusions and Outlook

We saw that the problem of finding an optimal broadcast schedule with respect
to minimizing the flow time using a limited number of available energy lies in
P , if the number of pages is constant. It would be interesting to figure out if
this still holds when the number of distinct page types is superconstant or when

162 C. Gunia

their transmission times are allowed to vary. Up to now, only an approximation
algorithm for distinct transmission times is known due to Theorem 4.

Furthermore, asymptotically optimal algorithms for the online versions of this
problem can be obtained by using the probably most simple ones as Theorems 5
to 9 have shown. Furthermore, their predictability provides the clients with the
opportunity to save energy by shutting down their receivers until needed.

Finally, average case analyses are quite common to represent the behavior of
an algorithm somewhat better than worst-case analyses (see, e. g., the simplex
algorithm for solving linear programs [2]). Therefore, it would be interesting to
know more about the average case behavior of broadcast algorithms in our model
for ‘typical’ input distributions (e. g., web server accesses, online libraries, etc.).

References

1. S. Acharya and S. Muthukrishnan. Scheduling on-demand broadcasts: new met-
rics and algorithms. In Proceedings of the 4th Annual ACM/IEEE international
conference on Mobile computing and networking, 1998.

2. I. Adler and N. Meggido. A simplex algorithm whose average number of steps is
bounded between two quadratic functions of smaller dimension. Journal of the
ACM, 32:871–895, 1985.

3. A. Clementi, P. Crescenzi, P. Penna, G. Rossi, and P. Vocca. On the complexity of
computing minimum energy consumption broadcast subgraphs. In Proceedings of
the 18th Annual Symposium on Theoretical Aspects of Computer Science, volume
2010 of LNCS, pages 121–131, 2001.

4. J. Edmonds and K. Pruhs. Multicast pull scheduling: When fairness is fine. Algo-
rithmica, 36, 3:315–330, 2003.

5. T. Erlebach and A. Hall. NP-hardness of broadcast scheduling and inapproxima-
bility of single-source. In Proceedings of the 13th Annual ACM-SIAM symposium
on Discrete algorithms, pages 194–202, 2002.

6. B. Kalyanasundaram and K. Pruhs. Speed is as powerful as clairvoyance. In IEEE
Symposium on Foundations of Computation, pages 214–221, 2000.

7. B. Kalyanasundaram, K. Pruhs, and M. Velauthapillai. Scheduling broadcasts
in wireless networks. In Proceedings of the 8th Annual European Symposium on
Algorithm, volume 1879 of LNCS, pages 290–301, 2000.

8. M. Mudge. Power: A first-class architectural design constraint. IEEE Computer
Magazine, 34(4):52–58, 2001.

9. A. Papoulis. Probability, Random Variables, and Stochastic Processes, 2nd ed. New
York: McGraw-Hill, 1984.

10. K. Pruhs and P. Uthaisombut. A comparison of multicast pull models. In Pro-
ceedings of the 10th Annual European Symposium on Algorithms, volume 2461 of
LNCS, pages 808–819, 2002.

11. K. Pruhs, P. Uthaisombut, and G. Woeginger. Getting the best response for your
erg. In Scandanavian Workshop on Algorithms and Theory, 2004.

12. R. Mailler and V. Lesser. Using cooperative mediation to solve distributed con-
straint satisfaction problems. In Proceedings of Third International Joint Confer-
ence on Autonomous Agents and MultiAgent Systems, volume 1 of IEEE Computer
Society, pages 446–453, 2004.

13. W. Shen and D.H. Norrie. Agent-based systems for intelligent manufacturing: A
state-of-the-art survey. Knowledge and Information Systems, 1(2):129–156, 1999.

A Near Optimal Scheduler
for On-Demand Data Broadcasts

Hing-Fung Ting�

Department of Computer Science, The University of Hong Kong,
Pokfulam Road, Hong Kong

hfting@cs.hku.hk

Abstract. In an on-demand data broadcast system, clients make re-
quests for data such as weather forecasts, stock prices and traffic infor-
mation. The server of the system broadcasts the requested data at some
time, and all pending requests on this data are satisfied with this single
broadcast. All requests have deadlines. The system can abort the cur-
rent broadcast for more valuable requests and a preempted broadcast
may be restarted from the beginning later. In this paper, we design and
analyse online scheduler for scheduling broadcasts in such system. The
best previously known upper and lower bounds on the competitive ratio
of such schedulers are respectively ∆+2

√
∆+2 and

√
∆, where ∆ is the

ratio between the length of the longest and shortest data pages. In this
paper, we design a scheduler that has competitive ratio 6∆

log ∆
+O(∆5/6).

We also improve the lower bound of the problem to ∆
2 ln ∆

− 1, and hence
prove that our scheduler is optimal within a constant factor.

1 Introduction

With the advances in satellite broadcasting, wireless networks and mobile com-
puting, on-demand data broadcasting becomes an important technique for in-
formation dissemination and has already been widely adopted in daily life. NHK
digital broadcast company is a good example for providing such services, and
YESTV, TIVO and DTV-Plus are other examples. In an on-demand data broad-
cast system, clients make requests for data such as weather forecasting, stock
prices, traffic information and sports results using various mobile devices such
as notebooks, personal digital assistants (PDAs) and GPRS-enabled cellular
phones. The server broadcasts the requested data at some time, and all pending
requests on this data are satisfied with this single broadcast.

On-demand broadcasting has been studied extensively, both empirically [1, 6]
and theoretically [3, 7, 12, 11]. Most of these studies focus on schedules that min-
imize the average or maximum respond time. They assume that once a request
is generated by a user, the requests will be held until it is satisfied. As pointed
out by Jiang and Vaidya [5], this assumption is not always true; clients are im-
patient and they may leave with their requests unserved after waiting too long.
� This research was supported partially by the Hong Kong RGC Grant HKU-

7045/02E.

T. Calamoneri, I. Finocchi, G.F. Italiano (Eds.): CIAC 2006, LNCS 3998, pp. 163–174, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

164 H.-F. Ting

To take this kind of behaviour into consideration, Kim and Chwa [9], and in-
dependently Kalyanasundaram and Velauthapillai [8], have recently proposed
two similar models for on-demand broadcasting in which every request has a
deadline. Kim and Chwa proposed a restart model, while Kalyanasundaram and
Velauthapillai proposed a resume model.

The models. In both models, the input to the system is a sequence of page
requests, which arrive at arbitrary time. The pages may have different lengths.
At any time, the server can broadcast only one page. All pending requests for
that page can be satisfied with this single broadcast. If a request is satisfied
on or before its deadline, the system earns the profit specified by the request.
Otherwise, the system does not earn any profit from the request. The objective
is to maximize the total profit earned. Both models allow preemption; the server
can abort the current broadcast for more valuable requests. In the restart model,
the server is allowed to start a preempted broadcast later from the beginning.
The resume model allows the server to resume a previously preempted broadcast
later from the point of preemption.

In this paper, we focus on the restart model. We refer to [8, 12] for more
details on the resume model and interesting upper and lower bound results on
the performance of their schedulers.

Previous results. For ease of reference, we call the problem of scheduling on-
demand data broadcast system Broadcast. Let ∆ be the ratio between the
length of the longest and shortest pages. In [9], Kim and Chwa observed that for
the special case when ∆ = 1 and all requests have tight deadlines, Broadcast
is closely related to the interval scheduling problem studied in [10, 13], where
a set of requests for a page arriving at one time can correspond to a job with
weight equal to the total value of the requests. They noted that the results
in [13] imply that in this special case, there is a 4-competitive scheduler for
Broadcast, and this is best possible for any deterministic online scheduler. For
the case of arbitrary deadlines, they proposed a 5.828-competitive scheduler. The
competitive ratio was subsequently reduced to 5 by Chan et al. [2] and further
to 4.56 by Zhang et al. [14].

For the general case when ∆ > 1, Kim and Chwa [9] derived a lower bound of
min{

√
∆, r} on the competitive ratio where r is the maximum number of requests

for a page arriving at a time. The bound was later improved to
√
∆ by Chan et

al. [2], who also derived the first non-trivial upper bound. They observed that for
∆ > 1, Broadcast is closely related to another job scheduling problem, namely
the Job Scheduling with Cancellation problem (JS-cancellation), in which
users can send requests to cancel waiting jobs1. In [2], Chan et al. described a
competitive-ratio preserving reduction from Broadcast to JS-cancellation.
Then, they gave a (4δ + 3)-competitive scheduler for JS-cancellation where
δ is the ratio between the length of the longest and shortest jobs. Together with
the reduction, they concluded that there is a (4∆+ 3)-competitive scheduler for
1 A real-life example for JS-cancellation is scheduling printing jobs on a printer; a

printing job can be cancelled when they are waiting.

A Near Optimal Scheduler for On-Demand Data Broadcasts 165

Broadcast. The bound was subsequently reduced to e∆+ e+ 1 and further to
∆+ 2

√
∆ + 2 (see [4]).

Note that there is a significant gap between the currently known upper bound
(i.e., ∆+2

√
∆+2) and lower bound (i.e.,

√
∆) on the competitive ratio. We note

that all known online schedulers for Broadcast are conservative; they will not
make any preemption that reduces the profit of the schedule. We observe that
such conservative schedulers cannot have competitive ratio smaller than ∆ − ε
for any ε > 0. Let us consider the following input request sequence: There is a
request on page Q arriving at time 0 where Q has length ∆ and the request has
value 1, and for 0 ≤ i ≤ ∆ − 1, there is a request on page Pi arriving at time i
where Pi has length 1 and the request has value 1− ε/∆. All requests have tight
deadlines. Note that any conservative scheduler will choose to broadcast Q to
earn a profit of only 1, while the optimal scheduler broadcasts Pi at time i for
0 ≤ i < ∆ and earns a profit of ∆− ε.

Our results. In this paper, we describe a novel online scheduler Brave for
Broadcast, which breaks the ∆ barrier for conservative schedulers; it has com-
petitive ratio 6∆

log ∆ +O(∆5/6) where log is of base 2. Brave is greedy in nature,
but it has the courage to make some preemptions that reduce the profit cur-
rently earned. To ensure that enough profit will be earned, Brave follows a set
of rather complicated rules for making preemptions. In particular, when Brave
decides whether to preempt a current broadcast Bcur by a new broadcast B,
it does not compare the value of B with that of Bcur, nor compare it with the
value of the current schedule, but compare it with the value of a carefully chosen
broadcast that may be made much earlier than B. Furthermore, the decision for
making a preemption depends not only on their values, but also their “distance”.

From the preemption rules of Brave, it is easy to find difficult input instances
for Brave and show that its competitive ratio is at least Ω(∆/ log∆). More
importantly, these difficult input instances suggest an adversary that generates
difficult inputs for any scheduler. Based on this adversary, we prove that any
online scheduler for Broadcast has competitive ratio at least ∆

2 ln ∆ − 1 where
ln is the natural logarithm. Hence, Brave is optimal within a constant factor.

Organization of the paper. In Section 2, we give the definitions and notations
that are necessary for our discussion. We describe the online scheduler Brave
in Section 3. In Section 4, we prove that the competitive ratio of Brave is at
most 6∆

log ∆ + O(∆5/6), and in Section 5, we prove that any deterministic online
scheduler for Broadcast has competitive ratio at least ∆

2 ln ∆ − 1.

2 Definitions and Notations

This section gives the definitions and notations that are necessary for our dis-
cussion. For simplicity, we assume that the minimum length of a page is 1. Thus,
∆ is the length of the longest page.

Given any page P , let �(P) denote its length, which is the time needed
for a complete broadcast of P . A schedule is a sequence of broadcasts

166 H.-F. Ting

t t + λ t + 2λ t + 3λ t + 4λ

p q

Fig. 1. An example on λ-distance

S = 〈(P1, t1), (P2, t2), . . . , (Plast, tlast)〉 where t1 < t2 < · · · < tlast and (Pi, ti)
specifies that a broadcast on page Pi starts at time ti. We say that (Pi, ti) is
a complete broadcast if it can be broadcast completely before the next broad-
cast (Pi+1, ti+1) starts, or equivalently, ti + �(Pi) ≤ ti+1. Otherwise, (Pi, ti) is
incomplete and we say that it is preempted by (Pi+1, ti+1), and (Pi+1, ti+1) is a
preempting broadcast. Regardless of whether (Pi, ti) is complete or not, we say
that it has supposed completion time ti + �(Pi).

A request r is specified by a tuple (P, a, d, v) where P is the page that it
requests, a is its arrival time, d is its deadline and v is its value. We say that
r is alive at any time during [a, d]. We say that it is satisfied by the schedule
S if it can listen to a complete broadcast on P from S before its deadline.
More precisely, we say that the request (P, a, d, v) is satisfied by S before time
to if there is a complete broadcast (P, t) in S such that a ≤ t < t + �(P) ≤
min{to, d}.

Now, we define the profit of schedule S on serving a sequence of requests σ.
For any request r ∈ σ, let v(r) denote its value. For any page P and any time t,
define RS,σ(P, t) to be the set of requests in σ that (i) ask for page P , (ii) are
alive during [t, t + �(P)), and (iii) have not been satisfied by the schedule S at
or before t. Note that if S has the broadcast (P, t), RS,σ(P, t) is exactly the set
of requests in σ that are served by (P, t). Define the value of P at t with respect
to (S, σ) to be vS,σ(P, t) =

∑
r∈RS,σ(P,t) v(r). Note that when using S to serve

σ, we will earn a profit of vS,σ(P, t) from broadcast (P, t) ∈ S if it is complete,
and earn nothing otherwise; we also say that the value of the broadcast (P, t) is
vS,σ(P, t). Define the profit ρ(S, σ) of S on serving σ to be the total value of the
complete broadcasts in S for serving σ, i.e.,

ρ(S, σ) =
∑

(P,t)∈S
P is complete

vS,σ(P, t).

For any deterministic online scheduler A for Broadcast, we say that A is
c-competitive, and it has competitive ratio c, if given any input σ, A produces
a schedule S for σ such that ρ(O, σ) ≤ cρ(S, σ) where O is the optimal offline
schedule for σ. Finally, we need the notion of λ-distance in order to describe
Brave. Let λ be any positive number. For any two numbers 0 ≤ x ≤ y,
we say that y is at a λ-distance of � from x, and their λ-distance dλ(x, y)
is � if

x + �λ ≤ y < x + (� + 1)λ.

For example, in Figure 1, p and q are at a λ-distance of 1 and 3 from t,
respectively.

A Near Optimal Scheduler for On-Demand Data Broadcasts 167

3 A Brave Scheduler

In this section, we describe our scheduler Brave. Essentially, we describe the
criteria for Brave to make a preemption.

Brave is greedy in nature; whenever it has completed a broadcast and there
are still unsatisfied requests, it immediately broadcasts the page that has the
highest value at that time. However, unlike previous schedulers, Brave makes
two kinds of preempting broadcasts: the profit-gaining broadcasts, whose com-
pletion will increase the profit of the current schedule, and the finish-trimming
broadcasts, whose completion may not increase the profit, but will reduce the
completion time of the current scheduler. Following are the details.

Let λo = 3∆/ log∆. The behaviour of Brave depends on λo. Suppose that
σ is the sequence of requests arrived so far. Let S = 〈B1, . . . , Bnft, . . . , Blast〉 be
the sequence of broadcasts that Brave scheduled for σ. Suppose that Bnft is
the last broadcast in S that is not a finish-trimming broadcast. (Such broadcast
must exist because, as can be verified from the definition given below, the first
broadcast B1 is not a finish-trimming broadcast.) Note that Bnft may be equal
to Blast. Brave decides whether to preempt the current broadcast Blast =
(Plast, tlast) based on the value of Bnft = (Pnft, tnft) (not the value of Blast).

Let t be any time during the broadcast of Blast.

– If there is a page P such that the value of P at t is higher than
√
∆ times

the value of Bnft, i.e.,

vS,σ(P, t) >
√
∆vS,σ(Pnft, tnft),

Brave preempts the current broadcast Blast and broadcast P at t. We say
that the preempting broadcast (P, t) is profit-gaining.

– Suppose that Brave cannot make any profit-gaining broadcast at t. Let Γ
be the set of pages Q satisfying the following two conditions:
(i) the supposed completion time of (Q, t) is smaller than that of the current

broadcast Blast, i.e., t + �(Q) < tlast + �(Plast), and
(ii) the value of (Q, t) is large enough when compared with that of Bnft, or

more precisely,

vS,σ(Q, t) >
(2d

∆1/3

)
vS,σ(Pnft, tnft)

where d = dλo(tnft, t + �(Q)) is the λo-distance between the starting
time of Bnft and the supposed completion time of (Q, t).

If Γ is not empty, Brave preempts Blast and broadcasts the page Q ∈ Γ
with the smallest page length (such that (Q, t) has the smallest supposed
completion time). We say that the preemptive broadcast (Q, t) is finish-
trimming.

In the rest of the paper, we derive an upper bound on the competitive ratio of
Brave, and prove that there is no deterministic online scheduler for Broadcast
that has asymptotically smaller competitive ratio.

168 H.-F. Ting

4 Brave Is (6∆
log ∆

+ O(∆5/6))-Competitive

Let σ be any input request sequence. Let S be the schedule decided by Brave
for σ, and let O be the optimal offline schedule for σ. In this section, we derive an
upper bound on the competitive ratio of Brave, i.e., the ratio between ρ(O, σ)
and ρ(S, σ). In our analysis, we assume that there is no preemption in O and all
broadcasts in O are complete2.

Recall that RS,σ(P, t) is the set of requests on P that are alive during [t, t +
�(P)) and are not satisfied by S at or before t, and vS,σ(P, t) is the value of
P at t with respect to (S, σ). The key step of our analysis is to prove that the
following inequality:∑

(P,t)∈O vS,σ(P, t) ≤
(

6∆
log ∆ + O(∆5/6)

)
ρ(S, σ). (1)

Intuitively, the inequality asserts that from the view point of S, the value of
the broadcasts in O is not too much. We can derive an upper bound on the
competitive ratio of Brave from Inequality (1) easily.

Theorem 1. We have ρ(O, σ) ≤ (6∆
log ∆ + O(∆5/6))ρ(S, σ) and hence the com-

petitive ratio of Brave is at most (6∆
log ∆ + O(∆5/6)).

Proof. Note that ρ(O, σ) =
∑

(P,t)∈O vO,σ(P, t) because all broadcasts in O are
complete. Therefore,

ρ(O, σ) −
∑

(P,t)∈O vS,σ(P, t) =
∑

(P,t)∈O vO,σ(P, t) −
∑

(P,t)∈O vS,σ(P, t)

=
∑

(P,t)∈O

(∑
r∈RO,σ(P,t) v(r) −

∑
r∈RS,σ(P,t) v(r)

)
,

which is no greater than the summation∑
(P,t)∈O

(∑
r∈RO,σ(P,t)\RS,σ(P,t) v(r)

)
(2)

where RO,σ(P, t) \RS,σ(P, t) denotes the difference of the two sets.
Note that for any (P, t) ∈ O, the requests in RO,σ(P, t) \ RS,σ(P, t) are not

satisfied by O at or before t, and are satisfied by S at or before t. Observe that
these requests will be satisfied by O after (P, t) completes, and this implies that
no request will be in more than one RO,σ(P, t) \ RS,σ(P, t) in Summation (2).
We conclude that a request can contribute its value v(r) at most once to (2) and
only those requests that are satisfied by S will make contribution. Therefore, (2)
is no greater than ρ(S, σ). Together with Inequality (1), the theorem follows.

In the rest of this section, we prove Inequality (1). Note that the schedule S =
〈B1, B2, . . . , Bn〉 constructed by Brave on serving σ can be divided naturally
into a collection ΠS of disjoint subsequence of broadcasts H where H may
contain only a single broadcast, which is not preempting and is complete, or
H = 〈Bi, Bi+1, . . . , Bj−1, Bj〉 where
2 We can make this assumption because O is offline and it does not need to make any

broadcast that is going to be preempted.

A Near Optimal Scheduler for On-Demand Data Broadcasts 169

1. Bi is not a preempting broadcast; it does not preempt any earlier broadcast;
2. Bi+1, Bi+2, . . . , Bj are all preempting broadcasts; and
3. the last broadcast Bj is also a complete broadcast.

We call such H a subschedule of S. For any subschedule H = 〈Bi, Bi+1, . . . , Bj〉 ∈
ΠS , define the duration I(H) of H to be [ts, tc] where ts is the time the first
broadcast Bi starts and tc is the time the last broadcast Bj completes. For any
broadcast B = (P, t) ∈ O and any time interval I, we say that I covers B if O
starts broadcasting B during I, or equivalently, t ∈ I. Let Cover(O, I) be the
set of broadcasts in O that are covered by I. The following simple lemma is our
basic tool to relate S and O.

Lemma 1. We have the following equality:∑
(P,t)∈O vS,σ(P, t) =

∑
H∈ΠS

(∑
(P,t)∈Cover(O,I(H)) vS,σ(P, t)

)
.

Proof. It suffices to prove that for any broadcast (P, t) ∈ O, if vS,σ(P, t) > 0,
then there is a subschedule H ∈ ΠS such that (P, t) ∈ Cover(O, I(H)), which
is equivalent to proving that Brave is not idle at t. However, this is obvious
because Brave can at least broadcast P at t to gain a profit of vS,σ(P, t) > 0.

Below, we focus on one subschedule H ∈ ΠS and derive an upper bound on∑
(P,t)∈Cover(O,I(H)) vS,σ(P, t). In our discussion, we suppose that

– the first broadcast in H is (P1, t1);
– there are exactly k−1 profit-gaining preempting broadcasts (P2, t2), (P3, t3),

. . . , (Pk, tk) in H where t2 < t3 < · · · < tk,3 and
– (Plast, tlast) is last broadcast in H .

Note that (Plast, tlast) may be equal to (Pk, tk). Furthermore, (Plast, tlast)
is the only broadcast in H that is complete. Let tc be the completion time of
this broadcast. Note that between ti and ti+1 (1 ≤ i < k), and between tk
and tc, Brave may make other preempting broadcasts, which are all finish-
trimming.

The following lemma asserts that for any 1 ≤ i < k, the total value of the
broadcasts in O that start during [ti, ti+1) (i.e., between the time Brave makes
the two profit-making preempting broadcasts (Pi, ti) and (Pi+1, ti+1)) is not too
high. Intuitively, this is true because except the last broadcast, all these broad-
casts complete before ti+1 and thus they could be finish-trimming broadcasts in
S. However, we observe that these broadcasts must not be in S, and thus we con-
clude that they do not satisfy the second requirement for a finishing-trimming
preemeption. In other words, their values are not high when compared with that
of the profit-making broadcast (Pi, ti).

Lemma 2. For 1 ≤ i < k, we have∑
(P,t)∈Cover(O,[ti,ti+1)) vS,σ(P, t) < (6∆

log ∆ +
√
∆)vS,σ(Pi, ti).

3 k may be equal to 1.

170 H.-F. Ting

Proof. Consider any 1 ≤ i < k. Let G be the sequence of broadcasts made by
Brave during [ti, ti+1). Note that except (Pi, ti), all broadcasts in G are finish-
trimming and thus the supposed completion time of any of them is smaller than
that of the previous one. It follows that the last broadcastX ∈ G has the smallest
supposed completion time, which is no greater than ti + �(Pi) and is larger than
ti+1 (because it is preempted by (Pi+1, ti+1)). Therefore, we have

ti+1 < ti + �(Pi) ≤ ti + ∆. (3)

Now we consider Cover(O, [ti, ti+1)), the set of broadcasts in O that are cov-
ered by [ti, ti+1). Suppose Cover(O, [ti, ti+1)) = {(Q1, s1), (Q2, s2), . . . , (Qh, sh)}
where s1 < s2 < · · · < sh. Recall that O does not have any preemptive broadcast
and thus all the (Qj , sj)’s are complete. We have the following useful facts:

(i) ti ≤ s1 < s2 < · · · < sh < ti+1.
(ii) The supposed completion time of any two (Qj , sj)’s differ by at least 1

because the minimum page length is 1.
(iii) Except (Qh, sh), all broadcasts (Qj , sj) complete before ti+1.

From Fact (iii), Inequality (3) and the fact that λo = 3∆/ log∆, we conclude
that for any 1 ≤ j < h,

sj + �(Qj) < ti+1 < ti + ∆ < ti + (�(log∆)/3� + 1)λo

and sj + �(Qj) is at a λo-distance of at most �(log∆)/3� from ti. Therefore,

∑
(Q,s)∈Cover(O,[ti,ti+1)),
(Q,s) �=(Qh,sh)

vS,σ(Q, s) =
∑

0≤d≤	(log ∆)/3

∑
1≤j<h,

dλo (ti,sj+�(Qj))=d

vS,σ(Qj , sj).

(4)
Fact (ii) implies that for any d, there are at most λo different 1 ≤ j < h such
that ti + dλo ≤ sj + �(Qj) < ti(d + 1)λo, or equivalently,

|{j | dλo(ti, sj + �(Qj)) = d, j �= h}| ≤ λo = 3∆/log∆. (5)

Consider any such j. Fact (iii) says that the supposed completion time of (Qj , sj)
is smaller than ti+1, which is smaller than that of the last broadcast X ∈ G,
which has the smallest supposed completion time among the broadcasts in G.
This implies (Qj , sj) is not in G, even though its supposed completion time
is smaller than that of any broadcast in G and satisfied the first requirement
of being a finish-trimming broadcast. We conclude that it violates the second
requirement, and thus vS,σ(Qj , sj) ≤

(
2d

∆1/3

)
vS,σ(Pi, ti). Combining with(4), (5),

we conclude that
∑

((Q,s)∈Cover(O,[ti,ti+1)) vS,σ(Q, s) is equal to

A Near Optimal Scheduler for On-Demand Data Broadcasts 171(∑
0≤d≤	(log ∆)/3

∑
1≤j<h,

dλo (ti,sj+�(Qj))=d

vS,σ(Qj , sj)
)

+ vS,σ(Qh, sh)

≤
(∑

0≤d≤	(log ∆)/3

λo

(2d

∆1/3

)
vS,σ(Pi, ti)

)
+ vS,σ(Qh, sh)

<
(6∆

log∆

)
vS,σ(Pi, ti) + vS,σ(Qh, sh).

Finally, note that vS,σ(Qh, sh) <
√
∆vS,σ(Pi, ti); otherwise Brave would have

made a profit-making preemptive broadcast at sh < ti+1. The lemma follows.

Since the only complete broadcast (Plast, tlast) in H is covered by [tk, tc], we
need a tighter bound for this interval, which is given in the following lemma.

Lemma 3. For the interval [tk, tc], we have∑
(P,t)∈Cover(O,[tk,tc]) vS,σ(P, t) ≤

(
6·2w∆

∆1/3 log ∆
+

√
∆
)
vS,σ(Pk, tk) (6)

where w = dλo(tk, tc) is the λo-distance between tk and tc. Furthermore, w ≤
�(log∆)/3�.

Proof. The proof is almost identical to that of Lemma 2, but we have to be
more careful about the boundary condition. Recall that (Plast, tlast) is the last
broadcast in H , which completes at tc. Note that either (Plast, tlast) = (Pk, tk)
or (Plast, tlast) is a finish-trimming broadcast4. In both cases, we have tc ≤
tk+�(Pk). Suppose that Cover(O, [tk, tc]) = {(Q1, s1), . . . , (Qh, sh)} and (Qh, sh)
is the last broadcast in Cover(O, [tk, tc]). Note that for all the (Qj , sj) �= (Qh, sh),
they complete before tc ≤ tk+�(Pk), but they are not finish-trimming broadcasts
in H ; by the design of Brave, we conclude vS,σ(Qj , sj) ≤

(2d

∆1/3

)
vS,σ(Pk, tk).

where d is the λo-distance between tk and sj + �(Qj). From the fact that tc is
at a λo-distance of w from tk, we have∑
((Q,s)∈Cover(O,[tk,tc])

vS,σ(Q, s) =
∑

0≤d≤w

∑
1≤j<h,
dλo (ti,sj)=d

vS,σ(Qj , sj) + vS,σ(Qh, sh)

(7)
Together with (5), we can derive Inequality (6) in exactly the same way as we
did for Lemma 2.

For the second part of the lemma, note that tc is the completion time of
(Plast, tlast). If (Plast, tlast) = (Pk, tk), then tc = tk + �(Pk) ≤ tk +∆; otherwise
(Plast, tlast) is a finishing-trimming preemption, and as in the proof of Lemma 3,
we conclude that tc < tk + �(Pk) ≤ tk + ∆. In both cases, we conclude that
w = dλo(tk, tc) ≤ �(log∆)/3�.

Now, we combine the bounds on those intervals [ti, ti+1) in I(H). Define vS,σ(H)
to be vS,σ(Plast, tlast), the value of the only complete broadcast in H .
4 It cannot be profit-making because (Pk, tk) is the last profit-making broadcast.

172 H.-F. Ting

Lemma 4.
∑

(P,t)∈Cover(O,I(H)) vS,σ(P, t) ≤
(

6∆
log ∆ + O(∆5/6)

)
vS,σ(H).

Proof. Recall that (P1, t1) is the first broadcast in H , and (P2, t2), (P3, t3), . . . ,
(Pk, tk) are the sequence of profit-making broadcasts in H . Thus, for any 1 < i ≤
k, (Pi−1, ti−1) is the nearest non finish-trimming broadcast before (Pi, ti), and
by the design of Brave, it makes the profit-making broadcast (Pi, ti) because
vS,σ(Pi, ti) >

√
∆vS,σ(Pi−1, ti−1). Together with Lemma 2, we have

So =
∑

1≤i<k

∑
(P,t)∈Cover(O,[ti,ti+1))

vS,σ(P, t)

≤ (
6∆

log∆
+
√
∆)(vS,σ(Pk−1, tk−1) + · · · vS,σ(P1, t1))

< (
6∆

log∆
+
√
∆)vS,σ(Pk, tk)

(1√
∆

+
1

(
√
∆)2

+ · · ·
)

(8)

Note that

– if (Pk, tk) = (Plast, tlast), then by the fact that w ≤ �(log∆)/3�, we have
vS,σ(Plast, tlast) = vS,σ(Pk, tk) ≥

(2w

∆1/3

)
vS,σ(Pk, tk);

– if (Pk, tk) �= (Plast, tlast), then (Plast, tlast) is a finish-trimming preempting
broadcast and it satisfies the second requirement of the preempting rule,
i.e.,vS,σ(Plast, tlast) > (2w

∆1/3)vS,σ(Pk, tk).

Thus, in both cases, vS,σ(Pk, tk) ≤ (∆1/3

2w)vS,σ(Plast, tlast), and together with
(8), we have

So < (
6∆

log∆
+
√
∆)

∆1/3

(
√
∆− 1)2w

vS,σ(Plast, tlast) = O(∆5/6)vS,σ(H). (9)

Furthermore, let S1 =
∑

(P,t)∈Cover(O,[tk,tc]) vS,σ(P, t), which is no more than

(
6 · 2w∆

∆1/3 log∆
+
√
∆)vS,σ(Pk, tk) ≤ (

6 · 2w∆

∆1/3 log∆
+
√
∆)

∆1/3

2w
vS,σ(Plast, tlast).

It can be verified that the last term is equal to (6∆
log ∆ +O(∆5/6))vS,σ(H). Finally,

note that
∑

(P,t)∈Cover(O,I(H)) vS,σ(P, t) = So + S1, the lemma follows.

Note that our main Inequality (1) is just a corollary of Lemma 4.

Corollary 1.
∑

(P,t)∈O vS,σ(P, t) ≤
(

6∆
log ∆ + O(∆5/6)

)
ρ(S, σ)

Proof. By Lemmas 1 and 4, we have∑
(P,t)∈O vS,σ(P, t) =

∑
H∈ΠS

∑
(P,t)Cover(O,I(H)) vS,σ(P, t),

which is no more than
∑

H∈ΠS
(6∆
log ∆ + O(∆5/6))vS,σ(H) = (6∆

log ∆ + O(∆5/6))
ρ(S, σ).

A Near Optimal Scheduler for On-Demand Data Broadcasts 173

5 Brave Is Optimal

In this section, we prove that when ∆ ≥ 2, any deterministic online scheduler for
Broadcast must have competitive ratio at least ∆

2 ln ∆ − 1. Note that for any
1 ≤ ∆ < 2, the (∆ + 2

√
∆ + 2)-competitive scheduler of Fung [4] has constant

competitive ratio. Furthermore, our lower bound shows that Brave is optimal
within a constant factor because Brave is (6 ∆

log ∆ + O(∆5/6))-competitive,
Let A be any deterministic online scheduler for Broadcast. We now describe

an adversary that generates difficult input request sequence for A. The adversary
generates the input from two groups of requests:

– Group 1 has only one request (Q, 0, ∆,W), which arrives at time 0 and asks
for a page Q of length ∆. The request has tight deadline and its value is W .

– Group 2 has �∆� requests; for 0 ≤ i ≤ �∆� − 1, the ith request is (Pi, i −
1, i, vi), which arrives at time i− 1, asks for a distinct page Pi of length one,
has tight deadline and its value vi is ci−1 ln ∆

∆ W where c = 1 + ln ∆−ln ln ∆
∆ .

Since each request r has tight deadline, r has to be served immediately, or it
cannot be served at all. The adversary will present the requests to A one by one,
and as soon as A decides to serve a request in Group 2, no more requests are
issued. Let σ be the input sequence issued according to this strategy, S be the
schedule generated by A for σ, and O be the optimal offline schedule for σ.

Theorem 2. We have ρ(O, σ) > (∆
2 ln ∆ − 1)ρ(S, σ) and hence the competitive

ratio of A is greater than ∆
2 ln ∆ − 1.

Proof. According to the behavior of the adversary, A can earn profit from at
most one request; either the single request Q in Group 1, or a request Pi in
Group 2. We consider two cases.

Case 1. A serves the ith request in Group 2. Then, ρ(S, σ) = ci−1 ln∆
∆ W .

Based on the value of ci−1, we estimate the ratio between ρ(O, σ) and ρ(S, σ) as
follows. If ci−1 ≤ 2, we can serve Q and gain a profit of W . Thus ρ(O, σ) ≥ W

and ρ(O,σ)
ρ(S,σ) ≥ W

ci−1 ln ∆
∆ W

= ∆
ci−1 ln ∆ ≥ ∆

2 ln ∆ .

Suppose that ci−1 > 2. Note that we can serve all the requests in Group 2
arriving at or before time i−1 and earn a total profit of (1+c+ · · ·+ci−1) ln ∆

∆ W.

Since ρ(S, σ) = ci−1 ln ∆
∆ W , we have ρ(O, σ)/ρ(A, σ) is greater than

1 + c + · · · + ci−1

ci−1 =
ci − 1

ci−1(c− 1)
=(c− 1

ci−1)
1

c− 1
>

∆

2(ln∆− ln ln∆)
>

∆

2 ln∆
.

Case 2. A earns the profit from the request (Q, 0, ∆,W) in Group 1, and thus
does not serve any request in Group 2. Then, we have ρ(A, σ) = W . Note that
in this case, the adversary has a chance to issue all requests in Group 2; we
can serve all of them and gain a profit of

(
1 + c + · · · + c�∆−1

) ln ∆
∆ W. Since

c = 1 + ln ∆−ln ln ∆
∆ , we have ρ(O, σ)/ρ(S, σ) is no smaller than

(1 + c + · · · + c�∆−1)
ln∆
∆

=
ln∆(c�∆ − 1)

∆(c− 1)
=

ln∆(c�∆ − 1)
∆ ln ∆−ln ln ∆

∆

> c∆ − 1. (10)

174 H.-F. Ting

Recall that for any x > 0, we have ln(1 + x) > x/(1 + x) and 1/(1 + x) >
1−x. Thus, ln c∆ = ∆ ln

(
1 + ln ∆−ln ln ∆

∆

)
>
(
∆ ln ∆−ln ln ∆

∆

)
/
(
1 + ln ∆−ln ln ∆

∆

)
>

(ln∆ − ln ln∆)
(
1 − ln∆−ln ln ∆

∆

)
= (ln∆ − ln ln∆) − ((ln∆ − ln ln∆)2/∆), or

equivalently,

c∆ > e(ln ∆−ln ln ∆)−(ln ∆−ln ln ∆)2/∆ =
∆

(e(ln ∆−ln ln ∆)2/∆) ln∆
.

It can be verified that the function f(∆) = e(ln ∆−ln ln ∆)2/∆ is monotonically
decreasing, and thus f(∆) ≤ e(ln 2−ln ln 2)2/2 = 1.75319 < 2 for any ∆ ≥ 2. It
follows that c∆ > ∆

2 ln ∆ . Together with (10), we have ρ(O,σ)
ρ(S,σ) > ∆

2 ln ∆ − 1.

References

1. D. Aksoy and M. Franklin. R×W: a scheduling approach for large-scale on-demand
data broadcast. IEEE/ACM Transactions on networking, 7(6):846–860, 1999.

2. W.T. Chan, T.W. Lam, H.F. Ting, and W.H. Wong. New results on on-demand
broadcasting with deadline via job scheduling with cancellation. In Proceedings
of the 10th Annual International Conference on Computing and Combinatorics,
210–218.

3. J. Edmonds and K. Pruhs. A maiden analysis of longest wait first. In Proceedings of
the fifteenth annual ACM-SIAM symposium on Discrete algorithms, pages 818–827,
2004.

4. S.P.Y. Fung. Online algorithms for the provision of quality of service in networks.
PhD thesis, The University of Hong Kong, 2005.

5. S. Jiang and N.H. Vaidya. Scheduling data broadcast to ”impatient” users. In Pro-
ceedings of the 1st ACM international workshop on Data engineering for wireless
and mobile access, pages 52–59, 1999.

6. S. Jiang and N.H. Vaidya. Response time in data broadcast systems: Mean, vari-
ance and tradeoff. Mobile Networks and Applications, 7(1):37–47, 2002.

7. B. Kalyanasundaram, K. Pruhs, and M. Velauthapillai. Scheduling broadcasts in
wireless networks. Journal of Scheduling, 4(6):339–354, 2001.

8. B. Kalyanasundaram and M. Velauthapillai. On-demand broadcasting under dead-
line. In Proceedings of the 11th Annual European Symposium on Algorithms, volume
2832 of Lecture Notes in Computer Science, pages 313–324, 2003.

9. J.H. Kim and K.Y. Chwa. Scheduling broadcasts with deadlines. Theoretical
Computer Science, 325(3):479–448, 2004.

10. R. Lipton and A. Tomkins. Online interval scheduling. In Proceedings of the Fifth
Annual ACM-SIAM Symposium on Discrete Algorithms, pages 302–311, 1994.

11. S. Muthukrishnan and S. Acharya. Scheduling on-demand broadcasts: new metrics
and algorithms. In The Fourth Annual ACM/IEEE International Conference on
Mobile Computing and Networking, pages 43–54, 1998.

12. K. Pruhs and P. Uthaisombut. A comparison of multicast pull models. In Pro-
ceedings of the 10th Annual European Symposium on Algorithms, pages 808–819,
2002.

13. G.J. Woeginger. On-line scheduling of jobs with fixed start and end times. Theo-
retical Computer Science, 130:5–16, 1994.

14. F. Zhang, P.Y. Fung, F. Chin, C.K. Poon, and Y. Xu. Improved on-line broadcast
scheduling with deadlines. Technical report, Submitted for publication.

Fair Cost-Sharing Methods for Scheduling Jobs
on Parallel Machines�

Yvonne Bleischwitz1,2 and Burkhard Monien1

1 Faculty of Computer Science, Electrical Engineering and Mathematics,
University of Paderborn, Fürstenallee 11, 33102 Paderborn, Germany

{yvonneb, bm}@upb.de
2 International Graduate School of Dynamic Intelligent Systems

Abstract. We consider the problem of sharing the cost of scheduling n jobs
on m parallel machines among a set of agents. In our setting, each agent owns
one job and the cost is given by the makespan of the computed assignment. We
focus on α-budget-balanced cross-monotonic cost-sharing methods since
they guarantee the two substantial mechanism properties α-budget-balance and
group-strategyproofness and provide fair cost-shares. For identical jobs on related
machines and for arbitrary jobs on identical machines, we give (m + 1)/(2m)-
budget-balanced cross-monotonic cost-sharing methods and show that this is the
best approximation possible. As our major result, we prove that the approxima-
tion factor for cross-monotonic cost-sharing methods is unbounded for arbitrary
jobs and related machines. We therefore develop a cost-sharing method in the
(m + 1)/(2m)-core, a weaker but also fair solution concept. We close with a
strategyproof mechanism for the model of arbitrary jobs and related machines
that recovers at least 3/5 of the cost. All given solutions can be computed in
polynomial time.

1 Introduction

Motivation and Framework. We consider the scenario, in which a service provider
owns a set of machines and receives requests from agents to execute their jobs. Each
agent has a non-publicly observable preference for his job to be processed. He submits
a bid to the service provider that indicates the amount of money he is willing to pay.
If his job is processed, he has to make a payment to the service provider. We refer to
a payment as cost-share. The utility of an agent expresses his valuation of receiving
the service at a certain cost-share. The aim of an agent is to maximize his utility. We
assume that agents are selfish. Therefore the provider can generally not rely on receiving
truthful bids, i.e. bids that equal the private preferences.

In our model, the provider’s cost of assigning jobs to his machines is given by the
makespan, i.e. the time needed until all machines have processed their assigned jobs.
The provider’s problem is to determine the set of served agents, their cost-shares, and a
valid assignment for the served agents. He would like to recover as much of the cost as

� This work has been partially supported by the German Science Foundation (DFG) priority
program 1126 Algorithms of Large and Complex Networks under grant MO 285/15-3, and by
the European Union within the 6th Framework Programme under contract 001907 (DELIS).

T. Calamoneri, I. Finocchi, G.F. Italiano (Eds.): CIAC 2006, LNCS 3998, pp. 175–186, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

176 Y. Bleischwitz and B. Monien

possible. Furthermore, he aims to minimize the makespan for reasons of efficiency and
he wants to prevent being manipulated by the agents. To be practicable, his problem has
to be computable in polynomial time. Since his scheduling problem is NP -hard in gen-
eral, he has to apply approximation algorithms. The proposed scenario is of particular
importance for commercial computing centers as well as for the evolving commercial
grid computing offerings.

The problem of scheduling a set of n jobs on a set of m parallel machines with
the objective of minimizing the makespan is an extensively studied problem. The most
commonly used models are the models of related and unrelated machines. In the model
of related machines, the completion time of a job on a machine does only depend on
its workload and on the speed of the machine, where in the model of unrelated ma-
chines, machines have player-specific completion times. Recently, these models have
been considered in the context of game theory. In this branch of research, there is no
central authority that assigns the jobs, but selfish agents themselves assign their jobs
to machines. The objective is to obtain an assignment in Nash equilibrium in which
no agent can profit by assigning his job to another machine, given that all other agents
leave the assignment of their jobs unchanged.

We recall the provider’s problem, which is to determine a set of served agents, their
cost-shares, and an assignment for the set of served agents. We can utilize assignment
algorithms to compute the assignment but need different tools for determining the set
of service-receiving agents and their cost-shares.

The theory of mechanism design proposes cost-sharing mechanisms that provide a
solution to the problem of choosing the set of served agents and their payments. These
mechanisms apply cost-sharing methods to determine the cost-shares. Two important
fairness properties of cost-sharing methods are cross-monotonicity and the core prop-
erty. Cross-monotonic cost-sharing methods require that the cost-share of an agent can
only decrease if more agents receive the service. The weaker core property assures, that
a coalition is always charged not more than the optimal cost of exclusively assigning
the jobs of the coalition. This implies that no coalition is overcharged. Furthermore,
a cost-sharing method can be α-budget-balanced, which guarantees that the service
provider covers an α-fraction of his cost and assures the serviced agents that their
collective cost-share is not larger than the cost of an optimal solution. If it addition-
ally satisfies the core-property, we say that it is in the α-core. Significant properties of
cost-sharing mechanisms are strategyproofness and group-strategyproofness, demand-
ing that an agent or a group of agents can not improve their utility by submitting un-
truthful bids. This keeps them from manipulating the service provider. Cross-monotonic
cost-sharing methods play a very important role in the design of cost-sharing mecha-
nism, since they can be applied to design group-strategyproof mechanisms [25, 18].

Contribution and Significance. The main contributions of this paper are results on
cost-sharing methods that are both α-budget-balanced and cross-monotonic. To the
best of our knowledge, this paper is the first to introduce cross-monotonic cost-sharing
methods for scheduling jobs on parallel machines. We prove that cross-monotonic cost-
sharing methods that are α-budget-balanced do not exist for α > (m + 1)/(2m), not
even for identical jobs and machines, and give cross-monotonic methods with factor
α = (m+1)/(2m) for arbitrary jobs and identical machines or identical jobs and related

Fair Cost-Sharing Methods for Scheduling Jobs on Parallel Machines 177

machines. For arbitrary jobs and related machines, cross-monotonicity is impracticable.
Our results show, that it is impossible to obtain cross-monotonic cost-sharing methods
that recover more than a 1/d-fraction of the cost, and that it is possible to recover a
1/(2d)-fraction, where d is the number of different workloads.

In order to achieve a better approximation, we design a weaker but also fair cost-
sharing method that is in the (m + 1)/(2m)-core. In addition, we propose a strate-
gyproof mechanism that recovers at least 3/5 of the cost and makes no agent pay more
than if his job were solely processed. All proposed methods run in polynomial time and
compute Nash equilibria.

Related Work. The assignment problem for the model of unrelated [30, 22, 16] and
related [8, 10, 12, 14, 15] machines has been extensively studied in the past. We focus
on the model of related machines. Hochbaum and Shmoys [15] give a PTAS for this
model. In this paper, we frequently apply the LPT algorithm proposed by Graham [12].
LPT is optimal for identical jobs, achieves an approximation ratio of 4/3− 1/(3m) for
identical machines [12] and an approximation ratio of 5/3 for related machines [9].
It is explained in Section 2. For results on computing Nash equilibria, we refer to the
surveys of Gairing et al. [11] and Czumaj [4].

Cost-sharing mechanisms have mainly been designed for multicast [7, 6, 1], set cover
[5], facility location [5, 27, 23], Steiner trees [19, 18], Steiner forests [20, 21], multicom-
modity rent-or-buy [3], and single-source rent-or-buy [27, 13]. Penna and Ventre [28]
study algorithmic properties of cost-sharing mechanisms that among other properties
satisfy group strategyproofness and budget-balance.

Cross-monotonic cost-sharing methods have been investigated for facility location
[27, 23], single-source rent-or-buy [27, 13], and Steiner trees and forests [19, 18, 20].
Impossibility results are given by Immorlica et al. [17]. Moulin and Shenker [25] study
the relations between group-strategyproofness and cross-monotonicity. One of their
central results is a mechanism that is group-strategyproof if it applies a cross-monotonic
cost-sharing method. The core is a well studied solution concept that stems from coali-
tional games with transferable payoffs and has for example been considered by
Shapley [29].

Results on scheduling in the mechanism design context exist for other scheduling
models. With regard to the fairness concept of the Shapley value, Mishra et al. [24]
investigate the case in which there is only one server that can serve only one job at
a time. Nisan and Ronen [26] consider unrelated parallel machines. In contrast to our
model, machines are owned by agents that submit bids on execution times. They give
a strategyproof mechanism that computes an assignment with makespan smaller than
m times the optimal makespan and conjecture that this is the best possible. They prove
that there is no strategyproof mechanism that computes an assignment with makespan
smaller than 2 times the optimal makespan. Archer and Tardos [2] consider the scenario
in which agents own related machines and give a strategyproof mechanism whose com-
puted assignment yields a makespan that is smaller than 3 times the optimal makespan.

Road Map. Section 2 gives the basic definitions from mechanism design and defines the
scheduling problem. Our results on cross-monotonicity are given in Section 3. Finally,
Section 4 mainly focuses on results for the core and gives a strategyproof mechanism.

178 Y. Bleischwitz and B. Monien

2 Definitions

Let N be the set of potential customers with |N | = n. The set of machines owned by
the service provider is denoted by M . Agent i ∈ N has a private preference vi ∈ R≥0
for his job to be processed. If his job is processed at a certain cost-share xi ∈ R≥0 his
utility is defined as ui = vi − xi. Otherwise, his cost-share and his utility are zero.
In his request of being served, he submits a bid bi that corresponds to the amount of
money he is willing to pay. Since he is guided by self-interest, he chooses his bid such
as to maximize his utility. The provider experiences a certain cost by scheduling a set of
jobs. We assume that this cost is given by the makespan as defined in Section 2.2. His
problem is to determine a set of served agents U ⊆ N , their cost-shares xi(U) ∈ R≥0,
that recover as much of his cost as possible, and a valid assignment for U .

We give the basic definitions and results on cost sharing methods and mechanisms
for an unspecified service in Section 2.1. This section provides solutions on how the
provider can extract the agents’ real preferences while recovering a certain fraction of
his cost. Section 2.2 specifies the service of scheduling the agents’ jobs. Throughout
the paper, we use [k], k ∈ IN, to denote the set {1, . . . , k} of integers.

2.1 Mechanism Design for Cost-Sharing

Let cA(U) be the cost of a solution computed by some algorithm A to provide the
service to U ⊆ N . In many cases, this algorithm is an approximation algorithm to
assure polynomial time. We write opt(U) for the cost of an optimal solution to provide
the service to U . For a given set U ⊆ N , a cost-allocation function ξ : N → IR for the
set U ⊆ N specifies the cost-shares of each i ∈ U . It satisfies ξ(i) ≥ 0 for all i ∈ U and
ξ(i) = 0 for all i /∈ U . Let ξ(U) =

∑
i∈U ξ(i). A cost-sharing method is a collection

of cost-allocation functions:

Definition 1 (cost-sharing method). A cost-sharing method x is defined as a function
x : N × 2N → IR satisfying for all U ⊆ N , that x(i, U) ≥ 0 for all i ∈ U and
x(i, U) = 0 for all i /∈ U . We will denote x(i, U) by xi(U). Let x(U) =

∑
i∈U xi(U).

Ideally, we would like to have budget-balance, i.e. cA(U) = x(U) = opt(U) for all
U ⊆ N . In many cases it is not possible to achieve budget-balance if the cost-sharing
method is to meet other properties as well, or it is computationally hard to compute.
Therefore, this condition is relaxed. A cost-sharing method x(·) is α-budget-balanced
for α ≤ 1 if it satisfies αcA(U) ≤ x(U) ≤ opt(U) for all U ⊆ N . A cost-allocation
function for U ⊆ N is α-budget-balanced, if the above condition holds for U . Observe,
that dividing the cost-shares by α results in cost-shares that guarantee the full coverage
of the actual cost and an overall cost-share of less than α−1 times the optimal solution.
Although this is the more intuitive definition we use the definition given first for reasons
of clearness.

Both α-budget-balanced cost-sharing methods and cost-allocation functions can
have the property to be in the α-core. Intuitively, no coalition is overcharged:

Definition 2 (the α-core property). A cost-allocation function ξ(·) for U ⊆ N is in
the α-core iff it is α-budget-balanced and for all U ′ ⊆ U : ξ(U ′) ≤ opt(U ′). A cost-
sharing method x(·) is in the α-core iff for all U ⊆ N, x(·, U) is in the α-core.

Fair Cost-Sharing Methods for Scheduling Jobs on Parallel Machines 179

The provider’s problem can be solved by a cost-sharing mechanism and it’s underlying
cost-sharing method. A cost sharing mechanism is an algorithm that is given the agents’
bids {bi}i∈N . It outputs the set of agents U ⊆ N that receive the service and cost-
shares xi(U) ∈ IR with 0 ≤ xi(U) ≤ bi for all i ∈ U and xi(U) = 0 for all i /∈ U .
Furthermore, it outputs a solution with cost cA(U) to provide the service to U . We focus
on assuring the following mechanism properties:

– strategyproofness: Agent i ∈ N maximizes his utility by bidding bi = vi.
– group-strategyproofness: A coalition U ⊆ N of users cannot collude and submit

untruthful bids such that as a result, each of them has at least the same utility and at
least one of them has a strictly larger utility compared to the outcome that results if
each of them bids truthfully.

– α-budget-balance, α ≤ 1 : αcA(U) ≤ x(U) ≤ opt(U) holds for the set U of
service-receiving agents.

Cross-monotonic cost-sharing methods play a crucial role in the context of how to
achieve α-budget-balance and group-strategyproofness.

Definition 3 (cross-monotonicity). A cost-sharing method x(·) is cross-monotonic if
for all U,U ′ ⊆ N,U ′ ⊆ U : xi(U ′) ≥ xi(U) ∀i ∈ U ′.

If the underlying cost sharing method is cross-monotonic and α-budget-balanced, a
simple mechanism given by Moulin and Shenker [25] is α-budget-balanced and group-
strategyproof [18].

It is easy to see that each α-budget-balanced cross-monotonic cost sharing method
is in the α-core. From this we can conclude that if there is no cost-allocation function
for some set U ⊆ N in the α-core, then no α-budget-balanced cross-monotonic cost-
sharing method can exist. On the other hand, there can be cost-sharing methods that are
in the α-core and are not cross-monotonic.

2.2 The Scheduling Problem

Let N be the set of n agents with |N | = n. Each agent i ∈ N owns exactly one
job of workload wi ∈ IN. Therefore, we will use U ⊆ N to denote agents and jobs
interchangeably. For U ⊆ N , let W (U) =

∑
i∈U wi and wmax(U) = maxi∈U wi. Let

d(U) denote the number of different workloads in U . Moreover, there is a set M of m
machines. Each machine j ∈ M has speed sj ∈ IN. We assume that s1 ≥ . . . ≥ sm. For
M ′ ⊆ M , let S(M ′) =

∑
j∈M ′ sj . If all speeds are the same, we say that the machines

are identical. Otherwise we call them related. Jobs are identical, if all workloads are
the same. Without loss of generality we assume that identical machines and jobs have
speeds and workloads of one respectively.

An assignment allocates each job to exactly one machine. For a given assignment,
let δj be the sum of the workloads of the jobs assigned to machine j. Then the com-
pletion time of a job assigned to machine j is (δj/sj). The makespan is defined as
maxj∈M (δj/sj). We call the machines whose completion time is equal to the makespan
makespan machines. The optimal solution for a set of jobsU ⊆ N is an assignment with
minimal makespan, denoted by opt(U).

180 Y. Bleischwitz and B. Monien

To compute an assignment, we apply Graham’s LPT algorithm [12]. LPT processes
the jobs in decreasing order and assigns each job to a machine on which it experiences
the smallest completion time (taking into account the jobs that have been assigned al-
ready). For a set U ⊆ N we use lpt(U) to denote the makespan resulting from LPT,
i.e. lpt(U) = cLPT (U). For an assignment for jobs U ⊆ N computed by LPT , let
m(U) be the set of machines that jobs are assigned to. The running time of LPT is
O(n) for identical jobs and identical machines, O(n logm) for identical jobs and re-
lated machines, and O(n logn) otherwise. Even though there are better approximation
algorithms for the assignment problem [8, 10, 14, 15], our main results cannot be im-
proved by switching to another algorithm. A nice additional property of LPT that we
exploit in most proofs is that in each iteration, the current assignment is in Nash equilib-
rium. An assignment is in Nash equilibrium, if no agent can improve by deviating from
the current assignment, i.e. for each job i from the set of served agents U ⊆ N that is
assigned to machine j ∈ M it holds that (δk + wi)/sk ≥ δj/sj for all k ∈ M\{j}.

There are threeLPT specific assignment properties that we will utilize in our proofs.
Lemma 1 states these well-known properties.

Lemma 1. Let U ⊆ N and let Û ⊆ U be the jobs assigned by LPT until the makespan
first occurs, and let τ = |m(Û)|. Then it holds, that:

1. For identical machines, W (U)/m ≤ opt(U) .
2. For related machines, W (Û)/S(m(Û)) ≤ opt(Û) .
3. If machines are identical and there are at least two jobs assigned to a makespan

machine, then lpt(U) ≤ 2m
m+1

W (U)
m .

4. If there are at least two jobs assigned to some machine, then
– for related machines: lpt(U) ≤ 2τ

τ+1
W (Û)

S(m(Û))
.

– for identical jobs: lpt(U) ≤ 2m(U)
m(U)+1

|U|
S(m(U)) .

3 Results on Cross-Monotonicity

In this section, we give α-budget-balanced cross-monotonic cost-sharing methods that
yield α-budget-balanced group-strategyproof mechanisms if used as input for the mech-
anism by Moulin and Shenker [25]. All proposed methods rely on solving the assign-
ment problem via LPT. The property that LPT computes a Nash equilibrium is uti-
lized frequently. We say that an algorithm computes a cost-sharing method x(·) in time
f(m,n) if for each set U ⊆ N the cost-shares {xi(U)}i∈U are computed in time
f(m,n). The mechanism by Moulin and Shenker runs in time O(nf(m,n)+g(m,n)),
where g(m,n) is the running time of LPT . Proofs omitted due to space restrictions are
provided in the full version of this paper.

Theorems 1 and 2 propose (m + 1)/(2m)-budget-balanced cross-monotonic cost-
sharing methods for the scheduling problem with identical jobs and for the scheduling
problem with identical machines. Due to Theorem 5 in Section 4, these cross-monotonic
methods achieve the best budget-balance factor possible.

Theorem 1. There is an m+1
2m -budget-balanced cross-monotonic cost-sharing method

for the scheduling problem with arbitrary jobs and identical machines computable in
time O(n).

Fair Cost-Sharing Methods for Scheduling Jobs on Parallel Machines 181

Theorem 2. There is an m+1
2m -budget-balanced cross-monotonic cost-sharing method

for the scheduling problem with identical jobs and related machines computable in time
O(n logm).

The central Theorem 4 states, that the approximation factor for cross-monotonic cost-
sharing methods is unbounded for arbitrary jobs and related machines. It depends on
d(N), the number of different workloads in the set N . By Theorem 3, it is possible to
achieve (2d(N))−1-budget-balance:

Theorem 3. There is a (2d(N))−1-budget-balanced cross-monotonic cost-sharing
method for the scheduling problem with arbitrary jobs and related machines com-
putable in time O(n logn).

Theorem 4. For the scheduling problem with arbitrary jobs and related machines,
there is no α-budget-balanced cross-monotonic cost-sharing method for the factor α
with α > (d(N) + ε)−1, ∀ε > 0.

Proof. We proceed as follows: we fix a set of machines and consider classes of schedul-
ing instances in which the job workloads equal their speeds. Classes are defined by
specifying the number of agents and jobs respectively of a certain job workload. For
average cost-shares on these instances, we derive properties that are met by all cross-
monotonic cost-sharing methods. Afterwards, we derive a bound on α-budget balance
where α will be determined later.

Instances. The considered classes consist of instances with d = d(N) different work-
loads 1, a, . . . , ad−1, with a ∈ N>1. There are mj machines having a speed of ad−j

with j ∈ [d]. Let m1 = 1 and mj = (a − 1)
∑j−1

l=1 mla
j−l for j ≥ 2. It holds that

mj = a2mj−1 for j ≥ 3, which can easily be proved by induction. We use the more
complicated formulation that simplifies later arguments. For j ∈ [d], let Nj be the set
of all agents with jobs of workload ad−j and nj = |Nj|. Then, N = ∪j∈[d]Nj . For
U ⊆ N , let Uj = U ∩ Nj . Uj extracts from U all jobs with workload ad−j . Let the
profile (u1, . . . , ud) denote the class of all sets U with uj = |Uj| for all j ∈ [d].

Optimal Assignments. First, consider the class (m1, . . . ,md). Obviously, for every
instance of this class consisting of the set of jobs U , opt(U) = 1. Now change the jth
entry to rj = amj . We show, that opt(U) = a for every instance with the set of jobs
U of the class (m1, . . . , rj , . . . ,md) for all j ∈ [d]. First, we give an assignment with
makespan a. Then we show that it is impossible to obtain a makespan smaller than a.

The assignment is computed as follows. Assign all jobs of workload ad−l, l ∈ [d] to
the machines of speed ad−l. This results in a completion time of one on machines with
speed ad−l, l �= j and a completion time of a on machines with speed ad−j .

Now we show a lower bound for the optimal assignment. Assume, that there exists
an assignment with makespan smaller than a. Observe, that all jobs with workload
larger than ad−j have to be assigned to the machines with speed larger than ad−j . Now
look at the jobs with workload ad−j . They can only be assigned to the machines with
speed at least ad−j . At most (a − 1)mj of them can be assigned to the machines with
speed ad−j . Now, all jobs of workload larger than ad−j and the mj remaining jobs of
workload ad−j have to be assigned to the machines with speed larger than ad−j . The

182 Y. Bleischwitz and B. Monien

makespan cannot be smaller than a, because a lower bound for the optimal assignment
for these jobs on these machines is given by a:∑j−1

l=1 (mla
d−l) + mja

d−j∑j−1
l=1 (mlad−l)

=
∑j−1

l=1 (mla
d−l) + (a− 1)

∑j−1
l=1 (mla

d−l)∑j−1
l=1 (mlad−l)

= a . (1)

Cross-Monotonicity. In the following, we assume, that there is a cross-monotonic cost-
sharing method x(·). Let Γ (m1, . . . ,md) =

∏d
l=1

(
nl

ml

)
. For all instances of the class

(m1, . . . ,md), the average cost share of the agents with jobs in Nk, k ∈ [d] is

χk := χk((m1, . . . ,md)) := Γ (m1, . . . ,md)−1
∑
U⊂N

∀l:|Ul|=ml

∑
i∈Uk

xi(U) . (2)

Now change the jth profile entry to rj = amj . Then, the average cost-share for agents
with jobs in Nk is χk((m1, . . . , rj , . . . ,md)). Define Γ = Γ (m1, . . . ,md) and also
Γj = Γ (m1, . . . , rj , . . . ,md). We will utilize cross-monotonicity to bound it from
above in terms of χk.

Consider the set Uj ⊆ Nj with |Uj | = rj and Uj ⊆ U ⊆ N . First, let k = j. Every
single cost-share of an agent i ∈ Uj for the set U is not larger than his cost-share for
the set (U\Uj) ∪ {i} ∪ Ũ , with Ũ ⊂ Uj\{i}, |Ũ | = mj − 1. Especially, it is not larger
than the average value of the cost-shares for i for each of these

(
rj−1
mj−1

)
sets. Therefore

an upper bound of χj((m1, . . . , rj , . . . ,md)) is given by:

χ
(j)
j := Γ−1

j

∑
U⊆N

∀l �=j:|Ul|=ml
|Uj |=rj

∑
i∈Uj

∑
Ũ⊂Uj\{i}
|Ũ|=mj−1

xi((U\Uj) ∪ {i} ∪ Ũ)(
rj−1
mj−1

) . (3)

Now, let k �= j. Every single cost-share of an agent i ∈ U\Uj for U is not larger
than the cost-share for i for (U\Uj) ∪ Ũ , Ũ ⊂ Uj , |Ũ | = mj . With the same argument
as above, the following upper bound of χk((m1, . . . , rj , . . . ,md)) results:

χ
(j)
k := Γ−1

j

∑
U⊆N

∀l �=j:|Ul|=ml
|Uj |=rj

∑
i∈Uk

∑
Ũ⊂Uj

|Ũ|=mj

xi((U\Uj) ∪ Ũ)(
rj

mj

) . (4)

We now give a lemma on the relationship between the average cost-shares and their
bounds.

Lemma 2. aχj = χ
(j)
j and χk = χ

(j)
k for j ∈ [d] and k ∈ [d], k �= j.

Proof. We first look at χj and χ
(j)
j , j ∈ [d]. Observe, that both sums are over the same

subsets of Nl with ml elements for l ∈ [d]\{j}. It therefore suffices to consider both
sums for fixed subsets Ul ⊂ Nl, |Ul| = ml, l ∈ [d]\{j} only. Let U = ∪l∈[d]\{j}Ul.
Define:

Fair Cost-Sharing Methods for Scheduling Jobs on Parallel Machines 183

χ̃j := Γ−1
∑

Ũ⊂Nj

|Ũ|=mj

∑
i∈Ũ

xi(U ∪ Ũ) and (5)

χ̃
(j)
j := Γ−1

j

(
rj − 1
mj − 1

)−1 ∑
U′⊆Nj

|U′|=rj

∑
i∈U ′

∑
Ũ⊂U′\{i}
|Ũ|=mj−1

xi(U ∪ {i} ∪ Ũ) . (6)

χ̃j and χ̃
(j)
j are related to each other the same way than χj and χ

(j)
j . Now,

χ̃
(j)
j = Γ−1

j

(
rj−1
mj−1

)−1∑
U′⊂Nj
|U′|=rj

∑
Ũ⊂U′

|Ũ|=mj

∑
i∈Ũ xi(U ∪ Ũ) (7)

= Γ−1
j

(
rj−1
mj−1

)−1(nj−mj

rj−mj

)∑
Ũ⊂Nj

|Ũ|=mj

∑
i∈Ũ xi(U ∪ Ũ) . (8)

Equation (7) is a simple combinatorial observation. To obtain (8), we investigate how
often each subset of Nj with mj elements occurs. For each subset Ũ with mj elements,
to determine a superset U ′ ⊃ Ũ with rj elements, we have

(
nj−mj

rj−mj

)
possibilities. Com-

bining Equations (5) and (8) we get:

χ̃
(j)
j = Γ−1

j Γ

(
rj − 1
mj − 1

)−1(
nj −mj

rj −mj

)
χ̃j =

rj

mj
χ̃j = aχ̃j . (9)

Therefore, aχj = χ
(j)
j for j ∈ [d]. With similar argumentation, we can conclude that

χk = χ
(j)
k for j ∈ [d] and k ∈ [d]\{j}. �

Budget-Balance. Let us now assume, that x(·) is not only cross-monotonic but also α-
budget-balanced. We have seen that the optimal cost for all instances of (m1, . . . ,md)
and therefore the average optimal cost is one. With the same argument, the average
optimal cost of all instances in class (m1, . . . , rj , . . . ,md) for j ∈ [d] is a. Then we
can conclude:

d∑
k=1

χk ≤ 1 and
j−1∑
k=1

χk + aχj +
d∑

k=j+1

χk ≥ aα ∀j ∈ [d] . (10)

Summation of these equations yields α ≤ a−1+d
da . For every ε > 0 and a sufficient

large a, this results in α ≤ 1/(d + ε). Note, that it suffices to consider the optimal cost
instead of the LPT cost in Equation (10). If an α-fraction of the optimal cost cannot be
recovered, in particular it cannot be recovered for a non-optimal cost. �

4 The Core and Other Solution Concepts

Since an α-budget-balanced cross-monotonic cost-sharing method is in theα-core, The-
orem 5 tells us that the cost-sharing methods defined in the proofs of Theorems 1 and 2
yield the best approximation factor possible. Theorem 6 provides us with a cost-sharing
method in the (m + 1)/(2m)-core for the scheduling problem with arbitrary jobs and
related machines.

184 Y. Bleischwitz and B. Monien

Theorem 5. For the scheduling problem with identical jobs and machines, there is no
cost-sharing method in the α-core for α > (m + 1)/(2m).

Proof. We show that for α > (m+ 1)/(2m), there is no cost-allocation function in the
α-core for the set U with |U | = m + 1. Let U ′ ⊂ U, |U ′| = m. Assume, there is a
cost-allocation function ξ(·) : N → IR for the set U in the α-core. Since we have that∑

i∈U ′ ξ(i) ≤ opt(U ′) = 1, there is an agent k ∈ U ′ with ξ(k) ≤ 1/m. Then,∑
i∈U

ξ(i) = ξ(k) +
∑

i∈U\{k}
ξ(i) ≤ 1/m+ opt(U\{k}) = 1/m+ 1 . (11)

From 2α ≤
∑

i∈U ξ(i) ≤ (1 + m)/m, we can conclude that α ≤ (m + 1)/(2m). �

Theorem 6. There is a cost-sharing method in the (m+1)/(2m)-core of the scheduling
problem with arbitrary jobs and related machines computable in time O(n log n).

Proof. Let U ⊆ N . Let Û ⊂ U be the set of jobs, that LPT assigns until the makespan
is reached and let τ = |m(Û)|. Furthermore, we denote by mopt(U) the machines that
an optimal assignment uses to assign the set U .

To define the cost-sharing method, we look at two different cases. In the first case
τ < |Û |, i.e. if the makespan first occurs, there is at least one machine that is assigned
more than one job. Then, define xi(U) = wi/S(m(Û)) for all i ∈ Û and xi(U) = 0 for
all i /∈ Û . In the second case τ = |Û |, i.e. if the makespan first occurs, LPT has assigned
at most one job to each machine. Let τ ≥ 3. We will omit the proof of the subcase
τ ∈ {1, 2} due to space restrictions . We define A(U) = S(m(Û))opt(U) − W (Û).
Let xi(U) = 0 for i /∈ Û . For i ∈ Û , let

xi(U) =

{
wi

S(m(Û))
if A(U) < τ−1

τ+1W (Û)
wi

S(m(Û))−sτ
otherwise .

First observe, that LPT determines the running time. We have to show for the given
cost-sharing method x(·) that x(·, U) is in the α-core for all U ⊆ N . We start with
the first case in which τ < |Û |. x(U) is smaller than opt(U), since by Lemma 1 it
holds, that x(U) = W (Û)/S(m(Û)) ≤ opt(Û) ≤ opt(U). Lemma 1 also provides the
approximation factor. Next, we show the core condition. Let U ′ ⊆ U . From the proof
of Lemma 1 we can conclude, that m(Û) ⊇ mopt(Û). Therefore,

∑
i∈U ′

xi(U) =
W (U ′ ∩ Û)
S(m(Û))

≤ W (U ′ ∩ Û)
S(mopt(Û))

≤ W (U ′ ∩ Û)
S(mopt(U ′ ∩ Û))

≤ opt(U ′) . (12)

Consider the second case, τ = |Û |. Then, lpt(U) = opt(U) = wτ/sτ . Due to space
restrictions, we omit the case A(U) < (τ − 1)/(τ + 1)W (Û) and for the remaining
case only show the core condition. If A(U) ≥ (τ − 1)/(τ + 1)W (Û), then x(U) =
W (Û)/(S(m(Û)) − sτ).

Let U ′ ⊆ U . If U ′ = Û , then
∑

i∈U ′ xi(U) = x(U) ≤ opt(U) = opt(U ′). Oth-

erwise, (U ′ ∩ Û) ⊂ Û . Since lpt(U) = opt(U), it holds that m(Û) = mopt(Û) and

Fair Cost-Sharing Methods for Scheduling Jobs on Parallel Machines 185

mopt(U ′ ∩ Û) ⊆ mopt(Û)\{τ}, since an optimal assignment for a proper subset of Û
does not use the machine τ anymore. Thus,

∑
i∈U ′

xi(U) =
W (U ′ ∩ Û)

S(mopt(Û)) − sτ

≤ W (U ′ ∩ Û)
S(mopt(U ′ ∩ Û))

≤ opt(U ′) . (13)

�

Finally, we state Theorem 7, whose proof is available in the full version.

Theorem 7. There is a 3/5-budget-balanced strategyproof cost-sharing mechanism for
the scheduling game with arbitrary jobs and related machines. It is 3m/(4m − 1)-
budget-balanced for the scheduling game with identical jobs and related machines and
1-budget-balanced for identical jobs and identical machines. Its running time is the
running time of LPT.

Acknowledgements. We would like to thank Rainer Feldmann, Martin Gairing, and
Karsten Tiemann for many helpful discussions.

References

1. A. Archer, J. Feigenbaum, A. Krishnamurthy, and R. Sami. Approximation and collusion in
multicast cost sharing. Games and Economic Behaviour, 47:36–71, 2004.

2. A. Archer and E. Tardos. Truthful mechanisms for one-parameter agents. Proceedings of the
42th IEEE Symposium on Foundations of Computer Science, pages 482–491, 2001.

3. L. Beccetti, J. Könemann, S. Leonardi, and M. Pál. Sharing the cost more efficiently: im-
proved approximation for multicommodity rent-or-buy. In Proceedings of the 16th Annual
ACM-SIAM Symposium on Discrete Algorithms, pages 375–384, 2005.

4. A. Czumaj. Selfish Routing on the Internet. Chapter 42 in Handbook of Scheduling: Algo-
rithms, Models, and Performance Analysis, 2004.

5. N. Devanur, M. Mihail, and V. Vazirani. Strategyproof cost sharing mechanisms for set cover
and facility location problems. In Proceedings of ACM Conference on Electronic Commerce,
pages 108–114, 2003.

6. J. Feigenbaum, A. Krishnamurthy, R. Sami, and S. Shenker. Hardness results for multicast
cost sharing. Theoretical Computer Science, 304(1-3):215–236, 2003.

7. J. Feigenbaum, C. Papadimitriou, and S. Shenker. Sharing the cost of multicast transmis-
sions. Journal of Computer and System Sciences, 63:21–41, 2001.

8. D. Friesen. Tighter bounds for the multifit processor scheduling algorithm. SIAM Journal
on Computing, 13(1):170–181, 1984.

9. D. Friesen. Tighter bounds for lpt scheduling on uniform processors. SIAM Journal on
Computing, 16(3):554–560, 1987.

10. D. Friesen and M. Langston. Bounds for multifit scheduling on uniform processors. SIAM
Journal on Computing, 12(1):60–70, 1983.

11. M. Gairing, T. Lücking, B. Monien, and K. Tiemann. Nash Equilibria, the Price of Anarchy
and the Fully Mixed Nash Equilibrium Conjecture. In Proceedings of the 32nd International
Colloquium on Automata, Languages and Programming, volume 3580 of LNCS, pages 51–
65, 2005.

12. R. Graham. Bounds on multiprocessing timing anomalies. SIAM Journal of Applied Mathe-
matics, 17(2):416–429, 1969.

186 Y. Bleischwitz and B. Monien

13. A. Gupta, A. Srinivasan, and E. Tardos. Cost-Sharing Mechanisms for Network Design. Pro-
ceedings of the 7th International Workshop on Approximation Algorithms for Combinatorial
Optimization Problems, 3122:139–152, 2004.

14. D. Hochbaum and D. Shmoys. Using dual approximation algorithms for scheduling prob-
lems: theoretical and practical results. Journal of the ACM, 34(1):144–162, 1987.

15. D. Hochbaum and D. Shmoys. A polynomial approximation scheme for scheuduling on
uniform processors: using the dual approximation approach. SIAM Journal on Computing,
17(3):539–551, 1988.

16. E. Horowitz and S. Sahni. Exact and approximate algorithms for scheduling nonidentical
processors. Journal of the Association for Computing Machinery, 23(2):317–327, 1976.

17. N. Immorlica, M. Mahdian, and V. Mirrokni. Limitations of cross-monotonic cost sharing
schemes. In Proceedings of the 16th Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 602–611, 2005.

18. K. Jain and V. Vazirani. Applications of approximate algorithms to cooperative games. In
Proceedings of the 33th Annual ACM Symposium on Theory of Computing, pages 364–372,
2001.

19. K. Kent and D. Skorin-Kapov. Population monotonic cost allocation on msts. In Operational
Research Proceedings KOI, pages 43–48, 1996.

20. J. Könemann, S. Leonardi, and G. Schäfer. A group-strategyproof mechanism for steiner
forests. In Proceedings of the 16th Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 612–619, 2005.

21. J. Könemann, S. Leonardi, G. Schäfer, and S. van Zwam. From primal-dual to cost shares
and back: a stronger LP relaxation for the steiner forest problem. In Proceedings of the 32th
Int. Colloquium on Automata, Languages, and Programming, pages 930–942, 2005.

22. J. K. Lenstra, D. B. Shmoys, and E. Tardos. Approximation algorithms for scheduling un-
related parallel machines. In Proceedings of the 28th Annual Symposium on Foundations of
Computer Science (FOCS’87), pages 217–224, 1987.

23. S. Leonardi and G. Schäfer. Cross-monotonic cost-sharing methods for connected facility
location games. In ACM Conference on Electronic Commerce, pages 224–243, 2004.

24. D. Mishra and B. Rangarajan. Cost sharing in a job scheduling problem using the shapley
value. In Proceedings of the 6th ACM Conference on Electronic Commerce, pages 232–239,
2005.

25. H. Moulin and S. Shenker. Strategyproof sharing of submodular costs: budget balance versus
efficiency. Economic Theory, 18:511–533, 2001.

26. N. Nisan and A. Ronen. Algorithmic Mechanism Design. Games and Economic Behaviour,
35:166–196, 2001. Extended abstract appeard at STOC’99.

27. M. Pál and E. Tardos. Group strategyproof mechanisms via primal-dual algorithms. In Pro-
ceedings of the 44th Annual IEEE Symposium on Foundations of Computer Science, pages
584–593, 2003.

28. P. Penna and C. Ventre. The Algorithmic Structure of Group Strategyproof Budget-Balanced
Cost-Sharing Mechanisms. In Proceedings of the 23rd International Symposium on Theoret-
ical Aspects of Computer Science, to appear, 2006.

29. L. S. Shapley. On balanced sets and cores. Naval Research Logistics Quarterly, 14:453–460,
1967.

30. E. V. Shchepin and N. Vakhania. An optimal rounding gives a better approximation for
scheduling unrelated machines. Operations Research Letters, 33:127–133, 2005.

Tighter Approximation Bounds for LPT
Scheduling in Two Special Cases

Annamária Kovács

Max-Planck Institut für Informatik,
Stuhlsatzenhausweg 85,

66123 Saarbrücken, Germany
Fax: +49-681-93-25-199
panni@mpi-inf.mpg.de

Abstract. Q||Cmax denotes the problem of scheduling n jobs on m ma-
chines of different speeds such that the makespan is minimized. In the
paper two special cases of Q||Cmax are considered: Case I, when m − 1
machine speeds are equal, and there is only one faster machine; and Case
II, when machine speeds are all powers of 2. Case I has been widely stud-
ied in the literature, while Case II is significant in an approach to design
so called monotone algorithms for the scheduling problem.

We deal with the worst case approximation ratio of the classic list
scheduling algorithm ’Longest Processing Time (LPT)’. We provide an
analysis of this ratio Lpt/Opt for both special cases: For one fast machine,
a tight bound of (

√
3 + 1)/2 ≈ 1.366 is given. When machine speeds

are powers of 2 (2-divisible machines), we show that in the worst case
41/30 < Lpt/Opt < 42/30 = 1.4.

To our knowledge, the best previous lower bound for both problems
was 4/3 − ε, whereas the best known upper bounds were 3/2 − 1/2m for
Case I [6] resp. 3/2 for Case II [10]. For both the lower and the upper
bound, the analysis of Case II is a refined version of that of Case I.

1 Introduction

We consider the offline task scheduling problem on related (uniform) machines
(Q||Cmax). In the input of this problem we are given a speed vector 〈s1, s2,. . ., sm〉
representing the speeds of m machines, and a job vector 〈t1, t2, . . . , tn〉, where
tj is the size of the jth job, 1 ≤ j ≤ n. In general, machine speeds and job
sizes are arbitrary positive numbers. We assume that si ≤ si+1 (1 ≤ i < m),
and tj ≥ tj+1 (1 ≤ j < n), i.e., machine speeds are non-decreasing and job sizes
are non-increasing. The goal is to assign the jobs to the machines, so that the
overall finish time is minimized: If jobs assigned to machine i are {tiγ}Γ

γ=1 then
the work assigned to i is wi :=

∑Γ
γ=1 t

i
γ and the finish time of i is fi := wi/si.

The makespan to be minimized is maxm
i=1 fi. This problem is NP-hard even for

2 identical machines [14], but it has an approximation scheme; for constant m a
FPTAS exists [7, 8].

A classic, simple approximation algorithm for Q||Cmax is the so called ’Longest
Processing Time first’ algorithm, or Lpt for short. This algorithm picks the jobs

T. Calamoneri, I. Finocchi, G.F. Italiano (Eds.): CIAC 2006, LNCS 3998, pp. 187–198, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

188 A. Kovács

one by one in decreasing order, and always assigns the next job to the machine
where it will have the smallest completion time. In this paper we analyse the
worst case ratio of Lpt in two special cases of Q||Cmax :

• Case I (one fast machine): s1 = s2 = . . . = sm−1 = 1, sm = s > 1;
• Case II (2-divisible speeds): si = 2li , li ∈ Z.

For a particular instance of the scheduling problem, let Lpt denote the
makespan produced by the Lpt schedule, andOpt denote the optimum makespan.
We provide tight bounds for the worst case of Lpt/Opt in Case I and ’nearly’ tight
bounds in Case II. A complete version of this paper is available at [9].

Related work. The approximation ratio of Lpt for arbitrary machine speeds
was first considered by Gonzalez, Ibarra, and Sahni in [6], where the authors
prove that Lpt/Opt < 2, whereas for any ε > 0 an instance exists so that
Lpt/Opt > 3/2 − ε. These bounds were later improved to (1.512, 19/12) by
Dobson [4], respectively to (1.52, 1.67) by Friesen [5].

Case I has been studied in a number of papers: Liu and Liu [12] give approxi-
mation bounds in terms of m and s for a variation of Lpt, and for list schedules
(the case when jobs are given in any fixed order). Gonzalez et al. [6] obtain the
lower and upper bounds 4/3 − ε < Lpt/Opt ≤ 3/2 − 1/2m. For m = 2 they
prove the tight bound of 1+

√
17

4 . Cho and Sahni [2] analyse general list schedules
for both arbitrary machine speeds and for Case I. For the latter they obtain the
tight bound 1+

√
5

2 if m = 2, and 3− 4/(m+1) if m ≥ 3. Li and Shi [11] consider
the same special case, and suggest better heuristics than list scheduling for the
online problem. Finally for m = 2, Mireault, Orlin, and Vohra [13] provide a
complete analysis of Lpt/Opt in terms of s2/s1.

Case II has been recently studied from a different point of view: A scheduling
algorithm is monotone, if increasing the speed of any particular machine does not
decrease the work assigned to that machine. The monotonicity of an algorithm
gained relevance in the context of mechanism design. If each machine speed is
only known to the machine itself, we need to motivate that machines declare
their true speeds to the scheduling mechanism. As shown by Archer and Tar-
dos [1], such motivation is possible only if the scheduling algorithm used by the
mechanism is monotone. Auletta et al. [15] conjecture that Lpt is monotone
if machine speeds are 2-divisible (or divisible, in general). In [10] we prove
this conjecture; moreover we show that in case of 2-divisible speeds, Lpt is a
3/2-approximation algorithm. For arbitrary input speeds we obtain a monotone
3-approximation algorithm Lpt∗ by running Lpt with machine speeds rounded
to powers of 2. An improved approximation bound for Lpt improves the bound
for Lpt∗ at the same time.

Our result. We present an instance of the Q||Cmax problem with speed vector
〈1, 1, . . . , 1, 2r〉 (r ∈ N), so that for this instance Lpt/Opt >

√
3+1
2 −ε for arbitrary

ε > 0, if r and m are large enough. (The instance is the same for arbitrary s > 1
instead of 2r.) With this we improve the previously known lower bound 4/3− ε
for the approximation ratio of Lpt in Case I [6] as well as in Case II [10]. It is

Tighter Approximation Bounds for LPT Scheduling in Two Special Cases 189

interesting to mention that in both previous papers the bound 4/3 is conjectured
to be tight in the respective case.

After that we show that the lower bound
√

3+1
2 − ε is actually tight in Case I,

i.e., for any instance with one fast machine Lpt/Opt <
√

3+1
2 holds. To our best

knowledge, the previous upper bound was Lpt/Opt ≤ 3/2 − 1/2m [6].
On the other hand, for Case II we show that the lower bound

√
3+1
2 is not tight:

we could construct an instance with 2-divisible machines such that Lpt/Opt >
(
√

409+29)
36 − ε, where (

√
409+29)

36 ≈ 1.3673... > 41
30 >

√
3+1
2 . However, this instance

relies on calculation with exact job sizes, completion times etc., and is valid
only if Lpt favours faster machines in case of ties. If Lpt breaks ties arbitrarily,
another instance exists [9] with approximation ratio Lpt/Opt > 955/699 − ε,

where 955/699 >
√

3+1
2 .

Both of these instances are further developed variants of the first instance.
On the one hand, this slight improvement over

√
3+1
2 is of theoretical interest;

on the other hand the new instances give an impression about how troublesome
it might be to provide a tight approximation bound for 2-divisible machines.

Instead, with hardly more effort than in Case I, and following the same lines,
it is now natural to prove an upper bound of 1.4 for 2-divisible machines. This
improves on our previous upper bound of 1.5, and automatically provides a
better worst case ratio of 2.8 for the monotone algorithm Lpt* of [10].

Overview. In the rest of Section 1 we introduce further notation and definitions
and state some basic observations. Section 2 presents an instance that proves
the lower bound

√
3+1
2 − ε for arbitrary ε > 0 in both special cases. In Section 3

we show that this bound is tight in Case I, whereas Section 4 gives an upper
bound of 1.4 in Case II. Some intuition about both upper bound proofs can be
found at the beginning of the respective sections. Finally, Section 5 provides an
example with improved lower bound for Case II. The proofs omitted from this
short version can be found at [9].

Notation and definitions. We use tj to denote both the jth job, and the size of
the jth job in formulas. Throughout the paper t denotes the size of tn. We will
use the short expressions 1-job, y-job, t-job for a job of size 1, y, t, etc. Similarly,
a 1-machine or a 4-machine means a machine of speed 1 or 4, respectively.

The work and the finish time of machine i in Lpt is denoted by wi, resp.
fi = wi/si. In the upper bound proofs these values will be defined disregarding
the last job tn. The completion time of a job tj assigned to machine i is the
finish time of i right after tj was scheduled.

The formal definition of Lpt is as follows:

Lpt algorithm: Input: 〈s1, . . . , sm〉 and 〈t1, . . . , tn〉

At step j of Lpt let wj
i denote the work of machine i (1 ≤ i ≤ m). Lpt

assigns tj to machine h if (wj
h + tj)/sh = mini(w

j
i + tj)/si, and h is the largest

machine index with this property.

190 A. Kovács

In the above definition, Lpt decides for the faster (higher index) machine in
case of ties. Nevertheless, all our upper bound results hold if Lpt prefers lower
index machines (for simplicity we did not consider other definitions). Further-
more, the lower bound example in Section 2 is valid if ties are broken arbitrarily.

Next, we present a frequently used simple tool, called principle of domination
[5, 3]. In the proofs of Sections 3 and 4 we assume a minimal counter-example,
meaning that it has the smallest number of machines, and for this number of
machines the smallest number of jobs. Let an instance of the Q||Cmax problem
be a minimal counter-example for an approximation upper bound of Lpt. Let
Opt be a fixed optimal schedule of this instance.

Definition 1. [5] We say that machine i dominates machine i∗ if
(i) si ≤ si∗ and
(ii) Lpt assigns the jobs τ1, . . . , τk to i (disregarding tn); Opt assigns the jobs
τ∗1 , . . . , τ

∗
l to i∗, and there is a function F : {τ∗1 , . . . , τ∗l } → {τ1, . . . , τk} such

that for each τj ,
∑

f(τv)=τj
τv ≤ τj .

Proposition 1. (principle of domination [5]) In a minimal counter-example
for an upper bound on Lpt/Opt, no machine i dominates a machine i∗.

The proof uses the argument that in case i dominates i∗, deleting i and all jobs
(but tn) assigned to i would result in a smaller counter-example. Note that as a
corollary, there are no empty machines in Opt.

We conclude the introduction with a simple observation:

Proposition 2. Let si = si+1. If in Lpt tj is the first job assigned to i + 1,
then tj+1 is the first job assigned to i. �

2 A Lower Bound:
√

3+1
2 − ε

In this section we present an instance of the Q||Cmax problem with m− 1 ma-
chines of speed 1 and one machine of speed 2r (r ∈ N). The instance is valid if
ties are broken arbitrarily; moreover the use of speed 2r instead of some s > 1 is
not essential. The approximation ratio of Lpt on this instance can be arbitrarily
close to (

√
3 + 1)/2 ≈ 1.366. In particular, Lpt >

√
3 + 1 − ε′ and Opt < 2 + ε′,

where ε′ > 0 is arbitrarily small if m and r are large enough.
We will call the machine of speed 2r the fast machine.

Theorem 1. For any ε > 0 there is a speed vector 〈s1 = . . . = sm−1 = 1, sm =
2r〉 and a job vector 〈t1, . . . , tn〉, s. t. for this instance Lpt/Opt > (

√
3+1)/2−ε.

The proof is given by the following instance:

Instance A. Let x = 3 −
√

3 ≈ 1.268 and y =
√

3 − 1 ≈ 0.732. We start by
describing the assignment of jobs to machines in Lpt (see Figure 1): The fast
machine first receives 2r−1 jobs of size x; then it is filled with as many jobs of size
1 as fit below time 2; finally it gets 2r−1 jobs of size y. At this point the number

Tighter Approximation Bounds for LPT Scheduling in Two Special Cases 191

of jobs on the fast machine is 2·(2r−1)+�2·2r−(2r−1)·x�, and the total work on
the fast machine amounts to at least (2r−1)·x+2·2r−(2r−1)·x−1+(2r−1)·y =
2r(2 + y) − 1 − y.

The set of 1-machines is divided into blocks. The number of 1-machines in
one block is (x−1)/δ, where δ > 0 is arbitrarily small and it divides x−1 evenly.
The Lpt schedule on a block is as follows: Each 1-machine has a large and a
small job. The large jobs range from x− δ down to 1 by steps of δ and the small
jobs range from y up to 1 − δ by steps of δ. Every 1-machine has total work
y + x− δ = 2 − δ.

We claim that if 1/2r < δ, then the above assignment is an Lpt schedule:
all x-jobs on the fast machine are completed by time x − x/2r; after that 1-
machines receive their first jobs, all of size less than x. These jobs would have
higher completion time on m. Since an additional 1-job on a 1-machine would
not be completed before time 2, the 1-jobs are all assigned to m. Now the 1-
machines receive their second jobs with completion time 2− δ < 2− 1/2r where
2 − 1/2r is a lower bound on the current completion time of m. Finally, after
(at most) 2r − 1 y-jobs, a last job of size y is assigned to one of the 1-machines,
yielding makespan (y + 2 − δ) =

√
3 + 1 − δ. On the fast machine this last job

would have been completed after (2r(2+y)−1)/2r =
√

3+1−1/2r >
√

3+1−δ.
Now we rearrange the jobs on the machines in order to get the optimum

schedule. We claim that a block of 1-machines can be used to exchange an x-job
for a 1-job or to exchange a 1-job for a y-job. The first happens if we shift the
large jobs within a block, insert a job of size x instead of x − δ, and take out a
job of size 1. The second happens, if we shift the small jobs within a block, insert
a 1-job and take out a y-job. In either case the new finish time on 1-machines
will be 2.

Let the number of blocks be 2 · (2r − 1) + �2 · 2r − (2r − 1) · x�, so that
every job of size x or size 1 on the fast machine can be exchanged for a y-job.
Moreover, we put the very last job of size y on the fast machine. Now the total
work on the fast machine is at most y · (2(2r − 1) + 2 · 2r − (2r − 1) · x) + y =
y · 4 · 2r − y · 2r · x+ y(x− 1) = 2r · y · (4 − x) + y · (x− 1) = 2r · 2 + y · (x− 1).
Thus, the optimum makespan is at most 2 + y(x − 1)/2r. Clearly, the desired
bound is obtained if ε′ > δ > 1/2r > y(x− 1)/2r for some appropriate ε′.

x−δ

δ1−

3 +1

y

x

x

y

y

fast machinea block of 1−machines

1

1

1

2

y

Fig. 1. Instance A: the assignment of jobs before the last job in Lpt

192 A. Kovács

3 Tight Bound

We consider the special case of Q||Cmax when s1 = s2 = . . . = sm−1 = 1 and
sm = s > 1. We show that in this case the bound given in Section 2 is tight:

Theorem 2. For any instance of the Q||Cmax problem for which s1 = s2 =
. . . = sm−1 = 1 and sm = s > 1 holds, Lpt/Opt < (

√
3 + 1)/2.

The proof is by contradiction: we regard an instance with minimum number of
machines, for which Lpt/Opt ≥ (

√
3 + 1)/2. We fix any optimal schedule of this

instance and denote it by Opt.
This proof – and also the proof in Section 4 – is based on the following

elementary technique: Our starting point is the Lpt schedule. First we rearrange
the jobs of Lpt within 1-machines. Then we pick jobs {t∗j} of machine m and put
them to 1-machines according to how they are scheduled in Opt. We will have
to put other jobs from 1-machines back to machine m. This exchanging process
will be carried out sometimes one by one, other times by moving sets of jobs.
We will calculate the minimum possible ratio: (work moved to m)/(work moved
from m). This ratio depends on which time period of machine m the jobs {t∗j}
are taken from. Propositions 3 and 4 provide a technical tool for differentiating
these time periods. Lemmas 1, 2 and 3 yield the proof of Theorem 2.

For sake of convenience, we assume w.l.o.g. that Opt = 2, and so Lpt ≥
√

3+1.
Let t = tn be the size of the last job, and fi denote the finish time of machine
i before the last job is scheduled. Lpt ≥

√
3 + 1 implies fi ≥

√
3 + 1 − t for

1 ≤ i ≤ m− 1 and fm ≥
√

3 + 1 − t/s.
Analogues to the following lemma can already be found in [6].

Lemma 1. If t ≤
√

3 − 1, or t > 1, then Lpt
Opt <

√
3+1
2 . �

In the rest of the proof we assume
√

3 − 1 < t ≤ 1. Now in Opt there are at
most 2 jobs on every 1-machine, since 3(

√
3−1) > 2. Furthermore, in Lpt every

1-machine has finish time fi ≥
√

3 + 1 − 1 =
√

3. Thus, on a 1-machine in Lpt
there is either a job of size ≥

√
3, or at least two jobs. Let ta ≥ ta+1 ≥ . . . ≥

ta+m−2 = tb be the first jobs assigned to the 1-machines in Lpt as described
by Proposition 2 (see Fig. 2). Let t′a ≤ t′a+1 ≤ . . . ≤ t′b denote the second jobs
on the respective machines if they exist (these are not consecutive jobs).1 If
t′a, t

′
a+1, . . . , t

′
a+v do not exist, then let t′a = t′a+1 = . . . = t′a+v = 0. The proofs

of the following two propositions are based on the principle of domination:

Proposition 3. Let ta > 2 − t. In Opt let t′ be any job on a 1-machine and
t′′ be another job on the same machine if such a t′′ exists. Now t′ > t′a holds.
Furthermore, if t′ ∈ {t′a, t′a+1, . . . , t

′
b}, then t′′ ∈ {ta, ta+1, . . . , tb}. �

Proposition 4. Let t∗ be a job assigned to m in Lpt and to a 1-machine in
Opt. Let T ∗ denote the completion time of t∗ in Lpt. If t∗ > ta, then T ∗ ≤
t∗ ≤ 2. If t∗ > t′a, then T ∗ ≤ max(2, tb + t∗). �

1 A different order, due to jobs of equal size would be easy to handle by reordering
the 1-machines.

Tighter Approximation Bounds for LPT Scheduling in Two Special Cases 193

3 +1

t b at

t b
, at ,

2

Fig. 2. The first two jobs on 1-machines in Lpt

Corollary 1. Let t∗ and T ∗ be defined as in Proposition 4. If ta > 2 − t, then
T ∗ ≤ max(2, tb + t∗).

Proof. Since ta > 2 − t, by Proposition 3, t∗ > t′a. Now Proposition 4 implies
T ∗ ≤ max(2, tb + t∗). �

Lemma 2. If
√

3 − 1 < t ≤ 1 and tb ≤ 1, then Lpt
Opt <

√
3+1
2 .

Proof. First of all, we put tn on machine m, so that it has total work at least
(
√

3 + 1)s. Let t∗ ≤ 2 be a job that is on a 1-machine in Opt, but on machine
m in Lpt. Now either t∗ ≥ ta or t∗ ≤ tb ≤ 1.

We consider two cases. Suppose first, that ta > 2 − t. By Proposition 4 and
Corollary 1, the completion time of any t∗ in Lpt is at most t∗ ≤ 2, resp. at
most max(2, tb + t∗) = 2. We start by rearranging the jobs within 1-machines in
Lpt: From 1-machines with at least two jobs, we match jobs that belong to the
same 1-machine in Opt, and delete the matched jobs together with a 1-machine.
As a consequence of Proposition 3, any job not in {ta, ta+1, . . . , tb} that stays
on a 1-machine is by now deleted. We can rearrange the jobs so, that on every
remaining 1-machine there is either one job of size at least

√
3, or (at least) two

jobs, so that at most one of these jobs remains on the 1-machine in Opt.
Now we put jobs from m to 1-machines. If there is no remaining job on the 1-

machine, then we exchange total work of ≤ 2 for one job of size at least
√

3, or for
two jobs of total size at least 2t. Otherwise we exchange t∗ ≤ tb ≤ 1, for one job of
size at least t. The size reduction cannot be smaller than min(

√
3/2, 2t/2, t/1) =

min(
√

3/2, t). The reduced work is at most 2s, so we must have

min(
√

3
2
, t) · 2s + (

√
3 − 1)s ≤ 2s

so that either
√

3/2 · 2 +
√

3 − 1 ≤ 2, a contradiction; or 2t +
√

3 − 1 ≤ 2, that
is t ≤ (3 −

√
3)/2, contradicting to

√
3 − 1 < t.

Second, suppose that ta ≤ 2 − t <
√

3 + 1 − t. Now in Lpt there are at least
two jobs on each 1-machine. First we rearrange jobs within 1-machines, so that
every job that is on a 1-machine in Opt, gets on its final place, and there are
still at least two jobs of size ≥ t′a on every 1-machine.

194 A. Kovács

Now we put jobs {t∗} from machine m to 1-machines. If 2 ≥ t∗ > 2 − t, then
we exchange it for two jobs of total size ≥ 2t. If 1 ≥ t∗ > t′a, then we exchange
it for one job of size at least t. In both cases the size reduction of the t∗ is not
less than t/1, and according to Proposition 4, completion time of t∗ in Lpt is at
most max(2, tb + t∗) = 2. If t∗ ≤ t′a, we exchange it for a larger job, so there is no
size reduction. Finally, if 2 − t ≥ t∗ > 1, then t∗ ≥ ta, since t∗ was on machine
m. In this case t∗ has completion time at most t∗ ≤ 2 − t. The size reduction
can be t/(2 − t). We get the inequality:

t

(2 − t)
· (2 − t) + t · t + (

√
3 − 1) ≤ 2

Solving the inequality yields −
√

3 ≤ t ≤
√

3− 1, contradicting to t >
√

3− 1. �

Observe, that the conditions in Instance A correspond to the second part of
Lemma 2, therefore the obtained bounds for t were tight.

Lemma 3 is proved by a similar reasoning, the proof is omitted here.

Lemma 3. If
√

3 − 1 < t ≤ 1 and tb > 1, then Lpt
Opt <

√
3+1
2 . �

4 A 1.4 Upper Bound for 2-Divisible Machines

In this section we deal with 2-divisible machines. We start with the formal de-
finition of 2-divisibility. Due to technical reasons, we allow fractional machine
speeds (e.g., 1/2) in the definition. After that, we state the main result.

Definition 2. The speed vector 〈s1, s2, . . . , sm〉, or the machines are called
2-divisible if si = 2li (li ∈ Z) for all i, and si ≤ si+1 (1 ≤ i < m).

Theorem 3. Let 〈s1, . . . , sm〉 and 〈t1, . . . , tn〉 be an instance of Q||Cmax. If
〈s1, . . . , sm〉 is 2-divisible, then Lpt

Opt < 1.4

Just like in the previous section, we assume that the contrary holds, and we fix
a minimal counter-example with 2-divisible machines. Let Opt be an arbitrary
optimal schedule of this instance.

The proof technique is similar to that in the previous section: We start from
the Lpt schedule, then we rearrange jobs, so that more and more jobs get to their
final place in Opt. We delete machines that received all their jobs according to
Opt. We strive to get into a state, when the set of remaining machines has more
total work than Opt · S, where S denotes the sum of speeds of the remaining
machines. Recall that t = tn.

Since job sizes can be normalized, we assume w.l.o.g. that Opt = 2. Moreover,
since machine sizes can be normalized too, we may assume that 1/2 < t ≤ 1.
This implies that 1/2 is the smallest possible size of a nonempty machine in
Opt, and the instance is minimal, so s1 ≥ 1/2. We will call machines of speed
at least 2 fast machines. Let fi denote the finish time of machine i in Lpt,
before tn is scheduled. We assume that Lpt ≥ 2.8, and the instance was minimal.
Consequently, 2.8 > fi ≥ 2.8 − t/si for 1 ≤ i ≤ m.

Tighter Approximation Bounds for LPT Scheduling in Two Special Cases 195

t b

t b
,

t d t c

at
,
at =0

2.8

2

M

Fig. 3. Jobs on 1/2-machines and 1-machines in Lpt

We will exchange the jobs in several rounds. In the first round, machines of
speed 1/2 receive their final job, and can be deleted. After this we show, that
we got into a similar situation as in Lemmas 2 and 3. Despite the similarity, we
have to deal with two additional difficulties: On the one hand, the first round
of exchanges has already resulted in some reduction of work by the time we
want to apply the arguments of the lemmas. This is a minor problem, and in
most cases it does not affect the original argument. On the other hand, we may
have more than one fast machines, and therefore we cannot assume that at the
beginning they have finish time fi ≥ 2.8 (recall, that in Section 3 we could
assume fm ≥

√
3 + 1, because at the beginning of the exchanges tn was put on

top of machine m). The second difficulty is more crucial, and this is the intrinsic
reason why the (

√
3 + 1)/2 worst case ratio does not hold in case II.

As a first step, we delete the job tn from Lpt. Let M denote the (possi-
bly empty) set of 1/2-machines that are assigned only 1 job in Lpt, and let
tc, tc+1, . . . , td be these jobs (see Fig 3). Obviously, td is the smallest among
them, and td ≥ max(t, 2.8 · 1/2 − t) ≥ 1.4/2 = 0.7.

Now we do the first round of exchanges: In Opt there is one job of size at
most 1 on every 1/2-machine. By the principle of domination all of these jobs
precede tc; in Lpt they are assigned to machines of speed at least 1, and all of
them have completion time at most 2, otherwise they would have been assigned
to a 1/2-machine. In particular, tn is not one of these jobs.

In Lpt there is one job of size at least 0.7 on every machine in M. We exchange
these jobs for the job in Opt, and then delete all machines of M together with
their new job. The resulting schedule will be called Lpt0. Let f0

i be the finish
time of machine i in Lpt0. A short case analysis yields Lemma 4 below. The
lemma excludes that t < 0.8, by impliying that in Lpt0 we are left with total
remaining work of at least 2S + tn, where S is the remaining total speed. On
the other hand, Lemma 5 shows that if t ≥ 0.8, then after the first round, our
problem becomes analoguous to Case I in Section 3. The proof of this lemma is
straightforward.

Lemma 4. If t < 0.8, then f0
i ≥ 2 for all i. �

Lemma 5. Let 0.8 ≤ t. If f0
i < 2, then si = 1. Moreover, every 1/2-machine

was deleted in the first round. �

196 A. Kovács

The rest of the proof follows the same lines as the proof in Section 3. We assume
0.8 ≤ t ≤ 1. Instead of Lpt0, our starting schedule is Lpt: We delete all the
1/2-machines and their jobs. On the remaining machines we calculate with the
original sizes of jobs, as they are in Lpt. Nevertheless, we keep in mind, that
every job of size at most 1, and of completion time at most 2 on a 1-machine
or on a fast machine, can ’shrink’ to size td before putting it to its machine in
Opt. Such a shrinkage is equivalent to an exchange of 2 jobs in the first round.

We ’put back’ the job tn on top of an arbitrary fast machine. After that, we
put jobs from fast machines to 1-machines and vice versa, and perform essentially
the same case analysis as in Lemmas 2 and 3.

5 Improved Lower Bound for 2-Divisible Machines

We describe an instance on 2-divisible machines which has an approximation
bound arbitrarily close to (

√
409 + 29)/36 ≈ 1.3673... > 41/30 > (

√
3 + 1)/2.

Instance B is a refined version of Instance A of Section 2. We are able to improve
on the lower bound by exchanging jobs larger than x for jobs of size t = tn.
However, this instance is not suitable if in Lpt ties are broken in favour of slow
machines. Therefore, in [9] we also present another instance which is valid for any
kind of tie-breaking and has approximation bound 955/699− δ/2 > (

√
3 + 1)/2.

Besides providing slightly better lower bounds than (
√

3 + 1)/2, these kinds of
examples are of interest, because they also give an insight into the potential
difficulties in determining the worst case bound of Lpt on 2-divisible machines.

Theorem 4. If we restrict the problem Q||Cmax to 2-divisible speed vectors,
then the approximation ratio of Lpt in the worst case is Lpt/Opt > (

√
3+1)/2.

Moreover, if in Lpt ties are broken in favour of faster machines, then in the
worst case Lpt/Opt > 41/30.

The proof is given by instance B:

Instance B. In this case we assume that in Lpt ties are always broken in favour
of faster machines. Just like in Instance A, we have plenty of blocks of 1-machines
and a fast machine of speed 2r. Moreover, we have several 4-machines. First we
describe the assigment of jobs in Lpt (see Fig 4): Let x = 1.25 and y = 0.75.
A block of 1-machines is scheduled like in Instance A: The large jobs in a block
range from x− δ down to 1; the small jobs range from y up to 1− δ. Every block
will be later used for exchanging an x-job for a 1-job or exchanging a 1-job for
a y-job. On any 4-machine in Lpt there are 10 jobs: 4 jobs of size x; 3 jobs of
size 1; 2 jobs of size y and 1 job of size t ≤ y, where t = tn. The total work on
a 4-machine is 9.5 + t. Let z = 8 − 9t ≥ 8 − 9y = x. On the fast machine there
are 2r/4 jobs of size z. After that, it is filled up with x-jobs until time x; with
1-jobs until time 2; with y-jobs until time 9.5/4 and with t-jobs until 2 + t − δ.
The total work on the fast machine is at least 2r(2 − δ + t) − t.

It is straightforward to check that this is an Lpt schedule, either by setting
1/2r < δ, like in Instance A, or by allowing one more job of size between 1 and

Tighter Approximation Bounds for LPT Scheduling in Two Special Cases 197

x−δ

a block of 1−machines

yδ

1

1−

x

y

z

t

fast machine

1

x

x

y

t
y

1

1

a 4−machine

2+t

2

Fig. 4. Lpt schedule modulo the last job in Instance B

y on the fast machine. Finally, a last job of size t is assigned to a 1-machine
yielding makespan 2 + t − δ. On the fast machine this job would be completed
after 2 + t − δ; on a 4-machine, the finish time would be (9.5 + 2t)/4 ≥ 2 + t,
where the last inequality holds because t ≤ y = 0.75.

The goal is to determine a possibly large t value, so that the optimum
makespan can be arbitrarily close to 2. In order to get an optimum makespan we
rearrange the jobs as follows. As a first step, we put the very last job on the fast
machine. Second, we exchange every job of size x or 1 for a job of size y using the
blocks of 1-machines. At this point, on every 4-machine there are 9 jobs of size y
and 1 job of size t. Since (10 ·y)/4 < 2, the job of size t can be exchanged for a y
without violating the desired optimum makespan. Thus, we can use 4-machines
to exchange all y-jobs on the fast machine for t-jobs. Moreover, on 2r/4 of the
4-machines we also exchange all the jobs for t-jobs. On these 2r/4 machines we
will have 10 jobs of size t. Finally we use each of these 2r/4 machines for ex-
changing a z-job for a t-job. This is possible, since (9 · t + z)/4 = 2. Now every
job on the fast machine is exchanged for a t-job. If we calculate with fractional
jobs on the fast machine, the following inequality models the desired shrinkage
of work (we calculate with no shrinkage above time 2):

z

4
· t
z

+ (x − z

4
) · t

x
+ (2 − x) · t

1
+ t ≤ 2

t

4
+ t− (8 − 9t)t

4 · 1.25
+ 0.75t+ t ≤ 2

By solving the inequality we get: −
√

409−7
18 ≤ t ≤

√
409−7
18 ≈ 0.734. Using

t =
√

409−7
18 yields the approximation (2 + t)/2 = (

√
409 + 29)/36 > 41/30. The

surplus on the optimum makespan due to calculating with fractional jobs and
due to the very last job is not more than (x+ 1 + t)/2r < ε if r is large enough.

6 Conclusions

For the classic Lpt algorithm, we have shown a tight worst case approxima-
tion bound of

√
3+1
2 in case of one fast machine; and ’nearly’ tight lower and

198 A. Kovács

upper bounds, (more than) 41/30 and 42/30, for the same problem on 2-divisible
machines. In our instances providing approximation within ε distance to the
lower bounds, the number of machines m = O(1/ε2), and the ratio of speeds
sm/s1 = O(1/ε). However, for relatively large ε (e.g., if we just want to demon-
strate Lpt/Opt > 4/3), with modified x and y values, it suffices to take one
4-machine, and altogether 20 1-machines.

We do not exclude, that – if Lpt prefers faster machines in case of ties –,
Instance B of Section 5 actually yields the basic construction for a tight bound
on 2-divisible machines (the bound itself can be a bit higher). However, proving
such a tight bound seems to require a lengthy and technical elaboration.

Finally, we turn to the monotone algorithm Lpt* of [10]. Based on Instance
A, for any ε > 0 it is possible to create an instance for arbitrary machines so,
that Lpt* performs as bad as Lpt∗/Opt >

√
3 + 1 − ε on this instance [9]. On

the other hand, Theorem 3 implies a worst case ratio Lpt∗/Opt ≤ 2.8.

References

1. A. Archer and É. Tardos. Truthful mechanisms for one-parameter agents. In Proc.
42nd IEEE Symp. on Found. of Comp. Sci. (FOCS), pages 482–491, 2001.

2. Y. Cho and S. Sahni. Bounds for list schedules on uniform processors. SIAM
Journal on Computing, 9(1):91–103, 1980.

3. E.G. Coffman, M.R. Garey, and D.S. Johnson. An application of bin-packing to
multiprocessor scheduling. SIAM Journal on Computing, 7(1):1–17, 1978.

4. G. Dobson. Scheduling independent tasks on uniform processors. SIAM Journal
on Computing, 13(4):705–716, 1984.

5. D.K. Friesen. Tighter bounds for LPT scheduling on uniform processors. SIAM
Journal on Computing, 16(3):554–560, 1987.

6. T. Gonzalez, O.H. Ibarra, and S. Sahni. Bounds for LPT schedules on uniform
processors. SIAM Journal on Computing, 6(1):155–166, 1977.

7. D.S. Hochbaum and D.B. Shmoys. A polynomial approximation scheme for
scheduling on uniform processors: Using the dual approximation approach. SIAM
J. Comp., 17(3):539–551, 1988.

8. E. Horowitz and S. Sahni. Exact and approximate algorithms for scheduling non-
identical processors. Journal of the ACM, 23:317–327, 1976.

9. A. Kovács. Tighter approximation bounds for LPT scheduling in two special cases.
Extended version: http://www.mpi-inf.mpg.de/~panni/approx.ps.

10. A. Kovács. Fast monotone 3-approximation algorithm for scheduling related ma-
chines. In Proc. 13th Ann. Europ. Symp. on Algo. (ESA), LNCS. Springer, 2005.

11. R. Li and L. Shi. An on-line algorithm for some uniform processor scheduling.
SIAM Journal on Computing, 27(2):414–422, 1998.

12. J.W.S. Liu and C.L. Liu. Bounds on scheduling algorithms for heterogeneous
computing systems. In Proc. Intern. Feder. of Inf. Proc. Soc., p. 349–353, 1974.

13. P. Mireault, J.B. Orlin, and R.V. Vohra. A parametric worst case analysis of the
LPT heuristic for two uniform machines. Oper. Res., 45(1):116–125, 1997.

14. D.S. Johnson M.R. Garey. Computers and Intractability; A Guide to the Theory
of NP-completeness. Freeman, San Francisco, 1979.

15. V. Auletta R. De Prisco P. Penna and G. Persiano. Deterministic truthful approxi-
mation mechanisms for scheduling related machines. In Proc. 21st STACS, volume
2996 of LNCS, p. 608–619. Springer, 2004.

Inapproximability Results for Orthogonal
Rectangle Packing Problems with Rotations

Miroslav Chleb́ık1 and Janka Chleb́ıková2,�

1 MPI for Mathematics in the Sciences, D-04103 Leipzig, Germany
chlebik@mis.mpg.de

2 Faculty of Mathematics, Physics and Informatics,
Mlynská dolina, 842 48 Bratislava, Slovakia

chlebikova@fmph.uniba.sk

Abstract. Recently Bansal and Sviridenko [4] proved that there is no
asymptotic PTAS for 2-dimensional Orthogonal Rectangle Bin
Packing without rotations allowed, unless P = NP. We show that sim-
ilar approximation hardness results hold for several rectangle packing
problems even if rotations by ninety degrees around the axes are allowed.
Moreover, for some of these problems we provide explicit lower bounds on
asymptotic approximation ratio of any polynomial time approximation
algorithm.

1 Introduction

We focus on orthogonal packing problems of rectangles into bins in 2 and 3-
dimensions, where ninety-degree rotations of rectangles around any of the axes
are allowed. These problems have many real-world applications in areas like job
scheduling, container loading, and cutting objects out of a strip of material in
such a way that the amount of material wasted is minimal.

Notation and terminology. Throughout this paper we only consider offline
versions of the problems. In all 2-dimensional variants of the problems, the in-
put consists of a list L = {R1, R2, . . . , Rn} of 2-dimensional rectangles in the
Euclidean space R2 and a 2-dimensional rectangular bin B = [0, b1]× [0, b2] (for
which the notation (b1, b2) is used as well). Each rectangle Ri is given with an
(initial) orientation related to the coordinate axes and side-lengths denoted as
(w(Ri), h(Ri)) and called width and height, respectively. The generalization to
the higher dimensions is straightforward. In the 3-dimensional strip version of
the problems we suppose that the last dimension of the bin B is unlimited and
we call such bin B = (b1, b2,∞) a strip. All rectangles of the list L need to be
packed into bins without overlap. The most interesting and well-studied version
of these problems is the so-called orthogonal version, where the edges of packed
rectangles and bins are always parallel to the coordinate axes. In problems with-
out rotations rectangles have to be placed into the bin with given orientation
and a feasible solution is called oriented packing. In problems with rotations al-
lowed rectangles to be placed may be rotated around any of the axes by 90◦

� The author has been supported by VEGA grant no. 1/3106/06.

T. Calamoneri, I. Finocchi, G.F. Italiano (Eds.): CIAC 2006, LNCS 3998, pp. 199–210, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

200 M. Chleb́ık and J. Chleb́ıková

and a feasible solution is referred to as r-packing. In the 3-dimensional case, if
only rotations around the z-axis (the last one) are allowed, a packing is called
z-oriented.

Given a list L of 2-dimensional rectangles and a 2-dimensional bin B =
(b1, b2). The goal of 2-dimensional Bin Packing (2-BP) and 2-dimensional
Bin Packing with Rotations (2-BPr) is to find an oriented packing and
an r-packing, respectively, of all rectangles of L into the minimum number
of copies of B. In 3-dimensional strip versions of the problems, a list L of 3-
dimensional rectangles and a 3-dimensional strip B = (b1, b2,∞) are given. In the
problems 3-dimensional Strip Packing (3-SP) and 3-Dimensional Strip
Packing with Rotations (3-SPr) we are looking for an oriented packing and
an r-packing, respectively, that minimizes h such that all rectangles of L are
packed into the bin (b1, b2, h). If only 90◦ rotations around the z-axis (the un-
limited direction of the strip B) are allowed, the problem is called z-oriented
3-dimensional Strip Packing.

The standard measure of algorithm quality for bin packing problems is the
asymptotic approximation ratio. For a minimization problem it is defined as
ρ∞A = limn→∞ supI

{
A(I)

OPT(I) : OPT(I) ≥ n
}
, where I ranges over the set of all

problem instances, and A(I) (resp. OPT(I)) denote the value of the solution
returned by A (resp. the optimum value) for an input instance I. For a maxi-
mization problem, A(I)

OPT(I) is replaced by OPT(I)
A(I) so that always ρ∞A ≥ 1. We say,

that a problem admits an asymptotic approximation scheme (shortly, APTAS),
if for any ε > 0 there is a polynomial time algorithm with an asymptotic ap-
proximation ratio less than 1 + ε. For other optimization terminology we refer
to Ausiello et al. [1].

Overview. For 1-BP, Fernandez de la Vega & Lueker [10] designed an APTAS.
More precisely, for any positive integer k they provided a polynomial time al-
gorithm Ak that uses at most (1 + 1

k)OPT + 1 bins. Later, Karmarkar & Karp
[15] gave a single algorithm with asymptotic approximation ratio 1 that uses
OPT + O(1 + log2 OPT) bins. For the 2-BP problem Caprara [5] presented an
algorithm with currently the best asymptotic approximation ratio 1.691. On the
negative side, Bansal & Sviridenko [4] proved that there is no APTAS for 2-BP,
unless P = NP. Interestingly, they provided an APTAS for a restricted version
of d-BP in which the items and the bins are d-cubes; this result was indepen-
dently obtained by Correa & Kenyon [8]. For 3-BP, Li & Cheng [17] and Csizik
& van Vliet [9] designed algorithms with asymptotic ratio at most 4.84. This
asymptotic ratio was later improved to 4 + ε by Jansen & Solis-Oba [11]. The
algorithms from [17] and [9] generalize to the problem d-BP with asymptotic
approximation ratio at most 1.691d. For the problem 2-SP, the breakthrough
result was obtained by Kenyon & Rémila [16] who gave an APTAS. For 3-SP,
Miyazawa & Wakabayashi [19] presented an algorithm with asymptotic approx-
imation ratio at most 2.64, which was improved to 2 + ε by Jansen & Solis-Oba
[11]. On the other hand, it is easy to see that approximation hardness result for

Inapproximability Results for Orthogonal Rectangle Packing Problems 201

2-BP implies that no APTAS for 3-SP can exist, unless P = NP (see Section 2.1
for more details).

When ninety-degree rotations are allowed, only weaker results are known.
Some algorithms for the versions without rotations provide upper bounds on
asymptotic approximation ratio for versions with rotations allowed as well. The
results by Miyazawa & Wakabayashi [18] were the first ones where rotations are
exploited in non-trivial way. Currently the best upper bounds on asymptotic
approximation ratio for the problems 2-BPr, 3-BPr, 3-SPr, and 3-SPz, are
2 + ε, 4.89, 2.76, and 2.64, respectively, see [19] and [12]. Moreover, Jansen &
Stee provided an APTAS for 2-SPr ([12]).

Rectangle Packing without and with Rotations. When dealing with pack-
ing problems without rotation, one can always assume that a bin B is a unit cube
(resp., a base of a strip B is a unit cube), as the problems are invariant under
heterogeneous scaling, i.e., the one which scales by different factors in different
coordinate directions. However, this is not true for problems with rotations al-
lowed. It is unclear if the problems with rotations allowed, where the bin B is a
unit cube, are easier to approximate than the general one. For some problems,
algorithms with better asymptotic approximation ratio were suggested in such
restricted case. For example, when a base of the strip in the problem 3-SPz is
a unit square, an algorithm with asymptotic approximation ratio at most 2.528
is known [18].

Using heterogeneous scaling one can show that 2-BP can be viewed as a
particular case of general 2-BPr with highly excentric instances. Let a list L =
(R1, R2, . . . , Rn) of rectangles with dimensions Ri = (ri

1, r
i
2), i = 1, 2, . . . , n, and

a bin B = (b1, b2) be an instance of 2-BP. One can find positive scaling factors
λ1, λ2, and use scaling (x1, x2) → (λ1x1, λ2x2) to map any Ri to R̃i = (r̃i

1, r̃
i
2),

and the bin B to B̃ = (̃b1, b̃2), so that it holds that min{r̃i
1 : 1 ≤ i ≤ n} > b̃2.

It is easy to see that the only way a rectangle R̃i can fit into the bin B̃, even
if ninety-degree rotations are allowed, is that R̃i is not rotated. Similarly, 3-SP
can be handled as a particular case of 3-SPr or 3-SPz. Thus, for problems 2-
BPr, 3-SPr, and 3-SPz without any restriction on the bin B, non-existence of
an APTAS easily follows from results by Bansal & Sviridenko [4] for 2-BP (see
Sections 2 and 2.1 for more details). However, for the most interesting case of a
unit square bin B, one can hardly obtain hardness results in such a way.

Main results. In this paper we prove non-existence of an APTAS (unless P =
NP) for 2-dimensional Bin Packing with Rotations into unit square bins
(Section 2), 3-dimensional Strip Packing with Rotations and z-oriented
3-dimensional Strip Packing (Section 2.1) into a strip with unit square base.
The methods allow to give explicit lower bounds on asymptotic approximation
ratio of any polynomial time approximation algorithm (unless P = NP). For
example, we provide a lower bound 1 + 1

3792 for 2-Dimensional Bin Packing
with Rotations, and 1 + 1

2196 for the same problem without rotations.

202 M. Chleb́ık and J. Chleb́ıková

We prove also non-existence of an APTAS for a related 3-dimensional packing
problem where the goal is to pack the maximum number of rectangles from a
given collection into a single cube bin (Section 3).

General technique. Recall, that for pairwise disjoint sets X , Y , Z, and a set
of ordered triples T ⊆ X × Y ×Z, a matching in T is a subset M ⊆ T in which
no two ordered triples in M agree in any coordinate. The goal of the Maximum
3-Dimensional Matching problem (shortly, Max-3DM) is to find a matching
in T of maximum cardinality. A k-bounded Max-3DM is restricted to instances,
in which each element of X ∪ Y ∪ Z occurs at most k times in T .

Kann [14] showed that the 3-bounded Max-3DM problem is Max SNP-
complete (hence also APX-complete). Thus, using PCP-theorem, the existence
of a PTAS for it would imply that P = NP. Petrank [20] proved a refined ap-
proximation hardness result that an NP-hard gap occurs also on instances with
perfect matching. Unfortunately, the estimates that are implicit in his proof
provide lower bound 1 + ε with extremely small ε > 0. To achieve explicit in-
approximability results it is more convenient to use the following NP-hard gap
type result for 2-bounded instances of Max-3DM.

Theorem A. [7] There are instances T ⊆ X × Y × Z of 2-bounded Max-
3DM with |X | = |Y | = |Z|(:= q) and every element of X ∪ Y ∪ Z occurring in
exactly 2 triples in T such that it is NP-hard to distinguish between instances
with OPT(T) > 0.979338843q and OPT(T) < 0.9690082645q.

Both mentioned approximation hardness results for bounded Max-3DM suit
well as a starting point to inapproximability results for various (multidimen-
sional) packing, covering, and scheduling problems, see e.g., [21], [6], and [4].

2 2-Dimensional Bin Packing with Rotations

In this section we build on ideas from [4] and introduce a general parametrised ver-
sion of a gap preserving reduction from bounded Max-3DM to 2-Dimensional
Bin Packing. We show that with properly chosen parameters this reduction can
be used to obtain approximation hardness results for 2-dimensional Bin Pack-
ing with Rotations into unit square bin.

The Bin Packing reduction. Let T be an infinite set of instances (ordered
triples) T of Max-3DM with the optimum value OPT(T), with the property
that for some efficiently computable function α(T) < β(T) it is NP-hard to
decide of whether OPT(T) ≥ β(T), or OPT(T) < α(T). For a fixed instance
T ∈ T let X := Π1(T), Y := Π2(T), and Z := Π3(T), where Πi(T) = {pi :
(p1, p2, p3) ∈ T } for i = 1, 2, 3, and X , Y , Z are pairwise disjoint sets. The
objects in X , Y , Z, and T will be denoted as {xi : 1 ≤ i ≤ |X |}, {yj : 1 ≤ j ≤
|Y |}, {zk : 1 ≤ k ≤ |Z|}, and {tl : 1 ≤ l ≤ |T |}, respectively. (In fact, we will
use this general reduction for instances from Theorem A, where |X | = |Y | = |Z|
holds.) Of course, any tl ∈ T is of the form tl = (xi, yj , zk) ∈ X × Y × Z. Let

Inapproximability Results for Orthogonal Rectangle Packing Problems 203

n = |X | + |Y | + |Z|, q = max{|X |, |Y |, |Z|}, and r = 32q. The reduction has
several parameters: a gap location β(T), δ ∈

(
0, 1

500

]
, and p ∈

[1
4 + 9δ, 1

2 − 20δ
]
.

We first define an integer for each object in X , Y , Z, and T as follows:
x′i = ir3 + i2r + 1, for 1 ≤ i ≤ |X |, y′j = jr6 + j2r4 + 2, for 1 ≤ j ≤ |Y |,
z′k = kr9 + k2r7 + 4, for 1 ≤ k ≤ |Z|. For each triple tl = (xi, yj , zk) ∈ T

we define an integer t′l = r10 − x′i − y′j − z′k + 15. Put c = r10+15
δ and observe

that 0 < x′i, y
′
j, z

′
k < δc

10 for all i, j, k, and t′l + x′i + y′j + z′k = cδ whenever
tl = (xi, yj , zk) ∈ T .

For each xi ∈ X (resp., yj ∈ Y and zk ∈ Z) we define a pair of rectangles AX,i,
A′

X,i (resp., AY,j , A′
Y,j and AZ,k, A′

Z,k) with width about 1
4 and with heights

about 1
2 + p and 1

2 − p as follows:

AX,i=
(1

4
− 4δ +

x′i
c
,
1
2

+ p + 4δ − x′i
c

)
, A′

X,i=
(1

4
+ 4δ − x′i

c
,
1
2
− p− 4δ +

x′i
c

)
,

AY,j=
(1

4
− 3δ +

y′j
c
,
1
2

+ p + 3δ −
y′j
c

)
, A′

Y,j=
(1

4
+ 3δ −

y′j
c
,
1
2
− p− 3δ +

y′j
c

)
,

AZ,k=
(1

4
− 2δ +

z′k
c
,
1
2

+ p + 2δ − z′k
c

)
, A′

Z,k=
(1

4
+ 2δ − z′k

c
,
1
2
− p− 2δ +

z′k
c

)
.

For each tl ∈ T we define two rectangles Bl and B′
l such that

Bl =
(1

4
+ 8δ +

t′l
c
,
1
2

+ p + δ − t′l
c

)
and B′

l =
(1

4
− 8δ − t′l

c
,
1
2
− p− δ +

t′l
c

)
.

Let AX = {AX,1, AX,2, . . . , AX,|X|}, A ′
X = {A′

X,1, A
′
X,2, . . . , A

′
X,|X|} and define

sets of rectangles AY , A ′
Y , AZ , and A ′

Z analogously. Put A = AX ∪ AY ∪ AZ

and A ′ = A ′
X ∪ A ′

Y ∪ A ′
Z . Similarly, let B = {B1, B2, . . . , B|T |} and B ′ =

{B′
1, B

′
2, . . . , B

′
|T |}. We define also D to be a collection of |T |+n−4β(T) dummy

rectangles, each of the size
(3

4 − 10δ, 1
)
.

The collection of rectangles A∪A ′∪B∪B ′∪D, together with a unit square
bin is now viewed as an instance of the 2-BPr problem and denoted by f(T).
Our aim is to relate the optimum value OPT′(f(T)) of 2-BPr for an instance
f(T) to OPT(T). Informally, the dimensions of rectangles and dummy rectangles
are chosen such that if OPT(T) ≥ β(T), the rectangles can be packed into bins
in such a way that their number is within a factor (1 + O(δ)) of the total area
of rectangles. On the other hand, if OPT(T) < β(T)

γ for a constant γ > 1, then
the number of bins needed to pack all rectangles of f(T) is larger than the total
area of rectangles by a constant factor γ′ > 1 independent of δ for δ > 0 small
enough.

The reduction given by Bansal & Sviridenko ([4]) can be viewed as a particular
case of the Bin Packing reduction with δ = 1

500 , a set T of instances T ⊆
X × Y × Z of 3-bounded Max-3DM with |X | = |Y | = |Z| = q, and a gap
location β(T) = q (as it follows from the Petrank’s result [20]). The parameter
p is an important novelty of this paper. The crucial point is that for the proper
choice of the parameter p we can prove that even if rotations are allowed it is
not advantageous to use them.

204 M. Chleb́ık and J. Chleb́ıková

Remark 1. Bansal & Sviridenko [4] (see also [3]) claim to prove not only non-
existence of APTAS (unless P = NP) for 2-dimensional Bin Packing (without
rotations), but also APX-hardness for it. However, such result does not follow
from their proof. The given reduction from 3-bounded Max-3DM to 2-BP is
not an L-reduction (or an approximation preserving reduction), but it is rather
a gap preserving reduction that preserves one but not all gaps.

We start with the following simple lemma valid for the choice of p ∈ [14 +
9δ, 1

2 − 20δ].

Lemma 1. (i) For every r-packing of f(T) all rectangles from A∪B contained
in the same bin are either in their initial orientations or all are rotated by ninety
degrees.

(ii) For every r-packing of f(T) if a bin contains exactly 4 rectangles from
A ∪ B, then all rectangles from A ∪ B ∪ A ′ ∪ B ′ packed in this bin are either
in their initial orientations or all are rotated by ninety degrees.

For oriented packings some properties of the Bansal’s and Sviridenko’s reduction
[4] (that corresponds to p = 0) are preserved to our general situation with the
parameter p introduced. The proofs of Lemmas 3 and 4 given in [4] work in this
case as well, as widths of rectangles are the same in both reductions.

Definition 1. ([4]) We say that two rectangles A and A′ from A∪A ′∪B∪B ′

are buddies if {A,A′} corresponds to a pair of rectangles for a single element
from X, Y , Z or T , e.g., {A,A′} = {AX,i, A

′
X,i} for some xi ∈ X and similarly

for the other sets Y , Z, and T .

Observation 1. For any rectangle, A ∈ A implies w(A) + h(A) = 3
4 + p, A′ ∈

A ′ implies w(A′) + h(A′) = 3
4 − p, B ∈ B implies w(B) + h(B) = 3

4 + p + 9δ,
and B′ ∈ B ′ implies w(B′) + h(B′) = 3

4 − p− 9δ.

Observation 2. For any two rectangles A, A′ in A∪A ′∪B∪B ′, h(A)+h(A′) =
1 if and only if A and A′ are buddies.

In the following lemma we observe some basic properties for oriented packing of
rectangles from A ∪ B ∪ A ′ ∪ B ′ into unit square bin.

Lemma 2. Consider a unit square bin containing exactly 4 rectangles from A∪
B for an oriented packing of f(T). Then the bin contains at most 8 rectangles
from A ∪ B ∪ A ′ ∪ B ′ and if it contains exactly 8 rectangles then, for any
h ∈

[
4δ, 1

2 − p − 4δ
]
, each rectangle intersects exactly one of the lines L1 =

{(x, y) : y = h} and L2 = {(x, y) : y = 1 − h}.

Lemma 3. For any rectangles A1, A2, A3 ∈ A and B ∈ B, w(A1) + w(A2) +
w(A3) + w(B) = 1 if and only if {A1, A2, A3, B} = {AX,i, AY,j, AZ,k, Bl} for
some integers i, j, k, and l such that tl = (xi, yj , zk) ∈ T . A similar statement
holds also for rectangles A′

1, A
′
2, A

′
3 ∈ A ′, B′ ∈ B ′.

Lemma 4. Let A1, A2, A3, A4 ∈ A ∪ A ′ be such that no two of them are
buddies. Then

∑4
i=1 w(Ai) �= 1.

Inapproximability Results for Orthogonal Rectangle Packing Problems 205

Definition 2. Given an r-packing of a bin by some rectangles from f(T). The
bin is called well-packed, if it contains exactly 4 rectangles from A ∪ B and 4
rectangles from A ′ ∪ B ′.

Now the crucial fact is, that for any choice of the parameter p from the interval[1
4 + 9δ, 1

2 − 20δ
]
, we can characterize the structure of well-packed bins similarly

as it has been done in [4] for oriented packings.

Lemma 5. A bin is well-packed if and only if it contains the rectangles AX,i,
AY,j, AZ,k, Bl, A′

X,i, A
′
Y,j, A

′
Z,k, B

′
l, for some tl = (xi, yj , zk) ∈ T .

Proof. The 8-tuple of rectangles corresponding to a triple as above can be packed
in a square bin B = [0, 1]2 even without using rotations. Starting from the
bottom left corner of the bin B and moving to the right, each of rectangles AX,i,
AY,j, AZ,k, and Bl is placed such that it touches the bottom of the bin B. As
w(AX,i) + w(AY,j) + w(AZ,k) + w(Bl) = 1 (Lemma 3), the rectangles can be
packed in this way. The rectangles A′

X,i, A
′
Y,j , A

′
Z,k, and B′

l can be placed in
the remaining gaps starting from the top left corner of the bin B and moving
towards the right touching the top of the bin. Clearly, such packing is possible
due to the size properties of rectangles.

Now we show that any well-packed bin contains rectangles that correspond
to a triple in T . Due to Lemma 1(ii), all rectangles are either in their initial
orientations or all are rotated by ninety degrees. We can assume that they are
all in the initial orientation in a well-packed bin; the case when all are rotated
by 90◦ can be discussed similarly. Fix h ∈

[
4δ, 1

2 − p− 4δ
]

and consider the lines
L1 = {(x, y) : y = h} and L2 = {(x, y) : y = 1 − h}. Due to Lemma 2, each
rectangle must intersect exactly one of the lines L1 and L2. Moreover, as any
rectangle has width larger than 1

5 , each of lines L1 and L2 intersects exactly
4 rectangles. Let {A1, A2, A3, A4} denote the rectangles that intersect L1 such
that Ai is to the left of Aj for i < j. Similarly, let {A5, A6, A7, A8} denote the
rectangles that intersect L2 in the left to right order. Thus, we have that

4∑
i=1

w(Ai) ≤ 1, (1)

4∑
i=1

w(Ai+4) ≤ 1. (2)

Observe that for each i = 1, 2, 3, 4 the rectangle Ai must overlap with Ai+4 in
the x-coordinate. Thus, we have that

h(Ai) + h(Ai+4) ≤ 1 for i = 1, 2, 3, 4. (3)

From (3) it follows that, for each i = 1, 2, 3, 4, at most one of Ai, Ai+4 belongs
to A ∪ B. Consequently, for each i = 1, 2, 3, 4 exactly one of Ai, Ai+4 is from
A∪B and another one is from A ′ ∪B ′. Using these facts, we can use the same
arguments as in [4]:

206 M. Chleb́ık and J. Chleb́ıková

(i) First observe that at most 1 from rectangles {A1, . . . , A8} belongs to B.
Indeed, if k ≥ 2 of them belong to B and 4−k belong to A, then the sum of
widths of these rectangles from A∪B would be > 1, a contradiction with the
fact that any line in y-direction intersects at most 1 rectangle from A ∪ B.

(ii) If no rectangle from {A1, . . . , A8} belongs to B, than the same is true for
B ′. The height of any rectangle in B ′ is larger then 1

2 − p − δ so such a
rectangle cannot form a pair {Ai, Ai+4} with a rectangle from A. Thus, in
this case four rectangles belong to A and four to A ′. Using Observation 1 we
get

∑8
i=1(w(Ai) + h(Ai)) = 6, thus it must be the case that each of (1), (2)

and (3) must hold with equality. By Observation 2, Ai and Ai+4 are buddies
for each i = 1, 2, 3, 4. In particular, no two rectangles among A1, A2, A3,
and A4 are buddies. Now Lemma 4 contradicts with

∑4
i=1 w(Ai) = 1 that

has been observed earlier. Thus this case is impossible.
So, necessarily exactly one of rectangles {A1, A2, . . . , A8} belongs to B, say Bl.
(iii)As, due to (3), no pair {Ai, Ai+4} can contain a rectangle from B ′ and a

rectangle from A, there can be at most one rectangle from B ′. But if there
are no rectangles from B ′, then the sum of widths of all 8 rectangles would
be > 2, a contradiction.

Consequently, there is exactly 1 rectangle from B ′, 1 from B, 3 from A, and
3 from A ′. Using Observation 1 we get

∑8
i=1(w(Ai) + h(Ai)) = 6, thus each

of (1), (2), and (3) holds with equality. In particular, for each i = 1, 2, 3, 4, Ai

and Ai+4 are buddies due to Observation 2. Let m ∈ {1, 2} be such that Bl

intersects the line Lm. Let Am1 , Am2 , Am3 denote the other three rectangles
(from A ∪ A ′) which are also intersected by Lm. Thus we have that w(Am1) +
w(Am2) + w(Am3) + w(Bl) = 1. None of Am1 , Am2 , Am3 can lie in A ′ because
otherwise w(Am1)+w(Am2)+w(Am3)+w(Bl) > (1

4 +8δ)+(1
4 +δ)+2(1

4 −4δ) =
1 + δ, a contradiction. Hence {Am1 , Am2 , Am3} ⊆ A, and using Lemma 3 we
get that {Am1 , Am2 , Am3} = {AX,i, AY,j , AZ,k} for integers i, j, k such that
tl = (xi, yj , zk), where tl is the corresponding triple for the rectangle Bl. This
completes the proof.

Now we can prove the main theorem of this section

Theorem 1. There is a constant ρ > 1 such that it is NP-hard to approximate
2-dimensional Bin Packing with Rotations into unit square bins with an
asymptotic approximation ratio less than ρ.

Proof. Recall that the Bin Packing reduction f started from a set T of instances
of Max-3DM such that for T ∈ T it is NP-hard to decide of whether OPT(T) ≥
β(T), or OPT(T) < α(T).

(a) Assume first that T ∈ T is such that OPT(T) ≥ β(T). We will show
that the corresponding instance f(T) of the 2-BPr problem has its optimum
OPT′(f(T)) of size at most |T | + n − 3β(T). Consider a matching M in T
consisting of β(T) triples. For each triple tl = (xi, yj , zk) ∈ M we create a well-
packed bin with rectangles {AX,i, AY,j , AZ,k, Bl, A

′
X,i, A

′
Y,j , A

′
Z,k, B

′
l} packed.

For each tl ∈ T \M we can put Bl and B′
l along with a dummy rectangle into

a bin; in this way we use |T | − β(T) dummy rectangles.

Inapproximability Results for Orthogonal Rectangle Packing Problems 207

For each of n−3β(T) elements in X∪Y ∪Z that are not covered by M , we put
in a bin the corresponding buddies A and A′ along with one dummy rectangle.
The rest of the dummy rectangles is used in this way and all rectangles from
f(T) are packed into |T | + n− 3β(T) bins.

(b) Assume now that T ∈ T satisfies OPT(T) < α(T). Our aim is to estimate
OPT′(f(T)) from below. Consider for an instance f(T) any feasible solution of
2-BPr. There will be exactly Nd = |T |+n−4β(T) bins with dummy rectangles,
each of them can contain at most one rectangle from A ∪ B. Let us consider
now bins without dummy rectangles. If such bin is not well-packed then it either
contains at most 3 rectangles from A∪B or else it contains at most 3 rectangles
from A ′ ∪ B ′. Let Ng denote the number of well-packed bins. Among the bins
without dummy rectangles which are not well-packed, let Nb2 denote the number
of bins with at most 3 rectangles from A∪B, and let Nb1 denote the number of
the rest rectangles (i.e., Nb1 is the number of bins with 4 rectangles from A∪B,
but with at most 3 rectangles from A ′ ∪ B ′).

Since all |T | + n rectangles from A ∪ B have to be packed, we have the
constraint that

4Ng + 4Nb1 + 3Nb2 + Nd ≥ |T | + n,

or equivalently
4Ng + 4Nb1 + 3Nb2 ≥ 4β(T). (4)

With the choice of parameter p = 1
4 +9δ and assuming δ ∈ (0, 1

500] as small as we
need, rectangles from A∪B are roughly (1

4 ,
3
4) each, and those from A ′∪B ′ are

roughly (1
4 ,

1
4) each. In what follows we will count rectangles from A ∪ B with

weight 3, and those from A ′∪B ′ with weight 1 each. Easy area’s estimate shows
that the total weight of rectangles packed to a unit square bin cannot exceed
16. Further, any bin containing a dummy rectangle can contain rectangles from
A ∪ B ∪ A ′ ∪ B ′ of weight at most 4. Observe that each of Nb1 bins contains
rectangles of weight at most 15. Hence the second constraint derived from the
fact that all rectangles have to be packed reads as follows:

16Ng + 15Nb1 + 16Nb2 + 4Nd ≥ 4(|T | + n).

Using Nd = |T |+n− 4β(T) and adding the constraint (4) to the last one we get

20Ng + 19Nb1 + 19Nb2 ≥ 20β(T).

Since the set of well-packed bins corresponds to a feasible solution for a matching
(by Lemma 5), Ng < α(T). Thus, assuming OPT(T) < α(T) we get

OPT′(f(T)) > Ng + Nb1 + Nb2 + Nd ≥ 20
19

β(T) − 1
19

Ng + Nd

> |T |+ n− 3β(T) +
1
19

(β(T) − α(T)).

It easily follows that our reduction f is a gap preserving reduction assuming that
we started from (α(T), β(T))-gap version of the bounded Max-3DM problem
for which β(T)−α(T)

|T |+n−3β(T) is bounded below by a positive constant.

208 M. Chleb́ık and J. Chleb́ıková

Now suppose that for a fixed constant ρ, 1 < ρ < 1 + 1
19

β(T)−α(T)
|T |+n−3β(T) , there

exists a polynomial time algorithm Aρ and a constant C such that for instances
f(T) if OPT′(f(T)) > C, then Aρ ≤ ρOPT′(f(T)). Thus, for any corresponding
instance T of Max-3DM we could distinguish whether OPT(T) ≥ β(T), or
OPT(T) < α(T), which is an NP-hard problem. Hence, it is NP-hard to achieve
an asymptotic approximation ratio ≤ ρ for the problem 2-dimensional Bin
Packing with Rotations into unit square bins.

Using the NP-hard gap result from Theorem A we can obtain an explicit lower
bound 1 + 1

3792 on asymptotic approximation ratio of any polynomial time ap-
proximation algorithm (unless P = NP) for 2-dimensional Bin Packing with
Rotations into unit square bins. For the same problem without rotations our
method provides a lower bound 1 + 1

2196 .

2.1 3-Dimensional Strip Packing Problems

Let a list of 2-dimensional rectangles L = {(r1
1 , r

1
2), (r

2
1 , r

2
2), . . . , (r

n
1 , r

n
2)} with a

bin B = (b1, b2) be an instance of the 2-dimensional Bin Packing problem.
For a fixed t > 0 we define an instance of the 3-dimensional Strip Packing
problem as a list of 3-dimensional rectangles Lt = {(ri

1, r
i
2, t) : 1 ≤ i ≤ n} with

a strip (b1, b2,∞). It is easy to prove, that if OPT(L) denote the optimum of an
instance L for 2-BP (resp., 2-BPr) then t ·OPT(L) denote the optimum of the
corresponding 3-dimensional instance Lt for 3-SP (resp., for 3-SPz and 3-SPr

provided t > max{b1, b2}).
Hence, non-existence of APTAS for 2-BP ([4]) implies non-existence of AP-

TAS for the 3-SP problem, unless P = NP. Moreover, using a heterogeneous
scaling one can obtain some inapproximability results also for 3-SPz and 3-SPr

already from hardness results for 2-BP, e.g., for instances of 3-SPz and 3-SPr

with a strip (b, 1,∞) for any fixed b ∈ (0, 1
2). However, for a strip with square

base we have to use Theorem 1 instead.

Theorem 2. There is no APTAS for any of 3-dimensional strip packing prob-
lems 3-SP, 3-SPz, and 3-SPr on instances with a strip (1, 1,∞), unless P = NP.

3 Maximum Rectangle Packing Problem

Another rectangle bin packing problem well studied in the literature (e.g., [13],
[2]) is the following:

Definition 3. Given a collection of d-dimensional rectangles together with a
d-dimensional rectangular bin B. The goal of the Maximum d-dimensional
Rectangle Packing problem is to pack the maximum number of rectangles
from the collection into a single bin B.

Other variants of this problem are studied as well, e.g., each of the rectangles
can be associated with weight, and the goal is to maximize the total weight
of packed rectangles. In some variants ninety-degree rotations of rectangles are

Inapproximability Results for Orthogonal Rectangle Packing Problems 209

allowed. But even in the simplest case, namely the 2-dimensional unweighted
case without rotations, only a (2+ε)-approximation algorithm is known [13]. The
question of whether there is an APTAS is open. However, in the 3-dimensional
case the problem can be settled in the negative.

Theorem 3. Unless P = NP, there is no APTAS for the Maximum 3-dimen-
sional Rectangle Packing problem with unit cube bin. The same result holds
also for z-oriented packings and for r-packings, in both cases with a bin (1, 1, b),
where b ∈

(
0, 1

4

)
.

Proof. We can use the hardness result of Theorem 2 for 3-SP with the strip
(1, 1,∞). Namely, there is a constant ρ > 1 and an infinite family F of in-
stances of the 3-SP problem with the strip (1, 1,∞), such that for a certain
computable function α : F → N it is NP-hard to distinguish for L ∈ F whether
OPT(L) ≤ α(L), or OPT(L) > ρ · α(L). Moreover, each rectangle in L is a
small perturbation of either

(1
4 ,

1
2 , 1

)
or
(3

4 , 1, 1
)
.

For oriented packings (i.e., without rotations) and for any L ∈ F denote
by L ′ a rescaled copy of L by a factor 1/α(L) in the direction of the z-axis.
Then clearly, it is NP-hard to decide whether OPT(L ′) ≤ 1, or OPT(L ′) > ρ
for an instance L of the 3-SP problem with the strip (1, 1,∞). In the former
case all rectangles of L ′ can be packed into the unit cube bin. In the latter one
we easily obtain that less than |L ′| − �(ρ − 1)α(L)� can be packed into this
bin.

For z-oriented packings we can use the same arguments starting instead from
the NP-hard gap derived for the problem 2-BPr with unit square bin [0, 1]2 (the
proof of Theorem 1).

For r-packings we rescale L by a factor b/α(L), b ∈ (0, 1
4), in the direction of

z-axis. Then it is NP-hard to decide whether all, or only a fraction strictly less
than 1 of the rectangles of L can be packed into the bin (1, 1, b). The special
uniform structure of instances in our hardness result for 2-BPr implies that all
r-packings for such rescaled instances are, in fact, z-oriented packings. Thus the
results follow as above.

References

1. G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-Spaccamela, and
M. Protasi, Complexity and approximation, Springer, 1999.

2. B. S. Baker, A. R. Calderbank, E. G. Coffman, and J. C. Lagarias, Approximation
algorithms for maximizing the number of squares packed into a rectangle, SIAM J.
on Algebraic and Discrete Methods 4 (1983), 383–397.

3. N. Bansal, J. R. Correa, C. Kenyon, and M. Sviridenko, Bin packing in multi-
ple dimensions: inapproximability results and approximation schemes, Manuscript,
February 2004.

4. N. Bansal and M. Sviridenko, New approximability and inapproximability results
for 2-dimensional bin packing, Proceedings of the 15th Annual ACM-SIAM Sym-
posium on Discrete Algorithms, SODA, 2004, pp. 189–196.

210 M. Chleb́ık and J. Chleb́ıková

5. A. Caprara, Packing 2-dimensional bins in harmony, Proceedings of the 43th
Annual IEEE Symposium on Foundations of Computer Science, FOCS, 2002,
pp. 490–499.

6. C. Chekuri and S. Khanna, On multi-dimensional packing problems, Proc. of the
10th ACM-SIAM Symposium on Discrete Algorithms, SODA, 1999, pp. 185–194.

7. M. Chleb́ık and J. Chleb́ıková, Complexity of approximating bounded variants of
optimization problems, Theoretical Computer Science 354(2006), 320–338.

8. J. R. Correa and C. Kenyon, Approximation schemes for multidimensional packing,
Proceedings of the 15th ACM-SIAM Symposium on Discrete Algorithms, SODA,
2004, pp. 179–188.

9. J. Csirik and A. van Vliet, An on-line algorithm for multidimensional bin packing,
Operation Research Letters 13 (1993), 149–158.

10. W. Fernandez de la Vega and G. S. Lueker, Bin packing can be solved within (1+ε)
in linear time, Combinatorica 1 (1981), 349–355.

11. K. Jansen and R. Solis-Oba, An asymptotic approximation algorithm for 3d-strip
packing, to appear in Proceedings of the 17th Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA, 2006.

12. K. Jansen and R. Stee, On strip packing with rotations, Proceedings of the 37th
ACM Symposium on Theory of Computing, STOC, 2005, pp. 755–761.

13. K. Jansen and G. Zhang, On rectangle packing: maximizing benefits, Proceedings
of the 15th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA, 2004,
pp. 197–206.

14. V. Kann, Maximum bounded 3-dimensional matching is MAX SNP complete, In-
formation Processing Letters 37 (1991), 27–35.

15. N. Karmarkar and R. M. Karp, An efficient approximation scheme for the one-
dimensional bin-packing problem, Proceedings of the 23rd IEEE Symposium on
Foundations of Computer Science, FOCS, 1982, pp. 312–320.

16. C. Kenyon and E. Rémila, A near optimal solution to a two-dimensional cutting
stock problem, Mathematics of Operations Research 25 (2000), 645–656, Prelimi-
nary version in Proceedings of the 37th Annual IEEE Symposium on Foundations
of Computer Science, FOCS, 1996, pp. 31–36.

17. K. Li and K. H. Cheng, On three-dimensional packing, SIAM J. Comput. 19 (1990),
847–867.

18. F. K. Miyazawa and Y. Wakabayashi, Approximation algorithms for the orthogonal
z-oriented three-dimensional packing problems, SIAM J. Comput. 29 (2000), 1008–
1029.

19. , Packing problems with orthogonal rotations, Proceedings of the 6th Latin
American Symposium on Theoretical Informatics, LATIN, Buenos Aires, Ar-
gentina, LNCS 2976, Springer-Verlag, 2004, pp. 359–368.

20. E. Petrank, The hardness of approximation: Gap location, Computational Com-
plexity 4 (1994), 133–157.

21. G. J. Woeginger, There is no asymptotic PTAS for two-dimensional vector packing,
Information Processing Letters 64(6) (1997), 293–297.

Approximate Hierarchical Facility Location
and Applications to the Shallow Steiner Tree

and Range Assignment Problems�

(Extended Abstract)

Erez Kantor and David Peleg

Department of Computer Science and Applied Mathematics,
The Weizmann Institute of Science, Rehovot 76100, Israel

{erez.kantor, david.peleg}@weizmann.ac.il

Abstract. The paper concerns a new variant of the hierarchical facility
location problem on metric powers (HFLβ[h]), which is a multi-level unca-
pacitated facility location problem defined as follows. The input consists
of a set F of locations that may open a facility, subsets D1, D2, . . . , Dh−1

of locations that may open an intermediate transmission station and a
set Dh of locations of clients. Each client in Dh must be serviced by an
open transmission station in Dh−1 and every open transmission station
in Dl must be serviced by an open transmission station on the next lower
level, Dl−1. An open transmission station on the first level, D1 must be
serviced by an open facility. The cost of assigning a station j on level
l ≥ 1 to a station i on level l − 1 is cij . For i ∈ F , the cost of opening a
facility at location i is fi ≥ 0. It is required to find a feasible assignment
that minimizes the total cost. A constant ratio approximation algorithm
is established for this problem. This algorithm is then used to develop
constant ratio approximation algorithms for the bounded depth steiner
tree and the bounded hop strong-connectivity range assignment problems.

1 Introduction

The HFLβ[h] problem. The paper concerns a new variant of the hierarchical
facility location problem on metric powers (HFLβ [h]), which is a multi-level
uncapacitated facility location (UFL) problem defined as follows. The input
consists of a tuple 〈h, S, F = D0, D1, . . . , Dh, c, f〉, where S = {1, 2, . . . , n} is
a set of locations, F ⊆ S contains locations at which one may open a facility,
D1, D2, . . . , Dh−1 ⊆ S are subsets of locations which may open an intermediate
transmission station and Dh ⊆ S is a set of locations of clients.

A feasible assignment is an assignment of stations to stations one level down,
which satisfies the following requirements.
(1) A station i at level 0 ≤ l ≤ h − 1 must be open if there exists a station
j ∈ Dl+1 assigned to it. (Here we refer to a facility as a station on level 0.)
(2) Every client j ∈ Dh must be assigned to some station i ∈ Dh−1.

� Supported in part by a grant from the Israel Ministry of Science and Technology.

T. Calamoneri, I. Finocchi, G.F. Italiano (Eds.): CIAC 2006, LNCS 3998, pp. 211–222, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

212 E. Kantor and D. Peleg

(3) Every open station j ∈ Dl on level 1 ≤ l ≤ h− 1 must be assigned to some
station i ∈ Dl−1.

The cost cij ≥ 0 of assigning a station j on level l ≥ 1 to a station i on level
l − 1 is specified via a metric. Specifically, the input for the HFLβ [h] problem
includes a positive real power parameter β ≥ 1 and a distance metric between
the locations in S, denoted by dist(i, j) for every i, j ∈ S. The cost is defined
as cij = distβ(i, j). We refer to this cost type as a metric power. For i ∈ F , the
cost of opening a facility at location i is fi ≥ 0. It is required to find a feasible
assignment that minimizes the total cost. Observe that UFL of [15] and HFLβ [1]
are equivalent problems when β = 1, but for h ≥ 2, HFLβ [h] is different from
h-UFL of [9] even when β = 1.

The bounded depth steiner tree problem. The problem h-steiner(h, s) is
defined as follows. Given an undirected complete graphG(V,E) with nonnegative
edge weights w, representing a general metric space, a subset V ⊆V , a source
node s ∈ V and a positive constant integer h, a h-steiner tree T (h, s) is a tree of
depth at most h rooted at s that spans V , i.e., such that for any node v ∈ V there
is a path of at most h hops (edges) from v to s. The cost of a tree t(h, s), denoted
by cost(t(h, s)), is the sum of its edge weights. The goal is to find a minimum
weight h-steiner tree rooted at s. The related bounded diameter minimum Steiner
tree problem (BDST) is defined similarly, except that the parameters s and h
are replaced by a constant integer parameter d, and the Steiner tree is required
to be of diameter at most d. These problems find applications in communication
network design. The BDST problem is NP-hard (see problem ND4 in [8]). It is
shown in [2] based on the result of [13, 7] that the problem on general graphs
has no better than lnn approximation.

The bounded depth range assignment problem. The formal definition of
range assignment problems is as follows. Given a set of locations S = {1, 2, . . . , n},
represented as points in 2 or 3-dimensional Euclidean space, a range assignment
for S is a function r : S → R+ assigning a nonnegative real r(i) to every location
i ∈ S. The cost of a range assignment r is defined as its total power consumption,
that is, cost(r) =

∑
i∈S r(i)β for some fixed positive real β > 1. A range

assignment r for a set S of stations determines a logical directed communication
graph Gr = (S,E) such that for every i, j ∈ S, the directed edge (j, i) occurs in
E if and only if r(j) ≥ dist(i, j). In this case, we say that j covers i, or that j
can transmit to i.

Depending on the particular application, the communication graph is re-
quired to satisfy a certain property Π . For any desired graph property Π , the
Min-Range(Π) problem is defined as follows: Given a set of points S, find a
range assignment r for S such that Gr satisfies Π and cost(r) is minimized. The
bounded depth or bounded-hop strong connectivity (hSC) problem is when Gr

must contain a directed path of at most h hops from every station j ∈ S to every
other station i ∈ S, for some integer h ≥ 1.

Another property that interests us in the current paper is the following. A
central base under the assignment r is a node of outdegree n− 1 in Gr. Equiva-

Approximate Hierarchical Facility Location and Applications 213

lently, a node i is a central base if r(i) ≥ ρi, where ρi = max{dist(i, j) | j ∈ S} is
the radius of i (namely, the distance from i to the node farthest from it). Denote
by CBr(S) the set of central base nodes in S. The property is now stated as:

Bounded-hop center forest (hCF): For every i ∈ S, Gr must contain a directed
path of at most h hops from i to some central base node cbr(i) in CBr(S).

It is obvious that the (h − 1)CF property implies the hSC property, i.e., if
Gr enjoys the (h − 1)CF property then for every i, j ∈ S there is path of at
most h hops from i to j (composed of a subpath of at most h − 1 hops from i
to its central base cbr(i), and then to j), hence Gr is h-strongly connected. This
means that every feasible solution to the Min-Range((h − 1)CF) problem is
also a feasible solution to the Min-Range(hSC) problem.

Related work. The classical uncapacitated facility location problem UFL is
define as follows: Given set F of locations at which facilities can be built. A
fixed cost fi is incurred if a facility is opened at location i. In addition, the
input contains a set D of clients to be serviced by the opened facilities, and if
the client j is assigned to a facility at location i, there is an associated service
cost of the form cij = dist(i, j), where dist(i, j) is symmetric and satisfies the
triangle inequality. The goal is to find an assignment from clients to facilities
that minimizes the total cost.

Several papers deal with the UFL problem [14, 15, 4]. The first constant factor
approximation algorithm is given by Shmoys et al [15]. Currently, the best result
for this problem is a 1.52-approximation algorithm of [14].

Another known extension of the UFL problem is the h-level uncapacitated
facility location problem, denoted h-UFL, where each client must be serviced by
a sequence of different facilities. These sequences are defined by a hierarchy of
production and distribution systems and can be presented as facility paths. The
set of admissible facility paths is given. Each facility has a fixed cost. Each client
incurs a transportation cost for being served. The input specifies the transporta-
tion cost for each client and each facility path. A 3-approximation algorithm for
this problem is presented in [9].

The bounded depth and bounded diameter steiner tree problems were also
studies previously. An O(log n) approximation algorithm for the bounded diam-
eter steiner tree problem on general graphs when the diameter is constant is
shown in [11, 3]. An algorithm for the bounded depth minimum spanning tree
of total expected cost O(log n) times the optimal minimum cost h-hop spanning
tree is presented in [1].

Several variations of the range assignment problem have been studied in the
past. The following results were obtained.

Strong connectivity (SC): In the one-dimensional case, i.e., when the stations
are located on the real line, the problem has an O(n4)-time algorithm [10].
When the stations are spread in d-dimensional space (d > 1), finding an optimal
solution for Min-Range(SC) is NP-hard [6, 10], and moreover, it is APX-hard
for d ≥ 3 [10]. On the positive side, the problem has a 2-approximation algorithm
based on constructing a minimum spanning tree [10].

214 E. Kantor and D. Peleg

Bounded-hop strong connectivity (hSC): For the case where the locations of
S are on the line, an O(hn3)-time 2-approximation algorithm for β = 2 and
any h > 0 is described in [5]. Lower and upper bounds are shown in [6] on
the optimal cost for any 2-dimensional instances where h is an arbitrary con-
stant. It is also shown therein that when S is a family of well-spread instances
(namely, the locations in S are suitably distributed), the Min-Range(hSC)
problem on S admits a polynomial time approximation algorithm with con-
stant ratio, i.e., Min-Range(hSC) is in APX. Additionally, it is shown that the
Min-Range(hSC) problem with a uniform instance probability is in Av-APX.

Our results. The paper presents constant factor approximation algorithms
for the above problems. We first show an approximation algorithm of ratio(
1 + 3β

)
·
(
3β+1

)h−1 for the HFLβ[h] problem. We then use this algorithm to de-
rive constant approximations for the other problems. Specifically, we show that
for complete graphs whose weight function is a metric, there exists a polynomial
time approximation algorithm for the bounded depth steiner tree problem with
ratio 1.52 · 9h−2 for constant h, and similarly, a polynomial time approximation
algorithm for the bounded diameter steiner tree problem with ratio 1.52·9(d

2
−2)

for constant d. Finally, we present a polynomial time approximation algorithm
with ratio

(
1/
(

h
√

2 − 1
))β (

1 + 3β
) (

3β+1
)h−2 for Min-Range(hSC) on general

metrics for constant h and β. These are the first constant approximation guar-
antees known for those problems.

As may be expected, the Min-Range(hSC) problem is NP-hard on general
metric spaces for constant h. Proof details are deferred to the full version.

2 Approximating the Hierarchical Facility Location

In this section we develop a constant ratio approximation algorithm for HFLβ [h].

2.1 An ILP Representation for HFLβ[h]

The HFLβ [h] problem can be represented in a straightforward manner as an
integer linear program where for every i ∈ F , the boolean variable yi indicates
whether i is an open facility, and for 1 ≤ l ≤ h, the boolean variable xl

ij indicates
that the open transmission station j ∈ Dl on level l is assigned to the station at
location i ∈ Dl−1 on level l − 1. The resulting program is defined as follows.

Program HFL−
β [h, I]: Minimize

cost(x, y) =
∑

i∈F fiyi +
∑h

l=1
∑

i∈Dl−1

∑
j∈Dl

cijx
l
ij ,

subject to
(C1.1)

∑
i∈Dh−1

xh
ij = 1 for every j ∈ Dh.

(C1.2) xl
ij ≤

∑
k∈Dl−2

xl−1
ki , for every j ∈ Dl, i ∈ Dl−1, and l ∈ {2, 3, . . . , h}.

(C1.3) x1
ij ≤ yi, for every i ∈ F and j ∈ D1.

(C1.4) xl
ij ∈ {0, 1}, for every j ∈ Dl, i ∈ Dl−1 and l ∈ {1, 2, . . . , h}.

(C1.5) yi ∈ {0, 1}, for every i ∈ F .

Approximate Hierarchical Facility Location and Applications 215

Constraint (C1.1) ensures that every client j ∈ Dh is assigned to some open
transmission station i ∈ Dh−1 in level h− 1. Constraint (C1.2) ensures that for
every level l (2 ≤ l ≤ h), every open transmission station j ∈ Dl on level l is
assigned to an open transmission station i ∈ Dl−1 on level l − 1. Constraint
(C1.3) ensures that every open transmission station j ∈ D1 on the first level is
assigned to an open facility i ∈ F . Note that that if location j occurs on two
consecutive levels, i.e., j ∈ Dl ∩Dl−1 and j is an open transmission station on
level l, then j can be assigned to itself, i.e., xl

jj = 1 satisfying constraint (C1.1)
or constraint (C1.2) respectively at cost cjj = 0.

Unfortunately, while the integer linear program HFL−
β [h, I] ensures feasible

assignment for integer numbers, its fractional relaxation HFL−
β [h,R] fails to

approximate the problem. In particular, to obtain HFL−
β [h,R], the boolean con-

straints (C1.4) and (C1.5) are replaced with
(C1.4f) xl

ij ≥ 0, for every i ∈ Dl−1, j ∈ Dl and l ∈ {1, 2, . . . , h}.
(C1.5f) yi ≥ 0, for every i ∈ F .
However, the solution for the fractional linear program HFL−

β [h,R] can be far
away from the integer solution to HFL−

β [h, I], particularly for the constraints
(C1.1-C1.3).

Therefore, we consider an alternative integer linear program HFLβ [h, I] mak-
ing use of flow variables z, where the optimal solution of the linear relax-
ation HFLβ [h,R] is close to the optimal solution of HFLβ [h, I]. Consider fixed
0 ≤ �1 < �2 < . . . < �k < h. For every i�1 ∈ D�1 , . . . , i�k

∈ D�k
, let D[i�1 , . . . , i�k

]
denote the collection of all possible choices of nodes i0 ∈ D0, . . . , ih ∈ Dh, except
that the choices from D�1 , . . . , D�k

are fixed to be i�1 , . . . , i�k
, respectively. For

example, if h = 4, �1 = 2 and �2 = 3, then for every i2 ∈ D2 and i3 ∈ D3,

D[i2, i3]=D0×D1×{i2}×{i3}×D4 ={(i0, i1, i2, i3, i4) | i0∈D0, i1∈D1, i4∈D4} .

In particular, D = D[] = D0 ×D1 × . . .×Dh.
For ī = (i0, i1, . . . , ih) ∈ D, the variable zī represents the amount of flow going

from ih via ih−1, . . . , i1, i0. We refer to the edge (il−1, il) for il−1 ∈ Dl−1 and
il ∈ Dl as a channel, and the variable xl

il−1il
represents its capacity.

The resulting program is defined as follows.

Program HFLβ [h, I]: Minimize
cost(x, y) =

∑
i∈F fiyi +

∑h
l=1

∑
i∈Dl−1

∑
j∈Dl

cijx
l
ij ,

subject to the following constraints.
(C2.1)

∑
ī∈D[ih] zī = 1, for every ih ∈ Dh.

(C2.2.l) xl
il−1il

≥
∑

ī∈D[il−1,il,ih] zī, for every 1 ≤ l ≤ h− 1 and every
il−1 ∈ Dl−1, il ∈ Dl and ih ∈ Dh.

(C2.2.h) xh
ih−1ih

≥
∑

ī∈D[ih−1,ih] zī, for every ih−1 ∈ Dh−1 and ih ∈ Dh.
(C2.3) yi0 ≥

∑
ī∈D[i0,ih] zī, for every i0 ∈ F and ih ∈ Dh.

(C2.4) xl
ij ∈ {0, 1}, for every i ∈ Dl−1, j ∈ Dl and 1 ≤ l ≤ h.

(C2.5) yi ∈ {0, 1}, for every i ∈ F .
(C2.6) zī ∈ {0, 1}, for every ī ∈ D.

216 E. Kantor and D. Peleg

Constraint (C2.1), coupled with (C2.6), ensures that from every client ih ∈ Dh

there is a unit flow to some facility i0 ∈ F . Constraint (C2.2) ensures that if
there is flow in zī for some ī = (i0, i1, . . . , ih) then the related channels from il to
il−1 (for l = h, h− 1, . . . , 1) have sufficient capacity, i.e., are open. Specifically,
if zī = 1 then constraint (C2.2) implies that xl

il−1il
= 1, for every 1 ≤ l ≤ h.

Constraint (C2.3) ensures that if there exists some flow in zī for a chain ī that
ends at facility i0 ∈ F then the facility i0 is open, i.e., zī = 1 implies that yi0 ≥ 1.

Note that the optimal assignment for HFLβ [h, I] is the same as that of
HFL−

β [h, I]. However, when we relax this linear program and look at HFLβ [h,R],
constraint (C2.2) ensures that the sum of flows from each client ih ∈ Dh that
cross a channel (il−1, il) does not exceed the (fractional) capacity of this chan-
nel, xl

l−1,l, and (C2.3) ensures that the sum of flows from each client ih ∈ Dh

to some facility i0 in F does not exceed the fraction yi0 to which this facility is
open. As proved later on, this guarantees that the optimum fractional solution
for HFLβ [h,R] is close to the optimal solution for the integer linear program
HFLβ [h, I], as illustrated in Figure 1.

Also note that in the h-UFL variant of [9], the target function charges the z
entries instead of the x entries as in our variant.

h

l-1

D

0D =F

D l

level

D

0
y

h
ii h

l
ijx

0

(b)(a)

i

j

Fig. 1. (a) Constraint (C2.2.l) ensures that the fractional value of xl
ij is greater than

the sum of flows from the client ih that crosses the channel between j and i. (b)
Constraint (C2.3) ensures that for every client ih, the fractional value of yi is greater
than the sum of flows from ih to the facility at location i. The dashed box illustrates
how the flow can split and join in its way up to the facilities.

Approximate Hierarchical Facility Location and Applications 217

2.2 Approximation Algorithm for HFLβ[h]

We derive a constant approximation algorithm for the HFLβ [h] problem where h
is constant. The algorithm consists of h rounds. In each round l we assign values
only to the variables xl

il−1il
of level l. Specifically, in the first round, decide on

the set T of transmission stations in Dh−1 to be opened (for h = 1 we decide on
set T of facilities) and assign every client j ∈ Dh to the closest open transmission
station î in T , i.e., such that cîj = min{cij | i ∈ T }, by setting x̂h

îj
to 1. For h ≥ 2,

in the next round, define an instance 〈h − 1, S, F,D1, D2, . . . , Dh−2, T, c, f〉 of
the problem HFLβ [h− 1] (i.e., where the clients belong to T instead of Dh−1),
and apply the same procedure for HFLβ [h− 1].

In each round l, consider instance of the current HFLβ [h− l+ 1], and decide
the assignment of the xl variables on the last level and the transmission stations
that will be open on level l − 1. This is done by solving the linear relaxation of
the integer linear program HFLβ[h, I] and then rounding the vector xl of the
optimal fractional solution to a boolean vector x̂l. Finally, when left with an
instance of HFLβ[h] for h = 1, we decide which facilities to be open and assign
each station to his closest facility, i.e. decide the assignment of x̂1 and ŷ.

The rounding procedure consists of two phases using the filtering and rounding
technique of [12] for solving the k-median problem. (For h = 1 the procedure
resemble the approximation algorithm of [15] for solving the UFL problem.)
The first phase modifies the fractional solution (x, y, z) obtained for the linear
program into a new fractional solution (x̄, ȳ, z̄) that enjoys the closeness property,
namely, that whenever a node j ∈ Dh is fractionally assigned to a fractionally
open transmission station i ∈ Dh−1, the cost cij of this assignment is not too
large. (In this section for simplicity we denote sometimes i ∈ Dh−1 and j ∈ Dh

instead of ih−1 ∈ Dh−1 and ih ∈ Dh. When we denote xl
ij the i, j’s entries refers

to locations i ∈ Dl−1 and j ∈ Dl.) The second phase rounds the last level (the
vector x̄h) of the new fractional solution (x̄, ȳ, z̄) to a boolean vector x̂h. We
then show (for h ≥ 2) that there exists a mixed (integral-fractional) solution
(x̂hx̃h−1x̄h−2 . . . x̄1, ȳ, ẑ), (namely, integral on the last level x̂h and fractional on
the rest of the levels) that is close to the optimal solution. In particular, this
mixed assignment increases the total cost by at most a constant factor.

We now define for the next round an instance of the linear program for
HFLβ [h−1,R], where the clients are the open stations ofT , and solve it recursively.
We then continue to assign the clients of T to lower levels (with the same proce-
dure). At the end of the algorithm, (x̂, ŷ, ẑ) becomes an integral feasible assignment
that approximates the optimal solution of HFLβ [h, I] by a constant factor.

Note that in HFLβ[h,R] the minimization of the target function cost(x, y)
implies that in constraint (C2.2.h), the inequality can be change into an equality,
requiring

xh
ij =

∑
ī∈D[i,j]

zī, for every i ∈ Dh−1 and j ∈ Dh. (1)

(Note that this is not the case for constraint (C2.2.l) for 1 ≤ l < h.) Therefore,
by constraint (C2.1),

218 E. Kantor and D. Peleg∑
i∈Dh−1

xh
ij =

∑
ī∈D[j]

zī = 1, for every j ∈ Dh. (2)

Given a real parameter gj > 0 for every j ∈ Dh, a feasible solution (x, y, z) to
the linear program HFLβ [h,R] is g-close if it satisfies the following closeness
property:
(C2.7) For every i ∈ Dh−1 and j ∈ Dh , if xh

ij > 0 then cij ≤ gj .
Note that this property implies that if zi0i1...ih−2ij > 0, i.e., there is flow on
channel (i, j), then cij ≤ gj .

We now describe Procedure Gen Close implementing the first phase of the
rounding procedure. Given a feasible fractional solution (x, y, z) and a fixed frac-
tion 0 < α < 1, define for every client j ∈ Dh an (α, j)-count �j , an (α, j)-weight
cj(α) and an (α, j)-fraction αj as follows. Given a client j ∈ Dh, consider the
permutation π of the transmission stations Dh−1 ordered by distance from lo-
cation j, i.e., such that cπ(1)j ≤ cπ(2)j ≤ . . . ≤ cπ(|Dh−1|)j . For k ≥ 1, the k
transmission stations closest to j, {π(1), π(2), . . . , π(k)}, contribute a fraction
αj(k) =

∑k
�=1 x

h
π(�)j ≤ 1 of j’s assignment, and each of them does it at a cost

not exceeding cπ(k)j . Let �j be the smallest k such that the fraction αj(k) ex-
ceeds α, i.e., �j = min{k |

∑k
�=1 x

h
π(�)j ≥ α}. (Such �j exists by Equality (2).)

Denote the set of transmission stations on level h− 1 farther away from j than
π(�j) by Fj = {π(�) | � ≥ �j} and denote the set of transmission stations on level
h− 1 closer to j than π(�j) by Cj = {π(�) | � ≤ �j}. Note that π(�j) belongs to
both sets, i.e., π(�j) ∈ Fj ∩ Cj . Define the (α, j)-weight as cj(α) = cπ(�j)j and
the (α, j)-fraction as αj = αj(�j) =

∑
i∈Cj

xh
ij . Note that by definition, αj ≥ α.

Procedure Gen Close operates as follows. For every ī = (i0, i1, . . . , ih−2, i, j) ∈
D, allow flow through ī only if i is one of the transmission stations close to j,
setting z̄i0i1...ih−2ij = zi0i1...ih−2ij/αj if i ∈ Cj and z̄i0i1...ih−2ij = 0 otherwise.
To accommodate that flow, for every i ∈ Dh−1 and j ∈ Dh, set the capacity
of the channel (i, j) as x̄h

ij = xh
ij/αj if i ∈ Cj and x̄h

ij = 0 otherwise. For the
intermediate levels, we must use α as a lower bound on all possible values of
αj , so for every il ∈ Dl, il−1 ∈ Dl−1 and for every l ∈ {1, 2, . . . , h − 1}, set
x̄l

il−1il
= min{1, xl

il−1il
/α}. Finally, for every i ∈ F , set ȳi = min{1, yi/α}.

Lemma 1. Given an instance of HFLβ [h,R], a feasible fractional solution
(x, y, z) and a fixed 0 < α < 1, define the function g : Dh → R+ as gj = cj(α),
for every j ∈ Dh. Then the fractional solution (x̄, ȳ, z̄) constructed by Procedure
Gen Close is g-close and feasible. Moreover ignoring the costs associated with
the last level, the new solution is at most 1/α times more expensive than the
original one, namely,

∑
i∈F

fiȳi +
h−1∑
l=1

∑
i∈Dl−1

∑
j∈Dl

cij x̄
l
ij ≤ 1

α

∑
i∈F

fiyi +
h−1∑
l=1

∑
i∈Dl−1

∑
j∈Dl

cijx
l
ij

 .

(Throughout, proofs are omitted.)

Approximate Hierarchical Facility Location and Applications 219

We now show how to exploit this closeness property to find a subset of trans-
mission stations on the first level, T ⊆ Dh−1, and show that there exists a
3βg-close integral assignment such that these transmission stations are opened
and the cost is close to the optimal solution.

For a set of vertices U , denote dist(j, U) = min{dist(i, j) | i ∈ U} and let
dj = β

√
gj . We present a rounding procedure named h-Round, that given an

instance of HFLβ[h, I] and a g-close feasible fractional solution (x̄, ȳ, z̄) for the
relaxed HFLβ [h,R] instance, picks a subset of transmission stations T ⊆ Dh−1
satisfying the property that dist(j, T) ≤ 3dj for every j ∈ Dh and show that for
h = 1 there exists solution close to the optimal using only facilities from T .

For h ≥ 2 we show that there exists a mixed solution close to the optimal and
using only the transmission stations of T on level h− 1.

We then approximate the optimal solution for HFLβ[h− 1, I] for the tuple
〈h− 1, S, F,D1, D2, . . . , Dh−2, T, c, f〉, namely, with T as the set of clients, and
get a cost that is close to the optimal solution for the original problem.

The input is 〈Dh−1, Dh, c, f, x̄
h, g〉, where 〈h, S, F,D1, D2, . . . , Dh, c, f〉 is the

input for HFLβ [h, I] and (x̄, ȳ, z̄) is a feasible fractional solution generated by
Procedure Gen Close(x, y, z) for some 0 < α < 1, where (x, y, z) is the optimal
solution for HFLβ [h,R] that satisfying the g-closeness property for the given
function g : Dh → R+ where gj = cj(α). Initially the procedure finds the set T of
transmission stations i such that there exists a client j that integrally supplies i in
x̂h, i.e., T = {i ∈ Dh−1 | ∃j ∈ Dh such that x̄h

ij = 1}. Next, the procedure finds
the set B′ of clients that are fractionally or integrally assigned to transmission
stations in T , B′ = {j ∈ Dh | ∃i ∈ T s.t. x̄h

ij > 0}. Throughout the execution
of the procedure, D̂h denotes the set of clients in Dh that are still unassigned
under the current solution T , i.e., D̂h = {j ∈ Dh | ∀i ∈ T , x̄h

ij = 0}. The
procedure iteratively picks new transmission stations in Dh−1 that will be opened
in addition to those selected in previous iterations. In each iteration it first finds
the client j∗ ∈ D̂h that has the smallest gj , i.e., gj∗ = min{gj | j ∈ D̂h}. Let A
be the set of transmission stations that supply to j∗ in x̄h, i.e., A = {i ∈ Dh−1 |
x̄h

ij∗ > 0}. Let B be the subset of unassigned clients that are supplied in x̄h by
some transmission station from A, i.e., B = {j ∈ D̂h | ∃i ∈ A s.t. x̄h

ij > 0}. We
pick an arbitrary transmission station i∗ ∈ A to be opened, (for h = 1 we pick
facility i∗ ∈ A which fi∗ is the smallest in A), and add i∗ to T . We then update
the set of unassigned clients (deleting from D̂h the clients that belong to B).
These iterations are repeated until D̂h becomes empty. The resulting set T is
returned as the set of transmission stations on level Dh−1 that will be opened. In
the full paper we show that there exists mixed assignment close to the optimal
solution of HFLβ [h], where the transmission stations/facilities, on level h− 1 is
the set T the output of Procedure h-Round and that there exists assignment
close to the optimal solution of HFLβ[h] using only facilities from T .

We now describe how to exploit the properties of Procedure h-Round and pro-
vide a constant approximation algorithm h-AlgHFL for HFLβ [h]. Given the input
tuple 〈h, S, F,D1, D2, . . . , Dh, c, f〉, we solve the linear program HFLβ [h,R] and
get a fractional solution (x, y, z). Next we filter this solution to a g-close solution

220 E. Kantor and D. Peleg

(x̄, ȳ, z̄) using Procedure Gen Close. We find a subset T ⊆ Dh−1 of transmis-
sion stations or a subset T ⊆ F of facilities (for h = 1) that will be opened
(by executing Procedure h-Round), and assign each client j ∈ Dh to the clos-
est transmission station/facility in T respectively, i.e., for every j ∈ Dh we find
i∗ = argmin{cij | i ∈ T } and set x̂h

i∗j ← 1. For h = 1 in addition we set
yi = 1 for every i ∈ T , and for h ≥ 2, we recursively call Algorithm h-AlgHFL
for HFLβ [h−1, I] where the clients in the input are the opened transmission sta-
tions of the set T , i.e., the input is the tuple 〈h−1, S, F,D1, D2, . . . , Dh−2, T, c, f〉.
At the end the algorithm returns (x̂, ŷ) as the output.

The analysis is defered to the full paper, where the following is proved.

Theorem 1. Algorithm h-AlgHFL is a polynomial time approximation algo-
rithm with ratio

(
1 + 3β

)
·
(
3β+1

)h−1 for the HFLβ [h] problem.

When β = 1 combining with the ratio 1.52 of [14] for the UFL implies the
following.

Theorem 2. Algorithm h-AlgHFL is a polynomial time approximation algo-
rithm with ratio 1.52 · 9h−1 for the HFL[h] problem.

3 Approximating the Shallow Minimum Steiner Tree
Problems

The h-steiner(h, s) problem is a special case of the HFL[h] problem, (or
HFLβ [h], where β = 1). A given instance I = 〈h, s, V,V , ω〉 for the h-steiner(h,
s) problem can be transformed into an instance I ′ of HFL[h − 1] by setting
Dh−1 = V\{s}, Dh−2 = Dh−3 = · · · = D1 = V \ {s}, F = V \ {s}, cuv = ω(u, v)
and fv = ω(v, s) for every u, v ∈ V \{s}. The relations between the two instances
are stated in the following lemma (whose proof is omitted).

Lemma 2. (1) Let (x, y) be a feasible solution for the defined HFL[h − 1] in-
stance I ′. Then there exists an h-steiner(h, s) tree t(h, s) for the original in-
stance I such that cost(t(h, s)) ≤ cost(x, y).
(2) Let t(h, s) be an h-steiner(h, s) tree for the given instance. Then there ex-
ists a feasible solution (x, y) for the corresponding HFL[h−1] problem such that
cost(x, y) = cost(t(h, s)).

By Lemma 2 we get that an optimal solution for HFL[h − 1] can be trans-
formed to a minimal h-steiner(h, s) tree. Combining with Theorem 2 we get
the following.

Theorem 3. There is a polynomial time approximation algorithm with ratio
1.52 · 9h−2 for the h-steiner(h, s) problem.

Using the above result, we present a constant ratio approximation algorithm
for the BDST problem for a positive constant d. The reduction from BDST
to h-steiner is done slightly differently for the cases of even and odd d. The
(standard) reduction details are deferred to the full paper.

Approximate Hierarchical Facility Location and Applications 221

Theorem 4. There is a polynomial time approximation algorithm with ratio
1.52 · 9(d

2
−2) for BDST problem with constant positive integer d.

4 Approximation Algorithm for Min-Range(hSC)

Relating strong connectivity to center forest. We first show that the opti-
mal solution to Min-Range((h− 1)CF) is a

(
1/(h

√
2 − 1)

)β
approximation for

Min-Range(hSC).
Let r : S → R+ be a range assignment, ϕ > 0 a constant and � an integer.

Consider some i ∈ S. We say that r is a (ϕ, �)-assignment for i if there exists
some node j ∈ S such that j is farthest from i, i.e., ρi = dist(i, j), Gr contains
a directed �-hop path from i to j, i = i1 → i2 → . . . → i� → i�+1 = j and

r(ik) ≤ ρik

ϕ
for every 1 ≤ k ≤ �. (3)

As this path belongs to Gr, r(ik) ≥ dist(ik, ik+1) for every 1 ≤ k ≤ �.
Hereafter, fix ϕ� = 1/(�

√
2 − 1).

Lemma 3. If r is a (ϕ� , �)-assignment for i, then ϕ� · r(i�) ≥ ρi�
.

Lemma 4. An optimal solution for Min-Range((h−1)CF) is a (ϕh)β approx-
imation for Min-Range(hSC).

An approximation for Min-Range((h − 1)CF). The Min-Range(hCF)
problem is a special case of the HFLβ [h] problem. A given instance S = {1, 2, . . . ,
n} for Min-Range(hCF) is transformed into an instance of HFLβ [h] by setting
D1 = D2 = . . . = Dh = S, F = S, cij = distβ(i, j) and fi = ρβ

i = max{cij |
j ∈ S} for every i, j ∈ S. The solution for the instance 〈S, F,D1, . . . , Dh, c, f〉 of
the HFLβ [h] problem is the solution for the hCF problem for S, β. By Theorem
1 we get the following lemma, which together with Lemma 4 yields our final
result.

Lemma 5. There is a polynomial time approximation algorithm with ratio(
1 + 3β

)
·
(
3β+1

)h−2 for Min-Range((h− 1)CF).

Lemma 4 now yields our final result.

Theorem 5. There is a polynomial time approximation algorithm with ratio(
1/
(

h
√

2 − 1
))β (

1 + 3β
) (

3β+1
)h−2 for Min-Range(hSC).

In contrast, we have the following.

Theorem 6. The Min-Range(hSC) problem is NP-hard on general metric
spaces for constant h.

222 E. Kantor and D. Peleg

References

1. E. Althaus, S. Funke, S. Har-Peled, J. Koenemann, E. A. Ramos, and M. Skutella.
Approximation k-hop minimum-spanning trees. Operations Research Letters, 33,
pages 115–120, 2005.

2. J. Bar-ilan, G. Kortsarz, and D. Peleg. Generalized aubmodular cover problems
and applications. In Proc. 4th Israel Symp. on Theory of Computing and Systems,
pages 110–118, 1996.

3. M. Charikar, C. Chekuri, T. Cheung, Z. Dai, A. Goel, S. Guha, and M. Li. Ap-
proximation algorithms for directed Steiner problems. In Proc. 9th ACM-SIAM
Symp. on Discrete Algorithms, pages 192–200, 1998.

4. F.A. Chudak. Improved approximation algorithm for uncapacitated facility lo-
cation problem. In Proc. 6th Conf. on Integer Programing and Combinatorial
Optimization, pages 180–194, 1998.

5. A. E. F. Clementi, P. Penna, A. Ferreira, S. Perennes, and R. Silvestri. The mini-
mum range assignment problem on linear radio networks. Algorithmica, 35(2):95–
110, 2003.

6. A. E. F. Clementi, P. Penna, and R. Silvestri. On the power assignment problem
in radio networks. Mobile Network Applic., 9(2):125–140, 2004.

7. U. Feige. A threshold of ln n for approximating set cover. In Proc. 28th ACM
Symp. on Theory of Computing, pages 314–318, 1996.

8. M.R. Garey and D.S. Johnson. Computers and intractability: A guide to the theory
of NP-completeness. In W. H. Freeman and Company, 1979.

9. Aardal K., A.F. Chudak, and B.D. Shmoys. A 3-approximation algorithm for the
K-level uncapacitated facility location problem. Information Processing Letters,
72:161–167, 1999.

10. L. M. Kirousis, E. Kranakis, D. Kriznac, and A. Pelc. Power consumption in packet
radio networks. In Proc. 14th Symp. on Theoretical Aspects of Computer Science,
pages 363–374, 1997.

11. G. Kortsarz and D. Peleg. Approximating the weight of shallow steiner trees.
Discrete Applied Math., pages 265–285, 1999.

12. J.H. Lin and J.S. Vitter. ε−approximations with small packing constraint violation.
In Proc. 24th ACM Symp. on Theory of Computing, pages 771–782, 1992.

13. C. Lund and M. Yannakakis. On the hardness of approximating minimization
problems. J. ACM, 41:960–981, 1994.

14. M. Mahdian, Y. Ye, and J. Zhang. A 1.52-approximation algorithm for the un-
capacitated facility location problem. In Proc. 5th Workshop on Approximation
Algorithms for Combinatorial Optimization Problems, pages 229–242, 2002.

15. B.D. Shmoys, E. Tardos, and Aardal K. Approximation algorithms for facility
location problems. In Proc. 29th ACM Symp. on Theory of Computing, pages
265–274, 1997.

An Approximation Algorithm for a Bottleneck
Traveling Salesman Problem�

Ming-Yang Kao and Manan Sanghi

Department of Electrical Engineering and Computer Science,
Northwestern University,
Evanston, IL 60208, USA

{kao, manan}@cs.northwestern.edu

Abstract. Consider a truck running along a road. It picks up a load Li

at point βi and delivers it at αi, carrying at most one load at a time.
The speed on the various parts of the road in one direction is given
by f(x) and that in the other direction is given by g(x). Minimizing
the total time spent to deliver loads L1, . . . , Ln is equivalent to solv-
ing the Traveling Salesman Problem (TSP) where the cities correspond
to the loads Li with coordinates (αi, βi) and the distance from Li to
Lj is given by βj

αi
f(x)dx if βj ≥ αi and by αi

βj
g(x)dx if βj < αi.

This case of TSP is polynomially solvable with significant real-world
applications.

Gilmore and Gomory obtained a polynomial time solution for this
TSP [6]. However, the bottleneck version of the problem (BTSP) was
left open. Recently, Vairaktarakis showed that BTSP with this distance
metric is NP-complete [10].

We provide an approximation algorithm for this BTSP by exploit-
ing the underlying geometry in a novel fashion. This also allows for
an alternate analysis of Gilmore and Gomory’s polynomial time algo-
rithm for the TSP. We achieve an approximation ratio of (2 + γ) where
γ ≥ f(x)

g(x) ≥ 1
γ

∀x. Note that when f(x) = g(x), the approximation ratio
is 3.

1 Introduction

Consider n cities C1, C2, . . . , Cn. Let cij be the distance from Ci to Cj . The
problem of finding a tour that visits each city exactly once and minimizes the
total travel distance is known as the traveling salesman problem (TSP). The
bottleneck traveling salesman problem (BTSP) is to find a tour that visits each
city exactly once and minimizes the maximum distance traveled between any two
adjacent cities on the tour. Both the TSP and the BTSP are NP-hard in general
[5]. We consider the distance metric first proposed by Gilmore and Gomory in
[6] which has widespread practical applications [9, 2, 11, 7] and for which the
TSP is polynomial time solvable. Unfortunately, the BTSP remains NP-hard for
this distance metric [10].

� Supported in part by NSF Grant EIA-0112934.

T. Calamoneri, I. Finocchi, G.F. Italiano (Eds.): CIAC 2006, LNCS 3998, pp. 223–235, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

224 M.-Y. Kao and M. Sanghi

Let each city Ci be specified by the coordinates (αi, βi) for i = 1, 2, . . . , n.
The distance metric considered in this paper is given by:

d(Ci, Cj) = c(αi, βj) =

{∫ βj

αi
f(x)dx if βj ≥ αi∫ αi

βj
g(x)dx if βj < αi

where f(·) and g(·) are integrable and f(x), g(x) ≥ 0. Note that if f(x) = g(x) =
1, then c(αi, βj) = |αi − βj |. Also note that in [6], Gilmore and Gomory solve
the TSP with a less restrictive condition viz. f(x) + g(x) ≥ 0 for all x.

Problem 1 (Gilmore-Gomory’s Traveling Salesman Problem (GG-TSP)).
Input: n pairs of numbers (α0, β0), (α1, β1), . . . , (αn−1, βn−1).
Output: A permutation π : {0, . . . , n − 1} → {0, . . . , n − 1} such that

∑n−1
i=0

c(απ(i+1 mod n), βπ(i)) is minimized.

Problem 2 (Gilmore-Gomory’s Bottleneck TSP (GG-BTSP)).
Input: n pairs of numbers (α0, β0), (α1, β1), . . . , (αn−1, βn−1).
Output: A permutation π :{0, . . . , n−1}→{0, . . . , n−1} such that maxi=0,...,n−1
c(απ(i+1 mod n), βπ(i)) is minimized.

Results. GG-TSP can be solved in O(n logn) time [6, 11]. GG-BTSP can also
be solved in O(n logn) time if either f(x) = 0 or g(x) = 0 [6, 11]. However,
in general GG-BTSP is NP-hard [10]. In fact, the reduction used in [10] proves
NP-hardness for the special case when f(x) = g(x) = 1.

In this paper, we give a (2+γ)-approximation algorithm for GG-BTSP where
γ ≥ f(x)

g(x) ≥ 1
γ ∀x. Note that this result immediately implies the following:

1. a 3-approximation algorithm when c(αi, βj) = |αi − βj |.
2. a (2 + max{ b

a ,
a
b })-approximation algorithm when f(x) = a and g(x) = b.

3. a 3-approximation algorithm when f(x) = g(x).
4. a (2 + b

a)-approximation algorithm when a ≤ f(x), g(x) ≤ b.

Further, we uncover some interesting properties of the underlying geometry of
the problem that shed new light on the structure of an optimal solution and
hence allows for an alternate analysis of the polynomial time TSP algorithm
presented in [6, 11].

Paper Layout. Section 2 discusses some applications of GG-TSP and GG-BTSP.
Section 3 formulates an equivalent problem of GG-BTSP, called BBCA, on bi-
partite graphs and defines some concepts and notations used in the paper. Sec-
tion 4 derives a lower bound on the optimum bottleneck cost. Finally, Section 5
presents the approximation algorithm for GG-BTSP.

2 Applications

The original motivation for the formulation of GG-TSP and GG-BTSP was job
sequencing on a single state variable machine [6]. Consider a furnace and let tem-
perature be its state variable. A number of jobs are to be given a heat treatment
in the furnace. The ith job will be started at temperature βi and taken out of

An Approximation Algorithm for a Bottleneck Traveling Salesman Problem 225

the furnace at temperature αi. The temperature is then changed for the next
job. Heating the furnace requires f(x) amount of energy while cooling requires
g(x) when the temperature is x. The furnace is at temperature α0 to start with
and is required to be in state β0 at the end. Sequencing the jobs to minimize
the total energy is equivalent to GG-TSP. Sequencing to minimize the maximum
energy required for changing between two jobs is equivalent to GG-BTSP.

Another application of this problem formulation is in reconstructing sequen-
tial order from inaccurate adjacency information. Consider n women standing in
a circle with each facing the clockwise direction. Each woman reports her own
height αi, and the height βi of the one in front of her. Given this information,
we want to reconstruct the order of the women in the circle. When the women
make some errors in estimating heights, we may want to construct an ordering
which minimizes the maximum of the differences between the height αj reported
by the jth woman from the height βi reported by the ith woman for each pair
of women i and j such that j is in front of i in the ordering. This problem is
equivalent to GG-BTSP with f(x) = g(x) = 1.

One practical field where the problem of reconstructing such sequential
order arises naturally is in interpreting nuclear magnetic resonance (NMR) spec-
troscopy data for solving a NMR protein structure. In NMR spectroscopy ex-
periments [14, 3], the individual nuclei in a protein sample respond at specific
resonance frequencies when exposed to an oscillating radio frequency field. These
resonant frequencies are called chemical shifts and they serve as identifiers of the
corresponding atoms. The data from NMR experiments consist of spectral peaks
where a peak can correspond to a pair of chemical shifts of atoms in adjacent
amino acids on the protein backbone. The goal is to determine the correct or-
der of these chemical shifts from such adjacency information provided in NMR
spectral data. For NMR data interpretation, corresponding to the women in the
aforementioned example we have spectral peaks, and corresponding to the pairs
of reported heights we have pairs of chemical shifts associated with each peak.
Some good references for extracting the adjacency information from NMR ex-
periments can be found in [12, 13]. There is also extensive work in automatic
resonance frequency assignment algorithms [15, 13, 12, 8, 4, 1].

Note that though we discuss the problem in terms of reconstructing a circular
order, the transformation to reconstructing linear order, as is required for NMR
data interpretation, is achieved in polynomial time. If the first and the last ele-
ment in the linear order are known, the linear order problem can be reduced to
GG-BTSP in linear time by assigning αi of the first element and βj of the last el-
ement the identifier ∞, i.e., if f is the index for the first element and � is the index
for the last one, then αf = β� = ∞. This forces a minimum cost circular order to
place the last element before the first one. If the first and the last element are not
known, then there are 2

(
n
2

)
options for them and hence if the time complexity

of GG-BTSP is T , we can solve this linear order problem in O(n2T) time. Simi-
larly, if either the first element or the last element is given, then we can solve the
linear order problem in O(nT) time. In this paper, we provide an approximation
algorithm for GG-BTSP with a runtime of O(n logn); i.e., T = O(n log n).

226 M.-Y. Kao and M. Sanghi

3 Preliminaries

We first define an equivalent problem of GG-BTSP on bipartite graphs in Section
3.1. The rest of the paper focusses on solving this equivalent problem. Then we
define some notations in Section 3.2, discuss some concepts in Section 3.3 and
present basic lemmas in Section 3.4.

3.1 Problem Definition

Problem 3 (Bottleneck Bipartite Cyclic Augmentation (BBCA)).
Input: A bipartite graph G = (U, V,H) where H is a perfect matching, and a
function φ : U ∪ V → R.
Output: A set of edges M such that the bipartite graph G′ = (U, V,H ∪M) is
a hamiltonian cycle and max(u,v)∈M c(φ(u), φ(v)) is minimized.

For w ∈ U ∪V , φ(w) is called the potential of w. The cost of an edge (u, v) where
u ∈ U and v ∈ V is given by c((u, v)) = c(φ(u), φ(v)). The cost of a matching M
is given by cM = maxe∈M c(e). A set of edges M such that G′ = (U, V,H ∪M)
is a cycle is called a cyclic augmentation of G = (U, V,H).

Lemma 1. GG-BTSP and BBCA can be reduced to each other in linear time.

3.2 Notations

For the remainder of the paper, let u0, u1, . . . , un−1 be the n vertices in U such
that φ(u0) ≤ φ(u1) ≤ · · · ≤ φ(un−1). Similarly, let v0, v1, . . . , vn−1 be the n
vertices in V such that φ(v0) ≤ · · · ≤ φ(vn−1).

If M is a matching between U and V , then let GM denote the graph G(U, V ,
H ∪ M). Note that for any matching M , GM is a set of simple cycles. If GM

contains exactly one cycle, then M is a cyclic augmentation. For g ∈ U ∪ V , let
eM

g denote the edge adjacent to vertex g in M .

3.3 Concepts

It is useful to visualize the vertices in U as being arranged on the horizontal
axis with their abscissa being the potential φ(ui). Similarly the vertices in V can
be visualized as being at a higher ordinate and with their abscissa being their
corresponding potential. An edge (ui, vj) is a straight line connecting φ(ui) and
φ(vj). See Figure 1 for an example visualization.

In our figures, we will represent the edges in H by dashed lines and the edges
in M by solid lines.

Left, Right and In-between Edges. For any three edges e1 = (ua, vb), e2 = (uc, vd)
and e3 = (up, vq). If a < c, then e1 is said to be on the left and e2 is said to be
on the right. The edge e2 is said to be in-between e1 and e3 if a < c < p and
b < d < q. Let ηe1,e2 be the number of edges in-between e1 and e2.

ηe1,e2 = | { (ur, vs) | a < r < c, b < s < d} |.

An Approximation Algorithm for a Bottleneck Traveling Salesman Problem 227

1 3 5 7 8 11 12 15

2 5 7 9 10 13 14 17

Fig. 1. A visual representation of G(U, V, H) where the potentials of the ver-
tices in U are 1, 3, 5, 7, 8, 11, 12, 15, the potentials of the vertices in V are
2, 5, 7, 9, 10, 13, 14, 17, and H consists of 8 edges connecting the potential pairs
(1, 5), (3, 10), (5, 14), (7, 9), (8, 13), (11, 2), (12, 7) and (15, 17)

Cross State and Straight State. Given two edges (ua, vb) and (uc, vd) such that
a < c, the edges are said to be in a straight state if b < d and in a cross state if
b > d. In our visualization, the edges in a cross state will intersect while those in
a straight state will not (see Figure 2). An edge e1 is said to cross e2 if e1 and
e2 are in a cross state. Note that if e1 crosses e2, then ηe1,e2 = 0.

Cross Number. The cross number of a matching M , denoted by ΓM , is the
number of pairs of edges which are in a cross state in M . Observe that

ΓM =
| {(g, h) | g, h ∈ U and eM

g crosses eM
h } |

2
.

Note that the cross number of M is the number of intersections in its visualiza-
tion (see Figure 2 for an example).

u0 u1 u2 u3 u4 u5 u6 u7

v0 v1 v2 v3 v4 v5 v6 v7

Fig. 2. The cross number of this matching M is 5. The edges eM
u2 and eM

u3 are in a
straight state. The edges eM

u5 and eM
u7 are in a cross state.

Exchange. Given a matching M with two edges e1 = (ua, vb) and e2 = (uc, vd),
an exchange on e1 and e2 returns a matching M ′ such that M ′ = M ⊗ (e1, e2) =
(M \ {e1, e2})∪ {(ua, vd), (uc, vb)}. Note that if e1 and e2 are in a straight state
in M , then their replacement edges are in a cross state in M ′. Such exchanges
are called straight-to-cross exchanges. Similarly, cross-to-straight exchanges are
the ones on two edges in a cross state to result in two in a straight state. A null
exchange on M is defined to be the operation which returns matching M .

Direct Pair. The set of vertices {ui, vi} is called the ith direct pair. For any i
(0 ≤ i ≤ n− 2), the ith and the (i + 1)th direct pairs are said to be consecutive.

228 M.-Y. Kao and M. Sanghi

Let MD = {(u0, v0), (u1, v1), ..., (un−1, vn−1)}. Note that MD is a matching
with the minimum cost over all possible matchings. However, MD may not be a
cyclic augmentation.

Cluster. A cluster is the union of consecutive direct pairs which belong to the
same cycle in GMD . The ith cluster from the left is denoted by ψi. Therefore, ψ1
is the cluster containing the leftmost direct pair and ψj is the cluster containing
the leftmost direct pair in U ∪ V \ (ψ1 ∪ · · · ∪ ψj−1).

Note that the clusters define a partition of U ∪V . All the vertices in a cluster
belong to the same cycle in GMD but all the vertices in the same cycle in GMD

need not be in the same cluster. See Figure 3 for an illustration of clusters.

u0 u1 u2 u3 u4 u5 u6 u7

v0 v1 v2 v3 v4 v5 v6 v7

Fig. 3. For this graph, GMD has three cycles C1 = u0v0u1v1u4v4, C2 = u2v2u6v6u3v3

and C3 = u5v5u7v7. The vertices in C1 are marked by a triangle, the ones in C2 by
a circle and those in C3 by a square. Therefore, the clusters are ψ1 = {u0, v0, u1, v1},
ψ2 = {u2, v2, u3, v3}, ψ3 = {u4, v4}, ψ4 = {u5, v5}, ψ5 = {u6, v6}, and ψ6 = {u7, v7}.

Exchange Graph. The exchange graph X for G = (U, V,H) is a multigraph
whose vertices correspond to the cycles in GMD . There is an edge between
two cycles C and C′ for every pair of consecutive clusters ψi and ψi+1 such
that ψi has vertices in C and ψi+1 has vertices in C′. The weight of this edge
is max{c(φ(uψi

right), φ(vψi+1
left)), c(φ(uψi+1

left), φ(vψi

right))}, where (uψi

right, v
ψi

right) are the

rightmost direct pair in ψi and (uψi+1
left , v

ψi+1
left) are the leftmost direct pair in ψi+1.

If (uψi

right, v
ψi

right) = (uk, vk), then the label of the corresponding edge is (k, k+1).

3.4 Lemmas

Lemma 2. Given matchings M and M ′ between U and V , there exists a se-
quence of exchanges x0, x1, . . . , xm for m < n which transforms M to M ′.

In Lemmas 3 through 6 below, for any two edges e1 = (ua, vb) and e2 = (uc, vd)
such that e1, e2 ∈ M and a < c, let M ′ = M ⊗ (e1, e2).

Lemma 3. If e1 and e2 are in a straight state, then cM ′ ≥ cM .

Lemma 4.

1. If e1 and e2 are in the same cycle in GM , then their replacement edges are
in different cycles in GM ′ .

2. If e1 and e2 are in different cycles in GM , then their replacement edges are
in a same cycle in GM ′ .

An Approximation Algorithm for a Bottleneck Traveling Salesman Problem 229

ua

ucvb

vd ua

ucvb

vd

(a)

ua

ucvb

vd ua

ucvb

vd

(b)

Fig. 4. (a) An exchange between edges in a same cycle splits the cycle in two. (b) An
exchange between edges in two different cycles joins the cycles.

Lemma 5. If e1 crosses e2 and for some up ∈ U , eM ′
up

crosses eM ′
ua

, then eM
up

crosses at least one of e1 and e2. By symmetry, if e1 crosses e2 and for some
up ∈ U , eM ′

up
crosses eM ′

uc
, then eM

up
crosses at least one of e1 and e2.

Lemma 6.

1. If e1 and e2 are in a straight state, then ΓM ′ = ΓM + 1 + 2ηe1,e2 .
2. If e1 and e2 are in a cross state, then ΓM ′ = ΓM − 1 − 2ηeM′

ua
,eM′

uc
.

4 Lower Bound on the Optimum Bottleneck Cyclic
Augmentation

As observed in Section 3.2, for any perfect matching M between U and V , the
graph GM is a collection of simple cycles. Note that MD is the minimum cost
matching of G(U, V,H). However, MD may not be a cyclic augmentation i.e.,
H ∪ MD may not be a hamiltonian cycle. Our strategy for solving BBCA is
to begin with GMD and transform MD into a cyclic augmentation by means of
exchanges.

Recall from Lemma 4(2) that an exchange between two edges in different
cycles, say C1 and C2, yields a graph in which all the vertices in C1 and C2 are
in one cycle (see Figure 4). Alternately, from Lemma 4(1), an exchange between
two edges in the same cycle yields a graph in which the vertices in that cycle
are split into two distinct cycles. Furthermore, from Lemma 2, we know that
for any two matchings M and M ′, M can be converted to M ′ by a sequence
of exchanges. In this section we present Lemma 7 which identifies some useful
properties of a minimum cost cyclic augmentation which allows us to restrict
the search space for suitable exchanges to convert MD to an approximately
optimal cyclic augmentation. Then, using Lemma 8, we reduce our search space
to exchanges corresponding to the edges in the exchange graph X . As will be
shown in Lemma 9, this allows us to derive a good lower bound on the cost of
the optimal cyclic augmentation.

Lemma 7. There exists a minimum bottleneck cost cyclic augmentation M∗ for
G = (U, V,H) such that the following properties hold true:
(P1) Any edge e ∈ M∗ crosses either some edges on its left or some on its right
but not both.

230 M.-Y. Kao and M. Sanghi

(P2) For e1, e2, e3 ∈ M∗, if e1 crosses e2 and e3, then no other edge in M∗

crosses both e2 and e3.
(P3) If two vertices up, uq ∈ U are in the same cycle in GMD , then eM∗

up
and eM∗

uq

do not cross.
(P4) If two vertices up, uq ∈ U are in the same cycle in GMD and up is on the
left of uq, then

1. eM∗
up

cannot cross any edge to the right of eM∗
uq

; and
2. eM∗

uq
cannot cross any edge to the left of eM∗

up
.

Proof. The proof is by construction. Given a minimum cost cyclic augmentation
M ′, we show that it can be transformed to a minimum cost cyclic augmentation
M∗ which satisfies the above 4 properties.

For each property Pi, given the smallest set of vertices W ⊆ U ∪ V for which
Pi does not hold in M ′, we give a transformation Ti for constructing a new
matching of cost no more than that of M ′ and a cross number smaller than
that of M ′. The algorithm for the construction begins with any minimum cost
cyclic augmentation and repeatedly finds the smallest i such that Pi does not
hold. Use Ti to correct this violation till a matching for which all the properties
hold true is obtained. For the correctness and termination of this algorithm, we
ensure that each of the transformations Ti satisfies the following two conditions.
Assuming that Pj holds for all j < i, given any cyclic augmentation M ′ and the
smallest set of vertices W ∈ M ′ such that the edges incident to W do not satisfy
Pi, Ti(M ′,W) returns a matching M ′′ such that

1. M ′′ is a cyclic augmentation of cost no more than that of M ′; and
2. ΓM ′′ < ΓM ′ .

The first condition above ensures that after every transformation, we get a cyclic
augmentation of the minimum cost. The second condition ensures that the total
number of crosses decreases monotonically. Hence, we terminate with a minimum
cost cyclic augmentation which either satisfies all the properties or has no crosses.
Since the only matching with no crosses is MD and all the 4 properties do hold
for MD, in either case we are guaranteed to construct M∗.

To give a flavor of the transformations, we present only T1 here.

Transformation T1. Let W = {ua, ub, uc} ⊆ U and e1 = (ua, vq), e2 = (ub, vp),
e3 = (uc, vd) such that e2 crosses e1 and e3; e1 is to the left of e2 and e3 is to
the right of e2. This implies that a < b < c and d < p < q.

Let M ′′ = M ′⊗{e1, e3}. Since, M ′ was a cyclic augmentation, M ′′ will contain
two cycles with e′1 = (ua, vd) and e′3 = (uc, vq) in different cycles. Therefore, e2
will be in the same cycle as either e′1 or e′3. Suppose e2 is in the same cycle as
e′1. Let M ′′′ = M ′′⊗{eM ′′

ub
, e′3}. Now M ′′′ is a cyclic augmentation and the edges

eM ′′′
ua

, eM ′′′
ub

and eM ′′′
uc

do not violate P1. The other case when e2 is in the same
cycle as e′3 is symmetric.

We have transformed M ′ to M ′′′ using one cross-to-straight exchange and
one straight-to-cross exchange. However, M ′ can be transformed to M ′′′ using

An Approximation Algorithm for a Bottleneck Traveling Salesman Problem 231

only cross-to-straight exchanges (see Figure 5). Therefore, the cost of M ′′′ is no
more than that of M ′ (using Lemma 3). Further, using Lemma 6(2) we have
ΓM ′′′ < ΓM ′ .

ua ub uc

vqvpvd

asdjhakjsdhl

straight
to cross

cross to
straight

cro
ss

 to

str
aight

cross to

straight

cross tostraight

cro
ss

 to

str
aig

ht

cross to

straight

ua ub uc

vqvpvd

ua ub uc

vqvpvd

ua ub uc

vqvpvd

ua ub uc

vqvpvd

ua ub uc

vqvpvd

Fig. 5. Illustration of transformation T1

The next lemma uses the properties established in Lemma 7 to restrict the
space of exchanges required for transforming MD to an optimum bottleneck
cyclic augmentation M∗ to the exchanges corresponding to edges in X .

Lemma 8. M∗ can be constructed by performing a series of exchanges on GMD

where each exchange corresponds to a unique edge in the exchange graph X .

Proof. We will construct a sequence of exchanges x0, . . . , xn−1 where each xi is
either a null exchange or corresponds to a unique edge in the exchange graph X .
Let Mk = MD ⊗ x0 ⊗ · · · ⊗ xk. It suffices to show that Mn−1 = M∗. A vertex in
Mk is said to be satisfied if its adjacent vertex in Mk is the same as its adjacent
vertex in M∗.

Let H(k) denote the statement that in Mk either all the vertices in the first
k + 1 direct pairs are satisfied or exactly two are not, and that at least one of
those two, h, is in the (k + 1)th direct pair and the other is the one adjacent to
it, g, in Mk such that φ(g) ≤ φ(h).

The proof of this lemma is by induction on H(k) as follows. Note that if
H(n − 1) is true, then all the vertices in Mn−1 must be satisfied, i.e. Mn−1 is
the same as M∗.

232 M.-Y. Kao and M. Sanghi

Base Case: k = 0. Let x0 be a null exchange. Either the vertices of first direct
pair are satisfied or they are not. In either case, H(0) is true.

Induction Step: H(k − 1) holds for some k, where 0 ≤ k − 1 ≤ n − 2. Then,
if all of the first k direct pairs are satisfied, let xk be a null exchange and H(k)
will be true.

However, if two vertices of the first k direct pairs are not satisfied, let the
two vertices be g and h such that φ(g) ≤ φ(h) and h belongs to the kth direct
pair. Note that in this case Mk−1 must contain the edge (g, h). Without loss of
generality, let g ∈ U and h ∈ V . Since all the first k direct pairs except g and h
are satisfied, the vertices adjacent to g and h in M∗ must be to the right of the
kth direct pair.

Now let xk be the exchange between (g, h) and (uk+1, vk+1). Using P3 and
P4 we can conclude that h and uk+1 (or vk+1) cannot belong to same clusters.
So the exchange xk corresponds to an edge labeled (k, k + 1) in the exchange
graph X .

We need to show that either (g, vk+1) ∈ M∗ or (h, uk+1) ∈ M∗. To prove this
by contradiction, suppose this is not so. That is (g, vk+1) /∈ M∗ and (h, uk+1) /∈
M∗. Then let the vertex adjacent to g in M∗ be g′ and that adjacent to vk+1 be
v′k+1. Similarly, let the vertex adjacent to h in M∗ be h′ and that adjacent to
uk+1 be u′

k+1. We know now that g′ should be to the right of vk+1 and h′ should
be right of uk+1. By P1, v′k+1 should be to the right of h′, and u′

k+1 should
be to the right of g′. But by P2 this is not possible. Hence, we have reached a
contradiction.

Therefore, by induction we can conclude that H(n− 1) is true.

Let cMST be the weight of the heaviest edge in a minimum spanning tree over
X and let cLB = max{cMD , cMST}. Let the cost of the optimal bottleneck cyclic
augmentation M∗ be cOPT.

Lemma 9. cOPT ≥ cLB.

5 Approximation Algorithm for GG-BTSP

For finding the minimum bottleneck cost augmentation, we first construct a
minimum spanning tree of the exchange graph and then perform exchanges cor-
responding to the edges of the spanning tree such that no exchange exceeds the
weight of the heaviest edge in the spanning tree by a factor of (2 + γ).

From Lemma 8, there exists a set of exchanges corresponding to the edges
of exchange graph such that the resulting augmentation is of optimum cost.
Furthermore, as observed in proof to Lemma 9, these edges form a spanning tree.
However, note that the spanning tree corresponding to the optimal augmentation
need not be the minimum spanning tree over the exchange graph. Furthermore,
the cost of the augmentation is only lower bounded by the heaviest weighted
edge in the corresponding spanning tree. Hence, there is scope for improving the
analysis by tightening the lower bound.

An Approximation Algorithm for a Bottleneck Traveling Salesman Problem 233

Algorithm 1. Approx-BTSP
1. Let M ← MD.
2. Construct the exchange graph X .
3. Find a minimum spanning tree T of X .
4. Sort the edges in T in the increasing order of their label. Let the ordered edges be

e1, . . . , em.
5. For i = 1 to m,

(a) Let the label of ei be (ai, ai + 1).
(b) if c(eM

uai
) ≤ cLB,

then M ← M ⊗ (eM
uai

, eM
u(ai+1)

);

else M ← M ⊗ (eM
vai

, eM
u(ai+1)

).
6. Output MOUT = M .

Lemma 10. At Step 5b of Approx-BTSP, either c(eM
uai

) ≤ cLB or c(eM
vai

) ≤ cLB.

Proof. This is proven by induction on H(k) where H(k) denotes the statement
that after k iterations of the algorithm

1. Either c(eM
uak

) ≤ cLB or c(eM
vak

) ≤ cLB; and
2. For all x > ak, eM

ux
= eM

vx
= (ux, vx).

Base Case: k = 1, M = MD and hence all the edges in M have cost at most
cLB. Therefore, H(1) is true.

Induction Step: H(k−1) holds for some k, where 0 ≤ k−1 ≤ m−1. Note that,
ak ≥ ak−1 + 1 since the edges were sorted according to their labels. Without
loss of generality, assume that at (k − 1)th iteration c(eM

uak−1
) ≤ cLB. Therefore

after the (k − 1)th iteration, eM
uak−1

= (uak−1 , vak−1+1) and for all x > ak−1 + 1,

eM
ux

= eM
vx

= (ux, vx). Note that weight of the edge labeled (ak−1, ak−1 + 1) is at
least c(uak−1 , vak−1+1) and since ek−1 ∈ T , c(eM

vak−1+1
) ≤ cLB.

Therefore at the kth iteration, c(eM
vak−1+1

) ≤ cLB and for all x > ak−1 + 1,

eM
ux

= eM
vx

= (ux, vx). Since ak ≥ ak−1 + 1, H(k) holds.

Lemma 11. If γ ≥ f(x)
g(x) ≥ 1

γ ∀x, then c(b, a) ≤ γ·c(a, b).

Theorem 1. Running time of Algorithm Approx-BTSP is O(n log n).

Theorem 2. If γ ≥ f(x)
g(x) ≥ 1

γ ∀x, then MOUT is a cyclic augmentation of cost
no more than (2 + γ)·cOPT.

Proof. We need to prove the following two parts:

1. MOUT is a cyclic augmentation.
2. cMOUT ≤ (2 + γ)·cOPT.

234 M.-Y. Kao and M. Sanghi

Note that every exchange performed in the algorithm is between edges belonging
to two different cycles. Therefore, using Lemma 4, the number of cycles in M
decreases with every iteration. If MD has m + 1 cycles, the minimum spanning
tree T contains m edges and hence after m iterations M consists of just one
cycle and is hence a cyclic augmentation. This completes the proof of Part 1.

For Part 2, we will show that the following invariant holds true for the al-
gorithm: cM ≤ (2 + γ)·cLB. Consider the ith iteration of the algorithm. Let
the matching before the ith iteration be M ′ and the one after be M ′′. As-
suming cM ′ ≤ (2 + γ)·cLB, we need to show that cM ′′ ≤ (2 + γ)·cLB. From
Lemma 10, either c(eM ′

uai
) ≤ cLB or c(eM ′

vai
) ≤ cLB. Without loss of generality, as-

sume c(eM ′
uai

) ≤ cLB. Let eM ′
uai

= (uai , h). M ′′ = (M ′ \ {(uai, h), (uai+1, vai+1)})∪
{(uai , vai+1), (uai+1, h)}. Clearly c((uai , vai+1)) ≤ cLB because weight of edge
labeled (ai, ai + 1) is at least c((uai , vai+1)).

So all we need to show is that c((uai+1, h)) ≤ (2 + γ)·cLB.

c(φ(uai+1), φ(vai)), c(φ(uai), φ(vai)), c(φ(uai), φ(h)) ≤ cLB

c(φ(uai+1), φ(uai)) ≤ c(φ(uai+1), φ(vai)) + c(φ(vai), φ(uai))
≤ c(φ(uai+1), φ(vai)) + γ·c(φ(uai), φ(vai)) (using Lemma 11)
≤ (1 + γ)·cLB

c((uai+1, h)) = c(φ(uai+1), φ(h))
≤ c(φ(uai+1), φ(uai)) + c(φ(uai), φ(h))
≤ (1 + γ)·cLB + cLB

= (2 + γ)·cLB

References

[1] C. Bailey-Kellogg, S. Chainraj, and G. Pandurangan, A Random Graph
Approach to NMR Sequential Assignment, in Proceedings of the 8th Annual In-
ternational Conference on Computational Molecular Biology, 2004, pp. 58–67.

[2] M. O. Ball and M. J. Magazine, Sequencing of Insertions in Printed Circuit
Board Assembly, Operations Research, 36 (1988), pp. 192–201.

[3] J. Cavanagh, W. J. Fairbrother, A. G. Palmer III, and N. J. Skelton,
Protein NMR Spectroscopy: Principles and Practice, Academic Press, New York,
NY, 1996.

[4] Z.-Z. Chen, T. Jiang, G. Lin, J. Wen, D. Xu, J. Xu, and Y. Xu, Approx-
imation Algorithms for NMR Spectral Peak Assignment, Theoretical Computer
Science, 299 (2003), pp. 211–229.

[5] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the
Theory of NP-Completeness, W. H. Freeman & Co., New York, NY, USA, 1979.

[6] P. C. Gilmore and R. E. Gomory, Sequencing a One State-Variable Machine:
A Solvable Case of the Traveling Salesman Problem, Operations Research, 12
(1964), pp. 655–679.

[7] G. Gutin and A. P. Punnen, The Traveling Salesman Problem and Its Varia-
tions, Kluwer Academic Publishers, Dordrecht, The Netherlands, 2002.

An Approximation Algorithm for a Bottleneck Traveling Salesman Problem 235

[8] T. K. Hitchens, J. A. Lukin, Y. Zhan, S. A. McCallum, and G. S. Rule,
MONTE: An Automated Monte Carlo Based Approach to Nuclear Magnetic Reso-
nance Assignment of Proteins, Journal of Biomolecular NMR, 25 (2003), pp. 1–9.

[9] S. S. Reddi and C. V. Ramamoorthy, On the Flow-Shop Sequencing Problem
with No Wait in Process, Operational Research Quarterly, 23 (1972), pp. 323–331.

[10] G. L. Vairaktarakis, On Gilmore-Gomory’s open question for the bottleneck
TSP, Operations Research Letters, 31 (2003), pp. 483–491.

[11] , Simple Algorithms for Gilmore-Gomory’s Traveling Salesman and Related
Problems, Journal of Scheduling, 6 (2003), pp. 499–520.

[12] O. Vitek, J. Vitek, B. Craig, and C. Bailey-Kellogg, Model-Based Assign-
ment and Inference of Protein Backbone Nuclear Magnetic Resonances, Statistical
Applications in Genetics and Molecular Biology, 3 (2004), pp. 1–22.

[13] X. Wan, D. Xu, C. M. Slupsky, and G. Lin, Automated Protein NMR Reso-
nance Assignments, in Proceedings of the 2nd IEEE Computer Society Conference
on Bioinformatics, 2003, pp. 197–208.

[14] K. Wüthrich, NMR of Proteins and Nucleic Acids, John Wiley & Sons, New
York, NY, 1986.

[15] Y. Xu, D. Xu, D. Kim, V. Olman, J. Razumovskaya, and T. Jiang, Auto-
mated Assignment of Backbone NMR Peaks Using Constrained Bipartite Match-
ing, Computing in Science and Engineering, 4 (2002), pp. 50–62.

On the Minimum Common Integer
Partition Problem

Xin Chen1, Lan Liu2, Zheng Liu2, and Tao Jiang2,3

1 School of Physical and Mathematical Sciences, Nanyang Tech. Univ., Singapore
ChenXin@ntu.edu.sg

2 Department of Computer Science, Univ. of California at Riverside, USA
lliu, zliu, jiang@cs.ucr.edu

3 Currently visiting at Tsinghua University, Beijing, China

Abstract. We introduce a new combinatorial optimization problem in
this paper, called the Minimum Common Integer Partition (MCIP) prob-
lem, which was inspired by computational biology applications including
ortholog assignment and DNA fingerprint assembly. A partition of a pos-
itive integer n is a multiset of positive integers that add up to exactly
n, and an integer partition of a multiset S of integers is defined as the
multiset union of partitions of integers in S. Given a sequence of mul-
tisets S1, · · · , Sk of integers, where k ≥ 2, we say that a multiset is a
common integer partition if it is an integer partition of every multiset
Si, 1 ≤ i ≤ k. The MCIP problem is thus defined as to find a common
integer partition of S1, · · · , Sk with the minimum cardinality. It is easy
to see that the MCIP problem is NP-hard since it generalizes the well-
known Set Partition problem. We can in fact show that it is APX-hard.
We will also present a 5

4 -approximation algorithm for the MCIP problem
when k = 2, and a 3k(k−1)

3k−2 -approximation algorithm for k ≥ 3.

1 Introduction

Computational molecular biology has emerged as one of the most exciting in-
terdisciplinary fields in the past two decades, in part because various biological
applications have spawned a large number of interesting combinatorial problems
such as multiple sequence alignment [12], sorting by reversals [20], and recently
the minimum common partition problem [10]. These problems have attracted
considerable attention from computer scientists who took the challenge to de-
sign efficient and effective algorithms for solving them [5, 14, 13]. In this paper,
we introduce a new combinatorial optimization problem, called the Minimum
Common Integer Partition problem (MCIP), which was inspired by our recent
work on ortholog assignment and DNA fingerprint assembly.

By a partition of a positive integer n we mean a multiset {n1, n2, · · · , nr} of
positive integers that add up to exactly n, i.e.

∑r
i=1 ni = n, where ni is called a

part of n [2, 4]. Given a multiset S = {x1, x2, · · · , xm} of integers with a partition
for each integer xi, 1 ≤ i ≤ m, we can define an integer partition of S as the
multiset union of these partitions, that is

⊎m
i=1 P (xi). By definition, S is an

integer partition of itself. A multiset is said to be a common integer partition of

T. Calamoneri, I. Finocchi, G.F. Italiano (Eds.): CIAC 2006, LNCS 3998, pp. 236–247, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

On the Minimum Common Integer Partition Problem 237

a sequence of multisets S1, S2, . . . , Sk(k ≥ 2) if it is an integer partition of every
multiset Si, 1 ≤ i ≤ k. The minimum common integer partition problem is thus
defined as follows: given a sequence of multisets S1, S2, · · · , Sk of integers, find a
common integer partition of them with the minimum cardinality. We denote the
minimum common integer partition by MCIP(S1, S2, · · · , Sk) (or simply MCIP
when the input multisets are clear from the context). Note that, now MCIP
denotes both the MCIP problem and also its solution on a particular instance,
but this overloading is a common pratice and should not cause any confusion
given the context. For simplicity, we also denote by MCIP(S1, S2, · · ·, Sk) (or
simply k-MCIP) the restricted version of the MCIP problem when the number
of input multisets is fixed to be k throughout the paper.

For example, the integer 3 has only three partitions, i.e., {3},{2, 1}, and
{1, 1, 1}, while the integer 10 has 190569292 partitions [2]. We can see that
the number of partitions increases quite rapidly with the integer n. For multiset
S = {3, 3, 4}, {2, 2, 3, 3} is an integer partition of S and {1, 1, 2, 2, 4} is another
one. For a pair of multisets S = {3, 3, 4} and T = {2, 2, 6}, both {2, 2, 3, 3}
and {1, 1, 2, 2, 4} are common integer partitions of S and T , while the first one
gives the minimum cardinality, i.e., MCIP(S, T) = {2, 2, 3, 3}. Note that the
minimum common integer partition is not necessarily unique. So, the notation
MCIP(S1, S2, · · · , Sk) is not really a function, strictly speaking. But we will use
it as a function throughout the paper for simplicity.

The necessary and sufficient condition for a sequence of multisets S1, S2, . . . , Sk

to have a common integer partition is that they have the same summation over
their integer elements. Multisets with this property are called related. Verifying
whether a sequence of multisets of integers are related can be done easily in linear
time, and thus for the rest of the paper we will assume, without loss of generality,
that the input multisets are all related.

Clearly, the MCIP problem is NP-hard since it generalizes the well-known Set
Partition problem [7]. In this paper, we show that the MCIP problem is APX-
hard and hence has no polynomial-time approximation algorithm (PTAS) unless
P = NP. We also present a 5

4 -approximation algorithm for the 2-MCIP using a
heuristic for the Maximum Set Packing problem, and a 3k(k−1)

3k−2 -approximation
algorithm for the general k-MCIP problem, where k ≥ 3.

1.1 Biological Background

Although the MCIP problem is quite a natural extension of the Set Partition
problem, its formulation was mainly motivated by our recent work on ortholog
assignment and DNA fingerprint assembly in computational molecular biology.
The following gives a brief account of the background. Since it contains discus-
sions that involve the knowledge of some biological experiments, the reader who
is not interested in the biological relevance may feel free to skip some (or all) of
the paragraphs in this subsection.

Ortholog assignment. Orthologous genes are typically the evolutionary and func-
tional counterparts in different species, and therefore the prediction (or assign-

238 X. Chen et al.

ment) of orthologs is a common task in computational biology. While it is usually
done using sequence homology search [19], we have recently proposed an al-
ternative and promising approach to assign orthologs via genome rearrange-
ment [9, 10]. This new approach has inspired us to formulate several interesting
combinatorial optimization problems, e.g., Signed Reversal Distance with Du-
plicates (SRDD), Minimum Common String Partition (MCSP), and Maximum
Cycle Decomposition (MCD), which have attracted increasing attention from the
algorithms community [6, 13, 11, 16]. In particular, the MCSP problem, which is
the most related to MCIP, is defined as follows: Given two input strings, parti-
tion them into the same collection of substrings so that the number of resultant
substrings is minimized. For example, the MCSP for {aaabbbccc, bbbaaaccc} is
{aaa, bbb, ccc}. The restricted version of MCSP where the number of symbols
that occur in an input string multiple times (called duplicated symbols; the
other symbols are called singletons) is no more than l in each input string,
is denoted by MCSP-l. It is known that the MCSP-l problem is NP-hard [8],
when l ≥ 1. In other words, even when there is only one symbol with multiple
copies in input strings, we still cannot find the MCSP in polynomial time unless
P=NP.

It is easy to transform an instance of MCSP-1 into an instance of 2-MCIP
where each integer represents the size of a block consisting of only the dupli-
cated symbol so that an optimal solution to the 2-MCIP problem would in most
cases give an optimal solution to the MCSP-1 problem with the same cardinal-
ity [8]. Therefore, we hope that the study of MCIP will help the design of good
approximation algorithms for MCSP-1 and MCSP in general.

DNA fingerprint assembly. In the ongoing Oligonucleotide Fingerprinting Ri-
bosomal Genes (OFRG) project [21], we collaborate with microbiologists and
statisticians to provide a high-throughput method for identifying different mi-
crobial organisms. Briefly, the microbiologists build an rDNA clone library af-
ter DNA extraction and Polymerase Chain Reaction (PCR) amplification. The
rDNA clones are assigned fingerprints (binary strings where 0 indicate non-
binding between a clone and a probe, and 1 otherwise) through a series of hy-
bridization experiments, each using a single 10-nucleotide DNA probe. These
10-nucleotide DNA probes comprise a probe set and the size of the probe set
determines the length of a fingerprint. Then, clones are identified by clustering
their fingerprints with those of known sequences. By mapping sequence data
to hybridization patterns, clones can be identified (or at least differentiated).
Compared with direct sequencing, the method saves significant cost without
sacrificing too much discriminating ability.

Although OFRG is a cost-effective approach, we are trying to scale it up in
order to process a large number of samples from applications such as identify-
ing microorganisms involved in the development of the mucosal and systemic
immune system. One possible way of enhancing OFRG is inspired by new (but
proven) technologies such as microbead clone libraries and multiplex flow cytom-
etry. By producing clone libraries on microbeads, we are able to simultaneously
hybridize a set of probes to thousands of clones in seconds, which is a significant

On the Minimum Common Integer Partition Problem 239

improvement over the current array platform. However, we will still need multiple
hybridizations, each using a different probe (sub)set, as the size of the desired
probe set in OFRG exceeds the maximum discriminating size of the cytometry
technology. Thus we obtain a partial fingerprint from each run of hybridization
because only a subset of the probes are used in each hybridization.

The DNA fingerprint assembly problem aims at inferring a complete finger-
print (with respect to the overall probe set) for each clone from partial fin-
gerprints by minimizing the total number of distinct complete fingerprints. We
assume that all the probe subsets share a small number of common probes which
are called the linking probes. That is, these linking probes will be used for each
run of hybridization. A complete fingerprint can thus be obtained from partial
fingerprints that share the same bits on the linking probes. More specifically,
after each run of the hybridization, we assign a weight to each distinct par-
tial fingerprint as the number of clones that produced this partial fingerprint
in the hybridization. Then we divide all partial fingerprints into groups based
on their bits on the positions of linking probes. The partial fingerprints in a
group are compatible with each other and may correspond to the same complete
fingerprint. For each group, the fingerprint assembly problem can be viewed as
MCIP(S1, S2, · · · , Sk), with k being the number of the probe subsets (i.e. the
number of hybridizations) and Si containing the weight of each partial fingerprint
in this particular group from the ith hybridization. Hence, complete fingerprints
for each group can be obtained by combining their respective partial fingerprints
via the minimum common integer partition of the weights. Such a solution would
represent the minimum number of distinct complete fingerprints (or clones) that
have produced the group of partial fingerprints.

2 Some Basic Facts

Throughout the paper, we assume that the multisets given as input to MCIP
are related as mentioned before. Due to page constraint, we omit the proofs of
all the lemmas and Theorem 4 (See [22] for the details of the proofs).

We denote the size of the minimum common integer partition by |MCIP (S1,
S2, · · · , Sk)| (or simply |k-MCIP | if the input multisets are clear from the con-
text). Because every integer in any input multiset will be partitioned into one or
more integers in the minimum common integer partition, the following lemma
gives a trivial, but useful lower bound.

Lemma 1. |MCIP (S1, S2, · · · , Sk)| ≥ max(|S1|, |S2|, · · · , |Sk|), where | · | is the
size of a multiset.

In the case of 2-MCIP, we use 〈S, T 〉 to denote the two input multisets, where
S = {x1, x2, · · · , xm} and T = {y1, y2, · · · , yn} such that

∑m
i=1 xi =

∑n
i=1 yi.

A greedy algorithm that constructs a common integer partition of 〈S, T 〉 is to
iteratively add the smaller one of two integers randomly selected from the two
input multisets. More precisely, the algorithm can be described in pseudo-code
as in Figure 1, and runs in time linear in n. The following lemma gives an upper
bound for 2-MCIP, which is very useful in the subsequent discussion.

240 X. Chen et al.

Algorithm 2-Approx-MCIP(S, T)

input Two related multisets S and T
output A common integer partition CIP

of S and T
begin

CIP := ∅;
while S = ∅ do

arbitrarily pick xi ∈ S and yj ∈ T ;
S := S \ {xi}; T := T \ {yj};
z := min(xi, yj); CIP := CIP

⊎{z};
if xi = z S := S

⊎{xi − z};
if yi = z T := T

⊎{yi − z};
end.

Fig. 1. A 2-approximation algorithm for
2-MCIP

Algorithm 5
4 -Approx-MCIP(S, T)

input Two related multisets S and T
output A common integer partition CIP

of S and T

begin

remove common integer(S,T);

approximate set packing(S,T);

CIP := CIP (S1, T1)
⊎

CIP (S2, T2);

CIP := CIP
⊎

2-APPROX-MCIP(S3, T3);

return CIP ;

end.

Fig. 2. A 5
4 -approximation algorithm for

2-MCIP

Lemma 2. |MCIP (S, T)| ≤ |S| + |T | − 1.

As its name suggests, 2-APPROX-MCIP(S,T) is a 2-approximation algorithm
for the problem of 2-MCIP, which is implied by Lemma 1 and Lemma 2.

Lemma 3. The algorithm 2-APPROX-MCIP(S,T) achieves an approxima-
tion ratio of 2.

Given a common integer partition CIP (S, T) of 〈S, T 〉, we say that xi is mapped
to yj if there exists an element in CIP (S, T) such that it is a part of xi as well
as a part of yj. Notice that an integer in S (or T) can be mapped to two or more
integers in T (or S). Two integers a1 and ah in 〈S, T 〉 (i.e., a1, ah ∈ S

⊎
T) are

said to be connected if there exist a sequence of integers a2, · · ·, ah−1 in 〈S, T 〉
such that ai is mapped to ai+1, for each i ∈ [1, h− 1]. Thus, all the integers that
are connected to each other in S and T will constitute a connected component
(or simply component) of 〈S, T 〉. We say that these connected components are
induced by the given common integer partition CIP (S, T).

Lemma 4. Suppose that CIP (S, T) denotes a common integer partition of S
and T . Then

1. every connected component 〈S1, T1〉 induced by CIP (S, T) is a pair of related
multisets;

2. for every connected component 〈S1, T1〉, all the integers in CIP (S, T) that
are parts of integers in S1 or T1 constitute a common integer partition
CIP (S1, T1) of S1 and T1 such that |CIP (S1, T1)| ≥ |S1| + |T1| − 1.

2.1 The Maximum Related Multiset Partition

In this subsection, we define a new combinatorial optimization problem, maxi-
mum related multiset partition (MRMP), to assist solving the MCIP problem.

On the Minimum Common Integer Partition Problem 241

S1 and T1 are said to be a pair of related submultisets of two related multisets
S and T if S1 is a (nonempty) submultiset of S, T1 is a (nonempty) submultiset
of T , and they are related. We write 〈S1, T1〉 ⊆ 〈S, T 〉 to denote the related
submultisets. Obviously,〈S, T 〉 ⊆ 〈S, T 〉. Furthermore, S and T are said to be
basic if they have one and only one pair of related submultisets, namely 〈S, T 〉.
For example, consider S = {3, 3, 4} and T = {2, 2, 6}. They have three pairs
of related submultisets: 〈{3, 3}, {6}〉, 〈{4}, {2, 2}〉, and 〈S, T 〉. Therefore, S and
T are not a pair of basic related multisets. An example of two basic related
multisets is 〈{1, 4}, {2, 3}〉.

A multiset partition (or simply partition) of a multiset S is a sequence of
disjoint submultisets S1, S2, · · · , Sl of S whose union is S, i.e. S =

⊎l
i=1 Si.

By definition, S is a multiset partition of itself. It is important to remem-
ber that multiset partition and the integer partition are two different concepts
in this paper. Given two multisets S and T of integers, a sequence of mul-
tiset pairs 〈S1, T1〉, 〈S2, T2〉, · · · , 〈Sl, Tl〉 is called a related multiset partition if
{S1, S2, · · · , Sl} is a multiset partition of S, {T1, T2, · · · , Tl} is a multiset par-
tition of T , and, moreover, for each i ∈ [1, l], Si and Ti are a pair of related
multisets. The maximum related multiset partition problem is then defined as to
find a related multiset partition of two given multisets S and T , maximizing the
number of related multiset pairs in the partition. We denote by MRMP (S, T)
(or 2-MRMP) the maximum related multiset partition of S and T , and by
|MRMP (S, T)| (or |2-MRMP |) the size of the partition, i.e., the number of
related multiset pairs in the partition.

Lemma 5. Given a common integer partition CIP (S, T), we can transform it
into a related multiset partition of S and T , denoted as RMP (S, T), such that
|RMP (S, T)| ≥ |S| + |T | − |CIP (S, T)|.

The following lemma establishes the relationship between MCIP and MRMP,
showing their (complementary) equivalence.

Lemma 6. If S and T are related multisets, then |MCIP (S, T)|+|MRMP (S, T)|
= |S| + |T |.

Since a pair of basic related multisets S and T cannot be partitioned further into
related submultisets, i.e., |MRMP (S, T)| = 1, the following lemma is trivially
implied by Lemma 6.

Lemma 7. If S and T are a pair of basic related multisets, then |MCIP (S, T)| =
|S| + |T | − 1.

The following lemmas will be crucial to the approximation algorithms. We define
the size of a pair of related multisets S and T as the sum of the size of S and
the size of T , i.e., |〈S, T 〉| = |S| + |T |.

Lemma 8. If the minimum size of any related submultiset of S and T is c, then
|MCIP (S, T)| ≥ c−1

c (|S| + |T |).

242 X. Chen et al.

Lemma 9. Given two related multisets, S = {x1, x2, · · · , xm} and T = {y1, y2,
· · · , yn}. If xi and yj are identical, then {xi}

⊎
MCIP (S\{xi}, T \{yj}) is a min-

imum common integer partition of S and T , i.e., |MCIP (S, T)| = |MCIP (S \
{xi}, T \ {yj})| + 1.

Unfortunately, the result in Lemma 9 cannot be extended to the case of k mul-
tisets when k ≥ 3. An interesting counterexample is {6, 5, 1, 4, 2}, {6, 5, 1, 3, 3},
{6, 4, 2, 3, 3}. Their minimum common integer partition is of size 6, but any
common integer partition including 6 as an element is of size at least 7. In the
following, we will use a procedure remove common integer(S1, S2, · · · , Sk) to
remove all common integer elements existing in every multiset of {S1, S2, · · · , Sk}
(and add them into the solution). The optimality of this operation is guaranteed
only when k = 2, as shown in Lemma 9.

3 Hardness of Approximation

It is easy to see that MCIP is NP-hard because there is a straightforward re-
duction from the Set Partition problem. This section is devoted to proving that
MCIP is APX-hard.

In the sequel, we prove the APX-completeness of 2-MCIP by an L-reduction
from the Maximum Bounded 3-Dimensional Matching problem (denoted as MAX
3DM-3). The MAX 3DM-3 problem is defined as follows: Given a set D ⊆
X × Y × Z, where X , Y and Z are disjoint sets and moreover, each element in
X , Y and Z occurs in at least one and at most three triples in D [17], the goal
is to find a matching M ⊆ D for D of the maximum cardinality, i.e., a largest
set M ⊆ D such that no two elements in M agree in any coordinate. In this
problem, without loss of generality, we can assume that n = |X | ≤ |Y | ≤ |Z|.
Since each element in X occurs at least once and at most three times in D, the
number of triples is at least n and at most 3n, i.e., n ≤ |D| ≤ 3n. It also implies
that |Y | ≤ 3n and |Z| ≤ 3n. Further observe that each triple can intersect at
most six other triples, which implies that the maximum matching contains at
least |D|/7 triples. Let |MAX 3DM -3| denote the size of maximum matching
of |D|. It is easy to see that �n

7 � ≤ |MAX 3DM -3| ≤ n.
Let X = {x1, x2, · · · , x|X|}, Y = {y1, y2, · · · , y|Y |}, Z = {z1, z2, · · · , z|Z|}, and

D = {d1, d2, · · · , d|D|} where di = (xiX , yiY , ziZ) for each i ∈ [1, |D|] and iX

(iY or iZ , respectively) is the corresponding index of the integer xiX (yiY or
ziZ , respectively) in X (Y or Z, respectively). We can define a function f to
construct an instance of 2-MCIP as follows:

• A multiset X̃ = {x̃i|x̃i = 4i, ∀xi ∈ X};
• A multiset Ỹ = {ỹi|ỹi = 4|X|+i, ∀yi ∈ Y };
• A multiset Z̃ = {z̃i|z̃i = 4|X|+|Y |+i, ∀zi ∈ Z};
• A multiset D̃ = {d̃i|d̃i = x̃iX + ỹiY + z̃iZ , ∀di ∈ D};
• An integer e =

∑|D|
i=1 d̃i −

∑|X|
i=1 x̃i −

∑|Y |
i=1 ỹi −

∑|Z|
i=1 z̃i.

• Two multisets S = D̃ and T = X̃ ∪ Ỹ ∪ Z̃ ∪ {e}.

On the Minimum Common Integer Partition Problem 243

Since each element in X , Y and Z is assumed to occur at least once in D while
some elements occur more than once, it always holds that e > 0. Obviously,∑

S =
∑

T . Therefore, 〈S, T 〉 is an instance of 2-MCIP that we can obtain in
time linear in n.

Let |2-MCIP | denote the size of the minimum common integer partition of
〈S, T 〉. Then, we have the following lemma.

Lemma 10. For any instance of MAX 3DM-3, |2-MCIP | ≤ 70·|MAX 3DM -3|.

Given a common integer partition 2-CIP of 〈S, T 〉, we define a function g to
construct a subset (denoted as 3DM -3) of D by including all the triples di =
(xiX , yiY , ziZ) (1 ≤ i ≤ |D|) whose corresponding integers d̃i = x̃iX + ỹiY + z̃iZ

are not connected to the integer e in the common integer partition 2-CIP .

Lemma 11. For any instance D of MAX 3DM-3, the subset 3DM -3 constructed
by the function g is a matching of D.

Let |2-MRMP | be the size of the maximum related multiset partition of S and
T . Let |2-RMP | be the size of a related multiset partition of S and T , induced
by a given common partition 2-CIP.

Lemma 12. |2-MRMP | = |MAX 3DM -3| + 1.

Lemma 13. |MAX 3DM -3| − |3DM -3| ≤ |2-CIP | − |2-MCIP |.

Lemma 14. MAX 3DM-3 ≤ L 2-MCIP.

Theorem 1. The k-MCIP problem is APX-complete, for any k ≥ 2.

Proof. Since the MAX 3DM-3 problem is APX-complete [17] and MAX 3DM-3
≤ L 2-MCIP by Lemma 14, 2-MCIP is APX-hard. In addition, by Lemma 3, there
exists a polynomial-time 2-approximation algorithm for 2-MCIP, which implies
that 2-MCIP is APX-complete. In Section 5, we will present a k-approximation
algorithm for k-MCIP, which implies that k-MCIP is APX-complete, for any
k ≥ 2. ��

4 Approximation of 2-MCIP Via Maximum Set Packing

In this section, we will give a 5
4 -approximation algorithm for the 2-MCIP problem

by considering basic related submultisets of sizes three and four between S and
T . As mentioned earlier, we assume that there are no common integer elements
between the two input multisets S and T , without loss of generality.

We can construct an instance of the Maximum Set Packing problem [1], in
which the collection C consists of all the basic related submultisets of sizes
three and four between S and T . Since the cardinality of each multiset in C is
bounded from the above by a constant, it is actually an instance of the Maximum
k-Set Packing problem where k = 4. Hurkens and Schrijver [15] show that the
Maximum k-Set Packing problem is approximable within ratio k/2 + ε for any

244 X. Chen et al.

ε > 0. For the weighted version of the Maximum k-Set Packing problem, where
each set is given a non-negative weight, Arkin and Hassin [3] show that it is
approximable within ratio k − 1 + ε for any ε > 0.

In the following, we consider a special weighted Maximum k-Set Packing
problem on C, where the weight for each basic related multiset of size three
is 2 and the weight for a multiset of size four is 1, and the goal is to find a
collection of disjoint multisets of maximum total weight. Call any collection of
pairwise disjoint multisets a packing. We design a heuristic algorithm, which
is implemented in the procedure approximate set packing(S,T), to find a
packing as follows: first find a maximal set packing, and then recursively replace
a multiset of size four in the packing by a multiset of size three, or replace a
multiset of size three by two multisets of size three, or add some multiset into
the packing so that the resultant collection is still a packing (but with one more
multiset of size three after a replacement or with one more multiset after an
addition), until no such replacement or addition could be made further.

The above heuristic algorithm can be made to run in O(|U | · |C|2) time. Due
to the space limitation, the running time analysis is omitted here, which can be
found in [22] .

Let q3 and q4 denote the numbers of basic related multisets of sizes three
and four in the packing found by our heuristic algorithm, and q∗3 and q∗4 the
numbers of basic related multisets of sizes three and four in an optimal weighted
set packing, respectively. It is obvious that 2q3 + q4 ≤ 2q∗3 + q∗4 . Moreover, we
can obtain the following relationship. 1

Lemma 15. 2q∗3 + q∗4 ≤ 4(q3 + q4).

Let q′3 and q′4 be the numbers of basic related submultisets of sizes three and four
in the related multiset partition induced by a given minimum common partition
MCIP(S, T). It is obvious that 2q′3 + q′4 ≤ 2q∗3 + q∗4 . The following is a tighter
lower bound for 2-MCIP.

Lemma 16. |MCIP (S, T)| ≥ 4
5 (m + n) − 1

5 (2q∗3 + q∗4), where m = |S| and
n = |T |.

The following lemma gives a tighter upper bound for 2-MCIP.

Lemma 17. |MCIP (S, T)| ≤ m + n− q3 − q4 − 1.

As mentioned earlier, we run the procedure approximate set packing(S,T)
to find the three disjoint submultisets 〈S1, T1〉, 〈S2, T2〉 and 〈S3, T3〉. A 5

4 - ap-
proximation algorithm for 2-MCIP can then be obtained, as illustrated in Fig-
ure 2. The algorithm runs in time O((m + n)9), which is dominated by the
running time of the procedure approximate set packing(S,T), as there are
m + n elements in the universe and the size of the collection C could reach
1 The (k/2 + ε)-approximation algorithm given by Hurkens and Schrijver [15] can

also find a packing of C satisfying the inequality in Lemma 15, but only in quasi-
polynomial time.

On the Minimum Common Integer Partition Problem 245

Algorithm k-Approx-MCIP(S1, · · ·, Sk)

input Related multisets S1, · · ·, Sk

output A common integer partition CIP
of S1, · · ·, Sk

begin
CIP := 2-Approx-MCIP(S1, S2);
for i = 3 to k do

CIP := 2-Approx-MCIP(CIP, Si);
return CIP ;

end.

Fig. 3. A k-approximation algorithm for
k-MCIP

Algorithm
3k(k−1)
3k−2 -Approx-MCIP(S1, · · ·, Sk)

input Related multisets S1, · · ·, Sk

output A common integer partition CIP
of S1, · · ·, Sk

begin
remove common integer(S1, · · ·, Sk);
CIP := k-Approx-MCIP(S1, · · · , Sk);
return CIP ;

end.

Fig. 4. A 3k(k−1)
3k−2 -approximation algo-

rithm for k-MCIP

Θ((m + n)4) in the worst case. We believe that the running time can be fur-
ther reduced by a more careful implementation and analysis of the procedure
approximate set packing(S,T).

Theorem 2. The algorithm 5
4 -APPROX-MCIP is a 5

4 -approximation algorithm
for 2-MCIP.

Proof. By Lemmas 16 and 17, the approximation ratio α given by algorithm
5
4 -APPROX-MCIP is

α ≤ m + n− q3 − q4 − 1
4
5 (m + n) − 1

5 (2q∗3 + q∗4)
=

5
4
· m + n− q3 − q4 − 1
m + n− 1

4 (2q∗3 + q∗4)

It suffices to show that m + n − q3 − q4 − 1 ≤ m + n − 1
4 (2q∗3 + q∗4), which is

equivalent to showing 2q∗3 + q∗4 ≤ 4(q3 + q4 + 1). By lemma 15, we know that
2q∗3 + q∗4 ≤ 4(q3 + q4). Therefore, α ≤ 5

4 . ��

5 Approximation of k-MCIP

In this section, we will discuss how to approximate the general k-MCIP (k ≥ 3)
problem.

Using the algorithm 2-Approx-MCIP(S,T) in the previous section, we give an
approximation algorithm to solve the k-MCIP (k ≥ 3) problem, as described in
Figure 3. First, we give an upper bound on the performance of this algorithm.

Lemma 18. |MCIP (S1, S2, · · · , Sk)| ≤
∑k

i=1 |Si| − k + 1.

Theorem 3. The algorithm k-Approx-MCIP is a k-approximation algorithm
for the k-MCIP (k ≥ 2) problem.

Proof. By Lemma 1 and Lemma 18, the size of the common integer partition
CIP returned from k-Approx-MCIP(S1, S2,· · ·, Sk) is such that max{|S1|, |S2|,
· · · , |Sk|} ≤ |MCIP (S1, S2, · · · , Sk)| ≤ |CIP (S1, S2, · · · , Sk)| ≤

∑k
i=1 |Si|−k+1,

from which the theorem follows. ��

246 X. Chen et al.

As described in Figure 4, the algorithm k-Approx-MCIP can be slightly im-
proved by employing the procedure remove common integer(S1, S2, · · · , Sk).
To show that this improved algorithm achieves an approximation ratio less than
k, we need the following lemma.

Lemma 19. If there is no integer element common to all the multisets in {S1, S2,

· · · , Sk}, then it holds that |MCIP (S1, S2, · · · , Sk)| ≥ 3k−2
3k(k−1)

∑k
i=1 |Si|.

Theorem 4. The algorithm 3k(k−1)
3k−2 -Approx-MCIP is a 3k(k−1)

3k−2 -approximation
algorithm for the k-MCIP (k ≥ 2) problem.

Clearly, the algorithm 3k(k−1)
3k−2 -Approx-MCIP(S1, · · ·, Sk) runs in O(

∑
i |Si|·

log(
∑

i |Si|)) time. Let us compare Theorem 4 with Theorem 3. Clearly, 3k(k−1)
3k−2

is always smaller than k, for any k ≥ 2. For example, when k = 2, the above
algorithm gives approximation ratio 1.5, and when k = 3, its approximation
ratio is 18

7 , which is much better than the ratio 3 in Theorem 3. However, when
k becomes large, 3k(k−1)

3k−2 is only slightly smaller than k, since 3k(k−1)
3k−2 = Θ(k). It

is an interesting open question whether k-MCIP has an approximation algorithm
with a ratio that is asymptotically better than k.

6 Concluding Remarks

It is interesting to observe that although 2-MCIP is in some sense similar to other
integer partition/summation problems such as Knapsack and Bin Packing, it is
much more difficult to approximate. For example, Knapsack and Bin Packing all
have an FPTAS (fully polynomial-time approximation scheme) or asymptotic
PTAS, but Theorem 1 implies that it is unlikely for 2-MCIP to have a PTAS.

Acknowledgments

We would like to thank David P. Woodruff for several useful discussions. This
project is supported in part by NSF grants CCR-0309902 and DBI-0133265,
NSFC grant 60528001, National Key Project for Basic Research (973) grant
2002CB512801, and a fellowship from the Center for Advanced Study, Tsinghua
University.

References

1. G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-Spaccamela, and
M. Protasi. Complexity and Approximation, Springer, 1999.

2. G.E. Andrews. The Theory of Partitions, Addison-Wesley, 1976.
3. E.M. Arkin and R. Hassin. On local search for weighted packing problems. Math.

Oper. Res. 23, pp. 640-648, 1998.
4. G.E. Andrews and K. Eriksson. The Integer Partitions, Cambridge, 2004.
5. S. Altschul and D. Lipman. Trees, stars, and multiple sequence alignment. SIAM

Journal on Applied Math. 49(1), pp. 197-209, 1989.

On the Minimum Common Integer Partition Problem 247

6. M. Chrobak, P. Lolman, and J. Sgall. The greedy algorithm for the minimum com-
mon string partition problem. Proc. of 7th International Workshop on Approxima-
tion Algorithms for Combinatiorial Optimization Problems (APPROX), pp. 84-95,
2004.

7. T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein. Introduction to algorithms,
The MIT Press, 2nd edition, p. 1017, 2001.

8. X. Chen. The minimum common partition problem revisited. manuscript, 2005.
9. X. Chen, J. Zheng, Z. Fu, P. Nan, Y. Zhong, S. Lonardi, and T. Jiang. Computing

the assignment of orthologous genes via genome rearrangement. Proc. of 3rd Asia
Pacific Bioinformatics Conference (APBC’05), pp. 363-378, 2005.

10. X. Chen, J. Zheng, Z. Fu, P. Nan, Y. Zhong, S. Lonardi, and T. Jiang. The assign-
ment of orthologous genes via genome rearrangement. IEEE/ACM Transactions
on Computational Biology and Bioinformatics, 2(4), pp. 302-315, 2005.

11. Z. Fu. Assignment of orthologous genes for multichromosomal genomes using
genome rearrangement. UCR CS Technical report, 2004.

12. D. Gusfield. Algorithms on Strings, Tree, and Sequences: Computer Science and
Computational Biology, Cambridge University Press, 1997.

13. A. Goldstein, P. Kolman, and J. Zheng. Minimum common string partition prob-
lem: hardness and approximations. Proc. of 15th International Symposium on Al-
gorithms and Computation (ISAAC), LNCS 3341, pp. 473-484, 2004.

14. S. Hannenhalli and P.A. Pevzner. Transforming cabbage into turnip (polynomial
algorithm for sorting signed permutations by reversals). Proc. 27th Ann. ACM
Symp. Theory of Comput. (STOC’95), pp. 178-189, 1995.

15. C. Hurkens and A. Schrijver. On the size of systems of sets every t of which have an
SDR, with an application to the worst-case ratio of heuristics for packing problems.
SIAM J. Discrete Mathematics, 2, pp. 68-72, 1989.

16. P. Kolman. Approximating reversal distance for strings with bounded number of
duplicates in linear time. Proc. of 30 International Symposium on Mathematical
Foundations of Computer Science (MFCS), pp. 580-590, 2005.

17. V. Kann. Maximum bounded 3-dimensional matching is MAX SNP-complete. In-
formation Processing Letters, 37: 27-35, 1991.

18. C.H. Papadimitriou and M. Yannakakis. Optimization, approximation, and com-
plexity classes. J. Computer and System Sciences, 43: 425-440, 1991.

19. M. Remm, C. Storm, and E. Sonnhammer. Automatic clustering of orthologs and
in-paralogs from pairwise species comparisons. J. Mol. Biol., 314, pp. 1041-1052,
2001.

20. D. Sankoff. Mechanisms of genome evolution: models and inference. Bull. Int. Stat.
Instit. 47, pp. 461-475, 1989.

21. L. Valinsky, A. Scupham, G.D. Vedova, Z. Liu, A. Figueroa, K. Jampachaisri, B.
Yin, E. Bent, R. Mancini-Jones, J. Press, T. Jiang, and J. Borneman. Oligonu-
cleotide Fingerprinting of Ribosomal RNA Genes (OFRG), pp. 569-585. In G. A.
Kowalchuk, F. J. de Bruijn, I. M. Head, A. D. L. Akkermans, J. D.van Elsas (eds.)
Molecular Microbial Ecology Manual (2nd ed). Kluwer Academic Publishers, Dor-
drecht, The Netherlands, 2004.

22. Available at http://www.cs.ucr.edu/∼lliu/paper/mcip ciac full.pdf.

Matching Subsequences in Trees

Philip Bille1,� and Inge Li Gørtz2,��

1 IT University of Copenhagen
beetle@itu.dk

2 Technical University of Denmark
ilg@imm.dtu.dk

Abstract. Given two rooted, labeled trees P and T the tree path sub-
sequence problem is to determine which paths in P are subsequences of
which paths in T . Here a path begins at the root and ends at a leaf. In
this paper we propose this problem as a useful query primitive for XML
data, and provide new algorithms improving the previously best known
time and space bounds.

1 Introduction

We say that a tree is labeled if each node is assigned a character from an alphabet
Σ. Given two sequences of labeled nodes p and t, we say that p is a subsequence
of t, denoted p + t, if p can be obtained by removing nodes from t. Given two
rooted, labeled trees P and T the tree path subsequence problem (TPS) is to
determine which paths in P are subsequences of which paths in T . Here a path
begins at the root and ends at a leaf. That is, for each path p in P we must
report all paths t in T such that p + t.

This problem was introduced by Chen [3] who gave an algorithm using
O(min(lPnT , nP lT + nT)) time and O(lP dT) space. Here, nS, lS , and dS de-
notes the number of nodes, number of leaves, and depth, respectively, of a tree
S. Note that in the worst-case this is quadratic time and space. In this paper we
show the following result:

Theorem 1. For trees P and T the tree path subsequence problem can be solved
in O(min

(
lPnT , nP lT + nT ,

nP nT

log nT
+ nP lognP

)
) time and O(nP + nT) space.

Hence, if one of the trees has few leaves we match the previous time bounds,
while improving the space to linear. The latter bound improves the worst-case
time by a logarithmic factor whenever lognP = O(nT / lognT)). Note that – in
the worst-case – the number of pairs consisting of a path from P and a path T
is Ω(nPnT), and therefore we need at least as many bits to report the solution
to TPS. Hence, on a RAM with logarithmic word size our worst-case bound is
optimal.

� This work is part of the DSSCV project supported by the IST Programme of the
European Union (IST-2001-35443).

�� This work was performed while the author was a PhD student at the IT University
of Copenhagen.

T. Calamoneri, I. Finocchi, G.F. Italiano (Eds.): CIAC 2006, LNCS 3998, pp. 248–259, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Matching Subsequences in Trees 249

catalog

book book

author chapter author chapter chapter

John Paul XML name title section title

John databases XML queries

(a) (b)

Fig. 1. (a) The trie of queries 1,2,3, or the tree for query 4. (b) A fragment of a catalog
of books.

More importantly, all our algorithms use linear space, whereas the previous
ones used quadratic space in the worst-case. For practical applications this makes
it possible to solve TPS on larger trees and speed up the running time since more
of the computation can be kept in main memory.

The first two time bounds are useful when the number of leaves in one of the
trees has few leaves. In this case our contribution is the reduction to linear space.
If, on the other hand, the number of leaves in both trees are proportional to the
number of nodes in the tree the last time bound is the best. In this paper we
present the first algorithm with subquadratic worst-case time and space bound.

Applications. We propose TPS as a useful query primitive for XML data. The
key idea is that an XML document D may be viewed as a rooted, labeled tree. For
example, suppose that we want to maintain a catalog of books for a bookstore.
A fragment of a possible XML tree, denoted D, corresponding to the catalog is
shown in Fig. 1(b). In addition to supporting full-text queries, such as find all
documents containing the word “John”, we can also use the tree structure of the
catalog to ask more specific queries, such as the following examples:

1. Find all books written by John,
2. find all books written by Paul,
3. find all books with a chapter that has something to do with XML, or
4. find all books written by John and Paul with a chapter that has something

to do with XML.

The queries 1,2, and 3 correspond to a path query on D, that is, compute which
paths in D that contains a specific path as a subsequence. For instance, com-
puting the paths in D that contain the path of three nodes labeled “book”,
“chapter”, and “XML”, respectively, effectively answers query 3. Most XML-
query languages, such as XPath [4], support such queries.

Using a simple algorithm (a describtion of which we omit due to lack of space)
a path query can be solved in linear time. Specifically, if q is a path consisting of
nq nodes, answering the path query on D takes O(nq + nD) time. Hence, if we
are given path queries q1, . . . , qk we can answer them in O((nq1 + · · ·+ nqk

)nD)
time. If, however, the paths overlap we can do better by constructing the trie,
Q, of q1, . . . , qk. Answering all paths queries now correspond to solving TPS on

250 P. Bille and I.L. Gørtz

Q and D. As example the queries 1,2, and 3 form the trie shown in Fig. 1(a).
Depending on the overlap between q1, . . . , qk, nQ is up to a linear factor smaller
than nq1 + · · · + nqk

.
Next consider query 4. This query cannot be answered by solving a TPS prob-

lem but is an instance of the tree inclusion problem (TI). Here we want to decide
if P is included in T , that is, if P can be obtained from T by deleting nodes of T .
Deleting a node y in T means making the children of y children of the parent of
y and then removing y. It is straightforward to check that we can answer query 4
by deciding if the tree in Fig. 1(a) can be included in the tree in Fig. 1(b).

Recently, TI has been recognized as an important XML query primitive and
has recieved considerable attention, see e.g., [9, 13, 12, 14, 10, 11]. Unfortunately,
TI is NP-complete in general [8] and therefore the existing algorithms are based
on heuristics. Observe that a necessary condition for P to included in T is that all
paths in P are subsequences of paths in T . Hence, we can use TPS to quickly rule
out trees that cannot be included T . We believe that in this way TPS can be used
as an effective ”filter” for many tree inclusion problems that occur in practice.

Technical Overview. Given two strings (or labeled paths) a and b, it is
straightforward to determine if a is a subsequence of b by scanning the char-
acter from left to right in b. This uses O(|a| + |b|) time. We can solve TPS by
applying this algorithm to each of the pair of paths in P and T , however, this
may use as much as O(nPnT (nP + nT)) time. Alternatively, Baeza-Yates [2]
showed how to preprocess b in O(|b| log |b|) time such that testing whether a is
a subsequence of b can be done in O(|a| log |b|) time. Using this data structure
on each path in T we can solve the TPS problem, however, this may take as
much as O(nT lognT +n2

P lognT). Hence, the availiable subsequence algorithms
on strings does not provide an immediate solution.

Inspired by the work of Chen [3] we take another approach. We provide a
framework for solving TPS. The main idea is to traverse T while maintaining
a subset of nodes in P , called the state. When reaching a leaf z in T the state
represents the paths in P that are a subsequences of the path from the root
to z. At each step the state is updated using a simple procedure defined on
subset of nodes. The result of Theorem 1 is obtained by taking the best of two
algorithms based on our framework: The first one uses a simple data structure
to maintain the state. This leads to an algorithm using O(min(lPnT , nP lT +
nT)) time. At a high level this algorithm resembles the algorithm of Chen [3]
and achieves the same running time. However, we improve the analysis of the
algorithm and show a space bound of O(nP + nT). This should be compared to
the worst-case quadratic space bound of O(lP dT) given by Chen [3]. Our second
algorithm takes a different approach combining several techniques. Starting with
a simple quadratic time and space algorithm, we show how to reduce the space
to O(nP lognT) using a decomposition of T into disjoint paths. We then divide
P into small subtrees of logarithmic size called micro trees. The micro trees are
then preprocessed such that subsets of nodes in a micro tree can be maintained
in constant time and space. Intuitively, this leads to a logarithmic improvement
of the time and space bound.

Matching Subsequences in Trees 251

Notation and Definitions. In this section we define the notation and defi-
nitions we will use throughout the paper. For a graph G we denote the set of
nodes and edges by V (G) and E(G), respectively. Let T be a rooted tree. The
root of T is denoted by root(T). The size of T , denoted by nT , is |V (T)|. The
depth of a node y ∈ V (T), depth(y), is the number of edges on the path from y
to root(T) and the depth of T , denoted dT , is the maximum depth of any node
in T . The parent of y is denoted parent(y). A node with no children is a leaf and
otherwise it is an internal node. The number of leaves in T is denoted lT . Let
T (y) denote the subtree of T rooted at a node y ∈ V (T). If z ∈ V (T (y)) then y
is an ancestor of z and if z ∈ V (T (y))\{y} then y is a proper ancestor of z. If
y is a (proper) ancestor of z then z is a (proper) descendant of y. We say that
T is labeled if each node y is a assigned a character, denoted label(y), from an
alphabet Σ. The path from y to root(T), of nodes root(T) = y1, . . . , yk = y is
denoted path(y). Hence, we can formally state TPS as follows: Given two rooted
tree P and T with leaves x1, . . . , xr and y1, . . . , ys, respectively, determine all
pairs (i, j) such that path(xi) + path(yj). For simplicity we will assume that
leaves in P and T are always numbered as above and we identify each of the
paths by the number of the corresponding leaf.

Throughout the paper we assume a standard RAM model of computation
with logarithmic word size. We use a standard instruction set including bitwise
boolean operations, shifts, addition, multiplication, etc.

2 A Framework for Solving TPS

In this section we present a simple general algorithm for the tree path subse-
quence problem. The key ingredient in our algorithm is the following procedure.
For any X ⊆ V (P) and y ∈ V (T) define:

Down(X, y): Return the set Child({x ∈ X | label(x) = label(y)}) ∪ {x ∈ X |
label(x) �= label(y)}.

The notation Child(X) denotes the set of children of X . Hence, Down(X, y)
is the set consisting of nodes in X with a different label than y and the children
of the nodes X with the same label as y. We will now show how to solve TPS
using this procedure.

First assign a unique number in the range {1, . . . , lP } to each leaf in P . Then,
for each i, 1 ≤ i ≤ lP , add a pseudo-leaf ⊥i as the single child of the ith leaf. All
pseudo-leaves are assigned a special label β �∈ Σ. The algorithm traverses T in
a depth first order and computes at each node y the set Xy. We call this set the
state at y. Initially, the state consists of {root(P)}. For z ∈ child(y), the state
Xz can be computed from state Xy as follows: Xz = Down(Xy, z).

If z is a leaf we report the number of each pseudo-leaf in Xz as the paths
in P that are subsequences of path(z). See Fig. 2 for an example. To show the
correctness of this approach we need the following lemma.

Lemma 1. For any node y ∈ V (T) the state Xy satisfies the following property:
If x ∈ Xy then path(parent(x)) + path(y).

252 P. Bille and I.L. Gørtz

a
root(P)

a
root(T)

c x1 b x2 c 1

a x3 ⊥2 a 2 b 4

⊥1 b 3 b 5

P T

Fig. 2. Letters inside nodes are labels, and the identifier of each node is written outside
the node. Initially we have X = {root(P)}. Since label(root(P)) = a = label(root(T))
we replace root(P) with is children and get Xroot(T) = {x1, x2}. Since label(1) =
label(x1) = label(x2) we get X1 = {x3, x2}. Continuing this way we get X2 = {⊥1, x2},
X3 = {⊥1, ⊥2}, X4 = {x3, ⊥2}, and X5 = {x3, ⊥2}. The nodes 3 and 5 are leaves of T
and we thus report paths 1 and 2 after computing X3 and path 2 after computing X5.

Proof. By induction on the number of iterations of the procedure. Initially, X =
{root(P)} satisfies the property since root(P) has no parent. Suppose that Xy

is the current state and z ∈ child(y) is the next node in the depth first traversal
of T . By the induction hypothesis Xy satisfies the property, that is, for any
x ∈ Xy, path(parent(x)) + path(y)). Then, Xz = Down(Xy, z) = Child({x ∈
Xy | label(x) = label(z)}) ∪ {x ∈ Xy | label(x) �= label(z)}.

Let x be a node in Xy. There are two cases. If label(x) = label(z) then
path(x) + path(z) since path(parent(x)) + path(y). Hence, for any child x′

of x we have path(parent(x′)) + path(z). On the other hand, if label(x) �=
label(z) then x ∈ Xz. Since y = parent(z) we have path(y) + path(z), and
hence path(parent(x)) + path(y) + path(z). ��

By the above lemma all paths reported at a leaf z ∈ V (T) are subsequences of
path(z). The following lemma shows that the paths reported at a leaf z ∈ V (T)
are exactly the paths in P that are subsequences of path(z).

Lemma 2. Let z be a leaf in T and let ⊥i be a pseudo-leaf in P . Then, ⊥i ∈
Xz ⇔ path(parent(⊥i)) + path(z).

Proof. It follows from Lemma 1 that ⊥i ∈ Xz ⇒ path(parent(⊥i)) + path(z).
It remains to show that path(parent(⊥i)) + path(z) ⇒ ⊥i ∈ Xz . Let path(z) =
z1, . . . , zk, where z1 = root(T) and zk = z, and let path(parent(⊥i)) = y1, . . . , y�,
where y1 = root(P) and y� = parent(⊥i). Since path(parent(⊥i)) + path(z)
there are nodes zji = yi for 1 ≤ i ≤ k, such that (i) ji < ji+1 and (ii) there
exists no node zj with label(zj) = label(yi), where ji−1 < j < ji. Initially,
X = {root(P)}. We have root(P) ∈ Xzj for all j < j1, since zj1 is the first node
on path(z) with label label(root(P)). When we get to zj1 , root(P) is removed
from the state and y2 is inserted. Similarly, yi is in all states Xzj for ji−1 ≤ j < ji.
It follows that ⊥i is in all states Xzj where j ≥ j� and thus ⊥i ∈ Xzk

= Xz. ��

The next lemma can be used to give an upper bound on the number of nodes in
a state. The proof is omitted due to lack of space.

Matching Subsequences in Trees 253

Lemma 3. For any y ∈ V (T) the state Xy has the following property: Let
x ∈ Xy. Then no ancestor of x is in Xy.

It follows from Lemma 3 that |Xy| ≤ lP for any y ∈ V (T). If we store the state
in an unordered linked list each step of the depth-first traversal takes time O(lP)
giving a total O(lPnT) time algorithm. Since each state is of size at most lP the
space used is O(nP + lPnT). In the following sections we show how to improve
these bounds.

3 A Simple Algorithm

In this section we consider a simple implementation of the above algorithm,
which has running time O(min(lPnT , nP lT)) and uses O(nP + nT) space. We
assume that the size of the alphabet is nT + nP and each character in Σ is
represented by an integer in the range {1, . . . , nT + nP }. If this is not the case
we can sort all characters in V (P)∪V (T) and replace each label by its rank in the
sorted order. This does not change the solution to the problem, and assuming at
least a logarithmic number of leaves in both trees it does not affect the running
time. To get the space usage down to linear we will avoid saving all states. For
this purpose we introduce the procedure Up, which reconstructs the state Xz

from the state Xy, where z = parent(y). We can thus save space as we only need
to save the current state.

We use the following data structure to represent the current state Xy: A node
dictionary consists of two dictionaries denoted Xc and Xp. The dictionary Xc

represents the node set corresponding to Xy, and the dictionary Xp represents
the node set corresponding to the set {x ∈ Xz |x �∈Xy and z is an ancestor of y}.
That is, Xc represents the nodes in the current state, and Xp represents the
nodes that is in a state Xz, where z is an ancestor of y in T , but not in Xy. We
will use Xp to reconstruct previous states. The dictionary Xc is indexed by Σ
and Xp is indexed by V (T). The subsets stored at each entry are represented
by doubly-linked lists. Furthermore, each node in Xc maintains a pointer to
its parent in Xp and each node x′ in Xp stores a linked list of pointers to its
children in Xp. With this representation the total size of the node dictoinary is
O(nP + nT).

Next we show how to solve the tree path subsequence problem in our frame-
work using the node dictionary representation. For simplicity, we add a node -
to P as a the parent of root(P). Initially, the Xp represents - and Xc represents
root(P). The Down and Up procedures are implemented as follows:

Down((Xp, Xc), y): 1. Set X := Xc[label(y)] and Xc[label(y)] := ∅.
2. For each x ∈ X do:

(a) Set Xp[y] := Xp[y] ∪ {x}.
(b) For each x′ ∈ child(x) do:

i. Set Xc[label(x′)] := Xc[label(x′)] ∪ {x}.
ii. Create pointers between x′ and x.

3. Return (Xp, Xc).

254 P. Bille and I.L. Gørtz

Up((Xp, Xc), y): 1. Set X := Xp[y] and Xp[y] := ∅.
2. For each x ∈ X do:

(a) Set Xc[label(x)] := Xc[label(x)] ∪ {x}.
(b) For each x′ ∈ child(x) do:

i. Remove pointers between x′ and x.
ii. Set Xc[label(x′)] := Xc[label(x′)] \ {x′}.

3. Return (Xp, Xc).

The next lemma shows that Up correctly reconstructs the former state.

Lemma 4. Let Xz = (Xc, Xp) be a state computed at a node z ∈ V (T), and let
y be a child of z. Then, Xz = Up(Down(Xz , y), y).

Proof. Let (Xc
1 , X

p
1) = Down(Xz, y) and (Xc

2 , X
p
2) = Up((Xc

1 , X
p
1), y). We will

first show that x ∈ Xz ⇒ x ∈ Up(Down(Xz, y), y).
Let x be a node in Xc. There are two cases. If x ∈ Xc[label(y)], then it follows

from the implementation of Down that x ∈ Xp
1 [y]. By the implementation of

Up, x ∈ Xp
1 [y] implies x ∈ Xc

2 . If x �∈ Xc[label(y)] then x ∈ Xc
1 . We need to

show parent(x) �∈ Xp
1 [y]. This will imply x ∈ Xc

2 , since the only nodes removed
from Xc

1 when computing Xc
2 are the nodes with a parent in Xp

1 [y]. Since y is
unique it follows from the implementation of Down that parent(x) ∈ Xp

1 implies
x ∈ Xc[label(y)].

Let x be a node in Xp. Since y is unique we have x ∈ Xp[y′] for some
y′ �= y. It follows immediately from the implementation of Up and Down that
Xp[y′] = Xp

1 [y′] = Xp
2 [y′], when y′ �= y, and thus Xp = Xp

2 .
We will now show x ∈ Up(Down(Xz, y), y) ⇒ x ∈ Xz. Let x be a node in

Xc
2 . There are two cases. If x �∈ Xc

1 then it follows from the implementation
of Up that x ∈ Xp

1 [y]. By the implementation of Down, x ∈ Xp
1 [y] implies

x ∈ Xc[label(y)], i.e., x ∈ Xc. If x ∈ Xc
1 then by the implementation of Up,

x ∈ Xc
2 implies parent(x) �∈ xp

1[y]. It follows from the implementation of Down
that x ∈ Xc. Finally, let x be a node in Xp

2 . As argued above Xp = Xp
2 , and

thus x ∈ Xp. ��

From the current state Xy = (Xc, Xp) the next state Xz is computed as follows:

Xz =

{
Down(Xy, z) if y = parent(z),
Up(Xy, y) if z = parent(y).

The correctness of the algorithm follows from Lemma 2 and Lemma 4. We will
now analyze the running time of the algorithm. The procedures Down and Up
uses time linear in the size of the current state and the state computed. By
Lemma 3 the size of each state is O(lP). Each step in the depth-first traversal
thus takes time O(lP), which gives a total running time of O(lPnT). On the
other hand consider a path t in T . We will argue that the computation of all the
states along the path takes total time O(nP + nt), where nT is the number of
nodes in t. To show this we need the following lemma.

Matching Subsequences in Trees 255

Lemma 5. Let t be a path in T . During the computation of the states along the
path t, any node x ∈ V (P) is inserted into Xc at most once.

Proof. Since t is a path we only need to consider the Down computations. The
only way a node x ∈ V (P) can be inserted into Xc is if parent(x) ∈ Xc. It thus
follows from Lemma 3 that x can be inserted into Xc at most once. ��

It follows from Lemma 5 that the computations of the all states when T is
a path takes time O(nP + nT). Consider a path-decomposition of T . A path-
decomposition of T is a decomposition of T into disjoint paths. We can make
such a path-decomposition of the tree T consisting of lT paths. Since the running
time of Up and Down both are linear in the size of the current and computed
state it follows from Lemma 4 that we only need to consider the total cost
of the Down computations on the paths in the path-decompostion. Thus, the
algorithm uses time at most

∑
t∈T O(np + nt) = O(nP lT + nT).

Next we consider the space used by the algorithm. Lemma 3 implies that
|Xc| ≤ lP . Now consider the size of Xp. A node is inserted into Xp when it
is removed from Xc. It is removed again when inserted into Xc again. Thus
Lemma 5 implies |Xp| ≤ nP at any time. The total space usage is thus O(nP +
nT). To summarize we have shown,

Theorem 2. For trees P and T the tree path subsequence problem can be solved
in O(min(lPnT , nP lT + nT)) time and O(nP + nT) space.

4 A Worst-Case Efficient Algorithm

In this section we consider the worst-case complexity of TPS and present an
algorithm using subquadratic running time and linear space. The new algorithm
works within our framework but does not use the Up procedure or the node
dictionaries from the previous section.

Recall that using a simple linked list to represent the states we immedi-
ately get an algorithm using O(nPnT) time and space. We first show how to
modify the traversal of T and discard states along the way such that at most
O(log nT) states are stored at any step in the traversal. This improves the space
to O(nP lognT). Secondly, we decompose P into small subtrees, called micro
trees, of size O(log nT). Each micro tree can be represented in a single word of
memory and this way we can represent a state using only O(nP

log nT
) space. In to-

tal the space used to represent the O(log nT) states is O(nP

log nT
·lognT) = O(nP).

Finally, we show how to preprocess P in linear time and space such that com-
puting the new state can be done in constant time per micro tree. Intuitively,
this achieves the O(log nT) speedup.

Heavy Path Traversal. In this section we present the modified traversal of
T . We first partition T into disjoint paths as follows. For each node y ∈ V (T)
let size(y) = |V (T (y))|. We classify each node as either heavy or light as follows.
The root is light. For each internal node y we pick a child z of y of maximum

256 P. Bille and I.L. Gørtz

size among the children of y and classify z as heavy. The remaining children are
light. An edge to a light child is a light edge, and an edge to a heavy child is a
heavy edge. The heavy child of a node y is denoted heavy(y). Let lightdepth(y)
denote the number of light edges on the path from y to root(T).

Lemma 6 (Harel and Tarjan [7]). For any tree T and node y ∈ V (T),
lightdepth(y) ≤ lognT + O(1).

Removing the light edges, T is partitioned into heavy paths. We traverse T ac-
cording to the heavy paths using the following procedure. For node y ∈ V (T)
define:

Visit(y): 1. If y is a leaf report all leaves in Xy and return.
2. Else let y1, . . . , yk be the light children of y and let z = heavy(y).
3. For i := 1 to k do:

(a) Compute Xyi := Down(Xy, yi)
(b) Compute Visit(yi).

4. Compute Xz := Down(Xy, z).
5. Discard Xy and compute Visit(z).

The procedure is called on the root node of T with the initial state {root(P)}.
The traversal resembles a depth first traversal, however, at each step the light
children are visited before the heavy child. We therefore call this a heavy path
traversal. Furthermore, after the heavy child (and therefore all children) has
been visited we discard Xy. At any step we have that before calling Visit(y)
the state Xy is availiable, and therefore the procedure is correct. We have the
following property:

Lemma 7. For any tree T the heavy path traversal stores at most lognT +O(1)
states.

Proof. At any node y ∈ V (T) we store at most one state for each of the light
nodes on the path from y to root(T). Hence, by Lemma 6 the result follows. ��
Using the heavy-path traversal immediately gives an O(nP lognT) space and
O(nPnT) time algorithm. In the following section we improve the time and
space by an additional O(log nT) factor.

Micro Tree Decomposition. A micro tree is a connected subgraph of P . A set
of micro trees MS is a micro tree decomposition iff V (P) = ∪M∈MSV (M) and
for any M,M ′ ∈ MS, (V (M)\{root(M)}) ∩ (V (M ′)\{root(M ′)}) = ∅. Hence,
two micro trees in a decomposition share at most one node and this node must
be the root in at least one of the micro trees. If root(M ′) ∈ V (M) then M is
the parent of M ′ and M ′ is the child of M . A micro tree with no children is a
leaf and a micro tree with no parent is a root. Note that we may have several
root micro trees since they can overlap at the node root(P). We decompose P
according to the following classic result:

Lemma 8 (Gabow and Tarjan [5]). For any tree P and parameter s > 1, it
is possible to build a micro tree decomposition MS of P in linear time such that
|MS| = O(nP /s) and |V (M)| ≤ s for any M ∈ MS.

Matching Subsequences in Trees 257

Implementing the Algorithm. First decompose P according to Lemma 8 for
a parameter s to be chosen later. Hence, each micro tree has at most s nodes
and |MS| = O(nP /s). We represent the state X compactly using a bit vector
for each micro tree. Specifically, for any micro tree M we store a bit vector
XM = [b1, . . . , bs], such that XM [i] = 1 iff the ith node in a preorder traversal
of M is in X . If |V (M)| < s we leave the remaining values undefined. Later we
choose s = Θ(log nT) such that each bit vector can be represented in a single
word and the space used by the array is O(nP / lognT).

Next we define a DownM procedure on each micro tree M ∈ MS. Due to
the overlap between micro trees the DownM procedure takes a bit b which
will be used to propagate information between micro trees. For each micro tree
M ∈ MS, bit vector XM , bit b, and y ∈ V (T) define:

DownM (XM , b, y): Compute the state X ′
M := Child({x ∈ XM | label(x) =

label(y)})∪{x ∈ XM | label(x) �= label(y)}. If b = 0, return
X ′

M , else return X ′
M ∪ {root(M)}.

Later we will show how to implemenent DownM in constant time for s =
Θ(log nT). First we show how to use DownM to simulate Down on P . We
define a recursive procedure Down which traverse the hiearchy of micro trees.
For micro tree M , state X , bit b, and y ∈ V (T) define:

Down(X,M, b, y): Let M1, . . . ,Mk be the children of M .
1. Compute XM := DownM (XM , b, y).
2. For i := 1 to k do:

(a) Compute Down(X,Mi, bi, y), where bi = 1 iff
root(Mi) ∈ XM .

Intuitively, the Down procedure works in a top-down fashion using the b bit to
propagate the new state of the root of micro tree. To solve the problem within
our framework we initially construct the state representing {root(P)}. Then, at
each step we call Down(Rj , 0, y) on each root micro tree Rj .

Lemma 9. The above algorithm correctly simulates the Down procedure on P .

Proof. Let X be the state and let X ′ := Down(X, y). For simplicity, assume
that there is only one root micro tree R. Since the root micro trees can only
overlap at root(P) it is straightforward to generalize the result to any number
of roots. We show that if X is represented by bit vectors at each micro tree then
calling Down(R, 0, y) correctly produces the new state X ′.

If R is the only micro tree then only line 1 is executed. Since b = 0 this
produces the correct state by definition of DownM . Otherwise, consider a micro
tree M with children M1, . . . ,Mk and assume that b = 1 iff root(M) ∈ X ′.
Line 1 computes and stores the new state returned by DownM . If b = 0 the
correctness follows immediately. If b = 1 observe that DownM first computes
the new state and then adds root(M). Hence, in both cases the state of M is
correctly computed. Line 2 recursively computes the new state of the children
of M . ��

258 P. Bille and I.L. Gørtz

If each micro tree has size at most s and DownM can be computed in constant
time it follows that the above algorithm solves TPS in O(nP /s) time. In the
following section we show how to do this for s = Θ(log nT), while maintaining
linear space.

Representing Micro Trees. In this section we show how to preprocess all
micro trees M ∈ MS such that DownM can be computed in constant time.
This preprocessing may be viewed as a “four russian trick” [1]. To achieve this
in linear space we need the following auxiliary procedures on micro trees. For
each micro tree M , bit vector XM , and α ∈ Σ define:

ChildM (XM): Return the bit vector of nodes in M that are children of nodes
in XM .

EqM (α): Return the bit vector of nodes in M labeled α.

By definition it follows that:

DownM (XM , b, y) =

ChildM (XM ∩EqM (label(y))) ∪

(XM\(XM ∩ EqM (label(y))) if b = 0,
ChildM (XM ∩EqM (label(y))) ∪

(XM\(XM ∩ EqM (label(y))) ∪ {root(M)} if b = 1.

Recall that the bit vectors are represented in a single word. Hence, given ChildM

and EqM we can compute DownM using standard bit-operations in constant
time.

Next we show how to efficiently implement the operations. For each micro tree
M ∈ MS we store the value EqM (α) in a hash table indexed by α. Since the total
number of different characters in any M ∈ MS is at most s, the hash table EqM

contains at most s entries. Hence, the total number of entries in all hash tables
is O(nP). Using perfect hashing we can thus represent EqM for all micro trees,
M ∈ MS, in O(nP /s · s) = O(nP) space and O(1) worst-case lookup time. The
preprocessing time is expected O(nP) w.h.p.. To get a worst-case bound we use
the deterministic dictionary of Hagerup et. al. [6] with O(nP lognP) worst-case
preprocessing time.

Next consider implementing ChildM . Since this procedure is independent of
the labeling of M it suffices to precompute it for all structurally different rooted
trees of size at most s. The total number of such trees is less than 22s and the
number of different states in each tree is at most 2s. Therefore ChildM has to be
computed for a total of 22s ·2s = 23s different inputs. For any given tree and any
given state, the value of ChildM can be computed and encoded in O(s) time.
In total we can precompute all values of ChildM in O(s23s) time. Choosing the
largest s such that 3s + log s ≤ nT (hence s = Θ(log nT)) this uses O(nT) time
and space. Each of the inputs to ChildM are encoded in a single word such that
we can look them up in constant time.

Finally, note that we also need to report the leaves of a state efficiently since
this is needed in line 1 in the Visit-procedure. To do this compute the state L

Matching Subsequences in Trees 259

corresponding to all leaves in P . Clearly, the leaves of a state X can be computed
by performing a bitwise AND of each pair of bit vectors in L and X . Computing
L uses O(nP) time and the bitwise AND operation uses O(nT /s) time.

Combining the results, we decompose P , for s as described above, and com-
pute all values of EqM and ChildM .

Then, we solve TPS using the heavy-path traversal. Since s = Θ(log nT) and
from Lemmas 7 and 8 we have the following theorem:

Theorem 3. For trees P and T the tree path subsequence problem can be solved
in O(nP nT

log nT
+ nP lognP) time and O(nP + nT) space.

Combining the results of Theorems 2 and 3 this proves Theorem 1.

References

1. V. L. Arlazarov, E. A. Dinic, M. A. Kronrod, and I. A. Faradzev. On economic
construction of the transitive closure of a directed graph (in russian). english trans-
lation in soviet math. dokl. 11, 1209-1210, 1975. Dokl. Acad. Nauk., 194:487–488,
1970.

2. R. A. Baeza-Yates. Searching subsequences. Theor. Comput. Sci., 78(2):363–376,
1991.

3. W. Chen. Multi-subsequence searching. Inf. Process. Lett., 74(5-6):229–233, 2000.
4. J. Clark and S. DeRose. XML path language (XPath), avialiable as

http://www.w3.org/TR/xpath, 1999.
5. H. N. Gabow and R. E. Tarjan. A linear-time algorithm for a special case of disjoint

set union. In Proc. of ACM Symp. on Theory of Computing, pages 246–251, 1983.
6. T. Hagerup, P. B. Miltersen, and R. Pagh. Deterministic dictionaries. J. Algo-

rithms, 41(1):69–85, 2001.
7. D. Harel and R. E. Tarjan. Fast algorithms for finding nearest common ancestors.

SIAM Journal of Computing, 13(2):338–355, 1984.
8. P. Kilpeläinen and H. Mannila. Ordered and unordered tree inclusion. SIAM

Journal of Computing, 24:340–356, 1995.
9. T. Schlieder and H. Meuss. Querying and ranking XML documents. J. Am. Soc.

Inf. Sci. Technol., 53(6):489–503, 2002.
10. T. Schlieder and F. Naumann. Approximate tree embedding for querying XML

data. In ACM SIGIR Workshop On XML and Information Retrieval, 2000.
11. A. Termier, M. Rousset, and M. Sebag. Treefinder: a first step towards XML data

mining. In IEEE International Conference on Data Mining (ICDM), 2002.
12. H. Yang, L. Lee, and W. Hsu. Finding hot query patterns over an xquery stream.

The VLDB Journal, 13(4):318–332, 2004.
13. L. H. Yang, M. L. Lee, and W. Hsu. Efficient mining of XML query patterns for

caching. In Proceedings of the 29th VLDB Conference, pages 69–80, 2003.
14. P. Zezula, G. Amato, F. Debole, and F. Rabitti. Tree signatures for XML querying

and navigation. In LNCS 2824, pages 149–163, 2003.

Distance Approximating Trees: Complexity
and Algorithms

Feodor F. Dragan and Chenyu Yan

Department of Computer Science, Kent State University, Kent, OH 44242
dragan@cs.kent.edu, cyan@cs.kent.edu

Abstract. Let ∆ ≥ 1 and δ ≥ 0 be real numbers. A tree T = (V, E′) is
a distance (∆, δ)–approximating tree of a graph G = (V, E) if dH(u, v) ≤
∆ dG(u, v) + δ and dG(u, v) ≤ ∆ dH(u, v) + δ hold for every u, v ∈ V .
The distance (∆, δ)-approximating tree problem asks for a given graph
G to decide whether G has a distance (∆, δ)-approximating tree. In this
paper, we consider unweighted graphs and show that the distance (∆, 0)-
approximating tree problem is NP-complete for any ∆ ≥ 5 and the dis-
tance (1, 1)-approximating tree problem is polynomial time solvable.

1 Introduction

Many combinatorial and algorithmic problems are concerned with distances in
a finite metric space induced by an undirected graph (possible weighted). An
arbitrary metric space (in particular a finite metric defined by a general graph)
might not have enough structure to exploit algorithmically. A powerful technique
that has been successfully used recently in this context is to embed the given
metric space in a simpler metric space such that the distances are approximately
preserved in the embedding. New and improved algorithms have resulted from
this idea for several important problems [1, 2, 7, 11, 12, 20]. Tree metrics are a very
natural class of simple metric spaces since many algorithmic problems become
tractable on them. If we approximate the graph by a tree such that the distance
between a pair of vertices in the tree is at most some small factor of their distance
in the graph, we can solve the problem on the tree and the solution interpret on
the original graph.

Approximating general graph–distance dG by a simpler distance (in particu-
lar, by tree–distance dT) is useful also in such areas as communication networks,
data analysis, motion planning, image processing, network design, and phyloge-
netic analysis. The goal is, for a given graph G = (V,E), to find a sparse graph
H = (V,E′) with the same vertex set, such that the distance dH(u, v) in H
between two vertices u, v ∈ V is reasonably close to the corresponding distance
dG(u, v) in the original graph G. There are several ways to measure the quality
of this approximation, two of them leading to the notion of a spanner. For t ≥ 1
a spanning subgraph H of G is called a multiplicative t–spanner of G [9, 23, 24]
if dH(u, v) ≤ t dG(u, v) for all u, v ∈ V. If r ≥ 0 and dH(u, v) ≤ dG(u, v) + r for
all u, v ∈ V, then H is called an additive r–spanner [19].

When H is a tree, one gets the notions of multiplicative tree t–spanner and
additive tree r–spanner, respectively. Tree spanners of graphs were considered

T. Calamoneri, I. Finocchi, G.F. Italiano (Eds.): CIAC 2006, LNCS 3998, pp. 260–271, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Distance Approximating Trees: Complexity and Algorithms 261

in [6, 10, 25]. It was shown in [6] that for a given graph G and integer t, the
problem to decide whether G has a multiplicative tree t–spanner is NP–complete
for t ≥ 4 and is linearly solvable for t = 1, 2. The status of the case t = 3 is
open.

For many applications (e.g. in numerical taxonomy or in phylogeny recon-
struction) the condition that H must be a spanning subgraph of G can be
dropped (see [3, 26, 27]). In this case there is a striking way to measure how
sharp dH approximates dG, based on the notion of a pseudoisometry between
two metric spaces [20, 4]. Let ∆ ≥ 1 and δ ≥ 0 be real numbers. Two graphs
G = (V,E) and H = (V,E′) are said to be (∆, δ)–pseudoisometric [4] if for all
u, v ∈ V , dH(u, v) ≤ ∆ dG(u, v) + δ and dG(u, v) ≤ ∆ dH(u, v) + δ hold. H is
then said to be a distance (∆, δ)–approximating graph for G (and vice-versa, G
is a distance (∆, δ)–approximating graph for H).

In this paper, continuing the line of research started in [4, 8], we will be
interested in two special cases, when H is a tree and either ∆ = 1 or δ = 0.
A tree T = (V,E′) is a distance (∆, 0)–approximating tree of G = (V,E) if
1
∆dG(u, v) ≤ dT (u, v) ≤ ∆ dG(u, v) for all u, v ∈ V . A tree T = (V,E′) is
a distance (1, δ)–approximating tree of G = (V,E) (or, simply, a distance δ-
approximating tree of G) if |dG(u, v)−dT (u, v)| ≤ δ for all u, v ∈ V. The distance
(∆, δ)-approximating tree problem asks for a given graph G to decide whether G
has a distance (∆, δ)-approximating tree.

In this paper, we consider unweighted graphs and show that the distance
(∆, 0)-approximating tree problem is NP-complete for any ∆ ≥ 5 and the dis-
tance (1, 1)-approximating tree problem is polynomial time solvable. The lat-
ter solves (algorithmically) the problem posed in [8] which asked to character-
ize/recognize the graphs admitting distance (1, 1)-approximating trees.

1.1 Previous Results and Their Implications

Let G = (V,E) be a connected, undirected, loopless, and without multiple edges
graph. The length of a path from a vertex u to a vertex v is the number of edges
in this path. The distance dG(u, v) between the vertices u and v in G is the
length of a shortest (u, v)-path.

A graph G is called chordal if no induced cycle of G has four or more edges. It
is known that the class of chordal graphs does not admit any good tree spanners.
Independently McKee [21] and Kratsch et al. [16] showed that, for every fixed
integer t, there is a chordal graph without tree t–spanners (additive as well as
multiplicative). Furthermore, recently Brandstädt et al. [5] have shown that, for
any t ≥ 4, the problem to decide whether a given chordal graph G admits a
multiplicative tree t-spanner is NP-complete.

In contrast, in [4], Brandstädt et al. proved that every chordal graph G ad-
mits a tree T (G) (constructable in linear time) which is both a (3, 0)− and a
(1, 2)−approximating tree of G. So, from the metric point of view chordal graphs
do look like trees, but the notion of tree spanners failed to capture this. Note
that the result is optimal in the sense that there are chordal graphs which do
not admit any distance (1, 1)–approximating trees [8].

262 F.F. Dragan and C. Yan

The result was used in [4, 8, 13] to provide efficient approximate solutions for
several problems on chordal graphs. It is known that the (exact) distance matrix
D(G) of a chordal graph G = (V,E) cannot be computed in less than “matrix-
multiplication” time. Using a distance (1, 2)-approximating tree T (G) of G, after
a linear time preprocessing of G (and then of T (G)), in only O(1) time, one can
compute dG(x, y) with an error of at most 2 for any x, y ∈ V (see [4] for further
details). As another application, consider the p-center problem: given a graph
G (or, more generally, a metric space) and an integer p > 0, we are searching
for smallest radius r∗ and a subset of vertices X of G with |X | ≤ p such that
dG(v,X) ≤ r∗ for every vertex v of G. The problem is NP-hard even for chordal
graphs. Solving the p-center problem on a distance (1, 2)-approximating tree
T (G) of G (on trees this problem is polynomial time solvable [15]), we will find
an optimal covering radius r of T (G) and a set of centers Y with |Y | ≤ p. Then,
Y can be taken as an approximate solution for G since dG(v, Y) ≤ r+2 ≤ r∗ +4
for all v ∈ V (see [8] for further details). Clearly, similar results can be obtained
for any graph admitting a good distance approximating tree.

The result was also used by Gupta in [13] for bandwidth approximation in
chordal graphs. If a graph G has a distance (∆, δ)–approximating tree T (G) for
some constants ∆ and δ, then the bandwidth of a linear arrangements of G will
be within some constant of the bandwidth of the same arrangement for T (G).
Gupta developed in [13] a simple randomized O(log2.5n)-approximation algo-
rithm for bandwidth minimization on trees and used it to get an approximation
algorithm with a similar performance guarantee for chordal graphs (see [13] for
further details). In [18], Krauthgamer et al. used the existence of good distance
approximating trees for chordal graphs to obtain an embedding of any chordal
graph into l2 with a small r-dimensional volume distortion.

Later, in [8], Chepoi and Dragan extended the method of [4] from chordal
graphs to all k-chordal graphs. A graph G is said to be k-chordal if no induced
cycle of G has more than k edges. It was proven that, for every k-chordal graph
G = (V,E), there exists a tree T = (V, F) (constructable in linear time) such
that |dG(u, v) − dT (u, v)| ≤ �k

2 � + α for all vertices u, v ∈ V, where α = 1 if
k �= 4, 5 and α = 2 otherwise. Clearly, this result can be used to provide efficient
approximate solutions for several problems on k-chordal graphs. Here, we will
mention only one implication provided in [17]. Krauthgamer and Lee, in [17],
proved first that the Levin’s conjecture on intrinsic dimensionality of graphs
holds for trees. Then, relying on low-distortion embeddings of k-chordal graphs
into trees, due to [8], they extended that result to all k-chordal graphs: the
Levin’s conjecture on intrinsic dimensionality of graphs holds for all k-chordal
graphs with bounded k (see [17] for further details).

Motivated by those applications of distance approximating trees, in this paper,
we investigate the question how hard for a given graph G to find a good distance
(∆, δ)-approximating tree (for small ∆ and δ). We prove that the distance (∆, 0)-
approximating tree problem is NP-complete for any ∆ ≥ 5 and the distance
(1, 1)-approximating tree problem is polynomial time solvable. Due to space
limitation, in this conference version, we present only the second result. The

Distance Approximating Trees: Complexity and Algorithms 263

NP-completeness proof will be given in the journal version. We reduce 3SAT to
our problem. The reduction is too technical, involves complicated gadgets for
the Boolean variables and hence omitted in this version.

1.2 Basic Notions, Notation and Facts

Let G = (V,E) be a graph endowed with the shortest path metric dG(u, v). The
eccentricity eccG(v) of a vertex v is the maximum distance from v to any vertex
in G. The radius rad(G) of a graph G is the minimum eccentricity of a vertex
in G and the diameter diam(G) of G is the maximum eccentricity of a vertex.

For a subset S ⊆ V of vertices of a graph G, by G(S) we denote the subgraph
of G induced by S. Let, for simplicity, G − v := G(V \ {v}) and G − v − u :=
G(V \ {v, u}), where v and u are vertices of G. Let also G−uv denote the graph
obtained from G by removing edge uv of G, i.e., G−uv := (V,E\{uv}). A graph
G is said to be 3-connected if G − u − v is connected for any pair of vertices
u, v ∈ V . A graph G is said to be 2-connected if G − u is connected for any
vertex u ∈ V . In a 2-connected graph G, if for some pair of vertices x, y ∈ V the
graph G − x − y is disconnected, then we say that {x, y} is a 2-cut of G. In a
connected graph G, if for some vertex x ∈ V the graph G − x is disconnected,
then we say that x is a 1-cut vertex (or, simply, 1-cut) of G.

It is easy to see from the definitions of distance approximating trees that the
following holds.

– A tree T = (V, F) is a distance (∆, 0)-approximating tree of a graph G =
(V,E) if and only if dT (x, y) ≤ ∆ holds for each edge xy ∈ E and dG(u, v) ≤
∆ holds for each edge uv ∈ F .

– If T is a distance (1, δ)-approximating tree for G, then T is a distance (δ +
1, 0)-approximating tree for G.

2 Distance (1, 1)-Approximating Trees

In this section, we show that the distance (1, 1)-approximating tree problem is
polynomial time solvable. For simplicity, in what follows, we will use the notion
“distance 1-approximating tree” as a synonym to “distance (1, 1)-approximating
tree”.

2.1 3-Connected Graphs

A star is a tree with a vertex adjacent to all other vertices. We call that vertex
the center of the star. Equivalently, a star is a tree of diameter at most 2.

Lemma 1. For a 3-connected graph G, the following statements are equivalent.

1. G has a distance 1-approximating tree.
2. G has a distance 1-approximating tree which is a star.
3. diam(G) ≤ 3 and rad(G) ≤ 2.

264 F.F. Dragan and C. Yan

Proof. (1⇐⇒2) Let T be a distance 1-approximating tree of G. If T is not a star,
then there exists a path in T with length 3. Let (x′, x, y, y′) be such a path. Con-
sider subtrees Tx and Ty obtained from T by removing edge xy, and assume that
x belongs to Tx and y belongs to Ty. Since for any u ∈ V (Tx) \ {x} and v ∈
V (Ty) \ {y}, dT (u, v) ≥ 3, we have uv /∈ E(G). This implies that {x, y} is a 2-cut
of G, contradicting with the 3-connectedness of G. Hence, T must be a star.

(2⇒3) Let T be a distance 1-approximating tree of G which is a star. Then,
for any x, y ∈ V , we have dT (x, y) ≤ 2 and, therefore, dG(x, y) ≤ 3. Hence,
diam(G) ≤ 3. Let now u be the center of T . Then, for each x ∈ V , dT (x, u) ≤ 1,
and therefore dG(x, u) ≤ 2. The latter implies rad(G) ≤ 2.

(3⇒2) If rad(G) ≤ 2, then, by definition, there exists a vertex u ∈ V such
that dG(x, u) ≤ 2, for any x ∈ V . Pick such a vertex u and construct a tree
T = (V,E′) where each vertex v ∈ V \ {u} is adjacent to u, i.e., construct a
star on vertices V with the center u. Obviously, 0 ≤ dG(x, y) − dT (x, y) ≤ 1,
for any x ∈ V \ {u}. Moreover, since diam(G) ≤ 3, we have dG(x, y) ≤ 3 for
any x, y ∈ V \ {u}. As, for those vertices x and y, dT (x, y) = 2, we conclude
dG(x, y) − dT (x, y) ≤ 3 − 2 = 1 and dG(x, y) − dT (x, y) ≥ 1 − 2 = −1. Hence, T
is a distance 1-approximating tree of G. ��
Corollary 1. Let G be an arbitrary (not necessarily 3-connected) graph. Then,
G has a distance 1-approximating tree which is a star if and only if diam(G) ≤ 3
and rad(G) ≤ 2.

2.2 2-Connected Graphs

A vertex of a tree is inner if it is not a leaf. An edge of a tree is an inner edge if
it is not incident to a leaf.

Lemma 2. If T is a distance 1-approximating tree of a connected graph G, then
any inner edge of T is a 2-cut of G.

Proof. For any inner edge xy of T , let Tx and Ty be the two subtrees of T
obtained from T by removing edge xy. Let also x belong to Tx and y belong to Ty.
Then, since T is a distance 1-approximating tree of G, for all u ∈ V (Tx)\{x} and
v ∈ V (Ty) \ {y}, uv /∈ E(G). This implies that {x, y} is a 2-cut of G separating
V (Tx) \ {x} from V (Ty) \ {y}. ��
A bistar is a tree with only one inner edge. Equivalently, a bistar is a tree of
diameter 3. The proof of the following lemma is omitted.

Lemma 3. If T is a distance 1-approximating tree of a 2-connected graph G,
then diam(T) ≤ 3, i.e., T is a star or a bistar.

To characterize 2-connected graphs admitting distance 1-approximating trees,
we will need also the following easy observations (proofs are omitted).

Lemma 4. Assume a graph G has a distance 1-approximating bistar T with the
inner edge c1c2. Then, the following properties hold:

1. diam(G) ≤ 4 and rad(G) ≤ 3;
2. for any j = 1, 2 and x, y ∈ V (Tcj)∪{c1, c2}, dG(x, y) ≤ 3 and dG(x, cj) ≤ 2;

Distance Approximating Trees: Complexity and Algorithms 265

3. if A1, . . . , Ak are the connected components of the graph G− c1− c2 and Tc1,
Tc2 are the connected components of T − c1c2, then, for any i = 1, . . . , k,
V (Ai) is entirely contained either in V (Tc1) or in V (Tc2).

Let now G be a graph with a 2-cut {a, b} and A1, . . . , Ak be the connected
components of the graph G− a− b. For given 2-cut {a, b} of G we can construct
a new graph Ha,b as follows. The vertex set of Ha,b is {a, b, a1, . . . , ak}. Edge
aai (i = 1, . . . , k) exists in Ha,b if and only if for each x, y ∈ V (Ai) ∪ {b},
dG(x, y) ≤ 3 and dG(x, a) ≤ 2 hold. Edge bai (i = 1, . . . , k) exists in Ha,b if and
only if for each x, y ∈ V (Ai) ∪ {a}, dG(x, y) ≤ 3 and dG(x, b) ≤ 2 hold. Edge
aiaj (i, j = 1, . . . , k, i �= j) exists in Ha,b if and only if for each vertex x ∈ V (Ai)
and each vertex y ∈ V (Aj), dG(x, y) ≤ 3 holds. No other edges exist in Ha,b.

The following lemma gives a characterization of those 2-connected graphs that
admit distance 1-approximating trees. Denote the complement of a graphH byH .

Lemma 5. For a 2-connected graph G, the following statements are equivalent.

1. G has a distance 1-approximating tree.
2. G has a distance 1-approximating tree which is a star or a bistar.
3. diam(G) ≤ 3 and rad(G) ≤ 2 or diam(G) ≤ 4 and there exists a 2-cut {a, b}

in G such that the graph Ha,b is bipartite.

Proof. (1⇐⇒2) is given by Lemma 3.
(2⇒3) If G has a distance 1-approximating tree which is a star, then, by

Corollary 1, diam(G) ≤ 3 and rad(G) ≤ 2. Assume now that a distance 1-
approximating tree T of G is a bistar. Then, by Lemma 4, diam(G) ≤ 4. Lemma 4
(together with Lemma 2) implies also that G has a 2-cut {a, b} (which is the inner
edge of T) such that for any connected component Ai (i ∈ {1, . . . , k}) of G−a−b,
either V (Ai) ⊂ V (Ta) or V (Ai) ⊂ V (Tb) holds. Since vertices V (Ta) ∪ {b} form
a star in T with the center a, we have dG(x, y) ≤ 3 and dG(x, a) ≤ 2 for any
x, y ∈ V (Ta)∪{b}. By construction of Ha,b, vertices {a}∪ {ai : V (Ai) ⊂ V (Ta)}
of Ha,b will form a clique. Analogously, vertices {b}∪{ai : V (Ai) ⊂ V (Tb)} form
a clique in Ha,b. Since these two cliques cover all vertices of Ha,b, the complement
Ha,b of Ha,b is bipartite.

(3⇒2) Clearly, if diam(G) ≤ 3 and rad(G) ≤ 2 then, by Corollary 1, G has a
distance 1-approximating star. Assume now that diam(G) ≤ 4 and there exists
a 2-cut {a, b} in G such that the graph Ha,b is bipartite. Let A1, . . . , Ak be the
connected components of the graph G−a−b. Vertices of Ha,b can be partitioned
into two cliques C1 and C2. Since a and b are not adjacent in Ha,b, they must be
in different cliques. Assume, a ∈ C1 and b ∈ C2. By construction of Ha,b, for all
x, y ∈ ∪{V (Ai) : ai ∈ C1} ∪ {b}, dG(x, y) ≤ 3 and dG(x, a) ≤ 2 holds. Similarly,
for all x, y ∈ ∪{V (Ai) : ai ∈ C2} ∪ {a}, dG(x, y) ≤ 3 and dG(x, b) ≤ 2 holds.
Hence, we can construct a bistar T of G as follows. Vertices a and b will form the
inner edge of T . Vertices of Ai with ai ∈ C1 will be attached (i.e., made adjacent
in T) to a. Vertices of Ai with ai ∈ C2 will be attached to b. It is easy to see that
T is a distance 1-approximating tree of G. The only interesting case to mention
here is when x ∈ V (Ai), where ai ∈ C1, and y ∈ V (Aj), where aj ∈ C2. For

266 F.F. Dragan and C. Yan

those x and y, we have dT (x, y) = 3 and 2 ≤ dG(x, y) ≤ 4 (since diam(G) ≤ 4
and x and y are separated by {a, b} in G). Thus, −1 ≤ cT (x, y) ≤ 1 holds. ��
Corollary 2. Let G be an arbitrary (not necessarily 2-connected) graph. Then,
G has a distance 1-approximating tree which is a star or a bistar if and only if
diam(G) ≤ 3 and rad(G) ≤ 2 or diam(G) ≤ 4 and there exists a 2-cut {a, b} in
G such that the graph Ha,b is bipartite.

Lemma 5 implies also that the problem of checking whether a given 2-connected
graph G has a distance 1-approximating tree is polynomial time solvable. More
specifically, we have

Corollary 3. It is possible, for a given 2-connected graph G = (V,E), to check
in O(|V |4) time whether G has a distance 1-approximating tree and, if such a
tree exists, construct one within the same time bound.

Proof. We can find in O(|V ||E|) time the distance matrix of G and all 2-cuts
[14, 22] of G. Then, to check whether diam(G) ≤ 3 and rad(G) ≤ 2 and, if so,
to construct a distance 1-approximating star of G as described in the proof of
Lemma 1, one needs at most O(|V |2) time in total. To check if diam(G) ≤ 4 and
whether there exists a 2-cut {a, b} of G with Ha,b bipartite, one needs O(|V |4)
total time. We just need, for each 2-cut {a, b}, to construct the graph Ha,b and
check if it is bipartite. Construction of Ha,b for a given 2-cut {a, b} and checking
whether it is bipartite will take no more than O(|V |2) time (given the distance
matrix of G). Since any graph G has at most O(|V |2) 2-cuts, to check if G has
a distance 1-approximating bistar, one needs at most O(|V |4) time. If G admits
such a bistar, then we can find one in linear time as described in the proof of
Lemma 5. ��

2.3 Connected Graphs

In this subsection, we assume that G is a connected graph but not 2-connected.
Therefore, there exists a vertex v ∈ V (G), such that G− v contains at least two
connected components.

From Lemma 3 and its proof, the following lemma is obvious.

Lemma 6. Let T be a distance 1-approximating tree of a connected graph G and
(a, b, c) be a path in T . If both a and c are inner vertices of T , then at least one
of these vertices is a 1-cut of G. Moreover, assuming c is a 1-cut, c separates
vertices V (Tc) \ {c} from other vertices of G, where Tc is the subtree of T − bc
containing c.

A 2-connected component of a graph G is a maximal by inclusion 2-connected
subgraph of G or an edge uv of G such that both u and v are 1-cuts of G (such
an edge is called a bridge of G). Two 2-connected components of G are neighbors
if they share a common vertex (a 1-cut) of G.

Lemma 7. Let G be a connected graph admitting a distance 1-approximating
tree T and A be a 2-connected component of G. Then, for any two vertices
x, y ∈ V (A), dT (x, y) ≤ 3. Moreover, if there exist vertices x, y ∈ V (A), such
that dT (x, y) = 3, then T (V (A)) is a bistar.

Distance Approximating Trees: Complexity and Algorithms 267

Proof. Assume that, for some vertices x, y ∈ V (A), dT (x, y) ≥ 4 holds. Then,
one can connect x and y in T with a path PT (x, y) of length at least 4. Pick
three consecutive inner vertices a, b, c of path PT (x, y), they necessarily exist.
According to Lemma 6, a or c is a 1-cut of G separating x from y in G. The
latter is in contradiction with the assumption that x, y ∈ V (A) and A is a 2-
connected component of G. Hence, dT (x, y) ≤ 3, for any x, y ∈ V (A), is proven.

Assume now that there exist vertices x, y ∈ V (A), such that dT (x, y) = 3.
Then, one can find two vertices {c1, c2} in G such that T (V (A) ∪ {c1, c2}) is a
bistar with the inner edge c1c2. Let xc1, yc2 ∈ E(T). We will show that both c1
and c2 are in A.

Suppose, neither c1 nor c2 is in A. Assume c1 ∈ V (B), c2 ∈ V (C), where B and
C are 2-connected components of G. Let V (B)∩V (A) = {v} and V (C)∩V (A) =
{u}. We claim that B = C or at least v = u. Suppose B �= C and v �= u. Then,
since V (B)∩ V (C) = ∅ (otherwise, A,B and C will be parts of one 2-connected
component of G), dG(c1, c2) ≥ 3. As dT (c1, c2) = 1, a contradiction with T
being a distance 1-approximating tree of G arises. So, c1, c2 must be either in
one 2-connected component of G or in two 2-connected components B and C
such that V (B) ∩ V (A) = V (C) ∩ V (A).

Without loss of generality, assume v is attached (i.e., adjacent in T) to c1.
Since dT (y, c2) = 1, we have dG(y, c2) ≤ 2 and, hence, yv ∈ E(G). On the
other hand, dT (y, v) = 3, contradicting the assumption that T is a distance
1-approximating tree of G.

Assume now that c1 ∈ V (A) and c2 ∈ V (B) \ {v}. For any vertex x′ ∈ V (A)
which is attached to c1 and any vertex y′ ∈ V (A) \ {c1} which is attached to c2,
x′y′ /∈ E(G) must hold. Moreover, since V (A)∩V (B) = {v}, one concludes that
for all x′ ∈ V (A) \ {v}, x′c2 /∈ E(G). Hence, any path of A connecting a vertex
attached to c1 with a vertex attached to c2 must use vertex c1. Since there exist
vertices x, y ∈ V (A) such that xc1, yc2 ∈ E(T), this is in contradiction with the
assumption that A is 2-connected.

Thus, we conclude that T (V (A)) is a bistar. ��

Corollary 4. Let G be a connected graph admitting a distance 1-approximating
tree T and A be a 2-connected component of G. Then, either T (V (A)) is a bistar
or T (V (A) ∪ {c}) is a star centered at some vertex c of G.

In what follows, we will show that among all possible distance 1-approximating
trees of G there is a tree T such that, for any 2-connected component A of G,
T (V (A)) is connected, i.e., if T (V (A) ∪ {c}) is a star for some vertex c of G,
then c must be in A. To show that, we will need two lemmata (proofs can be
found in the journal version).

A sequence (B0 := B,B1, . . . , Bk−1, Bk := A) is called the chain of 2-connected
components of G between A and B if each Bi is a 2-connected component of G,
Bi and Bj are different for j �= i, Bi−1, Bi are neighbors sharing a 1-cut vi :=
V (Bi−1) ∩ V (Bi) of G for any i ∈ {1, . . . , k}, and vi �= vj for any i �= j. Clearly,
this chain is unique for any A and B.

268 F.F. Dragan and C. Yan

Lemma 8. Let G be a connected graph admitting a distance 1-approximating
tree T , A and B be 2-connected components of G and (B0 := B,B1, . . . , Bk−1, Bk

:= A,Z) be the chain of 2-connected components of G between Z and B. If
T (V (A)∪{c}) is a star with the center c belonging to V (Z)\V (A), then for any
i ∈ {0, . . . , k−1}, T (V (Bi)) is a star centered at a 1-cut vi+1 := V (Bi+1)∩V (Bi)
of G. Moreover, for any i ∈ {0, . . . , k − 1} and any x ∈ V (Bi), xvi+1 ∈ E(G)
must hold.

Lemma 9. Let G be a connected graph admitting a distance 1-approximating
tree T and let A,Z be 2-connected components of G such that V (A)∩V (Z) = {v}.
Let also A′ be that connected component of the graph G−v which contains A−v.
If T (V (A) ∪ {c}) is a star centered at c ∈ V (Z) \ {v}, then for any vertices
x ∈ V (A′), y ∈ (V (G) \ V (A′)) \ {c, v}, xy /∈ E(T) holds. In particular, for any
two vertices y, z ∈ V (G) \ V (A′), the path PT (x, y) between x and y in T does
not contain any vertices of A′.

In what follows, let G be a connected graph admitting a distance 1-approxima-
ting tree and let T denote a distance 1-approximating tree of G with minimum
|E(T) \ E(G)|, i.e., with minimum number of non-graph edges. We will show
that this tree T has a number of nice properties.

Theorem 1. If T is a distance 1-approximating tree of G with minimum |E(T)\
E(G)|, then for any 2-connected component A of G, T (V (A)) is a star or a bistar.

Proof. Since A is a 2-connected component of G, by Corollary 4, either T (V (A))
is a bistar or T (V (A) ∪ {c}) is a star centered at some vertex c of G. By way of
contradiction, assume that for A, T (V (A) ∪ {c}) is a star centered at a vertex
c of G not belonging to A. Let c belong to some 2-connected component Z
of G. Necessarily, A and Z are neighbor (2-connected) components. Let v :=
V (A)∩V (Z) and A′ be a connected component of G− v containing V (A) \ {v}.
By Lemma 8, for any 2-connected component B of G, which is different from A
and belongs to A′, T (V (B)) is a star centered at a 1-cut of G lying in B and
closest to A. Moreover, if v′ is that 1-cut, then for any x ∈ V (B), xv′ ∈ E(G)
holds (see Fig. 1). We have also that v is adjacent in G to c and to any vertex
a (a �= v) of A (see Lemma 8).

We can transform tree T into a new tree T ′ as follows. Set E(T ′) := E(T)
and V (T ′) := V (T). For each vertex a ∈ V (A) \ {v}, let E(T ′) := (E(T ′) \
{ac})∪ {av} (i.e., replace edge ac with edge av). We claim that T ′ is a distance
1-approximating tree of G, too. We need to show that |dT ′(x, y) − dG(x, y)| ≤ 1
holds for any two vertices x, y ∈ V (G).

If x, y ∈ V (A′) then, by Lemma 8 and the way we transformed T into T ′,
dT ′(x, y) = dT (x, y). If x, y ∈ V (G) \ V (A′) then, by Lemma 9 and the way T
was transformed into T ′, dT ′(x, y) = dT (x, y). Hence, in these cases, |dT ′(x, y)−
dG(x, y)| = |dT (x, y) − dG(x, y)| ≤ 1.

Consider now the case when x ∈ V (A′) and y ∈ V (G) \ V (A′). By Lemma 8,
dT ′(x, v) = dG(x, v). Since v is a 1-cut of G, dG(x, y) = dG(x, v) + dG(v, y). By
Lemma 9 and the way we transformed T into T ′, one concludes that dT ′(x, y) =

Distance Approximating Trees: Complexity and Algorithms 269

Z

c

v

y

B

x

A

A

v

Fig. 1. Illustration to the proof of Theorem 1. A part of the tree T is shown using
thick edges. Thin edges show some graph edges.

dT ′(x, v) + dT ′(v, y). Combining these equalities, we get |dT ′(x, y) − dG(x, y)| =
|dT ′(x, v) + dT ′(v, y) − (dG(x, v) + dG(v, y))| = |dT ′(v, y) − dG(v, y)|. But, by
Lemma 9, dT ′(v, y) = dT (v, y). Hence, we get |dT ′(x, y)−dG(x, y)| = |dT (v, y)−
dG(v, y)| ≤ 1.

Thus, T ′ is a distance 1-approximating tree of G. Since T ′ has original graph
edges more than T has (|E(T ′) \ E(G)| < |E(T) \ E(G)|), a contradiction with
the choice of T arises. Hence, the center c of star T (V (A)∪{c}) must be in A. ��

Lemma 10. Let T be a distance 1-approximating tree of G with minimum |E(T)\
E(G)| andA be a 2-connected component of G such that T (V (A)) is a bistar. Then,
for any other 2-connected component B of G, T (V (B)) is a star centered at a 1-cut
of G which is closest to A (among all 1-cuts of G located in B).

Corollary 5. If T is a distance 1-approximating tree of G with minimum |E(T)\
E(G)|, then there is at most one 2-connected component A in G such that T (V (A))
is a bistar.

The following lemma and its corollaries show that a distance 1-approximating
tree T of G with T (V (A)) being a star for any 2-connected component A of G
has also a very deterministic structure.

Lemma 11. Let T be a distance 1-approximating tree of G with minimum
|E(T) \ E(G)| and A and B be two neighbor 2-connected components of G with
v := V (A) ∩ V (B). If T (V (A)) is a star centered not at v, then T (V (B)) is a
star centered at v.

Proof. Since T (V (A)) is a star centered at some vertex c ∈ V (A) \ {v}, there
must exist a vertex a in A such that av ∈ E(G)\E(T). By Lemma 10, T (V (B))
cannot be a bistar. If T (V (B)) is a star centered at some vertex c′ ∈ V (B)\{v},
then there must exist a vertex b in B such that bv ∈ E(G) \ E(T). For these

270 F.F. Dragan and C. Yan

vertices a and b, dG(a, b) = 2 and dT (a, b) = dT (a, v) + dT (v, b) = 2 + 2 = 4
hold, contradicting with T being a distance 1-approximating tree of G. Hence,
the center of T (V (B)) must be v. ��

Corollary 6. Let T be a distance 1-approximating tree of G with minimum
|E(T) \ E(G)| and A be a 2-connected component of G such that T (V (A)) is a
star. If the center of this star T (V (A)) is not a 1-cut of G, then for any other
2-connected component B of G, T (V (B)) is a star centered at a 1-cut of G which
is closest to A (among all 1-cuts of G located in B).

Corollary 7. Let T be a distance 1-approximating tree of G with minimum
|E(T) \ E(G)|. If for every 2-connected component A of G, T (V (A)) is a star
centered at a 1-cut of G, then there exists a 1-cut v in G such that

a) for any 2-connected component A of G containing v, T (V (A)) is a star
centered at v,

b) for any 2-connected component B of G not containing v, T (V (B)) is a star
centered at a 1-cut of G which is closest to v (among all 1-cuts of G located
in B).

Clearly, if T (V (A)) is a star for a 2-connected componentA ofG, then diam(A) ≤
3 and rad(A) ≤ 2. And, if T (V (B)) is a bistar for a 2-connected component B of
G, then diam(B) ≤ 4 and rad(B) ≤ 3.

Using all these auxiliary results, one can prove the following theorem (its
proof is omitted in this conference version).

Theorem 2. It is possible, for a given connected graph G = (V,E), to check in
O(|V |4) time whether G has a distance 1-approximating tree and, if such a tree
exists, construct one within the same time bound.

3 Conclusion

In this paper, we proved that the distance (∆, 0)-approximating tree problem is
NP-complete for any ∆ ≥ 5 and the distance (1, 1)-approximating tree problem
is polynomial time solvable.

It remains an interesting open question to characterize/recognize the graphs
admitting distance (∆, δ)–approximating trees for ∆ = 2, 3, 4 and δ = 2, 3, 4, or
to prove that the problem remains NP-hard even for some of these small∆s and δs.

References

1. Y. Bartal, Probabalistic approximation of metric spaces and its algorithmic appli-
cations, FOCS 1996, pp. 184-193.

2. Y. Bartal, A. Blum, C. Burch, and A. Tomkins, A polylog(n)competitive algorithm
for metrical task systems, STOC 1997, pp 711–719.

3. J.-P. Barthélemy and A. Guénoche, Trees and Proximity Representations, Wiley,
New York, 1991.

Distance Approximating Trees: Complexity and Algorithms 271

4. A. Brandstädt, V. Chepoi, and F.F. Dragan, Distance Approximating Trees for
Chordal and Dually Chordal Graphs, Journal of Algorithms 30 (1999), 166–184.

5. A. Brandstädt, F. Dragan, H.-O. Le, and V.B. Le, Tree Spanners on Chordal
Graphs: Complexity and Algorithms, Theor. Comput. Science 310 (2004), 329-354.

6. L. Cai and D.G. Corneil, Tree spanners, SIAM J. Disc. Math. 8 (1995), 359–387.
7. M. Charikar, C. Chekuri, A. Goel, S. Guha, and S. Plotkin, Approximating a Finite

Metric by a Small Number of Tree Metrics, FOCS 1998, pp. 379–388.
8. V. Chepoi and F.F. Dragan, A note on distance approximating trees in graphs,

European Journal of Combinatorics 21 (2000), 761–766.
9. L.P. Chew, There are planar graphs almost as good as the complete graph, J. of

Computer and System Sciences, 39 (1989), 205–219.
10. Y. Emek and D. Peleg, Approximating Minimum Max-Stretch Spanning Trees on

Unweighted Graphs, SODA 2004, pp. 261-270.
11. J. Fakcharoenphol, S. Rao, and K. Talwar, A tight bound on approximating arbi-

trary metrics by tree metrics, STOC 2003, pp. 448-455.
12. U. Feige, Approximating the Bandwidth via Volume Respecting Embeddings, J.

Comput. System Sci. 60 (2000), 510–539.
13. A. Gupta, Improved bandwidth approximation for trees and chordal graphs, Jour-

nal of Algorithms 40 (2001), 24–36.
14. J.E. Hopcroft and R.E. Tarjan, Dividing a graph into triconnected components,

SIAM J. Comput. 2 (1973), 135–158.
15. O. Kariv and S.L. Hakimi, An algorithmic approach to network location problems,

I: the p-centers, SIAM J. Appl. Math. 37 (1979), 513–538.
16. D. Kratsch, H.-O. Le, H. Müller, E. Prisner, and D. Wagner, Additive tree spanners,

SIAM J. Discrete Math. 17 (2003), 332-340.
17. R. Krauthgamer and J.R. Lee, The intrinsic dimensionality of graphs, STOC 2003,

pp. 438–447.
18. R. Krauthgamer, N. Linial, and A. Magen, Metric Embedding – Beyond one-

dimensional distortion, Discrete and Computational Geometry 31 (2004), 339–356.
19. A.L. Liestman and T. Shermer, Additive graph spanners, Networks, 23 (1993),

343-364.
20. N. Linial, E. London, and Y. Rabinovich, The geometry of graphs and some its

algorithmic applications, Combinatorica 15 (1995), 215–245.
21. T.A. McKee, personal communication to E. Prisner, 1995.
22. G.L. Miller and V. Ramachandran, A new graph triconnectivity algorithm and its

parallelization, Combinatorica 12 (1992), 53–76.
23. D. Peleg and A.A. Schäffer, Graph Spanners, J. Graph Theory, 13(1989), 99-116.
24. D. Peleg and J.D. Ullman, An optimal synchronizer for the hypercube, PODC

1987, 77–85.
25. E. Prisner, Distance approximating spanning trees, STACS’97, LNCS 1200, 1997,

pp. 499–510.
26. P.H.A. Sneath and R.R. Sokal, Numerical Taxonomy, W.H. Freeman, San Fran-

cisco, California, 1973.
27. D.L. Swofford and G.J. Olsen, Phylogeny reconstruction, In Molecular Systematics

(D.M. Hillis and C. Moritz, editors), Sinauer Associates Inc., Sunderland, MA.,
1990, 411–501.

How to Pack Directed Acyclic
Graphs into Small Blocks�

Yuichi Asahiro1, Tetsuya Furukawa2, Keiichi Ikegami3, and Eiji Miyano4

1 Department of Social Information Systems, Kyushu Sangyo University,
Fukuoka 813-8503, Japan

asahiro@is.kyusan-u.ac.jp
2 Department of Economic Engineering, Kyushu University,

Fukuoka 812-8581, Japan
furukawa@en.kyushu-u.ac.jp

3 Department of Systems Innovation and Informatics,
Kyushu Institute of Technology, Fukuoka 820-8502, Japan

{ikegami@theory, miyano@}ces.kyutech.ac.jp

Abstract. The paper studies the following variant of clustering or lay-
ing out problems of graphs: Given a directed acyclic graph (DAG for
short), the objective is to find a mapping of its nodes into blocks of size
at most B that minimizes the maximum number of external arcs dur-
ing traversals of the acyclic structure by following paths from the roots
to the leaves. An external arc is defined as an arc connecting two dis-
tinct blocks. The problem can be shown to be NP-hard generally, and
to remain intractable even if B = 2 and the height of DAGs is three. In
this paper we provide a 3

2 factor linear time approximation algorithm for
B = 2, and prove that the 3

2 ratio is optimal in terms of approximation
guarantee. In the case of B ≥ 3, we also show that there is no 3

2 − ε
factor approximation algorithm assuming P = NP, where ε is arbitrarily
small positive. Furthermore, we give a 2 factor approximation algorithm
for B = 3 if the input is restricted to a set of layered graphs.

1 Introduction

In recent years, massive data sets with gigabytes or terabytes have emerged in
a growing number of wide-range applications. Since the amount of such massive
data sets is often too large to store in a fast main memory and they necessarily
reside on a slower disk, the input/output (I/O) communication between the
main memory and the disk can be a major performance bottleneck. Thus one of
the crucial issues arising when computing with massive data sets is to develop
external memory data structures and I/O-efficient algorithms, and recently, this
area has received much attention, e.g., [1, 13].

External Memory Models and Previous Results. In this paper we con-
sider the two-level I/O model introduced in [2], in which the memory hierarchy
� Supported in part by the Grant-in-Aid for Scientific Research on Priority Areas

16092223, for Scientific Research (C) 15500072, and for Young Scientists 15700021
and 17700022 from the Japanese Ministry of Education, Science, Sports and Culture.

T. Calamoneri, I. Finocchi, G.F. Italiano (Eds.): CIAC 2006, LNCS 3998, pp. 272–283, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

How to Pack Directed Acyclic Graphs into Small Blocks 273

consists of an internal memory of limited space, and an arbitrarily large external
memory divided into fixed contiguous blocks of size B. We assume that an exter-
nal memory query or modification, called a block transfer, transfers one block of
B objects from the external memory to the internal one. While internal-memory
access structures are typically constructed as a set of dynamically allocated ob-
jects linked by pointers and so-called tall-and-skinny structures are acceptable,
external-memory data structures must be short-and-fat in order to decrease the
number of the block transfers. If we want to use a search structure designed
for the internal memory, for example, a binary tree, on the external one, then
the following laying out problem naturally arises: Which nodes of the tree are
mapped in which disk blocks such that only a few disk blocks are transfered to
the internal memory although we may access a lot of nodes?

The above question was first proposed by Gil and Itai in [9], in which the
inputs are limited to trees, and the goal is to minimize the expected number of
block transfers over all queries. They presented an algorithm based on a dynamic
programming method that can optimize the partition of n nodes into blocks of
size B in O(nB2 log∆) time, where ∆ is the maximum degree of the nodes, and
uses O(B logn) space. Subsequently, Alstrup, et al. decreased the time bound
to O(nB2) by a tight analysis, and also presented a faster but approximate
algorithm in the same setting in [3]. Also, Gil and Itai [9] proved that the problem
of finding an optimal compact packing of trees is NP-hard, where the compact
means that the total number of blocks must be minimized. Diwan, et al. [7]
and independently Clark and Munro [6] considered the laying out problem of
trees for the worst-case I/O communication, i.e., the goal is to minimize the
maximum number of block transfers, and showed that the problem can be solved
in polynomial time, and the problem subject to the compact constraint is NP-
hard. In [3] Alstrup, et al. proposed an efficient cache oblivious layout of trees.

Our Problems and Contributions. In this paper we assume that the in-
put is a directed acyclic graph (DAG). The DAG is a large class of the impor-
tant data structures including persistent (or multiversion) B-trees and ordered
binary-decision diagrams (OBDDs), and hence it is an ubiquitous data represen-
tation [4, 5, 10, 11]. More strictly, our problem of this paper, called the Minimum
Block Transfer Problem (MBT for short), is formulated as follows: Given a DAG
G = (V,A) and a block size B, our goal is to find a mapping of its nodes into
blocks of size at most B that minimizes the maximum number of external arcs
when we traverse the acyclic structure by following paths from the roots to the
leaves. The number of external arcs is defined as the number of arcs connecting
two distinct blocks, that is, it denotes the number of the block transfers.

This problem was previously considered by Diwan, et al. [7], who pointed
out the NP-hardness of the general MBT. However, as far as the authors know,
its proof has not been published yet. In [7], they also provided a naive bottom-up-
packing algorithm, which can optimize the partition of |V | nodes into
blocks and run in O(|V |) time only if the input is restricted to trees as men-
tioned above. Additionally, for DAG layouts, a heuristic algorithm based on

274 Y. Asahiro et al.

the same bottom-up idea was presented in the same paper, but its theoretical
approximation guarantee was not shown.

In this paper we show the following results:

− We explicitly present the proof of the NP-hardness of the MBT. Furthermore,
we prove that unfortunately it remains NP-hard even if each block size B is
equal to two and the height of DAGs is three.

− Our proof method of the NP-hardness would be worthwhile in itself if we
are looking for a stricter computational hierarchy; by the gap-introducing
reduction [12] we show that assuming P �= NP there is no 3

2 − ε factor
approximation algorithm for any B ≥ 2 and any positive ε.

− On the other hand, fortunately, we can obtain an optimal algorithm which
runs in linear time if the height of DAGs is bounded above by two.

− A consequence of this algorithm is an approximation algorithm with ap-
proximation ratio 3

2 for a DAG of arbitrary height if B = 2. Namely, our
approximation algorithm is optimal in terms of approximation guarantee.

− In addition, as the first main step in obtaining a good approximation algo-
rithm for the general problem, we provide a 2 factor approximation algorithm
for B = 3 if the input is restricted to a set of layered DAGs.

2 Preliminaries

Let G = (V,A) be a simple directed acyclic graph, i.e., G does not include any
cycle, any multiple arcs, or any self-loop. V and A denote the sets of nodes
and arcs, respectively. d−(v) and d+(v) represent the indegree and the outdegree
of a node v, respectively. A node v is called a source or a sink if d−(v) = 0
or d+(v) = 0, respectively. A path of length k from a node u to a node u′

in G is a sequence 〈v0, v1, · · · , vk〉 of nodes such that u = v0, u′ = vk, and
(vi−1, vi) ∈ A for i = 1, 2, · · · , k. The length of the longest path from a source
to a node v is the depth of v in G, denoted by �(v). The height of a node
is the length of the longest path from the node to a sink, and the height of
a DAG G is the largest height among all heights of its sources, denoted by
h(G). A directed graph is called a layered graph if its nodes are partitioned into
a sequence of layers, and arcs are only permitted to connect nodes between
successive layers. For a graph G = (V,A) and a subset V ′ ⊆ V of nodes and
a subset A′ ⊆ A of arcs, G[V ′] = (V ′, A′) denotes the induced subgraph of G
such that its arc set A′ consists of all arcs of G whose both endpoints belong
to V ′. For a node v, let N−(v) = {u | (u, v) ∈ A}, N+(v) = {u | (v, u) ∈ A},
A−(v) = {(u, v) | u ∈ N−(v)}, and A+(v) = {(v, u) | u ∈ N+(v)}.

If the fixed DAG structure G is too large to fit in main memory, then G is
partitioned into small-sized blocks of size at most B, P = {P1, P2, · · · , Pk} where
Pi∩Pj = ∅ for i �= j,

⋃k
i=1 Pi = V , |Pi| ≤ B, and thus k ≥ �|V |/B�. We call P is

a packing if |Pi| ≤ B for all i’s. An arc (u, v) is said to be packed (under a packing
P) if {u, v} ⊆ P for some P ∈ P ; otherwise, an arc is called an external arc. Let
q be a path from a source to a sink. Given a packing P , the block transfer btP(q)
of q under P is the number of external arcs (u, v)’s on q, and furthermore, the

How to Pack Directed Acyclic Graphs into Small Blocks 275

block transfer btP(G) of a DAG G under P is maxq∈Q btP(q), where Q is a set
of paths from sources to sinks. Now our problem is formulated as follows:

Minimum Block Transfers with B (MBT(B)):
Instance: A directed acyclic graph G = (V,A) and an integer B ∈ [1..|V |].
Goal: Find a packing P that minimizes the block transfer btP(G) (this

packing is denoted by OPT , and is termed an optimal packing).

We assume that a set V of nodes of an input DAG G = (V,A) is partitioned into
layers V0, . . . , Vh(G), i.e., V = V0 ∪ · · · ∪ Vh(G) and Vi ∩ Vj = ∅ for i �= j where
V0 contains all the sources in G and v ∈ V�(v). By this partition, there always
exists an arc (u, v) for each node v ∈ Vi (1 ≤ i ≤ h(G)) such that u ∈ Vi−1.
This partition of V can be obtained in linear time O(|V | + |A|) based on the
topological sort. Note that this definition of layering does not indicate the input
DAG is a layered graph, since some arc may connect non-consecutive layers.

The block transfer under OPT has the following trivial lower bound caused
by h(G) and B.

Proposition 1. For DAG G and the block size B, btOPT (G) ≥ �h(G)/B�.
For MBT(B), a greedy heuristic, called GREEDY, has been proposed [7], which
basically tries to pack nodes in a bottom-up manner as mentioned in Sect. 1.
Although details are omitted here, it is not a good approximation algorithm:

Proposition 2. GREEDY is a B factor approximation algorithm for the MBT(B).

3 Optimal Algorithms for Flat DAGs

In this section we provide optimal algorithms for DAGs of height at most two,
which are used in the approximation algorithms presented in the next section.
We begin with a quite simple proposition.

Proposition 3. btOPT (G) = 0 for the MBT(B) if and only if every connected
component of G has at most B nodes.

By the above proposition, we obtain a polynomial time algorithm for the case
h(G) = 1: All we have to do is to calculate the number of nodes in each connected
component in O(|V | + |A|) time by the breadth-first search. If every connected
component has at most B nodes, then we can make the block transfer zero by
packing all the nodes into a single block. Otherwise, the block transfer is one.
This linear time algorithm will be referred to as HeightOne in the following.

Lemma 1. HeightOne is an optimal algorithm which runs in O(|V |+ |A|) time
for the MBT(B) if the height of DAGs is one (i.e., h(G) = 1).

Now we turn our attention to the case B = 2 and show that we can obtain
an optimal solution in O(|V | + |A|) time for the height h(G) = 2. Recall that
the node set V of G is partitioned into three layers V0, V1, and V2 as mentioned
above. The main idea of the optimal algorithm is first reducing the MBT(2) to

276 Y. Asahiro et al.

the 2-SAT problem [8], and then obtaining an optimal packing OPT by finding
a truth assignment of the reduced 2-CNF predicate f . If f is satisfiable, then
btOPT (G) = 1; otherwise, btOPT (G) = 2. The key point is that the predicate f
represents conditions on paths of length 2. Let v be a node in V1 associated with
a variable x. In order to decrease the block transfer to one, all the incoming arcs
to v (i.e., A−(v)) or all the outgoing arcs from v (i.e., A+(v)) have to be packed,
which corresponds to assigning true or false to the variable x, respectively.

Algorithm HeightTwo
(Input: DAG G of height two, Output: Packing P)

Step 1. Transform G to a 2-CNF predicate f by the following manner:
Step 1-1: Assign one variable xi to each node vi ∈ V1.
Step 1-2: Make the following clauses associated with each vi ∈ V1:

Rule (i): (xi) if the indegree of vi satisfies that d−(vi) ≥ 2, and
Rule (ii): (xi) if the outdegree of vi satisfies that d+(vi) ≥ 2.

Step 1-3: For each pair of vi and vj ∈ V1, make the following clauses
Rule (iii): (xi ∨ xj) if d−(vi) = d−(vj) = 1 and two arcs (u, vi)

and (u, vj) exist for some u ∈ V0, and
Rule (iv): (xi ∨ xj) if d+(vi) = d+(vj) = 1 and two arcs (vi, u)

and (vj , u) exist for some u ∈ V2.
Step 1-4: Construct f by adding the clauses made in Steps 1-2 and

1-3 conjunctively.
Step 2. Solve f by a polynomial-time algorithm for the 2-SAT [8].
Step 3. If f is unsatisfiable, then output {{v} | v ∈ V } as a packing P .

If f is satisfiable, then output a packing P according to the satisfying
truth assignment obtained in Step 2 as follows: For each variable xi

if xi = true then add {vi}∪N−(v) to P , otherwise add {vi}∪N+(v)
to P . For each node v not contained in such blocks, add {v} to P .

For expositions of the behavior of HeightTwo, consider a DAG in Fig. 1-(a). We
construct clauses (x1) by the rule (i), (x2 ∨ x3) by the rule (iii), and (x1 ∨ x2)
by the rule (iv). Then the final predicate f is (x1) ∧ (x2 ∨ x3) ∧ (x1 ∨ x2). A
truth assignment that makes f true is (x1, x2, x3) = (false, true, false) and it
corresponds to the packing {{v1, s}, {q, v2}, {v3, t}, {p}} that makes the block
transfer one as shown in Fig. 1-(b).

Lemma 2. HeightTwo is an optimal algorithm which runs in O(|V |+ |A|) time
for the MBT(2) if the height of DAGs is two.

Proof. Running Time. There is an algorithm for the 2-SAT that runs in linear
time of the number of clauses, i.e., O(|V |+ |A|) time [8]. It follows that the whole
running time is also O(|V | + |A|).

Correctness of Reduction. We show that btOPT (G) = 1 iff f is satisfiable.
(⇒) Consider a node vi ∈ V1. One can see that at most one arc in the paths

passing through vi can be packed. However, in the case d−(vi) = |N−(vi)| ≥ 2,
e.g., N−(v1) = {p, q} in Fig. 1, packing either of the arcs (p, v1) and (q, v1), say,

How to Pack Directed Acyclic Graphs into Small Blocks 277

Vp q

s t

Layer

(b)(a)

x1 = true

x1 = false x1 = false

x2 = true

x3 = false
0

V1

V2

V0

V1

V2

v1 v2 v3

p q

v1 v2

s t

v3

Fig. 1. (a) Assigning variables to nodes. (b) Packing according to a truth assignment.

(p, v1), does not reduce the block transfer to one, because no arc in the path
〈q, v1, s〉 is packed. Therefore in such a case, no arc in A−(vi) is packed and all
arcs in A+(vi) have to be packed in OPT in order to achieve btOPT (G) = 1.
This situation is expressed by the clause (xi) in the rule (i): Packing all arcs in
A−(vi) corresponds to assigning true to xi, which makes the clause (xi) false. As
for the clause (xi) in the rule (ii), the discussion is similar. By the assumption
that btOPT (G) = 1, only one or none of (xi) and (xi) is included in f and hence
we can choose true/false-value of those variables according to OPT .

Next we consider the clause (xi ∨ xj) constructed by the rule (iii). Suppose
two arcs (u, vi) and (u, vj) exist for u ∈ V0 and vi, vj ∈ V1. Since both of the two
arcs can not be packed simultaneously, one of them, say, (u, vi), is not packed
under OPT , that corresponds to assigning false to xi and makes the clause
(xi ∨xj) true. As for the clause (xi ∨xj) by the rule (iv), a similar argument can
be applied to vi and vj . In summary, there exists a satisfying truth assignment
for the variable xi’s in f according to OPT .

(⇐) We construct a packing according to a satisfying truth assignment. As-
sume that in the truth assignment, true is assigned to a variable xi that implies
A−(vi) contains at most one arc, e.g., (q, v2) for v2 in Fig. 1. If no other arcs that
emanate from q satisfy the condition of the rule (iii), then (q, v2) can be packed.
If such an arc exists, e.g., (q, v3) in Fig. 1, f includes the clause (x2∨x3). Since f
is satisfiable, x3 must be assigned false in the truth assignment that means (q, v3)
cannot be packed. A similar argument can be applied to any variable which is
assigned false. Therefore we can choose a packing according to the truth assign-
ment for f . Finally, the block transfer must be one by such a packing because
for each variable xi, either of true or false is assigned, which implies that all arcs
in A−(vi) or A+(vi) are packed for each vi ∈ V1. This completes the proof. ��

From Lemmas 1 and 2 we obtain Theorem 1:

Theorem 1. There is an optimal algorithm which runs in O(|V |+ |A|) time for
the MBT(2) if the height of DAGs is at most two.

A very similar strategy to the above gives us the following theorem:

Theorem 2. There is an optimal algorithm which runs in polynomial time for
the MBT(3) if the height of DAGs is at most two.

278 Y. Asahiro et al.

4 Approximation Algorithms for Small Blocks

In this section we present a 3
2 factor approximation algorithm for the MBT(2),

called DAGPack, which is optimal in terms of approximation guarantee as shown
in the next section. It uses the algorithms in Sect. 3 as sub-procedures.

We first present two approximation algorithms for DAGs of height three and
four, respectively, called HeightThree and HeightFour, that are also used in
DAGPack. Recall that we assume a node set V of an input DAG is layered as V0
through Vh(G). A description of the algorithm HeightThree is as follows:

Algorithm HeightThree
(Input: DAG G of height three, Output: Packing P)

Step 1: Apply HeightOne to G[V0 ∪ V1] and also to G[V2 ∪ V3]. Let P1
and P2 be the obtained packings, respectively.

Step 2: Do the following according to P1 and P2:
– If btP1(G[V0 ∪ V1]) = btP2(G[V2 ∪ V3]) = 0, then output P =

P1 ∪ P2 and halt.
– If btP2(G[V2∪V3]) = 1, then output P = {{v} | v ∈ V } and halt.
– Otherwise, go to Step 3.

Step 3: Let R be a set of nodes, each of which is reachable to some
node in V3. If R = V , output P = {{v} | v ∈ V } and halt.

Step 4: Apply HeightTwo to G[V − R] and then HeightOne to both
G[R ∩ (V0 ∪ V1)] and G[R ∩ (V2 ∪ V3)]. Let P3, P4 and P5 be the
obtained packings, respectively. Output P = P3 ∪ P4 ∪P5 and halt.

Lemma 3. HeightThree is a 3
2 factor approximation algorithm for DAGs of

height three that runs in O(|V | + |A|) time.

Proof. The total running time is linear since both HeightOne and HeightTwo run
in linear time from Lemmas 1 and 2. Let us proceed to show the approximation
ratio. We have to verify the following four cases to prove the 3

2 ratio. Note that
it is enough to show btOPT (G) ≥ 2 for each case, because the height of the input
DAG is now three and the block transfer under any packing is at most three.

Case (i). In Step 2, btP1(G[V0 ∪ V1]) = btP2(G[V2 ∪ V3]) = 0: HeightThree
outputs P = P1∪P2, and then btP(G) = 1. From Proposition 1, btOPT (G) ≥
1 that implies P is optimal.

Case (ii). In Step 2, btP2(G[V2∪V3]) = 1: HeightThree outputs P = {{v} | v ∈
V } and then btP(G) = 3. Since P2 is optimal for G[V2 ∪ V3] from Lemma 1,
btOPT (G[V2 ∪V3]) = 1. In addition to that, btOPT (G[V0∪V1 ∪V2]) ≥ 1 from
Proposition 1, and hence btOPT (G) ≥ 2.

Case (iii). HeightTree halts in Step 3: The discussion is similar to Case (ii).
Case (iv). In Step 3, R �= V and then Step 4 is processed: We further divide

the case into two subcases. Note that the height of G[V −R] is at most two
and there is no arc (u, v) for u ∈ V −R and v ∈ R by the definition of R.
(a). No arc (u, v) for u ∈ R and v ∈ V −R exists: G[V −R] and G[R] are

disjoint. P3 is optimal for G[V −R] from Lemma 2. As for G[R], a similar
argument to the above cases (i), (ii), and (iii) can be also applied.

How to Pack Directed Acyclic Graphs into Small Blocks 279

(b). An arc (u, v) for u ∈ R and v ∈ V −R exists: If (u, v) is packed under
OPT , btOPT (G) ≥ 2 holds, because u cannot be packed with nodes in
R and there exists a path of length three in G[R], which goes through u.
Otherwise, i.e., if (u, v) is not packed under OPT , then the discussion
is similar to Case (iv)-(a). ��

Next we present a description of HeightFour for DAGs of height four, which
plays the most important role in DAGPack.

Algorithm HeightFour
(Input: DAG G of height four, Output: Packing P)

Step 1: Apply HeightOne to G[V0 ∪ V1] and let P1 be the obtained
packing. If btP1(G[V0 ∪ V1]) = 0, then output P = P1 ∪ {{v} | v ∈
V2 ∪ V3 ∪ V4} and halt.

Step 2: Apply HeightTwo to G[V0∪V1 ∪V2] and let P2 be the obtained
packing. If btP2(G[V0 ∪ V1 ∪ V2]) = 1, then output P = P2 ∪ {{v} |
v ∈ V3 ∪ V4} and halt.

Step 3: Output P = {{v} | v ∈ V } and halt.

Lemma 4. HeightFour is a 3
2 factor approximation algorithm for DAGs of

height four that runs in O(|V | + |A|) time.

Proof. First, the running time is clearly O(|V |+|A|) from Lemmas 1 and 2. Then,
we show btP(G) ≤ 3

2btOPT (G) for all the cases that HeightFour terminates in
(i) Step 1, (ii) Step 2, and (iii) Step 3.

Case (i): Since btP1(G[V0 ∪ V1]) = 0, it holds that btP(G) = 3. From Proposi-
tion 1, btOPT (G) ≥ 2 and hence btP(G) ≤ 3

2btOPT (G).
Case (ii): Since btP2(G[V0 ∪ V1 ∪ V2]) = 1, it holds that btP(G) = 3 and again

btP(G) ≤ 3
2btOPT (G) as in Case (i).

Case (iii): No arc is packed under P , and then btP(G) = 4 holds. Since P2 is
optimal for G[V0∪V1∪V2] from Lemma 2 and Step 3 is processed, it holds that
btOPT (G[V0 ∪V1 ∪V2]) = 2. From Proposition 1, btOPT (G[V2 ∪V3 ∪V4]) ≥ 1
and hence btOPT (G) ≥ 3. This implies that btP(G) ≤ 4

3btOPT (G). ��

Now we can present a 3
2 factor approximation algorithm for DAGs of general

height. Its basic idea is as follows: (1) We divide the whole graph into subgraphs
of height four, and then (2) iteratively apply HeightFour to those subgraphs:

Algorithm DAGPack
(Input: DAG G, Output: Packing P)

Step 1: Let W0 = V0 ∪ · · · ∪ V4, W1 = V4 ∪ · · · ∪ V8, . . . , Wk = V4k ∪
· · · ∪ Vh(G), where k = �h(G)/4�.

Step 2: Apply HeightFour to each subgraph G[Wi] for 0 ≤ i ≤ k − 1.
Let Pi be the obtained packing for G[Wi].

Step 3: Let h′ = h(G)− 4k (1 ≤ h′ ≤ 3), which is the height of G[Wk].
Apply HeightOne, HeightTwo and HeightThree to G[Wk] if h′ = 1,
2 and 3, respectively. Let Pk be the obtained packing.

280 Y. Asahiro et al.

Step 4: Output P = (P1 − {{v} | v ∈ V4}) ∪ (P2 − {{v} | v ∈ V8}) ∪
· · · ∪ Pk.

See the description of HeightFour again and recall that when we apply
HeightFour to each subgraph G[Wi] in Step 2, each node v in the last layer
V4i of the subgraph G[Wi], e.g., V4 of G[W0], is not packed with other nodes
within G[Wi]. Namely, Pi always contains {{v} | v ∈ V4i} for 0 ≤ i ≤ k− 1. The
reason why we remove this part from each Pi, e.g., {{v} | v ∈ V4} from the pack-
ing P1 in Step 4 is that it may conflict to the packing determined by applying
HeightFour to the next subgraph G[Wi+1]. Since the packing {{v} | v ∈ V4i}
does not reduce the block transfer at all, we choose to determine blocks that the
nodes in V4i belong to, as a part of processing G[Wi+1] instead of G[Wi].

Let Gr be a subgraph of G constructed by removing arcs that do not appear
in any subgraphs G[Wi]’s. The following lemma holds.

Lemma 5. For any packing Q, btQ(Gr) = btQ(G).

Proof. The layer V4i of nodes is shared by G[Wi−1] and G[Wi]. That is, arcs
from V4i−1 to V4i, and from V4i to V4i+1 are included inside G[Wi−1] and G[Wi],
respectively, and hence appear in Gr. However, arcs connected V4i−4 ∪ V4i−3 ∪
V4i−2 ∪ V4i−1 with V4i+1 ∪ V4i+2 ∪ V4i+3 ∪ V4i+4 do not appear in Gr. Let (u, v)
denote such an arc, where u ∈ V4i−1 and v ∈ V4i+1. Consider a path 〈x, y, v〉
of length 2 for some x ∈ V4i−1 and y ∈ V4i, where the arcs (x, y) and (y, v)
exist inside G[Wi−1] and G[Wi], respectively. Recall that such a path surely
exists by the definition of the layers. Under any packing Q (including OPT),
btQ(〈x, y, v〉) ≥ 1 ≥ btQ(〈u, v〉) from Proposition 1, and then btQ(〈x, y, T 〉) ≥
btQ(〈u, T 〉), where T is an arbitrary path that starts from v and is included in
G[Wi]. Therefore the maximum block transfer of paths through the nodes in
G[V4i−1 ∪Wi] does not depend on (u, v) (except ties). The same arguments can
be applied for the cases u ∈ V4i−2, V4i−3, or V4i−4 and v ∈ V4i+2, V4i+3 or V4i+4,
and moreover, for any pair of (non-consecutive) subgraphs G[Wi]’s. ��

Theorem 3. DAGPack is a 3
2 factor approximation algorithm for the MBT(2),

that runs in linear time.

Proof. We can conclude that DAGPack is a 3
2 factor approximation algorithm be-

cause btP(G) = btP(Gr) =
∑

i btP(G[Wi]) ≤ 3
2

∑
i btOPT (G[Wi]) = 3

2btOPT (Gr)
= 3

2 btOPT (G), where the first and the last equalities hold from Lemma 5, and the
inequality is based on Theorem 1, Lemmas 3 and 4.

We briefly analyze the running time: Steps 1 and 4 can be achieved in lin-
ear time. In Steps 2 and 3, the linear-time procedures HeightOne, HeightTwo,
HeightThree, and HeightFour are executed for (independent) induced sub-
graphs, therefore, the total running time is also linear. ��

The same strategies give us the following theorem (the proof is omitted).

Theorem 4. There is a 2 factor polynomial time approximation algorithm for
the MBT(3) if the input is restricted to a set of layered graphs.

How to Pack Directed Acyclic Graphs into Small Blocks 281

5 Hardness of Approximation

We show that, given a DAG G and an integer B, the problem of finding an
optimal packing for G is NP-hard even if B = 2 and the height of G is three. The
3-SAT problem is reduced to this problem as follows. Given a 3-CNF predicate f ,
we construct DAG G of height three satisfying conditions (i) and (ii): (i) There
exists an optimal packing OPT such that btOPT (G) = 2 if f is satisfiable. (ii) If
there exists a packing OPT such that btOPT (G) = 2, then f is satisfiable.

Theorem 5. (I) The MBT(2) and hence the general MBT(B) are NP-hard.
(II) The MBT(2) remains NP-hard even if the height of DAGs is three.

Proof. Suppose that the predicate f uses n variables, U = {u1, u2, · · · , un}, and
contains m clauses, C = {c1, c2, · · · , cm}, where the i-th clause includes exactly
three variables xi,1, xi,2 and xi,3. The reduced DAG G consists of two subgraphs,
SG1 and SG2. SG1 is the variable gadget associated with the variable set U , and
SG2 is the clause gadget associated with the clause set C.

The variable gadget SG1 is divided into n components Gui = (Vui , Aui) for
i = 1, 2, · · · , n, corresponding to the variable ui of f . Since Gu1 , Gu2 , · · ·, Gun

are in the same form, Fig. 2-(a) illustrates only Gui , where, only for clarity
of exposition, we assume that the positive literal ui and its negation ui ap-
pear three times and twice in f , respectively. In this case Gui = (Vui , Aui)
has 16 nodes and 16 arcs as shown in Fig. 2-(a). Vui consists of three node
sets, Ui = {ti, fi, ui,0, ui,0, vi,1, vi,2}, Ti = {ui,1, ui,2, ui,3, u

′
i,1, u

′
i,2, u

′
i,3}, and

Fi = {ui,1, ui,2, u′
i,1, u

′
i,2}. The first node set Ui plays a key role in the remaining

of the proof. Ti and Fi include 2 × 3 and 2 × 2 nodes, corresponding to the
numbers of occurrences of ui and its negation ui, respectively. If, for example,
there are four positive literals ui’s in f , then two nodes {ui,4, u

′
i,4} and two arcs

{(ui,0, ui,4), (ui,4, u
′
i,4)} are further added to Ti (⊂ Vui) and Aui , respectively.

The clause gadget SG2 consists of m components since f includes m clauses.
Fig. 2-(b) illustrates one of them. For each clause cj = xj,1 ∨ xj,2 ∨ xj,3 for
j = 1, 2, · · · ,m of f , we introduce a component Gcj = (Vcj , Acj) which has six
nodes and six arcs as follows: Vcj = {xj,1, xj,2, xj,3, cj,0, cj,1, cj,2} and Acj =
{(cj,0, cj,1), (cj,0, cj,2), (cj,1, xj,1), (cj,1, xj,2), (cj,2, xj,2), (cj,2, xj,3)}.

There is also a set of arcs which connects SG1 with SG2. For example, we
assume that the clause cj is the conjunction of the α-th occurrence of positive
literal up, the β-th occurrence of negative literal uq, and the γ-th occurrence of
negative literal ur. Then, we connect xj,1 with u′

p,α ∈ Vup , xj,2 with u′
q,β ∈ Vuq ,

and xj,3 with u′
r,γ ∈ Vur . The correctness of our reduction is based on the

following key lemmas, Lemmas 6 and 7, but their proofs are omitted:

Lemma 6. For each component Gui of SG1, the block transfer btP(Gui) is at
least two under any packing P. Furthermore, every packing P2 with btP2(Gui) =
2 has to satisfy either of the following two necessary conditions: (C1) {{ti, ui,0},
{ui,0, fi}, {ui,1, u′

i,1}, · · ·, {ui,j1 , u
′
i,j1

}} ⊆ P2, and (C2) {{ti, ui,0}, {ui,0, fi},
{ui,1, u

′
i,1}, · · ·, {ui,j2 , u

′
i,j2}} ⊆ P2, where j1 and j2 mean the numbers of oc-

currences of ui and ui, respectively.

282 Y. Asahiro et al.

ti

fi

vi,1 vi,2

xj,1 xj,2 xj,3

variable gadget

(a) (b)

cj,0

cj,1 cj,2

u’p,α u’q,β u’r,γ

ui,0

ui,1

ui,2

ui,3

ui,1

ui,0

u’i,1 u’i,2 u’i,3 u’i,1 u’i,2

ui,2

Fig. 2. (a) Variable gadget Gui . (b) Clause gadget Gcj .

Lemma 7. For each component Gcj of SG2, the block transfer btP(Gcj) is at
least two under any packing P. Furthermore, every packing P2 with btP2(Gcj) =
2 has to satisfy at least one of the following three conditions: (C3) {xj,1, u

′
p,α} ∈

P2, (C4) {xj,2, u′
q,β} ∈ P2, and (C5) {xj,3, u′

r,γ} ∈ P2.

Now we show the two conditions (i) and (ii) at the beginning of this section are
satisfied for the reduced DAG G.

(i) Suppose that there is a satisfying truth assignment for the 3-CNF predicate
f . Then we can obtain the following optimal packing OPT under which the block
transfer btOPT (G) is two:

1. Depending on the truth assignment that makes f true, for example, if ui =
true, then OPT ⊇{{ti, ui,0}, {ui,0, fi}, {ui,1, u′

i,1}, {ui,2, u′
i,2}, {ui,1}, {ui,2},

{ui,3}, {vi,1}, {vi,2}}; otherwise, if ui = false, then OPT ⊇ {{ti, ui,0},
{ui,0, fi}, {ui,1, u

′
i,1}, {ui,2, u

′
i,2}, {ui,3, u

′
i,3}, {ui,1}, {ui,2}, {vi,1}, {vi,2}}.

The mapping for u′
i,1, u

′
i,2, and u′

i,3 in the former case (or for u′
i,1 and u′

i,2
in the latter case) is determined in the next.

2. As for each component Gcj of SG2 for j = 1, · · · ,m, OPT depends again on
the truth assignment: (1) If all the three literals up, uq, and ur are assigned to
be true, OPT ⊇ {{xj,1, u

′
p,α}, {xj,2, u′

q,β}, {xj,3, u′
r,γ}}, and the other nodes

cj,i’s remain single, i.e., {cj,i} ∈ OPT for i = 0, 1, 2. (2) If two literals,
say, up and uq, are assigned to be true, OPT ⊇ {{xj,1, u

′
p,α}, {xj,2, u′

q,β},
{cj,2, xj,3}} and the other nodes remain single. As for another example,
in case up and ur are true, OPT ⊇ {{xj,1, u

′
p,α}, {xj,3, u′

r,γ}, {cj,0, cj,1},
{cj,2, xj,2}}. (3) If only one literal, say, up is assigned to be true, OPT ⊇
{{xj,1, u

′
p,α}, {cj,0, cj,2}, {cj,1, xj,2}} and xj,3 remains single. In the case only

uq is assigned to be true, OPT ⊇{{xj,2, u′
q,β}, {cj,1, xj,1}, {cj,2, xj,3}, {cj,0}}.

(ii) Suppose that there exists an optimal packing OPT such that btOPT (G) =
2. Then the predicate f is satisfiable by constructing the satisfying truth assign-
ment. From Lemma 6, OPT has to satisfy either (C1) or (C2) for every variable
gadget Gui . If (C1) is satisfied for Gui , then we assign ui = true and call three
nodes u′

i,1, u
′
i,2, and u′

i,3 free; otherwise, if (C2) is satisfied, then ui = true is
assigned and two nodes u′

i,1 and u′
i,2 become free. From Lemma 7, OPT must

How to Pack Directed Acyclic Graphs into Small Blocks 283

satisfy at least one of the three conditions (C3), (C4), and (C5). It follows that
at least one of the three nodes xj,1, xj,2, and xj,1 in the j-th clause gadget is
surely connected with a free node in the variable gadgets. This means that the
above truth assignment satisfies all the clauses in the predicate f . ��

Theorem 6. If, for some ε > 0, there is a 3
2 −ε factor polynomial time approx-

imation algorithm for the MBT(2), then P = NP.

Proof. Suppose that there is a 3
2 −ε factor polynomial time approximation algo-

rithm for some ε > 0. If a predicate f of the 3-SAT is satisfiable, the algorithm
can find a packing P with btP(G) = 2 × (3

2 − ε) < 3 for G reduced from f .
However, if f is unsatisfiable, btQ(G) = 3 under any packing Q from the proof
of Theorem 5. Thus, this approximation algorithm can be used for deciding the
3-SAT in polynomial time, which implies P = NP. ��

Corollary 1. Algorithm DAGPack is optimal in terms of approximation guar-
antee for the MBT(2).

Theorem 7. For general B ≥ 3, (I) the MBT(B) is NP-hard even if the height
of DAGs is three, and moreover, (II) if, for some ε > 0, there is a 3

2 − ε factor
polynomial time approximation algorithm for the MBT(B), then P = NP.

References

1. Handbook of massive data sets, J. Abello, P.M. Pardalos, M.G.C. Resende Eds.,
Kluwer Academic Pub., 2002.

2. A. Aggarwal and J.S. Vitter. The input/output complexity of sorting and related
problems. Commun. ACM, 31 (9), pp.1116–1127, 1988.

3. S. Alstrup, M.A. Bender, E.D. Demaine, M. Farach-Colton, T. Rauhe, M. Thorup.
Efficient tree layout in a multilevel memory hierarchy. CoRR cs.DS/0211010, 2002.

4. S. Amer-Yahia, N. Koudas, A. Marian, D. Srivastava, D. Toman. Structure and
content scoring for XML. In Proc. 31st VLDB, pp.361–372, 2005.

5. L. Arge, A. Danner, S.-M. Teh. I/O-efficient point location using persistent B-trees.
In Proc. 5th ALENEX, pp.82–92, 2003.

6. D. Clark and J. Munro. Efficient suffix trees on secondary storage. In Proc. 7th
Annual ACM-SIAM Symposium on Discrete Algorithms, pp.383–391, 1996.

7. A.A. Diwan, S. Rane, S. Seshadri, S. Sudarshan. Clustering techniques for mini-
mizing external path length. In Proc. 22nd VLDB, pp.432–353, 1996.

8. S. Even, A. Itai, and A. Shamir. On the complexity of timetable and multicom-
modity flow problems. SIAM J. Comput., 5, pp.691–703, 1976.

9. J. Gil and A. Itai. Packing trees. In Proc. 3rd Annual European Symposium on Al-
gorithms, pp.113–127, 1995 (full version: J. Algorithms, 32 (2), pp.108–132, 1999).

10. D.G. Kirkpatrick. Optimal search in planar subdivisions. SIAM J. Comput., 12
(28), pp.28–35, 1983.

11. P.J. Varman and R.M. Verma. An efficient multiversion access structure. IEEE
Trans. on Knowledge and Data Engineering, 9 (3), 1997.

12. V.V. Vazirani. Approximation Algorithms, Springer, 2001.
13. J.S. Vitter. External memory algorithms and data structures: Dealing with massive

data. ACM Comput. Surveys, 33 (2), pp.209–271, 2001.

On-Line Coloring of H-Free Bipartite Graphs

H.J. Broersma1, A. Capponi2, and D. Paulusma1

1 Department of Computer Science, Durham University, Science Labs,
South Road, Durham DH1 3LE, England

{hajo.broersma, daniel.paulusma}@durham.ac.uk
2 Computer Science, Division of Engineering and Applied Sciences,

California Institute of Technology, U.S.A.
acapponi@cs.caltech.edu

Abstract. We present a new on-line algorithm for coloring bipartite
graphs. This yields a new upper bound on the on-line chromatic number
of bipartite graphs, improving a bound due to Lovász, Saks and Trotter.
The algorithm is on-line competitive on various classes of H-free bipar-
tite graphs, in particular P6-free bipartite graphs and P7-free bipartite
graphs, i.e., that do not contain an induced path on six, respectively
seven vertices. The number of colors used by the on-line algorithm in
these particular cases is bounded by roughly twice, respectively roughly
eight times the on-line chromatic number. In contrast, it is known that
there exists no competitive on-line algorithm to color P6-free (or P7-free)
bipartite graphs, i.e., for which the number of colors is bounded by any
function only depending on the chromatic number.

1 Introduction

In static optimization problems one is often faced with the challenge of deter-
mining efficient algorithms that solve a particular problem (nearly) optimally for
any given instance of the problem. This task is usually facilitated if the structure
of the instances is pretty straightforward. As an example, it is a trivial exercise
to determine an algorithm for finding a 2-coloring of a given bipartite graph.

In the area of dynamic optimization the situation gets more complicated.
There, one often lacks the knowledge of the complete instances of the problems.
As an illustration, compare the previous problem with the slightly changed sit-
uation in which the bipartite graph comes in on-line, i.e., vertex by vertex and
the algorithm has to assign a color to a vertex as it comes in, i.e., only based on
the knowledge of the subgraph that has been revealed so far. This slight change
of the problem formulation makes it a lot more difficult: Whereas the static
problem was trivial, no algorithm for the dynamic problem can guarantee an
optimal solution for every instance. In [9] it has been shown that the worst-case
performance ratio between on-line and off-line coloring of a known input graph
on n vertices is at least Ω(n/log2n). It is even questionable whether one can
expect to determine an on-line algorithm that does reasonably well, in the sense
that the number of colors used is bounded in some other reasonable way. In

T. Calamoneri, I. Finocchi, G.F. Italiano (Eds.): CIAC 2006, LNCS 3998, pp. 284–295, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

On-Line Coloring of H-Free Bipartite Graphs 285

this paper we will focus on particular questions of this type related to coloring
bipartite graphs. This type of questions in a more general setting is at the heart
of the areas of on-line algorithms and of approximation algorithms.

We first give a short historical excursion starting with a benchmark paper due
to Gyárfás and Lehel [6]. They introduced the concept of on-line coloring as a
general approach. This was motivated by their translation of a rectangle packing
problem related to dynamical storage allocation appearing in [2] into an on-line
coloring problem. The latter problem was to decide whether the on-line coloring
algorithm known as First-Fit (FF) has a constant worst-case performance ratio
on the family of interval graphs. We note that since [6] many papers on on-line
(coloring) problems have appeared. We refer to [11] for a survey.

In order to have some measure of the performance of on-line algorithms, the
notion of competitive algorithms has been introduced in [6]. Intuitively, an on-
line coloring algorithm is said to be competitive for a family of graphs G, if for
any graph G ∈ G, the number of colors used by the algorithm on G is bounded
from above by a function only depending on the chromatic number of G. In [10]
it is shown that FF is competitive for interval graphs, with a bounding func-
tion that is linear in the chromatic number, and in [3] competitiveness of FF
for geometric intersection graphs has been proven. It is well-known that FF is
not competitive for P6-free bipartite graphs, i.e., bipartite graphs that do not
contain an induced path on six vertices: If the vertices of a complete bipartite
graph Km,m minus a perfect matching {u1, v1}, {u2, v2}, . . . , {um, vm} are pre-
sented in the ordering u1, v1, u2, v2, . . . , um, vm, then FF uses m colors. In fact,
there are many families of graphs for which no competitive algorithms exist: Two
examples given in [6] are the family of trees and the family of P6-free bipartite
graphs. These negative results have led to the definition of a weaker form of
competitiveness in [4], although results of this type have been obtained before
the term was formally introduced. An on-line coloring algorithm is said to be
on-line competitive if the number of colors is bounded from above by a function
only depending on the on-line chromatic number of G. It is shown in [7] that FF
is on-line competitive for trees; it is even optimal for trees, in the sense that if
FF uses k colors, then the on-line chromatic number of the tree is also k. In [4] it
is shown that FF is on-line competitive with an exponential bounding function
for graphs with girth at least five. There are very few existing results on on-line
competitive coloring algorithms.

In the context of algorithmic graph theory it is rather natural to consider for-
bidden subgraph conditions, as many NP-hard problems turn out to be solvable
in polynomial time when restricted to H-free graphs for particular choices of H .
Therefore, these graph classes are well-studied throughout a range of NP-hard
problems. In the context of coloring, e.g., 3-colorability is polynomially solvable
for P6-free graphs, while 4-colorability remains NP-hard for P12-free graphs,
and 5-colorability remains NP-hard for P8-free graphs. We refer the reader to
the survey paper [16] for more details. Note that also well-studied graph classes
like chordal graphs can be characterized by forbidden subgraph conditions.

286 H.J. Broersma, A. Capponi, and D. Paulusma

2 Results of This Paper

One of the main open problems concerning on-line competitive coloring algo-
rithms [4] is to decide whether for every k there exists an on-line competitive
coloring algorithm for the family of graphs with on-line chromatic number k.
Perhaps surprisingly, this is even open for bipartite graphs for k = 4, whereas it
has been solved for general graphs for k ≤ 3. (In both [5] and [14] it is proven
that for the family of graphs with on-line chromatic number 3 at most 4 col-
ors are needed.) The open problem on bipartite graphs seems to be very hard
and emphasizes how much on-line coloring differs from off-line coloring. We are
not aware of any recent developments towards settling this problem. Our results
are motivated by a number of open problems, but most strongly by the above
open problem for bipartite graphs. We solve the problem for several subclasses
of bipartite graphs which are defined by forbidding a certain fixed graph H as
an induced subgraph. For a relatively small graph H this is an easy exercise,
but for larger graphs this gets difficult, in correspondence with the fact that the
class of H-free graphs contains the class of H ′-free graphs if H ′ is a subgraph
of H . By combining known results and dealing with a few cases ourselves, we
show that for every graph H with at most 5 vertices there exists an on-line
competitive coloring algorithm for the class of H-free bipartite graphs. Since
for P4-free and P5-free graphs there even exists a competitive algorithm [6, 8],
and since P6-free bipartite graphs do not admit a competitive algorithm [6], our
natural starting point from there is the latter class. The main contribution of
this paper is the proof that the on-line coloring algorithm we present for bi-
partite graphs is on-line competitive for P6-free bipartite graphs; its bounding
function is linear in the on-line chromatic number, namely roughly twice the
on-line chromatic number. In fact, this gives a 2-approximation algorithm for
on-line coloring P6-free bipartite graphs. We can prove a similar result for the
larger class of P7-free bipartite graphs with a bounding function that is roughly
eight times the on-line chromatic number. Due to page limitations we leave its
proof for the full paper. Note that the on-line chromatic number for both these
graph classes can be arbitrarily high, so these classes are definitely no subclasses
of the class of bipartite graphs with on-line chromatic number 4. In this sense,
our results have a broader appeal than just solving the aforementioned problem
with k = 4 for the restricted classes of P6-free and P7-free bipartite graphs. It
might be possible that our algorithm or variations on it can be used to prove
similar results for larger subclasses of bipartite graphs, although we have not
been able to do so yet. We will see that our algorithm is competitive for the
class of P5-free bipartite graphs.

The rest of the paper is organized as follows. Section 3 contains the basic
notation and definitions. In Section 4 we start our exposition by proving the
result on H-free bipartite graphs with |V (H)| ≤ 5. Next we present the key al-
gorithm of the paper called BicolorMax. We prove that it is on-line competitive
for P6-free bipartite graphs, and that the number of colors used by BicolorMax
on any bipartite graph is bounded from above by the number of mutually remote

On-Line Coloring of H-Free Bipartite Graphs 287

subgraphs isomorphic to P5. As a consequence we improve the best known upper
bound for the on-line chromatic number of bipartite graphs given in [15] and [11].

3 Preliminaries

Throughout we consider simple graphs G = (V (G), E(G)), where V (G) is a set of
vertices and E(G) is a set of unordered pairs of vertices, called edges. For graph
terminology not defined below we refer to [1]. If S ⊆ V (G), then G[S] denotes
the subgraph of G with vertex set S and edge set {{x, y} | x ∈ S, y ∈ S}. A
graph is an induced subgraph of G if it is isomorphic to G[S] for some nonempty
S ⊆ V (G). A graph is H-free if it does not contain the graph H as an induced
subgraph. We call two vertex-disjoint graphs remote if there are no edges joining
them. A maximal connected subgraph of a graph G is called a component of G.
For any two vertices x, y of a connected graph G we denote by Pxy a shortest
path between x and y in G, and we define the distance d(x, y,G) between x and
y in G as |E(Pxy)|. We use Kn, Cn and Pn to denote, respectively, the complete
graph, the cycle and the path on n vertices, and we use Km,n to denote the
complete bipartite graph with m vertices in one bipartition class and n vertices
in the other. A coloring of a graph G is a function c : V (G) → {1, 2, . . .} such
that c(v) �= c(w) whenever {v, w} ∈ E(G). We denote the set of all colorings of
G by C(G). The smallest number of colors in a coloring of G is the chromatic
number of G and denoted by χ(G). We assume that the reader is familiar with
the basic concept of an on-line coloring algorithm. For details we refer to [11].
Intuitively, an on-line coloring algorithm properly colors the vertices of a graph
one by one, consistently using a fixed strategy, depending only on the subgraph
induced by the revealed vertices and their colors, according to an externally
determined ordering of the presented vertices. We denote the (finite) set of all
on-line coloring algorithms for a graph G by AOL(G). Let Π(G) denote the
set of all permutations of the vertices of G. If A ∈ AOL(G) and π ∈ Π(G),
we denote by χA(G, π) the number of colors used by A when the vertices of
G are presented according to π. The largest number of colors used by the on-
line algorithm A for G is called the A-chromatic number of G and denoted by
χA(G). Hence χA(G) = maxπ∈Π(G) χA(G, π). The smallest number of colors
used by an on-line algorithm for G is the on-line chromatic number of G, and
denoted by χOL(G) [6]. Hence χOL(G) = minA∈AOL(G) χA(G). Let G denote
a (possibly infinite) family of graphs. If A ∈ AOL(G) for every G ∈ G, we
say that A is an on-line coloring algorithm for G and write A ∈ AOL(G). An
algorithm A ∈ AOL(G) is said to be competitive for G if there exists a function
f such that χA(G) ≤ f(χ(G)) for every G ∈ G; it is on-line competitive if
χA(G) ≤ f(χOL(G)) for every G ∈ G.

4 On-Line Competitive Coloring Algorithms

As stated before, there does not exist a competitive on-line coloring algorithm for
P6-free bipartite graphs, but there exists a competitive on-line coloring algorithm

288 H.J. Broersma, A. Capponi, and D. Paulusma

for P5-free bipartite graphs. In fact, combining results from [4, 8, 12, 13], and
analyzing a few cases ourselves, we can show there exists an on-line coloring
algorithm that is on-line competitive for the class of H-free bipartite graphs for
any fixed graph H on at most five vertices.

Proposition 1. Let H be a (bipartite) graph on at most five vertices. Then there
exists an on-line coloring algorithm that is on-line competitive for the class of
H-free bipartite graphs.

Proof. The statement is trivial when H is not bipartite. We may further restrict
ourselves to bipartite graphs on exactly five vertices, noting that an F -free bi-
partite graph with F bipartite on at most four vertices is also H-free for some
bipartite graph H on five vertices. We use H+H ′ to denote the disjoint union of
two graphs H and H ′, and pH to denote the disjoint union of p ≥ 2 copies of H .
Before we make a case distinction we first make the following easy observation:

(1) Let F be a graph and A an on-line coloring algorithm that is on-line com-
petitive for the class of F -free bipartite graphs. Then there exists an on-line
coloring algorithm A′ that is on-line competitive for the class of F +K1-free
bipartite graphs.

This claim can be seen as follows. Initially we use algorithm A to color the
vertices of an F + K1-free graph G. If G contains an induced F , then as soon
as all vertices of F have been colored all vertices presented afterwards have a
neighbor in F . Since G is bipartite, this means that the coloring of G can be
finished using only two new colors at most. We now distinguish a number of
cases depending on the value of |E(G)| = m.

Case I: m = 0. Then H = 5K1 and clearly χFF ≤ 5, since FF only uses color 6
on a vertex that has already neighbors with colors 1 to 5. In a bipartite graph
these neighbors form an independent set. On-line competitiveness also follows
from applying (1) five times.

Case II: m = 1. Then H = K2 + 3K1. It is trivial to see that FF is on-line
competitive for the class of K2-free graphs. After applying (1) three times we
get the desired result.

Case III: m = 2. Then H = P3 + 2K1 or 2K2 + K1. For the first subcase we
can proceed similarly as in Case II. For the second subcase we use the following
result from [8]:

(2) If G is a P5-free graph without triangles, then χFF (G) ≤ 3.

Noting that 2K2-free bipartite graphs are both P5-free and triangle-free, and
combining (1) and (2), yields the result.

Case IV: m = 3. Then H = P4 +K1, K1,3 +K1, or P3 +K2. Noting that P4-free
bipartite graphs are both P5-free and triangle-free, and combining (1) and (2),
yields the desired result for the first subcase. For the second subcase we first
observe that χFF (G) ≤ 3 for any K1,3-free bipartite graph G (cf. Case I), and

On-Line Coloring of H-Free Bipartite Graphs 289

then we apply (1) to get the result. Since a P3 + K2-free bipartite graph is a
P6-free bipartite graph, we can of course immediately apply Theorem 1 (which
will be presented later) for the third subcase. It is also not difficult to give a
direct proof that our algorithm BicolorMax is on-line competitive for this class
of graphs.

Case V: m = 4. Then H = K1,4, C4 + K1, P5, or the unique connected graph
with degree sequence 3,2,1,1,1 which we denote by K+

1,3. For the first subcase we
easily get that χFF (G) ≤ 4 in a similar way as in Case I. The girth of a graph
G is the number of edges of a smallest cycle in G. For the second subcase we
combine (1) with the following result from [4]:

(3) If G has girth at least five, then χFF (G) ≤
(2χOL(G)

2

)
.

For the third subcase we use (2). The radius of a graph G is defined as the
minimum of maxv d(u, v,G) over all vertices u in G. For the fourth subcase we
use the following result from [13]:

(4) For every tree T with radius 2, there is an on-line coloring algorithm A that
is on-line competitive for the class of T -free graphs.

Case VI: m = 5. Then H = K2,3 − e for an edge e of K2,3. We need a separate
proof for this case. We first prove the following claim:
Claim: Let G be bipartite and H-free and let C be a component of G such that
C4 is an induced subgraph of C. Then C = Ks,t for some integers s, t ≥ 2.

We prove this claim as follows. If C = C4 = K2,2, then the claim trivially
holds. If not, let C4 = uvwxu, and let N(p) denote the neighbors of vertex p in C.
If N(u) �⊆ N(w), then G contains H as an induced subgraph. So, by symmetry,
N(u) = N(w), and similarly N(v) = N(x). Let y ∈ N(u) ∩N(w). Then uvwyu
is an induced C4, so as before N(y) = N(v) = N(x). Hence all neighbors of u
and w are adjacent to all neighbors of v and x, and vice versa. By repeating the
arguments for all induced C4s, we obtain that C = Ks,t for some s, t ≥ 2.
Since χFF (Ks,t) = 2, the above claim together with (3) implies that χFF (G) ≤
max{

(2χOL(G)

2

)
, 2}.

Case VII: m = 6. Then H = K2,3. Kierstead and Penrice [12] showed that FF
is on-line competitive for the class of H-free graphs. ��

We conclude that the first open question with respect to the (non)existence
of on-line competitive coloring algorithms for H-free bipartite graphs concerns
bipartite graphs H on 6 vertices, in particular H = P6. In 4.1 we present a new
on-line algorithm for coloring general bipartite graphs. We analyze the behavior
of this algorithm in 4.3 and 4.4. In 4.3 we present our main results: the algorithm
is a linear on-line competitive algorithm for P6-free bipartite graphs and for P7-
free bipartite graphs. For our proof of the P6-free case we need a suitable new
class of P6-free bipartite graphs that will be introduced in 4.2. We will not prove
the P7-free case here due to the page limits. In 4.4 we give a new upper bound
for the on-line chromatic number of bipartite graphs.

290 H.J. Broersma, A. Capponi, and D. Paulusma

4.1 The Algorithm BicolorMax

Let G be a bipartite graph on n vertices denoted by 1, 2, . . . , n. Let A =
{a1, a2, . . . , ap} and B = {b1, b2, . . . , bp} be two disjoint ordered sets of col-
ors. For a fixed positive integer k ≤ p, let A(k) = {a1, a2, . . . , ak} and B(k) =
{b1, b2, . . . , bk}.

We first give the general idea of our on-line algorithm. Suppose that G is
presented to the algorithm. At some stage a new uncolored vertex v of G is
revealed, together with its adjacencies to the set S of already colored vertices of
G. If v is not adjacent to any previously revealed vertex of G, then v receives
color a1. Otherwise, the choice of the color for v is based on the present colors
in the bipartition classes of the subgraph of G induced by v and the vertices of
S with colors in A(k) ∪B(k) for some suitable k ≥ 1. To explain this choice we
first need to introduce some additional terminology.

If F ⊆ V (G), then the hue of F , denoted by H(F), is the set of all colors used
on vertices in F . Let π(G) be a permutation of V (G), and assume that v = π(j).
Let Gj(k, v) denote the subgraph of G[{π(1), . . . , π(j)}] induced by v = π(j)
and all the vertices in {π(1), . . . , π(j − 1)} that have been assigned colors from
A(k)∪B(k). We denote by Cj(k, v) the component of Gj(k, v) containing v, and
we write Cj(k, v) := (I1, I2) to indicate the bipartition of its vertex set. Note
that (I1, I2) is the unique bipartition of Cj(k, v), because Cj(k, v) is connected.
We say that color ak is mixed on Cj(k, v) = (I1, I2) if there exist at least two
vertices v ∈ I1 and w ∈ I2 that have been colored with ak. We then call (v, w)
a k-mixed pair.

The algorithm BicolorMax is defined inductively. The vertex π(1) is colored
with a1. Suppose that vertices π(1), . . . , π(j − 1) have already been colored and
let v = π(j) be the next vertex presented to the algorithm.

BicolorMax(G[{π(1), . . . , π(j − 1)}], v)

m := max({0} ∪ {k : ak is mixed on Cj(k, v)}).
if am+1 /∈ H(V (Cj(m + 1, v)))

Cj(m + 1, v) := (I1, I2) such that v ∈ I1

else
Cj(m + 1, v) := (I1, I2) such that am+1 ∈ H(I1).

if v ∈ I1

assign color am+1 to v
else

assign color bm+1 to v.

It is easy to check that BicolorMax is a polynomial time on-line coloring algo-
rithm for bipartite graphs. We leave the details to the reader, but we illustrate
the algorithm with the following example.

On-Line Coloring of H-Free Bipartite Graphs 291

Example 1. Let G be a K4,4 without a perfect matching, i.e., with V (G) =
{1, 2, 3, 4, 5, 6, 7, 8},bipartition in {1, 3, 5, 7} and {2, 4, 6, 8}, and only edges {1, 2},
{3, 4}, {5, 6}, and {7, 8} omitted. If the vertices are revealed in the order of in-
creasing numbers, the algorithm assigns colors a1, a1, b1, b1, a2, b2, a2, b2, respec-
tively. The last color is assigned since a1 is mixed in the subgraph of G induced
by {1, 2, 3, 4, 8}, while a2 is assigned to a vertex in the other bipartition class of
C8(2, 8) = G than the vertex 6. Suppose that G is extended and a new vertex 9 is
revealed. Then 9 is respectively assigned color a1 if 9 is only adjacent to 7, color
b1 if 9 is adjacent to 1 and 7, color b2 if 9 is adjacent to 1, 3 and 7, and color a2 if
9 is adjacent to 2, 4 and 6. For a Kn,n without a perfect matching with n ≥ 5 the
algorithm will continue assigning a2 and b2 if the vertices are presented in an order
alternating between the two classes of the bipartition, as in the above example for
n = 4. In contrast, recall that FF uses n colors in this case.

4.2 A Class of P6-Free Bipartite Graphs

The objective is to show that BicolorMax is an on-line competitive algorithm for
P6-free bipartite graphs. As a first step, we inductively define a class of P6-free
bipartite graphs (see Figure 1). Before giving the formal definition, intuitively,
the next member is composed of two remote copies of the previous member with
complementary adjacencies with respect to the bipartition. The latter property
enables us to define a permutation that forces a large number of colors on any
on-line coloring algorithm for the large members of this class. It will turn out
that a member Hk from this class has on-line chromatic number at least k, and
that if BicolorMax uses color ak on a P6-free bipartite graph G, then Hk+1 is
an induced subgraph of G.

Each graph Hi of the class has a root vertex r(Hi), and:

• H1 is a graph consisting of a single root vertex.
• H2 is a graph consisting of an edge, one of whose end vertices is the root

vertex.
• H3 is a path on four vertices, one of whose internal vertices is the root vertex.
• Hk, k ≥ 4 consists of a root vertex v and two disjoint copies H1

k−1 and
H2

k−1 of Hk−1 and edges joining v to all non-neighbors of r(H1
k−1) (including

r(H1
k−1)) in H1

k−1 and all neighbors of r(H2
k−1) in H2

k−1.

It is easy to check that for all k ≥ 1 the graph Hk is bipartite and P6-free. We
note that the above defined class is different from the class of P6-free bipartite
graphs defined in [6]. The graphs Hk have the following useful properties.

Lemma 1. The two remote copies H1
k−1 and H2

k−1 of Hk−1 in Hk (k ≥ 4) each
contain:

(i) a set of pairwise remote subgraphs isomorphic to H1, . . . , Hk−2 with all the
vertices in the bipartition class containing their root vertex adjacent to r(Hk);

(ii) a set of pairwise remote subgraphs isomorphic toH1, . . . , Hk−2 with all the ver-
tices in the bipartition class not containing their root vertex adjacent to r(Hk).

292 H.J. Broersma, A. Capponi, and D. Paulusma

H5H4H3H2H1

Fig. 1. The graphs H1, H2, H3, H4, H5

Proof. By induction on k. This can easily be checked. Note that a subgraph in
(i) can use some vertices of Hk that a graph in (ii) also uses. ��

The structural properties of Hk imply that its on-line chromatic number is at
least k.

Proposition 2. For any k ≥ 1, χOL(Hk) ≥ k.

Proof. By induction on k. It is routine to check this for k = 1, 2, 3. Suppose that
k ≥ 4 and that the result holds for Hk with 4 ≤ k ≤ t. Consider Ht+1 and an
on-line algorithm A for coloring Ht+1. The first time the ith color is used by A
we identify it as color i. We choose an ordering on V (Ht+1) such that the vertices
of pairwise remote copies of H1, . . . , Ht are presented until color i is used on Hi

(i = 1, . . . , t); then, if i ≤ t− 1, we immediately start presenting the vertices of
Hi+1. By the adjacency relations from the definition of Ht+1 and the properties
of Lemma 1, the ordering of the vertices of H1, . . . , Ht can be chosen in such a
way that r(Ht+1) is adjacent to the (not necessarily root) vertices that received
colors 1, . . . , t. Hence a new color t + 1 is forced upon A. ��

4.3 BicolorMax is On-Line Competitive

Before we present our main result on the on-line competitiveness of BicolorMax,
we make a number of useful observations in the following three lemmas.

Lemma 2. Let G be a bipartite graph. Let BicolorMax color vertex v = π(j)
with am or bm, m ≥ 2. If (x, y) is a k-mixed pair in Cj(k, v) with k ≤ m − 1,
then any path between x and y in Cj(k, v) must pass through v.

Proof. Suppose there exists a path in Cj(k, v) between x and y not passing
through v. Let x = π(r) and let y = π(s). We assume without loss of generality
that y has been presented to BicolorMax after x, i.e., s > r. Suppose x belongs
to Cs(k, y), implying that ak ∈ H(V (Cs(k, y))). Since y is colored with ak, color
ak−1 is mixed on Cs(k−1, y). Then BicolorMax would have colored y with color
bk. Hence x does not belong to the component Cs(k, y). Suppose there exists an

On-Line Coloring of H-Free Bipartite Graphs 293

index i with s < i < j such that x and y belong to the component Ci(k, π(i)).
This means that ak is mixed on Ci(k, π(i)). Then BicolorMax would never use
a color ah with h ≤ k to color π(i). This implies that such an index i does
not exist. We conclude that every path between x and y in Cj(k, v) must pass
through v. ��

Lemma 3. Let G be a P6-free bipartite graph. Let BicolorMax color vertex v =
π(j) with am, m ≥ 2. Let z be a vertex in Cj(m−1, v) assigned color am−1. If z
has odd distance from v in Cj(m−1, v), then d(v, z, Cj(m−1, v)) = 1. Otherwise
d(v, z, Cj(m− 1, v)) = 2.

Proof. Since BicolorMax uses am for v, color am−1 is mixed on Cj(m − 1, v).
This means that there exists a vertex z∗ with color am−1, such that z and z∗ are
in different classes of the bipartition of Cj(m − 1, v). By Lemma 2, a shortest
path Pzz∗ must be formed by joining shortest paths Pzv and Pvz∗ . Suppose
d(v, z, Cj(m − 1, v)) is odd. Then z∗ has even distance from v in Cj(m − 1, v)
implying that d(v, z, Cj(m − 1, v)) ≥ 2. If d(v, z, Cj(m − 1, v)) ≥ 3, then Pzz∗

contains an induced P6. Hence d(v, z, Cj(m−1, v)) = 1. Suppose d(v, z, Cj(m, v))
is even. If d(v, z, Cj(m − 1, v)) ≥ 4, then Pzz∗ contains an induced P6. Hence
d(v, z, Cj(m− 1, v)) = 2. ��

Lemma 4. Let G be a P6-free bipartite graph. If BicolorMax uses color ak on
vertex v = π(j), k ≥ 2, then Cj(k − 1, v) contains Hk+1 as an induced subgraph
with v = r(Hk+1).

Proof. By induction on k. The case k = 2 is trivial. Let k ≥ 3. Since BicolorMax
uses color ak on vertex v, there exists a (k− 1)-mixed pair (x, y) in Cj(k− 1, v).
Assume x = π(r) and y = π(s). By Lemma 2 the components Cr(k − 2, x) and
Cs(k− 2, y) are remote. By the inductive hypothesis x is the root of an induced
copy H1

k of Hk in Cr(k − 2, x) and y is the root of an induced copy H2
k of Hk

in Cs(k− 2, y). Lemma 3 implies that we may without loss of generality assume
that distance d(x, v, Cj(k − 1, v)) = 2 and distance d(y, v, Cj(k − 1, v)) = 1. We
claim that v is adjacent to all neighbors of x in H1

k and to all non-neighbors
of y in H2

k . Suppose x has a neighbor x′ in H1
k not adjacent to v. Let y′ be a

neighbor of y in H2
k , and let z be a common neighbor of x and v in Cj(k− 1, v).

Then the path x′xzvyy′ is an induced P6 in G, which is a contradiction. By using
similar arguments we can prove that v is adjacent to all non-neighbors of y in
H2

k . Hence, we obtain an induced Hk+1 in Cj(k − 1, v) with v = r(Hk+1). ��

We now present our main theorem showing that BicolorMax is a linear on-
line competitive algorithm for the class of P6-free bipartite graphs. Denote by
χBm(G) the maximum number of colors used by BicolorMax for coloring G.

Theorem 1. If G is a P6-free bipartite graph, then χBm(G) ≤ 2χOL(G) − 1.

Proof. Let k be the highest index such that BicolorMax uses color ak on a
vertex in the P6-free bipartite graph G. Since BicolorMax only uses bi with
i ≤ k if ai has been used before, χBm(G) ≤ 2k. For k = 1 the statement of

294 H.J. Broersma, A. Capponi, and D. Paulusma

the theorem obviously holds. Suppose k ≥ 2. Due to Lemma 4 the graph G
contains a copy of Hk+1 as an induced subgraph. Proposition 2 implies that
χOL(G) ≥ χOL(Hk+1) ≥ k + 1. ��

Using a similar but more involved analysis, we were able to prove the following
result, showing that BicolorMax is also on-line competitive for the class of P7-free
bipartite graphs. We will postpone the proof to the full paper.

Theorem 2. If G is a P7-free bipartite graph, then χBm(G) ≤ 8χOL(G) + 8.

4.4 A New Upper Bound on χOL for Bipartite Graphs

In [15], Lovász, Saks and Trotter define an on-line coloring algorithm A for
general graphs that has χA(G) ≤ 2 log2(n) when applied to any bipartite graph
G on n vertices (See also [11]). Below we give a tighter upper bound for the on-
line chromatic number of a bipartite graph in terms of subgraphs isomorphic to
P5. We note that it is not possible to prove an upper bound in terms of induced
subgraphs isomorphic to P6, since it follows from Proposition 2 and also from a
result in [6] that no competitive algorithm exists for the class of P6-free bipartite
graphs.

Theorem 3. Let G be a bipartite graph in which each component has at most s
pairwise remote induced subgraphs isomorphic to P5. If s = 0, then χBm(G) ≤ 4.
If s > 0, then χBm(G) ≤ 2 log2(s) + 6.

Proof. We prove the theorem by showing that a component C of G contains at
least 2k−3 pairwise remote induced subgraphs isomorphic to P5, if BicolorMax
uses color ak on C with k ≥ 3. We use induction on k. It is easy to check that
a component C contains an induced P5, if BicolorMax uses color a3 on a vertex
of C. Let k ≥ 4. Suppose v = π(j) is colored by ak. Then there exists a (k − 1)-
mixed pair (x, y) in Cj(k − 1, v). By Lemma 2, x and y belong to two different
components in Gj(k − 1, v) − v both containing 2k−4 pairwise remote induced
subgraphs isomorphic to P5. ��

The above proof shows that if BicolorMax uses color a3 on a bipartite graph G,
then G contains an induced P5. This implies that BicolorMax is competitive for
the class of P5-free bipartite graphs.

5 Conclusions and Future Work

We have introduced the new on-line coloring algorithm BicolorMax for bipar-
tite graphs. We have shown that the number of colors used by this algorithm
on a bipartite graph G is bounded from above by the number of remote in-
duced subgraphs of G isomorphic to P5. As a consequence we improved the
best known upper bound for the on-line chromatic number of bipartite graphs
given in [15]. For any P6-free (respectively, P7-free) bipartite graph G, Bicolor-
Max has been shown to use at most twice (respectively, eight times) as many

On-Line Coloring of H-Free Bipartite Graphs 295

colors as any optimal on-line coloring algorithm for G. In a future continua-
tion of this work, we would like to face the problem of deciding whether for
any n ≥ 8, a linear on-line competitive algorithm can be defined for the class
of Pn-free bipartite graphs. We also consider analyzing BicolorMax and re-
lated algorithms for other classes of H-free bipartite graphs, in particular for
graphs H with 6 vertices. A seemingly difficult and interesting open case is
the (non)existence of an on-line competitive algorithm for the class of C6-free
bipartite graphs.

References

1. J.A. Bondy and U.S.R. Murty, Graph Theory with Applications, Macmillan,
London and Elsevier, New York (1976).

2. M. Chrobak and M. Ślusarek, Problem 84-23. Journal of Algorithms 5 (1984),
588.

3. T. Erlebach and J. Fiala, On-line coloring of geometric intersection graphs.
Computational Geometry: Theory and Applications 23 (2002), 243–255.

4. A. Gyárfás, Z. Király, and J. Lehel, On-line competitive coloring algorithms.
Technical report TR-9703-1 (1997), available at http://www.cs.elte.hu/tr97/.

5. A. Gyárfás, Z. Király, and J. Lehel, On-line 3-chromatic graphs. II. Critical
graphs. Discrete Mathematics 177 (1997), 99–122.

6. A. Gyárfás and J. Lehel, On-line and first-fit colorings of graphs. Journal of
Graph Theory 12 (1988), 217–227.

7. A. Gyárfás and J. Lehel, First fit and on-line chromatic number of families of
graphs. Ars Combinatorica 29C (1990), 168-176.

8. A. Gyárfás and J. Lehel, Effective on-line coloring of P5-free graphs. Combi-
natorica 11 (1991), 181–184.

9. M.M. Halldórsson, Online coloring known graphs. Electronic Journal of Com-
binatorics 7 (2000), Research Paper 7, 9pp.

10. H.A. Kierstead, The linearity of first-fit coloring of interval graphs. SIAM
Journal on Discrete Mathematics 1 (1988), 526–530.

11. H.A. Kierstead, Coloring graphs on-line. In: Fiat and Woeginger, eds.: Online
algorithms: the state of the art (1998), no. 1442 in Lecture Notes in Computer
Science, Springer Verlag, 281–305.

12. H. Kierstead and S.G. Penrice Radius two trees specify χ-bounded classes.
Journal of Graph Theory 18 1994, 119–129.

13. H. Kierstead, S.G. Penrice, and W. Trotter, On-line graph coloring and
recursive graph theory. SIAM Journal on Discrete Mathematics 7 1994, 72–89.

14. K. Kolossa, On the on-line chromatic number of the family of on-line 3-chromatic
graphs. Discrete Mathematics 150 (1996), 205–230.

15. L. Lovász, M. Saks, and W.T. Trotter, An on-line graph coloring algorithm
with sublinear performance ratio. Discrete Mathematics 75 (1989), 319–325.

16. B. Randerath and I. Schiermeyer, Vertex colouring and forbidden subgraphs –
a survey. Graphs and Combinatorics 20 (2004), 1–40.

Distributed Approximation Algorithms
for Planar Graphs

Andrzej Czygrinow1, Micha�l Hańćkowiak2, and Edyta Szymańska2,�

1 Department of Mathematics and Statistics,
Arizona State University, Tempe, AZ 85287-1804, USA

andrzej@math.la.asu.edu
2 Faculty of Mathematics and Computer Science,

Adam Mickiewicz University, Poznań, Poland
mhanckow@amu.edu.pl, edka@amu.edu.pl

Abstract. In this paper we construct two distributed algorithms for
computing approximations of a largest matching and a minimum dom-
inating set in planar graphs on n vertices. The approximation ratio in
both cases approaches one with n tending to infinity and the number of
synchronous communication rounds is poly-logarithmic in n. Our algo-
rithms are purely deterministic.

1 Introduction

The distributed model of computation has gained a lot of attention after the pio-
neering work by Awerbuch et. al. [AGLP89] and many others in the mid eighties
of the last century. The most fundamental challenge in distributed networks is
how the local structure of a network impacts its global properties. This leads to
a completely different computational paradigm than the sequential model or the
parallel PRAM model. Not surprisingly many problems which admit efficient se-
quential protocols, as maximum matching or maximal independent set, to name
a few, require a completely new algorithmic approach and yield interesting open
problems in discrete mathematics.

The model considered in this paper was introduced by Linial in [L92] and
named LOCAL in [P00]. In this model, the network is represented by an undi-
rected graph, each vertex of which corresponds to a processor, and each edge
corresponds to a communication channel between two processors. The network
is synchronized and computations proceed in discrete rounds. In a single round
a vertex can send and receive messages to and from its neighbors, and per-
form some local computations. Neither the amount of local computations nor
the lengths of messages are restricted in any way. In addition, we assume that
vertices have unique identifiers. There are several measures of efficiency of dis-
tributed protocols but we will concentrate on its time complexity, that is, a
maximum number of rounds needed to find a solution. An algorithm is efficient
if its time complexity is poly-logarithmic in n.
� The third author thanks the Department of Mathematics and Computer Science at

Emory University for providing an office space and computer access.

T. Calamoneri, I. Finocchi, G.F. Italiano (Eds.): CIAC 2006, LNCS 3998, pp. 296–307, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Distributed Approximation Algorithms for Planar Graphs 297

Very few classical graph-theoretic problems admit efficient distributed algo-
rithms. For example, even the maximal independent set problem, for which an
efficient deterministic PRAM algorithm exists [L86], still has an unknown distrib-
uted complexity. Another approach towards a better understanding of a compu-
tational model, is to study the approximability of problems in that model. This
has motivated intensive research on approximation algorithms in the distributed
model. For the state of the art of distributed approximation we refer the reader
to an excellent survey by Elkin [E04].

In this paper we design distributed algorithms for planar graphs and exploit
the fact the planar graphs are minor monotone. In a given graph G = (V,E)
every set of pairwise disjoint edges constitutes a matching. Let β(G) denote the
cardinality of a largest matching in G. The maximum matching problem is to
find a matching M in graph G of size β(G). A dominating set in a graph G
is a subset D of vertices such that for every vertex v /∈ D a neighbor u of v
belongs to D. By γ(G) we will denote the cardinality of a smallest dominating
set in G, also known as the domination number . The minimum dominating set
problem is to find a dominating set D in graph G of size γ(G). We propose
two purely deterministic distributed algorithms with the poly-logarithmic time
complexity. For every planar graph on n vertices, our first algorithm finds a
matching M such that |M | ≥ (1 − O(1

log n))β(G) (see Theorem 1). The second
algorithm works for planar graphs that do not contain K2,log n as a subgraph.
In every such graph on n vertices it finds a dominating set D such that |D| ≤
(1+O(1

log n))γ(G) (see Theorem 2). Although this technical assumption certainly
restricts the applicability of the method, the subclass of K2,log n-free planar
graphs is quite large and contains, for example, outer-planar graphs (they do
not contain K2,3).

To give an overview of previous research, let us mention that there exists no
efficient distributed protocol for finding a maximum matching or a minimum
dominating set even when restricted to very particular families of networks. As
shown by Linial in [L92], finding a maximum matching in a cycle on n ver-
tices requires Ω(n) rounds and the same bound holds for minimum dominating
set. More recently, it has been shown in [KMW04] that the number of rounds
required in order to achieve a constant or even only a poly-logarithmic approx-
imation ratio for constructing an inclusion maximal matching and a minimum
dominating set is at least Ω(

√
logn/ log logn) or Ω(log∆/ log log∆), where ∆

denotes the maximum degree of the graph.
A maximal matching problem admits a O(log n) time randomized distributed

algorithm (see, for example [L86]). Later, in [HKP99] a deterministic, poly-
logarithmic time algorithm for this problem was given. The techniques from
[HKP99] were applied in [CHS04] and [CHSz04] to give a 2/3-approximation for
maximum matching in general graphs. Moreover, based on these ideas, in [CH03]
a (1 − ε)-approximation (for any fixed ε > 0) for bipartite graphs was derived.

For the minimum dominating set problem, Kutten and Peleg [KP95] gave an
efficient distributed algorithm which finds a dominating set of size at most n/2 in
general graphs. The first non-trivial approximation ratio, O(log∆) was achieved

298 A. Czygrinow, M. Hańćkowiak, and E. Szymańska

in [JRS01] by a randomized method. Further, in [KW03] a O(k∆2/k log∆)-
approximation in constant time was obtained using the LP relaxation techniques
with randomization. Similar, randomized result for the connected dominating set
can be found in [DPRS03]. In contrast, our results are purely deterministic and
are among only few examples of distributed protocols where the poly-logarithmic
time complexity with a very good approximation ratio is achieved without the
use of random bits.

Approximations of weighted versions of the maximum matching and minimum
dominating set problems were recently studied in [CH04]. Our proof techniques
rely on a clustering procedure introduced in [CH04]. We further develop the
method in this work and hope that it might be applied for other problems. By
a cluster we mean a subset of the vertex set that induces a connected subgraph.
The clustering procedure partitions the nodes of the input graph into clusters. If
the diameter of a cluster is poly-logarithmic in n, then, in the LOCAL model, we
can compute every function efficiently. Therefore, having the vertices grouped
into clusters we find the maximum matching in every cluster. The union of the
matchings yields a matching of size approximating β(G). The situation is similar
but more complicated in the case of the minimum dominating set. We first make
sure that all vertices of large degree are included in the dominating set. Then the
clustering is performed and a set of vertices dominating the remaining vertices
is constructed within the clusters.

In both problems the number of rounds of our algorithms is a poly-logarithmic
function determined by the diameters of the clusters. At the same time, we
control the number of edges connecting different clusters and based on that value
the approximation ratio is derived. For both algorithms, better approximation
ratios can be achieved at the expense of higher running times.

The rest of the paper is organized as follows. In Section 2, we present the
clustering algorithm. Sections 3 and 4 contain the description and analysis of
the approximation algorithms for the maximum matching and the minimum
dominating set, respectively.

2 Clustering Algorithm

In this section, we give a clustering algorithm which will be applied to find
matchings as well as dominating sets. We will use the low-degree decomposition
of a planar graph from [CH04].

Definition 1. A low-degree decomposition of a planar graph G = (V,E) is a
partition of V into K independent sets V1, . . . , VK that satisfies two conditions:

1. K = O(log |V |).
2. For every i = 1, . . . ,K − 1, if v ∈ Vi then deg(v,

⋃K
l=i+1 Vl) ≤ 6.

It is not difficult to prove that every planar graph admits a low-degree decom-
position. In addition, as shown in [CH04], such a decomposition can be found
efficiently by a distributed algorithm.

Distributed Approximation Algorithms for Planar Graphs 299

Decomposition
Input: Planar graph G, number n such that |V (G)| ≤ n.
Output: Low-degree decomposition V1, . . . , Vlogk n of G with k = 36/35.

1. Let U := V (G), i := 1.
2. Iterate log36/35 n times:

(a) Let A be the set of vertices in G[U] of degree at most 6.
(b) Use the Cole-Vishkin algorithm from [CV86] to find a maximal indepen-

dent set I in the subgraph of G[U] induced by A.
(c) Vi := I, i := i + 1, U := U \ I.

Lemma 1. [CH04] Let G = (V,E) be a planar graph such that the identifiers
of V are in {1, . . . , n}. Then the procedure Decomposition finds a low-degree
decomposition of G in O(log∗ n logn) rounds.

Our approximation algorithms will use a similar clustering strategy as the one
in [CH04]. In addition to procedure Clustering we introduce a subprocedure
SmallClusters. The latter computes clusters of a constant diameter and in
each cluster finds a set of vertex disjoint stars with special properties that can
be used by Clustering to compute ”big clusters”. Thanks to this approach we
save on the time complexity for constructing the clusters (see Lemma 4).

SmallClusters
Input: Planar graph G = (V,E) with weights on edges ω : E → R+ and number
n such that |V | ≤ n and ID(v) ≤ n.
Output: Set of vertex-disjoint stars in G.

1. H := G.
2. Iterate log 10/ log 12

11 times:
(a) Call Decomposition to find a partition W1, . . . ,Wlog36 n of H . In addi-

tion, let Zi :=
⋃

l>i Wl.
(b) For every vertex w, in parallel, if w ∈ Wi and N(w) ∩ Zi �= ∅ then:

– Let u(w) be a vertex in N(w) ∩ Zi such that

ω({w, u(w)}) = max
v∈N(w)∩Zi

ω({w, v}).

– Add {w, u(w)} to the auxiliary graph F .
(c) Each connected component of F is a tree of diameter O(log n). For each

tree T in F , in parallel, find a set of disjoint stars S1, S2, . . . , in T of the
maximum weight.

(d) Modify H as follows:
– In each star, contract vertices to create a new vertex. Let V (H)

consist of new vertices and those vertices which were not contracted.
– For every v, w ∈ V (H) set the weight of {v, w} to be the sum of

weights of edges between vertices contracted to v and vertices con-
tracted to w.

300 A. Czygrinow, M. Hańćkowiak, and E. Szymańska

3. If V (H) = {v1, ..., vM} then for each vi let Vi be the set of vertices contracted
to vi in all of the above iterations.

4. In each G[Vi], in parallel, compute a set of disjoint stars Q(i)
1 , . . . , Q

(i)
M(i) of

the largest possible weight.
5. Return the set of stars Q(i)

j , for i = 1, . . . ,M ; j = 1, . . . ,M(i).

Let κ be the supremum of all real numbers r such that every weighted planar
graph G contains a set of vertex-disjoint stars with the total weight of at least
an r fraction of the weight of G. We need the following lemma.

Lemma 2. κ ≥ 1
5 .

Proof. A star forest is a forest in which every connected component is a star
and the star arboricity of a graph G, st(G), is the minimum number of star
forests that partition E(G). Hakimi et al. [HMS96] showed that if G is planar
then st(G) ≤ 5 and so there is a set of vertex-disjoint stars with weight of at
least ω(G)/5 where ω(G) =

∑
e∈E ω(e).

Lemma 3. Let Q1, . . . , QL be the disjoint stars in G obtained from Small-
Clusters. Then

ω(
⋃
i

Qi) ≥
9
10

κω(G).

Proof. Let σi be the maximum diameter of a subgraph of G which corresponds
to a vertex of H in the ith iteration. Then σi ≤ 3σi−1 + 2 with σ0 = 0 which
gives σi < 2 · 3i and so σk < 2 · 327 for k = log 10/ log 12

11 . Therefore each sub-
graph G[Vi] in step 4 has a constant diameter and its optimal set of stars can
be computed in a constant number of rounds. Let Pi be the sum of weights
of edges in H in the ith iteration. In the next iteration w(F) is at least Pi/6
and the stars S1, S2, . . . , in each tree of F have the weight of at least ω(T)/2.
Consequently, the weight of the graph in the (i+ 1)st iteration, Pi+1, is at most
11
12Pi and P0 = ω(G). This gives Pk ≤ 1

10ω(G) for k = log 10/ log 12
11 . By Lemma

2, the weight of stars in G[Vi] is larger then 9
10κω(G).

The procedure SmallClusters is now used in Clustering given below.

Clustering
Input: Planar graph G = (V,E) and number n such that |V | ≤ n and ID(v) ≤
n. Number c ≥ 1.
Output: Partition of V into L sets V1, . . . , VL.

1. H := G and let ω(e) := 1 for any e ∈ E(H).
2. Iterate c log logn/ log 1

1− 9
10 κ

times:
(a) Call SmallClusters to find set of disjoint stars S1, S2, . . . in H .
(b) Modify H as in step 2(d) of SmallClusters

Distributed Approximation Algorithms for Planar Graphs 301

3. If V (H) = {v1, ..., vL} then for each vi let Vi be the set of vertices contracted
to vi in all of the above iterations.

4. Return sets V1, . . . , VL.

We summarize the Clustering in the next lemma.

Lemma 4. Let V1, . . . , VL be the clusters in G obtained from Clustering.
Then

1. For every i, G[Vi] is a subgraph of diameter O(logd n), where

d = c log 3/ log
1

1 − 9
10κ

< 5.54c.

2. The number of edges connecting different clusters is O(|E(G)|/ logc n).
3. Clustering can be performed in O(log logn log∗ n log1+d n) rounds.

Proof. Analogously to the proof of Lemma 3 we have σi < 2 · 3i and so
σk < 2 logd n for k = c log logn/ log 1

1−κ 9
10

. Then, for the second part, we have

Pi+1 ≤ (1 − κ 9
10)Pi and P0 = |E(G)|, and so Pk = O(|E(G)|/ logc n). Finally,

the third part of the lemma follows from the fact that we have O(log logn) it-
erations of step 2 and in each iteration we invoke SmallClusters that calls
the Decomposition a constant number of times. Decomposition, in turn,
needs O(log∗ n logn) rounds. Since the diameter of each cluster (which corre-
sponds to a vertex of H) is O(logd n), Clustering needs O(log∗ n log1+d n)
rounds.

3 Maximum Matching

In this section, we will give a distributed algorithm which approximates a max-
imum matching in a planar graph G. The algorithm consists of two main parts.
First we modify the graph G to obtain a new graph Ḡ and then we invoke the
clustering algorithm for Ḡ and find a maximum matching locally in each clus-
ter. Recall that the total number of edges connecting different clusters is small
in comparison with the number of vertices in the graph. However, a maximum
matching in a planar graph can be much smaller than the number of vertices
and so if clustering is invoked in such a graph its result would not yield a good
approximation. The preprocessing phase addresses this issue. It obtains from a
graph G a subgraph Ḡ with the property that β(G) = β(Ḡ) = Ω(|V (Ḡ)|).

The first phase of the algorithm, the preprocessing, eliminates (by deleting
some of the vertices) two special subgraphs of G: the stars and the double-stars.
We say that G contains a k-star if for some v, v1, . . . , vk ∈ V (G), {v, vi} ∈ E(G)
for every i, and degG(vi) = 1 for every i. In a similar way, we say that G
contains a k-double-star if for some u, v, v1, . . . , vk ∈ V (G), {u, vi} ∈ E(G) and
{v, vi} ∈ E(G) for every i, and degG(vi) = 2 for every i. Every such structure
contributes at most two edges to any maximum matching in G. In the next two
lemmas we shall show that if H contains neither 2-stars nor 3-double-stars then
β(H) = Ω(|V (H)|).

302 A. Czygrinow, M. Hańćkowiak, and E. Szymańska

Lemma 5. Let H = (V,E) be a planar graph and let τ = |{v ∈ V : deg(v) ≥ 3}|.
Then β(H) ≥ (τ + 4)/6.

Proof. Let M be a matching in H with |M | = β(H). Let V1 be the set of M -
saturated vertices. Then, since M is a maximum matching, V \ V1 induces the
empty subgraph of H . Let V2 := (V \ V1) ∩ {v ∈ V : deg(v) ≥ 3}. Consider the
bipartite graph F = H [V1, V2]. As F is planar, |E(F)| ≤ 2(|V1| + |V2|) − 4. On
the other hand, 3|V2| ≤ |E(F)|. Thus |V2| + 4 ≤ 2|V1|. However, |V1| = 2β(H)
and |V2| ≥ τ − 2β(H) yields β(H) ≥ (τ + 4)/6.

Lemma 6. Let G = (V,E) be a planar graph with n = |V | and no isolated
vertices. If G contains neither 2-stars nor 3-double-stars then β(G) = Ω(n).

Proof (Sketch). By Lemma 5 we may concentrate only on the set W = {v ∈
V (G) : deg(v) = 2} and the case when, say |W | ≥ 14n/15. Then, for a subset
W ′ ⊆ W such that if w ∈ W ′ then deg(w,W) ≥ 1, using planarity and the
assumption about the absence of 2-stars and 3-double-stars, we have |W ′| ≥
|W |/2 and β(G) ≥ |W ′|/3 = 7n/45.

Preprocess
Input: Planar graph G.
Output: Planar graph Ḡ with no 2-stars and no 3-double stars.

1. For every vertex v, in parallel, find the largest k-star v, v1, . . . , vk with the
center in v. If k > 1 then delete v2, . . . , vk.

2. For every pair of vertices u, v which are at distance two, in parallel, find the
largest k-double-star u, v, v1, . . . , vk with centers in u and v. If k > 2 then
delete v3, . . . , vk.

3. Return the new graph Ḡ.

Clearly Ḡ contains neither 2-stars nor 3-double-stars, as in the second step we
did not create any vertices of degree one. Thus, by Lemma 6, β(Ḡ) = Ω(|V (Ḡ)|).
In addition, it is easy to see that

β(Ḡ) = β(G). (1)

We can now describe our approximation algorithm.

ApproxMaxMatching
Input: Planar graph G.
Output: Matching M in G.

1. Call Preprocess to obtain Ḡ.
2. Call Clustering with c = 1 to partition V (Ḡ) into clusters V1, . . . , VL.
3. For every i, in parallel, find a maximum matching Mi in Ḡ[Vi].
4. Return M := M1 ∪M2 ∪ · · · ∪ML.

Distributed Approximation Algorithms for Planar Graphs 303

Theorem 1. ApproxMaxMatching finds in a planar graph G on n vertices
a matching M with

|M | ≥ (1 −O(1/ logn)) β(G).

The algorithm runs in O(log logn log∗ n log1+d n) rounds, where d = 5.54.

Proof. Consider a maximum matching M∗ in Ḡ and let M∗
i be the subset of

M∗ which contains all edges with both endpoints in Vi. In addition, let C be the
set of edges that connect different clusters. We have

|M∗| ≤ |C| +
L∑

i=1

|M∗
i | ≤ |C| +

L∑
i=1

|Mi| = |C| + |M |.

By Lemma 4 (part 2), |C| ≤ |V (Ḡ)|/ logn which in view of Lemma 6 gives
|C| ≤ O(β(Ḡ))/ logn. Consequently,

|M | ≥ β(Ḡ) − |C| = β(Ḡ)(1 −O(1/ logn))

which by (1) gives |M | ≥ (1 −O(1/ logn))β(G).

4 Minimum Dominating Set

We will now turn our attention to the minimum dominating set problem. We
assume that G = (V,E) is a planar graph on n vertices such that for any two
vertices u, v ∈ V |N(u) ∩ N(v)| ≤ log n. Again the algorithm has two phases.
In the first phase we add to a dominating set vertices with degrees of at least
log2 n. Then we consider two sets of vertices. Let VSN be the set of vertices of
degree smaller than log2 n which do not have neighbors of degree at least log2 n,
that is

VSN = {v ∈ V : ∀u∈N [v]deg(u) < log2 n}.

Let VBN ⊂ V \ VSN be the set of vertices which have degree smaller than log2 n
but have a neighbor in VSN , that is

VBN = {v ∈ V \ VSN : deg(v) < log2 n, ∃u∈VSN{u, v} ∈ E}.

In the second phase of the algorithm we shall find a clustering using Clustering
in the graph induced by VSN ∪ VBN and locally, in each cluster Vi, we will find
a set of the smallest size which dominates Vi ∩ VSN .

ApproxMinDS
Input: Planar graph G = (V,E).
Output: A dominating set D in G.

1. Let D := ∅.
2. For every vertex v, in parallel, if deg(v) ≥ log2 n then add v to D.

304 A. Czygrinow, M. Hańćkowiak, and E. Szymańska

3. Let G′ = G[VBN ∪ VSN]. Call Clustering with constant c = 5 to partition
V (G′) into clusters V1, . . . , VL. Let V ′

i be the set of vertices v in V (G′) \ Vi

such that for some u ∈ Vi, {v, u} ∈ E and let V ′′
i be the set of vertices v ∈ Vi

such that for some u ∈ V ′
i , {v, u} ∈ E.

4. For every i = 1, . . . , L, in parallel, find a smallest set D′
i ⊆ Vi which domi-

nates (VSN ∩ Vi) \ V ′′
i . Let Di := D′

i ∪ V ′
i .

5. For every i = 1, . . . , L, in parallel, add all vertices from Di to D.
6. Return D.

In the lemma below we analyze the first phase of the algorithm where vertices
of degree at least log2 n are added to D.

Lemma 7. Let G = (V,E) be a planar graph such that for any two distinct
vertices u, v ∈ V , |N(u) ∩N(v)| ≤ logn and let B = {v ∈ V : deg(v) ≥ log2 n}.
If D∗ is a dominating set in G then |B \D∗| = O (|D∗|/ logn) .

Proof. We will show that |D∗| = Ω(|B \D∗| logn). For that we first prove that
there is a subset {w1, . . . , wk} ⊆ B \ D∗ of at least k = |B \ D∗|/10 vertices
such that each wi has a set Si ⊆ (N(wi) \ {w1, . . . , wk}) of log2 n

4 neighbors and
Si ∩ Sj = ∅ whenever i �= j. Indeed, note that as G[B \D∗] is planar there is an
independent set I in G[B \D∗] of at least 2k vertices. Take w1 ∈ I arbitrarily
and let S1 be a set of log2 n

4 neighbors of w1. Now suppose that {w1, . . . , wl} have
been selected with l < k. Consider the bipartite subgraph of G with bipartition
W = I \ {w1, . . . , wl} and S =

⋃l
i=1 Si. Then G[W,S] is a planar graph and so

|E(W,S)|≤2(|W |+ |S|)−4=2
(
|W |+ l log2 n

4

)
−4 < 2

(
|W | + |W | log2 n

4

)
−4.

Consequently,

|E(W,V \ S)| > log2 n|W | − 2
(
|W | + |W | log2 n

4

)
+ 4 =

|W |
(

log2 n

2
− 2

)
+ 4 ≥ |W | log2 n

4

and we can select wl+1 from W which is connected with at least log2 n/4 vertices
from V \ S.

Let (w1, S1), . . . , (wk, Sk) be as above. Let D be a subset of V \ {w1, . . . , wk}
which dominates S =

⋃k
i=1 Si in G. We claim that |D| = Ω(k logn). Consider

D′ = D∩S. If |D′| ≥ k logn then we are done. Otherwise, let S′
i = Si \D. Since

|S| − |D′| ≥ k
(

log2 n
4 − logn

)
at least k/2 of wi’s have |S′

i| ≥ log2 n
8 . Otherwise

k∑
i=1

|S′
i| <

k

2

(
log2 n

8
+

log2 n

4

)
< |S| − |D′|

Distributed Approximation Algorithms for Planar Graphs 305

which is not possible. Without loss of generality, we can assume that for i =
1 . . . , k/2, |S′

i| = log2 n
8 . Note that

⋃
i≤k/2 S

′
i ∩ D = ∅. Consider the auxiliary

bipartite graph H = (V1, V2) obtained by setting V1 = D and contracting each
S′

i to one vertex and adding it to V2. Put an edge between v ∈ V1 and S′
i ∈ V2

if v dominates at least one vertex from S′
i in G. First observe that H is planar

as all edges correspond to edges in G and so a subdivision of K3,3 or K5 in H
will yield the subdivision of K3,3 or K5 in G. Thus |E(H)| ≤ 2(|V1| + |V2|) −
4 = 2

(
k
2 + |D|

)
− 4. Degree of each S′

i in H is at least log n
8 as if for some i,

there are less than log n
8 vertices dominating S′

i then one of them has more than
8|S′

i|/ logn = logn neighbors in S′
i and so more than logn common neighbors

with wi. Thus,
k logn

8
≤ |E(H)| ≤ k + 2|D| − 4

and so

|D∗| ≥ |D| ≥
(

logn
8

− 1
)
k

2
+ 2 = Ω(k logn) = Ω(|B \D∗| logn).

In the next lemma, we analyze the second phase.

Lemma 8. Let G = (V,E) be a planar graph and let D′ =
⋃L

i=1 Di be the union
of sets obtained by ApproxMinDS in step four. Let D∗

SN be a set of the smallest
size which dominates VSN in G . Then |D′| ≤ (1 + O (1/ logn)) |D∗

SN |.

Proof. First note that D∗
SN ⊆ VSN ∪VBN . Since every vertex in VSN ∪VBN has

degree of at most log2 n we have

|D∗
SN | ≥ |VSN |/ log2 n and |VBN | ≤ |VSN | log2 n.

On the other hand, by Lemma 4, the number of edges connecting different clus-
ters eclusters is at most

|E(G[VSN ∪ VBN])|/ log5 n < 3(log2 n + 1)|VSN |/ log5 n ≤

3 log2 n(log2 n + 1)|D∗
SN |/ log5 n = O(|D∗

SN |/ logn).

Thus
eclusters = O(|D∗

SN |/ logn). (2)

We claim that
|D′| ≤ |D∗

SN | + 2eclusters. (3)

Indeed, vertices from D∗
SN ∩ Vi dominate all vertices from (VSN ∩ Vi) \ V ′′

i as
any vertex in the latter set has all of its neighbors in Vi. Thus

L∑
i=1

|D′
i| ≤

L∑
i=1

|D∗
SN ∩ Vi| = |D∗

SN |,

306 A. Czygrinow, M. Hańćkowiak, and E. Szymańska

and so

|D′| ≤
L∑

i=1

(|D′
i| + |V ′

i |) ≤ |D∗
SN | +

L∑
i=1

|V ′
i | ≤ |D∗

SN | + 2eclusters

which verifies (3). Finally, by (3) and (2),

|D′| ≤ (1 + O (1/ logn)) |D∗
SN |.

We can now summarize the performance of ApproxMinDS.

Theorem 2. Let G = (V,E) be a planar graph on n vertices such that for any
two distinct vertices u, v, |N(u) ∩N(v)| ≤ logn. Then ApproxMinDS finds a
dominating set D in G with

|D| ≤ (1 + O(1/ logn))γ(G).

Procedure ApproxMinDS runs in O(log logn log∗ n log1+d n) rounds, where
d = 27.7.

Proof. To see that D is a dominating set note that after the second step of Ap-
proxMinDS all vertices with degree of at least log2 n or which have a neighbor
of such a degree are dominated by D. Therefore, only vertices from VSN are not
dominated at this moment. However Di := D′

i ∪ V ′
i dominates all vertices in

VSN ∩ Vi and so D is a dominating set in G. Now let D∗ be a dominating set
in G of the minimum size and, as in Lemma 7, let B = {v : deg(v) ≥ log2 n}.
We have D = B ∪D′ where D′ =

⋃L
i=1 Di and so |D| ≤ |B|+ |D′|. By virtue of

Lemma 7,

|B| = |B ∩D∗| + |B \D∗| = |D∗ ∩B| + O

(
|D∗|
logn

)
.

In addition, |D∗
SN | ≤ |D∗ ∩S| as every vertex in VSN can be dominated only by

vertices of degree less than log2 n. Consequently, be Lemma 8,

|D′| ≤ (1 + O (1/ logn)) |D∗
SN | ≤ (1 + O (1/ logn)) |D∗ ∩ S|.

Thus

|D| ≤ |D∗∩B|+O

(
|D∗|
logn

)
+(1 + O (1/ logn)) |D∗∩S| = (1 + O (1/ logn)) |D∗|.

Finally, by Lemma 4, the number of rounds is O(log logn log∗ n log1+d n).

References

[AGLP89] B. Awerbuch, A. V. Goldberg, M. Luby, S. A. Plotkin, Network Decompo-
sition and Locality in Distributed Computation, Proc. 30th IEEE Symp.
on Foundations of Computer Science , 1989, pp. 364-369.

[CV86] R. Cole, U. Vishkin, Deterministic coin tossing with applications to optimal
parallel list ranking, Information and Control, 1986, 70, pp. 32-53.

Distributed Approximation Algorithms for Planar Graphs 307

[CH03] A. Czygrinow, M. Hańćkowiak, Distributed Algorithm for Better Approxi-
mation of the Maximum Matching, COCOON 2003 LNCS 2697 , 2003, pp.
242-251.

[CH04] A. Czygrinow, M. Hańćkowiak, Distributed algorithms for weighted prob-
lems in sparse graphs, to appear in Journal of Discrete Algorithms, in Press,
(Available online 7 September 2005)

[CHS04] A. Czygrinow, M. Hańćkowiak, E. Szymańska, Distributed algorithm for
approximating the maximum matching, Discrete Applied Mathematics,
Volume 143, Issues 1-3, (2004), 62–71.

[CHSz04] A. Czygrinow, M. Hańćkowiak, E. Szymańska, A fast distributed algorithm
for approximating the maximum matching, Algorithms - ESA 2004 LNCS
3221, (2004), 252–263.

[DPRS03] D. Dubhashi, A. Mei, A. Panconesi, J. Radhakrishnan, and A. Srinivasan,
Fast Distributed Algorithms for (Weakly) Connected Dominating Sets and
Linear-Size Skeletons, In Proc. of the ACM-SIAM Symposium on Discrete
Algorithms (SODA), pp. 717-724, 2003.

[E04] M. Elkin, An Overview of Distributed Approximation, in ACM SIGACT
News Distributed Computing Column Volume 35, Number 4 (Whole num-
ber 132), Dec. 2004, pp. 40-57.

[HMS96] S. Hakimi, J. Mitchem, E. Schmeichel, Star arboricity of graphs, Discrete
Mathematics, 149, 1-3, (1996), 93–98.

[HKP99] M. Hańćkowiak, M. Karoński, A. Panconesi, A faster distributed algorithm
for computing maximal matching deterministically, Proceedings of PODC
99, the Eighteen Annual ACM SIGACT-SIGOPS Symposium on Principles
of Distributed Computing, pp. 219-228.

[JRS01] L. Jia, R. Rajaraman, and R. Suel, An Efficient Distributed Algorithm for
Constructing Small Dominating Sets, In Proc. of the 20th ACM Sympo-
sium on Principles of Distributed Computing (PODC), pp. 33-42, 2001.

[KP95] S. Kutten, D. Peleg, Fast distributed construction of k-dominating sets
and applications, Proceedings of the fourteenth annual ACM symposium
on Principles of distributed computing, 1995, pp. 238 - 251.

[KW03] F. Kuhn, R. Wattenhofer, Constant-Time Distributed Dominating Set Ap-
proximation, 22nd ACM Symposium on the Principles of Distributed Com-
puting (PODC), Boston, Massachusetts, USA, July 2003.

[KMW04] F. Kuhn, T. Moscibroda, and R. Wattenhofer, What Cannot Be Com-
puted Locally!, Proceedings of 23rd ACM Symposium on the Principles of
Distributed Computing (PODC), 2004, pp. 300-309.

[L92] N. Linial, Locality in distributed graph algorithms, SIAM Journal on Com-
puting, 1992, 21(1), pp. 193-201.

[L86] M. Luby, A simple parallel algorithm for the maximal independent set
problem, SIAM J. Comput., vol 15(4), 1986, pp. 1036-1053.

[P00] D.Peleg, Distributed Computing: A Locality-Sensitive Approach, SIAM,
2000.

A New NC-Algorithm for Finding a Perfect
Matching in d-Regular Bipartite Graphs

When d Is Small

Raghav Kulkarni

The Department of Computer Science, University of Chicago, Chicago, USA
raghav@cs.uchicago.edu

Abstract. The perfect matching problem for general graphs reduces
to the same for regular graphs. Even finding an NC algorithm for the
perfect matching problem in cubic (3-regular) or 4-regular graphs will
suffice to solve the general problem (see [DK 92]). For regular bipartite
graphs an NC algorithm is already known [LPV 81], while [SW 96] give
an NC algorithm for cubic-bipartite graphs.

We present a new and conceptually simple parallel algorithm for find-
ing a perfect matching in d-regular bipartite graphs. When d is small
(polylogarithmic) our algorithm in fact runs in NC. In particular for
cubic-bipartite graphs, our algorithm as well as its analysis become much
simpler than the previously known algorithms for the same. Our tech-
niques are completely different from theirs.

Interestingly, our algorithm is based on a method used by [MV 00] for
finding a perfect matching in planar-bipartite graphs. So, it is remarkable
that, circumventing the planarity, we could still make the same approach
work for a non-planar subclass of biparitite graphs.

1 Introduction

The perfect matching problem is of particular interest to a variety of people
including combinatorists, algorithmists and complexity-theorists. In parallel set-
tings, the complexity of the problem is still unresolved. In this paper we propose
an approach based on an interior point method for the perfect matching problem,
especially for bipartite graphs.

Given a graph G = (V,E) with n vertices and m edges, a perfect matching
in G is a subgraph M of G such that every vertex in G has degree exactly 1
in M . The decision problem is to determine whether G has a perfect matching.
The search problem is to construct a perfect matching, if one exists. Both these
problems have a Randomized NC algorithm ([KUW 86], [MVV 87]) but are not
known to be in deterministic NC even for bipartite graphs.

For special classes of graphs, however, there are deterministic NC algorithms.
These classes include bipartite-planar graphs [MN 95], regular bipartite graphs
[LPV 81], small-genus bipartite graphs, [MV 00] bipartite graphs having poly-
nomially bounded permanent [GK 87]. In [SW 96], another NC algorithm was
presented for cubic bipartite graphs.

T. Calamoneri, I. Finocchi, G.F. Italiano (Eds.): CIAC 2006, LNCS 3998, pp. 308–319, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

A New NC-Algorithm 309

This work is motivated by [MV 00], where a simple and elegant NC algorithm
was presented for bipartite planar graphs. There, counting was used to get a
point inside the perfect matching polytope and then starting from this point,
navigating outwards, a vertex of the prefect matching polytope was reached.
However, it is not clear how to use this approach for non-planar graphs as the
analysis of the algorithm in [MV 00] crucially uses planarity.

In this paper, we use the same approach for regular bipartite graphs. In partic-
ular, we show that for d-regular bipartite graphs, when d is polylogarithmic, one
can get a point inside the perfect matching polytope and navigate outwards to seek
a vertex of the perfect matching polytope in NC. Our first observation is that get-
ting a point inside the perfect matching polytope of a regular bipartite graph is
easy. This observation is simple but crucial. Next we crucially exploit the notion of
2-3 graphs (developed by [KM 04] in the context of planar graphs) coupled with a
delicately chosen potential function. The techniques we use are very elementary.

Our main contribution here is making the approach taken by [MV 00] and
[KM 04] for planar graphs, work for a non-planar subclass of bipartite graphs,
namely d-regular bipartite graphs having polylogarithmic d. These two sub-
classes of bipartite graphs are totally different in structure. This suggests that the
same approach should work for much more general subclass of bipartite graphs.
Moreover, our algorithm is conceptually simple, especially for cubic-bipartite
graphs, and we hope that the techniques here will generalize.

The organization of this paper is as follows. Section 2 builds preliminaries
used in this paper. Section 2.1 defines some matching polytopes. A special class
of graphs, namely 2-3 graphs is defined in Section 2.2. Section 3 talks about the
cycle space of 2-3 graphs. Section 3.1 describes the proceudure find-big-even and
section 3.2 has the procedure manip which will be used in the algorithms of next
sections. Section 4 describes a new NC algorithm to find a perfect matching
in bipartite cubic graphs. In Section 5, we generalize the algorithm given in
Section 3 for d-regular bipartite graphs. This gives an NC algorithm when d is
small (polylogarithmic). We discuss the possibility of generalizing our algorithm
for regular non-bipartite gaphs and conclude with some remarks and immediate
open questions in Section 6.

2 Preliminaries

In this paper, we allow graphs to have self loops and multiple edges between two
vertices, i.e., the term multigraph is abused as graphs unless specified otherwise.

The weighted graph G = (G, g) is a graph G = (V,E), together with the weight
function g : E → Q.Wedenote by ge theweight of the edge e, i.e., (ge := g(e))(∀e ∈
E). When we talk about the weighted graph G then it is assumed that G is the
underlying unweighted graph and g is the weight function on the edges of G.

2.1 Some Polytopes Related to Matching

Given a graph G on n vertices and m edges, following are the definitions of
the some of the polytopes in Rm associated with it. Every matching M in G

310 R. Kulkarni

corresponds to a 0 − 1 vector vM in Rm namely vM (e) = 1 if e ∈ M = 0
otherwise. We will use this corresponds throughout this paper.

Matching Polytope. The matching polytope, M(G), is the convex hull of all the
matchings in G.

If G is a bipartite graph then it turns out that M(G) is given by the following
contraints: (ge ≥ 0)(∀e ∈ E(G)) and (

∑
e⊥v ge ≤ 1)(∀v ∈ V) (e⊥v means e

incident on v). However, for general graphs we need additional constraints.

Perfect Matching Polytope. The perfect matching polytope PM(G), is the con-
vex hull of all the perfect matchings in G. For bipartite graphs, PM(G) is
described by the following inequalities: (ge ≥ 0)(∀e ∈ E(G)) and (

∑
e⊥v ge =

1)(∀v ∈ V (G)). However, this is not the case for general graphs. We need some
additional contraints called “odd-cut” constraints (see [LP 86]). For a weighted
graph, the minimum weight perfect matching polytope is the convex hull of all
the perfect matchings of the minimum weight.

Fractional Perfect Matching Polytope (or 2-matching Polytope). The fractional
matching polytope, FPM(G) is defined by the following inequalities: (ge ≥
0)(∀e ∈ E(G)) and (

∑
e⊥v ge = 1)(∀v ∈ V (G)).

It turns out that for bipartite graphs FPM = PM but this is not true in
general. Note that any interior point (of any matching polytope) corresponds to
a weighted graph . We will treat an interior point as a weighted graph.

2.2 The Notion of 2-3 Graphs

A graph G is said to be a 2-3 graph if
(a) the degree of every vertex of G is either 2 or 3
(b) both the neighbours of a degree 2 vertex in G have degree 3 in G.

A 3-bounded path in a 2-3 graph G is a path in which both the end points have
degree 3 in G but rest of the vertices on the path have degree 2 in G.

The definition of 2-3 graphs is motivated by the following theorem.

Theorem 1 (KM 04). Given (i) graphs G, G and interior points G = (G, g)
and G = (G, g) of FPM(G) and FPM(G) respectively and (ii) a “backtracker”
π : E(G) → {0, 1} × E(G)

⋃
{0,1} there is an NC procedure which outputs

(i) a 2-3 graph G′ and an interior point G′ = (G′, g′) of FPM(G′) such that
(g′e′ > 0)(∀e′ ∈ E(G′)) and
(ii) a “backtracker” π′ : E(G) → {0, 1} × E(G′)

⋃
{0,1}, where a “back-

tracker” π : E(G) → {0, 1} × E(G)
⋃

{0,1} is a function such that
if π : e → 0 then ge = 0,
if π : e → 1 then ge = 1,
if π : e → (i, e) then ge = ge if i = 0 and ge = 1 − ge if i = 1.

A New NC-Algorithm 311

We call such a procedure as make2-3 and we assume that it takes as input
weighted graphs G, G and a “backtracker” π : E(G) → {0, 1} × E(G)

⋃
{0,1}

and outputs a weighted 2-3 graph G′ and a “backtracker” which is given by the
function π′ : E(G) → {0, 1} × E(G′)

⋃
{0,1}. In our algorithm, we will write

this shortly as the following: (G′, π′) = make2 − 3(G, π,G). The procedure is
quite simple and straightforward (see [KM 04]). Now we briefly describe why
these “backtrackers” come into the picture.

The “backtracker” π : E(G) → {0, 1} × E(G)
⋃

{0,1}, is useful in the
following way. If we could find a perfect matching in G then we can translate
this into a perfect matching of G by using the “backtracker.” The translation is
obvious: Let M be the perfect matchingin G then M(e) = 1 if e is in M and
0 otherwise. The perfect matching M is given as follows: if π : e → 0 then
M(e) = 0,
if π : e → 1 then M(e) = 1,
if π : e → (i, e) then M(e) = M(e) if i = 0 and M(e) = 1−M(e) if i = 1. M is
just the set of edges in G with weight 1.

Thus “backtrackers” are useful and the 2-3 graphs are quite general with
respect to these “backtrackers” and we will use the make2-3 procedure at every
step of our algorithm to convert the graph into a 2-3 graph and will continue
searching for a perfect matching in this new graph as using the “backtracker”
one can backtrack a perfect matching of the original graph in NC.

3 The Cycle Space of a 2-3 Graph

In this section we will prove some results which have significance in the further
sections. We also describe a procedure find-big-even which will be used as a
subroutine in our algorithm.

Given a graph G = (V,E), consider the vector space F
|E|
2 . Any subgraph H

of G corresponds to a vector vH in F
|E|
2 and vice versa. The correspondence can

be given as vH(e) = 1 iff e ∈ E(H) and vH(e) = 0 otherwise. The cycle space of
G is the subspace spanned by the vectors corresponding to cycles in G.

An element of the cycle space of G is called a cycle vector in G. Every cycle
vector corresponds to a disjoint union of cycles. A cycle vector is called an even
cycle vector if all the cycles in the cycle vector are of even length.

Given a spanning tree T of a graph G, every non-tree edge is in a unique cycle
in G, called a fundamental cycle in G with respect to T. The non-tree edge is
called a fundamental edge in G with respect to T. The set of all such fundamental
cycles corresponding to the nontree edges, is called the set of fundamental cycles
in G with respect to T. The set of fundamental cycles in G with respect to a
spanning tree T of G forms a basis for the cycle space of G.

We call a vertex a 3-vertex if its degree is exactly 3. We denote by V (3)(G)
the set of all 3-vertices in G.

Let k := |V (3)(G)| be the number of 3-vertices in G. We say that an even
cycle vector in G is a big even cycle vector if it contains Ω(k) 3-vertices of G.

312 R. Kulkarni

3.1 Finding a Big Even Cycle Vector

We shall describe the procedure find-big-even which will find a big even cycle
vector in a bipartite 2-3 graph.

find-big-even(G)
1. find a spanning tree T of G
2. find S = the set of fundamental cycles in G with respect to T

3. return C = ⊕C∈S C.

Lemma 1. The procedure find-big-even runs in NC.

Proof. Easy to check. �

To show that it outputs a big even cycle vector, we prove the following lemma.

Lemma 2. If G is a bipartite 2-3 (multi)graph having k 3-vertices then the
dimension of its cycle space is Ω(k). (at least k/2)

Proof. Consider any spanning tree T of G. We claim that the number of nontree
edges is Ω(k). Let l be the number of vertices in G having degree 2. Hence, total
number of edges in G is l + 3

2k. The number of tree edges is l + k − 1. Hence,
the number of nontree edges is greater than k

2 . �

Lemma 3. find-big-even (G) finds a big even cycle vector in G.

Proof. Consider a spanning tree T of G. S is the set of fundamental cycles in
G with respect to T. C = ⊕C∈S C. |C| = Ω(k). Now, when we add all the
fundamental cycles in G with respect to T , all the fundamental edges are still
preserved because each fundamental edge is in a unique fundamental cycle. In
a 2-3 graph, every edge has at least one endpoint of degree 3. Hence we still
have Ω(k) 3-vertices of G in C. This proves that C is the required big even cycle
vector. �

3.2 Manipulating the Big Even Cycle Vector in Right Direction

Here we describe procedures simple-manip and manip to manipulate even cycles
so that some of the edges get destroyed. It will be easy to check that both these
procedure run in NC.

Given an interior point G of FPM(G) and an even cycle C in G one can move
to another interior point G of FPM(G) using the procedures simple-manip or
manip.

simple-manip (C, G)
1. do parallely for every cycle C ∈ C
2. pick a minimum weight edge (say e) in C of weight w (say)
3. add w to the weights of edges in C at odd distance from e
4. subtract w from the weights of edges in C at even distance from e.

Lemma 4 (MV 00). The procedure simple-manip runs in NC, preserves bi-
partiteness, and we are still inside FPM at the end of simple-manip.

A New NC-Algorithm 313

Proof. Note that simple-manip preserves the contraint at every vertex that the
sum of the weights of edges incident on that vertex is exactly 1. So, we are still
inside the perfect matching polytope. �

This procedure will be used as a subroutine for the algorithm in the next sec-
tion for finding a perfect matching in cubic bipartite graphs. Somewhat more
sophisticated version of simple-manip is required for d-regular bipartite graphs
(in Section 6). That procedure is described here as manip.

The even cycle manipulation with C. Suppose we have an interior point of
FPM(G) and C is an even cycle in G.

1. Fix an edge f in C.

2. Let Codd be the edges in C at odd distance from f.

3. Similarly, let Ceven be the edges in C at even distance from f.

4. Choose one of the sets Codd or Ceven.

5. Let e be the minimum weight edge in that set and w be the weight of e.
6. Add w to the weight of all edges in C at odd distance from e.
7. Subtract w from the weight of all edges at even distance from e.
8. We get a new interior point of FPM(G) in which weight of e is 0.
This procedure is called as even cycle manipulation. This can be done for any
closed walk of even length. If we have an even cycle vector then we can manip-
ulate each of its even cycle.

Lemma 5. The even cycle manipulation can be done in NC and it doesn’t leave
the FPM of the graph.

Proof. Trivial to check. �

Note that when we manipulate an even cycle C in G, we had choice between
Codd and Ceven in Step 4 of the even cycle manipulation. We now define what
is the right direction which we have to choose during the algorithm.

Making the right choice. Suppose C contains the following 3-vertices in
G: v1, v2, . . . , v�. Let ei

odd be the edge in C incident on vi and belonging to
Codd. Let ei

even be the edge in C incident on vi and belonging to Ceven. Let
xi = wei

odd . Let yi = wei
even . If

∑�
i=1 (xi − yi) ≤ 0 then the right direction is

choosing Codd otherwise the right direction is choosing Ceven. In our algorithm,
we always choose the right direction. So, the procedure manip is as described
below.

manip (C, G)
1. for every even cycle C in C
2. (* choose the right direction *)
if
∑�

i=1 (xi − yi) ≤ 0 then choose Codd

else choose Ceven

3. manipulate C as described above in the chosen direction.

Lemma 6. The procedure manip runs in NC, preserves bipartiteness and we
are still inside FPM at the end of manip.

314 R. Kulkarni

Proof. Easy to check. �

We will use the procedures make2-3, find-big-even, simple-manip and manip as
subroutines in the algorithms in next sections.

4 Finding a Perfect Matching in Bipartite Cubic Graphs
in NC

Now we describe an NC algorithm to find a perfect matching in bipartite cubic
graphs. [SW 96] have already given an NC algorithm for the same but the ap-
proach here is totally different as compared to theirs. They maintain a subgraph
called pseudo perfect matching (degree of every vertex is odd) at every step and
try decreasing the number of 3-vertices in the pseudo perfect matching by a
constant fraction. Here, we start from an interior point of the perfect matching
polytope and move towards a vertex withoght leaving the polytope.

4.1 Algorithm

Given a cubic bipartite graph G
1. (a) get an interior point G of PM(G) by assigning (ge = 1

3)(∀e ∈ E(G)).
(b) let G = G and let π : E(G) → {0, 1} × E(G)

⋃
{0,1} be a “backtracker”

such that (π : e → (0, e))(∀e ∈ E(G)). (* Initialize the “backtracker” π. *)
2. while (G is nonempty)
{
(a) C = find-big-even (G)
(* Take C to be the XOR of all fundamental cycles of a spanning tree of G. *)
(b) G = simple-manip (C, G)
(* Delete alternate edges of each even cycle in C. *)
(c) (G, π) = make2-3 (G, π,G)
(* Replace each 3-bounded path (section 2.2) in G by single edge, update π. *)
}
3. backtrack a perfect matching in G using π.
(* When G is empty then π maps each edge of G to 0 or 1, the edges mapped to
1 form a perfect matching in G. *)

4.2 Analysis

The following sequence of lemmas will show that the above algorithm runs cor-
rectly in NC.

Lemma 7. During the course of the algorithm, the weights of the edges of G
will be 0, 1/3 or 2/3.

Proof. The procedures simple-manip as well as make2-3 don’t change the de-
nominators of the weights. �

Lemma 8. At the beginning of each iteration of the while loop, G is cubic-
bipartite graph with weight 1/3 on each edge.

A New NC-Algorithm 315

Proof. Note that G is a 2-3 graph at the beginning of each iteration of while loop.
So, any edge of G has one end point of degree 3. By the previous lemma, the
weights of the edges of G are multiples of 1/3 and since G is a 2-3 graph output
by make2-3 there are no zero weight edges. So, the weight of any edge is at least
1/3. Now for any vertex of degree 3, the sum of the weights of edges incident
on it should add up to 1. Hence, the weight of each of the edges incident on it
should be 1/3. But every edge in a 2-3 graph is incident on a 3-vertex. So, the
graph is again cubic bipartite with weight 1/3 on each edge. �

Lemma 9. At the end of each iteration of the while loop, the size (number of
edges) of G decreases by a contant fraction.

Proof. Note that during an iteration, simple-manip will destroy half the edges
of C by making their weight 0 because the weight of any edge is 1/3. Due to
simple-manip, the size of the graph has reduced by a constant fraction.

Theorem 2. The above algorithm finds a perfect matching in cubic-bipartite
graphs in NC.

Proof. The previous lemma implies that, the while loop terminates in O(logn),
proving that the algorithm runs in NC. �

We need more sophisticated version of simple-manip (the way it is described in
Section 3.2) for extending the same approach for d-regular bipartite graphs. The
next section describes the extension of the result in this section. As it was the
case with cubic-bipartite graphs here, the notion of 2-3 graphs will play crucial
role in the analysis in the next section.

5 Finding a Perfect Matching in d-Regular Bipartite
Graphs for Polylogarithmic d in NC

There is already an NC algorithm for d-regular bipartite graphs by [LPV 81].
Our algorithm is totally different from theirs and conceptually simple though it
works in NC only when d is polylogarithmic.

5.1 Algorithm

Given a d-regular bipartite graph G,
1. (a) get an interior point of PM(G) by assigning (ge = 1/d)(∀e ∈ E(G))
(b) let π : E(G) → {0, 1} × E(G)

⋃
{0,1} be a “backtracker” such that

(π : e → (0, e))(∀e ∈ E(G)).
2. (G, π) = make2-3 (G, π,G)
3. while (G has no vertex of degree 3)
{
(a) C = find-big-even (G)
(b) G = manip (C, G)
(c) (G, π) = make2-3 (G, π,G)
}

316 R. Kulkarni

4. (a) Now all the vertices in G have degree 2. So, a perfect matching in G can
be found very easily by taking alternate edges of each even cycle in G.
(b) Using the “backtracker” π one can get back a perfect matching in G from
the perfect matching in G.

5.2 Analysis

Now we will show that the above algorithm runs in NC. To show this we consider
certain integer potential function for weighted graphs. A similar potential func-
tion is used in [S 98]. We show that the potential of G decreases by large amount
after each iteration of the while loop. Finally, when the potential becomes zero,
we get a perfect matching easily.

Lemma 10. During the course of the algorithm, the weights of the edges of G
are multiples of 1/d.

Proof. Both manip and make2-3 don’t change the denominators of the weights. �

The integer potential function Φ
By the previous lemma we can assume that ge = we

d where we is an integer.
The potential of an edge is defined as Φ(e) := we(d− we).
The potential of a vertex is Φ(v) :=

∑
e⊥v Φ(e).

The potential of the graph G is Φ(G) :=
∑

v∈V (3)(G) Φ(v). Recall that V (3)(G)
is the set of vertices of degree 3 in G.

Lemma 11. If even cycle C contains � 3-vertices of G then after manipulating
C in the right direction, the potential of G decreases at least by 2�.

Proof. Without loss of generality, say the right direction was to choose Codd. Say
the min weight edge in Codd has weight w. Let xi = wei

odd . Let yi = wei
even . (As

in Section 3.2.) Let ∆(Φ) denote the change in potential due to manipulating C.
Let G′ be the graph obtained by manipulating C in G.

Then, ∆(Φ) = Φ(G′) − Φ(G).
Now, Φ(G′) =

∑
v∈C∩V (3)(G′) Φ

′(v), where Φ′ is the new potential of a vertex
after the manipulation.

Similarly, Φ(G) =
∑

v∈C∩V (3)(G) Φ(v).
But, C ∩ V (3)(G′) ⊆ C ∩ V (3)(G).
Therefore, Φ(G′) ≤

∑
v∈C∩V (3)(G) Φ

′(v).
Now, Φ′(vi)−Φ(vi) = (xi −w)(d− xi +w) + (yi +w)(d− yi −w) − (xi)(d−

xi) − (yi)(d − yi)
= xiw − wd + wxi − w2 − yiw + wd − wyi − w2

= 2(xi − yi)w − 2w2.

Therefore, ∆(Φ) ≤
∑�

i=1 2(xi − yi)w − 2w2.

Since we chose the right direction to manipulate C,
∑�

i=1 (xi − yi) ≤ 0. Hence,
the change in potential of G, ∆(Φ) ≤ −2w2�. Hence, the potential of G decreases
at least by 2� as w2 is at least 1. �

Lemma 12. If the number of 3-vertices in G is k at the beginning of a while
loop, then at the end of the while loop, the potential of G decrease by at least k

2 .

A New NC-Algorithm 317

Proof. The big even cycle vector contains at least k
4 3-vertices in G. For each cycle

C in the big even cycle vector, after manipulating, the potential decreases at least
by 2 times #3−vertices in C. Hence, when we manipulate a big even cycle vector
in G containing at least k

4 3-vertices in G, the potential of G decreases at least
by k

2 . �

Lemma 13. In O(d2) iterations of while loop, the potential of G becomes 0.

Proof. Initially, the potential of G at the start of the first iteration of while loop
is O(d2k). By previous lemma, the potential decrease by Ω(k) in each iteration
of while loop. Hence, in O(d2) steps the potential becomes 0 and while loop
terminates.

Lemma 14. When the while loop ends, we get a perfect matching in the original
graph.

Proof. When the while loop terminates, G is a disjoint union of even cycles and
a perfect matching in G can be found easily and could be backtracked to the
perfect matching in G using π. �

Theorem 3. For polylogarithmic d, the above algorithm runs correctly in NC.

Proof. The number of iterations of while loop is O(d2). In particular, for poly-
logarithmic d , the algorithm runs in NC. �

Note that the algorithm presented above works in NC if you start with any small
magnitude interior point of a bipartite graph, i.e., if the least common multiple
of the denominators of the weights is polylogarithmic.

6 Discussion

The starting point of our algorithm - to get an interior point of the perfect
matching polytope - was simple but crucial. First of all, a non-bipartite regular
graph need not have a perfect matching and even if it has a perfect matching, it
is not clear how to find an interior point of the PM of such a graph to provide
the start for the algorithm. In certain cases, however we can get a start.

6.1 Getting an Interior Point for Regular Expander Graphs

A graph G is said to be an α-expander if for every S ⊂ V such that |S| ≤ |V |
2 , the

number of edges (size of the cut (S, S)) from S to its complement (S = V \S) is
at least α times the cardinality of S. The α is called the expansion factor of G.

Lemma 15. If G is a simple (no multiple edges) d-regular expander graph on
even number of vertices with the expansion factor α > d−1

d , then (ge = 1/d)(∀e ∈
E(G)) gives an interior point of the perfect matching polytope of G.

Proof. It suffices to check “odd-cut” contraints (sum of the weights of the edges
in a cut (S, S) at least one whenever S is odd) [LP 86]. For S of size at least

318 R. Kulkarni

d, expanstion property guarantees that there are at least d edges from S to S.
Hence, the size of cut (S, S) is at least 1. If size of S is less than d, assuming that
G is simple, one can show that at least d edges should go out of S by counting
the total of degrees. �

Corollary 1. Such an expander graph always has a perfect matching. In fact it
has at least d perfect matchings.

Corollary 2. One can check in NC whether (ge = 1/d)(∀e ∈ E) gives an inte-
rior point of PM(G) for a d-regular expander graph with expansion α, if d and
α are constants.

Another main difficulty is in maintaining the “odd-cut” constraints in the perfect
matching polytope. The procedure manip just maintains the constraints at a
vertex but the odd-cut contraints might get violated. By just maintaining the
constraints at each node of a regular graph, we can get a perfect 2-matching: a
vertex of the 2-matching polytope (Section 2.1).

Lemma 16. A perfect 2-matching in non-bipartite regular graphs can be found
in NC.

Proof. The problem of finding a perfect 2-matching in regular graphs reduces to
the problem of finding a perfect matching in regular bipartite graphs (see for
instance [KR 98]). �

6.2 Conclusion

We have presented a different and conceptually simple parallel algorithm for
finding a perfect matching in d-regular bipartite graphs. In particular, when
d is small (polylog), our algorithm runs in NC. The connection between our
algorithm and the algorithm of [MV 00] for bipartite-planar graphs is notable.
[MV 00] uses planarity crucially and we could still use their approach to get an
NC algorithm in a non-planar subclass of bipartite graphs. It is also remarkable
that the notion of 2-3 graphs, developed in the context of planar graphs in
[KM 04] plays a crucial role in our algorithm. This suggests that these techniqes
seem more general. As in case of [MV 00], the “odd-cut” contraints are difficult
to maintain. The problem here is more basic, even it is difficult to get a starting
point inside PM. We have observed that in certain cases it is possible to get a
starting point and without maintaining the “odd-cut” contraints, one can still
get a perfect 2-matching in regular graphs, yet, as of now, the quest for the
perfect matching continues.

Acknowledgements

I sincerely thank Prof. Janos Simon for helpful discussions and Prof. Meena
Mahajan for introducing the problem and for numerous useful suggestions.

A New NC-Algorithm 319

References

[DK 92] E. Dahlhouse and M. Karpinski. Perfect matching for regular graphs is
AC0-hard for the general matching problem. J. Comput. Syst. Sci., 44, p.
94-102, 1992.

[GK 87] D. Grigoriev and M. Karpinski. The matching problem for bipartite graphs
with polynomially bounded permanent is in NC. In Proceedings of 28th
IEEE Conference on Foundations of Computer Science, pages 166-172.
IEEE Computer Society Press, 1987.

[KM 04] Raghav Kulkarni, Meena Mahajan. Seeking a vertex of the planar matching
polytope in NC. In the Proceedings of the 12th European Symposium on
Algorithms ESA, LNCS vol. 3221, pages 472-483. Springer, 2004.

[KR 98] M. Karpinski and W. Rytter. Fast parallel algorithms for graph matching
problems. Oxford Science Publications, 1998.

[KUW 86] R Karp, E Upful, A Wigderson. Constructing a perfect matching is in
random NC. Combinatorica, 6:35-48, 1986.

[LP 86] Lovasz and Plummer. Matching theory. Mathematical Studies, Annals of
Discrete Maths,Vol. 25, North-Holland, Amsterdam, 1986.

[LPV 81] G. Lev, M. Pippenger, L. Valiant. A fast parallel algorithm for routing
in permutation networks, IEEE Transactions on Computers, C-30:93-100,
1981.

[MN 95] G Milller and J Naor. Flow in planar graphs with multiple sources and
sinks. SIAM Journal of Computing, 24:1002-1017, 1995.

[MV 00] M Mahajan, K Varadarajan. A new NC algorithm to find a perfect match-
ing in planar and bounded genus graphs. In Proceedings of the Thirty-
Second Annual ACM Symposium on Theory of Computing (STOC), pages
351-357, 2000.

[MVV 87] K Mulmuley, U Vazirani, V Vazirani. Matching is as easy as matrix inver-
sion. Combinatorica, 7(1): 105-131, 1987.

[S 98] Alexander Schrijver: Bipartite Edge Coloring in O(Delta m) Time. SIAM
J. Comput. 28(3): 841-846 (1998)

[SW 96] R Sharan, A Wigderson. A new NC algorithm for perfect matching in cubic
bipartite graphs. Proc. of ISTCS 96, pp. 56-65, 1996.

Fixed-Parameter Tractability Results for
Feedback Set Problems in Tournaments

Michael Dom, Jiong Guo�, Falk Hüffner�, Rolf Niedermeier, and Anke Truß

Institut für Informatik, Friedrich-Schiller-Universität Jena,
Ernst-Abbe-Platz 2, D-07743 Jena, Germany

{dom, guo, hueffner, niedermr, tanke}@minet.uni-jena.de

Abstract. Complementing recent progress on classical complexity and
polynomial-time approximability of feedback set problems in (bipartite)
tournaments, we extend and partially improve fixed-parameter tractabil-
ity results for these problems. We show that Feedback Vertex Set in
tournaments is amenable to the novel iterative compression technique.
Moreover, we provide data reductions and problem kernels for Feedback
Vertex Set and Feedback Arc Set in tournaments, and a depth-
bounded search tree for Feedback Arc Set in bipartite tournaments
based on a new forbidden subgraph characterization.

1 Introduction

Feedback set problems deal with destroying cycles in graphs using a minimum
number of vertex or edge removals [10]. Although feedback set problems usually
are NP-hard for undirected as well as for directed graphs, the algorithmic treat-
ment by means of approximation, exact, or parameterized algorithms seems to
be significantly easier in the undirected case where more and better results are
known. In particular, in the case of directed graphs the research so far mainly
focused on a special class of graphs, so-called tournaments, since they appear in
applications such as voting systems, rankings, and graph drawing.

A tournament is a directed graph where there is exactly one arc between each
pair of vertices. Also due to important applications, feedback set problems in tour-
naments recently received considerable interest, e.g., [1, 2, 3, 4, 5, 6, 16, 20]. For in-
stance, the NP-hardness of Feedback ArcSet in tournaments has recently been
addressed by at least four independent groups of researchers [1, 2, 5, 6]. Here, we
contribute new results concerning the algorithmic tractability of Feedback Arc
Set (FAS) and Feedback Vertex Set (FVS) in tournaments and bipartite
tournaments.

Table 1 surveys known and new complexity results for feedback set prob-
lems in (bipartite) tournaments. Concerning polynomial-time approximability,
the following results are known. For FVS in tournaments (FVST), the trivial
factor 3 has been improved to 2.5 [3] whereas for FVS in bipartite tournaments

� Supported by the Deutsche Forschungsgemeinschaft, Emmy Noether research group
PIAF (fixed-parameter algorithms), NI 369/4.

T. Calamoneri, I. Finocchi, G.F. Italiano (Eds.): CIAC 2006, LNCS 3998, pp. 320–331, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Fixed-Parameter Tractability Results 321

Table 1. Complexity results for feedback set problems in tournaments. Herein, n
denotes the number of vertices and k denotes the size of the desired feedback solution
set.

Approximation Fixed-parameter tractability

Complexity factor runtime runtime kernel

FVST NP-c [18] 2.5 [3] O(n3) O(2k · n2(log n + k)) [§3] O(k3) [§4.1]
FVSBT NP-c [4] 3.5 [4] O(n3) O(3.12k · n4) [19] ?
FAST NP-c [2, 5, 6] 2 [20] — O(2.42k · n2.38) [16] O(k2) [§4.2]
FASBT ? ? ? O(3.38k · n6) [§5] ?

(FVSBT) the trivial factor 4 has been improved to 3.5 [4]. For FAS in tourna-
ments (FAST) a factor-2 approximation is known [20] whereas we are not aware
of any approximation results for FAS in bipartite tournaments (FASBT).

Alternatively, it is reasonable to study feedback set problems from a para-
meterized point of view [8, 14]. For instance, in undirected graphs, there has
been recent progress showing that a feedback vertex set of size at most k can
be found in ck · nO(1) time for some constant c [7, 13], where n is the number
of graph vertices. The corresponding question for directed graphs is famously
open. Restricting the consideration to the class of tournaments, Raman and
Saurabh [16] have given the first positive result by giving fixed-parameter algo-
rithms for weighted FVST and weighted FAST running in O(2.42k ·nO(1)) time.
For the unweighted case of FVST, the previously fastest algorithm is obtained
by a reduction to 3-Hitting Set and runs in O(2.18k · nO(1)) time [9]. The
algorithm for FVSBT with a running time of O(3.12k ·n4) is derived in a similar
way [19].

We improve the time bound of exactly solving unweighted FVST to O(2k ·
nO(1)), demonstrating the applicability of an elegant technique—so-called itera-
tive compression—in contrast to the more standard depth-bounded search tree
methodology employed by Raman and Saurabh [16] and Fernau [9]. Moreover,
we present a data reduction providing a size-O(k3) problem kernel for FVST. As
we show, this is only one instance of a problem kernel for a larger class of vertex
deletion problems. Furthermore, complementing the O(2.42k ·nO(1))-time fixed-
parameter algorithm for FAST, we develop an O(3.38k · nO(1))-time algorithm
for FASBT which is based on a novel characterization by forbidden subgraphs.
Finally, we also demonstrate a size-O(k2) problem kernel for FAST, complement-
ing the search tree result of Raman and Saurabh [16]. Table 1 summarizes all
results.

We feel that an important contribution of this paper—besides improving
known upper bounds—is to show the applicability of innovative and practically
relevant techniques such as data reduction and iterative compression to feedback
set problems in tournaments. In particular, to the best of our knowledge, here
we demonstrate for the first time the applicability of iterative compression to
directed feedback set problems—previous applications only addressed the undi-
rected case [7, 13, 17].

322 M. Dom et al.

2 Preliminaries

In this paper we deal with fixed-parameter algorithms that emerge from the field
of parameterized complexity analysis [8, 11, 14]. An instance of a parameterized
problem consists of a problem instance I and a parameter k. A parameterized
problem is fixed-parameter tractable if it can be solved in f(k) · |I|O(1) time,
where f is a computable function solely depending on the parameter k, not on
the input size |I|.

A directed graph or digraph D consists of a vertex set V and an arc set E
with n := |V | and m := |E|. Each arc is an ordered pair of vertices. We con-
sider only digraphs without loops, that is, (v, v) /∈ E for all v ∈ V . We call
a digraph D′ = (V ′, E′) an induced subgraph of D = (V,E) if V ′ ⊆ V and
E′ = {(u, v) | u, v ∈ V ′ and (u, v) ∈ E}. The subgraph of D induced by a ver-
tex subset V ′ is denoted by D[V ′]. With reversing an arc (u, v) we mean that we
delete the arc (u, v) fromE and insert (v, u) into E. A tournament T = (V,E) is a
digraph where there is exactly one arc between each pair of vertices. A digraph is a
bipartite tournament if its vertex set is the union of two disjoint sets V1 and V2 such
that each arc consists of one vertex from each of V1 and V2 and between each ver-
tex from V1 and each vertex from V2 there is exactly one arc. A cycle is a sequence
of distinct vertices v1, . . . , vs with (vi, vi+1) ∈ E for all 1 ≤ i < s and (vs, v1) ∈ E.
A triangle is a cycle of length 3. A topological sort of a digraph D = (V,E) is a
sequence v1, v2, . . . , vn of the vertices in V in which each vertex appears exactly
once and i < j for each arc (vi, vj) ∈ E. Clearly, a digraph has a topological sort
iff it is acyclic, that is, it does not contain a cycle.

The Feedback Vertex (Arc) Set in tournaments (FV(A)ST) problem is
defined as follows:

Input: A tournament T and a nonnegative integer k.
Task: Find a set F of at most k vertices (arcs) whose removal results in
an acyclic digraph.

The set F is called a feedback vertex (arc) set. When the input digraph is
restricted to bipartite tournaments, we have the Feedback Vertex (Arc)
Set in bipartite tournaments (FV(A)SBT) problem.

The following property with respect to acyclicity of tournaments is well-
known.

Lemma 1. A tournament is acyclic iff it contains no triangles.

For the purpose of showing a problem kernel for FVST in Sect. 4.1, we reduce
FVST to the 3-Hitting Set (3HS) problem defined as follows:

Input: A finite set S, a collection C of size-3 subsets of S, and a non-
negative integer k.
Task: Find a subset S′ of S with |S′| ≤ k such that S′ contains at least
one element from each subset in C.

Due to the following lemma shown by Raman and Saurabh [16], we can reverse
arcs instead of deleting them when dealing with FAST and FASBT. This is

Fixed-Parameter Tractability Results 323

useful because it allows us to apply feedback arc sets without leaving the class
of (bipartite) tournaments.

Lemma 2. Let F be a minimal feedback arc set of a digraph D. Then the graph
formed from D by reversing the arcs in F is acyclic.

3 Iterative Compression for Feedback Vertex Set in
Tournaments

In this section we present a fixed-parameter algorithm solving Feedback Ver-
tex Set in tournaments in O(2k ·n2(log n+k)) time. This algorithm is based on
the concept of iterative compression, which was introduced by Reed et al. [17].
The heart of our algorithm is a compression routine, which computes from a
tournament and a feedback vertex set of size k + 1 a new feedback vertex set of
size k, or proves that no smaller feedback vertex set exists.

Using such a compression routine, Feedback Vertex Set for a tourna-
ment T can be solved by successively considering induced subgraphs of T with
increasing sizes. Let {v1, . . . , vn} be the vertex set V of T . Then the induced
subgraphs Ti := T [{v1, . . . , vi}] are considered iteratively for i = 1 to i = n.
The optimal feedback vertex set X1 for the tournament T1 is empty. For i > 1,
assume that an optimal feedback vertex set Xi−1 for Ti−1 is known. Obviously,
Xi−1 ∪ {vi} is a feedback vertex set for Ti. Using the compression routine, we
can either determine that Xi−1 ∪ {vi} is optimal, or otherwise compute an op-
timal feedback vertex set for Ti. For i = n, we thus have computed an optimal
feedback vertex set for T . It remains to describe the compression routine.

Compression Routine. To make the task of looking for a smaller feedback vertex
set for a tournament T = (V,E) easier, we would like to restrict our search to
feedback vertex sets that are disjoint from a given one. This can be achieved by a
brute-force enumeration of all O(2k) possibilities to partition the given feedback
vertex set X into two vertex sets S and X \ S. For each partition, we then look
only for solutions that contain all of X \ S (they can immediately be deleted
from the tournament), but none of S.

Up to this point, the algorithm is analogous to the iterative compression al-
gorithm for undirected Feedback Vertex Set [7, 13]. The core part of the
compression routine, however, is completely different; in particular, we will be
able to solve the remaining task of finding a smaller feedback vertex set that is
disjoint from the given one S in polynomial time, whereas in [7, 13] still expo-
nential time is required.

The central observation is that both T [S] and T [V \ S] are acyclic (T [S]
because otherwise there is no feedback vertex set without vertices from S,
and T [V \ S] because S is a feedback vertex set). Then, the topological sort
of a maximum acyclic subtournament of T containing all of S can be thought
of as resulting from inserting a subset of V \ S into the topological sort of S.
On the one hand, the order of the inserted subset must not violate the topo-
logical sort of T [V \ S]. On the other hand, we can achieve by a data reduc-
tion rule that for every v ∈ V \ S, the subtournament T [S ∪ {v}] is acyclic

324 M. Dom et al.

Input: Tournament T = (V, E) and a feedback vertex set S for T .
Output: A minimum feedback vertex set F for T with F ∩ S = ∅.
1 if T [S] contains a cycle: return nil
2 s1, . . . , s|S| ← topological sort of T [S]
3 R ← ∅
4 while there is a triangle u, v, w with u, v ∈ S and w ∈ V \ S:
5 R ← R ∪ {w}
6 T ← T with w deleted
7 for each v ∈ V \ S:
8 p[v] ← min({i | (v, si) ∈ E} ∪ {|S| + 1})
9 L ← topological sort of T [V \ S]
10 P ← V \ S sorted by p, with position in L as tie-breaker
11 Y ← vertices in a longest common subsequence of L and P
12 return R ∪ ((V \ S) \ Y)

Fig. 1. A subroutine for the compression step

and therefore v has a “natural” position within the topological sort of S. We
then obtain the maximum acyclic subtournament as the longest common subse-
quence of the topological sort of T [V \ S] and V \ S sorted by natural position
within S.

We describe this in more detail using the subroutine displayed in Fig. 1.
First we check whether S induces a cycle in T : if so, no feedback vertex set for T
disjoint from S can be found, and we abort (line 1). Then we apply data reduction
to the instance: whenever there is a triangle with two vertices in S, we can only
get rid of this triangle by deleting the third vertex (lines 4–6). After applying
this reduction rule exhaustively, for any v ∈ V \S the subtournament T [S∪{v}]
clearly does not contain triangles anymore and therefore is acyclic by Lemma 1.
This means that we can insert v at some point in the topological sort s1, . . . , s|S|
of S without introducing cycles. Since T is a tournament, there is thus some
integer p[v] such that for i < p[v], there is an arc from si to v, and for i ≥ p[v],
there is an arc from v to si (Fig. 2):

(v, si) ∈ E ⇐⇒ i ≥ p[v]. (1)

We calculate p in lines 7–8: when we encounter the first si in the topological
sort of S where (v, si) ∈ E, we can insert v before si; if there is no such si, we
set p[v] to |S| + 1, and (1) still holds.

We now construct a sequence P from p (line 10), where vertices from V \S that
are positioned by p between the same two vertices of S are ordered according
to their relative position in the topological sort of T [V \ S]. Clearly, any acyclic
subtournament of T containing all of S must have a topological sort where the
vertices from V \ S occur in the same order as in P . The same holds for the
topological sort L of T [V \ S], which is calculated in line 9. This leads to the
following lemma.

Fixed-Parameter Tractability Results 325

s1 s2 sp[v]−1 sp[v] sp[v]+1 s|S|

v

· · · · · ·

· · · · · ·

S

V \ S

Fig. 2. Illustration of equivalence (1). For clarity, only some of the arcs are shown.

s1 s2 s3 s4

v1 v2 v3 v4 v5 v6

2 1 3 2 4 3p

s1 s2 s3 s4

2 3 4

v1 v3 v5

S

V \ S

T

Fig. 3. Example for the subroutine in Fig 1. For clarity, only some of the arcs within
the acyclic subtournaments T [S] and T [V \ S] are shown. Left: Tournament T after
data reduction with L = v1, v2, v3, v4, v5, v6 and P = v2, v1, v4, v3, v6, v5. A longest
common subsequence is v1, v3, v5, yielding the acyclic graph shown on the right.

Lemma 3. After line 10 of the algorithm in Fig. 1, T is acyclic iff the se-
quences L and P are equal.

Proof. “⇒”: If L and P are not equal, then there are v, w ∈ V \S with (v, w) ∈ E
but p[v] > p[w]. Then by (1) we have (w, sp[w]) ∈ E and (v, sp[w]) /∈ E ⇒
(sp[w], v) ∈ E, and T is not acyclic.

“⇐”: By Lemma 1, it suffices to look for triangles to decide whether T is acyclic.
Since T [S] and T [V \S] are acyclic and we destroyed all triangles with two vertices
in S, there can only be triangles with exactly two vertices in V \ S. If L and P
are equal, then for all v, w ∈ V \ S with (v, w) ∈ E we have p[v] ≤ p[w]. Then
by (1) there cannot be any si with (w, si) ∈ E and (si, v) ∈ E, and there can be
no triangle in T . ��

With the same justification, Lemma 3 holds for induced subgraphs of T and
the corresponding sequences L and P . Clearly, deleting a vertex v ∈ V \ S
from T affects L and P only insofar as v disappears from L and P . Therefore,
the cheapest way to make T acyclic by vertex deletions can be found by finding
the cheapest way to make L and P equal by vertex deletions; this is exactly the
complement of the longest common subsequence of L and P . We then obtain
the desired feedback vertex set for T by adding the vertices of this complement
to those of R, which were determined to be in any feedback vertex set in the

326 M. Dom et al.

reduction step (lines 11–12). Figure 3 shows an example for the execution of the
subroutine from Fig. 1.

In summary, the subroutine from Fig. 1 is correct and can be used to solve
Feedback Vertex Set in tournaments by iterative compression as described
at the beginning of this section.

Theorem 1. Feedback Vertex Set in tournaments of n vertices with k ver-
tex deletions can be solved in O(2k · n2(log n + k)) time.

Proof. We have shown how to solve Feedback Vertex Set in tournaments us-
ing iterative compression. It remains to analyze the runtime. First we examine
the subroutine from Fig. 1. Lines 1–2 can be easily done in O(|S|) = O(k) time.
Finding triangles in line 4 can be done in O(nk) time: for every v ∈ V \ S, we
iterate over the topological sort of S; if we encounter a vertex si with (v, si) ∈ E
and later a vertex sj with (sj , v) ∈ E, we have a triangle as desired. Line 9 can be
done in O(n) time and line 10 in O(n logn) time. Since L and P are permutations
of each other, finding a longest common subsequence reduces to finding a longest
increasing subsequence, which can be done in O(n log n) time [12]. In summary,
the subroutine can be executed in O(n(log n + k)) time. In the compression rou-
tine, the subroutine is called O(2k) times, once for each partition of X into two
subsets. The compression routine itself is called n times when inductively building
up the graph structure. In total, we have a runtime of O(2k · n2(logn + k)). ��

4 Problem Kernels by Data Reduction

Developing good kernelizations is among the most important contributions of
fixed-parameter algorithmics for hard problems [8, 14]. A data reduction rule
replaces, in polynomial time, a given problem instance (I, k) by a “simpler”
instance (I ′, k′) such that (I, k) is a yes-instance iff (I ′, k′) is a yes-instance.
An instance to which none of a given set of reduction rules applies is called
reduced with respect to these rules. A parameterized problem is said to have
a problem kernel if, after the application of the reduction rules, the resulting
reduced instance has size f(k) for a function f depending only on k.

4.1 Feedback Vertex Set in Tournaments

With Lemma 1, it is easy to observe that Feedback Vertex Set in tourna-
ments (FVST) is a special case of 3-Hitting Set (3HS). Based on the kernel-
ization method for 3HS [15], we show that FVST admits a kernel.

Theorem 2. Feedback Vertex Set in tournaments admits a problem kernel
with an O(k3)-vertex tournament, and it can be found in O(n3) time.

Proof. The basic idea of the kernelization process is to do a trivial transforma-
tion from a given FVST instance to a 3HS instance and to perform the known
kernelization process [15] on this constructed 3HS instance. The kernel of the
FVST instance is then constructed from the reduced 3HS instance—this is the

Fixed-Parameter Tractability Results 327

core contribution. In the following, we first describe these three steps and give
an estimation of the runtime. Then, we prove the size bound of the kernel and
the correctness of the kernelization process.

The transformation from a given FVST instance (T = (V,E), k) to a 3HS
instance (S,C, k) with S := V is easy: By Lemma 1, it suffices to enumerate all
triangles in T and, for each triangle, add its three vertices as a three-element
subset into the subset collection C. This transformation can be done in O(n3)
time. Note that |C| ≤ n3.

Then, we apply the data reduction rules for 3HS given in [15] to the generated
3HS instance. Herein, the second rule removes some elements from S, which have
to be contained in every size-k solution of the 3HS instance. We use a set H to
store these elements; H is initialized as an empty set.

Rule 1. If there is a pair of elements x and y appearing together in more than k
three-element subsets, then delete all these subsets from C and add a two-
element subset {x, y} to C.

Rule 2. If there is an element x appearing in more than k2 three-element subsets
or in more than k two-element subsets, then delete all subsets containing x
from C, add x to H , and decrease the parameter k by one.

A 3HS instance can be transformed in O(max{|S|, |C|}) = O(n3) time into a
reduced instance [15].

Finally, from the reduced 3HS instance (S′, C′, k′), we construct an FVST in-
stance (T ′, k′) with k′ = k−|H |. First, we replace the two-element subsets inC′ by
some three-element subsets. Note that any two-element subset {x, y} was added
to C′ by an application of Rule 1; this application did remove a set A of three-
element subsets fromC with |A| > k. We partially “reverse” this application, that
is, we delete {x, y} from C′, choose exactly k′ + 1 three-element subsets from A
and add them to C′. We choose the k′ + 1 subsets such that they do not contain
any element from H ; because k = k′ + |H |, this is always possible. After replac-
ing all two-element subsets in C′, we define S′′ as the set containing all elements
of S appearing in at least one subset in C′. Then the tournament T ′ = (V ′, E′)
is constructed by setting T ′ := T [S′′]. Due to Rule 2, the subset collection of the
reduced 3HS instance contains O(k2) two-element subsets; otherwise, there is no
solution. We can construct T ′ from C′ in O(k3) time.

Summarizing the runtimes of the three steps, the runtime of the kernelization
process for FVST is O(n3).

In the construction of T ′, we add for each two-element subset exactly k′ + 1
three-element subsets. There are at most (k′)2 two-element subsets in the subset
collection of the reduced 3HS instance. Together with the problem kernel of 3HS
shown in [15] with |C′| = O(k3), we have O((k′)3) elements in S′′. Therefore,
|V ′| = O(k3).

It remains to show the correctness of the kernelization process: tournament T
has a feedback vertex set of size at most k iff T ′ has a feedback vertex set of size
at most k′.

Given a feedback vertex set F for T with |F | ≤ k, F ′ := V ′ ∩F is a feedback
vertex set for T ′: with the transformation from the FVST instance to the 3HS

328 M. Dom et al.

instance and the kernelization process for 3HS, the elements in H generated by
Rule 2 correspond to vertices v in T that are in more than k triangles that, except
for v, are vertex-disjoint. Thus, the vertices corresponding to the elements in H
are clearly in every feedback vertex set of T , and H ⊆ F . Moreover, since T ′ is
an induced subgraph of T , F ′ is a feedback vertex set of T ′. From H ∩ V ′ = ∅,
we have |F ′| ≤ |F | − |H | = k′, that is, F ′ is a feedback vertex set of T ′ with at
most k′ vertices.

Given a feedback vertex set F ′ of T ′ with at most k′ vertices, F ′∪H is a feed-
back vertex set of T : Every triangle in T corresponds to a three-element subset
in C. If such a three-element subset contains no element from H , then either
it is not changed during the kernelization process or it is removed since it con-
tains two elements x and y which appear together in more than k three-element
subsets in C. For the former case we have a triangle in T ′ due to the construc-
tion of T ′ and, thus, at least one vertex of this triangle is in F ′. Considering
the latter case, after the kernelization process of 3HS, there is a two-element
subset {x, y} ∈ C′. While constructing T ′, we have added k′ + 1 three-elements
subsets containing x and y to C′; this results in at least k′ + 1 triangles in T ′

containing x and y. Thus, {x, y} ∩ F ′ �= ∅. Summarizing both cases, F ′ ∪H is a
feedback vertex set of T with at most k vertices. ��

The basic idea for the kernelization of FVST can be generalized to any vertex
deletion problem whose goal graph can be characterized by a finite set of forbid-
den subgraphs consisting of three vertices; this results in the following theorem.

Theorem 3. If a vertex deletion problem on directed or undirected graphs has a
goal graph that can be characterized by a finite set of forbidden subgraphs consisting
of three vertices, then this problem admits a problem kernel consisting of a graph
with O(k3) vertices, where k denotes the number of allowed vertex deletions.

4.2 Feedback Arc Set in Tournaments

We present a simple data reduction rule for Feedback Arc Set in tournaments
(FAST), which leads to a kernel for this problem consisting of a tournament
with O(k2) vertices. Without loss of generality, we assume that each vertex of
the input tournament (T = (V,E), k) is in at least one triangle.

Data reduction rule. If there is an arc in more than k triangles, then reverse
this arc, add this arc to the solution, and decrease the parameter k by one.

Theorem 4. Feedback Arc Set in tournaments admits a problem kernel
consisting of an O(k2)-vertex tournament that can be found in O(kn3) time.

Proof (sketch). Suppose that we have a reduced FAST instance (T, k) where T
has a feedback arc set F with at most k arcs. Then each triangle contains at
least one arc from F . Due to the data reduction rule, each arc in F can be in at
most k triangles. ��

Fixed-Parameter Tractability Results 329

5 Search Tree for Feedback Arc Set in Bipartite
Tournaments

Raman and Saurabh [16] have shown that if a tournament T does not contain a
particular four-vertex tournament denoted byG, then the cycles in T are pairwise
vertex-disjoint. Using this, their O(2.42k · n2.38)-time algorithm solves FAST in
a two-phase manner: First, it uses a depth-bounded search tree approach to get
rid of all cycles contained in subtournaments G appearing in T by reversing at
most k arcs; this also destroys all subtournaments G in T . In the second phase,
in each tournament output by the search tree it destroys all remaining, pairwise
disjoint triangles by reversing an arbitrary arc in each triangle. If after these two
phases there is an acyclic tournament with at most k arcs reversed, then T has
a feedback arc set with size at most k.

Following the same approach, we derive a fixed-parameter algorithm for Feed-
back Arc Set in bipartite tournaments (FASBT). We use the following lemma,
which is easy to prove.

Lemma 4. A bipartite tournament is acyclic iff it contains no cycle of length
four.

By Lemma 4, in order to derive a forbidden subgraph characterization for bi-
partite tournaments where all cycles of length four are disjoint, we consider two
length-four cycles in a bipartite tournament. If they are not vertex-disjoint, then
they have one, two, or three common vertices. These three possibilities lead to
bipartite tournaments which contain G1 or G2 shown in Fig. 4 as induced sub-
graph. The following lemma strengthens this finding.

Lemma 5. If a bipartite tournament B contains neither G1 nor G2 (shown in
Fig. 4) as an induced subgraph, then the cycles in B are pairwise disjoint.

Proof. With Lemma 4, we first consider length-four cycles. By distinguishing
three cases, namely two length-four cycles sharing one, two, and three vertices,
respectively, one can easily show that a {G1, G2}-free bipartite tournament con-
tains no two length-four cycles having a common vertex. Moreover, observe that
in a bipartite tournament B, a subgraph of B induced by the vertices lying on

a

b c

d

d′
G1 : a a′

b b′

c c′

G2 :

Fig. 4. Forbidden subgraphs for bipartite tournaments where all cycles of length four
are disjoint. The color of the vertices describes the bipartition.

330 M. Dom et al.

a cycle with length greater than four contains several length-four cycles which
are not vertex-disjoint. Thus, a {G1, G2}-free bipartite tournament contains no
cycle with a length greater than four. This completes the proof. ��

Based on Lemma 5 our algorithm solving FASBT has the same two phases as
the algorithm by Raman and Saurabh [16], namely a search tree algorithm de-
stroying all cycles contained in the induced subgraphs G1 and G2 from Fig. 4
and a polynomial-time second phase getting rid of the remaining, vertex-disjoint
cycles. For destroying the cycles in G1, the search tree algorithm makes a branch-
ing into six subcases, namely, reversing (a, b), reversing (b, c), reversing (c, d)
and (c, d′), reversing (c, d) and (d′, a), reversing (d, a) and (c, d′), and revers-
ing (d, a) and (d′, a). For each reversed arc, the parameter k is decreased by one.
The size of depth-bounded search trees can be estimated using branching vec-
tors [14]. The branching vector here is (1, 1, 2, 2, 2, 2), corresponding to a search
tree size of O(3.24k). Dealing with G2, we make a branching into 17 subcases
and, in each subcase, reverse two or three arcs. We omit the details of this
branching. The worst-case runtime is determined by the branching for G2, with
a search tree size of O(3.38k). Note that finding one of G1 and G2 in an n-vertex
bipartite tournament needs O(n6) time. When destroying vertex-disjoint cycles
in the second phase, reversing arcs on cycles does not generate new cycles and,
thus, we need only O(n) time. The following theorem then follows.

Theorem 5. Feedback Arc Set in bipartite tournaments of n vertices with k
arc deletions can be solved in O(3.38k · n6) time.

6 Outlook

Table 1 surveys and compares complexity results on feedback set problems in
tournaments. As can be seen there, the class of bipartite tournaments is not yet
well explored. From a parameterized view, the grand challenge is to answer the
question whether FVS in general directed graphs is fixed-parameter tractable
or not, a long-standing open problem. On the route to this, further studying
generalizations of tournaments might be fruitful. Besides attacking problems left
open in Table 1, clearly further improvements concerning the efficiency of the de-
scribed algorithms are very desirable. Due to the considerable practical relevance
of the considered problems in applications such as voting systems, rankings, and
graph drawing, they are natural candidates for algorithm engineering.

References

1. N. Ailon, M. Charikar, and A. Newman. Aggregating inconsistent information:
ranking and clustering. In Proc. 37th STOC, pages 684–693. ACM, 2005.

2. N. Alon. Ranking tournaments. SIAM Journal on Discrete Mathematics,
20(1):137–142, 2006.

3. M.-C. Cai, X. Deng, and W. Zang. An approximation algorithm for feedback vertex
sets in tournaments. SIAM Journal on Computing, 30(6):1993–2007, 2001.

Fixed-Parameter Tractability Results 331

4. M.-C. Cai, X. Deng, and W. Zang. A min-max theorem on feedback vertex sets.
Mathematics of Operations Research, 27(2):361–371, 2002.

5. P. Charbit, S. Thomassé, and A. Yeo. The minimum feedback arc set problem is
NP-hard for tournaments. Combinatorics, Probability and Computing, 2005. To
appear.

6. V. Conitzer. Computing Slater rankings using similarities among candidates.
Technical Report RC23748, IBM Thomas J. Watson Research Center, Yorktown
Heights, NY, 2005.

7. F. K. H. A. Dehne, M. R. Fellows, M. A. Langston, F. A. Rosamond, and
K. Stevens. An O(2O(k)n3) FPT algorithm for the undirected feedback vertex set
problem. In Proc. 11th COCOON, volume 3595 of LNCS, pages 859–869. Springer,
2005. To appear in Theory of Computing Systems.

8. R. G. Downey and M. R. Fellows. Parameterized Complexity. Springer, 1999.
9. H. Fernau. A top-down approach to search-trees: Improved algorithmics for 3-

hitting set. Technical Report TR04-073, Electronic Colloquium on Computational
Complexity, 2004.

10. P. Festa, P. M. Pardalos, and M. G. C. Resende. Feedback set problems. In D. Z.
Du and P. M. Pardalos, editors, Handbook of Combinatorial Optimization, Vol. A,
pages 209–258. Kluwer, 1999.

11. J. Flum and M. Grohe. Parameterized Complexity Theory. Springer, 2006.
12. M. L. Fredman. On computing the length of longest increasing subsequences.

Discrete Mathematics, 11(1):29–35, 1975.
13. J. Guo, J. Gramm, F. Hüffner, R. Niedermeier, and S. Wernicke. Improved fixed-

parameter algorithms for two feedback set problems. In Proc. 9th WADS, volume
3608 of LNCS, pages 158–168. Springer, 2005. To appear in Journal of Computer
and System Sciences.

14. R. Niedermeier. Invitation to Fixed-Parameter Algorithms. Oxford University
Press, 2006.

15. R. Niedermeier and P. Rossmanith. An efficient fixed parameter algorithm for
3-Hitting Set. Journal of Discrete Algorithms, 1(1):89–102, 2003.

16. V. Raman and S. Saurabh. Parameterized algorithms for feedback set problems
and their duals in tournaments. Theoretical Computer Science, 351(3):446–458,
2006.

17. B. Reed, K. Smith, and A. Vetta. Finding odd cycle transversals. Operations
Research Letters, 32(4):299–301, 2004.

18. E. Speckenmeyer. On feedback problems in digraphs. In Proc. 15th WG, volume
411 of LNCS, pages 218–231. Springer, 1989.

19. A. Truß. Parameterized algorithms for feedback set problems in tournaments
(in German). Diplomarbeit, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Dec. 2005.

20. A. van Zuylen. Deterministic approximation algorithms for ranking and clustering
problems. Technical Report 1431, School of Operations Research and Industrial
Engineering, Cornell University, Ithaca, NY, Sept. 2005.

Parameterized Algorithms for Hitting Set:
The Weighted Case

Henning Fernau1,2,3,4

1 Univ. Trier, FB 4—Abteilung Informatik, 54286 Trier, Germany
2 Univ. Hertfordshire, Comp. Sci., College Lane, Hatfield, Herts AL10 9AB, UK

3 Univ. Tübingen, WSI für Informatik, Sand 13, 72076 Tübingen, Germany
fernau@informatik.uni-tuebingen.de

4 Univ. Newcastle, Comp. Sci., University Drive, Callaghan, NSW 2308, AUS

Abstract. We are going to analyze simple search tree algorithms for
Weighted d-Hitting Set. Although the algorithms are simple, their
analysis is technically rather involved. However, this approach allows us
to even improve on elsewhere published algorithm running time estimates
for the more restricted case of (unweighted) d-Hitting Set.

1 Introduction

Our approach—in general. We exhibit how to systematically design and analyze
search tree algorithms within the framework of parameterized algorithmics [2].
Here, we advocate a top-down approach as opposed to a rather bottom-up design,
because the resulting algorithms tend to be simpler than via the opposite ap-
proach, and they sometimes pretty much resemble heuristic pruning techniques
as used in branch-and-cut algorithms for solving hard problems. Moreover, this
approach is quite modular in the sense that it produces algorithms whose search
tree backbone, i.e., the branching pattern of the algorithm as such, is not affected
by the optimization techniques reflected in what we will call heuristic priorities
(according to which the branching is performed) and the employed reduction
rules. This not only modularizes correctness proofs for such algorithms, but also
favors rapid prototyping of implementations. We will exemplify this approach
by developing and analyzing simple algorithms for Weighted d-Hitting Set
(d-WHS) problems. No prior research on parameterized algorithms has been
reported for these problems.

Problem statement. Weighted d-Hitting Set (d-WHS) can be viewed as a
“weighted vertex cover problem” on hypergraphs. More formally, this problem
can be stated as follows:

Given: A weighted hypergraph G = (V,E,w) with edge size bounded by d, i.e.,
∀e ∈ E(|e| ≤ d), and a weight function w : V → [1,∞)
Parameter: a non-negative integer k
Question: Is there a (weighted) hitting set C of total weight of at most k, i.e.,
∃C ⊆ V ∀e ∈ E(C ∩ e �= ∅) and w(C) :=

∑
x∈C w(x) ≤ k?

T. Calamoneri, I. Finocchi, G.F. Italiano (Eds.): CIAC 2006, LNCS 3998, pp. 332–343, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Parameterized Algorithms for Hitting Set: The Weighted Case 333

Why Hitting Set? Hitting Set problems show up in many places; e.g.,
Reiter’s ground-breaking research on model-based diagnosis [10, 14] relates the
automatic diagnosis of systems to Hitting Set. The thrive for minimum hitting
sets is in that context motivated by the parsimony principle in two ways: (a) the
simplest diagnosis tends to find the actual cause, and (b) when the diagnosis
implies exchanging (possibly) faulty components (as a consequence of a self-
diagnosis of an autonomous system, e.g., in space), then a minimum hitting set
might also be the cheapest repair solution; in that particular scenario, however,
the weighted case seems to be even more interesting than the unweighted one.
As a further application, in [8], connections between a two-tree drawing problem
that is important in bioinformatics and 4-WHS are shown, where the weights
reflect further natural restrictions from biological background knowledge. The
algorithmics of this paper can be immediately transferred to both applications.

Previous work. For the unweighted case (which is a special case of the weighted
setting if all weights are equal to one), there is one published paper presenting
a search tree algorithm for Unweighted d-Hitting Set (d-HS), d > 2, from
a parameterized perspective [11]. The exponential base of the running time esti-
mate for these algorithms tends to d−1 with growing d, although in the simplest
case d = 3, it is still relatively far off from that bound: that basis is 1 +

√
2. By

an intricate case analysis of a comparatively complicated algorithm, they were
able to arrive at an O∗(2.270k) algorithm for the (unweighted) 3-HS problem
(i.e., all weights equal one). This was improved in [5] to about O∗(2.179k) by
using a similar methodology as explained here for the weighted case.

Notice that we are dealing with search tree algorithms and apply a parame-
terized analysis of the search tree size. If we then say that the algorithm has
O∗(f(k)) running time, where k is the parameter, this means that the search
tree has size (number of leaves) O(f(k)), since the work in each search tree node
will be at worst polynomial in n. In actual fact, all analysis that follows will be
a clever estimate on the size of the search tree.

For the special case of 2-HS, likewise known as Vertex Cover, in a kind of
race (using more and more intricate case analysis) anO(1.285k+kn)-algorithm [1]
has been obtained. For 2-WHS, likewise known as Weighted Vertex Cover,
the best that was obtained is on O∗(1.396k), see [12]. Our approach seems not to
be suitable to tackle the case d = 2.

The results of this paper. As in the unweighted case [5], our analysis is based on
the introduction of a second auxiliary parameter that allows us to account for
“gains” obtained by using appropriate reduction rules and heuristic priorities.
This technique can be useful in other areas of parameterized algorithms, as we
believe. We get the following table for the bases cd of an O∗(ck

d) algorithm for d-
WHS; the bases are better than those for the unweighted case published in [11]:

d 3 4 5 6 7 8 9 10 100
cd ≤ 2.2470 3.1479 4.1017 5.0640 6.0439 7.0320 8.0243 9.0191 99.0002

(1)

334 H. Fernau

General notions and definitions. We introduce some terminology on hypergraphs
as needed for Hitting Set. A hypergraph G = (V,E) is given by its finite set
of vertices V and its set of (hyper)-edges E, where a hyperedge is a subset of V .
The cardinality |e| of a hyperedge e is also called its size. The cardinality of the
set of edges which contain the vertex v is called the degree of v, written δ(v).

2 Heuristics and Reductions for Weighted d-Hitting Set

2.1 A Simple Branching Algorithm

Since each hyperedge must be covered and the weights are all at least one, there
exists a trivial O∗(dk)-algorithm for d-WHS.

simple-WHS(G = (V ,E,w), k, S):
IF k > 0 AND G has some edges THEN
choose some edge e; // to be refined
S′ = ∅; // solution to be constructed
FOREACH x ∈ e DO // recursively branch
G′ = (V \ {x}, {e ∈ E | x /∈ e});
S′ = simple-WHS(G′, k − w(x), S ∪ {x})
IF S′ �= failure THEN break

return S′

ELSIF E = ∅ THEN return S ELSE return failure

Obviously, the base of the exponential running time of this algorithm heavily
depends on the necessary amount of branching. Observe that according to the
problem specification, in a d-WHS instance, there might be edges of size up
to d already in the very beginning. “Small edges” may also be introduced later
during the run of the algorithm. A natural heuristic would first branch on small
edges. We would therefore refine:

simple-WHS(G, k, S):
IF k > 0 AND G has some edges THEN
choose some edge e of smallest size;

... // as before

Can we make use of this “heuristic priority” in our analysis ? We therefore now
define reduction rules which we will always exhaustively apply at the beginning
of each recursive call. Moreover, we switch towards a “binary branching” at
vertices (instead of branching on edges), as can be seen in Alg. WHS-ST below.

2.2 Reduction Rules

First reduction rule: vertex domination. The vertex domination rule that was
used in [5, 11] for the unweighted case is invalid in full generality in the weighted
case, but has to be replaced by the following weighted vertex domination rule:
If, for all edges e, x ∈ e implies y ∈ e and if w(y) ≤ w(x), then delete x.

This reduction rule implies the following one (reduction rule for degree-one-
vertices): If x, y ∈ e with δ(x) = 1 and w(y) ≤ w(x), thenremove x. The

Parameterized Algorithms for Hitting Set: The Weighted Case 335

soundness of this rule is easily seen: the only reason for taking a vertex x into
the hitting set, in a situation as described by the reduction rule, is that it might
be cheap. Conserving expensive vertices makes no sense. This reduction rule
immediately implies:

Lemma 1. In a reduced instance, there is no edge with more than one vertex of
degree one.

The next lemma is again an easy consequence from the weighted vertex domi-
nation rule and is of particular importance when d > 3.

Lemma 2. In a reduced instance, for any two edges e1 and e2, there is at most
one x ∈ e1 ∩ e2 with δ(x) = 2.

Other rules stated in [5] literally transfer to the weighted case:

Second reduction rule: edge domination. An edge e is dominated by another edge
f if f ⊂ e. Then, we delete e, since covering f will automatically also cover e.

Third reduction rule: small edges. Delete all edges of size one and place the
corresponding vertices into the hitting set.

The small edge rule, together with the vertex domination rule, proves the
non-existence of isolated edges in the following precise sense:

Lemma 3. In a reduced instance, there is no edge e such that all vertices x ∈ e
have degree one.

Fourth reduction rule: edge cover rule. If G contains a component C that is of
maximum vertex degree two, then resolve C in polynomial time.

This (last) rule is justified by the following lemma:

Lemma 4. If G is a weighted hypergraph of maximum vertex degree of two, then
a minimum weighted hitting set can be found in polynomial time.

Proof. To G, there corresponds an edge-weighted graph G′ whose vertices are
the edges of G and whose vertex-adjacency relation is the edge-adjacency relation
of G. A minimum weighted hitting set of G corresponds to a minimum weighted
edge cover of G′ that can be computed in polynomial time (via matching).

2.3 Branching Rules and Their Analysis

The idea of making favorable branches first has also another bearing, this time
on the way we are going to analyze the search tree algorithm, based on an
auxiliary parameter �. Let T �(k), � ≥ 0 denote the size (more precisely, the
number of leaves) of the search tree when assuming that at least � edges in the
given instance (with parameter k) have a size of (at most) d− 1. The intuition
is that T 3(k) would describe a situation which is “more like” (d− 1)-WHS than
T 2(k). The underlying idea is that search trees with many small edges are smaller
than search trees with only a few; hence:

∀k : T �(k) ≥ T �+1(k). (2)

336 H. Fernau

Regarding an upper bound on the size T (k) of the search tree of the whole
problem, we can equate T (k) = T 0(k) by following the same intuition. Eq. (2)
also shows that, upon analyzing a T �-situation, we can always assume that there
are exactly � edges that have a size of at most d − 1, and these small edges do
have a size of exactly d− 1.

Our algorithm will make choices with the bias of what we will call heuristic
priorities. They can be refined if necessary along the analysis of the algorithm.
The simplest list to start with might contain a single rule that should be intu-
itively clear: Choose a vertex of highest degree within an edge of smallest size.
We will update the list of priorities whenever necessary.

WHS-ST(G = (V ,E,w), k, S):
exhaustively apply reduction rules;
IF k > 0 THEN
IF E = ∅ THEN return S;
choose some vertex x according to the heuristic priorities
S′ = ∅; // solution to be constructed
E′ = { e ∈ E | x /∈ e };
S′ = WHS-ST((V \ {x}, E′), k − w(x), S ∪ {x});
IF S′ ==failure THEN

E′′ = { e \ {x} | e ∈ E };
S′ = WHS-ST((V \ {x}, E′′), k, S);

return S′

ELSIF G contains some edges or k < 0
return failure

ELSE // G contains no edges and k is zero
return S

In the very beginning, given the instance (G, k), we call WHS-ST(G, k, ∅). We
assume that reduction rules may also change the parameter value k and the
solution S. The algorithm is quite generic: the list of reduction rules may grow
and we might also change the heuristic priorities. The simple binary branching
structure of WHS-ST enables a straight-forward inductive proof of its correctness:

Theorem 1. If the reduction rules are correct, then WHS-ST(G, k, ∅) either re-
turns a correct hitting set to the d-WHS instance (G, k) or it returns failure,
if there is no solution of size at most k.

3 A Simple Branching Analysis

We will now undertake a simple analysis, only considering T 0, T 1 and (partially)
T 2 and T 3.

Lemma 5. T 0(k) ≤ T 0(k − 1) + T 3(k).

Proof. Whenever we select an edge of size d to branch on (according to the
heuristic priorities), we can find an edge that contains a vertex xof degree three

Parameterized Algorithms for Hitting Set: The Weighted Case 337

or larger due to the edge cover rule. One branch is that x is put into the hitting
set. This reduces the admissible weight by at least one. If x is not put into the
hitting set, then at least three new edges of size two are created.

T 1-branching. In the next lemma, we show a first step into a strategy which will
finally give us better branching behaviors. Namely, we try to exploit the effect
of reduction rules triggered in different sub-cases. This already necessitates a
refinement in the choice of heuristic priorities: within a smallest edge e of size
j < d, we prefer branching at x ∈ e that maximizes the number of incident edges
of size j + 1.

Lemma 6. T 1(k) ≤ max{T 0(k − 1) + T 1(k − 1) + T 2(k − 1) + (d − 4)T 3(k −
1), T 0(k−1)+T 1(k−1)+(j−2)T 2(k−1)+(d2− (2j+1)d+(j2 + j))T 0(k−2) :
j = 2, 3, . . . , d−2} if d ≥ 4; if T 0(k) ≥ (d−1)k or if d = 3, this may be simplified:
T 1(k) ≤ T 0(k − 1) + (d− 2)T 1(k − 1).

Proof. The instance G has an edge e = {x1, x2, . . . , xd−1} of size (d− 1).

Case 1. If there is an edge f of size d such that 2 ≤ j := |e ∩ f | ≤ d − 2 (this
can only happen if d ≥ 4), then we would first branch at the vertices in e ∩ f ;
due to weighted vertex domination, at least one of the j branches that take one
of the vertices of e ∩ f into the hitting set is an T 1(k − 1)-branch and j − 2 are
even T 2(k − 1)-branches (or better). If none of the vertices from e ∩ f goes into
the hitting set, then, in order to cover e, there are d−1− j many possibilities left,
and in order to cover f , there are d− j remaining possibilities. This explains the
other ((d− j)− 1)(d− j) many T 0(k− 2)-branches. It can be shown that we may
neglect these cases in our time analysis when assuming T 0(k) ≥ (d− 1)k.

Case 2. If the previous case does not occur, then for all edges f �= e, |e ∩ f | ≤ 1.
Assume that x1 is the vertex of maximum degree in e, so that we branch at x1. If
δ(x1) = 1, we can deterministically resolve the case with the reduction rules (apply
d−1 times the weighted vertex domination rule and then the small edge rule) and
get one T 0(k− 1)-branch. This is obviously better than the inequality claimed in
the lemma. Therefore, we can now assume that δ(x1) ≥ 2. If we take x1 into the
hitting set, then we get a T 0(k − 1)-branch. If we do not take x1 into the hitting
set, we create one new edge e1 of size (d−1) and we get the edge e′ = e\{x1} of size
(d− 2). In the next recursive call, e′ is the edge of smallest size. There is no other
edge of that size, since Case 1 did not apply. We therefore continue branching at
the vertex (say x2) of maximum degree in e′. Again, δ(x2) = 1 is better than the
case we are going to pursue next. If δ(x2) ≥ 2, then we again have two cases: either
we take x2 into the hitting set or not. If x2 goes into the hitting set, then this is a
T 1(k − 1)-branch; namely, since Case 1 did not apply, x2 /∈ e1, so that the small
edge e1 will be preserved. If x2 does not go into the hitting set, then there will be a
new edge e2 of size (d− 1) (“new” due to edge domination). In the next recursive
call, e′′ = e \ {x1, x2} is the edge of smallest size. The argument continues and
shows that branches of type T j(k − 1) will show up, for j = 2, 3, . . . , d − 2. This
shows the claim, taking into account that T j(k− 1) ≤ T 3(k − 1) for j ≥ 3 due to
Eq. (2).

338 H. Fernau

Estimating branching numbers. By using the inequality T 3(k) ≤ T 2(k) ≤ T 1(k),
Lemmas 5 and 6 yield:

T 0(k) ≤ T 0(k − 1) + T 1(k) (3)

T 1(k) ≤ T 0(k − 1) + (d − 2)T 1(k − 1)

With cd being the largest positive real root of the characteristic polynomial
x2 − dx + d− 2, i.e.,

cd =
d+

√
d2 − 4d + 8

2
=

d+
√

(d− 2)2 + 4
2

≥ d− 1 (4)

we can see that by setting T 0(k) = ck
d and T 1(k) = (cd −1)ck−1

d , the inequalities
system (3) can be solved. The larger d, the closer cd gets to d− 1. Hence:

d 3 4 5 6 10 100
T (k) ≤ 2.62k 3.42k 4.31k 5.24k 9.13k 99.0103k

Obviously, this is worse than what Niedermeier and Rossmanith got in [11] for
the (general) unweighted case (due to the lack of the vertex domination rule in
full generality), but shows the same “limit behavior” (when d is large). Can we
do better? Let us give a simple trial to incorporate T 2 and T 3 into the analysis
in the special case of Weighted 3-Hitting Set.

4 Weighted 3-Hitting Set

We will use subscripts in the functions that describe the search tree sizes to indi-
cate this special case. We branch according to the following heuristic priorities.
Let s be the size of the smallest edge in the instance G = (V,E,w).
Let Es be the collection of smallest size edges.
(P31) Let the set of (first) branching candidates B be

⋃
e∈Es

e.
(P32) If e is a smallest edge that is disjoint with all other e′ ∈ Es, refine B = e.
(P33) If no such isolated smallest edge exists, then update B to collect the ver-
tices of maximum degree in the hypergraph (

⋃
e∈Es

e, Es).
(P34) Select x ∈ B to be a vertex of maximum degree in G.
It is easy to check that the analyses of Lemmas 5 and 6 are still valid under
these heuristic priorities.

Lemma 7. T 2
3 (k) ≤ max{T 1

3 (k − 1) + T 2
3 (k − 1), T 0

3 (k − 1) + T 0
3 (k − 2)}

Proof. We consider first the situation that the two edges e1 and e2 of size two are
disjoint (see (P32)). Then, basically the analysis of Lemma 6 applies, showing
the claim. More precisely, we have T 2

3 (k) ≤ T 1
3 (k − 1) + T 2

3 (k − 1).

Otherwise, e1 ∩ e2 �= ∅, i.e., e1 = {x, y} and e2 = {x, z}. According to the
heuristic priority (P33), we branch at x. If we take x into the hitting set, we get
a T 0

3 (k − 1)-branch. Not taking x into the hitting set enforces y and z into the
hitting set, which is a T 0

3 (k − 2)-branch.

Parameterized Algorithms for Hitting Set: The Weighted Case 339

Lemma 8. T 3
3 (k) ≤ max

T 1

3 (k − 1) + T 0
3 (k − 2),

T 0
3 (k − 1) + T 0

3 (k − 3),
T 2

3 (k − 1) + T 3
3 (k − 1)

Proof. If there is a edge e of size two that has non-empty intersection with any
other edge of size two, due to (P32) we branch on e without destroying the at
least two other edges of size two. The reasoning given in Lemma 6 therefore
yields the upper bound T 2

3 (k − 1) + T 3
3 (k − 1) in this case.

If the first case does not apply, the all edges of size two are connected. Let
e1, e2, e3 be three connected edges of size two. If x ∈ e1 ∩ e2 ∩ e3 exists, then we
branch at x due to (P33). This gives the (trivial) upper bound of T 0

3 (k − 1) +
T 0

3 (k − 3). Otherwise, we branch at some x contained in two small edges due
to (P33); w.l.o.g.: x ∈ e1 ∩ e2. Since x /∈ e3, the case that we take x into
the hitting set is indeed a T 1

3 (k − 1)-branch. This explains the upper bound
T 1

3 (k − 1) + T 0
3 (k − 2).

Theorem 2. Weighted 3-Hitting Set can be solved in time O∗(2.2470k).

The algebra justifying this claim can be found in the long version of the pa-
per. We only mention that the exact solution of the inequalities system can be
described by the largest positive root c3 of the polynomial x3 − 2x2 − x + 1,
which then gives T 0

3 (k) = ck
3 , T 1

3 = ck
3/(c3 − 1), T 2

3 (k) = ck
3/(c3 − 1)2, and

T 3
3 (k) = ck−1

3 (c3 − 1). This worst case is realized when all T 3-branches are ac-
cording to the T 1

3 (k − 1) + T 0
3 (k − 2)-estimate. Improving on that particular

case would not help too much, however, since the other extreme cases show
also branching behaviors worse than 2.2k. Observe that this also means that a
search tree in the T 3(k)-case is only about half the size of a search tree in the
T 0(k)-case.

5 Weighted d-Hitting Set with d ≥ 4

How well do our considerations transfer to the more general case ? We analyze
possible T 2

d -branches in what follows. Since the obtained bases are quite satis-
factory, we refrain from analyzing the T 3

d -branches. In our analysis, we apply the
following heuristic priorities to a given (reduced) instance G = (V,E,w):

Let s be the size of the smallest edge in the instance G = (V,E,w).
Let Es be the collection of smallest size edges.

(P1) Let the set of (first) branching candidates B be
⋃

e∈Es
e.

(P2) Define GB = (B,Es) and update B to be the set of vertices in GB of
maximum degree.
(P3) Choose a vertex x ∈ B of maximum degree in G.

One can check that Lemmas 5 and 6 are still valid when assuming these
priorities.

Analyzing T 2. We will distinguish several cases in what follows:

Lemma 9. Let e1 and e2 be two edges of size d− 1. If e1 ∩ e2 = ∅, then we can
estimate T 2

d (k) ≤ T 1
d (k − 1) + (d− 2)T 2

d (k − 1).

340 H. Fernau

This can be basically inherited from Lemma 6 due to edge domination. As we will
see, this is the second worst case branching. Being the simplest case, we give some
details. As justified in long version, we have to solve the next set of equations:

T 0
d (k) = T 0(k − 1) + T 2(k) (5)

T 1
d (k) = T 0(k − 1) + T 1(k − 1) + (d− 3)T 2(k − 1)

T 2
d (k) = T 1

d (k − 1) + (d− 2)T 2
d (k − 1)

This yields, after some algebra:

0 = T 0
d (k + 1) − dT 0

d (k) + (d− 1)T 0
d (k − 1) − T 0

d (k − 2). (6)

Theorem 3. Let cd denote the largest positive real root of the polynomial x3 −
dx2 + (d − 1)x − 1. Then T 0

d (k) = ck
d, T

1
d (k) = αd,1c

k
d with αd,1 = (cd − d +

2)(cd − 1)/cd and T 2
d (k) = αd,2c

k
d with αd,2 = (cd − 1)/cd solve the system (5).

The following table lists some of the exponential bases cd for (5):

d 3 4 5 6 7 8 9 10 100
cd ≤ 2.3248 3.1479 4.0780 5.0490 6.0330 7.0237 8.0178 9.0139 99.0002

(7)

Lemma 10. Let e1 and e2 be two edges of size d − 1. If |e1 ∩ e2| = j ∈
{1, 2, . . . , d− 2}, then we can estimate

T 2
d (k) ≤ T 0

d (k − 1) + T 1
d (k − 1) + (j − 2)T 2

d (k − 1) + (d− 1 − j)2T 0
d (k − 2),

thereby assuming that T 0
d (k) ≥ (d− 1)k, i.e., cd ≥ d− 1.

Proof. The priorities (P1) and (P2) let us branch at a vertex x ∈ e1 ∩ e2. If
j > 1, the weighted vertex domination rule moreover guarantees that there is a
vertex of degree at least three in e1 ∩ e2, and (P3) will select one such vertex
x for branching. Hence, when x is not taken into the hitting set, then we gain
at least one edge of size d− 1 if j > 1 due to vertex domination, see Lemma 2,
since we will continue selecting vertices within e1 ∩ e2 according to (P2). The
case that edges that intersect with e1∩e2 might contain more than one vertex in
this intersection turns out not to be the worst case (assuming (d−1)k as a lower
bound of our approach) along the lines of Lemma 6. If e1 ∩ e2 is “exhausted”,
then in the case that we take none of the vertices from e1 ∩ e2 into the hitting
set, we are left with two very small edges e′1 = e1 \ e2 and e′2 = e2 \ e1. P1 lets
us continue branching at say e′1. Having selected x ∈ e′1 to go into the hitting
set, e′2 will be the smallest edge (of size (d− 1 − j)), and hence P1 continues to
branch on e′2 in the next recursion step. This explains that we get (very grossly
estimated) (d− 1 − j)2 many T 0

d (k − 2)-branches.

Parameterized Algorithms for Hitting Set: The Weighted Case 341

In order to prove Theorem 4, the following technical lemma is important:

Lemma 11. If j > 1 and d > 3, then

T 1
d (k − 1) + (d− 2)T 2

d (k − 1)
≥ T 0

d (k − 1) + T 1
d (k − 1) + (j − 2)T 2

d (k − 1) + (d− 1 − j)2T 0
d (k − 2)

for T 0
d (k) = ck and T 2

d (k) = ck − ck−1 with d− 1 ≤ c, independent of T 1
d .

We need a somewhat stronger result (compared to Lemma 10) in the case j = 1
that describes our worst case (for d > 4):

Lemma 12. Let e1 and e2 be two edges of size d− 1. If |e1 ∩ e2| = 1, then we
can estimate

T 2
d (k) ≤ T 0

d (k − 1) + (d− 3)T 1
d (k − 2) + [(d− 2)(d− 3) + 1]T 0

d (k − 2).

Moreover,

T 1
d (k−1)+(d−2)T 2

d (k−1) ≥ T 0
d (k−1)+(d−3)T 1

d (k−2)+[(d−2)(d−3)+1]T 0
d (k−2)

for T �
d as defined in Theorem 4 below.

Proof. We only explain the branching in what follows (for the algebra, see the
long version). Assume that {x} = e1 ∩ e2. x is selected for branching according
to (P1). If x does not go into the hitting set, then we may continue branching
on e1. The claim is that, for any y ∈ e1 \ {x} (with one possible exception, if
δ(y) = 1 for some y ∈ e1; but due to Lemma 1, there is at most one vertex of
degree one in e1 and (P3) avoids branching at that vertex), there is an edge
ey �= e1 with y ∈ ey such that there is a vertex zy ∈ e2 \ e1 with zy /∈ ey. For, if
(e2 \{x}) ⊆ ey, then the edge domination rule would have triggered. The branch
that takes y and zy into the hitting set is a T 1

d (k− 2)-branch (possibly better).

Theorem 4. d-WHS can be solved in time O∗(ck
d), where cd is the largest posi-

tive root of the characteristic polynomial x4−3x3−(d2−5d+5)x2+x+(d2−6d+9).
Some values of cd are listed below:

d 4 5 6 7 8 9 10 100
cd ≤ 3.1845 4.1017 5.0640 6.0439 7.0320 8.0243 9.0191 99.0002

(8)

With a more sophisticated analysis (and again varied heuristic priorities), we
could let Theorem 3 describe the worst case for 4-WHS.

Corollary 1. 4-WHS can be solved in time O∗(3.1479k).

Is it worthwhile trying to further improve on the exponential bases as derived
in this section ? In principle, yes of course; however, one would need a different
approach for substantial improvements: (a) the second-worst case is only slightly
better than the worst case that we analyzed, and (b) with growing d, the lower
bound (d− 1) assumed in (some) estimates is already quite well approximated.

6 Conclusions

We are currently developing and analyzing a new, top-down methodology for pa-
rameterized search tree algorithms. Up to now, we have appliedthis methodology

342 H. Fernau

to d-Hitting Set [5], biplanarization problems [7] (thereby improving on the
constants derived in [3]), linear arrangement problems (in the long version of [6])
and to Weighted d-Hitting Set (this paper). In order to apply this method,
we need a kind of second auxiliary parameter in the problem which we try to
improve on in case the main parameter cannot be improved upon binary branch-
ing. In the case of (Weighted) Hitting Set, the number of edges of small
size is such an auxiliary parameter. Our results show that this methodology
is a quite powerful tool of algorithm analysis. For example, while the gap be-
tween the running times of the (very sophisticated) best search tree algorithms
for Weighted Vertex Cover and for Vertex Cover [1, 12] do differ sig-
nificantly (both algorithms being approximately of the same complexity), this
paper shows that with our analysis method of a comparatively simple algorithm
for 3-WHS, we can even (slightly) improve on the previous analysis of a much
more sophisticated algorithm for Unweighted 3-HS [11].

It may be interesting to compare the way the analysis of the recurrences
guided by the auxiliary parameter is undertaken in this paper with the analysis
method of Wahlström [15] or with Eppstein’s quasiconvex method [4]. It would
be also interesting to see this approach applied to other, different problems with
accordingly different auxiliary parameters.

More generally speaking, there seems to be a recent thrive in Exact Algo-
rithmics towards “simple” algorithms. The recent Minimum Dominating Set
algorithm of Fomin, Grandoni and Kratsch is only one more example (see [9])
that incidentally also uses a (special) Hitting Set algorithm. This direction
of research certainly brings practical and theoretical research on attacking hard
problems closer together, since one could also envisage a kind of interplay be-
tween algorithm analysis and algorithm testing in the near future. Can an appro-
priate analysis then “explain” certain observed phenomena of the implementa-
tion? The modular decomposition of such an algorithm into the actual recursive
“search tree backbone” and the reduction rules and (in particular) the heuristic
priorities also opens up a whole area of experimental algorithmics: under which
circumstances (or, in a more theoretical formulation: for which classes of hyper-
graphs) is a certain set of rules the most successful ? Can this be proved? Due
to the simple overall structure of the algorithms, also an analysis of expected
running times (possibly adding coin tossing into the heuristic priorities) might
be possible.

Incidentally, improvements in parameterized algorithms for d-Hitting Set
also entail improvements in exact algorithms for Minimum d-Hitting Set,
measured in terms of number of vertices: in the case of 3-Hitting Set, the
use of the algorithm exhibited in [5] improves Wahlström’s algorithm [15] from
O∗(1.6538n) down to O∗(1.6483n) (personal communication by Wahlström). The
results of this paper will immediately entail new running time bounds for exact
algorithms for Minimum Weighted Hitting Set. For example, along the lines
sketched by Raman, Saurabh and Sikdar, in [13], we get an exact algorithm for
Minimum Weighted 4-Hitting Set that runs in time O∗(1.97n), using our
parameterized Weighted 4-Hitting Set algorithm.

Parameterized Algorithms for Hitting Set: The Weighted Case 343

References

1. J. Chen, I. A. Kanj, and W. Jia. Vertex cover: further observations and further
improvements. Journal of Algorithms, 41:280–301, 2001.

2. R. G. Downey and M. R. Fellows. Parameterized Complexity. Springer, 1999.
3. V. Dujmović, M. R. Fellows, M. Hallett, M. Kitching, G. Liotta, C. McCartin,

N. Nishimura, P. Ragde, F. A. Rosamond, M. Suderman, S. Whitesides, and D. R.
Wood. A fixed-parameter approach to two-layer planarization. In P. Mutzel,
M. Jünger, and S. Leipert, editors, 9th International Symp. on Graph Drawing
GD’01, volume 2265 of LNCS, pages 1–15. Springer, 2002.

4. D. Eppstein. Quasiconvex analysis of backtracking algorithms. In Proc. 15th Symp.
Discrete Algorithms SODA, pages 781–790. ACM and SIAM, January 2004.

5. H. Fernau. A top-down approach to search-trees: Improved algorithmics for 3-
Hitting Set. Technical Report TR04-073, Electronic Colloquium on Computational
Complexity ECCC, 2004.

6. H. Fernau. Parameterized algorithmics for linear arrangement problems. In
U. Faigle, editor, CTW 2005: Workshop on Graphs and Combinatorial Optimiza-
tion, pages 27–31. University of Cologne, Germany, 2005. Long version submitted
to a special issue of Discrete Applied Mathematics.

7. H. Fernau. Two-layer planarization: Improving on parameterized algorithmics.
Journal of Graph Algorithms and Applications, 9:205–238, 2005.

8. H. Fernau, M. Kaufmann, and M. Poths. Comparing trees via crossing mini-
mization. In R. Ramanujam and Sandeep Sen (editors): Foundations of Software
Technology and Theoretical Computer Science FSTTCS 2005, vol. 3821 of LNCS,
pp. 457–469. Berlin: Springer, 2005.

9. F. V. Fomin, F. Grandoni, and D. Kratsch. Measure and conquer: domination – a
case study. In L. Caires, G. F. Italiano, L. Monteiro, C. Palamidessi, and M. Yung,
editors, Automata, Languages and Programming, 32nd International Colloquium,
ICALP, volume 3580 of LNCS, pages 191–203. Springer, 2005.

10. J. de Kleer, A. K. Mackworth, and R. Reiter. Characterizing diagnoses and systems.
Artificial Intelligence, 56:197–222, 1992.

11. R. Niedermeier and P. Rossmanith. An efficient fixed-parameter algorithm for
3-Hitting Set. Journal of Discrete Algorithms, 1:89–102, 2003.

12. R. Niedermeier and P. Rossmanith. On efficient fixed parameter algorithms for
weighted vertex cover. Journal of Algorithms, 47:63–77, 2003.

13. V. Raman, S. Saurabh, and S. Sikdar. Improved exact exponential algorithms
for vertex bipartization and other problems. In M. Coppo et al., editors, Italian
Conference on Theoretical Computer Science ICTCS, volume 3701 of LNCS, pages
375–389. Springer, 2005.

14. R. Reiter. A theory of diagnosis from first principles. Artificial Intelligence, 32:57–
95, 1987.

15. M. Wahlström. Exact algorithms for finding minimum transversals in rank-3 hy-
pergraphs. Journal of Algorithms, 51:107–121, 2004.

Fixed-Parameter Tractable Generalizations
of Cluster Editing

Peter Damaschke

School of Computer Science and Engineering,
Chalmers University, 41296 Göteborg, Sweden

ptr@cs.chalmers.se

Abstract. In the Cluster Editing problem, a graph has to be changed
to a disjoint union of cliques by at most k edge insertions or deletions.
Several reasons suggest a generalized problem where the target graph
can have some overlapping cliques. We show that the problem remains
fixed-parameter tractable (FPT) in the combination of both parameters:
k and a second parameter t describing somehow the complexity of overlap
structure. For this result we need a structural property of twins in graphs
enabling a certain elimination scheme that finally leads to a small enough
subgraph we can branch on. We also give a nontrivial algorithm for
problem minimizing the number of disjoint clusters, based on a concise
enumeration of all solutions to the original Cluster Editing problem.
This generic scheme may become interesting also for other multicriteria
FPT problems.

1 Introduction

Cluster Editing requires to transform a graph G = (V,E) with n vertices and
m edges by at most k edge changes into a cluster graph, that is, a disjoint union
of complete graphs. G and k are given. A change is an edge insertion or deletion.
This problem from [2, 1, 13] has applications in computational biology, such as
phylogeny reconstruction [2], and classification of gene expression data [14, 15],
where vertices represent genes, and edges join co-regulated genes belonging to
the same functional group. Cluster Editing is also a purely graph-theoretic
approach to clustering in general, where G reflects similarities of items, and an
underlying clustering is sought that explains the data in the sense that only a
few of the binary relations differ from the empirical data. Cluster Editing
is NP-hard even for a prescribed number of clusters [13], but easily seen to be
fixed-parameter tractable (FPT): In order to reach a cluster graph one has to
destroy all induced P3 (chordless paths with three vertices). This gives a trivial
branching rule and O∗(3k) algorithm. (We refer to [5] for an introduction to
fixed-parameter tractability and all the basic techniques of the field.) A nontrivial
bound O(2.27k +n3) was shown in [8]. In [9] the bases have been further reduced
considerably, as a demonstration example for a computer program for search tree
construction. As discussed in [6], it is not always clear whether algorithms with
provably smaller base perform better on the computer, as they exploit more

T. Calamoneri, I. Finocchi, G.F. Italiano (Eds.): CIAC 2006, LNCS 3998, pp. 344–355, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Fixed-Parameter Tractable Generalizations of Cluster Editing 345

complicated branching rules which may create too much overhead for realistic
input sizes. However these questions are beyond our scope.

In several applications, the same item may be involved in different clusters.
In the gene expression context for example, some groups of genes can play a
role in several functional groups. Clusters are still cliques, but they may overlap.
The model of disjoint clusters would then be inappropriate and give artificial and
meaningless classifications. This issue has also been raised in text document clus-
tering. To quote from [7]: “Documents in a collection can rarely be described
as members of a single/exclusive category. In fact most documents will tend
to straddle in their subject between two or more different subjects.” Labeling
each document into a single class “can drastically affect retrieval abilities once
a classification model is built”. Another source of interest is the identification of
modules in interaction networks of genes or proteins. Groups of biologic mole-
cules are often involved in several cellular processes. In the evolution model for
gene interaction networks of [16], gene duplications produce true twins in the
graph, i.e., cliques of vertices with identical neighborhood. Thus, solutions of the
Twin Graph Editing problem we define below may be used to estimate the
rate of creation or loss of single interactions, compared to the duplication rate.
In summary, there are good reasons to consider more general target graphs than
just cluster graphs. They may be composed of a cliques that have a limited num-
ber of intersections. The “complexity” of overlapping cliques in the target graph
may be controlled by a second parameter that indicates how far a graph is away
from being a cluster graph, cf. also the general distance-from-triviality paradigm
in [10]. Note that we do not “create” a completely new problem, but extend a
problem that has already received attention, driven by new motivations, and we
will show that fixed-parameter tractability is preserved. We mention that [12]
studied generalizations of another FPT graph problem, Vertex Cover.

The parameterization proposed below seems natural, even though the defin-
ition is slightly technical. First we need some more notation. A chordless path
and cycle of n vertices is denoted Pn and Cn, respectively. As usual, N(u) de-
notes the open neighborhood of vertex u, that is, the set of vertices adjacent to
u, and N [u] = N(u) ∪ {u} is the closed neighborhood. If N(u) = ∅ then u is
an isolated vertex. We may use these notions also with respect to an induced
subgraph, which will be clear from context. Vertices u, v are called true twins
if N [u] = N [v]. This relation is symmetric and transitive, thus it gives rise to
an equivalence relation. We define the twin graph T (G) of G as follows. Each
equivalence class in G becomes a vertex of T (G), and two vertices of T (G) are
adjacent iff edges exist between the corresponding equivalence classes in G. In
other words, T (G) is isomorphic to any induced subgraph of G obtained by
choosing one representative vertex from each equivalence class. Twin graphs ap-
peared under different names also in other contexts, e.g., as critical clique graphs
in [11].

The Twin Graph Editing problem is: Given a graph G and parameters k
and t, can we obtain by at most k edge changes a graph whose twin graph has
at most t edges?

346 P. Damaschke

Note that G is a cluster graph iff T (G) has no edges. Hence Cluster Editing
is the special case with t = 0. Alternative parameters would be the number of
non-isolated vertices in T (G), which is polynomially equivalent to t, or the num-
ber c of maximal cliques that are involved in overlaps, i.e., not disjoint to all
others. But since c overlapping cliques cannot generate more than 2c equivalence
classes of true twins becoming non-isolated vertices in T (G), this is also captured
by our smoother parameter t. Twin Graph Editing is still tractable, by the
following result that will be shown in this paper.

Theorem 1. Twin Graph Editing is FPT in combined parameters k and t.

Overview of our contributions. In Section 2 we give an FPT algorithm prov-
ing Theorem 1. Already membership in FPT is not trivial. It crucially depends
on a graph-theoretic lemma, preoved in Section 3, that might be interesting in
itself. In Section 4 we study problem variants where also the number c of clusters,
overlapping or not, reached by at most k changes shall be minimized. Sometimes
a coarser clustering gives a better overview of the data. Clearly, c is monotone
decreasing in k, and c can properly decrease. For instance, a P4 can be split in
two clusters by one deletion or, alternatively, completed to one clique by three
insertions. Cluster Editing with at most k changes minimizing the number
of clusters remains FPT. We reduce the trivial base 3 in the time bound to 2.48.
A noticeable feature of our algorithm is that it utilizes concise descriptions of
enumerations of all solutions to the original Cluster Editing problem with
inclusion-minimal edit sequences, a notion we have recently introduced in [3, 4].
We describe certain simple-structured parts of the solution space only implicitly.
For optimizing an additional objective (in our case, the number of clusters), we
only need one optimal solution from every such part. Then, compactness of the
description and simplicity of the solution sets result in the improved base. We
emphasize that this approach would work for any multicriteria problem where
a solution with a particular property is sought, provided that the problem in
question is FPT in at least one parameter, and a concise enumeration of all its
solutions is available. It seems that our result in Section 4 is the first of this type.
For our particular problem we finally observe that just minimizing the number
of clusters can force unmotivated mergings, only for cardinality reasons. To over-
come this undesirable effect we propose in Section 5 so-called natural clusterings
that satisfy two modest requirements. It turns out that they are equivalent to
minimal edit sequences, and hence also a natural clustering with a minimum
number of clusters can be found within the same time bounds as in Section 4,
and in a simpler way: A bizarre subproblem from Section 4, a bin packing prob-
lem with a least-sum-of-squares objective, becomes superfluous in this setting.
We summarize the results:

Problem version Complexity for k changes
twin graph with t edges O∗((3t(3t + 1)/2)k)
twin graph with t vertices O∗((t(t + 1)/2)k)
cluster graph, minimum number of clusters O∗(2.48k)
natural clustering, minimum number of clusters O∗(2.48k)

Fixed-Parameter Tractable Generalizations of Cluster Editing 347

2 Twin Graph Editing Is FPT

We call a graph G twin-free if it has no true twins, equivalently T (G) = G.
Since T (G) is always twin-free, we have T (T (G)) = T (G). A vertex x is called
a discriminator of edge yz if exactly one of the edges xy, xz exists. Clearly,
two adjacent vertices are no true twins iff they have a discriminator. Predicate
D(x, y, z) means that x is the only discriminator of edge yz, and xy is an edge.
Note that D(x, y, z) also excludes the existence of a further discriminator v with
D(v, z, y).

Let G, k, t be an instance of Twin Graph Editing. To establish an FPT
algorithm we seek a subgraph H whose size is limited by a function of the
parameters and where at least one change is forced. Then we can branch on the
possible changes in H , and repeated application gives a search tree as usual. We
call H the branching graph.

Lemma 1. If H is a twin-free induced subgraph of G with more than t edges,
any solution Twin Graph Editing must insert or delete an edge in H.

Proof. Since H is twin-free, every edge in H has a discriminator in H . If we
fail to change anything in H , this remains true in the edited graph G′, thus we
get no true twins in H . It follows that T (G′) still contains T (H) as an induced
subgraph and has therefore more than t edges, a contradiction. ��

While this choice of a branching graph is fairly obvious, the difficulty is twofold.
(1) H might be too large, i.e., not bounded by any function of the parameters,
and then we cannot simply branch on H . (2) Even if a small enough branching
graph is guaranteed to exist, we have to identify one without exhaustive search,
as this would bring parameter t into the exponent of n in the runtime. The
problem is that we cannot take any subgraph of a too large H . Neither the twin-
free nor the non-twin-free property is preserved in induced subgraphs: deleting
a vertex can make a graph twin-free, and on the opposite, some vertices may
become twins in the subgraph when some edge loses all its discriminators. What
we need is the following:

Lemma 2. In a twin-free graph H there is always a vertex r such that D(r, s, t)
does not hold for any edge st in H. We call r a redundant discriminator.

We defer the proof to the next section. As a consequence of Lemma 2 we can
remove r and all incident edges from H , and no remaining edge will lose all
its discriminators, so that H − r is twin-free again. Now we are able to prove
Theorem 1.

Given G, we first compute for every edge of G the list of discriminators. This
is trivially done in O(mn) time. All P3 and hence all discriminators may also
be found via matrix multiplication, which is faster if G is dense. Now we easily
obtain a (twin-free!) subgraph H of G isomorphic to T (G) in O(m) time: Edges
with empty discriminator lists build disjoint cliques, and from every such clique
we keep one vertex and remove the others and all their incident edges.

348 P. Damaschke

If H has at most t edges, we are done. Otherwise we remove a redundant
discriminator r from H (existence of r is given by Lemma 2) and then all vertices
that became isolated in H − r. Since H − r is still twin-free, so is the smaller
subgraph. Thus we can continue the process and never get stuck, and in every
step we can select an arbitrary vertex r which does not occur alone in any
discriminator list. Redundant discriminators are held in a separate set RD. In
every step we update the data structure by removing the edges incident with r,
their discriminator lists, all occurrences of r in the lists of other edges, and the
isolated vertices. From RD we remove r and the vertices that grew lonely in a
list. All this can be done within O(mn) time in total.

We stop as soon as a subgraph H ′ contains at most t edges, whereas the
previous H had more than t edges. This H we use as a branching graph. Since
H ′ has at most t edges, trivially H ′ has at most 2t vertices. The vertices of H ′

that became isolated in this step are all adjacent to r, since they have not been
isolated in H . Together with r they induce a star graph which is twin-free. If
more than t such vertices exist, we obviously get a twin-free subgraph with only
t + 2 vertices. Otherwise H has at most 3t + 1 vertices. We have to change the
status of one of the at most 3t(3t+ 1)/2 vertex pairs in H , which implies a time
complexity of O∗((3t(3t + 1)/2)k) in the worst case. This completes the proof
of Theorem 1. There seems to be room for improving this naive time bound,
however we conjecture that some tO(k) term is inevitable.

3 Existence of a Redundant Discriminator

Lemma 3. Let be D(x, v, u). Then:
(i) D(v, t, y) implies t = x, and (y, x, v, u) is an induced P4.
(ii) D(u, t, y) implies y = x, and t, v are identical or adjacent.

Proof. First assume that {x, v, u} ∩ {t, y} = ∅. Since v and u are adjacent to
exactly the same vertices except x, each of D(v, t, y) and D(u, t, y) would imply
also the other relation, contradicting the definition of predicate D. Thus, in (i) it
must be t = x or t = u. But if D(v, u, y) then y would be another discriminator
of vu. There remains t = x, hence D(v, x, y). If yu were an edge then y would
again be another discriminator of vu. In (ii) it must be t = v or y = x. But if
t = v then y would be another discriminator of vu, unless y = x. Finally, if t, v
were distinct but not adjacent then t would be another discriminator of vu. ��

Using this building block we shall prove Lemma 2 now. First we give the idea.
Consider any vertex x. If x is not already a redundant discriminator then
D(x, v, u) for some edge vu. If none of v, u is already a redundant discrimi-
nator, there must exist edges they are unique discriminators of, and so on. The
difficulty is that such edges can in fact be established, and they can involve new
vertices. (Hence the construction shows by itself that the argument cannot be
simplified.) On the other hand, Lemma 3 imposes strong enough restrictions
that enforce a certain repeated pattern. Due to finiteness of the graph we must

Fixed-Parameter Tractable Generalizations of Cluster Editing 349

abort the construction at some point, and then we are left with some redundant
discriminator. Now the detailed exposition follows.

Consider a graph H where every vertex is the unique discriminator of some
edge. We show by induction that H must contain pairwise distinct vertices
uj, vj , xj , yj for all j ≥ 1 that have certain properties listed below. It follows
that such a finite H cannot exist. Let Wj be the set of all ui, vi, xi, yi with i ≤ j,
in particular W0 = ∅. The properties are the following.

(1) (uj, vj , xj , yj) in this ordering form an induced P4.
(2) Vertices vj , xj are adjacent to all vertices in Wj−1.
(3) Vertex uj is adjacent to all ui, vi in Wj−1, but not to the xi, yi. Similarly, yj

is adjacent to all xi, yi in Wj−1, but not to the ui, vi.
(4) We have D(vj , s, yj) for some s ∈ Wj . Similarly, D(xj , s, uj) for another
s ∈ Wj .
(5) All ui, vi with i ≤ j have exactly the same neighbors outside Wj . Similarly,
all xi, yi with i ≤ j have exactly the same neighbors outside Wj .

Fig. 1. Two consecutive layers of the graph used in the proof

We establish induction base j = 1. Let x1 be any vertex. By assumption
on H there exist u1, v1 with D(x1, v1, u1). Also by assumption, v1 is the only
discriminator of some edge. Lemma 3 (i) allows only D(v1, x1, y1) for some new
vertex y1 and also implies (1) and (4) for j = 1. Conditions (2),(3) are vacuously
true, and (5) follows from D(x1, v1, u1) and D(v1, x1, y1).

For the induction step, suppose that (1)-(5) are fulfilled for some j. By as-
sumption on H , uj is the only discriminator of some edge, and (4) for j says that
D(xj , s, uj) for some s ∈ Wj . Lemma 3 (ii) yields D(uj , t, xj) for some t being
identical or adjacent to s. Case t = vj is impossible, since by (1), edge vjxj has
already another discriminator yj , contradicting D(uj , vj , xj). If t ∈ Wj−1 then,
due to (3), vertex t must be one of the ui or vi. But then, due to (1),(2), vertex
yi with the same i is another discriminator of txj , contradicting D(uj , t, xj).
This shows t /∈ Wj . Define xj+1 := t. Since xj+1 has neighbors uj and xj , prop-
erty (5) yields that xj+1 is adjacent to all of Wj . Thus we have established (2)
for xj+1. By symmetry there also exists vj+1 that satisfies (2). Remember that
D(uj , xj+1, xj) and, symmetrically, D(yj , vj+1, vj). Assume vj+1 = xj+1. Then
we had also D(yj , xj+1, vj). By Lemma 3 (i), any edge xj+1 is the unique dis-
criminator of must contain both uj and yj, which is obviously not possible. Thus

350 P. Damaschke

vj+1 �= xj+1. Furthermore these two vertices are adjacent, since otherwise vj+1
would be another discriminator of xjxj+1, besides uj . (Note that vj+1xj is an
edge by (2).)

Applying Lemma 3 (i) again to D(yj , vj+1, vj), we see that D(vj+1, yj, z) for
some z being not adjacent to vj+1, hence z /∈ Wj due to (2). Since (5) holds
for j, and vj , vj+1 have the same neighbors (except yj), vertex z is adjacent to
all the xi, yi in Wj , but to none of the ui, vi in Wj . Defining yj+1 := z we get
D(vj+1, yj , yj+1). Altogether, yj+1 satisfies (3), and also (4) holds, with j + 1
in the role of j, and yj is the role of s. By symmetry we also get a vertex uj+1
which satisfies the other half of (3) and (4), respectively. In particular we have
D(xj+1, uj, uj+1). Since the new vertices uj+1 and yj+1 have distinct neighbor-
hoods in Wj , they are distinct. Moreover they are not adjacent, otherwise uj+1
would be another discriminator of yjyj+1. Edges xj+1yj+1 and uj+1vj+1 do ex-
ist, since without them, vj+1 and xj+1 would be another discriminator of ujuj+1
and yjyj+1), respectively. This establishes (1) for j + 1.

Finally we recover (5) for j + 1. By induction hypothesis and relations
D(xj+1, uj, uj+1), D(yj , vj+1, vj), both uj+1 and vj+1 have outside Wj+1 the
same neighborhoods as all other ui, vi have. Once more, the argument holds
symmetrically for xj+1 and yj+1. This completes the induction step and the
proof.

Now we have shown Lemma 2, and hence also Theorem 1.

4 Minimizing the Number of Clusters

In Twin Graph Editing we measured the complexity of the target graph by
the number of edges of its twin graph, in view of the fact that the number of
clusters was arbitrary in the basic Cluster Editing problem. Nevertheless one
may alternatively aim at a minimum number of classes of true twins. We define
the Twin Graph Editing (V) problem variant as follows: Given a graph G
and parameters k and t, can we obtain by at most k edge changes a graph whose
twin graph has at most t vertices?

Theorem 2. Twin Graph Editing (V) is FPT in combined parameters k
and t.

Proof. The proof is very much the same as for Theorem 1, replacing “t edges”
with “t vertices”. It becomes even slightly simpler: Our branching graph H has
exactly t+ 1 vertices, we do not need an additional argument to bound the size
of H . This finally implies a time complexity of O∗((t(t + 1)/2)k) in the worst
case. ��

Minimizing the number of vertices in the twin graph also provokes the question of
finding solutions to Cluster Editing with the additional demand to minimize
the number of clusters. That is, we pose the following Cluster Editing (Min)
problem: Given a graph G and parameter k, can we obtain by at most k edge
changes a cluster graph, and if so, find one with the smallest number of clusters?

Fixed-Parameter Tractable Generalizations of Cluster Editing 351

Cluster Editing (Min) is FPT by a trivial argument: In order to reach a
cluster graph, we must destroy all induced P3 by edge changes. This gives branch-
ing number 3. We can even enumerate all solutions with at most k changes in
O∗(3k) time and then simply pick a solution with minimum number of clusters,
in the same time bound. The number of solutions to an instance of Cluster
Editing can be up to 3k, thus one might think that the time for Cluster
Editing (Min) cannot be reduced below O∗(3k) in this way. However, in [4]
we introduced concise representations of all minimal solutions. We outline the
necessary facts for Cluster Editing needed below, these things can be dis-
cussed similarly for any modification problem. Given an input graph G with n
vertices and parameter k, minimal solutions are those reachable from G by an
inclusion-minimal set of at most k changes, i.e., sequences of changes that lead
to a cluster graph, without reaching the same or another cluster graph before.
We may imagine a “state graph” whose vertices are all graphs with n vertices,
and where two graphs are “adjacent” if they differ in exactly one edge. A search
tree can be seen as a subtree of this state graph, rooted at G. Informally, the
idea of concise representations of all minimal solutions is to abort paths of a
search tree already before a target graph (here: a cluster graph) is reached, if
the current graph is so simple that all minimal solutions reachable from it are
described in some simple way, e.g., by a set-theoretic formula. This has to be
made precise by an ad-hoc definition for any concrete problem. Thus, the de-
scription can be significantly smaller than the number of minimal solutions. In
particular we proved the following in [4], the formulation below is adapted to
the current needs.

Theorem 3. A description of all minimal solutions of an instance of Cluster
Editing can be computed by a search tree algorithm that uses only branching
rules with branching numbers no larger than 2.562. All leaves of the resulting
search tree represent graphs which may contain, besides cliques, also P3 as con-
nected components. All minimal solutions are reached by further, independent
changes in these P3 components, namely, either one edge insertion (to get a
cluster of size 3) or one edge deletion (to get two clusters of size 1 and 2).

The general idea behind our algorithm for Cluster Editing (Min) is to com-
pute an concise enumeration, as in Theorem 3, and then to expand the paths of
this aborted search tree further, but this time only in order to obtain just one
optimal solution starting from the graph represented by every leaf of the search
tree. In the following we denote any such graph L. Finally, the global optimum
from all tree paths is taken. We only have to bound the branching numbers in
the search trees we attach to the tree from Theorem 3.

First we deal with the case that L itself is already a cluster graph, albeit with
too many clusters. The following lemma restricts the transformations we still
have to take into account. Note that k is here the number of remaining changes
still allowed in L, rather than the given parameter value.

352 P. Damaschke

Lemma 4. Let L and H be two cluster graphs, such that H has at most c
clusters and can be reached from L by at most k edge changes. Then, there
exists such a transformation where clusters of L are only merged but never split.
Moreover, each cluster C of L either appears as a cluster in H, or C is attached
to a cluster in H − C of minimum size.

Proof. Consider a transformation τ of L into H , and any cluster C in L. The
transformation induced by τ on L− C yields an induced subgraph H −C of H
which is, clearly, also a cluster graph. Since the order of changes is immaterial
for the result, we may rearrange τ so that all deletions or insertions of edges
incident to vertices in C are performed last. Now, either let C be a cluster in
H , or attach C to a smallest cluster in H −C. We claim that all other solutions
are only worse: Let B be the cluster of H −C merged with C in the latter case.
Then we have to insert |B| edges adjacent to every vertex in C. If we, instead,
attached vertices from C to any other cluster of H −C, this number would only
increase. If we split C in smaller cliques and attached them to several clusters
of H − C, we would also need edge deletions in C. In any case, we would need
more changes to obtain the same number of clusters in H . ��
What we learn from Lemma 4 is that an optimal solution to Cluster Editing
(Min), when L is already a cluster graph, can be obtained by successive merging
of clusters, until the allowed number of changes is exceeded. Moreover, in every
step we can take a currently minimum size cluster C and merge it with one of
the other clusters. This is correct by the following arguments. If C participates
in further merge operations at all, we can merge C right now with another
cluster. The other alternative is that C becomes a cluster in the target graph
H . But then it is better to replace in this process a larger cluster with C, since
this only reduces the number of edge insertions. Hence, it is never a mistake to
merge a smallest cluster with some other cluster. However, it is not clear which
cluster should be the second merging partner. A greedy rule would not work,
small counterexamples are easy to find. Some more side remarks are in order
here. Instead of transforming a graph L into a cluster graph using at most a
prescribed number k of changes, thereby minimizing the number c of clusters,
we may also ask how many changes are necessary to reach a cluster graph with
a prescribed (maximum) number c of clusters. Clearly, the two problems are
polynomially equivalent. We conjecture that Cluster Editing (Min) is NP-
hard already for cluster graphs L as input, since it is a balancing problem of
similar nature as Bin Packing. Note that the version with prescribed c can
be rephrased as follows, since only cardinalities of clusters in L matter: Given
integers x1, . . . , xd and c < d, divide the xi into c groups such that the sum of
products xixj , taken over all index pairs i, j in the same group, is minimized.
Another equivalent formulation is: Divide the xi into c groups such that the sum
of squares of group sums is minimized.

Luckily, in our context we need not worry too much about the complexity of
this subproblem, since we are only interested in the branching number. Lemma 4
and the subsequent paragraph gives us a branching rule: Merge a smallest cluster
C with another cluster, and branch for all possible merge partners, however,

Fixed-Parameter Tractable Generalizations of Cluster Editing 353

consider only one representative cluster for each appearing cardinality. If |C| = x,
and the different sizes of clusters other than C are x1 < x2 < . . . < xd, the
numbers of edge insertions in these d cases are xx1, xx2, . . . , xxd. Thus, the
characteristic equation for the inverse branching number y is

∑d
i=1 y

xxi = 1. For
any d, the worst case (y minimal) appears if x = 1 and xi = i for all i, that is,∑d

i=1 y
i = 1. Now we see y > 1/2, hence the branching number for this cluster

merging phase is always smaller than 2.
It remains to consider the P3 components in the graphs L at the leaves of a

search tree obtained by Theorem 3. In any transformation of L into a cluster
graph, we first reach a minimal solution (when we encounter a cluster graph
for the first time), and then we can, in general, transform it further into a
cluster graph with fewer clusters. But all minimal solutions are already given by
Theorem 3: Any P3 is transformed into a cluster graph in two different ways,
each with one change. (Again, since only cardinalities of clusters are relevant,
symmetric cases need not be considered.) This gives immediately the branching
number 2 for treating the P3 components. Once we are left with cluster graphs
only, we perform the merging phase. Altogether it follows:

Theorem 4. Cluster Editing (Min) can be solved in O∗(2.562k) time.

In [4] we also achieved an improved version of Theorem 3 with base 2.4, however
at cost of more complicated non-clique components in the graphs L: There can
appear Pl and Cl of arbitrary lengths l, and seven further 6-vertex graphs. Based
on this result we reduce the base in Theorem 4 to 2.48. Due to space limitations
we only sketch the proof. As above, we have to turn all types of non-clique
components into cluster graphs, for all possible combinations of cardinalities of
clusters. For the exceptional 6-vertex graphs mentioned above, simple but tedious
case distinctions show that the branching numbers are always below 2. From a Pl

component in L we may successively split off small paths, by deleting one edge,
and complete them to cliques by edge insertions. Whenever a Pi has been cut off,
we must add

(
i
2

)
− i+1 edges. The root of 2y+ y2 + y4 + y7 + y11 + y16 + . . . = 1

is a lower bound for the inverse branching number of this path splitting. We get
y ≈ 0.403 and 1/y ≈ 2.48. For Cl components in L the argument is the same, but
for cutting out the first path we even need two deletions, so that the branching
number cannot be worse.

Corollary 1. Cluster Editing (Min) can be solved in O∗(2.48k) time.

5 Natural Clusterings

Clusterings with a forced small number of clusters tend to merge small clusters
just because this is cheap, i.e., it requires only few edge insertions. But this
does not mean that vertices put in such garbage collecting clusters are really
related from the viewpoint of the application at hand. Thus one may argue that
Cluster Editing (Min) is somewhat ill-posed in this respect. To overcome
this effect, we propose to restrict the permitted clusterings in the following way.

354 P. Damaschke

Definition 1. Given a graph G = (V,E), we call a cluster graph H on vertex
set V a natural clustering of G if:
(1) The vertex set of every cluster in H induces a connected subgraph of G.
(2) For any two clusters C and C′ in H, not all possible edges between C and
C′ exist in edge set E of G.

Condition (1) is intended to suppress unmotivated mergings, while (2) shall
avoid unmotivated splits. We define the problem Cluster Editing (Min,Nat):
Given a graphG and parameter k, find a natural clustering of G with the smallest
number of clusters, by at most k edge changes (if existing).

Recall that a minimal solution to the Cluster Editing problem for graph
G is defined as a cluster graph H obtained from G by an inclusion-minimal
set of changes (that transforms G into any cluster graph). Neatly, the following
equivalence holds:

Lemma 5. The natural clusterings of a graph are exactly the minimal solutions
to Cluster Editing.

Proof. Let H be a natural clustering of G, and τ the set of changes turning G into
H . We claim that a proper subset σ of τ cannot lead to another cluster graph,
hence H is a minimal solution. If σ omits some of the edge deletions in τ , then
at least two clusters of H , say C and C′, fall into the same connected component
of G. Since σ does not make more edge deletions than τ , it follows that C and
C′ remain connected after σ. But then σ has to insert all missing edges between
C and C′ (due to (2) there are some), whereas τ does not insert any such edge.
Thus, σ is not a subset of τ , a contradiction. We conclude that all edges deleted
by τ are deleted by σ, too. After the deletions, σ has to complete the resulting
connected components to cliques. Hence σ must insert all missing edges in the
clusters of H , unless some cluster of H is not a connected subgraph of G. But
condition (1) excludes the latter case. This implies σ = τ , a contradiction. The
claim is proved.

Conversely, let H be a minimal solution to Cluster Editing, and τ defined
as above. By minimality, a proper subset σ of τ cannot produce another cluster
graph. Now assume that (1) is violated, i.e., some cluster C of H is a disconnected
subgraph of G. If we do not insert the edges between the connected components
of C, we get a proper subset of τ generating another cluster graph (with C
divided in several clusters), a contradiction. Assume that (2) is violated, so that
E contains all possible edges between two of the clusters, say C and C′. Since
C and C′ are clusters in H , τ has deleted all these edges. If we choose not to
delete them, we get a proper subset of τ producing another cluster graph (with
cluster C ∪ C′ rather than C and C′), a contradiction. ��

Theorem 5. Cluster Editing (Min,Nat) can be solved in O∗(2.562k) time.

This follows directly from Lemma 5 and Theorem 3. Only the non-clique compo-
nents must be turned into cluster graphs, while the entire cluster merging phase
is superfluous when we are interested in natural clusterings only. Hence, also
Corollary 1 carries over to natural clusterings.

Fixed-Parameter Tractable Generalizations of Cluster Editing 355

References

1. N. Bansal, A. Blum, S. Chawla. Correlation clustering, Machine Learning 56
(2004), 89-113

2. Z.Z. Chen, T. Jiang, G. Lin. Computing phylogenetic roots with bounded degrees
and errors, SIAM J. Comp. 32 (2003), 864-879

3. P. Damaschke. Parameterized enumeration, transversals, and imperfect phylogeny
reconstruction, Theoretical Computer Science 351 (2006), 337-350, special issue: 1st
International Workshop on Parameterized and Exact Computation IWPEC 2004

4. P. Damaschke. On the fixed-parameter enumerability of cluster editing, 31st Inter-
national Workshop on Graph-Theoretic Concepts in Computer Science WG 2005,
LNCS 3787, 283-294

5. R.G. Downey, M.R. Fellows. Parameterized Complexity, Springer, 1999
6. H. Fernau. A top-down approach to search trees: improved algorithmics for 3-

hitting set, ECCC Report 73 (2004)
7. H. Frigui, O. Nasraoui. Simultaneous clustering and dynamic keyword weighting

for text documents, in: M. Berry (ed.), Survey of Text Mining, Springer 2004, 45-70
8. J. Gramm, J. Guo, F. Hüffner, R. Niedermeier. Graph-modeled data clustering:

Fixed-parameter algorithms for clique generation, Theory of Computing Systems
38 (2005), 373-392, preliminary version in 5th CIAC 2003, LNCS 2653, 108-119

9. J. Gramm, J. Guo, F. Hüffner, R. Niedermeier. Automated generation of search tree
algorithms for hard graph-modification problems, Algorithmica 39 (2004), 321-347

10. J. Guo, F. Hüffner, R. Niedermeier. A structural view on parameterizing problems:
Distance from triviality, Parameterized and Exact Computation, 1st Int. Workshop
IWPEC’2004, Proceedings, LNCS 3162, 162-173

11. G.H. Lin, T. Jiang, P.E. Kearney. Phylogenetic k-root and Steiner k-root. 11th
ISAAC 2000, LNCS 1969, 539-551

12. N. Nishimura, P. Ragde, D.M. Thilikos. Fast fixed-parameter tractable algorithms
for nontrivial generalizations of vertex cover, 7th WADS 2001, LNCS 2125, 75-86,
journal version to appear in Discrete Applied Math.

13. R. Shamir, R. Sharan, D. Tsur. Cluster graph modification problems, Discrete
Applied Math. 144 (2004), 173-182, preliminary version in: 28th WG 2002, LNCS
2573, 379-390

14. R. Sharan, A. Maron-Katz, R. Shamir. CLICK and EXPANDER: A system for clus-
tering and visualizing gene expression data, Bioinformatics 19 (2003), 1787-1799

15. R. Sharan, R. Shamir. Algorithmic approaches to clustering gene expression data,
in: Current Topics in Computational Molecular Biology, MIT Press, 2002, 269-300

16. S. Wu, X. Gu. Gene network: Model, dynamics and simulation, 11th COCOON
2005, LNCS 3595, 12-21

The Linear Arrangement Problem
Parameterized Above Guaranteed Value

Gregory Gutin1,�, Arash Rafiey1, Stefan Szeider2,��, and Anders Yeo1,�

1 Department of Computer Science, Royal Holloway University of London,
Egham, Surrey TW20 OEX, England, United Kingdom

gutin, arash, anders@cs.rhul.ac.uk
2 Department of Computer Science, Durham University,

Durham DH1 3LE, England, United Kingdom
stefan.szeider@durham.ac.uk

Abstract. A linear arrangement (LA) is an assignment of distinct in-
tegers to the vertices of a graph. The cost of an LA is the sum of lengths
of the edges of the graph, where the length of an edge is defined as the
absolute value of the difference of the integers assigned to its ends. For
many application one hopes to find an LA with small cost. However, it
is a classical NP-complete problem to decide whether a given graph G
admits an LA of cost bounded by a given integer. Since every edge of
G contributes at least one to the cost of any LA, the problem becomes
trivially fixed-parameter tractable (FPT) if parameterized by the upper
bound of the cost. Fernau asked whether the problem remains FPT if pa-
rameterized by the upper bound of the cost minus the number of edges
of the given graph; thus whether the problem is FPT “parameterized
above guaranteed value.” We answer this question positively by deriving
an algorithm which decides in time O(m + n + 5.88k) whether a given
graph with m edges and n vertices admits an LA of cost at most m + k
(the algorithm computes such an LA if it exists). Our algorithm is based
on a procedure which generates a problem kernel of linear size in linear
time for a connected graph G. We also prove that more general parame-
terized LA problems stated by Serna and Thilikos are not FPT, unless
P = NP.

1 Introduction

All graphs considered in this paper do not have loops or parallel edges. A linear
arrangement (LA) of a graph G = (V,E) is a one-to-one mapping α : V →
{1, . . . , |V |}. The length of an edge uv ∈ E relative to α is defined as

λα(uv) = |α(u) − α(v)|.

The cost c(α,G) of an LA α is the sum of lengths of all edges of G relative to
α. LAs of minimal cost are optimal ; ola(G) denotes the cost of an optimal LA
of G.

� Research supported in part by the IST Programme of the European Community,
under the PASCAL Network of Excellence, IST-2002-506778.

�� Research supported in part by the Nuffield Foundation, NAL/01012/G.

T. Calamoneri, I. Finocchi, G.F. Italiano (Eds.): CIAC 2006, LNCS 3998, pp. 356–367, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

The LAP Parameterized Above Guaranteed Value 357

The Linear Arrangement Problem (LAP) is the problem of deciding
whether, given a graph G and an integer k, G admits a linear arrangement of
cost at most k. The problem has numerous application; in particular, the first
published work on the subject appears to be the 1964 paper of Harper [14],
where a polynomial-time algorithm for finding optimal linear arrangement for
n-cubes is developed, which has applications in error-correcting codes. Goldberg
and Klipker [13] were first to obtain a polynomial-time algorithm for computing
optimal linear arrangements of trees. Faster algorithms for trees were obtained
by Shiloach [17] and Chung [2]. However, we cannot hope to find optimal lin-
ear arrangements for the class of all graphs in polynomial time since LAP is a
classical NP-complete problem [11, 12].

Recently, LAP was studied under the framework of parameterized complexity
[6, 18]. We recall some basic notions of parameterized complexity here, for a
more in-depth treatment of the topic we refer the reader to [4, 5, 6, 10, 16]. A
parameterized problem Π can be considered as a set of pairs (I, k) where I is
the problem instance and k (usually an integer) is the parameter. Π is called
fixed-parameter tractable (FPT) if membership of (I, k) in Π can be decided in
time O(f(k)|I|c), where |I| is the size of I, f(k) is a computable function, and c is
a constant independent from k and I. Let Π and Π ′ be parameterized problems
with parameters k and k′, respectively. An fpt-reduction R from Π to Π ′ is a
many-to-one transformation from Π to Π ′, such that (i) (I, k) ∈ Π if and only
if (I ′, k′) ∈ Π ′ with k′ ≤ g(k) for a fixed computable function g and (ii) R is of
complexity O(f(k)|I|c). A reduction to problem kernel (or kernelization) is an
fpt-reduction R from a parameterized problem Π to itself. In kernelization, an
instance (I, k) is reduced to another instance (I ′, k′), which is called the problem
kernel. It is easy to see that a decidable parameterized problem is FPT if and
only if it admits a kernelization (see, e.g., [5, 16]); however, the problem kernels
obtained by this general result have impractically large size. Therefore, one tries
to develop kernelizations that yield problem kernels of smaller size, if possible of
size linear in the parameter.

The following is a straightforward way to parameterize LAP [6, 18]:

Parameterized LAP
Instance: A graph G. Parameter: A positive integer k.
Question: Does G have an LA of cost at most k?

An edge has length at least 1 in any LA. Thus, for a graph G with m edges we
have ola(G) ≥ m; in other words,m is a guaranteed value for ola(G). Consequently,
parameterized LAP is FPT by trivial reasons (we reject a graph with more than
k edges and solve LAP by brute force if the graph has at most k edges). Hence it
makes sense to consider the net cost nc(α,G) of an LA α defined as follows:

nc(α,G) =
∑
e∈E

(λα(e) − 1) = c(α,G) −m.

We denote the net cost of an optimal LA of G by ola+(G). Indeed, the following
non-trivial parameterization of LAP is considered by Fernau [6, 7]:

358 G. Gutin et al.

LA parameterized above guaranteed value (LAPAGV)
Instance: A graph G. Parameter: A positive integer k.
Question: Does G have an LA of net cost at most k?

Parameterizations above a guaranteed value were first considered by Mahajan
and Raman [15] for the problems Max-SAT and Max-Cut; such parameteriza-
tions have lately gained much attention [6, 16]. However, apparently only a few
nontrivial problems parameterized above guaranteed value are known to be FPT.

Fernau [6, 7] raises the question of whether LAPAGV is FPT (the status of this
problem is reported open in Cesati’s compendium [1]). We answer this question
positively by deriving a kernelization procedure for LAPAGV that yields problem
kernels of linear size in linear time for connected graphs G. Moreover, using the
method of bounded search trees, we develop an algorithm that solves LAPAGV
for the obtained kernel more efficiently than by brute force. In summary, we
obtain an algorithm that decides in time O(m+n+5.88k) whether a given graph
with m edges and n vertices admits an LA of cost at most m+k. Our algorithm
also produces an optimal LA if ola+(G) ≤ k. A key concept of our kernelization
is the suppression of vertices of degree 2, a standard technique used in the design
of parameterized algorithms (e.g., for finding small feedback vertex sets in graphs
[4]). For LAPAGV, however, we need a more sophisticated approach where we
suppress only vertices of degree 2 that satisfy a certain condition depending on
the parameter k.

Fernau [8] proposes a bounded search tree approach to prove that LAPAGV
is FPT. The description of the approach is incomplete (for example, it is unclear
how to deal with vertices of degree 2 without rejecting any yes-instances) and
an inequality, which is required by Fernau’s approach to show that LAPAGV is
FPT, is not proved. These conclusions are confirmed in our private communica-
tion with Fernau (February, 2006) and it remains to be seen whether a bounded
search tree approach can be used to prove that LAPAGV is FPT.

Serna and Thilikos [18] formulate more general parameterized LA problems
(see Section 4) and ask whether their problems are FPT. We prove that the
problems are not FPT (unless P = NP) by demonstrating that for almost all fixed
values of the parameter, the corresponding decision problems are NP-complete.
This implies that the problems are para-NP-complete [10]. We conclude the
paper by Theorem 8, which indicates that our FPT result cannot be extended
much further, in a sense.

For a graph G and a set X of its vertices, V (G), E(G) and G[X] denote
the vertex set of G, the edge set of G, and the subgraph of G induced by X ,
respectively. An edge e in a graph G is a bridge if G − e has more components
than G has. A connected graph with at least two vertices and without bridges
is called 2-edge-connected. A bridgeless component of a graph G is a maximal
induced subgraph of G with no bridges. Observe that the bridgeless components
of G are the connected components that we get after removing all bridges from
G. A bridgeless component is either a 2-edge-connected graph or is isomorphic
to K1; in the latter case we call it trivial. Further graph-theoretic terminology
can be found in Diestel’s book [3].

The LAP Parameterized Above Guaranteed Value 359

2 Kernelization

In the next section, we use the following simple lemma to solve LAPAGV for
the general case of an arbitrary graph input G. The lemma allows us to confine
our attention to connected graphs in the rest of this section.

Lemma 1. Let G1, . . . , Gp be the connected components of a graph G. Then
ola+(G) =

∑p
i=1 ola+(Gi).

Let α be an LA of a graph G. It is convenient to use for subgraphs G′ of G the
notation nc(α,G′) =

∑
uv∈E(G′)(λα(uv) − 1).

Lemma 2. Let G be a graph, let X ⊆ V (G), and let u, v be two distinct vertices
of G that belong to the same connected component of G−X. Let α be an LA of
G with α(u) < α(x) < α(v) for every x ∈ X. Then nc(α,G −X) ≥ |X |.
Proof. We proceed by induction on |X |. If |X | = 0 then the lemma holds vac-
uously. Hence we assume |X | ≥ 1 and pick x ∈ X . We define G′ = G − x,
X ′ = X \ {x}, and we let α′ be the LA of G′ obtained from α by setting,
for y ∈ V (G′), α′(y) = α(y) if α(y) < α(x), and α′(y) = α(y) − 1 other-
wise. By induction hypothesis, nc(α′, G′ − X ′) ≥ |X ′|. By assumption, G −X
contains a path P from u to v; hence P contains at least one edge w1w2
with α(w1) < α(x) < α(w2) (and w1, w2 /∈ X). By definition of α′, we have
λα(w1w2) = λα′(w1w2) + 1. Since for all other edges e ∈ E(G′ − X ′) we have
λα(e) ≥ λα′(e), nc(α,G−X) ≥ nc(α′, G′ −X ′) + 1 follows. ��

Let G be a connected graph and let α be an LA of G. We say that two subgraphs
A,B of G are α-comparable if either α(a) < α(b) holds for all a ∈ V (A), b ∈
V (B), or α(a) > α(b) holds for all a ∈ V (A), b ∈ V (B). Moreover, let e be a
bridge of G and let G1, G2 be the two connected components of G − e. For a
positive integer k, we say that e is k-separating if both |V (G1)|, |V (G2)| > k.

Lemma 3. Let G be a connected graph and let k be a positive integer such that
k ≥ ola+(G). Then for every optimal LA α of G and every k-separating bridge
e of G, the two connected components of G− e are α-comparable.

Proof. Let α be an optimal LA. Let e be a k-separating bridge ofG and let G1, G2
be the two connected components of G− e. Since e is a k-separating bridge, we
have |V (G1)|, |V (G2)| > k. We denote the extremal values of the vertices of G1
and G2 with respect to α by li = minv∈V (Gi) α(v) and ri = maxv∈V (Gi) α(v),
i = 1, 2. We may assume that l1 < l2. First we show that r1 < r2. Assume
to the contrary that r1 > r2. Now α−1(l1) and α−1(r1) belong to the same
connected component of G−V (G2), and Lemma 2 implies nc(α,G) ≥ |V (G2)| >
k, contradicting the assumption nc(α,G) ≤ k. Hence indeed l1 < l2 and r1 < r2.

Next we show that r1 < l2. Assume to the contrary that l2 < r1. From α we
obtain a new LA α′ of G, changing the order of vertices in X = { x ∈ V (G) : l2 ≤
α(x) ≤ r1 } such that G1 and G2 become α′-comparable, without changing the
relative order of vertices within G1 or changing the relative order of vertices
within G2. Since e is a bridge, we have

nc(α,G) = nc(α,G−e)+λα(e)−1 and nc(α′, G) = nc(α′, G−e)+λα′(e)−1. (1)

360 G. Gutin et al.

Although λα′(e) can be greater than λα(e), we will show that an increase of the
length of e is more than compensated by the reduced cost of G−e under α′. Again
using Lemma 2 we conclude that nc(α′, Gi) ≤ nc(α,Gi)−|X∩V (G3−i)| holds for
i = 1, 2 (observe that the vertices α−1(li), α−1(ri) are in the same component of
G−V (G3−i), and for each vertex x in X ∩V (Gi) we have α(li) < α(x) < α(ri)).
In summary, we have

nc(α′, G− e) ≤ nc(α,G− e) − |X |. (2)

Using the fact that |α(x) − α′(x)| ≤ |X | − 1 holds for all vertices x ∈ V (G),
it is easy to see that

λα′(e) ≤ λα(e) + |X | − 1. (3)

Indeed, if at least one of the ends of e is in V (G) \ X , then clearly λα′ (e) ≤
λα(e)+ |X | − 1; otherwise, if both ends of e are in X , then λ′

α(e) ≤ |X | − 1, and
since λα(e) ≥ 1, we have even λα′(e) ≤ λα(e) + |X | − 2.

By (1), (2) and (3), we obtain nc(α′, G) ≤ nc(α,G) − 1. This contradicts the
assumption that α is an optimal LA. Hence l1 < r1 < l2 < r2, and so G1 and
G2 are α-comparable as claimed. ��

Lemma 4. If G is a connected bridgeless graph of order n ≥ 1, then ola+(G) ≥
(n− 1)/2.

Proof. If n ≤ 2, then the inequality trivially holds. Thus, we may assume that
n ≥ 3 and G is 2-edge-connected. Let α be an optimal LA of G and put u =
α−1(1) and w = α−1(n). Since G is 2-edge-connected, Menger’s Theorem (see,
e.g., [3]) implies that there are two paths P, P ′ between u to w such that E(P)∩
E(P ′) = {u,w}. Observe that the subgraph G′ of G induced by E(P) ∪ E(P ′)
is a collection of t ≥ 1 edge-disjoint cycles. Let n′ be the number of vertices
in G′. Since G′ has t − 1 vertices of degree 4 and n′ − t + 1 vertices of degree
2, |E(G′)| = (n′ − t + 1) + 2(t − 1) = n′ + t − 1. Since n′ ≤ n and t ≤ n−1

2 ,
we conclude that |E(G′)| ≤ 3

2 (n − 1). Observe that nc(α, P) ≥ n − 1 − |E(P)|
and nc(α, P ′) ≥ n − 1 − |E(P ′)|. Hence, ola+(G) = nc(α,G) ≥ nc(α,G′) ≥
2(n− 1) − |E(G′)| ≥ (n− 1)/2. ��
Let α be an optimal LA of G. We call a vertex u ∈ V (G) α-special if G − u is
connected and α(u) �∈ {1, n}.

Lemma 5. Let G be a connected graph. Let X be a vertex set of G such that
G[X] is connected and let G − X have connected components G1, G2, . . . , Gr

with n1, n2, . . . , nr vertices, respectively, such that n1 ≤ n2 ≤ . . . ≤ nr. Then
ola+(G) ≥ ola+(G[X]) +

∑r−2
i=1 ni.

Proof. Let α be an optimal LA of G. If r ≤ 2, then
∑r−2

i=1 ni = 0 and, thus, this
lemma holds. Now assume that r ≥ 3. Observe that each nontrivial Gi has a
pair ui, vi of distinct vertices such that Gi − ui and Gi − vi are connected. If
Gi is trivial, i.e., it has just one vertex x, then set ui = vi = x. Since r ≥ 3,
for some j ∈ {1, 2, . . . , r}, we have α(uj) �∈ {1, n} and α(vj) �∈ {1, n}. Now we
claim that there is a vertex u ∈ V (Gj) such that G − u is connected. Indeed,

The LAP Parameterized Above Guaranteed Value 361

we set u = uj if there are edges between vj and G[X], we set u = vj , otherwise.
We have proved that G has an α-special vertex u not in X . Let αu be an LA of
G− u defined as follows: αu(x) = α(x) for all x ∈ V (G) with α(x) < α(u), and
αu(x) = α(x)−1 for all x ∈ V (G) with α(x) > α(u). Since G is connected, it has
an edge yz such that α(y) < α(u) < α(z). Observe that λα(yz) = λαu(yz) + 1.
Hence, we have ola+(G) = nc(α,G) ≥ nc(αu, G − u) + 1 ≥ ola+(G − u) + 1.
Thus,

ola+(G) ≥ ola+(G− u) + 1 for an α-special vertex u of G (4)

Run the following procedure: while G−X has a least three components, choose a
β-special vertex u �∈ X of G for an optimal LA β of G and replace G with G−u.
By the end of this procedure, we have deleted some t vertices from G obtaining
a subgraph H of G. By (4), we have ola+(G) ≥ ola+(G[X]) + t. Observe that
H −X has at most two components, if all vertices of at least r − 2 components
G1, G2, . . . , Gr are deleted from G during the procedure. Thus, t ≤

∑r−2
i=1 ni and

ola+(G) ≥ ola+(G[X]) +
∑r−2

i=1 ni. ��

Lemma 6. Let k be a positive integer and let G be a connected graph with n
vertices with ola+(G) ≤ k. Then either G has a k-separating bridge or n ≤ 4k+1.

Proof. Assume that G does not have a k-separating bridge. If G is a bridgeless
graph, then by Lemma 4 we know that n ≤ 2k + 1. So, we may assume that
G has a bridge. Choose a bridge e1 with maximal min{|V (F1)|, |V (F0)|}, where
F1, F0 are the components of G − e1. Assume, w.l.o.g., that |V (F1)| ≤ |V (F0)|.
Since e1 is not a k-separating bridge, |V (F1)| ≤ k follows of necessity. Let F ∗

0
denote the bridgeless component of F0 that contains a vertex incident to e1. If
F0 = F ∗

0 then |V (F0)| ≤ 2k + 1 follows by Lemma 4 and we are done; hence we
assume that F0 �= F ∗

0 .
Let e2, . . . , er denote the bridges of F0 that are incident to vertices in F ∗

0 .
Moreover, let F2, . . . , Fr denote the connected components of F0 − V (F ∗

0) such
that each ei is incident with a vertex of Fi, i = 2, . . . , r. Assume that |V (F2)| ≥
|V (F3)| ≥ . . . ≥ |V (Fr)|. Suppose that |V (F2)| > |V (F1)|. Then the component
of G−e2 different from F2 has more vertices than F1, which is impossible by the
choice of e1 and the assumption that G has no k-separating bridges. We conclude
that |V (F1)| ≥ |V (F2)|. By Lemma 5, ola+(G) ≥ ola+(F ∗

0)+
∑r

i=3 |V (Fi)|. Thus,∑r
i=3 |V (Fi)| ≤ k − ola+(F ∗

0). Since |V (F2)| ≤ |V (F1)| ≤ k and, by Lemma 4,
|V (F ∗

0)| ≤ 2 · ola+(F ∗
0) + 1, we obtain that n = |V (F ∗

0)| +
∑r

i=1 |V (Fi)| ≤
(2 · ola+(F ∗

0) + 1) + (3k − ola+(F ∗
0)) = 3k + ola+(F ∗

0) + 1 ≤ 4k + 1. ��

Lemma 7. Let k be a positive integer and let G be a connected graph with the
following structure:

1. G has bridgeless components C1, C2, . . . , Ct, t ≥ 2, such that every two con-
secutive components Ci and Ci+1 are linked by a single edge ei, which is a
k-separating bridge in G, i = 1, 2, . . . , t− 1.

2. Let L = G[
⋃t

i=1 V (Ci)]. The graph G′ = G − V (L) has connected compo-
nents G1, G2, . . . , Gr such that each Gj has edges only to one subgraph Cπ(j),
π(j) ∈ {1, 2, . . . , t}.

362 G. Gutin et al.

Let Jp be the indices of all Gj such that π(j) = p, p = 1, 2, . . . , t. Let ni =
max{|V (Gj)| : j ∈ Ji}, i = 1, 2, . . . , t. Then ola+(G) ≥ ola+(L) + |V (G′)| −
n1 − nt.

Proof. Let α be an optimal LA of G. Let

Ap =

 ⋃
j∈J1∪J2∪···∪Jp

V (Gj)

 ∪

 p⋃
j=1

V (Cj)

for p = 1, 2, . . . , t. By Lemma 3, the two components of G−e1 are α-comparable.
We may assume, w.l.o.g., that α(x) < α(y) for each x ∈ A1, y �∈ A1. Because
of the assumption and since the two components of G − e2 are α-comparable,
we have α(x) < α(y) < α(z) for each x ∈ A1, y ∈ A2 − A1 and z �∈ A2.
Continuing this argument, we can prove that α(xi) < α(xi+1) for each xi ∈ Ai

and xi+1 ∈ Ai+1 \
⋃i

j=1 Aj .
By the above conclusion and the arguments similar to those used in the proof

of Lemma 5, we can prove that each Gj , apart from at most one graph Gp with
p ∈ J1 and at most one graph Gq with q ∈ Jt, has an α-special vertex u. As in
Lemma 5, it follows that ola+(G− u) ≤ ola+(G)− 1. Now we apply a procedure
similar to that used in the proof of Lemma 5: until |J1| ≤ 1, |Jt| ≤ 1 and
J2 = · · · = Jt−1 = ∅, choose a β-special vertex u ∈ V (G′) for an optimal LA β
of G and replace G with G − u and G′ with G′ − u. The procedure will have
at most |V (G′)| − n1 − nt steps each decreasing ola+(G) by at least 1. Hence
ola+(G) ≥ ola+(L) + |V (G′)| − n1 − nt. ��

Let G be a graph and let v be a vertex of degree 2 of G. Let vu1, vu2 denote be
the edges incident with v. Assume that u1u2 /∈ E(G). We obtain a graph G′ from
G by removing v (and the edges vu1, vu2) from G and adding instead the edge
u1u2. We say that G′ is obtained from G by suppressing vertex v. Furthermore, if
the two edges incident with v are k-separating bridges for some positive integer
k, then we say that v is k-suppressible. The last definition is justified by the
following lemma.

Lemma 8. Let G be a connected graph and let v be an ola+(G)-suppressible
vertex of G. Then ola+(G) = ola+(G′) holds for the graph G′ obtained from G
by suppressing v.

Proof. Let u1, u2 denote the neighbors of v and let G1, G2 denote the connected
components of G−v with ui ∈ V (Gi), i = 1, 2. Consider an optimal LA α of G. As
above we use the notation li = minw∈V (Gi) α(w) and ri = maxw∈V (Gi) α(w), i =
1, 2, and we assume, w.l.o.g., that l1 < l2. Since vu1, vu2 are ola+(G)-separating
bridges, Lemma 3 implies that α assigns to the vertices of Gi an interval of
consecutive integers. Thus, we conclude that l1 < r1 < α(v) < l2 < r2. We define
an LA α′ of G′ by setting α′(w) = α(w) for w ∈ V (G1) and α′(w) = α(w) − 1
for w ∈ V (G2). Evidently ola+(G′) ≤ nc(α′, G′) = nc(α,G) = ola+(G).

Conversely, assume that α′ is an optimal LA of G′. We proceed sym-
metrically to the first part of this proof. Let li = minw∈V (Gi) α

′(w) and

The LAP Parameterized Above Guaranteed Value 363

ri = maxw∈V (Gi) α
′(w), i = 1, 2, and assume, w.l.o.g., that l1 < l2. Observe

that u1u2 is an ola+(G′)-separating bridge of G′, hence Lemma 3 applies. Thus
l1 < r1 < l2 < r2. We define an LA α of G by setting α(w) = α′(w) for
w ∈ V (G1), α(v) = r1 + 1, and α′(w) = α(w) + 1 for w ∈ V (G2). Evidently
ola+(G) ≤ nc(α′, G) = nc(α′, G′) = ola+(G′). Hence ola+(G) = ola+(G′) as
claimed. ��
Theorem 1. Let k be a positive integer, and let G be a connected graph without
k-suppressible vertices. If ola+(G) ≤ k, then G has at most 5k + 2 vertices and
at most 6k + 1 edges.

Proof. Let n = |V (G)| > 1, and let ola+(G) ≤ k. Any LA of G can have at most
n−1 edges of length 1, and each additional edge contributes at least 1 to the net
cost. Thus, m ≤ n− 1 + k and it suffices to show that n ≤ 5k+ 3. If G does not
have a k-separating bridge, then by Lemma 6 we have n ≤ 5k + 1. Assume now
that G has a k-separating bridge. Let e = uv be such a bridge, and let H1, H2
be two connected component of G− e, where H1 contains u. Let Cu (Cv) be the
bridgeless components containing u (v). Let Cu

1 , C
u
2 , . . . , C

u
p (Cv

1 , C
v
2 , . . . , C

v
q) be

all connected components of H1−V (Cu) (H2−V (Cv)). Observe that each of the
components Cu

i (Cv
i) is linked to Cu (Cv) by a bridge. Assume that |V (Cx

i)| ≤
|V (Cx

j)| for i < j, where x ∈ {u, v}. By Lemma 5, we have
∑i=p−1

i=1 |V (Cu
i)| ≤ k

and
∑i=q−1

i=1 |V (Cv
i)| ≤ k. If the bridge between Cu

p and Cu (Cv
q and Cv) is

k-separating, we consider the bridgeless component of Cu
p (Cv

q) containing an
endvertex of the bridge and the connected components obtained from Cu

p (Cv
q) by

deleting the vertices of the bridgeless component. Continuation of the procedure
above as long as possible will bring us the following decomposition of G:

1. G has bridgeless components C1, C2, . . . , Ct, t ≥ 2, such that every two
consecutive components Ci and Ci+1 are linked by a single edge ei, which is a
k-separating bridge in G, i = 1, 2, . . . , t− 1.

2. Let L = G[
⋃t

i=1 V (Ci)]. The graph G′ = G− V (L) has connected compo-
nents G1, G2, . . . , Gr such that each Gj has edges only to one subgraph Cπ(j),
π(j) ∈ {1, 2, . . . , t}.

Since we have carried out the above procedure as long as possible, all bridges
between G′ and L are not k-separating. Thus, |V (Gj)| ≤ k for each j =
1, 2, . . . , t. Recall that Jp is the set of indices of all Gj such that π(j) = p,
p = 1, 2, . . . , t, and ni = max{|V (Gj)| : j ∈ Ji}, p = 1, 2, . . . , t. By Lemma 7,
ola+(G) ≥ ola+(L) + |V (G′)| − n1 − nt. Since n1 ≤ k, nt ≤ k and ola+(G) ≤ k,
we obtain

|V (G′)| ≤ 3k − ola+(L). (5)
Since G has no k-suppressible vertices, the bridgeless components C2, C3, . . .,

Ct−1 are not trivial. Observe that
∑t−1

i=2 ola+(Ci) ≤ ola+(L). By Lemma 4, every
component ola+(Ci) ≥ 1, 2 ≤ i ≤ t− 1, and thus t− 2 ≤ ola+(L). By Lemma 4,
|V (Ci)| ≤ 2 · ola+(Ci) + 1 for each i = 1, 2, . . . , t. Hence,

|V (L)| =
t∑

i=1

|V (Ci)| ≤ 2

(
t∑

i=1

ola+(Ci)

)
+ t ≤ 3 · ola+(L) + 2. (6)

364 G. Gutin et al.

Combining (5) and (6), we obtain |V (G)| = |V (G′)|+ |V (L)| ≤ (3k−ola+(L))+
(3 · ola+(L) + 2) ≤ 3k + 2 · ola+(L) + 2 ≤ 5k + 2. ��

Theorem 2. Let f(n,m) be the time sufficient for checking whether ola+(G) ≤
k for a connected graph G with n vertices and m edges. Then f(n,m) = O(m+
n + f(5k + 2, 6k + 1))

Proof. (Sketch.) Using a depth-first-search (DFS) algorithm, we can determine
the cut vertices of G in time O(n+m) [19]. Let T be a spanning rooted tree of G
(say, as obtained by the DFS algorithm). By a bottom-up traversal of T we find
the set S of all k-suppressible vertices of G in time O(n + m). Note that if H
is the graph obtained by suppressing some v ∈ S, some vertices of S \ {v} may
not be k-suppressible in H ; however, any k-suppressible vertex of H belongs to
S \ {v}.

We compute a set S′ ⊆ S starting with the empty set and successively adding
some of the vertices of S to S′. We visit the vertices of G according to a bottom-
up traversal of T (i.e., if v is a descendant of v′ then we visit v before v′). During
this traversal we assign to each vertex v an integer t′v which is the number
of vertices in S′ that belong to the subtree of T rooted at v. Performing a
further bottom-up traversal of T we suppress the vertices in S′ one after the
other, and we are left with a graph G′ which has no k-suppressible vertices.
If |V (G′)| > 5k + 2 or |E(G′)| > 6k + 1, then we know from Theorem 1 that
ola+(G′) > k. It follows from Lemma 8 that ola+(G) > k as well, and we can
reject G. On the other hand, if |V (G′)| ≤ 5k + 2 and |E(G′)| ≤ 6k + 1, then
we can find an optimal LA α′ for G′ in time f(5k + 2, 6k + 1). By means of the
construction in the proof of Lemma 8 we can transform in time O(n + m) the
arrangement α′ into an optimal LA α of G. ��

3 Computing Optimal Linear Arrangements

Let n and k be nonnegative integers. Let Tn be the set of trees with n vertices.
Let T ∈ Tn and let X ⊆ V (T) be arbitrary. Let OLA+

T (n, k,X) be the set of
LAs α of T with net cost at most k and such that α(x) ∈ {1, n} for all x ∈ X .
Note that OLA+

T (n, k,X) = ∅ if |X | ≥ 3. Now define t(n, k, i) as follows:

t(n, k, i) = max{ |OLA+
T (n, k,X)| : T ∈ Tn, |X | = i }.

In other words, no tree T of order n has more than t(n, k, i) LAs such that the
net cost is at most k and i prescribed vertices have to be mapped to either 1
or n (and t(n, k, i) is the minimum such value). For a connected graph G, let
TG be a spanning tree of G. Since ola+(TG) ≤ ola+(G) we only have to check
all LAs in OLA+

TG
(n, k, ∅) (but still considering all edges in G and not just TG)

to decide whether ola+(G) ≤ k. Since |OLA+
TG

(n, k, ∅)| ≤ t(n, k, 0) the values of
t(n, k, i) are of interest (especially when i = 0). We will give an upper bound for
t(n, k, i). Proofs are omitted due to space limitations. The proofs show how to
generate all LAs in OLA+

TG
(n, k, ∅). Note that t(n, k, 3) = 0.

The LAP Parameterized Above Guaranteed Value 365

Theorem 3. For all n ≥ 2, k ≥ 0 and 0 ≤ i ≤ 3, we have the following:

t(n, k, i) ≤ 20.119n+1.96k−1.4625i+4.

Using this theorem, we can prove the following result.

Theorem 4. Let n be the number of vertices in a connected graph G and let k
be a nonnegative integer. If n ≤ 5k+ 2, then we can check whether ola+(G) ≤ k
and compute ola+(G) provided ola+(G) ≤ k in time O(22.5551k).

Now we are ready to prove the main result of this paper.

Theorem 5. Let G = (V,E) be a graph and let k be a nonnegative integer. We
can check whether ola+(G) ≤ k and compute ola+(G) provided ola+(G) ≤ k in
time O(|V | + |E| + 5.88k).

Proof. Let G1, G2, . . . , Gp be the connected components of G. We can check, in
time O(|V (Gi)|), whether ola+(Gi) = 0 since ola+(Gi) = 0 if and only if Gi is a
path. Thus, in time O(|V |), we can detect all components of G of net cost zero. By
Lemma 1, we do not need to take these components into consideration when com-
puting ola+(G). Thus, we may assume that for all components Gi, i = 1, 2, . . . , p,
we have ola+(Gi) ≥ 1. Thus, if ola+(G) ≤ k, then ola+(Gi) ≤ k − p + 1. By
Lemma 1, Theorems 2 and 4, and the fact that ola+(Gi) ≤ k−p+1 if ola+(G) ≤
k, we can check whether ola+(G) ≤ k and compute ola+(G) provided ola+(G) ≤
k in time O(

∑p
i=1(|V (Gi)|+|E(Gi)|)+p22.5551(k−p+1)) = O(|V |+|E|+5.88k). ��

4 More General Parameterizations of LAP

Serna and Thilikos [18] introduce the following related problems. They ask
whether either problem is FPT.

Vertex Average Min Linear Arrangement (VAMLA)
Instance: A graph G. Parameter: A positive integer k.
Question: Does G have a linear arrangement of cost at most k|V (G)|?

Edge Average Min Linear Arrangement (EAMLA)
Instance: A graph G. Parameter: A positive integer k.
Question: Does G have a linear arrangement of cost at most k|E(G)|?

Both problems are not FPT (unless P = NP), which follows from the next
two theorems.

Theorem 6. For any fixed integer k ≥ 2, it is NP-complete to decide whether
ola(H) ≤ k|V (H)| for a given graph H.

Proof. Let G be a graph and let r be an integer. We know that it is NP-complete
to decide whether ola(G) ≤ r (LAP). Let n = |V (G)|. Let k be a fixed integer,
k ≥ 2. Define G′ as follows: G′ contains k copies of G, j isolated vertices and a

366 G. Gutin et al.

clique with i vertices (all of these subgraphs of G′ are vertex disjoint). We have
n′ = |V (G′)| = kn + i + j.

By the definition of G′ and the fact that ola(Ki) =
(

i+1
3

)
, we have k ·ola(G) =

ola(G′)−ola(Ki) = ola(G′)−
(
i+1
3

)
. Therefore, ola(G) ≤ r if and only if ola(G′) ≤

kr +
(
i+1
3

)
. If there is a positive integer i such that kr +

(
i+1
3

)
= kn′ and the

number of vertices in G′ is bounded from above by a polynomial in n, then
G′ provides a reduction from LAP to VAMLA with the fixed k. Observe that
kr+

(
i+1
3

)
≥ k(kn+i) for i = 6kn. Thus, by setting i = 6kn and j = r+ 1

k

(
i+1
3

)
−

kn − i, we ensure that G′ exists and the number of vertices in G′ is bounded
from above by a polynomial in n. ��

The proof of the following theorem is similar, but G′ is defined differently: G′

contains k copies of G, a path with j edges and a clique with i vertices (all of
these subgraphs of G′ are vertex disjoint).

Theorem 7. For any fixed integer k ≥ 2, it is NP-complete to decide whether
ola(H) ≤ k|E(H)| for a given graph H.

The profile of a linear arrangement α of a graph G is

prf(α,G) =
∑
z∈V

(α(z) − min{α(w) : w ∈ N [z] });

here N [z] denotes the closed neighborhood of vertex z in G. Serna and Thilikos
[18] introduce also the following problem and ask whether it is FPT.

Vertex Average Profile (VAP)
Instance: A graph G = (V,E). Parameter: A positive integer k.
Question: Does G have a linear arrangement of profile ≤ k|V |?

Similarly to Theorem 6 we can prove that the problem is NP-complete for
every fixed k ≥ 2. Observe that VAMLA, EAMLA and VAP are in para-NP.
Moreover, it follows directly form our results that the three problems are para-
NP-complete (see Corollary 2.16 in Flum and Grohe’s book [10]).

Similarly to Theorem 7 we can prove the following:

Theorem 8. For each fixed 0 < ε ≤ 1, it is NP-complete to decide whether
ola+(H) ≤ |E(H)|ε for a given graph H.

Notice that Theorem 5 implies that we can decide, in polynomial time, whether
ola(H) ≤ |E(H)| + log |E(H)| for a graph H . Theorem 8 indicates that the
possibility to strengthen the last result is rather limited. It would be interest-
ing to determine the complexity of the problem of verifying whether ola(H) ≤
|E(H)| + log2 |E(H)| for a graph H .

References

1. M. Cesati, Compendium of parameterized problems, Sept. 2005. http://
bravo.ce.uniroma2.it/home/cesati/research/compendium.pdf

2. F.R.K. Chung, On optimal linear arrangements of trees. Comp. & Maths. with
Appls. 10 (1984), 43–60.

The LAP Parameterized Above Guaranteed Value 367

3. R. Diestel, Graph Theory, Springer–Verlag, New York, 2nd ed., 2000.
4. R.G. Downey and M.R. Fellows, Parameterized Complexity , Springer–Verlag, New

York, 1999.
5. V. Estivill-Castro, M.R. Fellows, M.A. Langston, and F.A. Rosamond, FPT is

P-Time extremal structure I. In H. Broersma, M. Johnson, and S. Szeider, editors,
Algorithms and Complexity in Durham 2005, Proceedings of the first ACiD Work-
shop, volume 4 of Texts in Algorithmics, pages 1–41. King’s College Publications,
2005.

6. H. Fernau, Parameterized Algorithmics: A Graph-theoretic Approach. Habilitation
thesis, U. Tübingen, 2005.

7. H. Fernau, Parameterized Algorithmics for Linear Arrangement Problems. Talk
at Dagstuhl, July 2005, slides at http://www.dagstuhl.de/files/Materials/05/
05301/05301.FernauHenning.Slides.pdf

8. H. Fernau, Parameterized Algorithmics for Linear Arrangement Prob-
lems. Manscript, July 2005, http://homepages.feis.herts.ac.uk/~comrhf/
papers/ola.pdf

9. J. Flum and M. Grohe, Describing parameterized complexity classes. Information
and Computation 187 (2003), 291–319.

10. J. Flum and M. Grohe, Parameterized Complexity Theory, Springer, 2006.
11. M. R. Garey and D. R. Johnson, Computers and Intractability, W.H. Freeman &

Comp., New York, 1979.
12. M. R. Garey, D. S. Johnson, and L. Stockmeyer, Some simplified NP-complete

graph problems. Theoret. Comput. Sci. 1 (1976), 237–267.
13. M.K. Goldberg and I.A. Klipker, Minimal placing pf trees on a line. Tech. Report,

Physico-Technical Institute of Low Temperatures, Ukranian SSR Acad. of Sciences,
USSR, 1976. [In Russian]

14. L.H. Harper, Optimal assignments of numbers to vertices. J. Soc. Indust. Appl.
Math. 12 (1964) 131–135.

15. M. Mahajan and V. Raman, Parameterizing above guaranteed values: MaxSat and
MaxCut. J. Algorithms 31 (1999), 335–354.

16. R. Niedermeier. Invitation to Fixed-Parameter Algorithms. Oxford Lecture Series
in Mathematics and Its Applications. Oxford University Press, 2006. Forthcoming.

17. Y. Shiloach, A minimum linear arrangement algorithm for undirected trees. SIAM
J. Comp. 8 (1979), 15–32.

18. M. Serna and D.M. Thilikos, Parameterized complexity for graph layout problems.
EATCS Bulletin 86 (2005), 41–65.

19. R.E. Tarjan, Depth first search and linear graph algorithms. SIAM J. Comput. 1
(1972), 146–160.

Universal Relations and #P-Completeness

Hervé Fournier1,� and Guillaume Malod2,�

1 Laboratoire PRiSM, Université de Versailles St-Quentin en Yvelines, France
herve.fournier@prism.uvsq.fr

2 Laboratory of Prof. Masahiko SATO, Graduate School of Informatics,
Kyoto University, Japan

malod@kuis.kyoto-u.ac.jp

Abstract. This paper follows the methodology introduced by Agrawal
and Biswas in [AB92], based on a notion of universality for the relations
associated with NP-complete problems. The purpose was to study NP-
complete problems by examining the effects of reductions on the solution
sets of the associated witnessing relations. This provided a useful crite-
rion for NP-completeness while suggesting structural similarities between
natural NP-complete problems. We extend these ideas to the class #P.
The notion we find also yields a practical criterion for #P-completeness,
as illustrated by a varied set of examples, and strengthens the argument
for structural homogeneity of natural complete problems.

1 Introduction

Complexity classes such as P, NP or #P are great theoretical notions to further
our knowledge of the resources needed to solve computational problems. Their
usefulness however goes beyond the theoretical setting, because knowing the
right class for a given problem is a precious hint as to the kind of algorithms one
should look for.

Agrawal and Biswas [AB92] study the structure of NP-complete sets. In a
decision problem one must determine for an instance x whether there exists a y
such that R(x, y) holds, where R is the solution checking relation. Agrawal and
Biswas focus on the relations R(x, y) to which any other relation can be reduced
in a way which preserves solutions, roughly meaning that there is an application
between solutions sets, and call them universal. In the setting of polynomial
time checkable relations, they show that the decision problem corresponding
to a universal relation is NP-complete. By giving a simple criterion for NP-
completeness based on this definition and applying it to a varied set of examples,
they argue that their result underlines a structural similarity between natural
NP-complete sets, in the spirit of the work of Berman and Hartmanis [BH77].
Indeed Agrawal and Biswas show that their notion of universality is related to
structural properties such as paddability and self-reducibility.

The notion of universality was subsequently used by Buhrman et. al. [BKT94]
to provide sufficient conditions for NP optimization problems that admit efficient

� This work was partially funded as CEFIPRA Project 2602-1.

T. Calamoneri, I. Finocchi, G.F. Italiano (Eds.): CIAC 2006, LNCS 3998, pp. 368–379, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Universal Relations and #P-Completeness 369

approximation algorithms. It was subsequently extended by Portier [Por98] to
problems defined on an arbitrary structure, in the framework of Poizat [Poi95],
and recently Choudhary, Sinha and Biswas [CSB04] defined it for non-
deterministic logspace. Our aim in this paper is to adapt this notion to the
class #P, which is the class of functions counting the number of solutions for
relations checkable in polynomial time, a class at least as hard as the polynomial
hierarchy, as shown by Toda [Tod91]. Showing that a function is in #P is thus
a convincing argument for its intractability, and a criteria for #P-completeness
would be a useful tool. Universality for #P has been studied in [CK03], where an
elaborate definition of #P universality is given, based on Valiant’s technique for
showing #P-completeness (cf. [Val79]) by recovering the coefficients of a poly-
nomial from its value at suitable points. We give here a definition of universality
suited to #P which is both simpler and closer to the definition used for NP by
Agrawal and Biswas. The relative simplicity translates into a usable criterion for
#P-completeness.

Section 2 introduces the background notions. Section 3 defines universality for
#P and shows that it implies completeness (proposition 1). Section 4 provides
the main point of the article, with the #P-universality criterion and the proof
that it implies universality (theorem 1). Proposition 1 and theorem 1 together
become a practical criterion for #P-completeness, which we apply to examples
from different backgrounds in section 5.

2 Definitions and Notations

We present here the framework with which we will work. For each instance x
of a problem there is a set Cx of candidate solutions and the set Sx of actual
solutions. This is another way of saying that we focus on the relation between an
instance x and a candidate solution y which holds iff y belongs to Sx. One can
for instance consider the set of 3CNF formulas over the variables x1, x2, . . . ; for
a formula F , the set of candidate solutions is the set of truth-value assignments
for the variables in F . The set of solutions is the set of satisfying assignments
for F . Another example is the problem of finding a maximal independent set
in a graph, i.e. a maximal subset of the vertices such that any two nodes are
never connected by an edge. The set of instances is the set of graphs, candi-
date solutions are subsets of the vertices and solutions are maximal independent
sub-graphs.

The complexity of a computational question is the growth of some computa-
tional resource when the size of the instance increases, where the size usually
means the length of the encoding. In this paper however we will need a slightly
more general definition of size, which we will call a measure.

Definition 1. A measure for a problem is an application m from the set of in-
stances into Nk for a given k, such that there is a polynomial p(n1, . . . , nk), with
p(m(x)) bounding the length of the encodings of x and of any possible solution
for x. We will write m(x) + n for the tuple (m1 + n, . . . ,mk + n) if n is an
integer, and m(x) + m(y) for (m1 + n1, . . . ,mk + nk) if m(y) = (n1, . . . , nk).

370 H. Fournier and G. Malod

For instance, the number of clauses is a valid measure for a 3CNF formula F ,
because it gives us a bound on the length of the formula and its number of
variables. Encoding a graph of size n by giving its adjacency matrix yields a
word of length O(n2), and therefore taking the number n of vertices is a valid
measure for graphs. We could also have chosen to measure a graph with two
integers, one being the number of vertices and the other being the number of
edges. The idea behind measures is that sometimes the “size” of an instance
depends on several independent parameters.

Definition 2. A relation is called a P-relation if the associated solution check-
ing problem can be checked in deterministic polynomial time, if the number of
candidate solutions is simply exponential in the measure of an instance, and if
it satisfies the two conditions on names and renaming, as described below.

The first condition is that the encoding chosen include “names” in the following
sense. There exists an application which, given the encoding of an instance x,
returns a set Vx of integers such that the set of candidate solutions for x can
be identified with the powerset of Vx. We will thus not distinguish between
candidate solutions and subsets of Vx. Let us return to our examples to clarify
this. Consider a 3CNF formula φ, encoded in such a way that the variables are
numbered. Then the set Vφ described above is simply the set of the numbers of
the variables appearing in the formula. An assignment gives the value 0 or 1 to
a variable, and can be described by listing only the variables which are given
value 1, thus identifying the set of candidate solutions with the powerset of Vφ.
For the maximal independent set problem, we can choose an encoding which
labels the vertices of a graph G with integers; VG is the set of integers labeling a
vertex in G; candidate solutions are subsets of the vertices, i.e. they are subsets
of VG. This formalizes an intuition of Agrawal and Biswas taken from [AB92]:
natural problems often consist of “atomic” units joined together and such that
a solution is a subset of the atomic units satisfying certain properties.

The second condition is purely technical condition but will be natural on spe-
cific examples. We call it the renaming property. We suppose that there is a polyno-
mial time computable function which, given an instance x of X , an integer a ∈ Vx

and an integer b �∈ Vx, computes an instance y of X such that Vy = (Vx\{a})∪{b}
and x is isomorphic to y by a bijection which maps a unto b. In effect, the renaming
property states that we can arbitrarily rename a variable in a formula or a vertex
in a graph, providing it does not clash with an existing name.

3 Universality for #P

Let us now give a definition of universality adapted to #P. In the definition, |A|
denotes the cardinality of the set A.

Definition 3. Let X be a P-relation. It is said to be #P-universal if for any
P-relation Y there exists a polynomial time computable function which, given an
instance y of Y , computes an instance x of X, two integers k,M > 0 such that

Universal Relations and #P-Completeness 371

M · 2|Vy| < 2k, and a map α from Vy to Vx such that for all t ⊆ Vy, if t is a
solution for y, then

|{s ∈ Sx | α(t) = s ∩ α(Vy)}| ≡ M (mod 2k),

and otherwise (if t is not a solution for y), then

|{s ∈ Sx | α(t) = s ∩ α(Vy)}| ≡ 0 (mod 2k).

For example, suppose that we have a reduction from the maximal independent
problem to 3SAT. This means that given a graph G we can compute a 3SAT
formula φ and a map α from the vertices of G to the variables of φ such that:
any maximal independent set of G yields exactly M satisfying assignments for
φ via the map α, and the number of remaining satisfying assignments for φ is
0, all these numbers being modulo an adequate power of 2. Now if we know the
number of solutions of φ we can compute the number of maximal independent
sets of G. In the general case this gives us the following proposition.

Proposition 1. The counting problem associated to a #P-universal relation is
#P-complete for Cook[1]-reductions.

Proof. Let X be a #P-universal relation and g the associated counting function:
g(x) = |Sx|. The function g is obviously in #P. Let Y be a P-relation and h the
associated counting function. By definition of universality, there is a computable
time function which given an instance y of Y computes two integers k,M > 0
and an application α with the above properties. Thus,

|Sx| =
∑
t⊆Vy

|{s ∈ Sx | α(t) = s ∩ α(Vy)}|

=
∑
t∈Sy

|{s ∈ Sx | α(t) = s ∩ α(Vy)}| +
∑
t�∈Sy

|{s ∈ Sx | α(t) = s ∩ α(Vy)}|

≡ M · |Sy| (mod 2k).

As M · 2|Vy| < 2k by definition, we have M · |Sy| < 2k. Thus h(y) =
(g(x) mod 2k)/M , and this computation can be done in polynomial time.

4 Sufficient Conditions for Universality

Suppose that X is a P-relation and that there exists an integer k0 ∈ N \ {0}
such that the following three properties hold:

Block. There exist Mb ∈ N \ {0} and a polynomial time computable function
which, given an integer k � k0 in unary encoding, computes an instance b of X ,
elements d1, d2, d3 ∈ Vb and a subset t of {d1, d2, d3} such that:

– |{s ∈ Sb | s ∩ {d1, d2, d3} = t}| ≡ 0 (mod 2k).
– for any subset u of {d1, d2, d3} different from t,

∣∣{s ∈ Sb | s ∩ {d1, d2, d3} =
u}
∣∣ ≡ Mb (mod 2k).

372 H. Fournier and G. Malod

Join. There exist Mj ∈ N \ {0} and a polynomial time computable function
which, given two instances x1, x2 of X , such that Vx1 and Vx2 are disjoint, and
k � k0 in unary encoding, computes an instance x of X such that:

– Vx1 ∪ Vx2 ⊆ Vx.
– if s1 ∈ Sx1 and s2 ∈ Sx2 , then

|{s ∈ Sx | s ∩ Vx1 = s1 and s ∩ Vx2 = s2}| ≡ Mj (mod 2k).

– |{s ∈ Sx | s ∩ Vx1 �∈ Sx1 or s ∩ Vx2 �∈ Sx2}| ≡ 0 (mod 2k).
– m(x) � m(x1) + m(x2) + kO(1).

Couple. There exist Mc ∈ N \ {0} and a polynomial time computable function
which, given an integer k � k0 in unary encoding, an instance x of X , and
a, b ∈ Vx with a �= b, computes an instance y of X such that:

– Vx ⊆ Vy.
– for all s ∈ Sx, if exactly one of a or b belongs to s, then

|{t ∈ Sy | t ∩ Vx = s}| ≡ Mc (mod 2k),

otherwise:
|{t ∈ Sy | t ∩ Vx = s}| ≡ 0 (mod 2k).

– m(y) � m(x) + kO(1).

The example of 3SAT should help understand these conditions and show that
they can be very intuitive in the case of specific examples.

Block. Consider the clause φ = d1 ∨ d2 ∨ d3, then Vφ is {d1, d2, d3} and t = ∅
is the only subset which does not yield a solution for φ; all the other subsets
of {d1, d2, d3} yield exactly one solution. The general case extends this in the
following ways: computations must hold only modulo a given power of 2; the
special subset t may be different from ∅; the other subsets are not constrained
to yielding exactly one solution but a constant number Mb instead.

Join. Given two 3SAT formulas φ1 and φ2 with distinct variables, the conjunc-
tion ψ = φ1 ∧ φ2 is a 3SAT formula such that: a solution for φ1 coupled with a
solution for φ2 yields exactly one solution for ψ; the number of other solutions
for ψ is 0; the measure of ψ is bounded by the sum of the measures of φ1 and
φ2. Differences in the general case: computing modulo a given 2k, getting a con-
stant number of solutions Mj for each couple, allowing the measure to increase
polynomially in k.

Couple. Given a 3SAT formula φ and two variables a and b in φ, the formula
ψ = φ∧ (a∨ b∨ b)∧ (¬a∨¬b∨¬b) is such that any solution of φ which satisfies
(a XOR b) yields exactly one solution for ψ and the number of other solutions for
ψ is 0. Differences in the general case: computations modulo a given 2k, getting
a constant number of solutions Mj for each solution of φ, allowing the measure
of the new instance to increase polynomially in k.

Universal Relations and #P-Completeness 373

Pa

Na

Fig. 1. Coupling the variables in F2

Theorem 1. If a P-relation has the above properties, it is #P-universal.

Proof. Let X be a P-relation which has the properties detailed above. We wish
to show that it is #P-universal. Consider another P-relation Y . We follow the
steps given in the introduction in greater detail.

Because 3SAT is #P-complete for parsimonious reductions, from any instance
y of Y we can compute in polynomial time a 3CNF-formula F0 such that there
is a bijection between the satisfying assignments of F0 and the solutions for y.
Following the construction in [BDG88], one can build an application from Vy to
VF0 which yields this bijection between the solution sets. The measure of F0 is
polynomial in the measure of y.

For i in {1, 2, 3}, define νi as ∅ if di ∈ t and ¬ otherwise. We add clauses
ν1a∨¬ν2a∨ εa for each variable a in F0, where ε is ∅ if ν1 is ¬ and ¬ otherwise.
The measure of the formula F1 thus obtained is still polynomial in the measure
of y and it has the same set of solutions as F0, because these additional clauses
are always satisfied.

We then replace each clause in the following manner. Call n the measure of
F1, i.e. F1 has n clauses C1, . . . , Cn, and suppose each clause Ci is of the form
µi,1ai,1 ∨ µi,2ai,2 ∨ µi,3ai,3, where the ai,j are variables and the µi,j are either
¬ or ∅. We introduce three new variables ci,1, ci,2, ci,3 and replace Ci by the
clause ν1ci,1 ∨ ν2ci,2 ∨ ν3ci,3. If νj and µi,j have the same value, we say that
ci,j represents ai,j ; otherwise we say that ci,j represents ¬ai,j . Call the resulting
formula F2. It has the same measure as F1.

For each variable a in F1 let Pa be the set of variables of F2 which represent a
and Na the set of variables which represent ¬a. Both sets are non-empty because
of the clauses we added when we built F1. We shall consider the solutions which
are coupled according to the graph in figure 1, where the top vertices are the
variables in Pa, the bottom vertices are the variables in Na and the edges means
that the variables corresponding to the vertices are coupled. All the variables in
Pa are therefore coupled to the first variable in Na and all the variables in Na

are coupled to the last variable in Pa. There is a bijection between the set of
solutions of F1 and the set of solutions of F2 which are coupled in the previous
manner for all variables in F1. Indeed any coupled assignment which is a solution
of F2 gives the same value to all the variables representing a given variable a, and
the same opposite value to all those representing ¬a. The construction ensures
that if we give this first value to a, and build an assignment for F1 by treating
all the variables in a similar way, all the clauses of F1 are satisfied because all
the clauses of F2 are satisfied. The reciprocal construction of a unique satisfying
assignment of F2 from a satisfying assignment of F1 is easy.

374 H. Fournier and G. Malod

Let us now choose the smallest integer k such that Mn
b M

n−1
j M3n

c ·2|Vy| < 2k.
We build n instances of block b, called b1, . . . , bn and rename them with the
renaming property so that the associated sets Vb1 , . . . , Vbn are pairwise disjoint
and the specified elements in each block bi are called di,1di,2, di,3. We bring these
instances together with n− 1 join operations to get an instance x1. There is an
application from VF2 to Vx1 , defined by mapping ci,j to di,j , which is such that
any solution of F2 yields a number of solutions for x1 which is congruent to
Mn

b M
n−1
j modulo 2k. We perform all the couplings (suppose there are l) and

get an instance x2. For each variable a in F1 there is at least one variable in
F2 which represents a. This variable can be mapped to an element of Vx2 via
the previous mapping. We thus get an application from VF1 to Vx2 such that
a solution for VF1 yields a number of solutions for x2 which is congruent to
Mn

b M
n−1
j M l

c modulo 2k. Using the application from Vy to VF0 (and thus to VF1)
we obtain the application from Vy to Vx1 required in the definition.

We must however check that this computation can be done in polynomial
time. Remark that at most 3n coupling operations are necessary. We first check
that the size of k is polynomially bounded in the measure of y. We know that Y
is a P-problem, so that |Vy| is bounded by p(m(y)) for some polynomial p. The
number n, which is the number of clauses of F2, is also polynomially bounded
in m(y). The inequation Mn

b M
n−1
j M3n

c · 2|Vy| < 2k can thus be satisfied by an
integer k whose value, and therefore whose unary encoding, is polynomial in
m(y). We should finally check the size of the resulting instance x. Thanks to
the growth conditions in the three properties, it is bounded by n ·m(b) + (n −
1)kO(1) + 3nkO(1). The measure of the instance b, which is computed from k (in
unary encoding) in polynomial time, is also polynomially bounded in m(y).

5 Examples

The first obvious example would be 3SAT: the necessary arguments have been
given just after the criterion for universality. Further examples are given in this
section. Monotone 2SAT is a logical problem and an example of a relation whose
decision problem is in P but whose counting problem is #P-complete. Maximal
independent set and Hamiltonian cycles are graph problems; the proofs that
they satisfy the criterion are very short and boil down to finding the right graph
gadgets. Knapsack is an application of the criterion in yet another setting.

5.1 Monotone 2SAT

Monotone 2SAT is similar to 3SAT, but it demands a little more work. Monotone
2SAT instances are 2CNF formulas without negative literals. Let k0 = 1.

Block. For k � k0, the formula corresponding to the block (modulo 2k) is the
following one: B =

∧k
i=1(d1 ∨ ui) ∧ (d2 ∨ ui) ∧ (d3 ∨ ui). If at least one of the

variables d1, d2 or d3 is false, then all the ui must be true for an assignment
to satisfy B. On the other hand, if all three di are true, then there are 2k

ways to satisfy B. This corresponds to the definition of Block with the subset
t = {d1, d2, d3}.

Universal Relations and #P-Completeness 375

d3

d1 d2 d3 d1 d2 d3 d1 d2 d3 d1 d2 d3

d1 d2 d3

d1 d2 d3 d1 d2 d3 d1 d2

Fig. 2. Block for maximal independent set and its solutions

Join. The join of F and G is the formula F ∧G.

Couple. Coupling xa and xb in the formula F (x̄) (modulo 2k) is done by the
formula F (x̄) ∧ (xa ∨ xb) ∧

∧k
i=1(xa ∨ ui) ∧ (xb ∨ ui). This ensures first that xa

and xb cannot both be false. If both are true there are 2k possible assignments
for the variables ui.

5.2 Maximal Independent Set

We focus now on a graph problem. The definition, measure and name set have
been given in the introduction. Let k0 = 2.

Block. Mb = 1. For any k � k0, consider the graph G of figure 2. This figure
also shows all maximal independent subsets of G: none of them contain d2 and
d3 but not d1, but all other subsets of {d1, d2, d3} correspond to exactly one
solution.

Join. Suppose we have an integer k � k0 and two disjoint graphs G1 and G2.
Consider the graph G which is the union of G1 and G2. There is a bijection
between the solution set of G and the Cartesian product of the solution sets of
G1 and G2, so that the required cardinality condition holds for Mj = 1. The
growth condition is obvious.

Couple. Suppose we have an integer k � k0, a graph G, and two vertices a
and b appearing in G. Consider the graph G′ obtained from G in the following
manner. We first add the edge (a, b) if it is not already present. Then we add
2k vertices {u1, . . . , uk} and {v1, . . . , vk}. At last, we add the 3k edges (a, ui),
(ui, vi) and (vi, b) for 1 � i � k, as shown on figure 3.

The set of solutions for G′ can be partitioned in the following way. Any
solution for G which contains neither a nor b yields exactly 2k solutions of G′,

376 H. Fournier and G. Malod

vk

a

b

u1

v1

v2

v2

uk

Fig. 3. Couple for maximal independent set

because any maximal subset of G′ which contains neither a nor b must contain
exactly one vertex in each pair (ui, vi). Any solution for G which contains both
a and b cannot be extended to a maximal independent set for G′ because a and
b are linked by an edge in G′. Any solution for G which contains a and not b
can be extended into a unique maximal independent set for G′ by adding all
the vertices vi. The symmetrical situation for a and b is similar. Therefore if a
solution for G is not coupled with regard to vertices a and b, then it yields either
0 or a multiple 2k solutions of G′. A coupled solution for G yields exactly one
solution for G′ . Therefore Mc = 1. As for the growth condition, we have added
2k vertices to G, so that the measure of G′ is bounded by the measure of G plus
k2 for k � k0 = 2.

5.3 Hamiltonian Cycles

An instance for this problem is a graph and a solution is a subset of the edges
which is a Hamiltonian cycle. Figure 4 gives the Block, the Join construction
and a XOR gadget which we will use to couple.

Block. One should check that there is exactly one Hamiltonian cycle for each
non-empty subset of {d1, d2, d3}, and no Hamiltonian cycle avoiding these three
edges.

Join. Suppose we now wish to join two instances G and G′. We choose a vertex
s in G and split into two vertices s1 and s2. All the outgoing edges of s become
outgoing edges of s1 and all the incoming edges of s become incoming edges of
s2, so that there is now a one-to-one correspondence between Hamiltonian cycles
of G and Hamiltonian paths from s1 to s2 in the new graph. We modify G′ in

t

u′
w′

v′

z

v

w

u

d1 d2 d3

G′G

s1 = s′
2

s2 = s′
1

s

Fig. 4. Block, Join and XOR for Hamiltonian cycles

Universal Relations and #P-Completeness 377

the same way, splitting a node s′ into s′1 and s′2. We then identify s2 and s′1, and
s′2 and s1. Any Hamiltonian cycle of this graph is made of a Hamiltonian path
of G from s1 to s2 and a Hamiltonian path of G′ from s′1 to s′2.

Couple. If we wish to couple edges (u, v) and (u′, v′) in a graph G, we start
by deleting these edges and connect the vertices u, v, u′ and v′ with the XOR
gadget. This gadget is such that the Hamiltonian cycles of the resulting graph
must contain one of the edges (u,w) or (u′, w′) but not both.

5.4 Knapsack

Here is an example from a different setting. An instance of Knapsack is given
by a set of integer weights c1, . . . , cn and an integer b called the sum, where the
ci and b are all strictly positive. A solution is a subset s of {1, . . . , n} such that∑

i∈s ci = b. The measure of an instance will be given by two integers: n (the
number of integers ci) and the bitsize of b +

∑
i∈{1,...,n} ci.

Block. Consider the instance with weights 1, 1, 1, 1, 2 and sum 4. Solutions for
this instance cannot omit the first three weights. Moreover, for any subset of
these three weights, there is only one way to complement the sum to 4.

Join. Let us take two instances a1, . . . , aj , a and b1, . . . , bk, b. Call S and T

respectively the sums a +
∑j

i=1 ai and b +
∑k

i=1 bi. Let our new instance be
composed of the weights a1, . . . , aj , Sb1, . . . , Sbk and sum a+Sb. The first integer
in the measure of this new instance is j + k. The second is the bitsize of the
following integer:

b +
j∑

i=1

ai + S ·
(

k∑
i=1

bi

)
+ S · b = S(T + 1).

The measure can thus be bounded by the sum of the measures of the two initial
instances plus a constant. It is easy to see that there is a bijection between
couples of solutions for the initial instances and solutions for the new one. Indeed,
suppose we have a subset J of {1, . . . , j} and a subset K of {1, . . . , k} such
that

∑
i∈J ai + S ·

(∑
i∈K bi

)
= a + Sb, then we have the following equation:∑

i∈J ai − a = S ·
(
b −

∑
i∈K bi

)
. The absolute value of the left-hand side is

strictly smaller than S, while on the right-hand side it is either 0 or greater than
S. Therefore it must be 0 on both sides, and J and K yield solutions for the
initial instances.

Couple. Suppose we have an instance a1, . . . , ak, a and we wish to couple ai and
aj . Let S be the sum a +

∑k
l=1 al. We consider the new instance obtained by

replacing the weight ai is with ai + S, the weight aj with aj + S and the sum a
with a+S. Any solution for this new instance cannot omit or include both ai +S
and aj +S. Now suppose we have a solution which includes only one of them, for
instance we have a subset K of {1, . . . , k}\{i} such that ai+S+

∑
l∈K al = a+S.

Then ai+
∑

l∈K al = a and we get a solution for the initial instance. The measure
of this new instance is composed of k and the bitsize of

∑k
l=1 al + a+ 3S = 4S,

and therefore can be bounded by the initial measure plus a constant.

378 H. Fournier and G. Malod

6 Conclusion

There are two ways to see the work done in this paper. On a theoretical level, it
argues for the existence of structural similarities between difficult problems, an
idea which has been studied for NP and which is here applied to #P. As such it
is an attempt to better understand why some problems are easy and some are
difficult. Our work shows basically two ingredients for a relation to yield a #P-
complete problem. One is a kind of building block/inductive structure, already
noticed by Agrawal and Biswas in the case of NP, with stricter conditions on
solution sets in order to adapt it to #P. The other is the possibility to compute
modulo a big integer, as is crucial for instance in the proof of the completeness
of the Permanent. If we consider the first ingredient, finding the closest possi-
ble (w.r.t. NP) structural criteria for #P-universality is a good way to study
the famous question of whether all relations which yield NP-complete decision
problems also yield #P-complete counting problems. The second ingredients is a
rough explanation of why some easy decision problems have #P-complete count-
ing equivalents. The interplay between these two ingredients makes the class #P
rich and interesting.

The other focus of this work, which is perhaps more apparent in this short
version, is to give a useful criterion for #P-completeness. When one wishes to
prove that a problem is #P-hard, one often tries to find a known #P-hard prob-
lem which seems “near” enough, so that the reduction will be easier to exhibit.
Our criterion takes advantage of the argument from the previous paragraph,
namely the existence of common structure, to eliminate the search for a suit-
able known #P-hard problem. In other words the universality criterion plays
the role of a generic #P-hard problem, but one which should be “close” enough
in most cases, because the distance is bridged by theorem 1. There may well be
a #P-hard problem more suitable for a given example, i.e. yielding a simpler
reduction, but we believe that the universality criterion corresponds to a large
class of natural problems, as hinted at by the variety of examples, for which
proofs can be built in a systematic way.

References

[AB92] Manindra Agrawal and Somenath Biswas. Universal relations. In Structure
in Complexity Theory Conference, pages 207–220, 1992.

[BDG88] J. L. Balcázar, J. Dı́az, and J. Gabarró. Structural complexity 1. Springer-
Verlag New York, Inc., New York, NY, USA, 1988.

[BH77] Leonard Berman and Juris Hartmanis. On isomorphisms and density of NP
and other complete sets. SIAM J. Comput., 6(2):305–322, 1977.

[BKT94] Harry Buhrman, Jim Kadin, and Thomas Thierauf. On functions com-
putable with nonadaptive queries to NP. In Structure in Complexity Theory
Conference, pages 43–52, 1994.

[CK03] G. Chakravorty and R. Kumar. #P universality. Technical report, Indian
Institute of Technology, 2003.

Universal Relations and #P-Completeness 379

[CSB04] V. Chaudhary, A. K. Sinha, and S. Biswas. Universality for nondeterministic
logspace. presented at Indo-German Workshop on Algorithms, Bangalore,
2004.

[Pap94] Christos H. Papadimitriou. Computational complexity. Addison-Wesley
Publishing Company, Reading, MA, 1994.

[Poi95] Bruno Poizat. Les Petits Caillloux, volume 3 of Nur Al-Mantiq Wal-
Ma’rifah. Aléas, Lyon, 1995.

[Por98] Natacha Portier. Résolutions universelles pour des problèmes NP-complets.
Theor. Comput. Sci., 201(1-2):137–150, 1998.

[Tod91] Seinosuke Toda. PP is as hard as the polynomial-time hierarchy. SIAM J.
Comput., 20(5):865–877, 1991.

[Val79] Leslie G. Valiant. The complexity of enumeration and reliability problems.
SIAM J. Comput., 8(3):410–421, 1979.

Locally 2-Dimensional Sperner Problems
Complete for the Polynomial Parity

Argument Classes�

Katalin Friedl1, Gábor Ivanyos2, Miklos Santha3, and Yves F. Verhoeven3,4

1 BME, H-1521 Budapest, P.O.Box 91., Hungary
friedl@cs.bme.hu

2 MTA SZTAKI, H-1518 Budapest, P.O. Box 63., Hungary
Gabor.Ivanyos@sztaki.hu

3 CNRS–LRI, UMR 8623, bâtiment 490, Université Paris XI, 91405 Orsay, France
santha@lri.fr

4 ENST, 46 rue Barrault, 75013 Paris, France
yves.verhoeven@normalesup.org

Abstract. In this paper, we define three Sperner problems on specific
surfaces and prove that they are complete respectively for the classes
PPAD, PPADS and PPA. This is the first time that locally 2-dimensional
Sperner problems are proved to be complete for any of the polynomial
parity argument classes.

1 Introduction

The complexity class TFNP, the family of all total NP-search problems, was
introduced by Megiddo and Papadimitriou [9]. It contains several important,
computationally probably hard problems for which no classical polynomial time
algorithms are known. On the other hand, these problems are also somewhat
easy in the sense that they can not be NP-hard unless NP = co-NP. The class
TFNP is a semantic complexity class and thus doesn’t seem to have complete
problems. It is therefore natural to look for syntactically definable subclasses of
TFNP. Indeed, several such subclasses have been identified along the lines of
the mathematical proofs establishing the existence of a solution. The important
subclasses Polynomial Pigeonhole Principle (PPP) and Polynomial Local Search
(PLS) were defined respectively in [12] and [7]. The elements of PPP are problems
which by their combinatorial nature obey the pigeonhole principle and therefore
have a solution. In a PLS problem, one is looking for a local optimum for a
particular objective function, in some easily computable neighborhood structure.

The parity argument subclasses PPA, PPAD, and PSK of TFNP were defined
by Papadimitriou in [11, 12]. The class PSK was renamed PPADS in [1]. These

� Research supported by the EU 5th framework programs RESQ IST-2001-37559,
Centre of Excellence ICAI-CT-2000-70025, the EU 6th framework program QAP,
the OTKA grants T42559, T46234, and by the ACI CR 2002-40, ACI SI 2003-24,
ANR Blanc AlgoQP grants of the French Research Ministry.

T. Calamoneri, I. Finocchi, G.F. Italiano (Eds.): CIAC 2006, LNCS 3998, pp. 380–391, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Locally 2-Dimensional Sperner Problems 381

classes can be characterized by some simple graph theoretical principles. The
class Polynomial Parity Argument (PPA) is the class of NP search problems,
where the existence of the solution is guaranteed by the fact that in every finite
graph whose vertices are of degree at most two, the number of leaves is even.
The class PPAD is the directed version of PPA, and its basic search problem
is the following: in a directed graph, where the in-degree and the out-degree of
every vertex is at most one, given a source, find another source or a sink. In the
class PPADS the basic search problem is more restricted than in PPAD: given
a source, find a sink.

Another point that makes the parity argument classes interesting is that there
are several natural problems from different branches of mathematics that belong
to them. For example, in a graph with odd degrees, when a Hamiltonian path is
given, a theorem of Smith [15] ensures that there is another Hamiltonian path.
It turns out that finding this second path belongs to the class PPA [12]. A search
problem coming from a modulo 2 version of Chevalley’s theorem [12] from num-
ber theory is also in PPA. Complete problems in PPAD are the search versions
of Brouwer’s fixed point theorem, Kakutani’s fixed point theorem, Borsuk-Ulam
theorem, and Nash equilibrium (see [12]).

The classical Sperner’s Lemma [14] states that in a triangle with a regu-
lar triangulation whose vertices are labeled with three colors, there is always
a trichromatic triangle. This lemma is of special interest since some customary
proofs for the above topological fixed point theorems rely on its combinatorial
content. However, it is unknown whether the corresponding search problem,
that Papadimitriou [12] calls 2D-SPERNER, is complete in PPAD. Vari-
ants of Sperner’s Lemma also give rise to other problems in the parity argu-
ment classes. Papadimitriou [12] has proved that a 3-dimensional analogue of
2D-SPERNER is in fact complete in PPAD. In [6], Grigni described a non-
oriented version of 3-dimensional Sperner’s Lemma that is complete for the class
PPA. In this paper we show that appropriately chosen locally 2-dimensional ver-
sions of the problem are already complete for PPAD, for PPADS, and for PPA,
respectively.

This work was completed early 2005 [5]. Recently it has been announced
by Chen and Deng that they have proven the PPAD completeness of 2D-
SPERNER in reference 2 in [2].

2 Results

An NP-search problem is specified by a polynomial time relation R(x, y), such
that for some polynomial p(n), for every x and y such that R(x, y), we have
|y| ≤ p(|x|). Given an input x to the problem, the task is to find a y such that
R(x, y) if there is one, and else report failure. We call an NP-search problem total
if for every x there exists a solution y. The class of total NP-search problems is
called TFNP by Megiddo and Papadimitriou [9].

For two problems R1, R2 in TFNP, we say that R1 is reducible to R2 if
there exist two functions f and g computable in polynomial time such that f(x)

382 K. Friedl et al.

is a legal input to R2 whenever x is an input to R1, and R2(f(x), y) implies
R1(x, g(x, y)).

The parity argument classes are defined via concrete problems, by closure
under reduction. The LEAF problem is defined as follows. The input is a pair
(M, 0k) where M is the description of a polynomial time Turing machine that on
every input outputs a set of size at most 2, and k is a positive integer. Moreover,
M is such that M(0k) = {1k}, and 0k ∈ M(1k). Such an input specifies an
undirected graph Gk = (V,E), where V = {0, 1}k, and {u, v} is in E if u ∈ M(v),
and v ∈ M(u). The output of the problem is a leaf of Gk different from 0k. The
class PPA is the set of total search problems reducible to LEAF. In the search
problems defining the classes PPADS and PPAD, the Turing machine defines
a directed graph, where the in-degree and the out-degree of every vertex is at
most one, and where 0k is always a source. The output in the case of PPADS is
a sink, and in the case of PPAD a sink or source different from 0k.

After some preliminaries in Section 3 the definitions of the three Sperner
problems of interest for us will be given in Section 4: OSPS and SOSPS for
the oriented cases, and SPS for the non-oriented case. Our main results are
proven in Section 5: OSPS is complete for PPAD (Theorem 2) and SOSPS
is complete for PPADS (Theorem 3). The proof of the completeness of SPS
for PPA is left for the full paper.

The results of this paper are motivated by an open problem of Papadimitriou
in [12], asking whether 2D-SPERNER is PPAD-complete. The main reason why
the 3-dimensional Sperner problem could be proved complete in PPAD is that
there exists an embedding of the complete graph of any size in the 3-dimensional
Euclidean space without any two edges crossing. Of course, such an embedding is
impossible in the plane, and it is not clear how to circumvent this difficulty when
one tries to extend Papadimitriou’s proof in 2 dimensions. Our approach consists
in exhibiting such an embedding in compact 2-dimensional manifolds, i.e. surfaces,
of non-zero genus, and proving the completeness of Sperner problems on these
surfaces for the classes PPAD, PPADS and PPA. Therefore, our results show that
the difficulty of the Sperner problems is independent of the local dimension of the
instance, if it is at least 2.

3 Preliminaries

Unless otherwise stated, the graphs considered in the paper will be undirected.
If S is any set, ≡ is an equivalence relation over S, and a is an element of S,
then [a]≡ denotes the equivalence class of a in S for the relation ≡.

3.1 Surfaces

Definition 1 (triangles). Let R be the equivalence relation over triples of dis-
tinct elements such that we have (a, b, c)R (a′, b′, c′) if (a′, b′, c′) is obtained from
(a, b, c) by cyclic permutation. An equivalence class T of R is called a triangle.
If T is the equivalence class of (a, b, c), then T denotes the equivalence class of
(a, c, b).

Locally 2-Dimensional Sperner Problems 383

For a pair (a, b), let (a, b) denote the pair (b, a). For every triangle T and
elements a and b, (a, b) ≺ T indicates that there exists an element c such that
(a, b, c)RT , and {a, b} ≺ T indicates that either (a, b) ≺ T or (a, b) ≺ T .

A finite set of triangles T is called a triangle arrangement. If T is a triangle
arrangement, its skeleton graph GT is the graph GT = (V,E), where V =⋃

T∈T T , and {a, b} is an edge if there is a triangle T ∈ T such that {a, b} ≺ T .
A vertex (resp. edge) of T is a vertex (resp. edge) of the skeleton graph of T .

We will often specify a triangle T , which is an equivalence class of R, by a an
element of T .

Definition 2 (pseudosurfaces). A pseudo-surface T is a triangle arrange-
ment T such that for every edge (a, b) of E there are at most two different
triangles T ∈ T such that {a, b} ≺ T . The pseudo-surface T is oriented if for
every two triangles T and T ′ in T and every edge {a, b} ∈ E, when (a, b) ≺ T
and (a, b) ≺ T ′ we have T = T ′. The boundary of T , denoted by ∂T , is the set
of all edges e ∈ E for which there exists exactly one triangle T ∈ T with e ≺ T .
The dual graph HT of T is the graph HT = (T , E′) such that there is an edge
between two triangles T �= T ′ in HT if there are two vertices a and b in T such
that {a, b} ≺ T and {a, b} ≺ T ′.

Definition 3. A surface S is a pseudo-surface such that HS is connected and
∂S is a union of disjoint cycles of GS .

Notice that our definition of surface coincides with the usual definition of trian-
gulated surface.

3.2 Flow Graphs

Definition 4. Let S be a surface, V be set of vertices of S, HS = (V ′, E′) be
its dual graph. A function � : V → {0, 1, 2} is called a labeling of S. A triangle
T ∈ S is said to be fully labeled if it is equivalent to a triple (a, b, c) such that
{�(a), �(b), �(c)} = {0, 1, 2}. A fully labeled triangle T has direct orientation if
there exists (a, b, c) in its equivalence class such that (�(a), �(b), �(c)) = (0, 1, 2).
Otherwise, it has indirect orientation.

The undirected flow graph US = (V ′, E′′) of S (relatively to �) is a subgraph of
HS , such that there is an edge between two triangles T and T ′ of S if there are two
vertices a and b of S such that {a, b} ≺ T , {a, b} ≺ T ′, and {�(a), �(b)} = {0, 1}.

If S is oriented, then we define the directed flow graph DS = (V ′, E′′′) of
S (relatively to �) as a a directed graph, such that there is an edge between two
triangles T and T ′ of S if there are two vertices a and b of S such that (a, b) ≺ T ,
(a, b) ≺ T ′, and (�(a), �(b)) = (0, 1).

The proof of the following theorem is straightforward.

Theorem 1. Let S be a surface, and � be a labeling of S. Then,

(i) the degree of every vertex of the undirected flow graph US is at most 2,
(ii) if S is oriented, then the in-degree and out-degree of every vertex of the

directed flow graph DS are at most 1.

384 K. Friedl et al.

Corollary 1 (Sperner’s lemma for surfaces with empty boundary). Let
S be a surface with empty boundary, and � be a labeling of S. Then,

(i) the number of fully labeled triangles in the undirected flow graph US is even,
(ii) if S is oriented, then there are as many fully labeled triangles with direct

orientation as fully labeled triangles with indirect orientation in the directed
flow graph DS .

Proof. First, observe that the fully labeled triangles in S are exactly the nodes of
degree 1 in US , and that the fully labeled triangles having direct (resp. indirect)
orientation in S are exactly the nodes of out-degree (resp. in-degree) 1 in DS .
Since by Theorem 1 (i) in US the maximal degree is at most two, the number
vertices having degree 1 is even. By Theorem 1 (ii) in DS the in- and outdegrees
are at most 1, therefore there has to be the same number of sources as sinks.

3.3 Rotation Systems

Definition 5. Let G = (V,E) be a graph. For every vertex v ∈ V , a local
rotation of G at v is a cyclic permutation πv of the neighbors of v in G. A
rotation system for G is a set Π = {πv | v ∈ V } of local rotations. Let T be a
triangle arrangement, and v be a vertex of T . A local rotation πv of GT at v is
a local orientation of T at v if, for every neighbor v′ of v in GT , (v′, v, πv(v′))
is a triangle of T .

Fact 1. Let S be an oriented surface with empty boundary, and let v be a vertex
of S. There exists a unique local orientation πv of S at v such that, for every
neighbor v′ of v in GS , (v′, v, πv(v′)) is a triangle of S.

Definition 6. Let S be an oriented surface with empty boundary. The rotation
system defined in Fact 1 is called the rotation system of S.

Definition 7. Let (Gn)n∈N = (Vn, En)n∈N be a family of undirected graphs
where |Vn| = n, and Πn = {πv | v ∈ Vn} be a rotation system for Gn. The
rotation system Πn is said to be efficiently computable if there exists a Turing
machine M such that

(i) on input n and pair (v, v′), with {v, v′} ∈ En, computes the vertices v′′

and v′′′ such that πv(v′) = v′′ and π−1
v (v′) = v′′′ using time polynomial in

logn,
(ii) on input n and triple (v, v′, v′′), with {v, v′} and {v, v′′} in En, computes

the smallest non-negative integer i such that πi
v(v

′) = v′′ using time poly-
nomial in logn. Later, we will refer to the integer i by logπv

v′ (v′′).

Lemma 1. If m is an integer that is equal to 7 modulo 12, then the complete
graph Km is the skeleton graph of an oriented surface Sm with empty boundary.
Moreover, the rotation system of Sm can be efficiently computed.

The surface Sm is completely specified by giving an appropriate rotation system
for Km. There are actually several such rotation systems [3, 8]. The proof of the
efficient computability of the rotation system is straightforward. It is based on
the constructions in [10, 3]. We omit the details.

Locally 2-Dimensional Sperner Problems 385

3.4 Regular Subdivisions

In the following definition, we will formalize the notion of “a regular subdivision”
of a surface, which consists in substituting every triangle of the surface with a
“regular subdivision” of it, as shown on Figure 1, such that the small triangles of
the subdivision have the same orientation as the large triangle that is subdivided.

We will make use of the free Abelian monoid N[V] over the set of vertices
V of a surface S: the elements are those of the form

∑
v∈V cv · v, where cv is

a non-negative integer, and v is a vertex of S. For any subset V ′ ⊆ V and
positive integer r let Nr[V ′] denote those elements

∑
v∈V ′ cv · v of N[V] such

that
∑

v∈V ′ cv = r. If s =
∑

v∈V sv · v and t =
∑

v∈V tv · v are two elements of
N[V], we denote by d(s, t) the distance 1/2

∑
v∈V |sv − tv|.

Definition 8. Let S be a surface, and r be a positive integer. Let S(r) be a tri-
angle arrangement whose triangles are of the form (s1, s2, s3) with {s1, s2, s3} ⊆
Nr[{a, b, c}], for some triangle (a, b, c) in S, such that there exists ε ∈ {−1, 1}
with s2 = s1 + ε(a − b) and s3 = s1 + ε(a − c). We call S(r) the regular r-
subdivision of S.

a b

c

4 · a

4 · c

4 · b

s1

s3

s2

Fig. 1. A triangle (a, b, c) and its regular 4-subdivision

Notice that two vertices of S(r) are neighbors if and only if they are at distance
1. It implies that the distance between two vertices in the skeleton graph of S(r)

is equal to their distance according to d.

4 Sperner Problems

The NP-search problems for which we prove completeness in Section 5 are the
following. The surface Sm is the one given by Lemma 1. Its skeleton graph is
Km. The surface S(4)

m is the regular 4-subdivision of Sm.

Oriented Sperner Problem for the Surface S(4)
m (OSPS)

Input: an integer m equal to 7 modulo 12, the description of a Turing machine
M that on input vertex v of S(4)

m outputs a label �(v) in {0, 1, 2} using
time polynomial in logm, and also a fully labeled triangle T of S(4)

m ,
which has indirect orientation.

Output: a fully labeled triangle T ′ �= T of S(4)
m .

386 K. Friedl et al.

Strict Oriented Sperner Problem for the Surface S(4)
m (SOSPS)

Input: an integer m equal to 7 modulo 12, the description of a Turing machine
M that on input vertex v of S(4)

m outputs a label �(v) in {0, 1, 2} using
time polynomial in logm, and also a fully labeled triangle T of S(4)

m ,
which has indirect orientation.

Output: a fully labeled triangle T ′ of S(4)
m , which has direct orientation.

To prove completeness for a non-oriented Sperner problem, we will use the non-
oriented surface Nm, derived from the regular 12-subdivision S(12)

m of Sm by
adding some cross-caps. Its precise definition will not be given in this extended
abstract.

Sperner Problem for the Surface N (12)
m (SPS)

Input: an integer m equal to 7 modulo 12, the description of a Turing machine
M that on input vertex v of N (12)

m outputs a label �(v) in {0, 1, 2} using
time polynomial in logm, and also a fully labeled triangle T of N (12)

m .
Output: a fully labeled triangle T ′ �= T of N (12)

m .

We would like to emphasize that these Sperner problems are in fact not promise
problems, since the input requirements can be syntactically enforced. Let us
describe this in details for the case of OSPS. We can easily provide a syntactical
way to force the Turing machine to always give a correct output. For instance,
one can assume that every output value not in {0, 1, 2} is interpreted as 0. We
can also ensure syntactically that T is a fully labeled triangle which has indirect
orientation with the help of an arbitrary polynomial time computable total order
< on the vertices of S(4)

m . Let s1 < s2 < s3 be the vertices of T . The label of s3
is fixed to 2. The vertex s1 will get label 0 and s2 label 1 if (s1, s2, s3) is in the
equivalence class T , and the labels are exchanged in the opposite case.

In fact, the membership of each of these problems in the class TFNP follows
immediately from Corollary 1.

5 Completeness Results for Oriented Sperner Problems

Let m be a positive integer equal to 7 modulo 12. We will work with the regular
4-subdivision S(4)

m of Sm.

Theorem 2. The problem OSPS is PPAD-complete.

Proof. To see membership in PPAD, we reduce OSPS to the natural complete
problem for PPAD. First, notice that from Theorem 1, we know that the directed
flow graph DS(4)

m
has in- and out-degree at most 1 at every vertex. Notice also

that, given a polynomial Turing machine that outputs the label of vertices of
S(4)

m , it is easy to design a polynomial time Turing machine that, given a vertex
T in the directed flow graph DS(4)

m
outputs its predecessor and its successor, if

they exist: the Turing machine only has to calculate the labels of the vertices
in T , and to calculate which are the neighbors of T in HS(4)

m
. Finally, observe

Locally 2-Dimensional Sperner Problems 387

that, as we previously mentioned in the proof of Corollary 1, the fully labeled
triangles having direct (resp. indirect) orientation in S are exactly the nodes
of out-degree (resp. in-degree) 1 in DS(12)

m
. These three arguments show that

there is a reduction (in the sense of total problems) from OSPS to the natural
complete problem for PPAD.

We turn to the proof of completeness. Let k be any positive integer. Let
G = (V,E) be a graph which is specified by an instance of the natural complete
problem for PPAD (see Section 2). It is an undirected graph over V = {0, 1}k,
such that each vertex has in-degree at most one, and out-degree at most one.
Moreover, 0k is a source in G. Let us denote by M the polynomial time Turing
machine that, given a vertex v ∈ V , outputs its predecessor and its successor, if
they exist. From G we make an instance of OSPS such that a solution can be
efficiently turned into a source or a sink of the graph G different from 0k.

Let m be the smallest integer greater than 2k that is equal to 7 modulo
12. We assume that V is included in the set of vertices of Sm. We denote by
Π = {πv | v vertex of Sm} the rotation system for Sm.

Informally, we give a labeling such that the directed flow graph DS(4)
m

imitates
the graph G as follows: if (a, b) is an edge of G, then there will be a path in DS(4)

m

along the edges near the (a, b) side of the triangle “above” (a, b) (that is the
triangle {a, b, π−1

a (b)}). If moreover (b, c) is an edge in G then there will be a path
around b in the direction given by the rotation system, leading to the triangle
above (b, c). To manage the latter, we need a tool for deciding whether, for a
vertex d �∈ {a, b, c}, the edge {b, d} is “between” {a, b} and {b, c} according to the
rotation πb. This tool is provided by the function logπb

a defined in Definition 7:
the edge {b, d} is between {a, b} and {b, c} if 0 < logπb

a (d) < logπb
a (c). The

function logπb
a is efficiently computable by Lemma 1.

We design a Turing machine M ′ that for every vertex v in S(4)
m outputs a

label �(v) in {0, 1, 2}, using M as a subroutine. Let (a, b, c) be a triangle in
Sm, S = {a, b, c}, and let ia, ib and ic be three non-negative integers such
that ia + ib + ic = 4. Denote by σ the permutation

(
a,b,c
b,c,a

)
. Observe that the

definition of the rotation system implies that for every v ∈ {a, b, c} the equality
πv(σ−1(v)) = σ(v) holds. On input z = ia · a + ib · b + ic · c the Turing machine
M ′ outputs

�(z) =

0 if ∃v, v′ ∈ S, iv + iv′ = 4, (v, v′) ∈ E, (1)
0 if ∃v ∈ S, iv = 4, ∃w �∈ S, (v, w) ∈ E or (w, v) ∈ E, (2)
1 if ∃v ∈ S, (iv, iσ(v)) ∈ {(2, 1), (1, 2)}, (v, σ(v)) ∈ E, (3)
1 if ∃v ∈ S, ∃v′ ∈ {σ−1(v), σ(v)}, (iv, iv′) = (3, 1),

∃w,w′ ∈ V, (w, v), (v, w′) ∈ E and logπv
w (v′) < logπv

w (w′), (4)
2 otherwise. (5)

Notice that conditions 1 and 2 can be matched simultaneously, but the value
of � is the same. Notice also that, although less obvious, it is impossible for
conditions 1 and 4 to be matched simultaneously. The other pairs of conditions
can not be matched simultaneously.

388 K. Friedl et al.

Finding the case in which z falls can be done in time polynomial in k, as the
Turing machine M , on input v ∈ {a, b, c}, outputs the neighbors of v, and the
rotation system Π can be efficiently computed.

Using these rules, we describe (see Figure 2) the possible cases for a triangle
(a, b, c) in Sm (we assume that the rotation system is clockwise, and hence the
orientation is counter-clockwise):

Case 1: (a, b), (b, c), (c, a) ∈ E.
Case 2: (a, b), (b, c) ∈ E, but (c, a) �∈ E. The value of �(3 · a + c) is 2 if a is a

source in G, and 1 otherwise. Similarly, the value of �(3 · c + a) is 2 if c
is a sink in G, and 1 otherwise.

Case 3: (a, b) ∈ E, but (b, c) and (c, a) are not in E. The value of �(4 · c) is 2 if
c is isolated in G, and otherwise 0. The value of �(a+ 3 · c) = �(b+ 3 · c)
is 1 if logπc

w (b) < logπc
w (a) < logπc

w (w′), and otherwise 2. The value of
�(3 · a + c) is 2 if a is a source in G, and 1 otherwise. The value of
�(3 · b + c) is 2 if b is a sink in G, and 1 otherwise.

Case 4: (a, b), (b, c) and (c, a) are not in E. Let v be in {a, b, c}. We do not enu-
merate all the possible sub-cases, but only state the essential relations
between the labels:

(i) �(3 ·v+σ(v)) = 1 ⇐⇒ �(3 ·v+σ−1(v)) = 1, as both 3 ·v+σ−1(v)
and 3 · v+ σ(v) simultaneously fall in one of the cases (1), (4) and
(5) in the definition of �.

(ii) �(3 ·v+σ(v)) = 0 ⇐⇒ �(2 ·v+2 ·σ(v)) = 0, as if �(3 ·v+σ(v)) = 0
or �(2 · v + 2 · σ(v)) = 0 then case (1) in the definition of � must
apply,

(iii) �(3 · v + σ−1(v)) = 0 ⇐⇒ �(2 · v + 2 · σ−1(v)) = 0, for the same
reasons as in (ii).

These are the only possible cases, up to renaming the vertices a, b and c of the
triangle (a, b, c).

We have to prove that this labeling scheme � is correctly defined among dif-
ferent triangles. It is easy to check that it is correctly defined on 4 · v, where v
is a vertex of V : if v is an isolated vertex in G, then in every face to which it
belongs only the case (5) in the definition of � applies, and therefore �(4 · v) = 2.
If v is not isolated, then case (2) in the definition of � applies, and therefore
�(4 · v) = 0.

So, finally, proving that the labeling has been correctly defined amounts to
proving that the label �(z) of a vertex z = ia · a + ib · b, 0 < ia, ib < 4 with
ia + ib = 4, that we have defined is the same for the two triangles (a, b, π−1

a (b))
and (a, πa(b), b). We study the different cases:

– (ia, ib) = (3, 1) or (1, 3): if (a, b) or (b, a) is in E, then case (1) in the definition
of � applies to z, and �(z) = 0. Otherwise, either case (4) applies and therefore
�(z) = 1, or case (5) applies and therefore �(z) = 2.

– (ia, ib) = (2, 2): if (a, b) or (b, a) is in E, then case (1) in the definition of �
applies to z, and �(z) = 0. Otherwise, case (5) applies.

Locally 2-Dimensional Sperner Problems 389

a b

c

0 0 0 0 0

0
1 1

0

0
1

0

0 0

0

a b

c

0 0 0 0 0

�(3 · a + c) 1 1
0

2
1

0

�(a + 3 · c) 0

0

Case 1 Case 2

a b

c

0 0 0 0 0

�(3 · a + c) 1 1
�(3 · b + c)

2
2

2

�(a + 3 · c) �(b + 3 · c)

�(4 · c)

a b

c

�(4 · a) �(3 · a + b)

�(2 · a + 2 · b)
�(a + 3 · b) �(4 · b)

�(3 · a + c) 2 2
�(3 · b + c)

�(2 · a + 2 · c) 2
�(2 · b + 2 · c)

�(a + 3 · c) �(b + 3 · c)

�(4 · c)

Case 3 Case 4

Fig. 2. The different possible cases in the labeling of a triangle (a, b, c) of S(4)
m

Let (a′, b′, c′) be a fully labeled triangle in the subdivision of a triangle (a, b, c)
in Sm. We prove that there exists a unique v = v(a′, b′, c′) ∈ {a, b, c} such
that (a′, b′, c′) = (3 · v + σ(v), 2 · v + σ−1(v) + σ(v), 3 · v + σ−1(v)), and v is a
source in G if (a′, b′, c′) is a fully labeled triangle having indirect orientation,
and a sink if (a′, b′, c′) is a fully labeled triangle having direct orientation. Also,
given (a′, b′, c′), one can efficiently retrieve v(a′, b′, c′). The proof is done for the
different cases of Figure 2.

In Case 1 there is no such triangle (a′, b′, c′).
Let us examine Case 2. The possible values for �(3 ·a+ c) and �(a+3 · c) are 1

and 2. Therefore, the only possibilities for (a′, b′, c′) are (b+3·c, a+b+2·c, a+3·c)
when �(a+ 3 · c) = 2, and (3 · a + c, 2 · a + b + c, 3 · a + b) when �(3 · a + c) = 2.
These values correspond respectively to the case when c is a sink and (a′, b′, c′)
is a fully labeled triangle having direct orientation, and to the case when a is a
source and (a′, b′, c′) is a fully labeled triangle having indirect orientation.

Let us turn to Case 3. In this case, we always have �(a + 3 · c) = �(b + 3 · c).
So, the only possibilities for (a′, b′, c′) are (3 · b + a, a + 2 · b + c, 3 · b + c) when
�(3 · b + c) = 2, and (3 · a + c, 2 · a + b + c, 3 · a + b) when �(3 · a + c) = 2.
These values correspond respectively to the case when b is a sink and (a′, b′, c′)
is a fully labeled triangle having direct orientation, and to the case when a is a
source and (a′, b′, c′) is a fully labeled triangle having indirect orientation.

We finish the case study by proving that in Case 4, there can be no fully labeled
triangle (a′, b′, c′). All the triangles that have twice the label 2 can immediately

390 K. Friedl et al.

be discarded. By symmetry between a, b and c, we can assume without loss of
generality that a′, b′ and c′ should be in {ia ·a+ib ·b+ic ·c ∈ N4[{a, b, c}] | ia ≥ 2}.
Assume that (a′, b′, c′) is a fully labeled triangle. The possibilities are:

– (a′, b′, c′) = (3 · a + c, 4 · a, 3 · a + b): �(4 · a) ∈ {0, 2}, so �(3 · a + c) = 1 or
�(3 · a + b) = 1, and therefore relation (i) implies �(3 · a + c) = �(3 · a + b),
which is impossible,

– (a′, b′, c′) = (3 · a + c, 3 · a + b, 2 · a + b + c): similar to the previous case,
– (a′, b′, c′) = (2 · a + 2 · c, 3 · a + c, 2 · a + b + c): �(2 · a + 2 · c) ∈ {0, 2} and

�(2 · a + b + c) = 2, so �(2 · a + 2 · c) = 0 and therefore relation (ii) implies
�(3 · a + c) = 0, which is impossible,

– (a′, b′, c′) = (3 · a + b, 2 · a + 2 · b, 2 · a + b + c): similar to the previous case,
using relation (iii).

Our next step is showing that the map (a′, b′, c′) → v(a′, b′, c′) is a bijection
between fully labeled triangles (a′, b′, c′) having indirect orientation and sources
of G. It is onto, as if v is a source in G, v′ is the successor of v and v′′ = π−1

v (v′)
then v = v(a′, b′, c′), where (a′, b′, c′) = (3 · v + v′′, 2 · v + v′ + v′′, 3 · v + v′). The
case study also shows that if (a′, b′, c′) is a fully labeled triangle of S(4)

m having
indirect orientation and v = v(a′, b′, c′) then (a′, b′, c′) = (3 · v + v′′, 2 · v + v′ +
v′′, 3 ·v+v′), where v′ is the successor of v in G and v′′ = π−1

v (v′). Therefore the
map is injective as well. A similar bijection exists between fully labeled triangles
(a′, b′, c′) having direct orientation and sinks of G.

Let (a0, b0, c0) = (0k, 1k, π−1
0k (1k)). The triangle T , which is part of the input

for OSPS, is (3 ·a0 +c, 2 ·a0 +b0 +c0, 3 ·a0 +b0). We conclude that if we can find
a fully labeled triangle (a′, b′, c′) �= T then we can efficiently retrieve a source or
sink v of G with v = v(a′, b′, c′) different from 0k.

The problem SOPS is the hand-made analogue of OSPS for PPADS, and there-
fore it is naturally complete in the class. Indeed, both for the easiness and the
hardness results the proofs used for the completeness of OSPS in PPAD can be
applied. The only substantial remark to be made is that the bijections defined
between fully labeled triangles and nodes of degree one bijectively map fully
labeled triangles having direct orientations onto sinks. Therefore, we obtain the
following result.

Theorem 3. The problem SOSPS is PPADS-complete.

Acknowledgments

The last two authors acknowledge the hospitality of the Isaac Newton Institute,
Cambridge, where their work was completed.

References

1. P. Beame, S. Cook, J. Edmonds, R. Impagliazzo and T. Pitassi. The relative
complexity of NP search problems. J. Comput. System Sci., 57(1):3–19, 1998.

2. X. Chen and X. Deng. Settling the Complexity of 2-Player Nash-Equilibrium.
ECCC Report 140, 2005.

Locally 2-Dimensional Sperner Problems 391

3. L. Goddyn, R. Bruce Richter and Jozef Širáň. Triangular embeddings of complete
graphs from graceful labellings of paths. Preprint, 2004.

4. K. Fan. Simplicial maps from an orientable n-pseudomanifold into Sm with the
octahedral triangulation. J. Combinatorial Theory, 2:588–602, 1967.

5. K. Friedl, G. Ivanyos, M. Santha and Y. F. Verhoeven. On the complexity of
Sperner’s Lemma. Isaac Newton Institute Preprint Series NI05002, 2005.

6. M. Grigni. A Sperner lemma complete for PPA. Inform. Process. Lett., 77(5-
6):255–259, 2001.

7. D. Johnson, C. Papadimitriou and M. Yannakakis. How easy is local search? J.
Comput. System Sci., 37(1):79–100, 1988.

8. V. P. Korzhik and H.-J. Voss, On the Number of Nonisomorphic Orientable Regu-
lar Embeddings of Complete Graphs, J. Combinatorial Theory Series B 81:58-76
(2001).

9. N. Megiddo and C. Papadimitriou. On total functions, existence theorems and
computational complexity. Theoret. Comput. Sci., 81:317–324, 1991.

10. B. Mohar and C. Thomassen. Graphs on surfaces. Johns Hopkins Studies in the
Mathematical Sciences. Johns Hopkins University Press, Baltimore, MD, 2001.

11. C. Papadimitriou. On graph-theoretic lemmata and complexity classes. In Proc.
of 31st FOCS, pp. 794–801, 1990.

12. C. Papadimitriou. On the complexity of the parity argument and other inefficient
proofs of existence. J. Comput. System Sci., 48(3):498–532, 1994.

13. G. Ringel, Map Color Theorem, Springer-Verlag, New York, 1974.
14. E. Sperner. Neuer Beweis für die Invarianz der Dimensionzahl und des Gebietes.

Abh. Math. Sem. Hamburg Univ. 6:265–272, 1928.
15. A. Thomason. Hamilton cycles and uniquely edge colourable graphs. Ann. Discrete

Math. 3: 259–268, 1978.

Author Index

Asahiro, Yuichi 272

Bermond, Jean-Claude 115
Bille, Philip 248
Bleischwitz, Yvonne 175
Blunck, Henrik 30
Broersma, H.J. 284

Capponi, A. 284
Chen, Xin 236
Chleb́ık, Miroslav 199
Chleb́ıková, Janka 199
Corrêa, Ricardo 115
Czygrinow, Andrzej 296

Damaschke, Peter 344
Dantsin, Evgeny 60
Dobrev, S. 139
Dom, Michael 320
Dragan, Feodor F. 260

Eisenbrand, Friedrich 105
Erlebach, Thomas 69
Even, Guy 18

Fernau, Henning 332
Fournier, Hervé 368
Friedl, Katalin 380
Fuchs, Bernhard 127
Furukawa, Tetsuya 272

Gørtz, Inge Li 248
Grantson, Magdalene 6
Gunia, Christian 151
Guo, Jiong 320
Gutin, Gregory 356

Hall, Alexander 69
Hańćkowiak, Micha�l 296
Happ, Edda 105
Hirsch, Edward A. 60
Hoffmann, Michael 69
Hüffner, Falk 320

Ikegami, Keiichi 272
Ivanyos, Gábor 380

Jiang, Tao 236

Kantor, Erez 211
Kao, Ming-Yang 223
Kern, Walter 42
Koukopoulos, Dimitrios 93
Kovács, Annamária 187
Královič, R. 139
Kulkarni, Raghav 308

Levcopoulos, Christos 6
Liu, Lan 236
Liu, Zheng 236

Malod, Guillaume 368
Mehlhorn, Kurt 1
Mihǎlák, Matúš 69
Miyano, Eiji 272
Monien, Burkhard 175

Niedermeier, Rolf 320
Nikolopoulos, Stavros D. 93

Paulusma, D. 284
Peleg, David 211
Porschen, Stefan 50
Preparata, Franco P. 3
Pudlák, P. 5

Rafiey, Arash 356
Rawitz, Dror 18

Sanghi, Manan 223
Santha, Miklos 380
Santoro, N. 139
Shahar, Shimon (Moni) 18
Shi, W. 139
Szeider, Stefan 356
Szymańska, Edyta 296

Ting, Hing-Fung 163
Truß, Anke 320

Vahrenhold, Jan 30
Verhoeven, Yves F. 380

394 Author Index

Weinard, Maik 81
Woeginger, Gerhard 42
Wolpert, Alexander 60

Yan, Chenyu 260
Yeo, Anders 356
Yu, Minli 115

	Frontmatter
	Invited Talks
	Reliable and Efficient Geometric Computing
	Beware of the Model: Reflections on Algorithmic Research
	On Search Problems in Complexity Theory and in Logic (Abstract)

	Session 1
	Covering a Set of Points with a Minimum Number of Lines
	Approximation Algorithms for Capacitated Rectangle Stabbing
	In-Place Randomized Slope Selection

	Session 2
	Quadratic Programming and Combinatorial Minimum Weight Product Problems
	Counting All Solutions of Minimum Weight Exact Satisfiability
	Clause Shortening Combined with Pruning Yields a New Upper Bound for Deterministic SAT Algorithms

	Session 3
	Network Discovery and Verification with Distance Queries
	Deciding the FIFO Stability of Networks in Polynomial Time
	Heterogenous Networks Can Be Unstable at Arbitrarily Low Injection Rates

	Session 4
	Provisioning a Virtual Private Network Under the Presence of Non-communicating Groups
	Gathering Algorithms on Paths Under Interference Constraints
	On the Hardness of Range Assignment Problems

	Session 5
	Black Hole Search in Asynchronous Rings Using Tokens
	On Broadcast Scheduling with Limited Energy
	A Near Optimal Scheduler for On-Demand Data Broadcasts

	Session 6
	Fair Cost-Sharing Methods for Scheduling Jobs on Parallel Machines
	Tighter Approximation Bounds for LPT Scheduling in Two Special Cases
	Inapproximability Results for Orthogonal Rectangle Packing Problems with Rotations

	Session 7
	Approximate Hierarchical Facility Location and Applications to the Shallow Steiner Tree and Range Assignment Problems
	An Approximation Algorithm for a Bottleneck Traveling Salesman Problem
	On the Minimum Common Integer Partition Problem

	Session 8
	Matching Subsequences in Trees
	Distance Approximating Trees: Complexity and Algorithms
	How to Pack Directed Acyclic Graphs into Small Blocks

	Session 9
	On-Line Coloring of H-Free Bipartite Graphs
	Distributed Approximation Algorithms for Planar Graphs
	A New NC-Algorithm for Finding a Perfect Matching in {\itshape d}-Regular Bipartite Graphs When {\itshape d} Is Small

	Session 10
	Fixed-Parameter Tractability Results for Feedback Set Problems in Tournaments
	Parameterized Algorithms for {\sc Hitting Set}: The Weighted Case
	Fixed-Parameter Tractable Generalizations of Cluster Editing

	Session 11
	The Linear Arrangement Problem Parameterized Above Guaranteed Value
	Universal Relations and \#P-Completeness
	Locally 2-Dimensional Sperner Problems Complete for the Polynomial Parity Argument Classes

	Backmatter

