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Abstract. In this paper we introduce a complex allocation and schedul-
ing problem for variable voltage Multi-Processor System-on-Chip (MP-
SoC) platforms. We propose a methodology to formulate and solve to
optimality the allocation, scheduling and discrete voltage selection prob-
lem, minimizing the system energy dissipation and the overhead for fre-
quency switching. Our approach is based on the Logic Benders decom-
position technique where the allocation is solved through an Integer Pro-
gramming solver, and the scheduling through a Constraint Programming
solver. The two solvers are interleaved and their interaction regulated
by cutting plane generation. The objective function depends on both
master and sub-problem variables. We demonstrate the efficiency of our
approach on a set of realistic instances.

1 Introduction

As silicon technology keeps scaling, it is becoming technically feasible to inte-
grate entire and complex systems on the same silicon die. This solution provides
scalable computation power, and it is expected that hundreds of processor cores
will be integrated on these Multi-Processor Systems-on-Chip (MPSoCs) in fu-
ture technologies. MPSoCs are widely used in embedded systems (such as cellular
phones, automotive control engines, etc.) where, once deployed in field, they al-
ways run the same set of applications. Since for many multimedia and signal
processing applications the workload is highly predictable at design time, with
minimum run-time fluctuations, an optimal allocation and scheduling for such
applications can be statically derived off-line.

A critical task for recent MPSoCs is the minimization of the energy consumed
since the speed of each processor can be tuned by changing its frequency. We
start from a well-characterized task graph, a directed acyclic graph representing
a functional abstraction of the application that will run on the MPSoCs. Each
task is characterized by the number of clock cycles used for its execution. Clearly
the duration of each task and the energy spent for running it depends on the
clock frequency used during the task execution. In addition, tasks connected
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by arcs in the task graph communicate and if they are allocated to different
processors, additional communicating tasks are created for reading and writing
data on a shared memory.

Defining the optimal allocation, scheduling and voltage scaling for minimizing
energy in MPSoCs is the aim of this paper. Energy is consumed during task exe-
cution, task communication and for switching between two voltages (setup costs).

The problem we face is very complex. It has never been solved to optimal-
ity by the system design community and it cannot be solved by any complete
commercial solver that models the problem as a whole. The method we use is
the Logic Based Benders Decomposition [8], an extension of the well known OR
Benders Decomposition [1] approach for dealing with solvers of any kind. In this
setting, we allocate tasks to processors and decide their execution frequency in
the master problem, while the subproblem schedules tasks with a fixed dura-
tion and static resource assignment. The interaction between the master and
the subproblem is regulated via cutting planes generation.

The approach has been followed several times for similar problems, but never
applied to scheduling for minimizing costs and setup costs. In particular, there
are a number of papers using Benders Decomposition in a CP setting. [12] pro-
poses the branch and check framework using Benders Decomposition (BD). [4]
embeds BD in the CP environment ECLiPSe and shows that it can be use-
ful in practice. [5] applied Benders decomposition to minimum cost planning
and scheduling problems; in this work the objective function involves only mas-
ter problem variables, while the subproblem is simply a feasibility problem. [6]
and [7] used Benders decomposition for Planning and Scheduling problems with
several objective functions: either minimizing the cost (involving only master
problem variables), or minimizing the makespan or the tardiness or the number
of late tasks (involving the last three cases only subproblem variables); here the
objective function involves both master problem and subproblem variables since
the execution energy is minimized by the allocation problem solver while the
setup cost due to frequency switches can be minimized only at scheduling time.

2 Problem Description

The new MPSoC paradigm for hardware platform design is pushing the paral-
lelization of applications, so that instead of running them at a high frequency
on a single monolithic core, they can be partitioned into a set of parallel tasks,
which are mapped and executed on top of a set of parallel processor cores op-
erating at lower frequencies. Power minimization is a key design objective for
MPSoCs to be used in portable, battery-operated devices. This goal can be pur-
sued by means of low power design techniques at each level of the design process,
from physical-level techniques (e.g., low swing signaling) up to application op-
timization for low power. In this paper, we focus on system-level design, where
the main knobs for tuning power dissipation of an MPSoC are: allocation and
scheduling of a multi-task application onto the available parallel processor cores,
voltage and frequency setting of the individual processor cores. For those systems
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Fig. 1. Distributed MPSoC architecture

where the workload is largely predictable and not subject to run-time fluctua-
tions (e.g., signal processing or some multimedia applications), the above design
parameters can be statically set at design time. Traditional ways to tackle the
mapping and configuration problem either incur overly large computation times
already for medium-size task sets, or are inaccurate (e.g., use of heuristics and
problem modelling with highly simplifying assumptions on system operation).
Therefore, design technology for MPSoCs strongly needs accurate, scalable and
composable modelling and solving frameworks.

In this paper we consider a reference template [10] for a distributed MPSoC
architecture. The platform consists of computation tiles, a shared bus for inter-
tile communication and a shared memory. The computation tiles are supposed
to be homogeneous and consist of ARM7 processor cores (including instruction
and data caches) and of tightly coupled software-controlled scratchpad memories.
These latter devices can be viewed as local, low access cost memories (see Fig. 1).
Messages can be exchanged by tasks through communication queues [9], which
can be allocated at design time either in scratch-pad memory or in remote shared
memory, depending on whether tasks are mapped onto the same processor or not.

In this architecture, each processor core can run at different clock frequencies.
The frequency of each processor core is derived from a baseline system frequency
by means of integer dividers. Moreover, a synchronization module must be in-
serted between the bus and the processor cores to allow frequency decoupling
(usually a dual-clock FIFO). The bus operates at the maximum frequency (e.g.,
200 MHz). For each processor core, a set of voltage and frequency couples is
specified, since the feasible operating points for these cores are not continuous
but rather discrete. For modern variable voltage/variable frequency cores, this
set is specified in the data-sheet.

Finally, in real-life MPSoC platforms, switching voltage and frequency of a
processor core is not immediate nor costless, therefore the switching overhead in



Allocation, Scheduling and Voltage Scaling on Energy Aware MPSoCs 47

terms of switching delay (referred to as setup times) and energy overhead (re-
ferred to as setup costs) must be carefully considered when selecting the optimal
configuration of a system. In practice, interesting trade-offs have to be studied.
On one hand, tasks can be spread across a large number of processor cores, so
that these cores can operate at lower frequencies, but more communication arises
and the energy cost of many running cores has to be compensated by a more
energy-efficient execution of tasks. On the other hand, tasks have to be grouped
onto the processor cores and scheduled taking care of minimizing the number
of frequency switchings. It must be observed that application real-time require-
ments play a dominant role in determining solutions for the MPSoC mapping
and configuration problem. A good methodology should be conservative with
respect to task deadlines, so to minimize the probability of timing violations in
the real system.

3 Dynamic Voltage Scaling Problem – DVSP: The Model

We consider a directed acyclic task graph G whose nodes represent a set of T
tasks, are annotated with their deadline dlt and with the worst case number of
clock cycles WCNt. Arcs represent dependencies/communications among tasks.
Each arc is annotated with the amount of data two dependent tasks should ex-
change, and therefore the number of clock cycles for exchanging (reading and
writing) these data WCNR and WCNW . Tasks are running on a set of proces-
sors P . Each processor can run with M energy/speed modes and has a maximum
load constraint dlp. Each task spends energy both in computing and in commu-
nicating. In addition, when the processor switches between two modes it spends
time and energy. We have energy overhead Eij for switching from frequency i to
frequency j, and time overhead Tij for switching from frequency i to j.

The Dynamic Voltage Scaling Problem is the problem of allocating tasks to
processors, define the running speed of each task and schedule each of them
minimizing the total energy consumed.

The method we use for handling the DVSP uses the logic-based Benders
decomposition technique [8]. Similarly to [2], the problem is decomposed into
two parts: the first, called Master Problem, is the allocation of processors and
frequencies to tasks and the second, called Subproblem, is the scheduling of
tasks given the static allocation and frequency assignments provided by the
master. Note that the frequency assignment could be done in the subproblem.
However, the scheduling part becomes extremely slow and performances highly
decrease. In addition, the relaxation of the subproblem (introduced in section
4.1) become extremely loose. Differently from [2], the objective function depends
on master and subproblem variables. In fact, the master problem minimizes the
communication and execution energy, while only during the scheduling phase we
could minimize the switching energy overhead.

The master problem is tackled by an Integer Programming solver (through
a traditional Branch and Bound) while the subproblem through a Constraint
Programming solver. The two solvers interact via no-good and cutting planes
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generation. The solution of the master is passed to the subproblem. We have
two possible cases: (1) there is no feasible schedule: we have to compute a no-
good avoiding the same allocation to be found again; (2) there is a feasible and
optimal schedule minimizing the second component of the objective function:
here we cannot simply stop the iteration since we are not sure we have the
optimal solution overall. We have to generate a cut saying that this is the optimal
solution unless a better one can be computed with a different allocation.

The procedure converges when the master problem produces a solution with
the same objective function of the previous one.

4 Example

As an example, let consider 5 tasks and 5 communications, with the precedence
constraints as described in Figure 2. Table 1 shows the duration (in clock cycles)
of execution and communication tasks (the durations of the reading and the
writing phase Ri and Wi of each communication Comi are the half of these
values). We have 2 processors, running at 2 different frequencies, 200MHz and
100MHz (so, e.g. Task1 will last 500ns if runs at 200MHz and 1μs if runs at
100MHz). The processors waste 10mW when running at 200MHz and 3mW
when running at 100MHz. Switching from the higher frequency to the lower
needs 2ns and wastes 2pJ, while the contrary needs 3ns and wastes 3pJ. The
realtime requirement settles the processor deadline at 2μs.

Table 1. Activities durations for the example

Nome Task1 Task2 Task3 Task4 Task5 Com1 Com2 Com3 Com4 Com5
Clock 100 54 134 24 10 20 10 8 8 8

The first allocation found tries to assign the lower frequency to the third task,
being the longest one and thus the most power consuming one; this solution is
however not schedulable due to the deadline constraint. The second allocation
found is schedulable and is also the optimal one w.r.t. the power consumption
minimization (the total power consumption is 13502mW). The first two tasks
are allocated on the first processor at the higher frequency and the other three
tasks on the second processor: here only Task5 runs at the higher frequency.
The Gantt chart in Figure 2 shows the schedule of this solution.

4.1 The Master Problem Model

We model the allocation problem with binary variables Xptm which take value
1 if task t is mapped on the processor p and runs in mode m, 0 otherwise. Since
we also take into account communication, we assume that two communicating
tasks running on the same processor do not consume any energy and do not
spend any time (indeed the communication time and energy spent are included
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Fig. 2. Task graph and schedule for the example in Table 1

in the execution time and energy), while if they are allocated on two different
processors, they both consume energy and spend time. The first task spends
time and energy for writing data on a shared memory. This operation makes
the duration of the task becoming longer: it increases of a quantity WCNW /fm

where WCNW is the number of clock cycles for writing data (it depends on the
amount of data we should write), and fm is the frequency of the clock when task
t is performed. The second task should read data from the shared memory. Again
its duration increases of a quantity WCNR/fm where WCNR is the number of
clock cycles for reading data (it depends on the amount of data we should read),
and fm is the frequency of the clock when task t is performed.

Both the read and write activities are performed at the same speed of the task
and use the bus (which instead works at the maximum speed). For modelling
this aspect, we introduce in the model two variables Rpt1t2m and Wpt1t2m taking
value 1 if the task t1 running on processor p reads (resp. writes) data at mode
m from (resp. for) a task t2 not running on p.

Any task can be mapped on only one processor and can run at only one speed.
This translates in the following constraints:

P∑

p=1

M∑

m=1

Xptm = 1 ∀t

Also the communication between two tasks happens at most once:

P∑

p=1

M∑

m=1

Rpt1t2m ≤ 1 ∀t1, t2

P∑

p=1

M∑

m=1

Wpt1t2m ≤ 1 ∀t1, t2
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The objective function is to minimize the energy consumption of the task
execution, and of the task communication (read and write)

Ecomp =
P∑

p=1

M∑

m=1

T∑

t=1

XptmWCNttclockmPtm

ERead =
P∑

p=1

M∑

m=1

T∑

t,t1=1

Rptt1mWCNRtt1tclockmPtm

EWrite =
P∑

p=1

M∑

m=1

T∑

t,t1=1

Wptt1mWCNWtt1tclockmPtm

where Ptm is the power consumed in a clock cycle (lasting tclockm) by the task
t at mode m.

OF = Ecomp + ERead + EWrite

The objective function defined up to now depends only on master problem
variables. However, switching from one speed to another introduces transition
costs, but their value can be computed only at scheduling time. In fact, they are
not constrained in the master problem original model. They are constrained by
Benders Cuts instead, after the first iteration. We will present Benders Cuts in
section 4.3. Therefore, in the master problem the objective function is:

OFMaster = OF + Setup

Setup =
P∑

p=1

Setupp

It is worth noting that this contribution should be added to the master prob-
lem objective function, but, being the Setupp variables not constrained at the
first iteration in the master problem, they are all forced to be 0. From the sec-
ond iteration, instead, cuts are produced constraining variables Setupp and this
contribution could be no longer 0.

This formulation will result in tasks that are potentially running initially
with lower frequencies on the same processor (thus avoiding communication). A
measure of control is provided by constraints on deadlines in order to prevent
the blind selection of the lowest frequencies and the allocation of all tasks on the
same processor. The timing is not yet known in this phase, but we can introduce
some constraints that represent a relaxation of the subproblem and will reduce
the solution space. For each processor, only a certain load is allowed. Therefore,
on each processor the sum of the time spent for computation, plus the time spent
for communication (read and write) should be less than or equal to the processor
deadline dlp:
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T p
comp =

T∑

t=1

M∑

m=1

Xptm
WCNt

fm

T p
read =

T∑

t=1

M∑

m=1

T∑

t1=1

Rptt1m
WCNRtt1

fm

T p
write =

T∑

t=1

M∑

m=1

T∑

t1=1

Wptt1m
WCNWtt1

fm

T p
comp + T p

read + T p
write ≤ dlp ∀p (1)

These relaxations can be tightened by considering chains of tasks in the task
graphs instead of groups of tasks running on the same processor. For example
consider tasks t1, t2, t3, t4 linked by precedence constraints so that t1 → t2,
t2 → t3 and t3 → t4. Now suppose that t1 and t4 are allocated on processor 1
and t2 and t3 on other processors. Instead of summing only the durations of t1
and t4 that should be less than or equal to the processor deadline, one could
add also the duration of t2 and t3 since they should be executed before t4. The
chains in a graph can be many, we added only some of them.

Finally, task deadlines can be captured:

P∑

p=1

M∑

m=1

[
Xptm

WCNt

fm
+

T∑

t1=1

(
Rptt1m

WCNRtt1

fm
+ Wptt1m

WCNWtt1

fm

)]
≤ dlt ∀t

There are several improvements we have introduced in the master problem
model. In particular we have removed many symmetries leading the solver to
explore the same configurations several times.

4.2 The Sub-problem Model

Once allocation and voltage selection have been solved optimally, for the schedul-
ing part each task t has an associated variable representing its starting time
Starti. The duration is fixed since the frequency is decided, i.e., durationi =
WCNi/fi. In addition, if two communicating tasks ti and tj are allocated on two
different processors, we should introduce two additional activities (one for writing
data on the shared memory and one for reading data from the shared memory).
We model the starting time of these activities StartWriteij and StartReadji.
These activities are carried on at the same frequency of the corresponding task.
If ti writes and tj reads data, the writing activity is performed at the same
frequency of ti and its duration dWriteij depends on the frequency and on the
amount of data ti writes, i.e., WCNWij/fi. Analogously, the reading activity
is performed at the same frequency of tj and its duration dReadji depends on
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the frequency and on the amount of data tj reads, i.e., WCNRji/fj. Clearly the
read and write activities are linked together and to the corresponding task:

StartWriteij + dWriteij ≤ StartReadji ∀i, j s.t. i communicates with j

Starti + durationi ≤ StartWriteij ∀i, j s.t. i communicates with j

StartReadji + dReadji ≤ Startj ∀i, j s.t. i communicates with j

In the subproblem, we model precedence constraints in the following way: if
task ti should precede task tj and they run on the same processor at the same
frequency the precedence constraint is simply:

Starti + durationi ≤ Startj

If two tasks run on different processors and should communicate we should
add the time for communicating.

Starti + durationi + dWriteij + dReadji ≤ Startj

Deadline constraints are captured stating that each task must end its execu-
tion before its deadline and, on each processor, all the tasks (and in particular
the last one) running on it must end before the processor deadline.

Starti + durationi ≤ dlti ∀ tasks ti

Starti + durationi ≤ dlp ∀i ∈ p, ∀p

Resources are modelled as follows. We have a unary resource constraint for
each processor, modelled through a cumulative constraint having as parameters
a list of all the variables representing the starting time of the activities (tasks,
readings, writings) sharing the same resource p, their durations, their resource
consumption (which is a list of 1) and the capacity of the processor which is 1.

cumulative(StartListp, DurationListp, [1], 1) ∀p

We model the bus through an additive model we have already validated in
[11]. We have an activity on the bus each time a task writes or reads data to
or from the shared memory. The bus is modelled as an additive resource and
several activities can share the bus, each one consuming a fraction of it until the
total bandwidth is reached. The cumulative constraint used to model the bus is:

cumulative(StartReadWriteList, DurationList, Fraction, T otBWidth)

where StartReadWriteList and DurationList are lists of the starting times and
durations of all read and write activities needing the bus, Fraction is the amount
of bandwidth granted to any activity when accessing the bus1 and TotBWidth
is total bandwidth available of the bus.
1 This value was experimentally tuned to 1/4 of the total bus bandwidth.
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To model the setup time and cost for frequency switching we take advantage of
the classes defined by ILOG Scheduler to manage transitions between activities.
It is possible to associate a label to each activity and to define a transition matrix
that specifies, for each couple of labels l1 and l2, a setup time and a setup cost
that must be paid to schedule, on the same resource, an activity having the
label l1 just before an activity having the label l2. When, during the search for
a solution, two activities with labels l1 and l2 are scheduled one just after the
other on the same resource, the solver will satisfy the additional constraint:

Startl1 + durationl1 + TransT imel1l2 ≤ Startl2

where TransT imel1l2 is the setup time specified in the transition matrix. Like-
wise, the solver introduces TransCostij in the objective function. If Sp is the
set of all the tasks scheduled on processor p, the objective function we want to
minimize is:

OF =
P∑

p=1

∑

(i,j)∈Sp|next(i)=j

TransCostij

4.3 Generation of Logic-Based Benders Cuts

Once the subproblem has been solved, we generate Benders Cuts. The cuts are
of two types:

– if there is no feasible schedule given an allocation, the cuts are the same we
computed for the single voltage problem and depend on variables Xptm.

– if the schedule exists, we cannot simply stop the iteration since the objective
function depends also on subproblem variables. Therefore, we have to pro-
duce cuts saying that the one just computed is the optimal solution unless
a better one exists with a different allocation. These cuts produce a lower
bound on the setup of single processors.

The first type of cuts are no-good: we call Jp the set of couples (Task, Fre-
quency) allocated to processor p. We impose

∑

(t,m)∈Jp

Xptm ≤ |Jp| − 1 ∀p

Let us concentrate on the second type of cuts. The cuts we produce in this
case are bounds on the variable Setup previously defined in the Master Problem.

Suppose the schedule we find for a given allocation has an optimal setup cost
Setup∗. It is formed by independent setups, one for each processor Setup∗ =∑P

p=1 Setup∗p.
We have a bound on the setup LBSetupp on each processor and therefore a

bound on the overall setup LBSetup =
∑P

p=1 LBSetupp .
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Setupp ≥ 0

Setupp ≥ LBSetupp

LBSetupp = Setup∗p − Setup∗p
∑

(t,m)∈Jp

(1 − Xptm)

These cuts remove only one allocation. Indeed, we have also produced cuts
that remove some symmetric solutions.

We have devised tighter cuts removing more solutions. Intuitively, each time
we consider a solution of the problem overall, we generate an optimal setup cost
Setup∗ for the given allocation. In the current solution, we know the number of
frequency switches producing Setup∗. We can consider each processor indepen-
dently since the frequency switches on one processor are independent from the
other. We can impose cuts that say that Setup∗ is bound for all solutions with
the same set of frequency switches of the last one found or a superset of it. To do
that we have to introduce in the model variables Nextt1t2f1f2p, which complicate
the model too much. In fact, our experimental results show that these cuts, even
if tighter, do not lead to any advantage in terms of computational time.

4.4 Relaxation of the Subproblem

The iterative procedure presented so far can be improved by adding a bound on
the setup cost and setup time in the master problem based only on information
derived from the allocation.

Suppose we have five tasks running on the same processors using three dif-
ferent frequencies. So for instance, tasks t1, t3 and t5 run at frequency f1, t2
runs at frequency f2 and t4 runs at frequency f3. Since we have to compute a
bound, we suppose that all tasks running at the same speed go one after the
other. We can have six possible orders of these frequencies leading to different
couples of frequency switches. A bound on the sum of the energy spent during
the frequency switches is the minimal sum between two switches, i.e., the sum of
all possible switches minus the maximum switch. This bound is extremely easy
to compute and does not enlarge the allocation problem model.

Let us introduce in the model variables Zpf taking value 1 if the frequency
f is allocated at least once on the processor p, 0 otherwise. Let us call Ef the
minimum energy for switching to frequency f , i.e. Ef = mini,i�=f{Eif}.

Setupp ≥
M∑

f=1

(ZpfEf − maxf{Ef |Zpf = 1})

This bound helps in reducing the number of iterations between the master and
the subproblem.

Similarly, we can compute the bound on the setup time given an allocation. Let
us consider Tf =mini,i�=f{Tif}. Therefore, we can compute the following bound.

SetupT imep ≥
M∑

f=1

(ZpfTf − maxf{Tf |Zpf = 1})
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This bound can be used to tighten the constraint (1) in section 4.1 in the
following way.

T p
comp + T p

read + T p
write + SetupT imep ≤ dlp ∀p

so that solutions provided by the master problem are more likely to be feasible
for the subproblem.

A tighter bound on the setup time and cost could be achieved by introducing
in the allocation problem model variables Next, but as explained in section 4.3
they complicate too much the model and are not worth using.

5 Experimental Results

We have generated 500 realistic instances, with the number of tasks varying from
4 to 10 and the number of processors from 2 to 10. We assume that each processor
can run at three different frequencies. We consider, as in [2], applications with a
pipeline workload. Therefore we refer to the number of tasks to be allocated and
we schedule a larger number of tasks corresponding to many iterations of the
pipeline. We also have generated 27 realistic instances with the number of tasks
varying from 8 to 14 and the number of processors from 2 to 6, with generic
task graphs. The generic task graph complicates the problem since it increases
the parallelism degree. We assume that each processor can run at six different
frequencies. All the considered instances are solvable and we found the proved
optimal solution for each of them. Experiments were performed on a 2.4GHz
Pentium 4 with 512 Mb RAM. We used ILOG CPLEX 8.1, ILOG Solver 5.3 and
ILOG Scheduler 5.3 as solving tools.

5.1 Comparison with Pure Approaches

In [2], we compared a solving tool based on Benders Decomposition for a similar
problem with pure CP or IP based solving tools. Results shown that the pure
approaches were not comparable with the hybrid one, being the search times for
finding a solution to a relaxed (thus easier) problem order of magnitude higher.
The problem we are facing in this paper is much more complex then the one
presented in [2], since we consider also frequency switching. We developed a CP
and an IP-based approach to solve allocation, scheduling and voltage selection,
but not even a single (feasible) solution was found within 15 minutes, while
the hybrid approach, within 4 minutes, finds the optimal solution and proves
optimality for all the pipelined instances considered.

5.2 Experimental Results

In this section we show the results obtained solving the problem instances us-
ing the model described in section 3. We consider first the instances with task
graphs representing a pipeline workflow. Note that here, since we are considering
applications with pipeline workload, if n is the number of tasks to be allocated,
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Table 2. Search time and number of
iterations for instances with pipelined
task graphs

Tasks
Alloc SchedProcs Time(s) Iters

4 16 2 1,73 1,98
4 16 3 1,43 2,91
4 16 4 2,24 3,47
5 25 2 2,91 2,36
5 25 3 4,19 4,12
5 25 4 5,65 4,80
5 25 5 6,69 3,41
6 36 2 3,84 2,90
6 36 3 10,76 2,17
6 36 4 15,25 4,66
6 36 5 23,17 4,50
6 36 6 26,14 3,66
7 49 2 4,67 1,75
7 49 3 5,90 1,90
7 49 7 34,53 6,34
8 64 2 4,09 3,28
8 64 3 10,99 1,83
8 64 4 12,34 4,45
8 64 5 22,65 10,53
8 64 7 51,07 6,98
9 81 2 1,79 1,12
9 81 5 60,07 7,15
9 81 6 70,40 9,20
10 100 2 5,52 1,83
10 100 3 3,07 1,96
10 100 6 120,02 6,23
10 100 10 209,35 10,65

Table 3. Search time and number of
iterations for instances with generic
task graphs

Tasks
Alloc SchedProcs Time(s) Iters

8 8 2 1,57 1
8 8 3 1,48 2
8 8 3 0,81 1
8 8 3 4,26 6
8 8 4 0,86 1
9 9 2 2,51 1
9 9 2 1,11 1
9 9 2 2,73 3
9 9 3 35,95 43
9 9 3 2,51 1
9 9 3 6,62 2
9 9 4 1,40 3
9 9 4 2,14 5
9 9 4 2,60 4
9 9 4 29,59 26
9 9 4 4,84 6
9 9 6 158,43 39
10 10 2 5,90 1
10 10 3 2,12 1
10 10 3 12,81 3
10 10 4 0,37 1
10 10 4 13,92 14
10 10 4 4,18 5
10 10 4 11,50 27
12 12 5 551,92 213
14 14 2 14,11 1
14 14 6 3624,81 2

Table 4. Number of iterations distribution ratio

Iter 1 2 3 4 5 6 7 8 9 10 11+
% 50,20 18,51 7,11 4,52 4,81 2,88 2,46 2,05 1,64 1,64 4,11

the number of scheduled tasks is n2. Results are summarized in Table 2. The
first three columns contain the number of allocated and scheduled tasks and the
number of processors considered in the instances (we remind that each processor
can run at three different frequencies). The last two columns represent respec-
tively the search time and the number of iterations. Each value is the mean over
all the instances with the same number of tasks and processors. We can see that
for all the instances the optimal solution can be found within four minutes. The
number of iterations is typically low. Table 4 shows the percentage of occurrence
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of a given number of iterations. We can see that the optimal solution can be
found at the first step in one half of the cases and the number of iterations is
at most 5 in almost the 90% of cases. This result is due to the tight relaxations
added to the master problem model. We tried to remove these relaxations and
we found that the search time and the number of iterations rise, in the average
case, up to 1 order of magnitude and, in the worst cases, the solution cannot be
found within two hours.

We extended our analysis to instances where the task graph is a generic one,
so an activity can possibly read data from more than one preceding activity and
possibly write data that will be read by more than one following activity, so the
number of reading and writing activities can be considerably higher, being higher
the number of edges in the task graph. We remind that each processor can run at
six different frequencies, so the number of alternative resources a task can use is
six times the number of processors. Differently from the pipelined instances, here
we schedule a single repetition of each task. Table 3 summarizes the results. Each
instance presented has been solved optimally. Columns have the same meaning
as those already described in Table 2. We can see that typically the behaviors
are similar to those found when solving the pipelined instances, but sometimes
the number of iterations, and thus the search time is notably higher. This is due
to the particular structure of the task graph; in fact it can happens that a high
degree of parallelism between the tasks, that is a high number of tasks that can
execute only after a single task, leads to allocations that are not schedulable.
The master problem solver thus looses time proposing to the scheduler a high
number of unfeasible allocation. Introducing in the master problem model some
relaxations coming from an analysis of the task graph structure, and in particular
from the precedence constraints, can lead to better results.

6 Conclusion and Future Research

An exact algorithm for allocation, scheduling and voltage selection has been
proposed exploiting the method of Logic-based Benders Decomposition. Exper-
imental results show that the approach using CP and IP for the problem as a
whole cannot solve any of the instances considered, while our approach solves
them all to optimality. A number of improvements can be conceived the most
important concerning the use of a column generation approach for the master
problem would most probably lead to a significant speed up. As a second im-
provement cutting planes that can be derived from [3] and integrated in the
master problem model. In addition, we are investigating tighter cutting planes
based on information derived from the precedence graph.
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