

Lecture Notes in Computer Science 3990
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

J. Christopher Beck Barbara M. Smith (Eds.)

Integration
of AI and OR Techniques
in Constraint Programming
for Combinatorial
Optimization Problems

Third International Conference, CPAIOR 2006
Cork, Ireland, May 31 – June 2, 2006
Proceedings

13

Volume Editors

J. Christopher Beck
University of Toronto, Department of Mechanical & Industrial Engineering
5 King’s College Rd, Toronto, ON M5S 3G8, Canada
E-mail: jcb@mie.utoronto.ca

Barbara M. Smith
University College Cork, Cork Constraint Computation Centre
Cork, Ireland
E-mail: b.smith@4c.ucc.ie

Library of Congress Control Number: 2006925627

CR Subject Classification (1998): G.1.6, G.1, G.2.1, F.2.2, I.2, J.1

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-540-34306-7 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-34306-6 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2006
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11757375 06/3142 5 4 3 2 1 0

Preface

This volume contains the proceedings of the Third International Conference on
Integration of AI and OR Techniques in Constraint Programming for Combi-
natorial Optimization Problems (CPAIOR 2006). The conference was held in
Cork, Ireland, from May 31 to June 2, 2006. Information about the conference
can be found at http://tidel.mie.utoronto.ca/cpaior/. Previous meetings
in this series include two international conferences held in Nice (2004) and Prague
(2005) and five international workshops held in held in Ferrara (1999), Paderborn
(2000), Ashford (2001), Le Croisic (2002), and Montreal (2003).

The goal of these meetings is to provide a forum for researchers to present
approaches which highlight the integration of CP, AI, and OR techniques. An
additional important goal is to allow researchers from diverse backgrounds to
learn about techniques in other areas that are used for solving combinatorial
optimization problems and therefore to encourage cross-fertilization. One mea-
sure of the success that has been enjoyed by these meetings is the number of
publications outside this conference series (e.g., at the International Conference
on the Principles and Practice of Constraint Programming) that directly explore
integrated approaches to solving large and difficult combinatorial problems.

CPAIOR 2006 received 67 submissions. In order to streamline the reviewing
process, a subcommittee of the Programme Committee, consisting of Michael
Trick, Pascal Van Hentenryck, and the Programme Chairs, evaluated each sub-
mission to ensure relevance to the conference aims. The subcommittee unani-
mously judged that 41 of the submissions were sufficiently relevant to proceed
to the full review stage. Each of these submissions received three reviews by
members of the Programme Committee. The reviews were extensively discussed
during an online Programme Committee meeting. As a result, the Programme
Committee chose 20 (29.9%) to be included in the proceedings and presented at
the conference.

The authors of the papers in this volume have been invited to submit ex-
tended versions to a special issue of the Annals of Operations Research entitled
“Constraint Programming, Artificial Intelligence and Operations Research.” All
papers submitted will be subject to an additional rigorous review process and
we expect the special issue to be published in early 2008.

In addition to the technical sessions, three invited talks were given by leading
researchers. These diverse talks address the uses of optimization technology in
visual art (Robert Bosch, Oberlin College, USA); the growing interest in the AI
planning community in solving mixed discrete/continuous problems by exploit-
ing existing CP and OR techniques (Maria Fox, University of Strathclyde, UK);
and the issue of duality, a central issue in both traditional OR and CP solution
approaches (John Hooker, Carnegie Mellon University, USA).

VI Preface

CPAIOR 2006 continued the tradition of holding a Master Class on a focused
topic as part of the conference. This year’s Master Class, organized by Ken Brown
and Armagan Tarim, consisted of six tutorial sessions on the topic of “Modelling
and Solving for Uncertainty and Change.” The speakers at the Master Class
were Nesim Erkip (Bilkent University, Turkey), Hélène Fargier (IRIT, Toulouse,
France), Alexei Gaivoronski (Norwegian University of Science and Technology,
Norway), Brahim Hnich (Izmir University of Economics, Turkey), Pascal Van
Hentenryck (Brown University, USA), and Gérard Verfaillie (ONERA/CERT,
France).

We would like to thank the Programme Committee for their careful work
over the past few months in ensuring a high-quality programme for the con-
ference. We would also like to thank everyone involved in the organization of
the conference, notably Barry O’Sullivan, the Conference Chair; Ken Brown
and Armagan Tarim, the Chairs of the Master Class; Ian Miguel, the Publicity
Chair; Michela Milano, the Sponsorship Chair; Tom Carchrae, the Webmaster;
and Eleanor O’Riordan for her administrative support. It would have been im-
possible to hold CPAIOR 2006 without their significant contributions of time
and effort.

Finally, we would like to thank the institutions listed below who helped to
sponsor the conference. Their generosity enabled the conference to attract in-
vited speakers and instructors for the Master Class as well as to fund student
participation. These funds, therefore, greatly contributed to the success of the
conference.

March 2006 J. Christopher Beck
Barbara M. Smith
Programme Chairs

CPAIOR 2006

Organization

Conference Organization

Conference Chair Barry O’Sullivan (Cork Constraint Computation Centre)
Programme Chairs J. Christopher Beck (University of Toronto)

Barbara M. Smith (Cork Constraint Computation Centre)
Master Class Chairs Ken Brown (Cork Constraint Computation Centre)

Armagan Tarim (Cork Constraint Computation Centre)
Publicity Chair Ian Miguel (University of St. Andrews)
Sponsorship Chair Michela Milano (Università di Bologna)
Webmaster Tom Carchrae (Cork Constraint Computation Centre)

Programme Committee

Gautamkumar Appa, London School of Economics, UK
Philippe Baptiste, Ecole Polytechnique, France
Roman Bartàk, Charles University, Czech Republic
Mats Carlsson, SICS, Sweden
Ondřej Čepek, Charles University, Czech Republic
Hani El Sakkout, CISCO Systems, Inc., USA
Bernard Gendron, CRT and University of Montreal, Canada
Carmen Gervet, Imperial College London, UK / Brown University, USA
Carla Gomes, Cornell University, USA
Narendra Jussien, Ecole des Mines de Nantes, France
Stefan Karisch, Carmen Systems, Canada
François Laburthe, Bouygues, France
Andrea Lodi, University of Bologna, Italy
Gilles Pesant, CRT and Ecole Polytechnique de Montreal, Canada
Jean-François Puget, ILOG, France
Jean-Charles Régin, ILOG, France
Michel Rueher, University of Nice-Sophia Antipolis, France
Meinolf Sellmann, Brown University, USA
Helmut Simonis, CrossCore Optimization Ltd, UK
Gilles Trombettoni, University of Nice-Sophia Antipolis, France
Michael Trick, Carnegie Mellon University, USA
Pascal Van Hentenryck, Brown University, USA
Mark Wallace, Monash University, Australia
Weixiong Zhang, Washington University, USA

VIII Organization

Additional Referees

Kai Becker
Sophie Demassey
Guy Desaulniers
Jonathan Gaudreault
Marco Gavanelli
Mattias Grönkvist
Justin W. Hart
Manuel Iori
Christophe Jermann

Martin Joborn
Yahia Lebbah
Olivier Lhomme
Vassilis Liatsos
Tomas Liden
Enrico Malaguti
Claude Michel
Ioannis Mourtos
Bertrand Neveu

Stefano Novello
Fabrizio Riguzzi
Andrea Roli
Francesca Rossi
Christine Solnon
Andrea Tramontani
Willem-Jan van Hoeve
Neil Yorke-Smith
Alessandro Zanarini

Sponsors

Association of Constraint Programming
Bouygues, France
Carmen Systems, Sweden
Cork Constraint Computation Centre, Ireland
ILOG, S.A., France
Intelligent Information Systems Institute, Cornell, USA
Science Foundation Ireland, Ireland
University College Cork, Ireland

Table of Contents

Invited Talks

Opt Art
Robert Bosch . 1

Planning for Mixed Discrete Continuous Domains
Maria Fox . 2

Duality in Optimization and Constraint Satisfaction
J.N. Hooker . 3

Technical Papers

A Totally Unimodular Description of the Consistent Value Polytope for
Binary Constraint Programming

Ionuţ D. Aron, Daniel H. Leventhal, Meinolf Sellmann 16

Undirected Forest Constraints
Nicolas Beldiceanu, Irit Katriel, Xavier Lorca . 29

Allocation, Scheduling and Voltage Scaling on Energy Aware MPSoCs
Luca Benini, Davide Bertozzi, Alessio Guerri, Michela Milano 44

The Range Constraint: Algorithms and Implementation
Christian Bessiere, Emmanuel Hebrard, Brahim Hnich,
Zeynep Kiziltan, Toby Walsh . 59

On the Separability of Subproblems in Benders Decompositions
Marco Cadoli, Fabio Patrizi . 74

A Hybrid Column Generation and Constraint Programming Optimizer
for the Tail Assignment Problem

Sami Gabteni, Mattias Grönkvist . 89

The Power of Semidefinite Programming Relaxations for MAX-SAT
Carla P. Gomes, Willem-Jan van Hoeve, Lucian Leahu 104

Expected-Case Analysis for Delayed Filtering
Irit Katriel . 119

X Table of Contents

Plan B: Uncertainty/Time Trade-Offs for Linear and Integer
Programming

Claire Kenyon, Meinolf Sellmann . 126

Progressive Solutions: A Simple but Efficient Dominance Rule for
Practical RCPSP

András Kovács, József Váncza . 139

AND/OR Branch-and-Bound Search for Pure 0/1 Integer Linear
Programming Problems

Radu Marinescu, Rina Dechter . 152

The Timetable Constrained Distance Minimization Problem
Rasmus V. Rasmussen, Michael A. Trick . 167

Conflict-Directed A* Search for Soft Constraints
Martin Sachenbacher, Brian C. Williams . 182

Event-Driven Probabilistic Constraint Programming
S. Armagan Tarim, Brahim Hnich, Steven D. Prestwich 197

Online Stochastic Reservation Systems
Pascal Van Hentenryck, Russell Bent, Yannis Vergados 212

Traveling Tournament Scheduling: A Systematic Evaluation of
Simulated Annealling

Pascal Van Hentenryck, Yannis Vergados . 228

Open Constraints in a Closed World
Willem-Jan van Hoeve, Jean-Charles Régin . 244

Conditional Lexicographic Orders in Constraint Satisfaction Problems
Richard J. Wallace, Nic Wilson . 258

An Efficient Hybrid Strategy for Temporal Planning
Zhao Xing, Yixin Chen, Weixiong Zhang . 273

Improved Algorithm for the Soft Global Cardinality Constraint
Alessandro Zanarini, Michela Milano, Gilles Pesant 288

Author Index . 301

Opt Art

Robert Bosch

Oberlin College, Oberlin OH 44074, USA
DominoArtwork.com, Oberlin OH 44074, USA

Abstract. Optimization deals with finding the best way to complete
a task—creating a schedule for a tournament, matching professors with
courses, constructing an itinerary for a traveling salesman. It has been
applied successfully to such a great number of diverse disciplines that
one could argue that it can be put to good use in every imaginable field.
In this talk, we will showcase its amazing utility by describing some
applications in the area of art: portraits constructed out of complete sets
of dominoes (via integer programming) mosaics comprised of abstract
geometric tiles (via integer programming and various heuristics), and
continuous line drawings (via the “solution” of large-scale instances of
the traveling salesman problem).

Fig. 1. Examples of Opt Art

J.C. Beck and B.M. Smith (Eds.): CPAIOR 2006, LNCS 3990, p. 1, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Planning for Mixed Discrete Continuous
Domains

Maria Fox

Department of Computer Science and Information Systems
University of Strathclyde, U.K.

Abstract. Mixed discrete-continuous systems are hybrid systems that
exhibit both discrete changes of state, describable in terms of their logi-
cal and metric properties, and continuous numeric change describable in
terms of differential equations. Continuous change occurs within a state
as a consequence of one or more continuous processes being active in
that state, whilst discrete change results in state transitions. Such hy-
brid systems are well-understood in the formal verification and real-time
control communities.

Many real planning problems involve interaction with continuously
changing values that directly affect both the validity and efficiency of
plans. The problem of planning with continuous effects is harder than
planning under the assumption of discrete change. The planner must be
capable of reasoning about the evolution of continuous processes and
their interactions with discrete state changes. For this reason, the stan-
dard approach to handling complex continuous effects in planning is to
abstract them out of the domain model by lifting the representation to
a level where all change can be seen as discrete.

In this talk we discuss progress we have made towards planning in
mixed discrete-continuous domains. We begin by arguing that there are
problems of critical interest to potential users of planning technology that
cannot be adequately modelled under the assumption of discreteness. We
then discuss an approach to planning in these domains that relies on the
integration of a discrete planner with a continuous non-linear constraint
solver. We present some results taken from a range of planning domains
featuring continuous change. We discuss the future of this branch of
planning and relate our work to the AI and OR literature.

J.C. Beck and B.M. Smith (Eds.): CPAIOR 2006, LNCS 3990, p. 2, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Duality in Optimization and Constraint
Satisfaction

J.N. Hooker

Carnegie Mellon University, Pittsburgh, USA
john@hooker.tepper.cmu.edu

Abstract. We show that various duals that occur in optimization and
constraint satisfaction can be classified as inference duals, relaxation
duals, or both. We discuss linear programming, surrogate, Lagrangean,
superadditive, and constraint duals, as well as duals defined by resolu-
tion and filtering algorithms. Inference duals give rise to nogood-based
search methods and sensitivity analysis, while relaxation duals provide
bounds. This analysis shows that duals may be more closely related than
they appear, as are surrogate and Lagrangean duals. It also reveals com-
mon structure between solution methods, such as Benders decomposition
and Davis-Putnam-Loveland methods with clause learning. It provides a
framework for devising new duals and solution methods, such as gener-
alizations of mini-bucket elimination.

1 Two Kinds of Duals

Duality is perennial theme in optimization and constraint satisfaction. Well-
known optimization duals include the linear programming (LP), Lagrangean,
surrogate, and superadditive duals. The constraint satisfaction literature dis-
cusses constraint duals as well as search methods that are closely related to
duality.

These many duals can be viewed as falling into two classes: inference duals
and relaxation duals [12]. The two classes represent quite different concepts of
duality. This is perhaps not obvious at first because the traditional optimiza-
tion duals just mentioned can be interpreted as both inference and relaxation
duals.

Classifying duals as inference or relaxation duals reveals relationships that
might not otherwise be noticed. For instance, the surrogate and Lagrangean
duals do not seem closely related, but by viewing them as inference duals rather
than relaxation duals, one sees that they are identical except for a slight alter-
ation in the type of inference on which they are based.

A general analysis of duality can also unify some existing solution methods
and suggest new ones. Inference duals underlie a number of nogood-based search
methods and techniques for sensitivity analysis. For instance, Benders decompo-
sition and Davis-Putnam-Loveland methods with clause learning, which appear
unrelated, are nogood-based search methods that result from two particular
inference duals. Since any inference method defines an inference dual, one can

J.C. Beck and B.M. Smith (Eds.): CPAIOR 2006, LNCS 3990, pp. 3–15, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

4 J.N. Hooker

in principle devise a great variety inference duals and investigate the nogood-
based search methods that result. For example, filtering algorithms can be seen
as inference methods that define duals and give rise to new search methods, such
as decomposition methods for planning and scheduling.

Relaxation duals underlie a variety of solution methods that are based on
bounding the objective function. A relaxation dual solves a class of problem
relaxations that are parameterized by “dual variables,” in order to obtain a
tight bound on the objective function value. The LP, surrogate, Lagrangean,
and superadditive duals familiar to the optimization literature are relaxation
duals. A constraint dual is not precisely a relaxation dual but immediately gives
rise to one that generalizes mini-bucket elimination methods.

Inference and relaxation duals are precise expressions of two general problem-
solving strategies. Problems are often solved by a combination of search and
inference; that is, by searching over values of variables, which can yield a cer-
tificate of feasibility for the original (“primal”) problem, and by simultaneously
drawing inferences from constraints, which can yield a certificate of optimality
by solving the dual problem. A problem belongs to NP when the primal solu-
tion has polynomial size and to co-NP when the dual solution has polynomial
size.

Problems can also be solved by a combination of search and relaxation; that is,
by enumerating relaxations and solving each. The relaxation dual is one way of
doing this, since it searches over values of dual variables and solves the relaxation
corresponding to each value.

2 Inference Duality

An optimization problem can be written

min
x∈D

{f(x) | C} (1)

where f(x) is a real-valued function, C is a constraint set containing variables
x = (x1, . . . , xn), and D is the domain of x. A solution x̄ ∈ D is feasible when
it satisfies C and is optimal when f(x̄) ≤ f(x) for all feasible x. If there is no
feasible solution, the optimal value of (1) is ∞. If there is no lower bound on
f(x) for feasible x, the problem is unbounded and the optimal value is −∞.1 A
value z̄ is a feasible value of (1) if f(x) = z̄ for some feasible x, or if z̄ = ∞, or
if z̄ = −∞ and the problem is unbounded.

A constraint satisfaction problem can be viewed the problem of determining
whether the optimal value of

min
x∈D

{0 | C}

is 0 or ∞.

1 We exclude problems that have no optimal value, such as minx∈�{x | x > 0}.

Duality in Optimization and Constraint Satisfaction 5

2.1 The Inference Dual

The inference dual of (1) is the problem of finding the greatest lower bound on
f(x) that can be inferred from C within a given proof system. The inference dual
can be written

max
P∈P

{
v

∣∣∣∣ C P

� (f(x) ≥ v)
}

(2)

where C
P

� (f(x) ≥ v) indicates that proof P deduces f(x) ≥ v from C. The
domain of variable P is a family P of proofs. A pair (v̄, P̄) is a feasible solution

of (2) if P ∈ P and C
P̄

� (f(x) ≥ v̄), and it is optimal if v̄ ≥ v for all feasible
(v, P). If f(x) ≥ v cannot be derived from C for any finite v, the problem is
infeasible and has optimal value −∞. If for any v there is a feasible (v, P), the
problem is unbounded and has optimal value ∞. A value v̄ is a feasible value of
(2) if (v̄, P) is feasible for some P ∈ P , or if v̄ = −∞, or if v̄ = ∞ and (2) is
unbounded.

The original problem (1) is often called the primal problem. Any feasible value
of the dual problem is clearly a lower bound on any feasible value of the primal
problem, a property known as weak duality. The difference between the optimal
value of the primal and the optimal value of the dual is the duality gap.

The constraint set C implies f(x) ≥ v when f(x) ≥ v for all x ∈ D satisfying
C. The proof family P is complete if for any v such that C implies f(x) ≥ v, there
is a proof P ∈ P that deduces f(x) ≥ v from C. If P is complete, then there is
no duality gap. This property is known as strong duality.

Solution of the inference dual for a complete proof family P solves the opti-
mization problem (1), in the sense that a solution (v̄, P̄) of the dual provides a
proof that v̄ is the optimal value of (1). If P̄ always has polynomial size, then
the dual belongs to NP and the primal problem belongs to co-NP. Solution of
the inference dual for an incomplete proof family may not solve (1) but may be
useful nonetheless, for instance by providing nogoods and sensitivity analysis.

2.2 Nogood-Based Search

Nogoods are often used to exclude portions of the search space that have already
been explicitly or implicitly examined. The inference dual can provide a basis
for a nogood-based search.

Suppose we are solving problem (1) by searching over values of x in some
manner. The search might proceed by splitting domains, fixing variables, or by
adding constraints of some other sort. Let B be the set of constraints that have
been added so far in the search. The constraint set has thus been enlarged to
C ∪ B. The inference dual of this restricted problem is

max
P∈P

{
v

∣∣∣∣ C ∪ B P

� (f(x) ≥ v)
}

(3)

If (v̄, P̄) solves the dual, we identify a subset N of constraints that include all
the constraints actually used as premises in the proof P̄ . That is, P̄ remains a

6 J.N. Hooker

valid proof when C ∪ B is replaced by N . Then by weak duality we can infer the
nogood

N → (f(x) ≥ v̄)

This nogood is a valid constraint and can be added to C, which may accelerate
the search. For instance, if N contains only a few variables, then restricting or
fixing only a few variables may violate the nogood, allowing us to avoid a dead
end earlier in the search process.

An important special case of this idea identifies a subset B̄ ⊂ B of the search
constraints that preserves the validity of P̄ . That is, P̄ remains a proof when
C ∪ B̄ replaces C ∪B. Then we can use the nogood

B̄ → (f(x) ≥ v̄)

as a side constraint that guides the search, rather than adding it to C. Suppose
for example that the search proceeds by splitting domains; that is, by adding
bounds of the form Lj ≤ xj ≤ Uj to B. Suppose further than at some point in
the search we obtain a solution (v̄, P̄) of the inference dual and find that the
only bounds used as premises in P̄ are Lj ≤ xj and xk ≤ Uk. Then we can write
the nogood

(Lj ≤ xj , xk ≤ Uk)→ (f(x) ≥ v̄)

To obtain a solution value better than v̄, we must avoid all future branches in
which xj < Lj and xk > Uk.

We can equally well apply this technique when we branch by fixing a variable
xj to each of the values in its domain. Suppose that at some point in the search
the variables in xF have been fixed to values x̄F , and the variables in xU remain
unfixed, where x = (xF , xU). Thus B = {xF = x̄F }. We obtain a solution (v̄, P̄)
of the inference dual and identify a subset xJ of variables in xF such that P̄ is
still valid when xF = x̄F is replaced by xJ = x̄J . The resulting nogood

(xJ = x̄J) → (f(x) ≥ v̄)

tells us that if we want a solution value better than v̄, the remainder of the
search should exclude solutions x in which xJ = x̄J .

2.3 Sensitivity Analysis

Sensitivity analysis determines the sensitivity of the optimal value of (1) to
perturbations in the problem data. Suppose that we have solved (1) and found
its optimal value to be z∗. A simple form of sensitivity analysis relies on an
optimal solution (v̄, P̄) of the inference dual [11]. Let C̄ be a subset of C for which
P̄ remains a valid proof of f(x) ≥ v̄. Then changing or removing the premises
in C \ C̄ has no effect on the bound and therfore cannot reduce the optimal value
of (1) below v̄. If there is no duality gap, then z∗ = v̄, and changing or removing
these constraints has no effect on the optimal value of (1).

A sharper analysis can often be obtained by observing how much the individ-
ual constraints in C can be altered without invalidating the proof P̄ . One can

Duality in Optimization and Constraint Satisfaction 7

also observe whether a proof having the same form as P̄ would deduce f(x) ≥ v′

for some v′ < v when the constraints in C are altered in certain ways. Both of
these strategies have long been used in linear programming, for example. They
can be applied to integer and mixed integer programming as well [6].

From here out we focus on nogood-based search rather than sensitivity
analysis.

2.4 Linear Programming Dual

A linear programming (LP) problem has the form

min
x≥0

{cx |Ax ≥ b} (4)

The inference dual is

max
P∈P

{
v

∣∣∣∣Ax ≥ b
P

� (cx ≥ v)
}

(5)

The proofs in family P are based on nonnegative linear combination and domi-
nation. Let a surrogate of a system Ax ≥ b be any linear combination uAx ≥ ub,
where u ≥ 0. An inequality ax ≥ α dominates bx ≥ β when a ≤ b and α ≥ β.
There is a proof P ∈ P of f(x) ≥ v when some surrogate of Ax ≥ b dominates
f(x) ≥ v. The proof P is encoded by the vector u of dual multipliers. Due to
the classical Farkas lemma, the proof family P is complete, which means that
strong duality holds.

The inference dual (5) of (4) is essentially the same as the classical LP dual
of (4). A solution (v, P) is feasible in the dual problem (5) when some surrogate
uAx ≥ ub dominates cx ≥ v, which is to say uAx ≤ c and ub ≥ v. So when
the dual is bounded (i.e., the primal is feasible), it can be seen as maximizing v
subject to uAx ≤ c, ub ≥ v, and u ≥ 0, or equivalently

max
u≥0

{ub |uA ≤ c} (6)

which is the classical LP dual. Strong duality holds for the classical dual unless
both the primal and dual are infeasible.

When the LP dual is used in nogood-based search, the well-known method of
Benders decomposition results [2]. It is applied to problems that become linear
when certain variables xF are fixed:

min
xU≥0

{f(xF) + cxU | g(xF) + AxU ≥ b} (7)

Suppose that when xF is fixed to x̄F , (7) has optimal value z̄ and optimal dual
solution ū. By strong duality v̄ − f(x̄F) = ū(b− g(x̄F)), which means that

f(xF) + ū(b− g(xF)) (8)

is the largest possible lower bound on the optimal value of (7) when xF = x̄F .
But since ū remains dual feasible when x̄F in (7) is replaced by any xF , weak

8 J.N. Hooker

duality implies that (8) remains a valid lower bound for any xF . This yields the
nogood

z ≥ f(xF) + ū(b − g(xF)) (9)

where z represents the objective function of (7). This nogood is known as a
Benders cut. If the dual of (7) is unbounded, there is a direction or ray ū along
which its solution value can increase indefinitely. In this case the Benders cut
(9) simplifies to ū(b − g(xF)) ≤ 0.

In the Benders algorithm, the set xF of fixed variables is static. The algorithm
searches over values of xF by solving a master problem in each iteration of the
search. The master problem minimizes z subject to the Benders cuts obtained
in previous iterations. The optimal solution of the master problem becomes the
next x̄F . The search terminates when the optimal value of the master problem
is equal to the previous z̄. The master problem can be solved by any desired
method, such as branch and bound if it is mixed integer programming problem.

2.5 Surrogate Dual

The surrogate dual results when one writes the inference dual of an inequality-
constrained problem, again using nonnegative linear combination and domina-
tion as an inference method. When the inequalities and objective function are
linear, the surrogate dual becomes the linear programming dual. When a slightly
stronger form of domination is used, we obtain the Lagrangean dual, as is shown
in the next section.

The surrogate dual [10] is defined for a problem of the form

min
x∈D

{f(x) | g(x) ≤ 0} (10)

where g(x) is a vector of functions. A surrogate of g(x) ≤ 0 is any linear combi-
nation ug(x) ≤ 0 with u ≥ 0. Let P ∈ P deduce f(x) ≥ v from g(x) ≤ 0 when
some surrogate ug(x) ≤ 0 dominates f(x) ≥ v. We will use the weakest possible
form of domination: ug(x) ≤ 0 dominates f(x) ≥ v whenever the former implies
the latter. This family P of proofs is generally incomplete.

Under this definition of P , the inference dual of (10) finds the largest v such
that ug(x) ≤ 0 implies f(x) ≥ v for some u ≥ 0. The inference dual therefore
becomes the surrogate dual

max
u≥0

{
min
x∈D

{f(x) | ug(x) ≤ 0}
}

(11)

A difficulty with the surrogate dual is that it is generally hard to solve. Yet if
the problem (10) has special structure that allows easy solution of the dual, the
resulting nogoods could be used in a search algorithm.

2.6 Lagrangean Dual

Like the surrogate dual, the Lagrangean dual is defined for inequality-constrained
problems of the form (10). Again the proofs in P consist of nonnegative linear
combination and domination, but this time a stronger form of domination is used.

Duality in Optimization and Constraint Satisfaction 9

In the surrogate dual, ug(x) ≤ 0 dominates f(x) ≥ v, which can be written
v − f(x) ≤ 0, when ug(x) ≤ 0 implies v − f(x) ≤ 0. In the Lagrangean dual,
ug(x) ≤ 0 dominates v − f(x) ≤ 0 when ug(x) ≥ v − f(x) for all x ∈ D.

Under this definition of P , the inference dual of (10) finds the largest v such
that ug(x) ≥ v − f(x) for some u ≥ 0. Since ug(x) ≥ v − f(x) can be written
f(x) + ug(x) ≥ v, the inference dual becomes the Lagrangean dual

max
u≥0

{
min
x∈D

{f(x) + ug(x)}
}

(12)

The Lagrangean dual has the nice property that the optimal value θ(u) of the
minimization problem in (12) is a concave function of u. This means that θ(u)
can be maximized by a hill-climbing search. Subgradient optimization techniques
are often used for this purpose [1, 19].

When the inequalities g(x) ≤ 0 and the objective function f(x) are linear,
both the surrogate and Lagrangean duals become the linear programming dual,
since the two types of domination collapse into implication.

Nogoods can be obtained from the Lagrangean dual much as from the LP dual.
If at some point in the search xF is fixed to x̄F and ū solves the Lagrangean
dual problem

max
u≥0

{
min
x∈D

{f(x̄F , xU) + ug(x̄F , xU)}
}

(13)

then we have the nogood

z ≥ f(x̄F , xU) + ūg(x̄F , xU) (14)

Nogoods of this sort could be generated in a wide variety of search meth-
ods, but they have apparently been used only in the special case of generalized
Benders decomposition [9]. This method can be applied when there is a set xF

of variables for which (13) has no duality gap when xF is fixed. The set xF is
therefore static, and xF is fixed by solving a master problem that contains the
Benders cuts (14). In practice the classical method obtains the multipliers ū by
solving

min
x∈D

{f(x̄F , xU) | g(x̄F , xU) ≤ 0}

as a nonlinear programming problem and letting ū be the Lagrange multipli-
ers that correspond to the optimal solution. However, the multipliers could be
obtained by solving the Lagrangean dual directly. as a nonlinear programming
problem and letting ū be the Lagrange multipliers that correspond to the optimal
solution. However, the multipliers could be obtained by solving the Lagrangean
dual directly.

2.7 Superadditive/Subadditive Dual

The subadditive dual [17] has been studied in connection with integer program-
ming problems, which can be written

min
x∈D

{cx | Ax ≥ b} (15)

10 J.N. Hooker

where D is the set of n-tuples of nonnegative integers. (The superadditive dual
is used when one maximizes cx subject to Ax ≤ b.) The subadditive dual can be
viewed as an inference dual, using a form of inference that generalizes inference
by nonnegative linear combination and domination. Let a real-valued function
h(·) be subadditive when h(d + d′) ≤ h(d) + h(d′) for all d, d′. We will say that a
proof in P derives cx ≥ v from Ax ≥ b when h(Ax) ≥ h(b) dominates cx ≥ v for
some nondecreasing, subadditive function h, and that h(Ax) ≥ h(b) dominates
cx ≥ v when h(b) ≥ v and h(Ax) ≤ cx for all x ∈ D. This inference method can
be shown to be complete for linear integer inequalities, based on cutting plane
theory developed in [3, 4, 16, 20].

When P is defined in this way, the inference dual (2) becomes

max
h∈H

{g(b) | g(Ax) ≤ cx, all x ∈ D}

where H is the set of subadditive, nondecreasing functions. This is the subaddi-
tive dual of (15). Since P is complete, it is a strong dual.

The subadditive dual has been used primarily for sensitivity analysis in integer
programming (e.g. [5]). It has apparently not been used in the context of nogood-
based search. Since the form of domination used to define P is that used in the
surrogate dual, one could obtain a Lagrangean analog of the subadditive dual
by substituting the form of domination used in the Lagrangean dual.

2.8 Duals for Propositional Satisfiability

Propositional satisfiability (SAT) problems are often solved by a Davis-Putnam-
Loveland (DPL) method with clause learning (e.g., [18]). These methods can be
seen as nogood-based search methods derived from an inference dual.

The SAT problem can be written

min
x∈{0,1}n

{0 | C} (16)

where C is a set of logical clauses. To formulate an inference dual, let P consist
of unit resolution proofs (i.e., repeated elimination of variables that occur in unit
clauses until no unit clauses remain). The dual problem (2) has optimal value ∞
when unit resolution proves unsatisfiability by deriving the empty clause. Since
unit resolution is not a complete inference method, there may be a duality gap:
the dual may have optimal value zero when the primal is unsatisfiable.

Now suppose we solve (16) by branching on the propositional variables xj . At
each node of the search tree, certain variables xF are fixed to x̄F . Let U contain
the unit clause xj when x̄j = 1 and ¬xj when x̄j = 0. We now solve the inference
dual of (16) with the clause set C ∪ U . If the optimal value is ∞, we generate a
nogood and backtrack; otherwise we continue to branch. To generate the nogood,
we identify a subset Ū of U for which some portion of the unit resolution proof
obtains the empty clause from C ∪ Ū . Then∨

xj∈Ū
¬xj ∨

∨
¬xj∈Ū

xj

Duality in Optimization and Constraint Satisfaction 11

is a nogood or “learned” clause that can be added to C before backtracking. This
results in a basic DPL algorithm with clause learning.

Similar algorithms can be developed for other types of resolution, including
full resolution, which could be terminated if it fails to derive the empty clause
in a fixed amount of time.

2.9 Domain Filtering Duals

A domain filtering algorithm can be viewed as an inference method and can
therefore define an inference dual. For concreteness suppose that the domain
of each variable is an interval [Lj , Uj], and consider a filtering algorithm that
tightens lower and upper bounds. The inference dual is most straightforward
when we assume the objective function f(x) is monotone nondecreasing. In this
case we can let P contain all possible proofs consisting of an application of the
filtering algorithm to obtain reduced bounds [Lj, Uj], followed by an inference
that f(x) ≥ f(L1, . . . , L2). This defines an inference dual (2).

If the filtering method achieves bounds consistency, f(L1, . . . , Ln) is the op-
timal value of (1), there is no duality gap, and the problem is solved.

If bounds consistency is not achieved, the dual can be useful in nogood-based
search. Suppose we search by domain splitting, and let B contain the bounds
currently imposed by the branching process. We can examine the filtering process
to identify a subset B̄ ⊂ B of bounds that are actually used to obtain the lower
bounds Lj that affect the value of f(L1, . . . , Ln). The resulting nogood

B̄ → (f(x) ≥ f(L1, . . . , Ln))

can be used as described earlier.
A related idea has proved very useful in planning and scheduling [12, 15, 13].

Let each variable xj in xF indicate which facility will process job j. The jobs
assigned to a facility i must be scheduled subject to time windows; the variables
in xU indicate the start times of the jobs. The processing times of job j may
be different on the different facilities. For definiteness, suppose the objective
f(x) is to minimize the latest completion time over all the jobs (i.e., minimize
makespan). We solve each scheduling problem with a constraint programming
method that combines branching with edge finding. This can be viewed as a
complete inference method that defines an inference dual with no duality gap.
Let v̄i be the minimum makespan obtained on facility i for a given assignment
x̄F . By examining the edge finding and branching process, we identify a subset
xJ of job assignments for which the minimum makespan on each facility i is still
v̄i. Then we have the nogood

(xF = x̄F)→
(
f(x) ≥ max

i
{v̄i}

)
Nogoods of this sort are accumulated in a master problem that is solved to
obtain the next x̄F , thus yielding a generalized form of Benders decomposition
[14]. The assignments in xJ are identified by noting which jobs play a role in the
edge finding at each node of the search tree; details are provided in [13].

12 J.N. Hooker

3 Relaxation Duality

A parameterized relaxation of the optimization problem (1) can be written

min
x∈D

{f(x, u) | C(u)} (17)

where u ∈ U is a vector of dual variables. The constraint set C(u) is a relaxation
of C, in the sense that every x ∈ D that satisfies C satisfies C(u). The objective
function f(x, u) is a lower bound on f(x) for all x feasible in (1); that is, f(x, u) ≤
f(x) for all x ∈ D satisfying C.

Clearly the optimal value of the relaxation (17) is a lower bound on the optimal
value of (1). The relaxation dual of (1) is the problem of finding the parameter
u that yields the tightest bound [12]:

max
u∈U

{
min
x∈D

{f(x, u) | C(x, u)}
}

(18)

Let z∗ be the optimal value of (1), and θ(u) be the optimal value of the min-
imization problem in (18). Since θ(u) is a lower bound on z∗ for every u ∈ U ,
we have weak duality: the optimal value v̄ of the relaxation dual (18) is a lower
bound on z∗.

The lower bound v̄ can abbreviate the search, as for example in a branch-
and-relax (branch-and-bound) scheme. The parameterized relaxation is chosen
so that θ(u) is easy to compute. The dual problem of maximizing θ(u) over
u ∈ U may be solved by some kind of search procedure, such as subgradient
optimization in the case of Lagrangean relaxation. The maximization problem
need not be solved to optimality, since any θ(u) is a valid lower bound.

3.1 Equivalence to an Inference Dual

Although inference and relaxation duality are very different concepts, a relax-
ation dual is always formally equivalent to an inference dual, provided there
exists a solution algorithm for the parameterized relaxation. There does not
seem to be a natural converse for this proposition.

To formulate the relaxation dual (18) as an inference dual, suppose that an
algorithm P (u) is available for computing θ(u) for any given u ∈ U . We can
regard P (u) as a proof that f(x) ≥ θ(u) and let P = {P (u) | u ∈ U}. The
resulting inference dual (2) is maxu∈U{θ(u)}, which is identical to the relaxation
dual (18).

3.2 Linear Programming and Surrogate Duals

A simple parameterized relaxation for the inequality-constrained problem (10)
uses a surrogate relaxation of the constraints but leaves the objective function
unchanged. The relaxation therefore minimizes f(x) subject to ug(x) ≤ 0, where
u ≥ 0. The resulting relaxation dual is the surrogate dual (11) of (1). Since the
surrogate dual of an LP problem is the LP dual, the relaxation dual of an LP
problem is likewise the LP dual.

Duality in Optimization and Constraint Satisfaction 13

3.3 Lagrangean Dual

Another parameterized relaxation for (10) removes the constraints entirely but
“dualizes” them in the objective function. The parameterized relaxation mini-
mizes f(u, x) = f(x) + ug(x) subject to x ∈ D. The function f(x, u) is a lower
bound on f(x) for all feasible x since ug(x) ≤ 0 when u ≥ 0 and g(x) ≤ 0. The
resulting relaxation dual is precisely the Lagrangean dual (13).

The close connection between surrogate and Lagrangean duals, conceived as
inference duals, is much less obvious when they are reinterpreted as relaxation
duals.

3.4 Superadditive/Subadditive Dual

The subadditive dual discussed earlier can be viewed as a relaxation dual that
generalizes the surrogate dual. We can give the integer programming problem
(15) a relaxation parameterized by subadditive, nondecreasing functions h, in
which we minimize cx subject to h(Ax) ≥ h(b) and x ∈ D. (In the surrogate
dual, the function h is multiplication by a vector u of nonnegative multipliers.)
This yields the relaxation dual

max
h∈H

{
min
x∈D

{cx | h(Ax) ≥ h(b)}
}

which is equivalent to the subadditive dual.

3.5 Constraint Dual

The constraint dual is related to a relaxation dual. More precisely, the constraint
dual can be given a parameterized relaxation that yields a relaxation dual. A
special case of the relaxation has been applied in mini-bucket elimination and
perhaps elsewhere.

It is convenient to let xJ denote the tuple of variables xj for j ∈ J . Given
a constraint set C, the constraint dual of C is formed by “standardizing apart”
variables that occur in different constraints and then equating these variables.
So if xj1 , . . . , xjni

are the variables in constraint Ci ∈ C, let yi = (yi
1, . . . , y

i
ni

)
be a renaming of these variables. Also let Jik be the index set of variables that
occur in both Ci and Ck. The constraint dual associates the dual variable yi

with each constraint Ci, where the domain Di of yi is the set of tuples that
satisfy Ci. The dual constraint set consists of the binary constraints yi

Jik
= yk

Jik

for each pair i, k.
The constraint dual can be relaxed by replacing each yi

Jik
= yk

Jik
with yi

J′
ik

= yk
J′

ik

where J ′
ik ⊂ Jik. It is helpful to think about the constraint graph G correspond-

ing to the dual, which contains a vertex for each variable yi
j and an edge between

two variables when they occur in the same tuple yi or in the same equality con-
straint. Removing equality constraints deletes the corresponding edges from G,
resulting in a sparser graph G(E), where E is the set of edges corresponding to
the equality constraints that remain. The relaxation is therefore parameterized

14 J.N. Hooker

by the subset E of edges that defines G(E). This relaxation also serves as a para-
meterized relaxation C(E) of the original constraint set C. Thus if the constraint
satisfaction problem is written

min
yi∈Di, all i

{0 | C} (19)

then we can write the relaxation dual

max
E∈E

{0 | C(E)}

where E is some (generally incomplete) family of subsets E. To solve the dual,
we check the feasibility of C(E) for each E ∈ E . The family E normally would
be chosen so G(E) has small induced width for E ∈ E , since in this case C(E) is
easier to solve by nonserial dynamic programming.

One way to construct E is to define sets of “mini-buckets” [7, 8]. We consider
various partitions of the constraints in C, where the kth partition defines disjoint
subsets or mini-buckets Ck1, . . . , Ckmk

. For each k and each t ∈ {1, . . . , mk} we
let Ekt contain the edges corresponding to equality constraints between variables
occurring in Ckt, so that C(Ekt) = Ckt. Now E is the family of all sets Ekt. Thus,
rather than solve the relaxations Ck1, . . . , Ckmk

corresponding to a single set
of mini-buckets as in [7], we solve relaxations Ckt for all Ekt. Other relaxation
duals based on reducing the induced width are discussed in [12]. All of these
approaches can be applied to problems (19) with a general objective function
f(x), as is done in mini-bucket elimination schemes.

References

1. F. Barahona and R. Anbil. The volume algorithm: Producing primal solutions
with a subgradient algorithm. Mathematical Programming, 87:385–399, 2000.

2. J. F. Benders. Partitioning procedures for solving mixed-variables programming
problems. Numerische Mathematik, 4:238–252, 1962.

3. C. E. Blair and R. G. Jeroslow. The value function of a mixed integer program.
Mathematical Programming, 23:237–273, 1982.

4. V. Chvátal. Edmonds polytopes and a hierarchy of combinatorial problems. Dis-
crete Mathematics, 4:305–337, 1973.

5. W. Cook, A. M. H. Gerards, A. Schrijver, and E. Tardos. Sensitivity results in
integer programming. Mathematical Programming, 34:251–264, 1986.

6. M. Dawande and J. N. Hooker. Inference-based sensitivity analysis for mixed
integer/linear programming. Operations Research, 48:623–634, 2000.

7. R. Dechter. Mini-buckets: A general scheme of generating approximations in au-
tomated reasoning. In Proceedings of the 15th International Joint Conference on
Artificial Intelligence (IJCAI 97), pages 1297–1302, 1997.

8. R. Dechter and I. Rish. Mini-buckets: A general scheme for bounded inference.
Journal of the ACM, 50:107–153, 2003.

9. A. M. Geoffrion. Generalized benders decomposition. Journal of Optimization
Theory and Applications, 10:237–260, 1972.

Duality in Optimization and Constraint Satisfaction 15

10. F. Glover. Surrogate constraint duality in mathematical programming. Operations
Research, 23:434–451, 1975.

11. J. N. Hooker. Inference duality as a basis for sensitivity analysis. Constraints,
4:104–112, 1999.

12. J. N. Hooker. Logic-Based Methods for Optimization: Combining Optimization and
Constraint Satisfaction. Wiley, New York, 2000.

13. J. N. Hooker. A hybrid method for planning and scheduling. Constraints, 10:385–
401, 2005.

14. J. N. Hooker and G. Ottosson. Logic-based Benders decomposition. Mathematical
Programming, 96:33–60, 2003.

15. V. Jain and I. E. Grossmann. Algorithms for hybrid MILP/CP models for a class
of optimization problems. INFORMS Journal on Computing, 13:258–276, 2001.

16. R. G. Jeroslow. Cutting plane theory: Algebraic methods. Discrete Mathematics,
23:121–150, 1978.

17. E. L. Johnson. Cyclic groups, cutting planes and shortest paths. In T. C. Hu and
S. Robinson, editors, Mathematical Programming, pages 185–211. Academic Press,
1973.

18. M. Moskewicz, C. F. Madigan, Ying Zhao, Lintao Zhang, and S. Malik. Chaff:
Engineering an efficient SAT solver. In Proceedings of the 38th Design Automation
Conference (DAC01), pages 530–535, 2001.

19. A. Nedic and D. P. Bertsekas. Incremental subgradient methods for nondifferen-
tiable optimization. SIAM Journal on Optimization, 12:109–138, 2001.

20. L. A. Wolsey. The b-hull of an integer program. Discrete Applied Mathematics,
3:193–201, 1981.

A Totally Unimodular Description of
the Consistent Value Polytope

for Binary Constraint Programming

Ionuţ D. Aron, Daniel H. Leventhal, and Meinolf Sellmann

Brown University, Department of Computer Science
115 Waterman Street, Providence, RI 02912, U.S.A.
{ia, dleventh, sello}@cs.brown.edu

Abstract. We present a theoretical study on the idea of using mathematical pro-
gramming relaxations for filtering binary constraint satisfaction problems. We in-
troduce the consistent value polytope and give a linear programming description
that is provably tighter than a recently studied formulation. We then provide an
experimental study that shows that, despite the theoretical progress, in practice
filtering based on mathematical programming relaxations continues to perform
worse than standard arc-consistency algorithms for binary constraint satisfaction
problems.

Keywords: Cost-based filtering, hybrid methods, mathematical programming.

1 Introduction

As a result of the growing interaction between the mathematical programming and con-
straint programming communities, it has now become standard to use mathematical
programming tools to derive information useful both for domain filtering and for guid-
ing the search. On real-world constraint satisfaction problems (CSPs), and especially
optimization problems, hybrid methods have been shown to outperform pure solution
approaches. As a result of a decade long research, a rich tool-box for hybridization
is now available: from the idea of optimization constraints [7, 14, 17] and associated
notions of relaxed or approximated consistency [5, 19], reduced-cost filtering [16], to
sophisticated problem-dependent techniques based on Bender’s decomposition [9], La-
grangian decomposition [6, 18, 20, 21], or column generation [4, 11]. Also, specialized
hybrid approaches have been developed for special problems like computing orthogonal
Latin squares [2] or to solve the social golfer problem [22].

Despite these successes, in the past hybridization on binary constraint satisfaction
problems (BCSPs) has been nothing less than disappointing. Many approaches that
looked very promising on paper have failed to give real benefits. While this is common
knowledge in the research community and has lead to the common belief that math-
ematical programming techniques only pay off when a problem contains constraints
that contain large numbers of variables where constraint programming (CP) propaga-
tion is weak, we are not aware of any paper that would state such a negative result.
Consequently, we frequently see that, despite prior experience that developing hybrid

J.C. Beck and B.M. Smith (Eds.): CPAIOR 2006, LNCS 3990, pp. 16–28, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

A Totally Unimodular Description of the Consistent Value Polytope 17

methods for BCSPs is not a promising research avenue, the undoubtedly tempting idea
lures researchers into developing new hybrid filtering approaches for BCSPs.

A recent approach regarding hybrid filtering for BCSPs is presented in [12]. The
authors of that paper suggest to use a relaxation of an equivalent integer programming
(IP) formulation of a given BCSP for domain filtering. Two ideas were novel in that
contribution: first, the idea to use a Lagrangian relaxation instead of the commonly
used linear relaxations for filtering. And second, to use a formulation that specifically
targets individual assignments.

We were intrigued by those two ideas and decided to investigate them further. We
address two questions: First, can the Lagrangian relaxation suggested in [12] yield to
more effective filtering than standard linear programming (LP) relaxations? And sec-
ond, does it pay off to focus on individual assignments for filtering in a tree search
where what matters is the trade-off between filtering effectiveness and filtering time?

In order to answer those two questions, we start out in Section 2 by discussing dif-
ferent models for BCSPs and how they can be translated into integer programs. Based
on those models, in Section 3, we develop an LP relaxation that is provably tighter than
the Lagrangian relaxation developed in [12]. While offering the prospect of more ef-
fective filtering, that LP relaxation can also be computed much faster than Lagrangian
relaxations when using standard LP software like Cplex.

In Section 4, we then present numerical results on various CSP and BCSP benchmark
classes. The experiments show that, once again, mathematical programming techniques
are inferior to standard arc-consistency on feasibility problems.

2 CSP and IP Models

2.1 Positive and Negative Representations of BCSPs

A binary constraint satisfaction problem (BCSP) consists of a finite set of variables
V = {V1, . . . , Vn}, a finite domain Di = {vi

1, v
i
2, . . . , v

i
li
} for each variable Vi, and

a finite collection of constraints C = {C1, . . . , Cm}. Each constraint C is a constraint
over two variables Vars(C) ⊆ V . Every constraint C can be viewed as a subset of the
Cartesian product of the domains of the variables in Vars(C) (i.e. the set of tuples that
satisfy the constraint). Alternatively, C could also be viewed as the complement of this
product (i.e. the set of tuples that do not satisfy the constraint, which are commonly
referred to as no-goods). As we will see later, although equivalent, these two views of
constraints lead to very different linear models.

Let yiu ∈ {true, false} represent the truth value of assignment Vi = u (i.e. yiu =
true iff Vi = u). The two representations of Cij , as described above, become:

1. Positive Representation: Tuples that satisfy Cij .

(PCSP) Cij ::= Rij = {(u, v) ∈ Di ×Dj : (u, v) satisfies Cij}

For any value u ∈ Di, the set of tuples {(u, v) : (u, v) ∈ Rij} can be seen as the
logical implication:

yiu →
∨

v:(u,v)∈Rij

yjv (1)

18 I.D. Aron, D.H. Leventhal, and M. Sellmann

This states that once we have assigned value u to variable Vi, we must also as-
sign (at least) one of the values v to variable Vj . For this reason, we will call this
representation the positive representation of BCSPs.

2. Negative Representation: Tuples that violate Cij .

(DCSP) Cij ::= Rij = {(u, v) ∈ Di ×Dj : (u, v) violates Cij}

In this case, for any value u ∈ Di, the set of tuples {(u, v) : (u, v) ∈ Rij} can be
seen as the logical implication:

yiu →
∧

v:(u,v)∈Rij

¬yjv (2)

This states that once we have assigned value u to variable Vi, we cannot assign
to variable Vj any of the values v. We therefore refer to this representation as the
negative representation of BCSPs.

Note that, when written as logical implications, there is nothing in the positive repre-
sentation that prevents us from assigning multiple values to a variable (i.e. yiu = yiv =
true for u �= v), just as there is nothing in the negative representation that says that we
must assign values to variables (i.e. yiu = true for some u ∈ Di). However, once we
enforce the implicit constraints that each variable Vi must take one and only one value
u ∈ Di, it is not hard to see that:

Lemma 1. In a BCSP, positive and negative constraint representations are equivalent.

Proof. Let s(PCSP) = (yiu | 1 ≤ i ≤ n, u ∈ Di) denote a solution of the positive
BCSP. If yiu = true in s(PCSP), then by (1) for any j there exists a value v such that
(u, v) ∈ Rij and yjv = true. Since Vj can only take one value, it means that for any
other value vk ∈ Dj , yjvk

= false. In particular, for all vk such that (u, vk) /∈ Rij , we
have yjvk

= false, which means that (2) also holds. If on the other hand yiu = false
in s(PCSP) then obviously (2) holds as well. Thus, s(PCSP) is also a solution for the
negative BCSP. Conversely, let s(DCSP) = (yiu | 1 ≤ i ≤ n, u ∈ Di) denote a
solution of the negative BCSP. If yiu = true in s(DCSP), then for any j, by (2), there
exists no value v such that (u, v) ∈ Rij and yjv = true. Since Vj must take at least
one value, it means that there exists a value vk ∈ Dj , with (u, vk) /∈ Rij such that
yjvk

= true. In other words, (1) also holds. If yiu = false in s(DCSP), then (1) holds
as well. Thus, s(DCSP) is also a solution for the positive BCSP. �

2.2 Linear Models of BCSPs

Our discussion of the two representations for BCSPs in Section 2.1, and in particular the
formulation of constraints as logical implications provides the basis to model BCSPs
as 0-1 integer linear programs: A logical formula written in conjunctive normal form
(CNF) can be easily modeled as a set of inequalities involving 0-1 variables. Using the
fact that a → b ≡ ¬a∨ b, and that a∨ (b∧ c) ≡ (a∨ b)∧ (a∨ c), we can write (1) and
(2) in CNF in the following way:

A Totally Unimodular Description of the Consistent Value Polytope 19

yiu →
v:(u,v)∈Rij

yjv ≡ ¬yiu

v:(u,v)∈Rij

yjv (3)

and

yiu →
v:(u,v)∈Rij

¬yjv ≡ ¬yiu

v:(u,v)∈Rij

¬yjv ≡
v:(u,v)∈Rij

(¬yiu ∨ ¬yjv) (4)

Let xiu ∈ {0, 1}, xiu = 1 iff yiu = true. This allows us to rewrite (3) and (4) as
linear inequalities in terms of x:

(1 − xiu) +
v:(u,v)∈Rij

xjv ≥ 1 (5)

and
(1 − xiu) + (1 − xjv) ≥ 1, ∀v : (u, v) ∈ Rij (6)

Based on these formula, we are now ready to give the two IP formulations resulting
from the positive and negative representations of a BCSP.

Positive IP model (PIP)

max 0

s.t. xiu ≤
v:(u,v)∈Rij

xjv ∀i, ∀j, ∀u : (u, v) ∈ Rij (7)

u∈Di

xiu = 1 ∀i ∈ {1, . . . , n} (8)

xiu ∈ {0, 1} ∀i ∈ {1, . . . , n}, ∀u ∈ Di (9)

Negative IP model (NIP)

max 0

s.t. xiu + xjv ≤ 1 ∀i, ∀j, ∀(u, v) ∈ Rij (10)

u∈Di

xiu = 1 ∀i ∈ {1, . . . , n} (11)

xiu ∈ {0, 1} ∀i ∈ {1, . . . , n}, ∀u ∈ Di (12)

The first set of constraints, (7) and (10) encode the constraints of the positive and neg-
ative BCSP and are equivalent to the inequalities (5) and (6), respectively. Constraints
(8) and (11) state that each variable Vi must take one and only one value from its cor-
responding domain Di. They are the same as the implicit constraints we discussed in
Section 2.1 and recall that they are the ones that ensure the equivalence of the two mod-
els. The last set of constraints (9) and (12) forbid solutions in which xiu take fractional
values. These are of course the constraints that make solving both these IPs difficult

20 I.D. Aron, D.H. Leventhal, and M. Sellmann

and are commonly the ones that are relaxed first to solve such problems in operations
research. The purpose of the following study is to show that the linear relaxation de-
rived from the positive formulation is strictly stronger than the weakened Lagrangian
relaxation of the negative formulation which is used in [12].

3 Integer Programming Relaxations and Filtering

Based on the positive and negative IP models developed in the previous section, we
now investigate how they could be used for filtering. In [12] the research is based on
the (NIP) model. Two relaxation steps are taken: First, constraints (10) are aggregated
and thereby weakened since new fractional solutions are introduced. This was done
because the authors felt that the number of constraints in (10) were too many. Then, for
a given potential assignment Vp = q, a Lagrangian relaxation is considered where all
constraints in (10) that do not affect xpq are softened by penalizing a violation rather
than enforcing the constraints.

Without the first aggregation step, let us study the polytope of feasible solutions to
the Lagrangian subproblem that evolves when we relax all constraints in (10) that do not
affect xpq . We call the LP relaxation of the following IP the consistent value polytope.
Since it can be viewed as derived from the negative formulation, we denote it with
(CV −N):

(CV −N) : (1)
∑

k:vk∈Di
xik = 1 ∀ 1 ≤ i ≤ n

(2) xpq + xjl ≤ 1 ∀ 1 ≤ j ≤ n, l ∈ Dj , (q, l) ∈ Rpj

(3) x ∈ {0, 1}n

In [12], a large number of aggregated versions of these IPs with changing objectives
need to be solved in order to compute the Lagrangian relaxation value. In (CV-N) we
did not aggregate any constraints, therefore we achieve a tighter relaxation. What is
even more important, there exists a reformulation of (CV-N) that is totally unimodular
which allows us to solve these IPs by means of linear programming. Consider

(CV − P) : (1)
∑

k:vk∈Di
xik = 1 ∀ 1 ≤ i ≤ n

(2)
∑

l:(q,l)∈Rpj
xjl ≥ xpq ∀ 1 ≤ j ≤ n, Rpj ∈ C

(3) x ∈ {0, 1}n

Of course, the reformulation of (CV-N) above was motivated by what we called the
positive formulation of BCSPs earlier. Formally, we can show:

Lemma 2. The integer programs (CV-N) and (CV-P) are equivalent.

Proof. When removing all constraints in the corresponding BCSP that do not involve
Vp, then (CV-N) and (CV-P) are exactly the IPs that evolve from the negative and pos-
itive formulations of the resulting BCSP. Therefore, the proof of Lemma 1 shows that
both IPs are indeed equivalent.

Even though the reformulation from a negative representation of constraints to their pos-
itive formulation appears academic at first, it has a very important consequence when
the IP model is considered:

A Totally Unimodular Description of the Consistent Value Polytope 21

Theorem 1. The integer program (CV-P) is totally unimodular.

Proof. After eliminating all duplicate and all unit-vector columns from the constraint
matrix, neither of which affect total unimodularity, we get the following structure:

1 0 0
(1) | | |

0 0 1
-1 1 0 . . . 0

(2) | | |
-1 0 . . . 0 1

We note that part (1) is now an identity matrix, so it does not affect total unimodularity
and can also be eliminated. Then, in part (2), we can eliminate all unit vectors again and
we are left with just one column where all entries are -1, i.e., every square submatrix of
this column matrix is -1.1 �

As a consequence of Lemma 2 and Theorem 1, the linear relaxation of (CV-P) describes
exactly the convex hull of feasible solutions to (CV-N). Consequently, the Lagrangian
subproblem can be solved in polynomial time. This is hardly surprising from a CP per-
spective: the Lagrangian relaxation rids ourselves of all constraints that do not incorpo-
rate variable Vp. Consequently, polynomial arc-consistency methods perform perfectly
in terms of filtering effectiveness on the relaxed BCSP.

From an IP perspective, the fact that we found a totally unimodular description of the
polytope of the Lagrangian subproblems enables us now to solve a tighter Lagrangian
relaxation than the one proposed in [12] simply by means of linear programming: It is
a well-known fact that if the Lagrangian subproblem is totally unimodular (it is then
sometimes also referred to as exhibiting the integrality property), then the Lagrangian
relaxation and the linear continuous relaxation have the same value [1]. To make this
point very clear: Theorem 1 states that the Lagrangian subproblem is TU. We can there-
fore solve the Lagrangian relaxation by means of linear programming. Then, the overall
linear relaxation is of course not TU (which would indeed come as a big surprise as then
the NP-hard BCSP was solvable in P).

In summary, we have shown that the linear relaxation on (PIP), while much easier
to solve, is equivalent to the Lagrangian relaxation of (NIP). Consequently, it is strictly
better than a Lagrangian relaxation on an aggregated version of (NIP). Therefore, the
filtering algorithms that we derive from the relaxation based on the positive model are
more effective and faster than the one that is considered in [12]. Note that this improve-
ment does not restrict the choice of objective function. We can, as it was suggested
in [12], investigate specific assignments by maximizing different specific variables xpq

in turn, or we could choose a more global objective function and perform reduced cost
filtering.

What we view as even more important here is that in the positive model we have
found a way to formulate binary constraints as collection of integer constraints with
tighter linear programming relaxations. Consequently, we have found an improved for-
mulation that we can use when binary constraints constitute a part of the constraint

1 We owe the idea to this simplified proof to an anonymous referee.

22 I.D. Aron, D.H. Leventhal, and M. Sellmann

structure of an optimization problem, where it is well-known that it is essential to ex-
ploit tight global bounds on the objective.

4 Experimental Evaluation

In our experimental study, we focus purely on feasibility problems and the idea pre-
sented in [12] to base an efficient filtering algorithm for BCSPs on mathematical pro-
gramming methods. In order to base a filtering algorithm on the relaxations that we
studied in the previous section, first we follow the second main contribution that was
made in [12]. It consists in the introduction of an objective function that is assignment
specific. In [12], the authors compute upper bounds on (NIP) augmented by an objec-
tive that tries to maximize the value of one single variable xpq . Clearly, if that upper
bound drops below 1, then this implies that Vp cannot consistently take value q, and the
value is removed from Dp.

In our first series of experiments, we try to reproduce the results reported in [12]. We
follow their approach and solve a series of linear relaxations of (PIP) with changing
objectives to maximize xpq for the different variables. As a result of Section 3, we know
that this filtering technique is at least as effective as the one presented in [12].

The following first set of experiments was run on a 2.4 GHz Intel Hyperthreading
processor with 2 GB RAM. In order to provide a close comparison with [12], we use
randomly generated BCSPs as our benchmark set. The problems were generated using
the random uniform BCSP generator available at [3]. For each experiment, we generated
200 random instances. The test programs were implemented using ILOG Concert 2.0
to interface with Solver 6.0 and CPLEX 9.0 [10]. We generated problems of compa-
rable size and structure: 16 variables, 8 values per domain, and 32 allowed pairs per
constraint. We varied the number of constraints from 10 to 120 in increments of 10.
In order to verify the validity of the observed trends, we also used a second class of
problems, smaller in size, with the following characteristics: 10 variables, 10 values per
domain, 32 allowed pairs. For these problems, we varied the number of constraints from
5 to 50 in increments of 5.

To assure that our experimentation is correct, first we solved all problems in our
test set to completion using ILOG Solver 6.0 and looked at the distribution of feasible
instances. The results are shown in Figure 1, and it is clear that, as the number of con-
straints approaches 120 for the larger problems and 50 for the smaller ones, the number
of feasible instances drops sharply. This is a typical phase transition phenomenon, and
an easy-hard-less hard partition is visible by the time required by the solution algo-
rithm on these instances. Figure 2 shows the time needed by a standard CP solver for
the large benchmark. It is clearly visible that the hardest instances are those around the
phase transition.

The percentage of values filtered using the relaxation of (PIP) at the root node is
plotted in Figure 3, for both sets of problem instances (small and large). This confirms
the results reported in [12] where it was found that hybrid filtering is far more effective
than standard arc-consistency algorithms at the root node. On our problems, at the root
node arc-consistency is unable to filter any substantial number of values, which is why
the corresponding line runs close to the 0% horizontal.

A Totally Unimodular Description of the Consistent Value Polytope 23

 0

 20

 40

 60

 80

 100

 5 10 15 20 25 30 35 40 45 50

F
e
a
s
i
b
l
e

i
n
s
t
a
n
c
e
s

(
p
e
r
c
e
n
t
a
g
e
)

Number of constraints

Problem characteristics
Implementation:

’COMPLETE.plot’

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120

F
e
a
s
i
b
l
e

i
n
s
t
a
n
c
e
s

(
p
e
r
c
e
n
t
a
g
e
)

Number of constraints

Problem characteristics
Implementation:

’COMPLETE.plot’

Fig. 1. Percent of solvable instances over the number of constraints for the small (left) and large
(right) instances

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0 20 40 60 80 100 120

E
xe

cu
tio

n
tim

e

Number of constraints

Solution time
Implementation:

’COMPLETE.plot’

Fig. 2. Time (sec) required by a pure CP solver to solve the BCSPs

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 5 10 15 20 25 30 35 40

P
er

ce
nt

ag
e

of
 fi

lte
re

d
va

lu
es

Number of constraints

Effectiveness of IP filtering
Implementation:

’IP.plot’

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120

P
er

ce
nt

ag
e

of
 fi

lte
re

d
va

lu
es

Number of constraints

Effectiveness of IP filtering
Implementation:

’IP.plot’

Fig. 3. Percentage of filtered values using the relaxation of (PIP) for the small (left) and large
(right) instances

However, what is not made explicit in [12] is that the high percentage of filtered
values when the number of constraints gets closer to 120 is actually due to the fact that
most problems in that range are infeasible and that relaxation-based filtering is able to

24 I.D. Aron, D.H. Leventhal, and M. Sellmann

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60

P
er

ce
nt

ag
e

of
 fi

lte
re

d
va

lu
es

Number of allowed pairs per binary constraint

Effectiveness of IP filtering
Implementation:

’IP.plot’

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 10 20 30 40 50 60

E
xe

cu
tio

n
tim

e

Number of allowed pairs per binary constraint

Solution time
Implementation:

’IP.plot’

Fig. 4. Effect of the number of allowed pairs on the performance of PIP1
on the percentage of

solvable instances (left) and the propagation time at the root node for the relaxation based filtering
method (right)

detect that at the root node! On infeasible problems, the filtering algorithm naturally
reports 100% removal of values. It is solely due to this effect that the time per filtered
value decreases so massively as it was reported in [12].

It is also important to mention that this performance is obtained only if we iterate the
filtering process (i.e. solve relaxations of (PIP) as long as we have at least one filtered
value in a round). If we perform a single round of IP filtering (i.e. solve the relaxation
of (PIP) once for each variable xiu), the number of filtered values grows only to about
30% as we approach 120 constraints. The large difference can be explained by the fact
that, for most problems, the LP relaxation is unable to detect infeasibility in only one
round. It typically does so after 4-5 rounds, and then the percentage of filtered values
reported jumps to 100%. Obviously, an iterated application of the filtering algorithm
increases the effectiveness — but of course it comes at the cost of more cpu time,
which, as we will see shortly, is too much to make this kind of filtering worthwhile in
the context of random BCSPs.

We also studied the effect of constraining the problem in a different way: namely
by varying the number of allowed pairs per constraint instead of varying the number of
constraints. For this experiment, we generated problems with 16 variables, 8 values per
domain, 60 constraints and varied the number of valid pairs from 5 to 60 in increments
of 5. The results are shown in Figure 4. Again, we observe the a clear phase transition,
which happens at around 30 pairs per constraint, and that is supported by the problem
characteristics observed in Figure 5.

So far we have been able to confirm the results reported in [12]. Now, we were of
course curious to see whether the idea of iterated LP-based filtering with assignment
specific objectives actually pays off within a tree search. After all, while the improve-
ments in filtering effectiveness at the root node are quite good, what we are ultimately
interested in is of course the time that it takes to complete the search and actually solve
instances. Therefore, we study how fast the LP filtering is compared to that of the con-
straint solver. While for virtually every instance that we studied, the first propagation
step of the constraint solver failed to remove any values from the domains of the vari-
ables, the performance of arc-consistency techniques within a tree search is far better:
When comparing the time the constraint solver took to solve the entire problem with

A Totally Unimodular Description of the Consistent Value Polytope 25

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60

P
er

ce
nt

ag
e

of
 fe

as
ib

le
 p

ro
bl

em
s

Number of allowed pairs per binary constraint

Problem characteristics
Implementation:

’COMPLETE.plot’

Fig. 5. Characteristics of the instances where we varied the number of pairs per constraint

 0

 5

 10

 15

 20

 25

 30

 5 10 15 20 25 30 35 40

E
xe

cu
tio

n
tim

e

Number of constraints

Solution time
Implementation:

’IP.plot’

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 20 40 60 80 100 120

E
xe

cu
tio

n
tim

e

Number of constraints

Solution time
Implementation:

’IP.plot’

Fig. 6. Time (sec) required by the relaxation of (PIP) to complete filtering

the time it took the LP approach just to filter at the root node, we see that the differ-
ence is hugely in favor of the constraint solver, by orders of magnitude. While at the
phase transition (where more effective filtering should be of most importance) the time
to filter according to (PIP) only at the root-node peaks at around 150 seconds, stan-
dard arc-consistency algorithms complete the entire search in half a second on average
(compare Figures 6 and 2). Consequently, despite the far more effective filtering that
they offer, the algorithms published in [12] are just not worthwhile to solve random
BCSPs.

To summarize our findings to this point: filtering binary constraints based on mathe-
matical programming relaxations is more effective than standard arc-consistency
methods, thanks to the global view on the problem that the relaxation provides. How-
ever, even despite our strengthening the relaxation and speeding up its computation
time by showing that an alternative LP relaxation dominates the Lagrangian relaxation
introduced in [12], the idea to use an iterated procedure to filter every domain value
individually is just far too costly to pay off within a tree search — no matter whether
we compare at the under-constrained, over-constrained, or critically constrained region.

In order to improve the efficiency of LP-based filtering, we need to make it less ex-
pensive, even at the cost of losing some of its vast effectiveness. Therefore, we tried out

26 I.D. Aron, D.H. Leventhal, and M. Sellmann

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 20 40 60 80 100 120

Ti
m

e
(in

 se
co

nd
s)

Constraints

LP filtering
LP pruning

Pure CP

Fig. 7. Comparison of pure CP, LP-pruning, and LP-filtering on random BCSP instances

two different kinds of weakened approaches: The first computes an initial LP-solution
to the problem, then it chooses those assignments Xp = q for which the continuous
value of xpq is lower than some threshold value ε > 0, and finally it sets up a new
objective for each of those variable with one filtering iteration only. We refer to this ap-
proach as LP-filtering. The second approach sacrifices even more effectiveness by using
the LP-relaxation just for pruning purposes. It just solves the initial LP once and back-
tracks if and only if that LP turns out to be infeasible. We denote this second approach
with LP-pruning.

We performed a second set of experiments to compare the performance of LP-based
BCSP propagation and pure CP. The following test results show the averages2 over 30
runs per data point on a 2 GHz AMD Athlon processor with 512 MB RAM. Figure 7
visualizes the results of our experiments on the large benchmark of random BCSP in-
stances with 16 variables, 8 domain values per variable, and 32 allowed pairs per binary
constraint. Again, we see a clear easy-hard-less hard pattern. The comparison shows
that a pure CP solver is orders of magnitude faster than LP-filtering and LP-pruning,
whereby the latter, despite its weaker effectiveness, is still about twice as fast.

For our last experiment, we were curious whether the good efficiency of pure arc-
consistency methods was maybe caused by the unstructured character of our benchmark
set. Therefore, we repeated the experiment in Figure 7 on a benchmark set that contains
13-queens instances with additional random binary constraints on the queens. We use
the standard CP model where we add one queen-variable for each column and the values
that they take correspond to the row index that the queen takes. Alldifferent constraints
on rows, columns, and diagonals enforce the 13-queen problem. In Figure 8 we plot
the percentage of feasible instances and the solution time by our three solvers over the
number of (additional) binary constraints added to the problem.

We see that LP-filtering is able to catch up with LP-pruning, but the comparison with
the pure CP solver is devastating. We conclude that the idea of basing a BCSP filtering
algorithm on mathematical programming just does not pay off within a tree search.

2 Although we can only visualize averages in our plots, we would like to mention that we also
checked the medians and variances to eliminate the possibility that some extreme outliers
disproportionally bias the comparison.

A Totally Unimodular Description of the Consistent Value Polytope 27

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80

Pe
rc

en
ta

ge
 o

f f
ea

si
bl

e
pr

ob
le

m
s

Constraints

BCSP with NQUEENS

 0

 5

 10

 15

 20

 25

 30

 35

 0 10 20 30 40 50 60 70 80

Ti
m

e
(in

 se
co

nd
s)

Constraints

LP filtering
LP pruning

Pure CP

Fig. 8. Comparison of pure CP, LP-pruning, and LP-filtering on random BCSP instances

Of course, it is well-known fact that the use of relaxations is essential for many
optimization problems. For this case, when binary constraints are part of the problem,
we have introduced a linear programming formulation that approximates the convex
hull of feasible integer solutions better than previously studied relaxations. However,
for pure feasibility problems, we find that pure CP is the method of choice.

5 Conclusion

We presented a filtering algorithm based on linear programming (LP) models for BC-
SPs. The LP relaxations that we used are provably stronger than those developed in [12].
At the same time, filtering can now be based on standard linear programming technol-
ogy which reduces the programming effort and speeds up the filtering process consid-
erably. Our numerical results show that LP-based filtering for BCSPs leads to more
effective filtering. In so far, we can confirm the findings in [12]. However, ultimately
we are interested in solving BCSPs by search methods. And in the realm of search,
what matters is not so much the effectiveness of filtering methods, but the trade-off be-
tween effectiveness and time, i.e. efficiency. Our experiments on random instances show
clearly that the additional time for filtering based on mathematical programming does
not pay off for BCSPs when compared with standard CP arc-consistency techniques.
We therefore reconfirm the common (yet to the best of our knowledge unpublished)
belief that hybrid methods perform very poorly on BCSPs: for these problems, leaner
and faster inference continues to be the right way to go.

References

1. R.K. Ahuja, T.L. Magnati, J.B. Orlin. Network Flows. Prentice Hall, 1993.
2. G. Appa, D. Magos, I. Mourtos, An LP-based proof for the non-existence of a pair of Or-

thogonal Latin Squares for n=6. OR Letters, 32(4): 336–344, 2004.
3. C. Bessiere. Random Uniform CSP Generators. http://www.lirmm.fr/∼bessiere/-

generator.html.
4. T. Fahle, U. Junker, S.E. Karisch, N. Kohl, M. Sellmann, B. Vaaben. Constraint programming

based column generation for crew assignment. Journal of Heuristics, 8(1):59-81, 2002.

28 I.D. Aron, D.H. Leventhal, and M. Sellmann

5. T. Fahle, M. Sellmann. Cost-Based Filtering for the Constrained Knapsack Problem. Annals
of Operations Research, 115:73–93, 2002.

6. F. Focacci, A. Lodi, M. Milano. Cutting Planes in Constraint Programming: An Hybrid Ap-
proach. Proceedings of CP-AI-OR’00, Paderborn Center for Parallel Computing, Technical
Report tr-001-2000:45–51, 2000.

7. F. Focacci, A. Lodi, M. Milano. Cost-Based Domain Filtering. Principles and Practice of
Constraint Programming (CP) Springer LNCS 1713:189–203, 1999.

8. J.N. Hooker. A hybrid method for planning and scheduling. Proceedings of Principles and
Practice of Constraint Programming (CP 2004), Springer LNCS 3258:305–316, 2004.

9. J.N. Hooker and G. Ottosson. Logic-based Benders decomposition. Mathematical Program-
ming, 96:33–60, 2003.

10. ILOG SA. ILOG Concert 2.0. http://www.ilog.com.
11. U. Junker, S.E. Karisch, N. Kohl, B. Vaaben, T. Fahle, M. Sellmann. A Framework for

Constraint programming based column generation. Principles and Practice of Constraint
Programming (CP), Springer LNCS 1713:261–274, 1999.

12. M.O.I. Khemmoudj, H. Bennaceur, A. Nagih. Combining Arc-Consistency and Dual La-
grangean Relaxation for Filtering CSPs. Proceedings of CPAIOR’05, LNCS 3524:258–272,
2005.

13. H-J. Kim and J. N. Hooker. Solving fixed-charge network flow problems with a hybrid
optimization and constraint programming approach. Annals of Operations Research 115:95–
124, 2002.

14. M. Milano. Integration of Mathematical Programming and Constraint Programming for
Combinatorial Optimization Problems, Tutorial at CP2000, 2000.

15. G.L. Nemhauser and L.A. Wolsey. Integer and Combinatorial Optimization. Wiley, 1988.
16. G. Ottosson, E.S. Thorsteinsson. Linear Relaxation and Reduced-Cost Based Propagation

of Continuous Variable Subscripts. CP-AI-OR’00, Paderborn Center for Parallel Computing,
Technical Report tr-001-2000:129–138, 2000.

17. J.-C. Régin. Cost-Based Arc Consistency for Global Cardinality Constraints. Constraints,
7(3-4):387–405, 2002.

18. Meinolf Sellmann. Theoretical Foundations of CP-based Lagrangian Relaxation. Proceed-
ings of the 10th intern. Conference on the Principles and Practice of Constraint Program-
ming (CP), Springer LNCS 3258:634-647, 2004.

19. M. Sellmann. Approximated Consistency for Knapsack Constraints. CP, Springer LNCS
2833: 679–693, 2003.

20. M. Sellmann and T. Fahle. Constraint Programming Based Lagrangian Relaxation for the
Automatic Recording Problem. Annals of Operations Research, 118:17-33, 2003.

21. M. Sellmann and T.Fahle. Coupling Variable Fixing Algorithms for the Automatic Recording
Problem. Annual European Symposium on Algorithms (ESA), Springer LNCS 2161: 134–
145, 2001.

22. M. Sellmann and W. Harvey. Heuristic Constraint Propagation. Proceedings of the 8th intern.
Conference on the Principles and Practice of Constraint Programming (CP), Springer LNCS
2470: 738–743, 2002.

Undirected Forest Constraints

Nicolas Beldiceanu1, Irit Katriel2,�, and Xavier Lorca1

1 LINA FRE CNRS 2729, École des Mines de Nantes, FR-44307 Nantes Cedex 3, France
{Nicolas.Beldiceanu, Xavier.Lorca}@emn.fr

2 BRICS��, University of Aarhus, Åbogade 34, Århus, Denmark
irit@daimi.au.dk

Abstract. We present two constraints that partition the vertices of an undirected
n-vertex, m-edge graph G = (V, E) into a set of vertex-disjoint trees. The first
is the resource-forest constraint, where we assume that a subset R ⊆ V of the
vertices are resource vertices. The constraint specifies that each tree in the forest
must contain at least one resource vertex. This is the natural undirected counter-
part of the tree constraint [1], which partitions a directed graph into a forest of
directed trees where only certain vertices can be tree roots. We describe a hy-
brid-consistency algorithm that runs in O(m + n) time for the resource-forest
constraint, a sharp improvement over the O(mn) bound that is known for the
directed case. The second constraint is proper-forest. In this variant, we do not
have the requirement that each tree contains a resource, but the forest must con-
tain only proper trees, i.e., trees that have at least two vertices each. We develop
a hybrid-consistency algorithm for this case whose running time is O(mn) in the
worst case, and O(m

√
n) in many (typical) cases.

1 Introduction

Constraints that describe graph properties were considered from an early stage of con-
straint programming research. Some examples are the Hamiltonian circuit and span-
ning tree constraints of ALICE [2] that were later followed by the cycle [3] and path
constraints [4], which were, respectively, introduced in later versions of CHIP [5] and
Ilog Solver [6]. A more recent example is the tree(NTREE, VER) constraint [1], which
receives an integer variable NTREE and a graph described by the vertex-list VER. Some
of the vertices are specified as “possible roots” and the constraint determines that the
graph consists of NTREE directed trees, each of which is rooted at a “possible root”.

A natural network design problem is the following. We are given an undirected graph
G = (V , E) where R ⊆ V is a set of vertices that correspond to a certain resource, e.g.,
a printer. The remaining vertices represent the tasks (clients/users). The problem is to
cover the vertices of the graph with trees (networks) such that every tree contains at least
one vertex from R (every network has a printer). We could replace each undirected edge
by two anti-parallel directed arcs and then use the tree constraint which can be filtered in
O(mn) time. However, undirected graphs are often much simpler than directed graphs.
Indeed, we will show that the resource-forest constraint, the undirected counterpart of
the tree constraint, can be filtered in O(m + n) time.

� Supported by the Danish Research Agency (grant # 272-05-0081).
�� Basic Research in Computer Science, funded by the Danish National Research Foundation.

J.C. Beck and B.M. Smith (Eds.): CPAIOR 2006, LNCS 3990, pp. 29–43, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

30 N. Beldiceanu, I. Katriel, and X. Lorca

We then turn to another variant of the problem, the proper-forest(NTREE, VER) con-
straint which specifies that the graph is a forest of NTREE proper trees as defined by
A. CAYLEY in 1889 [7]: A proper tree is a connected, cycle-free graph with at least
two vertices. Note that with the proper-forest constraint the issue of resources does not
exist (or, equivalently, all vertices are resource vertices). It can apply to the design of
fault-tolerant networks, where each network needs to contain at least two computers so
that each computer can back up the other. The proper-forest variant appears to be more
complex than the resource-forest one; we show a filtering algorithm for proper-forest
whose running time is O(mn) in the worst case, and is dominated by the complexity
of determining which edges of the graph belong to at least one maximum cardinality
matching. As we will see, the worst case occurs when the domain of NTREE is ground
and contains a certain value. In all other cases, the algorithm’s bottleneck is finding a
maximum matching in the graph, which can be done in O(m

√
n) time.

Since both constraints involve integer and set variables, our filtering algorithms
achieve hybrid-consistency, which is a type of consistency suitable for this context,
introduced by Bessière et al. [8]. It will be formally defined in Section 2, but intu-
itively hybrid-consistency means that every integer variable is arc-consistent and every
set variable is bound-consistent.

The rest of the paper is organized as follows. Section 2 provides the necessary
background on constraint programming and graph theory. Section 3 introduces the re-
source-forest and proper-forest constraints. Sections 4 and 5, respectively, present filter-
ing algorithms for the resource-forest and proper-forest constraints. Finally, Section 6
contains a summary of the known results on filtering tree-partitioning constraints.

2 Preliminaries

In this section we recall some of the constraint programming and graph theory termi-
nology that we use in the rest of the paper.

Definition 1. An integer variable V ranges over a finite set of integers denoted by
D(V). The extremal values in D(V) are denoted by min(V) and max(V).

Definition 2. The domain of a set variable V is a set of sets of integers. It is specified
by its lower bound V and its upper bound V and contains all sets that contain V and
are contained in V . When the set variable V is ground we have that V = V . The values
in V are the mandatory values of V and the values in V \ V are its potential values.

Definition 3 (Hybrid-consistency [8]). A constraint C defined on the integer variables
V d

1 , . . . , V d
l and the set variables V s

l+1, . . . , V s
n is hybrid-consistent iff:

1. For every pair (V d, v) such that V d is an integer variable of C and v ∈ D(V d),
there exists at least one solution to C in which V d is assigned the value v.

2. For every pair (V s, v) such that V s is a set variable of C, if v ∈ V s then v belongs
to the set assigned to V s in all solutions to C and if v ∈ V s \ V s then v belongs
to the set assigned to V s in at least one solution and is excluded from this set in at
least one solution.

Definition 4. Graph theoretic terms [9] . Let G = (V , E) be an undirected graph. A
path in G is a sequence of vertices, such that every two consecutive vertices are joined

Undirected Forest Constraints 31

by an edge. A path is simple if every vertex appears on it at most once. A bridge in G is
an edge e ∈ E whose removal increases the number of maximal connected components
of G. A matching in G is a set M ∈ E of edges such that every vertex in V is incident on
at most one edge from M .

3 The resource-forest and proper-forest Constraints

In this section, we define and motivate the resource-forest and the proper-forest con-
straints, introduce their corresponding graphs, define them formally and provide exam-
ples that illustrates the semantics of the constraint as well as the problem of filtering
them to hybrid-consistency.

In many graph-partitioning problems, the vertex set of the graph is the union of a
set of resource vertices and a set of task vertices. Independently of the pattern used
to cover the graph, this distinction between the two types of vertices comes from the
need that each partition has to contain at least one resource vertex. This distinction
between resource and task vertices was already introduced in the cycle constraint [3].
An example of application for the cycle constraint is the vehicle routing problem which
consists in allocating a set of trucks (resources) to deliver goods to a set of shops (tasks).
The resource-forest constraint, on the other hand, can be used to model the problem
of allocating hardware resources in a network. Here, a resource represents a piece of
hardware (e.g., a printer) and a task represents a computer. The solution (forest) is a
network in which each computer is connected with at least one printer.

In 1889, A. CAYLEY [7] introduced the definition of a tree as a connected graph
without cycles which contains at least two vertices. We will call Cayley’s tree a proper
tree. A proper forest, then, is a set of proper trees. The proper-forest constraint partitions
the vertices of an undirected graph into a set of vertex-disjoint proper trees.

Formally, each of the resource-forest(NTREE, VER) and proper-forest(NTREE, VER)
constraints is defined on an integer variable NTREE and an array VER which is essen-
tially an adjacency-list representation of a graph. Each item v ∈ VER has the following
attributes, which complete the description of the graph:

– I is an integer between 1 and n, which can be interpreted as the label of v.
– N is a set variable whose elements are integers (vertex labels) between 1 and n. The

lower and upper bounds of N can respectively be interpreted as the set of mandatory
neighbors and the set of mandatory or potential neighbors of v.

– R (only for the resource-forest constraint) is a boolean flag which is true if the vertex
is a resource vertex and false if it is a task vertex.

Notation: For each 1 ≤ i ≤ n, VER[i] is the i-th item of the VER collection, while
VER[i].I, VER[i].N, and VER[i].R, respectively, denote the I, N and R attributes of VER[i].

When speaking of global constraints, it is often convenient to reason about a graph that
models the constraint rather than directly about the constraint (see, e.g., the cycle [3],
path [10, 4], and alldifferent [11] constraints). In the case of the resource-forest and
proper-forest constraints, the graph model is obvious: It is the undirected graph G =
(V , E) in which the vertices represent the elements of VER and the edges represent
the neighborhood relations between them. Each edge of the graph has a type (solid or

32 N. Beldiceanu, I. Katriel, and X. Lorca

dotted) which indicates whether it represents a mandatory (solid) or a potential (dotted)
neighborhood relation.

Since it can be easily achieved by a linear-time preprocessing step, we will assume
in the rest of this paper that the associated graph does not contain loops and that the N
sets of the vertices are symmetric, i.e., i ∈ VER[j].N ⇔ j ∈ VER[i].N (in this case we
will say that i and j are mandatory neighbors) and i ∈ VER[j].N⇔ j ∈ VER[i].N (in this
case, if i and j are not mandatory neighbors then they are possible neighbors). Note that
the preprocessing step may find that the constraint has no solution. This can happen if
i ∈ VER[i].N (there is a mandatory loop) or ∃i, j : i ∈ VER[j].N ∧ j /∈ VER[i].N (i is
a mandatory neighbor of j but j is not a possible neighbor of i). Formally, the graph
associated with a resource-forest or a proper-forest constraint is defined as follows.

Definition 5. For a resource-forest(NTREE, VER) or a proper-forest(NTREE, VER) con-
straint, the associated graph is the undirected graph G = (V , E) where V = {vi : i ∈
[1, n]} and (vi, vj) ∈ E iff i ∈ VER[j].N ∧ j ∈ VER[i].N. We distinguish between solid
and dotted edges: The edge (vi, vj) ∈ E is solid if i and j are mandatory neighbors and
dotted if i and j are potential neighbors. Finally, we denote the number of edges in the
graph, |E|, by m.

In the case of the resource-forest constraint, we distinguish between resource vertices
and task vertices; the set R of resource vertices is {vi : VER[i].R = true}. All vertices
in V \ R are task vertices.

The resource-forest constraint specifies that its associated graph is a forest where each
tree contains at least one resource and the proper-forest constraint specifies that its
associated graph is a proper forest. Formally:

Definition 6. A ground resource-forest(NTREE, VER) constraint is satisfied iff the fol-
lowing conditions hold:

(1) ∀i ∈ [1, n] : VER[i].I = i,
(2) ∀i, j ∈ [1, n] : i ∈ VER[j].N ⇔ j ∈ VER[i].N (i.e., the neighborhood relation is

symmetric),
(3) The associated graphG consists of NTREEmaximal connected components such that

each component contains at least one vertex from R and does not contain any cycles.

Definition 7. A ground proper-forest(NTREE, VER) constraint is satisfied iff the follow-
ing conditions hold:

(1) ∀i ∈ [1, n] : VER[i].I = i,
(2) ∀i, j ∈ [1, n] : i ∈ VER[j].N ⇔ j ∈ VER[i].N (i.e., the neighborhood relation is

symmetric),
(3) The associated graph G is a forest of NTREE (vertex-disjoint) proper trees.

The following example will be used throughout the paper.

Example 1. Part (A) of Figure 1 shows the input graph G, where the mandatory edges
are solid and the rest are dotted. Parts (B) and (C) of the figure show two possible
solutions to the resource-forest constraint on this graph, one with two trees and the other
with three trees. Parts (B) and (D) show two solutions to the proper-forest constraint on
this graph, with two and seven proper trees, respectively.

Undirected Forest Constraints 33

(B)

IpIp

IpIp

(C) 1817

161513

1412

11

10

98

7

65

4

3

2

1

(D) 1817

161513

1412

11

10

98

7

65

4

3

2

1

J : mandatory edge when max(NTREE) = 2.I: forbidden edge when min(NTREE) = 7.F : forbidden edge.M : mandatory edge.

Jr

Mr Mp

JpIp

Ip
Fr

Fp

(A)
1817

161513

1412

11

10

98

7

65

4

3

2

1

1

2

3

4

5 6

7

8 9

10

11

12 14

13 15 16

17 18

Fig. 1. (A) An undirected graph with 3 (grayed) resource vertices (B) a solution with 2 trees for
the resource-forest and proper-forest constraints (C) a solution with 3 trees for the resource-forest
constraint (D) a solution with 7 proper trees for the proper-forest constraint. Notice that each kind
of edges (M , F , I and J) are indiced by p in the case of the proper-forest and by r in the case of
the resource-forest.

A hybrid-consistency algorithm for the resource-forest constraint on G should dis-
cover that regardless of the contents of the domain of NTREE, the edge marked by Mr,
i.e., the edge (6, 8), is mandatory and that the edge (5, 7) (marked by Fr) is forbidden.
Furthermore, it should set the domain of NTREE to be the intersection of its previous
value with {2, 3}. If, in the input,D(NTREE) = {2}, the algorithm should also discover
that the edge marked by Jr, i.e., the edge (13, 15), is mandatory. Section 4 will justify
this pruning.

A hybrid-consistency algorithm for the proper-forest constraint on G should discover
that the edge (13, 15) (marked by Mp) is mandatory and that the edge (5, 7) (marked
by Fp) is forbidden. Next, it should set the domain of NTREE to be the intersection of
its previous value with {2, 3, 4, 5, 6, 7}. If, in the input, D(NTREE) = 2, the algorithm
should discover that the edge marked by Jp, i.e., the edge (6, 8), is mandatory. Finally,
if D(NTREE) = {7} in the input, the algorithm should discover that the edges marked
by Ip, i.e., (2, 3), (3, 5), (4, 7), (6, 8), (11, 13), and (12, 14), are forbidden. Section 5
will justify this pruning.

Before we can describe the filtering algorithms for the resource-forest and proper-forest
constraints, we need to define the mandatory graph GTRUE and the possible graph
GMAYBE associated with a graph G. An example appears in Figure 2.

34 N. Beldiceanu, I. Katriel, and X. Lorca

(B)

(A) 18

1817

1615

10

98

4

3

2

1

1

2

3

4

5 6

7

8 9

10

11

12 14

13 15 16

17

Fig. 2. The graphs (A) GTRUE and (B) GMAYBE associated with the graph of Figure 1, Part (A)

Definition 8. (Mandatory graph) Given a resource-forest or proper-forest constraint
and its associated graph G, the graph GTRUE contains all edges that must be in the
forest. Formally, GTRUE = (V , ETRUE), where ETRUE is the set of solid edges in G.

Definition 9. (Possible graph) Given a resource-forest or proper-forest constraint
and its associated graph G, the graph GMAYBE contains the subgraph induced
by the vertices that are not incident on mandatory edges. Formally, GMAYBE =
(VMAYBE , EMAYBE) where VMAYBE contains all vertices that are isolated in GTRUE
and EMAYBE = E ∩ (VMAYBE × VMAYBE).

4 Filtering the resource-forest Constraint

4.1 Checking Feasibility of the resource-forest Constraint

Theorem 1 specifies necessary and sufficient conditions for the existence of a solution
to a resource-forest constraint. The first two conditions ensure that it is possible to
partition the graph into a forest with a resource in every tree and the third ensures that
the number of trees in the forest is within the domain of NTREE.

Theorem 1. There is a solution to the resource-forest(NTREE, VER) constraint iff the
following conditions hold:

(1) GTRUE does not contain any cycles.
(2) Every maximal connected component of G contains at least one resource vertex.
(3) D(NTREE) ∩ [MINTREE, MAXTREE] �= ∅, where MINTREE is the number of maximal

connected components in G and MAXTREE is the number of maximal connected
components of GTRUE that contain at least one resource vertex.

Proof. Sufficiency: To prove that the three conditions are sufficient, we assume that
they hold and show that for every value k ∈ [MINTREE, MAXTREE], we can construct a
spanning forest of G with k trees, each of which contains a resource vertex.

Case 1: k = MAXTREE. Let T = {C1, · · · , Cp} be the maximal connected components
of GTRUE . By definition, exactly MAXTREE of them contain at least one resource vertex.
By Condition (2), every component which does not contain a resource vertex is con-
nected by a path of G to a component which does. To obtain a solution of k trees, we

Undirected Forest Constraints 35

merge every component that does not contain any resource vertices with one that does,
and output a spanning tree of each component.

Case 2: k < MAXTREE. We first construct a forest of MAXTREE trees as in Case 1 and then
merge trees until there are k trees: While there are too many trees, select two trees which
are connected by an edge e and merge them by including e in the forest. Since MINTREE
is the number of maximal connected components in G, as long as k > MINTREE we are
guaranteed to find two trees that can be merged.

Necessity: Clearly, if GTRUE contains a cycle, the solution cannot be a forest. If
D(NTREE) ∩ [MINTREE, MAXTREE] = ∅ then we have max(NTREE) < MINTREE or
min(NTREE) > MAXTREE. In either case, the constraint is infeasible: We cannot cre-
ate less than MINTREE trees because a tree must be connected. To see that we cannot
create more than MAXTREE trees, note a connected component of GTRUE cannot be bro-
ken, so every component can contribute at most one tree. Furthermore, the vertices of a
component that does not contain a resource vertex must belong to the same tree as the
vertices of a component that does contain a resource vertex. In other words, a compo-
nent cannot contribute a tree to the forest if it does not contain a resource vertex. �

4.2 Hybrid-Consistency of the resource-forest Constraint

Figure 3 shows the algorithm for filtering a resource-forest constraint to hy-
brid-consistency. First, it verifies that the constraint has at least one solution, using
the characterization of Theorem 1. Lines 3 to 7 prune with respect to the fact that a
solution must be a forest (while ignoring the cardinality of the forest and the condition
on the resources). In Line 7 the algorithm removes any dotted edge (u, v) where u and
v are connected by solid edges; since the solid edges must be in the solution, this dotted
edge would create a cycle (e.g., the edge (5, 7) in Part (A) of Figure 1). In Lines 8 to 10
it identifies dotted edges which must be in the solution because removing them would
separate one or more vertices from the resources, and makes them solid (e.g., the edge
(6, 8) in Part (A) of Figure 1). Line 11 narrows the domain of NTREE.

Lines 12 to 17 are executed only when the domain of NTREE is ground. In this case,
the number of trees in a solution is fixed and if it is equal to MINTREE (as defined in the
statement of Theorem 1), all bridges of G are mandatory and are turned solid, because
otherwise the number of connected components of the graph, and therefore also the
number of trees in any solution, is strictly larger than MINTREE (e.g., the edge (13, 15)
in Part (A) of Figure 1). On the other hand, if the value of NTREE is equal to MAXTREE,
then every maximal connected component of GTRUE which contains a resource should
contribute a tree to the solution, so a dotted edge between two such components must
not be in the forest and is removed.

4.3 Correctness

In the full version of this paper, we prove that the algorithm achieves hybrid-consistency
by showing that:

1. We did not remove an edge from the graph or a value from NTREE that belong to a
solution.

36 N. Beldiceanu, I. Katriel, and X. Lorca

2. Every remaining edge in G and value in D(NTREE) participates in at least one solu-
tion, and every remaining dotted edge is excluded from at least one solution.

3. Every edge that we turned from dotted to solid participates in all solutions.

1. if the constraint has no solution (see Theorem 1) then
2. report failure and exit;
3. Compute the maximal connected components (CCs) of GTRUE.
4. foreach v ∈ V do
5. C(v) ← the CC of GTRUE that contains v;
6. foreach dotted edge (u, v) ∈ E do
7. if C(u) = C(v) then remove (u, v) from the graph;
8. foreach dotted edge e do
9. if removing e creates a CC of G without resource vertices then

10. Turn e into a solid edge;
11. D(NTREE) ← D(NTREE) ∩ [MINTREE, MAXTREE];
12. if D(NTREE) = {MINTREE} then
13. foreach dotted edge e that is a bridge of G do
14. Turn e into a solid edge;
15. if D(NTREE) = {MAXTREE} then
16. foreach dotted edge e = (u, v) where C(u) �= C(v) and

both C(u) and C(v) contain a resource vertex do
17. Remove e from the graph;

Fig. 3. A hybrid-consistency algorithm for the resource-forest constraint

4.4 Complexity

The steps of the algorithm excluding Lines 8 to 10 require cycle detection, computing
maximal connected components and identifying bridges, all of which can be done in
linear time [12, p.18]. We now show that Lines 8 to 10 also take linear time. Clearly,
an edge whose removal creates a maximal CC without a resource is a bridge of G. But
not all bridges have this property. We create a reduced graph H by contracting every
biconnected component of G into a single vertex. The graph H is a tree whose edges
are exactly the bridges of G. We will say that a vertex ofH is a resource vertex if one of
the vertices of G that were contracted into it is a resource vertex, i.e., if the biconnected
component it represents has a resource. We need to identify which of the edges ofH are
edges whose removal would create a connected component of H without resources. In
other words, we have reduced our problem to the same problem on trees. This holds for
an edge if one of its endpoints is the root of a subtree without resources. We select an
arbitrary resource vertex ofH and perform a DFS traversal ofH starting at this vertex.
Whenever we backtrack from a vertex v, we communicate to its parent p whether a
resource was encountered in the subgraph rooted at v. If not, then the edge (p, v) is
turned into a solid edge (if it is not solid already).

Thus, we have shown:

Theorem 2. The algorithm of Figure 3 filters the resource-forest constraint to
hybrid-consistency in O(m + n) time.

Undirected Forest Constraints 37

5 Filtering the proper-forest Constraint

5.1 Checking Feasibility of the proper-forest Constraint

Theorem 3 specifies the conditions for the existence of a solution to a proper-forest
constraint. The first two conditions ensure that it is possible to partition the graph into
a proper forest and the third ensures that the number of proper trees in the proper forest
is within the domain of NTREE.

Theorem 3. There is a solution to the proper-forest(NTREE, VER) constraint iff the
following conditions hold:

(1) G does not have isolated vertices,
(2) GTRUE does not contain any cycles,
(3) D(NTREE) ∩ [MINTREE, MAXTREE] �= ∅, where MINTREE is the number of maximal

connected components in G and MAXTREE is the number of maximal connected
components of cardinality at least two in GTRUE plus the cardinality of a maximum
cardinality matching in GMAYBE .

Proof. Sufficiency: To prove that the three conditions are sufficient, we assume that
they hold and show that for every value k ∈ [MINTREE, MAXTREE], we can construct a
spanning forest of G with k proper trees. We begin with k = MAXTREE and proceed to
an arbitrary k ∈ [MINTREE, MAXTREE].

– Let T = {T1, · · · , Tp} be a maximum spanning forest of GTRUE , i.e., each Ti is an
isolated vertex from GTRUE or a spanning tree of a maximal connected component
of GTRUE . Observe that a tree Ti of cardinality one is also a vertex of GMAYBE .

– To construct a spanning forest of cardinality MAXTREE, compute a maximum cardi-
nality matchingM in GMAYBE and modify T as follows:

• By definition of GMAYBE , each matching edge connects two singletons Ti and
Tj of T . Merge them into a tree of cardinality two.

• For every vertex u ∈ VMAYBE , corresponding to a tree Ti of cardinality one
which is unmatched byM, select a neighbor v of u and include the edge (u, v)
in the spanning forest. In other words, merge the tree Ti with the tree Tv to
which v belongs. Condition 1 guarantees that this is possible. It is easy to see
that the forest consists of exactly MAXTREE trees.

– If k < MAXTREE, merge proper trees until there are k proper trees: While there are
too many proper trees, select two proper trees that are connected by an edge e from
GMAYBE and merge them by including e in the proper forest. Since MINTREE is the
number of maximal connected components in G, as long as k > MINTREE we are
guaranteed to find two proper trees that can be merged.

Necessity: It remains to show that all three conditions are necessary. Clearly, if G con-
tains an isolated vertex v, then v does not belong to a subgraph of G which is a proper
tree and if GTRUE contains a cycle, the solution must contain a cycle so it cannot
be a proper forest. Finally, if D(NTREE) ∩ [MINTREE, MAXTREE] = ∅ then we have
max(NTREE) < MINTREE or min(NTREE) > MAXTREE. In either case, the constraint

38 N. Beldiceanu, I. Katriel, and X. Lorca

does not have a solution: We cannot create less than MINTREE proper trees because a
proper tree must be connected. To see that we cannot create more than MAXTREE proper
trees, note that the number of proper trees that GTRUE can contribute is at most the
number of connected components it has (we cannot break a connected component of
GTRUE) and that a vertex of GMAYBE can either form a new proper tree with another
vertex from GMAYBE , or be merged into a previously existing proper tree (and not
contribute to the tree-count). Clearly, a maximum cardinality matching contributes the
largest possible number of proper trees from GMAYBE . �

5.2 Hybrid-Consistency of the proper-forest Constraint

Figure 4 shows the algorithm for filtering a proper-forest constraint to hy-
brid-consistency. First, it verifies that the constraint has at least one solution, using the
characterization of Theorem 3, and exits if the constraint is inconsistent. Lines 3 to 7
and 18 to 19 prune with respect to the fact that a solution must be a proper forest (while
ignoring the cardinality of the forest). In Line 7 the algorithm removes any dotted edge
(u, v) (e.g., the edge (5, 7) in Part (A) of Figure 1) where u and v are connected by a
path of solid edges; since the solid edges must be in the solution, this dotted edge would
create a cycle. Line 19 identifies dotted edges which must be in the solution because
removing them would isolate a vertex, and makes them solid (e.g., the edge (13, 15) in
Part (A) of Figure 1). Line 8 narrows the domain of NTREE.

Lines 9 to 17 are executed only when the domain of NTREE is ground. In this case,
the number of trees in a solution is fixed and if it is equal to either MINTREE or MAXTREE
(these values are defined in the statement of Theorem 3), more filtering is possible: If
D(NTREE) = {MINTREE} then all bridges of G are mandatory and are turned solid,
because otherwise the number of connected components of the graph, and therefore
also the number of trees in any solution, is strictly larger than MINTREE. In the example
in Part (A) of Figure 1, the edge (6, 8) (which is marked by Jp) is mandatory when
D(NTREE) = {2}. If D(NTREE) = {MAXTREE} then three sets of edges are forbidden
and are removed from the graph; we will show that including any one of these edges
in a solution would reduce the number of trees we can construct to strictly less than
MAXTREE. For example, if D(NTREE) = {7}, the edges marked by Ip in Part (A) of
Figure 1 are removed: (11, 13) and (12, 14) in Line 15, (2, 3) in Line 16, and (3, 5),
(4, 7) and (8, 6) in Line 17.

5.3 Correctness

To prove correctness of the algorithm, we will show that:

1. We did not remove an edge from the graph or a value from NTREE that belong to a
solution (Lemma 1).

2. Every remaining edge in G and value in D(NTREE) participates in at least one
solution, and every remaining dotted edge is excluded from at least one solution
(Lemma 2).

3. Every edge that we turned from dotted to solid participates in all solutions (Lemma 3).

Lemma 1. The algorithm in Figure 4 never removes an edge from the graph or a value
from D(NTREE) that belongs to a solution.

Undirected Forest Constraints 39

Proof. Let (u, v) be an edge that was removed by the algorithm and assume that there
is a solution S that contains (u, v). If (u, v) was removed in Line 7, then there is a
path of solid edges from u to v, and these edges are also in the solution. But then the
forest S contains a cycle, a contradiction. So we must assume that (u, v) was removed
in Lines 13 to 17. In this case, we know that the number of trees in S is equal to
MAXTREE (the number of CCs of GTRUE of cardinality at least two plus the cardinality
of a maximum matching in GMAYBE .) We will show that if there still is a solution S′

when the constraint is on the graph G′, which is obtained from G by turning (u, v) into
a solid edge, then this violates Theorem 3 because S′ has more than MAXTREE′ trees
(where MAXTREE′ is the MAXTREE value for G′). If (u, v) was removed in Line 15, then
MAXTREE′ = MAXTREE − 1 because u and v are not in GMAYBE and two non-trivial
connected components of GTRUE have been merged. The solution S′ = S has MAXTREE
(i.e., > MAXTREE′) trees. If (u, v) was removed in Line 16, then u and v form a size-2
maximal connected component in G′

TRUE . This increases MAXTREE by one. On the other
hand, the cardinality of a maximum matching in G′

MAYBE = GMAYBE \ {u, v} is two
less than that of GMAYBE , because otherwise (u, v) belongs to a maximum matching
in GMAYBE . So MAXTREE′ = MAXTREE − 1 and S′ = S is a solution with MAXTREE
trees. Finally, if (u, v) was removed in Line 17, then turning (u, v) into a solid edge
inserts v into the CC of u in G′

TRUE . Since v is not in G′
MAYBE , the cardinality of a

maximum matching in G′
MAYBE is one less than that of GMAYBE (otherwise GMAYBE

has a maximum matching in which v is not saturated, a contradiction). Again, we get that
MAXTREE′ = MAXTREE−1 and S′ = S is a solution with MAXTREE trees. If the algorithm
removes a useful value from D(NTREE), this clearly contradicts Theorem 3. �

1. if the constraint has no solution (see Theorem 3) then
2. report failure and exit;
3. Compute the maximal connected components (CCs) of GTRUE.
4. foreach v ∈ V do
5. C(v) ← the CC of GTRUE that contains v;
6. foreach dotted edge (u, v) ∈ E do
7. if C(u) = C(v) then remove (u, v) from the graph;
8. D(NTREE) ← D(NTREE) ∩ [MINTREE, MAXTREE];
9. if D(NTREE) = {MINTREE} then

10. foreach dotted edge (u, v) that is a bridge of G do
11. Turn (u, v) into a solid edge;
12. if D(NTREE) = {MAXTREE} then
13. foreach dotted edge (u, v) do
14. remove (u, v) from G if one of the following holds:
15 a. |C(u)| > 1, |C(v)| > 1, and C(u) �= C(v).
16. b. (u, v) ∈ EMAYBE but does not belong to any

maximum matching in GMAYBE.
17. c. |C(u)| > 1 and v is saturated in every maximum

cardinality matching of GMAYBE.
18. foreach dotted edge (u, v) ∈ E do
19. if u is a leaf in G then turn (u, v) into a solid edge;

Fig. 4. A hybrid-consistency algorithm for the proper-forest constraint

40 N. Beldiceanu, I. Katriel, and X. Lorca

Lemma 2. After applying the algorithm of Figure 4, every remaining edge in G and
value in D(NTREE) participates in at least one solution, and every remaining dotted
edge is excluded from at least one solution.

Proof. We have already shown in the proof of Theorem 3 that every value in
[MINTREE, MAXTREE] participates in a solution. We now show that every remaining edge
(u, v) belongs to the forest in at least one solution. First, we construct a solution S with
MAXTREE trees as before. If (u, v) belongs to the forest, we are done. Otherwise, let
S′ = S ∪ (u, v). If S′ is not a solution to the constraint, it can be either because it is not
a forest or because the number of trees in S′ is not inD(NTREE). If it is not a forest, it is
because inserting (u, v) creates a cycle, but in this case (u, v) should have been removed
in Line 7. So the number of trees, which is MAXTREE− 1, is not in D(NTREE). If there
is a value in D(NTREE) which is smaller than the number of trees in S′, we can merge
trees as in the proof of Theorem 3 until we have a solution. Otherwise, it must be that
D(NTREE) = {MAXTREE}. But in this case, (u, v) should have been removed in Line 15.

It remains to show that every dotted edge is excluded from at least one solution. Let
(u, v) be a dotted edge. We have shown above that there exists a solution S that uses
(u, v). Let S′ = S \ {(u, v)}. If S′ is a solution for the proper-forest constraint, we are
done. Assume, then, that S′ is not a solution. This can be either because it contains an
isolated vertex or because it consists of too many trees.

Assume that the removal of (u, v) created a singleton tree with the vertex u. Since
(u, v) was not turned into a solid edge in Line 19, we know that u has another neighbor
nu �= v, to which it is linked by a dotted edge. If v did not become a singleton
tree or the number of trees was strictly larger than MINTREE, we can merge u into a
neighboring tree and obtain a new solution that does not use the edge (u, v).

However, if the number of trees was exactly MINTREE and both u and v were isolated,
merging each of them into a pre-existing tree would leave us with MINTREE− 1 trees.
Fortunately, this case is not possible. Indeed, assume that it has occurred. We know
that nu belongs to a tree of the solution which contains at least two vertices and which
does not contain u or v. So the connected component of u (and v) in G contributes at
least two trees to the solution, and the solution must have more than MINTREE trees.

Finally, assume that after the removal of (u, v) we do not have any singleton trees,
but we do have one tree too many. If possible, merge two trees by a dotted edge other
than (u, v). If this is not possible, then it is because the number of trees is equal to the
number of connected components in G \ {e}, i.e., to MINTREE. If (u, v) was a bridge, it
would have turned into a solid edge in Line 11. So there is a cycle that contains (u, v).
Since we are not able to merge two trees after the deletion of (u, v), it must be that for
every dotted edge on the cycle, both endpoints belong to the same tree. This implies
that u and v are in the same tree after the deletion of the edge (u, v), which means that
there is a cycle in the forest S, a contradiction. �

Lemma 3. Every edge that the algorithm of Figure 4 turned from dotted to solid par-
ticipates in all solutions.

Proof. Assume otherwise, i.e., there exists an edge (u, v) that was turned from dotted
to solid but which is excluded from a solution S. If (u, v) turned into a solid edge in
Line 19 of the algorithm then G has an isolated vertex, so S cannot be a proper forest.

Undirected Forest Constraints 41

So the transformation must have occurred in Line 11. In this case, we know that the
domain of NTREE is ground and contains only MINTREE, i.e., the number of trees in S
is equal to the number of connected components of G. But then any bridge of G, and
hence the edge (u, v), must belong to S; a contradiction. �

5.4 Complexity

The complexity of checking whether the constraint has a solution is dominated by the
complexity of computing MAXTREE (all the rest can be done in linear time). To find
MAXTREE we need to find the cardinality of a maximum matching in GMAYBE and the
best known upper bound for this isO(m

√
n) time [13]. Lines 3 to 9 take linear time: We

need to compute the connected components of GTRUE and traverse the dotted edges,
spending a constant amount of time for each edge. Finding all bridges of G in Line 10
and detecting leaves in Line 19 also takes linear time.

So far, the bottleneck is the feasibility test which takesO(m
√

n) time. If the domain
of NTREE is ground and contains only the value MAXTREE, we need to execute also
Lines 13 to 17. Line 15 is trivial. For Line 16, we need to determine which edges of the
graph belong to at least one maximum cardinality matching. For bipartite graphs, this
can be done in linear time once a single maximum matching is known [11]. However,
we need to perform this task on arbitrary graphs. In the full version of this paper, we
describe an algorithm that does this in O(mn) time.

Finally, for Line 19 we need an algorithm that receives a graph and a maximum
matching and detects which vertices of the graph are saturated in every maximum
matching. We show a linear-time solution in the full version of the paper.

Theorem 4. The algorithm of Figure 4 filters the proper-forest constraint to hy-
brid-consistency in O(mn) time if D(NTREE) = {MAXTREE} and in O(m

√
n) time

otherwise.

6 A Summary of Known Results on tree Covering Constraints

This section highlights the commonalities and differences between the constraints
tree [1], resource-forest and proper-forest. All three constraints are defined on a graph
G = (V , E), directed or undirected, with |V| = n and |E| = m.

Figure 5 summarizes the best known running times for checking feasibility and for
achieving hybrid-consistency for each constraint. Figure 6 summarizes the main graph
properties used to determine relevant bounds on the number of trees allowed to cover a
given graph as well as the conditions for the existence of well-formed trees according
to the definition of each constraint. The last table indicates that four basic graph proper-
ties completely define these constraints: connected components (in undirected graphs),
strongly connected components (in digraphs), maximum matchings, existence of cy-
cles. For each of the constraints, necessary conditions and filtering rules were deduced
with known algorithms (e.g. dfs, maximum matching, connected component detection,
etc.) as well as new algorithms (e.g., identifying vertices which are saturated in any
maximum matching in an undirected graph). Observe that the lower and upper bounds

42 N. Beldiceanu, I. Katriel, and X. Lorca

Graph Pattern
Trees Undirected trees
tree proper-forest resource-forest

Checking feasibility O(n + m) O(m
√

n) O(n + m)
Hybrid-consistency O(mn) O(mn) [worst], O(m

√
n) [typical] O(n + m)

Fig. 5. Best known upper bounds for three tree covering constraints

Graph Pattern
Trees Undirected trees
tree proper-forest resource-forest

MINTREE |SCC sink(G)| |CC (G)| |CC (G)|

MAXTREE |Rpotential(G)| |CC (GTRUE)|+ |CC (GTRUE)

μ(GMAYBE)
with at least

one resource|

Well-formed trees
at least one

no cycle in GTRUE
no cycle in GTRUE

potential root
no isolated vertex in G one resource vertex

in each SCC of G in each CC (GTRUE)
Compatible number of trees D(NTREE) ∩ [MINTREE, MAXTREE] �= ∅

Fig. 6. Graph properties characterizing solutions to the three tree covering constraints

MINTREE and MAXTREE for the proper-forest constraint exactly correspond to the lower
and upper bounds on the number of connected components that appears in [14].

Notation: For a graph H , the number of maximal CCs in H is |CC (H)|, the max-
imum cardinality of a matching in H is μ(H), the number of sink SCCs of H is
|SCC sink(H)| and the number of potential roots in H is |Rpotential(H)|.

References

1. N. Beldiceanu, P. Flener, and X. Lorca. The tree Constraint. In CP-AI-OR’05, volume 3524
of LNCS, pages 64–78. Springer-Verlag, May 2005.

2. J.-L. Laurière. A language and a program for stating and solving combinatorial problems.
Artificial Intelligence, 10:29–127, 1978.

3. N. Beldiceanu and E. Contejean. Introducing global constraint in CHIP. Mathl. Comput.
Modelling, 20(12):97–123, 1994.

4. M. Sellmann. Cost-based filtering for shortest path constraints. In CP 2003, volume 2833 of
LNCS, pages 694–708. Springer-Verlag, 2003.

5. M. Dincbas, P. Van Hentenryck, H. Simonis, A. Aggoun, T. Graf, and F. Berthier. The
Constraint Logic Programming Language CHIP. In Int. Conf. on Fifth Generation Computer
Systems (FGCS’88), pages 693–702, Tokyo, Japan, 1988.

6. J.-F. Puget. A C++ Implementation of CLP. In Second Singapore International Conference
on Intelligent Systems (SPICIS), pages 256–261, Singapore, November 1994.

7. A. Cayley. A theorem on trees. Quart. J. Math., 23:376–378, 1889.
8. C. Bessière, E. Hebrard, B. Hnich, Z. Kızıltan, and T. Walsh. The range and roots Con-

straints: Specifying Counting and Occurrence Problems. In IJCAI-05, pages 60–65, 2005.
9. C. Berge. Graphes. Dunod, New York, 2nd edition, 1985. In French.

Undirected Forest Constraints 43

10. M. Sellmann. Reduction techniques in Constraint Programming and Combinatorial Opti-
mization. PhD thesis, University of Paderborn, 2002.

11. J.-C. Régin. A filtering algorithm for constraints of difference in CSP. In AAAI-94, pages
362–367, 1994.

12. M. Gondran and M. Minoux. Graphes et algorithmes. Eyrolles, Paris, 2nd edition, 1985. In
French.

13. S. Micali and V. V. Vazirani. An O(|V | · |E|) algorithm for finding maximum matching
in general graphs. In FOCS 1980, pages 17–27, New York, 1980. IEEE.

14. N. Beldiceanu, T. Petit, and G. Rochart. Bounds of Graph Characteristics. In P. van Beek,
editor, CP 2005, volume 3709 of LNCS, pages 742–746. Springer-Verlag, 2005.

Allocation, Scheduling and Voltage Scaling on
Energy Aware MPSoCs

Luca Benini1, Davide Bertozzi2, Alessio Guerri1, and Michela Milano1

1 DEIS, University of Bologna
V.le Risorgimento 2, 40136, Bologna, Italy

{lbenini, aguerri, mmilano}@deis.unibo.it
2 Dipartimento di Ingegneria, University of Ferrara

V. Saragat 1, 41100, Ferrara, Italy
dbertozzi@ing.unife.it

Abstract. In this paper we introduce a complex allocation and schedul-
ing problem for variable voltage Multi-Processor System-on-Chip (MP-
SoC) platforms. We propose a methodology to formulate and solve to
optimality the allocation, scheduling and discrete voltage selection prob-
lem, minimizing the system energy dissipation and the overhead for fre-
quency switching. Our approach is based on the Logic Benders decom-
position technique where the allocation is solved through an Integer Pro-
gramming solver, and the scheduling through a Constraint Programming
solver. The two solvers are interleaved and their interaction regulated
by cutting plane generation. The objective function depends on both
master and sub-problem variables. We demonstrate the efficiency of our
approach on a set of realistic instances.

1 Introduction

As silicon technology keeps scaling, it is becoming technically feasible to inte-
grate entire and complex systems on the same silicon die. This solution provides
scalable computation power, and it is expected that hundreds of processor cores
will be integrated on these Multi-Processor Systems-on-Chip (MPSoCs) in fu-
ture technologies. MPSoCs are widely used in embedded systems (such as cellular
phones, automotive control engines, etc.) where, once deployed in field, they al-
ways run the same set of applications. Since for many multimedia and signal
processing applications the workload is highly predictable at design time, with
minimum run-time fluctuations, an optimal allocation and scheduling for such
applications can be statically derived off-line.

A critical task for recent MPSoCs is the minimization of the energy consumed
since the speed of each processor can be tuned by changing its frequency. We
start from a well-characterized task graph, a directed acyclic graph representing
a functional abstraction of the application that will run on the MPSoCs. Each
task is characterized by the number of clock cycles used for its execution. Clearly
the duration of each task and the energy spent for running it depends on the
clock frequency used during the task execution. In addition, tasks connected

J.C. Beck and B.M. Smith (Eds.): CPAIOR 2006, LNCS 3990, pp. 44–58, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Allocation, Scheduling and Voltage Scaling on Energy Aware MPSoCs 45

by arcs in the task graph communicate and if they are allocated to different
processors, additional communicating tasks are created for reading and writing
data on a shared memory.

Defining the optimal allocation, scheduling and voltage scaling for minimizing
energy in MPSoCs is the aim of this paper. Energy is consumed during task exe-
cution, task communication and for switching between two voltages (setup costs).

The problem we face is very complex. It has never been solved to optimal-
ity by the system design community and it cannot be solved by any complete
commercial solver that models the problem as a whole. The method we use is
the Logic Based Benders Decomposition [8], an extension of the well known OR
Benders Decomposition [1] approach for dealing with solvers of any kind. In this
setting, we allocate tasks to processors and decide their execution frequency in
the master problem, while the subproblem schedules tasks with a fixed dura-
tion and static resource assignment. The interaction between the master and
the subproblem is regulated via cutting planes generation.

The approach has been followed several times for similar problems, but never
applied to scheduling for minimizing costs and setup costs. In particular, there
are a number of papers using Benders Decomposition in a CP setting. [12] pro-
poses the branch and check framework using Benders Decomposition (BD). [4]
embeds BD in the CP environment ECLiPSe and shows that it can be use-
ful in practice. [5] applied Benders decomposition to minimum cost planning
and scheduling problems; in this work the objective function involves only mas-
ter problem variables, while the subproblem is simply a feasibility problem. [6]
and [7] used Benders decomposition for Planning and Scheduling problems with
several objective functions: either minimizing the cost (involving only master
problem variables), or minimizing the makespan or the tardiness or the number
of late tasks (involving the last three cases only subproblem variables); here the
objective function involves both master problem and subproblem variables since
the execution energy is minimized by the allocation problem solver while the
setup cost due to frequency switches can be minimized only at scheduling time.

2 Problem Description

The new MPSoC paradigm for hardware platform design is pushing the paral-
lelization of applications, so that instead of running them at a high frequency
on a single monolithic core, they can be partitioned into a set of parallel tasks,
which are mapped and executed on top of a set of parallel processor cores op-
erating at lower frequencies. Power minimization is a key design objective for
MPSoCs to be used in portable, battery-operated devices. This goal can be pur-
sued by means of low power design techniques at each level of the design process,
from physical-level techniques (e.g., low swing signaling) up to application op-
timization for low power. In this paper, we focus on system-level design, where
the main knobs for tuning power dissipation of an MPSoC are: allocation and
scheduling of a multi-task application onto the available parallel processor cores,
voltage and frequency setting of the individual processor cores. For those systems

46 L. Benini et al.

Fig. 1. Distributed MPSoC architecture

where the workload is largely predictable and not subject to run-time fluctua-
tions (e.g., signal processing or some multimedia applications), the above design
parameters can be statically set at design time. Traditional ways to tackle the
mapping and configuration problem either incur overly large computation times
already for medium-size task sets, or are inaccurate (e.g., use of heuristics and
problem modelling with highly simplifying assumptions on system operation).
Therefore, design technology for MPSoCs strongly needs accurate, scalable and
composable modelling and solving frameworks.

In this paper we consider a reference template [10] for a distributed MPSoC
architecture. The platform consists of computation tiles, a shared bus for inter-
tile communication and a shared memory. The computation tiles are supposed
to be homogeneous and consist of ARM7 processor cores (including instruction
and data caches) and of tightly coupled software-controlled scratchpad memories.
These latter devices can be viewed as local, low access cost memories (see Fig. 1).
Messages can be exchanged by tasks through communication queues [9], which
can be allocated at design time either in scratch-pad memory or in remote shared
memory, depending on whether tasks are mapped onto the same processor or not.

In this architecture, each processor core can run at different clock frequencies.
The frequency of each processor core is derived from a baseline system frequency
by means of integer dividers. Moreover, a synchronization module must be in-
serted between the bus and the processor cores to allow frequency decoupling
(usually a dual-clock FIFO). The bus operates at the maximum frequency (e.g.,
200 MHz). For each processor core, a set of voltage and frequency couples is
specified, since the feasible operating points for these cores are not continuous
but rather discrete. For modern variable voltage/variable frequency cores, this
set is specified in the data-sheet.

Finally, in real-life MPSoC platforms, switching voltage and frequency of a
processor core is not immediate nor costless, therefore the switching overhead in

Allocation, Scheduling and Voltage Scaling on Energy Aware MPSoCs 47

terms of switching delay (referred to as setup times) and energy overhead (re-
ferred to as setup costs) must be carefully considered when selecting the optimal
configuration of a system. In practice, interesting trade-offs have to be studied.
On one hand, tasks can be spread across a large number of processor cores, so
that these cores can operate at lower frequencies, but more communication arises
and the energy cost of many running cores has to be compensated by a more
energy-efficient execution of tasks. On the other hand, tasks have to be grouped
onto the processor cores and scheduled taking care of minimizing the number
of frequency switchings. It must be observed that application real-time require-
ments play a dominant role in determining solutions for the MPSoC mapping
and configuration problem. A good methodology should be conservative with
respect to task deadlines, so to minimize the probability of timing violations in
the real system.

3 Dynamic Voltage Scaling Problem – DVSP: The Model

We consider a directed acyclic task graph G whose nodes represent a set of T
tasks, are annotated with their deadline dlt and with the worst case number of
clock cycles WCNt. Arcs represent dependencies/communications among tasks.
Each arc is annotated with the amount of data two dependent tasks should ex-
change, and therefore the number of clock cycles for exchanging (reading and
writing) these data WCNR and WCNW . Tasks are running on a set of proces-
sors P . Each processor can run with M energy/speed modes and has a maximum
load constraint dlp. Each task spends energy both in computing and in commu-
nicating. In addition, when the processor switches between two modes it spends
time and energy. We have energy overhead Eij for switching from frequency i to
frequency j, and time overhead Tij for switching from frequency i to j.

The Dynamic Voltage Scaling Problem is the problem of allocating tasks to
processors, define the running speed of each task and schedule each of them
minimizing the total energy consumed.

The method we use for handling the DVSP uses the logic-based Benders
decomposition technique [8]. Similarly to [2], the problem is decomposed into
two parts: the first, called Master Problem, is the allocation of processors and
frequencies to tasks and the second, called Subproblem, is the scheduling of
tasks given the static allocation and frequency assignments provided by the
master. Note that the frequency assignment could be done in the subproblem.
However, the scheduling part becomes extremely slow and performances highly
decrease. In addition, the relaxation of the subproblem (introduced in section
4.1) become extremely loose. Differently from [2], the objective function depends
on master and subproblem variables. In fact, the master problem minimizes the
communication and execution energy, while only during the scheduling phase we
could minimize the switching energy overhead.

The master problem is tackled by an Integer Programming solver (through
a traditional Branch and Bound) while the subproblem through a Constraint
Programming solver. The two solvers interact via no-good and cutting planes

48 L. Benini et al.

generation. The solution of the master is passed to the subproblem. We have
two possible cases: (1) there is no feasible schedule: we have to compute a no-
good avoiding the same allocation to be found again; (2) there is a feasible and
optimal schedule minimizing the second component of the objective function:
here we cannot simply stop the iteration since we are not sure we have the
optimal solution overall. We have to generate a cut saying that this is the optimal
solution unless a better one can be computed with a different allocation.

The procedure converges when the master problem produces a solution with
the same objective function of the previous one.

4 Example

As an example, let consider 5 tasks and 5 communications, with the precedence
constraints as described in Figure 2. Table 1 shows the duration (in clock cycles)
of execution and communication tasks (the durations of the reading and the
writing phase Ri and Wi of each communication Comi are the half of these
values). We have 2 processors, running at 2 different frequencies, 200MHz and
100MHz (so, e.g. Task1 will last 500ns if runs at 200MHz and 1μs if runs at
100MHz). The processors waste 10mW when running at 200MHz and 3mW
when running at 100MHz. Switching from the higher frequency to the lower
needs 2ns and wastes 2pJ, while the contrary needs 3ns and wastes 3pJ. The
realtime requirement settles the processor deadline at 2μs.

Table 1. Activities durations for the example

Nome Task1 Task2 Task3 Task4 Task5 Com1 Com2 Com3 Com4 Com5
Clock 100 54 134 24 10 20 10 8 8 8

The first allocation found tries to assign the lower frequency to the third task,
being the longest one and thus the most power consuming one; this solution is
however not schedulable due to the deadline constraint. The second allocation
found is schedulable and is also the optimal one w.r.t. the power consumption
minimization (the total power consumption is 13502mW). The first two tasks
are allocated on the first processor at the higher frequency and the other three
tasks on the second processor: here only Task5 runs at the higher frequency.
The Gantt chart in Figure 2 shows the schedule of this solution.

4.1 The Master Problem Model

We model the allocation problem with binary variables Xptm which take value
1 if task t is mapped on the processor p and runs in mode m, 0 otherwise. Since
we also take into account communication, we assume that two communicating
tasks running on the same processor do not consume any energy and do not
spend any time (indeed the communication time and energy spent are included

Allocation, Scheduling and Voltage Scaling on Energy Aware MPSoCs 49

Task1

Task3

Task2

Task4 Task5

Com1
R1-W1

Com2
R2-W2

Com3
R3-W3

Com4
R4-W4

Com5
R5-W5

10000 1050

1590

1630

1050

1075 1745

1765

1885 1987

Task1 Task2

Task3 Task4 Task5R2 R3

W3W2

W2 R2 W3 R3

Proc1

Proc2

BUS

1887

Fig. 2. Task graph and schedule for the example in Table 1

in the execution time and energy), while if they are allocated on two different
processors, they both consume energy and spend time. The first task spends
time and energy for writing data on a shared memory. This operation makes
the duration of the task becoming longer: it increases of a quantity WCNW /fm

where WCNW is the number of clock cycles for writing data (it depends on the
amount of data we should write), and fm is the frequency of the clock when task
t is performed. The second task should read data from the shared memory. Again
its duration increases of a quantity WCNR/fm where WCNR is the number of
clock cycles for reading data (it depends on the amount of data we should read),
and fm is the frequency of the clock when task t is performed.

Both the read and write activities are performed at the same speed of the task
and use the bus (which instead works at the maximum speed). For modelling
this aspect, we introduce in the model two variables Rpt1t2m and Wpt1t2m taking
value 1 if the task t1 running on processor p reads (resp. writes) data at mode
m from (resp. for) a task t2 not running on p.

Any task can be mapped on only one processor and can run at only one speed.
This translates in the following constraints:

P∑
p=1

M∑
m=1

Xptm = 1 ∀t

Also the communication between two tasks happens at most once:

P∑
p=1

M∑
m=1

Rpt1t2m ≤ 1 ∀t1, t2

P∑
p=1

M∑
m=1

Wpt1t2m ≤ 1 ∀t1, t2

50 L. Benini et al.

The objective function is to minimize the energy consumption of the task
execution, and of the task communication (read and write)

Ecomp =
P∑

p=1

M∑
m=1

T∑
t=1

XptmWCNttclockmPtm

ERead =
P∑

p=1

M∑
m=1

T∑
t,t1=1

Rptt1mWCNRtt1tclockmPtm

EWrite =
P∑

p=1

M∑
m=1

T∑
t,t1=1

Wptt1mWCNWtt1tclockmPtm

where Ptm is the power consumed in a clock cycle (lasting tclockm) by the task
t at mode m.

OF = Ecomp + ERead + EWrite

The objective function defined up to now depends only on master problem
variables. However, switching from one speed to another introduces transition
costs, but their value can be computed only at scheduling time. In fact, they are
not constrained in the master problem original model. They are constrained by
Benders Cuts instead, after the first iteration. We will present Benders Cuts in
section 4.3. Therefore, in the master problem the objective function is:

OFMaster = OF + Setup

Setup =
P∑

p=1

Setupp

It is worth noting that this contribution should be added to the master prob-
lem objective function, but, being the Setupp variables not constrained at the
first iteration in the master problem, they are all forced to be 0. From the sec-
ond iteration, instead, cuts are produced constraining variables Setupp and this
contribution could be no longer 0.

This formulation will result in tasks that are potentially running initially
with lower frequencies on the same processor (thus avoiding communication). A
measure of control is provided by constraints on deadlines in order to prevent
the blind selection of the lowest frequencies and the allocation of all tasks on the
same processor. The timing is not yet known in this phase, but we can introduce
some constraints that represent a relaxation of the subproblem and will reduce
the solution space. For each processor, only a certain load is allowed. Therefore,
on each processor the sum of the time spent for computation, plus the time spent
for communication (read and write) should be less than or equal to the processor
deadline dlp:

Allocation, Scheduling and Voltage Scaling on Energy Aware MPSoCs 51

T p
comp =

T∑
t=1

M∑
m=1

Xptm
WCNt

fm

T p
read =

T∑
t=1

M∑
m=1

T∑
t1=1

Rptt1m
WCNRtt1

fm

T p
write =

T∑
t=1

M∑
m=1

T∑
t1=1

Wptt1m
WCNWtt1

fm

T p
comp + T p

read + T p
write ≤ dlp ∀p (1)

These relaxations can be tightened by considering chains of tasks in the task
graphs instead of groups of tasks running on the same processor. For example
consider tasks t1, t2, t3, t4 linked by precedence constraints so that t1 → t2,
t2 → t3 and t3 → t4. Now suppose that t1 and t4 are allocated on processor 1
and t2 and t3 on other processors. Instead of summing only the durations of t1
and t4 that should be less than or equal to the processor deadline, one could
add also the duration of t2 and t3 since they should be executed before t4. The
chains in a graph can be many, we added only some of them.

Finally, task deadlines can be captured:

P∑
p=1

M∑
m=1

[
Xptm

WCNt

fm
+

T∑
t1=1

(
Rptt1m

WCNRtt1

fm
+ Wptt1m

WCNWtt1

fm

)]
≤ dlt ∀t

There are several improvements we have introduced in the master problem
model. In particular we have removed many symmetries leading the solver to
explore the same configurations several times.

4.2 The Sub-problem Model

Once allocation and voltage selection have been solved optimally, for the schedul-
ing part each task t has an associated variable representing its starting time
Starti. The duration is fixed since the frequency is decided, i.e., durationi =
WCNi/fi. In addition, if two communicating tasks ti and tj are allocated on two
different processors, we should introduce two additional activities (one for writing
data on the shared memory and one for reading data from the shared memory).
We model the starting time of these activities StartWriteij and StartReadji.
These activities are carried on at the same frequency of the corresponding task.
If ti writes and tj reads data, the writing activity is performed at the same
frequency of ti and its duration dWriteij depends on the frequency and on the
amount of data ti writes, i.e., WCNWij/fi. Analogously, the reading activity
is performed at the same frequency of tj and its duration dReadji depends on

52 L. Benini et al.

the frequency and on the amount of data tj reads, i.e., WCNRji/fj. Clearly the
read and write activities are linked together and to the corresponding task:

StartWriteij + dWriteij ≤ StartReadji ∀i, j s.t. i communicates with j

Starti + durationi ≤ StartWriteij ∀i, j s.t. i communicates with j

StartReadji + dReadji ≤ Startj ∀i, j s.t. i communicates with j

In the subproblem, we model precedence constraints in the following way: if
task ti should precede task tj and they run on the same processor at the same
frequency the precedence constraint is simply:

Starti + durationi ≤ Startj

If two tasks run on different processors and should communicate we should
add the time for communicating.

Starti + durationi + dWriteij + dReadji ≤ Startj

Deadline constraints are captured stating that each task must end its execu-
tion before its deadline and, on each processor, all the tasks (and in particular
the last one) running on it must end before the processor deadline.

Starti + durationi ≤ dlti ∀ tasks ti

Starti + durationi ≤ dlp ∀i ∈ p, ∀p
Resources are modelled as follows. We have a unary resource constraint for

each processor, modelled through a cumulative constraint having as parameters
a list of all the variables representing the starting time of the activities (tasks,
readings, writings) sharing the same resource p, their durations, their resource
consumption (which is a list of 1) and the capacity of the processor which is 1.

cumulative(StartListp, DurationListp, [1], 1) ∀p

We model the bus through an additive model we have already validated in
[11]. We have an activity on the bus each time a task writes or reads data to
or from the shared memory. The bus is modelled as an additive resource and
several activities can share the bus, each one consuming a fraction of it until the
total bandwidth is reached. The cumulative constraint used to model the bus is:

cumulative(StartReadWriteList, DurationList, Fraction, T otBWidth)

where StartReadWriteList and DurationList are lists of the starting times and
durations of all read and write activities needing the bus, Fraction is the amount
of bandwidth granted to any activity when accessing the bus1 and TotBWidth
is total bandwidth available of the bus.
1 This value was experimentally tuned to 1/4 of the total bus bandwidth.

Allocation, Scheduling and Voltage Scaling on Energy Aware MPSoCs 53

To model the setup time and cost for frequency switching we take advantage of
the classes defined by ILOG Scheduler to manage transitions between activities.
It is possible to associate a label to each activity and to define a transition matrix
that specifies, for each couple of labels l1 and l2, a setup time and a setup cost
that must be paid to schedule, on the same resource, an activity having the
label l1 just before an activity having the label l2. When, during the search for
a solution, two activities with labels l1 and l2 are scheduled one just after the
other on the same resource, the solver will satisfy the additional constraint:

Startl1 + durationl1 + TransT imel1l2 ≤ Startl2

where TransT imel1l2 is the setup time specified in the transition matrix. Like-
wise, the solver introduces TransCostij in the objective function. If Sp is the
set of all the tasks scheduled on processor p, the objective function we want to
minimize is:

OF =
P∑

p=1

∑
(i,j)∈Sp|next(i)=j

TransCostij

4.3 Generation of Logic-Based Benders Cuts

Once the subproblem has been solved, we generate Benders Cuts. The cuts are
of two types:

– if there is no feasible schedule given an allocation, the cuts are the same we
computed for the single voltage problem and depend on variables Xptm.

– if the schedule exists, we cannot simply stop the iteration since the objective
function depends also on subproblem variables. Therefore, we have to pro-
duce cuts saying that the one just computed is the optimal solution unless
a better one exists with a different allocation. These cuts produce a lower
bound on the setup of single processors.

The first type of cuts are no-good: we call Jp the set of couples (Task, Fre-
quency) allocated to processor p. We impose∑

(t,m)∈Jp

Xptm ≤ |Jp| − 1 ∀p

Let us concentrate on the second type of cuts. The cuts we produce in this
case are bounds on the variable Setup previously defined in the Master Problem.

Suppose the schedule we find for a given allocation has an optimal setup cost
Setup∗. It is formed by independent setups, one for each processor Setup∗ =∑P

p=1 Setup∗p.
We have a bound on the setup LBSetupp on each processor and therefore a

bound on the overall setup LBSetup =
∑P

p=1 LBSetupp .

54 L. Benini et al.

Setupp ≥ 0

Setupp ≥ LBSetupp

LBSetupp = Setup∗p − Setup∗p
∑

(t,m)∈Jp

(1−Xptm)

These cuts remove only one allocation. Indeed, we have also produced cuts
that remove some symmetric solutions.

We have devised tighter cuts removing more solutions. Intuitively, each time
we consider a solution of the problem overall, we generate an optimal setup cost
Setup∗ for the given allocation. In the current solution, we know the number of
frequency switches producing Setup∗. We can consider each processor indepen-
dently since the frequency switches on one processor are independent from the
other. We can impose cuts that say that Setup∗ is bound for all solutions with
the same set of frequency switches of the last one found or a superset of it. To do
that we have to introduce in the model variables Nextt1t2f1f2p, which complicate
the model too much. In fact, our experimental results show that these cuts, even
if tighter, do not lead to any advantage in terms of computational time.

4.4 Relaxation of the Subproblem

The iterative procedure presented so far can be improved by adding a bound on
the setup cost and setup time in the master problem based only on information
derived from the allocation.

Suppose we have five tasks running on the same processors using three dif-
ferent frequencies. So for instance, tasks t1, t3 and t5 run at frequency f1, t2
runs at frequency f2 and t4 runs at frequency f3. Since we have to compute a
bound, we suppose that all tasks running at the same speed go one after the
other. We can have six possible orders of these frequencies leading to different
couples of frequency switches. A bound on the sum of the energy spent during
the frequency switches is the minimal sum between two switches, i.e., the sum of
all possible switches minus the maximum switch. This bound is extremely easy
to compute and does not enlarge the allocation problem model.

Let us introduce in the model variables Zpf taking value 1 if the frequency
f is allocated at least once on the processor p, 0 otherwise. Let us call Ef the
minimum energy for switching to frequency f , i.e. Ef = mini,i�=f{Eif}.

Setupp ≥
M∑

f=1

(ZpfEf −maxf{Ef |Zpf = 1})

This bound helps in reducing the number of iterations between the master and
the subproblem.

Similarly, we can compute the bound on the setup time given an allocation. Let
us consider Tf =mini,i�=f{Tif}. Therefore, we can compute the following bound.

SetupT imep ≥
M∑

f=1

(ZpfTf −maxf{Tf |Zpf = 1})

Allocation, Scheduling and Voltage Scaling on Energy Aware MPSoCs 55

This bound can be used to tighten the constraint (1) in section 4.1 in the
following way.

T p
comp + T p

read + T p
write + SetupT imep ≤ dlp ∀p

so that solutions provided by the master problem are more likely to be feasible
for the subproblem.

A tighter bound on the setup time and cost could be achieved by introducing
in the allocation problem model variables Next, but as explained in section 4.3
they complicate too much the model and are not worth using.

5 Experimental Results

We have generated 500 realistic instances, with the number of tasks varying from
4 to 10 and the number of processors from 2 to 10. We assume that each processor
can run at three different frequencies. We consider, as in [2], applications with a
pipeline workload. Therefore we refer to the number of tasks to be allocated and
we schedule a larger number of tasks corresponding to many iterations of the
pipeline. We also have generated 27 realistic instances with the number of tasks
varying from 8 to 14 and the number of processors from 2 to 6, with generic
task graphs. The generic task graph complicates the problem since it increases
the parallelism degree. We assume that each processor can run at six different
frequencies. All the considered instances are solvable and we found the proved
optimal solution for each of them. Experiments were performed on a 2.4GHz
Pentium 4 with 512 Mb RAM. We used ILOG CPLEX 8.1, ILOG Solver 5.3 and
ILOG Scheduler 5.3 as solving tools.

5.1 Comparison with Pure Approaches

In [2], we compared a solving tool based on Benders Decomposition for a similar
problem with pure CP or IP based solving tools. Results shown that the pure
approaches were not comparable with the hybrid one, being the search times for
finding a solution to a relaxed (thus easier) problem order of magnitude higher.
The problem we are facing in this paper is much more complex then the one
presented in [2], since we consider also frequency switching. We developed a CP
and an IP-based approach to solve allocation, scheduling and voltage selection,
but not even a single (feasible) solution was found within 15 minutes, while
the hybrid approach, within 4 minutes, finds the optimal solution and proves
optimality for all the pipelined instances considered.

5.2 Experimental Results

In this section we show the results obtained solving the problem instances us-
ing the model described in section 3. We consider first the instances with task
graphs representing a pipeline workflow. Note that here, since we are considering
applications with pipeline workload, if n is the number of tasks to be allocated,

56 L. Benini et al.

Table 2. Search time and number of
iterations for instances with pipelined
task graphs

Tasks
Alloc SchedProcs Time(s) Iters

4 16 2 1,73 1,98
4 16 3 1,43 2,91
4 16 4 2,24 3,47
5 25 2 2,91 2,36
5 25 3 4,19 4,12
5 25 4 5,65 4,80
5 25 5 6,69 3,41
6 36 2 3,84 2,90
6 36 3 10,76 2,17
6 36 4 15,25 4,66
6 36 5 23,17 4,50
6 36 6 26,14 3,66
7 49 2 4,67 1,75
7 49 3 5,90 1,90
7 49 7 34,53 6,34
8 64 2 4,09 3,28
8 64 3 10,99 1,83
8 64 4 12,34 4,45
8 64 5 22,65 10,53
8 64 7 51,07 6,98
9 81 2 1,79 1,12
9 81 5 60,07 7,15
9 81 6 70,40 9,20
10 100 2 5,52 1,83
10 100 3 3,07 1,96
10 100 6 120,02 6,23
10 100 10 209,35 10,65

Table 3. Search time and number of
iterations for instances with generic
task graphs

Tasks
Alloc SchedProcs Time(s) Iters

8 8 2 1,57 1
8 8 3 1,48 2
8 8 3 0,81 1
8 8 3 4,26 6
8 8 4 0,86 1
9 9 2 2,51 1
9 9 2 1,11 1
9 9 2 2,73 3
9 9 3 35,95 43
9 9 3 2,51 1
9 9 3 6,62 2
9 9 4 1,40 3
9 9 4 2,14 5
9 9 4 2,60 4
9 9 4 29,59 26
9 9 4 4,84 6
9 9 6 158,43 39
10 10 2 5,90 1
10 10 3 2,12 1
10 10 3 12,81 3
10 10 4 0,37 1
10 10 4 13,92 14
10 10 4 4,18 5
10 10 4 11,50 27
12 12 5 551,92 213
14 14 2 14,11 1
14 14 6 3624,81 2

Table 4. Number of iterations distribution ratio

Iter 1 2 3 4 5 6 7 8 9 10 11+
% 50,20 18,51 7,11 4,52 4,81 2,88 2,46 2,05 1,64 1,64 4,11

the number of scheduled tasks is n2. Results are summarized in Table 2. The
first three columns contain the number of allocated and scheduled tasks and the
number of processors considered in the instances (we remind that each processor
can run at three different frequencies). The last two columns represent respec-
tively the search time and the number of iterations. Each value is the mean over
all the instances with the same number of tasks and processors. We can see that
for all the instances the optimal solution can be found within four minutes. The
number of iterations is typically low. Table 4 shows the percentage of occurrence

Allocation, Scheduling and Voltage Scaling on Energy Aware MPSoCs 57

of a given number of iterations. We can see that the optimal solution can be
found at the first step in one half of the cases and the number of iterations is
at most 5 in almost the 90% of cases. This result is due to the tight relaxations
added to the master problem model. We tried to remove these relaxations and
we found that the search time and the number of iterations rise, in the average
case, up to 1 order of magnitude and, in the worst cases, the solution cannot be
found within two hours.

We extended our analysis to instances where the task graph is a generic one,
so an activity can possibly read data from more than one preceding activity and
possibly write data that will be read by more than one following activity, so the
number of reading and writing activities can be considerably higher, being higher
the number of edges in the task graph. We remind that each processor can run at
six different frequencies, so the number of alternative resources a task can use is
six times the number of processors. Differently from the pipelined instances, here
we schedule a single repetition of each task. Table 3 summarizes the results. Each
instance presented has been solved optimally. Columns have the same meaning
as those already described in Table 2. We can see that typically the behaviors
are similar to those found when solving the pipelined instances, but sometimes
the number of iterations, and thus the search time is notably higher. This is due
to the particular structure of the task graph; in fact it can happens that a high
degree of parallelism between the tasks, that is a high number of tasks that can
execute only after a single task, leads to allocations that are not schedulable.
The master problem solver thus looses time proposing to the scheduler a high
number of unfeasible allocation. Introducing in the master problem model some
relaxations coming from an analysis of the task graph structure, and in particular
from the precedence constraints, can lead to better results.

6 Conclusion and Future Research

An exact algorithm for allocation, scheduling and voltage selection has been
proposed exploiting the method of Logic-based Benders Decomposition. Exper-
imental results show that the approach using CP and IP for the problem as a
whole cannot solve any of the instances considered, while our approach solves
them all to optimality. A number of improvements can be conceived the most
important concerning the use of a column generation approach for the master
problem would most probably lead to a significant speed up. As a second im-
provement cutting planes that can be derived from [3] and integrated in the
master problem model. In addition, we are investigating tighter cutting planes
based on information derived from the precedence graph.

Acknowledgement. This work has been partially supported by MIUR under
the COFIN2005 project Mapping di applicazioni multi-task basate su Program-
mazione a vincoli e intera.

58 L. Benini et al.

References

1. J. F. Benders. Partitioning procedures for solving mixed-variables programming
problems. Numerische Mathematik, 4:238–252, 1962.

2. D. Bertozzi, L. Benini, A. Guerri, and M. Milano. Allocation and scheduling for
mpsocs via decomposition and no-good generation. In Procs. of the 11th Intern.
Conference on Principles and Practice of Constraint Programming - CP 2005,
pages 107–121, Sites, Spain, Sept. 2005. Springer.

3. M. Fischetti E. Balas and W. Pulleyblank. The precedence constrained asymmetric
travelling salesman problem. Mathematical Programming, 68:241–265, 1995.

4. A. Eremin and M. Wallace. Hybrid benders decomposition algorithms in constraint
logic programming. In Procs. of the 7th Intern. Conference on Principles and
Practice of Constraint Programming - CP 2001, pages 1–15, Paphos, Cyprus, Nov.
2001. Springer.

5. I. E. Grossmann and V. Jain. Algorithms for hybrid milp/cp models for a class of
optimization problems. INFORMS Journal on Computing, 13:258–276, 2001.

6. J. N. Hooker. A hybrid method for planning and scheduling. In Procs. of the 10th
Intern. Conference on Principles and Practice of Constraint Programming - CP
2004, pages 305–316, Toronto, Canada, Sept. 2004. Springer.

7. J. N. Hooker. Planning and scheduling to minimize tardiness. In Procs. of the
11th Intern. Conference on Principles and Practice of Constraint Programming -
CP 2005, pages 314–327, Sites, Spain, Sept. 2005. Springer.

8. J. N. Hooker and G. Ottosson. Logic-based benders decomposition. Mathematical
Programming, 96:33–60, 2003.

9. P. Poletti, A. Poggiali, and P. Marchal. Flexible hardware/software support for
message passing on a distributed shared memory architecture. In 2005 Design,
Automation and Test in Europe Conference and Exposition DATE2005, pages 736–
741, 2005.

10. M. Ruggiero, A. Acquaviva, D. Bertozzi, and L. Benini. Application-specific power-
aware workload allocation for voltage scalable mpsoc platforms. In 2005 Interna-
tional Conference on Computer Design, pages 87–93, 2005.

11. M. Ruggiero, A. Guerri, D. Bertozzi, L. Benini, and M. Milano. Communication-
aware allocation and scheduling framework for stream-oriented multi-processor
systems-on-chip. In 2006 Design, Automation and Test in Europe Conference and
Exposition DATE2006, 2006.

12. E. S. Thorsteinsson. A hybrid framework integrating mixed integer programming
and constraint programming. In Procs. of the 7th International Conference on
Principles and Practice of Constraint Programming - CP 2001, pages 16–30, Pa-
phos, Cyprus, Nov. 2001.

The Range Constraint: Algorithms and
Implementation

Christian Bessiere1, Emmanuel Hebrard2, Brahim Hnich3, Zeynep Kiziltan4,
and Toby Walsh2

1 LIRMM, CNRS/University of Montpellier, France
bessiere@lirmm.fr

2 NICTA and UNSW, Sydney, Australia
{ehebrard, tw}@cse.unsw.edu.au

3 Izmir University of Economics, Izmir, Turkey
brahim.hnich@ieu.edu.tr

4 University of Bologna, Italy
zkiziltan@deis.unibo.it

Abstract. We recently proposed a simple declarative language for spec-
ifying a wide range of counting and occurrence constraints. The language
uses just two global primitives: the Range constraint, which computes
the range of values used by a set of variables, and the Roots constraint,
which computes the variables mapping onto particular values. In order
for this specification language to be executable, propagation algorithms
for the Range and Roots constraints should be developed. In this paper,
we focus on the study of the Range constraint. We propose an efficient
algorithm for propagating the Range constraint. We also show that de-
composing global counting and occurrence constraints using Range is
effective and efficient in practice.

1 Introduction

Constraints that put restrictions on the occurrence of particular values (occur-
rence constraints) or constraints that put restrictions on the number of values
or variables meeting some conditions (counting constraints) are very useful in
many real world problems, especially those involving resources. For instance, we
may want to limit the number of distinct values assigned to a set of variables.
Many of the global constraints proposed in the past are counting and occur-
rence constraints (see, for example, [14, 4, 15, 2, 5]). In [6], we show that many
occurrence and counting constraints can be expressed by means of two new
global constraints, Range and Roots, together with some classical elementary
constraints. This language also provides us with a method to propagate count-
ing and occurrence constraints. We just need to provide efficient propagation
algorithms for the Range and Roots constraints. This paper focuses on the
Range constraint. We give an efficient algorithm for propagating the Range
constraint based on a flow algorithm. We propose an extension of the Range
constraint where we have constraints on the cardinality of the set variables.

J.C. Beck and B.M. Smith (Eds.): CPAIOR 2006, LNCS 3990, pp. 59–73, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

60 C. Bessiere et al.

We also show that decomposing occurence constraints and counting constraints
using the Range constraint performs well in practice.

The rest of the paper is organised as follows. Section 2 gives the formal back-
ground. Section 3 shows how counting and occurrence constraints can be de-
composed using the Range constraint. In Section 4, we propose a polynomial
algorithm for the Range constraint and an extension to the case where the
set variables are subject to constraints on their cardinality. Some experimental
results are presented in Section 6. Finally, we conclude in Section 7.

2 Formal Background

A constraint satisfaction problem consists of a set of variables, each with a finite
domain of values, and a set of constraints specifying allowed combinations of
values for subsets of variables. We use capitals for variables (e.g. X , Y and S),
and lower case for values (e.g. v and w). We write D(X) for the domain of a
variable X . A solution is an assignment of values to the variables satisfying the
constraints. A variable is ground when it is assigned a value. We consider both
integer and set variables. A set variable S is represented by its lower bound
lb(S) which contains the definite elements (that must belong to the set) and an
upper bound ub(S) which also contains the potential elements (that may or may
not belong to the set).

Constraint solvers typically explore partial assignments enforcing a local con-
sistency property using either specialized or general purpose propagation algo-
rithms. Given a constraint C, a bound support on C is a tuple that assigns to
each integer variable a value between its minimum and maximum, and to each
set variable a set between its lower and upper bounds which satisfies C. A bound
support in which each integer variable is assigned a value in its domain is called a
hybrid support. If C involves only integer variables, a hybrid support is a support.
A value (resp. set of values) for an integer variable (resp. set variable) is bound
or hybrid consistent with C iff there exists a bound or hybrid support assigning
this value (resp. set of values) to this variable. A constraint C is bound consis-
tent (BC) iff for each integer variable Xi, its minimum and maximum values
belong to a bound support, and for each set variable Sj , the values in ub(Sj)
belong to Sj in at least one bound support and the values in lb(Sj) are those
from ub(Sj) that belong to Sj in all bound supports. A constraint C is hybrid
consistent (HC) iff for each integer variable Xi, every value in D(Xi) belongs
to a hybrid support, and for each set variable Sj , the values in ub(Sj) belong to
Sj in at least one hybrid support, and the values in lb(Sj) are those from ub(Sj)
that belong to Sj in all hybrid supports. A constraint C involving only integer
variables is generalized arc consistent (GAC) iff for each variable Xi, every value
in D(Xi) belongs to a support. If all variables in C are integer variables, hybrid
consistency reduces to generalized arc consistency, and if all variables in C are
set variables, hybrid consistency reduces to bound consistency.

To illustrate these different concepts, consider the constraint C(X1, X2, S)
that holds iff the set variable S is assigned exactly the values used by the integer

The Range Constraint: Algorithms and Implementation 61

variables X1 and X2. Let D(X1) = {1, 3}, D(X2) = {2, 4}, lb(S) = {2} and
ub(S) = {1, 2, 3, 4}. BC does not remove any value since all domains are already
bound consistent (value 2 was considered as possible for X1 because BC deals
with bounds). On the other hand, HC removes 4 from D(X2) and from ub(S) as
there does not exist any tuple satisfying C in which X2 does not take value 2.

A total function F from a set S into a set T is denoted by F : S −→ T where
S is the domain of F and T is the range of F . Throughout, we will view a set
of variables, X1 to Xn as a function X : {1, .., n} −→

⋃i=n
i=1 D(Xi). That is, X (i)

is the value of Xi.

3 An Executable Language

One of the simplest ways to propagate a new constraint is to decompose it
into existing primitive constraints. We can then use the propagation algorithms
associated with these primitives. Of course, such decomposition may reduce the
number of domain values pruned. In [6], we show that many global counting
and occurrence constraints can be decomposed into two new global constraints,
Range and Roots, together with simple non-global constraints over integer
variables (like X ≤ m) and simple non-global constraints over set variables
(like S1 ⊆ S2 or |S| = k). Adding Range and Roots and their propagation
algorithms to a constraint toolkit thus provides a simple executable language for
specifying a wide range of counting and occurrence constraints.

We focus here on the Range constraint. Given the function X representing
a set of variables X1 to Xn, the Range constraint holds iff a set variable T is
the range of this function, restricted to the indices belonging to a second set
variable, S.

Range([X1, .., Xn], S, T) iff T =
⋃
i∈S

X (i)

In [7], we present a catalog containing over 70 global constraints from [3]
specified with this simple language containing Range and Roots constraints.
We present here just a few examples of using Range to decompose a global
constraint.

The NValue constraint is useful in a wide range of problems involving re-
sources since it counts the number of distinct values used by a sequence of
variables [11]. NValue([X1, .., Xn], N) holds iff N = |{Xi | 1 ≤ i ≤ n}|. This
can be decomposed into a Range constraint:

NValue([X1, .., Xn], N) iff Range([X1, .., Xn], {1, .., n}, T) ∧ |T | = N

Enforcing HC on the decomposition is weaker than GAC on the original NValue
constraint. However, it is NP-hard to enforce GAC on a NValue constraint [8].

In [6], the Uses constraint was introduced. Uses is a variant of the UsedBy
constraint [5]. Uses([X1, .., Xn], [Y1, .., Ym]) holds iff the set of values assigned
to Y1, .., Ym is a subset of the set of values assigned to X1, .., Xn. This can be
decomposed into a Range constraint:

Uses([X1, .., Xn], [Y1, .., Ym]) iff

62 C. Bessiere et al.

Range([X1, .., Xn], {1, .., n}, T) ∧Range([Y1, .., Ym], {1, .., m}, T ′) ∧ T ′ ⊆ T

Enforcing HC on the decomposition is weaker than GAC on the original Uses
constraint. However, it is NP-hard to enforce GAC on a Uses constraint [6].
Thus, decomposition is a simple method to obtain a polynomial propagation
algorithm.

The Permutation constraint is an AllDifferent constraint where we ad-
ditionally know �, the set of values to be taken. That is, the sequence of vari-
ables [X1, . . . , Xn] is a permutation of the values in � where |�| = n. In [6], the
Permutation constraint is decomposed using a single Range constraint:

Permutation([X1, . . . , Xn],�) iff Range([X1, . . . , Xn], {1, . . . , n},�)

Enforcing HC on the decomposition is equivalent to GAC on the original Perm-
utation constraint [6].

4 Propagating the Range Constraint

Enforcing hybrid consistency on the Range constraint is polynomial. This can
be done using a maximum network flow problem. In fact, the Range constraint
can be decomposed using a global cardinality constraint (Gcc) for which propa-
gators based on flow problems already exist [15, 13]. This will be shown in Section
5. But the Range constraint does not need the whole power of maximum net-
work flow problems, and thus HC can be enforced on it at a lower cost than that
of calling a Gcc propagator. In this section, we propose an efficient way to en-
force HC on Range. To simplify the presentation, the use of the flow is limited
to a constraint that performs only part of the work needed for enforcing HC on
Range. This constraint, that we name Occurs([X1, . . . , Xn], T), ensures that
all the values in the set variable T are used by the integer variables X1 to Xn:

Occurs([X1, . . . , Xn], T) iff T ⊆
⋃

i∈1..n

X (i)

We first present an algorithm for achieving HC on Occurs (Section 4.1), and
then use this to propagate the Range constraint (Section 4.2).

4.1 Occurs Constraint

We achieve hybrid consistency on Occurs([X1, . . . , Xn], T) using a network flow.
We use a unit capacity network [1] in which capacities between two nodes can
only be 0 or 1. This is represented by a directed graph where an arc from node x
to node y means that a maximum flow of 1 is allowed between x and y while the
absence of an arc means that the maximum flow allowed is 0. The unit capacity
network GC = (N, E) of the constraint C = Occurs([X1, . . . , Xn], T) is built in
the following way. N = {s}∪N1 ∪N2 ∪ {t}, where s is a source node, t is a sink

The Range Constraint: Algorithms and Implementation 63

1

2

3

4

s t

z1

z2

z3

z4

x1

x2

x3

Fig. 1. Unit capacity network of the constraint C = Occurs([X1, X2, X3], T) with
D(X1) = {1, 2}, D(X2) = {2, 3, 4}, D(X3) = {3, 4}, lb(T) = {3, 4} and ub(T) =
{1, 2, 3, 4}. Arcs are directed from left to right.

node, N1 = {v | v ∈
⋃

D(Xi)} and N2 = {zv | v ∈
⋃

D(Xi)} ∪ {xi | i ∈ [1..n]}.
The set of arcs E is as follows:

E = ({s} ×N1) ∪ {(v, zv), ∀v /∈ lb(T)} ∪ {(v, xi) | v ∈ D(Xi)} ∪ (N2 × {t})

GC is quadripartite, i.e., E ⊆ ({s} × N1) ∪ (N1 × N2) ∪ (N2 × {t}). In Fig. 1,
we depict the network GC of the constraint C = Occurs([X1, X2, X3], T) with
D(X1) = {1, 2}, D(X2) = {2, 3, 4}, D(X3) = {3, 4}, lb(T) = {3, 4} and ub(T) =
{1, 2, 3, 4}. The intuition behind this graph is that when a flow uses an arc from
a node v to a node xi this means that Xi is assigned v, and when a flow uses the
arc (v, zv) this means that v is not necessarily used by the Xi’s.1 In Fig. 1 nodes
3 and 4 are linked only to nodes x2 and x3, which means that values 3 and 4
must necessarily be taken by one of the variables Xi (3 and 4 belong to lb(T)).
On the contrary, nodes 1 and 2 are also linked to nodes z1 and z2 because values
1 and 2 do not have to be taken by a Xi (they are not in lb(T)).

In the particular case of unit capacity networks, a flow is any set E′ ⊆ E:
any arc in E′ is assigned 1 and the arcs in E \E′ are assigned 0. A feasible flow
from s to t in GC is a subset Ef of E such that ∀n ∈ N \ {s, t} the number
of arcs of Ef entering n is equal to the number of arcs of Ef going out of n,
that is, |{(n′, n) ∈ Ef}| = |{(n, n′′) ∈ Ef}|. The value of the flow Ef from s to
t, denoted val(Ef , s, t), is val(Ef , s, t) = |{n | (s, n) ∈ Ef}|. A maximum flow
from s to t in GC is a feasible flow EM such that there does not exist a feasible
flow Ef , with val(Ef , s, t) > val(EM , s, t). A maximum flow for the network of
Fig. 1 is given in Fig. 2. By construction a feasible flow cannot have a value
greater than |N1|. In addition, a feasible flow cannot contain two arcs entering
a node xi from N2. Hence, we can define a function ϕ linking feasible flows and
partial instantiations on the Xi’s. Given any feasible flow Ef from s to t in GC ,
ϕ(Ef) = {(Xi, v) | (v, xi) ∈ Ef}. The maximum flow in Fig. 2 corresponds to
1 Note that the edges go from the nodes representing the values to the nodes rep-

resenting the variables. This is the opposite as the direction in the network flow
problems used in the propagators of the Alldiff or Gcc constraints [14, 15].

64 C. Bessiere et al.

1

2

3

4

s t

z1

z2

z3

z4

x1

x2

x3

Fig. 2. A maximum flow for the network of Fig. 1. Bold arcs are those that belong to
the flow. Arcs are directed from left to right.

the instantiation X2 = 4, X3 = 3. The way GC is built induces the following
theorem.

Theorem 1. Let GC = (N, E) be the capacity network of a constraint C =
Occurs([X1, . . . , Xn], T).

1. A value v in the domain D(Xi) for some i ∈ [1..n] is HC iff there exists a
flow Ef from s to t in GC with val(Ef , s, t) = |N1| and (v, xi) ∈ Ef

2. If the Xi’s are HC, T is HC iff ub(T) ⊆
⋃

i D(Xi)

Proof. (1.⇒) Let I be a solution for C with (Xi, v) ∈ I. Build the following
flow H : Put (v, xi) in H ; ∀w ∈ I[T], w �= v, take a variable Xj such that
(Xj , w) ∈ I (we know there is at least one since I is solution), and put (w, xj)
in H ; ∀w′ /∈ I[T], w′ �= v, add (w′, zw′) to H . Add to H the edges from s to N1
and from N2 to t so that we obtain a feasible flow. By construction, all w ∈ N1
belong to an edge of H . So, val(H, s, t) = |N1| and H is a maximum flow with
(v, xi) ∈ H .

(1.⇐) Let EM be a flow from s to t in GC with (v, xi) ∈ EM and val(EM , s, t)
= |N1|. By construction of GC , we are guaranteed that all nodes in N1 belong
to an arc in EM ∩ (N1 ×N2), and that for every value w ∈ lb(T), {n | (w, n) ∈
E} ⊆ {xi | i ∈ [1..n]}. Thus, for each w ∈ lb(T), ∃Xj | (Xj , w) ∈ ϕ(EM). Hence,
any extension of ϕ(EM) where each unassigned Xj takes any value in D(Xj)
and T = lb(T) is a solution of C with Xi = v.

(2.⇒) If T is HC, all values in ub(T) appear in at least one solution tuple.
Since C ensures that T ⊆

⋃
i{Xi}, ub(T) cannot contain a value appearing in

none of the D(Xi).
(2.⇐) Let ub(T) ⊆

⋃
i D(Xi). Since all Xi’s are HC, we know that each value

v in
⋃

i D(Xi) is taken by some Xi in at least one solution tuple I. Build the
tuple I ′ so that I ′[Xi] = I[Xi] for each i ∈ [1..n] and I ′[T] = I[T] ∪ {v}. I ′ is
still solution of C. So, ub(T) is as tight as it can be wrt HC. In addition, since
all Xi’s are HC, this means that in every solution tuple I, for each v ∈ lb(T)
there exists i such that I[Xi] = v. So, lb(T) is HC. �

The Range Constraint: Algorithms and Implementation 65

1

2

3

4

s t

z1

z2

z3

z4

x1

x2

x3

Fig. 3. Residual graph obtained from the network in Fig. 1 and the maximum flow in
Fig. 2

Following Theorem 1, we need a way to check which edges belong to a maximum
flow. Residual graphs are useful for this task. Given a unit capacity network GC

and a maximal flow EM from s to t in GC , the residual graph RGC (EM) =
(N, ER) is the directed graph obtained from GC by reversing all arcs belonging
to the maximum flow EM ; that is, ER = {(x, y) ∈ E \ EM} ∪ {(y, x) | (x, y) ∈
E ∩EM}. Given the network GC of Fig. 1 and the maximum flow EM of Fig. 2,
RGC (EM) is depicted in Fig. 3. Given a maximum flow EM from s to t in GC ,
given (x, y) ∈ N1 ×N2 ∩E \EM , there exists a maximum flow containing (x, y)
iff (x, y) belongs to a cycle in RGC (EM) [16]. Furthermore, finding all the arcs
(x, y) that do not belong to a cycle in a graph can be performed by building
the strongly connected components of the graph. We see in Fig. 3 that the arcs
(1, x1) and (2, x1) belong to a cycle. So, they belong to some maximum flow and
(X1, 1) and (X1, 2) are hybrid consistent. (2, x2) does not belong to any cycle.
So, (X2, 2) is not HC.

HC on Occurs
We now have all the tools for achieving HC on any Occurs constraint. We first
build GC . We compute a maximum flow EM from s to t in GC ; if val(EM , s, t) <
|N1|, we fail. Otherwise we compute RGC (EM), build the strongly connected
components in RGC (EM), and remove from D(Xi) any value v such that (v, xi)
belongs to neither EM nor to a strongly connected component in RGC (EM).
Finally, we set ub(T) to ub(T)∩

⋃
i D(Xi). Following Theorem 1 and properties

of residual graphs, this algorithm enforces HC on Occurs([X1, .., Xn], T).

Complexity. Building GC is in O(nd). We need then to find a maximum flow
EM in GC . This can be done in two sub-steps. First, we use the arc (v, zv) for
each v /∈ lb(T) (in O(|

⋃
i D(Xi)|)). Afterwards, we compute a maximum flow on

the subgraph composed of all paths traversing nodes w with w ∈ lb(T) (because
there is no arc (w, zw) in GC for such w). The complexity of finding a maximum
flow in a unit capacity network is in O(

√
k · e) if k is the number of nodes and

e the number of edges. This gives a complexity in O(
√
|lb(T)| · |lb(T)| · n) for

this second sub-step. Building the residual graph and computing the strongly

66 C. Bessiere et al.

Algorithm 1. Hybrid consistency on Range

procedure Propag-Range([X1 , . . . , Xn], S, T);
Introduce the set of integer variables Y = {Yi | i ∈ ub(S)},1

with D(Yi) = D(Xi) ∪ {dummy};
Achieve hybrid consistency on the constraint Occurs(Y, T);2

Achieve hybrid consistency on the constraints i ∈ S ↔ Yi ∈ T , for all Yi ∈ Y ;3

Achieve GAC on the constraints (Yi = dummy) ∨ (Yi = Xi), for all Yi ∈ Y ;4

connected components is in O(nd). Extracting the HC domains for the Xi’s is
direct. There remains to compute BC on T , which takes O(nd). Therefore, the
total complexity is in O(nd + n · |lb(T)|3/2).

Incrementality. In constraint solvers, constraints are usually maintained in a lo-
cally consistent state after each modification (restriction) in the domains of the
variables. It is thus interesting to ask about the total complexity of maintaining
HC on Occurs after an arbitrary number of restrictions on the domains (values
removed from D(Xi) and ub(T), or added to lb(T)). Whereas some constraints
are completely incremental (i.e., the total complexity after any number of re-
strictions is the same as the complexity of one propagation), this is not the case
for constraints based on flow techniques like AllDifferent or Gcc [14, 15].
They indeed potentially require the computation of a new maximum flow after
each modification. Restoring a maximum flow from one that lost p edges is in
O(p · e). If values are removed one by one (nd possible times), and if each re-
moval affects the current maximum flow, the overall complexity over a sequence
of restrictions on Xi’s, S, T , is in O(n2d2).

4.2 Hybrid Consistency on Range

Enforcing HC on Range([X1, . . . , Xn], S, T) can be done by decomposing it as
an Occurs constraint on new variables Yi and some channelling constraints ([9])
linking T and the Yi’s to S and the Xi’s. But the interesting point is that we do
not need to maintain HC on the decomposition but we just need to propagate
the constraints in one pass.

The algorithm Propag-Range, enforcing HC on the Range constraint, is pre-
sented in Algorithm 1. In line 1, a special encoding is built, where a Yi is in-
troduced for each Xi with index in ub(S). The domain of a Yi is the same as
that of Xi plus a dummy value. The dummy value works as a flag. If Occurs
prunes it from D(Yi) this means that Yi is necessary in Occurs to cover lb(T).
Then, Xi is also necessary to cover lb(T) in Range. In line 2, HC on Occurs
removes a value from a Yi each time it contains other values that are necessary
to cover lb(T) in every solution tuple. HC also removes values from ub(T) that
cannot be covered by any Yi in a solution. Line 3 updates the bounds of S and
the domain of Yi’s. Finally, in line 4, the channelling constraints between Yi and
Xi propagate removals on Xi for each i which belongs to S in all solutions.

The Range Constraint: Algorithms and Implementation 67

Theorem 2. The algorithm Propag-Range is a correct algorithm for enforcing
HC on Range, that runs in O(nd + n · |lb(T)|3/2) time, where d is the maximal
size of Xi domains.

Proof. Soundness. A value v is removed from D(Xi) in line 4 if it is removed
from Yi together with dummy in lines 2 or 3. If a value v is removed from Yi

in line 2, this means that any tuple on variables in Y covering lb(T) requires
that Yi takes a value from D(Yi) other than v. So, we cannot find a solution
of Range in which Xi = v since lb(T) must be covered as well. A value v is
removed from D(Yi) in line 3 if i ∈ lb(S) and v �∈ ub(T). In this case, Range
cannot be satisfied by a tuple where Xi = v. If a value v is removed from ub(T)
in line 2, none of the tuples of values for variables in Y covering lb(T) can cover
v as well. Since variables in Y duplicate variables Xi with index in ub(S), there
is no hope to satisfy Range if v is in T . Note that ub(T) cannot be modified
in line 3 since Y contains only variables Yi for which i was in ub(S). If a value
v is added to lb(T) in line 3, this is because there exists i in lb(S) such that
D(Yi)∩ ub(T) = {v}. Hence, v is necessarily in T in all solutions of Range. An
index i can be removed from ub(S) only in line 3. This happens when the domain
of Yi does not intersect ub(T). In such a case, this is evident that a tuple where
i ∈ S could not satisfy Range since Xi could not take a value in T . Finally, if
an index i is added to lb(S) in line 3, this is because D(Yi) is included in lb(T),
which means that the dummy value has been removed from D(Yi) in line 2. This
means that Yi takes a value from lb(T) in all solutions of Occurs. Xi also has
to take a value from lb(T) in all solutions of Range.

Completeness (Sketch). Suppose that a value v is not pruned from D(Xi) after
line 4 of Propag-Range. If Yi ∈ Y , we know that after line 2 there was an
instantiation I on Y and T , solution of Occurs with I[Yi] = v or with Yi =
dummy (thanks to the channelling constraints in line 4). We can build the tuple
I ′ on X1, ..Xn, S, T where Xi takes value v, every Xj with j ∈ ub(S) and I[Yj] ∈
I[T] takes I[Yj], and the remaining Xj ’s take any value in their domain. T is
set to I[T] plus the values taken by Xj ’s with j ∈ lb(S). These values are in
ub(T) thanks to line 3. Finally, S is set to lb(S) plus the indices of the Yj ’s with
I[Yj] ∈ I[T]. These indices are in ub(S) since the only j’s removed from ub(S)
in line 3 are such that D(Yj) ∩ ub(T) = ∅, which prevents I[Yj] from taking a
value in I[T]. Thus I ′ is a solution of Range with I ′[Xi] = v. We have proved
that the Xi’s are hybrid consistent after Propag-Range.

Suppose a value i ∈ ub(S) after line 4. Thanks to constraint in line 3 we
know there exists v in D(Yi) ∩ ub(T), and so, v ∈ D(Xi) ∩ ub(T). Now, Xi is
hybrid consistent after line 4. Thus Xi = v belongs to a solution of Range. If
we modify this solution by putting i in S and v in T (if not already there), we
keep a solution.

Completeness on lb(S), lb(T) and ub(T) is proved in a similar way.

Complexity. The important thing to notice in Propag-Range is that constraints
in lines 2–4 are propagated in sequence. Thus, Occurs is propagated only once,

68 C. Bessiere et al.

for a complexity in O(nd + n · |lb(T)|3/2). Lines 1, 3, and 4 are in O(nd). Thus,
the complexity of Propag-Range is in O(nd+n · |lb(T)|3/2). This reduces to linear
time complexity when lb(T) is empty.

Incrementality. The overall complexity over a sequence of restrictions on Xi’s,
S and T is in O(n2d2). (See incrementality of Occurs in Section 4.1.) �

As we will show in the next section, the Range constraint can be decomposed
using the Gcc constraint. However, propagation on such a decomposition is in
O(n2d + n2.66) time complexity (see [13]). Propag-Range is thus significantly
cheaper.

5 Range and Cardinality

Constraint toolkits like [10] additionally represent an interval on the cardinal-
ity of each set variable. This extra information is not taken into account by
Range([X1, . . . , Xn], S, T) whereas it could improve propagation. We can eas-
ily extend the Range constraint to a constraint Range-Card that involves
this cardinality information. Range-Card([X1, . . . , Xn], S, M, T, N) holds iff
Range([X1, . . . , Xn], S, T) & |S| = M & |T | = N . Unfortunately, enforcing
HC on Range-Card is NP-hard because it subsumes the NValue constraint
(Range-Card([X1, . . . , Xn], {1..n}, n, T, N) ≡ NValue(N, [X1, . . . , Xn])) and
NValue is itself NP-hard to propagate [8]. However, we can partially take into
account such cardinality information. Range-Card([X1, . . . , Xn], S, M, T, N)
can be decomposed using a Gcc constraint:

Range-Card([X1, . . . , Xn], S, M, T, N) iff

Gcc([Y1, . . . , Yn], [1, . . . , m + 1], [B1, . . . , Bm+1]) ∧
∀i ∈ [1..n] i ∈ S ↔ Yi ∈ T ∧
∀i ∈ [1..n] (Xi = Yi) ∨ (Yi = m + 1) ∧
∀v ∈ [1..m + 1] v ∈ T ↔ Bv �= 0 ∧
∀v ∈ [1..m + 1] Bv ≤ M −N + 1 ∧∑

v∈[1..m] Bv = M

where m = |
⋃

i∈[1..n](D(Xi))|, m + 1 is a dummy value, and Gcc([X1, . . . , Xn],
[d1, . . . , dm], [O1, . . . , Om]) holds iff the value di is used Oi times in X1, . . . , Xn,
for all i, 1 ≤ i ≤ m. For sake of clarity we suppose that values are consecutive in
the interval [1..m] but this is not a restriction.

We have ∀i ∈ [1..n], D(Yi) = D(Xi)∪{m + 1} and ∀v ∈ [1..m + 1], D(Bv) =
[0..n]. We enforce GAC on the X ’s and Y ’s and BC on S, T and the B’s. This
algorithm has O(n2d+n2.66) complexity (see [13]), which is typically worse than
Propag-Range which ignores such cardinality information. It remains an open
problem if we can extend Propag-Range to include some cardinality information,
and if we can do so without changing its complexity.

The Range Constraint: Algorithms and Implementation 69

6 Experimental Results

The purpose of this section is twofold. We demonstrate that decomposing global
counting and occurrence constraints using Range is effective and efficient in
practice. We show that propagating Range using the algorithm introduced in
this paper is more effective than propagating it using the straightforward de-
composition:

Range([X1, . . . , Xn], S, T) iff

i ∈ S → Xi ∈ T ∧ j ∈ T → ∃i ∈ S.Xi = j (1)

In order to isolate the effect of the Range constraint from other modelling
issues, we used the following protocol: we randomly generated instances of binary
CSPs and we added Uses([X1, .., Xn], [Y1, .., Yn]) constraints. Note that, it is
NP-hard to achieve GAC on Uses and there is no propagator available for this
constraint in the literature. So, in all our experiments, we encode Uses in three
different ways:

[no-propag]: by putting the Uses constraint in the model with no propagator
but just a checker testing if it is satisfied or not,

[range]: by decomposing Uses using Range as described in Section 3 and
using the algorithm Propag-Range presented in Section 4,

[range-decomp]: by decomposing the Range constraints of the previous model
using primitive constraints as in decomposition (1).

The problem instances are generated according to model B in [12], and can
be described with the following parameters: the number of X and Y variables
nx and ny in Uses constraints, the total number of variables nz, the domain
size d, the number of binary constraint m1, the number of forbidden tuples t per
binary constraint, and the number of Uses constraints m2. Note that the Uses
constraints can have overlapping or disjoint scopes of variables. We distinguish
the two cases. All reported results are averages on 100 instances.

Our first experiment shows the effectiveness of decomposing Uses with
Range for propagation alone (not solving). We compared the number of val-
ues removed by propagation on the models obtained by representing Uses con-
straints in the three different ways: no-propag, range, and range-decomp. (Note
that in the no-propag model, the values are pruned only because of the binary
constraints.) To simulate what happens inside a backtrack search, we randomly
selected a subset of the variables and randomly assigned them values before
propagation. Hence, in the experiments, the constraints are exposed to a wide
range of different variable domains. We report the ratio of values removed by
propagation on the following classes of problems:

class A : 〈nx = 5, ny = 10, nz = 35, d = 20, m1 = 70, t = 150, m2 = 3 (overlap)〉
class B : 〈nx = 5, ny = 10, nz = 45, d = 20, m1 = 90, t = 150, m2 = 3 (disjoint)〉

in which the number of assigned variables varies between 1 and 15. A failure of
the propagation algorithm yields a ratio of 1 (all values are removed).

70 C. Bessiere et al.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14

pr
un

in
g

number of assigned variables

range
range-decomp

no-propag

Fig. 4. Propagating random binary constraint satisfaction problems with three over-
lapping Uses constraints (class A)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14 16

pr
un

in
g

number of assigned variables

range
range-decomp

no-propag

Fig. 5. Propagating random binary constraint satisfaction problems with three disjoint
Uses constraints (class B)

We observe in Figures 4 and 5 that domains can be reduced significantly us-
ing Range when propagating problems containing Uses constraints. We also
observe that propagating the Range constraint directly (range model) is more
effective than propagating its decomposition (range-decomp model). The dif-
ferences are greater when the Uses constraints of the original problem overlap
(Fig. 4) than when they are all disjoint (Fig. 5).

Our second experiment shows the efficiency of decomposing Uses with Range
when solving the problems. Our solver used the smallest-domain-first variable
ordering heuristic with the lexicographical value ordering and a cutoff at 600
seconds. We compared the cost of solving the three types of models: no-propag,
range, and range-decomp. We report the number of fails and the cpu-time
needed to find the first solution on the following classes of problems:

The Range Constraint: Algorithms and Implementation 71

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 30 40 50 60 70 80

#f
ai

ls

constraint tightness

range-decomp
range

 1e-04

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 30 40 50 60 70 80

cp
ut

im
e

(s
)

constraint tightness

range-decomp
range

Fig. 6. Solving random binary constraint satisfaction problems with two overlapping
Uses constraints (class C)

class C : 〈nx = 5, ny = 10, nz = 25, d = 10, m1 = 40, t, m2 = 2〉
class D : 〈nx = 5, ny = 10, nz = 30, d = 10, m1 = 60, t, m2 = 2〉

in which t varies between 30 and 80.
We observe in Figures 6 and 7 that using the decomposition of Range

(range-decomp model) is costly. This is due to the disjunction in the imple-
mentation of ∃. Note that the instances solved here (classes C and D) are much
smaller than those used for propagation (classes A and B). Solving larger in-
stances was impractical. Note also that we do not present the results where
the Range constraint is not used (no-propag model) because they reached the
cutoff in most of the instances not trivially over-constrained. So, this second
experiment shows how efficiently Range can solve problems containing Uses
constraints. It also shows the clear benefit of using our algorithm in preference
to the decomposition of Range over the under-constrained region. As the prob-
lems get over-constrained, the binary constraints dominate the pruning, and the
algorithm gives a slight overhead in run-time, pruning equally with the decom-
position of Range.

72 C. Bessiere et al.

 1

 10

 100

 1000

 10000

 100000

 1e+06

 30 40 50 60 70 80

#f
ai

ls

constraint tightness

range-decomp
range

 1e-04

 0.001

 0.01

 0.1

 1

 10

 100

 30 40 50 60 70 80

cp
ut

im
e

(s
)

constraint tightness

range-decomp
range

Fig. 7. Solving random binary constraint satisfaction problems with two disjoint Uses
constraints (class D)

7 Conclusion

Range and Roots are two global constraints that can express many other global
constraints, such as occurrence and counting constraints [6]. We have presented
a comprehensive study of the Range constraint. We proposed an algorithm
for enforcing hybrid consistency on Range. We proposed a way to partially
propagate Range-Card, a constraint that combines Range with constraints
on the cardinality of the set variables. Our experiments show the benefit we can
obtain by incorporating the Range constraint in a constraint toolkit.

Acknowledgements

Hebrard and Walsh are supported by the National ICT Australia, which is
funded through the Australian Government’s Backing Australias Ability initia-
tive, in part through the Australian Research Council. Hnich received support
from Science Foundation Ireland (Grant 00/PI.1/C075).

The Range Constraint: Algorithms and Implementation 73

References

1. R.K. Ahuja, T.L. Magnanti, and J.B. Orlin. Network flows. Prentice Hall, Upper
Saddle River NJ, 1993.

2. N. Beldiceanu. Pruning for the minimum constraint family and for the number of
distinct values constraint family. In Proceedings CP’01, pages 211–224, Paphos,
Cyprus, 2001.

3. N. Beldiceanu, M. Carlsson, and J.X. Rampon. Global constraint catalog. Technical
Report T2005:08, Swedish Institute of Computer Science, Kista, Sweden, May 2005.

4. N. Beldiceanu and E. Contejean. Introducing global constraints in chip. Mathl.
Comput. Modelling, 20(12):97–123, 1994.

5. N. Beldiceanu, I. Katriel, and S. Thiel. Filtering algorithms for the same and
usedby constraints. In MPI Technical Report MPI-I-2004-1-001, 2004.

6. C. Bessiere, E. Hebrard, B. Hnich, Z. Kiziltan, and T. Walsh. The Range and
Roots constraints: Specifying counting and occurrence problems. In Proceedings
IJCAI’05, pages 60–65, Edinburgh, Scotland, 2005.

7. C. Bessiere, E. Hebrard, B. Hnich, Z. Kiziltan, and T. Walsh. The Range and Roots
constraints: some applications. Technical Report 2006-003, COMIC, January 2006.

8. C. Bessiere, E. Hebrard, B. Hnich, and T. Walsh. The complexity of global con-
straints. In Proceedings AAAI’04, pages 112–117, San Jose CA, 2004. to appear.

9. B.M.W. Cheng, K.M.F. Choi, J.H.M. Lee, and J.C.K. Wu. Increasing constraint
propagation by redundant modeling: an experience report. Constraints, 4:167–192,
1999.

10. ILOG. Reference and User Manual. ILOG Solver 5.3, ILOG S.A., 2002.
11. F. Pachet and P. Roy. Automatic generation of music programs. In Proceedings

CP’99, pages 331–345, Alexandria VA, 1999.
12. P. Prosser. An empirical study of phase transition in binary constraint satisfaction

problems. Artificial Intelligence, 81:81–109, 1996.
13. C.G. Quimper, A. López-Ortiz, P. van Beek, and A. Golynski. Improved algorithms

for the global cardinality constraint. In Proceedings CP’04, pages 542–556, Toronto,
Canada, 2004.

14. J.C. Régin. A filtering algorithm for constraints of difference in CSPs. In Proceed-
ings AAAI’94, pages 362–367, Seattle WA, 1994.

15. J.C. Régin. Generalized arc consistency for global cardinality constraint. In Pro-
ceedings AAAI’96, pages 209–215, Portland OR, 1996.

16. A. Schrijver. Combinatorial Optimization - Polyhedra and Efficiency. Springer-
Verlag, Berlin, 2003.

On the Separability of Subproblems in Benders
Decompositions

Marco Cadoli and Fabio Patrizi

Dipartimento di Informatica e Sistemistica
Università di Roma “La Sapienza”, Italy
{cadoli, patrizi}@dis.uniroma1.it

Abstract. Benders decomposition is a well-known procedure for solv-
ing a combinatorial optimization problem by defining it in terms of a
master problem and a subproblem. Its effectiveness relies on the possi-
bility of synthethising Benders cuts (or nogoods) that rule out not only
one, but a large class of trial values for the master problem. In turns, this
depends on the possibility of separating the subproblem into several sub-
problems, i.e., problems exhibiting strong intra-relationships and weak
inter-relationships. The notion of separation is typically given informally,
or relying on syntactical aspects. This paper formally addresses the no-
tion of separability of the subproblem by giving a semantical definition
and exploring it from the computational point of view. Several exam-
ples of separable problems are provided, including some proving that a
semantical notion of separability is much more helpful than a syntactic
one. We show that separability can be formally characterized as equiva-
lence of logical formulae, and prove the undecidability of the problem of
checking separability.

1 Introduction and Motivations

Benders decomposition [1] is a well-known procedure for solving combinato-
rial optimization problems, which relies on the idea of distinguishing primary
from secondary variables, defining a master problem over primary variables, and
defining a subproblem over secondary variables given a trial value for primary
variables. Every unsuccessful attempt to solve the subproblem is recorded as a
Benders cut (or nogood) and added to the master problem, until an optimal
solution is found, or the problem is proven to be unfeasible.

Two important factors that make the above procedure effective are: 1) the
possibility of using different technologies for solving the master and the subprob-
lem, e.g., ILP and CP, respectively, [6, 7], and 2) the possibility of synthethising
Benders cuts that rule out not only one, but a large class of trial values for the
master problem. In this paper we focus on the second factor, and specifically on
the notion of separability of the subproblem, which intuitively means that it can
be formulated using several subproblems exhibiting strong intra-relationships
and weak inter-relationships. As a matter of fact, it has been noted in [6, 5, 2]
that, if the subproblem is separable, then it is possible to design a Benders cut
that excludes several instantiations of the primary variables, or, in other words,
a nogood which is a partial, and not a total, assignment to the primary variables.

J.C. Beck and B.M. Smith (Eds.): CPAIOR 2006, LNCS 3990, pp. 74–88, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

On the Separability of Subproblems in Benders Decompositions 75

Therefore, the ability of recognizing separability of the subproblem is crucial for
the efficiency of a Benders decomposition.

Let us introduce our running example, taken from [6, 5], which refers to a
machine scheduling problem.

Example 1 (Machine Scheduling Problem [6, 5]). Machine Scheduling is the
problem of finding an assignment of a set of jobs to a set of machines in such a
way that 1) constraints on release and 2) due date are satisfied, 3) machines are
single-task, and a cost function is minimized. Using the modelling language of
the opl system [?], one possible model is as follows:

// INPUT DESCRIPTION
{int+} Jobs=...; //The set of jobs to be scheduled
int+ horizon=...; //Max start time point for jobs
int+ n_machines=...; //The number of machines range
Time[1..horizon]; //Range "Time" definition range
Machines[1..n_machines]; //Range "Machines" definition int+
ReleaseDate[Jobs]=...; //Each job has a release date int+
DueDate[Jobs]=...; //Each job has a due date int+
Cost[Jobs,Machines]=...; //Machines incur different costs per
job int+ Duration[Jobs,Machines]=...;//Machines run at different
speeds per job
// SEARCH SPACE
var Machines Assignment[Jobs]; var Time StartTime[Jobs];
// OBJECTIVE FUNCTION
minimize

sum (j in Jobs) Cost[j,Assignment[j]]
// CONSTRAINTS
subject to {

forall (j in Jobs) // 1. RESPECT RELEASE DATE
StartTime[j] >= ReleaseDate[j];

forall (j in Jobs) // 2. RESPECT DUE DATE
StartTime[j] + Duration[j,Assignment[j]] <= DueDate[j];

forall (t in Time) // 3. MAX ONE JOB PER MACHINE AT EACH TIME POINT
forall (m in Machines)
sum (j in Jobs)

(Assignment[j] = m &
StartTime[j] <= t < (StartTime[j] + Duration[j,Assignment[j]])
) <= 1;

};

The Benders decomposition suggested in [6] selects Assignment and StartTime
as primary and secondary variables, respectively. Moreover, it defines the master
problem as the minimization problem on no constraints, nd the subproblem as
the decision problem on constraint 1, 2, and 3 (for a given optimal instantiation of
Assignment and ignoring the objective function). A given optimal instantiation
Assignment which is unfeasible for the subproblem is called a Benders cut (or
nogood), and the next iteration of the master problem includes the constraint
Assignment �= Assignment, until a feasible instantiation is found, or the problem
is proven to be unfeasible.

76 M. Cadoli and F. Patrizi

This is a “raw” version of the decomposition, which ignores the fact that
the subproblem is separable wrt the machines. As an example, if we have three
machines, we can consider three separate subproblems, one for each of them.
If Assignment = [1,1,2,1,3,2] is optimal for the master problem, and no
serial schedule of jobs 3,6 on the second machine exists, we can safely add the
constraint Assignment[3] <> 2 \/ Assignment[6] <> 2. Constraints of the
latter kind rule out a whole set of assignments (not just one) to the primary
variables, and can be added for each unfeasible subproblem. This ultimately
results in a more efficient decomposition. �
An informal notion of separability is typically used in the literature, but we
claim that the importance of this concept calls for precise definitions and careful
analysis.

Example 2 (Example 1, continued). Since constraint 3 is universally quantified
wrt the machines “forall (m in Machines)”, we can claim its separability
just relying on an intuitive argument. The methodological problem is that this
syntax-based argument is heavily dependent on the way the problem is formu-
lated (cf. also forthcoming Example 6). To see this point, consider the following
statement, equivalent to constraint 3.

//3’. NO TWO JOBS RUNNING ON THE SAME MACHINE AT EACH TIME POINT:
forall(t in Time)
sum (i,j in Jobs: i <> j)

(Assignment[i] = Assignment[j] &
StartTime[i] <= t < (StartTime[i] + Duration[i,Assignment[i]]) &
StartTime[j] <= t < (StartTime[j] + Duration[j,Assignment[j]])

) = 0;

Since constraint 3’ is not universally quantified wrt the machines, it is less clear
that it separates. �

It is everyday experience that different formulations, all of them being intuitive,
can be done for a problem, sometimes in the hope of having more performant
models.

Example 3 (Example 1, continued). We can define a dependent array RunsOn
storing for each time point and each job the machine that runs the job (or a
negative number if the job is not running). In fact, in this way we can define the
“single-task machines” constraint (3 or 3’) by means of a global alldifferent
constraint, just stating that running machines are all different at each time
point. The alldifferent constraint often performs very well [10], especially in
connection with “channelling constraints” [?].

range MachinesPlus[-card(Jobs)..n_machines];//negative numbers:
irrelevant var MachinesPlus RunsOn[Time,Jobs];
// DEFINITION OF RunsOn:
forall (t in Time)
forall (j in Jobs){

(StartTime[j] <= t < (StartTime[j] + Duration[j,Assignment[j]])
=> RunsOn[t,j] = Assignment[j])
&

On the Separability of Subproblems in Benders Decompositions 77

(StartTime[j] > t \/ t >= (StartTime[j] + Duration[j,Assignment[j]])
=> RunsOn[t,j] = -j); // negative numbers are all different

};
// 3’’. AT EACH TIME POINT RUNNING MACHINES ARE ALL DIFFERENT:
forall (t in Time)
alldifferent (all (j in Jobs) RunsOn[t,j]);

Again, constraint 3” is not universally quantified wrt the machines, but it nev-
ertheless separates. �
In this paper we investigate the possibility of automating the process of checking
subproblem separability in the context of Benders decompositions. In particu-
lar, given a problem and applying to it a given Benders decomposition schema
which leads to a constraint satisfaction subproblem [5], our goal is to state the
conditions, if any, that make the subproblem separable. To this end, we first ad-
dress the notion of subproblem separability by giving a semantical definition and
then we explore it from the computational point of view, providing two theorems
which show that i) separability can be formally characterized as equivalence of
logical formulae and ii) the problem of checking separability is undecidable.

The exposition is structured as follows. In Section 2 we recall the definition of
Benders decomposition, in Section 3 a formal definition of separation is given,
while in Section 4 we show semantical and computational characterizations. Fi-
nally, Section 5 draws some conclusions.

2 Preliminaries

Given two arrays of variables p = (p1, . . . , pn) (primary) and s = (s1, . . . , sm)
(secondary) which may take values, respectively, from sets P = Cp

1 × . . . × Cp
n

and S = Cs
1 × . . .× Cs

m, in this paper we consider problems of the form:

PB :

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

min{f(p)} objectivefunction (o.f.)
s.t.
α(s) constraint 1 (c1)
γ(p) constraint 2 (c2)
β(p, s) constraint 3 (c3)
p ∈ P primary variables domain (p.v.d.)
s ∈ S secondary variables domain (s.v.d.)

(1)

where α, γ and β are suitable representations of constraints in which, respec-
tively, only s variables, only p variables, or both occur. In [6, 2] generalizations
of the above problem in which, e.g., variables from s may occur in the objective
function, are studied. According to [6], such problems can be solved by applying
a “logic-based” Benders Decomposition scheme that gives raise to the following
problems:

MP k :

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

min{f(p)} o.f.
s.t.
γ(p) c2
CUTpi(p)
(i = 1, 2, . . .k − 1) Benders cuts
p ∈ P p.v.d.

SP :

⎧⎨
⎩

α(s) c1
β(p, s) c3
s ∈ S s.v.d.

(2)

78 M. Cadoli and F. Patrizi

Master Problem (MP k) is the problem of finding an assignment to p ∈ P
that minimizes the objective function f(p) while satifying i) γ(p) and ii) the
Benders cuts CUTpi(p) (i = 1, . . . , k − 1) generated at the previous k − 1
iterations. When k = 1, MP 1 contains no cut, and the decomposition is just
a bipartition of the constraints of PB into i) those over variables involved in
the objective function, put into MP 1, and ii) the remaining ones, belonging
to SP .

Subproblem (SP) is the feasibility problem of checking whether there exists
an assignment s that, along with a given assignment p obtained as solution
of MP k, satisfies the constraints α(s) and β(p, s). If such s exists then (p, s)
is a solution to PB, otherwise, problem MP k+1 is generated by adding to
MP k a Benders cut CUTpk(p).

Referring to Example 1, p is Assignment, s is StartTime, α(s) is constraint 1,
β(p, s) is the conjunction of constraints 2 and 3, and γ(p) is a tautology.

One obvious desirable quality of Benders cuts is soundness, i.e., the guarantee
that the above algorithm finds an optimal solution to PB for each instance. As
an example, the constraint

CUTpk(p) .= (p �= pk), (3)

where pk is the solution to MP k, is sound. The problem with (3) is that an
unacceptably large number of cuts may be added to the Master problem, and
this may reflect in inefficiency (cf. Example 1). In the next sections we look for
conditions which may be helpful for having a significantly lower number of cuts.

3 Separation into Subproblems

Before formalizing the notion of separability introduced in Section 1, we need
to clarify the role played by the selection of relevant input data. Referring to
Example 1, every choice of the machine induces a selection of the release and
due dates, costs, and durations. As an example, if Assignment= [1,1,2,1,3,2]
and machine 2 is selected, then we only need the third and the sixth rows of
input arrays ReleaseDate and DueDate. Analogously, we need only some entries
of the Cost and Duration arrays.

In general, given a representation R of the instance, e.g., as a relational
database over the schema R, and an integer q representing the number of sub-
problems, we assume that there is a function σ1 : R× [1, q] → R that selects the
input data relevant for the i-th subproblem (1 ≤ i ≤ q).

Analogously, we need a way to select the variables relevant to the i-th sub-
problem. As an example, for the given Assignment and machine 2, we want to
assign a StartTime just to jobs 3 and 6. In general, we assume that there is a
function σ2 that partitions the variables into q subsets, one for each subproblem.
For the sake of simplicity, we assume that all the variables may take a value from
the same set.

From now on, we represent problems with the following notation

ψ(R) = ∃F : D → C s.t. φ(R, F), (4)

On the Separability of Subproblems in Benders Decompositions 79

where R is a representation of the instance over the schema R, F is the required
assignment to the variables, D and C are the domain and the codomain of the
assignment, respectively, and φ(R, F) is a representation of the constraints. We
prefer the above notation over the notation as in (1) or (2) because it highlights
the input, which is crucial for our purposes. Moreover it is worth reminding that,
if C is finite and φ is a formula in first-order logic, then formulae of the kind (4)
can represent every problem in the complexity class NP [?,?]. Finally, we note
that there is a direct correspondence between the above notation and state-of-
the-art modelling languages such as opl. As an example, an array of variables
in Example 1 corresponds to the existentially quantified function F in (4).

Definition 1 (Subproblems). Given a problem ψ of the form (4), an integer
q ≥ 1 and two functions σ1 : R × [1, q] → R and σ2 : [1, q] → 2D such that
{D1, . . . , Dq} (Di = σ2(i)) is a partition of D, the following q problems are
defined as the subproblems of ψ wrt σ1 and σ2:

ψi(R) = ∃Ri, Fi : Di → C s.t. Ri = σ1(R, i) ∧ φ(Ri, Fi), (i = 1, . . . , q).

Definition 1 can be used to obtain the subproblems in a syntactical way, by
means of a symbolic manipulation of the problem. To see intuitively how the
subproblems are obtained, we resort again to our running example.

Example 4 (Example 1, continued). Given an instance of the problem with q
machines, and a value for Assignment, we consider the (sub)problem defined
as the conjunction of constraints 1, 2, and 3, and no objective function. As
mentioned before, σ1 takes a machine i and the input, e.g., arrays ReleaseDate,
DueDate, Cost, and Duration, and gives new arrays ReleaseDate i, DueDate i,
Cost i, and Duration i. σ1 can be represented by means of simple constraints,
the following being an example for i = 1:

//INPUT:
{int+} Jobs=...; int+ horizon=...; int+ n_machines=...; range
Machines [1..n_machines]; int+ ReleaseDate[Jobs]=...; int+
DueDate[Jobs]=...; int+ Cost[Jobs,Machines]=...; int+
Duration[Jobs, Machines]=...;
//JOBS ASSIGNMENT:
Open Machines Assignment[Jobs];
//CONSTANTS DEFINITION:
int+ maxTime = max(j in Jobs)(DueDate[j]); int+ maxCost = max(j in
Jobs, m in Machines)(Cost[j,m]); int+ maxDuration = max(j in Jobs,
m in Machines)(Duration[j,m]);
//OUPUT:
{int+} Jobs_1={j | j in Jobs: Assignment[j]=1}; var Machines
n_machines_1 in 1..1; // n_machines_1 = 1 var int+ horizon_1 in
horizon..horizon; // horizon_1 = horizon var int+
ReleaseDate_1[Jobs_1] in 0..horizon; var int+ DueDate_1[Jobs_1] in
0..maxTime; var int+ Cost_1[Jobs_1,[1..1]] in 0..maxCost; var int+
Duration_1[Jobs_1,[1..1]] in 0..maxDuration;
//CONSTRAINTS:
solve{

80 M. Cadoli and F. Patrizi

forall(j in Jobs_1){
ReleaseDate_1[j] = ReleaseDate[j];
DueDate_1[j] = DueDate[j];
Cost_1[j,1] = Cost[j,1];
Duration_1[j,1] = Duration[j,1];

}
};

Note that, coherently with Definition 1 where the Ri are existentially quantified,
all items of the form xxx 1, e.g. DueDate 1 and horizon 1, are variables that
must be assigned, Jobs 1 being a syntactical exception, due to implementation
reasons, that can be yet conceptually regarded as a variable.

The other function σ2 takes a machine i and the variables, i.e., array
StartTime, and gives a new array of variables StartTime i. The representa-
tion of σ2 is also simple, and is omitted for brevity.

Each subproblem can be simply represented by defining all constraints on
the new symbols, e.g., by writing DueDate 1 instead of DueDate for the first
subproblem. It is worth noting that this can be done for all versions of the
machine scheduling problem, i.e., for Examples 1, 2, and 3. �

Given an instance R of a problem of the form (4), we denote as SOL(ψ(R))
the set of solutions to ψ(R), i.e., of the set of functions which satisfy the con-
straints. The following definition tells us how to integrate the solutions of the
subproblems.

Definition 2 (Composition of solutions). Given a problem ψ(R) and its
q subproblems ψi(R) as in Definition 1, we define the composition (��) of the
solutions SOL(ψi(R)) of the subproblems as follows:

��
q
i=1 SOL(ψi(R)) .= {F : D → C s.t. ∀i = 1, . . . , q F |Di ∈ SOL(ψi(R))},

where F |Di denotes the selection of the assignments of F to the variables in Di.

Now we need a way to relate a problem to its subproblems, which is semantical,
i.e., based on the respective solutions. The following definition tells us that a
problem is separated by (σ1, σ2) if its solutions can be obtained just by composing
the solutions of its subproblems.

Definition 3 (Separation). Given a problem of the form (4) and its q sub-
problems ψi(R) as in Definition 1, ψ is (σ1, σ2)-separated into the q problems
ψ1, . . . , ψq iff

∀ R ∈ R ��
q
i=1 SOL(ψi(R)) = SOL(ψ(R)).

Referring again to the subproblem in the three versions of Examples 1, 2 and
3, it is possible to see that it is (σ1, σ2)-separated into q problems according to
Definition 3, where q is the number of machines.

Of course, not all problems are separable, as shown by the next example.

Example 5. We add to the constraints of Example 1 a further constraint which
avoids more than 2 machines running at the same time, useful, e.g., to reduce
noise or energy consumption.

On the Separability of Subproblems in Benders Decompositions 81

forall (t in Time) // 4. MAX TWO JOBS RUNNING AT EACH TIME POINT
sum (j in Jobs)(

StartTime[j] <= t < (StartTime[j] + Duration[j,Assignment[j]]
) <= 2;

The latter constraint is added to the subproblem, and the Master problem is
unchanged. With functions σ1 and σ2 defined as in Example 4, it is possible
to see that the current version of the subproblem is not (σ1, σ2)-separated. We
do that by 1) exhibiting an instance, 2) solving separately the subproblems ob-
tained applying Definition 1, 3) composing their solutions according to Definition
2, and 4) showing that a solution which does not satisfy the original problem
arises.

The instance is as follows:

Jobs = {1,2,3,4,5,6}; n_machines = 3; horizon = 15;
ReleaseDate[Jobs] = [1,10,2,4,9,8]; DueDate[Jobs] =
[4,18,10,14,14,18]; Cost[Jobs,Machines] =[// m1 m2 m3

[2 , 3 , 6], //j1
[7 , 8 , 11], //j2
[6 , 5 , 7], //j3
[10, 12, 12], //j4
[7 , 7 , 6], //j5
[12, 5 , 6], //j6

];

Duration[Jobs,Machines] =[// m1 m2 m3
[3 , 2 , 4], //j1
[6 , 4 , 5], //j2
[7 , 7 , 6], //j3
[5 , 8 , 7], //j4
[3 , 5 , 4], //j5
[5 , 6 , 5], //j6

];

We assume that solving the Master Problem led to the assignment Assignment
= [1,1,2,1,3,2]. Now, applying σ1 as in Example 4 to select the relevant data
for jobs assigned to, e.g., machine 2, we obtain the following data set:

n_jobs_2 = 2; n_machines_2 = 1; horizon_2 = 15;
ReleaseDate_2[Jobs_2] = [2,8]; DueDate_2[Jobs_2] = [10,18];
Cost_2[Jobs_2,[2..2]] = [// m2

[5], //j3
[5] //j6

];
Duration_2[Jobs_2,[2..2]] = [// m2

[7], //j3
[6] //j6

];

which represents the input to the 2nd separated subproblem. The input to the
other subproblems can be obtained in the same way.

82 M. Cadoli and F. Patrizi

A solution to the three subproblems is as follows:

// Machine 1, jobs 1, 2, 4
StartTime_1 = [1,10,4];
// Machine 2, jobs 3, 6
StartTime_2 = [2,9];
// Machine 3, job 5
StartTime_3 = [9];

which does not satisfy the fourth constraint. As an example, in time points 10,
11 and 12, all three machines are running. �

One may argue whether the semantical criterion for checking problem separation
as defined by Definition 3 is really necessary or not, and in particular whether
simpler criteria based on syntactic aspects are equally effective. As an example,
we could build the primal constraint graph [4] of the subproblems –as defined
previously– of Example 1, i.e., a graph with a node for each variable and an edge
between any pair of variables syntactically occurring in the same constraint. A
weaker notion of separability could be based on the fact that the graph we obtain
has one component for each machine. Anyway, as shown by the next example, a
problem with redundant constraints arises.

Example 6 (Example 1, continued). Let the following constraint be added to the
machine scheduling problem specification:

/* 4. If machines are less than jobs, then at least two jobs start
at different time points. (card() returns the cardinality of a
set)*/ n_machines < card(Jobs) =>

sum(i,j in Jobs:i<>j)(StartTime[i]<>StartTime[j])>=2;

Note that constraint 3 logically implies constraint 4, hence any solution satis-
fying 1-3 also satisfies 4. Note also that constraint 4 involves all the secondary
variables, hence its primal constraint graph is a complete graph with card(Jobs)
nodes, one for any StartTime component, representing the fact that all the sec-
ondary variables are somehow mutually constrained. As a consequence, a syntac-
tic definition based on the constraint graph would fail to recognize separability,
while Definition 3 does not. �

Definition 3 is clarified also by the following example.

Example 7 (Protein Folding). [8] This problem specification models a simplified
version of an important problem in computational biology which consists in
finding the spatial conformation of a protein (i.e., a sequence of amino-acids)
with minimal energy.

The simplifications with respect to the real problem are twofold: firstly, the
20-letter alphabet of amino-acids is reduced to a two-letter alphabet, namely
H and P. H represents hydrophobic amino-acids, whereas P represents polar or
hydrophilic amino-acids. Secondly, the conformation of the protein is limited to
a bi-dimensional discrete space. Nonetheless, these limitations have been proven
to be very useful for attacking the whole protein conformation prediction pro-
tein, which is known to be NP-complete [3] and very hard to solve in practice.

On the Separability of Subproblems in Benders Decompositions 83

In this formulation, given the sequence (of length n) of amino-acids of the
protein (the so called primary structure of the protein), i.e., a sequence of length
n with elements in {H,P}, we aim to find a connected shape of this sequence
on a bi-dimensional grid (whose points have coordinates in the integral range
[−(n−1), (n−1)], the sequence starting at (0, 0)), which is not overlapping, and
maximizes the number of “contacts”, i.e., the number of non-sequential pairs of
H amino-acids for which the Euclidean distance of the positions is 1 (the overall
energy of the protein is defined as the opposite of the number of contacts).

Protein Folding can be modeled as a planning problem, whose input is a rep-
resentation of the protein and the output is a sequence of moves that maximizes
the number of contacts by folding it.

More specifically, a protein is described by a sequence s ∈ {0, 1}n (1 and 0
representing, respectively, H and P), that can be arranged on the grid by means of
four moves: up, down, left, right, each of which sets the position of an amino-acid
wrt its predecessor. The first element is always placed in the center of the grid
and the sequence cannot cross itself. Figure 1 shows a 1-contacts configuration
for a sequence s =< 1, 0, 1, 0, 0, 1 > of length 6, obtained by applying, in the
reported order, the moves u r r u l.

-5 -4 -3 -2 -1 0 1 2 3 4 5
-5
-4
-3
-2
-1
0
1
2
3
4
5

Fig. 1. An instance of the Protein folding problem

More formally, given:

– an array s ∈ {0, 1}n, representing the protein;
– a set Tmove = [1, n− 1] ∈ N;
– a set Tpos = [1, n] ∈ N;
– a set B = [−n + 1, n− 1] ∈ Z;
– a set M = {u =< 0, 1 >, d =< 0,−1 >, l =< −1, 0 >, r =< 1, 0 >} ∈ Z2;
– the set of variables V = {m1, . . . , mn−1, x1, . . . , xn, y1, . . . , yn}, mi ∈ M, ∀i ∈

Tmove and < xi, yi >∈ B2, ∀i ∈ Tpos;

and defined:

– moves = (m1, . . . , mn−1) ∈ Mn−1, the array representing the sequence of
moves;

84 M. Cadoli and F. Patrizi

– pos = (< x1, y1 >, . . . , < xn, yn >) ∈ (B2)n, the array whose i-th compo-
nent represents the position of the i-th amino-acid;

– the function
Hits(pos, s) =

∑
t,t′∈Tmove s.t.

t′>t+1 ∧ postpost′ =1

st · st′

that counts the number of contacts for a particular pos;

The Protein Folding Problem can be stated as follows:

PF :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

max{Hits(pos, s)} o.f.
s.t.
pos1 =< 0, 0 > start condition
∀t ∈ Tmove movet = post+1 − post channelling constraints
∀(t, t′) ∈ T 2

pos | t > t′ post �= post′ no crossing constraints

In such form, it can be decomposed as in (2) by considering pos as the array of
primary variables and moves that of secondary, obtaining the Master Problems
MP k

PF and the Subproblem SPPF :

MP k
PF :

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

max{Hits(pos, s)} o.f.
s.t.
pos1 =< 0, 0 > start condition
∀(t, t′) ∈ T 2

pos | t > t′ post �= post′ no crossing constraints
CUTposi(pos)
(i = 1, . . .k − 1) Benders cuts

SPPF :
{
∀t ∈ Tmove movet = post+1 − post channelling constraints

The Subproblem is to find a sequence of moves such that the given positions
obtained by solving the Master Problem are feasible.
Now, apply Definition 3:

– define σ2 as the function selecting, for each i = 1, . . . , n − 1, the set of
secondary variables {mi};

– define σ1 as the function selecting, for each i = 1, . . . , n − 1, the pair
(posi, posi+1) from pos.

Such functions define the n− 1 problems

SP i
PF :

{
movei = posi+1 − posi , i = 1, . . . , n− 1

of checking whether there exists a move such that the (i + 1)-th amino-acid is
in a position reachable from that of the i-th.
To see that SPPF is (σ1, σ2)-separated, observe that the generic array moves
is a solution to SPPF for a given assignment pos iff

moves = (pos2 − pos1, . . . , posn − posn−1)

On the Separability of Subproblems in Benders Decompositions 85

and that each of its components is a solution to SP i
PF , (i = 1, . . . , n). Conversely,

given (n− 1) solutions movesi to SP i
PF , (i = 1, . . . , n), the array

moves = (moves1, . . . , movesn)

is a solution to SPPF , as assignment posi+1 of SP i
PF is, by construction, the

same as posi of problem SP i+1
PF forall i = 1, . . . , n− 1. �

4 Characterization of Separation

Definition 3 gives a semantical notion of separation of a problem in subproblems.
A practical difficulty is that it is not obvious how to use it for proving separation,
since we would have to consider all possible instances, solve the problem and the
candidate subproblems, and check that their solutions coincide.

The following theorem shows that in principle it is not necessary to do that,
and reduces the problem of checking separation to the problem of equivalence of
two logical formulae.

Theorem 1. Given a problem ψ(R), an integer q, two functions σ1, σ2, and q
problems ψ1, . . . , ψq as in Definition 3, ψ is (σ1, σ2)-separated into ψ1, . . . , ψq iff
the following formula is a tautology

ψ ≡
q∧

i=1

ψi. (5)

Proof. (Only if part.) By hypothesis, the following q problems (σ1,σ2)-separate
ψ:

ψi(R) = ∃Ri, Fi : σ2(D, i) → C s.t. Ri = σ1(R, i) ∧ φ(Ri, Fi), (i = 1, . . . , q).
(6)

Now, given an instance R ∈ R, if F is a solution to ψ(R) then any restriction
F |Di to Di = σ2(D, i) is a solution to ψi(R) for each i = 1, . . . , q. In fact, since
separation holds, it holds that

SOL(ψ(R)) = {F : D → C s.t. ∀i = 1, . . . , q F |Di ∈ SOL(ψi(R))}.

Hence, for any instance R, if F solves ψ(R) then it solves the q problems ψi(R)
or, equivalently, F is a solution to the problem

q∧
i=1

ψi(R)

and then

∀R SOL(ψ(R)) ⊆ SOL(
q∧

i=1

ψi(R)).

In order to prove that (5) is a tautology, we must show that also the inverse
containtment holds. To this end, consider a solution G : D → C to the problem

86 M. Cadoli and F. Patrizi

∧q
i=1 ψi(R) for a generic instance R. By definition, G solves all of the ψi(R)

problems and, recalling the form (6) of ψi, it is straightforward that G|σ2(D,i)
solves ψi(R). In other words, G is such that

∀i = 1, 2, . . . , q G|σ2(D,i) ∈ SOL(ψi(R)).

But, due to separability, it yields G ∈ SOL(ψ(R)) and hence

∀R SOL(ψ(R)) ⊇ SOL(
q∧

i=1

ψi(R)).

(If part.) Assuming (5) is a tautology, F : D → C is a solution to ψ(R), for
any R, if and only if F solves the problem

∧q
i=1 ψi(R) or, equivalently, the q

problems ψi(R) (i = 1, . . . , q). Consequently, any solution F to ψ(R) is such
that ∀i = 1, . . . , q F |Di ∈ SOL(ψi(R)) and viceversa. Hence, for any R,

SOL(ψ(R)) = {F : D → C s.t. ∀i = 1, . . . , q F |Di ∈ SOL(ψi(R))}. �
Theorem 1 calls for an equivalence check among logical formulae. This task
is undecidable even for first-order formulae [?], and actually this lower bound
applies also to this case, as shown by the next theorem.

Theorem 2. Given a problem ψ(R), an integer q, two functions σ1, σ2, and q
problems ψ1, . . . , ψq as in Definition 3, it is not decidable to check whether ψ is
(σ1, σ2)-separated or not.

Proof. (sketch) Consider a problem ψ(R) of the form:

∃F : D → C s.t. (∀m ∈M η(R, F, m)) ∧ (ξ(R) → ∃m ∈M π(R, F, m)), (7)

where M is a finite domain such that q = |M | and ξ(R) is a first-order formula
which represents a “filter” on input data. Assume that the problem

∃F : D → C s.t. ∀m ∈M η(R, F, m), (8)

is (σ1, σ2)-separated, and that the problem

∃F : D → C s.t. ∃m ∈M π(R, F, m),

is not (σ1, σ2)-separated. As an example for the former problem just take the
third constraint from Example 1. As an example of the latter problem, just take
the fourth constraint from Example 5.

Of course the problem

∃F : D → C s.t. ∀m ∈ M η(R, F, m) ∧ ∃m ∈M π(R, F, m)

is not (σ1, σ2)-separated, essentially being a conjunction of constraints, the for-
mer being (σ1, σ2)-separated and the latter being not (σ1, σ2)-separated.

Now note the role played by formula ξ(R) in problem (7). If ξ(R) is identically
false, then problem (7) coincides with problem (8), and it is (σ1, σ2)-separated. If
ξ(R) is not identically false, then we can find an instance showing that problem
(7) is not (σ1, σ2)-separated. Summing up, problem (7) is (σ1, σ2)-separated iff
first-order formula ξ(R) is identically false, which is not decidable [?]. �

On the Separability of Subproblems in Benders Decompositions 87

The undecidability of the problem of checking separation puts severe restrictions
on the possibility of mechanizing the process of finding, or at least validating,
Benders decompositions. Nevertheless, it has been shown in [?] that current
Automated Theorem Provers technology can be effectively used for checking
properties, such as existence of symmetries or dependence among arrays of vari-
ables, similar to separation. It is the purpose of future research to investigate on
the applicability of the methodology of [?] to the separation problem.

5 Conclusions

In this paper we have analyzed the notion of separation of problems. This is a
concept interesting per se, and finds an immediate application in the context
of Benders decompositions. In fact, it is well known that such decompositions
are effective only if the subproblem is formulated using several subproblems
exhibithing strong intra-relationships and weak inter-relationships.

In the literature, informal notions of separation of subproblems are typically
used, but in this paper we have shown that it is not easy at all to come up with a
clear syntactical definition of separability. Examples 1-4 show that formulations
of a problem which look similar from the syntactical point of view may or may not
be separable. A precise, semantical definition of separation has been provided,
which has been characterized both from the logical and from the computational
points of view.

In particular, we have shown that separation can be reduced to checking
equivalence of second-order logic formulae, and that the problem of checking
whether a given selection of input data corresponds to a separation or not is not
decidable.

We are currently working on finding other computational results, e.g., special
cases of Theorem 1 which call for first-order, instead of second-order, equiva-
lence. Moreover, since the notion of separation into subproblems seems to be
related to the concept of database integration, especially in the context of dif-
ferent information sources, cf. e.g., [9], we plan to extend our definitions in the
traditional database context.

Acknowledgements

The authors would like to thank the anonymous reviewers for their useful com-
ments, which have been very helpful for improving readability of the paper.

References

1. J.F. Benders. Partitioning procedures for solving mixed-variables programming
problems. Numerische Mathematik, 4:238–252, 1962.

2. H. Cambazard and N. Jussien. Integrating Benders decomposition within con-
straint programming. Number 3709, pages 752–756. Springer-Verlag, 2005.

3. Pierluigi Crescenzi, Deborah Goldman, Christos H. Papadimitriou, Antonio Piccol-
boni, and Mihalis Yannakakis. On the complexity of protein folding. J. of Comp.
Biology, 5(3):423–466, 1998.

88 M. Cadoli and F. Patrizi

4. Rina Dechter. Constraint Networks. In Stuart C. Shapiro, editor, Encyclopedia of
Artificial Intelligence, volume 1. Addison-Wesley Publishing Company, 1992.

5. J. Hooker. Logic-based methods for optimization: combining optimization and con-
straint satisfaction., chapter 19, pages 389–422. Wiley and Sons, 2000.

6. J.N. Hooker and G. Ottosson. Logic-based Benders decomposition. Mathematical
Programming, 96:33–60, 2003.

7. V. Jain and I.E. Grossmann. Algorithms for hybrid MILP/CP models for a class
of optimization problems. INFORMS Journal on Computing, 13:258–276, 2001.

8. Kit Fun Lau and Ken A. Dill. A lattice statistical mechanics model of the confor-
mational and sequence spaces of proteins. Macromolecules, 22:3986–3997, 1989.

9. P. S. Medcraft, U. Schiel, and C.S. Baptista. Database integration using mobile
agents. Number 2872, pages 160–167. Springer-Verlag, 2003.

10. J.F. Puget. A fast algorithm for the bound consistency of alldiff constraints. In
AAAI/IAAI, pages 359–366, 1998.

A Hybrid Column Generation and Constraint
Programming Optimizer for the Tail

Assignment Problem

Sami Gabteni1 and Mattias Grönkvist1,2

1 Carmen Systems AB,
Odinsgatan 9,

S-411 03 Göteborg, Sweden
{sami.gabteni, mattias.gronkvist}@carmensystems.com

2 Department of Computer Science and Engineering,
Chalmers University of Technology,

Eklandagatan 86, S-412 96 Göteborg, Sweden

Abstract. Tail Assignment is the problem of assigning flight legs to
aircraft while satisfying all operational constraints, and optimizing some
objective function. In this article, we present a hybrid column generation
and constraint programming solution approach. This approach can be
used to quickly produce solutions for operations management, and also
to produce close-to-optimal solutions for long and mid term planning
scenarios. We present computational results which illustrate the practical
usefulness of the approach.

1 Introduction

The airline planning process is usually divided into timetable creation, fleet
planning, and crew planning. These steps are often handled sequentially, without
feedback. Most often, the fleet planning process itself consists of two stages
– Fleet Assignment and Aircraft Routing. Fleet Assignment is the process of
assigning aircraft types to the flights in the schedule [16], while maximizing the
revenue. Aircraft Routing handles the construction of anonymous maintenance
feasible flight sequences for each fleet or subfleet.

Once the long-term planning is done, the schedules are handed over to op-
erations management, which handles operational issues such as sick crew, re-
planning due to changes in forecast, delays, airport closures, etc. Operations
management typically lasts from a few days from flight departure up to the
actual departure time. In the long-term planning stage careful optimization is
possible, but in the operational stage, disruptions must be solved as quickly as
possible.

Usually, the Tail Assignment problem is solved a few days before operations,
as an extension to Aircraft Routing, to adjust the planned routes to various op-
erational constraints and assign them to identified aircraft. However, we propose

J.C. Beck and B.M. Smith (Eds.): CPAIOR 2006, LNCS 3990, pp. 89–103, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

90 S. Gabteni and M. Grönkvist

that Tail Assignment should be solved earlier in the planning process. Consider-
ing individual aircraft early in the planning process makes it easier to implement
planned optimized solutions without degrading the quality.

In [13] and [14] we have shown how constraint programming can be used as
a standalone solution method, and as a preprocessing method, for Tail Assign-
ment. This article presents the complete solution approach, where constraint
programming is combined with column generation and local search. The result
is an approach that can meet both the running time requirements of operations
management and the quality requirements of long and mid-term planning.

Section 2 describes the Tail Assignment problem in detail and gives a brief
survey of the relevant literature. Section 3 presents a column generation solu-
tion approach, and Section 4 briefly summarizes the constraint model presented
in [14]. Section 5 discusses the complete hybrid approach, combining column
generation, constraint programming and local search, and Section 6 shows com-
putational results. In Section 7 we conclude.

2 The Tail Assignment Problem

The Tail Assignment problem is the problem of assigning flight legs to aircraft,
identified by their tail numbers. As a result, each aircraft is assigned a route
consisting of a sequence of legs which obeys all operational constraints, making
the solution to the problem a fully operational aircraft deployment.

The operational constraints can be categorized in two groups: general con-
straints applying to subsets of aircraft, such as fleets and sub-fleets, and tail
constraints, applying specifically to particular tail numbers. The latter can relate
to any technical aspect, such as limited fuel capacity, noise level, or in-flight en-
tertainment system functionalities. Pre-assigned activities, such as heavy main-
tenance, is a particular type of tail constraint. These aspects make each aircraft
unique in the way it can be operated. The tail constraints are the fundamental
difference between Tail Assignment and Aircraft Routing.

The simplest form of constraint is the leg based constraint, which only depends
on a single flight leg. These constraints are often called flight restrictions. Other
constraints depend on two connecting flights, and are hence connection based.
The minimum buffer time between the arrival and departure of an aircraft is a
good example of a connection based constraint, which might or might not depend
on the specific place or time of the connection. More complex constraints involve
longer sequences of flight legs. A typical example is the maintenance checks which
need to be performed with regular intervals. The intervals are usually defined in
terms of aircraft activity, such as airborne hours or landings.

The Tail Assignment process is, at most airlines, only seen as a feasibility
problem, as the goal is to find a feasible assignment of aircraft to flight legs.
However, it can in some cases be driven by operational quality objectives. For
example, maximizing the number of long connections increases aircraft availabil-
ity to handle incidents on the day of operations. Long connections at appropriate
airports can also offer alternative slots for minor maintenance activities. Later in

A Hybrid Column Generation and Constraint Programming Optimizer 91

this article, we will present planning scenarios which optimize financial aspects
of the Tail Assignment problem.

The most intuitive data representation for the Tail Assignment data is a flight
network, where each node represents a flight leg, or some other activity such as
a planned maintenance activity for a specific aircraft, and each arc represents
a possible connection between two activities.1 Modeling individual operational
constraints requires a dated model, which accurately considers the start locations
and maintenance histories of each aircraft.

2.1 Literature Review

The assumption that all aircraft within a fleet are equivalent has put most re-
search focus on Aircraft Routing rather than Tail Assignment. So, rather than a
specific Tail Assignment survey, we here provide an overview on how the related
problems have been addressed. For a more complete survey, we refer to [15].

Maintenance routing the problem of creating maintenance feasible aircraft
routes. It is a feasibility problem rather than an optimization problem. Gopalan
and Talluri [12] describe a system for maintenance routing implemented at US-
Air. The maintenance requirements are simplified to a restriction on each aircraft
to return to a maintenance base every three days, and it is assumed that the
lines of flying during daytime (LOFs) are fixed. This problem can be solved in
polynomial time, but Talluri [23] has shown that the three-day problem is a
special case, and that the general N -day problem is NP-hard.

Through Assignment is a financially driven problem: A through flight is
a two leg flight between two locations, via the hub, that does not require an
aircraft change for passengers going from the departure airport of the first leg
to the arrival airport of the second leg. Through assignment is the problem of
deciding which leg-to-leg connections are to be through flights. In a number of
references, for example [1, 18], Through Assignment modeling is combined with
simplified operational constraints, such as maintenance requirements.

Most Aircraft Routing approaches combine the maintenance routing aspect
with a cost function, which is often through value based, but can also capture
other aspects. Kabbani and Patty [19] model the aircraft routing problem for
American Airlines as a set partitioning problem, where each column represents
a week-long aircraft route. This makes it possible to handle general maintenance
constraints, but the drawback is long running times. In [6], Clarke et al. solve
an aircraft rotation problem for Delta Air Lines, building maintenance feasible
routes while maximizing through values. They require all aircraft to fly the
same cyclic route (rotation). They formulate the problem as a TSP with side
constraints, and solve it with Lagrangian relaxation.

In [3], Barnhart et al. solve a combined fleet assignment/aircraft routing prob-
lem by an approach based on maintenance feasible strings of activities, that are
combined to create feasible routes, within a branch-and-price framework. Short-
haul instances with up to 190 flights are solved successfully. Elf et al. [10] propose
1 From now on, the term activity will be used to denote either a flight leg, a sequence

of hard-locked flight legs, or a planned maintenance activity.

92 S. Gabteni and M. Grönkvist

an aircraft rotation planning model for minimizing delay risk. In their model,
a ‘delay risk’ is either individual connections being too short, or consecutive
visits to certain airports. Maintenance is not considered in their model, and a
solution method based on Lagrangian relaxation is proposed. The existing liter-
ature does not consider individual aircraft requirements, and is typically based
on cyclic rather than dated models.

Many references on integrating constraint programming and column genera-
tion take the approach of solving the master problem with standard LP tech-
niques, and use constraint programming to solve the often complex pricing prob-
lem. For example, Fahle et al. [11] on the Airline Crew Rostering problem, and
Rousseau et al. [22] on the Vehicle Routing Problem (VRP). The latter shows
promising results on some of the well-known Solomon instances. In [5], Caprara et
al. describe a combined CP/OR Crew Rostering application at the Italian State
Railway. Their main solution method is constraint programming, and they use
a Lagrangian relaxation to obtain lower bounds.

3 A Column Generation Solution Approach

Let us start by describing a mathematical model for the Tail Assignment prob-
lem. Let F represent the set of all flights, R the set of all possible routes satisfying
individual route constraints, and let xr be binary decision variables that are 1 if
route r ∈ R is used and 0 otherwise. cr is the cost of using route r, and afr is 1
if activity f ∈ F is covered by route r and 0 otherwise. Now, we can formulate
a path-based Tail Assignment model (PATH-TAS):

min
∑
r∈R

crxr (1)

∑
r∈R

afrxr = 1 ∀f ∈ F (2)

xr ∈ {0, 1} (3)

Here, constraints (2) make sure that all activities are covered exactly once. To
handle unassigned activities, the set R contains columns covering single activi-
ties, at a high penalty cost. This can also be seen as adding slack variables and
including them in constraint (2). While PATH-TAS can be formulated very com-
pactly, it contains an exponential number of variables hidden in the definition of
R. However, PATH-TAS has the nice property that it separates the generation
of routes from the selection. This makes it easier to capture various complicated
constraints, such as maintenance constraints, as we will demonstrate.

Column generation [7] is the process of solving a linear program with only
a subset of the variables available explicitly. It uses a dual solution to generate
new primal variables that can improve the current solution, until no such vari-
ables can be found. This is very useful to address problems involving too many
variables, like PATH-TAS, and in fact most real-life large-scale transportation

A Hybrid Column Generation and Constraint Programming Optimizer 93

scheduling problems. Column generation can be seen as a generalization of the
revised simplex method. The problem of finding negative reduced cost variables,
which can improve the current solution, is called the pricing problem. The linear
relaxation of the variable-restricted master linear program is called the restricted
master problem (RMP).

For model PATH-TAS, the RMP is a relaxed set partitioning problem, for
which several solution methods can be used. We have chosen to use the primal
simplex or barrier LP solvers of Ilog CPLEX [17] or Dash Xpress [8].

3.1 The Pricing Problem

Assuming that the cost of route r is a sum of costs on activities (or connections),
the reduced cost of route r is cr =

∑
f∈Fr

(cf − πf), where Fr is the set of
activities covered by route r, πf is the dual value of the row corresponding to
activity f , and cf is the cost of activity f . To handle maintenance constraints, we
must introduce resource constraints in the pricing problem, which can be reset
along a route to model the maintenance checks. The introduction of resource
constraints turns the pricing problem from a normal shortest path problem into
an NP-hard resource constrained shortest path problem (RCSPP).

The resource constrained shortest path problem is solved using a standard
label-setting algorithm [9]. The possibility to reset the resource consumptions
does not require any substantial change to the algorithm. The activity start times
give a total ordering of the nodes in the network, and by pulling labels order of
increasing start time, only a single label pulling sweep is required. Dominance is
used to restrict saved labels to the efficient routes. However, an exact approach
based on a pure dominance scheme does not prevent an explosion of the number
of labels created. Instead, a heuristic implementation [15] of the algorithm is
used, which imposes a limit on the number of labels created at each node. If λ
is the maximum number of labels for any node, the complexity of the resulting
heuristic algorithm is λ|F |.

The resource consumption updates and resets are controlled via Carmen Sys-
tem’s Rave rule system [2]. Rave is a stand-alone module, making it possible to
quickly add any resource constraints by defining the update and reset procedures
in Rave.

3.2 Accelerating the Column Generator

While implementing the standard column generation algorithm is rather
straight-forward, much effort must be put into making it perform well in practice.
We refer to [20] for a fairly recent survey on common techniques to accelerate col-
umn generation. Here, we will briefly describe two of the acceleration techniques
we have used in our implementation.

– The maximum number of labels
For each node, two limits for the number of labels are used − one soft limit
and one hard limit. As long as the number of labels is less than the soft limit,

94 S. Gabteni and M. Grönkvist

we insert new labels if they are not dominated, and remove dominated labels
after insertion. If the number of labels is above the soft limit, but below the
hard limit, we insert new labels if they are lexicographically smaller than
the lexicographically largest label already present. Our labeling algorithm is
thus heuristic in that it stores only a limited number of labels at each node,
and by using a lexicographical ordering of the labels. Observe that in order
to make our pricing routine exact, in the sense that at least one negative
reduced cost route is found if one exists, we might need to dynamically
increase the node label limits in case no route is found, and the label limit
is reached for some node.

– Dual re-evaluation
The pricing problem is solved by decomposition into aircraft specific pricing
problems, so that columns are generated for all aircraft using the same dual
values. Using the same dual values for all aircraft has the effect that activi-
ties with attractive dual values will be covered by routes for several aircraft
within the same pricing iteration. To avoid similar columns from being gen-
erated for all aircraft, we use a dual re-evaluation scheme which modifies the
dual values when columns are selected for insertion into the RMP: Between
each aircraft-specific pricing problem we re-evaluate the dual values accord-
ing to πnew

f = πold
f +(cr)/(ξ×|Fr |), where |Fr| is the set of activities covered

by route r, and ξ is a smoothing parameter.
Observe that when ξ = 1.0, the reduced cost of the column will be evenly

spread over the activities it covers. The new reduced cost thus becomes 0, and
simulates the introduction of the column in the RMP basis. By adjusting ξ,
it is possible to tune the behavior of the re-evaluation. Computational tests
[14] have shown that a using ξ = 10.0 in general has a dramatically positive
effect on column generation convergence.

4 A Constraint Programming Solution Approach

In [14], we present a constraint programming model for the Tail Assignment
problem. We will here just summarize the model, to make it easier to under-
stand the following sections. The constraint model focuses only on feasibility, i.e.
finding a feasible solution with all activities assigned, regardless of its quality.

Firstly, successor variables are introduced for all activities containing the
possible successors of the activity. Since the rules related to activity-to-activity
connections are already modeled in the successor variables, no more constraints
concerning these rules need to be explicitly added to the model. Secondly,
vehicle variables are introduced for all activities, the domains of which initially
contain all aircraft which are allowed to operate the activity. These variables
are used to model preassigned activities as well as flight restriction rules. Since
all activities must have unique successors to form disjoint routes through the
flight network, all successor variables must take unique values, which means
that an all_different [21] constraint over all successors is added. Since the
successor and vehicle are mutually redundant, it is crucial to keep the domains
of these variables consistent. This is done with a specialized tunneling constraint.

A Hybrid Column Generation and Constraint Programming Optimizer 95

The constraints described so far are sufficient to model the Tail Assignment
feasibility problem, assuming the maintenance constraints are relaxed. However,
in order to improve the propagation, and thus the computational performance,
redundant constraints and variables are added: predecessor variables are con-
nected to the successor variables via an inverse constraint, all_different
constraints are added for the vehicle variables of overlapping activities, and a
special propagation algorithm for flight restrictions is added.

Finally, we re-use the column generation pricing solver to handle the mainte-
nance constraints. As the pricing solver is based on labeling, it is easy to check
whether each activity is reachable, i.e. there exists at least one partial route ar-
riving at each activity, and there exists at least one legal route per aircraft. In the
case of a partially instantiated flight network, e.g. during the search when some
follow-ons are fixed, this feasibility check cannot guarantee to find all infeasibili-
ties. However, for a fully fixed network, it will always find all infeasibilities, which
is enough to make it usable for our purposes. We will refer to the full constraint
model as CSP-TAS, and to a relaxed model lacking the maintenance constraint
handling and the extra flight restriction propagation as CSP-TASrelax.

5 A Hybrid Solution Approach

The column generation solution approach described in Section 3 is well suited
for finding optimal solutions to the Tail Assignment problem. Unfortunately,
column generation has a tendency to converge slowly, which means that using
a pure column generation algorithm it often takes a long time to obtain even
a feasible solution, let alone an optimal solution. The constraint programming
approach described in Section 4, on the other hand, is especially designed to
quickly finding feasible solutions, and ignores the optimality aspect.

In this section, we will present a solution approach that combines the column
generation and constraint programming approaches, giving a method that can
quickly produce initial solutions, as well as close-to-optimal solutions. We will
start this section by showing how the constraint programming model can improve
column generation performance by means of powerful preprocessing and as a
feasibility analyzer in a heuristic branching algorithm. We will then describe the
full hybrid approach.

5.1 Preprocessing Using the Constraint Model

In [13] we describe how a constraint programming model can be used for pre-
processing the flight network input. The basic idea is simply to take the con-
straint model described above, and only apply constraint propagation, without
any search. This will remove activity-to-activity connections which can never be
used in a solution from the flight network. We show that this kind of preprocess-
ing is more powerful than traditional preprocessing methods, and has a huge
impact on the size of the flight network, and consequently on the overall column
generation performance.

96 S. Gabteni and M. Grönkvist

5.2 The Heuristic Branching Algorithm

Section 3 only discusses the first phase of the column generation process, finding
a good LP relaxation. Once a sufficiently good relaxed solution has been found by
the column generation algorithm, the next stage of the solution process consists
of an integer programming approach to find a sufficiently good integer solution.

data
Propagate: A function that propagates the constraint model. Returns a set of

removed connections, and new restriction sets.
ColumnGeneration(i): Solve problem using i column generation iterations,

return a relaxed solution, and if possible, lower and upper bounds
σ: Number of column generation iterations to perform between fixing iterations
ε: Relative optimality tolerance
zu: Known upper bound on integer objective, or ∞
δ: Number of restrictions to undo when backtracking
Recall that Fr is the set of activities covered by route r.

1: procedure Look-AheadIntegerHeuristic
2: z ← network flow lower bound
3: (x, z, z) ← ColumnGeneration(100) � 100 iter., as an example
4: loop
5: Restrict the solution space by removing connections C
6: for all connections (f, f ′) ∈ C do
7: POST successorf �= successorf ′ in CSP-TASrelax

8: end for
9: (C′, R′) ← Propagate(CSP-TASrelax) � R′ = t∈T R′

t

10: conf lict ← false
11: if some domain in CSP-TASrelax empty then
12: Restore CSP-TASrelax

13: conf lict ← true
14: end if
15: if ¬conf lict then
16: Remove from RMP all columns k s.t.

|(Fk ∩ f) ∪ (Fk ∩ f ′)| = 2 for some (f, f ′) ∈ (C ∪ C′)
17: Remove from pricing network all connections in C ∪ C′

18: Rt ← R′
t ∀t ∈ T � Rt: activities which aircraft t cannot operate

19: z′ ← network flow lower bound
20: (x, z′, z) ← ColumnGeneration(σ)
21: end if
22: if ¬conf lict and (x) integral and z < zu

and 100 × z−z
z

< ε then
23: return (x, z, z)
24: else if conf lict or x integral or z′ ≥ zu then
25: Undo the last δ solution space restrictions
26: end if
27: end loop
28: end procedure

Fig. 1. The general integer fixing heuristic with look-ahead

A Hybrid Column Generation and Constraint Programming Optimizer 97

For the integer phase, we have chosen to implement an integer heuristic in-
spired by branch-and-price [4]. The heuristic consists of iteratively restricting
the solution space with variable or connection fixes, and re-generating columns.
This process is repeated until an integer solution is found. When a conflict is
detected, or the objective gets too heavily deteriorated by the fixing process,
some of the fixes are revised, and other parts of the search tree are explored. To
avoid the situation where the fixing process fixes something which can never lead
to a solution, the constraint model is used to check feasibility of fixing decisions,
and to propagate the effects of the fixing decisions once done.

Figure 1 shows the heuristic fixing process with constraint programming look-
ahead. The decision in step 5 about which connections to fix is taken by looking
at the current LP solution, and either fixing variables taking a value close to
1, or by fixing connections which seem good from an integer point of view [15].
Observe that we use constraint model CSP-TASrelax rather than the full model
CSP-TAS for the look-ahead. The reason is simply that CSP-TAS takes longer
to propagate, and adds very little in terms of initial propagation. Once we have
made sure that the constraint model is not inconsistent, we remove the fixed
connections from the flight network and the conflicting columns from the RMP,
update our network flow lower bound, and re-generate columns. If the solution
quality is acceptable and the current solution is integral, we stop. If the solution
quality has deteriorated we backtrack, and otherwise we continue fixing. Since
there always exists at least one connection to fix as long as the relaxed solution
x is non-integral [15], we know that the algorithm will find an integer solution,
even if it might be one with activities unassigned.

However, even using this fixing algorithm, it might sometimes take too long
to find an initial solution. To make it possible to find solutions even faster,
more aggressive fixing must be used, which in turn means that even more look-
ahead must be used to avoid conflicts. In this case, instead of just propagating
CSP-TASrelax before each fixing decision, we actually solve it to check that a
solution exists before proceeding with the fixing. If we also check the maintenance
constraint and the flight restriction propagation algorithm from CSP-TAS at the
root node, the resulting look-ahead is powerful enough to allow us to fix very
aggressively, only re-generate very few columns, and still find a solution with all
activities assigned.

5.3 A Local Search Improvement Approach

The typical solution process using our hybrid solution approach is to first find
an initial solution, regardless of quality. This proves that a solution exists, and
gives a hint about how the final solution might look. Initial solutions are found
either using CSP-TAS directly, or using the aggressive fixing algorithm described
in the previous section. In this step, a global network flow lower bound is also
calculated.

Once an initial solution has been found, a local search improvement process
is started. This is done by selecting a subset of aircraft, and a time interval
within the planning period, for which the tail assignments are re-optimized. All

98 S. Gabteni and M. Grönkvist

Tail D

Tail C

Tail B

Tail A

Period 1

Period 2

Period 3

Fig. 2. The sliding time window improvement strategy

activities outside the interval, or which are assigned to unselected aircraft, are
excluded from the re-optimization. The restricted problem is optimized using the
hybrid approach presented in Section 5.2, but with less aggressive settings so as
to obtain close-to-optimal solutions for the restricted problems. This is repeated
over a sequence of problem restrictions, until a sufficiently good global solution
has been found. Using the improvement process on reasonably sized subproblem,
the method scales well to long planning periods or instances with a large number
of aircraft.

The most common strategy for selecting the problem restriction, is to use
a sliding time window. After solving a problem restriction based on a certain
time interval, a slightly later interval is used to define the following problem
restriction, as figure 2 illustrates. This is repeated several times over the planning
period, with variable time interval lengths. Aircraft subsets are only used for
instances with a very large number of aircraft. Improving over the entire planning
period is possible, but typically leads to very long running times. Also, since most
of the rules and costs in Tail Assignment only depend on single connections, and
not entire routes, the quality loss when using small time intervals is limited.

5.4 Controlling Solution Quality

Obviously, the solution process which we propose is heuristic, in the sense that it
does not guarantee that an optimal solution is found. To improve running times,
a number of heuristic algorithmic steps have been added to various parts of our
process:

– the lexicographical ordering and the limit on the number of labels at each
node make the pricing algorithm heuristic;

– stopping the column generation algorithm prior to LP optimality means we
do not always obtain an LP lower bound;

A Hybrid Column Generation and Constraint Programming Optimizer 99

– the heuristic branching algorithm is inherently heuristic;
– the time window improvement method might get stuck in a local optimum.

A few of these shortcomings are possible to avoid by using alternative tech-
niques, which are typically more time consuming. However, for our purposes
the approximations are acceptable. To control the solution quality, we continu-
ally monitor and update the network flow lower bound obtained by ignoring all
maintenance and tail-dependent constraints.

6 Computational Results

While the Tail Assignment approach we have presented can be used to model
various types of planning scenarios, ranging from fleet planning to operations
management, we will here illustate its usefulness by two planning scenarios, one
fairly standard scenario, and one more experimental scenario. First, we will show
how operational robustness can be increased by our Tail Assignment approach,
and then we will show how commercial aircraft leasing costs can be decreased.

6.1 Minimizing the Number of Used Medium-Length Connections

Operational robustness is a measure of how robust a planned Tail Assignment
solution is with respect to events occurring close to the day of operations. Ro-
bustness is difficult to measure, short of actually observing the real-world behav-
ior. Here, we will identify criteria that are considered to improve or deteriorate
robustness, from experience, and optimize using these criteria.

Short connections, slightly above the minimum connection time, are desirable
since they give high utilization of the aircraft. Connections longer than some
limit, e.g. three hours, are also desirable, because they allow the aircraft to be
used as a standby aircraft, in case of operational disruptions. Medium-length con-
nections, on the other hand, are considered bad for robustness. Medium-length
connections sometimes force aircraft to occupy gates during a long periods, and
make it impossible to use aircraft for standby duty.

To prevent medium-length connections, we use an objective function penal-
izing 2 − 6 hour connections, with extra penalty for 3 − 5 hour connections.
Connections longer than 6 hours and shorter than 2 hours are penalized by a
small factor which decreases with increasing connection time. Table 1 shows the
running times and the number of 2-6 and 3-5 hour connections, when using the
CSP-TAS model, the initial method based on aggressive fixing, and when using
the time window improvement method starting from the CSP-TAS solution. The
aggressive initial method is included mainly as a comparison in terms of running
times and solution quality for the other methods. The improvement strategy is
the following: Start with a period length of 24 hours and a step length of 12
hours, and perform a sweep over the entire planning period. Repeat at most
20 such sweeps, increasing the period by six hours in every sweep. The step is
always half the period length. All running times are reported as minutes:seconds.

100 S. Gabteni and M. Grönkvist

Table 1. Running times and number of 2-6 and 3-5 hour connections used in the initial
and improved solutions.

CSP-TAS Aggr. fixing Improved CSP-TAS

Instance 2-6 h 3-5 h Time 2-6 h 3-5 h Time 2-6 h 3-5 h Time

1A 151 30 00:05 144 30 00:11 111 16 02:50
1B 60 17 00:12 50 11 00:24 0 0 01:55
1C 319 107 01:01 298 98 02:47 169 61 23:13
1D 347 100 01:51 309 80 05:49 141 38 28:25
1E 443 103 01:29 412 98 10:03 214 56 31:15

Table 2. The test instances. The columns show the number of activities, aircraft and
maintenance constraints.

Instance #Activities #Aircraft #Constraints

1A 1338 9 2
1B 2378 17 1
1C 4932 33 1
1D 5816 31 1
1E 5571 31 1

Using the CSP-TAS initial method followed by an improvement run, we
find initial solutions within 2 minutes. The aggressive initial method only gives
slightly better solution quality than CSP-TAS, and takes longer time. Within
around 30 minutes we obtain solutions with substantially fewer medium-length
connections. For one of the instances we can even get rid of all medium-length
connections. Using the flow lower bound we can show that the final results are
optimal for all instances.

Information about the test instances is shown in Table 2. Instance 1A includes
an ‘A check’ maintenance constraints, forcing all aircraft to be maintained every
450 flying hours. For all instances, there is also one generic resource constraint,
forcing the aircraft to return to their home base every six days. There are also
a number of flight restrictions present.

6.2 Commercial Planning: Minimizing the Utilization of Leased
Aircraft

Airlines often lease parts of their fleet, to make their capacity more flexible. They
will then avoid the high costs associated with owning the aircraft, but on the
other hand have to pay substantial fees when actually using the aircraft. The
fee of using a leased aircraft of course varies depending on the type of aircraft,
and the leasing agreement, but e 820 (about $1000) per flying hour is not an
unrealistic estimate.

A Hybrid Column Generation and Constraint Programming Optimizer 101

Table 3. Running times and total flying time for the leased aircraft in the initial and
improved solutions

Initial method Improvement method

CSP-TAS Aggr. fixing Improved CSP-TAS

#Leased Lease Lease Lease
Instance Aircraft time Time time Time time Time

3A 1 458:00 00:03 488:10 00:25 275:45 04:54
3B 2 534:50 00:12 541:55 00:21 348:50 12:40
3C 4 1676:12 00:57 1689:57 03:06 1234:30 93:46
3D 4 1556:13 01:43 1625:52 03:53 1029:55 228:39
3E 4 1777:06 01:29 1709:33 04:21 1144:35 255:02

Since using leased aircraft is so expensive, in a fleet consisting of mixed leased
and owned aircraft it is desirable to utilize the leased aircraft as little as possible,
but still cover all activities. To show how our tail assignment optimizer can
minimize the utilization of leased aircraft, we have re-used the instances from
Section 6.1, and simulated that a few randomly selected aircraft in each instance
are leased. The cost function is the same as that in Section 6.1, except that the
leased aircraft are given a penalty of 50 cost units per flying minute. Observe
that adding costs which depend on the individual aircraft is not a problem in
model PATH-TAS. The maintenance and flight restriction constraints are also
the same as in Section 6.1. Observe that the cost function does not model the
true lease cost, but is a mix between two optimization criteria.

Table 3 shows the total flying time for the leased aircraft, and the optimiza-
tion running time for the five instances. In the improved solutions the leased
aircraft are used substantially less than in the initial solutions. On average for
the five instances, the flying time per leased aircraft in the improved solutions is
decreased by 131 hours and 15 minutes, compared to the initial solutions. With
an estimated hourly lease cost of e 820, this means monthly savings of about
e 820 ×131.25 = e 107625 per leased aircraft. Observe that since we only com-
pare initial solutions to improved solutions, and the leased aircraft are randomly
selected, our results should be interpreted as indicative of possible savings rather
than actual savings. However, what we demonstrate is that our improvement op-
timizer is able to produce much better solutions than solution approaches which
do not care about these costs. And such approaches are not uncommon, many
airlines for example do not plan their tail assignments until very late in the
planning process, at which time it is difficult to consider lease costs.

7 Conclusions

We have presented the Tail Assignment problem as a way to obtain operationally
feasible aircraft assignments. Unlike existing approaches for this problem, the
Tail Assignment problem considers all individual operational constraints,

102 S. Gabteni and M. Grönkvist

including maintenance, flight restrictions and preassigned maintenance activi-
ties. The Tail Assignment problem is solved for a fixed time period, to make
it possible to consider specific activities and irregular schedules. Also, the Tail
Assignment problem uses a fairly general objective function, which makes it
possible to model many kinds of planning scenarios.

We have presented mathematical and constraint models for the Tail Assign-
ment problem, and shown how the constraint model can be used to accelerate
and strengthen a column generation solution approach for the mathematical
model. The hybrid column generation and constraint programming solution ap-
proach uses constraint programming to quickly produce initial solutions, as well
as check feasibility during a column generation-based heuristic branching algo-
rithm. Further, the entire process is wrapped into local search, resulting in a
solution algorithm which scales well to large instances. The solution algorithm is
able to quickly produce initial solutions respecting all operational rules, as well
as close to optimal solutions.

We have demonstrated the usefulness of the method on a set of real-world
instances. We showed that the optimizer can help reduce the number of medium-
length connections, which increases aircraft usage, and to reduce aircraft leasing
costs. Initial solutions where obtained within a few minutes, while solutions of
high quality where obtained given longer running times.

References

1. R. K. Ahuja, J. Liu, J. Goodstein, A. Mukherjee, J. B. Orlin, and D. Sharma.
Solving Multi-Criteria Combined Through Fleet Assignment Models. In T. A.
Ciriani, G. Fasano, S. Gliozzi, and R. Tadei, editors, Operations Research in Space
and Air, pages 233–256. Kluwer Academic Publishers, 2003.

2. E. Andersson, A. Forsman, S. E. Karisch, N. Kohl, and A. Sørensson. Problem
Solving in Airline Operations. Carmen Research and Technology Report CRTR-
0404, Carmen Systems AB, Gothenburg, Sweden, June 2004.

3. C. Barnhart, N. L. Boland, L. W. Clarke, E. L. Johnson, G. L. Nemhauser, and
R. G. Shenoi. Flight String Models for Aircraft Fleeting and Routing. Transporta-
tion Science, 32(3):208–220, August 1998.

4. C. Barnhart, E. L. Johnson, G. L. Nemhauser, M. W. P. Savelsbergh, and P. H.
Vance. Branch-and-Price: Column Generation for Solving Huge Integer Programs.
Operations Research, 46(3):316–329, May-June 1998.

5. A. Caprara, F. Focacci, E. Lamma, P. Mello, M. Milano, P. Toth, and D. Vigo.
Integrating Constraint Logic Programming and Operations Research Techniques
for the Crew Rostering Problem. Software − Practice and Experience, 28(1):49–76,
January 1998.

6. L. W. Clarke, E. L. Johnson, G. L. Nemhauser, and Z. Zhu. The Aircraft Rotation
Problem. Annals of Operations Research, 69:33–46, 1997.

7. G. B. Dantzig and P. Wolfe. Decomposition Principle for Linear Programs. Oper-
ations Research, 8:101–111, 1960.

8. Dash Optimization Ltd. Xpress-Optimizer Reference Manual, release 14, 2002.
9. M. Desrochers and F. Soumis. A generalized permanent labelling algorithm for the

shortest path problem with time windows. INFOR, 26(3):191–212, 1988.

A Hybrid Column Generation and Constraint Programming Optimizer 103

10. M. Elf, M. Jünger, and V. Kaibel. Rotation Planning for the Continental Service
of a European Airline. In W. Jager and H.-J. Krebs, editors, Mathematics – Key
Technologies for the Future. Joint Projects between Universities and Industry, pages
675–689. Springer Verlag, 2003.

11. T. Fahle, U. Junker, S. E. Karisch, N. Kohl, M. Sellmann, and B. Vaaben. Con-
straint Programming Based Column Generation for Crew Assignment. Journal of
Heuristics, 8(1):59–81, 2002.

12. R. Gopalan and K. T. Talluri. The Aircraft Maintenance Routing Problem. Op-
erations Research, 46(2):260–271, March–April 1998.

13. M. Grönkvist. Using Constraint Propagation to Accelerate Column Generation in
Aircraft Scheduling. In Proceedings of CPAIOR’03, May 2003.

14. M. Grönkvist. A Constraint programming Model for Tail Assignment. In Pro-
ceedings of CPAIOR’04, vol. 3011 of Lecture Notes in Computer Science, pages
142–156. Springer-Verlag, April 2004.

15. M. Grönkvist. The Tail Assignment Problem. PhD thesis, Department of Com-
puting Science, Chalmers University of Technology, Gothenburg, Sweden, 2005.

16. C. A. Hane, C. Barnhart, E. L. Johnson, R. E. Marsten, G. L. Nemhauser, and
G. Sigismondi. The fleet assignment problem: solving a large-scale integer program.
Mathematical Programming, 70:211–232, 1995.

17. ILOG Inc. ILOG CPLEX 7.5 Reference Manual, 2001.
18. A. I. Jarrah and J. C. Strehler. An optimization model for assigning through

flights. IIE Transactions, 32(3):237–244, March 2000.
19. N. M. Kabbani and B. W. Patty. Aircraft Routing at American Airlines. In

Proceedings of the Thirty-Second Annual Symposium of AGIFORS, 1992.
20. M. E. Lübbecke and J. Desrosiers. Selected Topics in Column Generation.

Les Cahiers du GERAD G-2002-64, Department of Mathematical Optimization,
Braunschweig University of Technology, and GERAD, 2002. Submitted to Opera-
tions Research.

21. J.-C. Régin. A filtering algorithm for constraints of difference in CSPs. In Pro-
ceedings of AAAI-94, pages 362–367, 1994.

22. L.-M. Rousseau, M. Gendreau, and G. Pesant. Solving small VRPTWs with Con-
straint Programming Based Column Generation. In Proceedings of CPAIOR’02,
March 2002.

23. K. T. Talluri. The Four-Day Aircraft Maintenance Problem. Transportation Sci-
ence, 32:43–53, 1998.

The Power of Semidefinite Programming
Relaxations for MAX-SAT

Carla P. Gomes, Willem-Jan van Hoeve, and Lucian Leahu

Dpt. of Computer Science, Cornell University, Ithaca, NY 14853, USA
{gomes, vanhoeve, lleahu}@cs.cornell.edu

Abstract. Recently, Linear Programming (LP)-based relaxations have
been shown promising in boosting the performance of exact MAX-SAT
solvers. We compare Semidefinite Programming (SDP) based relaxations
with LP relaxations for MAX-2-SAT. We will show how SDP relaxations
are surprisingly powerful, providing much tighter bounds than LP re-
laxations, across different constrainedness regions. SDP relaxations can
also be computed very efficiently, thus quickly providing tight lower and
upper bounds on the optimal solution. We also show the effectiveness
of SDP relaxations in providing heuristic guidance for iterative variable
setting, significantly more accurate than the guidance based on LP relax-
ations. SDP allows us to set up to around 80% of the variables without
degrading the optimal solution, while setting a single variable based on
the LP relaxation generally degrades the global optimal solution in the
overconstrained area. Our results therefore show that SDP relaxations
may further boost exact MAX-SAT solvers.

1 Introduction

In recent years, we have witnessed a tremendous progress in the state-of-the-art
of encodings and algorithms for Boolean Satisfiability (SAT). For example, in
areas such as planning and finite model-checking, we are now able to solve large
SAT problems with up to a million variables and five million constraints. More
generally, SAT encodings have been shown to be very powerful in several prac-
tical domains, such as electronic design automation, AI planning, and hardware
and software verification. The key algorithmic improvements that have been in-
corporated into state-of-the-art SAT solvers have been largely based on artificial
intelligence (AI) and constraint programming (CP) techniques. For example, for
complete solvers, the underlying backtrack search strategy has been enhanced
by a series of increasingly sophisticated techniques, such as non-chronological
backtracking, fast pruning and propagation methods, nogood (or clause) learn-
ing, and more recently randomization and restarts. While we have recently seen
an increasing dialogue between the artificial intelligence (AI) and constraint pro-
gramming (CP) community and the Operations Research community concerning
the study and design of algorithms for SAT and variants, it has been surpris-
ingly difficult to integrate OR based relaxations into practical approaches for
SAT. For example, despite a significant amount of beautiful Linear Program-
ming (LP) results for SAT (see e.g., [1, 2]), practical state-of-the-art solvers do

J.C. Beck and B.M. Smith (Eds.): CPAIOR 2006, LNCS 3990, pp. 104–118, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

The Power of Semidefinite Programming Relaxations for MAX-SAT 105

not incorporate LP relaxation techniques. The main reason seems to be the fact
that, in the case of SAT, the inference performed by LP is basically equivalent
to the inference performed by unit propagation, which is considerably less ex-
pensive than LP.1 Nevertheless, when it comes to MAX-SAT, the optimization
counterpart of SAT in which the objective is to assign values to boolean variables
maximizing the number of satisfied clauses, there seems to be a more clear role
for hybrid approaches that combine AI and OR based techniques. In fact, re-
cently Xing and Zhang [3] made an interesting contribution in the area of hybrid
approaches for MAX-SAT, showing how one can use the information provided
by linear programming to effectively compute lookahead lower bounds on the
number of clauses unsatisfiable. Joy et al ([4]) have also shown how LP-based
relaxations can be effective for MAX-2-SAT.

Another area that has received considerable attention in combinatorial op-
timization is Semidefinite Programming (SDP). In a semidefinite programming
formulation a linear function of a symmetric matrix is optimized, subject to lin-
ear equality constraints and the constraint that the matrix be positive semidefi-
nite. Semidefinite programming is a special case of convex programming and to
some extent is similar to linear programming. In particular, the simplex, ellip-
soid, and interior point methods developed for LP can be generalized to solve
SDP programs. Furthermore, the rich set of LP results in dual theory, a powerful
tool for sensitivity analysis and for computing bounds on the objective function
have also been generalized to SDP [5, 6]. Moreover, SDP has gained considerable
importance in the context of combinatorial optimization since it has been shown
that it leads to tighter relaxations than those based on LP for several com-
binatorial problems. For example, SDP has been shown to provide very good
approximations for several combinatorial problems, in particular for the stable
set problem [7], for the maximum cut problem and for MAX-SAT [8]. Approxi-
mation algorithms are procedures that provide a feasible solution in polynomial
time (see e.g. [9]). A key aspect that characterizes approximation algorithms is
the fact that they provide some guarantee on the quality of the solution. The
quality of an approximation algorithm is the maximum “distance” between its
solutions and the optimal solutions, evaluated over all the possible instances of
the problem. In a seminal paper, Goemans and Williamson [8] used SDP to ob-
tain improved approximations for the Max-Cut and the MAX-2-SAT problem.
In this work they present a randomized approximation algorithm for MAX-2-
SAT that produces solutions of expected value at least .87856 times the optimal
value. Subsequently, Feige and Goemans [10] extended this work, developing an
.931-approximation algorithm for MAX-2-SAT. In our experiments we apply the
“classical” SDP relaxation of Goemans and Williamson [8].

In this paper we study the quality of SDP based relaxations for MAX-SAT. In
particular, we are interested in comparing the power of SDP relaxations against
LP based relaxations, since LP relaxations have been shown to be useful in
speeding up practical solvers [3]. In the work reported in this paper we address

1 Unit propagation recursively sets the literals corresponding to unit clauses to true,
eliminating all the clauses in which the literal appear, until a fix-point is reached.

106 C.P. Gomes, W.-J. van Hoeve, and L. Leahu

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 0 1 2 3 4 5 6 7 8 9 10

ra
tio

 w
ith

 r
es

pe
ct

 to
 o

pt
im

um

clause/variable ratio

optimum
upper bound (SDP objective function)

lower bound (SDP)
upper bound (LP objective function)

lower bound (LP)

Fig. 1. Lower and upper bounds based on LP and SDP relaxations

the following research questions: (1) How do the LP and SDP solutions compare
as upper bounds on the optimal solution? This is a critical question since we
can use the relaxations as admissible heuristics to prune the search space. As
we will see, in the overconstrained area, the upper bound based on the SDP
relaxation is considerably tighter than the one provided by the LP relaxation:
the upper bound provided by LP for MAX-SAT instances is always equal to the
total number of clauses, therefore not informative in the overconstrained area;
the upper bound given by the SDP relaxation is surprisingly close to the optimal
solution (within less than 3% of the real optimal value, when varying the ratio of
clauses to variables up to 10) (2) How do the assignments based on the LP and
SDP relaxations compare as lower bounds on the optimal solution? Once again
we see that the SDP relaxation outperforms the LP relaxation considerably,
especially in the overconstrained area. In fact while the SDP lower bound is
always within 1% of the optimal solution, the lower bound provided by the LP
relaxation can be as far as 18% from optimal (see figure 1). We note that the
LP solver runs faster than the SDP solver. Nevertheless, the runtimes for the
SDP solver are very good, a little over 1 second per instance, on average, for an
80 variable problem, independently of the number of clauses. We also compared
the quality of the solutions obtained from the SDP relaxation as a lower bound
on the optimal solution against Walksat, one of the best performing local search
methods for MAX-SAT. We gave Walksat about 5 minutes per instance (note
that the SDP solver takes less than 2 seconds per instance). Interestingly, as the
instances become more and more overconstrained, the SDP solutions become
better than those provided by Walksat. Furthermore, because Walksat is a local
search solver, it does not provide an upper bound on the optimal solution, a
key aspect of the SDP relaxation. (3) To what extent the relaxations provide a
global perspective of the search space and therefore to what extent they can be

The Power of Semidefinite Programming Relaxations for MAX-SAT 107

used as heuristics to guide a complete solver? In order to address this issue we
performed the following experiment: set the X highest values suggested by the
LP/SDP relaxation; check if the optimal value of the resulting instance is still
the same as the original optimal value. Once again the SDP relaxation clearly
outperforms the LP relaxation. In fact, in the overconstrained area, the setting
of a single value dictated by the LP relaxation generally results in a value for the
optimal solution lower than the original value. The SDP relaxation on the other
hand is much more robust: We can set up to an average of 84% of variables based
on the SDP suggestions, without changing the value of the optimal solution.
This result suggests that the SDP relaxation can be a very valuable heuristic for
setting variable values in a backtrack search strategy.

2 Preliminaries

The Boolean satisfiability problem (SAT) is a decision problem at the core of
complexity theory, artificial intelligence, logic and hardware design and verifica-
tion. We consider the problem in conjunctive normal form (CNF). A formula F
in CNF is a conjunction of clauses, where each clause is a disjunction of literals.
Each literal is a logical variable (x) or its negation (x̄). The SAT problem is to
determine whether there exists a variable assignment that makes the formula
true (i.e., each clause is true). k-SAT represents the satisfiable problem where
the clauses are constrained to have the length equal to k.

MAX-SAT is the optimization version of SAT. Given a formula we want to
maximize the number of simultaneously satisfied clauses. Given an algorithm for
MAX-SAT we can solve SAT, but not viceversa, therefore MAX-SAT is more
complex than SAT. The distinction becomes obvious when considering the case
when the clauses are restricted to two literals per clause (2-SAT): 2-SAT is
solvable in linear time, while MAX-2-SAT is NP-hard [11].

Given the importance of the problem, the complexity of SAT has received
much attention. Previous results show easy-hard-easy patterns in terms of the
problem hardness, as a function of the clause/variable ratio (C/V). Furthermore,
phase-transition phenomena have been reported with respect to satisfiability
(i.e., a sudden change from many satisfiable instances to none). For instance, for
2-SAT this phase transition has been proven to occur when C/V is 1 [12].

Recently there have been promising results when using LP for MAX-SAT, af-
ter several unsuccessful efforts to apply integer LP to MAX-SAT (e.g.,[1, 4]).
Xing and Zhang developed MaxSolver ([3]), an efficient exact algorithm for
(weighted) MAX-SAT. Their solver uses a DPLL-based branch and bound algo-
rithm and it successfully uses a lookahead LP lower bound. This lower bound is
only applied to the nodes that have unit clauses, to avoid fractional values equal
to 1/2 (in the case of MAX-2-SAT). MaxSolver also incorporates existing and
novel unit propagation rules, a binary-clause first rule and a dynamic-weighting
variable ordering rule.

SDP relaxations have also been deployed for the MAX-2-SAT problem. Fol-
lowing the randomized polynomial time algorithm of Goemans and Williamson
[8] which had an approximation ratio of 0.87856, there has been a series of

108 C.P. Gomes, W.-J. van Hoeve, and L. Leahu

theoretical results improving this approximation ratio. The most recent improve-
ment is a 0.940-approximation algorithm [13]. A thorough survey of SDP-based
approximation algorithms for the MAX-SAT problem is presented in [14]. See
[15] for interesting results on the SDP for the so-called 2+p-SAT problem.

3 LP and SDP Formulations for MAX-SAT

3.1 LP Formulation

We consider the following ILP formulation for the MAX-SAT problem from [16].
With each clause Cj we associate a variable zj ∈ {0, 1}. 1 corresponds to the
clause being satisfied and 0 to the clause not being satisfied. For each variable
xi we associate a corresponding variable yi in the ILP. yi can take the values 0
and 1, corresponding to xi being false or true, respectively. Let C+

j be the set of
indices of positive literals that appear in clause Cj , and C−

j be the set of indices
of negative literals (i.e., complemented variables) that appear in clause Cj . The
problem can be formally stated as follows:

max
m∑

j=1

zj

subject to ∑
i∈C+

j

yi +
∑

i∈C−
j

(1− yi) ≥ zj, ∀j

where
yi, zj ∈ {0, 1}, ∀i, j.

The formulation ensures that a clause is true only if at least one of the vari-
ables that appear in the clause has the value 1. Since, we want to maximize∑m

j=1 zj and zj can be set to 1 only when clause Cj is satisfied, it follows that
the objective function counts the number of satisfied clauses. By relaxing the
integrality constraint, we obtain an LP relaxation for the MAX-SAT problem.
This ILP formulation is equivalent to the ILP used in [3] to compute the lower
bound and to the ILP solved at each node by the MAX-SAT branch and cut
algorithm in [4].

It is interesting to note that there exists a trivial way to satisfy all the clauses:
setting each variable yi to 0.5. Using this assignment, the sum of literals for each
clause is exactly 1, hence the clause can be satisfied and the objective function is
equal to the number of clauses. The value 0.5 is not at all informative, lying half
way between 0 and 1, it gives no information whether the corresponding Boolean
variable should be set to true or false. As the problem becomes more constrained
(i.e., the number of clauses increases) the corresponding 2-SAT problem is very
likely to be unsatisfiable, hence any variable assignment different than 0.5 would
lead to a less than optimal objective value. Naturally, the LP solver finds the
highest possible objective value (i.e., the number of clauses) when setting all
variables to 0.5.

The Power of Semidefinite Programming Relaxations for MAX-SAT 109

3.2 Semidefinite Programming

In this section we briefly introduce semidefinite programming. A large number of
references to papers concerning semidefinite programming are on the web pages
of Helmberg2 and Alizadeh3. A general introduction to semidefinite program-
ming applied to combinatorial optimization is given in e.g. [6].

Semidefinite programming makes use of positive semidefinite matrices of vari-
ables. A matrix X ∈ Rn×n is said to be positive semidefinite (denoted by X � 0)
when yTXy ≥ 0 for all vectors y ∈ Rn. Semidefinite programs have the form

max tr(WX)
s.t. tr(AjX) ≤ bj (j = 1, . . . , m)

X � 0.
(1)

Here tr(X) denotes the trace of X , which is the sum of its diagonal elements, i.e.
tr(X) =

∑n
i=1 Xii. The matrix X , the cost matrix W ∈ Rn×n and the constraint

matrices Aj ∈ Rn×n are supposed to be symmetric. The m reals bj and the m
matrices Aj define m constraints.

We can view semidefinite programming as an extension of linear program-
ming. In particular, when the matrices W and Aj (j = 1, . . . , m) are all diagonal
matrices4, the resulting semidefinite program is equal to a linear program, where
the matrix X is replaced by a non-negative vector of variables x ∈ Rn. In par-
ticular, then a semidefinite programming constraint tr(AjX) ≤ bj corresponds
to a linear programming constraint aT

j x ≤ bj, where aj represents the diagonal
of Aj .

Theoretically, semidefinite programs have been proved to be polynomially
solvable to any fixed precision using the so-called ellipsoid method (see for in-
stance [7]). In practice, nowadays fast ‘interior point’ methods are being used
for this purpose (see [5] for an overview).

3.3 Semidefinite Relaxation for MAX-2-SAT

We applied the semidefinite relaxation of MAX-2-SAT proposed by Goemans
and Williamson [8]. The relaxation follows from a quadratic programming for-
mulation of MAX-2-SAT. We first introduce this integer quadratic program.

Let the MAX-2-SAT problem consist of boolean variables x1, x2, . . . , xn and
a set of clauses C on these variables. To each variable xi (i = 1, . . . , n), we
associate a variable yi ∈ {−1, 1}. Moreover, we introduce a variable y0 ∈ {−1, 1}.
We define xi to be true if and only if yi = y0, and false otherwise.

Next, we express the truth value of a boolean formula in terms of its variables.
Given a formula c, we define its value, denoted by v(c), to be 1 if the formula is
true, and 0 otherwise. Hence,

v(xi) =
1 + y0yi

2
2 http://www-user.tu-chemnitz.de/˜helmberg/semidef.html
3 http://new-rutcor.rutgers.edu/˜alizadeh/sdp.html
4 A diagonal matrix is a matrix whose non-diagonal entries are zero.

110 C.P. Gomes, W.-J. van Hoeve, and L. Leahu

gives the value of a boolean variable xi as defined above. Similarly,

v(xi) = 1− v(xi) =
1− y0yi

2
.

Hence, the value of the formula xi ∨ xj can be expressed as

v(xi ∨ xj) = 1− v(xi ∧ xj) = 1− v(xi)v(xj) = 1− 1− y0yi

2
1− y0yj

2

=
1 + y0yi

4
+

1 + y0yj

4
+

1− yiyj

4
.

The value of other clauses can be expressed similarly. If a variable xi is negated
in a clause, then we replace yi by −yi in the above expression.

Now we are ready to state the integer quadratic program for MAX-2-SAT:

max
∑
c∈C

v(c)

s.t. yi ∈ {−1, 1} ∀i ∈ {0, 1, . . . , n}.
(2)

It is convenient to rewrite this program as follows. We introduce an (n+1)×(n+1)
matrix Y , such that entry Yij represents yiyj (we index the rows and columns
of Y from 0 to n). Then program (2) can be rewritten as

max tr(WY)
s.t. Yij ∈ {−1, 1} ∀i, j ∈ {0, 1, . . . , n}, i �= j,

(3)

where W is an (n + 1) × (n + 1) matrix representing the coefficients in the
objective function of (2). For example, if the coefficient of yiyj is wij , then
Wij = Wji = 1

2wij .
The final step consist in relaxing the conditions Yij ∈ {−1, 1} by demanding

that Y should be positive semidefinite and Yii = 1 ∀i ∈ {0, 1, . . . , n}. Hence, the
semidefinite relaxation of MAX-2-SAT is given by the following program

max tr(WY)
s.t. Yii = 1 ∀i ∈ {0, 1, . . . , n},

Y � 0.
(4)

Program (4) provides an upper bound on the solution to MAX-2-SAT problems.
Furthermore, the values Y0i, representing y0yi, correspond to the original boolean
variables xi (i = 1, . . . , n). Namely, if Y0i is close to 1, variable xi is “close to
true”. Similarly, if Y0i is close to −1, variable xi is “close to false”.

Example 1. Consider the MAX-2-SAT problem on the variables x1 and x2, with
one clause x1 ∨ x2. The semidefinite relaxation is

max 3
4 + 1

4Y01 − 1
4Y02 + 1

4Y12

s.t. Yii = 1 (i = 0, 1, 2)
Y � 0.

The Power of Semidefinite Programming Relaxations for MAX-SAT 111

An optimal solution is

Y =

⎡
⎣ 1.0 0.5 −0.5

0.5 1.0 0.5
−0.5 0.5 1.0

⎤
⎦

with objective value 1.125, which is larger than 1, the number of clauses.
The suggestion made by this relaxation is Y01 = 0.5 and Y01 = −0.5. This

corresponds to “x1 close to true” and “x2 close to false”. Indeed, this leads to
an optimal solution for the MAX-2-SAT problem.

Example 1 shows that the solution to the semidefinite relaxation may overestimate
the actual solution value. In this particular case it is even higher than the number
of clauses. Moreover, the fractional solution values are quite far from integrality
in this example. In practice however, we will see that the semidefinite relaxation
provides surprisingly tight bounds and near-integral values for the variables.

An interesting aspect of program (4) is that the problem instance is entirely
encapsulated in the objective function. Hence, the solution process is likely to
be independent of the number of clauses, because the model size remains con-
stant for a given number of variables. This is an important property when such
relaxations need to be applied in practice.

4 Experimental Setup and Results

We have used random MAX-2-SAT instances generated by Selman’s MWFF
package [17]. For our experiments, we have solved the LP relaxation using ILOG
CPLEX libraries. For the semidefinite relaxation we have used the solver CSDP,
version 5.0 [18]. To compute the optimum value for the MAX-2-SAT instances,
we used MaxSolver, the complete solver from [3].

4.1 Quality and Fractionality of Relaxations

We begin by examining the objective value of the LP and SDP relaxations across
different constraindness regions of the problem. We examine MAX-2-SAT in-
stances for 80 variables, varying the C/V ratio from 0.5 to 10. We also solve
the instances with a complete solver [3]. (The LP and SDP relaxation can be
computed for much higher numbers of variables. However the need for an exact
solution limits us to around 80 variables.) The left plot in Figure 2 depicts the
median objective value returned by the LP and SDP relaxation versus the median
value returned by the MAX-2-SAT solver (bottom curve), as a function of the
C/V ratio. Unless otherwise noted, each data point in all the plots corresponds
to the median of 100 instances. Since both the LP and the SDP solve a relaxed
version of the problem, the objective value is overestimated, and therefore the
relaxations provide upper bounds on the optimal solution. We have shown in
section 3.1 that we can always find an assignment which makes the objective
value of the LP relaxation equal to the number of clauses, hence in the plot the
fraction of satisfiable clauses is always 1. While the LP relaxation provides no

112 C.P. Gomes, W.-J. van Hoeve, and L. Leahu

information about the true solution to the problem, the SDP relaxation follows
closely the behavior of the curve corresponding to the maximum fraction of sat-
isfiable instances.5 Hence, the SDP relaxation is able to adapt to the difficulty of
the instances and provides a meaningful upper bound on the maximum number
of satisfiable clauses (especially as C/V increases).

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 0 1 2 3 4 5 6 7 8 9 10

fr
ac

tio
n

of
 c

la
us

es

clause/variable ratio

Objective Value for n=80

SDP
complete solver

LP

 0.01

 0.1

 1

 10

 100

 1000

 0 1 2 3 4 5 6 7 8 9 10

se
co

nd
s

-
lo

gs
ca

le

clause/variable ratio

Running Time LP vs SDP vs MAXSAT for n=80

SDP
complete solver

LP

(a) (b)

Fig. 2. (a) Objective value of the LP and SDP relaxations vs. optimum solution for
different C/V values. (b) Runtime of the LP and SDP relaxations vs. the MAX-2-SAT
solver in [3].

The plot on the right depicts the runtime in seconds of the two relaxations
versus the MAX-2-SAT solver. The point of this plot is to observe whether the
relaxations are affected by the C/V ratio. We first note that the runtime of the
two relaxations is hardly affected by the constraindness of the problem, while
the runtime of the MAX-2-SAT solver grows exponentially in the C/V ratio (the
plot’s y axis is a logarithmic scale). Naturally, the complete solver requires much
more time in the over-constrained region, as it has to prove optimality of the
found solution. The LP relaxation is computationally the least expensive across
the board, except for the under-constrained region, where the problem is easy
and the complete solver is able to quickly examine the search space.

In order to understand what enables the SDP relaxation to be more informed
than the LP relaxation, we continue by studying the fractionality of the values
returned by the two relaxations. Figure 3 plots the distribution of these values, in
intervals of length 0.1 from 0 to 1 for the LP relaxation and from −1 to 1 for the
SDP relaxation averaged over all instances (C/V ratio varying from 0.5 to 10).
The ends of the two intervals correspond to the Boolean values false and true,
respectively. The closeness of a value to one of the ends can be interpreted as the
“confidence” of the relaxation that the corresponding Boolean variable should be
set to true/false. We observe that the LP relaxation only sets variables to three
values: 0, 1 and 0.5. 0 and 1 correspond to false and true, respectively, however
5 Note that SDP can provide an objective value greater than the number of clauses;

in those cases, for obvious reasons, we consider the number of clauses in the formula
as the upper bound on the optimal value.

The Power of Semidefinite Programming Relaxations for MAX-SAT 113

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

fr
ac

tio
n

of
 v

ar
ia

bl
es

LP value

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 0.11

-1 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

fr
ac

tio
n

of
 v

ar
ia

bl
es

SDP value

(a) (b)

Fig. 3. Distribution of the values returned by the (a) LP and (b) SDP relaxation
(averaged over instances with C/V ranging from 0.5 to 10)

0.5 gives us no information as to what should be assigned to the corresponding
Boolean value. In contrast, the majority of values returned by the SDP relaxation
are concentrated towards the ends of the interval [−1, 1], thus suggesting more
informed guidance about the way the variables should to be set.

To further describe the fractionality of the relaxations we examine them across
different constraindness regions. Figure 4 a) plots the fraction of variables that
are equal to 0.5 after solving the LP relaxation. In the under-constrained region
(i.e., low clause/variable ratio) the fraction is 0, then as we pass the C/V = 1
point, the percentage goes up, and it approaches 1 (i.e., all variables) as the
problem becomes over-constrained.

Similarly, figure 4a) plots the fraction of SDP variables whose values lie in
the neighborhood of 0. We represent the fraction of variables equal to 0 and also
those variables whose absolute value lies in the interval (0, 0.1]. In the under-
constrained region the fraction of variables set to 0 is very high (close to 0.8).
As we add more clauses this fraction sharply decreases and stabilizes at 0. These
variables correspond to boolean variables that do not appear in the formula,
hence the high fraction of such variables in the under-constrained region.

Figure 4b) plots the fraction of high confidence variables. For LP (variables
having the value 0 or 1) we see a significant change around C/V = 1 and then
the fraction decreases all the way to 0. (in fact this curve is the complement
of the curve representing the variables set to 0.5 by LP). For SDP we plot the
fraction of variables that are greater than 0.7 in absolute value. This fraction
is low in the under-constrained region (as most of the variables are set to 0 as
explained above) and it goes up to roughly half the variables as the problem
becomes more constrained.

The plots demonstrate that the two relaxations examined behave very differ-
ently across the constraindness regions. As the problem gets harder (i.e., more
constrained) the LP relaxation “defaults” to an uninformative assignment (all
variables are assigned 0.5). In contrast, the SDP relaxation provides a good up-
per bound on the optimal solution (see Figure 2 and 1), with runtimes below 2

114 C.P. Gomes, W.-J. van Hoeve, and L. Leahu

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8 9 10

fr
ac

tio
n

of
 v

ar
ia

bl
es

clause/variable ratio

LP value = 0.5
SDP value = 0

SDP value in [-0.1, 0) or (0, 0.1]

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8 9 10

fr
ac

tio
n

of
 v

ar
ia

bl
es

clause/variable ratio

LP value = 0 or 1
absolute SDP value > 0.7

(a) (b)

Fig. 4. a) Fraction of variables having the value a) 0.5 computed by LP and 0 or
smaller than 0.1 in absolute value computed by SDP and b) 0 or 1 computed by the
LP relaxation and above 0.7 in absolute value by the SDP relaxation

seconds per run. Furthermore, the SDP values assigned to the Boolean variables
are less fractional than those delivered by LP (Figure 3) and therefore can be
used more effectively as heuristics, as we will see in the next section.

4.2 SDP and LP as a Backtrack Search Heuristic

Related to the fractionality of the SDP relaxation is the question of whether
the SDP relaxation provides a good global perspective of the search space and
therefore could be used as a heuristic by MAX-SAT solvers. To test the heuristic
power of SDP we used the following method:

Algorithm 1. SDP-based Heuristic
Input: a MAX-2-SAT instance and x (the number of variables to be set using the
SDP relaxation).

Step 1: solve the SDP relaxation.
Step 2: set x variables to the value suggested by the SDP relaxation6.
Step 3: given the (partial) assignment of variables from step 2, compute the

MAX-2-SAT for the original instance s.t. the maximizing assignment extends this
partial assignment.
Output: the maximum number of sat clauses.

To put into perspective the heuristic power of the SDP relaxation, we compare
it to that of the LP relaxation. The following method was used:

Algorithm 2. LP-based Heuristic
Input: a MAX-2-SAT instance and x (the number of variables to be set using the
LP relaxation).

Step 1: solve the LP relaxation.

6 We consider variables in decreasing order of their absolute value.

The Power of Semidefinite Programming Relaxations for MAX-SAT 115

Step 2: set x variables to the value suggested by the LP relaxation7.
Step 3: given the (partial) assignment of variables from step 2, compute the

MAX-2-SAT for the original instance s.t. the maximizing assignment extends this
partial assignment.
Output: the maximum number of sat clauses8.

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 0 1 2 3 4 5 6 7 8 9 10

ab
so

lu
te

 v
al

ue

clause/variable ratio

Maximum Value of the SDP relaxation
 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 1 2 3 4 5 6 7 8 9 10

fr
ac

tio
n

of
 c

la
us

es

clause/variable ratio

set all variables to SDP assignment
MAX 2-SAT solver

set all variables to LP assignment
0.940

(a) (b)

Fig. 5. a) The maximum value returned by the SDP relaxation and b) the heuristic
power of SDP vs LP

Figure 5 a) plots the maximum absolute variable value returned by the SDP
relaxation as we increase the constraidness of the problem. Given the fact that
this value is very close to 1 and the high density of variables having high “con-
fidence” level, the following experiments are justified. In the first experiment
conducted, we set all the variables (x = n) to the value suggested by the re-
laxations and then we report the number of satisfied clauses. Figure 5 b) shows
the results for the two relaxations versus the MAX-SAT value. Each data point
corresponds to the median of 100 instances. The SDP performance is quite im-
pressive, as it stays very close to the optimum across the board. When using the
LP relaxation the performance degrades significantly as the problem becomes
more constrained. The SDP’s heuristic power does not seem to be affected by
the constraindness of the problem. We have also included in figure 5 b) the curve
corresponding to the best theoretical guarantee for an SDP based approximation
algorithm (i.e., 0.940-approximation [13]). The results in figure 5, show that on
random instances an algorithm using our SDP heuristic comes on average within
0.99 of the optimum. Thus, for most cases, when an estimate of the MAX-2-SAT
solution is needed, simply setting the values suggested by the SDP relaxation
should be a good heuristic.
7 First consider the variables that were set to 0 or 1 by the LP relaxation and set the

corresponding Boolean variables to false or true, respectively. If we exhaust all such
variables, we consider variables that are 0.5 and randomly set the corresponding
variable to true or false. Note that LP only assigns 0, 1, and 0.5 values to variables.
Since the procedure is randomized we perform it many times for one instance.

8 Because we perform the variable setting several times for every input instance, we
return the median.

116 C.P. Gomes, W.-J. van Hoeve, and L. Leahu

We also varied the number of variables set (x) between 0 and n and studied
the effect on the maximum number of satisfiable clauses. We discovered that
the median maximum number of satisfiable clauses when using SDP remains the
same as the optimum, when we set up to 84% of the variables (i.e., 42 variables
for n=50). It is at this point that we observe a slight change in performance –
see figure 6 a).

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 1 2 3 4 5 6 7 8 9 10

fr
ac

tio
n

of
 c

la
us

es

clause/variable ratio

SDP
LP

optimum

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 0 1 2 3 4 5 6 7 8 9 10

fr
ac

tio
n

of
 c

la
us

es

clause/variable ratio

optimum value / setting 1, 5, 10 variables with SDP
setting 1 variable with LP

setting 5 variables with LP
setting 10 variables with LP

(a) (b)

Fig. 6. Change in the number of satisfied clauses as we set a) 84% of the variables and
b) 1, 5 and 10 variables using the LP and SDP

Once again, we compared SDP with LP and observed that when using LP the
performance starts degrading even after setting just 1 variable and it continues
to drop as we increase x (figure 6 b)). In contrast, SDP makes no mistakes
when setting 1 and 2 variables and we have found just one instance (in over
2000 random instances) for x = 3, where the maximum number of satisfied
clauses decreased by 1. For x = 10, the number of instances where the SDP
suggestion is sub-optimal is four. These results show that the SDP relaxation
is very informed and by following the SDP suggestion we remain very close to
optimal performance.

In section 4.1 we showed that the objective function of the SDP relaxation
provides a good upper bound for MAX-2-SAT. We test the potential of the SDP
relaxation to provide a lower bound, by using the SDP relaxation to set all
variables and we compare it to Walksat [19]. We ran Walksat with a cutoff of
108 flips. The average Walksat runtime was approximately five minutes, while
the SDP relaxation was computed in approximately 1 second. The results are
presented in figure 7. The plot on the left side depicts the upper bound, lower
bound, optimum value and Walksat value for the C/V ratio ranging from 0.5
to 10. We note that the curves are very close to each other, but Walksat still
provides a better lower bound. In the plot on the right side, as we increase the
C/V ratio up to 100, we see that SDP outperforms Walksat, namely it provides
a better bound, using considerably less time (recall from section 4.1 that the
runtime for the SDP relaxation does not depend on the C/V ratio).

Given these very promising results for the guiding power of the SDP relax-
ation, we believe that the performance of MAX-SAT solvers could be further

The Power of Semidefinite Programming Relaxations for MAX-SAT 117

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 0 1 2 3 4 5 6 7 8 9 10

fr
ac

tio
n

of
 c

la
us

es

clause/variable ratio

upper bound (SDP objective function)
Walksat

optimum
lower bound (SDP)

 0.78

 0.79

 0.8

 0.81

 0.82

 0.83

 0.84

 0.85

 20 30 40 50 60 70 80 90 100

fr
ac

tio
n

of
 c

la
us

es

clause/variable ratio

upper bound (SDP objective function)
Walksat

lower bound (SDP)

(a) (b)

Fig. 7. SDP vs Walksat as a lower bound.

improved by incorporating the information provided by the SDP relaxation, for
instances in the over-constrained region, where the time required to compute
the SDP relaxation is considerably smaller than the time needed by the current
MAX-SAT solvers (see figure 2 b)).

5 Conclusions and Future Work

In this paper we show how SDP relaxations are surprisingly powerful, provid-
ing much tighter bounds than LP relaxations, across different constrainedness
regions. SDP relaxations can also be computed very efficiently, thus quickly pro-
viding tight lower and upper bounds on the optimal solution. We also show that
heuristic guidance based on the SDP relaxation for iterative variable setting is
significantly more accurate than the guidance based on the LP relaxation. SDP
allows us to set up to around 84% of the variables without degrading the optimal
solution, while setting a single variable based on the LP relaxation generally de-
grades the global optimal solution in the overconstrained area. We also compared
SDP against Walksat: Interestingly, as the instances become more and more con-
strained, the lower bound provided by the SDP relaxation outperforms Walksat.
The SDP relaxation runs much faster than Walksat. (We allocated 5 minutes
per run for Walksat while SDP took less than 2 seconds per run.) Furthermore,
Walksat has the limitation of not providing upperbounds. In our experiments, the
SDP upper bound is always less than 3% above the optimal solution. Our results
therefore show that SDP relaxations may further boost exact MAX-SAT solvers.

References

1. Hooker, J.N., Fedjiki, C.: Branch-and-cut solution of inference problems in propo-
sitional logic. Annals of Math. and Artificial Intelligence 1 (1990)

2. Warners, J.: Nonlinear approaches to satisfiability problems. PhD thesis, Technis-
che Universiteit Eindhoven (1999)

118 C.P. Gomes, W.-J. van Hoeve, and L. Leahu

3. Xing, Z., Zhang, W.: Maxsolver: An efficient exact algorithm for (weighted) max-
imum satisfiability. Artificial Intelligence 164(1-2) (2005) 47–80

4. Joy, S., Mitchell, J., Borchers, B.: A branch and cut algorithm for MAX-SAT and
weighted MAX-SAT. Satisfiability Problem: Theory and Applications 35 (1997)
519–536

5. Alizadeh, F.: Interior point methods in semidefinite programming with applications
to combinatorial optimization. SIAM Journal on Optimization 5(1) (1995) 13–51

6. Goemans, M., Rendl, F.: Combinatorial Optimization. In Wolkowicz, H., Saigal,
R., Vandenberghe, L., eds.: Handbook of Semidefinite Programming. Kluwer (2000)
343–360

7. Grötschel, M., Lovász, L., Schrijver, A.: Geometric Algorithms and Combinatorial
Optimization. John Wiley & Sons (1988)

8. Goemans, M., Williamson, D.: Improved Approximation Algorithms for Maximum
Cut and Satisfiability Problems Using Semidefinite Programming. Journal of the
ACM 42(6) (1995) 1115–1145

9. Hochbaum, D.S.: (Editor) Approximation algorithms for NP-Hard problems. PWS
Publishing Company (1997)

10. U. Feige and M. Goemans: Approximating the value of two prover proof systems,
with applications to max2sat and max dicut. In: Proceedings of the 3rd Israel
Symposium on Theory of Computing and Systems. (1995)

11. Garey, M., Johnson, D.: Computers and Intractibility. Freeman (1979)
12. Chvátal, V., Reed, B.: Mike gets some (the odds are on his side). In: 33th Annual

Symposium of Foundations of Computer Science. (1992) 620–627
13. Lewin, M., Livnat, D., Zwick, U.: Improved rounding techniques for the MAX

2-SAT and MAX DI-CUT problems. In: IPCO. (2002) 67–82
14. Anjos, M.: Semidefinite optimization approaches for satisfiability and maximum-

satisfiability problems. Journal on Satisfiability, Boolean Modeling and Computa-
tion 1 (2005) 1–47

15. de Klerk, E., van Maaren, H.: On semidefinite programming relaxation of 2+p-sat.
Annals of Math. and Artificial Intelligence 37 (2003)

16. Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press
(1995)

17. Selman, B.: Mwff - a program for generating random MAX k-SAT instances. (1993)
18. Borchers, B.: A C Library for Semidefinite Programming. Optimization Methods

and Software 11(1) (1999) 613–623
http://www.nmt.edu/~borchers/csdp.html.

19. Selman, B., Kautz, H., Cohen, B.: Local search strategies for satisfiability testing
(1996)

Expected-Case Analysis for Delayed Filtering

Irit Katriel�

BRICS��, University of Aarhus, Århus, Denmark
irit@daimi.au.dk

Abstract. One way to address the tradeoff between the efficiency and the ef-
fectiveness of filtering algorithms for global constraints is as follows: Instead of
compromising on the level of consistency, compromise on the frequency at which
arc consistency is enforced during the search. In this paper, a method is suggested
to determine a reasonable filtering frequency for a given constraint.

For dense instances of AllDifferent and its generalization, the Global Cardi-
nality Constraint, let n and m be, respectively, the number of nodes and edges
in the variable-value graph. Under the assumption that propagation is random
(i.e., each edge removed from the variable-value graph is selected at random),
it is shown that recomputing arc consistency only after Θ(m/n) edges were re-
moved results in a speedup while, in the expected sense, filtering effectiveness is
comparable to that of enforcing arc consistency at each search step.

1 Introduction

At the heart of the propagation-search technique in constraint programming is a trade-
off between the amount of resources (space, time) spent on propagation and the amount
of pruning that it achieves. One type of propagation is filtering, i.e., the task of iden-
tifying useless values in variable domains and removing them. Global constraints play
an important role in this game by enabling a larger number of useless values to be
identified compared to the decomposition into a semantically equivalent set of simpler
constraints. A “good” global constraint is a constraint that allows a significant increase
in the amount of filtering with a low computational overhead.

An important question is that of incremental filtering, i.e., the development of fast al-
gorithms that re-filter a constraint after a small change has occurred, such as the removal
of a value from a variable domain due to filtering with respect to another constraint. For
AllDifferent and its generalization, the Global Cardinality Constraint (GCC), incre-
mental arc consistency can be performed faster than computing arc consistency from
scratch. The arc consistency algorithm first finds a solution, i.e., a flow in the variable-
value graph of the constraint (which is augmented into a flow network by adding a
source and a sink), and then computes the strongly connected components (SCCs) of
the residual graph w.r.t. this flow [4, 5]. Let n and m be, respectively, the number of
nodes and edges in the variable-value graph. Then the running time is dominated by the
time to find a single solution. Hopcroft and Karp’s algorithm [1] for maximum bipartite

� Supported by the Danish Research Agency (grant # 272-05-0081).
�� Basic Research in Computer Science, funded by the Danish National Research Foundation.

J.C. Beck and B.M. Smith (Eds.): CPAIOR 2006, LNCS 3990, pp. 119–125, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

120 I. Katriel

matching in O(m
√

n) time applies directly to AllDifferent, and as recently shown by
Quimper et al. [3], can also be used for GCC.

An incremental arc consistency algorithm for AllDifferent and GCC receives an arc
consistent flow network, a flow in it, and an edge that should be removed. If the removed
edge is a flow edge, a new flow can be constructed after finding an augmenting path
between the edge’s endpoints, which takes linear time. Recomputing SCCs also takes
time which is linear in the size of the graph. Although linear-time is much better than
O(m

√
n), it is still a pity when it is wasted, i.e., when the algorithm does not discover

any inconsistent edges.
We say that an edge in an arc consistent constraint’s flow network is important if its

removal would render at least one other edge “inconsistent”. It is an interesting question
whether there are fast methods to determine whether a given edge is important, or even
to estimate how important it is, i.e., how many edges become inconsistent once it is
removed?

In this paper we address a different aspect of this issue. We show that the number of
important edges cannot be very large for the flow-based constraints mentioned above.
More precisely, it is at most linear in the number of nodes in the variable-value graph.
The implication of this is as follows. Assume that the filtering is random. That is, every
edge in the variable-value graph of a constraint is equally likely to be removed. Then
the expected number of edges that are removed until an important edge is removed,
is Θ(m/n). Now, assume that instead of computing arc consistency incrementally in
O(m + n) time after every edge deletion, we compute arc consistency from scratch in
O(m

√
n) time only after Θ(m/n) edges were deleted. Then the total time spent on filter-

ing during these deletions drops from O(m2/n) to O(m
√

n). The filtering effectiveness,
in the expected sense, is comparable. If the constraint is dense, i.e., m = Ω(n

√
n), we

have obtained a speedup.
The rest of the paper is organized as follows. In Section 2 we prove the main techni-

cal result the paper, which is an upper bound on the number of important edges in a flow
network. In Section 3 we apply this bound to the specific flow networks of AllDifferent
and GCC and conclude the result mentioned above on the filtering frequency. In Sec-
tion 4 we describe how a solver can maintain the information it needs to perform de-
layed filering. Finally, in Section 5 we point out some directions for further research.

2 The Important Edges of a Flow Network

The constraints we address can be modeled by a flow network such that there is a one-to-
one correspondence between the integral feasible flows in the network and the solutions
to the constraint. Computing arc consistency then amounts to identifying edges that do
not belong to any integral feasible flow, and flow theory tells us that given a flow f , the
inconsistent edges are exactly the edges that do not belong to f and which connect two
distinct SCCs in the residual graph corresponding to f [4, 5].

In the following we abuse terminology and speak of an edge in a flow network as be-
ing consistent if it belongs to at least one integral feasible flow. Furthermore, we say that
the network is arc consistent if all of its edges are consistent and that an edge is impor-
tant if its removal from the network would render at least one other edge inconsistent.

Expected-Case Analysis for Delayed Filtering 121

In the rest of this section we show an upper bound on the number of important edges
in a flow network:

Theorem 1. Let G be a flow network and let F be an integral feasible flow in G. The
number of important edges in G is bounded from above by |F |+ 2n, where |F| is the
maximum number of edges participating in a feasible flow (which can be bounded from
above by the value of the flow because it is an integral flow).

The proof is by showing that there exists a set S of cardinality less than |F|+ 2n such
that S contains all important edges: We include all |F | flow edges in S and then add less
than 2n non-flow edges.

A non-flow edge is important if and only if its removal increases the number of
SCCs in the residual graph of the network with respect to the given flow. This means
that an edge between two SCCs cannot be important and we can consider one SCC
at a time. For each SCC, we construct a DFS tree starting at an arbitrary node. The
tree partitions the edges within the SCC into four sets: tree edges, forward-edges (non-
tree edges from a node to its descendent), back-edges (non-tree edges from a node
to its ancestor) and cross-edges (the remaining edges, which go from a node to a non-
ancestor which was visited earlier by the DFS traversal). Clearly, a forward-edge cannot
be important because the tree path between its endpoints implies that its removal does
not change the reachability relation in the graph. We include all n−1 tree edges in S and
show in the next three lemmas that at most n back- and cross-edges can be important.
In the following, we assume that each node is an ancestor of itself.

u

v

w

Fig. 1. Illustration for the proof of Lemma 1. Edges of the DFS tree are solid.

Lemma 1. Every node can have at most one outgoing important back-edge.

Proof. Assume that there are two important back-edges (u,v) and (u,w) outgoing from
a node u. Since v and w are both ancestors of u in the tree, one of them must be an

122 I. Katriel

u

v

w

b

a

Fig. 2. Illustration for the proof of Lemma 2. Edges of the DFS tree are solid.

ancestor of the other. Assume, w.l.o.g., that v is an ancestor of w (see Figure 1). After
removing the edge (u,w), the graph still has a path from u to w, namely the concatena-
tion of the edge (u,v) and the path T (v,w) (the unique path from v to w in the DFS tree).
So w is still reachable from u, and hence any two nodes in the SCC are still reachable
from each other. This contradicts the assumption that the edge (u,w) is important. �

Lemma 2. Every node can have at most one outgoing important cross-edge.

Proof. Assume that there are two important cross-edges (u,v) and (u,w) outgoing from
a node u. Since the graph is strongly connected, there is a path from v to u. Since u has
a cross edge to v, it was visited by the DFS traversal after v, so the path from v to u must
visit a common ancestor a of v and u before it reaches u. Similarly, there is a path from
w to u which reaches a common ancestor b of w and u before it reaches u. Since a and
b are both ancestors of u, one of them is an ancestor of the other. Assume, w.l.o.g., that
b is an ancestor of a and hence also of v (see Figure 2). After removing the edge (u,v),
there still is a path from from u to v, namely the edge (u,w) followed by the path from
w to b, followed by the tree path T (b,v) from b to v. Hence, any two nodes in the SCC
are still reachable from each other. This contradicts the assumption that the edge (u,v)
is important. �

Lemma 3. A node cannot simultaneously have an important outgoing back-edge and
an improtant outgoing cross-edge.

Proof. Assume that there is a cross-edge (u,v) and a back-edge (u,w) outgoing from u.
Then w is not an ancestor of v, because otherwise when the edge (u,v) is removed, the
edge (u,w) followed by the path T (w,v) forms a path from u to v, and this contradicts
our assumption that the edge (u,v) is important.

This implies that w was visited by the DFS search after the search has backtracked
from v. Since the graph is strongly connected, there is a path from v to u and it must visit

Expected-Case Analysis for Delayed Filtering 123

v

w

u

x

Fig. 3. Illustration for the proof of Lemma 3. Edges of the DFS tree are solid.

a common ancestor x of v and u before it reaches u. So the path from v to x, followed by
the path T [x,w] forms a path from v to w that does not visit u. Together with the edge
(u,v), this forms an alternative path from u to w, contradicting our assumption that the
edge (u,w) is important. �

Thus, we have proved Theorem 1.

3 Important Edges for AllDifferent and GCC

The flow network corresponding to the AllDifferent and GCC constraints contains edges
that do not correspond to variable-value pairs. Therefore, a refined upper bound is due.
The proof of the following theorem is similar to the proof of Theorem 1, while counting
only edges between nodes of the network that represent variables of the constraint or
values in their domains, and noticing that |F| ≤ n.

Theorem 2. Let C be a constraint defined on a set X of n domain variables and let G
be a flow model for C. The number of important variable-value pairs in C is at most 3n.

Perhaps a more careful analysis could yield a tighter upper bound, but we wish to point
out that the upper bound in Theorem 2 is within a constant factor of optimal. Figure 4
shows the variable-value graph of an AllDifferent constraint with 2n important edges:
There are two solutions, and each edge belongs to exactly one of them. Removing any
edge would destroy one of the solutions and turn the other edges that belong to it into
inconsistent edges.

Assume that when a value is removed from the domain of one of the variables of
a constraint, it is selected at random among all possibilities. In other words, a random
edge is removed from the variable-value graph. Selection without replacement corre-
sponds to the hypergeometric distribution. If we have a bin with M balls, of which

124 I. Katriel

Variables

Values

Fig. 4. An AllDifferent variable-value graph with 2n important edges

N are black and the remaining are white, and we randomly select x balls (without re-
placement), the expected number of selected black balls is xN/M. In other words, after
selecting M/N balls, we are expected to have selected one black ball. Returning to our
setting, we get that on expectation, an important edge is lost after m/3n edges were
removed from the variable-value graph of an AllDifferent or GCC constraint.

If we re-filter with respect to the constraint only after losing m/3n edges, we need
to recompute arc consistency from scratch, which takes O(m

√
n) time. On the other

hand, if we re-filter every time an edge is lost, we spend a linear amount of time for
each edge, for a total of O(m2/n). Whenever m = ω(n

√
n), the delayed re-filtering is

asymptotically faster.

Corollary 1. For a dense instance of AllDifferent or GCC, re-filtering after Θ(m/n)
edges are lost is more efficient and its effectiveness, in the expected sense, is comparable
to that of re-filtering every time an edge is lost.

4 Implementation

The simplest way to support delayed filtering in a solver appears to be as follows. For
each constraint, the solver should have two counters. The first keeps track of the number
of edges in the variable-value graph of this constraint, and the second indicates how
many edges need to be lost before the constraint is to be re-filtered.

The number of edges in the variable-value graph is computed once when the con-
straint is posted: It is equal to the sum of the cardinalities of the domains of the vari-
ables. From that point on, it is decremented every time an edge is lost. This requires that
we associate with every variable a list of the constraints that are defined on it. When a
value is removed from its domain, this means that each of these constraints lost an edge
from its variable-value graph so we traverse this list and decrement the edge count of
each of the constraints.

The number of edges that should be lost before a re-filtering occurs is calculated
once at the beginning and again every time re-filtering is performed. It is calculated
using the edge-count and the number of variables as well as the specific frequency
function for the constraint. In the case of AllDifferent and GCC, we have shown that
the function f (m,n) = m/3n makes sense (under the assumption that propagation is
random).

Expected-Case Analysis for Delayed Filtering 125

5 Conclusion and Directions for Further Research

In the design of filtering algorithms for global constraints we should take into account
the context in which they are used. For example, it is usually more important to find a
fast incremental algorithm than to fine-tune the algorithm that filters a constraint from
scratch. Another example is the analysis of propagation patterns (e.g., [2]), which deals
with the question of how many times a constraint can be re-filtered before a fixpoint
is reached. In this paper we suggested an additional way to look at propagation in the
context of the search.

We assumed in our analysis that filtering is random in the sense that whenever an
edge is removed from the variable-value graph, it is selected at random among all pos-
sibilities. Is this assumption reasonable in practice? Even if it is, the model we used
disregards the propagation of filtering between the constraints. In other words, when
we delay the removal of a useless edge, we also delay the propagation of this removal.
Furthermore, if the CSP contains only complex constraints and the solver delays filter-
ing for all of them, it could take many search steps before any propagation is performed,
and this is clearly not what we intended. In summary, it is not immediately clear how to
apply the analysis technique proposed in this paper to delayed filtering. An evaluation,
and possibly a refinement of our model of the propagation-search process is necessary.

Another assumption we made is that the desired filtering frequency for a constraint
depends on the constraint, and not on the CSP that it is in. It could be that the same
constraint can exhibit very different filtering behaviors in different CSPs, and a filter-
ing function associated with a constraint is meaninless if it does not take the context
of the constraint into account. On the other hand, it could be that the filtering behavior
depends both on the constraint and on the context, in which case it may work better
if the sovler initially uses our pre-calculated frequency function, and then constantly
adjusts the filtering frequency as it proceeds: Whenever a filtering step was useless, the
frequency is reduced and whenever it is successful, the frequency is increased.

Acknowledgements. I wish to thank the anonymous referees for numerous helpful sug-
gestions, many of which were incorporated into the discussion in Section 5.

References

1. J.E. Hopcroft and R.M. Karp. An n5/2 algorithm for maximum matching in bipartite graphs.
SIAM J. Computing, 2(4):225–231, 1973.

2. L. Mercier and P. Van Hentenryck. Strong polynomiality of resource constraint propagation,
2005.

3. C.-G. Quimper, A. López-Ortiz, P. van Beek, and A. Golynski. Improved algorithms for the
global cardinality constraint. In CP 2004, volume 3258 of LNCS, pages 542–556. Springer-
Verlag, 2004.

4. J.-C. Régin. A filtering algorithm for constraints of difference in CSPs. In AAAI-94, pages
362–367, 1994.

5. J.-C. Régin. Generalized Arc-Consistency for Global Cardinality Constraint. In Proceedings
of the 13th National Conference on Artificial Intelligence (AAAI-96), pages 209–215, 1996.

Plan B: Uncertainty/Time Trade-Offs for Linear and
Integer Programming

Claire Kenyon and Meinolf Sellmann

Brown University, Department of Computer Science
115 Waterman St, Providence, RI 02912, U.S.A.

{claire, sello}@cs.brown.edu

Abstract. We address the following dilemma: When making decisions in real
life, we often face the problem that, while we have time to contemplate about a
problem, we are not entirely sure what the exact parameters of our problem will
be. And, on the other hand, as soon as the real world is revealed to us, we need to
act quickly and have no more time to rethink our actions extensively.

We suggest an approach that allows to trade uncertainty for time and marginal
quality loss and discuss its applicability to combinatorial optimization problems
that can be formulated as linear and integer linear programs. The core idea con-
sists in solving a polynomial number of problems in the extensive time period
before the day of operation, so that, as soon as complete information is available,
a feasible near-optimal solution to the problem can be found in sublinear time.

1 Introduction

When solving real-world optimization problems, we face a trade-off between time and
uncertainty. Often, there is enough time to consider a problem before a solution needs
to be realized, but the information available about the problem at that stage is associ-
ated with a lot of uncertainty; complete information may be available only immediately
before the first decision needs to be made, when almost no time is left anymore to op-
timize. Consider, for instance, a delivery company that, every night, needs to solve a
vehicle routing problem with time windows to schedule the deliveries for the next day
in a network with some notoriously unreliable links. In the morning, when the trucks
are about to be loaded, it may be much clearer what the delay on the uncertain links is
going to be, but waiting 20 minutes to reschedule before loading can begin is just not
an option.

Related Work: There has been conducted extensive research that tries to tackle uncer-
tainty. It is impossible to cover this very active research area entirely here, so we need
to focus on the work that appears most relevant with respect to our contribution. One
of the first big areas to consider unknown future events was online optimization (for an
introduction see [4]) where decisions need to be taken already before future events are
visible. The worst-case character of adversarial competitive analysis is often perceived
as too pessimistic for real world applications, though, since we may want to optimize
our expected rewards rather than to shelter ourselves against the worst case.

J.C. Beck and B.M. Smith (Eds.): CPAIOR 2006, LNCS 3990, pp. 126–138, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Plan B: Uncertainty/Time Trade-Offs for Linear and Integer Programming 127

This motivation combined with the assumption that stochastic information about
future events may be available beforehand has lead to the paradigm of stochastic opti-
mization (for an overview on stochastic programming see for example [3]). The stan-
dard scenario considered here is a two-stage process where actions can be taken in stage
one at a known cost that must then be augmented to a feasible plan by taking additional
actions in stage two for costs that were unknown in stage one but that are drawn from a
known probability distribution.

A paradigm that treats uncertainty where all decisions need to be taken before the
real parameters are revealed to us is robust optimization (see for example [2]). In robust
optimization, a solution needs to be computed that is required to be feasible with respect
to all possible future scenarios. It is of course appealing to have one solution that will
work no matter what, and in some critical applications this appears necessary. However,
the loss in solution quality when comparing against the quality that could have been
achieved in the scenario that we really face eventually can be enormous.

Therefore, it has been suggested to drop the requirement that just one solution must
satisfy all future scenarios. This approach is very natural: In critical circumstances,
humans often do not only make one plan for the future, but instead prepare one or
several back-up plans that can kick in when the original one turns out to be infeasible.
So we may also decide to compute more than one solution in order to be prepared for
changing future constraints.

The classic example for this approach is the k-shortest path problem where the k
best solutions to the problem are computed (see [7] for an overview of literature). The
problem is of course interesting in and by itself. With respect to robustness, however, it
is easy to construct examples where this approach fails miserably when just one edge is
not available when it comes to executing the shortest path, because all k best solutions
relied on the existence of that one edge.

Consequently, some approaches try to compute solutions that differ a lot, in the hope
that different solutions are less likely to fail for the same change in the requirements.
One example for this approach is the so-called penalty method [12] where an addi-
tional cost is introduced that penalizes similarity to an existing solution (whereby it
is unclear how to reasonably quantify the trade-off between solution quality and simi-
larity). When restricting ourselves to pure feasibility problems, another example is the
search for so-called (a, b)-super solutions in constraint programming [9]. Here, solu-
tions are sought-after that are robust in the sense that, if a variables lose their values,
then the solution can be repaired by reassigning the critical a variables plus at most b
others. This notion of robustness implicitly assumes that there is a limited amount of
time available to re-schedule if the scenario which was planned for changes. Then, su-
per solutions have the additional benefit that the original plan only needs to be adapted
slightly to be legal. A modification of this idea is presented in [6] where the notion
of multi-consistency is introduced. The idea of computing a set of back-up solutions
is taken to extremes in [10] where linear programming sensitivity analysis is used to
compute a potentially exponentially large set of optimal solutions for linear programs
with changing objectives.

Contribution: In this paper, we assume that there is extensive time available before the
day of operation when our solution will need to be realized, but that during this period

128 C. Kenyon and M. Sellmann

the problem is associated with uncertainty. Then, when the exact problem is revealed to
us, there is only very little time left to compute a high-quality feasible solution. Under
which conditions, and how, can we efficiently prepare ourselves in that situation? In
more formal terms, we address the question whether we can trade time for uncertainty
by precomputing a set of solutions (our “plan Bs”) such that, for every possible scenario,
there exists a feasible solution in our set that is near optimal. Applied to the example of
the delivery company, we investigate whether a set of optimization problems could be
solved overnight so that we are guaranteed to have a near-optimal schedule waiting to
be executed for the scenario that we are facing in the morning.

We do not assume that stochastic information is available. Like earlier work on un-
certain constraint satisfaction problems (see, for example, [15] and [16]), we consider
linear and integer linear programming (LP and IP) formulations. LPs and IPs are known
to be capable of modelling a large variety of combinatorial optimization problems, and
can be used efficiently in problems such as AI planning [14]. However, we focus on LPs
and IPs for a different reason, namely because there exists an established standard form
that, as we shall see, we can exploit both to define uncertainties as well as to determine
what scenarios should be considered to prepare ourselves effectively for the future.

We make two important remarks: First, the uncertainties that we consider are defined
in terms of linear programming formulations while, a priori, it is unclear how uncertain-
ties in problem parameters translate into uncertain parameters of a linear programming
formulation. Note that, in principle, it is possible that one uncertainty translates into
many correlated uncertain parameters in the corresponding linear programming model.
Extra care must be taken to decide in which scenarios the following work applies. Sec-
ond, we use (integer) linear programs strictly as modelling entities, while the solution
method for the problems that we consider can always be chosen freely.

The class of uncertain linear programs that we consider represents a subset of so-
called linear programs with interval coefficients (LPICs). LPICs were introduced in [5]
where an exponential-time algorithm was presented that allows to assess the range in
which the optimal objective function value can lie depending on what values the co-
efficients in their respective interval will take. This gap-analysis is not trivial because
LPICs allow unsigned variables and equality constraints. Excluding these two cases, we
develop a method that provides worst case quality guarantees for uncertain LPs and IPs.
We show that, even with signed variables and in the absence of equality constraints, no
polynomial number of precomputed solutions suffices to prepare for all possible future
scenarios. Despite this negative result, for a variety of more restricted cases, we can
devise polynomial time algorithms that allow to find a near-optimal feasible solution
in sublinear time as soon as all uncertainty has vanished. The restrictions guarantee, in
particular, that infeasibility will not occur.

2 Uncertain Linear Programs

Definition 1 (ε-approximation). Consider the problem L = (P, f) of maximizing a
function f over a set P into the non-negative rationals, and let OPT(L) denote the
optimal value maxP f , if it exists. Given ε > 0, an ε-approximation is an element
x ∈ P such that (1 + ε)f(x) ≥ f(y) for all y ∈ P .

Plan B: Uncertainty/Time Trade-Offs for Linear and Integer Programming 129

We use the following paradigm. Given partial knowledge on the optimization problem,
precompute a set of candidate solutions such that, once, at a later time, (P, f) is known
exactly, then it is possible to use that prearrangement so as to find very fast (in sublinear
time) a near-optimal solution to the problem. In this section we show how and under
what circumstances this can be achieved for LPs.

For any two matrices or vectors, we write A ≥ B when this inequality holds for every
component. Henceforth we assume that we are given two m by n matrices A ≤ A, two
vectors b ≤ b ∈ Qm, two vectors p ≤ p ∈ Qn, a desired approximation guarantee
ε > 0, and a constant k ∈ IN.

Definition 2 (Uncertain Linear Program and Prearrangement). An uncertain linear
program (ULP) SLP is given as (A, A, b, b, p, p) and consists of the set of all LPs of the
form

max p · x

s.t.

{
Ax ≤ b
x ≥ 0,

such that A ≤ A ≤ A, b ≤ b ≤ b, and p ≤ p ≤ p.
A prearrangement of SLP with parameter ε is a set X of rational vectors such that

for every linear program L = (A, b, p) in SLP , there exists an ε-approximation in X .

ULPs, as defined above, represent a subset of linear programs with interval coefficients
(LPICs) that were introduced in [5]. Note that, in ULPs, equality constraints are not
allowed, and neither are unsigned variables. In order to avoid infeasibility issues we
further restrict the ranges to positive intervals:

Definition 3 (Range-positive). Given a ULP, we say that it is range-positive wrt A, iff
(1) all coefficients of A are non-negative: A ≥ 0, and moreover, (2) uncertain coeffi-
cients must be positive: aij �= aij ⇒ aij > 0. Similarly, we say that it is range-positive
wrt b (resp. p) iff (1) all coefficients of b (resp. p) are non-negative, and moreover, (2)
uncertain coefficients must be positive.

We will also need to restrict the number of parameters that can vary more than mar-
ginally. We introduce the following notation:

Given two vectors (or matrices) v, w, and given δ ≥ 0 we write v ≥δ
k w, iff v ≥ w

and for all but k coordinates, it holds that wi ≤ vi ≤ wi + δ|wi|.

Definition 4 (Bounded Uncertainties). Given a ULP SLP , k ∈ IN, and δ > 0, a
Linear Program with k-δ-Bounded Uncertainties is the subset SBLP ⊂ SLP consisting
of the LPs of SLP such that A ≥δ

k A, b ≥δ
k b and p ≥δ

k p.

To ease the presentation, we use the lower end of each interval as the default value of
the coefficient, but this is by no means necessary: the default value for each coefficient
could also be explicitly specified and lie anywhere in the given range.

Note that Definition 4 does not require that we know which k parameters in A, b, and
p will change by more than a small factor from their default value. We will discuss in a
moment how knowledge about which k parameters could change more than marginally
can be exploited to yield to more efficient prearrangement algorithms.

130 C. Kenyon and M. Sellmann

When starting to think about the problem, at first, even when only one parameter in
an LP can change over a larger range, it is not clear that there exists a polynomial-size
prearrangement. For this, we need to prove that, when a range-positive parameter in
the LP is changed slightly, then the objective function can only change marginally, too.
From this, it follows that, for range-positive ULPs with bounded uncertainties, we can
efficiently compute a prearrangement that will allow us to lookup a solution later in
sublinear time.

Theorem 1. Given ε > 0, let SBLP denote a ULP with k-ε/4-bounded uncertainties
that is range-positive wrt A, b, and p. Let C denote the maximum of all ratios pi/p

i
,

bj/bj , and aij/aij (where by convention 0/0 = 1). We can compute a prearrangement
X of size polynomial in m, n, log C, and 1/ε. The computation time of X equals |X |
times the time to solve an LP of SBLP .

Moreover, once X is computed, given the coefficients of the LP which deviate more
than marginally from their anticipated value, one can compute an ε-approximation of
the modified problem P in time sublinear in the size of the ULP.

Proof: Here is the algorithm.

Prearrangement: Let δ := ε/4. For each subset Ip of [1, n] of size k, each subset Ib of
[1, m] of size k, and each subset IA of [1, m]× [1, n] of size k, let ni

p = log1+δ(pi/p
i
)

for i ∈ Ip, ni
b = log1+δ(bi/bi) for i ∈ Ib, and nij

A = log1+δ(aij/aij) for (i, j) ∈ IA.
For each list of integers ((ki)i∈Ip , (�i)i∈Ib

, (mij)(i,j)∈IA
) such that 0 ≤ ki ≤ ni

p,

0 ≤ �i ≤ ni
b, and 0 ≤ mij ≤ nij

A , consider the LP defined by

pi =
{

p
i

if i /∈ Ip

p
i
(1 + δ)ki if i ∈ Ip

,

bi =
{

bi if i /∈ Ib

bi(1 + δ)�i if i ∈ Ib
, and

aij =

⎧⎨
⎩

aij if aij = aij , else
aij(1 + δ) if (i, j) /∈ IA

aij(1 + δ)mij if i ∈ IA

.

Notice that, since all coefficients aij and bi are non-negative, 0 is always a feasible
solution of this LP, hence there always is a (possibly infinite) optimal solution. Compute
an optimal solution, and add the LP and its solution to X . We store the elements of
X represented as ((ki)i∈Ip , (�i)i∈Ib

, (mij)(i,j)∈IA
) in a data structure enabling fast

search, say, a balanced tree for example (whereby we use the lexicographic order on the
representing tuples to define an order on the LPs).

Solution Lookup: Given X , we can gather an ε-approximation for any given LP P =
(A, b, p) ∈ SBLP in sublinear time. When we are given a list of at most k coefficients
and their new values, we compute ((ki)i∈Ip , (�i)i∈Ib

, (mij)(i,j)∈IA
) such that:

– ∀ i ∈ Ip : p
i
(1 + δ)ki−1 < pi ≤ p

i
(1 + δ)ki .

– ∀ i ∈ Ib : bi(1 + δ)�i ≤ bi < bi(1 + δ)�i+1.
– ∀ (i, j) ∈ IA : aij(1 + δ)mij−1 < aij ≤ aij(1 + δ)mij .

Plan B: Uncertainty/Time Trade-Offs for Linear and Integer Programming 131

Then, we search and output the optimal solution of the corresponding LP P ′ in X .

Correctness: We first claim that any feasible solution x′ of P ′ is also a feasible solution

of program P . Indeed, by definition x′ ≥ 0 and A′x′ ≤ b′. Thus:

Ax′ ≤ A′x′ ≤ b′ ≤ b. (1)

Second, let us analyze the quality of the solution that we return. Let x denote an
optimal solution for P . We claim that x/(1 + δ)2 is a feasible solution for P ′:

A′x/(1 + δ)2 ≤ Ax/(1 + δ) ≤ b/(1 + δ) ≤ b′ (2)

and the scaled solution remains non-negative. Since x′ is an optimal solution for P ′,
p′ ≥ p, and δ = ε/4, we have

p · x′ ≥ p′ · x′/(1 + δ) ≥ p′ · x/(1 + δ)3 ≥ p · x/(1 + ε). (3)

Complexity: The set X has size at most 4
(
n
k

)(
m
k

)(
mn
k

)
log3k(C)/ε. Note that this is

polynomial in the description size of the instance of the problem for constant k. Con-
structing X amounts to solving |X | LPs from SBLP , which can thus be done in poly-
nomial time.

Regarding the lookup of a solution, we see that the computation of the representing
tuple can then be performed in time O(3k log log C). Finding the corresponding solu-
tion then can be done in time O(log |X |). Since |X | is polynomial in the size of the
given ULP and 1/ε, the total lookup time is in O(log(1/ε) + log(|SBLP |) + k) where
|SBLP | denotes the input size of the ULP. Consequently, the lookup can be performed
in time sublinear in the size of the ULP. �

Note that Theorem 1 considers the most general case where all parameters can change,
k parameters can change more than just marginally, and we have absolutely no idea
which ones. If we knew those k parameters in advance, the theorem implies that a pre-
arrangement of size O(log3k(C)/ε) is sufficient, which is very manageable and quite
encouraging. Between the two extremes, whenever the size of the set from which the k
non-marginal parameters are drawn from can be limited, this knowledge can be lever-
aged to make much smaller prearrangements.

We now prove that the assumption of bounded uncertainties of Theorem 1 is not
arbitrary but necessary.

Theorem 2. There exists a ULP SLP which is range-positive wrt A, b, and p, and such
that every prearrangement X for SLP has size at least exponential in the size of the
description of SLP .

Proof: Consider the following ULP, where m = n. A = A is the identity matrix, p = p

is the all-ones vector, b is the all-ones vector, and b is the vector whose entries are all
equal to 2. In other words, SLP is the set of LPs of the form:

max
∑

i

xi

132 C. Kenyon and M. Sellmann

s.t.

{
∀i, xi ≤ bi

∀i, xi ≥ 0,

where for each i we have 1 ≤ bi ≤ 2.
Any prearrangement of SLP must also be a prearrangement of the subset S′ con-

sisting of those LPs such that exactly half of the bi’s are equal to 1 and the other half
are equal to 2. Any such LP has value (n/2) + 2(n/2) = 3n/2. Let x ∈ X be in a
prearrangement of S′. Without loss of generality, we can assume that every coordinate
xi is either 1 or 2. Setting ξ := ε/(1 + ε), we must have:

∑
i xi ≥ (1 − ξ)3n/2, so the

number k of ones in x satisfies

k + 2(n− k) ≥ (1− ξ)3n/2,

hence k ≤ n/2 + 3ξn/2. But x can only be a feasible solution for at most
(

k
k−n/2

)
elements of S′, which is at most

(n/2+3ξn/2
3ξn/2

)
. Since S′ has cardinality

(
n

n/2

)
, any pre-

arrangement of S′ must have cardinality at least(
n

n/2

)
(n/2+3ξn/2

3ξn/2

) ,
which is exponential in n for ξ < 1/3 or ε < 1/2. By scaling the right hand side, we
can generalize the result for all ξ < 1 and ε > 0. �

At this stage, the significance of our positive result is rather limited since we can really
only handle LPs with non-negative coefficients and ≤ constraints. We find that anal-
ogous results hold for LPs of the form: min p · x such that Ax ≥ b, x ≥ 0 (in other
words, we can tackle both “covering” and “packing” linear programs). However, one
may wonder how necessary is it to assume that the coefficients are all non-negative. We
now prove that the range-positive assumptions of Theorem 1 can be somewhat relaxed,
although at the cost of restricting the uncertainty.

Theorem 3. Let SBLP denote a ULP with bounded uncertainties. Assume that at least
one of the following sets of conditions hold.

– A = A and SBLP is range-positive wrt b and p.
– b = b and SBLP is range-positive wrt A and p.
– b = b, p = p, and SBLP is range-positive wrt A.
– A = A, b = b, and SBLP is range-positive wrt p.

Then the conclusion of Theorem 1 still holds.

Proof: The algorithm is identical to the one used in the proof of Theorem 1 except for
a slightly improved setting of δ. Then, only minor differences occur in the analysis of
correctness.

– Under the first set of conditions, we set δ := ε/3. In the analysis, we then replace
Equation 2 by:

A′x/(1 + δ) = Ax/(1 + δ) ≤ b/(1 + δ) ≤ b′,

Plan B: Uncertainty/Time Trade-Offs for Linear and Integer Programming 133

thus proving that x/(1 + δ) is feasible for P ′. We can then replace Equation 3 by:

p · x′ ≥ p′ · x′/(1 + δ) ≥ p′ · x/(1 + δ)2 ≥ p · x/(1 + ε).

Notice that it may now happen that P is infeasible, but that this is detected by the
algorithm, since P is infeasible iff P ′ is also infeasible.

– Under the second set of conditions, either b ≥ 0 in which case the problem is range-
positive wrt b and we can apply Theorem 1, or there exists no feasible solution to
any LP in SBLP .

– Under the third set of conditions, we set δ := ε and replace Equation 2 by:

A′x/(1 + δ) ≤ Ax ≤ b = b′,

thus proving that x/(1 + δ) is feasible for P ′. We can then replace Equation 3 by:

p · x′ = p′ · x′ ≥ p′ · x/(1 + δ) = p · x/(1 + δ) = p · x/(1 + ε).

– Under the last set of conditions, we set δ := ε. We notice that x is trivially feasible
for P ′. Therefore, we can replace Equation 3 by:

p · x′ ≥ p′ · x′/(1 + δ) ≥ p′ · x/(1 + δ) ≥ p · x/(1 + ε). �

By slight adaptation of our algorithm and its analysis, it is easy to show that analogous
results still hold when we consider ULPs of the form min p · x such that Ax ≥ b and
x ≥ 0. As a consequence, by arguing about linear programming duality, we can further
extend Theorem 1 as follows.

Corollary 1. The conclusion of Theorem 1 is still valid when one of the following
holds:

– p = p and SBLP is range-positive wrt A and b.
– A = A, p = p, and SBLP is range-positive wrt b.

What we have achieved now is that we can handle arbitrary ULPs with bounded un-
certainties where only the part (constraint matrix, objective or right hand side) that is
subject to potential changes is required to be range-positive. We believe that this re-
quirement is mild enough to allow to tackle practical applications where it is often the
case that objective and/or right hand side entries all have the same sign.

3 Prearranging Integer Programs

For LPs, we studied under which conditions prearrangement can be performed effi-
ciently. We envision applications of this work for example in very time critical, real-
time systems like sensor networks where changing volumes of data need to be managed
very quickly which does not allow to re-solve larger LPs. However, one may argue that,
since LPs can be solved in polynomial time, the number of applications is limited in
which reducing the complexity to sublinear time is really necessary. Therefore, in this
section we study integer linear programs that are NP-hard to solve in general.

134 C. Kenyon and M. Sellmann

Definition 5 (Uncertain Integer Programs). The uncertain integer program (UIP)
SIP consists of the set of all IPs of the form

max p · x

s.t.

⎧⎨
⎩

Ax ≤ b
x ≥ 0
x integer,

such that A ≤ A ≤ A, b ≤ b ≤ b and p ≤ p ≤ p.
A prearrangement of SIP with parameter ε is a set X of integer vectors such that for

every IP I = (A, b, p) in SIP , there exists an x ∈ X which is feasible for I and satisfies
(1 + ε)p · x ≥ OPT(I).

Range-positiveness and IPs with bounded uncertainties (UIPs) can be defined analogue
to Definition 3 and Definition 4. First, we show that the conditions that need to hold to
allow for an efficient prearrangement for UIPs are strictly stronger than for ULPs:

Theorem 4. There exist UIPs which cannot be prearranged efficiently, but whose linear
relaxations can.

Proof: For all M ∈ IN, M > 1, consider the following UIP:

maxx1 + 2εx2

s.t.

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x3 ≤ b1
Mx2 − x3 ≤ b2
x1, x2 ≤ 1
x1, x2, x3 ≥ 0
x1, x2, x3 integer,

where b1, b2 ∈ [1, . . . , M − 1].
Since only two components can change, the UIPs above have 2-0-bounded uncer-

tainties, of course. Note also, that the constraint matrix A and the objective p (with
respect to which the UIP is range-positive) are not allowed to change at all and that the
UIP is range-positive wrt b. Consequently, according to Theorem 3, its corresponding
linear relaxation ULP can be prearranged efficiently.

Now, for all b1, b2 such that b1 + b2 < M , the optimal objective value is 1. As soon
as b1 + b2 = M the objective suddenly raises to 1 + 2ε. The optimal solutions for
all the M − 1 scenarios where b1 + b2 = M are all different from each other and no
one solution that is feasible for 2 of them achieves an objective value of more than 1.
Consequently, a feasible prearrangement for this class of UIPs must contain at least M
solutions, which is exponential in the size of the input. �

The intractability in the above example is solely caused by infeasibility of solutions
that could otherwise represent several scenarios. We achieve our first positive result for
UIPs for cases where feasibility is not an issue.

Theorem 5. Assume we are given k ∈ IN, ε > 0 and SBIP = (A, A, b, b, p, p) with

k-ε-bounded uncertainties that is range-positive wrt p and for which A = A and b = b.
Then SBIP can be prearranged efficiently in the sense of Theorem 1.

Plan B: Uncertainty/Time Trade-Offs for Linear and Integer Programming 135

Proof: We use the same algorithm as in Theorem 1 with the modification that we set
δ := ε. Since A = A and b = b, we have that IA = ∅ and Ib = ∅. Therefore, for each
element (ki)i∈Ip , we consider the IP defined by

pi =
{

p
i

if i /∈ Ip

p
i
(1 + δ)ki if i ∈ Ip

,

bi = bi and aij = aij . The lookup of x′ works in the same way as for ULPs. Since
constraint matrix and right hand side are constant, feasibility of the returned solution is
not an issue in this case. Regarding the quality of the returned solution, let us denote the
optimal solution for P by x. Then, the same inequality as in the last case of Theorem 3
proves the desired accuracy.

Finally, we analyze the efficiency of this algorithm. The set X has size at most(
n
k

)
logk(C)/ε. Constructing X amounts to solving |X | LPs from SBIP . The computa-

tion of the representing tuple can then be performed in time O(k log log C). Then, the
total lookup time is in O(log(1/ε) + log(|SBIP |) + k) where |SBIP | denotes the input
size of the UIP. Consequently, the lookup can be performed in time sublinear in the size
of the input after a polynomial number of IPs have been solved in the prearrangement
phase. �

Again, note that the size of the prearrangement decreases to O(logk(C)/ε) when we
know which k parameters in the objective can change more than marginally. We have
seen before that even changing only two components in the constraint structure of the
problem can yield to intractable prearrangement problems. The interesting question
arises whether we can afford any change within A or b at all. The following result
answers this question affirmatively.

Theorem 6. Let SBIP be a UIP with all integer coefficients in the matrix and the right
hand side. Assume also that exactly one matrix or right hand side coefficient c can vary:
c ≤ c ≤ c, and such that the optimal solution for the most restricted problem in SBIP

has a strictly positive value z > 0, while the optimal solution to the least restricted
problem has value z < ∞. Then we can compute efficiently a prearrangement X of
size |X | ∈ O(mn(log(z/z)/ log(1 + ε))).

Proof: The prearrangement algorithm that we propose is quite simple: We try to assemble
a sequence of scenarios Pi where P0 solves the most restricted problem (i.e. when c is
a coefficient in b we consider the problem with c = c, otherwise the one where c = c).
Then, for i > 0 we want Pi to be the problem where c ≤ c ≤ c is minimal (maximal)
and Pi ≥ (1 + ε)Pi−1, where c is a coefficient in b (A). We iterate this process until no
subsequent Pi can be found anymore. Clearly, the number of problems that we assemble
that way is bounded by mn(log(z/z)/ log(1+ε)). Also, this set of solutions is a feasible
prearrangement in that an ε-approximation for every possible scenario exists in our set.
The question remains how we can find the subsequent Pi’s efficiently. This is where we
exploit the fact that only one coefficient can change: We simply perform a binary search
for the critical value of c where the next level in the objective is reached. The total number
of problems that need to be solved is then in O(mn(log(z/z) log(c− c)/ log(1 + ε))),
which is polynomial in the size of the input. �

136 C. Kenyon and M. Sellmann

Interestingly, the search for a critical coefficient in b or A where a jump in the objective
occurs can be combined with the result that we achieved Theorem 5: for each problem
considered in the algorithm for UIPs with changing objectives we can perform a binary
search on the one changing component in A or b and therefore prearrange UIPs with
bounded uncertainties where at least all but one unknown coefficient are located in the
range-positive objective function.

The last result that we report is probably the most important of all, even though it
is really a simple implication of our results on ULPs. When looking back at the exam-
ple where the change of two coefficients yielded an intractable integer prearrangement
problem, we find that the gap in the objective value between integer solution and the
best solution of the linear relaxation of the problem is quite large. It is straightforward
that we can approximate the accuracy defined by that LP-IP gap by using the algorithm
from Theorem 1. Formally, we achieve:

Theorem 7. Assume we are given k ∈ IN, ε > 0, and a UIP SBIP with k-ε/4-bounded
uncertainties where each part (A, b, or p) where potential changes can occur is range-
positive. If g > 0 is a lower bound on the minimal ratio between an IP in SBIP and
its linear continuous relaxation, then we can efficiently compute a prearrangement that
achieves an approximation guarantee of (1 + ε)/g.

4 Practical Considerations

In this final section, we would like to make a few comments on the practicability of the
algorithms presented here. While at the end of the discussion on ULPs we found that, if
solving the problem is too easy, in many practical applications it may not be necessary
at all to plan ahead. After reading our last section that tackles UIPs, one may now argue
that solving a polynomial number of NP-hard problems in the prearrangement phase
may be asked too much. Just like humans usually only plan ahead in this manner when
a lot is at stake, we will probably only want to go through this hassle when having a
near optimal solution in some uncertain environment is critical. Or, for example, when
we design a system that needs to work well in changing environments and where the
time that is spent to “prepare” the system (for example before the software is launched)
is much less important than a good performance later.

While the work presented here is theoretical in nature, we would like to note that
what we really did was to analyze and adapt a strategy that is used in practice not only by
human beings, but also by existing computer systems, for instance for parametric query
optimization in distributed data base systems as cited in [10]. Therefore, prearrange-
ment must be viewed as a method that is used in practice — but to the best of our knowl-
edge it has not been analyzed theoretically before. Our analysis revealed some sufficient
conditions under which efficient prearrangement is possible at all. Moreover, we give a
strategy how the scenarios for which one should plan ahead ought to be selected.

We discussed already how knowledge about the concrete non-marginal, uncertain pa-
rameters can be leveraged to decrease the size of a prearrangement significantly. Note
that, in practice, we can further reduce the computational effort needed by compromis-
ing on the solution quality. By reversing the arguments in this paper, if a limit on the

Plan B: Uncertainty/Time Trade-Offs for Linear and Integer Programming 137

maximum size of the prearrangement is given, our method also allows to pick scenar-
ios so that the worst-case error made is minimized. For instance, in the introductory
example of the delivery company, we may find that there is time to compute 120 prob-
lems on the four computers in their office. Then, our method can be used to decide for
which scenarios we should prepare a schedule. Moreover, when stochastic information
is available which and how coefficients in the problem can differ, then by sampling over
the parameters ((ki)i∈Ip , (�i)i∈Ib

, (mij)(i,j)∈IA
) we can precompute a set of solutions

that maximizes the likelihood that an ε-approximate solution will be available.
For UIPs, another possible scenario is that an approximation algorithm for the prob-

lem at hand is available. Then we can precompute approximate solutions rather than
solving each IP to optimality. Our prearrangement algorithm will then approximate
with the performance guarantee of the approximation algorithm that is being used plus
the additional error caused by the LP-IP gap. Even more, if the analysis of the ap-
proximation algorithm itself is based on the LP-IP gap then we even achieve that same
approximation guarantee through prearrangement, even if only approximate solutions
have been precomputed!

Furthermore, our method is naturally parallelizable and it also works when the LP-
IP gap is not known. That way, if we have a complex problem to solve for which we
believe that the LP provides a good upper bound, then we have a method at hand that
prepares us for the future in a very reasonable manner.

As a final remark, it is a matter of future work to determine whether linear program-
ming sensitivity analysis could allow us to significantly reduce the work that needs to
be conducted for prearrangement. In practice one would expect to reduce the computa-
tional effort considerably by realizing that many parts of an LP can change significantly
before affecting the optimal solution at all.1 It is questionable, however, whether this
important practical improvement could actually result in better worst case guarantees
like the ones that were the target of this study.

5 Conclusions

We investigated one of the most common ways how humans cope with uncertainty,
namely by the provision of backup plans. While this approach is frequently being used
in time-critical computer systems, to the best of our knowledge no theoretical analysis
has been provided before. Our assumption is that there exists an extensive time period
before the day of operation where the problem is still associated with uncertainty. Then,
when the real problem that needs to be accommodated is revealed to us, there is very
little time available before a solution needs to realized.

Within this scenario, we studied uncertain linear and integer linear programs. We
showed that bounding the number of uncertain coefficients is essential to allow for an
efficient prearrangement, whereby we do not necessarily need to know exactly which
coefficients will change more than marginally while this knowledge can be used to re-
duce the computational efforts. For uncertain linear programs, we specified a method
for choosing a polynomial number of scenarios whose pre-solution guarantees that an
ε-approximation of the real problem will be available. For this method, it is essential

1 We owe this observation to an anonymous referee.

138 C. Kenyon and M. Sellmann

that every part of the LP (constraint matrix, right hand side, or objective) that is subject
to potential changes is range-positive. For uncertain integer programs, we found anal-
ogous results as for LPs when only the range-positive objective function is subject to
changes or when the desired approximation guarantee is not larger than the LP-IP gap.
Especially when it is known in advance which uncertain parameters can change more
than just marginally, our method yields to prearrangements of very manageable size.

There are some open questions: It can be shown that our method breaks down when
value ranges include 0 or when both negative and positive ranges are mixed within the
same part of the LP. Is there another way of choosing scenarios that can accommodate
these cases? Are there other conditions under which an efficient prearrangement of
uncertain integer programs is possible?

References

1. I. Althoefer, F. Berger, S. Schwarz. Generating True Alternatives with a Penalty
Method. http://www.minet.uni-jena.de/MathNet/reports/shadows/-
02-04report.html, 2002.

2. A. Ben-Tal, A. Nemirovski. Robust Optimization - Methodology and Applications. Mathe-
matical Programming Series B, 92:453–480, 2002.

3. J. Birge, F. Louveaux. Introduction to Stochastic Programming. Springer, 1997.
4. A. Borodin, R. El-Yaniv. Online Computation and Competitive Analysis. Cambridge Uni-

versity Press, 1998.
5. J.W. Chinneck and K. Ramadan. Linear programming with interval coefficients. Journal of

the Operational Research Society, 51(2):209–220, 2000.
6. K. Elbassioni, I. Katriel. Multiconsistency and Robustness with Global Constraints. CP-AI-

OR, 2005.
7. D. Eppstein. Bibliography on k shortest paths and other ”k best solutions” problems.

http://www.ics.uci.edu/∼eppstein/bibs/kpath.bib, 2001.
8. C. Guestrin, D. Koller, C. Gearhart, N. Kanodia. Generalizing Plans to New Environments

in Relational MDPs. IJCAI, 2003.
9. E. Hebrard, B. Hnich, T. Walsh. Super Solutions in Constraint Programming. CP-AI-OR,

LNCS 3011:157–172, 2004.
10. A. Hulgeri, S. Sudarshan. Parametric Query Optimization for Linear and Piecewise Linear

Cost Functions. VLDB, 167–178, 2002.
11. M. Lagoudakis, R. Parr. Least-Squares Policy Iteration. Journal of Machine Learning Re-

search, 4:1107–1149, 2003.
12. I. Sameith. On the Generation of Alternative Solutions for Discrete Optimization Problems

with Uncertain Data. http://www.minet.uni-jena.de/MathNet/reports/-
shadows/04-01report.html, 2004.

13. B. Verweij, S. Ahmed, A. Kleywegt, G. Nemhauser, A. Shapiro. The Sample Average Ap-
proximation Method Applied to Stochastic Routing Problems: A Computational Study. Com-
putational Optimization and Applications, 24(2-3):289–333, 2003.

14. T. Vossen, M. Ball, A. Lotem, D.S. Nau. On the Use of Integer Programming Models in AI
Planning. IJCAI, 1999.

15. N. Yorke-Smith. Reliable Constraint Reasoning with Uncertain Data. PhD thesis, IC-Parc,
Imperial College London, June 2004.

16. N. Yorke-Smith and C. Gervet. Tight and Tractable Reformulations for Uncertain CSPs.
Proceedings of CP’04 Workshop on Modelling and Reformulating Constraint Satisfaction
Problems, Toronto, Canada, September 2004.

Progressive Solutions: A Simple but Efficient
Dominance Rule for Practical RCPSP

András Kovács1,2 and József Váncza1

1 Computer and Automation Research Institute,
Hungarian Academy of Sciences

2 Cork Constraint Computation Centre,
University College Cork, Ireland
{akovacs, vancza}@sztaki.hu

Abstract. This paper addresses the solution of practical resource-con-
strained project scheduling problems (RCPSP). We point out that such
problems often contain many, in a sense similar projects, and this char-
acteristic can be exploited well to improve the performance of current
constraint-based solvers on these problems. For that purpose, we define
the straightforward but generic notion of progressive solution, in which
the order of corresponding tasks of similar projects is deduced a priori.
We prove that the search space can be reduced to progressive solutions.
Computational experiments on two different sets of industrial problem
instances are also presented.

1 Introduction

The practical value of constraint-based scheduling hinges both on the representa-
tion power of the models and the efficiency of the solution techniques. Solution
performance, in turn, depends on whether the solver can recognize and take
advantage of the structural properties of the problem at hand.

Generic models, though different (like flow shop, job shop, resource-cons-
trained project scheduling, etc.), hide some eventual structural properties of
specific real-life problem instances. Making such properties explicit by adding
extra features to the model is an option, but it comes together also with special-
ized solution techniques. Just to the contrary, in this paper we suggest to detect
and exploit some hidden structural properties within the boundaries of a generic
model. We introduce the simple notion of progressive pairs to characterize simi-
lar patterns of activities of a scheduling problem. Similarity will be defined both
in terms of temporal relations and resource requirements. Typically, progressive
pairs are inherent in practical discrete manufacturing problems where products
or components of similar/same type are produced in parallel, by using the same
technology and a common pool of resources.

We take the classical model of resource-constrained project scheduling prob-
lem (RCPSP) [3], and demonstrate our approach on the objective of minimizing

J.C. Beck and B.M. Smith (Eds.): CPAIOR 2006, LNCS 3990, pp. 139–151, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

140 A. Kovács and J. Váncza

the makespan.1 When detecting and exploiting progressive pairs, we rely on no
extra domain-specific information.

The results presented here are based on our previous works that suggested the
application of consistency preserving transformations to exploit some structural
properties of constraint programs [7]. Earlier experiments with a combination
of symmetry breaking techniques and so-called freely completable solutions con-
vinced us that the performance of generic constraint-based methods can consid-
erably be improved on practical problem instances. Now we take a more general
approach to rule out dominated solutions by constraints added before the search
process.

In the sequel we give an overview of relevant works related to symmetry
breaking and the application of dominance rules. Following the definition of the
RCPSP model, Sect. 4 presents the idea of progressive solutions together with
the basic definitions, theorems and proofs. Sect. 5 describes how we detect this
structural property among the projects in an RCPSP instance, while Sect. 6
summarizes the results of our experiments on two industrial data sets. Finally,
conclusions are drawn.

2 Related Work

Recently, considerable efforts have been made to explore various classes of consis-
tency preserving transformations in constraint programming. These transforma-
tions reduce the search space while ensuring that at least one (optimal) solution
remains, if the original problem was solvable. Hence, they essentially extend the
traditional toolbox of constraint programmers that mostly consists of equivalence
preserving transformations. Such transformations – like constraint propagation
or shaving – guarantee that the original and the transformed problems have
exactly the same set of solutions.

The most intensively studied branch of consistency preserving transformations
is doubtlessly symmetry breaking. Symmetry is a bijective function f defined on
the bindings of the variables such that for each variable binding α, f(α) is a
solution iff α is a solution, too. Breaking this symmetry means excluding all
but one of the symmetric equivalents. The foremost of all symmetry breaking
techniques is the addition of symmetry breaking constraints to the model before
search. More sophisticated methods, such as the Symmetry Breaking During
Search (also called Symmetry Excluding Search) and the Symmetry Breaking
via Dominance Detection prune symmetric branches of the search tree during
search. All of these general frameworks require an explicit declaration of the
symmetries in the form of symmetry functions or a dominance checker. See [11]
for a recent overview of symmetry breaking techniques.
1 Note that while this objective is often criticized by practitioners, it really helps to

squeeze a given amount of work into a pre-defined time frame. In a hierarchical
production planning and scheduling setting, where the primary goal of scheduling is
to generate an executable solution that complies with a segment of the production
plan, makespan is a useful criterion [13].

Progressive Solutions: A Simple but Efficient Dominance Rule 141

A wider class of consistency preserving transformations is constituted by the
dominance rules. They define properties of a problem that must be satisfied by
at least one of its (optimal) solutions. By now, little work has been done to
apply dominance rules in constraint programming. The recent paper [12] calls
the attention to the application of dominance rules and defines novel dominance
rules for three different problems.

At the same time, dominance rules are widely used in operations research
and project scheduling. For instance, dominance rules of different strength and
computational complexity are described for RCPSP with the criteria of minimal
makespan in [3]. Dominance rules, as well as methods for the insertion of re-
dundant precedence constraints are proposed for the problem of minimizing the
number of late jobs on a single machine in [2].

3 Notations

Below, we define progressive solutions for resource-constrained project schedul-
ing problems with the criterion of minimizing makespan, and give an outlook
on possible extensions at the end of the paper. Hence, let T denote a set of
non-preemptive tasks. Each task t ∈ T has a fixed duration dt, and requires ρr

t

units of each renewable cumulative resource r ∈ R during the whole length of
its execution. The number of available units of resource r at a time, i.e., the ca-
pacity of r is denoted by qr. Tasks can be connected by end-to-start precedence
constraints (t1 → t2) that state that task t1 must end before the start of task
t2. We assume that there is no directed circle in the graph of precedences.

Then, the objective is to find non-negative start times startt for the task
t ∈ T , such that all precedence and resource constraints are satisfied, and the
makespan, i.e., the maximum of the end times endt = startt + dt is minimal.

Although they are not allowed in the original problem definition, we will use
the notion of start-to-start precedences as well, denoted by (t1 ��� t2), meaning
that startt1 ≤ startt2 . For brevity, we call the maximal sets of tasks connected
by precedence constraints projects.

4 Progressive Solutions of Scheduling Problems

Factories often produce several pieces of the same product, or products belong-
ing to the same product family during their short-term scheduling horizon. As
a consequence, their detailed scheduling problems may include many, in a sense
similar projects. This chapter is devoted to show that in such cases, a valid
ordering of tasks belonging to similar projects can be deduced by off-line infer-
ence. These investigations will allow us to insert precedence constraints in the
constraint-based model of the scheduling problem before search, and hence, to
reduce the search space.

4.1 The Underlying Idea

As a simple example, suppose that two identical projects, P and Q are to be
executed within the scheduling horizon (besides arbitrary other projects). By

142 A. Kovács and J. Váncza

Q

P
p1 p2

p4
 p3

p5

q1 q2
q4
 q3

q5

Q

P
p2

p4
 p3

p5

q1 q2
q4
 q3

Fig. 1. a) and b) Examples of similar projects in the scheduling problem

q6
Q

P
p1 p2

p4
 p3

p5

q1 q2

q4

q3

Q q3 q1
q8

q7 q2

P p1 p2 p3

R r2 r3 r1

Fig. 2. a) and b) Two more examples of similar projects in the scheduling problem

identical, we mean that for each index i, tasks pi and qi in Fig. 1.a. (and in
all subsequent figures) have equal durations and resource requirements. Now,
it is easy to see that if there exists a solution to this scheduling problem,
then there exists one in which each task of P precedes its corresponding task
in Q.

Now, assume that some tasks belonging to project P have already been ex-
ecuted before the start of the current scheduling horizon, hence, there is no
match of q1 in P . Similarly, some tasks of Q suffice to be done after the end
of the horizon, resulting in no corresponding task for p5 in Q. Again, tasks
of P can precede tasks of Q, see Fig. 1.b. The third example in Fig. 2.a. de-
picts a case where P and Q are different members of the same product fam-
ily. P requires an additional finishing operation (p5) that has no match in
Q, while there is an extra component built in Q (q6, q7, q8). Finally, Fig. 2.b.
has a theoretical significance, since it shows an example where the inferred
precedence constraints form directed circles between projects, but not between
tasks.

Below, we formally define our notion of similarity between projects and present
how all this makes possible the reduction of the solution space.

Progressive Solutions: A Simple but Efficient Dominance Rule 143

4.2 Progressive Solutions

Definition 1. Two sets of tasks P and Q are defined isomorphic, and will be
denoted by P ≡ Q, iff there exists a bijection β : P ↔ Q such that for each pair
of tasks p ∈ P and q ∈ Q

β(p, q) ⇒ ∀r ∈ R : ρr
p = ρr

q ∧ dp = dq, and
β(p1, q1) ∧ β(p2, q2)⇒ (p1 → p2)⇔ (q1 → q2).

Definition 2. Given two projects P and Q, we call them a progressive pair iff
there exists a P ∗ ⊆ P and a Q∗ ⊆ Q such that P ∗ ≡ Q∗, and there are no
incoming precedences to P ∗ and no outgoing precedences from Q∗. This relation
will be denoted by P ⇒ Q (see Fig. 3).

q1 q2
q4

q3

Q
q0

P
p1 p2

p4

p3

p5

P*

Q*

Fig. 3. The progressive pair P ⇒ Q

Furthermore, to avoid the ambiguous situations where P ⇒ Q and P ⇔ Q hold
simultaneously for two isomorphic projects P ≡ Q, we label the projects by
unique identifiers L(.). Now, we say that two isomorphic projects constitute a
progressive pair P ⇒ Q only if L(P) < L(Q).

Definition 3. A solution of a scheduling problem is called progressive, iff for
each progressive pair P ⇒ Q, the execution of P precedes Q, in the formal sense
that for each pair of tasks p ∈ P ∗ and q ∈ Q∗ such that β(p, q), p ��� q holds.
We will refer to this type of start-to-start precedence constraints as progressive
constraints.

Note that if at least one of the resources required by p and q is unary, then
(p ��� q)⇔ (p → q).

Theorem 1. If an RCPSP problem has a solution, then it also has a progressive
solution with minimal makespan.

We start the proof by the following simple lemma.

144 A. Kovács and J. Váncza

Lemma 1. Given an RCPSP problem with no directed circles of precedence con-
straints, the insertion of progressive precedence constraints does not create a
directed circle of (end-to-start and start-to-start) precedences between the tasks.

Proof: Let us label the tasks t ∈ T by l(t) = |Pred(t)|−|Succ(t)|, where Pred(t)
and Succ(t) are the sets of predecessors and successors (direct and indirect) of
t in the original problem, respectively. Notice that l(t1) < l(t2) holds for all
precedences (t1 → t2) in the original problem, and l(t1) ≤ l(t2) for all the
inserted progressive constraints (t1 ��� t2).

Now, let us assume that there is a directed circle of precedences C. According
to the above, C consists of progressive constraints only, with l(t1) = l(t2). Then,
by the definition of the progressive pairs, Pred(t1) ≡ Pred(t2) and Succ(t1) ≡
Succ(t2). This also implies that all the projects traversed by C are isomorphic.
It is a contradiction, because by definition L(P) < L(Q) must hold for each
subsequent pair of projects P and Q traversed by C. �

Now, we prove Theorem 1 by an algorithm that departs from an arbitrary opti-
mal solution, and through iteratively swapping pairs of tasks, generates a pro-
gressive solution with the same makespan. In each step of the algorithm, a pro-
gressive pair P ⇒ Q is selected, such that some of the progressive constraints
between P and Q are violated in the actual schedule S. Then, the algorithm
computes a modified schedule S′ by swapping all the pairs of tasks in P and Q
which violate the progressive constraints as follows.

∀p ∈ P, q ∈ Q : β(p, q) ∧ startSp > startSq ⇒ startS
′

p = startSq , and
startS

′
q = startSp .

For all other tasks t ∈ T , startS
′

t = startSt .

Lemma 2. S′ is feasible, and its makespan equals the makespan of S.

Proof: All resource capacity constraints are satisfied in S′, because only pairs
of tasks with equal durations and resource requirements were swapped. In order
to show that precedence constraints p1 → p2, where p1, p2 ∈ P ∗, cannot be
violated in S′ either, we introduce q1 and q2 to denote the two tasks in Q for
which β(p1, q1) and β(p2, q2) hold. Then,

– if neither the pair (p1, q1), nor (p2, q2) were swapped, then the start times of
p1 and p2 are unchanged in S′ w.r.t. S, and S is feasible;

– If the pair (p1, q1) was swapped, but (p2, q2) not, then
endS′

p1
= endS

q1
< endS

p1
≤ startSp2

= startS
′

p2
;

– If the pair (p2, q2) was swapped, but (p1, q1) not, then
endS′

p1
= endS

p1
≤ endS

q1
≤ startSq2

= startS
′

p2
;

– If both (p1, q1) and (p2, q2) were swapped, then
endS′

p1
= endS

q1
≤ startSq2

= startS
′

p2
.

Precedence constraints pointing from P ∗ to P \ P ∗ and those within P \ P ∗

are also satisfied, because only tasks of P ∗ were moved earlier, and tasks of Q∗

Progressive Solutions: A Simple but Efficient Dominance Rule 145

later in the schedule. The proof is analogous for precedence constraints in Q,
and trivial for the precedence constraints between tasks of T \ (P ∪Q), because
those tasks were not moved. �

The above step is iterated until there are no more progressive constraints
violated.

Proof of Theorem 1: The algorithm halts when it has found a progressive
schedule. According to Lemma 2, this schedule is feasible, and has an optimal
makespan. Furthermore, this is reached in finitely many steps, because the al-
gorithm performs a brick sort over the tasks, according to the partial ordering
defined by the progressive constraints. �

5 Computing the Progressive Pairs

Computing the progressive pairs in essence requires a pairwise comparison of
the projects, and checking whether they have appropriate isomorphic subsets of
tasks. The computational efficiency of these algorithms is of special importance,
because no polynomial-time algorithm is known for deciding whether two general
graphs are isomorphic [5]. Furthermore, we did not find a generic way to decrease
the number of necessary isomorphism tests below O(n2).

Despite all this, our experiments suggest that in practical cases, PPs can be
computed fast enough. On the one hand, efficient graph isomorphism algorithms
are known for many classes of graphs, including trees [1, pp. 84–86], planar
graphs, and graphs of bounded valence [4, 5, 8]. The algorithms also return a
matching. In fact, the graph structures we encountered in our recent industrial
applications belonged to the class of in-trees, in the most general case. On the
other hand, often some kind of meta-knowledge about the projects (drawing
numbers of parts and assemblies, product family codes, etc.) can be exploited,
too.

In our pilot system, we assumed that the precedence graphs of projects form
in-trees. For each pair of projects P and Q, and for each task p ∈ P , we took
the sub-tree P p of the precedence tree of P rooted at the node correspond-
ing to p. We checked if P p is isomorphic with a sub-tree of Q also contain-
ing the root of Q. Clearly, a positive answer of the isomorphism test means
that a progressive pair P ⇒ Q has been found with P ∗ ≡ P p (see procedures
ComputeProgressivePairs and CheckIfProgressive in Fig. 4.). We imple-
mented a simple depth-first search to perform the isomorphism tests (procedure
TryMatching). Note that TryMatching considers only the precedence constraints
present in the original problem formulation, but not the progressive constraints
inserted beforehand.

Although this algorithm has an exponential worst-case complexity, it proved
efficient enough for even the largest practical instances we tackled (see the next
section for details). This was possible because the vast majority of the isomor-
phism tests could return false immediately, due to the different durations or
resource requirements of tasks in the roots of the examined sub-trees.

146 A. Kovács and J. Váncza

1 PROCEDURE ComputeProgressivePairs()
2 FORALL project P
3 FORALL project Q : Q �= P
4 CheckIfProgressive(P, Q)

5 PROCEDURE CheckIfProgressive(P, Q)
6 q := last task of Q
7 FORALL task p ∈ P, ordered by the increasing distance of p
- from the root of P
8 IF NOT ((p is the last task in P) AND (L(P) > L(Q))) THEN
9 IF p ≡ q THEN
10 M := TryMatching(P p , Q, {< p, q >})
11 IF M �= ∅ THEN
12 Add progressive pair P ⇒ Q with matching M
13 RETURN

14 PROCEDURE TryMatching(P, Q, M)
15 p, p0 := Select a pair of task from P such that (p → p0),
- p has no match in M, but p0 has a match in M
16 IF there is no such p, p0

17 RETURN M
18 q0:= Match of p0 in M
19 FORALL q : (q → q0) AND q has no match in M
20 IF p ≡ q THEN
21 M ′ := TryMatching(P, Q, M ∪ {< p, q >})
22 IF M ′ �= ∅
23 RETURN M ′

24 RETURN ∅

Fig. 4. An algorithm for computing the progressive pairs when projects form in-trees

6 Experiments

We performed computational experiments on two different sets of industrial
problems with two purposes. First, to estimate to what extent the tasks in a
scheduling problem can be ordered by off-line inference, and second, to mea-
sure how much the inferred precedence constraints can speed up the solution
process.

Our first set of data derives from an industrial partner that manufactures
mechanical parts of high complexity for the energy industry. Their products can
be ordered into four product families. Members of the same family share a similar
structure, but differ in various parameters. The overall number of different end
products is ca. 40, but this number may grow in the future. A project, aimed at
the fabrication of one end product, consists of up to a few hundred tasks. Since
the bill of materials of the products are tree-structured, the precedence relations
within a project also form an in-tree. Tasks require one unit of a machine resource
(unary or cumulative) and one unit of a human resource (cumulative) for their

Progressive Solutions: A Simple but Efficient Dominance Rule 147

execution. There are altogether ca. 100 different resources in the plant. For more
details on this scheduling problem, the readers are referred to [6].

The other set of problem instanced originates from the ILOG MascLib li-
brary [10]. MascLib contains industrial and generated benchmarks classified ac-
cording to the complexity of the scheduling model. For our experiments, we
used the No-Calendar General Shop (NCGS) problem class. Although the au-
thors of the library suggest the usage of more realistic criteria – combinations of
non-performance, earliness/tardiness, setup and mode costs – we simplified these
instances to standard job-shop problems and minimized makespan. Therefore,
we disregarded the due times of the tasks and the option of not performing them,
while preserving their durations, resource requirements, and the precedence re-
lations. The library contains 26 NCGS instances, but 13 of them differ only in
the tardiness and non-performance costs from the others, and 7 others do not
contain progressive pairs at all – we believe these were the generated instances.
Hence, we performed experiments on the 6 remaining instances.2

As the first step of the experiments, we detected the progressive pairs in the
problem instances. The results are presented in Table 1. The first group of rows
stands for the instances from the industrial partner, while the second group for
the NCGS instances. Columns Tasks, Projects, and Resources give information
about the size of the problem instance, while column PPs indicate the num-
ber of progressive pairs of projects found. EtS and StS displays the number of
inferred end-to-start and start-to-start progressive precedence constraints. The
last two columns contain the order strength (OS) [9] without (OS−) and with
(OS+) the inferred constraints. OS was calculated as the number of precedence
constraints within one resource, divided by the number of task pairs competing
for a resource, i.e.,

OS =
∑

r∈R |Precr|∑
r∈R

|Tr |(|Tr|−1)
2

,

where Tr = |t ∈ T : ρr
t ≥ 1| and Precr = {(t1 → t2) or (t1 ��� t2) : t1, t2 ∈

Tr}.3 Hence, OS is 0 when there are no ordering constraints within the resources,
and 1 if the tasks are completely ordered. The results show that in all the in-
stances, the inferred progressive constraints could considerably reduce the search
space. In the case of the NCGS instances, all the inserted precedence constraints
were of the end-to-start type, since these problems contained unary machines
only. The time needed to find the progressive pairs did not exceed 1 second even
for the largest problem instances.

In order to measure the effect of the inferred ordering decisions on algorithm
performance, we fed these instances into ILOG Scheduler 5.1. We used ILOG’s

2 We also experimented with a third set of data that came from the automotive in-
dustry. These were job-shop problems with ca. 50 unary resources and hundreds
of projects, each containing at most 6 sequentially ordered tasks. Progressive pairs
could be found in these instances as well, but the resource loads were so unbalanced
that it was easy to find optimal solutions even without the progressive constraints.

3 Including all the edges in the transitive closure of the precedence graph.

148 A. Kovács and J. Váncza

Table 1. Order strength without and with progressive constraints

Tasks Projects Resources PPs EtS StS OS− OS+

p1 3511 97 95 308 17605 864 0.011 0.090
p2 2767 80 95 242 10674 641 0.014 0.093
p3 1470 70 95 132 2729 273 0.030 0.105
p4 1753 80 95 148 2833 225 0.025 0.077
p5 2472 89 95 196 3389 339 0.017 0.050
p6 2570 91 95 181 3653 323 0.019 0.058
p7 1133 70 95 134 1495 212 0.068 0.227
p8 769 68 95 122 293 248 0.052 0.084
p9 1620 85 95 160 2723 299 0.027 0.094
p10 1677 71 95 156 491 348 0.024 0.033
p11 1471 69 95 129 337 277 0.026 0.034
p12 585 71 95 143 232 221 0.032 0.069
p13 1786 83 95 187 2918 353 0.024 0.082
p14 1240 72 95 220 1570 230 0.067 0.201
p15 947 45 95 92 1223 97 0.088 0.269
NCGS 21 60 16 5 39 147 - 0.000 0.377
NCGS 31 75 19 5 42 162 - 0.000 0.277
NCGS 54 260 45 10 476 1783 - 0.007 0.399
NCGS 55 260 45 10 588 1921 - 0.007 0.427
NCGS 75 1250 41 30 40 1600 - 0.042 0.128
NCGS 81 2500 72 30 302 12210 - 0.022 0.184

default branch-and-bound search with the setting times branching strategy and
the edge-finding algorithm for the propagation of resource constraints. For all
instances, the solution process was stopped when the optimality of a solution
was proven, or after 600 seconds passed without improvement. In the latter case,
we computed a lower bound by pure constraint propagation. The tests were run
on a 1.6 GHz Pentium IV computer under Windows 2000 operating system.

The results achieved without and with the presence of the progressive con-
straints are shown in Table 2, where each row stands for one problem instance.
UB and LB stand for the best found upper and lower bounds, respectively.
Error was calculated as (UB − LB)/LB, while ’-’ denotes optimality. Values
displayed in columns Nodes and Time were measured only until the best so-
lution was found. The solver often generated significantly more search nodes
until the timeout, but displaying those figures in the table would not be
informative.

The figures show that progressive constraints facilitated both finding bet-
ter solutions and proving tighter lower bounds. While improved lower bounds
and better pruning is an evident outcome of a tighter formulation, the pres-
ence of the progressive constraints also had a positive effect on the branching
heuristic. This is clearly shown by better first solutions for 10 of the 21 problem
instances. All in all, the addition of the progressive constraints decreased the gap
between the solutions found and the lower bounds by 60% on average, and made

Progressive Solutions: A Simple but Efficient Dominance Rule 149

Table 2. Effect on algorithm performance

Tasks Without PP With PP
UB LB Error Nodes Time UB LB Error Nodes Time

(%) (sec) (%) (sec)
p1 3511 372 341 9.09 3511 651 345 342 0.88 3511 646
p2 2767 289 247 17.00 2767 29 251 248 1.21 2767 29
p3 1470 276 276 - 1470 11 276 276 - 1470 15
p4 1753 252 252 - 19719 1891 252 252 - 7347 553
p5 2472 290 276 5.07 2472 21 276 276 - 2472 36
p6 2570 269 230 16.96 2570 25 254 230 10.43 2570 23
p7 1133 254 254 - 5686 148 254 254 - 1133 8
p8 769 264 264 - 2309 31 264 264 - 770 2
p9 1620 343 334 2.69 1620 9 343 334 2.69 3240 328
p10 1677 304 284 7.04 1677 9 295 284 3.87 6924 406
p11 1471 320 307 4.23 3450 286 310 307 0.98 4469 273
p12 585 358 349 2.58 585 1 356 349 2.01 585 1
p13 1786 370 366 1.09 4073 483 373 366 1.91 5409 475
p14 1240 383 373 2.68 5504 147 376 373 0.80 4885 541
p15 947 233 222 4.95 5232 107 232 222 4.50 3267 77
NCGS 21 60 2872 2799 2.61 9304 0 2872 2854 0.63 13469 0
NCGS 31 75 3412 3339 2.19 9552 0 3348 3348 - 10235 1
NCGS 54 260 1105 1105 - 260 0 1105 1105 - 260 0
NCGS 55 260 975 975 - 260 0 975 975 - 260 0
NCGS 75 1250 1164 1028 13.23 1200404 1310 1122 1044 7.47 17649 82
NCGS 81 2500 2220 1902 16.72 5956417 20479 2014 1902 5.89 5001 234

possible finding optimal solutions for two previously unsolvable instances (p5
and NCGS 31).

At the same time, the presence of progressive constraints had a negative im-
pact on the solution process in the case of two instances: p9, where equivalent
solutions were found, but with less search without the progressive constraints,
and p13, where better solution could be constructed without them.4 This ef-
fect is caused by the adverse interaction of the inserted constraints with the
search strategy, an unfavorable phenomenon well known from the literature of
symmetry breaking [11].

7 Conclusions

In this work we focused on the solution efficiency of constraint-based scheduling
on practical RCPSP instances. For that purpose, we suggested a method for

4 There is an apparent disproportion between search nodes and time for p9 and p10:
the number of nodes doubles while time multiplies by ca. 40. This is due to the fast
processing of nodes until a first solution is found (where the number of nodes equals
the number of tasks), and heavier computation later, with a valid upper bound.

150 A. Kovács and J. Váncza

detecting progressive pairs, and transforming the original problem into a tighter
constrained formulation by the application of a novel dominance rule. It was
proven that the proposed transformation preserves the consistency of the original
problem.

Our hypothesis was that practical scheduling problems do have components
with inherent temporal and resource-related similarities. The experiments con-
firmed that the simple but generic notion of progressive solutions is appropriate
to capture this structural property. Further on, applying progressive constraints
made the scheduling problems almost in each case easier to solve.

The proposed method naturally extends to richer scheduling models, including
earliest start and latest finish times, setup times, or various other criteria, such
as the minimization of tardiness costs. Finally, one has still to investigate if the
harmful interaction of the progressive constraints and the search heuristic can
be eliminated, likewise it is done by advanced techniques of symmetry breaking.

Acknowledgement

This research has been supported by the grants NKFP 2/010/2004 and OTKA
T046509.

References

1. A.V. Aho, J.E. Hopcroft, and J.D. Ullman. The Design and Analysis of Computer
Algorithms. Addison-Wesley, 1974.

2. Ph. Baptiste, L. Peridy, and E. Pinson. A Branch and Bound to Minimize the Num-
ber of Late Jobs on a Single Machine with Release Time Constraints. European
Journal of Operational Research, 144(1), pp. 1–11, 2003.

3. E.L. Demeulemeester and W.S. Herroelen. Project Scheduling: A Research Hand-
book. Kluwer Academic Publishers, 2002.

4. J.E. Hopcroft and R.E. Tarjan. A V 2 Algorithm for Determining Isomorphism of
Planar Graphs. Information Processing Letters 1, pp. 32–34, 1971.

5. B. Jenner, J. Köbler, P. McKenzie, and J. Torán. Completeness Results for Graph
Isomorphism. Journal of Computer and System Sciences 66(3), pp. 549–566, 2003.

6. A. Kovács. Novel Models and Algorithms for Integrated Production Planning and
Scheduling. PhD Thesis, Budapest University of Technology and Economics, 2005.
http://www.sztaki.hu/~akovacs/thesis/

7. A. Kovács and J. Váncza. Completable Partial Solutions in Constraint Program-
ming and Constraint-based Scheduling. In Proc. of the 10th International Confer-
ence on Principles and Practice of Constraint Programming, Springer LNCS 3258,
pp. 332–346, 2004.

8. E. Luks. Isomorphism of Bounded Valence Can Be Tested in Polynomial Time.
Journal of Computer and System Sciences 25, pp. 42–46, 1982.

9. A.A. Mastor. An Experimental and Comparative Evaluation of Production Line
Balancing Techniques. Management Science 16, pp. 728–746, 1970.

10. W. Nuijten, T. Bousonville, F. Focacci, D. Godard, and C. Le Pape. Towards an
Industrial Manufacturing Scheduling Problem and Test Bed. In Proc. of the 9th
Int. Conf. on Project Management and Scheduling, pp. 162–165, 2004.

Progressive Solutions: A Simple but Efficient Dominance Rule 151

11. K.E. Petrie and B.M. Smith. Comparison of Symmetry Breaking Methods in Con-
straint Programming. In Proc. of the 5th International Workshop on Symmetry
and Constraint Satisfaction Problems, 2005.

12. S.D. Prestwich and J.C. Beck. Exploiting Dominance in Three Symmetric Prob-
lems. In Proc. of the 4th International Workshop on Symmetry and Constraint
Satisfaction Problems, pp. 63–70, 2004.

13. J. Váncza, T. Kis, and A. Kovács. Aggregation – The Key to Integrating Produc-
tion Planning and Scheduling. CIRP Annals – Manufacturing Technology 53(1),
pp. 377–380, 2004.

AND/OR Branch-and-Bound Search for Pure 0/1
Integer Linear Programming Problems

Radu Marinescu and Rina Dechter

School of Information and Computer Science
University of California, Irvine, CA 92697-3425

{radum, dechter}@ics.uci.edu

Abstract. AND/OR search spaces have recently been introduced as a unify-
ing paradigm for advanced algorithmic schemes for graphical models. The main
virtue of this representation is its sensitivity to the structure of the model, which
can translate into exponential time savings for search algorithms. In this paper we
extend the recently introduced AND/OR Branch-and-Bound algorithm (AOBB)
[1] for solving pure 0/1 Integer Linear Programs [2]. Since the variable selection
can have a dramatic impact on search performance, we introduce a new dynamic
AND/OR Branch-and-Bound algorithm able to accommodate variable ordering
heuristics. The effectiveness of the dynamic AND/OR approach is demonstrated
on a variety of benchmarks for pure 0/1 integer programming, including instances
from the MIPLIB library, real-world combinatorial auctions and random unca-
pacitated warehouse location problems.

1 Introduction

A constraint optimization problem is the minimization/maximization of an objective
function subject to a set of constraints on the possible values of a set of independent
decision variables. An important class of constraint optimization problems are the Inte-
ger Linear Programming problems (ILP) [2] where the objective is to optimize a linear
function of integer-valued variables, subject to a set of linear equality or inequality con-
straints defined on subsets of variables. The classical approach to solving ILPs is the
branch-and-bound method [3] which maintains the best solution found so far, while
discarding partial solutions which cannot improve on the best.

The AND/OR search space for graphical models [4] is a newly introduced frame-
work for search that is sensitive to the independencies in the model, often resulting in
exponentially reduced complexities. It is based on a pseudo-tree that captures indepen-
dencies in the graphical model, resulting in a search tree exponential in the depth of the
pseudo-tree, rather than in the number of variables.

The AND/OR Branch-and-Bound algorithm (AOBB) is a new search method that
explores the AND/OR search tree for solving optimization tasks in graphical models
[1]. In this paper we present an extension of the algorithm for solving optimization
problems from the class of pure 0/1 Integer Linear Programs [2]. A pure 0/1 integer
linear program is a linear program where all the decision variables are restricted to be
either 0 or 1 at the optimal solution.

J.C. Beck and B.M. Smith (Eds.): CPAIOR 2006, LNCS 3990, pp. 152–166, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

AOBB Search for Pure 0/1 Integer Linear Programming Problems 153

Since variable selection can have a dramatic impact on search performance [2], we
introduce a dynamic AND/OR Branch-and-Bound search algorithm that combines the
AND/OR decomposition principle with variable ordering heuristics. There are two or-
thogonal approaches to incorporating dynamic orderings into AOBB. The first one im-
provesAOBB by applying an independent semantic variable ordering heuristic whenever
the partial order dictated by the decomposition principle allows. The second, orthogonal
approach gives priority to the semantic variable ordering heuristic and applies problem
decomposition as a secondary principle. We demonstrate empirically the efficiency of
the dynamic AND/OR Branch-and-Bound approach on several benchmarks for pure 0/1
integer linear programming problems, including test instances from the MIPLIB library,
combinatorial auctions simulating radio spectrum allocation and random uncapacitated
warehouse location problems.

The paper is organized as follows. In Section 2 we present background on con-
straint optimization problems and integer linear programming. Section 3 presents the
AND/OR search space as well as an efficient heuristic for constructing low depth bal-
anced pseudo-trees. In Section 4 we introduce the AND/OR Branch-and-Bound algo-
rithm, specialized for solving pure 0/1 integer linear programs. In Section 5 we intro-
duce the dynamic AND/OR Branch-and-Bound algorithm. Section 6 shows our empir-
ical evaluation and Section 7 concludes.

2 Background

2.1 Constraint Optimization Problems

A finite Constraint Optimization Problem (COP) is a four-tuple 〈X ,D, C, z〉, where
X = {X1, ..., Xn} is a set of variables, D = {D1, ..., Dn} is a set of finite domains,
C = {C1, ..., Cm} is a set of constraints on the variables and z is a global cost func-
tion (i.e. objective function) to be optimized. The scope of a constraint Ci, denoted
scope(Ci) ⊆ X , is the set of arguments of Ci. Constraints can be expressed exten-
sionally, through relations, or intentionally, by a mathematical formula (equality or
inequality). An optimal solution to a COP is a complete value assignment to all the
variables such that every constraint is satisfied and the objective function is minimized
or maximized.

With every COP instance we can associate a constraint graph G which has a node
for each variable and connects any two nodes whose variables appear in the scope of
the same constraint. The induced graph of G relative to an ordering d of its variables,
denoted G∗(d), is obtained by processing the nodes in reverse order of d. For each node
all its earlier neighbors are connected, including neighbors connected by previously
added edges. Given a graph and an ordering of its nodes, the width of a node is the
number of edges connecting it to nodes lower in the ordering. The induced width of a
graph, denoted w∗(d), is the maximum width of nodes in the induced graph.

2.2 Integer Linear Programming

A Linear Program (LP) consists of a set of continuous variables and a set of linear con-
straints (equalities or inequalities). The goal is to optimize a global linear cost function
subject to the constraints. One of the standard forms of a linear program is:

154 R. Marinescu and R. Dechter

min{c	x | Ax ≤ b, x ≥ 0} (1)

where c ∈ Rn, b ∈ Rm, A ∈ Rm×n and x ∈ Rn. Here c represents the cost vector and
x is the vector of decision variables. The vector b and the matrix A define the m linear
constraints. Linear programs are usually solved by Dantzig’s SIMPLEX method [5].

A Mixed Integer Linear Programming (MILP) problem is a linear program where
some of the decision variables are constrained to have only integer values at the optimal
solution. An important special case is a decision variable xi that is integer with 0 ≤
xi ≤ 1. This forces xi to be either 0 or 1 at the solution. Variables like xi are called
0/1 or binary integer variables. Subsequently, a MILP problem with binary integer
variables is also called a 0/1 Mixed Integer Linear Programming problem. A pure 0/1
Integer Linear Programming problem is a MILP where all the decision variables are
binary. Pure 0/1 ILPs can formulate many practical problems such as capital budgeting
[6], cargo loading [7], processor allocation in distributed systems [8] or combinatorial
auctions [9, 10].

Clearly, any pure 0/1 integer linear program can be viewed as a finite COP instance
〈X ,D, C, z〉 with linear constraints and a linear objective function. In the remaining
of the paper we will consider a minimization problem defined by z =

∑n
i=1 ciXi

subject to m linear constraints C = {C1, ..., Cm}, over n binary decision variables
X = {X1, ..., Xn}.

2.3 Branch-and-Bound Search for Constraint Optimization

Branch-and-Bound (BB) is a general search method for solving constraint optimization
problems [3]. It traverses the search tree defined by the problem, where internal nodes
represent partial assignments and leaf nodes denote complete ones, which may or may
not be optimal. During the traversal, which is usually depth first, BB maintains un upper
bound ub, the cost of the best solution found so far. At each internal node the algorithm
computes a lower bound lb on the optimal extension of the current partial assignment.
When lb ≥ ub, the current best cost cannot be improved and the algorithm backtracks
pruning the subtree below the current node. Otherwise, the algorithm moves forward
and tries to instantiate the next variable in the ordering.

In the context of pure 0/1 integer linear programs, the lower bound of a subproblem
is obtained by solving its linear relaxation (i.e. relaxing the integrality restrictions). In
this case the branching process can fail at a particular node for one of the following
reasons: (i) the LP solution can be integer; or (ii) the LP problem can be infeasible; or
(iii) the lower bound exceeds the upper bound (for more details see [2, 3]).

3 AND/OR Search Spaces

The classical way to do search is to instantiate variables one at a time, following a sta-
tic/dynamic variable ordering. In the simplest case, this process defines a search tree
(called here OR search tree), whose nodes represent states in the space of partial as-
signments. The traditional search space does not capture independencies that appear in
the structure of the underlying graphical model. Introducing AND states into the search

AOBB Search for Pure 0/1 Integer Linear Programming Problems 155

{ }1,0,,,,,

13

242

2352

3123

 :subject to

865237 :minimize

∈
≤+−

≤−+
−≤−+−

≤+−

+−+−+=

FEDCBA

FEA

EBA

DCB

CBA

FEDCBAz

(a)

A

D

B

EC

F

(b)

OR

AND

OR

AND

OR

OR

AND

AND

A

0

B

0

E

F F

0 1 0 1

0 1

C

D

1

0 1

1

E

F F

0 1 0 1

0 1

C

D

0 1

0 1

1

B

0

E

F F

0 0 1

0 1

C

D

1

0 1

1

E

F

0 1

0 1

C

D

0 1

0 1

(c)

Fig. 1. The AND/OR search space

space can capture the structure, decomposing the problem into independent subprob-
lems by conditioning on values [11, 4]. The AND/OR search space is defined using a
backbone pseudo-tree.

Definition 1 (pseudo-tree). Given an undirected graph G = (V, E), a directed rooted
tree T = (V, E′) defined on all its nodes is called pseudo-tree if any arc of G which is
not included in E′ is a back-arc, namely it connects a node to an ancestor in T .

3.1 AND/OR Search Trees

Given a COP instance 〈X ,D, C, z〉, its constraint graph G and a pseudo-tree T of G,
the associated AND/OR search tree ST has alternating levels of OR nodes and AND
nodes. The OR nodes are labeled by Xi and correspond to the variables. The AND
nodes are labeled by 〈Xi, xi〉 and correspond to value assignments in the domains of
the variables. The structure of the AND/OR tree is based on the underlying pseudo-tree
T of G. The root of the AND/OR search tree is an OR node, labeled with the root of T .

The children of an OR node Xi are AND nodes labeled with assignments 〈Xi, xi〉,
consistent along the path from the root, path(xi) = (〈X1, x1〉, ..., 〈Xi−1, xi−1〉). The
children of an AND node 〈Xi, xi〉 are OR nodes labeled with the children of variable
Xi in T . In other words, the OR states represent alternative ways of solving the prob-
lem, whereas the AND states represent problem decomposition into independent sub-
problems, all of which need be solved. When the pseudo-tree is a chain, the AND/OR
search tree coincides with the regular OR search tree.

A solution subtree SolST of ST is an AND/OR subtree such that: (i) it contains the
root of ST ; (ii) if a nonterminal AND node n ∈ ST is in SolST then all of its children
are in SolST ; (iii) if a nonterminal OR node n ∈ ST is in SolT then exactly one of its
children is in SolST .

Example 1. For illustration consider the pure 0/1 integer program with 6 decision vari-
ables A, B, C, D, E, F and 4 linear constraints C1(A, B, C), C2(B, C, D), C3(A, B, E),
C4(A, E, F) from Figure 1(a). The objective function to be minimized is z = 7A+B-
2C+5D-6E+8F. The pseudo-tree arrangement of the constraint graph, together with the
back-arcs (dotted lines) are given in Figure 1(b). Figure 1(c) shows the corresponding
AND/OR search tree (for AND nodes we only denote the value, namely 〈A, 0〉 is writ-
ten as 0 child of A). The shaded nodes represent dead-ends (i.e. inconsistent values).

156 R. Marinescu and R. Dechter

The AND/OR search tree can be traversed by a depth-first search algorithm that is
guaranteed to have a time complexity exponential in the depth of the pseudo-tree and
can operate in linear space. The arcs from Xi to 〈Xi, xi〉 are annotated by appropriate
labels of the objective function. The nodes in ST can be associated with values, defined
over the subtrees they root.

Definition 2 (label). Given a COP instance with objective function z =
∑n

i=1 ciXi

and a corresponding AND/OR search tree ST , the label l(Xi, xi) of the arc from the
OR node Xi to the AND node 〈Xi, xi〉 is defined as l(Xi, xi) = ci · xi.

Definition 3 (value). The value v(n) of a node n ∈ ST is defined recursively as
follows: (i) if n = 〈Xi, xi〉 is a terminal AND node then v(n) = l(Xi, xi); (ii) if
n = 〈Xi, xi〉 is an internal AND node then v(n) = l(Xi, xi)+

∑
n′∈succ(n) v(n′); (iii)

if n = Xi is an internal OR node then v(n) = minn′∈succ(n)v(n′), where succ(n) are
the children of n in ST .

Clearly, the value of each node can be computed recursively, from leaves to root.

Proposition 1. Given an AND/OR search tree ST of a COP instanceP = (X ,D, C, z),
the value v(n) of a node n ∈ ST is the minimal cost solution to the subproblem rooted
at n, subject to the current variable instantiation along the path from root to n. If n is
the root of ST , then v(n) is the minimal cost solution to P .

Therefore, we can traverse the AND/OR search tree in a depth-first manner to com-
pute the value of the root. This approach would require linear space, storing only the
current partial solution subtree. The algorithm expands alternating levels of OR and
AND nodes, periodically evaluating the values of the nodes along the current path. It
terminates when the root node is evaluated with the optimal cost.

Theorem 1 (complexity). The complexity of an algorithm that traverses an AND/OR
search tree in a depth-first manner is linear space and time is O(n ·exp(h)), where h is
the depth of the pseudo-tree associated with the constraint graph. When the constraint
graph has induced width w, the algorithm can be bounded by O(n · exp(w · log(n))).

3.2 Pseudo-Trees Based on Recursive Hypergraph Decomposition

The performance of the AND/OR tree search algorithms is influenced by the quality
of the pseudo-tree. Finding the minimal depth pseudo-tree is a hard problem [11, 12].
In this section we describe a heuristic for generating a low depth balanced pseudo-tree,
based on the recursive decomposition of a hypergraph.

Definition 4 (hypergraph). Given a COP instance 〈X ,D, C, z〉, its hypergraphH =
(V, E) has a vertex vi ∈ V for each constraint in C and each variable in X is an edge
ej ∈ E connecting all the constraints in which it appears.

Definition 5 (hypergraph separators). Given a hypergraph H = (V, E), a hyper-
graph separator decomposition is a triple (H,S,R) where: (i) S ⊂ E, and the removal
of S separates H into k disconnected components (subgraphs) H1, ...,Hk; (ii) R is a
relation over the size of the disjoint subgraphs (i.e. balance factor).

AOBB Search for Pure 0/1 Integer Linear Programming Problems 157

It is well known that the problem of generating optimal hypergraph partitions is hard.
However heuristic approaches were developed over the years. A good approach is pack-
aged in hMeTiS1. We will use this software as a basis for our pseudo-tree generation.
This idea and software were also used by [13] to generate low width decomposition
trees. Generating a pseudo-tree using hMeTiS is fairly straightforward. The vertices of
the hypergraph are partitioned into two balanced (roughly equal-sized) parts, denoted
by Hleft and Hright respectively, while minimizing the number of hyperedges across.
A small number of crossing edges translates into a small number of variables shared
between the two sets of constraints. Hleft and Hright are then each recursively parti-
tioned in the same fashion, until they contain a single vertex. The result of this process
is a tree of hypergraph separators which is also a pseudo-tree of the original model since
each separator corresponds to a subset of variables chained together.

4 AND/OR Branch-and-Bound Search

AND/OR Branch-and-Bound (AOBB) was recently proposed by [1] as a depth-first
Branch-and-Bound that explores an AND/OR search tree for solving optimization tasks
in graphical models. In this section we review briefly the static version of the algorithm.

4.1 Lower Bounds on Partial Trees

At any stage during search, a node n along the current path roots a current partial
solution subtree, denoted by Gsol(n), to the corresponding subproblem. By the nature
of the search process, Gsol(n) must be connected, must contain its root n and will
have a frontier containing all those nodes that were generated but not yet expanded.
The leaves of Gsol(n) are called tip nodes. Furthermore, we assume that there exists
a static heuristic evaluation function h(n) underestimating v(n) that can be computed
efficiently when node n is first generated.

Given the current partially explored AND/OR search tree ST , the active pathAP(t)
is the path of assignments from the root of ST to the current tip node t. The inside
context in(AP) of AP(t) contains all nodes that were fully evaluated and are children
of nodes on AP(t). The outside context out(AP) of AP(t), contains all the frontier
nodes that are children of the nodes on AP(t). The active partial subtree APT (n)
rooted at a node n ∈ AP(t) is the subtree of Gsol(n) containing the nodes on AP(t)
between n and t together with their OR children. We can define now a dynamic heuristic
evaluation function of a node n relative to APT (n), as follows.

Definition 6 (dynamic heuristic evaluation function). Given an active partial tree
APT (n), the dynamic heuristic evaluation function of n, fh(n), is defined recursively
as follows: (i) if APT (n) consists only of a single node n, and if n ∈ in(AP) then
fh(n) = v(n) else fh(n) = h(n); (ii) if n = 〈Xi, xi〉 is an AND node, having OR
children m1, ..., mk then fh(n) = max(h(n), l(Xi, xi) +

∑k
i=1 fh(mi)); (iii) if n =

Xi is an OR node, having an AND child m, then fh(n) = max(h(n), fh(m)).

1 http://www-users.cs.umn.edu/ karypis/metis/hmetis

158 R. Marinescu and R. Dechter

A

H

B

ED

K

L

C

F G

(a)

A

0 1

B C B C

0 1

D E F D E F

0 1

H K

0 1

(b)

Fig. 2. A partially explored AND/OR search tree

We can show that:

Theorem 2. (1) fh(n) is a lower bound on the minimal cost solution to the subproblem
rooted at n, namely fh(n) ≤ v(n); (2) fh(n) ≥ h(n), namely the dynamic heuristic
function is tighter than the static one.

Example 2. For illustration consider the pseudo-tree in Figure 2(a) and the partially ex-
plored AND/OR search tree in Figure 2(b). The active path has tip node 〈E, 1〉 and rep-
resents the partial assignment A = 1, B = 1, E = 1. The shaded nodes at the left of the
active path belong to the inside context (their corresponding subtrees have already been
explored). The outside context includes the nodes {C, F}, which are also in the search
frontier. For the active partial subtree rooted at B (highlighted), the lower bound fh(B)
on v(B) is computed recursively as follows: fh(B) = max(h(B), fh(〈B, 1〉)), where
fh(〈B, 1〉) = max(h(〈B, 1〉), l(B, 1) + v(D) + fh(E) + h(F)). Similarly, fh(E) =
max(h(E), fh(〈E, 1〉)) = max(h(E), h(〈E, 1〉)), since fh(〈E, 1〉) = h(〈E, 1〉).

4.2 Static AND/OR Branch-and-Bound

AOBB can calculate a lower bound on v(n) for any node n on the active path, by using
fh(n). It also maintains an upper bound on v(n) which is the current minimal cost
solution subtree rooted at n. If fh(n) ≥ ub(n) then the search can be safely terminated
below the tip node of the active path.

Figure 3 shows AOBB. The algorithm assumes the global linear objective function
z =

∑n
i=1 ciXi. The following notation is used: (X ,D, C) is the problem with which

the procedure is called, T is a pseudo-tree arrangement of the underlying constraint
graph, st is current partial solution subtree being explored (initially st = NULL), in
(resp. out) represents the inside (resp. outside) context of the active path. These contexts
are constantly updated during search. Variables are selected statically according to the
pseudo-tree T (indicated by the input parameter vo = SVO).

If the set X is empty, then the result is trivially computed (line 1). Else, AOBB se-
lects a variable Xi (i.e. expands the OR node Xi) and iterates over its values (lines
3-5) to compute the OR value v(Xi). Each value a defines the current subproblem
P = (Xi = a,X ,D, C) that is decomposed into a set of q independent subproblems
Pk = (Xk,Dk, Ck, zk), with k = 1..q, q > 0, one per child Xk of Xi in the pseudo-
tree T . Each subproblem Pk is defined by the subset of variables Xk corresponding

AOBB Search for Pure 0/1 Integer Linear Programming Problems 159

function: AOBB(vo,st,T,X,D,C,z)
if X = ∅ then return 0;1

else2

Xi ← SelectVar(vo,T ,X);3

v(Xi) ← ∞;4

foreach a ∈ Di do5

st′ ← st ∪ (Xi, a);6

foreach k = 1..q do7

h(Xk) ← LB(Xk,Dk,Ck);8

UpdateContext(out, Xk, h(Xk);9

end10

h(Xi, a) ← cia + q
k=1 h(Xk);11

if ¬FindCut(Xi,a,h(Xi, a)) then12

v(Xi, a) ← 0;13

foreach k = 1..q do14

val ← AOBB(vo,st′,T ,Xk,Dk,Ck,zk);15

v(Xi, a) ← v(Xi, a) + val;16

end17

v(Xi, a) + label(i,a);18

UpdateContext(in, v(Xi, a));19

v(Xi) ← min(v(Xi), v(Xi, a));20

end21

end22

return v(Xi);23

end24

Fig. 3. AND/OR Branch-and-Bound

to the descendants of Xk in T including Xk, the subset of constraints and constraint
projections Ck involving the variables in Xk, subject to the current instantiation along
the active path, and a local objective function denoted by zk =

∑
Xj∈Xk

cjXj , which
corresponds to the projection of z on the variables in Xk. For each Pk, the algorithm
computes a static heuristic function h(Xk) which underestimates zk (line 8). The out-
side context of the active path is updated in line 9. The static heuristic function of P is
h(Xi, a) (line 11), computed as the sum of independent lower bounds including the pro-
jection on Xi and value a of the objective function (i.e. the label of the corresponding
AND node 〈Xi, a〉).

Upon instantiating Xi with value a (i.e. expanding the AND node 〈Xi, a〉) (line 12),
AOBB successively updates the dynamic heuristic evaluation function fh(m) for every
ancestor node m along the active path (procedure FindCut implements Definition 6).
If fh(m) ≥ ub(m), for some ancestor node m, then the algorithm backtracks and tries
the next value in the domain of Xi. As the algorithm recursively solves independent
subproblems (line 14) the AND value v(Xi, a) accumulates the results (line 16). The
inside context of the active path is also updated with the actual solution of the current
subproblem (line 19). Once all subproblems are solved, the OR value v(Xi) is also
updated (line 20). After trying all feasible values of variable Xi, the cost of the optimal
solution to the problem rooted by Xi remains in v(Xi), which is returned (line 23).

160 R. Marinescu and R. Dechter

In the context of pure 0/1 integer linear programming problems, the static heuristic
function h(Xk) for each subproblem Pk is obtained by solving its linear relaxation (i.e.
relaxing the integrality restrictions). If the respective linear program is infeasible, then
h(Xk) is set to ∞. For illustration, consider again the pure 0/1 integer program from
Figure 1(a). Let A = 0 and B = 0 be the current partial assignment of the active path in
the AND/OR search tree from Figure 1(c). The subproblem PC rooted at node C in the
search tree corresponds to minimizing the local objective function zC = −2C + 5D,
subject to the constraints and constraint projections involving variables C and D only
(i.e. C ≤ 3 and 5C − 3D ≤ −2, respectively). Moreover, if the subproblem Pk rooted
at node k = Xk in the search tree has an integer solution (i.e. the solution to the linear
relaxation of Pk has no fractional variables), then there is no need to search the subtree
below k. In this case, v(k) = h(Xk) and this is the value returned for Pk.

5 Dynamic AND/OR Branch-and-Bound

It is well known that the variable ordering can dramatically influence search perfor-
mance [2, 14]. In this section we go beyond static orderings and introduce a new dy-
namic AND/OR Branch-and-Bound algorithm that incorporates variable ordering
heuristics used in the classic OR search space.

We distinguish two classes of variable ordering heuristics. Graph-based heuristics
(e.g. pseudo-tree arrangements) that try to maximize problem decomposition and
semantic-based heuristics (e.g. min pseudo cost, min reduced cost) that aim at shrinking
the search space. These two forces are orthogonal, namely we can use one as the pri-
mary goal and break ties based on the other. Moreover, we can use each class statically
or dynamically. We present next two ways of combining efficiently these two classes of
heuristics.

5.1 Partial Variable Ordering (PVO)

The first approach, called AND/OR Branch-and-Bound with Partial Variable Ordering
(AOBB+PVO) combines the static graph-based decomposition given by a pseudo-tree

function: SelectVar(vo,st,T,X)
switch vo do1

case SVO2

if st = NULL then next ←GetPseudoTreeRoot(T);3

else next ←GetPseudoTreeChild(st,T)4

case PVO5

candidates ← GetPseudoTreeVarGroup(st,T);6

next ← SelectBestCandidate(candidates);7

case DVO8

next ← SelectBestCandidate(X);9

end10

return next;11

Fig. 4. Variable selection procedure

AOBB Search for Pure 0/1 Integer Linear Programming Problems 161

with a dynamic semantic ordering heuristic. Let us illustrate the idea with an example.
Consider the pseudo-tree from Figure 1(a) inducing the following variable group order-
ing: {A,B}, {C,D}, {E,F}; which dictates that variables {A,B} should be considered
before {C,D} and {E,F}. Variables in each group can be dynamically ordered based on
a second, independent semantic heuristic. Notice that after variables {A,B} are instan-
tiated, the problem decomposes into two independent components that can be solved
separately.
AOBB+PVO is similar to its precursor AOBB described in Figure 3 in the sense that

it is also guided by a pre-computed pseudo-tree. The partial variable ordering strategy,
indicated by the input parameter vo = PV O, is implemented by the SelectVar
procedure from Figure 4. The algorithm selects the next variable Xi as the best scoring
uninstantiated variable from the current variable group of the the pseudo-tree T .

5.2 Dynamic Variable Ordering (DVO)

The second, orthogonal approach to PVO called AND/OR Branch-and-Bound with Dy-
namic Variable Ordering (AOBB+DVO), gives priority to the dynamic semantic order-
ing heuristic and applies static problem decomposition as a secondary principle during
search.
AOBB+DVO is also based on the algorithm from Figure 3. It instantiates variables

dynamically using a semantic ordering heuristic while constantly updating the problem
graph structure. Specifically, after variable Xi is selected by procedure SelectVar,
AOBB+DVO tentatively removes Xi from the graph and, if disconnected components
are detected their corresponding subproblems are then solved separately and the results
combined in an AND/OR manner (lines 14-20). It is easy to see that in this case a
variable may have the best semantic heuristic to tighten the search space, yet, it may
not yield a good decomposition for the remaining of the problem, in which case the
algorithm would explore primarily an OR space.

6 Experiments

In this section we evaluate empirically the performance of the AND/OR Branch-and-
Bound algorithms on several benchmarks for pure 0/1 integer linear programming in-
cluding problem instances from the MIPLIB library2, combinatorial auctions and un-
capacitated warehouse location problems. All our experiments were done on a 2.4GHz
Pentium IV with 2GB of RAM, running Windows XP. Our C++ implementation of the
AND/OR algorithms was based on the open source lp solve library3.

We consider three classes of depth-first AND/OR Branch-and-Bound (AOBB) al-
gorithms described in the previous sections and denoted by AOBB+SVO (i.e. static
AND/OR Branch-and-Bound), AOBB+PVO and AOBB+DVO, respectively. For compar-
ison, we include results obtained with the classic OR depth-first Branch-and-Bound
(BB) available in the lp solve library. All competing algorithms used a sematic vari-
able ordering heuristic based on reduced costs (i.e. dual values) [2]. Specifically, the

2 Available at http://miplib.zib.de/miplib2003.php
3 lp solve 5.5.0.6 is available at http://groups.yahoo.com/group/lp solve/

162 R. Marinescu and R. Dechter

Table 1. Results for MIPLIB problem instances

BB AOBB
miplib n (w*,h) SVO PVO DVO

time nodes time nodes time nodes time nodes
p0033 33 (18, 20) 6.53 18,081 0.59 1,893 0.39 1,099 3.39 9,251
p0201 201 (120, 142) 37.41 15,575 57.88 25,284 22.90 8,988 42.46 14,463
lseu 89 (53, 69) 153.90 368,573 39.74 87,537 38.94 86,073 152.55 336,953

next fractional variable to instantiate has the smallest reduced cost. Ties are broken
lexicographically.

We report the average effort, as CPU time (in seconds) and number of nodes vis-
ited (which is equivalent to the number of time the SIMPLEX routine was called to
solve the linear relaxation of the current subproblem), required for proving optimality
of the solution. We also record the number of variables (n), the depth of the pseudo-
trees (h) and the induced width of the graphs (w*) obtained for the test instances. As
AOBB+SVO and AOBB+PVO algorithms use a non-deterministic algorithm for generat-
ing the pseudo-tree, the running time may vary significantly from one run to the next.
We therefore ran these algorithms 5 times on each benchmark and provide an average
of those runs. The best performance points are highlighted in all test cases.

6.1 MIPLIB Library

MIPLIB is a library of mixed integer linear programming instances that is commonly
used for benchmarking integer programming algorithms. For our purpose we selected
3 pure 0/1 integer linear instances of increasing difficulty. Table 1 reports a summary
of the experiment. We see immediately that, overall, AOBB+PVO is the best performing
algorithm, both in terms of CPU time and number of nodes visited. AOBB+DVO does
indeed explore a smaller search space than BB in all test cases, but due to its computa-
tional overhead these savings do not reflect in the running time.

6.2 Combinatorial Auctions

In combinatorial auctions (CA), an auctioneer has a set of goods, M = {1, 2, ..., m}
to sell and the buyers submit a set of bids, B = {B1, B2, ..., Bn}. A bid is a tuple
Bj = 〈Sj , pj〉, where Sj ⊆ M is a set of goods and pj ≥ 0 is a price. The winner
determination problem is to label the bids as winning or loosing so as to maximize the
sum of the accepted bid prices under the constraint that each good is allocated to at
most one bid. We used the following pure 0/1 integer formulation of the problem:

max
n∑

j=1

pjxj (2)

s.t.
∑

j|i∈Sj
xj ≤ 1 i ∈ {1..m}

xj ∈ {0, 1} j ∈ {1..n}

AOBB Search for Pure 0/1 Integer Linear Programming Problems 163

Table 2. Results for combinatorial auction problem instances

BB AOBB
auction (w*,h) SVO PVO DVO

time nodes wins time nodes wins time nodes wins time nodes
reg-upv-b200g50 (145, 162) 1.71 602 4 3.28 938 0 2.98 888 6 1.97 602
reg-upv-b250g75 (166, 190) 16.27 3,472 0 7.32 1,209 3 6.30 1,110 7 18.36 3,472
reg-upv-b300g100 (173, 204) 63.29 7,997 2 52.75 4,855 4 45.61 4,801 4 69.18 7,997
reg-npv-b200g50 (140, 161) 1.27 443 1 1.78 514 1 1.15 302 8 1.45 443
reg-npv-b250g75 (160, 187) 5.53 1,150 2 5.97 1,085 4 5.96 1,144 4 6.24 1,150
reg-npv-b300g100 (172, 206) 58.61 7,342 1 21.54 1,904 4 16.35 1,748 5 63.74 7,342

Table 2 shows results for experiments with combinatorial auctions drawn from the
regions distribution of the CATS 2.0 test suite [10]. The suffixes npv and upv indi-
cate that the bid prices were drawn from either a normal or uniform distribution. These
problem instances simulate the auction of radio spectrum in which a government sells
the right to use specific segments of spectrum in different geographical areas (for more
details see [10]). We looked at moderate size auctions by varying the number of bids
between 200 and 300, and the number of goods between 50 and 100. The number of
bids is also the number of variables in the ILP model. For each value combination of
bids and goods we drawn randomly 10 auctions from the respective distribution. For
each algorithm we also report the number of wins out of the 10 runs. These instances
are highly connected with induced widths over 150. For this problem class AOBB+PVO
outperforms its competitors, exploring the smallest search space. If we look for example
at the 300 bid problem instances from the reg-npv distribution,AOBB+PVO is about 4
times faster than BB, exploring a search space 4 times smaller. Notice that AOBB+DVO
explores the same number of nodes as BB, showing that in this case the dynamic se-
mantic variable ordering heuristic does not generate decomposable subproblems.

6.3 Uncapacitated Warehouse Location Problem

In the uncapacitated warehouse location problem (UWLP) a company considers
opening m warehouses at some candidate locations in order to supply its n existing
stores. The objective is to determine which warehouse to open, and which of these
warehouses should supply the various stores, such that the sum of the maintenance and
supply costs is minimized. Each store must be supplied by exactly one warehouse. The
typical 0/1 integer formulation of the problem is as follows:

min

n∑
j=1

m∑
i=1

cijxij +
m∑

i=1

fiyi (3)

s.t.
∑m

i=1 xij = 1 ∀j ∈ {1..n}
xij ≤ yi ∀j ∈ {1..n}, ∀i ∈ {1..m}
xij ∈ {0, 1} ∀j ∈ {1..n}, ∀i ∈ {1..m}
yi ∈ {0, 1} ∀i ∈ {1..m}

164 R. Marinescu and R. Dechter

Table 3. Results for 10 uncapacitated warehouse location problem instances

BB AOBB
uwlp (w*,h) SVO PVO DVO

time nodes time nodes time nodes time nodes
uwlp50-200-a (50, 123) 6.27 27 15.72 70 6.28 12 7.23 27
uwlp50-200-b (50, 123) 11.34 53 17.22 60 5.78 12 11.75 53
uwlp50-200-c (50, 123) 73.66 469 15.78 58 5.83 10 77.94 469
uwlp50-200-d (50, 123) 836.52 4,309 27.94 116 11.97 26 904.15 4,309
uwlp50-200-e (50, 123) 2501.75 11,973 32.69 80 16.98 28 2990.19 12,733
uwlp50-200-f (50, 123) 43.36 237 18.70 64 8.03 20 45.99 237
uwlp50-200-g (50, 123) 1328.40 6,905 27.89 84 8.53 20 1515.48 7,265
uwlp50-200-h (50, 123) 76.88 331 25.20 84 13.70 30 88.38 331
uwlp50-200-i (50, 123) 224.33 1,003 46.06 194 17.17 50 367.14 1,533
uwlp50-200-j (50, 123) 7737.65 31,003 28.03 64 9.13 10 9276.98 33,415

where fi is the cost of opening a warehouse at location i and cij is the cost of supplying
store j from the warehouse at location i.

Table 3 displays the results obtained on 10 randomly generated UWLP problem in-
stances4 with 50 warehouses and 200 stores. The warehouse opening and store supply
costs were chosen uniformly randomly between 0 and 1000. These are large problems
with 10,050 variables and 10,500 constraints. The semantic variable ordering heuristic
that worked best in this case selects the next fractional variable whose value is closest
to 0.5 (ties are broken lexicographically). We can see that AOBB+PVO dominates in all
test cases, outperforming the classic BB with several orders of magnitude in terms of
both running time and size of the search space explored. In uwlp50-200-e for exam-
ple, one of the hardest instances, AOBB+PVO causes a speed-up of 147 over the classic
OR Branch-and-Bound algorithm, exploring a search tree 428 times smaller. This is
due to the problem’s structure partially captured by a shallow pseudo-tree with depth
123. AOBB+DVO has a similar performance as BB on all test instances (it is slower than
BB due to its computational overhead), indicating that these problems do not break
into disconnected components when the semantic variable ordering heuristic has higher
priority than problem decomposition.

7 Conclusion

In this paper we extended the AND/OR Branch-and-Bound search algorithm for solv-
ing pure 0/1 integer linear programming problems. The contribution of the paper is
two-fold. First, we restricted the algorithm to a static variable ordering induced by a
pseudo-tree of the constraint graph. Since the order in which variables are selected for
instantiation can influence dramatically the search performance, we then proposed a dy-
namic version of the AND/OR Branch-and-Bound that incorporates variable ordering
heuristics. We looked at two orthogonal approaches to incorporating dynamic orderings

4 Problem generator from http://www.mpi-sb.mpg.de/units/ag1/projects/benchmarks/UflLib/

AOBB Search for Pure 0/1 Integer Linear Programming Problems 165

into AOBB. On one hand, AOBB+PVO augments a static pseudo-tree based problem de-
composition with a dynamic semantic variable ordering heuristics. On the other hand,
AOBB+DVO gives priority to the dynamic semantic variable ordering heuristic while
constantly updating the graph structure and solving separately, in an AND/OR manner,
disconnected components that may be discovered during search. Our empirical eval-
uation demonstrated on a variety of benchmark problems for pure 0/1 integer linear
programming that AOBB+PVO is a promising candidate solver, outperforming the clas-
sic BB with several orders of magnitude in terms of both running time and size of the
search space explored.

Our dynamic AND/OR approach leaves room for future improvements, which are
likely to make it more effective in practice. For instance, it can be modified to explore
the search tree in a best-first manner, rather than depth-first. This is desirable in the
sense that no optimal tree search algorithm can guarantee expanding fewer nodes [15].
We also mention that the Branch-and-Cut, a more modern algorithm that generates
cutting planes to tighten the LP relaxation of the current subproblem, can be adapted to
traverse an AND/OR search tree. Finally, the AND/OR algorithms can be easily adapted
for solving mixed 0/1 ILPs, where only a subset of the decision variables is restricted to
integer values. In that case, the AND/OR search space is based on a partial pseudo-tree
which spans only the integer variables.

Related Work. AOBB is related to the Branch-and-Bound method proposed by [16] for
acyclic AND/OR graphs and game trees, as well as the pseudo-tree search algorithm
proposed in [17] for boosting Russian Doll search. The optimization method developed
in [18] for semi-ring CSPs can also be interpreted as an AND/OR graph search algo-
rithm. Problem decomposition based on hypergraph separators was also explored by
[19] and [20] for solving large real-world SAT problem instances.

Acknowledgments

We would like to thank the anonymous reviewers for commenting on an earlier version
of the paper. This work has been partially supported by the NSF grant IIS-0412854.

References

1. R. Marinescu and R. Dechter. And/or branch-and-bound for graphical models. In Interna-
tional Joint Conference on Artificial Intelligence (IJCAI’05), pages 224–229, 2005.

2. G. Nemhauser and L. Wolsey. Integer and combinatorial optimization. Wiley, 1988.
3. E. Lawler and D. Wood. Branch-and-bound methods: A survey. Operations Research,

14(4):699–719, 1966.
4. R. Dechter and R. Mateescu. And/or search spaces for graphical models. UCI-ICS Techical

Report, 2006.
5. G.B. Dantzig. Maximization of a linear function of variables subject to linear inequalities.

Activity Analysis of Production and Allocation, 1951.
6. M. Vasquez and J. Hao. A hybrid approach for the 0/1 multidimensional knapsack approach.

In International Joint Conference on Artificial Intelligence (IJCAI’01), pages 328–333, 2001.

166 R. Marinescu and R. Dechter

7. W. Shih. A branch-and-bound method for the multiconstraint 0/1 knapsack problem. Journal
of the Operational Research Society, 30:369–378, 1979.

8. B. Gavish and H. Pirkul. Allocation of data bases and processors in a distributed computing
system. Management of Distributed Data Processing, 31:215–231, 1982.

9. T. Sandholm. An algorithm for optimal winner determination in combinatorial auctions. In
International Joint Conference on Artificial Intelligence (IJCAI’99), pages 542–547, 1999.

10. K. Leyton-Brown, M. Pearson, and Y. Shoham. Towards a universal test suite for combina-
torial auction algorithms. In ACM Electronic Commerce, pages 66–76, 2000.

11. E. Freuder and M. Quinn. Taking advantage of stable sets of variables in constraint satisfac-
tion problems. In International Joint Conference on Artificial Intelligence (IJCAI’85), pages
1076–1078, 1985.

12. R. Bayardo and D. Miranker. On the space-time trade-off in solving constraint satisfaction
problems. In International Joint Conference on Artificial Intelligence (IJCAI’95), pages
558–562, 1995.

13. A. Darwiche. Recursive conditioning. Artificial Intelligence, 126(1-2):5–41, 2001.
14. Rina Dechter. Constraint Processing. MIT Press, 2003.
15. J. Pearl. Heuristics: Intelligent search strategies for computer problem solving. Addison-

Welsey, 1984.
16. L. Kanal and V. Kumar. Search in artificial intelligence. Springer-Verlag., 1988.
17. J. Larrosa, P. Meseguer, and M. Sanchez. Pseudo-tree search with soft constraints. In Euro-

pean Conference on Artificial Intelligence (ECAI’02), pages 131–135, 2002.
18. P. Jegou and C. Terrioux. Decomposition and good recording for solving max-csps. In

European Conference on Artificial Intelligence (ECAI’04), pages 196–200, 2004.
19. J. Huang and A. Darwiche. A structure-based variable ordering heuristic. In International

Joint Conference on Artificial Intelligence (IJCAI’03), pages 1167–1172, 2003.
20. W. Li and P. van Beek. Guiding real-world sat solving with dynamic hypergraph separator

decomposition. In International Conference on Tools with Artificial Intelligence (ICTAI’04),
pages 542–548, 2004.

The Timetable Constrained Distance
Minimization Problem

Rasmus V. Rasmussen1 and Michael A. Trick2

1 Department of Operations Research, University of Aarhus, Ny Munkegade,
Building 1530, 8000 Aarhus C, Denmark

2 Tepper School of Business, Carnegie Mellon University, Pittsburgh PA 15213, USA

Abstract. The Timetable Constrained Distance Minimization Problem
is a sports scheduling problem applicable for tournaments where the total
travel distance must be minimized. In this paper we define the problem
and present an integer programming and a constraint programming for-
mulation for the problem. Furthermore, we describe a hybrid integer pro-
gramming/constraint programming approach and a branch and bound
algorithm for solving the Timetable Constrained Distance Minimization
Problem. Finally, the computational performances of the four solution
methods are tested and compared.

Keywords: Timetabling, Integer Programming, Constraint Program-
ming, Sports scheduling.

1 Introduction

Sports scheduling has proven to be a research area containing a large num-
ber of highly applicable problems which are very hard to solve. Furthermore,
good solutions may lead to great savings in travel costs due to reduced travel
distances or may increase the revenue earned from TV stations since special re-
quirements can be satisfied. From an operations research perspective this makes
sports scheduling constitute an ideal research area.

Two problems have dominated the field of sports scheduling. The first is
the problem of designing a schedule which minimizes the total travel distance.
This problem is applicable for many sports leagues in America, since teams
often travel from one opponent to the next without returning home. The second
problem is to design a schedule which minimizes the number of breaks. A break
is two consecutive home games or two consecutive away games. This problem is
applicable in most European sports leagues where teams normally return home
after each away game and prefer an alternating pattern of home and away games.

Both the break and the distance problem have been solved by decomposing
the problem into a number of subproblems. See for instance Croce and Oliveri [2],
Henz [6, 7], Henz, Müller and Thiel [8], Nemhauser and Trick [11], Rasmussen and
Trick [12], Russell and Leung [14] and Schaerf [15]. Typically, a subproblem deter-
mines when the teams meet (meeting problem) and another subproblem decides
when the teams play home and away (home-away problem). The order of these

J.C. Beck and B.M. Smith (Eds.): CPAIOR 2006, LNCS 3990, pp. 167–181, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

168 R.V. Rasmussen and M.A. Trick

subproblems vary but Trick [16] suggests that the subproblem which is most
constrained or contains the most important constraints should be solved first.

When a TV network is willing to pay extra in case a number of games is
scheduled on specific dates, we might want to solve the meeting problem before
we solve the home-away problem. This decomposition has been widely used when
breaks are minimized and in this case the home-away problem is known as the
Break Minimization Problem. This problem has attracted a considerable amount
of research and solution methods are presented by Elf, Júnger and Rinaldi [5],
Miyashiro and Matsui [10], Régin [13] and Trick [16]. On the other hand we
have not found results for the corresponding problem when travel distances are
minimized instead of breaks.

In this paper, we define the Timetable Constrained Distance Minimization
Problem (TCDMP) to be the problem of assigning home/away values to a fixed
timetable so as to minimize the total distance traveled by all the teams. The
following two applications emphasize the importance of the problem.

1. When sports leagues want to increase the revenue earned from TV net-
works, they must be able to schedule high-quality games at certain dates.
This means that the meeting problem must be solved before the home-away
problem. However, teams want a schedule which minimizes travel costs and
therefore, the TCDMP must be solved after the meeting problem is solved.

2. A famous problem within the sports scheduling community is the Traveling
Tournament Problem (TTP) [3] which is very simple to state and yet has
proven very hard to solve. The TCDMP is a subproblem of the TTP and
effective solution methods for the TCDMP could be useful in some of the
heuristic solution methods for the TTP.

After having defined the TCDMP, we present an integer programming (IP)
and a constraint programming (CP) formulation and we outline two solution
methods which both outperform the IP and the CP model. The first solution
method combines IP and CP and utilizes the strengths of both techniques by
using CP for solving feasibility problems and IP for solving an optimization prob-
lem. The second solution method is a branch and price algorithm. See Barnhart,
Johnson, Nemhauser, Savelsbergh and Vance [1] for a detailed description. This
method has also been applied to the TTP by Easton, Nemhauser and Trick [4]
and is to date the best exact solution method for the TTP.

In the following section, we give a short introduction to sports scheduling,
define TCDMP and present the IP and the CP formulations for the problem. In
Sect. 3 we outline the hybrid IP/CP approach and Sect. 4 explains the branch
and price algorithm. Computational results are presented in Sect. 5 and we give
some final remarks in Sect. 6.

2 Problem Formulation

In this section we will give a formal definition of the TCDMP and present an IP
and a CP formulation of the problem. However, before we define the problem,
let us give a brief introduction to some of the sports scheduling terminology.

The Timetable Constrained Distance Minimization Problem 169

We consider double round robin tournaments with an even number of teams.
A double round robin tournament consists of two games between all pairs of
teams leading to a total of n(n − 1) games in a tournament with n teams. We
assume that these games are distributed evenly over 2(n − 1) time slots such
that all teams play exactly one game in each slot.

All teams have a home venue and play one game against all other teams at
this venue. These games are called home games while games played at another
venue are called away games. If a team plays two consecutive home games or
away games, we say that the team has a break in the last of the two slots.

In Fig. 2.1, we give an example of a schedule for a double round robin tourna-
ment. The columns correspond to slots while the rows correspond to teams and
the entrance (i, s) gives the opponent of team i in slot j. In case i plays away
against j, this is shown by an @ and we have highlighted breaks using boldface.
A schedule for a round robin tournament can be separated into two components,
a timetable and a pattern set. The timetable gives the opponent of each team
in each slot without considering venues. The pattern set consists of a pattern
for each team and these patterns are vectors with an entrance for each slot,
saying whether the corresponding team plays home or away. The combination
of a timetable and a pattern set gives a schedule for the tournament. Figure 2.2
shows the timetable and the pattern set for the schedule shown in Fig. 2.1. In
the pattern set, 1 represents a home game while 0 represents an away game.
Using this terminology we are now able to define the TCDMP.

Definition 1 (TCDMP). Given a timetable for a double round robin tourna-
ment with n teams, a distance matrix specifying the distances between the venues
and an upper bound UB on the number of consecutive home and consecutive away
games, find a feasible pattern set which minimizes the total distance traveled by
all teams.

Slot 1 2 3 4 5 6 7 8 9 10
Team 1 @6 3 @5 2 @4 6 @3 5 @2 4
Team 2 @5 6 4 @1 3 5 @6 @4 1 @3
Team 3 4 @1 6 5 @2 @4 1 @6 @5 2
Team 4 @3 5 @2 @6 1 3 @5 2 6 @1
Team 5 2 @4 1 @3 6 @2 4 @1 3 @6
Team 6 1 @2 @3 4 @5 @1 2 3 @4 5

Fig. 2.1. Schedule for a double round robin tournament with 6 teams

Slot 1 2 3 4 5 6 7 8 9 10
Team 1 0 1 0 1 0 1 0 1 0 1
Team 2 0 1 1 0 1 1 0 0 1 0
Team 3 1 0 1 1 0 0 1 0 0 1
Team 4 0 1 0 0 1 1 0 1 1 0
Team 5 1 0 1 0 1 0 1 0 1 0
Team 6 1 0 0 1 0 0 1 1 0 1

Slot 1 2 3 4 5 6 7 8 9 10
Team 1 6 3 5 2 4 6 3 5 2 4
Team 2 5 6 4 1 3 5 6 4 1 3
Team 3 4 1 6 5 2 4 1 6 5 2
Team 4 3 5 2 6 1 3 5 2 6 1
Team 5 2 4 1 3 6 2 4 1 3 6
Team 6 1 2 3 4 5 1 2 3 4 5

(a) (b)

Fig. 2.2. (a) Timetable, (b) Pattern set

170 R.V. Rasmussen and M.A. Trick

We have modelled the problem using both IP and CP and the models are pre-
sented in the following two subsections. In the rest of the paper, we let n denote
the number of teams, while T denotes the set of teams. The set of slots is de-
noted S, and we let S0 = S ∪{0}. The distance matrix is represented by D, and
entrance Di1i2 contains the distance between the venue of team i1 and the venue
of team i2. TT denotes the timetable and entrance TTis gives the opponent of
team i in slot s. Notice that DTTisTTis+1 is the travel distance of team i between
slots s and s + 1 if team i plays away in both slots.

2.1 Integer Programming Formulation

To formulate the problem as an IP model, we use a binary variable his for each
i ∈ T and each s ∈ S. his equals 1 if team i plays home in slot s and it equals 0
if it plays away. To calculate the total travel distance, we use an integer variable,
dis for each i ∈ T and each s ∈ S0, which is equal to the distance team i travels
between slot s and slot s + 1. We use the dummy slots 0 and 2n − 1 to make
sure that all teams start and end home. This gives the following IP model.

min
∑
i∈T

∑
s∈S0

dis (2.1)

s.t. dis ≥ (1− his − his+1)DTTisTTis+1 ∀i ∈ T, ∀s ∈ S0 (2.2)

dis ≥ (his − his+1)DiTTis+1 ∀i ∈ T, ∀s ∈ S0 (2.3)

dis ≥ (−his + his+1)DTTisi ∀i ∈ T, ∀s ∈ S0 (2.4)
hi0 = 1 ∀i ∈ T (2.5)
hi2n−1 = 1 ∀i ∈ T (2.6)∑
s∈S

his = n− 1 ∀i ∈ T (2.7)

hi1s + hi2s = 1 ∀i1, i2 ∈ T, i1 < i2, ∀s ∈ S, TTi1s = i2 (2.8)
his1 + his2 = 1 ∀i ∈ T, ∀s1, s2 ∈ S, s1 < s2, TTis1 = TTis2 (2.9)
ŝ+UB∑
s=ŝ

his ≤ UB ∀i ∈ T, ∀ŝ ∈ {1, . . . , 2(n− 1)− UB} (2.10)

ŝ+UB∑
s=ŝ

his ≥ 1 ∀i ∈ T, ∀ŝ ∈ {1, . . . , 2(n− 1)− UB} (2.11)

his ∈ {0, 1} ∀i ∈ T, ∀s ∈ {0, . . . , 2n− 1} (2.12)

dis ∈ Z+ ∀i ∈ T, ∀s ∈ S0 (2.13)

Constraints (2.2) - (2.4) give lower bounds on the distance team i travels
between slots s and s+1 when i plays away in the two slots, when it plays home
and away and when it plays away and home, respectively. Constraints (2.5) and
(2.6) ensure that all teams start and end at home and constraints (2.7) make
sure that all teams have exactly n − 1 home games. Constraints (2.8) require

The Timetable Constrained Distance Minimization Problem 171

that, when teams i1 and i2 meet in slot s, one of the teams must play home
and the other must play away, while constraints (2.9) make sure that team i
plays one home game and one away game in two slots with the same opponent.
Finally, the constraints (2.10) and (2.11) give upper bounds on the number of
consecutive home games and the number of consecutive away games.

2.2 Constraint Programming Formulation

When formulating the problem as a CP model, we use variables similar to the
variables used in the IP model, but the CP model allows us to reformulate
the constraints. In particular, we are able to formulate the constraints (2.7),
(2.10) and (2.11) as a single constraint called sequence and we can use logical
expressions to determine the travel distance. This gives the following CP model.

min
∑
i∈T

∑
s∈S0

dis (2.14)

s.t. (his = 1) ∧ (his+1 = 1) ⇒ (dis = 0) ∀i ∈ T, ∀s ∈ S0 (2.15)

(his = 0) ∧ (his+1 = 1) ⇒ (dis = DTTisi) ∀i ∈ T, ∀s ∈ S0 (2.16)

(his = 1) ∧ (his+1 = 0) ⇒ (dis = DiTTis+1) ∀i ∈ T, ∀s ∈ S0 (2.17)

(his = 0) ∧ (his+1 = 0) ⇒ (dis = DTTisTTis+1) ∀i ∈ T, ∀s ∈ S0 (2.18)
sequence(1, UB, UB − 1, [hi1, . . . , hi2n−2], [1], [n− 1]) ∀i ∈ T (2.19)
his1 �= his2 ∀i ∈ T, ∀s1, s2 ∈ S, s1 < s2, TTis1 = TTis2 (2.20)
his �= hTTiss ∀i ∈ T, ∀s ∈ S (2.21)
hi0 = 1 ∀i ∈ T (2.22)
hi2n−1 = 1 ∀i ∈ T (2.23)
his ∈ {0, 1} ∀i ∈ T, ∀s ∈ {0, . . . , 2n− 1} (2.24)

dis ∈ Z+ ∀i ∈ T, ∀s ∈ S0 (2.25)

The constraints (2.15) - (2.18) determine the travel distance of team i be-
tween slots s and s + 1, depending on whether team i plays home or away
in the two slots. The sequence constraints (2.19) are global constraints with
the syntax sequence(min, max, width, varV ec, valueV ec, cardV ec) where min,
max and width are numbers, varV ec is a vector of variables and valueV ec and
cardV ec are vectors with the same index set. The constraints are satisfied if each
entrance in cardV ec equals the number of variables in varV ec, which are equal
to the corresponding entrance in valueV ec and for each value in valueV ec at
least min and at most max variables are equal to this value in any subsequence
of length width. In our case the constraint says that team i must play exactly
n− 1 home games and in UB + 1 consecutive slots it cannot play less than one
home game or more than UB home games. Constraints (2.20) state that team i
must play one home game and one away game in two slots where it meets the
same opponent and constraints (2.21) require that the opponent of team i plays
home (away) if team i plays away (home). Constraints (2.22) and (2.23) make
sure that all teams start and end home.

172 R.V. Rasmussen and M.A. Trick

In the following sections, we present a hybrid IP/CP approach and a branch
and price algorithm which are both able to outperform the IP and CP models
shown in this section. A Benders decomposition approach similar to the method
presented in [12] has also been implemented but the reduction in time used
to solve the master problem cannot offset the additional iterations which are
required compared to the hybrid IP/CP approach.

3 Hybrid IP/CP Approach

The first of the specialized solution methods is a hybrid IP/CP approach which
decomposes the problem into two phases. Phase 1 generates all feasible patterns
for each team in the tournament and Phase 2 finds the optimal pattern set by
assigning each team to one of the patterns found in Phase 1.

CP is in general very effective at solving feasibility problems and it has the
advantage of being able to find all solutions to a specific problem instead of a
single solution. These characteristics makes a CP model ideal for finding feasible
patterns in Phase 1. On the other hand, IP is typically stronger than CP when it
comes to optimization problems, since the linear relaxation can be used to prune
suboptimal solutions. Therefore IP is used in Phase 2 to choose the optimal
patterns from the patterns generated in Phase 1. The details of the two phases
are explained below.

3.1 Phase 1

In order to generate all feasible patterns, we use a CP model for each team
and find all feasible solutions to each of the models. Each pattern must con-
tain exactly n − 1 home games and satisfy the upper bound on the number of
consecutive home games and consecutive away games. Furthermore, a pattern
for a specific team i must satisfy that, for all pairs of slots s1 and s2 where
TTis1 = TTis2, the pattern has both a home game and an away game.

To formulate a CP model for finding all feasible patterns of team i, we use a
binary variable hs for each s ∈ S. As in the earlier sections, hs = 1 implies a
home game in slot s and hs = 0 implies an away game. The CP model for team
i looks as follows.

solve:
sequence(1, UB, UB + 1, [h1, . . . , h2(n−1)], [1], [n− 1]) (3.1)
hs1 �= hs2 ∀s1, s2 ∈ S, s1 < s2, TTis1 = TTis2 (3.2)
hs ∈ {0, 1} ∀s ∈ S (3.3)

Constraint (3.1) corresponds to constraint (2.19) in the CP formulation and
makes sure that the number of home games is correct and the upper bound on
consecutive home games and consecutive away games is satisfied. Constraints
(3.2) correspond to the constraints (2.20) and make sure that the patterns are
feasible with respect to the timetable.

The Timetable Constrained Distance Minimization Problem 173

For each team i ∈ T , we let Pi denote the set of feasible patterns and for each
j ∈ Pi, we let hjs represent the entrance hs of pattern j. We also calculate the
distance team i must travel, if it uses pattern j, and denote it dij . The distance
can be calculated since the timetable gives us the opponent of each slot and the
pattern tells if team i plays home or away.

3.2 Phase 2

In Phase 2, we must find an optimal allocation of each team i to a pattern j ∈ Pi,
such that the total travel distance is minimized and the pattern set is feasible
with respect to the timetable.

To formulate an IP model for this problem, we use a binary variable xij for
each i ∈ T and each j ∈ Pi. The variable is 1 if team i is assigned to pattern j
and 0 otherwise. We also use the home-away parameter hjs for each pattern j
and each slot s and the distance parameter dij for each team i and each pattern
j ∈ Pi.

min
∑
i∈T

∑
j∈Pi

dijxij (3.4)

s.t.
∑
j∈Pi

xij = 1 ∀i ∈ T (3.5)

∑
i∈{i1,i2}

∑
j∈Pi

hjsxij = 1 ∀i1, i2 ∈ T, i1 < i2, ∀s ∈ S, TTi1s = i2 (3.6)

xij ∈ {0, 1} ∀i ∈ T, ∀j ∈ Pi (3.7)

Constraints (3.5) are the assignment constraints saying that all teams must be
assigned to a feasible pattern and constraints (3.6) make sure that when 2 teams
meet, one of the teams play home and the other plays away. These two constraints
are enough to ensure a feasible pattern set with respect to the timetable since
we know from Phase 1 that all the teams play one home game and one away
game in two slots where they meet the same opponent.

4 Branch and Price

In addition to the hybrid IP/CP approach, we present a branch and price algo-
rithm to solve the TCDMP. This method has successfully been applied to the
TTP and is to date the best exact solution method for the TTP.

The branch and price algorithm assigns teams to patterns by solving a linear
programming (LP) problem which is restricted to only contain a subset of the
feasible patterns instead of all the feasible patterns. This problem is known as
the master problem.

The solution of the master problem may be fractional since we use an LP
problem and it might not be optimal since we consider only a subset of the
patterns. The optimality issue is handled by solving a pricing problem which
finds patterns to the master problem with negative reduced costs. These patterns

174 R.V. Rasmussen and M.A. Trick

are added to the master problem and it is re-solved. If no patterns with negative
reduced costs exist and the solution is fractional, the algorithm uses branch and
bound to obtain an integer solution.

Before describing the details of the algorithm, let us present an outline with
references to the relevant sections. UBM denotes an upper bound on the master
problem and N is the node set of the branch and bound tree.
Initialization. Find a feasible pattern set (Sect. 4.1).

Initialize UBM to the solution value of the initial feasible solution.
Initialize N to a single node.

Step 1. If N �= ∅, choose η̂ from N and let N = N \ η̂ (Sect. 4.2).
Otherwise, stop.

Step 2. Solve the master problem and go to Step 3 (Sect. 4.3).
Step 3. Solve the pricing problem for each team (Sect. 4.4). If no patterns with

negative reduced costs exist, go to Step 4.
Otherwise, add patterns to the master problem and go to Step 2.

Step 4. If the solution value is greater than UBM , go to Step 1.
Otherwise, if the solution is fractional, go to Step 5.
Otherwise, update UBM to the solution value and go to Step 1.

Step 5. branch, add the new nodes to N and go to Step 1 (Sect. 4.5).

4.1 Initial Feasible Pattern Set

In order to find an initial feasible pattern set, we use a CP model. The model
corresponds to the CP model presented in Sect. 2.2 but, in this model, we ignore
the travel distance, since we are only looking for a feasible solution. This gives
the following CP model where the variable his, for each i ∈ T and each s ∈ S,
is 1 if team i plays home in slots s and 0 if it plays away.

solve:
sequence(1, UB, UB + 1, [hi1, · · · , hi2(n−1)], [1], [n− 1]) ∀i ∈ T (4.1)
his1 �= his2 ∀i ∈ T, ∀s1, s2 ∈ S, s1 < s2, TTis1 = TTis2 (4.2)
his �= hTTiss ∀i ∈ T, ∀s ∈ S (4.3)
his ∈ {0, 1} ∀i ∈ T, ∀s ∈ S (4.4)

The constraints (4.1) - (4.3) are similar to the constraints (2.19) - (2.21) from
the CP model in Sect. 2.2. The rest of the constraints from the CP model in
Sect. 2.2 can be ignored, since they are all related to the travel distance.

If the model is infeasible, it means that no feasible pattern set exists and we
are done. Otherwise, we store the patterns used by each team and calculate the
travel distances. As in Sect. 3 we let Pi denote patterns which are feasible for
team i but in this context Pi does not necessarily contain all the feasible patterns
for team i. When an initial feasible solution has been found, Pi is initialized to
contain the pattern team i uses and the travel distance is calculated.

In the rest of the section, we use the notation that, for each team i ∈ T , the
parameter hjs for each pattern j ∈ Pi and each slot s ∈ S is 1 if pattern j has
a home game in slot s and 0 if it has an away game. We also let dij denote the
travel distance of team i if it uses pattern j from Pi.

The Timetable Constrained Distance Minimization Problem 175

4.2 Node Selection Strategy

We have implemented two node selection strategies which are used to choose
nodes from the branch and bound tree. The first strategy is the well-known
depth first strategy. This strategy chooses one of the child nodes of the current
strategy if any exists and otherwise it backtracks. The strategy corresponds to
a last in, first out (LIFO) strategy since it always chooses the last node which
has been added.

The second strategy is a best lower bound strategy which chooses the node
with the lowest lower bound. In our case, we use the objective value of the
parent node as lower bound and therefore the strategy chooses the node with
the smallest parent value. Ties are broken arbitrarily.

4.3 Master Problem

The master problem of the branch and price algorithm is almost identical to the
linear relaxation of the problem solved in Phase 2 of the hybrid IP/CP approach.
The only differences are that the problem is restricted since Pi does not contain
all the feasible patterns of team i, and that a number of branching constraints
are added. The number of branching constraints corresponds to the level of the
current node in the branch and bound tree.

The branching strategy and the branching constraints will be further discussed
in Sect. 4.5 but we need some notation to formulate the master problem. We let
Bη denote the set of branching constraints present in node η and we let ib, sb

and vb denote the team, the slot and the value of branching constraint b ∈ Bη.
If vb equals 1, it means that team ib must play home in slot sb and it must play
away if vb equals 0.

Since we use the linear relaxation, the variable xij gives the fraction of team
i which is assigned to pattern j from Pi. Now, we can state the master problem
corresponding to node η ∈ N as follows.

min
∑
i∈T

∑
j∈Pi

dijxij (4.5)

s.t.
∑
j∈Pi

xij = 1 ∀i ∈ T (4.6)

∑
i∈{i1,i2}

∑
j∈Pi

hjsxij = 1 ∀i1, i2 ∈ T, i1 < i2, ∀s ∈ S, TTi1s = i2 (4.7)

∑
j∈Pib

hjsb
xibj = vb ∀b ∈ Bη (4.8)

xij ∈ R+ ∀i ∈ T, ∀j ∈ Pi (4.9)

The constraints (4.6) - (4.7) are similar to constraints (3.5) - (3.6) from Sect.
3.2 and constraints (4.8) are the branching constraints.

176 R.V. Rasmussen and M.A. Trick

In the following, we refer to the optimal solution of the master problem as x̄
and we let P̄i = {j ∈ Pi : x̄ij > 0} denote the set of patterns to which a fraction
of team i is assigned.

In case the master problem is infeasible, we need to check if this is because
of missing patterns or because the branching constraints make the problem in-
feasible. To do this, we solve a CP model similar to the model for finding an
initial feasible solution presented in Sect. 4.1 - but with the branching constraints
added. If this model has a feasible solution, we add the patterns used by each of
the teams and re-solve the master problem. Otherwise, we return to Step 1 of
the algorithm and choose a new node in the search tree.

4.4 Pricing Problem

When the master problem has been solved we use a pricing problem for finding
patterns with negative reduced costs. For a general optimization problem

min cx

s.t. Ax = b

x ≥ 0

where c and x are n-vectors, A is an m × n matrix and b is an m-vector, the
reduced cost of a variable xi is ci − ūAi when ū is an optimal dual solution.

We let ū1
i for all i ∈ T , ū2

i1i2s for all i1, i2 ∈ T , i1 < i2 and s ∈ S where
TTi1s = i2 and ū3

b for all b ∈ Bη denote optimal dual variables corresponding
to constraints (4.6), (4.7) and (4.8) from the master problem, respectively. Fur-
thermore, we let ū2

i2i1s = ū2
i1i2s for all i1, i2 ∈ T with i1 < i2 and s ∈ S where

TTi1s = i2. Then the reduced cost of a pattern ĵ used by team î in node η can
be written as follows.

dîĵ − ū1
î
−
∑
i∈T

∑
s∈S

TT
îs

=i

ū2
îis

hĵs −
∑

b∈Bη

ū3
bhjsb

In order to find patterns with negative reduced costs, we use a pricing problem for
each team. The pricing problem finds the pattern with the smallest reduced cost
and the pattern is added to the master problem if the reduced cost is negative.

To solve the pricing problem, we use an IP model since we want to minimize
the reduced cost. Alternatively, a CP model could be used to generated patterns
with negative reduced costs but we have obtained the best results when the
reduced cost is minimized.

To formulate the IP model for a team î, we use a binary variable hs for each
s ∈ {0, . . . , 2n− 1} and an integer variable ds for each s ∈ S0. The variable hs

is 1 if the pattern has a home game in slot s and 0 if it has an away game, while
ds is the travel distance of team î between slot s and s + 1. The IP model for
team î is presented below.

The Timetable Constrained Distance Minimization Problem 177

min
∑
s∈S0

ds − ū1
î
−
∑
i∈T

∑
s∈S

T T
îs

=i

ū2
îis

hs −
∑

b∈Bη

ū3
bhsb

(4.10)

s.t. ds ≥ (1 − hs − hs+1)DTTîsTTîs+1
∀s ∈ S0 (4.11)

ds ≥ (hs − hs+1)DîTTîs+1
∀s ∈ S0 (4.12)

ds ≥ (−hs + hs+1)DTTîs î ∀s ∈ S0 (4.13)

h0 = 1 (4.14)
h2n−1 = 1 (4.15)∑
s∈S

hs = n− 1 (4.16)

hs1 + hs2 = 1 ∀s1, s2 ∈ S, s1 < s2, TTîs1
= TTîs2

(4.17)
ŝ+UB∑
s=ŝ

hs ≤ UB ∀ŝ ∈ {1, . . . , 2(n− 1)− UB} (4.18)

ŝ+UB∑
s=ŝ

his ≥ 1 ∀ŝ ∈ {1, . . . , 2(n− 1)− UB} (4.19)

hs ∈ {0, 1} ∀s ∈ {0, . . . , 2n− 1} (4.20)

ds ∈ Z+ ∀s ∈ S0 (4.21)

The objective function calculates the reduced cost of the pattern given by the
hs variables. Constraints (4.11) - (4.13) are used to calculate the distance, con-
straints (4.14) and (4.15) make sure that î starts and ends home and constraints
(4.16) - (4.19) state the general constraints for a pattern. We refer to the IP
model presented in Sect. 2.1 for further explanation of the constraints.

The pricing problem is solved for each team î ∈ T and in case the solution
value is less than zero, we add the pattern given by the hs variables to Pî. When
the pricing problem has been solved for all teams, we re-solve the master problem
if patterns have been added and otherwise, we go to Step 4 of the algorithm.

4.5 Branching Strategy

In case the optimal solution of the master problem is fractional and no patterns
with negative reduced costs exist, the algorithm branches to obtain an integer
solution. Instead of branching on one of the fractional x values from the master
problem, we use higher order branching. We choose a team î and a slot ŝ and
create two new nodes by letting team î play home in slot ŝ in one of the nodes
and away in the other.

In order to find î and ŝ, we have implemented two strategies. The first strategy
starts by finding the team î and pattern ĵ1 which result in the highest fractional
x̄îĵ1

value such that

x̄îĵ1
= max{x̄ij |i ∈ T, j ∈ P̄i : 0 < x̄ij < 1}.

178 R.V. Rasmussen and M.A. Trick

Then it finds the pattern ĵ2 which results in the second highest fractional value
for team î such that

x̄îĵ2
= max{x̄îj |j ∈ P̄î : 0 < x̄îj < 1 ∧ j �= ĵ1}.

Finally, it finds a slot ŝ where the two patterns ĵ1 and ĵ2 have a difference such
that hĵ1ŝ �= hĵ2ŝ.

The second strategy starts by finding the team î and pattern ĵ1 such that
the variable x̄îĵ1

is as close to 0.5 as possible. It then finds a second pattern ĵ2

different from ĵ1 such that x̄îĵ2
is as close to 0.5 and finally it finds a slot ŝ such

that hĵ1ŝ �= hĵ2ŝ.
When we have found the branching team î and the branching slot ŝ we can

formulate the two branching cuts∑
j∈Pib

hjsb
xibj = 0

∑
j∈Pib

hjsb
xibj = 1

where ib = î and sb = ŝ.
Now, we are ready to add two nodes η1 and η2 to the search tree. Assuming

that the current node is node η, we let Bη1 and Bη2 be equal to Bη and add the
first of the two branching constraints to Bη1 and the second to Bη2 .

5 Computational Results

In order to explore the computational complexity of the TCDMP and to compare
the proposed solution methods, we have tested all 4 methods on 60 instances
ranging from 6 to 16 teams.

At the homepage http://mat.gsia.cmu.edu/TOURN/, Michael Trick’s bench-
mark problems for the TTP can be found. These problems have been studied
intensively and a number of solutions are presented at the web page. By letting
UB = 3, using the presented distance matrices and permuting the slots of the
presented TTP solutions, we have generated instances of the TCDMP.

For each even number of teams from 6 to 16 we have generated 10 instances
by permuting slots of the following solutions. For 6 teams we have used the
solution of Easton May 7, 1999; for 8 teams, the solution of Easton January 27,
2000; for 10 teams, the solution of Langford, June 13, 2005 and for 12, 14 and
16 teams, the solution of Zhang Xingwen August 28, 2002. All the tests have
been performed on an Intel Xeon 2.67 GHz processor with 6 GB RAM. The
IP and CP models have been solved by using OPL Studio [9] with the callable
libraries CPLEX and Solver. The hybrid IP/CP approach and the branch and
price algorithm have been implemented in OPL script.

The computational results are presented in Table 5.1. For each number of
teams and each solution method, the table shows the number of instances solved
and the minimum, average and maximum time used on the solved instances. We
have used a time limit of 1800 seconds and instances which have not been solved

The Timetable Constrained Distance Minimization Problem 179

Table 5.1. Computational Results

n Solution Number Time (s)
method solved Min. Avg. Max.

6 IP 10 0.42 22.51 217.18
6 CP 10 8.03 17.00 24.94
6 IP/CP 10 0.06 0.07 0.08
6 BP-df-1 10 0.83 1.59 3.34
6 BP-bv-1 10 0.82 1.27 2.29
6 BP-df-2 10 0.84 1.74 3.43
6 BP-bv-2 10 0.83 1.25 2.19
8 IP 10 60.72 397.35 954.56
8 CP 0 - - -
8 IP/CP 10 0.41 0.44 0.47
8 BP-df-1 10 2.87 11.74 21.65
8 BP-bv-1 10 2.88 6.99 11.90
8 BP-df-2 10 2.83 10.05 22.94
8 BP-bv-2 10 2.82 6.15 8.19
10 IP 1 1273.74 1273.74 1273.74
10 CP 0 - - -
10 IP/CP 10 1.79 2.02 2.34
10 BP-df-1 10 7.23 27.01 157.56
10 BP-bv-1 10 7.05 16.55 46.50
10 BP-df-2 10 6.98 24.66 64.49
10 BP-bv-2 10 7.03 15.51 44.34
12 IP 0 - - -
12 CP 0 - - -
12 IP/CP 10 10.16 12.19 18.19
12 BP-df-1 10 24.29 281.60 1386.09
12 BP-bv-1 10 23.77 130.31 434.97
12 BP-df-2 10 23.80 243.23 1038.98
12 BP-bv-2 10 23.56 151.74 650.79
14 IP 0 - - -
14 CP 0 - - -
14 IP/CP 10 35.52 38.07 42.83
14 BP-df-1 10 49.62 95.00 248.32
14 BP-bv-1 10 48.61 91.71 240.47
14 BP-df-2 10 48.69 165.40 750.18
14 BP-bv-2 10 48.74 72.78 164.82
16 IP 0 - - -
16 CP 0 - - -
16 IP/CP 10 153.80 197.16 260.47
16 BP-df-1 9 122.47 866.13 1770.94
16 BP-bv-1 9 119.37 827.90 1645.91
16 BP-df-2 8 121.42 662.81 1377.21
16 BP-bv-2 9 119.38 631.30 1382.13

180 R.V. Rasmussen and M.A. Trick

within this time are not included in the average. Since we have 2 node selection
strategies and two branching strategies for the branch and price algorithm, we
present four versions of this solution method: BP-df-1, BP-df-2, BP-bv-1 and
BP-bv-2. The terms df and bv refer to depth first and best value node selection,
respectively, while 1 and 2 refer to the first and the second branching strategy.

Table 5.1 shows that, even though CP is better than IP at solving instances
with 6 teams, it is not able to solve any of the instances with 8 teams. IP is
doing a little better and is able to solve all the instances with less than 10 teams
and a single instance with 10 teams. The fact that IP is able to handle larger
instances than CP is no surprise, since IP models often excel compared to CP
models when optimization problems are considered.

Both the hybrid IP/CP approach and the branch and price algorithm clearly
outperform the IP and CP models. We see that the hybrid IP/CP approach
shows the best results and, in addition to being the fastest on average, it is also
the most stable of the solution methods. The only drawback of this method is a
rather large memory consumption since all patterns are generated initially. For
instances with 16 teams, it generates up to 85000 patterns and uses approxi-
mately 200 MB of memory.

The computation times of the branch and price algorithm are highly depen-
dent on the size of the branching tree and we see that there is an order of
magnitude in difference between the minimum and maximum time. This means
that the algorithm is only competitive with the hybrid IP/CP approach when
an integer solution is found relatively fast in the branching tree.

In addition to the tests presented here, we have tested the solution methods
on instances with 18 teams but none of the methods were able to solve these
instances within the given time limit. In this case the hybrid IP/CP approach
generated up to 246000 patterns. Still, the tests have shown that the hybrid
IP/CP approach is capable of solving the problem for practical applications like
the National League Baseball which consists of 14 teams.

6 Conclusion

In this paper we have defined the TCDMP which applies when double round
robin tournaments with a fixed timetable are scheduled and the total travel
distance must be minimized.

We have modelled the problem both as an IP model and as a CP model
and presented two specialized solution methods. The solution methods have
been tested and the computational results show that the problem can be solved
effectively for instances with up to 16 teams by using a hybrid IP/CP approach.

In addition to being an interesting problem of its own, the TCDMP also opens
for new research directions. The performances of the hybrid IP/CP approach
opens for the opportunity to include the TCDMP in heuristics for the Traveling
Tournament Problem. By solving the TCDMP, the heuristics could be able to
solve a large neighborhood effectively.

The Timetable Constrained Distance Minimization Problem 181

References

1. C. Barnhart, E.L. Johnson, G.L. Nemhauser, M.W.P. Savelsbergh, P.H. Vance,
Branch-and-price: Column generation for solving huge integer programs, Opera-
tions Research 46 (3)(1998)316-329.

2. F.D. Croce, D. Oliveri, Scheduling the Italian football league: An ILP-based ap-
proach, Computers & Operations Research 33 (7)(2006)1963-1974.

3. K. Easton, G. Nemhauser, M. Trick, The traveling tournament problem: Descrip-
tion and benchmarks, in: Proceedings CP’01, Lecture Notes in Computer Science
2239 (2001)580-584.

4. K. Easton, G. Nemhauser, M. Trick, Solving the traveling tournament problem:
A combined integer programming and constraint programming approach, in: E.
Burke, P. De Causmaecker (Eds.), (PATAT 2002), Lecture Notes in Computer
Science 2740, Springer, 2003, 100-109.

5. M. Elf, M. Jünger, G. Rinaldi, Minimizing breaks by maximizing cuts, Operations
Research Letters, 31 (2003)343-349

6. M. Henz, Constraint-based round robin tournament planning, in: D. De Schreye
(Eds.), Proceedings of the International Conference on Logic Programming, Las
Cruces, New Mexico, MIT Press (1999)545-557.

7. M. Henz, Scheduling a major college basketball conference - revisited, Operations
Research 49 (2001)163-168.

8. M. Henz, T. Müller, S. Thiel, Global constraints for round robin tournament
scheduling, European Journal of Operational Research 153 (1)(2004)92-101.

9. ILOG, ILOG OPL Studio 3.7, Language Manual, 2003.
10. R. Miyashiro, T. Matsui, Semidefinite programming based approaches to the break

minimization problem, Computers & Operations Research 33 (7)(2006)1975-1982.
11. G.L. Nemhauser, M.A. Trick, Scheduling a Major College Basketball Conference,

Operations Research 46 (1)(1998)1-8.
12. R.V. Rasmussen, M.A. Trick, A Benders approach for the constrained minimum

break problem, European Journal of Operational Research (to appear).
13. J.C. Régin, Minimization of the number of breaks in sports scheduling problems

using constraint programming, Constraint programming and large scale discrete
optimization, DIMACS Series in Discrete Mathematics and Theoretical Computer
Science 57 (2001)115-130.

14. R.A. Russell and J.M.Y. Leung, Devising a Cost Effective Schedule for a Baseball
League, Operations Research 42 (4)(1994)614-625.

15. A. Schaerf, Scheduling Sport Tournaments using Constraint Logic Programming,
Constraints 4 (1999)43-65.

16. M.A. Trick, A Schedule-Then-Break Approach to Sports Timetabling, in: Burke,
E.K., Erben, W. (Eds.), (Practice and Theory of Automated Timetabling III)
Lecture Notes in Computer Science 2079, Springer-Verlag, Berlin Heidelberg New
York (2001)242-253.

Conflict-Directed A* Search for Soft Constraints

Martin Sachenbacher1 and Brian C. Williams2

1 LMU München, Oettingenstraße 67, 80538 München, Germany
sachenba@pms.ifi.lmu.de

2 MIT CSAIL, 32 Vassar Street, Cambridge, MA 02139, USA
williams@mit.edu

Abstract. As many real-world problems involve user preferences, costs,
or probabilities, constraint satisfaction has been extended to optimiza-
tion by generalizing hard constraints to soft constraints. However, as
techniques such as local consistency or conflict learning do not easily
generalize to optimization, solving soft constraints appears more difficult
than solving hard constraints. In this paper, we present an approach to
solving soft constraints that exploits this disparity by re-formulating soft
constraints into an optimization part (with unary objective functions),
and a satisfiability part. This re-formulation is exploited by a search algo-
rithm that enumerates subspaces with equal valuation, that is, plateaus
in the search space, rather than individual elements of the space. Within
the plateaus, familiar techniques for satisfiability can be exploited. Ex-
perimental results indicate that this hybrid approach is in some cases
more efficient than other known methods for solving soft constraints.

1 Introduction

Many real-world problems are naturally framed as optimization problems where
the task is to find assignments to variables that optimize user preference, cost,
or probability. Therefore, constraint satisfaction problems (CSPs) have been
extended from satisfaction to optimization by the notion of soft constraints.
One general framework for soft constraints are valued constraint satisfaction
problems (VCSPs) [22, 1], which augment CSPs with a valuation structure and
generalize many earlier notions such as fuzzy CSPs, probabilistic CSPs, or partial
constraint satisfaction.

For the case of solving CSPs, techniques such as local consistency filtering [16]
and conflict (nogood) learning [5] have proven to be very effective. Substantial
progress has been made in extending these techniques to the more general case
of soft constraints [2, 7]; however, the optimization case still appears far more
difficult than the satisfaction case.

In practical applications, the constraints often exhibit structure or regulari-
ties that can be exploited in order to make optimization feasible. For instance,
approaches based on tree decomposition [8, 12] exploit favorable properties of
the constraint graph (limited width) to break down the problem into lower-
dimensional subproblems.

J.C. Beck and B.M. Smith (Eds.): CPAIOR 2006, LNCS 3990, pp. 182–196, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Conflict-Directed A* Search for Soft Constraints 183

In this paper, we present an approach to exploit a form of structure that is
specific to optimization problems. It has been underlying algorithmic approaches
in the area of model-based reasoning and diagnosis [26, 9] for quite some time.
Model-based reasoning aims at describing the behavior of physical systems in
terms of formal models, where some variables capture preferences (such as the
failure probability of a component, or the cost of repairing it), and constraints
capture consistency (such as the physically possible behavior of a component).
As the number of variables defining preferences is typically small compared to
the overall number of variables, there often exist large sets of assignments that
have equal valuation, that is, large “plateaus” in the search space. Williams [27]
presents an algorithmic approach called conflict-directed A* that exploits this
fact by coupling together optimization and satisfaction techniques. The algo-
rithm enumerates plateaus (parts of the search space with the same valuation)
in best-first order, and subsequently checks if there exists a consistent solution
within the plateau; information about infeasible assignments is re-used between
the plateaus in the form of conflicts. This approach can be more efficient than
enumerating individual elements of the search space, because depending on the
problem, there can be fewer plateaus than total elements in the search space.

In this paper, we generalize upon these ideas, and extend their applicability
from model-based reasoning applications to the general case of soft constraints.
Our approach consists of factoring VCSPs into a set of (unary) soft constraints
that carry all the information about valuations of assignments, and a set of hard
constraints that do not carry valuations but just need to be satisfied. Like in
[18, 19], this re-formulation is based on introducing additional variables captur-
ing the cost of violating constraints; a special case of this re-formulation is taking
the dual of the problem [14]. Following the terminology of [27], we call the result-
ing hybrid representation optimal CSP; it makes explicit the optimization and
satisfiability aspects of a problem. The idea is then to algorithmically exploit the
separation into hard and soft problem parts by applying optimization techniques
to the optimization part, and satisfiability techniques to the satisfiability part.
Specifically, for a reasonably small soft constraint part, we can use A* search
[10], which is optimal in the number of search nodes visited, but would typi-
cally be infeasible to apply on the original VCSP problem due to its memory
requirements. For the hard constraint part, we can draw on well-established, effi-
cient techniques for satisfiability problems, such as local consistency and conflict
learning; in this paper, we build on an existing SAT solver for this purpose.

The paper is organized as follows: We review the definitions of valued CSPs
[22] and optimal CSPs [27] and present a method for transforming between
them. The transformation yields a separation into hard constraints and unary
soft constraints. We then present a variant of conflict-directed A* that exploits
this re-formulation by searching over sets of assignment with equal valuation,
rather than searching over individual assignments of the variables in the problem.
We give experimental results demonstrating that this algorithm can outperform
other methods for solving valued CSPs, and finally we indicate some directions
for future work.

184 M. Sachenbacher and B.C. Williams

2 Valued CSPs

A classical constraint satisfaction problem (CSP) is a triple (X, D, C) with vari-
ables X = {x1, . . . , xn}, finite domains D = {dom(x1), . . . , dom(xn)}, and
constraints C = {c1, . . . , cm}. Each constraint cj ∈ C is a relation cj ⊆
Πxi∈var(cj)dom(xi) over variables var(cj) ⊆ X . An assignment t to variables
var(cj) satisfies the constraint if t ∈ cj , and violates it otherwise.

Definition 1 (Valuation Structure [22]). A valuation structure is a tuple
(E,≤,⊕,⊥,!) where E is a set of valuations, totally ordered by ≤ with a min-
imum element ⊥ ∈ E and a maximum element ! ∈ E, and ⊕ is an associative,
commutative, and monotonic binary operation with identity element ⊥ and ab-
sorbing element !.

The set of valuations E expresses different levels of constraint violation, such
that ⊥ means satisfaction and ! means unacceptable violation. The operation
⊕ is used to combine (aggregate) several valuations. A constraint is hard, if all
its valuations are either ⊥ or !.

Definition 2 (Valued Constraint Satisfaction Problem [22]). A valued
constraint satisfaction problem (VCSP) consists of a classical CSP (X, D, C)
with valuation structure (E,≤,⊕,⊥,!), and a mapping φ from C to E which
associates a valuation with each constraint.

For example, the problem of diagnosing the polycell circuit in Fig. 1 [27] can
be framed as a VCSP with variables X = {a, b, c, d, e, f, g, x, y, z}. Each variable
models a boolean signal and has domain {0, 1}. The VCSP has five ternary
constraints fo1, fo2, fo3, fa1, fa2 corresponding to gates in the circuit, and four
unary constraints fc, fd, ff , fg corresponding to observations. The constraints
fo1, fo2, fo3, fa1, fa2 express that the respective gates are performing their
boolean functions. The constraints fc, fd, ff , fg express that variables c, d,
and g are observed to be 1, and variable f is observed to be 0. The valuation
structure (N+

0 ∪∞, +,≤, 0,∞) captures the cost of violating a constraint, which
we assume to be 1 for the constraints fo1, fo2, fo3, to be 2 for the constraints
fa1 and fa2, and to be ∞ for the constraints modeling the observations.

Given a VCSP, the problem is to find an assignment t to X which mimimizes
the combined valuation of all violated constraints,

⊕
{cj∈C|t[var(cj)]/∈cj} φ(c). For

the boolean polycell example, the minimum valuation of an assignment is 1,
corresponding to a fault of a single OR gate.

3 Optimal CSPs

Since solving VCSPs is more complex than solving classical CSPs, an algorith-
mic approach that is based on spliting the VCSP into a set of classical (hard)
constraints and a set of valued (soft) constraints can be useful.

In the following, we consider a specialization of this approach where the con-
straints are divided into hard constraints and unary soft constraints. In [27], this
type of optimization problem is called optimal CSP:

Conflict-Directed A* Search for Soft Constraints 185

Fig. 1. The boolean polycell example consists of three OR gates and two AND gates.
Variables c, d, f , and g are observed as indicated.

Definition 3 (Optimal CSP). An optimal CSP (OCSP) consists of a classical
CSP (X, D, C), with valuation structure (E,≤,⊕,⊥,!), and a set U of unary
functions uj : dom(yj) → E defined over a subset Y ⊆ X of the variables. The
variables in Y are called decision variables, and the variables in X \Y are called
non-decision variables.

An OCSP can be viewed as a special case of a VCSP where soft constraints (con-
straints with valuation φ(cj) < !) must be unary. A solution to an OCSP is an
assignment to Y with minimal total valuation (combined valuations of functions
uj), such that there exists an extension to all variables X that satisfies all the
constraints in the CSP. Hence, whereas a solution to a VCSP is a single assign-
ments to X , a solution to an OCSP is an assignment to the decision variables Y
that can stand for a whole collection of assignments to X that have all the same
valuation (plateau) and differ only with respect to the non-decision variables
X \ Y . It is observed in [14] that a number of optimization problems can be
directly expressed with hard and unary soft constraints, that is, as OCSPs; an
example are combinatorial auctions [21].

4 Translation from Valued CSPs to Optimal CSPs

In general, a VCSP may have non-unary soft constraints and thus it does not
necessarily have the form of an OCSP. However, it is possible to transform a
VCSP into an OCSP with an equivalent optimal solution. This transformation
is based on introducing additional variables (decision variables) that capture
the cost of violating a constraint of the VCSP, analogous to the hidden variable
representation described in [14] and the construction of disjunctive constraints
for over-constrained problems described in [18, 19]. The translation demonstrates
that OCSPs, though syntactically more restricted than VCSPs, actually have the
same expressive power as VCSPs. OCSPs could therefore be viewed as a “nor-
malization” of VCSPs that achieves our desired separation into a hard constraint
part and a soft constraint part.

186 M. Sachenbacher and B.C. Williams

Introducing a decision variable for every constraint turns a VCSP with n
variables and m constraints into an OCSP with n+m variables. We can further
reduce the size of the OCSP by observing that for any hard constraint cj in
the VCSP (φ(cj) = !), choosing the value false for its corresponding decision
variable yj can never give rise to a solution of the OCSP because it will imme-
diately lead to the valuation !. Therefore, we do not need to introduce decision
variables for hard constraints in the VCSP.

Definition 4 (Translation of VCSP to OCSP). The translation of a VCSP
(X, D, C) with valuation structure (E,≤,⊕,⊥,!) and mapping φ into an OCSP
(X ′, D′, C′) with unary functions U over decision variables Y ⊆ X ′ is defined
as follows:

– X ′ consists of X and one decision variable yj for each constraint cj ∈ C for
which φ(cj) < !;

– D′ consists of D and the domain {true, false} for each decision variable yj;
– U consists of one unary function uj per decision variable yj. The function

maps the value true to ⊥ and the value false to φ(cj);
– C′ consists of one constraint c′j for each cj ∈ C. If φ(cj) = ! then c′j = cj,

else c′j is a relation over variables var(c′j) = var(cj) ∪ yj. An assignment
t to var(c′j) = var(cj) ∪ yj satisfies c′j iff t[var(cj)] ∈ cj and yj = true or
t[var(cj)] /∈ cj and yj = false.

For example, the translation of the VCSP for the boolean polycell circuit
yields an OCSP with variables {a, b, c, d, e, f, g, x, y, z, y1, y2, . . . , y5}. Variables
{a, b, c, d, e, f, g, x, y, z} are non-decision variables, and variables y1 to y5 are
decision variables, obtained by extending the constraints fo1, fo2, fo3, fa1, fa2
with an additional variable. There are five unary functions u1, u2, . . . , u5 ∈
U , capturing the cost of violating the constraints fo1, fo2, fo3, fa1, fa2. No
decision variables need to be introduced for the hard constraints fc, fd, ff , fg

corresponding to observations.

Theorem 1. A VCSP and its translation to an OCSP have the same optimal
solution.

Note that for the special case of a VCSP that is actually a CSP (a VCSP where
φ(cj) = ! for all cj ∈ C), the reduced translation is the CSP itself. Therefore,
solving a CSP as an OCSP does not incur any overhead.

5 Solving OCSPs

The separation of valued CSPs into unary soft constraints and hard constraints
can be algorithmically exploited by coupling together specialized algorithms for
each part. In particular, for the hard constraint part, we can employ techniques
that are highly optimized for satisfaction problems, and for the soft constraint
part, we can employ techniques that work best for a relatively small optimization

Conflict-Directed A* Search for Soft Constraints 187

problem but would be infeasible for the original, bigger problem. This hybrid al-
gorithmic approach can be more efficient than general solvers for soft constraints
that do not make assumptions about how the valuations are distributed over the
space of assignments.

5.1 Conflict-Directed A* Search

Williams and Ragno [27] describe such a hybrid approach for solving a subclass
of OCSPs. The approach, called conflict-directed A*, exploits the distinction
between decision variables (which determine the valuation of an assignment) and
non-decision variables (which determine only the consistency of an assignment)
by treating them separately: it enumerates assignments to the decision variables
(corresponding to plateaus) in best-first order. Once a complete assignment to
the decision variables has been found, it is checked whether the CSP part can
be satisfied by assigning the remaining, non-decision variables. If the CSP is
satisfiable (corresponding to the plateau being non-empty), an optimal solution
has been found. If the CSP is unsatisfiable (corresponding to the plateau being
empty), one or more conflicts (inconsistent instantiations of variables, see [5])
are extracted and used to speed up and focus the further search. Depending on
the problem structure, there can be fewer plateaus than individual elements of
the search space, and therefore this two-step approach can be more efficient than
enumerating the individual elements of the search space.

The enumeration of assignments is based on A* search [10], an instance of
best-first search that uses a lower bound g for the partial assignment made so far,
and an optimistic estimate h of the value that can be achieved when completing
the assignment; at each point in the search, A* expands the assignment with the
best combined value of g and h. A* search is run-time optimal [3] in that it visits
a minimum number of search nodes (among all search methods having access
to the same heuristics). Due to its memory requirements, which are worst-case
exponential in the number of variables, A* search would hardly be feasible as a
solution method for general VCSPs. However, as observed in [27], the memory
requirements of A* search can be much more modest in the case of OCSPs,
because only assignments to variables that have an associated cost (decision
variables) need to be stored in the search queue; in addition, the conflicts further
reduce the size of the queue.

In the following, we present a simplified variant of conflict-directed A* that is
adapted to OCSPs obtained from VCSPs. As a heuristic estimate h for the cost
of completing an assignment to the decision variables, we simply sum up the
best possible valuation for each remaining (unassigned) decision variable; since
the best possible valuation of a decision variable is ⊥, it means h is equal to ⊥.
The pseudo-code of the algorithm is shown in Alg. 1. First, local consistency is
established in the CSP part of the OCSP. If an inconsistency arises during local
propagation, then the OCSP has no consistent solution (no assignment with val-
uation better than !). Otherwise, the algorithm performs a best-first (A*) search
over assignments to the decision variables Y of the OCSP, using a priority queue
of (partial) assignments to Y that is ordered by their valuation. The A* search

188 M. Sachenbacher and B.C. Williams

is based on two sub-procedures updateAssignment() and switchAssignment(),
shown in Proc. 2 and Proc. 3, respectively. Procedure switchAssignment() es-
tablishes a (partial) assignment a to the decision variables from the queue, trying
to reuse as much as possible the current search tree; it backtracks to the deepest
point in the search tree up to which the current assignment to Y and a are the
same. If an inconsistency occurs while trying to establish the assignment, then
a conflict is extracted and added to the set of constraints, and the assignment
is discarded. Next, updateAssignment() is used to assign decision variables that
have only one value remaining, and extend the assignment (and in particular,
its valuation) accordingly. Since this update might increase the valuation of the
current assignment, it is now possible that it is no longer the best assignment;
in this case, the assignment is pushed back into the queue. Otherwise (if the
current assignment is still the best one), it is checked whether the assignment
to the decision variables is complete. If the assignment is incomplete, the algo-
rithm chooses a next decision variable yi to assign and enqueues the two possible
branches yi ← true and yi ← false. If the assignment to the decision variables is
complete, then the algorithm uses procedure consistentAssignment() to check if
the assignment is consistent with the CSP. To this end, consistentAssignment()
tries to extend the assignment to Y ⊆ X to an assignment to X by assigning the
remaining (non-decision) variables X\Y . In Proc. 4, this is done using depth-first
search with conflict-directed backjumping. The current level of the search tree
(which so far involves only decision variables) is frozen in variable decisionLevel,
and whenever a conflict occurs that would require to backup higher than this
level (backtrackLevel smaller than or equal to decisionLevel), the current assign-
ment to the decision variables must be inconsistent and is discarded. Otherwise,
the assignment is output as the next best solution.

For instance, for the boolean polycell example and the OCSP encoding in
Def. 4, the algorithm has to assign five decision variables y1, y2, . . . , y5 corre-
sponding to the constraints fo1, fo2, fo3, fa1, fa2. Conflict-directed A* starts
with an empty assignment to the decision variables. Propagation does not prune
any values for the decision variables, so the algorithm assigns a decision vari-
able. Assume the decision variables are assigned in the order y1, y2, . . . , y5.
The algorithm thus creates two new assignments, 〈y1 ← true〉 with valuation
0 and 〈y1 ← false〉 with valuation 1, and puts them on the queue. The algo-
rithm pops the assignment 〈y1 ← true〉 from the queue and establishes it using
function switchAssignment(). Two new assignments, 〈y1 ← true, y2 ← true〉
with valuation 0 and 〈y1 ← true, y2 ← false〉 with valuation 1 are created and
enqueued. When establishing the best assignment 〈y1 ← true, y2 ← true〉 us-
ing switchAssignment(), propagation forces y4 to be false, and thus updateAs-
signment() refines the assignment to 〈y1 ← true, y2 ← true, y4 ← false〉 with
valuation 2. Since a better assignment exists in the queue, this assignment is
pushed back into the queue, and the next best assignment, say 〈y1 ← false〉
with valuation 1, is considered. Since this new assignment and the current as-
signment share no common prefix, switchAssignment() needs to backtrack up
to y1 in order to establish this assignment. After propagation, the updated as-

Conflict-Directed A* Search for Soft Constraints 189

signment becomes 〈y1 ← false, y4 ← true〉 with valuation 1. The algorithm
proceeds by assigning y2 ← true and y3 ← true, at which point y5 ← true can
be derived by propagation, and therefore a complete decision variable assign-
ment 〈y1 ← false, y2 ← true, y3 ← true, y4 ← true, y5 ← true〉 with valuation
1 is obtained. Procedure consistentAssignment() determines that this assign-
ment is consistent (a satisfying assignment to the non-decision variables is e.g.
〈a ← 1, b ← 1, c ← 1, d ← 1, e ← 0, f ← 0, g ← 1, x ← 0, y ← 1, z ← 1〉), and
thus outputs value 1 as the optimal solution.

Theorem 2. The conflict-directed A* algorithm in Alg. 1 computes the optimal
solution of a given OCSP.

Conflict-directed A* search can be further refined in a number of ways. [27, 15]
describe extensions that reduce the size of the search queue by generating new
entries only at a point where the current assignment to the decision variables be-
comes inconsistent, and an extension to the case of non-binary decision variables
that generates only next best child assignments instead of all children at once.
It is also easy to extend the algorithm such that it enumerates the solutions in
best-first order, instead of computing only the optimal solution.

Algorithm 1. Conflict-directed A* for OCSPs
1: if not (propagate() = conflict) then
2: queue ← 〈∅, ⊥〉
3: while queue �= ∅ do
4: 〈a, value〉 ← first(queue)
5: queue ← removeFirst(queue)
6: if switchAssignment(a) then
7: updateAssignment(〈a, value〉)
8: if assignment with better value exists in queue then
9: queue ← push(queue, 〈a,value〉)

10: else
11: if exists yi ∈ Y , yi = unknown then
12: queue ← push(queue, 〈a ∪ (yi ← true), v〉)
13: queue ← push(queue, 〈a ∪ (yi ← false), v ⊕ φ(ci)〉)
14: else
15: if consistentAssignment() then
16: output value as best solution
17: exit
18: end if
19: end if
20: end if
21: end if
22: end while
23: end if
24: output no solution

190 M. Sachenbacher and B.C. Williams

Procedure 2. UpdateAssignment(〈a, value〉)
1: for all yi ∈ Y , yi /∈ a, yi �= unknown do
2: if yi = true then
3: 〈a, value〉 ← 〈a ∪ (yi ← true), value〉
4: else
5: 〈a, value〉 ← 〈a ∪ (yi ← false), value ⊕ φ(ci)〉
6: end if
7: end for

Procedure 3. SwitchAssignment(a)
1: level ← deepest level up to which a and current assignment are equal
2: backtrack(level)
3: for (yi ← val) ∈ a do
4: if yi �= val then
5: return false
6: else if yi = unknown then
7: yi ← val
8: level ← level + 1
9: if propagate() = conflict then

10: CSP ← CSP ∪ conflict
11: return false
12: end if
13: end if
14: end for
15: return true

Procedure 4. ConsistentAssignment()
1: decisionLevel ← level
2: while exists xi ∈ X \ Y , xi = unknown do
3: choose val ∈ dom(xi)
4: xi ← val
5: level ← level + 1
6: dom(xi) ← dom(xi) − val
7: if propagate() = conflict then
8: backtrackLevel ← analyze(conflict)
9: if backtrackLevel ≤ decisionLevel then

10: return false
11: else
12: CSP ← CSP ∪ conflict
13: backtrack(backtrackLevel)
14: level ← backtrackLevel
15: end if
16: end if
17: end while
18: return true

Conflict-Directed A* Search for Soft Constraints 191

6 Implementation

We have implemented the transformation of VCSPs into OCSPs and the conflict-
directed A* search algorithm in C++. Conflict-directed A* search was imple-
mented on top of zChaff [17], one of the most efficient complete solvers for
boolean satisfiability (SAT) problems. The main reasons why we choose zChaff
is that it offers (1) a highly optimized data-structure for local consistency (unit
propagation), called two-literal watching scheme; (2) a method for extracting
small conflicts from inconsistencies, based on so-called unique implications points
(UIPs), which correspond to dominators in the implication graph; and (3) an
efficient variable and value ordering heuristic called variable state independent
decaying sum (VSIDS), which biases the search towards variables that occur in
recently learned clauses, i.e., conflicts. (In addition, zChaff uses other techniques
such as random restarts, which we do not exploit in our prototype).

Our prototypic implementation of conflict-directed A* adopts zChaff’s local
propagation scheme, its conflict extraction method, and its variable/value order-
ing heuristic for the non-decision variables. The decision variables are currently
assigned in no specific order. Using a SAT solver as the underlying satisfiability
engine means that the CSP part of the OCSP has to be first encoded as a SAT
problem, by mapping variables to boolean variables, and mapping constraints
to clauses in conjunctive normal form (CNF). For this purpose, we choose a
logarithmic SAT encoding of the CSP [11], although other encodings are equally
possible (see [25, 6] for two alternative encodings).

7 Experimental Results

We evaluated our prototype on various examples of valued CSPs, and compared
its performance against other algorithms for solving soft constraints.

The algorithms we compared against are branch-and-bound with maintaining
existential directional arc consistency (BB-MEDAC) [7], and cluster tree elim-
ination (CTE) [4]. BB-MEDAC is a recently proposed search algorithm that
combines depth-first branch-and-bound with a form of arc consistency general-
ized to soft constraints. In our experiments we used the implementation that is
part of the toolbar package [24]. CTE is an inference algorithm for both hard
constraints and soft constraints that is based on decomposing the constraint
graph into a tree structure, and solving it using dynamic programming. In our
experiments, the tree was computed using a greedy min-fill heuristic.

All the examples shown below, apart from the random problems, are taken
from the toolbar repository. All experiments were performed under Windows
XP using a 2.8 GHz Pentium 4 PC with 1 GB of Ram.

7.1 Academic Problems

First, we tried conflict-directed A* on three academic puzzles. Since these exam-
ples involve only hard constraints, the corresponding OCSPs do not contain any

192 M. Sachenbacher and B.C. Williams

decision variables, and thus conflict-directed A* can solve these problems as effi-
ciently as the underlying satisfiability engine (in our implementation, zChaff with
the given SAT encoding). For all three algorithms, we used a time bound of 1
minute. Table 1 summarizes the results. Although these examples are relatively
small, note that CTE fails to solve all but one of them within the given time bound.

Table 1. Results for academic puzzles (containing only hard constraints)

CDA* BB-MEDAC CTE
zebra (25 variables, 19 constraints) 0.188 sec 0.016 sec 0.047 sec
send (11 variables, 32 constraints) 0.312 sec 0.031 sec > 1 min

donald (15 variables, 51 constraints) 2.828 sec 0.156 sec > 1 min

7.2 Random Problems

Next, we compared the algorithms on random Max-CSP problems. Max-CSPs
are instances of VCSPs where each constraint has cost 1; thus, the task is to
minimize the number of violated constraints. To generate the examples, we used
a random binary constraint model with four parameters N , K, C, and T , where
N is the number of variables, K the domain size, C the number of constraints,
and T the tightness of each constraint (number of tuples having cost 1). Again,
we used a time bound of 1 minute. Table 2 summarizes the results for six classes
of random Max-CSP, averaged over 10 instances each.

Table 2. Results for random Max-CSPs (10 instances each)

(N , K, C, T) CDA* BB-MEDAC CTE
(40, 4, 60, 4) 0.0346 sec 0.0092 sec 1.461 sec
(40, 4, 60, 8) 2.184 sec 0.022 sec 4.136 sec
(40, 4, 60, 12) > 1 min 0.0468 sec 7.325 sec
(25, 4, 100, 4) 0.818 sec 0.0156 sec > 1 min
(25, 4, 100, 8) > 1 min 0.169 sec > 1 min
(25, 4, 100, 12) > 1 min 0.131 sec > 1 min

For all these examples, BB-MEDAC converges very fast towards the optimal
solution. Unfortunately, conflict-directed A* does not perform well for the denser
and tighter instances. Further analysis of these cases reveals that the algorithm
actually quickly finds small conflicts that could potentially guide the A* search
towards the optimal solution, but then tries many assignments to the decision
variables that are useless as they are not relevant to (i.e., do not resolve) those
conflicts. Thus, we expect that using a similar variable ordering heuristic for the
decision variables as for the non-decision variables (focusing on variables involved
in conflicts) could substantially improve the performance of conflict-directed A*
for these cases.

Conflict-Directed A* Search for Soft Constraints 193

7.3 Real-World Problems

Finally, we evaluated the performance of our algorithm on four real-world cir-
cuit examples. These are obtained by turning SAT instances from the DIMACS
challenge into Max-CSPs by making each clause a constraint with cost 1. For
these examples, we used a time bound of 10 minutes. Table 3 summarizes the
results.

Table 3. Results for DIMACS circuit examples

CDA* BB-MEDAC CTE
ssa0432-003 (435 variables, 1027 constraints) 14.547 sec > 10 min 1.219 sec
ssa7552-038 (1501 variables, 3575 constraints) 28.312 sec > 10 min 142.969 sec
ssa2670-141 (986 variables, 2315 constraints) 101.765 sec > 10 min 6.21 sec
ssa2670-130 (1359 variables, 3321 constraints) 233.89 sec > 10 min 53.203 sec

CTE performs best for most of these examples; however, the run-times for
CTE in Table 3 show only run-times of CTE itself and do not include the time
for computing the tree decomposition, which takes longer than the run-time of
CTE for some of the examples. Also, CTE requires significantly more memory
than the other algorithms for most of the examples. BB-MEDAC, which per-
formed best for the academic and random examples, cannot solve any of the
DIMACS examples within the given time bound. In fact, even after 10 minutes
of computation, its lower bound (best valuation found so far) is often far off the
optimal solution. We suspect that this has to do with the fact that BB-MEDAC
performs local propagation (existential directional arc consistency) for binary
constraints only, and defers the propagation of non-binary constraints until they
become binary. Thus, the propagation scheme is not effective for the DIMACS ex-
amples where almost all constraints are non-binary. In contrast, conflict-directed
A* exploits efficient local propagation (zChaff’s two literal scheme) for any hard
constraints. In fact, for instance ssa7552-038, which has optimal cost 0, conflict-
directed A* requires only one call to the SAT engine (zChaff) in order to solve it.
The actual run-time of zChaff for this example is only a fraction of the run-time
given in Table 3, indicating that the current implementation of conflict-directed
A* wastes significant time constructing unnecessary search queue entries. We
therefore expect that further improvements to the algorithm to reduce the size
of the search queue by creating entries only as needed (as described in [27, 15])
will have a strong impact for these examples.

8 Discussion and Related Work

The idea of re-formulating problems into a part describing the cost of a solution
and a part describing its feasibility is not new. Larrosa and Dechter [14] already
found that dualization turns soft constraints into a set of hard constraints and

194 M. Sachenbacher and B.C. Williams

unary soft constraints, without losing expressiveness. Petit et al. [18, 19] describe
an approach to model optimization problems by specifying an additional vari-
able (decision variable) for each constraint, capturing the cost of its violation;
they show how this representation allows for additional expressiveness, for ex-
ample, specifying “meta-constraints” between decision variables to control the
distribution of violations. In contrast, our goal is to use re-formulation to make
the structure in soft constraints more explicit; in particular, we believe separat-
ing optimization aspects from satisfaction aspects may provide a useful starting
point for algorithmic development. Conflict-directed A* is an instance of such an
approach, and it is inspired by research on model-based reasoning and diagnosis
[26, 9], where problems can be naturally framed as a mixture of hard constraints
and unary objective functions (that is, OCSPs).

From the perspective of viewing re-formulation as a process of “pre-
compiling” preferences, the separation into unary soft constraints and hard con-
straints is only a special case; it is not actually required by the approach that the
soft constraints are unary. Another useful view of the re-formulation into OCSPs
is that of giving a “normal form” for soft constraints, which makes the degree to
which the problem is an optimization problem vs. a satisfaction problem more
explicit. It seems that research in soft constraints has so far focussed on ex-
pressive, unifying frameworks, but much less on such canonical representations.
Optimal CSPs could provide a starting point in this direction.

A potential drawback of the re-formulation is that it may increase the size of
the problem; since one decision variable is introduced for each soft constraint,
the resulting OCSP may be much bigger than the original VCSP, especially if it
has a high ratio of constraints to variables. However, even if the re-formulation
incurs an increase in the problem size, the benefit of applying dedicated solvers
to each part of the problem (as in conflict-directed A*) may still outweigh the
increase in the search space. The identification of problem classes for which re-
formulation is beneficial is a subject of further research.

As already indicated in Sec. 5.1, several improvements to conflict-directed A*
are possible, in particular for switchAssignment(), the procedure that is most
critical to the performance of the algorithm. The cost of switching between two
A* search nodes (corresponding to two different assignments to the decision
variables, i.e., two different CSPs) could be reduced by incremental techniques
that allow for computing only the difference between two CSP instances. Truth
maintenance systems (TMS) [13], which keep track of the dependencies in the
implication graph, are frequently used in model-based reasoning and diagnosis
for this purpose. However, the additional bookkeeping necessitated by the TMS
creates a trade-off between between making the context switch more efficient
and making the satisfiability check more efficient.

Another direction for future work is to combine conflict-directed A* search
with structural (tree decomposition) methods. As can be seen from the exper-
iments, the two approaches are fairly complementary to each other, and de-
composing the problem into smaller subproblems can dramatically improve per-
formance on examples with low tree width. The combination would involve an

Conflict-Directed A* Search for Soft Constraints 195

instance of conflict-directed A* running on every cluster in the tree, and a spe-
cial set of decision variables that capture the cost of assignments to variables
shared between clusters (separator variables). We are currently working on such
a decomposed version of conflict-directed A*. Some earlier work on combining
best-first search with tree decompositions can be found in [20], whereas [23] de-
scribes a method for (the simpler case of) combining depth-first search with tree
decompositions.

In our implementation, we used a SAT solver (zChaff) to check consistency of
the candidates (plateaus) enumerated by A* search, mainly for the reason that it
provides an efficient implementation of local propagation and conflict extraction.
Recently, the problem of extending SAT solvers to optimization counterparts
where either the number of satisfied clauses must be maximized (max-SAT) or
the clauses carry a weight to be maximized (weighted max-SAT) has received
considerable attention [28]. Much of this work still focuses on extending the basic
DPLL search algorithm that underlies most complete SAT solvers (especially the
unit propagation and variable ordering heuristic) to this case, and does not yet
exploit more advanced concepts like conflicts. Still, it would be interesting to
compare such approaches to our method.

9 Conclusion

We presented an approach for transforming VCSPs into hard constraints and
unary soft constraints (OCSPs), and exploiting this re-formulation by solving the
optimization and satisfiability part separately using a combination of specialized
algorithms. Because it can exploit structure in the search space by enumerating
whole sets of assignments with equal valuations (plateaus) rather than just indi-
vidual assignments, this hybrid approach can be more efficient than algorithms
that work directly on the VCSP. We presented an instance of this approach,
called conflict-directed A*, and its prototypic implementation on top of a SAT
solver. The prototype can outperform other solvers for VCSPs on some problems
of practical importance. Promising directions for future research include more
sophisticated, incremental methods for the critical step of switching between
plateaus, and incorporating structural decomposition methods.

References

1. Bistarelli, S., et al.: Semiring-based CSPs and Valued CSPs: Frameworks, Proper-
ties, and Comparison. Constraints 4 (3) (1999) 199–240

2. Cooper, M., and Schiex, T.: Arc consistency for soft constraints. Artificial Intelli-
gence 154 (2004) 199-227

3. Dechter, R., Pearl, J.: Generalized Best-First Search Strategies and the Optimality
of A*. Journal of the ACM 32 (3) (1985) 505–536

4. Dechter, R., Pearl, J.: Tree clustering for constraint networks. Artificial Intelligence
38 (1989) 353–366

5. Dechter, R.: Enhancement schemes for constraint processing: Backjumping, learn-
ing and cutset decomposition. Artificial Intelligence 41 (1990) 273-312.

196 M. Sachenbacher and B.C. Williams

6. Gent, I.P.: Arc consistency in SAT. Proc. ECAI-2002 (2002)
7. de Givry, S., Zytnicki, M., Heras, F., and Larrosa, J.: Existential arc consistency:

Getting closer to full arc consistency in weighted CSPs. Proc. of IJCAI-2005 (2005)
8. Gottlob, G., Leone, N., Scarcello, F.: A comparison of structural CSP decomposi-

tion methods. Artificial Intelligence 124 (2) (2000) 243–282
9. W. Hamscher, W., Console, L., and de Kleer, J. (eds.): Readings in Model-Based

Diagnosis, Morgan Kaufmann (1992)
10. Hart, P. E., Nilsson, N. J., and Raphael, B.: A formal basis for the heuristic deter-

mination of minimum cost paths. IEEE Trans. Sys. Sci. Cybern. SSC–4 (2) (1968)
100-107.

11. Iwama, K, and Miyazaki, S.: SAT-variable complexity of hard combinatorial prob-
lems. IFIP World Computer Congress (1994) 253-258

12. Kask, K., et al.: Unifying Tree-Decomposition Schemes for Automated Reasoning.
Technical Report, University of California, Irvine (2001)

13. de Kleer, J.: An Assumption based TMS, Artificial Intelligence 28 (1) (1986)
127–162

14. Larrosa, J., and Dechter, R.: On the Dual Representation of non-binary
Semiring-based CSPs. Proceedings SOFT-2000 (2000)

15. Li, H., and Williams, B.C.: Generalized Conflict Learning for Hybrid Dis-
crete/Linear Optimization, Proc. CP-2005 (2005)

16. Mackworth, A.: Constraint satisfaction. Encyclopedia of AI (second edition) 1
(1992) 285–293

17. Moskewicz, M., Madigan, C., Zhao, Y., Zhang, L., and Malik, S.: Chaff: Engineer-
ing an efficient SAT solver. In Proc. of the Design Automation Conference (DAC)
(2001)

18. Petit, T., Régin, J.-C., and Bessière, C.: Meta-Constraints on Violations for
Over-Constrained Problems, Proc. ICTAI-2000 (2000) 358–365.

19. Petit, T., Régin, J.-C., and Bessière, C.: Specific Filtering Algorithms for
Over-Constrained Problems, Proc. CP-2001 (2001) 451–465.

20. Sachenbacher, M., and Williams, B.C.: On-demand Bound Computation for
Best-First Constraint Optimization, Proc. CP-2004 (2004)

21. Sandholm, T.: An algorithm for optimal winner determination in combinatorial
auctions. Proceedings IJCAI-1999 (1999)

22. Schiex, T., Fargier, H., Verfaillie, G.: Valued Constraint Satisfaction Problems:
hard and easy problems. Proc. IJCAI-95 (1995) 631–637

23. Terrioux, C., Jégou, P.: Bounded Backtracking for the Valued Constraint
Satisfaction Problems. Proc. CP-2003 (2003)

24. Toolbar http://carlit.toulouse.inra.fr/cgi-bin/awki.cgi/ToolBarIntro
25. Walsh, T.: SAT vs. CSP. Proc. CP-2000 (2000) 441-456
26. Weld, D.S., and de Kleer, J. (eds.): Readings in Qualitative Reasoning about

Physical Systems, Morgan Kaufmann (1989)
27. Williams, B., Ragno, R.: Conflict-directed A* and its Role in Model-based

Embedded Systems. Journal of Discrete Applied Mathematics, to appear.
28. Xing, Z., and Zhang, W.: MaxSolver: An efficient exact algorithm for (weighted)

maximum satisfiability. Artificial Intelligence 164 (1–2) (2005) 47-80

Event-Driven Probabilistic Constraint
Programming

S. Armagan Tarim1, Brahim Hnich2, and Steven D. Prestwich1

1 Cork Constraint Computation Centre, University College Cork, Ireland
{a.tarim, s.prestwich}@4c.ucc.ie

2 Izmir University of Economics, Faculty of Computer Science, Izmir, Turkey
hnich.brahim@gmail.com

Abstract. Real-life management decisions are usually made in uncer-
tain environments, and decision support systems that ignore this uncer-
tainty are unlikely to provide realistic guidance. We show that previous
approaches fail to provide appropriate support for reasoning about reli-
ability under uncertainty. We propose a new framework that addresses
this issue by allowing logical dependencies between constraints. Relia-
bility is then defined in terms of key constraints called “events”, which
are related to other constraints via these dependencies. We illustrate our
approach on two problems, contrast it with existing frameworks, and
discuss future developments.

1 Introduction

Real-life management decisions are usually made in uncertain environments.
Random behavior such as the weather, lack of essential exact information such
as the future demand, incorrect data due to errors in measurement, and vague or
incomplete definitions, exemplify the theme of uncertainty in such environments.

It is generally impossible for any set of decisions to satisfy all the constraints
under all circumstances. For instance, consider a probabilistic single-item dis-
tribution problem in which there are n independent suppliers with their given
probabilistic supply capacities, and m different customers with known demands.
It is realistic to assume that the deliveries are fixed in advance, by consider-
ation of the probabilistic supply capacities. The need to fix the deliveries in
advance has been at the heart of many problems such as the buying of raw ma-
terials on markets with fluctuating prices [3]. Thus the investigation of modeling
approaches and solution algorithms is potentially important not only from a
theoretical point of view, but also from the perspective of practical applications.
It is quite unrealistic to ask for a plan that satisfies all demand and probabilistic
supply constraints, irrespective of the unfolding of uncertainties.

To address this and related situations, we propose that one should determine
in advance a distribution plan that satisfies customer demands as far as possible,
under some probabilistic measure that accurately captures the user’s notion of
reliability. To address this important class of problems, we take a novel approach

J.C. Beck and B.M. Smith (Eds.): CPAIOR 2006, LNCS 3990, pp. 197–211, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

198 S.A. Tarim, B. Hnich, and S.D. Prestwich

and develop a modeling framework that supports more reliable decisions in un-
certain environments, yet reduces the cognitive burden on a decision-maker. Our
Event-Driven Probabilistic Constraint Programming (EDP-CP) modeling frame-
work allows users to designate certain probabilistic constraints (such as demand
constraints) as events whose chance of satisfaction must be maximized, subject
to hard probabilistic constraints (such as a lower bound on profit), and also
logical dependencies among constraints (such as the dependency of demand con-
straints on the satisfaction of the probabilistic supply constraints). We shall show
that the EDP-CP framework allows more realistic modelling of some problems
than previous approaches.

The rest of this paper is organized as follows. In Section 2 we motivate the
work. We define the new modelling framework in Section 3 and show how to
compile any EDP-CP model into an equivalent constraint program in Section 4.
In Section 5 we illustrate its flexibility and usefulness by studying two examples:
probabilistic supply chain planning and production planning/capital budgeting.
In Section 6 we survey related work. Finally, in Section 7 we summarise our work
and discuss future directions.

2 Motivation

Our motivation for this work comes from an application in the supply chain
management area: more precisely, addressing supply and demand uncertainties.
The inherent difficulty in dealing with this class of probabilistic problems is
mainly due to the fact that certain constraints — such as the ones imposing on
complete satisfaction of customer demands — may be hinged on the satisfaction
of others — such as supply constraints. The problem is particularly interesting
when the latter constraints are exposed to uncertainty.

2.1 A Motivating Example

We provide a concrete example of the distribution problem to motivate the
work. Figure 1 depicts a distribution system with three suppliers S1,2,3 and

Fig. 1. Distribution Problem

Event-Driven Probabilistic Constraint Programming 199

three customers D1,2,3. The scopes of the suppliers are S1 → {D1, D2}, S2 →
{D1, D2, D3}, S3 → {D2, D3}. The deterministic customer demands are [8, 7, 4].
The suppliers’ probabilistic capacities are expressed as discrete probability den-
sity functions: fS1 = {3(0.3), 7(0.5), 12(0.2)}, fS2 = {6(0.4), 7(0.2), 10(0.4)} and
fS3 = {3(0.3), 8(0.7)}, where values in parentheses represent probabilities. The
objective is to obtain the most reliable distribution plan. We shall consider a
series of models of increasing sophistication.

2.2 A Naive Model

Define decision variables xs,c where s, c ∈ {1, 2, 3}, denoting the planned supply
from supplier s to customer c. Also define random variables ξi denoting the
uncertain supply available to supplier i. A constant ζc denotes the deterministic
demand of customer c. Any plan must satisfy the hard constraints∑

s∈Sc

xs,c = ζc

where Sc is the set of suppliers for customer c. There are also probabilistic
constraints between decision and random variables:∑

c∈Cs

xs,c ≤ ξs

where Cs is the set of customers for supplier s. These probabilistic constraints
are “soft”: they may be violated in some scenarios. We therefore do not add
them to the model (as with the deterministic constraints), but instead use them
to define an objective function:

max
∑

s

E

{∑
c∈Cs

xs,c ≤ ξs

}

where E{C} is the sum of the probabilities of the scenarios in which constraint
C is satisfied. This model may be viewed as similar to a Probabilistic CSP [2],
in which some contraints are hard, plus an optimization criterion that we wish
to maximise the probability that other soft constraints are satisfied.

2.3 A Dependent-Chance Programming Model

A drawback of the above model is that the objective function does not measure
plan reliability in a realistic way. For example, in any scenario in which supplier
2 cannot meet its demands (so that x2,1 +x2,2 +x2,3 > ξ2) we cannot guarantee
that any customers are supplied. This is therefore a worst-case plan for the given
scenario, yet in the above model only one probabilistic constraint is violated
under this scenario. A plan in which two or three probabilistic constraints are
violated would be assigned a lower objective function value, but would be no
less reliable.

200 S.A. Tarim, B. Hnich, and S.D. Prestwich

Worse still, consider a similar problem in which supplier 1 supplies only cus-
tomer 1, supplier 3 supplies only customer 3, and supplier 2 again supplies cus-
tomers 1, 2 and 3. A plan in which suppliers 1 and 3 are unable to meet their
demands under some scenario would be classed as less reliable than one in which
supplier 2 is unable to meet its demand under the same scenario, because more
probabilistic constraints are violated. However, the latter plan is less reliable: in
the first plan customer 2 is satisfied, but in the second plan no customer is.

To improve the model we may define a more intelligent objective function:
the reliability of a plan is now the sum of the reliabilities of three events , where
an event is the satisfaction of a customer:

max
∑

c

E

{ ∧
s∈Sc

(∑
c′∈Cs

xs,c′ ≤ ξs

)}

where ∧ denotes logical conjunction: E{C ∧ C′} is the sum of the probabil-
ities of the scenarios in which both C and C′ are satisfied. For example the
reliability of satisfaction of customer 1 is the sum of the probabilities of the sce-
narios in which suppliers 1 and 2 both meet their demands. Under this objective
function, our worst-case plan (in which supplier 2 cannot meet its demands) is
assigned reliability 0 in the scenario, because the violated probabilistic constraint
x2,1 + x2,2 + x2,3 ≤ ξ2 affects the reliability of each customer. Allowing logical
connectives between constraints allows us to express the problem more accu-
rately. This model is similar to a Dependent-Chance Programming [5] approach
to a related problem.

2.4 An EDP-CP Model

However, the second model is still flawed. Consider a plan in which x1,1 = 0 so
that customer 1 must recieve all supplies from supplier 2. The reliability of the
satisfaction of customer 1 should now be independent of the ability of supplier 1
to meet its demand, but in the second model it is still dependent; this point was
not considered in [5]. We should therefore refine the objective via further logical
connectives between constraints:

max
∑

c

E

{ ∧
s∈Sc

(
xs,c �= 0 →

∑
c′∈Cs

xs,c′ ≤ ξs

)}

where → denotes logical implication: E{C → C′} is the sum of the probabilities
of the scenarios in which either C is violated or C′ is satisfied, or both. Because
of this modification, under a scenario in which x1,1 = 0 there is no longer a
penalty if ∑

c′∈C1

xs,c′ ≤ ξ1

is violated.
Table 1 presents some representative distribution plans and their correspond-

ing probabilistic measure of realization. To gain more insight into this problem

Event-Driven Probabilistic Constraint Programming 201

Table 1. Representative distribution plans

Plan Planned Delivery Si → Dj : (i, j) Probabilistic
No (1, 1) (1, 2) (2, 1) (2, 2) (2, 3) (3, 2) (3, 3) Measure
1 3 5 5 1 1 1 3 0.624
2 4 7 4 0 4 0 0 0.680
3 6 2 2 5 0 0 4 0.940
4 5 0 3 3 4 4 0 0.960
5 7 5 1 1 1 1 3 1.040
6 2 5 6 0 4 2 0 1.380
7 8 2 0 2 4 3 0 1.400
8 0 7 8 0 0 0 4 1.800
9 5 0 3 3 0 4 4 2.100
10 6 0 2 0 4 7 0 2.400

class we examine two different distribution plans, 1 and 5, given in Table 1. These
two plans share common decisions, except at S1 → D1 and S2 → D1: Plan 1
assumes [3, 5] whereas Plan 5 assumes [7, 1], respectively. We now examine the
reliabilities of these two plans. Plan 1 (5) requires a capacity value of 8 units (12
units) at S1 to be feasible. Although the requisite capacities are different (8 and
12 units) in two plans, these values still have the same probability (0.2) of being
realised. Therefore there is no difference between the two plans with regard to
S1. However, the same is not true for S2. Although a comparison of S2 → D1 for
two plans shows that under all scenarios both shipments (1 unit and 5 units) are
always feasible, the consideration of other shipments from S2 gives a completely
different picture. In this case, Plan 1 requires a capacity of 7 units ([5,1,1]) in to-
tal, whereas Plan 5 needs only 3 units ([1,1,1]). The corresponding probabilities
are 0.6 and 1.0, respectively, thus Plan 5 is more reliable than Plan 1.

2.5 An Alternative EDP-CP Model

So far, the decision-maker’s objective has been to maximize the plan reliability,
defined in such a way that all violated plans are treated equally. In other words,
plans in which not all customer demand constraints hold are considered equally
unreliable, irrespective of the number of customers that are completely satis-
fied. An alternative objective is to satisfy as many customers as possible, that
is to meet as many demand constraints as possible under probabilistic supply
constraints. Clearly, this new objective may have a wider application.

In the first EDP-CP model any plan must satisfy the hard constraints on
demands ζc, but a plan that reliably satisfies two customers might be more
desirable than one that satisfies all three customers less reliably. We can model
such a measure of plan reliability by removing the hard constraints and using
them in the objective function instead:

max
∑

c

E

{ ∧
s∈Sc

(
xs,c �= 0→

[∑
c′∈Cs

xs,c′ ≤ ξs →
∑

s′∈Sc

xs′,c = ζc

])}

202 S.A. Tarim, B. Hnich, and S.D. Prestwich

Under this new objective, the distribution plan [0,2,0,2,4,3,0] guarantees com-
plete satisfaction of D2 and D3 with a reliability score of 2.0, whereas under
the previous model it would have reliability score 0. The reliability scores for
the plans given in Table 1 do not change. (Note that the first model can be
modified to allow subsets of customers to be satisfied, simply by including the
deterministic constraints in the objective function. But, like the first model, this
would not accurately measure plan reliability.)

3 Event-Driven Probabilistic Constraint Programming

In this section we formalise the EDP-CP modeling framework.

3.1 Preliminaries

Recall that a constraint satisfaction problem (CSP) consists of a set of variables
X , each with a finite domain of values D(xi), and a set of constraints C, each
over a subset of X (denoted by Scope(C)) and specifying allowed combinations
of values for given subsets of variables. A solution is an assignment of values
to the variables satisfying the constraints. A Constraint Optimisation Problem
(COP) is a CSP with given objective function over a subset of X that we wish
to maximize or minimize.

Recall that a probabilistic CSP as introduced in [2] is defined as a 6-tuple
〈X ,D, Λ,W , C, Pr〉 where:

– X= {x1, . . . , xn} is a set of decision variables;
– D= D(x1)× . . .×D(xn), where D(xi) is the domain of xi;
– Λ = {λ1, . . . , λl} is a set of uncertain parameters;
– W= W (λ1)× . . .×W (λl), where W (λi) the domain of λi;
– C is a set of (probabilistic) constraints each involving at least one decision

variable (and possibly some uncertain parameters);
– Pr :W→ [0, 1] is a probability distribution over uncertain parameters.

In [2] a complete assignment of the uncertain parameters (resp. of the decision
variables) is called a world (resp. a decision). The probability that a decision is
a solution is the probability of the set of the worlds in which it is a solution.

In the rest of this paper we will sometimes refer to classical constraints as
deterministic constraints to distinguish them from the probabilistic ones. We
will refer to the possible values of an uncertain parameter λi as W (λi) and to
the probability of λi taking a given value v in W (λi) as Pr(λi = v). As in [2], we
refer to a complete assignment of uncertain parameters as a possible world and
denote by W the set of all possible worlds. We also assume that the probability
of each possible world w is given by the probability function Pr : W → [0, 1].

Definition 1 ([2]). Given a probabilistic constraint c over decision variables
and some uncertain parameters, the reduction of c by world w ∈ W, denoted by
c↓w, is the deterministic constraint obtained by setting all its uncertain parame-
ters as in w.

Event-Driven Probabilistic Constraint Programming 203

3.2 Modeling Framework

In EDP-CP some of the constraints can be designated by the user as event
constraints. The user’s objective is to maximize his/her chances of realizing these
events. For instance, in our running example the user may consider the customer
demand constraints as events. The objective is then to construct a plan satisfying
customer demand constraints as far as possible. We now introduce a measure for
event realization in a deterministic setting, and generalize it later to probabilistic
events.

Definition 2. Given a deterministic constraint c with Scope(c) = {x1, . . . , xk},
an event realization measure E{c} on c is a mapping M from D(x1)×. . .×D(xk)
into {0, 1} such that for all t ∈ D(x1)× . . .×D(xk), M(t) = 1 iff t satisfies c.

Example 1. An event realization measure on event constraint c : x1 + x2 = 8,
denoted by E{c}, takes value 1 only when the values v1 and v2 assigned to
decision variables x1 and x2 (resp.) sum to 8, otherwise it takes value 0.

When the events are probabilistic constraints, the event realization measure is
defined on the set of possible worlds as follows.

Definition 3. Given a probabilistic constraint c over decision variables
Scope(c) = {x1, . . . , xk} and uncertain parameters Λ = {λ1, . . . , λl}, a proba-
bilistic event realization measure E{c} on c is a mapping M from D(x1)× . . .×
D(xk) into interval [0, 1] such that

E{c} =
∑

w∈W (λ1)×...×W (λl)

Pr(w)E{c↓w}

Example 2. An event realization measure on probabilistic constraint c : x1+x2 ≤
ξ), where ξ is a discrete random variable assuming {6(0.2), 8(0.7), 11(0.1)}, is
denoted by E{c} and takes the value 0.8 when x1 = 4 and x2 = 3, and the value
0.1 when when x1 = 6 and x2 = 3.

For convenience we shall only consider the “expectation operator” in defining
probabilistic event realization measure. However, any other relevant operator,
such as the nth moment generator, can be used instead.

The feasibility of certain event constraints depends on the satisfaction of other
constraints. For instance, having a plan that meets the customer demands de-
pends on whether or not the supply constraints are met with such a plan. For this
purpose we introduce a new meta-constraint useful for modeling such situations
in our EDP-CP framework, which we refer to as a dependency meta-constraint.
But again, we first introduce the dependency constraint in the deterministic
setting.

Definition 4. Dependency(e, p, c) iff Scope(e)∩Scope(p) �= ∅ & Scope(c) ⊆
Scope(e) ∩ Scope(p) & c → (e → p), where e, p, and c are all deterministic
constraints.

204 S.A. Tarim, B. Hnich, and S.D. Prestwich

The Dependency meta-constraint enforces that e is satisfied only if p is satisfied
and if c holds. We refer to p as a pre-requisite constraint for event constraint e,
and c as a condition constraint for e.

When either e or p or both are probabilistic, then the Dependency(e, p, c)
constraint is defined as follows.

Definition 5. Dependency(e, p, c) iff ∀w ∈ W ·Dependency(e↓w, p↓w, c)

Example 3. In Figure 1 the event e1 is the demand constraint for the first cus-
tomer e1 : x1,1 + x2,1 = 8, while the pre-requisite constraints are the proba-
bilistic supply constraints p1 : x1,1 + x1,2 ≤ ξ1, p2 : x2,1 + x2,2 + x2,3 ≤ ξ2,
and p3 : x3,2 + x3,3 ≤ ξ3. Now consider event e1. From the constraint scopes
we see that Scope(e1) ∩ Scope(p1) = {x1,1}, Scope(e1) ∩ Scope(p2) = {x2,1}
and Scope(e1) ∩ Scope(p3) = ∅, so e1 depends on p1 and p2, not p3. From the
problem semantics we should introduce the condition constraints c1 : x1,1 �= 0
and c2 : x2,1 �= 0, to express the fact that there is no dependency relation
between e1 and p1 if x1,1 = 0, and that there is no dependency relation be-
tween e1 and p2 if x2,1 = 0. Thus we write the dependency meta-constraints
Dependency(e1, p1, x1,1 �= 0) and Dependency(e1, p2, x2,1 �= 0).

Equipped with these concepts, we now define EDP-CP as follows.

Definition 6. An EDP-CP is a 9-tuple P = 〈X ,D,Λ,W , E , C,H, Ψ,Pr〉 where:

– X = {x1, . . . , xn} is a set of decision variables;
– D = D(x1)× . . .×D(xn), where D(xi) is the domain of Xi;
– Λ = {λ1, . . . , λl} is a set of uncertain parameters;
– W= W (λ1)× . . .×W (λl), where W (λi) the domain of λi;
– E = {e1, . . . , em} is a set of event constraints. Each ei may either be proba-

bilistic (involving a subset of X and a subset of Λ) or deterministic (involving
only a subset of X);

– C = {c1, . . . , co} is a set of dependency meta-constraints. For each depen-
dency meta-constraint ci : Dependency(e, p, f) we have e ∈E, where p may
be either a probabilistic or a deterministic pre-requisite constraint, and f is
a deterministic condition constraint;

– H= {h1, . . . , hp} is a set of hard constraints. Each hi may either be proba-
bilistic (involving a subset of X and a subset of Λ) or deterministic (involving
only a subset of X);

– Ψ is any expression involving the event realization measures on the event
constraints in E;

– Pr : W → [0, 1] is a probability distribution over uncertain parameters.

Example 4. The motivational example of Section 2 can be expressed as an EDP-
CP P = 〈X ,D,Λ,W , E , C,H, Ψ, Pr〉 where:

– X = {x1,1, x1,2, x2,1, x2,2, x2,3, x3,2, x3,3};
– D = [0..99]× [0..99]× [0..99];
– Λ = {ξ1, ξ2, ξ3};

Event-Driven Probabilistic Constraint Programming 205

– W = {3(0.3), 7(0.5), 12(0.2)}× {6(0.4), 7(0.2), 10(0.4)}× {3(0.3), 8(0.7)};
– E = {e1 : x1,1 + x2,1 = 8, e2 : x1,2 + x2,2 + x3,2 = 7, e3 : x2,3 + x3,3 = 4};
– C = {c1 : Dependency(e1, p1 : x1,1 + x1,2 ≤ ξ1, f1,1 : x1,1 �= 0), . . . ,

c7 : Dependency(e3, p3 : x3,2 + x3,3 ≤ ξ3, f3,3 : x3,3 �= 0)};
– H= {x1,1 ≥ 0, . . . , x3,3 ≥ 0};
– Ψ is E(e1) + E(e2) + E(e3);
– Pr(〈ξ1=3, ξ2=6, ξ3=3〉)=0.036, . . . ,Pr(〈ξ1=12, ξ2=10, ξ3=8〉)=0.056.

Finally, we define optimal solutions to EDP-CPs as follows.

Definition 7. An optimal solution to an EDP-CP P = 〈X ,D,Λ,W , E , C,H,
Ψ, Pr〉 is any assignment S to the decision variables such that:

1. for each h ∈ H, for each w ∈ W, h↓wis satisfied; and
2. all dependency constraints in C are satisfied; and
3. there exists no other assignment satisfying all hard and dependency con-

straints with a strictly better value for Ψ .

Note that, in an optimal solution, event constraints and pre-requisite constraints
may be violated when not also added explicitly as hard constraints. Note also
that a feasible solution is any assignment that satisfies the first two conditions.
Finally, note that when the total number of worlds is 1 with probability 1, the
probabilistic event realization measure on c is the same as in the deterministic
case.

4 Solution Methods for EDP-CP

We now show how to map an EDP-CP P = 〈X ,D,Λ,W , E , C,H,Ψ , Pr〉 into an
equivalent classical COP P ′ = 〈X ′,D′, C′,Ψ ′〉.

4.1 Mapping Variables and Domains

Algorithm 1 shows how to create the decision variables in P ′ starting from P , in
three steps. The first step (Line 3) duplicates the decision variables in P ′ along
with their domains. The second step (Line 4) introduces a Boolean variable that
is used later to represent the truth value of each event e in each possible world
w. Similarly, the last step (Line 5) introduces a Boolean variable for each pre-
requisite constraint in each possible world, used later these Boolean variables to
represent the truth values of the pre-requisite constraints.

4.2 Mapping Constraints

Algorithm 2 also shows how to create the constraints in P ′, again in three steps.
In step one (Line 2) we introduce a reification constraint between each event
in each possible world (e↓w) and its corresponding Boolean variable (be

w). This
ensures that e↓w is satisfied iff be

w is assigned the value 1. In the second step

206 S.A. Tarim, B. Hnich, and S.D. Prestwich

Algorithm 1. Variable-Mapping(X ,D,Λ,W , E , C):〈 X ′,D′ 〉
X ′ ← ∅;1

D′ ← ∅;2

foreach x ∈ X do3

create x′ with the same domain as x and add it to X ′ ;
foreach e ∈ E do4

foreach w ∈ W do
create a Boolean be

w and add it to X ′ ;

foreach Dependency(e, p, c) ∈ C do5

foreach w ∈ W do
if bp

w /∈ X ′ then
create a Boolean bp

w and add it to X ′ ;

Algorithm 2. Constraint-Mapping(X ,D,Λ,W , E , C,H):C′

C′ ← ∅;1

foreach e ∈ E do2

foreach w ∈ W do
add be

w = 1 ↔ e↓w to C′ ;

foreach Dependency(e, p, c) ∈ C do3

foreach w ∈ W do
add bp

w = 1 ↔ p↓w to C′ ;
add c → (be

w = 1 → bp
w = 1)to C′

foreach h ∈ H do4

foreach w ∈ W do
add h↓w to C′ ;

(Line 3) each dependency constraint Dependency(e, p, c) is transformed into
two constraints: the first is a reification constraint similar to the previous case be-
tween each bp

w and be
w, while the second one enforces the dependency constraints

according to their definitions. In the final step (Line 4) each hard probabilistic
constraint is transformed into a set of deterministic constraints in C′.

4.3 Mapping the Objective Function

Finally, the objective function of P ′ is the same function Ψ as in P , except that
we replace each occurrence of an event measure E{e} with

∑
w∈W

Pr(w)be
w

as shown in Algorithm 3.

Event-Driven Probabilistic Constraint Programming 207

Algorithm 3. Objective-Function-Mapping(X ,D,Λ,W , E , C,H, Ψ):Ψ ′

Ψ ′ ← Ψ ;1

foreach E{e} ∈ Ψ ′ do2

replace E{e} with w∈W Pr(w)be
w ;

5 Illustrative Examples

In this section we present two illustrative problems and model them using the
EDP-CP framework. The first example is a probabilistic supply chain planning
problem, which is an extended version of the example of Section 2. In this ex-
tended version, demand uncertainty, as well as supply uncertainty, is considered.
The second example is a production planning problem with an emphasis on cap-
ital budgeting, and assumes that production rates, demands, prices and costs
are all uncertain parameters.

5.1 An EDP-CP Model for Probabilistic Supply Chain Planning

There is a sizeable literature on supply chain modeling under uncertainty (see,
for example, [4] and [8]). Recently, the authors of this work also experienced at
first-hand the relevance of modeling supply and demand uncertainties during a
research project carried out for a leading telecommunication company operating
worldwide.

Here we adopt a simplified version of the problem, which was presented in
Section 2.1 and Figure 1. The objective is to determine the most reliable plan that
will meet customers’ realised demands at D1,2,3 by means of uncertain deliveries
from suppliers denoted by S1,2,3. It is assumed that (i) the order batch sizes xi,j

from supplier i to customer j is not allowed to exceed 6 units, xi ≤ 6, (ii) D3
requires that its order is supplied by only one supplier, x2,3x3,3 = 0. Scenario

Table 2. Scenario Data

Pr(w)

0.
03

6

0.
08

4

0.
01

8

0.
04

2

0.
03

6

0.
08

4

0.
06

0

0.
14

0

0.
03

0

0.
07

0

0.
06

0

0.
14

0

0.
02

4

0.
05

6

0.
01

2

0.
02

8

0.
02

4

0.
05

6

w 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
S1 3 3 3 3 3 3 7 7 7 7 7 7 12 12 12 12 12 12
S2 6 6 7 7 10 10 6 6 7 7 10 10 6 6 7 7 10 10
S3 3 8 3 8 3 8 3 8 3 8 3 8 3 8 3 8 3 8
D1 8 8 8 7 7 7 8 8 8 9 9 9 8 8 8 7 7 7
D2 7 7 7 5 5 5 5 7 7 5 5 5 5 3 3 3 5 5
D3 4 6 6 4 4 6 6 4 4 6 6 4 4 6 6 4 4 6

208 S.A. Tarim, B. Hnich, and S.D. Prestwich

parameters are given in Table 2. Excess supplies from suppliers are stored at
customers with a negligible inventory carrying cost until the next order issue.

We consider two possible EDP-CP models for this probabilistic SC problem.
In the first one we try to find a solution in which all events are realised, while
in the second this condition is relaxed. The following EDP-CP model describes
the first case:

max E(e1 : x1,1 + x2,1 ≥ ζ1)+
E(e2 : x1,2 + x2,2 + x3,2 ≥ ζ2)+
E(e3 : x2,3 + x3,3 ≥ ζ3)

subject to Dependency(e1, p1 : x1,1 + x1,2 ≤ ξ1, f1,1 : x1,1 �= 0);
Dependency(e1, p2 : x2,1 + x2,2 + x2,3 ≤ ξ2, f2,1 : x2,1 �= 0);
Dependency(e2, p1, f1,2 : x1,2 �= 0);
Dependency(e2, p2, f2,2 : x2,2 �= 0);
Dependency(e2, p3 : x3,1 + x3,2 ≤ ξ3, f3,2 : x3,2 �= 0);

Dependency(e3, p2, f2,3 : x2,3 �= 0);
Dependency(e3, p3, f3,3 : x3,3 �= 0);
0 ≤ xi,j ≤ 6, ∀i, j ∈ {1, 2, 3};
x2,3.x3,3 = 0;
ei, ∀i ∈ {1, 2, 3}

The second case can be simply achieved by dropping e1–e3 from the set of hard
constraints.

The EDP-CP model is compiled into a standard CP model using the algorithm
presented in Section 4. The optimal solution is x1,1 = 6, x1,2 = 1, x2,1 = 3,
x2,2 = 4, x2,3 = 0, x3,2 = 2, x3,3 = 6. In the optimal plan E(e1)= 0.420, E(e2) =
0.294 and E(e3) = 0.700, giving an optimal objective function value of 1.414.
In other words, this plan guarantees to meet customer demands at D1,2,3 with
probabilities 42.0%, 29.4% and 70.0%, respectively. This plan aims to satisfy
customer demands completely.

In most circumstances it would be more realistic to assume that the event
constraints e1, e2, and e3 are not hard constraints and the expected plan should
not aim for a complete demand satisfaction. When we drop these hard event
constraint, the following plan is optimal under such a relaxation: x1,1 =6, x1,2 =0,
x2,1 = 3, x2,2 = 3, x2,3 = 0, x3,2 = 2, x3,3 = 6. The event constraint satisfaction
probabilities are now E(e1) = 0.700, E(e2) = 0.476 and E(e3) = 0.700, giving a
total of 1.876.

A comparison of two plans shows that there are differences between them at
x1,2 and x2,2. It may not be immediately obvious why we change x1,2 from 1 to
0, as in both plans the probability of acquiring the required capacity at S1 (7
and 6, respectively) is 0.8. The explanation lies in the probability distribution of
the uncertain capacity of S2. Supplier S2 can provide 6 units with a probability
of 1.0, but not 7 units. The second plan exploits this situation and aims for
a partial satisfaction at D2 by providing only 5 units. Thus there is no need
for any delivery from S1 to D2. The second plan has higher reliability at the
expense of partial satisfaction at D2. (There are alternative optimal solutions to
this instance.)

Event-Driven Probabilistic Constraint Programming 209

5.2 An EDP-CP Model for Production Planning/Capital Budgeting

The production planning/capital budgeting problem assumes that there are n =
7 types of products to be produced, under uncertain demands di, i = 1, ..., 7.
Each product can be produced on only one type of machine which is designated
to this product only. The existing production floor space is A = 50 m2, in which
each machine type requires mi (m = [3, 6, 5, 3, 7, 8, 9]) in m2 per machine of
type i. The cost of operating each machine involves two types of costs: fixed
cost fi (f = [40, 75, 62, 39, 53, 19, 38]) and variable production cost ci. The total
production budget is B = $670. The variable production cost components c1,...,7
are uncertain, taking different values in each world w1,...,4 (see Table 3). The
produced amount of each product depends on the number of machines used, xi,
and the uncertain machine production rate, ri, is also given in Table 3. Table 3
shows two more uncertain problem parameters: demand di and selling price pi.

Table 3. Problem Data

production cost demand selling price production rate
w Pr c1 c2 c3 c4 c5 c6 c7 d1 d2 d3 d4 d5 d6 d7 p1 p2 p3 p4 p5 p6 p7 r1 r2 r3 r4 r5 r6 r7

1 0.16 3 6 1 1 6 10 2 4 7 2 8 3 5 2 8 14 4 16 14 10 4 2 3 2 1 2 1 2
2 0.19 4 4 7 2 4 7 7 7 9 9 9 4 7 4 10 16 18 18 10 14 14 4 4 5 2 4 3 6
3 0.38 5 3 5 8 7 6 10 9 11 12 10 7 8 7 18 22 14 18 14 16 24 5 5 6 3 5 5 4
4 0.27 5 6 8 5 5 3 6 11 13 17 11 13 16 13 22 26 26 22 16 24 18 9 6 8 4 7 7 7

Under these uncertainties, a realistic objective is to determine the most reli-
able plan (i.e. how many machines to purchase of each type) that maximizes our
chances of meeting our demand constraints as much as possible, while achieving
a specified target profit of T = $40, not exceeding our budget B, and meeting all
space and production constraints. It is assumed that meeting customer demands
and the profit target are equally important events.

An EDP-CP model of the production planning/capital budgeting problem is
as follows:

max 1
2n

∑n
i=1 E(ei : min(rixi, di) = di)+

1
2E(ē :

∑n
i=1 pi min(rixi, di)− fixi − cirixi ≥ T)

subject to Dependency(ej ,
∑n

i=1(fi + ciri)xi ≤ B, True), ∀j ∈ {1, . . . , n};
Dependency(ē,

∑n
i=1(fi + ciri)xi ≤ B, True);∑n

i=1 mixi ≤ A
xi ∈ Z0,+

where rixi and min(rixi, di) denote the amount produced and sold, respectively,
of product type i ∈ {1, ..., n}, and xi denotes the number of machine used in
the production of type i product. There is only one pre-requisite constraint (the
budget constraint) and no condition constraint.

The optimal solution found is x∗ = [2, 0, 2, 0, 0, 2, 2]. This production plan
gives E(e1) = 100%, E(e2) = 0, E(e3) = 73%, E(e4) = 0, E(e5) = 0, E(e6) =

210 S.A. Tarim, B. Hnich, and S.D. Prestwich

38%, E(e7) = 100%, where event constraint ei denotes the complete satisfaction
of demand for product type i. In this plan the profit target is achieved E(ē) =
65% of the time.

6 Related Work

The EDP-CP framework is a generalization of the work of Liu [5] on dependent-
chance programming. Firstly, our notion of constraint dependency introduces
condition constraints in addition to the event and pre-requisite constraints. It
should be noted that constraint dependency without condition constraints does
not guarantee optimal plans since in certain instances common variables may
take values which break the link between two dependent constraints. Secondly,
while a feasible solution in Liu’s framework satisfies all event constraints, in
our framework such a requirement is relaxed, and this gives the decision-maker
more flexibility in modeling. Finally, while Liu’s work only considers Monte
Carlo-based simulation methods, we propose a complete solution method.

EDP-CP is also related to the probabilistic CSPs framework [2]. However,
probabilistic CSPs treat all probabilistic constraints uniformly, whereas EDP-
CP distinguishes between event, pre-requisite, condition, and hard probabilistic
constraints. For instance, in probabilistic CSPs, all customer and demand con-
straints will be treated in the same way. In a given world, either all constraints
are satisfied or the problem is over-constrained. While finding a plan that has the
highest probability of success is an interesting objective, our approach answers
different questions and achieves different objectives. EDP-CP is also related to
Soft CSPs [1], which can be viewed as a generalisation of probabilistic CSPs [2].

Another technique addressing constraint problems under uncertainty is Sto-
chastic Constraint Programming (SCP) [6]. The SCP approach assumes that
the constraints are stochastically independent (i.e., there are no Dependency
constraints among them) and there is always at least one feasible solution which
satisfies all constraints under all scenarios (i.e., worlds). Thus SCP addresses a
completely different class of stochastic problems.

Another related work is that of [7], who extend the max-CSP framework with
meta-constraints. However, their approach is defined for deterministic problems.

7 Conclusion

In this paper we propose EDP-CP as a novel modeling framework that helps
decision makers in uncertain environments to realistically model their problems
and find reliable solutions to such complex problems. The characteristic features
of our modeling framework can be summarized as follows:

– To better model the uncertainties in real-world problems, we allow the set
of constraints to be either deterministic or probabilistic;

– We move away from classical approaches that treat all constraints uniformly
to one that distinguishes between event, pre-requisite, condition, and hard
constraints;

Event-Driven Probabilistic Constraint Programming 211

– We introduce the Dependency meta-constraint that allows the modeler to
state a problem by explicitly specifying dependency relationships between
event, pre-requisite, and condition constraints;

– In an uncertain environment, it is quite unrealistic to assume that a solution
is valid irrespective of the unfolding of the uncertain parameters. In fact,
there is a certain degree of fuzziness associated with each candidate solu-
tion. Therefore, in our framework, we view the set of feasible solutions as
probabilistic due to the inherent uncertainties;

– We introduce a probabilistic event realization measure, which can be used
by the modeler to define solution reliability.

Our future work will extend the proposed framework in various directions,
and provide efficient and effective solving methods. Our first steps will be:

– The development of specialized solution methods for EDC-CP. For instance
a specialized global constraint for the Dependency meta-constraint can be
designed.

– In large-scale uncertain problems, the number of worlds can be prohibitively
large. We will investigate ways of reducing the number of world as well as
employing effective decomposition techniques;

– We will look at ways of extending EDP-CP to deal with recourse actions.

Acknowledgements. Supported by Science Foundation Ireland under Grant-
03/CE3/I405 as part of the Centre for Telecommunications Value-Chain-Driven
Research and Grant-00/PI.1/C075.

References

1. Bistarelli, S., Montanari, U., Rossi, F.: Soft constraint logic programming and gen-
eralized shortest path problems, Journal of Heuristics, Kluwer, 2001.

2. Fargier, H., Lang, J., Martin-Clouaire, R., Schiex, T.: A constraint satisfaction
framework for decision under uncertainty, Proc. of the 11th Int. Conf. on Uncer-
tainty in Artificial Intelligence, Montreal, Canada, August 1995.

3. Kingsman, B. G.: Raw materials purchasing: an operational research approach, Perg-
amon Press, New York, 1985.

4. de Kok, A. G., Graves, S. C.: Supply chain management: design, coordination and
operation, Handbook in OR/MS, vol. 11, Elsevier, Amsterdam, 2003.

5. Liu, B, Iwamura K.: Modelling stochastic decision systems using dependent-chance
programming, European Journal of Operational Research, 101:193–203, 1997.

6. Manandhar, S., Tarim, S. A., Walsh, T.: Scenario-based stochastic constraint pro-
gramming, Proc. of IJCAI-2003, Acapulco, Mexico, 257–262, 2003.

7. Petit, T., Régin, J.-C., Bessière, C.: Meta-constraints on violations for over-
constrained problems. Proc. of ICTAI’2000, Vancouver, BC, Canada, November
2000, IEEE Computer Society, 358–365.

8. Porteus, E. L.: Foundations of stochastic inventory theory, Stanford University
Press, Stanford, California, 2002.

9. Tarim, S. A., Manandhar, S., Walsh, T.: Stochastic constraint programming: a sce-
nario based approach, Constraints, 11:53–80, 2006.

Online Stochastic Reservation Systems

Pascal Van Hentenryck, Russell Bent, and Yannis Vergados

Department of Computer Science, Brown University,
Providence, RI 02912, USA

Abstract. This paper considers online stochastic reservation problems, where
requests come online and must be dynamically allocated to limited resources in
order to maximize profit. Multi-knapsack problems with or without overbooking
are examples of such online stochastic reservations. The paper studies how to
adapt the online stochastic framework and the consensus and regret algorithms
proposed earlier to online stochastic reservation systems. On the theoretical side,
it presents a constant sub-optimality approximation of multi-knapsack problems,
leading to a regret algorithm that evaluates each scenario with a single mathemat-
ical programming optimization followed by a small number of dynamic programs
for one-dimensional knapsacks. On the experimental side, the paper demonstrates
the effectiveness of the regret algorithm on multi-knapsack problems (with and
without overloading) based on the benchmarks proposed earlier.

1 Introduction

In an increasingly interconnected and integrated world, online optimization problems
are quickly becoming pervasive and raise new challenges for optimization software.
Moreover, in most applications, historical data or statistical models are available, or
can be learned, for sampling. This creates significant opportunities at the intersection of
online algorithms, combinatorial and stochastic optimization, and machine learning. In
fact, increasing attention has been devoted to these issues in a variety of communities
(e.g., [10, 1, 6, 11, 9, 5, 8]).

This paper considers online stochastic reservation systems and, in particular, the sto-
chastic multi-knapsack problems introduced in [1]. Typical applications include, for
instance, reservation systems for holiday centers and advertisement placements in web
browsers. These problems differ from the stochastic routing and scheduling considered
in, say, [10, 6, 9, 5] in that online decisions are not about selecting the best request to
serve but rather about how best to serve a request.

The paper shows how to adapt our online stochastic framework, and the consensus
and regret algorithms, to online stochastic reservation systems. Moreover, in order to in-
stantiate the regret algorithm, the paper presents a constant-factor suboptimality approx-
imation for multi-knapsack problems using one-dimensional knapsack problems. As a
result, on multi-knapsack problems with or without overbooking, each online decision
involves solving a mathematical program and a series of dynamic programs. The algo-
rithms were evaluated on the multi-knapsack problems proposed in [1] with and with-
out overbooking. The results indicate that the regret algorithm is particularly effective,
providing significant benefits over heuristic, consensus, and expectation approaches. It
also dominates an earlier algorithm proposed in [1] (which applies the best-fit heuristic

J.C. Beck and B.M. Smith (Eds.): CPAIOR 2006, LNCS 3990, pp. 212–227, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Online Stochastic Reservation Systems 213

within the expectation algorithm) as soon as the time constraints allows for 10 opti-
mizations for each online decision or between each two online decisions. The results
are particularly interesting in our opinion, because the consensus and regret algorithms
have now been applied generically and successfully to online problems in scheduling,
routing, and reservation using, at their core, either constraint programming, mathemati-
cal programming, or dedicated polynomial algorithms. The rest of the paper introduces
online stochastic reservation problems in their simplest form, shows how to adapt our
online stochastic algorithms for them, presents the sub-optimality approximation, and
describes the experimental results.

2 Online Stochastic Reservation Problems

2.1 The Offline Problem

The offline problem is defined in terms of n bins B and each bin b ∈ B has a capacity
Cb. It receives as input a set R of requests. Each request is typically characterized by
its capacity and its reward, which may or may not depend on which bin the request are
allocated to. The goal is to find an assignment of a subset T ⊆ R of requests to the bins
satisfying the problem-specific constraints and maximizing the objective function.

The Multi-Knapsack Problem. The multi-knapsack problem is an example of a reser-
vation problem. Here each request r is characterized by a reward w(r) and a capacity
c(r). The goal is to allocate a subset T of the requests R to the bins B so that the ca-
pacities of the bins are not exceeded and the objective function w(T) =

∑
r∈T w(r) is

maximized. A mathematical programming formulation of the problem associates witch
each request r and bin b a binary variable x[r, b] whose value is 1 when the request is
allocated to bin b and 0 otherwise. The integer program can be expressed as:

max
∑

r ∈ R, b ∈ B w(r) x[r, b]

such that ∑
b∈B x[r, b] ≤ 1 (r ∈ R)∑
r∈R c(r) x[r, b] ≤ Cb (b ∈ B)

x[r, b] ∈ {0, 1} (r ∈ R, b ∈ B)

The Multi-Knapsack Problem with Overbooking. In practice, many reservation sys-
tems allow for overbooking. The multi-knapsack problem with overbooking allows the
bin capacities to be exceeded but overbooking is penalized in the objective function. To
adapt the mathematical-programming formulation above, it suffices to introduce a non-
negative variable y[b] representing the excess for each bin b and to introduce a penalty
term α× y[b] in the objective function. The integer programming model now becomes

max
∑

r ∈ R, b ∈ B w(r) x[r, b]−
∑

b∈B α y[b]

such that
∑

b∈B x[r, b] ≤ 1 (r ∈ R)∑
r∈R c(r) x[r, b] ≤ Cb + y[b] (b ∈ B)

x[r, b] ∈ {0, 1} (r ∈ R, b ∈ B)
y[b] ≥ 0 (b ∈ B)

This is the offline problem considered in [1].

214 P. Van Hentenryck, R. Bent, and Y. Vergados

Generic Formalization. To formalize the online algorithms precisely and generically,
it is convenient to assume the existence of a dummy bin ⊥ with infinite capacity to
assign the non-selected requests and to use B⊥ to denote B ∪ {⊥}. A solution σ can
then be seen as a function R → B⊥. The objective function can be specified by a
functionW over assignments and the problem-specific constraints can be specified as a
relation over assignments giving us the problem maxσ: C(σ)W(σ). We use σ[r ← b] to
denote the assignment where r is assigned to bin b, i.e.,

σ[r ← b](r) = b
σ[r ← b](r′) = σ(r′) if r′ �= r.

and σ ↓ R to denote the assignment where the requests in R are now unassigned, i.e.,

(σ ↓ R)(r) = ⊥ if r ∈ R
(σ ↓ R)(r) = σ(r) if r /∈ R.

Finally, we use σ⊥ to denote the assignment satisfying ∀r ∈ R : σ(r) = ⊥.

2.2 The Online Problem

In the online problem, the requests are not known a priori but are revealed online during
the execution of the algorithm. For simplicity, we consider a time horizon H = [1, h]
and we assume that a single request arrives at each time t ∈ H . (It is easy to relax these
assumptions). The algorithm thus receives a sequence of requests ξ = 〈ξ1, . . . , ξh〉 over
the course of the execution. At time i, the sequence ξi = 〈ξ1, . . . , ξi〉 has been revealed,
the requests ξ1, . . . , ξi−1 have been allocated in the assignment σi−1 and the algorithm
must decide how to serve request ξi. More precisely, step i produces an assignment
σi = σi−1[ξi ← b] that assigns a bin b to ξi keeping all other assignments fixed. The
requests are assumed to be drawn from a distribution I and the goal is to maximize the
expected value

E
ξ
[W(σ⊥[ξ1 ← b1, . . . , ξh ← bh])

where the sequence ξ = 〈ξ1, . . . , ξh〉 is drawn from I.
The online algorithms have at their disposal a procedure to solve , or approximate,

the offline problem, and the distribution I. The distribution is a black-box available for
sampling.1 Practical applications often include severe time constraints on the decision
time and/or on the time between decisions. To model this requirement, the algorithms
may only use the optimization procedureO times at each time step.

It is interesting to contrast this online problem with those studied in [7, 5, 3]. In these
applications, the key issue was to select which request to serve at each step. Moreover,
in the stochastic vehicle routing applications, accepted requests did not have to be as-
signed a vehicle: the only constraint on the algorithm was the promise to serve every
accepted request. The online stochastic reservation problem is different. The key issue

1 Our algorithms only require sampling and do not exploit other properties of the distribution
which makes them applicable to many applications. Additional information on the distribution
could also be beneficial but is not considered here.

Online Stochastic Reservation Systems 215

ONLINEOPTIMIZATION(ξ)
1 σ0 ← σ⊥;
2 for t ∈ H do
3 b ← CHOOSEALLOCATION(σt−1, ξt);
4 σt ← σt−1[ξt ← b];
5 return σh;

Fig. 1. The Generic Online Algorithm

is not which request to serve but rather whether and how the incoming request must be
served. Indeed, whenever a request is accepted, it must be assigned a specific bin and
the algorithm is not allowed to reshuffle the assignments subsequently.

The Generic Online Algorithm. The algorithms in this paper share the same online
optimization schema depicted in Figure 1. They differ only in the way they implement
function CHOOSEALLOCATION. The online optimization schema receives a sequence
of online requests ξ and starts with an empty allocation (line 1). At each decision time
t, the online algorithm considers the current allocation σt−1 and the current request ξt

and chooses the bin b to allocate the request (line 3), which is then included in the new
assignment σt (line 4). The algorithm returns the last assignment σh whose value is
W(σh) (line 5). To implement function CHOOSEALLOCATION, the algorithms have at
their disposal two black-boxes:

1. a function OPTSOL(σ, R) that, given an assignment σ and a R of requests, returns
an optimal allocation of the requests in R given the past decisions in σ. In other
words, OPTSOL(σ, R) solves an online problem where the decision variables for
the requests in σ have fixed values.

2. a function GETSAMPLE(t) that returns a set of requests over the interval [t, h] by
sampling the arrival distribution.

To illustrate the framework, we specify a best-fit online algorithm as proposed in [1].

Best Fit (G). This algorithm assigns the request ξ to a bin that can accommodate ξ and
has the smallest capacity given the assignment σ:

CHOOSEALLOCATION-G(σ, ξ)
1 return argmin(b ∈ B⊥ : C(σ[ξ ← b))) Cb(σ);

where Cb(σ) denotes the remaining capacity of the bin b ∈ B⊥ in σ, i.e.,

Cb(σ) = Cb −
∑

r∈R:σ(r)=b

c(r).

3 Online Stochastic Algorithms

This section reviews the various online stochastic algorithms. It starts with the expecta-
tion algorithm and shows how it can be adapted to incorporate time constraints.

216 P. Van Hentenryck, R. Bent, and Y. Vergados

Expectation (E). Informally speaking, algorithm E generates future requests by sam-
pling and evaluates each possible allocation against the samples. A simple implemen-
tation can be specified as follows:

CHOOSEALLOCATION-E(σt−1, ξt)
1 for b ∈ B⊥ do
2 f(b) ← 0;
3 for i ← 1 . . . O/|B⊥| do
4 Rt+1 ← GETSAMPLE(t + 1);
5 for b ∈ B⊥ : C(σt−1[ξt ← b]) do
6 σ∗ ← OPTSOL(σt−1[ξt ← b], Rt+1);
7 f(b) ← f(b) + W(σ∗);
8 return argmax(b ∈ B⊥) f(b);

Lines 1-2 initialize the evaluation f(b) of each request b. The algorithm then generates
O/|B⊥| samples of future requests (lines 3–4). For each such sample, it successively
considers each available bin b that can accommodate the request ξ given the assignment
σt−1 (line 5). For each such bin b, it schedules ξt in bin b and applies the optimiza-
tion algorithm using the sampled requests Rt+1 (line 6). The evaluation of bin b is
incremented in line 7 with the weight of the optimal assignment σ∗. Once all the bin
allocations are evaluated over all samples, the algorithm returns the bin b with the high-
est evaluation. Algorithm E performs O optimizations but uses only O/|B⊥| samples.
When O is small (due to the time constraints), each request is only evaluated with re-
spect to a small number of samples and algorithm E does not yield much information.
To cope with tight time constraints, two approximations of E, consensus and regret,
were proposed.

Consensus (C). The consensus algorithm C was introduced in [7] as an abstraction of
the sampling method used in online vehicle routing [6]. Its key idea is to solve each
sample once and thus to examine O samples instead of O/|B⊥|. More precisely, in-
stead of evaluating each possible bin at time t with respect to each sample, algorithm
C executes the optimization algorithm once per sample. The bin to which request ξ is
allocated in optimal solution σ∗ is creditedW(σ∗) and all other bins receive no credit.
Algorithm C can be specified as follows:

CHOOSEALLOCATION-C(σt−1, ξt)
1 for b ∈ B⊥ do
2 f(b) ← 0;
3 for i ← 1 . . . O do
4 Rt ← {ξt} ∪ GETSAMPLE(t + 1);
5 σ∗ ← OPTSOL(σt−1, Rt);
6 f(σ∗(ξt)) ← f(σ∗(ξt)) + W(σ∗);
7 return argmax(b ∈ B⊥) f(b);

The core of the algorithm are once again lines 4–6. Line 4 defines the set Rt of requests
that now includes ξt in addition to the sampled requests. Line 5 calls the optimization
algorithm with σt−1 and Rt. Line 6 increments only the bin σ∗(ξt) The main appeal
of Algorithm C is its ability to avoid partitioning the available samples between the
requests, which is a significant advantage when O is small and/or when the number of

Online Stochastic Reservation Systems 217

bins is large. Its main limitation is its elitism. Only the best allocatation is given some
credit for a given sample, while other bins are simply ignored.

Regret (R). The regret algorithm R is the recognition that, in many applications, it
is possible to estimate the loss of sub-optimal allocations (called regrets) quickly. In
other words, once the optimal solution σ∗ of a scenario is computed, algorithm E can
be approximated with one optimization [5, 2].

Definition 1 (Regret). Let σ be an assignment, R be a set of requests, r be a request
in R, and b be a bin. The regret of a bin allocation r ← b wrt σ and R, denoted by
DEVIATION(σ, R, r ← b), is defined as

| W(OPTSOL(σ, R)) −W(OPTSOL(σ[r ← b], R \ {r}))) | .

Definition 2 (Sub-Optimality Approximation). Let σ be an assignment, R be a set
of requests, r be a request in R, and b be a bin. Assume that algorithm OPTSOL(σ, R)
runs in time O(fo(R)). A sub-optimatily approximation runs in time O(fo(R)) and,
given the solution σ∗ = optSol(σ, R), returns, for each bin b ∈ B⊥, an approximation
SUBOPT(σ∗, σ, R, r ← b) to all regrets REGRET(σ, R, r ← b).

Intuitively, the |B⊥| regrets must not take more time than the optimization. We are ready
to present the regret algorithm R:

CHOOSEALLOCATION-R(σt−1, ξt)
1 for b ∈ B⊥ do
2 f(b) ← 0;
3 for i ← 1 . . . O do
4 Rt ← {ξt} ∪ GETSAMPLE(t + 1);
5 σ∗ ← OPTSOL(σt−1, Rt);
6 f(σ∗(ξt)) ← f(σ∗(ξt)) + W(σ∗);
7 for b ∈ B⊥ \ {σ(ξt) : C(σt−1[ξt ← b])} do
8 f(b) ← f(b) + (W(σ∗) − SUBOPT(σ∗, σt−1, Rt, ξt ← b));
9 return argmax(b ∈ B⊥) f(b);

Its basic organization follows algorithm C. However, instead of assigning some credit
only to the bin selected by the optimal solution, algorithm R (lines 7-8) uses the sub-
optimality approximation to compute, for each available allocation ξt ← b, an approx-
imation of the best solution that allocates ξt to b. Hence every available bin is given an
evaluation for every sample at time t for the cost of a single optimization (asymptoti-
cally). Observe that algorithm R performsO optimizations at time t.

4 Generalizations of the Framework

This section discusses two generalizations: precomputation and cancellations.

Precomputation. Many reservation systems require immediate responses to requests,
giving only limited time to the online algorithm for decision making. However, as is
the case in vehicle routing, there is time between decisions to generate scenarios and

218 P. Van Hentenryck, R. Bent, and Y. Vergados

ONLINEOPTIMIZATION(ξ, ζ)
1 σ0 ← σ⊥;
2 for t ∈ H do
3 σt−1 ← σt−1 ↓ ζt;
4 b ← SELECTALLOCATION(σt−1, ξt);
5 σt ← σt−1[ξt ← b];
6 return σh;

Fig. 2. The Generic Online Algorithm with Cancellations

CHOOSEALLOCATION-C(σt−1, ξt)
1 for b ∈ B⊥ do
2 f(b) ← 0;
3 for i ← 1 . . . O do
4 〈Rt+1, Zt+1〉 ← GETSAMPLE(t + 1);
5 σ∗ ← OPTSOL(σt−1 ↓ Zt+1, {ξt} ∪ Rt+1);
6 f(σ∗(ξt)) ← f(σ∗(ξt)) + W(σ∗);
7 return argmax(b ∈ B⊥) f(b);

Fig. 3. The Consensus Algorithm with Cancellations

optimize them. This idea can be accommodated in the framework by separating the
optimization phase from the decision-making phase in the online algorithm. This is es-
pecially attractive for consensus and regret where each scenario is solved exactly once.
Details on this separation can be found in [4] in the context of the original framework.

Cancellations. Most reservation systems allow requests to be cancelled after they are
accepted. The online stochastic framework can accommodate cancellations by simple
enhancements to the generic online algorithm and the sampling procedure. It suffices to
assume that an (often empty) set of cancellations ζt is revealed at step t in addition to
the request ξt and that the function GETSAMPLE return pairs 〈R, Z〉 of future requests
R and cancellations Z . Figure 2 presents a revised version of the generic online algo-
rithm: its main modification is in line 3 which removes the cancellations ζt from the
current assignment σt−1 before allocating a bin to the new request. Figure 3 shows the
consensus algorithm with cancellations, illustrating the enhanced sampling procedure
(line 4) and how cancellations are taken into account when calling the optimization.

5 The Suboptimality Approximation

This section describes a sub-optimality algorithm approximating multi-knapsack prob-
lems within a constant factor. Given a set of requests R, a request r ∈ R, and an
optimal solution σ∗ to the multi-knapsack problem, the sub-optimality algorithm must
return approximations to the regrets of allocating r to bin b ∈ B⊥. The sub-optimality
algorithm must run within the time taken by a constant number of optimizations.

Online Stochastic Reservation Systems 219

REGRET-SWAP(i, 1, 2)
1 A ← bin(1, σ∗) ∪ bin(2, σ∗) ∪ U(σ∗) \ {i};
2 if C1 − c(i) ≥ C2 then
3 bin(1, σa) ← knapsack(A, C1 − c(i)) ∪ {i};
4 bin(2, σa) ← knapsack(A \ bin(1, σa), C2);
5 else
6 bin(2, σa) ← knapsack(A, C2);
7 bin(1, σa) ← knapsack(A \ bin(2, σa), C1 − c(i)) ∪ {i};
8 e ← argmax(r ∈ bin(1, σ∗) \ bin(1..2, σa) : c(r) > max(C1 − c(i), C2)) w(r);
9 if e exists & w(e) > max(w(bin(1, σa)), w(bin(2, σa))) then

10 j ← argmax(j ∈ 3..n) Cj ;
11 bin(j, σa) ← knapsack(bin(j, σa) ∪ {e}, Cj);

Fig. 4. The Suboptimality Algorithm for the Knapsack Problem: Swapping i from Bin 2 to Bin 1

The key idea behind the suboptimality algorithm is to solve a small number of one-
dimensional knapsack problems (which takes pseudo-polynomial time). There are two
main cases to study: either request r is allocated to a bin in B in solution σ∗ or it is not
allocated (i.e., it is allocated to ⊥. In the first case, the algorithm must approximate the
optimal solutions in which r is allocated to other bins (procedure REGRET-SWAP) or
not allocated (procedure REGRET-SWAP-OUT). In the second case, the request must be
swapped in all the bins (procedure REGRET-SWAP-IN). The rest of this section presents
algorithms for the non-overbooking case; they generalize to the overbooking case.

Since the names of the bins have no importance, we assume that they are numbered
1..n. Moreover, without loss of generality, we formalize the algorithms to move request
i from bin 2 to bin 1, to swap request i out of bin 1, and to swap request i into bin
1. We use σ∗ to represent the optimal solution to the multi-knapsack problem, σs to
denote the optimal solution in which request i is assigned to bin 1 (REGRET-SWAP

and REGRET-SWAP-OUT) or is not allocated (REGRET-SWAP-IN), and σa to denote the
sub-optimality approximation. We also use bin(b, σ) to denote the requests allocated to
bin b and generalize the notation to sets of bins. The solution to the one-dimensional
knapsack problem on R for a bin with capacity C is denoted by knapsack (R, C). We
also use c(R) to denote the sum of the capacities of the requests in R and U(σ∗) the
requests that are not allocated in the optimal solution σ∗.

Swapping a Request Between Two Bins. Figure 4 depicts the algorithm to swap
request i from bin 1 to bin 2. The key idea is to consider all requests allocated to bins 1
and 2 in σ∗ and to solve two one-dimensional problems for bin 1 (without the capacity
taken by request i) and bin 2. The algorithm always starts with the bin whose remaining
capacity is largest. After solving these two one-dimensional knapsacks, if there exists
a request e ∈ bin(1, σ∗) not allocated in bin(1..2, σa) whose value is higher than the
values of these two bins, the algorithm solves a third knapsack problem to place this
request in another bin if appropriate. This is important if request e is of high value but
cannot be allocated in bin 1 due to the capacity taken by request i.

Theorem 1. Algorithm REGRET-SWAP is a constant-factor approximation.

220 P. Van Hentenryck, R. Bent, and Y. Vergados

Proof. Let σs be the sub-optimal solution, σa be the regret solution, and σ∗ be the
optimal solution. Consider the following sets

I1 = σs ∩ σa I7 = (bin(2, σs) \ σa) ∩ bin(1, σ∗)
I2 = (bin(1, σs) \ σa) ∩ U(σ∗) I8 = (bin(2, σs) \ σa) ∩ bin(2, σ∗)
I3 = (bin(2, σs) \ σa) ∩ U(σ∗) I9 = (bin(3..n, σs) \ σa) ∩ bin(1, σ∗)
I4 = (bin(3..n, σs) \ σa) ∩ U(σ∗) I10 = (bin(3..n, σs) \ σa) ∩ bin(2, σ∗)
I5 = (bin(1, σs) \ σa) ∩ bin(1, σ∗) I11 = (bin(1..n, σs) \ σa) ∩ bin(3..n, σ∗)
I6 = (bin(1, σs) \ σa) ∩ bin(2, σ∗).

The suboptimal solution σs can be partitioned into σs =
⋃11

k=1 Ik and the proof shows
that w(Ik) ≤ ck w(σa) (1 ≤ k ≤ 13) which implies that w(σs) ≤ c w(σa) for some
constant c = c1 + . . . c11. The proof of each inequality typically separates two cases:

A: C1 − c(i) ≥ C2;
B: C1 − c(i) < C2.

Observe also that the proof that K(I1) ≤ K(σa) is immediate. We now give the proofs
for the remaining sets. In the proofs, C′

1 denotes C1 − c(i) and K(E, C) is defined as
follows:

K(E, C) = w(knapsack(E, C)).

I2.A : By definition of I2 and by definition of bin(1, σa) in line 3,

K(I2, C
′
1) ≤ K(U(σ∗), C′

1) ≤ K(bin(1, σa), C′
1) ≤ w(σa).

I2.B : By definition of I2, C′
1 < C2, and by definition of bin(2, σa) in line 6

K(I2, C
′
1) ≤ K(U(σ∗), C′

1) ≤ K(U(σ∗), C2) ≤ K(bin(2, σa), C2) ≤ w(σa).

I3.A : By definition of I3, C′
1 ≥ C2, and by definition of bin(1, σa) in line 3

K(I3, C2) ≤ K(U(σ∗), C2) ≤ K(U(σ∗), C′
1) ≤ K(bin(1, σa), C′

1) ≤ w(σa).

I3.B : By definition of I3 and by definition of bin(2, σa) in line 6

K(I3, C2) ≤ K(U(σ∗), C2) ≤ K(bin(2, σa), C2) ≤ w(σa).

I4 : Assume that w(I4) > w(σa). This implies

w(I4) > w(bin(1, σa)) + w(bin(2, σa)) + w(bin(3..n, σa))
> w(bin(3..n, σa)) > w(bin(3..n, σ∗))

which contradicts the optimality of σ∗ since I4 ⊆ U(σ∗).
I5.A : By definition of I5 and line 3 of the algorithm

K(I5, C
′
1) ≤ K(bin(1, σ∗), C′

1) ≤ K(A, C′
1) ≤ w(bin(1, σa)) ≤ w(σa).

Online Stochastic Reservation Systems 221

I5.B : By definition of I5, C′
1 ≥ C2, and line 6 of the algorithm

K(I5, C
′
1) ≤ K(bin(1, σ∗), C′

1) ≤ K(bin(1, σ∗), C2) ≤ K(A, C2)
≤ K(bin(2, σa), C2) ≤ w(σa)

I6.A : By definition of I6 and line 3 of the algorithm

K(I6, C
′
1) ≤ K(bin(2, σ∗) \ {i}, C′

1) ≤ K(bin(1, σa), C′
1) ≤ w(σa)

I6.B : By definition of I6 and line 6 of the algorithm.

K(I6, C
′
1) ≤ K(bin(2, σ∗) \ {i}, C2) ≤ K(bin(2, σa), C2) ≤ w(σa)

I7.A : by definition of I7, C2 ≤ C′
1, and line 3 of the algorithm,

K(I7, C2) ≤ K(I7, C
′
1) ≤ K(bin(1, σ∗), C′

1) ≤ K(bin(1, σa), C′
1) ≤ w(σa).

I7.B : By definition of I7, C2 > C′
1, and line 6 of the algorithm

K(I7, C2) ≤ K(bin(1, σ∗), C2) ≤ K(bin(2, σa), C2) ≤ w(σa).

I8.A : By definition of I8, C2 ≤ C′
1, and line 3 of the algorithm

K(I8, C2) ≤ K(I8, C
′
1) ≤ K(bin(2, σ∗), C′

1) ≤ K(bin(1, σa), C′
1) ≤ w(σa)

I8.B : by definition of I8, C2 > C′
1, and line 6 of the algorithm,

K(I8, C2) ≤ K(bin(2, σ∗), C2) ≤ K(bin(2, σa), C2) ≤ w(σa).

I9.A : Consider

T = knapsack(bin(1, σ∗), C′
1);

L = bin(1, σ∗) \ T

and let e = arg-maxe∈L w(e). By optimality of T , we know that c(T)+ c(e) > C′
1

and, since bin(1, σ∗) = T ∪ L, we have that c(L \ {e}) < c(i).
If w(e) ≤ max(w(bin(1, σa)), w(bin(2, σa))), then

w(I9) ≤ w(T) + w(L \ {e}) + w(e)
≤ w(bin(1, σa)) + w(bin(2, σa)) + w(e)
≤ 2(w(bin(1, σa)) + w(bin(2, σa))) ≤ 2w(σa).

Otherwise, by optimality of bin(1, σa) and bin(2, σa), we have that

c(e) > C′
1 & c(e) > C2

and the algorithm executes lines 10–11. If c(e) ≤ Cj , then

w(I9) ≤ w(T) + w(L \ {e}) + w(e)
≤ w(bin(1, σa)) + w(bin(2, σa)) + w(bin(j, σa)) ≤ w(σa).

Otherwise, if c(e) > Cj , e /∈ σs and

w(I9) ≤ w(T) + w(L \ {e}) ≤ w(bin(1, σa)) + w(bin(2, σa)) ≤ w(σa).

222 P. Van Hentenryck, R. Bent, and Y. Vergados

I9.B : Consider

T = knapsack(bin(1, σ∗), C2);
L = bin(1, σ∗) \ T

and let e = arg-maxe∈L w(e). If w(T) ≥ w(L), we have that

w(bin(1, σ∗)) ≤ 2w(T) ≤ 2w(bin(2, σa)) ≤ 2w(σa).

Otherwise, c(L) > C2 by optimality of T and thus c(L) > c(i) since C2 ≥ c(i).
By optimality of T , c(T ∪ {e}) > C2 > C′

1 and, since bin(1, σ∗) = T ∪ L, it
follows that c(L \ {e}) ≤ c(i) Hence w(L \ {e}) ≤ w(T) by optimality of T and

w(I9) ≤ w(T) + w(L \ {e}) + w(e) ≤ 2w(T) + w(e) ≤ 2w(bin(2, σa)) + w(e).

If w(e) ≤ w(bin(2, σa)), w(I9) ≤ 3w(bin(2, σa)) ≤ 3w(σa) and the result fol-
lows. Otherwise, by optimality of bin(2, σa), c(e) > C2 ≥ C′

1 and the algorithm
executes lines 10–11. If c(e) ≤ Cj , then

w(I9) ≤ 2w(bin(1, σa)) + w(bin(j, σa)) ≤ w(σa).

Otherwise, if c(e) > Cj , e /∈ σs and

w(I9) ≤ w(T) + w(L \ {e}) ≤ 2w(bin(2, σa)) ≤ 2w(σa).

I10.A : By definition of I10, C′
1 ≥ C2, and line 3 of the algorithm

w(I10) ≤ w(bin(2, σ∗))− w(i) ≤ w(bin(1, σa)) ≤ w(σa).

I10.B : By definition of I10 and by line 6 of the algorithm

w(I10) ≤ w(bin(2, σ∗))− w(i) ≤ w(bin(2, σa)) ≤ w(σa).

I11 : By definition of the algorithm, K(bin(3..n, σ∗)) ≤ K(3..n, σa). �

Swapping a Request Out of a Bin. The algorithm to swap a request i out of bin 1 is
depicted in Figure 5. It consists of solving a one-dimensional knapsack with the requests
already in that bin and the unallocated requests. The proof is similar, but simpler, to the
proof of Theorem 1.

Theorem 2. Algorithm REGRET-SWAP-OUT is a constant-factor approximation.

Swapping a Request Into a Bin. Figure 6 depicts the algorithm for swapping a request
i in bin 1, which is essentially similar REGRET-SWAP but only uses one bin. It assumes
that request i can be placed in at least two bins since otherwise a single additional op-
timization suffices to compute all the regrets. Once again, it solves a one-dimensional
knapsack for bin 1 (after having allocated request i) with all the requests in bin(1, σ∗)
and the unallocated requests. If the resulting knapsack is of low quality (i.e., the remain-
ing requests from bin(1, σ∗) have a higher value than bin(1, σa)), REGRET-SWAP-IN

solves an additional knapsack problem for the largest available bin. The proof is once
again similar to the proof of Theorem 1.

Online Stochastic Reservation Systems 223

REGRET-SWAP-OUT(i, 1)
1 A ← bin(1, σ∗) ∪ U(σ∗) \ {i};
2 bin(1, σa) ← knapsack(A,C1);

Fig. 5. The Suboptimality Algorithm for the Knapsack Problem: Swapping i out of Bin 1

REGRET-SWAP-IN(i, 1)
1 A ← bin(1, σ∗) ∪ U(σ∗);
2 bin(1, R) ← knapsack(A, C1 − c(i)) ∪ {i};
3 L ← bin(1, σ∗) \ bin(1, σa);
4 if w(L) > w(bin(1, σa)) then
5 j ← argmax(j ∈ 2..n) Cj ;
6 bin(j, σa) ← knapsack(bin(j, σa) ∪ L, Cj);

Fig. 6. The Suboptimality Algorithm for the Knapsack Problem: Swapping i into Bin 1

Theorem 3. Assuming that item i can be placed in at least two bins, Algorithm
REGRET-SWAP-IN is a constant-factor approximation.

6 Experimental Results

The Instances. The experimental results use the benchmarks proposed in [1]. Requests
are classified in k types. Each type is characterized by a weight, a value, two exponential
distributions indicating how frequently requests of that type arrive and are cancelled,
and an overbooking penalty. We generated ten instances based on the master problem
proposed in [1]. The goal was to try to produce a diverse set of problems revealing
strengths and weaknesses of the various algorithms. The ten problems are named (A-J)
here. Problem A scales the master problem by doubling the weight and value of the
request types in the master problem, as well as halving the number of items that arrive.
Problem B further scales problem A by increasing the weight and value of the types.
Problem C considers 7 types of items whose cost ratio takes the form of a bell shape.
Problem D looks at the master problem and doubles the number of bins while dividing
their capacity by 2. Problem E considers a version of the master problem with bins of
variable capacity. Problem F depicts a version of the master problem whose items arrive
three times as often and cancel three times as often. Problem G considers a much larger
problem with 35 requests types who cost ratio is also shaped in a bell. Problem H is
like problem G, the main difference is that the cost ratio shape is reversed. Problem I is
a version of G with an extra bin. Problem J is a version of H with fewer bins.

The mathematical programs are solved with CPLEX 9.0 with a time limit of 10 sec-
onds. The optimal solutions can be found within the time limit for all instances but I and
J. Every instance is executed under various time constraints, i.e., O = 1, 5, 10, 25, 50,
or 100, and the results are the average of 10 executions.

It is important to highlight that, on the master problem and its variations, the best-fit
heuristic performs quite well. On the offline problems, it is 5% off the optimum in the

224 P. Van Hentenryck, R. Bent, and Y. Vergados

Fig. 7. Experimental Results over All Instances with Overbooking Allowed

Fig. 8. Experimental Results over All Instances with Overbooking Disallowed

average and is never worse than 10% off. This will be discussed again when the regret
algorithm is compared to earlier results.

Comparison of the Algorithms. Figure 7 describes the average profit (left) and loss
(right) of the various online algorithms as a percentage of the optimal offline solution.
The loss sums the weights of the rejected requests and the overbooking penalty (if any);
it is often used in comparing online algorithms as it gives a sense of the “price” of
uncertainty. The results clearly show the value of stochastic information as algorithms
R, C, E recovers most of the gap between the online best-fit heuristic (G) and the
offline optimum (which cannot typically be achieved in an online setting). Moreover,
they show that algorithms R and C achieve excellent results even with small number
of available optimizations (tight time constraints). In particular, algorithm R achieves
about 89% of the offline optimum with only 10 samples and 91% with 50 optimiza-
tions. It also achieves a loss of 28% over the offline optimum for 25 optimizations and
34% for 10 optimizations. The regret algorithm clearly dominates the expectation algo-
rithm E which performs poorly for tight time constraints. It becomes reasonable for 50
optimizations and reaches the quality of the regret algorithm for 100 optimizations.

Figure 8 shows the same results when no overbooking is allowed. These instances are
easier in the sense that fewer optimizations are necessary for the algorithms to converge.

Online Stochastic Reservation Systems 225

Fig. 9. Comparison with Earlier Results: Average Results for Instances with Overbooking

But they exhibit the same pattern as when overbooking is allowed. These results are
quite interesting and shows that the benefits of the regret algorithm increase with the
problem complexity but are significant even on easier instances.

Comparison with Earlier Results. As mentioned earlier, the best-fit algorithm is
only 5% below the optimal offline solution in these problems. It is thus tempting to
replace the IP solver in algorithm E by the best-fit heuristic to evaluate more sam-
ples. The algorithm, denoted by BF EXP, was proposed in [1] and was shown to be
superior to several approaches including yield management and an hybridization with
Markov Models [12]. Because the best-fit algorithm is so fast, BF EXP can easily be
run with 10,000 samples and remedies the limitations of algorithm E under tight time
constraints.

Figure 9 compares algorithms BF EXP, R, and C when overbooking is allowed.
The results show that BF EXP indeed produces excellent results but is quickly dom-
inated by R as time increases. In particular, the loss of BF EXP is above 40%, al-
though it goes down to 34% for 10 optimizations and 28% for 25 optimizations in
algorithm R. Similarly, the profit increases by 4% in the average starting at 25 opti-
mizations. BF EXP is also dominated by algorithm C but only for 50 optimizations
or more.

What is quite remarkable here is that the 5% difference in quality between the best-
fit heuristic and the offline algorithm translates into a similar difference in quality in
the online setting. Moreover, when looking at specific instances, one can see that BF
EXP is often comparable to R but its loss (resp. profit) may be significantly higher
(resp. lower) on instances that seem particularly difficult. This is the case for instances
E and G, where the gap between the offline solutions and the solutions by algorithm R
is larger. This seems to indicate that the harder the problems the more beneficial algo-
rithm R becomes. This in fact confirms our earlier results on stochastic vehicle routing
where the algorithms use a large neighborhood heuristic [3, 13]. Indeed, using a sim-
pler, lower-quality, heuristic on more samples did not produce high-quality results in an
online setting. The results presented here also show that the additional information pro-
duced by a more sophisticated solver quickly amortizes its computational cost, making
algorithm R particularly effective and robust for many problems.

226 P. Van Hentenryck, R. Bent, and Y. Vergados

7 Conclusion

This paper adapted our online stochastic framework and algorithms to online stochastic
reservations initially proposed in [1]. These problems, whose core can be modelled as
multi-knapsacks, are significant in practice and are also different from the scheduling
and routing applications we studied earlier. Indeed the main decision is not which re-
quest to select next but rather how best to serve a request given limited resources. The
paper shows that the framework and its associated algorithms naturally apply to on-
line reservation systems. It also presented a constant-factor sub-optimality approxima-
tion of multi-knapsack problems that only solves one-dimensional knapsack problems,
leading to a regret algorithm that uses both mathematical programming and dynamic
programming algorithms. The algorithms were evaluated on the multi-knapsack prob-
lems proposed in [1] with and without overbooking. The results indicate that the regret
algorithm is particularly effective, providing significant benefits over heuristic, consen-
sus, and expectation approaches. It also dominates an earlier algorithm proposed in [1]
(which applies the best-fit heuristic with algorithm E) as soon as the time constraints al-
lows for 10 optimizations at decision time or between decisions. Even more interesting
perhaps, the regret algorithm has now been applied to online stochastic problems where
the offline problem is solved by either constraint programming, integer programming,
or (special-purpose) polynomial algorithms, indicating its versatility and benefits for a
wide variety of applications.

References

1. T. Benoist, E. Bourreau, Y. Caseau, and B. Rottembourg. Towards stochastic constraint
programming: A study of online multi-choice knapsack with deadlines. In Proceedings of
the Seventh International Conference on Principles and Practice of Constraint Programming
(CP’01), pages 61–76, London, UK, 2001. Springer-Verlag.

2. R. Bent, I. Katriel, and P. Van Hentenryck. Sub-Optimality Approximation. In Eleventh
International Conference on Principles and Practice of Constraint Programming, Stiges,
Spain, 2005.

3. R. Bent and P. Van Hentenryck. A Two-Stage Hybrid Local Search for the Vehicle Routing
Problem with Time Windows. Transportation Science, 8(4):515–530, 2004.

4. R. Bent and P. Van Hentenryck. Online Stochastic and Robust Optimization. In Proceeding of
the 9th Asian Computing Science Conference (ASIAN’04), Chiang Mai University, Thailand,
December 2004.

5. R. Bent and P. Van Hentenryck. Regrets Only. Online Stochastic Optimization under Time
Constraints. In Proceedings of the 19th National Conference on Artificial Intelligence
(AAAI’04), San Jose, CA, July 2004.

6. R. Bent and P. Van Hentenryck. Scenario Based Planning for Partially Dynamic Vehicle
Routing Problems with Stochastic Customers. Operations Research, 52(6), 2004.

7. R. Bent and P. Van Hentenryck. The Value of Consensus in Online Stochastic Scheduling.
In Proceedings of the 14th International Conference on Automated Planning & Scheduling
(ICAPS 2004), Whistler, British Columbia, Canada, 2004.

8. R. Bent and P. Van Hentenryck. Online Stochastic Optimization without Distributions .
In Proceedings of the 15th International Conference on Automated Planning & Scheduling
(ICAPS 2005), Monterey, CA, 2005.

Online Stochastic Reservation Systems 227

9. A. Campbell and M. Savelsbergh. Decision Support for Consumer Direct Grocery Initiatives.
Report TLI-02-09, Georgia Institute of Technology, 2002.

10. H. Chang, R. Givan, and E. Chong. On-line Scheduling Via Sampling. Artificial Intelligence
Planning and Scheduling (AIPS’00), pages 62–71, 2000.

11. B. Dean, M.X. Goemans, and J. Vondrak. Approximating the Stochastic Knapsack Prob-
lem: The Benefit of Adaptivity. In Proceedings of the 45th Annual IEEE Symposium on
Foundations of Computer Science, pages 208–217, Rome, Italy, 2004.

12. M. Puterman. Markov Decision Processes. John Wiley & Sons, New York, 1994.
13. P. Shaw. Using Constraint Programming and Local Search Methods to Solve Vehicle Routing

Problems. In Proceedings of Fourth International Conference on the Principles and Practice
of Constraint Programming (CP’98), pages 417–431, Pisa, October 1998.

Traveling Tournament Scheduling:
A Systematic Evaluation of Simulated Annealling

Pascal Van Hentenryck and Yannis Vergados

Computer Science Department, Brown University,
Providence, RI 02912, USA

pvh@cs.brown.edu, vi@cs.brown.edu

Abstract. This paper considers all the variants of the traveling tournament prob-
lem (TTP) proposed in [17, 7] to abstract the salient features of major league
baseball (MLB) in the United States. The variants include different distance met-
rics and both mirrored and non-mirrored schedules. The paper shows that, with
appropriate enhancements, simulated annealing is robust across the distance met-
rics and mirroring. In particular, the algorithm matches or improves most best-
known solutions and produces numerous new best solutions spread over all
classes of problems. The main technical contribution underlying these results is
a number of compositive neighborhood moves that aggregate sequences of exist-
ing moves; these novel moves preserve the mirroring or distance structure of the
candidate schedule, while performing interesting transformations.

1 Introduction

Sport league scheduling [7] has become an important class of combinatorial optimiza-
tion applications as it represents significant sources of revenue for television networks
and generates extremely challenging optimization problems. In 2001, Easton,
Nemhauser, and Trick [7] proposed the traveling tournament problem (TTP) to abstract
the salient features of Major League Baseball (MLB) in the United States. The key to
the MLB schedule is a conflict between minimizing travel distances and feasibility con-
straints on the home/away patterns. Travel distances are a major issue in MLB because
of the number of teams and the fact that teams go on “road trips” to visit several oppo-
nents before returning home. The feasibility constraints in the MLB restricts the number
of successive games that can be played at home or away. The TTP is an abstraction of
the MLB intended to stimulate research in sport scheduling. A solution to the TTP is
a double round-robin tournament which satisfies sophisticated feasibility constraints
(e.g., no more than three away games in a row) and minimizes the total travel distances
of the teams. While both minimizing the total distance traveled, and satisfying the fea-
sibility constraints, are easy problems when considered in isolation, the combination of
the two (which is captured by the TTP) makes the problem very difficult. Moreover, [7]
argues that, without an approach to the TTP, it is unlikely that suitable schedules can be
obtained for the MLB.

The TTP has raised significant interest in recent years since the challenge instances
were proposed. The work in [7] describes both constraint and integer programming

J.C. Beck and B.M. Smith (Eds.): CPAIOR 2006, LNCS 3990, pp. 228–243, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Traveling Tournament Scheduling: A Systematic Evaluation of Simulated Annealling 229

approaches to the TTP which generate high-quality solutions. The combination of La-
grangian relaxation and constraint programming proposed in [2] improves some of the
results. In 2003, we proposed an simulated algorithm exploring a large neighborhood
that produced most of the best-known solutions to the instances. Our neighborhood, or
a subset of it, was reused in subsequent work (e.g., [8, 12, 16]) within tabu-search and
GRASP approaches or, even, simulated annealing. Recently, Rasmussen and Trick also
considered Benders decomposition approaches to the TTP [15].

On the original TTP instances, our original simulated algorithm has remained most
effective in producing best-known solutions, but it was never applied to the variants
proposed subsequently. However, these variants may fundamentally alter the combina-
torial structure of the problem. For instance, with constant distances, the order of the
games in a sequence of away games is irrelevant, which is obviously not the case with
the original distances. Similarly, mirroring requires that the second half of the schedule
be similar to the first half but with the home-away patterns of the games reversed. Mir-
roring imposes severe feasibility constraints on the schedule, making it harder to find
feasible tournaments and to remain in the feasible region. As a result, it was not at all
clear that the algorithm would scale and perform effectively on the entire spectrum of
TTP instances.

This paper originated as an attempt to determine the effectiveness and limitations of
our algorithm across all TTP instances. From a practical standpoint, its main contribu-
tion is to show that the original algorithm can be enhanced to be effective across all
distance metrics and mirroring. More precisely, the enhanced algorithm matches or im-
proves most of the best known solutions for all variants and it also produces numerous
new best solutions for many of the variants. From a technical standpoint, the research
led to new insights into the nature of the TTP and to the following contributions:

– It shows that the algorithm can smoothly handle mirroring contraints as soft con-
straints by including new neighborhood moves that preserve the mirroring structure
of the candidate tournament;

– It shows that the algorithm can successfully accommodate all distance metrics by
including new neighborhood moves that preserve the distance structure of the can-
didate tournament;

– It show how to refine the original strategic oscillation scheme to the instances where
feasibility constraints are much stronger.

The novel neighborhood moves are in fact sequences of existing moves. As such, they
do not improve the connectivity of the neighborhood for the TTP. Their significance
comes from the fact that, in the original algorithm, these sequences have a low prob-
ability of taking place, although they capture fundamental aspects of the problem
structure.

The rest of the paper is organized as follows. Section 2 describes the various trav-
elling tournament problems. Section 3 reviews the original simulated sinnealing algo-
rithm. Section 4 explains how to adapt the algorithm to accommodate mirroring, Section
5 presents new neighborhood moves for exploiting the distance structure, and Section 6
presents the remaining algorithmic enhancements. Section 7 presents the experimental
results and Section 8 concludes the paper.

230 P. Van Hentenryck and Y. Vergados

2 Problem Description

The traveling tournament problem, as originally introduced in [7], was first studied
only for benchmarks based on the distances between cities of the 16 teams of National
League Baseball. The solution space consisted of all double round-robin schedules and
did not include mirroring. In recent years, increased attention to the problem has led
to the study of a variety of variants. On one hand, the problem was studied under the
additional constraint that the schedule be a mirrored double round-robin tournament.
On the other hand, alternative sets of distances between cities were considered. Fur-
thermore, the problem was been studied for larger number of teams (up to 24). This
section describes the TTP and its various variants.

The Basic TTP Problem. A TTP input consists of n teams (n even) and an n × n
symmetric matrix d, such that dij represents the distance between the homes of teams Ti

and Tj . A solution is a schedule in which each team plays with each other twice, once
in each team’s home. Such a schedule is called a double round-robin tournament. It
should be clear that a double round-robin tournament has 2n − 2 rounds. For a given
schedule S, the cost of a team as the total distance that it has to travel starting from
its home, playing the scheduled games in S, and returning back home. The cost of a
solution is defined as the sum of the cost of every team. The goal is to find a schedule
with minimum cost satisfying the following two constraints:

1. Atmost Constraints: No more than three consecutive home or away games are
allowed for any team.

2. Norepeat Constraints: A game of Ti at Tj’s home cannot be followed by a game
of Tj at Ti’s home.

As a consequence, a double round-robin schedule is feasible if it satisfies the atmost
and norepeat constraints and is infeasible otherwise.

In this paper, a schedule is represented by a table indicating the opponents of the
teams. Each line corresponds to a team and each column corresponds to a round. The
opponent of team Ti at round rk is given by the absolute value of element (i, k). If
(i, k) is positive, the game takes place at Ti’s home, otherwise at Ti’s opponent home.
Consider for instance the schedule S for 6 teams (and thus 10 rounds).

T\R 1 2 3 4 5 6 7 8 9 10

1 6 -2 4 3 -5 -4 -3 5 2 -6
2 5 1 -3 -6 4 3 6 -4 -1 -5
3 -4 5 2 -1 6 -2 1 -6 -5 4
4 3 6 -1 -5 -2 1 5 2 -6 -3
5 -2 -3 6 4 1 -6 -4 -1 3 2
6 -1 -4 -5 2 -3 5 -2 3 4 1

Schedule S specifies that team T1 has the following schedule. It successively plays
against teams T6 at home, T2 away, T4 at home, T3 at home, T5 away, T4 away, T3
away, T5 at home, T2 at home, T6 away. The travel cost of team T1 is

Traveling Tournament Scheduling: A Systematic Evaluation of Simulated Annealling 231

d12 + d21 + d15 + d54 + d43 + d31 + d16 + d61.

Observe that long stretches of games at home do not contribute to the travel cost but are
limited by the atmost constraints.

Mirroring. In some sports leagues (e.g., in most European soccer leagues), it is com-
mon practice to adopt a two-stage mirrored schedule. If n is the number of participating
teams, each stage has n− 1 rounds and the n− 1 rounds of the second stage are simply
a copy of the the first-stage rounds with a swap of home/away patterns of each game.
In terms of the table representation, a schedule is mirrored if

∀i, j : 1 ≤ j ≤ n− 1 : S[i, j + n− 1] = −S[i, j].

Distance Metrics. All the distance metrics studied in this paper can be found on the
web site [17]. They are defined as follows:

– [NLn:] For n = 4, 6, . . . , 16, NLn is the distances between the subset of the first n
teams of National League Baseball.

– [Circular:] The n teams are labeled with numbers 0 through n − 1 and are placed
on a circle in this order. Then, for any two teams, the distance is given by the length
of the shortest arc connecting the teams. These distances satisfy

∀i > j : dij = min{i− j, j − i + n}.

– [Constant:] The n teams are at unit distance to one another, i.e., dij = 1, for all i, j.

For every distance metric, we are interested in solutions to both the mirrored and the
non-mirrored version of the TTP.

3 The Original Simulated Annealing Algorithm

Our simulated algorithm TTSA in [1] is based on four main design decisions:

1. Constraints are separated into two groups: hard constraints, which are always satis-
fied by the configurations, and soft constraints, which may or may not be violated.
The hard constraints are the round-robin constraints, while the soft constraints
are the norepeat and atmost constraints. In other words, all configurations in the
search represents a double round-robin tournament, which may or may not violate
the norepeat and atmost constraints. To drive the search toward feasible solutions,
TTSA modifies the original objective function to include a penalty term.

2. TTSA is based on a large neighborhood of size O(n3), where n is the number
of teams. In addition, these moves may affect significant portions of the configura-
tions. For instance, they may swap the schedule of two teams, which affects 4(n−2)
entries in a configuration. In addition, some of these moves can be regarded as a
form of ejection chains sometimes used in tabu search [11, 14].

232 P. Van Hentenryck and Y. Vergados

3. TTSA dynamically adjusts the objective function to balance the time spent in the
feasible and infeasible regions. This adjustment resembles the strategic oscilla-
tion idea [9] successfully in tabu search to solve generalized assignment prob-
lems [5], although the details differ since simulated annealing is used as the meta-
heuristics.

4. TTSA also uses reheats (e.g., [3]) to escape local minima at low temperatures. The
“reheats” increase the temperature again and divide the search in several phases.

The rest of this section explore some of these aspects in more detail, as they are per-
tinent to the understanding of this paper. Since they are double round-robin tourna-
ments, configurations are called schedules in the following. Observe that, contrary
to simpler problems such as break minimization [18], we found it critical to explore
the infeasible region in the TPP and to consider moves that significantly alter the
schedules. In our experiments, neighborhoods consisting of simpler moves or consid-
ering only feasible schedules tend to produce local minima of low quality. Of course,
this does not mean that such neighborhoods do not exist, simply that we have not be
able to design them so far. This difference between the TTP and the break minimiza-
tion stems from the fact that break minimization assumes a fixed schedule: only the
home/away patterns must be determined. In contrast, the objective function in the TTP
must not only determine the home/away patterns; it must also determine the schedule
of each team to minimize the total travel distance. This additional difficulty and the
tension it produces with the feasibility constraints is what makes the TTP particularly
challenging.

3.1 The Neighborhood

The neighborhood of a schedule S is the set of the (possibly infeasible) schedules which
can be obtained by applying one of five types of moves. The first three types of moves
have a simple intuitive meaning, while the last two generalize them.

SwapHomes(S, Ti, Tj). This move swaps the home/away roles of teams Ti and Tj . In
other words, if team Ti plays home against team Tj at round rk, and away against Tj’s
home at round l, SwapHomes(S, Ti, Tj) is the same schedule as S, except that now team
Ti plays away against team Tj at round rk, and home against Tj at round rl. There are
O(n2) such moves. Consider the schedule S:

T\R 1 2 3 4 5 6 7 8 9 10

1 6 -2 4 3 -5 -4 -3 5 2 -6
2 5 1 -3 -6 4 3 6 -4 -1 -5
3 -4 5 2 -1 6 -2 1 -6 -5 4
4 3 6 -1 -5 -2 1 5 2 -6 -3
5 -2 -3 6 4 1 -6 -4 -1 3 2
6 -1 -4 -5 2 -3 5 -2 3 4 1

Traveling Tournament Scheduling: A Systematic Evaluation of Simulated Annealling 233

The move SwapHomes(S, T2, T4) produces the schedule:

T\R 1 2 3 4 5 6 7 8 9 10

1 6 -2 4 3 -5 -4 -3 5 2 -6
2 5 1 -3 -6 -4 3 6 4 -1 -5
3 -4 5 2 -1 6 -2 1 -6 -5 4
4 3 6 -1 -5 2 1 5 -2 -6 -3
5 -2 -3 6 4 1 -6 -4 -1 3 2
6 -1 -4 -5 2 -3 5 -2 3 4 1

SwapRounds(S, rk, rl). The move simply swaps rounds rk and rl. There are also
O(n2) such moves. Consider the schedule S:

T\R 1 2 3 4 5 6 7 8 9 10

1 6 -2 4 3 -5 -4 -3 5 2 -6
2 5 1 -3 -6 4 3 6 -4 -1 -5
3 -4 5 2 -1 6 -2 1 -6 -5 4
4 3 6 -1 -5 -2 1 5 2 -6 -3
5 -2 -3 6 4 1 -6 -4 -1 3 2
6 -1 -4 -5 2 -3 5 -2 3 4 1

The move SwapRounds(S, r3, r5) produces the schedule

T\R 1 2 3 4 5 6 7 8 9 10

1 6 -2 -5 3 4 -4 -3 5 2 -6
2 5 1 4 -6 -3 3 6 -4 -1 -5
3 -4 5 6 -1 2 -2 1 -6 -5 4
4 3 6 -2 -5 -1 1 5 2 -6 -3
5 -2 -3 1 4 6 -6 -4 -1 3 2
6 -1 -4 -3 2 -5 5 -2 3 4 1

SwapTeams(S, Ti, Tj). This move swaps the schedule of Teams Ti and Tj (except,
of course, when they play against each other). There are O(n2) such moves again.
Consider the schedule S:

T\R 1 2 3 4 5 6 7 8 9 10

1 6 -2 4 3 -5 -4 -3 5 2 -6
2 5 1 -3 -6 4 3 6 -4 -1 -5
3 -4 5 2 -1 6 -2 1 -6 -5 4
4 3 6 -1 -5 -2 1 5 2 -6 -3
5 -2 -3 6 4 1 -6 -4 -1 3 2
6 -1 -4 -5 2 -3 5 -2 3 4 1

234 P. Van Hentenryck and Y. Vergados

The move SwapTeams(S, T2, T5) produces the schedule

T\R 1 2 3 4 5 6 7 8 9 10

1 6 -5 4 3 -2 -4 -3 2 5 -6
2 5 -3 6 4 1 -6 -4 -1 3 -5
3 -4 2 5 -1 6 -5 1 -6 -2 4
4 3 6 -1 -2 -5 1 2 5 -6 -3
5 -2 1 -3 -6 4 3 6 -4 -1 2
6 -1 -4 -2 5 -3 2 -5 3 4 1

Note that, in addition to the changes in lines 2 and 5, the corresponding lines of the
opponents of Ti and Tj must be changed as well. As a consequence, there are four
values per round (column) that are changed (except when Ti and Tj meet).

It turns out that these three moves are not sufficient for exploring the entire search
space and, as a consequence, they lead to suboptimal solutions for large instances. To
improve these results, it is important to consider two, more general, moves. Although
these moves do not have the apparent interpretation of the first three, they are similar in
structure and they significantly enlarge the neighborhood, resulting to a more connected
search space. More precisely, these moves are partial swaps: they swap a subset of the
schedule in rounds ri and rj or a subset of the schedule for teams Ti and Tj . The benefits
from these moves come from the fact that they are not as global as the “macro”-moves
SwapTeams and SwapRounds. As a consequence, they may achieve a better tradeoff
between feasibility and optimality by improving feasibility in one part of the schedule,
while not breaking feasibility in another one. They are also more “global” than the
“micro”-moves SwapHomes.

PartialSwapRounds(S, Ti, rk, rl). This move considers team Ti and swaps its games
at rounds rk and rl. The rest of the schedule for rounds rk and rl is updated to produce
a double round-robin tournament. Consider the schedule S

T\R 1 2 3 4 5 6 7 8 9 10

1 6 -2 2 3 -5 -4 -3 5 4 -6
2 5 1 -1 -5 4 3 6 -4 -6 -3
3 -4 5 4 -1 6 -2 1 -6 -5 2
4 3 6 -3 -6 -2 1 5 2 -1 -5
5 -2 -3 6 2 1 -6 -4 -1 3 4
6 -1 -4 -5 4 -3 5 -2 3 2 1

and the move PartialSwapRounds(S, T2, r2, r9). Obviously swapping the game in rou-
nds r2 and r9 would not lead to a round-robin tournament. It is also necessary to swap
the games of team 1, 4, and 6 in order to obtain:

Traveling Tournament Scheduling: A Systematic Evaluation of Simulated Annealling 235

T\R 1 2 3 4 5 6 7 8 9 10

1 6 4 2 3 -5 -4 -3 5 -2 -6
2 5 -6 -1 -5 4 3 6 -4 1 -3
3 -4 5 4 -1 6 -2 1 -6 -5 2
4 3 -1 -3 -6 -2 1 5 2 6 -5
5 -2 -3 6 2 1 -6 -4 -1 3 4
6 -1 2 -5 4 -3 5 -2 3 -4 1

This move, and the next one, can thus be regarded as a form of ejection chain [11, 14].
Finding which games to swap is not difficult: it suffices to find the connected compo-

nent which contains the games of Ti in rounds rk and rl in the graph where the vertices
are the teams and where an edge contains two teams if they play against each other in
rounds rk and rl. All the teams in this component must have their games swapped. Note
that there are O(n3) such moves.

PartialSwapTeams(S, Ti, Tj, rk). This move considers round rk and swaps the games
of teams Ti and Tj . Then, the rest of the schedule for teams Ti and Tj (and their op-
ponents) is updated to produce a double round-robin tournament. Note that, as was the
case with SwapTeams, four entries per considered round are affected. There are also
O(n3) such moves. Consider the schedule S

T\R 1 2 3 4 5 6 7 8 9 10

1 6 -2 4 3 -5 -4 -3 5 2 -6
2 5 1 -3 -6 4 3 6 -4 -1 -5
3 -4 5 2 -1 6 -2 1 -6 -5 4
4 3 6 -1 -5 -2 1 5 2 -6 -3
5 -2 -3 6 4 1 -6 -4 -1 3 2
6 -1 -4 -5 2 -3 5 -2 3 4 1

The move PartialSwapRounds(S, T2, T4, r9) produces the schedule

T\R 1 2 3 4 5 6 7 8 9 10

1 6 -2 2 3 -5 -4 -3 5 4 -6
2 5 1 -1 -5 4 3 6 -4 -6 -3
3 -4 5 4 -1 6 -2 1 -6 -5 2
4 3 6 -3 -6 -2 1 5 2 -1 -5
5 -2 -3 6 2 1 -6 -4 -1 3 4
6 -1 -4 -5 4 -3 5 -2 3 2 1

3.2 The Objective Function

As mentioned already, the configurations in algorithm TTSA are schedules which may
or may not satisfy the norepeat and atmost constraints. To drive toward feasible

236 P. Van Hentenryck and Y. Vergados

solution, the standard objective function function cost is replaced by a more complex
objective function which combines travel distances and the number of violations. The
new objective function C is defined as follows:

C(S) =

{
cost(S) if S is feasible,√

cost(S)2 + [w · f(nbv(S))]2otherwise,

where nbv(S) denotes the number of violations of the norepeat and atmost constraints,
w is a weight, and f : N → N is a sublinear function such that f(1) = 1.

It is interesting to give the rationale behind the choice of f . The intuition is that the
first violation costs more than subsequent ones, since adding 1 violation to a schedule
with 6 existing ones does not make much difference. More precisely, crossing the fea-
sible/infeasible boundary costs w, while v violations only cost wf(v), where f(v) is
sublinear in v. In our experiments, we chose f(v) = 1 + (

√
v ln v)/λ with λ equal to

2 on small instances and 1 on larger ones. This choice makes sure that f does not grow
too slowly to avoid solutions with very many violations.

3.3 Strategic Oscillation

TTSA also includes a strategic oscillation strategy often used in tabu search when the
search explores both the feasible and infeasible regions (e.g., [9, 5]). The key idea is to
vary the weight parameter w during the search. In advanced tabu-search applications
(e.g., [5]), the penalty is updated according to the frequencies of feasible and infeasible
configurations in the last iterations. Such a strategy is meaningful in that context, but
is not particularly appropriate for simulated annealing since very few moves may be
selected. TTSA uses a very simple scheme. Each time it generates a new best solution
TTSA multiplies w by some constant δ > 1 if the new solution is infeasible or divide
w by some constant θ > 1 if the new solution is feasible.

The rationale here is to keep a balance between the time spent exploring the feasi-
ble region and the time spent exploring infeasible schedule. After having spent a long
time in the infeasible region, the weight w, and thus the penalty for violations, will be-
come large and it will drive the search toward feasible solutions. Similarly, after having
spent a long time in the feasible region, the weight w, and thus the penalty for viola-
tions, will become small and it will drive the search toward infeasible solutions. In our
experiments, we chose δ = θ for simplicity.

4 Mirroring

This section reviews the enhancements of the algorithm to find mirrored tournaments.

4.1 Mirroring Constraints

Mirrored constraints, like atmost and norepeat constraints, are considered soft con-
straints in the algorithm, since restricting the neighborhood graph to only mirrored
schedules was not found effective. In other words, the neighborhood graph consists

Traveling Tournament Scheduling: A Systematic Evaluation of Simulated Annealling 237

of nodes representing both mirrored and non-mirrored schedules and it is the role of
the objective function to drive the search toward mirrored schedules. More precisely,
the algorithm associates a soft mirrored constraint with each entry S[i, j] (1 ≤ i ≤
n & 1 ≤ j < n− 1) and the constraint holds when

S[i, j] = −S[i, j + n− 1]

It is thus possible to include the violations of these constraints in the objective function
as was the case for the atmost and norepeat constraints.

Unfortunately, this simple modeling is not directly effective given the large num-
ber of mirroring constraints that can be violated in candidate schedules. As a result,
the algorithm weights the mirroring constraints appropriately and rewrite the function
nbv(S) of the objective function as the sum

nbva(S) + nbvr(S) +
nbvm(S)

μ

where nbva, nbvr, and nbvm represent the violations of the atmost, norepeat, and mir-
roring constraints respectively. In particular, the violations of the mirroring constraints
is simply defined as

nbvm(S) = |{(i, j) : S[i, j] �= −S[i, j + n− 1] & 1 ≤ i ≤ n & 1 ≤ j ≤ n− 1}|.

4.2 Mirroring Moves

Once the algorithm reaches a (possibly infeasible) mirrored schedule, it is beneficial
to let the search explored neighboring mirrored schedules with fewer violations of the
remaining constraints or smaller distances. The simulated-annealing algorithm, with
its present moves, has a low probability of exploring such moves. It is thus impor-
tant to design mirrored versions of the moves that affect the mirroring constraints: the
SwapRounds, PartialSwapRounds, and PartialSwapTeams moves. The basic idea be-
hind the aggregate moves is to apply the original moves to both parts of the sched-
ule simultaneously. For instance, the new move SwapRoundsMirrored(S, rk, rl) for
1 ≤ rk < rl ≤ n− 1 is the aggregate

(SwapRounds(S, rk, rl),SwapRounds(S, Ti, rk + n− 1, rl + n− 1)).

Mirroring constraints are invariant with respect to mirrored moves: in particular, if the
schedule is mirrored, it remains so. As a result, the algorithm is able to preserve the
structure of the schedule with respect to mirroring constraints, while performing trans-
formations that affect the remaining constraints or the distances.

5 Distance Metrics

This section presents two additional composite moves that affect the distances in in-
teresting ways. Once again, the novel moves aggregate sequences of existing moves
that have a low probability of taking place in the original algorithm. Hence, they also

238 P. Van Hentenryck and Y. Vergados

preserve some significant structure in the schedule, while performing some interesting
transformations.

The key idea underlying the novel moves is to reverse subsequences of away moves.
Recall that travel only occurs for successive pairs of away games and for successive
pairs of (home,away) and (away,home) games. So, by reversing a subsequence of away
games, we preserve a significant part of the distance structure, while modifying it in
a way that is difficult to achieve by sequences of original moves. In particular, the
distances in the reversed subsequence, as well as the distances in the sequence of the
other teams that must also be reversed to maintain a double round-robin tournament,
remain the same. It is only at the beginning and at the end of the subsequences that
distances are changing. In fact, moves similar in spirit are also used in car sequencing
[4] but they are simpler since they do not have to account for the round-robin constraints
and the distance structure.

The algorithm thus considers moves of the form ReverseAwayRun(S, Ti, rk, m)
where team Ti plays an away sequence from round rk to round rk+m. The effect of
the move is similar to the sequence of p = (m + 1)/2 moves

PartialSwapRounds(S, Ti, rk, rk+m)
PartialSwapRounds(S, Ti, rk+1, rk+m−1)
. . .
PartialSwapRounds(S, Ti, rk+p−1, rk+m+1−p)

For instance, consider the schedule S

T\R 1 2 3 4 5 6 7 8 9 10

1 6 2 4 3 -5 -4 -3 -6 -2 5
2 5 -1 -3 -6 4 3 6 -5 1 -4
3 -4 5 2 -1 6 -2 1 4 -5 -6
4 3 6 -1 -5 -2 1 5 -3 -6 2
5 -2 -3 6 4 1 -6 -4 2 3 -1
6 -1 -4 -5 2 -3 5 -2 1 4 3

The move ReverseAwayRun(S, T1, r6,4) produces the schedule S′:

T\R 1 2 3 4 5 6 7 8 9 10

1 6 2 4 3 -5 -2 -6 -3 -4 5
2 5 -1 -3 -6 4 1 -5 6 3 -4
3 -4 5 2 -1 6 -5 4 1 -2 -6
4 3 6 -1 -5 -2 -6 -3 5 1 2
5 -2 -3 6 4 1 3 2 -4 -6 -1
6 -1 -4 -5 2 -3 4 1 -2 5 3

When d52 + d41 < d54 + d21, the move improves the distance with respect to team T1,
without affecting the atmost violations of team T1 and the distance structure inside the

Traveling Tournament Scheduling: A Systematic Evaluation of Simulated Annealling 239

subsequence. There are several points worth highlighting here. First, reversing entire
sequences of away games does not change the distance for the team considered and
should not be considered. Second, the value m is never very large in the TTP instances,
since the atmost constraints drive the search toward small subsequences of away games.
Finally, the algorithm must include a mirrored version ReverseAwayRunMirrored of the
moves since they affect the mirroring constraints.

6 Algorithmic Refinements

Strategic Oscillation. The mirroring constraints make it harder to find feasible tour-
naments and the search may spend considerable time in the infeasible region before
finding a first feasible solution. As a result, even small values for μ and λ, the strategic
oscillation scheme will overly inflate the violation weight w, leading the search to stag-
nation. To alleviate this pathological case, the algorithm now takes a two-step approach.
In a first phase, which lasts until the first feasible tournament is found, no oscillation
takes place. In the second phase, the strategic oscillation scheme is activated as before
and balances the time spent in the infeasible and feasible regions. Note also the synergy
between this scheme and the new neighborhood moves. By including mirrored moves,
the algorithm is able to better balance the time it spends in the feasible and infeasible
regions in presence of mirroring constraints.

Initial Schedules. The simple backtrack search used in [1] to find initial schedules does
not scale well when the number of teams increases, which is the case in the constant
and circular variants. As a result, like in [16], the algorithm now uses a randomized
version of the hill-climbing algorithm for generating 1-factorizations [6]. The initial
schedules generated by this randomized algorithm are more diversified than perturba-
tions of schedules obtained by the polygon algorithm. The algorithm in [6] works for
single round-robin schedules but a double round-robin schedule can be obtained by a
simple mirroring.

7 Experimental Results

The enhanced version of the algorithm was run on all the mirrored and non-mirrored
instances given on Michael Trick’s webpage [17].1 For each instance, 20 experiments
were carried out from randomly chosen schedules on an AMD Athlon 64 at 2Ghz. The
results are reported in two tables for each variant. The first table reports the best, mean,
and worst solutions found by the algorithm, as well as the standard deviation and the
best known solution value at the time of writing. The second table reports the time to
reach the best solution, the mean time of each experiment, and the standard deviation.
Bold face indicates improved results. It is also important to mention that many authors
(e.g., [8, 12, 16]) now use the neighborhood we originally proposed in [1] which makes
it much harder to improve the results (since, in a sense, we are also competing with our-
selves). Our implementation is also slightly more incremental than in 2003, but this is
not seen as a major factor in these results in contrast to the new moves proposed herein.

1 They do not include the NFL instances just posted in December.

240 P. Van Hentenryck and Y. Vergados

Table 1. Solution Quality and Solution Times for the NLn Distances with Mirroring

n Old Best min(D) max(D) mean(D) std(D)

8 41928 41928 43025 42037.65 291.98
10 63832 63832 64409 63860.85 125.75
12 120665 119608 120774 120121.55 417.07
14 208086 199363 210599 202400.50 2883.39
16 279618 279077 297173 284036.95 4770.61

n T for min mean(T) std(T)

8 0.1 1555.55 1880.94
10 477.2 8511.29 17132.49
12 15428.1 49373.31 32834.88
14 34152.3 70898.90 48551.27
16 55640.8 47922.16 36948.40

Table 2. Solution Quality and Solution Times for the Constant Distances with Mirroring

n Old Best min(D) max(D) mean(D) std(D)

8 80 80 80 80 0
10 130 130 130 130 0
12 192 192 192 192 0
14 253 253 253 253 0
16 342 342 342 342 0
18 432 432 432 432 0
20 524 522 522 522 0
22 650 650 650 650 0
24 768 768 768 768 0

n T for min mean(T) std(T)

8 0.1 0.06 0
10 0.1 0.10 0
12 0.3 0.56 0.38
14 6.0 154.26 147.95
16 2.7 3.29 1.53
18 8.1 24.60 19.20
20 1106.3 12556.20 10347.58
22 24.3 45.42 22.90
24 813.3 1791.77 983.47

Table 3. Solution Quality and Solution Times for the Circular Distances with Mirroring

n Old Best min(D) max(D) mean(D) std(D)

8 140 140 140 140 0
10 272 272 276 273.60 1.01
12 456 432 444 434.90 3.12
14 714 696 726 708.90 7.05
16 978 968 1072 1001.60 28.55
18 1306 1352 1364 1357.80 3.40
20 1882 1852 2198 2017.60 60.64

n T for min mean(T) std(T)

8 0.2 74.18 55.13
10 28160.0 12527.18 12208.25
12 93.1 4658.58 3560.27
14 53053.5 23549.14 16311.15
16 38982.7 23360.81 14451.53
18 178997.5 106139.77 57175.01
20 59097.9 43137.13 22515.46

Mirrored Instances. Tables 1, 2, and 3 report the results for mirrored instances, which
are particularly impressive. The algorithm matches or improves all best-known solu-
tions (but one). It produces 8 new best solutions and the improvements essentially occur
for larger instances. This was a surprising result for us, since we thought that mirror-
ing instances would be significantly more challenging for the algorithm. Some of the
improvements may also be quite large and reach more than 4%.

Non-mirroring Instances. Tables 4, 5, and 6 report the results for the non-mirrored
instances. On the NLn and constant distance metrics, the algorithm is once again im-
pressive, matches or improves all the best-known solutions, and improves 6 instances.
Once again, the gains are obtained on the larger instances. The results on the circular

Traveling Tournament Scheduling: A Systematic Evaluation of Simulated Annealling 241

Table 4. Solution Quality and Solution Times for the NLn Distances without Mirroring

n Old Best min(D) max(D) mean(D) std(D)

8 39721 39721 39721 39721 0
10 59436 59436 59583 59561.63 48.33
12 111483 111248 116018 112663.32 738.55
14 190056 189156 195742 193187.85 1432.99
16 270794 267194 282005 273552.64 3461.49

n T for min mean(T) std(T)

8 1169.0 1639.33 332.38
10 2079.6 27818.24 64873.91
12 202756.2 150328.30 92385.48
14 90861.4 77587.86 40346.49
16 344633.4 476191.65 389371.71

Table 5. Solution Quality and Solution Times for the Constant Distances without Mirroring

n Old Best min(D) max(D) mean(D) std(D)

8 80 80 80 80 0
10 124 124 124 124 0
12 181 181 181 181 0
14 252 252 252 252 0
16 327 327 329 328 0.31
18 418 417 418 417.65 0.47
20 521 520 522 520.90 0.53
22 632 628 630 629.40 0.58
24 757 750 753 750.65 0.91

n min(T) mean(T) std(T)

8 0.2 0.14 0.14
10 4.6 3.96 2.43
12 128.7 1126.85 1480.45
14 26.1 95.32 59.42
16 82884.1 16042.20 22332.36
18 10362.8 7091.27 6614.78
20 7781.7 22850.72 25094.76
22 39380.3 22618.46 20364.85
24 16356.6 28941.04 22987.96

Table 6. Solution Quality and Solution Times for the Circular Distances without Mirroring

n Old Best min(D) max(D) mean(D) std(D)

8 132 132 132 132.00 0
10 242 242 256 252.70 3.24
12 408 420 432 427.13 3.43
14 654 666 690 679.70 5.14
16 928 968 1072 1001.60 28.55
18 1306 1352 1364 1357.80 3.40
20 1842 1852 2198 2017.60 60.64

n T for min mean(T) std(T)

8 3.2 589.23 590.74
10 19261.6 14491.27 7937.21
12 151459.1 96717.13 52788.38
14 12908.9 86766.67 68408.73
16 38982.7 23360.81 14451.53
18 178997.5 106139.77 57175.01
20 59097.9 43137.13 22515.46

instances are somewhat disappointing. The algorithm cannot match the best-known re-
sults on the larger instances, although it is often very close to the best-known solutions.
This may be due to the fact that the algorithm only uses mirrored starting schedules,
which may bias the search. In fact, the best solutions found by our algorithm for 16
and 20 teams are mirrored schedules. These instances need to be investigated more
carefully, since very little time was spent tuning the parameters.

8 Conclusion

This paper reconsidered our original simulated algorithm for the travelling tournament
problem (TTP) and studied its effectiveness across all TTP variants. The variants in-

242 P. Van Hentenryck and Y. Vergados

clude various distance metrics, as well as mirroring constraints. From a practical stand-
point, its main contribution is to show that the original algorithm can be enhanced to
be effective across all distance metrics and mirroring. The main technical novelty in
the algorithm is the introduction of novel neighborhood moves that capture sequences
of earlier moves. As such, these novel moves do not improve the connectivity of the
neighborhood for the TTP. Their significance comes from the fact that, in the original
algorithm, these sequences have a low probability, although they capture fundamental
aspects of the mirroring or distance structure. The resulting algorithm matches or im-
proves most best-known solutions and it also produces numerous new best solutions for
many of the variants. It is thus quite remarkable that a single algorithm be so robust in
producing high-quality solutions to all instances.

An important area of future research is to find high-quality solutions more quickly.
For instance, Gaspero and Schaerf [8] embedded a subset of our neighborhood in a
tabu-search algorithm and obtained high-quality solutions quickly, although their best
solutions still do not match our best found solutions. Whether it is possible to find the
same solution quality with the speed of their algorithm is an important issue to address.

References

1. A. Anagnostopoulos, L. Michel, P. Van Hentenryck, and Y. Vergados. A Simulated Anneal-
ing Approach to the Traveling Tournament Problem In CP-AI-OR’2003, Montreal, Canada,
May 2003.

2. T. Benoist, F. Laburthe, and B. Rottembourg. Lagrange Relaxation and Constraint Program-
ming Collaborative Schemes for Travelling Tournament Problems. In CP-AI-OR’2001, Wye
College (Imperial College), Ashford, Kent UK, April 2001.

3. D.T. Connelly. General Purpose Simulated Annealing. European Journal of Operations
Research, 43, 1992.

4. A. Davenport and E. Tsang. Solving Constraint Satisfaction Sequencing Problems by Iter-
ative Repair. In Procceedings of the First International Conference on the Practical Appli-
cations of Constraint Technologies and Logic Programming (PACLP-99), pages 345–357,
London, April 1999.

5. Juan A. Dı́az and Elena Fernández. A tabu search heuristic for the generalized assignment
problem. European Journal of Operational Research, 132(1):22–38, July 2001.

6. J. H. Dinitz, and D. R. Stinson. A Hill-climbing Algorithm for the Construction of One-
Factorizations and Room Squares. SIAM J. Alg. Disc. Meth., 8(3):430–438, July 1987.

7. K. Easton, G. Nemhauser, and M. Trick. The traveling tournament problem description
and benchmarks. In Seventh International Conference on the Principles and Practice of
Constraint Programming (CP’01), pages 580–589, Paphos, Cyprus, 2001. Springer-Verlag,
LNCS 2239.

8. L. Di Gaspero, and A. Schaerf. A Tabu Search Approach to the Traveling Tournament
Problem. In Proceedings of RCRA 2005, Associazione Italiana per l’Intelligenza Artificiale
(AI*IA), pages 23–27, Ferrara, Italy, June 2005

9. F. Glover and M. Laguna. Tabu Search. Kluwer Academic Publishers, 1997.
10. S. Kirkpatrick, C. Gelatt, and M. Vecchi. Optimization by Simulated Annealing. Science,

220:671–680, 1983.
11. M. Laguna, J.P. Kelly, Gonzalez-Velarde, and F. Glover. Tabu search for the multilevel gener-

alized assignment problems. European Journal of Operational Research, 42:677–687, 1995.

Traveling Tournament Scheduling: A Systematic Evaluation of Simulated Annealling 243

12. A. Lim, B. Rodrigues and X. Zhang. Scheduling Sports Competitions at Multiple Venues
Revisited. European Journal of Operational Research, 2005 (Accepted for Publication).

13. I. H. Osman. Metastrategy simulated annealing and tabu search algorithms for the vehicle
routing problem. Annals of Operations Research, 41:421–451, 1993.

14. E. Pesch and F. Glover. TSP Ejection Chains. Discrete Applied Mathematics, 76:165–181,
1997.

15. R. Rasmussen and M. Trick. A Benders Approach to the Constrained Minimum Break Prob-
lem. European Journal of Operational Research, 2005 (Accepted for Publication)

16. C. C. Ribeiro, and S. Urrutia. Heuristics for the Mirrored Traveling Tournament Problem.
Proceedings of the 5th International Conference on the Practice and Theory of Automated
Timetabling (PATAT’04), 323-342, 2004.

17. M. Trick. http://mat.gsia.cmu.edu/TOURN/, 2002.
18. P. Van Hentenryck and Y. Vergados Minimizing Breaks in Sport Scheduling with Local

Search In Proceedings of the 15th International Conference on Automated Planning and
Scheduling Monterey, CA, June 2005.

Open Constraints in a Closed World

Willem-Jan van Hoeve1 and Jean-Charles Régin2,�

1 Department of Computer Science, Cornell University, Ithaca, NY 14853, USA
vanhoeve@cs.cornell.edu

2 ILOG Sophia Antipolis, Les Taissounières HB2, 1681 route des Dolines,
06560 Valbonne, France

regin@ilog.fr

Abstract. We study domain filtering algorithms for open constraints,
i.e., constraints that are not a priori defined on specific sets of variables.
We present an efficient filtering algorithm, achieving set-domain consis-
tency, for open global cardinality constraints. We extend this result to
conjunctions of them, in case they are defined on disjoint sets of vari-
ables. We also analyze the case when the sets of variables may overlap.
As establishing set-domain consistency is NP-complete in that case, we
propose a weaker, though efficient, filtering algorithm instead. Finally,
we extend our results to conjunctions of similar open constraints.

1 Introduction

Traditionally, constraint programming has focused on solving problems in closed-
world scenarios: all variables and constraints are fixed from the beginning. In
many real-life applications, however, the scope of a constraint may not be defined
a priori. Instead, the variables on which the constraints are defined may only
be revealed during the solution process. This happens very often in scheduling
applications and other distributed settings.

For example, consider a set of activities and suppose that each activity can
be processed either on the factory line 1 formed by the set of unary resources
R1, or on the factory line 2 formed by the set of unary resources R2. Thus, at
the beginning, the set of resources that will be used by an activity is not known.
Also the set of activities that will be processed by a resource is not known.
However, it is useful to express that the activities that will be processed on each
line must be pairwise different. This can be done by defining two alldifferent
constraints, involving the start variables of each activity, and by stating that a
start variable will be involved in exactly one alldifferent constraint. Initially,
each alldifferent constraint is defined on a set of variables formed by all start
variables. Then this set will be modified when it can be proved that a variable
cannot be a member of an alldifferent constraint (i.e., the corresponding
activity cannot be processed on the corresponding factory line), or that a start
variable (activity) will be processed on the specific factory line.

� A large part of this work was carried out while the author was at Cornell University.

J.C. Beck and B.M. Smith (Eds.): CPAIOR 2006, LNCS 3990, pp. 244–257, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Open Constraints in a Closed World 245

Constraints of this nature are called dynamic constraints [2] or open con-
straints [4, 5]. For instance, the above alldifferent constraints are examples
of open constraints. In this case, they live in a closed world, because the set of
possible variables is explicitly known. The extension of constraint programming
with open constraints is called open constraint programming [4, 5].

The use of efficient domain filtering algorithms is a key element in solving
problems with constraint programming. This is particularly true when the fil-
tering is based on a global constraint, i.e., a constraint that encapsulates and
exploits a substructure of the problem. Efficient filtering algorithms for open
global constraints therefore have high potential to improve the solution process
of open constraint programming, together with its rich application area. Never-
theless, such filtering algorithms have not yet been proposed, until now.

In this work we study the problem of filtering open global constraints in a
closed world. We focus in particular on conjunctions of open global cardinality
constraints, or gccs, because of their practical applicability and generality. We
present an efficient filtering algorithm, obtaining “set-domain” consistency, when
the scopes of the gccs are restricted to non-overlapping sets of variables. We also
analyze the case when the scopes of the gccs are allowed to share variables. In
that case obtaining domain consistency is NP-complete. Hence we propose a
weaker, though efficient, filtering algorithm.

Our filtering algorithms are based on techniques from flow theory. In fact,
we are able to generalize the techniques used in the filtering algorithm for the
original (closed) global cardinality constraint to conjunctions of open global car-
dinality constraints. It furthermore allows us to filter the domains of the set
variables that underly the open global cardinality constraints. Finally, we ex-
tend our results to conjunctions of arbitrary flow-based open global constraints.
Due to the application of efficient flow theoretic techniques, our algorithms are
also efficient.

The outline of this paper is as follows. In Section 2, we present definitions
and other preliminaries. In Section 3 we outline the general problem and give a
motivating example. Section 4 describes our main result, the filtering algorithm
for conjunctions of open global cardinality constraints on non-overlapping sets
of variables. In Section 5 we consider the case where the sets of variables may
overlap. In Section 6 we present a filtering algorithm for the set variables that
underly the open constraints. In Section 7 we extend our results to conjunctions
of similar open global constraints. Finally, we conclude in Section 8.

2 Background

2.1 Constraint Programming

Let x be a variable. The domain of x is a finite set of elements (also called
domain values) that can be assigned to x. It is denoted by D(x). For a set of
variables X we define D(X) = ∪x∈XD(x).

A set variable is a variable whose domain values are sets. We often represent
the domain of a set variable S by an “interval” [L, U], where L and U are sets,

246 W.-J. van Hoeve and J.-C. Régin

such that D(S) = {s | L ⊆ s ⊆ U}. For example, let V be a set, and let S be a
set variable with domain D(S) = [∅, V]. Then D(S) is the power set of V , i.e.,
it contains all possible subsets of V .

Let X = {x1, x2, . . . , xk} be a set of variables. A constraint C on X is defined
as a subset of the Cartesian product of the domains of the variables in X , i.e.,
C ⊆ D(x1) × D(x2) × · · · × D(xk). We say that X is the scope of C. A tuple
(d1, . . . , dk) ∈ C is called a solution to C. We also say that the tuple satisfies
C. C is inconsistent if it does not contain a solution. Otherwise, C is called
consistent.

Sometimes a constraint C is defined on variables X together with a certain set
of parameters p. In such cases, we denote the constraint as C(X, p) for syntactical
convenience, while admissible tuples are still of size |X |.

Next we introduce open constraints. For the purpose of this paper, we define a
constraint to be open when its scope is the domain of a set variable whose domain
values are sets of variables. The explicit representation of the domain of this set
variable reflects that the constraint lives in a closed world. For example, let X
be a set of variables and let S be a set variable with domain D(S) = [∅, X]. The
constraint C(D(S)) is an open constraint, whose scope depends on the actual
instantiation of S. We also write C(S) as a shorthand for C(D(S)), if there is
no confusion.

A constraint satisfaction problem, or a CSP, is defined by a finite set of vari-
ables X , together with a finite set of constraints C, each on a subset of X . The
goal is to find an assignment x = d with d ∈ D(x) for all x ∈ X , such that all
constraints are satisfied simultaneously. This assignment is called a solution to
the CSP. Note that by using set variables to define the scope of open constraints,
we maintain this common definition of a CSP.

The solution process of constraint programming interleaves constraint prop-
agation, and search. The search process essentially consists in enumerating all
possible combinations of variable domain values, until we find a solution to the
CSP or prove that none exists. We say that this process constructs a search tree.
To reduce the exponential number of combinations, we filter the domains of the
variables and propagate this information through all constraints:

Given the current domains and a constraint C, remove domain values
that do not belong to a solution to C. This is repeated for all constraints
until no more domain values can be removed.

We typically apply constraint propagation at each node in the search tree. In
order to be effective, filtering algorithms should be efficient, because they are
applied many times during the solution process. Furthermore, they should re-
move as many domain values that are not part of a solution as possible. If a
filtering algorithm for a constraint C removes all such values from the domains
with respect to C, we say that it makes C domain consistent:

Definition 1 (domain consistency). A constraint C on the variables x1, x2,
. . . , xk is called domain consistent if for each variable xi and each domain value

Open Constraints in a Closed World 247

di ∈ D(xi) (i = 1, . . . , k), there exists a domain value dj ∈ D(xj) for all j �= i
such that (d1, . . . , dk) ∈ C.

In the literature, domain consistency is also referred to as hyper-arc consistency
or generalized-arc consistency. Note that domain consistency does only guarantee
that each individual constraint contains a solution; it does not guarantee that
the CSP has a solution.

If we make an open constraint C(S) domain consistent, we should remove
from the domain of S all sets s of variables for which C(s) has no solution. As
set variables are only represented by an interval, we use bounds consistency for
this purpose instead:

Definition 2 (bounds consistency). An open constraint C on the set vari-
ables S1, S2, . . . , Sk is called bounds consistent if for each Si and each si ∈
{min Si, maxSi} (i = 1, . . . , k), there exist sets sj ∈ [minSj , maxSj] for all
j �= i such that C(s1, . . . , sk) has a solution.

Rather than filtering the domain of the set variable S, however, we would like
to filter the domain of the actual variables that appear in any instantiation of
S. Hence, we next introduce a slight variant of domain consistency for open
constraints that captures exactly this:

Definition 3 (set-domain consistency). An open constraint C(S) is called
set-domain consistent if for each variable x ∈ {y | y ∈ s, s ∈ D(S)} and all
domain values d ∈ D(x) there exists a set s′ ∈ D(S) with x ∈ s′ such that x = d
belongs to a solution of C(s′).

By introducing this notion of set-domain consistency, we separate the filtering of
the set variable S and the variables that appear in its domain. An open constraint
C(S) can hence be made set-domain consistent, while C(S) itself may not be
bounds consistent.

2.2 Flow Theory

In this section we present some concepts of flow theory that are necessary to
understand this paper. For more information on flow theory we refer to [1].

Let G = (V, A) be a directed graph, or digraph, with vertex set V and arc set
A. Let s, t ∈ V . A function f : A → R is called a flow from s to t, or an s-t
flow, if

(i) f(a) ≥ 0 for each a ∈ A, and
(ii) f(δout(v)) = f(δin(v)) for each v ∈ V \ {s, t},

where δin(v) and δout(v) denote the multiset of arcs entering and leaving v,
respectively. Here f(S) =

∑
a∈S f(a) for all S ⊆ A. Property (ii) ensures flow

conservation, i.e., for a vertex v �= s, t, the amount of flow entering v is equal to
the amount of flow leaving v.

As we will always consider s-t flows in this paper, we will often speak of a flow
instead of s-t flow, for convenience. Furthermore, we say that an arc a belongs
to a flow if f(a) > 0.

248 W.-J. van Hoeve and J.-C. Régin

Let d : A → R+ and c : A → R+ be a “demand” function and a “capacity”
function, respectively1. We say that a flow f is feasible if d(a) ≤ f(a) ≤ c(a) for
each a ∈ A.

Let f be an s-t flow in G. The residual graph of G with respect to f, c and d
is defined as Gf = (V, Af) where for each (u, v) ∈ A,

if f(u, v) < c(u, v) then (u, v) ∈ Af with residual demand max{d(u, v) −
f(u, v), 0} and residual capacity c(u, v)− f(u, v), and

if f(u, v) > d(u, v) then (v, u) ∈ Af with residual demand 0 and residual
capacity f(u, v)− d(u, v).

Finally, a digraph G = (V, A) is strongly connected if for any two vertices u, v ∈ V
there is a directed path from u to v. A maximally strongly connected non-empty
subgraph of a digraph G is called a strongly connected component of G.

3 Open Global Cardinality Constraints

A global cardinality constraint (gcc) on a set of variables specifies for each domain
value in the union of their domains an upper and lower bound to the number of
variables that are assigned to this value:

Definition 4 (global cardinality constraint). Let X = {x1, . . . , xn} be a set
of variables, and let ld, ud ∈ N for all d ∈ D(X). Then

gcc(X, l, u) = {(d1, . . . , dn) | ∀i ∈ {1, . . . , n} di ∈ D(xi),
∀d ∈ D(X) ld ≤ |{di | di = d}| ≤ ud}.

A special case of the gcc is the alldifferent constraint, which specifies that
all variables should be pairwise different. If we set ld = 0 and ud = 1 for all
d ∈ D(X), the gcc is equal to the alldifferent constraint. A filtering algorithm
for the gcc, establishing domain consistency, was developed in [7], making use
of network flows.

3.1 A Single Open Global Cardinality Constraint

We first consider the case of a single open gcc. In order to filter this constraint,
we compute a flow in a particular graph, similar to the filtering of the original
(closed) gcc [7].

Let X be a set of variables, and let S be a set variable with domain [L, U],
such that L ⊆ U ⊆ X . Let gcc(S, l, u) be the open gcc under consideration. We
build the following graph. The vertex set of the graph is composed of U , D(U),
a source s, and a sink t. The arc set is composed of:

– Arcs (s, x) for all x ∈ U with capacity 1. If x ∈ L, then this arc has demand
1, otherwise its demand is 0.

– Arcs (x, d) for all x ∈ U , d ∈ D(x) with demand 0 and capacity 1,
– Arcs (d, t) for all d ∈ D(U), with demand ld and capacity ud.

1 Here R+ denotes {x ∈ R | x ≥ 0}.

Open Constraints in a Closed World 249

x3

x2

x4

1x

t

0

s

1

3

2(0,1)

(1
,1)

(1,1)

(0,1)

Fig. 1. Graph representation for the gcc of Example 1. For the (s, xi) arcs, the demand
d and capacity c is explicitly given as (d, c). All other arcs have demand 0 and capacity 1.

Call the resulting graph Gsingle. We have the following result:

Theorem 1. A feasible integer flow in Gsingle corresponds to a solution to gcc(S,
l, u) and vice versa.

Proof. Let f be a feasible integer flow in Gsingle. We construct a solution to
gcc(S, l, u) by defining S = {x | f(s, x) = 1} and x = d for all x ∈ S, d ∈ D(x)
with f(x, d) = 1.

Conversely, given a solution to gcc(S, l, u) we construct a feasible integer flow
f in Gsingle by defining

for all x ∈ U : f(s, x) = 1 if x ∈ S, and f(s, x) = 0 otherwise,
for all x ∈ U and d ∈ D(x): f(x, d) = 1 if x = d, and f(x, d) = 0 otherwise,
for all d ∈ D(U): f(d, t) = |{x | x ∈ S, x = d}|. �

Example 1. Let X = {x1, x2, x3, x4} be a set of variables with integer domains:
x1 ∈ {0, 1}, x2 ∈ {0, 1, 2}, x3 ∈ {1, 2}, and x4 ∈ {1, 2, 3}. Let S ∈ [{x1, x2}, X]
be a set variable. Furthermore, let ld = 0 and ud = 1 for all d ∈ {0, 1, 2, 3}.

The graph representation for the constraint gcc(S, l, u) is presented in Fig-
ure 1. In fact, this gcc corresponds to an alldifferent constraint for this choice
of l and d. Note that the demand of the arcs (s, x1) and (s, x2) is 1, because S
must include {x1, x2}.

By applying Theorem 1, we get the following result:

Corollary 1. The constraint gcc(S, l, u), where S ∈ [L, U], is set-domain con-
sistent if and only if for all x ∈ U and d ∈ D(x), there exists an arc (x, d) with
d ∈ D(x) that belongs to a feasible integer flow in Gsingle.

The proof is immediate because there is a one to one correspondence between a
solution of gcc(S, l, u) and a feasible flow in Gsingle.

Corollary 1 gives rise to a set-domain consistency algorithm, similar to the
original (closed) gcc. First, we compute an initial feasible integer flow f in Gsingle.

250 W.-J. van Hoeve and J.-C. Régin

This can be done in O(nm) time, where n = |U | and m =
∑

x∈U D(x). If f does
not exist, the constraint is not consistent. Otherwise, we identify and remove all
arcs (x, d) that do not belong to any feasible integer flow. As indicated by [7],
inconsistent arcs are exactly those that do not belong to a strongly connected
component in the residual graph (Gsingle)f . Computing the strongly connected
components of (Gsingle)f can be done in O(n + m) time [9], where n and m are
defined as above. Moreover, our algorithm is incremental. When k variables have
changed their value, we can recompute the flow in O(km) time and re-establish
domain consistency in O(n + m) time.

3.2 The Conjunction of Open Global Cardinality Constraints

Next we consider a more general problem; the conjunction of several open gccs.
First, consider the following motivating example.

Example 2. Let X = {x1, x2, x3, x4, x5} be a set of variables with integer do-
mains: x1 ∈ {0, 1}, x2 ∈ {0, 1}, x3 ∈ {0, 1}, x4 ∈ {0, 1} and x5 ∈ {0, 1, 2, 3, 4, 5}.
Let S1 ∈ [∅, X] and S2 ∈ [∅, X] be set variables. We define the following con-
junction of constraints:

alldifferent(S1) ∧
alldifferent(S2) ∧
(S1 ∪ S2) = X ∧
(S1 ∩ S2) = ∅.

(1)

Here alldifferent(S1) and alldifferent(S2) are open constraints, as they are
defined on the domain of set variables whose domain values are sets of variables.

From conjunction (1) we are able to deduce that

2 ≤ |S1| ≤ 3,
2 ≤ |S2| ≤ 3,
x5 ∈ {2, 3, 4, 5}.

Namely, as x1, x2, x3 and x4 all have domain {0, 1}, no more than two of them can
appear in one alldifferent constraint. Since we need to include all variables
into both constraints, we have that 2 ≤ |S1| ≤ 3 and 2 ≤ |S2| ≤ 3. Moreover, each
alldifferent constraint will involve exactly two variables from {x1, x2, x3, x4},
and the variables x1, x2, x3 and x4 will saturate the values 0 and 1 in both all-
different constraints. Hence those values are removed from the domain of x5.

Our general problem is the conjunction of k open gccs. Let X be a set of vari-
ables, and let S1, S2, . . . , Sk be set variables, with respective domains [Li, Ui],
such that Li ⊆ Ui ⊆ X (i = 1, . . . , k). The conjunction of k open gccs is de-
fined as: ⋂

1≤i≤k

gcc(Si, l
i, ui), (2)

where lid, u
i
d ∈ N for all d ∈ D(X) and i = 1, . . . , k.

Open Constraints in a Closed World 251

If the set variables S1, S2, . . . , Sk are not constrained, there is not much that
can be deduced. We know that, for 1 ≤ i ≤ k,∑

d∈D(X)

lid ≤ |Si| ≤
∑

d∈D(X)

ui
d,

but in general this is not sufficient to make further deductions with respect to
the domains of the variables. Hence, we impose additional constraints on the set
variables. In particular we distinguish the following four cases and combinations
thereof:

(
⋃

1≤i≤k

Si) = X, (3)

(
⋃

1≤i≤k

Si) ⊂ X, (4)

∀1≤i<j≤k Si ∩ Sj = ∅, (5)
∃1≤i<j≤k Si ∩ Sj �= ∅. (6)

For example, the combination of (3) and (5) restricts the set variables to be a
partition of X . In the remainder of this paper we will study filtering algorithms
for the conjunction of k open gccs, in combination with one or more of the
constraints (3) up to (6).

4 Disjoint Set Variables

In this section, we present an efficient set-domain consistency filtering algorithm
for k open gccs together with restriction (5), i.e., all set variables should be
pairwise disjoint. Our work is based on the domain consistency filtering algorithm
for the single gcc as developed in [7], and an extension of the algorithm presented
above for a single open gcc.

Again, we base our algorithm on finding a flow in a particular graph. The key
observation is that for each open gcc, one duplicates the corresponding variables
and domain values, and associates the corresponding lower and upper bounds to
each domain value. This allows us to build a graph similar to the graph of a single
gcc, and also to apply similar efficient flow algorithms to establish set-domain
consistency.

We build our graph as follows; see Figure 2 for a schematic representation. In
order to distinguish variables in different open gccs, we duplicate every variable
x ∈ Ui as xi, for i ∈ {1, . . . , k}, and denote the respective set of variables by
X i. We also duplicate the domain values D(X) as D1(X), . . . , Dk(X). Then the
vertex set of the graph is composed of X , X1, . . . , Xk, D1(X), . . . , Dk(X), a
source s, “intermediate sinks” t1, . . . tk and a sink t. The arc set is composed of:

– arcs (s, x) for all x ∈ X , with demand 0 and capacity 1,
– arcs (x, xi) for all i ∈ {1, . . . , k} and x ∈ Li, with demand 1 and capacity 1,

252 W.-J. van Hoeve and J.-C. Régin

2X 2()XD

kt

2t

1X 1()XD 1t

kX k()XD
. . .

. . .

. . .
s tX

Fig. 2. Schematic graph representation for the conjunction of k open gccs

– arcs (x, xi) for all i ∈ {1, . . . , k} and x ∈ Ui \ Li, with demand 0 and capac-
ity 1,

– arcs (xi, d) for all i ∈ {1, . . . , k}, x ∈ Ui and d ∈ Di(x), with demand 0 and
capacity 1,

– arcs (d, ti) for all i ∈ {1, . . . , k} and d ∈ Di(X), with demand lid and capac-
ity ui

d,
– arcs (ti, t) for all i ∈ {1, . . . , k}, with demand |Li| and capacity |Ui|.

Call the resulting graph G. Note that we may actually omit arcs (x, xi) if x ∈
Lj for some j �= i. This follows from the disjointness of the set variables. We
nevertheless prefer the above description, because it can be easily extended to
the non-disjoint case, as we will see in Section 5.

We have the following result:

Theorem 2. A feasible integer flow in G corresponds to a solution to the con-
junction of (2) and (5) and vice versa.

Proof. Let f be a feasible integer flow in G. We construct a solution to the
conjunction of (2) and (5) by defining Si = {x | f(x, xi) = 1} (1 ≤ i ≤ k) and
x = d for all x ∈ X, d ∈ D(x) with f(xi, d) = 1 for some i ∈ {1, . . . , k}.

Conversely, given a solution to the conjunction of (2) and (5), we construct a
feasible integer flow f in G by defining

for all x ∈ X : f(s, x) = 1 if x ∈ Si for some i ∈ {1, . . . , k}, and f(s, x) = 0
otherwise,

for all x ∈ X and i ∈ {1, . . . , k}: f(x, xi) = 1 if x ∈ Si, and f(x, xi) = 0
otherwise,

Open Constraints in a Closed World 253

for all x ∈ X , i ∈ {1, . . . , k} and d ∈ Di(x): f(xi, d) = 1 if (x = d) ∧ (x ∈ Si),
and f(xi, d) = 0 otherwise,

for all i ∈ {1, . . . , k} and d ∈ Di(X): f(d, ti) = |{x | x ∈ Si, x = d}|,
for all i ∈ {1, . . . , k}: f(ti, t) = |{x | x ∈ Si}|. �

Notice that if Li ∩Lj �= ∅ for some i �= j, there is no feasible flow in G, because
the demand requirements on the arcs involving Si and Sj cannot be fulfilled.

An illustration applied to Example 2 is given in Figure 3. In Figure 3.a we
present the graph G corresponding to this example. In Figure 3.b we present a

0

1

2

3

4

5

t

1t

1
L

(|
| , |U

1 |)

2L
(|

| ,
 |

U 2
|)0

1

2

3

4

5

x2
1

1
1x

x3
1

x4
1

x5
1

x2
2

2
1x

x3
2

x4
2

x5
2

x2

x3

x4

x5

1x

s

2t

a. Graph representation.

t

1t

0

1

2

3

4

5

0

1

2

3

4

5

x2
1

1
1x

x3
1

x4
1

x5
1

x2
2

2
1x

x3
2

x4
2

x5
2

x2

x3

x4

x5

1x

s

2t

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 3

2

1

1

1

1

1

b. Feasible flow.

t

1t

0

1

2

3

4

5

x2
2

2
1x

x3
2

x4
2

x5
2

x2

x3

x4

x5

1x

x2
1

1
1x

x3
1

x4
1

x5
1

2t

s

0

1

2

3

4

5

(0
,1

)

(0,1)

c. Residual graph.

0

1

2

3

4

5

t

1t

1
L

(|
| , |U

1 |)

2L
(|

| ,
 |

U 2
|)0

1

2

3

4

5

x2
2

2
1x

x3
2

x4
2

x5
2

x2

x3

x4

x5

1x

s

x2
1

1
1x

x3
1

x4
1

x5
1

2t

d. Graph after filtering.

Fig. 3. Graph representation for the conjunction of alldifferent(S1) and alldiff-
erent(S2) on disjoint set variables S1 and S2, where S1 ∪ S2 = {x1, x2, x3, x4, x5}
(following Example 2). Arcs (t1, t) and (t2, t) have demand and capacity determined
by the cardinality of the lower bounds L1, L2 and upper bounds U1, U2 of the respective
set variables. All other arcs have demand 0 and capacity 1.

254 W.-J. van Hoeve and J.-C. Régin

feasible flow in G, corresponding to the solution S1 = {x1, x2, x5}, S2 = {x3, x4},
x1 = 0, x2 = 1, x3 = 0, x4 = 1 and x5 = 5.

By applying Theorem 2, we get the following result.

Corollary 2. The conjunction of (2) and (5) is set-domain consistent if and
only if for all x ∈ X and d ∈ D(x), there exists an arc (xi, d) with d ∈ Di(x)
for some 1 ≤ i ≤ k, that belongs to a feasible integer flow in G.

The proof follows from the one to one correspondence between a solution of the
conjunction of (2) and (5), and a feasible flow in G. Note that Theorem 2 does
not consider the set variables on which the gccs are defined. We will deal with
them in Section 6.

Similar to the above single open gcc, we apply Corollary 2 to design a set-
domain consistency algorithm. First, we compute an initial feasible integer flow f
in G. This can be done in O(nm) time, where n = |X | and m = k ·

∑
x∈X D(x).

If f does not exist, the conjunction is not consistent. Otherwise, we identify
and remove all arcs (xi, d) that do not belong to any feasible integer flow. Note
however, that one arc (xi, d) with d ∈ Di(x) for some 1 ≤ i ≤ k is already
sufficient to make d ∈ D(X) consistent. Again, inconsistent arcs are exactly
those that do not belong to a strongly connected component in the residual
graph Gf . Computing the strongly connected components of Gf can again be
done in O(n+m) time, where n and m are defined as above. Also this algorithm
is incremental. When l variables have changed their value, we can recompute the
flow in O(lm) time and re-establish domain consistency in O(n + m) time.

As an example, consider again Figure 3. In Figure 3.c we show the residual
graph with respect to the flow given in Figure 3.b. Figure 3.d shows the graph
after filtering, i.e., all inconsistent arcs are removed.

5 Non-disjoint Set Variables

We next study the conjunction of k open gccs together with restriction (6), i.e.,
the set variables are allowed to be non-disjoint.

Unfortunately, establishing set-domain consistency in this case is an NP-
complete problem. Namely, in [3], it is proved that establishing domain con-
sistency on the conjunction of alldifferent constraints on overlapping sets of
variables is NP-complete. As the alldifferent constraint is a special case of
the gcc, their result immediately implies that our task is NP-complete. To over-
come the NP-completeness, we propose to relax the requirement of establishing
set-domain consistency.

We use the same graph representation as in the previous section, with one
modification. In the previous section, the graph representation does not allow
a variable to appear in several gccs. Namely, because the capacity of the arcs
(s, x) for x ∈ X is 1, each variable can be assigned to at most one value in
D1(X), . . . , Dk(X). This means that each variable can only occur in a single
open gcc. We relax this by defining the capacity of the arcs (s, x) to be k. On
the positive side, this allows a variable to occur in several open gccs at the same

Open Constraints in a Closed World 255

time, which yields a filtering method for the non-disjoint case. On the negative
side, a variable may take different values in different gccs, which is likely to
weaken the filtering. With this modification, however, we can apply the same
efficient algorithm as in the previous section.

6 Filtering the Set Variables

In this section we consider the filtering of the set variables on which the open
constraints are defined. As stated earlier, we would like to establish bounds
consistency with respect to these variables.

Consider again the conjunction of k open gccs (2) and restriction (5), i.e., the
constraints are defined on disjoint sets of variables. We can use the graph G to
establish bounds consistency on the set variables S1, . . . , Sk as well. To this end,
we apply the following three rules for all 1 ≤ i ≤ k:

i) when there is no arc between xi and Di(X), then x is removed from Si, i.e.,
Ui := Ui − x,

ii) when there are only arcs between xi and Di(X), and f(x, xi) = 1 for all
feasible flows f , then x is added to Si, i.e., Li := Li + x,

iii) |Li|≥min{f(ti, t) | f feasible flow} and |Ui|≤max{f(ti, t) | f feasible flow}.

When we apply these rules, we know by Theorem 2 that we have established
bounds consistency with respect to the set variables. The application of the
above three rules can be done in O(k2nm) time, by subsequently computing
minimum and maximum flows.

7 Extension

In the above, we have focused on conjunctions of gccs because of their generality
and applicability to real-life problems with open constraints. The results can
easily be extended to similar cases, however.

7.1 Optimization Constraints

A first extension is to apply our technique to optimization constraints. For exam-
ple, consider a conjunction of open weighted global cardinality constraints [8]. In
that case, a weight is assigned to each pair (x, d), for all x ∈ X and d ∈ D(X).
Then a solution to the problem induces a weight, defined by the sum of the
weight of the pairs (x, d) if x = d is in the solution. The aim is to find a solution
with minimum total weight.

We can handle this case similar to the original filtering algorithm for weighted
gccs [8]. With each arc (xi, d), for all x ∈ X i (i = 1, . . . , k) and d ∈ D(x) in G,
we associate a cost that is equal to the weight of this pair. Then a solution to
the conjunction of open weighted gccs corresponds to a minimum-cost feasible
flow in the graph. Hence, the cost-based version of our filtering algorithm is
immediate.

256 W.-J. van Hoeve and J.-C. Régin

7.2 Soft Constraints

Soft constraints can be viewed as special optimization constraints. A number of
soft global constraints can be represented by a flow in a graph, similar to the
gcc, see [6]. In this case, rather than associating a cost to an arc (x, d), for all
x ∈ X i (i = 1, . . . , k) and d ∈ D(x), costs may appear on “any” arc in the graph.
We can again apply the same machinery as for the open weighted gccs to open
soft global constraints.

7.3 Mixture

Finally, it is also possible to apply our results to a mixture of open constraints,
provided that they are reasonably compatible. For example, we can group to-
gether open alldifferent constraints and open gccs in one conjunction. An-
other example is to join together open soft gccs and open weighted alldiffer-
ent constraints.

8 Conclusion

For the first time, we have proposed filtering algorithms for open global con-
straints. We have in particular studied open global cardinality constraints and
conjunctions of them. We have proposed an efficient filtering algorithm, based
on techniques from flow theory, establishing set-domain consistency, when the
constraints are defined on disjoint sets of variables. In case the constraints are
defined on non-disjoint sets of variables, this task becomes NP-complete. For
that case we have proposed a weaker, but efficient, filtering algorithm. We have
also presented a bounds consistency filtering algorithm for the set variables that
underly these open constraints. Finally, we have shown how to extend our results
to other conjunctions of open constraints, for example optimization constraints
and soft global constraints.

References

1. R.K. Ahuja, T.L. Magnanti, and J.B. Orlin. Network Flows. Prentice Hall, 1993.
2. R. Barták. Dynamic Global Constraints in Backtracking Based Environments. An-

nals of Operations Research, 118(1–4):101–119, 2003.
3. K. Elbassioni, I. Katriel, M. Kutz, and M. Mahajan. Simultaneous matchings. In

X. Deng and D. Du, editors, Proceedings of the 16th Annual International Sympo-
sium on Algorithms and Computation (ISAAC 2005), volume 3827 of LNCS, pages
106–115. Springer, 2005.

4. B. Faltings and S. Macho-Gonzalez. Open Constraint Satisfaction. In P. Van Hen-
tenryck, editor, Proceedings of the 8th International Conference on Principles and
Practice of Constraint Programming (CP 2002), volume 2470 of LNCS, pages 356–
370. Springer, 2002.

5. B. Faltings and S. Macho-Gonzalez. Open Constraint Programming. Artificial
Intelligence, 161(1–2):181–208, 2005.

Open Constraints in a Closed World 257

6. W.-J. van Hoeve, G. Pesant, and L.-M. Rousseau. On Global Warming: Flow-Based
Soft Global Constraints. Journal of Heuristics, 2006. To appear.

7. J.-C. Régin. Generalized Arc Consistency for Global Cardinality Constraint. In
Proceedings of AAAI/IAAI, volume 1, pages 209–215. AAAI Press/The MIT Press,
1996.

8. J.-C. Régin. Cost-Based Arc Consistency for Global Cardinality Constraints. Con-
straints, 7:387–405, 2002.

9. R. Tarjan. Depth-first search and linear graph algorithms. SIAM Journal on Com-
puting, 1:146–160, 1972.

Conditional Lexicographic Orders in Constraint
Satisfaction Problems�

Richard J. Wallace and Nic Wilson

Cork Constraint Computation Center and Department of Computer Science
University College Cork, Cork, Ireland

{r.wallace, n.wilson}@4c.ucc.ie

Abstract. The lexicographically-ordered CSP (“lexicographic CSP” for short)
combines a simple representation of preferences with the feasibility constraints of
ordinary CSPs. Preferences are defined by a total ordering across all assignments,
such that a change in assignment to variable k is more important than any change
in assignment to any variable that comes after it in the ordering. In this paper,
we show how this representation can be extended to handle conditional prefer-
ences. This can be done in two ways. In the first, for each conditional preference
relation, the parents have higher priority than the children in the original lexico-
graphic ordering. In the second, the relation between parents and children need
not correspond to the basic ordering of variables. For problems of the first type,
any of the algorithms originally devised for ordinary lexicographic CSPs can also
be used when some of the domain orderings are dependent on the assignments to
“parent” variables. For problems of the second type, algorithms based on lexical
orders can be used if the representation is augmented by variables and constraints
that link preference orders to assignments. In addition, the branch-and-bound al-
gorithm originally devised for ordinary lexicographic CSPs can be extended to
handle CSPs with conditional domain orderings.

1 Introduction

An important contribution of artificial intelligence to the study of preferences has been
the development of methods for representing and handling conditional preferences. This
work assumes that preference orderings are often context-dependent. Once one consid-
ers preferences in this way, many examples spring to mind. To take one such: what
I prefer to eat may depend on the country I am in, especially if I am inclined to ‘go
native’. So in Spain I may prefer paella and tortillas, while in Germany I may prefer
bratwurst and sauerkraut.

The most widely discussed representation of conditional preferences is the “CP-net”,
which is characterized by ceteris paribus conditions on preferences between the differ-
ent values of a feature [1] [2]. In the present work we describe an alternative repre-
sentation based on lexicographic orders. On the one hand, this representation is rather
rigid in that it requires a strict priority ordering on the variables (which is not essen-
tial for CP-nets), and requires total orders on variable domains. On the other hand, in

� This work received support from Science Foundation Ireland under Grant 00/PI.1/C075.

J.C. Beck and B.M. Smith (Eds.): CPAIOR 2006, LNCS 3990, pp. 258–272, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Conditional Lexicographic Orders in Constraint Satisfaction Problems 259

many cases a user may be willing to supply such inputs, and it leads to a much more
decisive system, and one which is computationally simpler. Moreover, as we show here,
conditional lexicographic orders can support conditionalities that oppose the priority or-
dering. This is in contrast to CP-nets or to to TCP-nets, an extension of CP-nets which
allows some priority ordering on the variables. These alternative representations, there-
fore, have different strengths and limitations, and each may have applications where it
is more useful.

In this work, conditional preferences are studied in the context of constraint satisfac-
tion problems (CSPs). This means that outcomes are “framed” in relation to domains
of values associated with distinct variables (cf. [3]). As with CP-nets, this allows us to
specify conditions of preferential independence and conditional preferential indepen-
dence between values in different domains.

In earlier work, we investigated lexicographic orderings incorporated into a standard
CSP representation, which we termed the lexicographically ordered CSP [4]. This is a
special kind of soft constraint system in which a lexicographic ordering is imposed on
complete assignments, based on orderings of variables and domain values. In this case,
variable selection is the primary factor and value assignment is secondary. This means
that a good assignment for a more-preferred variable is more important than a good
assignment for a less-preferred variable in deciding the overall ranking of solutions. The
preference ordering is assumed to be independent of any constraints that hold among
these variables. The latter, therefore, restrict the alternatives given by an ideal preference
ordering to those that can be realized.

Lexicographic CSPs represent problems in which preferences involve multiple ob-
jectives and attributes and where feasibility constraints impose restrictions on assign-
ments that are actually possible. From the point of view of representation as well as
computation they offer significant benefits. This is partly because of the radical decou-
pling of the preference structure from the feasibility conditions [4], which allows users
to concentrate on their preferences without regard to feasibility constraints, which they
may not know or understand. A similar argument has been made by [5] in connection
with CP-nets.

When this form of lexicographic ordering is extended to conditional lexicographic
orders, the same type of ordering holds as in ordinary lexicographic CSPs, but domain
orderings are conditional on assignments chosen from other domain. We consider two
important classes of conditional lexicographic CSPs. In the first, conditionalities respect
the priority ordering of the variables; in the second, they do not. Despite complications
engendered in the latter case, the basic algorithmic strategies devised for ordinary (un-
conditional) lexicographic CSPs can be extended to handle these problems.

As a motivating (and clarifying) example, consider a situation in which a customer
is deciding among vacations. There are two seasons when he can travel: spring and
summer. For simplicity, we consider only two locations: Naples and Helsinki. In the first
scenario (first type of conditional lexicographic ordering), location is more important
than time of travel and the preferred season depends on the location chosen. This is
shown in Figure 1a, where following [1], the conditional preference is represented as
a conditional preference table. The preference statement Naples: spring $ summer,

260 R.J. Wallace and N. Wilson

for example, means that if Naples is chosen, then spring is preferred to summer. The
associated preference ordering is:

〈 Naples, spring 〉 $ 〈 Naples, summer 〉 $ 〈 Helsinki, summer 〉 $ 〈 Helsinki, spring 〉

In the second scenario, location is again the primary feature, but the preference for
location depends on the city chosen. Thus, our customer prefers Naples in the spring
and Helsinki in the summer, and a vacation in spring is preferred over summer. The
customer’s input preferences do not tell us whether the location is better in scenario
〈 Naples, spring 〉 or in scenario 〈 Helsinki, summer 〉. We choose in this example to in-
terpret this as the scenarios being equally good as far as location is concerned, while
the former scores better on the season criterion; more generally, the customer could be
asked to give these comparisons explicitly. In this case, the preference ordering is:

〈 Naples, spring 〉 $ 〈 Helsinki, summer 〉 $ 〈 Helsinki, spring 〉 $ 〈 Naples, summer 〉

{Naples,Helsinki} � Naples Helsinki

�
{spring,summer} � Naples: spring summer

Helsinki: summer spring

a.

{Naples,Helsinki} � spring: Naples Helsinki
summer: Helsinki Naples

�
{spring,summer} � spring summer

b.

Fig. 1. Examples of conditional lexicographic preference orderings. As with CP-nets, a directed
graph represents conditional preference relations among variables. Conditional preference tables
are on the right. In both cases, the more important variable is above the less important one. In (a)
the conditionality is consistent with relative importance; in (b) the two are opposed.

To summarise, lexicographically ordered CSPs have some appealing features: the
simplicity of the inputs, the decisiveness of the ordering, and the fact that they support
efficient solving methods. The decoupling of preferences and feasibility constraints is
also quite intuitive. The present paper shows that this formulation can be extended to
conditional preferences, which are natural in many situations. This combines the ex-
pressiveness of CP-nets (and related formalisms) with the simplicity and relative effi-
ciency of lexicographically ordered CSPs.

In the remainder of the paper, Section 2 defines lexicographic CSPs and CSPs with
conditional lexicographic orders, and discusses relations with general soft constraint
representations. Section 3 discusses relations with CP-nets and TCP-nets. Section 4
considers algorithms for simple conditional lexicographic CSPs, Sections 5 and 6 for
extended conditional lexicographic CSPs. Section 7 gives some experimental results.
Section 8 gives conclusions.

Conditional Lexicographic Orders in Constraint Satisfaction Problems 261

2 Background and Definitions

2.1 Lexicographic and Conditional Lexicographic CSPs

Definition 1. Lexicographic CSP. A finite CSP is defined in the usual way as a triple
〈V, D, C〉, where V is a set of variables, D is a set of domains each of which is asso-
ciated with a member of V , and C is a set of constraints, or relations holding between
subsets of variables.

To specify a CSP as lexicographic, we introduce the following definitions. A la-
belling of set V is a bijection between {1, . . . , |V |} and V . A lexicographic structure L
over V is a pair 〈λ, {>X : X ∈ V }〉, where the second component is a family of total
orders, with >X being a total order on the domain of X , and λ is a labelling of V . We
write λ(i) as Xi, so that the ordering of the variables is X1, . . . , Xn. The associated
lexicographic order >L on (complete) assignments is defined as follows: α >L β if
and only if α �= β and α(Xi) >Xi β(Xi), where Xi is the first variable (i.e., with
minimum i) such that α and β differ.

A lexicographic CSP is a tuple 〈V, D, C, λ, {>X : X ∈ V }〉, where 〈V, D, C〉 is a
finite CSP and 〈λ, {>X : X ∈ V }〉 is a lexicographic structure over V .

A solution to a lexicographic CSP is the unique assignment α such that

(i) α is a satisfying assignment, that is, it is consistent with, or satisfies, all constraints
in C, and

(ii) α >L β for any other satisfying assignment β.

The lexicographically-ordered CSP is a special case of the “lexicographic CSP” or
“lex-VCSP” as defined in [6]. As these authors show, lex-VCSPs are in turn equivalent
to a kind of weighted CSP. However, because of the character of the ordering in our
case, we do not need to represent preferences numerically, and we can build up par-
tial solutions correctly without reference to numerical operations such as addition. So,
while we follow [6] in using the term “lexicographic CSP”, we are designating a very
special case of the class they describe, with implications both for its usefulness as a rep-
resentation in the context of preferences and its ability to support efficient algorithms.
For this reason, we also retain the term “lex-VCSP”, using it to refer to the more general
category of CSPs whose evaluations can be ordered lexicographically.

We can embed a lexicographic ordering within a weighted CSP framework:

Lexicographic CSP as a weighted CSP. For each i = 1, . . . , n we define a unary
weighted constraint Wi over variable Xi, given by Wi(x) = kbn−i, where x is the kth
best value in the domain of Xi and b is the largest domain size. Then for assignments
α and β, the sum of weights associated to α is less than the sum associated to β if and
only if α >L β.

Similar embeddings can be used for the conditional lexicographic and extended con-
ditional lexicographic cases.

Definition 2. Conditional lexicographic CSP. A conditional lexicographic network
over V is defined as a tuple K = 〈λ, G, CPT 〉, where λ is a labelling of V , with λ(i)
being written Xi, and G is a directed acyclic graph on V which is compatible with λ,

262 R.J. Wallace and N. Wilson

i.e., (Xi, Xj) ∈ G implies i < j. If (Xi, Xj) ∈ G then Xi is said to be a parent of Xj

(and Xj is a child of Xi)). CPT is a function which associates a conditional preference
table CPT (X) to each X ∈ V . As in CP-nets [2], each conditional preference table
CPT (Xi) associates a total order >Xi

u with each instantiation u of the parents Ui of Xi

(with respect to G). The associated conditional lexicographic order$K on assignments
is defined as follows: α $K β if and only if α �= β and α(Xi) >Xi

u β(Xi), where Xi

is the first variable (i.e., with smallest i) such that α(Xi) �= β(Xi), and u = α(Ui)
(which also equals β(Ui)). It is easily seen that $K is a total order on assignments.
In this definition, it is essential that the graphical structure G is compatible with the
importance ordering of the variables λ, as this ensures that α(Ui) = β(Ui) in the above
definition.

2.2 Extended Conditional Lexicographic Orders

Definition 3. Conditional lexicographic CSP with extended conditional preference
orders. An extended conditional preference network involves, like a conditional pref-
erence network, a directed graph G and a labelling λ which represents an ordering
X1, . . . , Xn of the variables. It also involves, for each variable Xi, a function Qi which
assigns a number Qi(x, u) for every value x of Xi and assignment u to Ui, where Ui

is defined to be the set of parents of Xi with respect to graph G. If α is a complete
assignment, we write also Qi(α) for Qi(α(Xi), α(Ui)), where e.g., α(Xi) is the value
that α assigns to Xi.

The associated ordering, the extended conditional preference order is then defined
as follows: to compare complete assignments α and β we find the first Xi (i.e., with
smallest i) such that Qi(α) is not equal to Qi(β); if Qi(α) is less than Qi(β), we prefer
α to β; else we prefer β to α. If, on the other hand, there exists no such Xi—so that
for all i = 1, . . . , n, Qi(α) = Qi(β)—then α and β are equivalent with respect to the
ordering; neither is (strictly) preferred to the other. We write α $E β if α is strictly
preferred to β, and we write α �E β if α is either strictly preferred to β, or α and β are
equivalent. So α $E β holds if and only if β ��E α.

Another way to view the construction of this ordering is that we are converting each
assignment α = (x1, . . . , xn) to an n-tuple of numbers α∗ = (Q1(α1), . . . , Qn(αn)),
i.e., (Q1(x1, u1), . . . , Qn(xn, un)), where ui is the assignment α makes to Ui. The
extended conditional lexicographic order �E is then essentially the standard lexico-
graphic order on these n-tuples of numbers: α is strictly preferred to β if and only if
α∗ is lexicographically better than β∗, and they are equivalent in the order if and only
if α∗ = β∗. This implies that �E is a total pre-order, i.e., it is reflexive, transitive and
complete. It is not necessarily a total order since we can have α �E β �E α for α �= β,
which happens when α∗ = β∗.

This definition leaves the question open of where the values of each function Qi

come from, and what they mean. One interpretation is as follows (another approach
is based on generating the functions Qi from conditional preference tables, as in the
introductory example in Section 1). The idea is that we have n criteria, where the first
is much more important than the second, and so on; these are in one-to-one correspon-
dence with the variables Xi. If, for example, variable Xi gives the location of a holiday,
the corresponding criterion says how good that location is. The function Qi tells us how

Conditional Lexicographic Orders in Constraint Satisfaction Problems 263

well the criterion is satisfied, i.e., how good the value of Xi is. This depends not just
on Xi, but on other variables (the parents of Xi); for example, how good a location is
depends on the season. Complete assignments are judged primarily on the first criterion
i.e., on the value of Q1, and then on the second etc.

The user is required to order, for each i, the values of Qi; we represent this by
assigning numbers consistent with this ordering. The overall order on complete as-
signments depends only on the ordering of the values of each Qi. For example, sup-
pose X5 with domain {a5, b5} has a single parent X7, with domain {a7, b7}. The
user has to judge how good X5 is in the four different scenarios: a5a7, a5b7, b5a7
and b5b7. For example, she might judge (i) that X5 is best if X5 = a5 and its par-
ent, X7, equals a7; (ii) that the worst case is b5b7, and (iii) that X5 is equally good
in scenarios a5b7 and b5a7. We could express this by setting e.g., Q5(a5, a7) = 1,
Q5(a5, b7) = Q5(b5, a7) = 2, and Q5(b5, b7) = 3. However we could equally well
set Q5(a5, a7) = −1, Q5(a5, b7) = Q5(b5, a7) = 0, and Q5(b5, b7) = 8, since only
the order of the values of Q5 matters to the final ordering of complete assignments. Be-
cause of this, each function Qi in the definition of an extended conditional preference
network can be replaced by a pre-order ≥i on the set of assignments to {Xi} ∪ Ui,
where xu ≥i x′u′ if and only if Qi(x, u) ≥ Qi(x′, u′); this equivalent representation
emphasizes the ordinal nature of extended conditional lexicographic orders.

3 Conditional Lexicographic CSPs and CP-Nets

In recent years, the most widely-discussed method for representing conditional pref-
erences within the AI community has been the conditional preference network with
ceteris paribus assumptions, or CP-net [1]. A more recent variant, the TCP-net [7],
includes elaborations to handle relations of importance between the features of user-
selections (this relates to, but is weaker than, the ranking of variables in lexicographic
CSPs [8]).

CP-net structures are based on assignments of values to variables, or “features”. A
conditional preference is encoded in a “conditional preference table” (CPT) associated
with a particular variable Xi, examples of which are shown in Figure 1. TCP-nets also
encode importance relations between variables in terms of an ordering with lexico-
graphic features.

A critical feature of (T)CP-nets is that preferences are only defined under “ceteris
paribus” conditions. If, for example, features A and B each have two values, a1, a2
and b1, b2, respectively, and a1 >XA a2 and b1 >XB b2, then we can deduce from
ceteris paribus assumptions that a1b1 >N a2b1, a2b1 >N a2b2, etc, but we cannot
order a1b2 and a2b1 on this basis. As a result of this feature, preference orders can
be established on the basis of “flipping sequences”; e.g., the sequence of two “flips”
a1b1 $ a2b1 $ a2b2 enables us to deduce the preference a1b1 $ a2b2. This is still true
of TCP-nets, although in this case adjacent outcomes in a sequence can be separated by
a “double flip” of two variables.

It was shown in [9] that, except in some trivial cases, the order on assignments gen-
erated by a CP-net, or by a TCP-net, is never a lexicographic order. The reason for this
is that flipping sequences require that consecutive elements in the ordering differ by at

264 R.J. Wallace and N. Wilson

most one (CP-nets) or two (TCP-nets) elements. However, consecutive elements in a
lexicographic ordering can differ by up to |V | elements.

Perhaps the most important implication of these differences is that, while determin-
ing whether solution α is preferred to solution β is easy for lexicographic orderings,
since it is based on successive comparisons of values of a variable, this is more prob-
lematic with (T)CP-nets, since it depends on finding flipping sequences that transform
one alternative into another. Although there are special cases where this problem is
polynomial [10] [2], it appears, in general, to be a very hard problem [11]. On the other
hand, CP-nets allow a weaker form of comparison, which indicates for two solutions
α and β that the preference of the latter over the former is not entailed by the CP-net
structure. This comparison can be carried out in low order polynomial time [2].

In considering the algorithmics of CP-nets, the emphasis has been on cases where
the set of dependencies forms an acyclic graph. In particular, algorithms developed for
solving constrained optimisation problems are based on this assumption [5] [7]. In many
cases, this seems natural, but as we have seen, when importance relations are mixed with
conditional preference relations it is sometimes reasonable to consider cases where the
two do not always correspond. As we will see, for conditional lexicographic orderings
this does not appear to be as important as for CP-nets, since the basic algorithms can be
extended, in some cases without marked effects on performance.

For acyclic networks in which conditional preferences correspond to the priority or-
dering, a CP-net ordering can be extended to a conditional lexicographic ordering [12]:
we choose a conditional lexicographic network with the same conditional preference
tables and the same directed acyclic graph G as the CP-net. Let $K be the associated
conditional preference order. It is obvious that if there is a worsening flip from α to β
then α $K β. Transitivity of$K then implies that if α is better than β according to the
CP-net, then it is better according to the conditional lexicographic order (α $K β).1

Similarly, the preference ordering corresponding to an acyclic conditional preference
theory [9] can be extended to a conditional lexicographic ordering. This means that if
one wants to find a solution of a set of constraints C which is optimal with respect
to a CP-net, one can generate an associated conditional preference order, as described
above, and find the optimal solution with respect to this. The above result implies that
this solution will also be optimal with respect to the CP-net. Hence, constrained optimi-
sation algorithms for conditional lexicographic orders can be used for finding a single
optimal solution of a constrained optimisation problem for an acyclic CP-net.

4 Constrained Optimisation Algorithms for Conditional
Lexicographic CSPs

4.1 Methods for Solving Ordinary Lexicographic CSPs

In earlier work, we showed that this form of lexicographic representation of preferences
for CSPs offers wide scope for developing optimization algorithms (see [4] [12] for
detailed descriptions). The most successful algorithms were,

1 Similar techniques are used in [2], for ordering queries, and proving consistency of an acyclic
CP-net.

Conditional Lexicographic Orders in Constraint Satisfaction Problems 265

1. Lexical search: ordinary CSP algorithms that follow the importance ordering of the
variables. These work very well when problems are not too strongly constrained,
but are inefficient for problem in the critical complexity region.

2. A branch and bound algorithm that works well for problems in the critical com-
plexity region.

3. A specialised restart algorithm termed the “staged lexical” algorithm in which on
the kth restart, the kth variable is instantiated in lexical order while better ordering
heuristics are used for the remaining variables. This works almost as well as branch
and bound for problems in the phase transition region and tends to be more effective
than the latter as the number of solutions increases.

For the branch and bound procedure, the cost function (based on the representation
in terms of weighted constraints) gives large values for any but very small problems;
however we do not need to calculate it directly. Instead, we simply compare successive
values following the lexical variable ordering until we encounter a difference. Suppose
that variable Xk is the variable currently being considered for instantiation, i.e., the
kth most important variable in the ordering. To evaluate the current partial solution,
we start from the first variable X1 in the lexical ordering. If X1 has been assigned,
we check this against its instantiation in the best assignment found so far; if it does
not yet have an assignment, we check the best remaining value in its domain against
the best assignment. If this favors the best assignment found so far, then search can
back up. Otherwise, if they are equal on X1 we perform a similar check on X2 (and
so on).

In staged lexical search, search is done repeatedly, in each case until the first solu-
tion is found, and for each repetition, or stage, one more variable is chosen in lexical
order, beginning with X1 at stage 1. Values are always chosen according to the lexi-
cal ordering. On the kth repetition, when we have found a feasible solution, we know
that the assignment for Xk is optimal, so we retain it for the remainder of search.
Although developed independently, this algorithm is, in fact, a special case of pre-
ference-based search [13], where the criteria on which search is based form a total
order.

4.2 Algorithms for Simple Conditional Lexicographic CSPs

When the parent-child order is compatible with the importance order of the variables,
any of our methods for constrained optimization can be used to return a solution that is
optimal for the conditional lexicographic CSP. In particular, the staged lexical algorithm
can be applied in exactly the same way as before to the conditional lexicographic case,
since at stage i we know the ordering of the values of Xi, as its parents have been
instantiated already. For branch and bound, if a child is chosen for instantiation before
its parents, bounding can be done provided parent values are available for comparison:
in this case, any differences naturally override differences for the child, while if these
values are identical then the orderings on the child variable will be the same for the
candidate and current best values.

266 R.J. Wallace and N. Wilson

5 Lexical Search Algorithms for Extended Conditional
Lexicographic Orders

By adding extra variables, an extended conditional lexicographic order can be related
to an ordinary lexicographic order; this enables one to generalise the algorithms for
lexicographic orders to the conditional case.

Auxiliary Variables Representation. Let Ri be the set of all values taken by Qi, i.e.,
the set of numbers Qi(x, u) over all values x of Xi and assignments u to the parents
of X . For each variable Xi, create a new variable Yi with domain Ri. Variable Yi can
be considered as telling us how well the ith criterion is satisfied. We create a constraint
with scope Ui ∪ {Xi, Yi} consisting of all tuples uxq with Qi(x, u) = q, where x is
a value of Xi, u is an assignment to Ui and q ∈ Ri. Let B be the set of these extra
constraints. Let V ′ = V ∪ {Y1, . . . , Yn}. Each assignment α to V clearly extends
uniquely to an assignment α′ to V ′ satisfying these extra constraints B: we define, for
each i = 1, . . . , n, α′(Xi) = α(Xi) and α′(Yi) = Qi(α). Hence α′ is essentially α
extended with α∗.

There is a natural lexical order on assignments to V ′ defined by variables Y1, . . . , Yn

in that order of importance. α $E β if and only if α′ is lexically better than β′ according
to this lexical order (which is if and only if α∗ is lexically better than β∗). In particular,
α is an optimal solution of C with respect to the extended conditional lexicographic
network if and only if α′ is a lexically optimal solution of constraints C∪B. Therefore,
the strategies mentioned earlier for finding optimal solutions with respect to a lexical
order can be elaborated to produce algorithms for finding optimal solutions for extended
conditional lexicographic orders.

5.1 Extending Lexical Search

We can adapt lexical search for extended conditional lexicographic optimisation by
using auxiliary variables to represent Q-values and adding constraints to represent ac-
ceptable parent-child assignments given a particular value for the child. The key idea is
that the Q-values can serve as the basis for a lexically-ordered search. In other words,
search can be done in a way that is lexicographic on the Q-values rather than on the
decision variables themselves, even though the domains of the latter have no a priori
preference order.

Recall that Ri is the set of all values taken by Qi. For any q ∈ Ri, we define con-
straint cq

i on variables Ui ∪ {Xi} to be the constraint Qi = q, i.e., xu is a tuple in cq
i if

and only if Qi(x, u) = q.
The search tree for the lexical search can be defined as follows: A node N at level j,

for j = 0, . . . , n has an associated set of constraints CN of the form C∪{cq1
1 , . . . , c

qj

j },
where for each i ≤ j, qi is an element of Ri. The initial node, which is the root node of
the search tree, is at level 0. A node at level n is said to be a complete node; the other
nodes are said to be partial nodes. At each partial node we will need to maintain some
form of partial consistency. If we deduce that the associated set of constraints CN is
inconsistent then we can backtrack at this point. Otherwise, we branch on constraints
cq
j+1, for q ∈ Rj+1; that is, for each q ∈ Rj+1 we generate a child node of N with

Conditional Lexicographic Orders in Constraint Satisfaction Problems 267

associated set of constraints CN ∪ {cq
j+1}. The child corresponding to the smallest

element q of Rj+1 is explored first, in a depth-first manner. When we reach a complete
node N , we determine if CN has a solution; if it does, we return the solution and stop;
otherwise we backtrack. This algorithm will return an optimal solution, given that the
initial set of constraints C has a solution.

If the Qi’s are one-to-one functions, each constraint of the form cqi

i just contains a
single tuple which is an instantiation of Xi and the parents of Xi. The algorithm then
behaves in a fairly similar way to standard lexical search.

On the other hand, if the Qi’s have many ‘ties’ so that added constraints of the form
cq
i include several tuples, then we may find that, e.g., maintaining arc consistency is not

sufficiently strong to prune the search effectively, since we are not directly instantiating
the variables Xi. For example, it could happen that an initial constraint cq1

1 is inconsis-
tent with constraints C, but we might only discover this at complete nodes, when we
have generated values of all the other qi, and we test the consistency of the associated set
of constraints C ∪ {cq1

1 , . . . , cqn
n }. This will tend to make the algorithm extremely slow

in such situations. For this reason, it is natural to consider stronger forms of consistency
checking at each node. In particular, we can use a search to check global consistency at
a node, which is essentially what the staged lexical algorithm does.

5.2 Extending Staged Lexical Algorithm

Unlike the lexical search algorithm, the staged lexical algorithm can be done without
backtracking over Yi variables. These are instantiated in order over successive stages, in
each stage before any Xi variables are instantiated. The latter can be instantiated using
any heuristic ordering.

Let C0 be the original set of constraints C, which we assume to be satisfiable. Let α
be an optimal solution, and let α∗ be the corresponding n-tuple of numbers, as defined
above. The fact that C0 is satisfiable implies that there exists some q ∈ R1 such that
C0 ∪ {cq

1} is satisfiable, since R1 includes all possible values of Q1. We find minimal
value q1 ∈ R1 such that C0 ∪ {cq1

1 } is satisfiable. (By definition of α∗, we have q1 =
α∗(X1), since q1 is the best feasible value of Q1.) This can be found by starting with the
lowest (i.e., best) value in R1 and continuing until we find q1 with C0∪{cq1

1 } satisfiable.
We then add this constraint cq1

1 to the set of constraints, setting C1 = C0∪{cq1
1 } (and

we will not backtrack over this decision). (With the auxillary variable representation
this amounts to setting Y1 = q1.) We move on to optimising Q2: we find minimal value
q2 ∈ R2 such that C1 ∪ {cq2

2 } is satisfiable. We set C2 = C1 ∪ {cq2
2 }. We continue this

until we have generated minimal qn ∈ Rn such that Cn−1 ∪ {cqn
n } is satisfiable; we let

Cn = Cn−1 ∪ {cqn
n }, which, by construction, is satisfiable.

It is easy to see that any optimal solution α is a solution of Cn (or else α would
be worse than a solution of Cn). Also, if β is any other solution of Cn then α and β
have exactly the same Qi-values, so β is also optimal. This leads to the following result
which shows that a solution of the set of constraints Cn (in particular, the one found
when checking that Cn is satisfiable) is an optimal solution of the constraints C.

Proposition 1. With the above notation, complete assignment α is an optimal solution
of C if and only if α is a solution of the set of constraints Cn.

268 R.J. Wallace and N. Wilson

conditional-bnb (partial-solution, remaining-variables)
if remaining-variables ≡ nil

save new best-solution
and continue //backtrack

else
select next-variable and remove from remaining-variables
for each value in its ordered domain

if new instantiation gives an arc consistent problem
and
bounds-check(next-variable, next-value) returns true //under bound

conditional-bnb (new-partial-solution, remaining-variables)
continue //backtrack

bounds-check (candidate-var, candidate-value)
while variables remain to be compared

select next-variable in order
get value next-best for this variable from current best-solution
if next-variable == candidate-var

curr-assign = candidate-value
else if next-variable is instantiated

curr-assign = current assignment of next-variable
//perform comparisons

if next-variable �∈ any child-set
compare curr-assign or best value in default-current-domain with next-best

else if next-variable has current-preference order
compare curr-assign or best value in default-current-domain with next-best

else if candidate-var is a remaining uninstantiated parent
get domain-order associated with parent values
compare curr-assign or best value according to domain-order with next-best

else
set comparison to succeeded and bound to not-exceeded

if comparison has succeeded break
if bound was exceeded

return false
else

return true

Fig. 2. Pseudocode for branch and bound for CSP with extended lexicographic ordering

6 Branch and Bound Algorithms for Extended Conditional
Lexicographic Orders

Like the lexically-based search algorithms, the present branch-and-bound procedure
(Figure 2) relies on the fact that for lexicographic orderings, value orderings can be
indexed by the Q-values. This allows it to check bounds in terms of Q-values, thereby
comparing a candidate assignment with previous assignments even when the preference
ordering for the past assignment is different from the present ordering.

Regardless of the search order, bounds testing always proceeds according to the pri-
ority ordering of the variables (until the current variable is reached), and the decision to
bound depends on the first difference found between the current partial assignment and
the best solution α. Note that for the latter all Qi(x, u) are known. If testing is restricted
to the following conditions:

• variable k has no parents, in which case either its current assignment or the best
assignment available can be used for comparing with the current best assignment
for this variable (In this case, the Qk(x, u) are independent of other assignments),

• variable k has a current ordering (because its parents have assignments), in which
case the Qk(x, u) are known,

Conditional Lexicographic Orders in Constraint Satisfaction Problems 269

• variable k has one uninstantiated parent, which is the current variable, in which
case the Qk(x, u) can be determined for a candidate value of variable k,

and bounding is not done otherwise, then if the first difference found favors the cur-
rent best solution, since this is also the first difference in the lexicographic order, no
extension of the current assignment can produce a solution β such that β $E α. This
guarantees the correctness of the present algorithm.

The present branch and bound algorithm has one difference from that used for CSPs
with simple conditional lexicographic orderings. In the latter case, comparisons can also
be made during bounds testing if the preference order of the domain of the remaining
uninstantiated parents of the variable whose assignments are being compared can be
ordered. In this case, assignments for the parents will already have been tested, and so
they must have been equal since a bounding decision could not be made. In this case,
for the variable currently under consideration the preference ordering over the domain
is the same for the best solution and the current assignment. For extended conditional
lexicographic orders, where the parent is not necessarily more important than the child,
this situation does not always hold.

7 Experimental Tests

We present some results of experimental tests with random binary CSPs to show com-
parative performance of the different algorithms described above. Since in previous
work [4] [12] a MAC-based algorithm proved to be much more effective than forward
checking, the former is used in all tests reported here. Algorithms were coded in lisp
and run using Xlisp on a Dell Work Station PWS 330 running at 1800 MHz. For each
condition, solutions were compared for the different algorithms to verify that the im-
plementations were correct.

7.1 Problem Generator

For these tests, CSPs with conditional lexicographic orders were generated with a pro-
gram written by the first author. This program starts with an existing CSP and trans-
forms it into a conditional lexicographic CSP by selecting variables for conditional
preferences and building a CPT for each relation. Q-values are derived from successive
positions of successive domain elements within an ordering, so they do not have to be
generated explicitly. The user specifies the following parameters: (i) number of pref-
erence relations, (ii) maximum number of parents per relation, (iii) maximum number
of children per relation, (iv) maximum number of attempts to make a relation with p
parents and c children, since at some point in generation it may not be possible to do
this under the given restrictions. (If this number is ever exceeded, the program writes
a message to standard-output, but continues with problem generation.) In addition, the
following restrictions are made during generation:

1. A child-variable only appears as such in one preference relation (otherwise the CPT
is ill-defined).

2. The graph of conditional relations is directed-acyclic, so there is no directed path
from a node back to itself.

270 R.J. Wallace and N. Wilson

3. A variable occurs in no more than one single-parent relation. This is not a required
restriction, but it prevents selection from undermining the maximum-child speci-
fication since k singleton-parent relations involving the same parent variable are
indistinguishable from a single relation with one variable and k children.

There are two further restrictions that the user can specify optionally:

1. That parent-child relations always correspond to the priority ordering of the vari-
ables. (This specifies that the conditional lexicographic CSP is of the simpler type.)

2. That the parents and children in a relation do not have parents in common. (This
option was not used in the experiments reported here.)

For problems used in the present tests, there was a maximum of two parents and
two children per relation. The number of relations per problem was set to be 3, 7 or
11 in different experiments. With 7 relations, 70-80% of the variables were included
in at least one conditional relation (i.e. were either parents or children in at least one
relation); with 11 it was approximately 100%.

7.2 Experimental Results

Performance comparisons are given in Table 1. (Note that the number of values per
domain is large in comparison with problems typically considered in this context and
that there are numerous hard constraints. In addition, since the same Q-values were used
for all domains, these constitute particularly difficult problems for algorithms like the
staged lexical method where constraint size is related to number of different Q-values
[cf. Sect. 5.1].) There are some striking differences due to problem difficulty and to the
character of the conditional lexicographic ordering, and no single algorithm is superior
overall.

Results for simple conditional lexicographic orderings were quite similar to those
found for similar problems for the unconditional case. In addition, increasing the num-
ber of conditional relations had very little effect on search efficiency. For hard problems
of this type, branch and bound and staged lexical were comparable, and both were better
than straight lexical as domain size increased. For easy problems, either of the lexically-
based search strategies outperformed branch and bound.

For the extended lexicographic orderings, performance differences depended on the
number of constraints and number of conditional preference relations, as well as the
heuristic used to order decision variables. For hard problems, the difference was deci-
sive with branch and bound outperforming the staged lexical search by about an order
of magnitude. For easy problems, staged lexical search was sometimes more efficient
than branch and bound. This depended on the search order heuristic as well as the num-
ber of conditional preference relations (Table 1). (Branch and bound does worse on
these problems if a lexical variable ordering is used, in contrast to the results for staged
lexical search shown in the table.)

These preliminary results suggest that it is important to have some form of lexically-
based search for the extended conditional lexicographic case - because branch and
bound is adversely affected when the number of feasible solutions becomes large,
while the effects on staged lexical search are not always as severe. With our suite of

Conditional Lexicographic Orders in Constraint Satisfaction Problems 271

Table 1. Search Efficiency Comparisons

hard problems easy problems
domain/tight 10/.45 20/.55 10/.50 20/.60

simple conditional lexicographic
lex stg bb lex stg bb lex stg bb lex stg bb

P3 nodes 348 390 217 9083 2334 2020 36 237 394 276 363 1346
ccks(000) 161 128 115 6505 2260 2124 12 38 112 118 148 949

P7 nodes 349 390 219 9063 2329 2020 36 238 386 269 365 1297
ccks(000) 161 128 116 6492 2255 2123 12 39 111 115 149 927

P11 nodes 348 391 218 9098 2330 2022 36 237 416 269 362 1408
ccks(000) 161 128 116 6514 2256 2125 12 38 116 117 148 985

extended conditional lexicographic
lex stg/dm bb lex stg/dm bb stg/lex stg/dm bb stg/lex stg/dm bb

P3 nodes - 3547 439 - 27743 3496 2659 8559 20215 12085 73652 47428
ccks(000) - 1645 203 - 30294 3660 795 2330 985 6833 47508 17219

P7 nodes - 4397 587 - 43790 5078 8645 8777 29880 98031 106701 87209
ccks(000) - 2043 267 - 46330 5241 1829 2508 1544 36832 66849 29578

P11 nodes - 6038 957 - 38344 6801 17835 11726 70261 213311 97095 123614
ccks(000) - 2927 416 - 40415 7050 3799 3644 3217 59348 62312 44385

Notes. 20-variable problems with density = 0.5. Data are means for 100 problems. “hard prob-
lems” are near the critical complexity peak. “easy problems” are near the edge of the hard region.
Branch and bound employed min domain variable ordering; this was also used for staged lexical
search for simple conditional lexicographic orderings. (For the extended case, decision variables,
Xi, were either ordered in this way or ordered lexically, as indicated.) “Pk” is number of condi-
tional preference relations per problem.

algorithms, we are, therefore, able to accomodate the reduced restrictions on conditional
relations under a wider range of conditions so as to solve these problems efficiently.

8 Conclusions

Lexicographic orders allow a very simple and basic representation of preferences in
combinatorial problems. The assumptions are strong, but the user inputs are of an
easily-understandable form, and there are powerful algorithmic approaches for con-
strained optimisation.

In many situations, preferences are naturally conditional, i.e., context-dependent, and
there has been a good deal of recent work in the AI literature on qualitative frameworks
for conditional preferences, especially, CP-nets and their extensions. In this paper we
define conditional lexicographic orders, which gives a simple approach for reasoning
with conditional preferences, which has computational advantages over more sophis-
ticated methods. We also show how algorithms for constrained optimisation for ordi-
nary lexicographic CSPs can be extended to handle conditional orderings. Somewhat
unexpectedly, this can be done even when conditional preference relations do not cor-
respond to the relative importance of the variables. Therefore, efficiency of search in

272 R.J. Wallace and N. Wilson

combinatorial optimisation can be maintained despite the additional complexity of this
form of representation, in some cases to a surprising degree. These algorithms can also
be used for finding a single optimal solution of a constrained optimisation problem for
an acyclic CP-net.

References

1. Boutilier, C., Brafman, R.I., Hoos, H.H., Poole, D.: Reasoning with conditional ceteris
paribus preference statements. In: Proc. Fifteenth Annual Conf. on Uncertainty in Artif.
Intell. (1999) 71–80

2. Boutilier, C., Brafman, R.I., Domshlak, C., Hoos, H.H., Poole, D.: CP-nets: A tool for
representing and reasoning with conditional ceteris paribus preference statements. Journal
of Artificial Intelligence Research (2004) 135–191

3. Wellman, M.P., Doyle, J.: Preferential semantics for goals. In: Proc. Nineth Nat. Conf. on
Artif. Intell. (1991) 698–703

4. Freuder, E.C., Wallace, R.J., Heffernan, R.: Ordinal constraint satisfaction. In: Fifth Internat.
Workshop on Soft Constraints - SOFT’02. (2003)

5. Boutilier, C., Brafman, R.I., Domshlak, C., Hoos, H., Poole, D.: Preference-based con-
strained optimization with CP-nets. Computational Intelligence (2004) 137–157

6. Schiex, T., Fargier, H., Verfaillie, G.: Valued constraint satisfaction problems: Hard and easy
problems. In: Proc. Fourteenth Internat. Joint Conf. on Artif. Intell. (1995) 631–637

7. Brafman, R.I., Domshlak, C.: Introducing variable importance tradeoffs into CP-nets. In:
Proc. Eighteenth Annual Conf. on Uncertainty in Artif. Intell. (2002)

8. Wilson, N.: Consistency and constrained optimisation for conditional preferences. In: Proc.
Sixteenth Europ. Conf. on Artific. Intell. (2004) 888–892

9. Wilson, N.: Extending CP-nets with stronger conditional preference statements. In: Proc.
Nineteenth Nat. Conf. on Artif. Intell. (2004) 735–741

10. Domshlak, C., Brafman, R.I.: CP-nets - reasoning and consistency testing. In: Proc. Eighth
Conf. on Principles of Knowledge Representation and Reasoning. (2002) 121–132

11. Goldsmith, J., Lang, J., Truszczynski, M., Wilson, N.: The computational complexity of
dominance and consistency in CP-nets. In: Proc. Nineteenth Int. Jt. Conf. on Artif. Intell.
(IJCAI-05). (2005) 144–149

12. Freuder, E.C., Heffernan, R., Prestwich, S., Wallace, R.J., Wilson, N.: Lexicographically-
ordered constraint satisfaction problems. unpublished (2005)

13. Junker, U.: Preference-based search and multi-criteria optimization. In: Proc. Eighteenth
Nat. Conf. on Artif. Intell. (2002) 34–40

An Efficient Hybrid Strategy for Temporal Planning

Zhao Xing, Yixin Chen, and Weixiong Zhang

Department of Computer Science and Engineering
Washington University in Saint Louis, Saint Louis, MO, USA

{zx2, chen, zhang}@cse.wustl.edu

Abstract. Temporal planning (TP) is notoriously difficult because it requires to
solve a propositional STRIPS planning problem with temporal constraints. In
this paper, we propose an efficient strategy for solving TP, which combines, in
an innovative way, several well established and studied techniques in AI, OR and
constraint programming. Our approach integrates graph planning (a well stud-
ied planning paradigm), max-SAT (a constraint optimization technique), and the
Program Evaluation and Review Technique (PERT), a well established technique
in OR. Our method first separates the logical and temporal constraints of a TP
problem and solves it in two phases. In the first phase, we apply our new STRIPS
planner to generate a parallel STRIPS plan with a minimum number of parallel
steps. Our new STRIPS planner is based on a new max-SAT formulation, which
leads to an effective incremental learning scheme and a goal-oriented variable
selection heuristic. The new STRIPS planner can generate optimal parallel plans
more efficiently than the well-known SATPLAN approach. In the second phase,
we apply PERT to schedule the activities in a parallel plan to create a shortest
temporal plan given the STRIPS plan. When applied to the first optimal paral-
lel STRIPS plan, this simple strategy produces optimal temporal plans on most
benchmarks we have tested. This strategy can also be applied to optimal STRIPS
plans of different parallel steps in an anytime fashion to find an optimal tempo-
ral plan. Our experimental results show that the new strategy is effective and the
resulting algorithm outperforms many existing temporal planners.

1 Introduction

In this paper, we are concerned with propositional STRIPS planning and temporal plan-
ning (TP) problems, two major classes of planning problems. STRIPS planning [9]
refers to those problems whose actions are instantaneous and without durations, tran-
sition constraints are discrete by nature, and solution quality is usually measured by
the number of parallel actions or time steps. TP refers to problems in which actions
have continuous durations and can overlap with one another in time. The most popular
quality metric for temporal plans is the makespan (duration of execution) of a plan.

Since STRIPS planning problems are discrete by nature, they are often solved by
traditional AI techniques such as heuristic search [13]. On the other hand, because ac-
tions in TP have continuous durations, the discrete state-space representation used by
AI techniques is inadequate, and TP is more difficult than STRIPS planning. As a result,
many existing TP methods rely on techniques from operations research (OR), such as
linear programming [28] and constraint programming [27].

J.C. Beck and B.M. Smith (Eds.): CPAIOR 2006, LNCS 3990, pp. 273–287, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

274 Z. Xing, Y. Chen, and W. Zhang

In this research, we develop an efficient approach for TP that combines many well
established AI and OR techniques. Our contribution is twofold. First, we propose an ef-
ficient STRIPS planning algorithm that is based on the planning-as-satisfiability (SAT-
Plan) paradigm [25, 17] but improves SATPlan by incorporating an objective function to
accommodate an effective goal-oriented variable selection heuristic. Second, we apply
the Program Evaluation and Review Technique (PERT) [12], a widely applied technique
in OR, to extend STRIPS planning to TP.

STRIPS Planning by Maximum Satisfiability. Over the past decade, SATPlan [25, 17]
has emerged as one of the most effective formulations of STRIPS planning in AI. SAT-
Plan was proposed to take advantage of much celebrated progress made over the years
in the research of satisfiability (SAT), an extensively studied problem in AI. The SAT-
Plan method first transforms a STRIPS planning problem into a SAT problem, and then
solves it using a generic SAT solver. By transforming a planning problem into a SAT,
many powerful methods developed for SAT can be utilized for STRIPS planning.

However, despite its success, the potential of the SATPlan paradigm has been neither
fully explored nor exploited. A critical limitation of the current best realization of SAT-
Plan is its inability to handle TP. In general, modelling continuous duration constraints
in a SAT problem is costly and often problematic, as SAT variables only represent bi-
nary values.

In this paper, we first propose a novel max-SAT formulation for STRIPS planning. In
this formulation, the original SAT formulation is maintained to encode hard constraints
that cannot be violated, and furthermore, an objective function is introduced to specify
the objective of a given problem. Using this formulation, we develop a new general
variable ordering heuristic to improve search efficiency. Furthermore, we develop an
accumulative learning scheme to collect and utilize the knowledge learnt from multiple
SAT problems during the incremental planning process.

Temporal Planning Combining max-SAT and PERT. Many techniques have recently
been proposed for TP by combining constraint programming methods and methods in
OR, such as linear programming [28] and constraint programming [27]. However, these
methods only have achieved a limited success. They are either suboptimal methods with
inferior solution quality such as SGPlan [29], or optimal but expensive, such as CPT [6].
In contrast to the advances in STRIPS planning, progresses on TP have been slower. We
believe that combining the strengths of AI and OR techniques can lead to more efficient
TP methods.

Program Evaluation and Review Technique (PERT) is a well established and broadly
applied OR technique for evaluating a network of events. Edelkamp [8] first applied
PERT to TP by combining PERT with a forward chaining heuristic search-based plan-
ner. Nevertheless, the idea of using PERT for TP has not been well studied. In this
paper, we apply PERT to the SATPlan paradigm.

2 Temporal Planning and a Two-Phase Approach: An Overview

The temporal planning (TP) problems that we consider in this paper can be represented
by a tuple T = (F, O, I, G), where F is a set of facts, I ⊆ F the initial state, G ⊆ F

An Efficient Hybrid Strategy for Temporal Planning 275

the goal state, and O a set of actions. An action has preconditions pre(o), add effects
add(o), delete effects del(o), and duration dur(o). In addition, the preconditions of each
action should be held either at the beginning of the action or duration the overall action
period; the add/delete effects of each action can take effect either right after the action
starts or after the action finishes.

The key idea of our planning system is to separate propositional and temporal con-
straints, resulting in a two-phase algorithm. In the first phase, we first simplify a TP
problem to a STRIPS problem. Specifically, we treat each action to have unit duration,
each precondition of an action to be held satisfied during the execution of the action,
and each add/delet effect of an action to take effect after the action execution. We then
represent the STRIPS problem by a maximum SAT (max-SAT) formulation, to be dis-
cussed in detail in Section 3, and solve the max-SAT problem with a max-SAT solver. In
the second phase, we translate the solution from max-SAT solving back into a STRIPS
plan, and apply PERT to it to generate a temporal plan.

We have several ideas to integrate many existing techniques to develop our TP al-
gorithm. First, we follow the SATPlan strategy [25], which falls into the paradigm of
graph planning [4]. However, instead of using SAT, we encode a planning problem in a
hybrid max-SAT formulation, which consists of an objective function to be maximized
and a set of SAT constraints.

This hybrid max-SAT representation naturally captures some problem structures in
that most critical variables are included in the objective function. This leads to a goal-
oriented variable selection rule, i.e., the variables involved in the objective functions
are critical (or independent) variables and thus have higher priorities to be chosen in the
search than those not in the objective function.

Another key idea that significantly improves the SATPlan strategy is accumulative
learning. This strategy requires an incremental process to look for a plan with k parallel
steps in one iteration; if it fails, it continues on to finding a plan with k + 1 steps in
the next iteration, and so on. During the SAT solving in one iteration, many existing
SAT solvers can learn a substantial number of no-goods clauses to speed up search. It
is important to notice that such clauses learnt in one iteration can be reused in the next
iteration if the planning problem is incrementally encoded over iterations, i.e., the max-
SAT for one iteration is enclosed in the max-SAT for the next iteration. Our max-SAT
formulation supports such incremental encoding.

Fig. 1. An illustration of the two-phase constraint optimization search of our TP algorithm

276 Z. Xing, Y. Chen, and W. Zhang

We also adopt several other techniques in solving a max-SAT. The most significant is
the Zchaff algorithm [30] as the core SAT solver. Other techniques include the Jeroslow-
Wang greedy variable selection rule [14] and VSIDS variable selection [20] for goal and
non-goal variables, respectively. Figure 1 illustrates the overall structure of our new
strategy and algorithm for TP.

3 Phase I: Planning as Maximum Satisfiabilty

The objective of this phase is to create a network of actions or activities to satisfy all
the logical constraints of a planning problem. A parallel plan is in essence a network
of actions, to which many efficient algorithms exist, such as Graphplan [4]. In this
research, we use SATPlan, a general and efficient graph planning strategy. The latest
implementation SATPlan is SATPLAN04 [16]. Starting with a discussion on SATPlan,
we describe our new approach based on planning as max-SAT in the rest of the section.

3.1 Review of Planning as Satisfiability and SATPLAN04

SATPlan is an incremental strategy for finding shortest parallel plans. For a planning
problem, starting with a small target number k of parallel steps, it tries to find a par-
allel plan with k steps. If such a plan is found, the algorithm terminates, otherwise, it
extends to k + 1 steps and repeats. In the iteration for finding a k-step plan, the algo-
rithm uses two ideas [25, 17]. The first is to convert a planning problem in the STRIPS
formulation [9] into a SAT formulation. The second idea is to solve the SAT problem
using a generic SAT solver. The front-end of this approach contains a plan generator to
construct a graphplan-style planning graph [4] and encode the graph into a SAT formu-
lation. The back-end includes a SAT engine using any existing SAT solver.

Several planning systems have been developed under the SATplan paradigm, includ-
ing SATPLAN, BLACKBOX [25, 17], and the latest SATPLAN04 [16]. These systems,
SATPLAN04 in particular, have enjoyed a great deal of success, mainly due to the
sophistication of generic SAT algorithms used. SATPLAN04 supports action-based en-
coding. We leave the detail of this encoding to the original papers [25, 17], while simply
mention its main features here. The central idea of this encoding is to convert all fact
variables to action variables. Any fact at certain time step is represented as a disjunc-
tion of the actions that add this fact at previous time steps. This encoding includes three
classes of clauses based on action variables as follows:

1. A clauses – from actions’ precondition constraints
An action implies its preconditions.

2. E clauses – from mutually exclusive constraints
Two actions cannot be true at the same time if they are mutually exclusive [4].

3. G clauses – from goal constraints
A subgoal at step k implies disjunction of the actions that add this fact at step k−1.

We call the variables in G clauses G variables and others non-G variables.
Despite its success, SATPLAN04 has several limitations. The first is the scope that

it can apply; it cannot handle TP problems. The second limitation is due to the way

An Efficient Hybrid Strategy for Temporal Planning 277

it applies clause learning. SATPLAN04 uses an incremental process to search for an
optimal plan. However, it only uses clause learning by its underlying SAT solver within
each iteration, but does not share learnt clauses across iterations. The third limitation
is due to its “blackbox” nature. SATPLAN04 does not utilize any structure information
of a problem, which can be acquired during the encoding stage, to speed up its search
process. SAT problems derived from real-world problems are highly structured and
contain a large portion of variables that are dependent of other variables.

3.2 Planning as Maximum Satisfiability

To better handle STRIPS planning, we propose the following hybrid max-SAT formu-
lation to replace the SAT formulation in SATPlan.{

objective : maximize f(G)
subject to : SATPLAN constraints,

(1)

where f(G) is the objective function, G is the set of goals, and the constraints are from
the SATPLAN formulation. Furthermore, we have G = {gt,i} k0 ≤ t ≤ km, i = 1 . . . n
where each subgoal gt,i takes value 1 if the i-th subgoal is fulfilled at step t or 0, oth-
erwise; k0 and km are, respectively, lower and upper bounds of the shortest achievable
step; and n is the number of subgoals. Note that k0 can be obtained by applying a reach-
ability analysis, e.g., using GraphPlan, and km can be estimated or a solution of a fast
approximation planning method.

This max-SAT formulation highlights the optimization nature of a planning problem,
i.e., minimizing the number of parallel steps. Therefore, the objective function can be
represented as f(G) =

∑
k0≤t≤km

wt ∗ (
∏

i=1...n gt,i), where we use wt = nkm−ko−t

to force to satisfy all the subgoals at a shallower step prior to satisfy any subgoal at
a longer step. Focusing on an objective function leads to effective variable selection
methods that can better exploit the intrinsic structures of planning problems. By in-
cluding the goal variables in the objective function, we can isolate the core variables
from dependent variables and derived effective variable selection methods to utilize the
structures of planning problems.

3.3 Goal-Oriented Variable Selection (GOVS) Heuristic

To make the max-SAT formulation effective, we introduce what we call goal oriented
variable selection (GOVS) heuristic. Since the objective is to maximize the objective
function f(G) in (1), we select a variable, from the set of unassigned goal-related vari-
ables, i.e. G variables, to instantiate. In other words, the G variables are preferred over
the variables only in SAT constraints. Assigning a G variable can often lead to a chain of
unit propagations, which further result in satisfying some SAT constraints. We depend
on the existing SAT solvers for such unit propagations.

The selection and assignment of G variables are based on a greedy heuristic; we
adopted the Jeroslow-Wang rule [14] to select G clauses. Let {C1, C2, . . . , Cm} be the
set of G clauses to be satisfied. We selects a variable v from the set of G clauses to
maximize J(v) + J(v) over all un-instantiated variables, where J(v) =

∑
v∈Ci

2−ni

and ni is the number of literals in the i-th clause.

278 Z. Xing, Y. Chen, and W. Zhang

SATPLAN04 uses Siege [24] as its SAT engine. Unfortunately, the source code of
Siege is not available. We thus chose Zchaff [30], one of the best SAT solvers, and
integrate the GOVS heuristic with its original VSIDS [20] variable selection heuristic.
Integrating GOVS with VSIDS, we have the following algorithm for max-SAT:

Zchaff-GOVS for solving max-SAT:

1. Have a counter, initialize to 0, for each of the two literals of a non-G variable.
2. If Select an uninstantiated G variable, if any, according to the Jeroslow-Wang rule.
3. Otherwise (i.e., all G variables have been assigned), choose a non-G variable whose

literal (either positive or negative) has the highest counter value.
4. Assign the selected variable (from step 2 or 3) to True or False, simplify the CNF

formula according to this variable assignment, and apply unit propagation to the
simplified formula.

5. When a conflict occurs, apply the resolution rule to conflicting clauses, record the
new generated learnt clause, increase the counters of the literals in the learnt clause,
and backtrack to an earlier decision level that causes the conflict.

6. Periodically decay the counters of all non-G variables as implemented in VSIDS [20].
7. If an uninstantiated variable remains, goto step 2, Otherwise, terminate.

The GOVS heuristic and max-SAT strategy have several advantages. Our prelimi-
nary experimental analysis (data not shown) has indicated that after all the G variables
have been fixed, the SAT constraints can be satisfied quickly by unit propagation. This
means that the G variables are the most critically constrained in a planning problem. By
focusing on such critical variables, the overall search procedure is geared toward the
regions of the search space where high quality solutions locate. In other words, GOVS
leads to a focused search. Furthermore, GOVS can also be viewed as a heuristic for
backward search because those variables directly related to goal (or objective) in the G
clauses are considered first. Moreover, the number of goal-related variables is relatively
small comparing to the total number of variables in a planning problem, which in many
cases contributes to a significant speed up of the search procedure. Finally, the GOVS
heuristic can be easily integrated with a SAT solver for max-SAT.

3.4 Accumulative Learning

The problem structures over two consecutive iterations resemble each other except some
G clauses because of the increase in time steps. We take advantage of such structural
similarities and use what we called Accumulative Learning (AL) scheme. Instead of re-
encoding the whole problem from scratch after each iteration, we modify and patch the
previous encoding to meet the new constraint requirements for the next iteration. There-
fore, the time for encoding can be significantly reduced; such saving can be significant
for large planning problems. More importantly, we can retain all the learnt clauses,
which are not related to goal clauses, in all the previous iterations and use them in the
next iteration. As a result, most learnt clauses only need to be learnt once, which gives
a dramatic reduction in running time. More specifically, the accumulative encoding and
learning for time steps k can be described as follows:

An Efficient Hybrid Strategy for Temporal Planning 279

Accumulative encoding and learning:

1. Delete all G clauses for steps k−1, and all learnt clauses related to these G clauses.
2. Add new G clauses for steps k.
3. Add all additional A and E clauses required for steps k.

Note that the learnt clauses that are retained may be encountered in the next iteration.
Most existing efficient SAT solvers have mechanisms for clause learning that support
managing and deleting learnt clauses intelligently. Therefore, the accumulative learning
scheme incurs a limited overhead, if any, over the SAT solver used.

4 Phase II: Integrating STRIPS Planning with PERT

The maxSAT solution obtained from Phase I corresponds to a STRIPS plan in which
dependency information and partial order between actions are prescribed. This STRIPS
plan is just a partial solution and it requires further processing to satisfy temporal re-
quirements of the original TP problem.

To satisfy temporal constraints, we apply the Project Evaluation and Review Tech-
nique (PERT) [12], a critical path analysis chart for project management. At the heart
of PERT is a network of actions needed to complete a project. Each path in the PERT
chart starts with an initiation node from which the first action, or actions, originates.
The path is complete when all final actions come together at the completion node in the
chart. Given the actions and the dependency information, PERT aims at establishing a
critical path in which the total time of actions is greater than any other path of actions.

After obtaining an optimal parallel plan by solving the STRIPS counterpart in max-
SAT encoding, in order to minimize the total time of executing the actions, we apply
PERT scheduling on this STRIPS plan as follow:

PERT scheduling on a STRIPS plan:

1. Record all partial orders between actions in the parallel plan, i.e. if two actions are
not within the same time step in the parallel plan, we add a partial order that forces
one action with an earlier time step to be ordered before the other action if some
effect of the former one is a pre-condition of the latter one.

2. Generate a total order of actions, satisfying all the partial orders in step 1. (Al-
though there are many possible total orders, the final result of total time from PERT
scheduling will be the same.)

3. Process actions by the total order. For each action A, do:
– Find all preceding actions before A in the partial order.
– Set the beginning time of A to be the maximum of the ending time (or begin-

ning time if the preceding actions can make immediate effects right after they
start) of these preceding actions.

– Find all preceding actions before A in the total order whose pre-conditions will
be deleted by executing A.

– Delay the beginning time of A until all such preceding actions have started (or
have finished if the pre-conditions of such preceding actions should be held
during the overall action period).

– Set the ending time of A to be the beginning time plus the duration of A.

280 Z. Xing, Y. Chen, and W. Zhang

In essence, we treat the optimal parallel plan obtained from Phase I as a network
specifying partial orders among actions at different time steps, and use the PERT tech-
nique to find the shortest temporal plan satisfying these partial orders given the parallel
plan structure.

However, applying PERT to a STRIPS plan with the minimal parallel steps may
not guarantee the optimality of the corresponding temporal plan. On the other hand,
for most cases that we tested, the first STRIPS plan from solving max-SAT can often
give rise to an optimal temporal plan. This observation makes PERT scheduling very
attractive for finding an optimal or near-optimal temporal plan in practice. Furthermore,
we have implemented an anytime search scheme that enumerates all the STRIPS plans
within a time step bound and applies PERT to these plans to find the optimal temporal
solution. We are currently investigating theoretical conditions under which an optimal
parallel plan can be converted into an optimal temporal plan by PERT.

5 Experimental Evaluation and Analysis

Even though our main focus in this paper is TP, our new temporal planner embodies
a strong STRIPS planner, an interesting contribution on its own. In this section, we
experimentally evaluate the performance of these two new planners. We run all our ex-
periments on a PC workstation with Intel Xeon (TM) 2.4 GHZ CPU and 2 GB memory.

5.1 Evaluation of the New STRIPS Planner

To fully appreciate our two-phase temporal planner, we first evaluated the performance
of the STRIPS planner, SATPLAN04, with different combinations of our proposed
methods. One of the objectives of this experimental study is to understand the strength
of the two new methods, i.e., accumulative learning (AL) and goal-oriented variable
selection (GOVS). In our current implementation, we used Zchaff as the SAT engine,
because it is a top performer in many SAT competitions and its source code is available.
Another competitive SAT solver, Siege, was not chosen since it is not an open-source
software so that AL and GOVS cannot be incorporated.

To fully understand the strength of each component, we compared four versions
of SATPLAN04, with Zchaff, Zchaff+GOVS, Zchaff+AL, and Zchaff+GOVS+AL, re-
spectively, on some STRIPS domains from IPC3, IPC4 Competitions [1, 2], and the
logistics-strips domains [7]. Since optimal plans are returned by these combinations of
components, we only evaluated their running time. For all runs, we set a CPU time limit
of 1,800 seconds. Table 1 summarizes the results on these domains.

Figures 2 and 3 show the running time of the four algorithmic combinations. Prob-
lems not solvable in 1,800 seconds were considered unsolvable and corresponded to
missing points in the graphs. It is evident from Figures 2 and 3 that our proposed meth-
ods, GOVS heuristic and AL, can consistently improve the original SAT planner. We
further compared the relative contributions of AL and GOVS. We observed that GOVS
is particularly effective on Pipesworld-Notankage, Telegraph, Logistics, and Satellite
domains. Zchaff+GOVS was able to solve several large problems in Pipesworld-
Notankage, i.e., those numbered 21, 22, and 23, in 1711, 271, 1779 seconds, respec-
tively, whereas Zchaff spent 521 seconds on number 22 and failed on number 21 and

An Efficient Hybrid Strategy for Temporal Planning 281

(a) Zenotravel

����

����

����

�����

������

�������

��������

1 6 11 16

Instance Number

C
PU

 ti
m

e
(S

ec
on

d)

GOVS+AL+Zchaff
Zchaff
GOVS+Zchaff
AL+Zchaff

(b) Driverlog

����

����

����

�����

������

�������

��������

1 6 11 16

Instance Number

C
PU

 ti
m

e
(S

ec
on

d)

GOVS+AL+Zchaff
Zchaff
GOVS+Zchaff
AL+Zchaff

(c) Freecell

����

���

�

��

���

����

�����

1 6 11 16

Instance Number

C
PU

 ti
m

e
(S

ec
on

d)

GOVS+AL+Zchaff
Zchaff
GOVS+Zchaff
AL+Zchaff

(d) Rover

����

���

�

��

���

����

�����

1 6 11 16

Instance Number

C
PU

 ti
m

e
(S

ec
on

d)

GOVS+AL+Zchaff
Zchaff
GOVS+Zchaff
AL+Zchaff

Fig. 2. A comparison of the performance of four algorithmic combinations on IPC3 STRIPS
domains

Table 1. The number of instances each propositional planning method can solve for the IPC3,
IPC4 STRIPS domains and logistics-strips domain. N is the total number of problem instances
available in each domain. Highlighted in boxes are the methods that can solve the most number
of problems.

Domains N Zchaff GOVS AL GOVS+AL Domains N Zchaff GOVS AL GOVS+AL

Airport 50
�
�

�
�27 26 26

�
�

�
�27 PW-Notkg 50 9

�
�

�
�11 7 7

PW-Tkg 50 3
�
�

�
�4

�
�

�
�4

�
�

�
�4 Telegraph 14 7

�
�

�
�13
�
�

�
�13

�
�

�
�13

Philosopher 29 29 29 29 29 PSR-small 50 46 46
�
�

�
�47

�
�

�
�47

Satellite 36 2 2 2 2 Logistics 30 20 20 20
�
�

�
�24

Zenotravel 20 9 9
�
�

�
�11 10 Driverlog 20 11 11 11 11

Freecell 20 1 1 1 1 Rover 20 12 13 15
�
�

�
�16

23. For the Telegraph domain, Zchaff+GOVS was able to solve 13 problem instances,
whereas Zchaff could only handle 6. Zchaff+GOVS was able to significantly reduce the
running time of Zchaff on the largest problems in Logistics and Satellite.

The AL method was found very useful in the Telegraph, Philosopher, PSR, Rover,
Driverlog, and Logistics domains. For these domains, Zchaff+AL can significantly and
consistently improve upon Zchaff across all problem instances. The improvement made
by AL can be more than one order of magnitude on the Telegraph, Philosopher, Rover,
and Driverlog domains.

282 Z. Xing, Y. Chen, and W. Zhang

Table 2. The number of instances in the IPC4 temporal domains each temporal planner can solve.
N is the total number of instances in each domain.

maxSATPLAN04 maxSATPLAN04
Domains N GOVS+AL Siege CPT TP4 Domains N GOVS+AL Siege CPT TP4

Airport 50 27
�
�

�
�30 20 13 PW-Notankage 50 9

�
�

�
�21 11 8

PW-Tankage 50 4
�
�

�
�9 5 6 Satellite 36 2

�
�

�
�15 8 4

Table 3. Comparison of solution quality and running time of CPT, TP4, and maxSATPLAN04
with GOVS+AL and Siege on Airport domain.

Instance CPT TP4 GOVS+AL Siege Instance CPT TP4 GOVS+AL Siege
1 64 0.1 64 0.1 64 0.1 64 0.3 2 185 0.1 185 0.1 185 0.1 185 0.3
3 200 0.1 200 0.4 200 0.1 200 0.4 4 127 0.1 127 0.2 127 0.1 127 0.6
5 227 0.1 227 0.4 227 0.1 227 0.8 6 232 0.4 232 6.7 232 0.1 232 1.2
7 232 0.4 232 5.5 232 0.1 232 1.1 8 394 237.0 — — 394 0.8 394 3.7
9 402 935.5 — — 402 1.7 402 6.2 10 126 0.1 126 0.2 126 0.1 126 0.6
11 228 0.2 228 0.7 228 0.1 228 0.9 12 228 0.6 228 1.4 *232 0.2 232 1.4
13 230 0.5 230 4.8 230 0.1 230 1.3 14 390 238.2 — — *394 1.0 394 4.8
15 262 41.6 262 50.5 262 0.5 262 2.9 16 393 1444.8 — — *397 3.5 397 9.1
17 399 190.4 — — *408 7.2 408 15.0 18 435 375.3 — — 435 48.6 435 52.0
19 413 313.5 — — 413 6.8 413 15.4 20 435 833.2 — — 435 145.2 435 94.9
21 — — 285 614.7 285 6.6 285 36.9 22 — — — — 285 6.7 285 60.5
23 — — — — — — 264 481.9 24 — — — — 376 368.8 376 220.5
38 — — — — 322 253.3 322 170.9

Table 4. Comparison of solution quality and running time of CPT, TP4, and maxSATPLAN04
with GOVS+AL and Siege on PW-Notankage domain

Instance CPT TP4 GOVS+AL Siege Instance CPT TP4 GOVS+AL Siege
1 6 0.1 6 0.2 6 0.1 6 0.3 2 12 0.1 12 0.2 12 0.2 12 0.4
3 16 0.9 12 0.8 12 1.2 12 0.5 4 22 94.4 12 1.2 — — 12 0.4
5 14 1.2 12 81.7 12 1.0 12 0.9 6 14 0.9 12 32.6 12 2.5 12 1.3
7 14 19.4 12 23.0 12 6.5 12 1.2 8 14 1.9 14 196.0 14 16.2 14 26.2
9 18 369.5 — — — — 16 74.5 10 — — — — — — 20 1009.2
11 — — — — — — 6 292.6 12 — — — — — — 7 820.9
13 6 403.8 — — — — 6 278.0 14 8 543.1 — — — — 8 1038.3
15 — — — — — — 8 1170.1 17 — — — — — — 6 625.2
21 — — — — — — 13 649.5 23 — — — — — — 16 499.6
24 — — — — — — 26 901.6 31 — — — — — — 24 1298.9

Table 5. Comparison of solution quality and running time of CPT, TP4, and maxSATPLAN04
with GOVS+AL and Siege on PW-tankage

Instance CPT TP4 GOVS+AL Siege Instance CPT TP4 GOVS+AL Siege
1 6 0.2 6 0.6 6 0.1 6 0.3 2 22 8.9 20 2.7 — — 20 210.0
3 16 2087.9 12 447.3 12 176.6 12 4.3 4 — — 12 721.1 — — 12 17.9
5 14 200.0 12 65.5 12 25.4 12 8.9 6 14 214.3 12 282.8 12 34.6 12 18.8
7 — — — — — — 12 444.5 8 — — — — — — 14 1551.5
11 — — — — — — 6 1187.6

An Efficient Hybrid Strategy for Temporal Planning 283

Table 6. Comparison of solution quality and running time of CPT, TP4, and maxSATPLAN04
with GOVS+AL and Siege on Satellite domain

Instance CPT TP4 GOVS+AL Siege Instance CPT TP4 GOVS+AL Siege
1 135.5 0.1 135.5 0.1 *174.9 33.3 174.9 19.4 2 156.3 1.0 156.2 7.1 — — 259.5 341.8
3 65.2 0.2 65.2 7.3 *128.5 38.3 128.5 10.8 4 122.2 2.5 — — — — 173.8 145.6
5 105.3 0.7 105.3 132.4 — — 279.1 83.8 6 64.8 2.7 — — — — 188.7 33.2
7 60.2 1.5 — — — — 149.2 41.2 8 74.0 287.5 — — — — 277.4 358.3
9 81.0 41.5 — — — — 226.2 65.5 10 105.0 14.6 — — — — 288.7 259.2

11 115.8 31.4 — — — — 306.2 242.0 14 — — — — — — 257.7 700.5
15 — — — — — — 148.2 860.4 17 — — — — — — 200.9 238.7

5.2 Evaluation of the New Temporal Planner

We integrated SATPLAN04 with PERT for temporal planning. We called the resulting
algorithm maxSATPLAN04, which has a max-SAT solver as its core. Even though we
do not have access to the source code of Siege, we can still apply it as a blackbox
SAT solver for our max-SAT based STRIPS planner and combine it with PERT. We
thus included this Siege-based temporal planner, along with the Zchaff-based temporal
planner. In the Zchaff-based planner, we used GOVS heuristic and AL method. In our
comparison, we also included CPT and TP4 [11], which are among the best optimal
temporal planners in IPC4 Competition.

We considered the Airport, Pipesworld-Tankage, Pipesworld-Notankage, and Satel-
lite temporal domains in IPC4 Competition, which are the only domains containing
temporal features in the competition. Table 2 summarizes the results of different algo-
rithms on four TP domains. When Siege was used as a blackbox SAT engine, our new
temporal planner was able to solve more instances than CPT and TP4 on three out of
the four domains. However, the new planner with Zchaff+GOVS+AL performed worse
than CPT on these domains except Airport. This difference is evidently due to the SAT
engines used. Siege is a SAT solver highly specialized for planning, while Zchaff is
a generic SAT solver. Although our GOVS heuristic and AL method can significantly
improve the performance of Zchaff, they were still unable to make up the gap between
Zchaff and Siege. In our future work, we will try to re-implement Siege and use it to
replace Zchaff.

Even though applying PERT to an optimal STRIPS plan cannot guarantee an optimal
temporal plan, our experiments showed that it was able to produce optimal plans on
most temporal benchmarks tested. Tables 3 to 6 list performance comparison between
different temporal planners, CPT, TP4, maxSATPLAN04 with Zchaff+GOVS+AL as
SAT engine, and maxSATPLAN04 with Siege as SAT engine. All the temporal plans
from maxSATPLAN04 were produced by applying PERT to the optimal solutions from
our new STRIPS planner. We highlight in the tables all the instances for which the first
optimal STRIPS plans do not give rise to optimal temporal plans; for these instance,
“*” means that further evaluating multiple STRIPS plans reached temporal optimality.
In addition, “-” means no result for an algorithm after 1,800 seconds.

The results in Tables 3 to 6 show that our new temporal planner works very well
on Airport, Notankage, and Tankage domains. For each algorithm, the left and right
columns are the solution quality (makespan) and CPU time, respectively. As shown in
the tables, for every instance in notankage and tankage domains, applying PERT to the

284 Z. Xing, Y. Chen, and W. Zhang

(a) Airport

����

���

�

��

���

����

�����

1 6 11 16 21 26 31 36 41 46

Instance Number

C
PU

 ti
m

e
(S

ec
on

d)

GOVS+AL+Zchaff
Zchaff
GOVS+Zchaff
AL+Zchaff

(b) Pipesworld -Notankage

����

���

�

��

���

����

�����

1 6 11 16 21 26 31 36 41 46

Instance Number

C
PU

 ti
m

e
(S

ec
on

d)

GOVS+AL+Zchaff
Zchaff
GOVS+Zchaff
AL+Zchaff

(c) Pipesworld-Tankage

����

���

�

��

���

����

�����

1 6 11 16 21 26 31 36 41 46

Instance Number

C
PU

 ti
m

e
(S

ec
on

d)

GOVS+AL+Zchaff
Zchaff
GOVS+Zchaff
AL+Zchaff

(d) Telegraph

���

�

��

���

����

1 6 11

Instance Number

C
PU

 ti
m

e
(S

ec
on

d)

GOVS+AL+Zchaff
Zchaff
GOVS+Zchaff
AL+Zchaff

(e) Philosopher

����

���

�

��

���

1 6 11 16 21 26

Instance Number

C
PU

 ti
m

e
(S

ec
on

d)

GOVS+AL+Zchaff
Zchaff
GOVS+Zchaff
AL+Zchaff

(f) PSR-Small

����

���

�

��

���

����

�����

1 6 11 16 21 26 31 36 41 46

Instance Number

C
PU

 ti
m

e
(S

ec
on

d)

GOVS+AL+Zchaff
Zchaff
GOVS+Zchaff
AL+Zchaff

(h) Logistics

����

���

�

��

���

����

�����

1 6 11 16 21 26

Instance Number

C
PU

 ti
m

e
(S

ec
on

d)

GOVS+AL+Zchaff
Zchaff
GOVS+Zchaff
AL+Zchaff

(g) Satellite

����

���

�

��

���

����

�����

1 6 11 16 21 26 31 36

Instance Number

C
PU

 ti
m

e
(S

ec
on

d)

GOVS+AL+Zchaff
Zchaff
GOVS+Zchaff
AL+Zchaff

Fig. 3. A comparison of four algorithmic combinations on IPC4 STRIPS domains and logistics-
strips domain

An Efficient Hybrid Strategy for Temporal Planning 285

first optimal solution from our new STRIPS planner resulted in an optimal temporal
plan. This is also true for most instances in the airport domain.

For instances 2, 3, 5 and 6 in Tankage domain and instances 3 to 9 in Notankage
domain, TP4 and our maxSATPLAN04 generated solutions better than that from CPT.
This result also revealed that CPT is not optimal, even though it was claimed to be so.
Note that the results for our maxSATPLAN04 on these instances are consistent with
that from TP4.

One interesting phenomenon is that our PERT-based strategy does not work very
well on the Satellite domain. One possible reason is that the action durations of the
problems in this domain are not integers. We plan to study this issue more carefully in
our future work.

6 Additional Related Work and Discussions

Besides the related works - particularly planning as satisfibility and PERT - that we have
already mentioned, we now briefly discuss some previous work about goal-oriented
planning approaches and incremental learning.

Goal-oriented variable selection techniques have been exploited by heuristic plan-
ners. The backward chaining planning methods [22, 19] start from goal states and di-
rectly use the goal information to limit and focus search efforts. Although the forward
chaining planning methods [5, 13, 21, 23] start from the initial state, the goal informa-
tion is usually utilized in the heuristic function. For example, in the relaxed plan heuris-
tic used by FF [13], the goal state information is used to extract a relaxed solution plan
to estimate the solution length. However, unlike the SAT planners, heuristic planners
generally have difficulty to find optimal plans or provide some degree of guarantee on
the solution quality. In the optimization phase of the proposed Zchaff+GOVS algorithm,
we essentially assign the completion time steps to different subgoals and try to minimize
the solution length subject to the SAT constraints. Therefore, intelligent goal ordering
information may be useful in this phase to prune infeasible or unreasonable orderings.
A number of related approaches [18, 29] have been developed to provide some kind of
goal ordering information by studying the intrinsic structure of the planning problems.

Several incremental learning approaches have been developed. For example,
Katukam et al. proposed to learn explanation-based search control rules for a partial
order planning scheme [15]. However, most of the learning schemes are proposed for
heuristic search and partial order search methods. For incremental SAT learning meth-
ods, the most related research focuses on applying incremental SAT checker on bounded
model checking [10, 3, 26].

7 Concluding Remarks

We developed a novel hybrid strategy for temporal planning, in which we synergisti-
cally combined many existing techniques from planning, constraint programming and
Operations Research. We made four main contributions to temporal and STRIPS plan-
ning: 1) integration of planning as satisfiability (SATPlan) strategy and program evalu-
ation and review technique (PERT); 2) a method of planning as max-SAT for STRIPS

286 Z. Xing, Y. Chen, and W. Zhang

planning; 3) An accumulative learning scheme for incremental graph plan method; and
4) a goal-oriented heuristic for variable selection. In our research, we extensively ex-
ploited many characteristics of temporal planning and its underlying propositional plan-
ning problem. In addition to the new algorithms for temporal and STRIPS planning
problems, our work also resulted in a novel maximum satisfiability (max-SAT) solver.

We implemented our new methods in SATPLAN04 and Zchaff, and performed ex-
tensive experimental analyses on benchmark problems from IPC4 and other domains.
Experimental results show that our new approach significantly outperforms many state-
of-the-art planners across different planning domains. We also performed an ablation
study to analyze the relative contributions of the proposed methods. Our analysis shows
that each of our new methods yields substantial performance improvements. In the fu-
ture, we plan to study the relationship between optimal parallel plans and the temporal
plans obtained from PERT and derive optimality conditions for the proposed strategy.

Acknowledgement

This research was supported in part by NSF grants ITR/EIA-0113618 and IIS-0535257.

References

1. http://planning.cis.strath.ac.uk/competition.
2. http://ls5-www.cs.uni-dortmund.de/ edelkamp/ipc-4.
3. M. Benedetti and S. Bernardini. Incremental compilation-to-SAT procedures. In Proceedings

of The Seventh International Conference on Theory and Applications of Satisfiability Testing
(SAT04), 2004.

4. A. Blum and M.L. Furst. Fast planning through planning graph analysis. Artificial Intelli-
gence, 90:281–300, 1997.

5. B. Bonet and H. Geffner. Planning as heuristic search. Artificial Intelligence, Special issue
on Heuristic Search, 129(1), 2001.

6. http://www.cril.univ-artois.fr/ vidal/cpt.fr.html.
7. http://www.cs.washington.edu/homes/kautz/satplan/blackbox/blackbox-download.html.
8. S. Edelkamp. Mixed propositional and numerical planning in the model checking integrated

planning system. In Proceedings of AIPS 2002, Workshop on Planning for Temporal Do-
mains, pages 47–55, 2002.

9. R.E. Fikes and N.J. Nilsson. STRIPS: A new approach to the application of theorem proving
to problem solving. Artificial Intelligence, 2:189–208, 1971.

10. M. Awedh H. Jin and F. Somenzi. CirCus: a satisfiability solver geared towards bounded
model checking. In CAV 2004, pages 519–522, 2004.

11. P. Haslum. TP4’04 and HSP. In Proceedings of IPC4, ICAPS, pages 38–40, 2004.
12. F. Hillier and G. Lieberman. Introduction to Operations Research. McGraw-Hill, Boston,

7th edition, 2001.
13. J. Hoffmann and B. Nebel. The FF planning system: Fast plan generation through heuristic

search. Journal of Artificial Intelligence Research, 14:253–302, 2001.
14. J.N. Hooker and V. Vinay. Branching rules for satisfiability. Journal of Automated Reasoning,

15:359–383, 1995.
15. S. Katukam and S. Kambhampati. Learning explanation-based search control rules for partial

order planning. In Proceedings of AAAI-94, pages 582–587, 1994.

An Efficient Hybrid Strategy for Temporal Planning 287

16. H. Kautz. SATPLAN04: Planning as satisfiability. In Proceedings of IPC4, ICAPS, 2004.
17. H. Kautz and B. Selman. Unifying SAT-based and graph-based planning. In Proceedings of

IJCAI-99, pages 318–325, 1999.
18. J. Koehler and J. Hoffmann. On reasonable and forced goal orderings and their use in an

agenda-driven planning algorithm. Journal of Artificial Intelligence Research, 12:338–386,
2000.

19. D. McDermott. Estimated-regression planning for interactions with web services. In Pro-
ceedings of AIPS 2002, pages 204–211, 2002.

20. M.W. Moskewicz, C.F. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: Engineering an
efficient SAT solver. In Proceedings of the 38th Design Automation Conference (DAC’01),
2001.

21. R. S. Nigenda, X. Nguyen, and S. Kambhampati. AltAlt: Combining the advantages of
Graphplan and heuristic state search. Technical report, Arizona State University, 2000.

22. J. L. Pollock. The logical foundations of goal-regression planning in autonomous agents.
Artificial Intelligence, 106(2):267–334, 1998.

23. I. Refanidis and I. Vlahavas. The GRT planner. AI Magazine, pages 63–66, 2001.
24. L. Ryan. Efficient algorithms for clause-learning SAT solvers. Master’s thesis, Simon Fraser

University, 2003.
25. B. Selman and H. Kautz. Planning as satisfiability. In Proceedings ECAI-92, pages 359–363,

1992.
26. O. Shtrichman. Tuning SAT checkers for bounded model checking. In Computer Aided

Verification, pages 480–494, 2000.
27. V. Vidal and H. Geffner. CPT: An optimal temporal POCL planner based on constraint

programming. In Proceedings of IPC4, ICAPS, pages 59–60, 2004.
28. S. Wolfman and D. Weld. Combining linear programming and satisfiability solving for re-

source planning. The Knowledge Engineering Review, 15(1), 2000.
29. C. Hsu Y. Chen and B. W. Wah. SGPlan: Subgoal partitioning and resolution in planning. In

Proceedings of IPC4, ICAPS, pages 30–32, 2004.
30. L. Zhang, C. F. Madigan, M. W. Moskewicz, and S. Malik. Efficient conflict driven learning

in boolean satisfiability solver. In ICCAD, pages 279–285, 2001.

Improved Algorithm for the Soft Global
Cardinality Constraint

Alessandro Zanarini1, Michela Milano2, and Gilles Pesant1

1 Département de génie informatique
École Polytechnique de Montréal

C.P. 6079, succ. Centre-ville
Montreal, Canada H3C 3A7

{azanarini, pesant}@crt.umontreal.ca
2 D.E.I.S., Universitá di Bologna

Viale Risorgimento 2, 40136 Bologna, Italy
mmilano@deis.unibo.it

Abstract. We propose two algorithms achieving generalized arc con-
sistency for the soft global cardinality constraint with variable-based
violation and with value-based violation. They are based on graph the-
ory and their complexity is O(

√
nm) where n is the number of vari-

ables and m is the sum of the cardinalities of the domains. They im-
prove previous algorithms that ran respectively in O(n(m+n log n)) and
O((n + k)(m + n log n)) where k is the cardinality of the union of the
domains.

1 Introduction

Many real-life problems are over-constrained. The tightness and the high number
of constraints can make the problems become unfeasible. In these situations it is
worth finding a solution that partially violates some constraints but that it is still
interesting for the user. Constraints can be partitioned among hard constraints
that cannot be violated, and soft constraints that can be (partially) violated.
Hard constraints are used for modelling the inherent structure of the problem and
soft constraints are more related to preferences that the user wishes to introduce
to the model. Clearly, solutions satisfying a maximum of preferences are more
interesting for the user. Different approaches deal with the concept of violation
in different ways: some methods (MAX-CSP) try to minimize the number of
violated constraints, others (Weighted-CSP [6] [7], Possibilistic-CSP [12], Fuzzy-
CSP [2] [3]) propose more granular ways to measure the level of violation. Petit
et al. in [9] proposed a new approach in which the over-constrained problem
is translated to a constraint optimization problem. It is then worth trying to
identify ad hoc filtering algorithms that can prune the variable domains on the
basis of the cost (violation). Recent work started in that direction by exploring
the area of soft global constraints. In particular van Hoeve et al. in [4] exploited
Flow Theory and proposed filtering algorithms for the soft versions of the well
known all-different, gcc, regular, and same constraints.

J.C. Beck and B.M. Smith (Eds.): CPAIOR 2006, LNCS 3990, pp. 288–299, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Improved Algorithm for the Soft Global Cardinality Constraint 289

In this paper we present an improved algorithm for achieving generalized
arc consistency for the soft gcc (with variable based violation and value based
violation) exploiting Matching Theory, with a better complexity. Intuitively the
soft gcc constraint is violated when either

– too many variables are assigned to a value, exceeding its upper bound (pro-
ducing an overflow) or

– too few variables are assigned to a value, violating its lower bound (producing
an underflow) or

– both.

The idea of the paper is to compute separately the best possible overflow and
underflow and, since we claim they are independent, find a class of solutions
minimizing both overflow and underflow. On the basis of these best underflow
and overflow we perform filtering.

The paper is organized as follows: in Section 2 we give a brief overview of
basic notions about Constraint Satisfaction Problem and Matching Theory; in
Section 3 we formally present the soft gcc constraint and the related violation
measures; then we discuss the relationship between the violation measures and
matching theory. In Section 4 we introduce the consistency theorems and the
filtering algorithms for reaching generalized arc consistency. Finally in Section 5
conclusions are given.

2 Background

2.1 Constraint Satisfaction Problem

A Constraint Satisfaction Problem (CSP) consists of a finite set of variables
X = {x1, x2, . . . , xn} with finite domains D = {D1, D2, . . . , Dn} such that
xi ∈ Di for all i, together with a finite set of constraints C, each on a sub-
set of X . A constraint C ∈ C is defined as a subset of the Cartesian product of
the domains of the variables that are in C. A solution to a CSP is an assignment
of a value to each variable that satisfies all the constraints.

A CSP is defined as inconsistent if no assignment that satisfies all the con-
straints exists. For these over-constrained problems it is natural to identify a
subset of constraints, defined as soft constraints, that can be (partially) violated.
The main objective is then to find a solution that minimizes the total violation
according to some criteria. Petit et al. proposed in [9] to introduce a cost vari-
able z representing the violation and an associated function that measures the
violation of a constraint:

violationC : D1 ×D2 × · · · ×Dn → N

Clearly, if the constraint is satisfied then z = 0, otherwise z > 0. A common
accepted measure is the variable-based cost violation (see [9]) in which the vi-
olation is measured by the minimum number of variables that need to change

290 A. Zanarini, M. Milano, and G. Pesant

their value in order to satisfy the constraint. There exists also violation measures
that are specific to a particular constraint: this is the case of the value-based
cost violation (introduced by van Hoeve et al. in [4]) that is applied in the soft
global cardinality constraint. Our work covers both variable-based violation and
value-based violation for the soft gcc constraint.

2.2 Matching Theory

In this section we recall the main results and definitions that will be used in the
rest of the paper (see [1] for further explanations).

A graph is defined as G = (V, E) where V is a set of vertices and E is a
set of unordered pairs (edges) from V . A graph is called bipartite if V can be
partitioned in two subset X and Y and all the edges are in the form e = (vi, vk)
where vi ∈ X and vj ∈ Y (i.e. there is no edge that joins two vertices of the
same subset).
A path in a graph G = (V, E) is a sequence of vertices v0, v1, . . . , vk such that
(vi, vi+1) ∈ E with i = 0, . . . , k − 1.

Definition 1 (Maximum Matching). A subset of edges in a graph G is called
matching if no two edges have a vertex in common. A matching of maximum
cardinality is called maximum matching.

Given a matching M in G, a vertex is called free vertex if it is not adjacent to
any edge of the matching M .

An alternating path with respect to a matching M (M-alternating path) is
defined as a path whose edges ei = (vi, vi+1) belong alternatively to E−M and
to M .

An augmenting path with respect to a matching M (M-augmenting path)
is defined as a path that starts from and ends to a free vertex, and its edges
ei = (vi, vi+1) belong alternatively to E − M (odd edges) and to M (even
edges); note that an augmenting path has an odd number of edges.

Intuitively, an augmenting path can be used to increase the number of edges
that belong to a matching. Given a matching M and an M-augmenting path P ,
we can build M ′ as M ′ = M ⊕ P (the set operation ⊕ is defined as
A ⊕ B = (A − B) ∪ (B − A)), that is the odd numbered edges are added to
the matching and the even numbered edges are removed from the matching; the
resulting matching increases its cardinality, |M ′| = |M |+ 1.

Theorem 1. Let M be a matching, M is maximum if and only if there is no
augmenting path relative to M.

Theorem 2. Let G be a graph and M a maximum matching in G. An edge
belongs to a maximum matching in G if and only if it either belongs to M , or to
an even M-alternating path starting from a free vertex, or to an even alternating
circuit.

Lemma 1. Given a maximum matching M in G, for any edge e = (vi, vj) in
G, there exists a matching Me such that e ∈Me and |Me| ≥ |M | − 1.

Improved Algorithm for the Soft Global Cardinality Constraint 291

Proof. If e belongs to M then Me = M ; otherwise, starting from the matching
M , we obtain Me adding e and removing all the edges that belong to M and
that are incident to vi or vj (at most one on each). The result is a matching of
size |Me| ≥ |M |+ 1− 2.

We introduce the concept of degree degM (v) of a vertex v as the number of
edges adjacent to v that belongs to M (for the traditional definition of matching
degM (v) ∈ {0, 1}).
Theorem 3. Given a matching M in G, an M-augmenting path P and the
matching M ′ = M ⊕ P , each vertex v has degM ′(v) ≥ degM (v).

Proof. The degree of a vertex v decreases if and only if v is not free w.r.t M and
the incident edge that belongs to M is removed from the matching. For every
removed edge e = (v, vj), two new edges from P are added, incidents respectively
to v and vj , so degM (v) = degM ′(v).

Hopcroft and Karp (see [5]) described an algorithm based on Theorem 1 with a
running time complexity of O(

√
nm) where n is the number of vertices and m

the sum of the cardinalities of the domains.
In [8], Quimper et al. generalized this algorithm maintaining the same com-

plexity. In their generalization they associate to each vertex of the graph a ca-
pacity. Given a matching M , the capacity of a vertex v indicates the maximum
number of edges in M adjacent to v.

Intuitively they build a duplicated graph Gd in which every vertex with a
capacity greater than one is substituted by a number of vertices equal to the
capacity, also the edges associated to these vertices are duplicated. In this way a
traditional matching (in which all the capacities are equal to 1) in Gd corresponds
to a matching on the original graph (in which the capacities can be greater
than 1).

Quimper’s approach is equivalent to the traditional one when all the capacities
are set to 1.

3 Soft Global Cardinality Constraint

A Global Cardinality Constraint on a set of variables specifies the minimum and
the maximum number of occurrences for each value in a solution.

Definition 2 (Global Cardinality Constraint)

gcc(X, l, u) = {(d1, d2, . . . , dn)|di ∈ Di, ld ≤ |{di|di = d}| ≤ ud ∀d ∈ DX}

A generic definition for a soft version of the gcc is:

Definition 3 (Soft Global Cardinality Constraint)

softgcc[∗](X, l, u, z) =
{(d1, d2, . . . , dn, dz)|di ∈ Di, dz ∈ DZ , violationsoftgcc[∗](d1, d2, . . . , dn) ≤ dz}

where * defines a violation measure for the gcc.

292 A. Zanarini, M. Milano, and G. Pesant

To calculate the violation measures van Hoeve et al. (see [4]) introduced the
following definitions:

Definition 4. Given a softgcc(X, l, u, z), we define for all d ∈ D

overflow(X, d) = max(|{xi | xi = d}| − ud, 0)

underflow(X, d) = max(ld − |{xi | xi = d}|, 0)

Definition 5 (Variable-based violation). Given a constraint C and a solu-
tion X̃, the variable-based violation is defined as the number of variables that
should change their value in order to satisfy C.

Lemma 2 (SoftGCC Variable-based violation). Given a softgcc, if∑
d∈DX

ld ≤ |X | ≤
∑

d∈DX
ud then the variable based violation can be expressed

as:

violation[var](X) = max
(∑

d∈D

overflow(X, d),
∑
d∈D

underflow(X, d)
)

Consider for example the variables x1, x2, x3 and x4 and the related domains
D1 = {1, 2}, D2 = {1, 2}, D3 = {1, 2} and D4 = {1, 2, 3}. Suppose we post the
constraint softgcc[var]({x1, x2, x3, x4}, {l1 = 0, l2 = 1, l3 = 2},
{u1 = 1, u2 = 1, u3 = 2}, z). A possible assignment is (1, 1, 2, 3) which has
an overflow equal to 1 and an underflow equal to 1; the variable-based violation
is equal to 1.

Note that it is not always possible to calculate the variable based violation.
To avoid this limitation van Hoeve et al. introduced the value-based violation
(see [4]):

Definition 6 (Value-based violation). Given a softgcc, the value-based vio-
lation is defined as:

violation[val](X) =
∑
d∈D

overflow(X, d) +
∑
d∈D

underflow(X, d)

Consider again the example mentioned above. The assignment (1, 1, 2, 3) whi-
ch has unitary overflow and underflow, has a value-based violation equal to 2.

Van Hoeve et al. (see [4]) proposed two algorithms (one for variable-based
violation and one for value-based violation) achieving generalized arc consistency
both based on flow theory. In their solution they build a value graph (similarly
to Régin in [10]) in which some arcs take into account the violations; a cost is
associated to each of these arcs. A maximum flow with minimum cost in that
graph is equivalent to a solution with minimum violation of the soft gcc.

Their algorithms have a complexity of O(n(m + n log n)) for variable-based
violation and of O((n + k)(m + n logn)) for value-based violation (k is the car-
dinality of the union of the domains).

Improved Algorithm for the Soft Global Cardinality Constraint 293

3.1 Soft gcc and Matching

The main idea of this paper is to exploit matching theory to calculate two as-
signments that minimize respectively the overflow and the underflow. We prove
that it is possible to find a class of assignments that have overflow and underflow
equal to the respective bounds. Then, we figure out how the violation cost of
this class of assignments may change when we force an individual assignment
xi = d. Finally, we can perform filtering based on optimality reasoning.

Let G(X ∪D, E) be an undirected bipartite graph (also called value graph)
such that one partition represents the variable set and the other one the value
set. There is an edge (xi, d) ∈ E if and only if d ∈ Di.

Overflow. Let Go be a value graph such that the capacities of value-vertices are
set to c(d) = ud (variable-vertices have unitary capacity). Using the algorithm
described in Section 2.2, we compute a maximum matching Mo in Go. A maxi-
mum matching Mo corresponds to an assignment that should satisfy the upper
bound constraint of the gcc. If |Mo| = |X | then the matching corresponds to
a consistent assignment (w.r.t. the upper bound constraint); if |Mo| < |X | it
means that some variables cannot be assigned to a value otherwise the upper
bound constraint would be violated.

Exactly |X |−|Mo| variables must be assigned to some values that have already
reached the maximum number of occurrences so the overflow is exactly |X | −
|Mo|.

Theorem 4. Given a maximum matching Mo in the graph Go, it is not possible
to find an assignment with a total overflow less than |X | − |Mo|.

Proof. Suppose that there exists an assignment X with an overflow equal to
OF < |X |− |Mo|. We build the bipartite graph that represents X and we remove
from this graph the OF edges that cause the overflow, therefore each value-vertex
d has deg(d) ≤ ud. The resulting graph can be seen as a feasible matching M ′ in
Go. Since |M ′| = |X | −OF then |M ′| > |Mo|, i.e. Mo is not maximum.

Underflow. Analogously, we exploit matching theory to compute the underflow.
In this case the graph Gu is built such that the capacities of value-vertices are
set to c(d) = ld (variable-vertices have unitary capacity). Value-vertices with
capacity equal to 0 are removed from the graph together with the related edges;
in fact a value-vertex d with c(d) = 0 cannot cause underflow. A maximum
matching Mu in Gu corresponds to a partial assignment that should satisfy the
lower bound constraint of the gcc.

If |Mu| =
∑

d∈D ld then it means that for each value degMu(d) = ld, thus there
exists at least one (partial) assignment that satisfies the lower bound constraint
(i.e. there is no underflow and no violation w.r.t. the lower bound constraint).
If |Mu| <

∑
d∈D ld then there are one or more values that do not reach the

minimum number of requested occurrences (some value vartices are still free)
and no variable can be assigned to these values.

294 A. Zanarini, M. Milano, and G. Pesant

Note that ld − degMu(d) ≥ 0, hence by definition:

underflow(X, d) = ld − degMu(d)

and the total underflow is:∑
d∈D

underflow(X, d) =
∑
d∈D

ld − degMu(d) =

=
∑
d∈D

ld −
∑
d∈D

degMu(d) =
∑
d∈D

ld − |Mu|

Theorem 5. Given a softgcc constraint and two maximum matchings Mo and
Mu, respectively in Go and Gu, it is possible to build a class of assignments
with overflow equal to BOF = |X | − |Mo| (best overflow) and underflow equal
to BUF =

∑
d∈D ld − |Mu| (best underflow).

Proof. We compute a maximum matching Mu in Gu whose underflow is equal to
BUF . The matching Mu is clearly a feasible matching (probably not maximum)
also in Go because all the capacities of Go are greater than those of Gu. Starting
from Mu we compute the maximum matching Mo in Go whose overflow is equal
to BOF . As stated in Theorem 3, when we compute a matching, the degree of
each vertex does not decrease, hence the underflow of Mo in Go remains equal
to BUF .

If |Mo| < |X | then there exists a set XOF of unassigned variables, that is,
there is no edge in Mo adjacent to the variables in XOF . These variables cause
the overflow and, in the final solution, can be assigned to any value in their
respective domain.

In order to develop a filtering algorithm, it is worth figuring out how overflow
and underflow may change (w.r.t. the bounds of Theorem 5) when we try to
force an individual assignment xi = d. They change depending on whether the
edge (xi, d) belongs to a maximum matching in the graphs Go and Gu or not;
intuitively if it belongs to a maximum matching the overflow (or underflow) does
not change otherwise it increases by 1 (see Lemma 1).

Theorem 6. Given a softgcc constraint, an individual assignment xi = d and
a solution X̃ with xi = d that minimizes the overflow (OF) and the underflow
(UF) then BOF ≤ OF ≤ BOF + 1 and BUF ≤ UF ≤ BUF + 1 where BOF
is the best overflow and BUF the best underflow.

Proof. Let Go and Gu be the overflow and underflow graphs and Mo and Mu

the related maximum matchings. Suppose we remove from Go (overflow graph)
and Gu (underflow graph) the vertex xi (and the related edges) and decrease ud

and ld by 1; we call the resulting graph G′
o and G′

u. This is equivalent to forcing
xi = d in the final assignment. Then we find the maximum matching M ′

o in G′
o

and M ′
u in G′

u, clearly their cardinalities can be at most |M ′
o| = |Mo| − 1 and

|M ′
u| = |Mu| − 1. Hence:

Improved Algorithm for the Soft Global Cardinality Constraint 295

– if |M ′
o| = |Mo| − 1 and |M ′

u| = |Mu| − 1 then xi = d belongs to a maximum
matching both in Go and in Gu and the assignment has OF = BOF and
UF = BUF ;

– if |M ′
o| = |Mo| − 1 and |M ′

u| < |Mu| − 1 then xi = d belongs to a maximum
matching in Go but not in Gu and the assignment has OF = BOF and
UF = BUF + 1 (equivally if xi = d belongs to a maximum matching in Gu

but not in Go);
– if |M ′

o| < |Mo| − 1 and |M ′
u| < |Mu| − 1 then xi = d does not belong to a

maximum matching in Go nor in Gu and the assignment has OF = BOF +1
and UF = BUF + 1.

In Figure 1 we give an example of the concepts explained above. Figure 1a
shows the value graph of a global cardinality constraint; the variable domains are
D1 = D2 = D3 = D4 = D5 = {v1, v2}, D6 = {v3, v4}, D7 = {v2, v3}, D8 = D9 =
{v4, v5}; for each value the minimum and the maximum number of occurences

Fig. 1. (a) GCC bipartite graph (for each value, upper and lower bound are indicated
between parenthesis). (b) Maximum Matching in Go. (c) Maximum Matching in Gu.
(d) Possible solution with minimum violation.

296 A. Zanarini, M. Milano, and G. Pesant

are indicated between parenthesis. Figure 1b and 1c show respectively Go and
Gu and the related maximum matchings. In details, the maximum matching Mo

in Go has an overflow equal to |X | − |Mo| = 1; as we can see x5 causes the
overflow since it is not assigned w.r.t. Mo. The maximum matching Mu in Gu

has an underflow equal to
∑

d∈D ld − |Mu| = 1 and the underflow is caused by
the value v5. Then it is possible to find a solution that minimizes overflow and
underflow (figure (d)): this assignment has a variable-based violation equal to 1
and a value-based violation equal to 2.

4 Consistency and Filtering Algorithms

In this section we explain the basis to reach generalized arc consistency and we
show the filtering algorithms for the variable-based and value-based violations.
Our approach is similar to the one proposed by Petit et al. in [9] for the Soft
All-Different constraint.

Briefly, we recall that the variable z represents the cost of the violation and
Dz its domain; during the search max Dz represents the maximum violation
allowed; the objective is to minimize z in order to minimize the total violation.

Moreover, we recall that variable-based violation is equal to
max

(∑
d∈D overflow(X, d),

∑
d∈D underflow(X, d)

)
and that value-based vi-

olation is equal to
∑

d∈D overflow(X, d) +
∑

d∈D underflow(X, d).

4.1 Variable Based Violation

Theorem 7. Let Go and Gu be the value graphs with respectively upper and
lower bound capacities and let Mo and Mu be maximum matchings respectively
in Go and Gu; let BOF and BUF be respectively BOF = |X | − |Mo| and
BUF =

∑
d∈D ld − |Mu|. The constraint softgcc[var](X, l, u, z) is generalized

arc consistent on X if and only if min Dz ≤ max(BOF , BUF) and either:

1. max
(
BOF , BUF

)
≤ (max Dz − 1) or

2. if
(
BOF = max Dz

)
and(

BUF ≤ (max Dz − 1)
)

and all edges in Go belong to a maximum matching
or

3. if
(
BOF ≤ (max Dz − 1)

)
and(

BUF = max Dz

)
and all edges in Gu belong to a maximum matching or

4. if
(
BOF = BUF = max Dz

)
and all edges in Gu and in Go belong to a max-

imum matching in Gu

Proof. In the first case we can build an assignment with violation[var] strictly
less than max Dz; from Theorem 6 the change of a single variable can cause a
unitary increase of the overflow and underflow hence the total violation is still
less or equal to max Dz.

Improved Algorithm for the Soft Global Cardinality Constraint 297

In the second case (resp. third case) if the overflow (resp. underflow) is equal
to max Dz then all the edges must belong to a maximum matching in Go (resp.
in Gu) such that there is no violation increase; from Theorem 6 we know that
an edge that does not belong to a maximum matching would cause an overflow
(resp. underflow) increase making it greater than max Dz.

In the last case the only way for not having a violation increase is that all
edges belong to a maximum matching both in Go and in Gu.

Filtering Algorithm. Firstly we compute the maximum matchings Mo in Go

and Mu in Gu. If the overflow or underflow is greater than max Dz then we fail
because the best possible solution is worse than the maximum allowed violation.

If BOF = |X |− |Mo| < maxDz and BUF =
∑

d∈D ld−|Mu| < maxDz then
all the values are consistent.

In the case of |X | − |Mo| = max Dz we can remove all the edges that
do not belong to a maximum matching in Go; from matching theory (Theo-
rem 2), we know that an edge can be part of a matching iff it belongs to a
strongly connected component (alternating circuit) or it lies on an alternating
path of even length starting from or leading to a free vertex. Analogously, if∑

d∈D ld−|Mu| = maxDz we remove all the edges that do not belong to a max-
imum matching in Gu. Finally, we update the bound of the violation variable, if
necessary (min Dz = max(BOF , BUF)).

The maximum matchings can be computed in O(
√

nm) through Quimper’s
adaptation of Hopcroft-Karp’s algorithm (where n is the number of variables and
m the sum of the cardinalities of the domains); the running time for computing
strongly connected components is O(n + m) and for finding alternating paths is
O(m), hence the overall complexity can be bounded by O(

√
nm).

Note that if all the values have ud equal to 1 then the GCC is equivalent to the
All-Different constraint; in that case the solution proposed is equivalent to Petit
et al.’s solution for the Soft All-Different with variable based violation (see [9]).

Consider again the example given in Section 3 and suppose that maxDz = 1.
We briefly recall that D1 = D2 = D3 = {1, 2}, D4 = {1, 2, 3} and that the values
(1, 2, 3) have lower bounds and upper bounds respectively of (0, 1, 2) and (1, 1, 2).
Firstly we compute a maximum matching in Go: Mo = {(x1, 1), (x2, 2), (x4, 3)};
thus the overflow is OF = |X |−|Mo| = 1. Then we compute a maximum match-
ing in Gu: Mu = {(x1, 2), (x4, 3)}; the underflow is
UF =

∑
d∈D ld − |Mu| = 1. Since both the overflow and the underflow are

equal to max Dz then we prune all the edges that do not belong to a maximum
matching in Go and/or in Gu. In particular, all the edges belong to a maxi-
mum matching in Go; the edges (x4, 1) and (x4, 2) do not belong to a maximum
matching in Gu, so they can be pruned; in fact if x4 would have been equal to
1 (or 2) then the underflow would have been equal to 2 (caused by the value 3).

4.2 Value Based Violation

Theorem 8. Let Go and Gu be the value graphs with respectively upper and
lower bound capacities and let Mo and Mu be maximum matchings respectively
in Go and Gu; let BOF and BUF be respectively BOF = |X | − |Mo| and

298 A. Zanarini, M. Milano, and G. Pesant

BUF =
∑

d∈D ld−|Mu|. The constraint softgcc[val](X, l, u, z) is generalized arc
consistent on X if and only if min DZ ≤ BOF + BUF and either:
1. BOF + BUF < (max DZ − 1) or
2. if BOF + BUF = (max DZ − 1) and all edges belong to a maximum matching

at least in one of Go or Gu or
3. if BOF + BUF = max DZ and all edges belong to a maximum matching both

in Go and in sGu

Proof. We start from the best solution found following Theorem 5. From this
solution a single change of a variable can cause in the worst case a violation
increase equal to 2 (Theorem 6). So in the worst case the total violation is less
or equal to max DZ hence all the values are consistent.

If the overall violation is equal to max DZ − 1 then we have to verify that all
the edges belong to at least a maximum matching; for Theorem 6 the maximum
violation increase would be at most equal to 1, hence the total violation remains
less or equal to max DZ .

If the overall violation is equal to max DZ and all the edges belong to a
maximum matching in both Go and Gu then there would be no increase in the
total violation so the constraint remains feasible.

Filtering Algorithm. Firstly we compute the maximum matchings Mo in Go

and Mu in Gu. We denote with S(OF,UF) the sum of overflow and underflow.
If S(OF,UF) is greater than max Dz then we fail because the best possible

solution is worse than the best current solution found.
If S(OF,UF) < max Dz − 1 then all the values are consistent. In the case of

S(OF,UF) = max Dz − 1 we can remove all the edges that belong neither to a
maximum matching in Go nor in Gu.

If S(OF,UF) = max Dz then we remove all the edges that do not belong to a
maximum matching in Go and/or in Gu.

Finally, we update min Dz, if necessary (min Dz = S(OF,UF)).
The overall complexity is analogous to the variable-based algorithm, that is

O(
√

nm).
Following the example shown in Figure 1, suppose that max Dz = 3.
Instead, if we consider the value-based violation, we have to remove all the

edges that belong neither to a maximum matching in Go nor in Gu. In particular
focusing on Go, the edges e1 = (x7, v2) and e2 = (x6, v3) belong neither to an
alternating circuit nor to an alternating path starting from or leading to a free
vertex. This means that they do not belong to a maximum matching in Go.
Analyzing Gu, the situation is analogous. Hence, e1 and e2 cause an increase
equal to 2 of the total violation (unitary increase of overflow and of underflow).
Forcing e1 (or e2) to be in a solution, the resulting value-based violation is 4
then e1 (resp. e2) is inconsistent and can be pruned.

5 Conclusion

We have presented two algorithms for reaching generalized arc consistency in
the Soft Global Cardinality Constraint with variable-based violation and

Improved Algorithm for the Soft Global Cardinality Constraint 299

value-based violation. They check the consistency of the constraint with a run-
ning time complexity of O(

√
nm) and they prune inconsistent values in O(m+n)

where n is the cardinality of the set of variables and m =
∑

i |Di|. We outper-
form previous algorithms that ran in O(n(m + n log n)) (variable-based viola-
tion) and O((n + k)(m + n logn)) (value-based violation) for constraint consis-
tency check and in O(Δ(m + n log n)) for domain pruning where Δ = min(n, k)
(k = |

⋃
i Di|).

References

1. R.K. Ahuja, T.L. Magnanti, and J.B. Orlin (1993). Network Flows. Prentice Hall.
2. D. Dubois, H. Fargier and H. Prade. The calculus of fuzzy restrictions as a basis

for flexible constraint satisfaction. Proceedings of the Second IEEE International
Conference on Fuzzy Systems, volume 2, pp. 1131-1136, 1993.

3. H. Fargier, J. Lang and T. Schiex. Selecting preferred solutions in fuzzy constraint
satisfaction problems. Proceedings of the First European Congress on Fuzzy and
Intelligent Technologies (EUFIT 93), Aachen, Vol. 3, pp. 1128-1134.

4. W. J. van Hoeve, G. Pesant and L.M. Rousseau. On Global Warming: Flow-Based
Soft Global Constraints. Journal of Heuristics, to appear.

5. J.E. Hopcroft and R.M. Karp. An n5/2 algorithm for maximum matchings in bi-
partite graphs. SIAM Journal on Computing, 2(4):225:231, 1973.

6. J. Larrosa. Node and Arc Consistency in Weighted CSP. Proceedings of the Eigh-
teenth National Conference on Artificial Intelligence, pp. 48-53. AAAI Press, 2002.

7. J. Larrosa and T. Schiex. In the Quest of the best form of local consistency for
Weighted CSP. Proceedings of the Eighteenth International Joint Conference on
Artificial Intelligence, pp. 239-244. Morgan Kaufmann, 2003.

8. C-G. Quimper, Alejandro López-Ortiz, P. van Beek and Alexander Golynski. Im-
proved Algorithms for the Global Cardinality Constraint. Proceedings of the Tenth
International Conference on Principles and Practice of Constraint Programming
(CP 2004), Springer LNCS 3258: 542-556.

9. T. Petit, J-C. Régin and C. Bessière. Specific Filtering Algorithms for Over Con-
strained Problems. Proceedings of the Seventh International Conference on Prin-
ciples and Practice of Constraint Programming (CP 2001), Springer LNCS 2239:
451-463.

10. J-C. Régin. Arc Consistency for Global Cardinality Constraints with Costs. Pro-
ceedings of the Fifth International Conference on Principles and Practice of Con-
straint Programming (CP 1999), Springer LNCS 1713: 390-404.

11. J-C. Régin. Generalized Arc Consistency for Global Cardinality Constraint. Pro-
ceedings of the Thirteenth National Conference on Artificial Intelligence (AAAI-
96), pp.209-215.

12. T. Schiex. Possibilistic Constraint Satisfaction Problems or "How to handle soft
constraints?". Proceedings of the 8th Annual Conference on Uncertainty in Artifi-
cial Intelligence, pp.268-275. Morgan Kaufmann, 1992.

Author Index

Aron, Ionuţ D. 16

Beldiceanu, Nicolas 29
Benini, Luca 44
Bent, Russell 212
Bertozzi, Davide 44
Bessiere, Christian 59
Bosch, Robert 1

Cadoli, Marco 74
Chen, Yixin 273

Dechter, Rina 152

Fox, Maria 2

Gabteni, Sami 89
Gomes, Carla P. 104
Grönkvist, Mattias 89
Guerri, Alessio 44

Hebrard, Emmanuel 59
Hnich, Brahim 59, 197
Hooker, J.N. 3

Katriel, Irit 29, 119
Kenyon, Claire 126
Kiziltan, Zeynep 59
Kovács, András 139

Leahu, Lucian 104
Leventhal, Daniel H. 16
Lorca, Xavier 29

Marinescu, Radu 152
Milano, Michela 44, 288

Patrizi, Fabio 74
Pesant, Gilles 288
Prestwich, Steven D. 197

Rasmussen, Rasmus V. 167
Régin, Jean-Charles 244

Sachenbacher, Martin 182
Sellmann, Meinolf 16, 126

Tarim, S. Armagan 197
Trick, Michael A. 167

Váncza, József 139
Van Hentenryck, Pascal 212, 228
van Hoeve, Willem-Jan 104, 244
Vergados, Yannis 212, 228

Wallace, Richard J. 258
Walsh, Toby 59
Williams, Brian C. 182
Wilson, Nic 258

Xing, Zhao 273

Zanarini, Alessandro 288
Zhang, Weixiong 273

	Frontmatter
	Invited Talks
	Opt Art
	Planning for Mixed Discrete Continuous Domains
	Duality in Optimization and Constraint Satisfaction

	Technical Papers
	A Totally Unimodular Description of the Consistent Value Polytope for Binary Constraint Programming
	Undirected Forest Constraints
	Allocation, Scheduling and Voltage Scaling on Energy Aware MPSoCs
	The Range Constraint: Algorithms and Implementation
	On the Separability of Subproblems in Benders Decompositions
	A Hybrid Column Generation and Constraint Programming Optimizer for the Tail Assignment Problem
	The Power of Semidefinite Programming Relaxations for MAX-SAT
	Expected-Case Analysis for Delayed Filtering
	Plan B: Uncertainty/Time Trade-Offs for Linear and Integer Programming
	Progressive Solutions: A Simple but Efficient Dominance Rule for Practical RCPSP
	AND/OR Branch-and-Bound Search for Pure 0/1 Integer Linear Programming Problems
	The Timetable Constrained Distance Minimization Problem
	Conflict-Directed A* Search for Soft Constraints
	Event-Driven Probabilistic Constraint Programming
	Online Stochastic Reservation Systems
	Traveling Tournament Scheduling: A Systematic Evaluation of Simulated Annealling
	Open Constraints in a Closed World
	Conditional Lexicographic Orders in Constraint Satisfaction Problems
	An Efficient Hybrid Strategy for Temporal Planning
	Improved Algorithm for the Soft Global Cardinality Constraint

	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

