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Abstract. Trust propagation is the principle by which new trust relationships
can be derived from pre-existing trust relationship. Trust transitivity is the most
explicit form of trust propagation, meaning for example that if Alice trusts Bob,
and Bob trusts Claire, then by transitivity, Alice will also trust Claire. This as-
sumes that Bob recommends Claire to Alice. Trust fusion is also an important
element in trust propagation, meaning that Alice can combine Bob’s recommen-
dation with her own personal experience in dealing with Claire, or with other
recommendations about Claire, in order to derive a more reliable measure of trust
in Claire. These simple principles, which are essential for human interaction in
business and everyday life, manifests itself in many different forms. This paper
investigates possible formal models that can be implemented using belief reason-
ing based on subjective logic. With good formal models, the principles of trust
propagation can be ported to online communities of people, organisations and
software agents, with the purpose of enhancing the quality of those communities.

1 Introduction

Trust is a phenomenon that only exists among living species equipped with advanced
cognitive faculties. One usually considers the appreciation of trust to be a purely human
characteristic, but it would be arrogant to exclude animals. When assuming that soft-
ware agents can equipped with capabilities to reason about trust, risk assessment and
decision making, one can talk about artificial trust. There is a rapidly growing growing
literature on this topic [2, 3, 12, 19].

What humans perceive through their senses is a more or less distorted version of
a reality which they assume exists. A considerable part of human science consists of
modelling aspects of the world for the purpose of understanding, prediction and control.
When trying to make statements about the assumed world, we actually make statements
about the subjective perceived world. However, most reasoning models are designed for
the assumed reality, not for the perceived reality.

A quite different approach would be to design a reasoning model for the perceived
world. A key component of such a model is to include uncertainty resulting from partial
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ignorance. Several alternative calculi and logics which include degrees of uncertainty
have been proposed and with some success applied to practical problems [4, 20]. The
problem with many of the proposals has been that the calculi diverge considerably from
standard probability calculus and therefore have received relatively little acceptance. A
second key component of a model for the perceived world is to accept the fact that every
belief is individual.

Subjective logic, which will be described here, takes both the uncertainty and indi-
viduality of beliefs into account while still being compatible with standard logic and
probability calculus. The migration from the assumed towards the perceived world is
achieved by adding an uncertainty dimension to the single valued probability measure,
and by taking the individuality of beliefs into account.

A distinction can be made between interpreting trust as a belief about the reliabil-
ity of an object, and as a decision to depend on an object [14]. In this paper, trust is
interpreted in the former sense, as a belief about reliability. As a calculus of beliefs,
subjective logic can therefore be used for trust reasoning. Although this model can
never be perfect, and able to reflect all the nuances of trust, it can be shown to respect
the main intuitive properties of trust and trust propagation.

As soon as one attempts to perform computations with input parameters in the form
of subjective trust measures, parameter dependence becomes a major issue. If Alice for
example wants to know whether tomorrow will be sunny, she can ask her friends, and
if they all say it will be sunny she will start believing the same. However, her friends
might all have based their opinions on the same weather-forecast, so their opinions are
dependent, and in that case, asking only one of them would be sufficient. It would in fact
be wrong of Alice to take all her friends’ opinions into account as being independent,
because it would strengthen her opinion without any good reason. Being able to identify
cases of dependent opinions is therefore important, but alas difficult.

2 Trust Modeling with Subjective Logic

Subjective logic is a belief calculus specifically developed for modeling trust relation-
ships. In subjective logic, beliefs are represented on binary state spaces, where each
of the two possible states can consist of sub-states. Belief functions on binary state
spaces are called subjective opinions and are formally expressed in the form of an
ordered tuple ωA

x = (b, d, u, a), where b, d, and u represent belief, disbelief and un-
certainty respectively where b, d, u ∈ [0, 1] and b + d + u = 1. The base rate pa-
rameter a ∈ [0, 1] represents the base rate probability in the absence of evidence, and
is used for computing an opinion’s probability expectation value E(ωA

x ) = b + au,
meaning that a determines how uncertainty shall contribute to E(ωA

x ). A subjective
opinion is interpreted as an agent A’s belief in the truth of statement x. Ownership of
an opinion is represented as a superscript so that for example A’s opinion about x is
denoted as ωA

x .
Subjective opinions are equivalent to beta PDFs (probability density functions) de-

noted by beta (α, β) [1]. The beta class of density functions express probability density
over the same binary event spaces as for subjective opinions, and this is also the basis
for their equivalence.
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Let r and s express the number of positive and negative past observations respec-
tively, and let a express the a priori or base rate, then α and β can be determined as:

α = r + 2a , β = s + 2(1 − a) . (1)

The following bijective mapping between the opinion parameters and the beta PDF
parameters can be determined analytically [5, 17].

⎧
⎪⎪⎨

⎪⎪⎩

bx = r/(r + s + 2)
dx = s/(r + s + 2)
ux = 2/(r + s + 2)
ax = base rate of x

⇐⇒

⎧
⎪⎪⎨

⎪⎪⎩

r = 2bx/ux

s = 2dx/ux

1 = bx + dx + ux

a = base rate of x

(2)

Without evidence, the base rate alone determines the probability distribution. As more
evidence becomes available, the influence of the base rate diminishes, until the evidence
alone determines the probability distribution. In order to separate between base rate and
evidence in the beta PDF, we define the augmented beta PDF notation below.

Definition 1 (Augmented Beta PDF Notation). Let the a priori beta PDF as a function
of the base rate a, without evidence, be expressed as beta(2a, 2(1 − a)). Let the a
posteriori beta PDF with positive evidence r and negative evidence s be expressed as
beta(r + 2a, s + 2(1 − a)). The augmented beta PDF with the 3 parameters (r, s, a)
is then simply written as ϕ(r, s, a), defined by:

ϕ(r, s, a) = beta(r + 2a, s + 2(1 − a)) . (3)

Opinions can be mapped into the interior of an equal-sided triangle, and augmented
beta PDFs can be visualised as 2D plots, as illustrated in Fig.1.

Fig.1 illustrates the example of a subjective opinion ωx = (0.7, 0.1, 0.2, 0.5), and
the corresponding equivalent augmented beta PDF ϕ(7, 1, 1

2 ).
The fact that subjective logic is compatible with binary logic and probability calculus

means that whenever corresponding operators exist in probability calculus, the proba-
bility expectation value E(ω) of an opinion ω that has been derived with subjective
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logic, is always equal to the probability value that would have been derived had sim-
ple probability calculus been applied. Similarly, whenever corresponding binary logic
operators exist, an absolute opinion (i.e. equivalent to binary logic TRUE or FALSE)
derived with subjective logic, is always equal to the truth value that can be derived with
binary logic.

Subjective logic has a sound mathematical basis and is compatible with binary logic
and traditional Bayesian analysis. Subjective logic defines a rich set of operators for
combining subjective opinions in various ways [5, 6, 7, 8, 9, 10, 11, 12, 15, 16, 18]. Some
operators represent generalisations of binary logic and probability calculus, whereas
others are unique to belief calculus because they depend on belief ownership. With
belief ownership it is possible to explicitly express that different agents have different
opinions about the same issue.

The advantage of subjective logic over probability calculus and binary logic is its
ability to explicitly express and take advantage of ignorance and belief ownership. Sub-
jective logic can be applied to all situations where probability calculus can be applied,
and to many situations where probability calculus fails precisely because it can not cap-
ture degrees of ignorance. Subjective opinions can be interpreted as probability density
functions, making subjective logic a simple and efficient calculus for probability den-
sity functions. An online demonstration of subjective logic can be accessed at:
http://www.fit.qut.edu.au/∼josang/sl/.

3 Trust Fusion

3.1 Fusion of Independent Trust

This operator is most naturally expressed in the evidence space, so we will define it
there first and subsequently map it over to the opinion space.

Definition 2 (Consensus Operator for Independent Beta PDFs). Let ϕ(rA
x , sA

x , aA
x )

and ϕ(rB
x , sB

x , aB
x ) be two augmented beta PDFs respectively held by the agents A and

B regarding the trustworthiness of x. The augmented beta PDF ϕ(rA�B
x , sA�B

x , aA�B
x )

defined by ⎧
⎪⎨

⎪⎩

rA�B
x = rA

x + rB
x

sA�B
x = sA

x + sB
x

aA�B
x = aA

x (rA
x +sA

x )+aB
x (rB

x +sB
x )

rA
x +rB

x +sA
x +sB

x

is then called the consensus of A’s and B’s estimates, as if it was an estimate held by
an imaginary agent [A, B]. By using the symbol ⊕ to designate this operation, we get
ϕ(rA�B

x , sA�B
x , aA�B

x ) = ϕ(rA
x , sA

x , aA
x ) ⊕ ϕ(rB

x , sB
x , aB

x ).

The consensus rule for combining independent opinions is easily obtained by using
Def.2 above and the evidence-opinion mapping of Eq.(2).

Theorem 1 (Consensus Operator for Independent Opinions). Let ωA
x = (bA

x , dA
x ,

uA
x , aA

x ) and ωB
x = (bB

x , dB
x , uB

x , aB
x ) be trust in x from A and B respectively. The

opinion ωA�B
x = (bA�B

x , dA�B
x , uA�B

x , aA�B
x ) is then called the consensus between ωA

x

and ωB
x , denoting the trust that an imaginary agent [A, B] would have in x, as if
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that agent represented both A and B. In case of Bayesian (totally certain) opinions,
their relative weight can be defined as γA/B = lim(uB

x /uA
x ).

Case I:
uA

x + uB
x − uA

x uB
x �= 0

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

bA�B
x = bA

x uB
x +bB

x uA
x

uA
x +uB

x −uA
x uB

x

dA�B
x = dA

x uB
x +dB

x uA
x

uA
x +uB

x −uA
x uB

x

uA�B
x = uA

x uB
x

uA
x +uB

x −uA
x uB

x

aA�B
x = aA

x uB
x +aB

x uA
x −(aA

x +aB
x )uA

x uB
x

uA
x +uB

x −2uA
x uB

x

Case II:
uA

x + uB
x − uA

x uB
x = 0

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

bA�B
x = (γA/B bA

x +bB
x )

(γA/B+1)

dA�B
x = (γA/B dA

x +dB
x )

(γA/B+1)

uA�B
x = 0

aA�B
x = γA/B aA

x +aB
x

γA/B+1 .

By using the symbol ‘⊕’ to designate this operator, we can write ωA�B
x = ωA

x ⊕ ωB
x .

It can be shown that ⊕ is both commutative and associative which means that the order
in which opinions are combined has no importance. Opinion independence must be
assured, which obviously translates into not allowing an entity’s opinion to be counted
more than once.

The effect of independent consensus is to reduce uncertainty. For example the case
where several witnesses give consistent testimony should amplify the judge’s opinion,
and that is exactly what the operator does. Consensus between an infinite number of not
totally uncertain (i.e. u < 1) opinions would necessarily produce a consensus opinion
with u = 0. Fig.2 illustrates an example of applying the consensus operator for inde-
pendent opinions where ωA

x = {0.8, 0.1, 0.1, a} and ωB
x = {0.1, 0.8, 0.1, a}, so that

ωA�B
x = ωA

x ⊕ ωB
x = {0.47, 0.47, 0.06, a} .

d

u

b

⊕

bd

u

=

d b

u

Fig. 2. Example of applying the consensus operator for fusing independent trust

3.2 Fusion of Dependent Trust

Assume two agents A and B having simultaneously observed the same process. Be-
cause their observations are identical, their respective opinions will necessarily be de-
pendent, and a consensus according to Def.2 would be meaningless.
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If the two observers have made exactly the same observations, and their estimates
are equal, it is sufficient to take only one of the estimates into account. However, al-
though two observers witness the same phenomenon, it is possible (indeed, likely) that
they record and interpret it differently. The observers may have started and ended the
observations at slightly different times, one of them may have missed or misinterpreted
some of the events, resulting in varying, but still dependent opinions.

We will define a consensus rule for dependent beta PDFs based on the average of
recorded positive and negative observations. Let two dependent augmented beta PDFs
be ϕ(rA

x , sA
x , aA

x ) and ϕ(rB
x , sB

x , aB
x ), then we define the consensus estimate by the

average of their parameters as ϕ( rA
x +rB

x

2 ,
sA

x +sB
x

2 ,
aA

x +aB
x

2 ). The general expression for
the consensus between n dependent augmented beta PDFs can be defined as follows:

Definition 3 (Consensus Operator for Dependent Beta PDFs). Let ϕ(rAi
x , sAi

x , aAi
x ),

where i ∈ [1, n], be n dependent augmented beta PDFs respectively held by the agents
A1, ..., An about the proposition x. The depended consensus beta PDF is then
ϕ(rA1�...�An

x , s
A1�...�An
x , a

A1�...�An
x ), where:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

r
A1�...�An
x =

�n
1 r

Ai
x

n

s
A1�...�An
x =

�n
1 s

Ai
x

n

a
A1�...�An
x =

�n
1 a

Ai
x

n

By using the symbol ⊕ to designate this operation, we get
ϕ(rA1�...�An

x , s
A1�...�An
x , a

A1�...�An
x ) = ϕ(rA1

x , sA1
x , aA1

x )⊕ . . . ⊕ϕ(rAn
x , sAn

x , aAn
x ). �

The corresponding consensus operator is obtained by applying Eq.(2) to Def.3.

Theorem 2 (Consensus Operator for Dependent Opinions). Let ωAi
x = {bAi

x , dAi
x ,

uAi
x , aAi

x } where i ∈ [1, n], be n dependent opinions respectively held by agents
A1, ..., An about the same proposition x. The depended consensus is then ω

A1�...�An
x =

{b
A1�...�An
x , d

A1�...�An
x , u

A1�...�An
x , a

A1�...�An
x }, where:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

b
A1�...�An
x =

�n
1 (bAi

x /u
Ai
x )�n

1 (bAi
x /u

Ai
x )+

�n
1 (dAi

x /u
Ai
x )+n

d
A1�...�An
x =

�n
1 (dAi

x /u
Ai
x )�

n
1 (bAi

x /u
Ai
x )+

�
n
1 (dAi

x /u
Ai
x )+n

u
A1�...�An
x = n�n

1 (bAi
x /u

Ai
x )+

�n
1 (dAi

x /u
Ai
x )+n

a
A1�...�An
x =

�n
1 a

Ai
x

n

where all the uAi
x are different from zero. By using the symbol ⊕ to designate this

operation, we get ω
A1�...�An
x = ωA1

x ⊕ . . .⊕ωAn
x .
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The ⊕ operator is both commutative and associative. The effect of the dependent con-
sensus operator is to produce an opinion which is based on an average of positive and
an average of negative evidence. Fig.3 illustrates an example of applying the con-
sensus operator for dependent opinions where ωA

x = {0.8, 0.1, 0.1, a} and ωB
x =

{0.1, 0.8, 0.1, a}, so that ω
A�B
x = ωA

x ⊕ωB
x = {0.45, 0.45, 0.10, a} .

d

u

b

⊕

bd

u

=

d

u

b

Fig. 3. Example of applying the consensus operator for dependent opinions

3.3 Fusion of Trust Under Partial Dependence

Let two agents A and B observed the same process during two partially overlapping
periods. If it is known exactly which events were observed by both, one of the agents
can simply dismiss these observations, and their opinions will be independent. However,
it may not always be possible to determine which observations are identical.

Fig.4 illustrates a situation of partly dependent observations. Assuming that the
fraction of overlapping observations is known, the dependent and the independent
parts of their observations can be estimated, so that a consensus operator can be
defined [13].

In the figure, ω
Ai(B)
x and ω

Bi(A)
x represent the independent parts of A and B’s opin-

ions, whereas ω
Ad(B)
x and ω

Bd(A)
x represent their dependent parts.

Let ϕA
x ’s fraction of dependence with ϕB

x and vice versa be represented by the de-

pendence factors λ
Ad(B)
x and λ

Bd(A)
x . The dependent and independent augmented betas

can then be defined as a function of the dependence factors.

xϕ

   ’s observations

   ’s observations

A

B

ϕ
xϕ

xϕ
A  (B) B  (A)i ix

dB  (A)

dA  (B)

Fig. 4. Beta PDFs based on partly dependent observations
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ϕ
Ai(B)
x :

{
r

Ai(B)
x = rA

x (1 − λ
Ad(B)
x )

s
Ai(B)
x = sA

x (1 − λ
Ad(B)
x )

ϕ
Bi(A)
x :

{
r

Bi(A)
x = rB

x (1 − λ
Bd(A)
x )

s
Bi(A)
x = sB

x (1 − λ
Bd(A)
x )

ϕ
Ad(B)
x :

{
r

Ad(B)
x = rA

x λ
Ad(B)
x

s
Ad(B)
x = sA

x λ
Ad(B)
x

ϕ
Bd(A)
x :

{
r

Bd(A)
x = rB

x λ
Bd(A)
x

s
Bd(A)
x = sB

x λ
Bd(A)
x

(4)
The cumulative fusion of partially dependent beta PDFs can then be defined as a

function of the dependent and independent parts.

Definition 4 (Consensus Operator for Partially Dependent Beta PDFs). Let ϕA
x and

ϕB
x be two augmented beta PDFs respectively held by the agents A and B regarding

the trustworthiness of x. We will use the symbol ⊕̃ to designate consensus between
partially dependent augmented betas. As before ⊕ is the operator for entirely dependent
augmented betas. The consensus of A and B’s augmented betas can then be written as:

ϕA
x ⊕̃ϕB

x = ϕA��B
x

= ϕ
(Ad(B)�Bd(A))�Ai(B)�Bi(A)
x

= (ϕAd(B)
x ⊕ϕ

Bd(A)
x ) ⊕ ϕ

Ai(B)
x ⊕ ϕ

Bi(A)
x

(5)

The equivalent representation of dependent and independent opinions can be obtained
by using Eq.(4) and the evidence-opinion mapping Eq.(2). The reciprocal dependence
factors are as before denoted by λAd(B) and λBd(A).

ω
Ai(B)
x :

⎧
⎪⎨

⎪⎩

b
Ai(B)
x = bA

x μ
Ai(B)
x

d
Ai(B)
x = dA

x μ
Ai(B)
x

u
Ai(B)
x = uA

x μ
Ai(B)
x /(1 − λ

Ad(B)
x ) ,

μ
Ai(B)
x = 1−λAd(B)

x

(1−λ
Ad(B)
x )(bA

x +dA
x )+uA

x

ω
Ad(B)
x :

⎧
⎪⎨

⎪⎩

b
Ad(B)
x = bA

x μ
Ad(B)
x

d
Ad(B)
x = dA

x μ
Ad(B)
x

u
Ad(B)
x = uA

x μ
Ad(B)
x /λ

Ad(B)
x ,

μ
Ad(B)
x = λAd(B)

x

λ
Ad(B)
x (bA

x +dA
x )+uA

x

ω
Bi(A)
x :

⎧
⎪⎨

⎪⎩

b
Bi(A)
x = bB

x μ
Bi(A)
x

d
Bi(A)
x = dB

x μ
Bi(A)
x

u
Bi(A)
x = uB

x μ
Bi(A)
x /(1 − λ

Bd(A)
x ) ,

μ
Bi(A)
x = 1−λBd(A)

x

(1−λ
Bd(A)
x )(bB

x +dB
x )+uB

x

ω
Bd(A)
x :

⎧
⎪⎨

⎪⎩

b
Bd(A)
x = bB

x μ
Bd(A)
x

d
Bd(A)
x = dB

x μ
Bd(A)
x

u
Bd(A)
x = uB

x μ
Bd(A)
x /λ

Bd(A)
x ,

μ
Bd(A)
x = λBd(A)

x

λ
Bd(A)
x (bB

x +dB
x )+uB

x

(6)
Having specified the separate dependent and independent parts of two partially de-

pendent opinions, we can now define the consensus operator for partially dependent
opinions.

Theorem 3 (Consensus Operator for Partially Dependent Opinions). Let A and
B have the partially dependent opinions ωA

x and ωB
x respectively, about the same
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proposition x, and let their dependent and independent parts be expressed according to
Eq.(6). We will use the symbol ⊕̃ to designate consensus between partially dependent
opinions. As before ⊕ is the operator for entirely dependent opinions. The consensus of
A and B’s opinions can then be written as:

ωA
x ⊕̃ωB

x = ωA��B
x

= ω
(Ad(B)�Bd(A))�Ai(B)�Bi(A)
x

= (ωAd(B)
x ⊕ω

Bd(A)
x ) ⊕ ω

Ai(B)
x ⊕ ω

Bi(A)
x

(7)

It is easy to prove that for any opinion ωA
x with a dependence factor λ

Ad(B)
x to any other

opinion ωB
x the following equality holds:

ωA
x = ωAi(B)

x ⊕ ωAd(B)
x (8)

4 Trust Transitivity

Assume two agents A and B where A trusts B, and B believes that proposition x is true.
Then by transitivity, agent A will also believe that proposition x is true. This assumes
that B recommends x to A. In our approach, trust and belief are formally expressed
as opinions. The transitive linking of these two opinions consists of discounting B’s
opinion about x by A’s opinion about B, in order to derive A’s opinion about x. This
principle is illustrated in Fig.5 below. The solid arrows represent initial direct trust, and
the dotted arrow represents derived indirect trust.

A
A
B

B
xωω

A
BB

xx
A:B
xω

Fig. 5. Principle of the discounting operator

Trust transitivity, as trust itself, is a human mental phenomenon, so there is no such
thing as objective transitivity, and trust transitivity therefore lends itself to different
interpretations. We see two main difficulties. The first is related to the effect of A dis-
believing that B will give a good advice. What does this exactly mean? We will give
two different interpretations and definitions. The second difficulty relates to the effect
of base rate trust in a transitive path. We will briefly examine this, and provide the defi-
nition of a base rate sensitive discounting operator as an alternative to the two previous
which are base rate insensitive.

4.1 Uncertainty Favouring Trust Transitivity

A’s disbelief in the recommending agent B means that A thinks that B ignores the truth
value of x. As a result A also ignores the truth value of x.
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Definition 5 (Uncertainty Favouring Discounting). Let A, B and be two agents
where A’s opinion about B’s recommendations is expressed as ωA

B ={bA
B, dA

B, uA
B, aA

B},
and let x be a proposition where B’s opinion about x is recommended to A with the
opinion ωB

x = {bB
x , dB

x , uB
x , aB

x }. Let ωA:B
x = {bA:B

x , dA:B
x , uA:B

x , aA:B
x } be the opin-

ion such that: ⎧
⎪⎪⎨

⎪⎪⎩

bA:B
x = bA

BbB
x

dA:B
x = bA

BdB
x

uA:B
x = dA

B + uA
B + bA

BuB
x

aA:B
x = aB

x

then ωA:B
x is called the uncertainty favouring discounted opinion of A. By using the

symbol ⊗ to designate this operation, we get ωA:B
x = ωA

B ⊗ ωB
x . �

It is easy to prove that this operator is associative but not commutative. This means that
the combination of opinions can start in either end of the path, and that the order in
which opinions are combined is significant. In a path with more than one recommending
entity, opinion independence must be assumed, which for example translates into not
allowing the same entity to appear more than once in a transitive path. Fig.6 illustrates
an example of applying the discounting operator for independent opinions, where ωA

B =
{0.1, 0.8, 0.1} discounts ωB

x ={0.8, 0.1, 0.1} to produce ωA:B
x ={0.08, 0.01, 0.91}.

bd

u

⊗

d

u

b

=

d b

u

Fig. 6. Example of applying the discounting operator for independent opinions

4.2 Opposite Belief Favouring

A’s disbelief in the recommending agent B means that A thinks that B consistently
recommends the opposite of his real opinion about the truth value of x. As a result, A
not only disbelieves in x to the degree that B recommends belief, but she also believes
in x to the degree that B recommends disbelief in x, because the combination of two
disbeliefs results in belief in this case.

Definition 6 (Opposite Belief Favouring Discounting). Let A, B and be two agents
where A’s opinion about B’s recommendations is expressed as ωA

B ={bA
B, dA

B, uA
B, aA

B},
and let x be a proposition where B’s opinion about x is recommended to A as the opinion
ωB

x ={bB
x , dB

x , uB
x , aB

x }. Let ωA:B
x ={bA:B

x , dA:B
x , uA:B

x , aA:B
x } be the opinion such that:

⎧
⎪⎪⎨

⎪⎪⎩

bA:B
x = bA

BbB
x + dA

BdB
x

dA:B
x = bA

BdB
x + dA

BbB
x

uA:B
x = uA

B + (bA
B + dA

B)uB
x

aA:B
x = aB

x
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then ωA:B
x is called the opposite belief favouring discounted recommendation from B

to A. By using the symbol ⊗ to designate this operation, we get ωA:B
x = ωA

B ⊗ ωB
x . �

This operator models the principle that “your enemy’s enemy is your friend”. That
might be the case in some situations, and the operator should only be applied when the
situation makes it plausible. It is doubtful whether it is meaningful to model more than
two arcs in a transitive path with this principle. In other words, it is doubtful whether
the enemy of your enemy’s enemy necessarily is your enemy too.

4.3 Base Rate Sensitive Transitivity

In the transitivity operators defined in Sec.4.1 and Sec.4.2 above, aA
B had no influence

on the discounting of of the recommended (bB
x , dB

x , uB
x ) parameters. This can seem

counterintuitive in many cases such as in the example described next.
Imagine a stranger coming to a town which is know for its citizens being honest. The

stranger is looking for a car mechanic, and asks the first person he meets to direct him
to a good car mechanic. The stranger receives the reply that there are two car mechanics
in town, David and Eric, where David is cheap but does not always do quality work,
and Eric might be a bit more expensive, but he always does a perfect job.

Translated into the formalism of subjective logic, the stranger has no other info about
the person he asks than the base rate that the citizens in the town are honest. The stranger
is thus ignorant, but the expectation value of a good advice is still very high. Without
taking aA

B into account, the result of the definitions above would be that the stranger is
completely ignorant about which if the mechanics is the best.

An intuitive approach would then be to let the expectation value of the stranger’s
trust in the recommender be the discounting factor for the recommended (bB

x , dB
x )

parameters.

Definition 7 (Base Rate Sensitive Discounting). The base rate sensitive discounting
of a belief ωB

x = (bB
x , dB

x , uB
x , aB

x ) by a belief ωA
B = (bA

B, dA
B, uA

B, aA
B) produces the

transitive belief ωA�B
x = (bA�B

x , dA�B
x , uA�B

x , aA�B
x ) where

⎧
⎪⎪⎨

⎪⎪⎩

bA�B
x = E(ωA

B)bB
x

dA�B
x = E(ωA

B)dB
x

uA�B
x = 1 + E(ωA

B)uB
x − E(ωA

B)
aA�B

x = aB
x

(9)

where the probability expectation value E(ωA
B) = bA

B + aA
BuA

B .

However this operator must be applied with care. Assume again the town of honest
citizens, and let let the stranger A have the opinion ωA

B = (0, 0, 1, 0.99) about the
first person B she meets, i.e. the opinion has no basis in evidence other than a very high
base rate defined by aA

B = 0.99. If the person B now recommends to A the opinion
ωB

x = (1, 0, 0, a), then, according to the base rate sensitive discounting operator
of Def.7, A will have the belief ωA:B

x = (0.99, 0, 0.01, a) in x. In other words,
the highly certain belief ωA:B

x is derived on the basis of the highly uncertain belief
ωA

B , which can seem counterintuitive. This potential problem could be amplified as the
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trust path gets longer. A safety principle could therefore be to only apply the base rate
sensitive discounting to the last transitive link.

There might be other principles that better reflect human intuition for trust transitiv-
ity, but we will leave this question to future research. It would be fair to say that the base
rate insensitive discounting operator of Def.5 is safe and conservative, and that the base
rate sensitive discounting operator of Def.7 can be more intuitive in some situations,
but must be applied with care.

5 Mass Hysteria

One of the strengths of this work is in its analytical capabilities. As an example, consider
how mass hysteria can be caused by people not being aware of dependence between
opinions. Let for example person A recommend an opinion about a particular statement
x to a group of other persons. Without being aware of the fact that the opinion came
from the same origin, these persons can recommend their opinions to each other as
illustrated in Fig.7.

D E F G

B C

A

x

Fig. 7. The principle of mass hysteria

The arrows represent trust so that for example B −→ A can be interpreted as saying
that B trusts A to recommend an opinion about statement x. The actual recommenda-
tion goes, of course, in the opposite direction to the arrows in Fig.7.

It can be seen that A recommends an opinion about x to 6 other agents, and that
G receives 6 recommendations in all. If G assumes the recommended opinions to be
independent and takes the consensus between them, his opinion can become abnormally
strong and in fact even stronger than A’s opinion.

As a numerical example, let A’s opinion ωA
x about x as well as the agents’ opinions

about each other (ωB
A , ωC

A , ωC
B , ωD

A , ωD
B , ωD

C , ωE
A , ωE

B , ωE
C , ωE

D, ωF
A , ωF

B , ωF
C , ωF

D, ωF
E ,

ωG
A , ωG

B , ωG
C , ωG

D, ωG
E , ωG

F ) all have the same value given by (0.7, 0.1, 0.2, a).
In this example, we will apply the consensus operator for independent beliefs to

illustrate the effect of unknown dependence. We also apply the uncertainty favouring
discounting operator which does not take base rates into account.
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Taking all the possible recommendations of Fig.7 into account creates a relatively
complex trust graph, and a rather long notation. In order to reduce the size of the no-
tation, the transitivity symbol “:” will simply be omitted, and the cumulative fusion
symbol 
 will simply be written as “,”. Analysing the whole graph of dependent paths,
as if they were independent, will then produce:

ω

�
������

GA, GBA, GCA, GCBA, GDA, GDBA, GDCA, GDCBA, GEA,GEBA,GECA,

GECBA, GEDA,GEDBA, GEDCA, GEDCBA, GFA, GFBA, GFCA, GFCBA,

GFDA, GFDBA, GFDCA, GFDCBA, GFEA, GFEBA, GFECA, GFECBA,

GFEDA, GFEDBA, GFEDCA, GFEDCBA

�
������

x = (0.76, 0.11, 0.13, a)

For comparison, if G only took the recommendation from A into account (as he
should), his derived opinion would be ωG:A

x = {0.49, 0.07, 0.44, a}.
In real situations it is possible for recommended opinions to return to their originator

through feedback loops, resulting in even more exaggerated beliefs. When this process
continues, an environment of self amplifying opinions, and thereby hysteria, is created.

6 Conclusion

Subjective logic is a belief calculus which takes into account the fact that perceptions
about the world always are subjective. This translates into using a belief model that can
express degrees of uncertainty about probability estimates, and we use the term opin-
ion to denote such subjective beliefs. In addition, ownership of opinions is assigned to
particular agents in order to reflect the fact that opinions always are individual. The
operators of subjective logic use opinions about the truth of propositions as input pa-
rameters, and produce an opinion about the truth of a proposition as output parameter.

In this paper, trust is interpreted as a belief about reliability, and we have shown
how subjective logic can be used for trust reasoning. Although this model can never be
perfect, and able to reflect all the nuances of trust, it can be shown to respect the main
and intuitive properties of trust and trust propagation.

One difficulty with applying subjective logic is that trust and beliefs can be depen-
dent without people being aware of it, in which case the calculus will produce “wrong”
results. Our example illustrated how dependent opinions can influence peoples opinions
without any objective reason, and even cause hysteria. In order to avoid this problem
we introduced operators for belief and trust fusion that explicitly take dependence into
account. This makes it possible to models real world situations involving dependent
beliefs more realistically.

Another difficulty is to find a sound and intuitive operator for trust transitivity. This
problem comes from the fact that trust transitivity is a psychosocial phenomenon that
can not be objectively observed and modelled in traditional statistical or probabilistic
terms. We have proposed possible alternative models to the traditional and conservative
uncertainty favouring transitivity operator of subjective logic. However, we feel that
more research and experiments are needed in order to determine optimal principles of
modelling trust transitivity. It might also be the case that no single transitivity operator
is suitable for all situations, and that particular situations will require specially designed
transitivity operators.
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