
Q. Wang et al. (Eds.): SPW/ProSim 2006, LNCS 3966, pp. 80 – 87, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Software Process Measurement in the Real World:
Dealing with Operating Constraints

Luigi Lavazza1,2 and Marco Mauri2

1 Università dell’Insubria – Varese, Dipartimento di Informatica e Comunicazione,
Via Mazzini, 5 – Varese, Italy

2 CEFRIEL, Via Fucini, 2 - 20133 Milano, Italy
{lavazza, mmauri}@cefriel.it

Abstract. Process measurement occurs in an increasingly dynamic context,
characterized by limited resources and by the need to deliver results at the pace
of changing technologies, processes and products. Traditional measurement
techniques (like the GQM) have been extensively and successfully employed in
situations with little or no operating constraints. This paper reports about a
measurement project in which –in order to limit the cost and duration of the ac-
tivities– the team could not perform ad hoc measurements, but had to rely al-
most exclusively on the data that could be extracted automatically from devel-
opment and measurement tools already in use. Exploiting the flexibility of the
GQM technique, and with the support of a tool supporting the GQM, it was
possible to define and execute the measurement plan, to analyze the collected
data, and to formulate results in only three months, and spending a very small
amount of resources.

Keywords: Process metrics, Product metrics Goal/Question/Metrics, Process
quality assessment.

1 Introduction

The work described here was carried out in an organization of Banca Caboto in
charge of the maintenance of a dozen banking applications, consisting mainly of Java
code, SQL code, and HTML code. The size of the applications ranged from about 30
KLOCs (300 Function Points) to over 500KLOCs (over 9000 Function Points). The
maintenance process employed 41 full-time people (13 employees and 28 people
hired from external organizations) organized in three groups, each coordinated by a
maintenance team leader.

The management of the organization needed to perform some basic evaluations of
the process and products in order to support estimation activities and decision-making.
For this purpose –having realized that objective quantitative data were needed– the
management had started two measurement initiatives. The first one aimed at measuring
the static properties of the managed software. For this purposed they adopted the
CAST tool (http://www.castsoftware.com/). Measurement of the code was performed
every three months on the whole set of applications. The collected data included for
each application: LOCs, number of artifacts, backfired function points, number of files,

 Software Process Measurement in the Real World 81

number of classes, average Java coupling and complexity, number of SQL artifacts,
average SQL coupling and complexity, number of web pages. In addition, the differ-
ence between subsequent versions was assessed by measuring the variation of the
aforementioned qualities. On the basis of these measures CAST computed a set of
high-level indicators (most of which predefined), such as the “artifact granularity”,
functional size index, artifact coupling, technical complexity and standard violations. A
second initiative consisted in measuring the Change Requests (CRs) stored in the tool
adopted to keep track of changes (ClearQuest). The organization managed the CRs
according to a standard lifecycle; transitions between lifecycle states were recorded by
means of ClearQuest. The established measurement procedures provided the number
of CRs per application and per state.

Although these initiatives provided the management with some useful data, they
were not able to satisfy more complex evaluation needs, which the management ex-
pressed as a set of questions: Are we doing our job well? Is the quality of the managed
applications good? How good are the people in charge of maintenance?

These questions were originated by the need to control, verify, estimate and evalu-
ate the process and products, and ultimately to support management decisions.

The authors were asked to set up a measurement process that could deliver the re-
quired evaluation. It was thus decided to employ the GQM method [3, 4], which was
suitable for converting the strategic goal into a measurement plan, and which had
been previously successfully used by the authors [5, 9]. Throughout this paper we
assume that the reader is familiar with the GQM.

The organization posed a few constraints that forced the GQM team to deviate
from the standard GQM process. The constraints were:

− The measurement team had to provide results in three months. These could be
initial results; however they had to be reasonably meaningful and reliable.

− The budget for data collection was quite limited.
− The measurement process had to be as non-intrusive as possible: the maintenance

process was not to be disturbed. Only one project manager could be involved in the
“manual” collection of data, and only for a very small fraction of her time.

The latter concern was originated by the need to keep the productivity of the mainte-
nance process as high as possible –therefore people should not be distracted from
their work– and by the awareness that the introduction of measurement programmes
often generates resistance [7]: the management wanted to avoid problems with the
acceptance of metrics programmes by developers.

The paper describes how the measurement activities were carried out in confor-
mance of the constraints. We report what data it was possible to collect, how the
original goals were affected by the limitations in measurement, and how it was neces-
sary to redesign the GQM plan in order to fulfill the constraints.

The paper is organized as follows: Section 2 reports about the definition of the
GQM plan. Section 3 describes the measurement phase; limits to the fulfillment of the
GQM plan due to unavailable data are also described. Section 4 describes the data that
it was possible to measure and the results that could be derived from such data. Sec-
tion 5 illustrates related work. Finally, Section 6 summarizes the lessons learned and
draws some conclusions.

82 L. Lavazza and M. Mauri

2 The Planning Phase

The planning phase was carried out without taking into consideration any constraint.
Although it was clear from the beginning of the work that only some of the required
metrics were going to be collected, it was decided to build a complete GQM plan, i.e.,
a GQM plan that could in principle satisfy as thoroughly as possible the strategic
goals. The rationale for this decision was twofold:

− It was not known in advance which metrics it will have been possible to collect.
Excluding some metrics from the plan implied the risk of excluding metrics that
actually could be collected without violating the operating constraints.

− The GQM team expected that the unconstrained GQM plan could provide a frame-
work for assessing the relevance and quality of the available metrics, and for evalu-
ating their meaning and reliability.

The strategic goals given by the management were translated –in a rather straightfor-
ward way– into the following set of GQM goals:

Goal 1: Analyze the maintenance process for the purpose of evaluating the quality of
the product, from the point of view of the management of the organization.

Goal 2: Analyze the maintenance process for the purpose of evaluating the duration
and cost of maintenance activities, from the point of view of the management
of the organization.

Goal 3: Analyze the resources employed in the maintenance process for the purpose
of evaluating their adequacy, from the point of view of the management of
the organization.

The definition of the GQM plan was carried out employing the GQM tool [5, 10]. The
tool supports the execution of GQM processes, by addressing both the generation of
the GQM plan (including the precise definition of the metrics) and the successive
phases of the process, namely data collection and analysis. The tool also integrates the
measures database.

Given the very short time frame available for carrying out the whole GQM process,
the availability of the GQM tool was fundamental. By employing the tool, the GQM
team was able to define the GQM plan affectively and efficiently. In fact, in this
phase the tool is particularly helpful in maintaining the GQM documentation in order,
in identifying inconsistencies, redundancies and feasibility problems with the plan,
and in generating the documentation for the management.

The GQM goals reported above were refined into abstraction sheets, questions and
metrics according to the consolidated GQM practice. The complete GQM plan in-
cluded 37 questions and 58 metrics.

The main object of the measurement activities was the execution and management
of a Change Request. Therefore, most metrics concerned the CR. Every CR was char-
acterized in terms of time and effort spent, type (defect correction or enhancement),
lifecycle (i.e., the sequence of its states), application involved, amount and quality of
the resources employed to perform the change, characteristics of the change (critical-
ity, urgency, size, etc.).

 Software Process Measurement in the Real World 83

3 The Measurement Phase

In order to produce reasonably sound and interesting results, while satisfying the
constraints, the following operating criteria were adopted:

− Tools that were employed in the maintenance process had to be exploited to auto-
matically derive as many measures as possible. This approach was expected to
provide reliable data at a very low cost, and to provide measures as soon as the as-
sociated phenomena were available in the environment [9].

− Measurement tools that were already in place should have been exploited as well.
− Subjective data that did not require a big effort for collection (e.g., data that could

be collected una tantum) were going to be obtained via interviews. For this pur-
pose, the management designated one of maintenance team leaders to cooperate
with the GQM team.

The analysis of the maintenance environment confirmed that the application of the
criteria described above could result in deriving measures from CAST and from
ClearQuest, and in obtaining some subjective data via interviews.

In order to ease the analysis phase, it was necessary to store all the collected data in
a unique repository. ClearQuest records were initially extracted from the ClearQuest
repository (currently implemented on top of an Oracle database) and inserted in a
specifically designed Access database. All the measures corresponding to the GQM
metrics were obtained by means of a step-by-step approach, which consisted of ad-
hoc queries and some post-processing. In some cases the GQM team had to directly
manipulate the contents of the tables. In the worst case, a simple Java program was
needed to compute the relevant information concerning the durations of changes. The
extraction of data from CAST was more difficult, since its internal repository was not
designed (nor documented) in a way that allowed the final user to extract data from it.
As a result, only some of the required data were extracted from the repository, while
other data were obtained via the Web interface. Some of the data could not be ob-
tained at all. Finally, all the collected data were inserted in an Access database, de-
signed to store both measurements of code and data concerning difference between
subsequent code versions. Differently from the CR information extracted from Clear-
Quest, no further post-processing activities were required.

When all the possible ways of extracting data from tools had been thoroughly ex-
plored, it appeared that the available data had a few quite serious limitations:

− The data was not at the required granularity level. In fact most of the metrics of the
GQM plan were intended to capture the characteristics of each CR. On the con-
trary, the application code was measured every three months: thus the available
data concerned versions that were “separated” by tens or hundreds of changes.

− It was not possible to retrieve the correspondence between every CR and the code
modified in the execution of the request, since the ClearQuest records did not indi-
cate which source files had been affected by the CR.

− Some fields in ClearQuest records were not regularly or consistently compiled. In
particular, the indications concerning the estimated and actual effort required to
manage a CR were often lacking or imprecise.

84 L. Lavazza and M. Mauri

− Some subjective metrics were not collected, because the person that had to support
the GQM team was too busy in her regular work to be able to dedicate enough time
to the measurement activities.

As a consequence of these limitations it was quite clear that the original GQM plan
could not be executed without modifications.

Fig. 1. Highlighting the available and not available metrics of the GQM plan

In order to understand the consequences of the unavailability of some metrics, and in
particular in order to define a “simplified” GQM plan that could be successfully sup-
ported by the available metrics we proceeded as follows:

1. The metrics of the GQM plan were marked according to their availability. In Fig. 1
metrics are highlighted in different ways: boxed = available; blacked = not avail-
able; grayed = available with some limitations.

2. The structure of the GQM plan was exploited to understand the consequences of
metrics unavailability: questions that had grayed or blacked metrics in their refine-
ment could not be answered as planned. By considering the meaning of each gray
and black element and its role in the GQM plan it was possible to assess to what
extent the missing element could affect the goal.

3. On the basis of this assessment the whole GQM plan was revised in order to fit into
the constraints. For instance the granularity of several questions changed: instead of
referring to the management of the single CRs, they had to refer to the set of activi-
ties carried out in a three months period. As a consequence the involved goals did
not change, but the associated results became less precise and accurate.

4. The GQM plan revision process was dynamic. In fact –also because of the short
time available to complete the measurement process– it was not possible to fully
understand what metrics were going to be collected before actually starting the col-
lection phase. Therefore it was necessary to dynamically adjust the plan whenever a
metric proved to be unavailable.

 Software Process Measurement in the Real World 85

In summary, for goal 1, 14 questions out of 27 were modified and 2 were cancelled;
for goal 2, 7 of 12 were modified; for goal 3, 4 of 13 were modified, and 2 cancelled.

4 Data Analysis and Results

The data collected from ClearQuest contained valuable information about the lifecy-
cle of each CR. It was therefore possible to count the changes that were rejected, i.e.,
those that did not pass the acceptance test. It was found that the number of rejected
changes was generally quite small, except for applications still under development.

Another type of analysis concerned the distribution in time of the CRs, according
to their state. Fig. 2 shows the number of assigned, resolved and rejected changes per
week. It indicates a generally good ability of the CR management process to satisfy
the incoming requests, even in presence of peaks. However, it was not possible to
estimate whether the volume of the work done to satisfy the CRs in a given time pe-
riod was actually close to the amount required.

0

5

10

15

20

25

30

35

40

1 2 3 4 5 6 7 8 9 10 11 12 13

N
u

m
b

er
 o

f
d

ef
ec

ts

Assigned CRs
Rejected CRs
Resolved CRs

Weeks

Fig. 2. Number of defect CRs per state in time

The GQM plan suggested also a type of analysis that was completely out of the scope
of the previous measurement initiatives. In particular, the GQM plan indicated that
the quality of the maintained product should be assessed in terms of defect density,
which could be computed by combining the data derived from ClearQuest with the
data derived from CAST. In particular, the dependency of the number of defects of an
application from the characteristic of the application code was studied. It was thus
found that no correlation could be established between the number of defects and the
size (either measured in LOCs or in Function Points) of the applications. On the con-
trary, we found a good correlation between the number of defects and the number of
Java classes contained in the code. In practice, data indicated that the object-oriented
parts of applications were responsible for most defects.

Other results at the metric and question level are not reported here for space rea-
sons. The results that could be obtained at the goal level are the following:

Goal 1. The maintenance process appears to be effective and the products of fairly
good quality. Blocking defects and rejected changes are a small minority.
Code changes do not affect quality.

86 L. Lavazza and M. Mauri

Goal 2. Since it was not possible to collect measures on the “difficulty” of the CRs,
nor on the effort required to perform changes, the part of the goal concerning
costs could not be satisfied. The durations of maintenance activities appear
reasonable and adequate with respect to priority.

Goal 3. The lack of data prevented the evaluation of the coherence between esti-
mated and actual durations and costs. The resources appear generally ade-
quate to satisfy the requests, preventing the creation of backlogs.

The results of the measurement process were presented (in much greater detail than
given above) to the top management of Banca Caboto. They appreciated both the
results and the method employed. They were also satisfied by the reusability of the
measurement and analysis process and toolset in future measurement campaigns.

5 Related Work

Several experiences concerning “normal” usage of the GQM in industrial settings
have been reported [5, 6, 13]. However, not much was reported about the usage of
GQM in situations were data collection was severely constrained; in particular, we are
not aware of any publication reporting the usage of the GQM as a tool easing the
management of the operating constraints affecting the measurement process.

Actually, Mendonça and Basili [12] developed an approach combining the top-down
GQM method with a bottom-up method based on a data mining. It is aimed at applying
the principles of goal-oriented measurement in an environment that is already equipped
with measurement practices. It aims at assessing if the user goals can be fulfilled by the
data that is already being collected. Although this approach shares some objectives with
ours, it is clearly more suitable for cases where large amounts of heterogeneous data are
available. In our case, the identity and nature of the available data could be evaluated
directly by the GQM team, who could assess whether user goals could be fulfilled by
the available data and, when not, what modifications of the GQM plan were needed.

Concerning tool support, several articles address the problem of building frame-
works specifically conceived to support measurement programmes [8, 2]. Unfortu-
nately, it is often the case that a measurement programme has to be carried out in an
environment that is not equipped with a suitable tool framework. Even worse, quite
often the environment cannot be changed, or the allowed changes do not include the
possibility of deploying new tools that could affect the development (or maintenance)
process, e.g., changing the way developers (or maintainers) work.

Auer et al. evaluated tools that can be used in a measurement programme [1], but
addressed rather low level issues, and considered only measurement tools, while other
tools like ClearQuest can also play an important role as data providers.

6 Lessons Learned and Conclusions

A first observation is that tools (including development tools not specifically con-
ceived for supporting measurement) can provide useful metrics. Data provided by
tools –with the contribution of a small number of manually collected subjective data–
can be sufficiently numerous and rich to support a whole measurement programme.
Interestingly, tools provided the needed data in a quite non intrusive way.

 Software Process Measurement in the Real World 87

In our case it was easier to extract data from a problem tracking tool than from a
measurement tool: when selecting measurement tools, the possibility of exporting
measures should be taken into due account.

The GQM tool was useful in organizing and documenting effectively the plan, and
in supporting the identification of data unavailability and the evaluation of the conse-
quences. For this purpose, the visibility “at a glance” of the plan, combined with the
rigorous description of the GQM elements, greatly eased the task of revising the plan.

The GQM can provide a measurement framework that is useful even in presence of
constraints that prevent several metrics from being collected. In the revision of the
plan according to the data restrictions, the GQM was used –quite unusually– in a
bottom-up fashion, as the decisions at the conceptual (goal/question) level were per-
formed taking into account the situation at the operating (metrics/data) level.

In conclusion, the experience reported here can be seen as another confirmation of
the value of the GQM, which performed well even in difficult and unprecedented oper-
ating conditions. Additional details on the work reported here can be found in [11].

References

1. Auer M., Graser B., Biffl S., A Survey on the Fitness of Commercial Software Metric
Tools for Service in Heterogeneous Environments: Common Pitfalls, 9th International
Software Metrics Symposium (METRICS'03), Sydney, Australia, September 2003

2. Aversano L., Bodhuin T., Canfora G. and Tortorella M., A Framework for Measuring Busi-
ness Processes based on GQM, 37th Hawaii Int. Conference on System Sciences – 2004

3. V. Basili, GQM approach has evolved to include models, IEEE Software, vol.11, n.1, 1994.
4. Basili V., and Rombach H.D., The TAME project: towards improvement-oriented soft-

ware environments, IEEE Transactions on Software Engineering, June, 1988.
5. Fuggetta A., Lavazza L., Morasca S., Cinti S., Oldano G., Orazi E., Applying G/Q/M in an

Industrial Software Factory, ACM ToSEM, vol. 7, n. 4, October 1998.
6. Gresse C., Rombach D., and Ruhe G., Tutorial: A practical approach for building GQM-

based measurement programs - Lessons learned from three industrial case studies, in Pro-
ceedings of 10th Brasilian Symposium on Software Engineering, Sao Carlos (Brasil), 1996

7. Hall, T. and Fenton N., Implementing software metrics — the critical success factors,
Software Quality Journal, Kluwer Academic Publishers B.V., vol.3, n. 4, December 1994.

8. Kempkens R., Rösch P., Scott L., and Zettel J., Instrumenting Measurement Programs
with Tools, in Proc. PROFES 2000, Oulu, Finland, June 2000, F. Bomarius and M. Oivo
Eds. LNCS Vol. 1840

9. Lavazza, L., Providing automated support for the GQM measurement process, IEEE Soft-
ware, vol. 17, n. 3, May-June 2000.

10. Lavazza, L. and Barresi, G., Automated Support for Process-aware Definition and Execu-
tion of Measurement Plans, ICSE 2005, St. Louis, May 2005.

11. Lavazza, L. and Mauri, M., Measurement tool support in the real world: a GQM experi-
ence, CEFRIEL Technical Report RT06001, March 2006.

12. Mendonça M.G. and. Basili V.R,, Validation of an Approach for Improving Existing
Measurement Frameworks, IEEE TSE, Vol. 26, No. 6, June 2000.

13. van Solingen R., van Latum F., Oivo M., and Berghout E., Application of software meas-
urement at Schlumberger RPS, in Proceedings of Sixth European Software Cost Modeling
Conference, Paris, 1995.

	Introduction
	The Planning Phase
	The Measurement Phase
	Data Analysis and Results
	Related Work
	Lessons Learned and Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

