

Q. Wang et al. (Eds.): SPW/ProSim 2006, LNCS 3966, pp. 334 – 341, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Process Evolution Supported by Rationale:
An Empirical Investigation of Process Changes

Alexis Ocampo and Jürgen Münch

Fraunhofer Institute for Experimental Software Engineering,
Fraunhofer-Platz 1, 67663, Kaiserslautern, Germany
{ocampo, münch}@iese.fraunhofer.de

Abstract. Evolving a software process model without a retrospective and, in
consequence, without an understanding of the process evolution, can lead to se-
vere problems for the software development organization, e.g., inefficient per-
formance as a consequence of the arbitrary introduction of changes or difficulty
in demonstrating compliance to a given standard. Capturing information on the
rationale behind changes can provide a means for better understanding process
evolution. This article presents the results of an exploratory study with the goal
of understanding the nature of process changes in a given context. It presents
the most important issues that motivated process engineers changing important
aerospace software process standards during an industrial project. The study is
part of research work intended to incrementally define a systematic mechanism
for process evolution supported by rationale information.

1 Introduction

Software process models are used as a means for supporting software engineers in
systematically performing the engineering processes needed to develop software prod-
ucts. As these processes are performed, suggestions for adjustment or refinement can
arise, which in turn demand evolving the models. Usually, certain events such as the
introduction of a new software development technology in a development team (e.g.,
new testing support tools and techniques), a new/updated process engineering technol-
ogy (e.g., a new process modeling technique), new/updated standards/guidelines for
software development or process engineering, new/updated regulatory constraints, or
new/updated best practices emerging from community experience generate issues that
must be resolved by performing changes to the software process models.

In many cases, precipitous and arbitrary decisions are taken, and process models
are evolved without storing or keeping track of the rationale behind such changes.
One of the reasons is that this is an expensive activity that demands a dedicated role
in the organization [1], especially because identifying the rationale of a change, or
driving evolution activities in terms of rationale, is not an easy task. A mechanism
(concept and tool) that can be used for collecting information about process changes
and that could help in evolving the process in a systematic way is needed.

We believe that the first step towards such a systematic mechanism is to understand
the nature of process changes. We assume that by having a predefined classification of

 Process Evolution Supported by Rationale 335

the most common reasons for process changes, the task of collecting the information
related to such a rationale can be simplified and become more suitable for use in real
process evolution projects. Additionally, this can be seen as an initial step for building
a mechanism that supports systematic process evolution. Once this is understood, a
structured conceptual model of rationale can be produced and tested in process evolu-
tion projects.

This article presents the results of an initial attempt to achieve such a predefined
classification as follows: Section 2.1 briefly presents the basic concepts that we use
for understanding the nature of changes to the software process and software process
evolution. Section 2.2 provides short descriptions of related work where concepts for
understanding process changes have been developed; Section 3 presents the context of
the study performed for understanding the nature of changes to a process standard.
Section 4 presents the issues derived from a repository of changes performed to a
process standard, and an interpretation of the frequency with which such issues ap-
peared during the project. Section 5 presents a discussion of the most relevant find-
ings of the study together with research questions to be addressed in the future.

2 Background

2.1 Process Evolution Supported by Rationale

We believe that software process evolution should describe the relationships between
an existing process model and its pre-existing version(s). Such relationships denote
differences between versions due to distinguishable modifications.

One can distinguish the meaning of such modifications if one can understand the
rationale behind them. Rationale is defined as the justification of decisions [1]. His-
torically, much research about rationale has focused on software/product design [9],
[10], [11], and [12]. Rationale models represent the reasoning that leads to the system,
including its functionality and its implementation [3]. In general, the capture, organi-
zation, and analysis of change rationale appears to be a research topic extensively
addressed by software product designers but unknown to, or considered unimportant
by, software process engineers. This conflicts with the obvious requirement that proc-
ess engineers need to know the process evolution history in order to be able to effec-
tively and efficiently tailor processes or update them. For example, tailoring a process
model without considering what is or is not suitable for a given project can lead to
undesired results. This was observed in the study presented in this paper. Process
engineers found through interviews that a tailored process forced process practitioners
to take part in system design activities that they felt they did not belong to, especially
because this was not part of their work scope. Practitioners assured them that such
activities were part of the tailored process although they did not know why, since a
previous version of the tailored process did not have them. As a consequence, practi-
tioners and process engineers were all confused and without information that could
lead to a suitable solution. Tailoring can be successfully accomplished if a process
engineer knows the issues, alternatives, arguments, and criteria that justify the defini-
tion of a process model. Equally, updating a process model without having knowledge
of its history can lead to process models that do not reflect actual practices. Some

336 A. Ocampo and J. Münch

other benefits of using the rationale as driver for software process model evolution
are: supports reworking of software process standards; supports understanding the
impact of changes due to specific issues; encourages making rational decisions in-
stead of emotional ones; supports the analysis and identification of non-systematic
and rushed decisions.

2.2 Related Work

There are not many studies that report on a classification or taxonomy of reasons for
changing a process model. Nguyen and Conradi [2] present a framework for catego-
rizing process evolution based on six dimensions (origin, cause, type, how, when, and
by whom). A change categorized by this framework is called a change pattern. The
change pattern, project characteristics, and product quality attributes are stored to-
gether so that they can be used for future projects. Data on the evolution of a software
development project were collected in a case study performed in the software devel-
opment department of a banking institution. With regard to the “where”, i.e., the
sources of process changes, 40% of the recorded changes were due to customer re-
quests, and 60% were due to changes from senior or middle management. The most
common observed reasons (why) were the following: a) misunderstanding originating
from the customer; b) resources and competence was not always available; c) a new
approach for solving the problem was adopted.

Madhavji [5] presents the Prism model of changes, which is an abstract description
of a software environment specialized in the treatment of changes in a software de-
velopment project. The Prism model serves as a classification scheme for structuring
the decisions that change an item and as an information base suitable for analyzing
the history changes that can help to make future decisions. Unfortunately, Madhavji
[5] does not provide a deeper insight or data that show a classification of reasons.

Bandinelli et al. [4] identify three significant categories of changes caused by a vari-
ety of reasons and needs. They are: 1) incremental definition: Processes cannot be
completely defined at the beginning of a project; therefore, changing them continu-
ously can be viewed as a type of change that adds new parts to the process model; 2)
environmental/organizational: Changes of this type are caused because, e.g., the com-
pany has acquired new tools to support the software development staff; 3) customiza-
tion: Changes of this type allow process agents (humans who use the process) to select
the parts of the process that suit them. There is no evidence of data or validation of
such categories in the study.

Nejmeh and Riddle [6] present a Process Evolution Dynamics Framework that al-
lows process change agents to describe, understand, learn from, plan, and manage
process evolution efforts. They consider the organization’s context as the determinant
factor for defining and sequencing process evolution cycles and recommend exploring
the context factors that influence process changes in order to better understand proc-
ess evolution. Customer desires, market pressure, personnel availability, personnel
capability, business goals, regulatory constraints, and available technologies are,
among others, important business context factors.

Bhuta et al. [7], propose the development of process elements that can be built with
reusable strategies, and be reused for creating different project plans. One strategy can
be, e.g., to search for a process element, select a process element, understand the

 Process Evolution Supported by Rationale 337

process element selected, and, if required, adapt the process element. This means that
process elements must be accompanied by important information that can be easily
understood by project managers. Examples of such information are: What the process
element does, its value, how it could be executed, which resources are required to
execute it, and its context information. Butha et al. [7] refer to Basili et al. [8] for the
problems of capturing and storing context information in a project repository. Unfor-
tunately, the case study presented by Butha et al. [7] neither provides evidence on
context information, nor reasons for selecting certain process elements as part of a
project plan.

3 Study Context

The study presented in this article was performed in the context of a project that
aimed at the evolution of space standards.

The European Cooperation for Space Standardization (ECSS) [13] is an initiative
established to develop a coherent, single set of easy-to-use standards for all European
space activities, covering all areas of space activities, including engineering, quality
assurance, and project management. Organizations or projects part of the European
Space Agency (ESA) are supposed to develop and use their specific tailoring(s) of the
ECSS standards. Tailoring can be done in a project-specific way (i.e., a separate tai-
loring for each project) or in an organization-specific way (i.e., one tailoring per or-
ganization, to be used for all their projects). The ESA Space Operations Center ESOC
(i.e., the ESA organization where the project took place) chose the organization-
specific tailoring approach. The applicable implementation of their ECSS tailoring
was the Software Engineering and Management Guide (SEMG) [14], which was used
for all their major projects.

After some years of experience with the ECSS standards, they were revised by
ESA, and a new version was published. This also meant that the SEMG had to be
revised, in order to be compliant to the revised ECSS standard. This compliance had
to be proven by means of traceability of every ECSS requirement to its implementa-
tion, and by providing a tailoring justification for every tailored requirement. The
process engineers’ task was to tailor the relevant parts of the ECSS (comprising sev-
eral hundred requirements) to ESOC’s needs and to apply this tailoring in an update
of their implementation of the standard, the SEMG.

Another important task assigned to process engineers was to improve the ease of
use of the SEMG. For the purposes of this project, process engineers considered that
the ease of use of a document is positively influenced by improving: (1) internal con-
sistency, i.e., avoiding that one part of the document contradicts another, (2) external
consistency, i.e., avoiding that the document at hand contradicts other documents and
that links to external sources are correct, and (3) conciseness, i.e., indexed tables of
contents allow people to find important things quickly, different concepts are ex-
plained and marked clearly, and the document is not larger than necessary.

Finally, process engineers had to maintain detailed change logs on a per-section
basis, because of very different stakeholders who wanted to keep track of the changes
performed to the SEMG and their justifications.

338 A. Ocampo and J. Münch

One initial analysis concerned compliance and showed that the SEMG was only
partially compliant to the new ECSS software standard, and had to be updated accord-
ingly. Another initial analysis concerned ease-of-use and was done by analyzing the
SEMG documents and by means of structured interviews with SEMG users. Process
engineers observed that the most predominant wish was for output simplification and
clarification. Furthermore, the SEMG structure did not reflect actual process execu-
tion any more and had to be adjusted accordingly.

The SEMG was modified iteratively and incrementally as follows: Process engi-
neers changed the SEMG and delivered a new version for review. Afterwards, re-
viewers discussed changes performed to the SEMG and accepted or rejected such
changes. The reviewers documented their decisions and sent comments and sugges-
tions to the process engineers. Process engineers reworked the SEMG based on the
comments and suggestions. This iterative process allowed updating the SEMG in a
controlled way and enabled a constant review of the accomplishment of the tasks.

4 Data Analysis

Process engineers documented the information related to the changes and their justifi-
cations and stored them in a database as they were evolving the SEMG. Two versions
of the SEMG resulted from the editing-reviewing iterations. This was an initial at-
tempt at collecting the rationale of process changes in order to understand the nature
of changes and to understand how to capture rationale information adequately. The
information collected about the changes was used as the basis for a detailed study of
the most important and common issues that were resolved by each change. We ac-
complished this by querying the database that contains information on changes to the
SEMG and by understanding each change’s justification. While doing this, we de-
rived a list of the most common issues that process engineers faced while doing the
SEMG evolution. The following is the list and an explanation of the issues:

1. Improper sequence of processes: Process engineers found that the prescribed con-
trol flow of activities differed from the one followed in real projects.

2. Ambiguous activity description: Process engineers found activity descriptions ca-
pable of being understood in two or more possible senses or ways.

3. Improper placement of an output: Process engineers found that the prescribed
product flow differed from the one present in real projects.

4. Non-compliant activity: Process engineers found cases where activities did not
fulfill the requirements stated in the ECSS standards.

5. Ambiguous additional explanatory text: Process engineers found explanatory text
that could be understood in two or more possible senses or ways.

6. Improper placement of additional explanatory text: Process engineers found ex-
amples of explanations that were incorrectly referenced.

7. Misleading name of an activity: Process engineers found names that did not re-
flect the meaning of the process for practitioners.

8. Activity description not concise: Process engineers found activity descriptions
that contain superfluous or unnecessary statements.

9. Redundant activity description: Process engineers found duplicated descriptions
of activities.

 Process Evolution Supported by Rationale 339

10. Additional explanatory text not concise: Process engineers found examples or ex-
planations that contained superfluous or unnecessary statements.

11. Ambiguous output description: Process engineers found output descriptions ca-
pable of being understood in two or more possible senses or ways.

Version 1 & 2 - # of issues

60
62

53

38
36

11

33

0
2 3

0

72

33

3

15

9

31

6

32

19

3 4

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8 9 10 11

issue id

o

f o
cc

u
rr

en
ce

s

Version 1

Version 2

Fig. 1. # Occurrences per issue

Fig. 1 reflects the number of changes caused by the issues listed above when edit-
ing the process standards during the first and second iterations. It was found that dur-
ing the first iteration, issues such as “improper sequence of processes”, “ambiguous
activity description”, and “improper placement of an output”, i.e., (1), (2), and (3)
respectively, caused the largest number of changes to the process standards. This can
be explained by the fact that in the first iteration, the process standards contents and
its architecture were extensively modified in order to fulfill the objective of increasing
the standard’s ease of use.

The next most frequent issue is “non-compliant activity” (4), because one of the
goals was to correct the standard’s contents so that they were closer to the higher level
standard. This leads to the suspicion that process standards were previously evolved
without any historical perspective, producing as a consequence standards that totally
deviated from the higher level standard.

Fig. 1 also reflects the relationship between the issues listed above and the number
of changes they caused when editing the process standards during the second itera-
tion. Compared to the first iteration, it can be seen how the number of changes due to
“ambiguous activity description” (2) and “non-compliant activity” (4) were reduced
more or less to half. Other issues such as “improper placements of an output” (3) and
“ambiguous additional explanatory text” (5) were also drastically reduced. This sug-
gests that after the first iteration, process engineers partially accomplished increasing

340 A. Ocampo and J. Münch

ease of use and compliance to process standards. However, the number of occurrences
for issues such as: “improper sequence of processes” (1), “redundant activity descrip-
tion” (9), and “improper placement of additional explanatory text” (6) increased. This
can be attributed to the reviewers. Although reviewers were satisfied at the end of the
first iteration with the reduced number of “non-compliant activity” issues (4) with
respect to the ECSS and less “ambiguous activity descriptions” (2), they still believed
that activity descriptions were not correctly grouped. In fact, there were several dis-
cussions about the interfaces (inputs and outputs) between system engineering and
software engineering processes that demanded a better understanding of the actual
practices and reflection in the standards. The reviewers were satisfied concerning the
improvement of the process standards at the end of the first iteration and saw the
opportunity of having high quality standards at the end of the second iteration. There-
fore, they were stricter and demanded higher quality of the process standard contents
for the second iteration. This is possibly the reason why new issues appeared such as:
“activity description not concise” (8), and “ambiguous output description” (11).

5 Summary and Outlook

Processes may be more easily and rationally changed if the information about the
process, its context, and the rationale of its evolution is captured. Existing approaches
recognize the need for a mechanism (concept and tool) that can be used for collecting
information about process changes that could help evolve the process in a systematic
way. We observed that most of the approaches did not consider rationale information
as an important part of their frameworks. This can be the reason for the small amount
of evidence available on the rationale of process evolution. Having a predefined clas-
sification of the rationale for process changes, the task of collecting the information
related to such rationale can be simplified and become more suitable for use in real
process evolution projects. This may be seen as an initial step for building a mecha-
nism that supports systematic process evolution. Therefore, more research effort
should be invested into understanding how to introduce these rationale concepts for a
systematic well-grounded evolution of software process models. The list of issues
derived from analyzing the database with the information about the evolution of proc-
ess standards provides an initial insight on the type of changes performed in the con-
text of this type of projects. It can be said that the issues that generated the major
number of occurrences such as “improper sequence of processes” (1), “ambiguous
activity description” (2), and “improper placement of an output” (3), reflected the
distance that existed between the process description and the actual understanding of
stakeholders. It was observed that systematically documenting changes and discussing
them in reviews provided a much more organized and well-grounded process standard
evolution. However, a more structured mechanism for collecting the rationale of
changes is needed for clearly identifying the observed alternatives and criteria, as well
as the arguments and final resolution. More research has to be done for describing
more precisely this initial list of issues, so that they are as orthogonal as possible.
More empirical data is needed for that purpose. As part of our future work we will use
the issues list as the basis for new process evolution projects.

 Process Evolution Supported by Rationale 341

Acknowledgements. We would like to thank Michael Jones and Mariella Spada from
ESA Space Operations Center (ESOC) and Dr. William E. Riddle for their support
and their valuable comments. Additionally, we would like to thank Sonnhild Nam-
ingha from Fraunhofer IESE for preparing the English editing of this paper. This
work was supported in part by the German Federal Ministry of Education and Re-
search (V-Bench Project, No.01| SE 11 A).

References

[1] Dutoit, H, A., Paech, B.: Rationale Management in Software Engineering. Stuttgart: Ex-
pected date of publication: Beginning of 2006.

[2] Nguyen, M, N., Conradi, R.: Towards a rigorous approach for managing process evolu-
tion. Software process technology: 5th European workshop, EWSPT '96, Nancy, France.
1996.

[3] Bruegge, B., Dutoit, A.H.: Object-Oriented Software Engineering. Using UML, Patterns,
and Java. 2nd ed. Upper Saddle River: Pearson Education 2004.

[4] Bandinelli, S., Fugetta, A, Ghezzi, C.: Software Process Model Evolution in the SPADE
environment. IEEE Transactions on Software Engineering 19:1128-1144. 1993

[5] Madhavji, N.: Environment evolution: The Prism model of changes. IEEE Transactions
on Software Engineering, 18(5):380-392.

[6] Nejmeh, Brian A., Riddle, William E.: The PERFECT Approach to Experience-based
Process Evolution. Advances in Computers, M. Zelkowitz (Ed.), Academic Press, 2006.

[7] Bhuta, J., Boehm, B., Meyers, S.: Process Elements: Components of Software Process
Architectures. Software Process Workshop, China, (2005).

[8] Basili V., McGarry F.: The Experience Factory: How to Build and Run One. 19th Inter-
national Conference on Software Engineering, Boston, Massachusetts, May (1997)

[9] Kunz, W., Rittel, H.: Issues as Elements of Information Systems. Working Paper No.
131, Institut für Grundlagen der Plannung, Universität Stuttgart, Germany, (1970).

[10] Lee, J.: A Qualitative Decision Management System. In P.H. Winston & S. Shellard
(eds.) Artificial Intelligence at MIT: Expanding Frontiers, Vol.1, pp. 104-133, MIT
Press, Cambridge, MA, 1990.

[11] MacLean, A., Young, R.M., Belloti, V., Moran, T.: Questions, Options, and Criteria:
Elements of Design Space Analysis. Human-Computer Interaction, Vol. 6, pp. 201-250,
1991.

[12] Chung, L., Nixon, B.A., Yu, E., Mylopoulos, J.: Non-Functional Requirements in Soft-
ware Engineering. Kluver Academic, Boston, 1999.

[13] European Cooperation for Space Standardization (ECSS) Standards
available at http://www.ecss.nl. Last checked 2006-01-06.

[14] Ground Segment Tailoring of ECSS for ESOC (SETG),
available at http://www.estec.esa.nl/wmwww/EME/Bssc/BSSCdocuments.htm, Last
checked 2006-01-06

	Introduction
	Background
	Process Evolution Supported by Rationale
	Related Work

	Study Context
	Data Analysis
	Summary and Outlook
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

