
Q. Wang et al. (Eds.): SPW/ProSim 2006, LNCS 3966, pp. 15 – 38, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Assessing 3-D Integrated Software Development
Processes: A New Benchmark∗

Mingshu Li

State Key Lab of Computer Science and Lab for Internet Software Technologies,
Institute of Software at Chinese Academy of Sciences,

No. 4 South Fourth Street, Zhong Guan Cun, Beijing 100080, China
mingshu@iscas.ac.cn

Abstract. The increasing complexity and dynamic of software development
have become the most critical challenges for large projects. As one of the new
emerged methodologies to these problems, TRISO-Model uses an integrated
three-dimensional structure to classify and organize the essential elements in
software development. In order to simulate and evaluate the modeling ability of
TRISO-Model, a new benchmark is created in this paper, called SPW-2006 Ex-
ample, by extending the ISPW-6 Example. It may be used to evaluate other
software process models, and/or to evaluate software organizations, software
projects and also software development processes, particularly 3-D integrated
software development processes. With the SPW-2006 Example and its evolution
for quantitative evaluation to 3-D integrated software development processes, a
new approach of TRISO-Model based assessment and improvement is enabled.

1 Introduction

Software Process Workshop (SPW) provides an annual forum for assessing current
and emerging software process capabilities, and for obtaining insights into worthwhile
directions in software process research. TRISO-Model (TRidimensional Integrated
SOftware development Model), presenting a 3-D integrated software engineering
methodology, was proposed in the SPW 2005 held in Beijing, China [1]. Its main
objective is to deal with the problems caused by the increasing complexity and dy-
namic in current software development projects.

Process simulation is an effective mechanism for the study of the complexity and
dynamic of software development processes and has attracted the focus of both re-
search and industry communities. An expression of the attraction is the annual work-
shop on software process simulation modeling (ProSim) from 1998, a leading event
for the simulation and modeling of software processes. In May 2006, ProSim will be
held jointly with SPW in Shanghai, China, co-locating with ICSE 2006.

A software process benchmark is used to understand the current status of a soft-
ware project, to evaluate its modeling or the current practice gaps to the benchmark,
and to identify further process improvement opportunities. An assessment is used to
examine a software organization’s processes against a reference model to determine

∗ Supported by the National Natural Science Foundation of China (Grant Number: 60573082).

16 M. Li

the processes’ capability or the organization’s maturity, and to meet its quality, cost,
and schedule goals.

In order to evaluate and improve integrated software development processes, this
paper puts forward a new process benchmark; and presents a new process assessment
and improvement approach.

The remainder of the paper is organized as follows. Section 2 summarizes the re-
lated work. Section 3 introduces TRISO-Model semantic specifications. Section 4
creates a new process benchmark SPW-2006 Example for effective evaluation of
integrated software development processes. Section 5 presents a new approach of
TRISO-Model based assessment and improvement. The paper is concluded in Section
6 with a summary and directions for future work.

2 Related Work

From the last 80s, some process modeling languages and corresponding tools, such as
Little-JIL [2] and ADELE-TEMPO [3], have been designed to provide precise and
comprehensive ways to represent various software process elements. Cost estimation
methods, such as COCOMO II [4] and Web-COBRA [5], are invented to gain better
predictability and quantitative control from the perspective of economics. Boehm’s
recent work on Value-Based Software Engineering [6] tries to further integrate value
considerations into all of the existing and emerging software engineering principles
and practices. The Personal Software Process (PSP) [7] and People Capability Matur-
ity Model (P-CMM) [8] stress the factor of people, and provide a guide towards de-
veloping, motivating, and organizing the work force.

As Reifer lists in [9], the top challenges for nowadays developments fall into a
large variety of interwoven areas such as technology, people, economy, change man-
agement and so on. CMMI [10] provides a framework covering most factors related
to software development. MBASE [11] proposes a framework for avoiding model
clash among different models (i.e. Process Model, Product Model, Property Model,
and Success Model) in software development.

In SPW2005, the latest achievements on integrating different aspects of software
development, besides TRISO-Model, are also presented by some researchers. Es-
tublier relates processes, software production and humans in a pyramid framework to
show and contrast the new and original potential uses of process technology [12].
Rombach proposes integrated software process & product lines (SPPL) [13] as a sys-
tematic way to choose both artifacts and processes needed for a given project. Oster-
weil [14] and Warboys [15] suggest different angle of views to integrate microprocess
and macroprocess, respectively.

A simulation model is a computational model that represents an abstraction or a
simplified representation of a complex dynamic system [16]. It offers the possibility
of experimenting with different management decisions. Kellner et al. cluster the many
reasons for using processes simulations into six categories of purpose, including [17]:
strategic management, planning, control and operational management, process im-
provement and technology adoption, understanding, and training and learning.

Continuous modeling and discrete modeling are the two main approaches to build
models in the simulation domain [18]. A continuous simulation model represents the

 Assessing 3-D Integrated Software Development Processes: A New Benchmark 17

interactions between key process factors, as a set of differential equations, where time
is increased step by step. On the other hand, discrete modeling is based on the meta-
phor of a queuing network, where time advances when a discrete event occurs. Con-
tinuous modeling and discrete modeling only enhance the analysis of some aspects of
the process, at a cost to other aspects [19]. A software process, however, shows both
discrete system aspects (start/end of an activity, reception/release of an artifact by an
activity) and continuous system ones (recourse consumption by an activity, percent-
age of developed product, percentage of discovered defects). It would be desirable to
use a continuous modeling for the dynamic environment, and a discrete one for tasks
and resources [20]. A combined model would allow investigation of the effects of
discrete resource changes on continuously varying productivity. There are some other
simulation techniques, like state based process models, rule based languages, petri
nets [21], and agent-based simulation [22].

A benchmark is a test or set of tests used to compare the performance of alternative
tools or techniques [23]. It usually has three components: motivating comparison, task
sample and performance measures. A proto-benchmark is a set of tests that is missing
one of these components. The most common proto-benchmarks lack a performance
measure and are sometimes called case studies or exemplars. These are typically used
to demonstrate the features and capabilities of a new tool or techniques. A software
process benchmark is an average reference value that the process statistically per-
forms in a given sector or a given region [24].

For the purpose of making comparisons between different software process tech-
nologies, the ISPW-6 Example [25] was proposed as a benchmark problem at the 6th
International Software Process Workshop. It has been used successfully to exam the
essential features of some main software process methods in the last 90s, e.g., OPSIS
[26] applies a view mechanism to graph-based process modeling languages of type
Petri-net; MVP-L1 [27] is oriented towards process-modeling-in-the-large to concen-
trate on the formalization of interrelations between individual processes; MERLIN
[28] uses a PROLOG-based language as a basis of the process definition. It was later
extended to incorporate teamwork and process change (ISPW-7)[29].

The ISPW-6 Example is mainly designed for assessing the software process mod-
eling approaches, and as a reasonable simplification, pays less attention to some other
software development critical factors. However, “change” is a much more complex
problem in real-world software development [30]. Because of the complexity, even
though the problem caused by requirements changes has been noticed quite a long
time ago, it is still one of the most frequent reasons for project failure. Nowadays the
paradigm has shifted to be driven by a set of interwoven factors, such as technology,
management, quality, knowledge, and economic considerations, so some extensions
should be made to the ISPW-6 Example from process-oriented perspective to a multi-
perspective framework. Relevant factors, such as economy, technology, and human,
as well as the interactions among these factors should be incorporated into the frame-
work.

SPEM (Software Process Engineering Metamodel) [31] is a software process mod-
eling standard put forward by OMG (Object Management Group). In SPEM, a com-
mon syntax and structure for software development process [32] is provided based on
the abstraction of process models such as RUP. As an extension of UML [33], SPEM
inherits the expressiveness and popularity. With the graphic notations, SPEM offers a

18 M. Li

comprehensive and documented view of the process model, which facilitates the
communication of process stakeholders.

As a standard proposed by OMG aiming to be the unified software process model-
ing language, SPEM is being widely accepted. However, as a description language,
the disciplines related to project management and analysis, process automation, etc.
have not been involved. Furthermore, the dynamic semantics has not been addressed
in SPEM.

MOF (Meta Object Facility) [34] is the meta-meta-model provided by OMG as the
unified standard for domain metamodeling, and it provides common abstract syntax
and semantic definition mechanism. MOF is suitable for constructing an integrated
model of multi-dimension factors. However, a metamodel constructed in the MOF-
based metamodeling method, as well as UML and SPEM, is an informal metamodel
which has no precise semantics. Thus it is necessary to map it into another description
using some formal method to reduce the ambiguity.

Figure 1 illustrates a segment (Review Design) of ISPW-6 Example represented by
SPEM.

Review Design

Modify Design

DesignSpec

Modify Code

Design Review Team

[Approved]

[Not approved]

……

……

Approved
Design

Review
Feedback

WorkProduct

WorkDefinition

ProcessRole

SPEM Notations:

Fig. 1. Segment of ISPW-6 Example Represented by SPEM

CSP is developed by Hoare to address the concurrency and non-determinism in
computing systems [35]. The basic idea is that those systems can be readily decom-
posed into subsystems which operate concurrently and interact with each other as well
as with their common environment. As for the software process, Greenwood tenta-
tively introduces CSP as a tool to model the software process [36]. LOTOS, another
process algebra language similar to CSP, is employed to separate a whole software
process into several concurrent subprocesses executed by different actors in [37]. But
the actors and artifacts are just treated as communication channels, so it is difficult to
present more information about those elements.

Using CSP, the segment (Review Design) of ISPW-6 Example in Figure 1 can be
specified as follows:

 Assessing 3-D Integrated Software Development Processes: A New Benchmark 19

Fig. 2. Integrated Framework of TRISO-
Model

6

ISPW Part ModifyDesign|| ReviewDesign

ModifyDesign assigntodesigner designspec modifydesign

modifieddesign ModifyDesignLoop

ModifyDesignLoop assigntodesigner designspec reviewfeed

=
= → →
→ →

= → →

 (

back

modifydesign modifieddesign ModifyDesignLoop

ReviewDesign modifieddesign assigntoreviewteam reviewdesign

approved approveddesign reportmeasurementda

→ → →
= → → →

→ → |

)

ta SKIP

notapproved reviewfeedback ReviewDesign

→
→ →

3 TRISO-Model and Its Semantic Specifications

Based on the Technology-Process-Human triad conception and successful software engi-
neering methodologies in the past, TRISO-Model presents a 3-D integrated methodology
for software development processes, i.e.
software development processes should
be integrated improved from three
perspectives of technology, process, and
human. This expanded view incorporates
the benefits gained from integrations
among technologies, processes and
humans.

TRISO-Model classifies the essential
elements of the software development
process into three dimensions: SE
Technology, SE Process and SE Human.
From the viewpoint of TRISO-Model, a
software development process is thought of
as a process driven by the interactions
among the entities in the three dimensions.
The entities may be abstracted to the activities for SE Process, the actors for SE Human,
and the input/output artifacts for SE Technology respectively. The interactions are mod-
eled in Figure 2 as six integrations: (1) Development Integration; (2) Process Integration;
(3) Service Integration; (4) Data Integration; (5) Management Integration; and (6) Use
Integration. The former three are internal integrations; and the latter three are external
integrations.

3.1 Static Semantic Specification of TRISO-Model

The static semantics of TRISO-Model is represented by the elements of the entities in
the three dimensions and the relationships among them. A static structure of TRISO-
Model is shown as Figure 3.

Figure 4 illustrates the core concept of SPEM. The main idea is that a software
development process is a set of collaborations among ProcessRoles that perform
WorkDefinitions in which the WorkProducts are operated.

20 M. Li

Fig. 3. Static Structure of TRISO-Model

The metaclasses in SPEM, ProcessRole, WorkDefinition and WorkProduct, may
be viewed as the abstracted elements of human (or actor), process (or activity), and
technology (or artifact) in TRISO-
Model as shown in Figure 3. How-
ever, SPEM is over-simplified so that
it cannot provide enough support to
the integrated methodology. It has to
be extended to describe the elements
of entities in SE Human, SE Process
and SE Technology dimensions of
TRISO-Model and their relationships.

In TRISO-Model, an integrated
soft-ware development process is ex-
pected to relate to the three dimensions.
As an example shown in Figure 3, for each actor in the integrated process, there are
corresponding actors in SE Process, SE Technology and SE Human dimensions; and it
is the same with the activities and artifacts.

To support the idea stated above, we extend SPEM to Integrated SPEM (I-SPEM
for short; more details will be introduced in another paper) with the metaclasses en-
hanced in three dimensions of SE Human, SE Process, and SE Technology. I-SPEM
is defined as a M2 layer metamodel based on MOF, in which integrated elements in
three dimensions and their relationships are specified in a consistent method as illus-
trated in Figure 5.

WorkProduct

ProcessRole

0..n

1

0..n

responsible for

WorkDefinition

0..n

0..n

+input
0..n

0..n

use

0..n

0..n

+output

0..n

0..n

produce

0..n1

perform

0..n1

Fig. 4. Core Concept of SPEM

 Assessing 3-D Integrated Software Development Processes: A New Benchmark 21

Fig. 5. Illustration of Static Semantics of TRISO-Model

In I-SPEM, there are six integration packages defined with the same names corre-
sponding to Figure 2. The concepts and their relationships in three dimensions are
defined in three internal integration packages; the integrations among the dimensions
are defined in three external integration packages. The common elements and facili-
ties are defined in the Common Elements package.

MOF, the M3 layer meta-metamodel, provides a consistent semantic base for every
dimension specific metamodels in the framework of TRISO-Model. M1 layer models,
the lowest abstraction level, are the instances of I-SPEM and the combination of dis-
crete-type simulation, continuous-type simulation and analytical model. In Figure 5,
CMMI, COCOMO II and Waterfall model are chosen only as the examples for the
three dimensions. A different organization may have other choices. For instance, the
ISO 9001 may be chosen to replace the CMMI.

3.2 Dynamic Semantic Specification of TRISO-Model

The dynamic semantics of TRISO-Model is represented by the evolutions of the enti-
ties in the three dimensions, and the communications and/or the coordination among
them. A dynamic structure of TRISO-Model is shown as Figure 6. The activities,
actors, and artifacts are the essential entities of the corresponding SE Process, SE
Human, and SE Technology dimensions. Each entity has its own pattern of behaviors.
It may communicate with other entities in the same dimension and/or coordinate with
other entities in different dimensions through the synchronizations on some specific
events.

22 M. Li

Fig. 6. Dynamic Structure of TRISO-Model

In the dynamic semantics, all the entities of TRISO-Model are mapped to three
types of basic CSP processes, which are the activity, actor, and artifact processes. The
three processes representing the three dimensions are combined together and coordi-
nated by the synchronizations on some particular events. Each dimension is repre-
sented by a CSP process formed by the internal dimension integrations of the corre-
sponding type of basic CSP processes. It can be taken as an agent possessing the nec-
essary knowledge about how to evolve itself forward and having the exposed inter-
faces to synchronize with other dimensions.

Additionally, to make the content more comprehensible, all the illustrations pre-
sented in this section exclusively centralize on one problem, i.e., an abstracted soft-
ware development process. The process is composed of the “requirement” and “de-
sign” activities only. The “requirement” activity begins with the requirements analysis
and ends with outputting the requirements specification. In the “design” activity, the
requirements specification is firstly input and then the system is designed. These two
activities are sequentially arranged as those in the Waterfall lifecycle model. If the
“requirement” activity and “design” activity are represented by two CSP processes,
named Requirement and Design respectively, then the software development process can
be denoted as:

 : :DevelopemntProcess req Requirement;des Design= (1)

To fully describe TRISO-Model, several aspects should be considered as the exten-
sions on CSP, i.e. CSP Extensions for TRSIO Model (CTM for short; and will be dis-
cussed more in another paper). Firstly, CSP has to be extended to include asynchro-
nous communication. In CSP, Hoare has chosen synchronized communications as
basic. The synchronized communication means that a receiver blocks until a compati-
ble agent is ready to send. Furthermore, CSP allows bi-party communications only.

 Assessing 3-D Integrated Software Development Processes: A New Benchmark 23

Expression (1) cannot be implemented based on the synchronized communications,
but it can be modeled by the following asynchronous communication. Secondly, in
order to model the across dimension collaboration of TRISO-Model, a collaboration
operator is needed. Two processes will be synchronized on the automatically inserted
dummy actions indicated by the operator. Finally, a process in CSP is the behavior
pattern of an entity. But the entity may have some attributes other than actions. In
CTM, a process is extended with attributes that can be accessed by other processes.

The extension of asynchronous communication does not change the rule that the
communications between processes are purely based on synchronizations. A buffer
process is implicitly introduced between two communicating processes. The existence
of the buffer process is transparent to the specifier. He or she can input or output any
object freely without the need to considering the synchronization between the inputs
and outputs. But the interactions among the inputting, outputting, and buffering proc-
esses are based on the synchronized communications. Here we recur to a set process
to ease some constraints imposed by the buffer process. The set process, acting as the
storage media, is one component of the environment. A set process based on the sub-
ordination operator is presented in [38].

Let the operator, !!, represent the asynchronous output. When using this operator,
the specified object will be put into the set used for containing the artifacts of a soft-
ware development process.

A CTM process outputting something to the environment can be set as:

!!Re CTM requirementanalysis requirementspec SKIPquirement = → → (2)

where the subscript
CTM

 means that the expression uses some notations that are de-

fined in the CTM.
The above expression can be equivalently expressed in CSP notations as:

()
(: //

. !)
CSP set SETRequirement

requirementanalysis set add requirementspec SKIP

=

→ →

where SET represents the set process and add is the channel used for inserting an ob-
ject into the set.

Let the operator, ??, represent the asynchronous input. It means that the process
needs an input from the buffered set process. As an example, the design activity may
use the requirementspec produced in (2):

?? !CTM requirementspec y design SKIPDesign = → → (3)

where, ?? !requirement y means retrieve requirementspec from the set process and put the
result into the variable y . (3) can also be described in CSP notations as:

(: //

(. ! . ?))
CSP set SETDesign

set isin requirementspec set result y design SKIP

=
→ → →

where isin is a channel used for retrieving an object and the result can be got from the
result channel. A minor change may be made on the definition of the set process pre-
sented in [38]. A NIL or a referenced object should be returned from the result channel
instead of a Boolean value. When the needed object requirementspec does not exist, the
set process returns NIL. The inputting process will be blocked and retested later.

24 M. Li

The three dimensions are represented by CTM processes in TRISO-Model. The
software development process is the combination of the three processes. It is the syn-
chronizations among the three processes that seamlessly integrate the three dimen-
sions. In the dynamic semantics of TRISO-Model, the alphabets of the three dimen-
sions are not obliged to have common actions. Thus each dimension can be separately
defined in a divide-conquer strategy. The synchronization is carried out on the auto-
matically inserted dummy actions. It is implemented by the following collaboration
operator.

The operands of the collaboration operator are two CTM processes. The operator,
modeling the external integrations of TRISO-Model, is denoted as:

:{ 1, 2 ,...}synchronizationname label labelΘ

where
 the name of the synchronization

{{ 1, 2},...} a set of synchronized points

{ 1, 2} a tuple representing a point

1, 2 the lable o

synchronizationname

label label

label label

label label f the subprocesses that

 should be synchronized in the operands

This operator ensures that each step of the two processes is synchronized on the
automatically inserted dummy actions.

As examples, two processes are defined as:

1; 2; 3 ,and 1; 2; 3P P P P Q Q Q Q= =

then,

:{{ 1, 1},{ 3, 3}}

((1. . 1 1: 1); 2;(3. . 3 3: 3)) ||

((1. . 1 1: 1); 2;(3. . 3 3: 3))

utilize p q p qP Q

p uitilize q p P P p uitilize q p P

p uitilize q q Q Q p uitilize q q Q

=Θ
→ →
→ →

Here the representation of a dummy action is composed of the corresponding sub-
processes, the name of synchronization, and the dots. But this does not violate the
atomic property of an action in CTM.

It should be noted that two successive collaboration operators are syntactically le-
gitimate. The synchronization points are the unions of the two operators. In this sense
the two operators meet the communicative law.

4 3-D Integrated Software Engineering Process Benchmarking

As stated in Section 2, ISPW-6 Example is not competent in the face of the complex
system nowadays, in which multi-dimension issues have to be considered. As the
extension and improvement to ISPW-6 Example, we design a new benchmark, a 3-D
Integrated Software Engineering Modeling Example Problem. It may be used to
evaluate the emerging integrated software development models/methodologies like
TRISO-Model. In correspondence with ISPW-6 Example, it could be called SPW-
2006 Example in this paper.

 Assessing 3-D Integrated Software Development Processes: A New Benchmark 25

4.1 SPW-2006 Example Problem

Extended from ISPW-6 Example, the SPW-2006 Example focuses on the various
aspects that are affected by a change caused by a requirements change request. These
aspects include not only the engineering process, but also the management process,
support process, process improvement process, and so on. SPW-2006 Example ex-
tends ISPW-6 Example by:

 Expanding the problem to an integrated software development scenario in which
process, technology, and human are all essential factors.

 Generalizing steps to activities; refining organizations to actors.
 Classifying steps into two categories, component activities that may occur step

by step such as Review Design and ongoing activities that keep on going as Con-
figuration Management

 Adding more steps/activities that may occur concurrently
 Adding more actors for expanding the organizational scope from development to

the whole organization
 Extending constraints to interactions

In the following description, we use Italic font to differentiate the added or modi-
fied elements from those of ISPW-6 Example.

 Activities
♦ Component Activities

 Requirements Change Decision
 Technical Solution Decision
 Integration Test
 Schedule and Assign Tasks
 Modify Design
 Review Design
 Modify Code
 Modify Test Plans
 Modify Unit Test Package
 Test Unit

♦ Ongoing Activities
 Configuration Management
 Cost Estimation
 Project Management (extended from “Monitor Progress” in ISPW-6

Example)
 Measurement and Improvement (including “Process Change” in

ISPW-7 extension)
 Training
 Knowledge Management and Reuse

 Actors
♦ SEPG
♦ CCB (Configuration Control Board)

 SCM

26 M. Li

♦ Project Team
 SQA (extended from “QA engineers” in ISPW-6 Example)
 Knowledge Engineer
 Estimation Expert
 Requirements Engineer
 Project manager
 Design engineers
 Software engineers

♦ User Representative
♦ Trainer

 Artifacts
♦ Input + Source (Artifact, Actor, or Activity) + Physical communication

mechanism
♦ Output + Destination (Artifact, Actor, or Activity) + Physical communica-

tion mechanism
 Interactions (extended from “Constraints regarding step sequencing” in

ISPW-6 Example)
♦ Teamwork (as mentioned in ISPW-7 extensions)
♦ Integration

Fig. 7. Segment of SPW-2006 Example Represented by I-SPEM

 Assessing 3-D Integrated Software Development Processes: A New Benchmark 27

Table 1. From ISPW-6 Example to SPW-2006 Example

 ISPW-6 Example SPW-2006 Example
DesignReviewTeam
KnowledgeEngineer

Actor DesignReviewTeam

EstimationExpert
ReviewDesignSpec
ReviewDesignTech

Activity ReviewDesign

ReviewDesignCapability
DesignSpec
DesignTech

Artifact DesignSpec

DesignCapability

In order to highlight the extension we made in SPW-2006 Example, comparing to
ISPW-6 Example in Figure 1, we also use Review Design as the segment example in
this section. Using I-SPEM, the problem is considered in the three dimensions of
TRISO-Model, as shown in Figure 7. The Actor, Activity and Artifact are all expanded
to groups of corresponding elements involved in the three dimensions. The mapping
of these elements, from 1-D to 3-D, is illustrated in Table 1.

Using CTM, the dynamic semantics of the segment around the Review Design ac-
tivity for the SPW-2006 Example is presented as follows:

_ 2006 ; ;

 _ 2006 ;

SPW Part ModifyDesign ReviewDesign

SKIP approved SPW Part ModifyCode

=
≮ ≯

A design is firstly modified and then the modified design is reviewed. If the modi-
fied design is not approved, the design should be modified again. Otherwise the
source code will be changed according to the approved design.

An activity in TRISO-Model is described from the three dimensions. The follow-
ing three processes are used for modeling an activity:

 describing the actions taken out by the activity;

 describing the involved actors;

 describing the involved artifacts;

ProcessActivity

HumanActivity

TechnologyActivity

 (4)

As for the Review Design activity, the processes in (4) can be correspondingly de-
fined as:

: ; : ;

 :

: ; : ;

ProcessReviewDesign rds ReviewDesignSpec rdt ReviewDesignTech

rdc ReviewDeisignCapability

HumanReviewDesign drt DesignReviewTeam ke KnowledgeEngineer

=

=
 :

: ; : ;

 :

ee EstimatonExpert

ArtifactReviewDesign desspec DesignSpec dt DesignTech

dc DesignCapability

=

 (5)

Firstly, the SE Process and SE Human dimensions are combined together through
the Management Integration. We have,

:{{ , },{ , },{ , }}MI rds drt rdt ke rdc ee

ReviewDesignMI

ProcessReviewDesign HumanReviewDesign= Θ

Then the ArtifactsReviewDesign process integrates this above process through the Data
Integration and the Use Integration. Thus the Review Design activity is modeled as:

28 M. Li

:{{ , },{ , },{ , }} :{{ , },{ , },{ , }}

UI desspec drt dt ke dc ee DI desspec rds dt rdt dc rdc

ReviewDesign ArtifactReviewDesign

ReviewDesignMI

=

Θ Θ

It should be noted that the order of the application of the three external integrations
does not matter.

4.2 Evaluations with the SPW-2006 Example

S.Fogle et al proposed six phases of a benchmarking project [39]: project initiation,
planning, benchmarking partner identification, data collection, data analysis, and
reporting. D.Card and D.Zubrow summarized three critical factors to success [40]:
well-defined objectives, careful planning and cautious interpretation. The SPW-2006
Example benchmarking may be conducted according to the following three steps:

(1) Planning: decompose the benchmarked object into the corresponding or rela-
tive elements in SPW-2006 Example, based on its evaluation goals;

(2) Benchmarking: compare the decomposed elements with those in SPW-2006
Example;

(3) Evaluating: analyze the benchmarked object’s similarities and differences
with SPW-2006 Example and report the result.

As defined in section 4.1, the SPW-2006 Example benchmark includes 4 aspects,
31 elements. We use three levels of satisfactions to identify the current practice gaps
to the SPW-2006 Example benchmark: Not Satisfied (N), Partially Satisfied (P) and
Fully Satisfied (F). A benchmarked element at N or P level indicates a further soft-
ware development process improvement opportunity.

Table 2 illustrates the SPW-2006 Example evaluation result to TRISO-Model. All
the decomposed elements in TRISO-Model are Fully Satisfied (F) in comparison with
the elements in the SPW-2006 Example benchmark. It shows that TRISO-Model is a
good model to describe 3-D integrated software development processes.

Like the ISPW-6 Example, the SPW-2006 Example is originally designed for as-
sessing the software process modeling approaches, particularly for the evaluation of
an integrated software development process model, i.e., TRISO-Model. Furthermore,
it expands the problem from one dimension of process to an integrated software de-
velopment scenario in which three dimensions of process, technology, and human are
all essential factors. Thus, it also may be used to evaluate software organizations,
software projects and software development processes.

Table 2 also shows the evaluation results to other models for software develop-
ment processes, CMM [41]/CMMI [10], ISO 9001[42], and SEPRM[43], with the
SPW-2006 Example. In Table 2, many elements of the ISO 9001 standard is labeled
with Partially Satisfied (P) or Not Satisfied (N) for the reason that the corresponding
elements are just discussed in a broad sense. The difference between TRISO-Model
and the other two ones is minor. However, from an analysis to the similarities and
differences between each one-to-one element in the benchmarked object and SPW-
2006 Example, a consensus conclusion should be reached that the CMM/CMMI is
suitable for a software process integrated process, project and engineering manage-
ment, but not suitable for detailed technological support, knowledge-based solution
and cost estimation; ISO 9001 is suitable for a general process control, but not

 Assessing 3-D Integrated Software Development Processes: A New Benchmark 29

Table 2. Evaluations with the SPW-2006 Example

SE
PR

M

ISO

9001

C
M

M
/

C
M

M
I

T
R

ISO
-

M
odel

F P F F Requirements Change Decision
 P P P F Technical Solution Decision

F F F F Integration Test
F F F F Schedule and Assign Tasks
F P F F Modify Design
F P F F Review Design
F P F F Modify Code
F P F F Modify Test Plans
F P F F Modify Unit Test Package
F P F F Test Unit

C
om

ponent A
ctivities

F P F F Configuration Management
F N F F Cost Estimation
F F F F Project Management
F P F F Measurement and Improvement
F F F F Training
P N P F Knowledge Management and Reuse

O
ngoing A

c-
tivities

A
ctivities

F N F F SEPG
F P F F SCM CCB
F P F F SQA
N N N F Knowledge Engineer
P N P F Estimation Expert
F F F F Requirements Engineer
F F F F Project manager
F F F F Design engineers
F F F F Software engineers

P
roject T

eam

F F F F User Representative
F F F F Trainer

A
ctors

F F F F Input + Source + physical communication
mechanism

F F F F Input + Destination + physical communication
mechanism

A
rtifacts

F P F F Teamwork

F P F F Integration

Interactions

SPW
-2006 E

xam
ple B

enchm
ark

Not Satisfied (N), Partially Satisfied (P), and Fully Satisfied (F)

30 M. Li

suitable for specific software process management; SEPRM is a very good software
engineering process reference model integrated 3 process subsystems of organiza-
tion, development and management, but still lack of enough support to technology,
knowledge and economy. TRISO-Model is a fully support reference model for inte-
grated software development processes from the three most important dimensions of
process, technology, and human naturally.

TRISO-Model has many unique features that are beneficial to the performance,
analysis, and improvement of software processes. In TRISO-Model, the interrelation-
ships among the elements of the software development process entities can be repre-
sented in I-SPEM, which includes more stereotypes and suits the convenience of mod-
elers; and all the entities are uniformly described in their behavior patterns and are
mapped onto activity, artifact, and actor in three dimensions through CTM, which
guides the performance of development processes with rigorous operational seman-
tics. New techniques for the analysis of software processes can be put forward based
on the formalism. With the description of artifacts, the technical factors that trans-
form the user requirement into the final product are covered in TRISO-Model. As
human constitutes the major part of the cost of a project, various models for meas-
urement and cost estimation can be integrated into the model through the modeling of
actor.

In a simulated world, SPW-2006 Example benchmarking only adopts pass/fail
strategy. Some parts of SPW-2006 Example may be changed to a quantitative way for
real applications, e.g., “Measurement and Improvement” element was developed to an
effective measurement method [44], which can be used to help identifying, analyzing,
and solving the problems arising during the development processes.

In terms of the seven desiderata for successful benchmarks presented by Sim et al.
in [23], the SPW-2006 Example fared very well as follows: (1) Accessibility: the
SPW-2006 Example is an extended ISPW-6 Example and easily to be understood, to
be found and to be used. (2) Affordability: people may use it to have an overall as-
sessment to integrated software development processes. The costs are caused by hu-
man efforts and tools support, depending on how details the assessment needs to be.
(3) Clarity: SPW-2006 Example is clear enough to describe software development
processes through the elements in the three necessary aspects of activities, actors,
artifacts and their interactions. (4) Relevance: it can be used to assess not only a gen-
eral software development process, but also some specific software engineering proc-
esses like requirement engineering, software measurement. (5) Solvability: it is a
good example to evaluate other software process models, and/or to evaluate software
organizations, software projects and also software development processes, particu-
larly 3-D integrated software development processes. (6) Portability: it is of course
easy to be implemented at a variety of platforms. (7) Scalability: it is an extended
version of ISPW-6 Example and definitely may be further extended to more compli-
cated examples or even to a commercial product.

5 TRISO-Model Based Assessment and Improvement

The purpose of the assessment process is to efficiently find evidence of key process
areas and identify areas for improvement [45]. The essential process activities are:

 Assessing 3-D Integrated Software Development Processes: A New Benchmark 31

plan the assessment, distribute assessment material, prepare for assessment meeting,
conduct assessment, make changes for improvement, and follow-up. The input to an
assessment is the work item (project) to be scrutinized, the relevant checklists enu-
merating the types of key process areas to be identified, and other documents such as
procedures and standards. The output of an assessment is firstly the log of the key
process areas uncovered and secondly the areas for improvement and thirdly a sum-
mary report showing the score.

Several software process assessment models have been developed, such as
CMM/CMMI, ISO 9001, ISO/IEC 15504 [46], and SEPRM.

5.1 TRISO-Model Based Assessments

There are two kinds of TRISO-Model based assessments: TRISO-Model Qualitative
Assessment and TRISO-Model Quantitative Assessment.

The TRISO-Model Qualitative Assessment provides a checklist-based assessment
method. It is also a kind of benchmark-based assessment. The benchmark is SPW-
2006 Example in this paper. By comparing each element in the given software devel-
opment process with the one in SPW-2006 Example, a pass/fail checklist will be given
and the final assessment result will be made according to the pass/fail information. It
is a very simple assessment methodology. It may be used to evaluate whether an as-
sessed integrated software development process is well defined or not. But it is not
helpful in step-by-step process improvement.

The TRISO-Model Quantitative Assessment provides a flexible software develop-
ment process assessment method, based on the evaluation to integrated capability
maturity levels. It may be written in a triplet as follows:

TRISO-Model Quantitative Assessment = (PCM Level, TCM Level, HCM Level)

where PCM represents Process Capability Maturity, TCM represents Technology
Capability Maturity and HCM represents Human Capability Maturity. The PCM
Level, TCM Level and HCM Level mean its process capability maturity level or status,
technology capability maturity level or status, and human capability maturity level or
status, respectively, in an integrated software development process for a software
organization or a software project.

Each of capability maturities in the TRISO-Model three dimensions may be mod-
eled as some available assessment model or a new assessment model. The integration
of the three assessment models will be the TRISO-Model quantitative assessment
model.

Based on CMM/CMMI and P-CMM for PCM Level and HCM Level respectively,
this section presents a TRISO-Model Quantitative Assessment Reference Model. Ac-
cordingly, there are five defined maturity levels in PCM Level: Initial focuses on
competent people and heroics (1), Repeatable focuses on basic project management
(2), Defined focuses on process standardization (3), Managed focuses on quantitative
management (4) and Optimizing focuses on continuous process improvement (5); and
five defined maturity levels in HCM Level: Initial initiates no processes (1), Repeat-
able focuses on establishing basic workforce practices and eliminating problems that
hinder work performance (2), Defined addresses organizational issues, as the organi-
zation tailors its defined workforce practices to the core competencies required by its

32 M. Li

business environment (3), Managed focuses on building competency-based teams and
establishing a quantitative understanding of trends in the development of knowledge
and skills and in the alignment of performance across different levels of the organiza-
tion (4) and Optimizing covers issues that both the organization and individuals must
address in implementing continuous improvements in their capability (5).

Here we define the maturity levels in TCM Level on our own, also five levels to
match PCM Level and HCM Level: Initial initiates software development (1), Repeat-
able focuses on establishing necessary domain knowledge support (2), Defined ad-
dresses technology standardization and tool support (3), Managed emphasizes tech-
nology innovation and management (4) and Optimizing aims at a technological lead-
ership and continuous technology improvement (5).

Thus, an assessment result based on TRISO-Model Quantitative Assessment Refer-
ence Model will be the three numbers combination of the triplet between (1, 1, 1) and
(5, 5, 5). For an example, an assessment result (4, 3, 4) means that the assessed software
development process achieved an integrated level (4, 3, 4), with Managed process capa-
bility maturity level, Defined technology capability maturity level and Managed human
capability maturity level, respectively. It performed a quantitative process management,
used development tools support and possessed a good qualified team.

Table 3 shows a TRISO-Model based assessment form. The TRISO-Model Quanti-
tative Assessment evaluates the assessed software development process from the three
dimensions of Process Capability Maturity (PCM) Level (1-5), Technology Capabil-
ity Maturity (PCM) Level (1-5) and Human Capability Maturity (PCM) Level (1-5),
by assessing the six integrations as shown in Figure 2. It can be conducted through
three steps as follows.

Table 3. TRISO-Model Based Assessment Form

TRISO-Model Quantitative Assessment
PCM Level

(1-5)
TCM Level

(1-5)
HCM Level

(1-5)
Process Integration — —
Development Integration — —
Service Integration — —
Data Integration —
Management Integration —
Use Integration —
Assessment Result

Firstly, it assesses the three internal integrations of Process Integration, Develop-
ment Integration and Service Integration.

Secondly, it assesses the three external integrations of Data Integration, Manage-
ment Integration and Use Integration. To assess Data Integration, factors in both
process dimension and technology dimension have to be taken into account; and it is
similar with Management Integration and Use Integration.

Finally, it accounts the assessment result to each dimensional capability maturity
level, i.e., achieving the result of Process Capability Maturity (PCM) Level by

 Assessing 3-D Integrated Software Development Processes: A New Benchmark 33

accounting the three assessment scores of the internal Process Integration and the two
relative external Data Integration and Management Integration; it is the same with
the Technology Capability Maturity (TCM) Level and the Human Capability Maturity
(HCM) Level.

From the viewpoint of model framework structures, Wang and Bryany observe the
current assessment methods as three types [47]: (1) Checklist-based assessment, i.e., a
software process assessment method that is based on a pass/fail checklist for each prac-
tice and process specified in a process model. The ISO 9001 model provides a checklist-
based assessment method. (2) 1-D process-based assessment, i.e., a software process
assessment method that determines a software development organization’s capability
from a set of processes in a single process dimension. CMM is an example of 1-D as-
sessment models. (3) 2-D process-based assessment, i.e., a software process assessment
method that employs both process and capability dimensions in a process model, and
derives process capability by evaluating the process model against the capability model.
ISO/IEC 15504 and SEPRM are examples of 2-D assessment models.

As the above discussions, the TRISO-Model Qualitative Assessment is a checklist-
based assessment method; and the TRISO-Model Quantitative Assessment presents a
new type of assessment method, i.e., a kind of “3-D” process-based assessment from
the three dimensions of process, capability (human in TRISO-Model) and technology.

5.2 Improving 3D Integrated Software Development Processes

There are three key categories of philosophies underpinning software process im-
provement [47]: (1) Goal-oriented process improvement, i.e., a software process im-
provement approach by which process system capability is improved by moving to-
wards a predefined goal, usually a specific process capability level. It is simple and
the most widely adopted software engineering philosophy. ISO 9001 provides a
pass/fail goal; CMM, ISO/IEC 15504, and SEPRM provide a 5/6-level capability
goal. (2) Benchmark-based process improvement, i.e., a software process improve-
ment approach by which process system capability is improved by moving towards an
optimum combined profile according to software engineering process benchmarks,
rather than a maximum capability level. It presents empirical indications of process
attributes. This approach provides an organization with sufficient margins of compe-
tence in every process. (3) Continuous process improvement, i.e., a software process
improvement approach by which process system capability is required to be improved
all the time, and toward ever higher capability levels. Using this approach, software
process improvement is a continuous, spiral-like procedure and there is no end to
process optimization. It provides a basis for sustainable long-term strategic planning.
The Deming Circle, plan-do-check-act, is a typical component of this philosophy.

Though there is a criticism that the goals for improvement are not explicitly stated
in continuous process improvement philosophy and top management has to make
clear the current goal, as well as the short, middle, and long-term ones, TRISO-Model
is principally a continuous improvement approach with some staged goals or bench-
marks to provide more precise assessment results.

There are three basic software process improvement methods [47]: (1) Assessment-
based improvement, i.e., a software process improvement method in which a process
system can be improved by basing its performance and capability profile on either a

34 M. Li

model-based or a standard-based assessment. Using this approach, the processes in-
herent in a software development organization are improved, according to a process
system model with step-by-step suggestions like CMM, or a standardized process
system model like ISO/IEC 15504. (2) Benchmark-based improvement, i.e., a soft-
ware process improvement method in which a process system can be improved by
basing its performance and capability profile on a benchmark-based assessment. Us-
ing this approach, the processes inherent in a software development organization are
improved according to a set of process benchmarks. SEPRM is a benchmarked model,
which provides an optimized and economical process improvement solution. (3) Inte-
grated improvement, i.e., a combined model-based and benchmark-based software
process improvement method in which a process system can be improved by basing
its performance and capability profile on a integrated model-based and benchmark-
based assessment. Using this approach, the processes inherent in a software develop-
ment organization are improved according to a benchmarked process system model.
SEPRM is designed to support integrated model- and benchmark-based process im-
provement, which inherits the advantages of both absolute and relative software proc-
ess improvement methods.

TRISO-Model basically is a model-based process improvement methodology, but
also it may introduce some benchmark-based improvement, and then to be an inte-
grated improvement.

The conventional goal-based process assessment and improvement technologies
have been widely accepted. However, its philosophy of “the higher the better” has
been questioned in practice [24]. The determination of target capability levels for
specific organization tends to be virtual, infeasible, and sometimes overshoot.
Benchmark-based process assessment and improvement supports the philosophy of
“the smaller the advantage, the better”. CMMI continuous representation offers a
flexible approach to process improvement [10]. An organization may choose to im-
prove the performance of a single process-related trouble spot, or it can work on sev-
eral areas that are closely aligned to the organization’s business objectives; and to
improve different processes at different rates.

TRISO-Model presents a new integrated improvement method. It adopts the phi-
losophy of “the smaller the integrated goal, the better”. The target capability maturity
levels of given software development processes will be set relative to the next inte-
grated goal, rather than to the virtually highest level as in a goal-based process as-
sessment and improvement, or to the benchmarks of the software industry as in a
benchmark-based process assessment and improvement.

For the given assessment result example (4, 3, 4) in section 5.1, it is a very good
software organization if it focuses on international outsourcing. However, when it
would like to evolve into a software product vendor, i.e., developing its own innova-
tive technology or product, it has to improve its technology capability maturity firstly.

TRISO-Model is not only suitable for process improvement from process scope to
project and organization scopes because it may provide precise measurement for
every process at all the capability levels like ISO/IEC 15504 and SEPRM, but also
very important for process improvement in technology scopes because it may provide
advanced software technologies support to either software development processes for
higher capability levels, or the project or organization’s schedule/budget control.

 Assessing 3-D Integrated Software Development Processes: A New Benchmark 35

As a simulation-based research up to now, also, more work is needed to mature the
overall approach in order to make it a reliable, cheap, and easy-to-apply support tool
for decision makers in software process improvement programmes, as Pfahl and Birk
indicated in [48].

6 Conclusions and Future Work

TRISO-Model is developed to improve software development practices in the current
complex and dynamic environment by describing and managing the elements contrib-
uting to project success in three interactive dimensions, i.e. SE Human, SE Process,
SE Technology, and their integrations. With TRISO-Model, various aspects of pro-
jects, such as people, tools, and processes, can be modeled and managed systemati-
cally. The static semantics and the dynamic semantics of TRISO Model are specified
by an extension of SPEM, I-SPEM; and by an extension of CSP, CTM, respectively.
New techniques for the analysis of software development processes can be put for-
ward based on the formalism.

In order to simulate and evaluate the modeling ability of TRISO-Model, we create
a new process benchmark, SPW-2006 Example, by extending the ISPW-6 Example.
Unlike the process-centered ISPW-6 Example, the SPW-2006 Example is not oriented
to any specific single aspect of software development but it incorporates more aspects
by adding more elements and interactions. It may be used to evaluate other software
process models, and/or to evaluate software organizations, software projects and also
software development processes, particularly 3-D integrated software development
processes. The evaluation shows that the TRISO-Model approach is effective in mod-
eling and managing different aspects and their complex interactions in today’s soft-
ware development.

With the SPW-2006 Example and its evolution for quantitative evaluation to 3-D
integrated software development processes, we present two kinds of TRISO-Model
based assessments: TRISO-Model Qualitative Assessment and TRISO-Model Quanti-
tative Assessment. It enables a new integrated improvement method for software de-
velopment processes.

The TRISO-Model Qualitative Assessment provides a checklist-based assessment
method. It may be used to evaluate whether an assessed integrated software develop-
ment process is well defined or not, based on the SPW-2006 Example benchmark. The
TRISO-Model Quantitative Assessment provides a flexible software development
process assessment method, based on the evaluation to integrated capability maturity
levels of process, technology and human. It may be used in an integrated environ-
ment, as a continuous improvement approach with some staged goals or benchmarks
to provide more precise assessment results.

Last, but not least, from the viewpoint of end-users (consumers) or investors (pro-
ducers), software is always viewed as a true investment, not just a development activ-
ity, and therefore is evaluated in terms of the value created rather than only the func-
tionality delivered. Thus, all the 3-D software development process assessment and
improvement should be mapped into the return on investment (ROI) factor finally
[49]. It is of course the next direction for further research.

36 M. Li

Acknowledgements

The presentation was supported partly by the National Natural Science Foundation of
China (Grant Number: 60573082). Also, I appreciate all the help offered by my col-
leagues (particularly to Qing Wang, Yongji Wang and Chen Zhao) and students (spe-
cially to Feng Yuan, Qiusong Yang, Jizhe Wang and Da Yang) in the Lab for Internet
Software Technologies, Institute of Software at Chinese Academy of Sciences.

References

1. M.Li: Expanding the Horizons of Software Development Processes: A 3-D Integrated
Methodology. In: Mingshu Li, Barry Boehm and Leon J. Osterweil (eds.), Unifying the
Software Process Spectrum, Software Process Workshop (SPW2005; May 25-27, 2005).
LNCS 3840, Springer-Verlag (2005) 54-67

2. A.Wise et al.: Using Little-JIL to Coordinate Agents in Software Engineering. In: Proc. of
the Automated Software Engineering Conf. (2000) 155-163

3. N.Belkhatir et al.: Adele/Tempo: An Environment to Support Process Modeling and Enac-
tion. In: A.Finkelstein et al., Software Process Modelling and Technology, John Wiley &
Sons, Inc. (1994) 187-217

4. B.W.Boehm et al.: Software Cost Estimation with COCOMO II. Prentice-Hall (2000)
5. M.Ruhe, R.Jeffery and I.Wieczorek: Cost Estimation for Web Applications. In: Proc. of

25th Int. Conf. on Software Engineering (ICSE 25) (2003) 270-279
6. B.Boehm and A.Jain: An Initial Theory of Value-Based Software Engineering. In: A. Au-

rum et al.(eds.): Value-Based Software Engineering. Springer-Verlag (2005)
7. W.S.Humphrey: Introduction to the Personal Software Process. Addison-Wesley (1997)
8. B.Curtis et al.: People Capability Maturity Model. Addison-Wesley (2001)
9. D.Reifer: Ten Deadly Risks in Internet and Intranet Software Development. IEEE Soft-

ware, March/April (2002) 12-14
10. M.B.Chrissis et al.: CMMI: Guidelines for Process Integration and Product Improvement.

Addison-Wesley (2003)
11. B.Boehm and D.Port: Balancing Discipline and Flexibility with the Spiral Model and

MBASE. Crosstalk, Vol.11(12) (2001) 23-28
12. J.Estublier: Software are Processes Too. In: Mingshu Li, Barry Boehm and Leon J. Oster-

weil (eds.), Unifying the Software Process Spectrum, Software Process Workshop
(SPW2005; May 25-27, 2005). LNCS 3840, Springer-Verlag (2005) 25-34

13. H.D.Rombach: Integrated Software Process & Product Lines. In: Mingshu Li, Barry Boehm
and Leon J. Osterweil (eds.), Unifying the Software Process Spectrum, Software Process
Workshop (SPW2005; May 25-27, 2005). LNCS 3840, Springer-Verlag (2005) 83-90

14. L.J.Osterweil: Integrating Microprocess and Macroprocess Software Research. In: Ming-
shu Li, Barry Boehm and Leon J. Osterweil (eds.), Unifying the Software Process Spec-
trum, Software Process Workshop (SPW2005; May 25-27, 2005). LNCS 3840, Springer-
Verlag (2005) 68-74

15. B.Warboys: Active Models: A Possible Approach to the Integration of Objective and Sub-
jective Process Models. In: Mingshu Li, Barry Boehm and Leon J. Osterweil (eds.), Unify-
ing the Software Process Spectrum, Software Process Workshop (SPW2005; May 25-27,
2005). LNCS 3840, Springer-Verlag (2005) 100-107

16. M.Ruiz et al.: A Dynamic Integrated Framework for Software Process Improvement.
Software Quality Journal, 10 (2002) 181-194

 Assessing 3-D Integrated Software Development Processes: A New Benchmark 37

17. M.I.Kellner, R.J.Madachy and D.M.Raffo: Software Process Simulation Modeling: Why?
What? How? Journal of Systems and Software, 46 (2/3) (1999) 91-105

18. M.Ruiz et al.: Using Dynamic Modeling and Simulation to Improve the COTS Software
Process. In: F.Bomarius and H.Iida (eds.), PROFES 2004. LNCS 3009, Springer-Verlag
(2004) 568-581

19. P.Donzelli and G.Iazeolla: Hybrid Simulation Modeling of the Software Process. Journal
of Systems and Software, 59 (2001) 227-235

20. R.H.Martin and D.Raffo: A Model of the Software Development Process Using both Con-
tinuous and Discrete Models. Software Process Improvement and Practice, 5 (2000) 147-
157

21. H.Neu and U.Becker-Kornstaedt: Learning and Understanding a Software Process through
Simulation of its Underlying Model. In: S.Henninger and F.Maurer (eds.), LSO 2002.
LNCS 2640, Springer-Verlag (2002) 81-93

22. N.David et al.: Towards an Emergence-Driven Software Process for Agent-Based Simula-
tion. In: J.S.Sichman et al. (eds.), MABS 2002. LNAI 2581, Springer-Verlag (2003) 89-
104

23. S.E.Sim et al.: Using Benchmarking to Advance Research: A Challenge to Software Engi-
neering. In Proc. of the 25th Int. Conf. on Software Engineering (2003) 74-83

24. Y.Wang and G.King: A New Approach to Benchmark-Based Process Improvement. In:
Proc. of European Software Process Improvement 2000 (2000) 140-149

25. M.I.Kellner et al.: ISPW-6 Software Process Example. In Proc. of the First Int. Conf. on
Software Process. IEEE Computer Society Press (1991) 176-186

26. D.Avrilionis et al.: OPSIS: A View Mechanism for Software Processes which Supports
their Evolution and Reuse. In Proc. of the 18th Int. Conf. on Software Engineering (1996)
38-47

27. C.M.Lot and H.D.Rombach: A MVP-L1 Solution for the Software Process Modeling
Problem. In Proc. of 6th Int. Software Process Workshop (ISPW 6) (1990)

28. G.Junkermann et al.: Merlin: Supporting Cooperation in Software Development through a
Knowledge-based Environment. In Software Process Modelling and Technology. John
Wiley & Sons, Inc. (1994) 103-127

29. N.Belkhatir, J. Estublier and W.L.Melo: Software Process Modeling in Adele: the ISPW-7
Example. In: Proc. of the 7th International Software Process Workshop (1991) 48 -50

30. F.P.Brooks: No Silver Bullet: Essence and Accidents of Software Engineering. Computer,
Vol.20(4) (1987) 10-19

31. OMG: Software Process Engineering Metamodel Specification, Version 1.1 (formal/2005-
01-06). (2005) (http://www.omg.org)

32. P.Kruchten: A Process Engineering MetaModel. (2001) (http://www.forsoft.de/zen/sdpp
02/papers/Kruc01.pdf)

33. C.Kobryn: UML 2001: A Standardization Odyssey. Communications of the ACM, 42(10)
(1999) 29-37

34. OMG: MOF Core Specification, Version2.0 (ptc/2003-10-04). (2003) (http://www.omg.
org)

35. C.A.R.Hoare: Communicating Sequential Processes. Prentice Hall International (1985)
36. R.M.Greenwood: Using CSP and System Dynamics as Process Engineering Tools. In

Proc. of the 2nd European Workshop on Process Technology (Trondheim, Norway, Sept.
7-8, 1992). Springer-Verlag (1992) 138-145

37. K.Yasumoto et al.: Software Process Description Using LOTOS and its Enaction. In Proc.
of the 16th Int. Conf. on Software Engineering (1994) 169-178

38. A.W.Roscoe: The Theory and Practice of Concurrency. Prentice-Hall Pearson (2005)

38 M. Li

39. S.Fogle et al.: The Benchmarking Process: One Team’s Experience. IEEE Software, Sep-
teber/October (2001) 40-47

40. D.Card and D.Zubrow: Benchmarking Software Organizations. IEEE Software, Septe-
ber/October (2001) 16-18

41. CMU SEI: The Capability Maturity Model Guidelines for Improving the Software Proc-
ess. Addison-Wesley, Pearson Education (1994)

42. International Standard: ISO 9001 Quality Management System – Requirements (2000)
43. V.Chiew and Y.Wang: Software Engineering Process Benchmarking. In: M.Oivo and

S.Komi-Sirvio (eds.), PROFES 2002. LNCS 2559, Springer-Verlag (2002) 519-531
44. Q.Wang and M.Li: Measuring and Improving Software Process in China. In: Proc. of 2005

International Symposium on Empirical Software Engineering (ISESE) (2005) 183-192
45. E.Gray et al.: An Incremental Approach to Software Process Assessment and Improve-

ment. Software Quality Journal, 13 (2005) 7-16
46. International Standard: ISO/IEC 15504 - 1-9, Software Process Assessment – Parts 1-9

(2000)
47. Y.Wang and A.Bryany: Process-Based Software Engineering: Building the Infrastructures.

Annals of Software Engineering, 14 (2002) 9-37
48. D.Pfahl and A.Birk, Using Simulation to Visualise and Analyse Product-Process Depend-

encies in Software Development Projects. In: F.Bomarius and M.Oivo (eds.), PROFES
2000. LNCS 1840, Springer-Verlag (2000) 88-102

49. K.E.Emam: The ROI from Software Quality. Auerbach Publications, Taylors & Francis
Group (2005)

	Introduction
	Related Work
	TRISO-Model and Its Semantic Specifications
	Static Semantic Specification of TRISO-Model
	Dynamic Semantic Specification of TRISO-Model

	3-D Integrated Software Engineering Process Benchmarking
	SPW-2006 Example Problem
	Evaluations with the SPW-2006 $Example$

	TRISO-Model Based Assessment and Improvement
	TRISO-Model Based Assessments
	Improving 3D Integrated Software Development Processes

	Conclusions and Future Work
	References

