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Abstract. The spiral lifecycle is being extended to address new challenges for 
Software-Intensive Systems of Systems (SISOS), such as coping with rapid 
change while simultaneously assuring high dependability. A hybrid plan-driven 
and agile process has been outlined to address these conflicting challenges with 
the need to rapidly field incremental capabilities. A system dynamics model has 
been developed to assess the incremental hybrid process and support project de-
cision-making. It estimates cost and schedule for multiple increments of a hy-
brid process that uses three specialized teams. It considers changes due to ex-
ternal volatility and feedback from user-driven change requests, and dynami-
cally re-estimates and allocates resources in response to the volatility. Deferral 
policies and team sizes can be experimented with, and it includes tradeoff func-
tions between cost and the timing of changes within and across increments, 
length of deferral delays, and others. Both the hybrid process and simulation 
model are being evolved on a very large scale incremental project and other po-
tential pilots. 

1   Introduction  

Our experiences in helping to define, acquire, develop, and assess 21st century SISOS 
have taught us that traditional acquisition and development processes do not work 
well on such systems [1][2]. We are using simulation modeling to help formulate and 
assess new processes to meet the challenges of these systems. 

The systems face ever-increasing demands to provide safe, secure, and reliable sys-
tems; to provide competitive discriminators in the marketplace; to support the coordi-
nation of multi-cultural global enterprises; to enable rapid adaptation to change; and 
to help people cope with complex masses of data and information. These demands 
will cause major differences in the current processes [2]. 

We and others have been developing, applying, and evolving new processes to ad-
dress SISOS. These include extensions to the risk-driven spiral model to cover broad 
(many systems), deep (many supplier levels), and long (many increments) acquisi-
tions needing rapid fielding, high assurance, adaptability to high change traffic, and 
complex interactions with evolving Commercial Off-the-Shelf (COTS) products, 
legacy systems, and external systems. 

The distinguishing features of a SOS are not only that it integrates multiple inde-
pendently-developed systems, but also that it is very large, dynamically evolving, and 



168 R. Madachy, B. Boehm, and J.A. Lane 

unprecedented, with emergent requirements and behaviors and complex socio-
technical issues to address. Thus we have developed a system dynamics model be-
cause the methodology is well-suited to modeling these dynamic phenomena and their 
interactions [3]. 

1.2   The Scalable Spiral Model 

The outlines of a hybrid plan-driven/agile process for developing a SISOS product 
architecture are emerging. It is a risk-driven balance of agility and discipline [4]. In 
order to keep SISOS developments from becoming destabilized from large amounts 
of change traffic, it is important to organize development into plan-driven increments 
in which the suppliers develop to interface specs that are kept stable by deferring 
changes, so that the systems can plug and play at the end of the increment. But for the 
next increment to hit the ground running, an extremely agile team needs to be concur-
rently doing continuous market, competition, and technology watch, change impact 
analysis, COTS refresh, and renegotiation of the next increment's prioritized content 
and the interfaces between the suppliers' next-increment interface specs.  

The spiral model was introduced in 1986 and later elaborated for WinWin exten-
sions [5]. It has continued to evolve to meet the needs of evolving development proc-
esses. We have been converging on a scalable spiral process model for SISOS that, 
for partial implementations to date, has scaled well from small e-services applications 
to super-large defense systems of systems, and multi-enterprise supply chain man-
agement systems. 

Fig. 1 shows a single increment of the development and evolution portion of the 
model. It assumes that the organization has developed: 

• A best-effort definition of the system’s steady-state capability; 
• An incremental sequence of prioritized capabilities culminating in the steady-

state capability; 
• A Feasibility Rationale providing sufficient evidence that the system architec-

ture will support the incremental capabilities, that each increment can be devel-
oped within its available budget and schedule, and that the series of increments 
create a satisfactory return on investment for the organization and mutually sat-
isfactory outcomes for the success-critical stakeholders. 

As seen in Fig. 1, the model is organized to simultaneously address the conflicting 
challenges of rapid change and high assurance of dependability. It also addresses the 
need for rapid fielding of incremental capabilities with a minimum of rework, and the 
other trends involving integration of systems and software engineering, COTS com-
ponents, legacy systems, globalization, and user value considerations. 

The hybrid process uses a three-team cycle (lean, plan-driven, stabilized develop-
ers; thorough V&Vers; and agile, pro-active rebaseliners) that plays out from one 
increment to the next. 

The need to deliver high-assurance incremental capabilities on short fixed sched-
ules means that each increment needs to be kept as stable as possible. This is particu-
larly the case for very large systems of systems with deep supplier hierarchies in  
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Fig. 1. The Scalable Spiral Process Model: Increment Activities 

which a high level of rebaselining traffic can easily lead to chaos. The risks of desta-
bilizing the development process make this portion of the project into a waterfall-like 
build-to-specification subset of the spiral model activities. The need for high assur-
ance of each increment also makes it cost-effective to invest in a team of appropri-
ately skilled personnel to continuously verify and validate the increment as it is being 
developed. 

However, “deferring the change traffic” does not imply deferring its change impact 
analysis, change negotiation, and rebaselining until the beginning of the next incre-
ment. With a single development team and rapid rates of change, this would require a 
team optimized to develop to stable plans and specifications to spend much of the next 
increment’s scarce calendar time performing tasks much better suited to agile teams. 

The appropriate metaphor for addressing rapid change is not a build-to-
specification metaphor or a purchasing-agent metaphor but an adaptive “command-
control-intelligence-surveillance-reconnaissance” (C2ISR) metaphor. It involves an 
agile team performing the first three activities of the C2ISR “Observe, Orient, Decide, 
Act” (OODA) loop for the next increments, while the plan-driven development team 
is performing the “Act” activity for the current increment. “Observing” involves 
monitoring changes in relevant technology and COTS products, in the competitive 
marketplace, in external interoperating systems and in the environment; and monitor-
ing progress on the current increment to identify slowdowns and likely scope defer-
rals. “Orienting” involves performing change impact analyses, risk analyses, and 
tradeoff analyses to assess candidate rebaselining options for the upcoming incre-
ments. “Deciding” involves stakeholder renegotiation of the content of upcoming 
increments, architecture rebaselining, and the degree of COTS upgrading to be done 
to prepare for the next increment. It also involves updating the future increments’ 
Feasibility Rationales to ensure that their renegotiated scopes and solutions can be 
achieved within their budgets and schedules. 

A successful rebaseline means that the plan-driven development team can hit the 
ground running at the beginning of the “Act” phase of developing the next increment, 
and the agile team can hit the ground running on rebaselining definitions of the in-
crements beyond. 
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As much as possible, usage feedback from the previous increment is not allowed to 
destabilize the current increment, but is fed into the definition of the following incre-
ment. Of course, some level of mission-critical updates will need to be fed into the 
current increment, but only when the risk of not doing so is greater that the risk of 
destabilizing the current increment. 

1.2   System Dynamics Modeling Introduction 

System dynamics is a simulation methodology for modeling continuous systems.  
Quantities are expressed as levels, rates and information links representing feedback 
loops. It provides a rich and integrative framework for capturing myriad process phe-
nomena and their relationships.  System dynamics is well-suited to deal with the com-
plexities of SOS because it captures dynamic feedback loops and interacting 
phenomena that cause real-world complexity [3]. 

Fig. 2 serves as a model diagram legend showing the notation for system dynamics 
elements in a simple system. These notations and following brief descriptions of the 
elements may help understand the model described in Section 2. 
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sink

 

Fig. 2. System Dynamics Model Notation 

Levels are the state variables representing system accumulations over time. They 
can serve as a storage device for material, energy, or information. Contents move 
through levels via inflow and outflow rates.  Levels are a function of past accumula-
tion of rates.   

Sources and sinks represent levels or accumulations outside the boundary of the 
modeled system. Sources are infinite supplies of entities and sinks are repositories for 
entities leaving the model boundary.  

Rates are also called flows; the “actions” in a system.  They effect the changes in 
levels.  Rates may represent decisions or policy statements.  Rates are computed as a 
function of levels, constants and auxiliaries.   

Auxiliaries are converters of input to output, and help elaborate the detail of stock 
and flow structures.  An auxiliary variable must lie in an information link that con-
nects a level to a rate.  Auxiliaries often represent “score-keeping” variables.   

Information links are used to represent information flow as opposed to material 
flow.  Rates, as control mechanisms, often require links from other variables (usually 
levels or auxiliaries) for decision making. Information links can represent closed-path 
feedback loops between elements.   
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2   Model Overview 

The primary portion of the system dynamics model diagram showing increment activi-
ties and the teams is in Fig. 3.  It is built around a flow chain for capabilities and uses 
arrays to model multiple increments. The flow chains for the increment activities show 
multiple layers of levels and rates; these identify array elements that correspond to the 
increments. Thus the flow chain and its equations are arrays of five to model five in-
crements (this preset number can be changed to model more or less increments). 

Unanticipated changes arrive as a-periodic pulses via the volatility trends parame-
ter. This is how they actually come on the projects vs. a constant level of volatility 
over time. The user can specify the pulses graphically (see the input for Volatility 
Profile in Fig. 4) or use formulas. The capability volatility rate will flow the changes 
into the corresponding increment for the current time. 

From there they arrive in the level for capability changes and are then processed by 
the agile rebaselining team. They analyze the changes per the average change analy-
sis effort parameter. Their overall productivity is a function of the agile team size (as 
specified by the user in Fig. 4) and the average analysis effort. 
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Fig. 3. Model Diagram 
 



172 R. Madachy, B. Boehm, and J.A. Lane 

The change deferral % is a policy parameter to specify the percentage of changes 
that must be deferred to later increments via deferred capability change rate to suc-
ceeding increments to required capabilities for the appropriate increments. The re-
maining ones are non-deferrable that flow into the required capabilities for the cur-
rent increment via the rate non deferrable capability rate change to current incre-
ment. The deferral policy parameter is also shown in the inputs in Fig. 4.  

When an increment starts the required capabilities are developed by the develop-
ment team at the development rate and flow into developed capabilities (all using the 
flow chain array index corresponding to the proper increment).  

Similarly, the developed capabilities are then picked up the V&V team for their in-
dependent verification and validation. They do their assessment at the V & V produc-
tivity rate and the capabilities flow into V & V’ed capabilities. 

The rates in the flow chain between capability changes, required capabilities, de-
veloped capabilities and V & V’ed capabilities are all bi-directional. This is a provi-
sion for capabilities to be “kicked back” or rejected by the various teams and sent 
back up the chain. For example, there are times when the developers have major con-
cerns about a new capability and send it back to the re-baselining team. Likewise the 
V&V team might find some serious defects to be re-worked by the developers. 

Finally there are user-driven changes based on field experience with the system. 
These are identified as field issues that flow back into the capability changes per the 
field issue rate at a constant field issue delay time. The field issues parameter repre-
sents the amount of concern with the fielded system and accounts for a primary feed-
back loop. 

The agile baselining team is shown in the top left of the diagram. The size of the 
team can be specified as a constant size or a varying number of people over time via 
the inputs in Fig. 4. The agile rebaselining team allocation rate flows people in or out 
of the team to match the specified team size over time. 

The development and V&V teams are shown at the bottom. Their allocation rates 
are based on the construction effort and schedule for the required capabilities known 
to-date. Currently the productivities and team sizes for development and V&V are 
calculated with a Dynamic COCOMO [6] variant. They are equivalent to COCOMO  
 

 

Fig. 4. Simulation Inputs 
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for a static project (the converse situation of this model context) and continuously re-
calculated for changes. However, this aspect of the model whereby the team sizes are 
parametrically determined from size and effort multipliers will be refined so that 
constraints can be put on the development and V&V staff sizes. 

An illustration of how the system responds to a volatility pulse in Increment 1 is in 
Fig. 5. In the figure legends, “[1]’ refers to the increment number 1. An unanticipated 
set of changes occurs at month 8, shown as a volatility trend pulse. The changes im-
mediately flow into the level for capability changes, which then starts declining to 
zero as an agile team of five people works it off per the average change analysis effort 
of four person-months. 

The change is non-deferrable and it becomes incorporated into Increment 1, so the 
total capabilities for the increment increases. As the new capabilities become required 
for Increment 1, the development staffing responds to the increased scope by dynami-
cally adjusting the team size to a new level.  

 

Fig. 5. System Response to Volatility – Increment 1 

2.1   Tradeoff Functions 

There are several functional relationships in the model that effect tradeoffs between 
deferral times and cost/schedule. For one, it is costlier to develop software when there 
is a lot of volatility during the development. If the required capabilities are added to 
an increment being developed, the overall effort increases due to the extra scope as 
well as the added volatility. The effort multiplier in Fig. 6 is used to calculate the 
construction effort and schedule based on a volatility ratio of total required capabili-
ties to the baseline capabilities.  

It is an aggregate multiplier for volatility from different sources. It works similarly 
to the platform volatility multiplier in COCOMO II [6], except in this context there 
may be many more sources of volatility (e.g. COTS, mission, etc.). This multiplier 
effect only holds for an increment when changes arrive midstream. If new changes are 
already in the required capabilities when an increment starts then it has no effect. 
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Additionally, the later a new capability comes in during construction the higher the 
cost to develop it. This is very similar to the cost-to-fix defects whereby the costs 
increases exponentially. Fig. 7 shows the lifecycle timing multiplier based on a ratio 
of the current time to the entire increment schedule. 

Under normal circumstances, there is an additional cost of delaying capabilities to 
future increments because there is more of a software base to be dealt with and inte-
grated into. Therefore we increase the cost of deferring to future increments by an 
additional 25% relative to the previous increment (this parameter is easily changed). 

2.2   Dynamic Resource Allocation 

In response to changes in the capabilities, the model calculates the personnel levels 
needed for the new increment size and interpolates for the amount of work done. If 
the increment has just started, then the interpolated staffing level will be closer to the 
higher level needed for the new Estimate-At-Completion (EAC). If the increment is 
mostly done, then it doesn’t make sense to increase staff to the EAC level because 
almost all the work is done anyway. 

A Rayleigh curve staffing version of the model intrinsically changes the staffing 
when changes occur with no interpolation necessary. 

      

             Fig. 6. Volatility Effort Multiplier             Fig. 7. Lifecycle Timing Effort Multiplier 

2.3   Parameterizations 

Since this is a macro model for very large systems, a capability is a “sky level” re-
quirement measure. It is defined as a very high level requirement that we have made 
equivalent to 10 KSLOC for the purpose of estimation. The construction effort and 
schedule is currently calculated with a Dynamic COCOMO approach using the 
COCOMO II.2000 calibration [6].  

The volatility impact multiplier is an extension of COCOMO for the SISOS situa-
tion. It is extrapolated from the current model and partially based on expert judgment. 
Other parameterizations relying on expert judgment include the average change 
analysis effort, lifecycle timing multiplier and amount of field issues. We are obtain-
ing data on these and will be updating them based on the empirical data. 
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2.4   Sample Test Cases and Results 

Table 1 shows the test cases results for varying the agile team size over two incre-
ments, each of 15 capabilities. The effort and schedule are for the development and 
V&V activities (the effort shown does not include the cost of the agile team, which 
does not account for substantial comparative differences). A change comes in at 
month eight (same as Fig. 5) and is processed by the agile team. The change is non-
deferrable as it needs to be in Increment 1. However, the different team sizes will 
analyze the change at different rates.  

The larger team size will process the change and incorporate it faster; hence the ef-
fort and schedule for Increment 1 improves with larger team size. However, if the 
team size is too small then it won’t even make it into Increment 1. For team sizes of 
two and four it is processed too late and goes into Increment 2.  

The total effort for four agile people is nearly equal to the total for a team size of 
ten (within 5%), since the change was effectively deferred and didn’t incur lifecycle 
timing losses. However, the smaller team will also incur business value losses. These 
are not currently quantified in the model, but it is reasonable to assume that the value 
could far outweigh the 5% cost differential. Also not shown for the stretched out In-
crement 1 cases are losses due to late delivery. 

Table 1. Test Case Results 

 Increment 1 Increment 2 Total Addi-
tional 
Losses 

Agile 
Team 
Size 
(People) 

Effort 
(PM) 

Schedule 
(Mths.) 

Effort 
(PM) 

Schedule 
(Mths.) 

Effort 
(PM) 

Schedule 
(Mths.) 

 

2 728 32.3 2875 50.8 3603 83.1 Inc.1 
business 
value 

4 728 32.3 1171 37.8 1899 70.1 Inc.1 
business 
value 

6 1618 42 728 32.3 2346 74.3  
8 1448 40.5 728 32.3 2176 72.8  

10 1278 38.9 728 32.3 2006 71.2  

These results account for the lifecycle timing multiplier, volatility multiplier and 
increment delay losses. The model shows that a sufficient level of agile re-baseliners 
is necessary, or the cost and schedule for the project increases substantially. Enough 
must be on-board and productive enough to analyze the changes in a timely manner. 
Otherwise there could be a backlog of work to worry about at the beginning of a later 
increment that could have been resolved earlier by the agile team or other losses. 
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This set of test cases only varied agile team size, but another dimension to vary is 
the deferral percentage. Additionally we will simulate all five increments and have 
volatility occur in more than one increment in subsequent experiments. 

3   Conclusions and Future Work 

Processes need to rethought for current and upcoming SISOS, and the outlined hybrid 
process based on the scalable spiral model appears to be an attractive option. The 
dynamic model will help to further refine the hybrid process and determine optimized 
variants for different situations. 

This first major iteration of the model already provides interesting results. It shows 
that if the agile team doesn’t do their work, then developers will have to do it at a 
higher cost. Further experiments are underway to vary the deferral percentages, in-
clude rework, and constrain the staff sizes for development and V&V. 

Both the hybrid process and the model will be further proven and evolved. Various 
improvements in the model are already identified and briefly discussed below, but 
further changes will come from users of the model. Additionally, empirical data to 
help calibrate and parameterize the model will come from users in the field and other 
data collection initiatives at USC. 

This version of the model uses step function staffing profiles that adjust dynami-
cally to changes. Another version uses Rayleigh curves for more realistic staffing 
patterns that adjust on the fly to midstream changes. These models will be integrated 
to allow the user to specify the type of staffing. 

In the current test cases, only the optimum personnel levels are used for develop-
ment and V&V, but in reality there may be staffing constraints. The model will be 
refined so users can constrain the development and V&V staff sizes. Another set of 
tests will compare tradeoffs between different agile team staffing policies (e.g. level-
of-effort vs. demand-driven). 

Patterns of changes and change policies will be experimented with.  We will vary 
the volatility profiles across increments and demonstrate kick-back cases for capabili-
ties flowing back up the chain from the developers or V&V’ers. Additionally we will 
model more flexible deferral policies across increments to replace the current binary 
simplification of allocating changes to the current or next increment.  

As previously noted, the model currently does not account for business/mission 
value losses due to delays. Business value should be part of the overall process analy-
sis, so provisions will be made to quantify the timed value of capabilities.  

Parts of model have been parameterized based on actual empirical data, but not the 
change traffic. We will be getting actual data on volatility, change traffic trends and 
field issue rates from our USC affiliates and other users of the model.  Data for the 
change analysis effort and volatility cost functions will also be analyzed.  

After we get change data to populate the model and make other indicated im-
provements, we will be using it to assess increment risk for a very large scale SISOS 
program. It will also be used by contractors on the program in addition to our own 
independent usage to assess process options.  
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We also plan to apply it to other projects we are involved with, and the model will 
be provided to our USC-CSE industrial affiliates for assessing and improving their 
processes. They will also provide an opportunity to obtain additional empirical data 
for model parameters.  
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