
Q. Wang et al. (Eds.): SPW/ProSim 2006, LNCS 3966, pp. 142 – 149, 2006.
© Springer-Verlag Berlin Heidelberg 2006

A Product Line Enhanced Unified Process

Weishan Zhang1 and Thomas Kunz2

1 School of Software Engineering, Tongji University,
No. 4800 Cao’an Highway, Shanghai, 201804, China

zhangws@mail.tongji.edu.cn
2 Department of Systems and Computer Engineering, Carleton University,

1125 Colonel By Drive, Ottawa, Canada K1S 5B6
tkunz@sce.carleton.ca

Abstract. The Unified Process facilitates reuse for a single system, but falls
short handling multiple similar products. In this paper we present an enhanced
Unified Process, called UPEPL, integrating the product line technology in order
to alleviate this problem. In UPEPL, the product line related activities are added
and could be conducted side by side with other classical UP activities. In this
way both the advantages of Unified Process and software product lines could
co-exist in UPEPL. We show how to use UPEPL with an industrial mobile de-
vice product line in our case study.

1 Introduction

The Unified Process (UP) or Rational Unified Process (RUP) [6] is one of the most
popular and complete process models that have been used by developers in recent
years. The main characteristics of UP are:

1. Using iterative and incremental development that has a lifecycle consisting of
several iterations;

2. Centering around software architecture, which is the highest-level concept of a
system in its environment;

3. Embracing change by considering feedbacks from stakeholders and then make
corresponding adaptations.

This architecture-centric approach is facilitating reuse for a single system develop-
ment. Although it is claimed in RUP that “it also allows reuse on a larger scale: the
reuse of the architecture itself in the context of a line of products that addresses dif-
ferent functionality in a common domain”, in reality, it is very difficult to achieve this
goal without the related supporting technology. There are no mechanisms in RUP to
handle the technical issues for a software product line [1], for example variability
management.

The current object-oriented technology and component-based development (e.g.,
with .NET™ or J2EE™), recommended in the RUP practice, provide many useful
reuse mechanisms, but in many instances fail to achieve the desired reusability and
maintainability. The main reasons come from the intrinsic problems of current pro-
gramming languages and development methodologies [11].

 A Product Line Enhanced Unified Process 143

In this paper, we present an enhanced Unified Process called UPEPL (Unified Proc-
ess Enhanced with Product Line) that incorporates the product line technologies im-
plemented with XVCL (XML based Variant Configuration Language) [11]. The archi-
tecture of the underlying system(s) is implemented as a hierarchy of meta-components,
which is called an x-framework in XVCL jargon. UPEPL was demonstrated with an
industrial mobile device project in which we achieved good reusability, development
and maintenance gains.

The rest of the paper is structured as follows: Section 2 presents the UPEPL proc-
ess in which product line related activities are added and could be conducted side by
side with other classical UP activities; then we demonstrate this process with the crea-
tion of a mobile game product line. In Section 4, we discuss our case study using the
UPEPL process. The related work and concluding remarks end the paper.

2 Unified Process Enhanced with Product Line Technology

In UPEPL, the integration of the product line into the Unified Process may start from
the end of the first iteration, or after the release of some products in the product fam-
ily just like the typical process of product line engineering. Here we show the related
activities in UPEPL starting from the early start of the inception phase.

There are four phases in the Unified Process, namely Inception, Elaboration, Con-
struction, and Transition. The inception phase ‘focused on ensuring that the project is
both worth doing and possible to do’, including the business case and the scope of the
system. In the elaboration phase, the architecture is created and validated, which lays the
foundation for the following activities. The construction phase focuses on the develop-
ment of the system according to the baselined architecture. The product is delivered to
the end user in the transition phase. As the transition phase is relatively simple, we will
elaborate other three phases that incorporate product line related activities.

The activities shown in the following figures will follow the style defined in UP,
with slight modifications where necessary, and activities and artifacts related to prod-
uct line are shown with italic fonts. To make the figures clear and concise, the sup-
porting activities, for example the change control, are not shown.

2.1 Inception

As shown in Fig. 1, besides the activities in a normal UP, the inception phase in UPEPL
involves additional activities for product line visioning, for example, product line scop-
ing to explore the degree of the commonality and variability, and conducting the initial
domain analysis, in order to decide whether the product line is feasible or not.

The main artifacts produced in the inception phase are outlined software require-
ments, proof-of-concept software architecture, and initial domain feature model.
Software requirements are organized in a use-case specification document, and a
supplementary requirement document. As the non-functional requirements may ap-
pear both in the use-case specification and the supplementary requirements, and
there are many similarities for a use case in different product line members, we are
using the requirement x-framework to remove the redundancies as proposed in [8,9].
This will keep different documents in consistency.

144 W. Zhang and T. Kunz

Fig. 1. Activities in inception phase

2.2 Elaboration

In the elaboration phase (Fig. 2), additional activities in UPEPL are related to the
feature model refinement, product line architecture development, etc. The proof-of-
concept architecture is refined to satisfy the requirements of the first product line
member, and this serves as the foundation to develop the first-cut product line archi-
tecture (PLA).

More variants and commonalities could be identified during the process of the do-
main analysis in elaboration phase. This leads to the refinement of the product line
requirement (represented as an x-framework), feature model, and product line archi-
tecture. The incorporation of the variants into various assets was discussed in previous
work [4, 5].

Fig. 2. Activities in elaboration phase

Meta-components for all kinds of assets (including requirements, models and code)
are developed incrementally. The first set of meta-components may stem from a typical
system and only address its own variants. As the developments proceeds, more variants

 A Product Line Enhanced Unified Process 145

will be added to make the meta-components more adaptable. And also the related meta-
architecture becomes more evolvable as more domain variants are resolved.

Meta-components are used to generate specific components according to the speci-
fication for a product line member. Therefore an additional ‘generate’ process is
added before the ‘build’ starts. The build activity may not be required if the generat-
ing process is not for code components, but for requirements, models and other
documentary assets.

2.3 Construction

More meta-components are developed in the construction phase. After the product
line is ready, the development of a new product line member may involve the selec-
tion of the meta-components from the meta-component repository. The selection
process starts from the examination of the feature model in order to select the appro-
priate variants, and then adapting them by writing specification meta-components and
modify related meta-components where necessary.

Unit testing and integration testing are also performed in this phase. The product is
evaluated against the acceptance criteria in order to make a smooth transition to the
end user. Activities in the construction phase are shown in Fig. 3.

Fig. 3. Activities in construction phase

3 Case Study with a Mobile RPG Product Line

Mobile gaming is becoming increasingly popular. With a Role-Playing Game (RPG),
the players take the roles of fictional characters and participate in the interactive story.
The player’s decision-making drives the story forward and the outcome varies de-
pending on the players’ actions.

For starting we will consider the Climb game (Figure 4) where the hero jumps up
and down the floor (a bar in the following screen), in order to avoid falling down to
the bottom of the mountain. Time elapsed and remaining is displayed with a thin bar
on the top of screen.

146 W. Zhang and T. Kunz

Fig. 4. Climb game screen shot Fig. 5. Common concepts in mobile RPG domain

3.1 Inception

First we will consider four RPGs including Climb we just introduced; Kongfu where
a young man learns kongfu skills from his ‘master’; Feeding where the hero tries to
pick up as much food as possible; In Hunt, the hero shoots animals and monsters with
arrows. All games are implemented with MIDP2.0 in J2ME platform.

When we look at all these RPGs, we do find some commonalities and variabilities
among them. For the commonalities, we can find that there are always heroes in the
game scenario, scores are increased or decreased, etc. It is very natural to consider
these RPGs as a game product line. A mobile RPG product line should bring prom-
ised advantages over the classical development.

The initial examination into the code verified this as there are many similar code
patterns inside the games. We analyzed this with our own code clone searching tool
called JCloneMiner.

To save space, we do not show the initial feature diagram and other related docu-
ments here.

3.2 Elaboration

In the first iteration of the elaboration phase, we further analyzed the mobile RPG
domain. The common concepts (implementation with MIDP) are illustrated with a
UML class diagram (Fig. 5).

Fig. 6. Feature model for the mobile RPG product line

 A Product Line Enhanced Unified Process 147

Climb.spc

Hero

ClimbScreen

Adapt

Legend

TimeManagerImport BackGround

Meta-component

MIDlet

CommonAction

Canvas

Floor

KongfuTemplate

Hero

KongfuScreen

Adapt
Legend

TimeManagerImport

Meta-component

MIDlet

CommonAction

ClimbTemplate

ClimbScreen

BackGround

Canvas

Floor

HuntScreen

HuntTemplate

QuarryArrow

FeedingScreen

FeedingTemplate

RPG.spc

 Fig. 7. the first-cut RPG PLA Fig. 8. the final RPG PLA

The feature model is shown in Figure 6. Please note that the feature model may be
refined as the iteration goes.

The first-cut RPG product line architecture (RPG PLA) was created by identifying
and developing meta-components starting from the Climb game, as shown in Figure 7.

In the second iteration, more meta-components were developed. The first-cut PLA
was refined to incorporate more domain commonalities and variants. During the crea-
tion of the meta-components and the refinement of the PLA, some of the optimiza-
tions were found and incorporated in the related meta-components, which will benefit
all components generated from these meta-components. This was discussed in more
detail in [10]. The final PLA is shown in Figure 8.

3.3 Construction

Since we have created the mobile RPG product line architecture, we can reuse it in the
construction phase to develop a product line member. For example, assume we want to
develop a game called Dig gem (Figure 9). The hero digs around the map to look for
various kinds of gems. Different scores for different gems will be added to the total
shown on the top. There may be traps and bombs which will consume the energy of the
hero. Time elapsed and remaining is displayed with a bar on the top of screen.

Some of the meta-components, such as Hero, TimeManager, etc. could be reused.
But other components, for example Cloud, PopUpMenu must be developed and added
to the meta-component repository for future reuse.

Fig. 9. screen shot of the Gig gem game

148 W. Zhang and T. Kunz

4 Discussion of the Case Study

We first use the typical Unified Process (which is also part of UPEPL) to develop the
four games, then we apply the UPEPL to incrementally build the mobile RPG product
line. This process is summarized in the following table. The reduced lines-of-code
(LOC) count is shown.

Table 1. The process of applying UPEPL to build the RPG product line

Original
LOC

Meta-components
LOC

Reduced
LOC

Reduced
Percentage

climb 941
feeding 463
subtotal 1404 1154 250 17.8%
kongfu 720
subtotal 2124 1579 545 25.7%
hunt 1286
Total 3410 2547 863 25.3%

From the above table we can see that for a new product line member that is very
similar to some of the existing members, the development efforts may decrease steadily.
But for a member who has more differences, the reuse ratio may decrease a bit. In the
case of the Kongfu game, as there are two heroes with different roles, the Hero meta-
component was adapted two times in order to generate specific code components for the
two heroes respectively. Therefore the reduced code percentage increases greatly.

In this process, the design and implementation of the mobile games could be uni-
fied, which is very important for software design and maintenance. The configurabil-
ity from XVCL will make the changes to the related components in a consistent way.

6 Related Work

Gomaa presented PLUS method in his work [2]. PLUS is a design method for soft-
ware product lines that describes how to conduct requirements modeling, analysis
modeling, and design modeling for software product lines in UML. He also discussed
the integration of PLUS with Unified Process. In essence, his method uses the same
methodology as UPEPL. In UPEPL, we use a specific product line technology im-
plemented with XVCL.

Massoni proposed RUPim [7] in order to support progressive and separate imple-
mentation of persistence, distribution, and concurrence control. This will reduce the
impact of requirement changes, and simplify testing and debugging. UPEPL is aimed
to improve the reusability and productivity hence, to inject the strong points of prod-
uct line technology into the traditional UP.

Other extensions include RUPSec [3] dedicated to security system, where threats
and security requirements can be captured and modeled by adding new Roles, Activi-
ties and Artifacts. If needed, such extensions could be added to UPEPL too to address
specific application domain issues.

 A Product Line Enhanced Unified Process 149

6 Conclusions and Future Work

We have proposed a product line enhanced Unified Process called UPEPL. The typi-
cal activities in the Unified Process could proceed side by side with product line re-
lated activities. UPEPL is demonstrated with a mobile RPG product line, in which
four games were considered to build the RPG PLA. It shows that UPEPL is an effi-
cient approach where both the advantages of Unified Process and software product
lines can co-exist.

In the future, further applications of UPEPL will be conducted with other domains,
such as the CRM systems. We are also considering developing an integrated develop-
ment workbench, in which meta-component mining, smarting editing and debugging
are all included. The UML modeling part are to use Rational Rose, where a plug-in
should be developed to link them together.

Acknowledgements

This research is sponsored by “Excellent Young Teacher Funds of Tongji Univer-
sity”. Thanks to Liu Wei and other participating develops from Meitong Co. Ltd.

References

1. Clements, P. & Northrop, L. “Software Product Lines: Practices and Patterns”. Addison-
Wesley, 2001.

2. Gomaa, Hassan.Designing Software Product Lines with UML: From Use Cases to Pattern-
Based Software Architectures. Addison Wesley, 2004

3. Jaferian, P. Elahi, G., Reza, M., Shirazi, A., Sadeghian, B. RUPSec: Extending Business
Modeling and Requirements Disciplines of RUP for Developing Secure Systems. Proc. of
EUROMICRO-SEAA’05. Porto, Portugal, Aug. 2005

4. Jarzabek, S., Zhang, H.: XML-Based Method and Tool for Handling Variant Require-
ments in Domain Models. RE 2001: 166-173

5. Jarzabek, S., Wai Chun Ong and Zhang, H. Handling Variant Requirements in Domain
Modeling. SEKE 2001: 61-68

6. Kruchten, Philippe. The Rational Unified Process, An Introduction, Second Edition. Addi-
son Wesley Longman, 2000

7. Massoni, TL. A RUP-Based Software Process Supporting Progressive Implementation, in
book ’UML and the Unified Process’, Idea Group Publishing, 2003

8. Zhang W., et al. Software evolution with XVCL. A chapter for the book “Software Evolu-
tion with UML and XML”，Idea Group Publishing, Dec. 2004

9. Zhang W. Architecturally Reconfigurable Development of Mobile Games. Proc. of the
ICESS2005, Xi’an, China, IEEE CS, December 2005, pp 66-72

10. Zhang, W., Jarzabek, S. Reuse without Compromising Performance. Proc. of SPLC2005,
Rennes, France, September 2005, Springer LNCS3714, pp. 57-69

11. XVCL homepage. http://fxvcl.sourceforge.net

	Introduction
	Unified Process Enhanced with Product Line Technology
	Inception
	Elaboration
	Construction

	Case Study with a Mobile RPG Product Line
	Inception
	Elaboration
	Construction

	Discussion of the Case Study
	Related Work
	Conclusions and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

