
Q. Wang et al. (Eds.): SPW/ProSim 2006, LNCS 3966, pp. 115 – 123, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Software Process Fusion: Uniting Pair Programming and
Solo Programming Processes

Kim Man Lui and Keith C.C. Chan

Department of Computing, The Hong Kong Polytechnic University,
Hunghom, Hong Kong

{cskmlui, cskcchan}@comp.polyu.edu.hk

Abstract. The role of pair programming process in software development is
controversial. This controversy arises in part from their being presented as
alternatives, yet it would be more helpful to see them as complementary software
management tools. This paper describes the application of such a complementary
model, software process fusion (SPF), in a real-world software management
situation in China. Pair and solo programming are adopted at different stages of
the process and according to the background of programmers, as appropriate.
Unlike the usual practice of eXtreme Programming, in which all production code
must written in pairs, all-the-time pair programming, the proposed model
encourages programmers to design code patterns of their own in pairs and then to
use these patterns to build sub-modules solo. The report finds that the longer team
members work alone, the more code patterns they develop for reuse later in pairs.

1 Introduction

The success of a software development relies on not only a development paradigm but
also people management. Programmer management remains more of an art form than
an engineering principle. Pair programming (PP) is a form of teamwork in which two
developers sit together and collaborate on a single computer [1]. One programmer,
called the driver, controls the keyboard and implements the program while the other,
the observer, continuously examines the work, identifying defects and thinking ahead.
From this perspective, we may define a software process as being a pair process if a
team is performed by pairs and as a solo process if it is performed by individual
developers. It should be noted that pair programming includes not only programming
but also design, system analysis, testing, and other typical programmer activities.

The benefits of pair programming processes may include job rotation/succession
against personnel turnover, skills transfer for knowledge management, and, as a result
of pairs being able to explore a larger number of alternatives than a single person [2],
more creative thinking leading to better ways to solve problems. The processes of pair
programming also raise issues of staff appraisal, economics, and productivity [3, 4, 5].

Many empirical studies [3, 4, 6, 7, 8] have shown higher that pair programming
processes are more “productive” than solo programming process, particularly where
they consider novice programmers. One report, however, recounts the development
of highly negative attitudes towards management of professional programmers

116 K.M. Lui and K.C.C. Chan

implementing eXtreme Programming in real situations when software managers
enforced 100% pairing [9]. Similarly, in our experience in China in which we had
inexperienced programmers write production code pairs we found little evidence that
programmers were either motivated by the practice or that they were more productive.

In this paper we are interested in the use of a mixed pair programming-solo
programming method and its potential effect on the effectiveness and efficiency of the
management of developers and, in particular, inexperienced programmers in China.
We introduce the concept of Software Process Fusion (SPF) and propose its
application with a case study of pair programming process and solo programming
process that accounts not only for productivity but also considers staff motivation. It
should be noted that although many programmers may from time to time work in
pairs either willingly or out of necessity, at the moment we cannot say that this
practice is well-defined, especially in terms of its role in the context of general
professional practice.

This paper is organized as follows. Section 2 reviews the empirical studies on
productivity in pair programming. Section 3 introduces the concept of SPF and a
management case study in which inexperienced programmers are set to both pair
programming and solo programming activities. Section 4 reports an industrial case of
the use of SPF. The final section offers our Conclusion.

2 Pair Programming Process

All-the-time pair programming requires that all production code be written by pairs of
programmers. It is the core of extreme programming [1]. In the past, many agile
software practices individually proposed or re-introduced have been similar but have
been called by different names. However, none of the practices has been alike to pair
programming and this has made extreme Programming and pair programming so
undividable.

Many software processes are usually regarded as team processes. The basic unit
that forms the basis of a software team is an individual programmer, shown in (a) (b).

Fig 1.a. According to the team composition, we can categorize them as solo
programming process. Alternatively, when software processes are adopted by a team
formed by pairs as illustrated in (a) (b).

Fig 1.b, they are pair programming process. Collaborative Software Process by
Williams is such software process [4].

(a) (b)

Fig. 1. Teams for solo programming process and pair programming process

 SPF: Uniting Pair Programming and Solo Programming Processes 117

This section reviews the literature on pair programming productivity. Two
principles are reached in [3, 6, 7, 8]: The first principle is that a pair is much more
productive and can work out a better solution than two individuals when the pair is
new to design, algorithm, and coding of a program. The second principle is that pair
programming can lose its productivity when a pair has prior experience of a task.
Section 2.2 discusses an initial study in which pair programming is implemented as a
way of assisting newly-hired programmers [10].

2.1 Control Experiments on Pair Programming

Two studies that favor pair programming have found that pair programming can speed
up software development and at the same time produce better quality in terms of
readability and maintainability than does solo programming. In 1998, Nosek [3]
reported that full-time system programmers divided into five pairs and five singles were
asked to write a UNIX script that performs a database consistency check (DBCC) in a
Sybase database. On average, pairs took 42% longer than individuals on the same task;
however, pair programming, in comparison with solo programming, reduced the elapsed

time by 29% (i.e.
2

%421
%100

+−). In 2000, Williams [4] repeated the experiment in a

similar setting using forty-one university students writing a challenging web-based
program. The experiment showed that a pair took 15% longer than an individual on the

same task; the elapsed time was reduced by 42,5% (i.e.
2

%151
%100

+−). In terms of

productivity, the extra time was insignificant because pair programming achieves a
higher quality.

In 2001, Nawrocki and Wojciechowski [11] reported experimental results unfavorable
to pair programming, showing that pair programming consumed twice the time resources
of solo programming. Subjects were asked to write four programs for (1) finding the
mean and standard deviation of a sample of numerical data, (2) finding the linear
regression parameters, (3) counting the number of lines in a program and (4) counting the
total program LOC. The pairs took 100% longer than individuals. As the tasks of
programming statistical calculations and counting the number of lines in a program were
not new to the subjects, these experiments may indicate that pair programming is not as
productive as solo programming when subjects are working on familiar tasks.

In 2004 Lui and Chan reported on a series of experiments called Repeat
Programming in which pair and solo programmer subjects wrote the same program
eight times [6，7] or four times [8]. The purpose of this was to simulate the process
in which a novice programmer develops expert familiarity with a task and to measure
the change of productivity of pair programming versus solo programming. At the first
round, pairs spent 7.5% longer than individuals on the same task, 23% longer on the
second round, 40% on the third, deteriorating to 134% on the eighth. These results
indicate just how much the relative productivity of pair programming depends on
previous programming experience on a particular task. The less experience a pair has,
the better it performs relative to the two similarly inexperienced individuals. Lui and
Chan [7, 8] conclude that a pair is much more productive and can work out a better
solution than two individuals when the pair is new to design, algorithm, and coding of
a program. This advantage is lost, however, as subjects gain experience of the task.

118 K.M. Lui and K.C.C. Chan

2.2 Pair Programming for Newly-Hired Developers

Regarded as a process of learning and practicing, pair programming has a
considerable pedigree in the area of learning theory. Active learning has been adopted
in colleges [12]. It involves three processes: think-pair-share. Research into the
effectiveness of pair learning relative to group learning [13] has shown that the group
learning could be more effective than pair learning. Yet pair learning is still widely
used in teaching. Research on learning in pair includes English Vocabulary [14],
Physics [15], Mathematics [16], and recently, Computer Programming [17, 18]. When
student programmers are compared to novice programmers, the success of pair
learning formulates our research problem that pair programming can mentor less
experienced programmers in industrial software development.

In 2003, a research student, Poff, conducted an empirical study was conducted in
which two novice programmers in the company, TCMS, were selected to produce
portions of an application for the verification of payload hardware prior to integration
into the space shuttle at TCMS in the Kennedy Space Center [10]. The experiment
lasted one month and the data collected was compared with historical data at TCMS.
Two programmers were told that the experiment was of secondary priority; most
important was successful and timely development of the application. The two
programmers were then left to decide how often they would actually work together but
were asked to work as a pair at least 33% of the time, but if they wished could work as a
pair 100% of the time. The result was that the pair worked as a pair 50% of the time.

The author observed that a pair of novice-novice programmers could develop
technical and environmental knowledge more quickly. Although the author did not
mention a potential application of a mix of pair programming and solo programming,
the case illustrates that pair programming and solo programming have been optimized
in a reciprocal manner by a pair of newly-hired programmers.

Although Poff did not report the workspace layout, it should safely assume that
those two programmers have their own machine so that they can do solo
programming. If the two programmers are actually sitting closely and each other
machine, they are doing is side-by-side programming proposed by Cockburn [19] in
which the developers choose to work in pairs or solo on an ad hoc basis. In fact, two
programmers may not have to sit side-by-side as suggested. As far as they are closed
enough and can easily see both screens of each other which can be called “pseudo
side-by-side programming”, it probably achieve the same effect. In some cases, when
an effective working rapport has been built between two programmers, they may sit a
little far away or opposite to each other as far as they can easy talk and hear each
other in a collocated place. It is the people collaboration that makes them productive
and a workspace layout is just as a tool that facilities the collaboration.

In the Poff’s experiment, whether the pair was practicing side-by-side, pseudo
side-by-side programming or talk-and-hear programming, they cannot be considered
as a disciplined software practice because there are no clear guidelines when they
should pair up and split off. Section 3 will introduce Software Process Fusion (SPF).
As an example of SPF, we will describe a combination of pair programming and solo
programming.

 SPF: Uniting Pair Programming and Solo Programming Processes 119

3 Software Process Fusion (SPF)

The idea of software process fusion was brought from data fusion which is the process
of combining two (or more) independent data sets in order to produce information to the
user. As two data sets are independent, the challenging is to combine them by
formulating common variables in mathematics [20]. In data fusion, one is a recipient set
and the other is a donor set. The use of defined common variables allows the recipient
set to be enriched with extra information from the donor set. For example in retail, a
recipient set can be sales data and a donor set is a marketing survey.

In a similar fashion, A and B are two independent processes that can produce the
same work products. One of the processes, say A, is a recipient process and the other,
say B, is a donor process. It is possible to use the mechanisms of A and B to define a
set of transfer conditions so that, over time, the recipient process can temporarily
convert into the donor process for productivity and resource optimization.

In Software Process Fusion, we should start with and end in a recipient process.
Although it may appear that two processes alternately change and become an
alternating process (see Fig 2), the recipient process and the donor process cannot be
mixed up because the transfer conditions are bound to this relationship. A fused
process is a recipient process being merged with a donor process. We can draw an
analogy between common variables in data fusion that bring two data sets together
and transfer conditions in Software Process Fusion (SPF).

In Section 2.2, the real case reported by Poff would be Software Process Fusion as
long as transfer conditions could be clearly established. Without those conditions, the
alternating process in pair-and-solo programming appears uncontrolled and chaotic.
The core of data fusion is to mathematically define common variables between data
sets; the challenge in Software Process Fusion is to clearly establish a set of transfer
conditions.

Fig. 2. Software Process Fusion

120 K.M. Lui and K.C.C. Chan

Fig. 2 shows an example of Software Process Fusion. Both a recipient process and a
donor process can take and deliver the same input and output. Note that the recipient
process is pair programming. In Software Process Fusion, we always start with and end
at a recipient process. When the transfer conditions are satisfied during the pair
programming process, it stops and initiates a donor process, i.e. the solo programming
process. The donor process will not indefinitely take over the control and it will return
to the recipient process if the transfer conditions for donors are met. Obviously, defining
suitable transfer conditions is the key to the success of Software Process Fusion.

3.1 Transfer Conditions

In Section 2.1, previous studies have shown that it is productive for a pair of
programmers to design algorithms, seek design patterns, and code. The productivity of
pair programming will fall when the pair works on other modules in which the logic has
been similar to the previous modules previously done as a pair [6, 7, 8]. In this case, to
optimize resources, the pair should split off and the two individuals should complete
those modules solo. Once they have finished, they should pair up again and review the
overall task. This process is iterative until they complete their assignment.

Therefore, we define the transfer condition for a recipient process in Fig. 2 to
convert into a donor process (i.e. solo programming process) is that a pair of
developers has previously completed a similar task and they are individually able to
solve the same problem again in the same way. Straightforwardly, the transfer
condition for a donor process is for the individuals to pair up again after completing
their solo programming tasks.

Fig. 3. Application of SPF for Managing Inexperienced Programmers

 SPF: Uniting Pair Programming and Solo Programming Processes 121

The transfer conditions can be regarded as a number of intermediate targets. We
would like to reach such intermediate targets as many times as possible and hence the
transfer conditions drive that fused process to (1) look for design patterns and
implement them once in pairs, (2) reuse the same patterns in solo programming and
(3) review overall progress and perform integration testing in pairs.

3.2 A Fused Process

A fused process not only is the sum of a recipient process and a donor process, but
also includes necessary changes that come along with the transfer condition. This
section will present a fused process: combining pair programming with solo
programming processes. Fig. 3 illustrates the internal workflow of the fused process.
It starts with a recipient process (i.e. a pair programming process) in which pairs work
on design and algorithm and identify patterns of logic. Afterward, they code and test
sub-programs in pair programming. The pairs then split up and code and test as solo
programmers. Once those tasks are complete, they once again pair up, review their
work, and perform integration tests.

4 Industrial Case Study

We introduced the work to Huida Technology Ltd in Huizhou, China in 2005. The
company had seven technical staff, providing ERP/CRM solutions to their local
customers. Two had four years experience and the other five all less than one year.
The company would adopt what we proposed in this paper to work on their CRM
project for one month. Of the five junior programmers, four paired up and the other
worked as usual. Priority was given to the success of the inventory project, so that the
company was free to terminate the proposed fusion process at any time. The results,
shown in Table 1, were recorded and provided by two supervisory programmers.

The project was not an experimental test. It is a matter of happenstance that there
were five staff available for the experiment, so the use of a single programmer was
not intended to serve as a control group. Table 1 nonetheless provides for reference a
comparison of the pair and solo teams. The programmers appeared to develop more
(sub-) modules in terms of stored procedures and GUI. We are particularly interested

Table 1. Experimental Test in 2005

Item Measurement Description Huida Programmers
 Pair Pair Single
1 Number of GUI Developed 7 6 2
2 Number of Stored Procedures Written 15 9 5
3.a Programming Time (%) 49% 41% 40%
3.b Testing Time (%) 26% 18% 20%
3.c Debugging Time (%) 25% 31% 40%
4 Fusion Ratio 1.7 1.9 N/A

4.a Pair Time (%) 37% 34% N/A
4.b Solo Time (%) 63% 66% 100%

122 K.M. Lui and K.C.C. Chan

in a fusion ratio, defined by the total time required for donor processes over the total
time required for a recipient process. The fusion ratio was higher than Poff’s
measurement, which was around 1.0 [10].

The supervisors worked with those five programmers daily and knew them well.
Their comments on the process are of interest.

1. They found that they were able to spend less time supervising the pairs as
they tended to support and monitor themselves.

2. Coding standards were much better.
3. The fused process encouraged junior programmers to actively seek design

patterns for reuse. This has rarely been seen before as the programmers just
wanted to complete the program on time, rather than considering software
reuse. Hitherto, it was common to see duplications of logic in the junior
programmer’s code as they had the habit of simply cutting and pasting code.

It has been reported that pair programming comes with pair pressure that a pair
does not want to let its partners down and that this leads to pairs budgeting their time
more wisely [4]. The supervisors failed to observe any signs of pair pressure;
however, it was clear that programmers were glad to move on to solo programming as
it demonstrated that they managed to discover reusable patterns of their own. The
team had been motivated and influenced by its achievements of pattern discovery. In
addition, the time that they split off demonstrated their supervisors that they were
making progress.

5 Conclusions

The paper contributes to our understanding of software process fusion. Software
methods/processes need not be defined as being in opposition or competition. Rather,
they can be seen as complementary. We also presented a case study of the application
of SPF in the management of inexperienced programmers in a real industrial project
in China. The initial results and comments show that SPF is a promising software
management approach.

Researchers on pair programming are divided. Some believe it is more efficient
and effective than solo programming whereas others argue it doubles the resources
that are consumed in software development. Perhaps, the truth lies between these two
views. Software Process Fusion encourages not programming in pairs but working out
coding patterns in pairs. Developers can pair up and split off. The proposed fused
process has successfully been implemented in a small company in China.

References

1. Beck, K.: Extreme Programming Explained: Embraced Change (2nd Edition), Addison-
Wesley, Boston, MA (2005)

2. Flor, N. and Hutchins, E.: Analyzing Distributed Cognition in Software Teams: A Case
Study of Team Programming During Perfective Software Maintenance, In J. Koenemann-
Belliveau, T. Moher and S. Robertson (Eds.), Empirical Studies of Programmers: Fourth
Workshop, Norwood, NJ: Ablex (1991)

 SPF: Uniting Pair Programming and Solo Programming Processes 123

3. Nosek, J.T.: The Case for Collaborative Programming, Communications of the ACM,
March (1998) 105-108

4. Williams, L.: The Collaborative Software Process, Ph.D. Dissertation, University of Utah,
(2000)

5. Miller, M.M. and Padberg, F.: Extreme Programming from an Engineering Economics
Viewpoint, In Proceedings of the Fourth International Workshop on Economics-Driven
Software Engineering Research (2002)

6. Lui, K.M. and Chan, K.C.C.: When Does a Pair Outperform Two Individuals. In
Proceedings of Extreme Programming and Agile Processes in Software Engineering, Italy
(2003) 215-224

7. Lui, K.M. and Chan, K.C.C.: A Cognitive Model for Solo Programming and Pair
Programming. In Proceedings of the Third IEEE International Conference on Cognitive
Informatics, Canada (2004) 94-102

8. Lui, K.M. and Chan, K.C.C.: Productivity of Pair Programming: Novice-Novice and Expert-
Expert, Tentatively Accepted by International Journal of Human Computer Studies (2006)

9. Stephens, M. and Rosenberg, D.: Extreme Programming Refactored: The Case Against
XP, Apress (2003)

10. 10 Poff, M. A.: Pair Programming to Facilitate the Training of Newly-Hired Programmers,
M.Sc. Thesis, Florida Institute of Technology (2003), Available online at
http://www.cs.fit.edu/~tr/tr2003.html

11. Nawrocki, J. and Wojciechowski, A.: Experimental Evaluation of Pair Programming”,
Proceedings of the 12th European Software Control and Metrics Conference, England
(2001) 269-276

12. Bonwell, C.C. and Eison, J. A.: Active Learning: Creating Excitement in the Classroom.
ASHE-ERIC Higher Education Report. Washington, D.C. (1991)

13. Roth,V., Goldstein,E. and Marcus,G. : Peer Lead Team Learning A Handbook for Team
Leaders. Upper Saddle River, NJ: Prentice- Hall, Inc. (2001)

14. Jones, M.S., Levin, M. E., Levin, J. R. and Beitzel, B. D.: Can Vocabulary-Learning
Strategies and Pair-Learning Formats Be Profitably Combined? Journal of Educational
Psychology, Vol. 92, No. 2 (2000) 256-262

15. Warnakulasooriya, R. and Pritchard, D.: Learning and Problem-Solving Transfer between
Physics Problems using Web-based Homework Tutor. In Proceedings of World
Conference on Educational Multimedia, Hypermedia and Telecommunications,
Chesapeake, VA (2005) 2976-2983

16. Keeler, C.M. and Steinhorst, R.K.: Using Small Groups to Promote Active Learning in the
Introductory Statistics Course, Journal of Statistical Education, [Online journal] (1995)
available at
http://www.amstat.org/publications/jse/v3n2/keeler.html

17. McDowell, C., Hanks, B. and Werner, L.: Experimenting with Pair Programming in the
Classroom, In Proceedings of the 8th Annual Conference on Innovation and Technology in
Computer Science Education, Thessaloniki, Greece (2003)

18. McDowell, C., Werner, L., Bullock, H. and Fernald, J.: The Impact of Pair Programming
on Student Performance, Perception, and Persistence, In Proceedings of the 25th
International Conference on Software Engineering (2003) 602 – 607

19. Cockburn, A.: Crystal Clear: a human-powered methodology for small teams, Boston:
Addison-Wesley (2005)

20. van der Putten, P., Kok, J.N. and Gupta, A.: Why the Information Explosion Can Be Bad
for Data Mining, and How Data Fusion Provides a Way Out. In Proceedings of
Proceedings of the Second SIAM International Conference on Data Mining (2002)

	Introduction
	Pair Programming Process
	Control Experiments on Pair Programming
	Pair Programming for Newly-Hired Developers

	Software Process Fusion (SPF)
	Transfer Conditions
	A Fused Process

	Industrial Case Study
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

