
On Mobility of Software Processes�

Mingshu Li1,2, Qiusong Yang1,3, Jian Zhai1,3, and Guowei Yang1,3

1 Laboratory for Internet Software Technologies,
Institute of Software, Chinese Academy of Sciences, Beijing 100080, China
{mingshu, qiusong yang, zhaijian, yangguowei}@itechs.iscas.ac.cn

2 State Key Laboratory of Computer Science,
Institute of Software, Chinese Academy of Sciences, Beijing 100080, China

3 Graduate University of Chinese Academy of Sciences, Beijing 100039, China

Abstract. In this paper, the mobility of software processes is proposed
as a novel concept. It is defined as the structural change in a software
process resulting from interactions among linked process elements. The
concept addresses the essential change in a software process which brings
a high variability and unpredictability to process performance. Three
categories of the mobility that lead to the structural change are identified
and expounded upon. A reference model for describing the concept is put
forward based on the polyadic π-calculus. With the mobility of software
processes, it is possible to design a new PCSEE and associated PML with
increased flexibilities.

1 Introduction

The research on software processes is to enable people to produce high qual-
ity software systems and evolve them in an economic and timesaving fash-
ion. The main stream of effort has been on concepts definition, languages and
complete process-centered software engineering environments (PCSEEs). The
process “culture” is widely recognized and adopted. However, existing PCSEEs
fail today in satisfying the market’s evolution and the demand that may be sum-
marized by [1]: the support of long lived and widely distributed, heterogeneous,
evolving and flexible processes. The notion of flexible process support costs an
extra price. The more flexible and adaptable PCSEEs are (in other words, the
wider the variety of processes which can be supported), the weaker is the support
for a concrete process [2].

A software process is still human intensive and almost impossible to be im-
proved by a product view like in classic manufacturing. It is a set of activities
or operations that needs to always change for a variety of reasons. In order to
improve process support technology, we have to answer the following questions:

– What is the essential change in software processes?
– Based on the essential change, is it possible to define a novel concept?

� Supported by the National Natural Science Foundation of China under grant No.
60273026, 60473060, 60573082 and the Hi-Tech Research and Development Program
(863 Program) of China under grant No. 2004AA112080, 2005AA113140.

Q. Wang et al. (Eds.): SPW/ProSim 2006, LNCS 3966, pp. 105–114, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

106 M. Li et al.

– Is there a reference model that can be devised to describe the concept?
– Can this model be used to design a PCSEE/PML (process modelling lan-

guage) to support the essential change in software processes?

2 Mobility of Software Processes

It is widely accepted that the quality of software is related to not only the prod-
uct, but the organization and the production process. According to Webster’s
dictionary, a process is “a series of operations performed in the making or treat-
ment of a product” or “a series of actions, changes, or functions bringing about
a result”. Various definitions of the software process have been put forward from
different angles:

– A software process can be defined as a set of activities, methods, practices,
and transformations that people use to develop and maintain software and
the associated products (e.g., project plans, design documents, code, test
cases, and user manuals) [3].

– A set of partially ordered process steps, with sets of related artifacts, hu-
mans and computerized resources, organizational structures and constraints,
intended to produce and maintain the requested software deliverables [4].

– A sequence of tasks, actions, or activities, including the transition criteria
for progressing from one to the next, that brings about a result [5].

In this paper, a software process is defined as a set of process elements, links
and interactions. The execution of a software process constitutes a trace of in-
teractions among linked elements. Process elements are the basic entities of a
software process, including activities, humans, artifacts, computerized resources,
etc. A link is the abstraction of a certain type of relationship or a communication
channel between two process elements. Each element can interrelate with other
ones. The performance of a software process is a trace of interactions among
interrelated elements. The ordering of those interactions is regulated by some
constraints, methods, or practices. In addition, an interaction is carried out along
a link for the purpose of sending a piece of data or some information for con-
trol between process elements. The control flow and the information flow of a
software process are described through specifying its connecting structures and
interactions types.

2.1 Conception of Software Process Mobility

The structure of a software process states the way in which the process elements
are connected with each other through links, and the set of possible interactions
that can be carried out among linked process elements. In fact, it may change
during process performance as a result of interactions among process elements.
It is possible that new process elements are added to a software process, existing
ones deleted, and one process element replaced by another. For example, a new
human agent (a process element) may be added for the enrollment of a new

On Mobility of Software Processes 107

staff. On the other hand, a new link can be setup between two process elements
who are unknown to each other in advance and two linked process elements
may be disconnected. For example, a test engineer’s affiliation with the test
manager (a link) is shifted to a program manager when he or she is reassigned
to the team for implementation. Furthermore, the set of possible interactions of
a software process are altered correspondingly when the process elements or the
links change. It is the essential change in a software process that its structure
is altered during performance. It brings a high variability and unpredictability
to software processes and may cause inconsistencies between process enactment
and process performance.

Concerning the essential change in software processes, a novel conception, the
mobility of software processes is proposed. According to Webster’s dictionary,
the word mobility means the “the quality of moving freely”. The mobility’s syn-
onyms within context are: changeableness, sensibility (and commonalty, motion).
Thus, the mobility of software processes is defined as the structural change in
a software process, resulting from interactions among process elements through
links. As the logical relations among process elements remain immobile, the
physical movement of a process element is not treated as the mobility of soft-
ware processes. In addition, the situation that the internal state of a process
element is updated or one process element seizes control from another is also
not taken into account.

According to the definition of the mobility of software processes, it is the
interactions that result in the structural change in a software process. On the
other hand, the structure of a software process determines what interactions can
be carried out along links connecting process elements. In the mobility of software
processes, a software process is surveyed from the negativity of self-denial point of
view and interactions among linked process elements constitute the momentum
of process performance. Hence, based on the interactions among linked process
elements, it is possible to describe the mobility of software processes in a modest
but profound way.

2.2 Category of Software Process Mobility

Two basic categories of the mobility and a combination of them can be identified
according to the mobile unit during an interaction:

– Element Mobility: A process element is mobile without links.
– Link Mobility: A link is mobile without process elements.
– Combined Mobility: Both process elements and the links among them are

mobile.

Element Mobility. A process element is the mobile unit during an interaction.
The received element will be connected with other ones existing in the new con-
text. In addition, the creation of a new process element can also be expressed in
the element mobility, in which a new element is added to the environment along
the link between the element’s producer and the environment. The behavior and
the internal structure of the receiver can be dynamically updated.

108 M. Li et al.

Vacant Slot

Requirement A

Architecture A

Vacant Slot

Requirement B

Architecture B

Architect Team Architect Team Element

Link

Note

Receive

Send

Fig. 1. An Example of the Element Mobility

Project
Manager

Programmer

Module
Specification

Team
Manager

L4

L6L5

L1

Element

Link

Note

L2
L3

Project
Manager

Programmer

Module
Specification

Team
Manager

L4

L6
L5

L1 L2
L3

(a) (b)

Receive

Send

Fig. 2. An Example of the Link Mobility

In Fig. 1, there are more than one project that are simultaneously developed
within an organization. But the architecture of each project is developed by the
same Architect Team, responsible for devising an elegant architecture according
to the given Requirement. In general, there is only one project that is scheduled
for the Architect Team, which becomes mobile among those projects. Each
project receives the Architect Team from a link and collaborates with it to
produce an Architecture.

Link Mobility. It is a link to be mobile during an interaction. One process
element sends a link, which is already connected to another element, to the third
one. Thus, a new relationship can be set up between the latter two elements,
who are unknown to each other in advance. The link mobility sticks to the
fact that some process elements are dominated by some other ones or a meta-
process which has the necessary knowledge to maintain a whole software process.
It reflects the intrinsic dynamics in the control flow and information flow of a
software process.

Fig. 2 denotes a demonstration on how the incremental definition of a software
process is described in the link mobility. As shown in Fig. 2(a), a project manager
assigns a programmer to a specific team and the team manager will have the pro-
grammer implementing a module according to the module’s specification. As it
is in a highly dynamic environment, neither the team manager nor the program-
mer is aware of the existence of the other before the performance of the software
process. In Fig. 2(b), the project manager sends the link L5 to the programmer.
The programmer establishes a new connection with the team manager through
the link. The team manager sends the link L2 to the programmer and the pro-
grammer retrieves the module specification through the received link. Lastly, the
programmer outputs the produced source code of the module through the link L6.

Combined Mobility. A fragment of a software process, including elements
and links, is mobile. The combined mobility shows that a part of development

On Mobility of Software Processes 109

Programmer

Test
Engineer

Boundry

L1

L2

L3

Programmer

Test
Engineer

Boundry

Coding
&Test

L1

L3

Coding
&Test

L2

(a) (b)

Element

Link

Note

Receive

Send

Fig. 3. An Example of the Combined Mobility

is delegated to a partner or a development team. The receiver of the fragment
is responsible for establishing appropriate connecting structure for the received
fragment. A fragment

In Fig. 3, the Coding&Test fragment is migrated along a link across the bound-
ary. Connections can be constructed among the migrated fragment with those
process elements on the other side of the boundary. A potential usage for the
combined mobility is to present a process along with a software outsourcing con-
tract. Thus, not only the milestones but also the development process adopted
by the contractor can be fully specified. This provides a solution to problems
caused by ineffective communication between contractors.

3 Formal Semantics

This section presents formal definitions of the mobility of software processes and
three categories of the mobility. In addition, the polyadic π-calculus [6][7] proves
to be a perfect candidate for constructing a new PCSEE supporting the novel
concept.

Let a software process is represented as SP = S〈E , L, I〉, where, E , L, and
I respectively represent the set of process elements, links and interactions of
the software process, and S denotes the process’s structure. In addition, i〈l〉
represents an interaction along the link l between two linked process elements
and m denotes the mobile unit during the interaction. Then, a formal definition
of the mobility of software processes can be given as:

Definition 1 (Mobility of Software Processes). The mobility of software
processes is the structural change in a software process resulting from an inter-
action:

S〈E , L, I〉 i〈l〉
m

S′〈E ′, L′, I ′〉

where, S �= S′ (S and S′ are the structure of the software process before and
after the interaction respectively).

The mobility of software processes is classified into three categories, i.e. Element
Mobility, Link Mobility, Combined Mobility, according to the mobile unit m
during an interaction. Let RU(l) and SU(l) denote a process element which
respectively receives and sends a mobile unit from the link l. We then have three
similar definitions but significant differences of mobile unit:

110 M. Li et al.

Definition 2 (Element Mobility). Let n ≥ 1 and e ∈ E denotes a mobile
process element. The element mobility constitutes a series of interactions:

i〈l1〉
e

,
i〈l2〉

e
, · · · i〈ln〉

e

where, ∀i(i ≥ 1 ∧ i ≤ n − 1), RU(li) = SU(li+1). Then, RU(ln) instantiates the
mobile process element e and sets up an appropriate connecting structure for it.

Definition 3 (Link Mobility). Let n ≥ 1 and l ∈ L denotes a mobile link.
The link mobility constitutes a series of interactions:

i〈l1〉
l

,
i〈l2〉

l
, · · · i〈ln〉

l

where, ∀i(i ≥ 1 ∧ i ≤ n − 1), RU(li) = SU(li+1). Then, a new link is set up
between RU(ln) and the process element to which the link l is initially connected.

Definition 4 (Combined Mobility). Let n ≥ 1 and l&e denotes a set of linked
process elements. The combined mobility constitutes a series of interactions:

i〈l1〉
l&e

,
i〈l2〉
l&e

, · · · i〈ln〉
l&e

where, ∀i(i ≥ 1 ∧ i ≤ n − 1), RU(li) = SU(li+1). Then, RU(ln) sets up an
appropriate connecting structure for l&e and existing links in l&e are still there.

In addition, the mobility of software processes and three categories of the mobil-
ity can be modelled in the polyadic π-calculus. With the formalism, it is fairly
straightforward for working out a new PCSEE and associated PML supporting
the concept. Based on the polyadic π-calculus, an process element is represented
as a process in the untyped polyadic π-calculus (called π-process in this paper).
A link between two process elements is modelled as a channel connecting the two
corresponding π-processes. Interactions among process elements will be trans-
formed into events of concurrently combined π-processes. With the operator of
abstraction, a process element can be represented as:

Element
def
= (˜ch). (νg̃, s̃) (Up〈g̃, s̃,˜0〉 | Mp
〈g̃, s̃, ˜ch〉�) (1)

Up
def
= (g̃, s̃, ṽ). (V
〈g1, s1, v1〉�| · · · |V
〈gm, sm, vm〉�) (2)

V
�
= (g, s, u). (g(r). r̄u. V
〈g, s, u〉�) + s(v). V
〈g, s, v〉� (3)

Mp
�
= (g̃, s̃, ˜ch). (Action〈g̃, s̃, ˜ch〉 . Mp
〈g̃, s̃, ˜ch〉�) (4)

In (1), ˜ch represents links connected to a process element. We assume that an
element has a state and presents a certain type of behavior pattern (action).The
two processes, Up and Mp, represent the state and the action respectively. They
share the channels g̃ and s̃. Thus in the body of the action, state variables can
be respectively get or set through g̃ and s̃. The access to a variable is modelled

On Mobility of Software Processes 111

by the process (3). In (2), processes for each variable are concurrently combined
together to represent the private store of an element. The action of an element
has the form (g̃, s̃, ˜ch).P .

A set of linked elements is also modelled as a π-process through the application
notation. For example, a new linked element can be constructed from previously
defined ones:

ElementA
def
= (〈in, out〉)ElementABody

ElementB
def
= (〈in, out〉)ElementBBody

ElementC
def
= (〈in, out〉)(νch)(ElementA〈in, ch〉|ElementB〈ch, out〉)

As for the link mobility, it can be modelled by the name-passing of π-calculus.
For example, the Programmer in Fig. 2 can be defined as:

Programmer = (〈l7, l9〉)(l7(l8). l8(l5). l5(content). coding. l9code) (5)

where, the state of a Programmer is not taken into account.
For the reason that an process element and a set of linked elements are both

modelled as a π-process, the element mobility and the combined mobility are
represented by the process-passing of high order π-calculus. For example, the
equation

Fig3(b) = (〈l1, l2, l3〉)(l0(codingest).codingtest〈l1, l2, l3〉) (6)

depicts Fig. 3(b) that the migrated Coding&Test is received and invoked. A high
order π-calculus can be faithfully compiled down to the polyadic π-calculus (a
first-order calculi) according to [7].

4 Implementation in SoftPM

In this section, an example is presented to show how a process for testing is
expressed in SoftPM based on the mobility of software processes. SoftPM [8]
is a toolkit for software process management and has been widely adopted in
Chinese software organizations. The development teams of a customer are dis-
tributed across the whole city and there is one department, named Quality As-
surance Department, who is responsible for testing all the projects within the
organization. As an independent department assuming sole responsibility for its
profits and losses, it is necessary to manage all testing activities by creating a
new project in SoftPM.

However, it is difficult to predict the number of projects that are being tested
in advance and the schedule of a test is heavily depends on the progress of the
corresponding project. Thus, those process elements, including the project man-
ager, developers, test cases, and source code, have to be dynamically allocated
or deleted. In addition, to ensure that a bug is timely fixed, the tester conducts
tests on the source code against given test cases and sends any identified bug to

112 M. Li et al.

Tester

Project Manager

DeveloperBDeveloperA

Test Cases Source Code

Tester

Project Manager

DeveloperBDeveloperA

Test Cases Source Code

Tester

Project Manager

DeveloperBDeveloperA

Test Cases Source Code

Tester

Project Manager

DeveloperBDeveloperA

Test Cases Source Code

L1 L1 L1 L1
L2 L2 L2L3 L3 L3

L4 L4

L5 L6 L5 L5 L5L6 L6 L6

L7

(a) (b) (d)(c)

Fig. 4. A Process for Testing in the Link Mobility

the manager of the project being tested. Then, the bug is delegated to a devel-
oper according to its type. The developer fixes the bug and the result is fed back
to the tester. The project manager and developers that a tester should commu-
nicate with are not prescribed and the relationships among them are difficult to
be defined in a prescriptive manner.

The mobility of software processes surveys those problems from the angle
that the structure of a software process may change as a result of interactions
among process elements. In Fig. 4, the process for test is expressed in the link
mobility. The process commences with Fig. 4(a), in which the Tester has not
been assigned to a testing activity and is ready for accepting new tasks from
the link L1. Then, the links to the Test Cases and the Source Code of the
project to be tested is sent to the Tester along L1. New links, L2 and L3, are
set up as shown in Fig. 4(b). After the two previous interactions, a link to the
project manager is also sent to the Tester along the link L1. As a result, the
link L4 between the Tester and the Project Manager is created in Fig. 4(c).
Through the Project Manager, the link of the Tester is sent to the DeveloperB
and the link L7 is built up. In Fig. 4(d), a structure for communication among
those process elements is appropriately configured. As you can see, the high
variability and unpredictability of process performance is effectively addressed
in the mobility of software processes.

5 Conclusion

In this paper, a software process is abstracted as a set of process elements, links
and interactions. The execution of a software process constitutes a series of inter-
actions among linked process elements. The intrinsically complex interrelation-
ships among those entities involved during software development are described
by the structure of a software process. The structural change imposed by inter-
actions among linked process elements is considered as the essential change in
a software process and brings a high variability and unpredictability to process
performance. The mobility of software processes is presented as a novel concept
to address the structural change. It reflects the fact that a software process is
not static and it is changed through the negativity of self-denial driven by in-
teractions. According the mobile unit during an interaction, three categories of
the mobility are identified.

On Mobility of Software Processes 113

The mobility of software processes has a fundamental difference with the
evolution of software processes [9][10]. The latter mainly focuses on solutions
used for guiding how to apply an outer change request to a process or a model.
The concept of evolution generally assumes that the structure of a software
process is static, while the mobility states what a software process should be
and exploits the momentum for structural changes. It is also different from the
mobile software process described in [2] or [11][12], in which process parts, tools,
participants tend to change their site allocation during the process or a process
fragment is distributed in different workspaces. The dynamic ordering that the
ordering of activities can be dynamically built and modified is an identified
requirement for assessing a list of PCSEEs in [1]. However, the phrase is intended
for expressing the non-determinism in the building constructs of PMLs.

As a novel concept, some aspects of the mobility of software processes can be
exploited further:

– The mobility of software processes focuses on the structural change of a
software process. The evolution of software processes can be taken as any
change which takes place in software processes. In this way, the mobility of
software processes can be thought of as a special type of evolution. However,
as a novel concept, its correspondence with the evolution should be further
clarified.

– It is necessary to exploit strategies and policies for managing the mobility
of software processes. Inconsistencies between the process performance and
the process enactment can be minimized with appropriate control criteria
and policies for the mobility of software processes. A modelling approach
based on the polyadic π-calculus can be further studied to support the novel
concept. In particular, new techniques for analyzing software processes can
be put forward based on the formalism. In addition, some other formalisms
can also be examined to support the mobility of software processes.

– The mobility of software processes is classified into three categories according
to the mobile unit during an interaction. It is possible that a new standard
is adopted to produce different categories that define the extension of the
concept.

– Moreover, a new PCSEE and associated PML can be developed based on
the novel concept.

References

1. Arbaoui, S., Derniame, J.C., Oquendo, F., Verjus, H.: A comparative review of
Process-Centered Software Engineering Environments. Annal of Software Engi-
neering 14(1-4) (2002) 311–340

2. Gruhn, V.: Process-centered software engineering environments, a brief history
and future challenges. Annals of Software Engineering 14(1-4) (2002) 363–382

3. Paulk, M.C., Curtis, B., Chrissis, M.B., Weber, C.V.: Capability maturity model
for software, version 1.1. Technical Report CMU/SEI-93-TR-024, SEI, CMU (1993)

4. Lonchamp, J.: A structured conceptual and terminological framework for software
process engineering. In: ICSP. (1993) 41–53

114 M. Li et al.

5. IEEE Std. 1220-1998: IEEE standard for application and management of the
systems engineering process (1998)

6. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes – part I and II.
Journal of Information and Computation 100 (1992) 1–77

7. Sangiorgi, D., Walker, D.: The π-calculus: a Theory of Mobile Processes. Cam-
bridge University Press (2001)

8. Wang, Q., Li, M.: Software process management: Practices in China. In Li, M.,
Boehm, B.W., Osterweil, L.J., eds.: ISPW. Volume 3840 of LNCS., Springer (2005)
317–331

9. Conradi, R., Fernström, C., Fugetta, A.: Concepts for evolving software processes.
In A. Finkelstein, J. Kramer, B.N., ed.: Software Process Modelling and Technol-
ogy, John Wiley and Sons (1994) 9–31

10. Bandinelli, S., Nitto, E.D., Fuggetta, A.: Policies and mechanisms to support
process evolution in PSEEs. In: ICSP. (1994) 9–20

11. Ben-Shaul, I.Z., Kaiser, G.E.: A paradigm for decentralized process modeling and
its realization in the Oz environment. In: Proceedings of the Sixteenth International
Conference on Software Engineering, IEEE Computer Society Press (1994) 179–188

12. Wang, A.I.: Support for mobile software processes in CAGIS. In Conradi, R., ed.:
EWSPT. Volume 1780 of LNCS., Springer-Verlag (2000) 115–130

	Introduction
	Mobility of Software Processes
	Conception of Software Process Mobility
	Category of Software Process Mobility

	Formal Semantics
	Implementation in SoftPM
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

