

Lecture Notes in Computer Science 3966
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Qing Wang Dietmar Pfahl
David M. Raffo Paul Wernick (Eds.)

Software Process
Change

International Software Process Workshop and
International Workshop on Software Process
Simulation and Modeling, SPW/ProSim 2006
Shanghai, China, May 20-21, 2006
Proceedings

13

Volume Editors

Qing Wang
Chinese Academy of Sciences
Institute of Software
No. 4 South Fourth Street, Zhong Guan Cun, Beijing 10 00 80, China
E-mail: wq@itechs.iscas.ac.cn

Dietmar Pfahl
University of Calgary
Schulich School of Engineering
2500 University Drive N.W., Calgary, Alberta T2N 1N4, Canada
E-mail: dpfahl@ucalgary.ca

David M. Raffo
Portland State University
School of Business Administration
P.O. Box 8491, Portland, OR 97207, USA
E-mail: raffod@pdx.edu

Paul Wernick
University of Hertfordshire
Department of Computer Science
College Lane, Hatfield, Herts, AL10 9AB, UK
E-mail: p.d.wernick@herts.ac.uk

Library of Congress Control Number: 2006925301

CR Subject Classification (1998): D.2, K.6.3, K.6, K.4.2, J.1

LNCS Sublibrary: SL 2 – Programming and Software Engineering

ISSN 0302-9743
ISBN-10 3-540-34199-4 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-34199-4 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2006
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11754305 06/3142 5 4 3 2 1 0

Preface

This volume contains papers presented at the first joint conference of the Software Proc-
ess Workshop and the International Workshop on Software Process Simulation and
Modeling (SPW/ProSim 2006) held in Shanghai, P.R. China, on May 20-21, 2006.

The theme of SPW/ProSim 2006 was “Software Process Change – Meeting the
Challenge.” Software developers are under ever-increasing pressure to deliver their
products more quickly and with higher levels of quality. These demands are set in a
dynamic context of frequently changing technologies, limited resources and globally
distributed development teams. At the same time, global competition is forcing or-
ganizations that develop software to cut costs by rationalizing processes, outsourcing
part or all of their activities, reusing existing software in new or modified applications
and evolving existing systems to meet new needs, while still minimizing the risk of
projects failing to deliver.

To address these difficulties, new or modified processes are emerging, including
agile methods and plan-based product line development. Open Source, COTS and
community-developed software are becoming more popular. Outsourcing coupled
with 24/7 development demands well-defined processes and interfaces to support the
coordination of organizationally and geographically separated teams. All of these
challenges combine to increase demands on the efficiency and effectiveness of soft-
ware processes.

For the first time, in 2006 two successful series of conferences combined efforts to
address these and other related questions. Previous Software Process Workshops have
provided a high-quality forum for assessing current and emerging software process
capabilities, and for obtaining insights into worthwhile directions in software process
research. ProSim is the leading event for researchers and practitioners focusing on the
simulation and modeling of software processes.

In response to the call for papers, 225 submissions were received from 17 different
countries and regions: Australia, Belgium, Canada, China, France, Germany, Hong
Kong, India, Italy, Japan, Korea, Mexico, Pakistan, Spain, Taiwan, UK, and USA.
Every paper was rigorously reviewed and held to very high-quality standards, and
finally 34 papers were accepted as regular papers for presentation at the workshop,
representing a 15% acceptance rate for regular papers.

The papers were clustered around topics and presented in seven regular sessions,
each consisting of two threads. Topics included Process Tailoring and Decision-
Support, Process Tools and Metrics, Process Management, Process Representation,
Analysis and Modeling, Process Simulation Modeling, Process Simulation Applica-
tions, and Experience Reports.

The SPW/ProSim2006 program was highlighted by four keynote speeches, delivered
by (in alphabetical order): Barry Boehm (University of Southern California: “A
Value-Based Software Process Framework”), Ross Jeffery (University of New South
Wales: “Exploring the Business Process–Software Process Relationship”), Mingshu Li
(Institute of Software at the Chinese Academy of Sciences: “3-D Integrated Software

 Preface VI

Development Processes: A New Benchmark”), and Leon J. Osterweil (University of
Massachusetts Amherst: “Ubiquitous Process Engineering: Applying Software Process
Technology to Other Domains”).

A conference such as this can only succeed as a team effort. All of this work would
not have been possible without the dedication and professional work of many col-
leagues. We wish to express our gratitude to all contributors for submitting papers.
Their work forms the basis for the success of the workshop. We also would like to
thank the Program Committee members and reviewers because their work is the guar-
antee for the high quality of the workshop. Particular thanks also go to the keynote
speakers for their excellent presentations. Finally, we also would like to thank the
members of the Steering Committee for their advice, encouragement and support.

We wish to express our thanks to the organizers for their hard work. The workshop
was sponsored by the Institute of Software, the Chinese Academy of Sciences (ISCAS)
and the ISCAS Laboratory for Internet Software Technologies, and the Shanghai Mu-
nicipal Informatization Commission (SMIC). We also wish to thank the 28th Interna-
tional Conference on Software Engineering (ICSE 2006) for sponsoring this meeting as
an ICSE Co-Located Event. Finally, we acknowledge the editorial support from Springer
for the publication of this proceeding.

For further information, please visit our website at http://www.cnsqa.com/~
spwprosim2006.

March 2006 David M. Raffo
 Qing Wang

 Dietmar Pfahl
 Paul Wernick

Software Process Workshop
Workshop on Software Process Simulation and

Modeling 2006

Shanghai, China
May 20-21, 2006

General Chair

David M. Raffo, Portland State University, USA

Steering Committee

Barry Boehm, University of Southern California, USA
Mingshu Li, Institute of Software, Chinese Academy of Sciences, China
Leon J. Osterweil, University of Massachusetts, USA

Program Co-chairs

Dietmar Pfahl, University of Calgary, Canada
Qing Wang, Institute of Software, Chinese Academy of Sciences, China

Publicity Chair

Paul Wernick, University of Hertfordshire, UK

Program Committee Members

Thomas Birkhölzer University of Applied Science, Konstanz, Germany
Keith C.C. Chan Hong Kong Polytechnic University, Hong Kong
Sorana Cimpan University of Savoie at Annecy, France
James Collofello Arizona State University, USA
Bill Curtis Borland Software Corporation, USA
Jacky Estublier French National Research Center in Grenoble, France
Anthony Finkelstein University College London, UK
Volker Gruhn University of Leipzig, Germany
Paul Grünbacher Johannes Kepler University Linz, Austria
Dan Houston Honeywell, USA
Liguo Huang University of Southern California, USA
Watts S. Humphrey Carnegie Mellon University, USA

 Organization VIII

Hajimu Iida Nara Institute of Science and Technology, Japan
Katsuro Inoue Osaka University, Japan
Ross Jeffery University of New South Wales, Australia
Natalia Juristo Universidad Politécnica de Madrid, Spain
Jyrki Kontio Helsinki University of Technology, Finland
Philippe Kruchten University of British Columbia, Canada
Barbara Staudt Lerner Williams College, USA
Jian Lv Nanjing University, China
Ray Madachy University of Southern California, USA
Robert H. Martin Portland State University, USA
Hong Mei Peking University, China
Jürgen Münch University of Kaiserslautern, Germany
Flavio Oquendo University of South Brittany, France
Dewayne E. Perry University of Texas at Austin, USA
Dietmar Pfahl University of Calgary, Canada
Antony Powell Science Applications International Corporation, USA
David M. Raffo Portland State University, USA
Juan F. Ramil The Open University, UK
H. Dieter Rombach University of Kaiserslautern, Germany
Guenther Ruhe University of Calgary, Canada
Mercedes Ruiz University of Cádiz, Spain
Ioana Rus Fraunhofer Center, USA
Kevin Ryan University of Limerick, Ireland
Walt Scacchi University of California, Irvine, USA
Stanley M. Sutton Jr. IBM T. J. Watson Research Center, USA
Thomas Thelin Lund University, Sweden
Colin Tully Middlesex University, UK
Qing Wang Institute of Software, Chinese Academy of Sciences, China
Yongji Wang Institute of Software, Chinese Academy of Sciences, China
Brian Warboys University of Manchester, UK
Paul Wernick University of Hertfordshire, UK
Alexander Wolf University of Colorado at Boulder, USA
Ye Yang University of Southern California, USA

Organizing Committee Chair

Yingchen Gu, Shanghai Municipal Informatization Commission, China

 Organization IX

External Reviewers

Silvia Acuña
Ahmed Al-Emran
Wei Chen
Yue Chen
Oscar Dieste
Liping Ding
Shuanzhu Du
Andreas Jedlitschka
Nan Jiang
Gou Lang
Juan Li
Nao Li
Marta Lopez
Li Ruan
M. Isabel Sanchez-Segura
Fengdi Shu
Martin Solari
Sira Vegas
Jizhe Wang
Shujian Wu
Zhanchun Wu
Junchao Xiao
Da Yang
Qiusong Yang
Feng Yuan
Rong Yuan

Table of Contents

Keynotes

A Value-Based Software Process Framework
Barry Boehm, Apurva Jain . 1

Exploring the Business Process-Software Process Relationship
Ross Jeffery . 11

Assessing 3-D Integrated Software Development Processes: A New
Benchmark

Mingshu Li . 15

Ubiquitous Process Engineering: Applying Software Process Technology
to Other Domains

Leon J. Osterweil . 39

Process Tailoring and Decision-Support

Dependencies Between Data Decisions
Frank G. Goethals, Wilfried Lemahieu, Monique Snoeck,
Jacques Vandenbulcke . 48

Tailor the Value-Based Software Quality Achievement Process to
Project Business Cases

Liguo Huang, Hao Hu, Jidong Ge, Barry Boehm, Jian Lü 56

Optimizing Process Decision in COTS-Based Development Via Risk
Based Prioritization

Ye Yang, Barry Boehm . 64

Process Tools and Metrics

Project Replayer – An Investigation Tool to Revisit Processes of Past
Projects

Keita Goto, Noriko Hankawa, Hajimu Iida . 72

Software Process Measurement in the Real World: Dealing with
Operating Constraints

Luigi Lavazza, Marco Mauri . 80

XII Table of Contents

Evaluation of Project Quality: A DEA-Based Approach
Shen Zhang, Yongji Wang, Jie Tong, Jinhui Zhou, Li Ruan 88

Process Management

A Pattern-Based Solution to Bridge the Gap Between Theory and
Practice in Using Process Models

Antonio Amescua, Javier Garćıa, Maria-Isabel Sánchez-Segura,
Fuensanta Medina-Domı́nguez . 97

On Mobility of Software Processes
Mingshu Li, Qiusong Yang, Jian Zhai, Guowei Yang 105

Software Process Fusion: Uniting Pair Programming and Solo
Programming Processes

Kim Man Lui, Keith C.C. Chan . 115

Towards an Approach for Security Risk Analysis in COTS Based
Development

Dan Wu, Ye Yang . 124

COCOMO-U: An Extension of COCOMO II for Cost Estimation with
Uncertainty

Da Yang, Yuxiang Wan, Zinan Tang, Shujian Wu, Mei He,
Mingshu Li . 132

A Product Line Enhanced Unified Process
Weishan Zhang, Thomas Kunz . 142

Process Representation, Analysis and Modeling

Automatic Fault Tree Derivation from Little-JIL Process Definitions
Bin Chen, George S. Avrunin, Lori A. Clarke,
Leon J. Osterweil . 150

Workflows and Cooperative Processes
Jacky Estublier, Sergio Garcia . 159

Spiral Lifecycle Increment Modeling for New Hybrid Processes
Raymond Madachy, Barry Boehm, Jo Ann Lane 167

Definition and Analysis of Election Processes
Mohammad S. Raunak, Bin Chen, Amr Elssamadisy, Lori A. Clarke,
Leon J. Osterweil . 178

Table of Contents XIII

The Design of a Flexible Software Process Language
Beijun Shen, Cheng Chen . 186

Building Business Process Description and Reasoning Meta-model Mbp

in A-Prolog
Hai Wan, Yunxiang Zheng, Yin Chen, Lei Li . 195

A Process-Agent Construction Method for Software Process Modeling
in SoftPM

Qing Wang, Junchao Xiao, Mingshu Li, M. Wasif Nisar,
Rong Yuan, Lei Zhang . 204

Applying Little-JIL to Describe Process-Agent Knowledge in SoftPM
Junchao Xiao, Leon J. Osterweil, Lei Zhang, Alexander Wise,
Qing Wang . 214

Process Simulation Modeling

Reusable Model Structures and Behaviors for Software Processes
Raymond Madachy . 222

Organization-Theoretic Perspective for Simulation Modeling of Agile
Software Processes

Levent Yilmaz, Jared Phillips . 234

Semi-quantitative Simulation Modeling of Software Engineering Process
He Zhang, Barbara Kitchenham . 242

Process Simulation Applications

Analysis of Software-Intensive System Acquisition Using Hybrid
Software Process Simulation

KeungSik Choi, Doo-Hwan Bae . 254

Simulation-Based Stability Analysis for Software Release Plans
Dietmar Pfahl, Ahmed Al-Emran, Günther Ruhe 262

Exploring the Impact of Task Allocation Strategies for Global Software
Development Using Simulation

Siri-on Setamanit, Wayne Wakeland, David Raffo 274

Users and Developers: An Agent-Based Simulation of Open Source
Software Evolution

Neil Smith, Andrea Capiluppi, Juan Fernández-Ramil 286

XIV Table of Contents

Simulating the Structural Evolution of Software
Benjamin Stopford, Steve Counsell . 294

Experience Report

An Empirical Study on SW Metrics for Embedded System
Taehee Gwak, Yoonjung Jang . 302

Process-Family-Points
Sebastian Kiebusch, Bogdan Franczyk, Andreas Speck 314

Automated Recognition of Low-Level Process: A Pilot Validation Study
of Zorro for Test-Driven Development

Hongbing Kou, Philip M. Johnson . 322

Process Evolution Supported by Rationale: An Empirical Investigation
of Process Changes

Alexis Ocampo, Jürgen Münch . 334

Implementing Process Change in a Software Organization – An
Experience Based Study

Shaowen Qin . 342

Practical Experiences of Cost/Schedule Measure Through Earned
Value Management and Statistical Process Control

Qing Wang, Nan Jiang, Lang Gou, Meiru Che, Ronghui Zhang 348

Author Index . 355

Q. Wang et al. (Eds.): SPW/ProSim 2006, LNCS 3966, pp. 1 – 10, 2006.
© Springer-Verlag Berlin Heidelberg 2006

A Value-Based Software Process Framework

Barry Boehm and Apurva Jain

University of Southern California,
Computer Science Department, University Park Campus, Los Angeles, CA 90089

{boehm, apurvaja}@usc.edu

Abstract. This paper presents a value-based software process framework that
has been derived from the 4+1 theory of value-based software engineering
(VBSE). The value-based process framework integrates the four component
theories – dependency, utility, decision, and control, to the central theory W,
and orients itself as a 7-step process guide to practice value-based software
engineering. We also illustrate applying the process framework to a supply
chain organization through a case study analysis.

1 Introduction

In this paper we present a value-based software process framework that has been
derived from the 4+1 theory of value-based software engineering (VBSE) as
described in [2]. The value-based process framework presented here integrates the
four component theories of the 4+1 theory – dependency, utility, decision, and control
theories – to the central theory W, and orients itself as a 7-step process guide to
practice VBSE. We also illustrate applying the theory and process framework to a
supply chain organization through a case study analysis.

Utility Theory

Theory W:
SCS Win-Win

Decision Theory

Dependency
Theory

Control Theory

6a, 7c. State measurement,
prediction, correction;
Milestone synchronization

5a. Investment analysis,
Risk analysis

1. Protagonist goals
3a. Solution exploration
7. Risk, opportunity, change
management

5a, 7b. Prototyping

2a. Benefits Chains
3b, 5a, 7b. Cost/schedule/
performance tradeoffs

2. Identify SCSs

3b, 7a. Solution Analysis

5a, 7b. Option, solution
development & analysis

4. SCS expectations
management

3. SCS Value
 Propositions
(Win conditions)

SCS: Success-Critical Stakeholder

6, 7c. Refine, Execute,
Monitor & Control Plans

5. SCS Win-Win
Negotiation

Fig. 1. The VBSE Theory and Process Framework

2 B. Boehm and A. Jain

2 The “4+1” Theory of VBSE

Figure 1 summarizes the “4+1” structure of the VBSE theory. The engine in the
center is the success-critical stakeholder (SCS) win-win Theory W [5], which
addresses the questions of “what values are important?” and “how is success
assured?” for a given software engineering enterprise. The four additional theories
that it draws upon are dependency theory (how do dependencies affect value
realization? On what stakeholders does success depend), utility theory (how important
are the values?), decision theory (how do stakeholders’ values determine decisions?),
and control theory (how to adapt to change and control value realization?).

2.1 The Central Engine: Theory W

The core of Theory W is the Enterprise Success Theorem: “Your enterprise will
succeed if and only if it makes winners of your success-critical stakeholders”. An
informal proof follows in Table 1, and further explained in [2].

Table 1. Informal proof of the Enterprise Success Theorem

Proof of “if” Proof of “only if”

1. Everyone significant is a winner.
2. Nobody significant is left to

complain.

1. Nobody wants to lose.
2. Prospective losers will refuse to

participate, or will counterattack.
3. The usual result is lose-lose.

The proof of “if” is reasonably clear. The full proof of “only if” requires further
explanation, which is provided in [2].

2.2 Achieving and Maintaining a Win-Win State: The Four Supporting
Theories

However, the Enterprise Success Theorem does not tell us how to achieve and
maintain a win-win state. This is provided by the:

WinWin Achievement Theorem: Making winners of your success-critical stake-
holders requires:
1. Identifying all of the success-critical stakeholders (SCSs).
2. Understanding how the SCSs want to win.
3. Having the SCSs negotiate a win-win set of product and process plans.
4. Controlling progress toward SCS win-win realization, including adaptation to

change.

Identifying all of the success-critical stakeholders involves the organizational and
human aspects of dependency theory [12][7] and techniques such as the DMR
Consulting Group’s Results Chains [16].

 A Value-Based Software Process Framework 3

Understanding how the SCSs want to win involves utility theory, in identifying the
SCS’s relative utility functions with respect to capability, levels of service, budget,
and schedule objectives [15][11][13].

Having the SCSs negotiate win-win product and process plans primarily involves
decision theory, but also involves go-backs to other aspects of dependency theory and
utility theory to address conflicts among the SCS’s utility functions. Users prefer
products with many powerful capabilities, and processes allowing easy changing of
desired capabilities. Acquirers have limited resources and prefer stable acquisitions.
Developers prefer to reuse artifacts that may be incompatible with users’ and
acquirers’ existing artifacts. Exploring options for reconciling these utility conflicts
may involve other aspects of dependency theory, such as theories of product
interdependencies (physics, computer science, architecture), process
interdependencies (scheduling, systems dynamics), and general interdependencies
(constraint theory, optimization theory, economic theories). If these theories clearly
identify an over-constrained situation, this can help adjust SCS’s utility functions or
expectations about what levels of desired capability are affordable. This can enable
arrival at a mutually satisfactory or win-win shared commitment, using such decision
theory elements as statistical decision theory, game theory, or negotiation theory
[1][14][17].

Controlling progress toward SCS win-win realization basically involves the
feedback control theory aspects of observability, predictability, controllability, and
stability. But it also involves adaptive control theory in identifying environmental
changes or changes in SCS utility functions and renegotiating a new SCS win-win
decision, involving go-backs to the earlier steps and theories.

In a world involving people and changing circumstances, these theorems fall short
of the guarantees accompanying physical or mathematics theorems. For example, an
inexperienced team can violate all four of the WinWin Achievement conditions and
be on a clear path to failure, but can be turned into a SCS win-win success by the
timely appearance of a new COTS product that provides the desired solution.

More details on the component theories discussed above are in [2]. The rest of this
paper shows how the theories and process contribute to realizing and maintaining a
successful win-win outcome in a case study. The case study is a synthesis of two
similar projects that did not apply the component theories well and ended up as
failures.

3 The VBSE Software Process Framework

As shown in Figure 1, step 1 of the process starts with a protagonist or change agent
who provides the motivating force to get a new project, initiative, or enterprise
started. As examples, protagonists can be organization leaders with goals, authority,
and resources, entrepreneurs with goals and resources, inventors with goals and ideas,
or consortia with shared goals and distributed leadership and resources.

Each class of protagonist will take a somewhat different approach in visiting the
seven main steps in Figure 3 to create and sustain a win-win combination of SCSs to
achieve their goals. In this Section, we will trace the approach taken by a leader
whose goals involve a combination of opportunities and problems, who has the

4 B. Boehm and A. Jain

authority and resources to address the goals, and who is open to different ideas for
addressing them. She is Susan Swanson, an experienced MBA-holding executive,
former bicycling champion, and newly-hired CEO of Sierra Mountainbikes, Inc. (a
fictitious company representative of two similar companies with less successful
projects).

Sierra Mountainbikes Opportunities and Problems
Susan began by convening her management and technology leaders, along with a
couple of external consultants, to develop a constructive shared vision of Sierra
Mountainbikes’ primary opportunities and problems. The results determined a
significant opportunity for growth, as Sierra’s bicycles were considered top quality
and competitively priced. The major problem area was in Sierra’s old manual order
processing system. Distributors, retailers, and customers were very frustrated with the
high rates of late or wrong deliveries; poor synchronization between order entry,
confirmation, and fulfillment; and disorganized responses to problem situations. As
sales volumes increased, the problems and overhead expenses continued to escalate.

In considering solution options, Susan and her Sierra team concluded that since
their primary core competence was in bicycles rather than software, their best strategy
would be to outsource the development of a new order processing system, but to do it
in a way that gave the external developers a share in the system’s success. As a result,
to address these problems, Sierra entered into a strategic partnership with eServices
Inc. for joint development of a new order processing and fulfillment system.
eServices was a growing innovator in the development of supply chain management
systems (an inventor with ideas looking for protagonist leaders with compatible goals
and resources to apply their ideas).

Step 2. Identifying the Success-Critical Stakeholders (SCSs)
Step 2 in the VBSE process shown in Figure 1 involves identifying all of the success-
critical stakeholders involved in achieving a project’s goals. As seen in Figure 2, the
Step 2a Benefits Chain jointly determined by Sierra and eServices, this includes not
only the sales personnel, distributors, retailers, and customers involved in order
processing, but also the suppliers involved in timely delivery of Sierra’s bicycle
components (our Benefits Chain extension to the Thorp/DMR Results Chain includes
identifying SCSs in parallelograms and unifying Assumptions into a table).

The Benefits Chain includes initiatives to integrate the new system with an upgrade
of Sierra’s supplier, financial, production, and human resource management
information systems. The Sierra-eServices strategic partnership is organized around
rewards reflecting both the system’s benefits chain and business case, so that both
parties share in the responsibilities and rewards of realizing the system’s benefits.
Thus, both parties share a motivation to understand and accommodate each other’s
value propositions or win conditions and to use value-based feedback control to
manage the program of initiatives.

This illustrates the “only if” part of the Fundamental System Success Theorem. For
the “if” part, if Susan had been a traditional cost-cutting, short-horizon executive,
Sierra would have aggressively contracted for a lowest-bidder, fixed-price order
processing system, and would have ended up with a buggy, unmaintainable stovepipe
order processing system and many downstream order-fulfillment and supplier

 A Value-Based Software Process Framework 5

problems to plague its future. In terms of the framework in Figure 1, however, Sierra
and eServices used the Benefits Chain form of Dependency Theory to identify
additional SCSs (sales personnel, distributors, retailers, customers, suppliers) who
also need to be brought into the SCS WinWin equilibrium state.

New order entry
system

New order
fulfillment

system

New order
fulfillment
processes,
outreach,
training

Improved
supplier

coordination

Less time,
fewer errors in

order
processing

Increased
customer

satisfaction,
decreased
operations

costs

Increased
profits, growth

New order entry
processes,
outreach,
training

Faster order entry steps, errors

Safety, fairness
 inputs

Faster,
better
order
entry

system

Interoperability
inputs

On-time assembly

Increased
sales,

profitability,
customer

satisfaction

Less time,
fewer

errors per
order

entry step

Distributors, retailers,
customers

Sales personnel,
distributors

Developers

 Assumptions
 - Increasing market size
 - Continuing consumer satisfaction with product
 - Satisfactory manufacturing planning & control system
 - Relatively stable e-commerce infrastructure
 - Continued high staff performance

Suppliers

Fig. 2. Benefits Chain for Sierra Supply Chain Management

Steps 3 and 4. Understanding SCS Value Propositions; Managing Expectations
Step 3 (understanding all of the SCSs’ value propositions or win conditions) primarily
involves utility theory. But it also involves Theory W in reconciling SCS win
conditions with achievable solutions (Step 3a), and various forms of dependency
theory in conducting cost/schedule/performance solution tradeoff and sensitivity
analyses (Step 3b).

For example, the suppliers and distributors may identify some complex exception
reporting, trend analysis, and customer relations management features they would like
to have in the system’s Initial Operational Capability (IOC) in early 2005. However,
the use of forms of dependency theory such as software cost and schedule estimation
models may show that there is too much proposed IOC software to try to develop by
the IOC date. In such a case, Sierra and eServices will have to revisit the SCSs’ utility
functions in Step 4 (expectations management) by showing them the cost and
schedule model credentials and results, and asking them to recalibrate their utility
functions, prioritize their desired features, and participate in further solution
exploration (a go-back to Step 3a) to achieve a win-win consensus on the top-priority
subset of features to include in the IOC.

It may be in some cases that the SCSs’ IOC needs are irreconcilable with the IOC
schedule. If so, the SCSs may need to live with a later IOC, or to declare that a SCS
win-win state is unachievable and to abort the project. Again, it is better to do this
earlier rather than later.

6 B. Boehm and A. Jain

Step 5. SCSs Negotiate a WinWin Decision
Actually, the previous paragraph anticipates the content of Step 5, in which the SCSs
negotiate a win-win decision to commit themselves to go forward. Once the SCSs
have identified and calibrated their Win Conditions in Steps 3 and 4, the process of
identifying conflicts or Issues among Win Conditions; inventing and exploring
Options to resolve Issues; and converging on Agreements to adopt Win Conditions or
Options proceeds as described in the WinWin Negotiation Model above.

In a situation such as the Sierra supply chain project, the number of SCSs and the
variety of their win conditions (cost, schedule, personnel, functionality, performance,
usability, interoperability, etc.) means that multi-attribute decision theory will be
involved as well as negotiation theory. Susan will also be concerned with investment
theory or business case analysis to assure her stakeholders that the supply chain
initiative will generate a strong return on investment. As many of the decisions will
involve uncertainties (market trends, COTS product compatibilities, user interface
choices), forms of statistical decision theory such as buying information to reduce risk
will be involved as well.

User interface prototypes are actually ways of buying information to reduce the
risk of misunderstanding SCS utility functions, as indicated in Figure 1 by the arrow
between decision theory and utility theory. The other components of Step 5a in Figure
1 involve other aspects of dependency theory, such as performance analysis, business
case analysis, or critical-path schedule analysis. As also shown in Figure 1, these
analyses will often proceed at increasing levels of detail in supporting steps 3a, 5a,
and 7a as the project proceeds into detailed design, development, integration, and test.

Figure 3 summarizes the business case analysis for the Sierra project. Dollar values
are all in millions of 2004 dollars ($M) for simplicity. The analysis compares the
expected sales and profits for the current system (columns 4, 5) and the new system

New System
 Current System

Financial Customers

Date
 M

ar
ke

t
Si

ze
 (

$M
)

M
ar

ke
t

Sh
ar

e
%

Sa
le

s

P
ro

fi
ts

M
ar

ke
t

Sh
ar

e
%

Sa
le

s

P
ro

fi
ts

C
os

t
Sa

vi
ng

s

C
ha

ng
e

in
 P

ro
fi

ts

C
um

. C
ha

ng
e

in
 P

ro
fi

ts

C
um

. C
os

t

R
O

I

L
at

e
D

el
iv

er
y

%

C
us

to
m

er
 S

at
is

fa
ct

io
n

(0
-5

)

In
-T

ra
ns

it
 V

is
ib

ili
ty

 (
0-

5)

E
as

e
of

 U
se

 (
0-

5)

12/31/03 360 20 72 7 20 72 7 0 0 0 0 0 12.4 1.7 1.0 1.8

12/31/04 400 20 80 8 20 80 8 0 0 0 4 -1 11.4 3.0 2.5 3.0

12/31/05 440 20 88 9 22 97 10 2.2 3.2 3.2 6 -.47 7.0 4.0 3.5 4.0

12/31/06 480 20 96 10 25 120 13 3.2 6.2 9.4 6.5 .45 4.0 4.3 4.0 4.3

12/31/07 520 20 104 11 28 146 16 4.0 9.0 18.4 7 1.63 3.0 4.5 4.3 4.5

12/31/08 560 20 112 12 30 168 19 4.4 11.4 29.8 7.5 2.97 2.5 4.6 4.6 4.6

Fig. 3. Expected Benefits and Business Case

 A Value-Based Software Process Framework 7

(columns 7, 8) between 2004 and 2008, the cumulative increase in profits, investment
cost, and resulting return on investment (columns 11-13), and expected improvements
in other dimensions such as late delivery and customer satisfaction (columns 14-17).
The bottom line is a strong 2.97 ROI, plus good expected outcomes in the customer
satisfaction dimensions. More details can be found in [3].

The negotiations converge on a number of win-win agreements, such as involving
the suppliers and distributors in reviews, prototype exercising, and beta-testing;
having Sierra provide eServices with two of their staff members to work on the
software development team; and agreeing on compatible data definitions for product
and financial interchange. At one point in the negotiation, an unfortunate go-back is

Milestone
 Sc

he
du

le

C
os

t
($

K
)

O
p.

 C
os

t
Sa

vi
ng

s

M
ar

ke
t

Sh
ar

e
%

A
nn

ua
l S

al
es

 (
$M

)

A
nn

ua
l P

ro
fi

ts
 (

$M
)

C
um

. P
ro

fi
ts

R
O

I

L
at

e
D

el
iv

er
y

%

C
us

to
m

er
 S

at
is

fa
ct

io
n

IT
V

E
as

e
of

 U
se

R
is

ks
/O

pp
or

tu
ni

ti
es

Life Cycle 3/31/04 400 20 72 7.0 12.4 1.7 1.0 1.8

Architecture 3/31/04 427 20 72 7.0 12.4 1.7 1.0 1.8
(1)

Core 7/31/04 1050

Capability 7/20/04 1096 2.4* 1.0* 2.7*

Demo (CCD)

(2)

Software Init. 9/30/04 1400

Op. Cap. (IOC) 9/30/04 1532 2.7* 1.4* 2.8*

Hardware 9/30/04 3500

IOC 10/11/04 3432
(3)

Deployed 12/31/04 4000 20 80 8.0 0.0 -1.0 11.4 3.0 2.5 3.0

IOC 12/20/04 4041 22 88 8.6 0.6 -.85 10.8 2.8 1.6 3.2
(4)

Responsive 3/31/05 4500 300 9.0 3.5 3.0 3.5

IOC 3/30/05 4604 324 7.4 3.3 1.6 3.8

Full Op. 7/31/05 5200 1000 3.5* 2.5* 3.8*

Cap. CCD 7/28/05 5328 946
(5)

Full Op. 9/30/05 5600 1700 3.8* 3.1* 4.1*

Cap. Beta 9/30/05 5689 1851

Full Op. 12/31/05 6000 2200 22 106 12.2 3.2 -.47 7.0 4.0 3.5 4.0

Cap. Deployed 12/20/05 5977 2483 24 115 13.5 5.1 -.15 4.8 4.1 3.3 4.2

Release 2.1 6/30/06 6250

(1) Increased COTS ITV risk, fallback identified.

(2) Using COTS ITV fallback; new HW competitor; renegotiating HW.
(3) $200K savings from renegotiated HW.

(4) New COTS ITV source identified, being prototyped.
(5) New COTS ITV source initially integrated.

* Interim ratings based on trial use

Fig. 4. Value-Based Expected/Actual Outcome Tracking

8 B. Boehm and A. Jain

necessary when an Agreement on a product definition standard is reversed by the
management of one of the distributors, who disclose that they are now committed to
an emerging international standard. After some renegotiation, the other SCSs agree to
this at some additional cost.

Steps 6 and 7. Planning, Executing, Monitoring, Adapting, and Controlling
As with the dependency analyses, project planning, executing, monitoring, adapting,
and controlling proceed incrementally in increasing amounts of detail, generally
following a risk-driven spiral process. Questions such as “how much is enough
planning, specifying, prototyping, COTS evaluation, business case analysis,
architecting, documenting, verifying, validating etc.?” are best resolved by balancing
the risk exposures of doing too little or too much. As Risk Exposure = Probability
(Loss) * Value (Loss) is a value-based concept, risk balancing is integral to the
theory.

Value-based planning and control differs most significantly from traditional project
planning and control in its emphasis on monitoring progress toward value realization
rather than towards project completion. Particularly in an era of increasing rates of
change in market, technology, organizational, and environmental conditions, there is
an increasing probability that managing to a fixed initial set of plans and
specifications will produce systems that are out of step and non-competitive with
projects managing adaptively toward evolving value realization.

Perhaps the most provocative example is the traditional technique of “earned value
management”. It assigns “value” to the completion of project tasks and helps track
progress with respect to planned budgets and schedules, but has no way of telling
whether completing these tasks will add to or subtract from the business value or
mission value of the enterprise. Example failure modes from this approach are
systems that had to be 95% redeveloped on delivery because they failed to track
evolving requirements and startup companies that fail to track closure of market
windows.

If an organization has used steps 1-5 to identify SCSs, determine their value
propositions, and develop business cases, it has developed the framework to monitor
expected value realization, adjust plans, and control progress toward real SCS value
achievement. Figure 4 shows how this is done for the Sierra project, based on the
initial budgets, schedules, and business case in Figure 3. The planned achievables are
above the line in each cell of figure 4; the actuals are below. Value-based monitoring
and control for Sierra requires additional effort in terms of technology watch and
market watch, but these help Sierra to discover early that their in-transit-visibility
(ITV) COTS vendor was changing direction away from Sierra’s needs.

This enabled Sierra to adapt by producing a timely fallback plan, and to proactively
identify and approach other likely ITV COTS vendors. The results, as shown in the
ITV column and explained in the Risks/Opportunities column of Figure 4, was an
initial dip in achieved ITV rating relative to plans, but a recovery to close to the
originally planned value. The Risks/Opportunities column also shows a “new
hardware competitor” opportunity found by market watch activities that results in a
$200K hardware cost savings that mostly compensated for the added software costs of
the ITV fallback. The use of prioritized requirements to drive value-based Pareto- and
risk-based inspection and testing is another source of software cost savings.

 A Value-Based Software Process Framework 9

The bottom-line results are a good example of multi-attribute quantitative/ qualitative
balanced-scorecard methods of value-based monitoring, adaptation, and control. They
are also a good example of use of the necessary conditions for value-based control
based on control theory. A traditional value-neutral “earned value” management system
would fail on the criteria of business-value observability, predictability, and
controllability, because its plans, measurements, and controls deal only with internal-
project progress and not with external business-value observables and controllables.
They also show the value of adaptive control in changing plans to address new risks and
opportunities, along with the associated go-backs to revisit previous analyses and revise
previous plans in Steps 7a, 7b, and 7c.

4 Conclusions and Areas for Further Research

The VBSE process framework presented above has been shown to apply well to a
reasonably complex supply chain case study, and to avoid the sources of failure
encountered in the projects represented in the case study. In other situations, variants
of the framework have been successfully applied to over 100 small e-services
applications, and to some very large software-intensive systems of systems. These are
identifying further needs to represent the process in situations where steps 1-7 are
being applied concurrently in evolutionary or spiral development, and in ways that
more explicitly identify the stakeholder commitment milestones [6].

Finally, the initial VBSE theory and process need many more tests. The easiest
tests to start with are tests of their ability to explain differences between success
and failure on completed projects. Other tests that can be done right away are tests
of its ability to generate good software engineering practices; an early example is
in [5].

Further analyses can be performed on their consistency with other theories and
processes such as the chaos-type theories underlying agile and adaptive software
development processes [9] or the theories underlying formal software development
[10] and generative programming approaches [8].

Tests of utility, generality, practicality, preciseness, and parsimony basically
involve trying to apply the theory and process in different situations, observing its
successes and shortfalls, and generating improvements in the theory and process that
improve their capability in different situations or uncover unstated assumptions that
should be made more explicit to limit their domain of dependable applicability. We
hope that this initial presentation of the theory and process will be sufficiently
attractive for people to give this option a try.

Acknowledgments

The research on this paper has been supported by a National Science Foundation
grant, “Value Based Science of Design”, and by the Affiliates of the USC Center for
Software Engineering.

10 B. Boehm and A. Jain

References

[1] D. Blackwell and M. Girshick, Theory of Games and Statistical Decisions, Wiley, 1954.
[2] B. Boehm and A. Jain, An Initial Theory of Value-Based Software Engineering, in S.

Biffl, A. Aurum, B. Boehm, H. Erdogmus, P. Gruenbacher (eds.), Value-Based Software
Engineering, Springer Verlag, 2005, pp 15-37.

[3] B. Boehm and L. Huang, Value-Based Software Engineering: A Case Study, IEEE
Computer, March 2003, pp. 21-29.

[4] B. Boehm and R. Turner, Balancing Agility and Discipline, Addison Wesley, 2004.
[5] B. Boehm, and R. Ross, Theory-W Software Project Management: Principles and

Examples, IEEE Trans. SW Engineering., July 1989, pp. 902-916.
[6] B. Boehm, Some Future Trends and Implications for Systems and Software Engineering

Processes, Systems Engineering, vol. 9, no. 1, 2006, pp. 1-19.
[7] H. Booher, (ed.), Handbook of Human Systems Integration, Wiley, 2003.
[8] K. Czarnecki and U. Eisenecker, Generative Programming: Methods, Tools, and

Applications, Addison-Wesley, 2000
[9] J. Highsmith, Adaptive Software Development, Dorset House, 2000.

[10] C. B. Jones, Software Development: A Rigorous Approach, Prentice Hall, 1980.
[11] R. L. Keeney and H. Raiffa, Decisions with Multiple Objectives: Preferences and Value

Tradeoffs, Cambridge University Press, 1976.
[12] J. March and H. Simon, Organizations, Wiley, 1958.
[13] A. Maslow, Motivation and Personality, Harper, 1954
[14] H. Raiffa, The Art and Science of Negotiation, Belknap/Harvard U. Press, 1982.
[15] H. Simon, Models of Man, Wiley, 1957.
[16] J. Thorp and DMR’s Center for Strategic Leadership, The Information Paradox:

Realizing the Benefits of Information Technology, McGraw-Hill, 1998.
[17] J. von Neumann and O. Morgenstern, Theory of Games and Economic Behavior,

Princeton University Press, 1944.

Q. Wang et al. (Eds.): SPW/ProSim 2006, LNCS 3966, pp. 11 – 14, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Exploring the Business Process-Software Process
Relationship

Ross Jeffery

National ICT Australia Ltd. and The University of New South Wales,
Locked Bag 9013, Alexandria,

N.S.W., 1435, Australia

Abstract. This paper argues for the need for mechanisms to support the analy-
sis and tracing of relationships between the business process and the software
process used to instantiate elements of that business process in software. Evi-
dence is presented to support this argument from research in software process
and industry actions and needs as stated in reports to government.

1 Introduction

Software process modeling research has been pursued with varying goals over a num-
ber of years. We classify this work into four categories:

1. Understanding and communication
2. Process improvement
3. Process management, and
4. Process execution and automation.

The category that has focused on the facilitation of human understanding of the
process or on the communication of that process to humans includes work such as
making the process knowledge and context explicit, or graphical mechanisms to make
high-level language expressions user friendly. Work in comparing process enact-
ments with the pre-specified model is included under the category of process im-
provement. Research into process modeling for error detection or managing relation-
ships between process elements falls into category three, while work on language
translation and execution falls into category four.

In this paper, we explore process modeling research to date, including the links be-
tween business process modeling and software process modeling. After constructing
this view of the process modeling landscape we then compare the landscape with two
different perspectives. The first of these is an industry perspective. In this perspec-
tive we use the report (February 2005) of the Australian Government’s SQAWP
committee (Software Quality Accreditation Working Party) which provided the Fed-
eral Minister for Communications, Information Technology and the Arts (see
http://www.dcita.gov.au/) an industry view on software process improvement and
software sector competitiveness. This report [1] provides background in which to
position future research needs.

12 R. Jeffery

We then look at some of the research carried out within NICTA since preparing this
report for the Minister. This includes research on CMMI adoption decisions, process
simulation modeling, software process lines, and software process enactment mining.

An argument is then made that there is an important relationship between the busi-
ness process and the software process that needs to be addressed. An approach is
proposed called problem-centered process definition.

2 The SQAWP Report and Process Modeling

In February 2005 a report was presented to the Australian Federal Minister. In this
report it was noted that software process improvement is a part of business improve-
ment. For those organizations that develop software, the software development process
is their business. For those that purchase and use third party software developed by
others, the business requirement is that the software meets their business needs. In the
SQAWP report the committee focused on the software developing organizations that
may, or may not, have software development as their core competence. The report
characterized this as shown in Figure 1. In this figure the “left side of the spectrum is
very much driven by cost. This has led the global community to turn to lower-cost
offshore software services…. The middle of the spectrum is very much driven by proc-
ess….The right side of the spectrum is very much driven by innovation.”

Fig. 1. The Software development spectrum (SQAWP Report p.7)

For those organizations at the innovation end of this spectrum, the process model-
ing research is likely to have less relevance since these organizations are more likely
to be small and informal. In this setting I believe that the goals outlined above from
the process modeling research landscape become less important. But for the vast ma-
jority of organizations who belong in the other three categories of figure 1, the model-
ing of process is one of the means to business improvement, improved capability, and
improved competitiveness.

3 The Process Modeling Context

If we simplify the place of process modeling in software development we might repre-
sent it something like figure 2. In this figure we imagine a world in which the business

 Exploring the Business Process-Software Process Relationship 13

process is satisfied in some way by the software process delivering software products.
It makes little difference for our purpose whether the development organization is
within the business organization or not. The point that the figure makes explicit is that
the software process interacts with the business process. Therefore the nature of the
business process is likely to determine the required nature of the software process. For
example, in some contractual arrangements, the system requirements are documented
in detail and fixed. The appropriate software process for this context will be one where
the software process can deliver the requirements according to the contract at maxi-
mum profit. If however, the business processes, constraints and goals are ill defined,
dynamic or dependent on the software functionality, then a quite different process
model may be appropriate.

In this context, the appropriate software process is dependent on the business con-
text. This relationship might occur at a very high level such as a choice between a
waterfall methodology or an agile methodology, or it might occur at a lower level
such as a choice of requirements definition method, testing methods, architecture
evaluation methods and so on.

Fig. 2. The Software Process Modeling Context

The implication of this argument is that we need mechanisms to analyze the busi-
ness process, constraints and goals and to relate these to software process selection
decisions. One piece of empirical evidence that supports this argument is the work on
Ming Huo [2]. In her paper she investigates an organization that has a well-defined
software process model, implemented in an electronic process guide, and in regular use
in the corporation. In her work she extracts process enactment models form the time

14 R. Jeffery

recording system of the organization and compares the enacted model with the defined
model. The evidence shows that the process followed deviates from the defined model
significantly, thus supporting the argument that in certain circumstances the software
process model and the client business model need to interact in a dynamic fashion.
The adoption of agile methods provides a relatively informal approach to this adoption
process at lower levels of the software process. In another way, the proposal from the
economic-driven software development community (see for example publications in
the EDSER series of workshops) is reflecting a need to consider software process as a
set of activities that will be tailored to the business needs.

References

1. Jeffery, R. (Working Party Chair): Software Quality Accreditation in the Australian Con-
text. Report of the working party to the Australian Minister for Communications, Informa-
tion Technology and the Arts, February, (2005) 39 pp.

2. Huo, M., Zhang, H., Jeffery, R.:An exploratory study of process enactment as input to soft-
ware process improvement, to be published in Proceedings of the 4th Workshop on Software
Quality, Shanghai, May, (2006).

Q. Wang et al. (Eds.): SPW/ProSim 2006, LNCS 3966, pp. 15 – 38, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Assessing 3-D Integrated Software Development
Processes: A New Benchmark∗

Mingshu Li

State Key Lab of Computer Science and Lab for Internet Software Technologies,
Institute of Software at Chinese Academy of Sciences,

No. 4 South Fourth Street, Zhong Guan Cun, Beijing 100080, China
mingshu@iscas.ac.cn

Abstract. The increasing complexity and dynamic of software development
have become the most critical challenges for large projects. As one of the new
emerged methodologies to these problems, TRISO-Model uses an integrated
three-dimensional structure to classify and organize the essential elements in
software development. In order to simulate and evaluate the modeling ability of
TRISO-Model, a new benchmark is created in this paper, called SPW-2006 Ex-
ample, by extending the ISPW-6 Example. It may be used to evaluate other
software process models, and/or to evaluate software organizations, software
projects and also software development processes, particularly 3-D integrated
software development processes. With the SPW-2006 Example and its evolution
for quantitative evaluation to 3-D integrated software development processes, a
new approach of TRISO-Model based assessment and improvement is enabled.

1 Introduction

Software Process Workshop (SPW) provides an annual forum for assessing current
and emerging software process capabilities, and for obtaining insights into worthwhile
directions in software process research. TRISO-Model (TRidimensional Integrated
SOftware development Model), presenting a 3-D integrated software engineering
methodology, was proposed in the SPW 2005 held in Beijing, China [1]. Its main
objective is to deal with the problems caused by the increasing complexity and dy-
namic in current software development projects.

Process simulation is an effective mechanism for the study of the complexity and
dynamic of software development processes and has attracted the focus of both re-
search and industry communities. An expression of the attraction is the annual work-
shop on software process simulation modeling (ProSim) from 1998, a leading event
for the simulation and modeling of software processes. In May 2006, ProSim will be
held jointly with SPW in Shanghai, China, co-locating with ICSE 2006.

A software process benchmark is used to understand the current status of a soft-
ware project, to evaluate its modeling or the current practice gaps to the benchmark,
and to identify further process improvement opportunities. An assessment is used to
examine a software organization’s processes against a reference model to determine

∗ Supported by the National Natural Science Foundation of China (Grant Number: 60573082).

16 M. Li

the processes’ capability or the organization’s maturity, and to meet its quality, cost,
and schedule goals.

In order to evaluate and improve integrated software development processes, this
paper puts forward a new process benchmark; and presents a new process assessment
and improvement approach.

The remainder of the paper is organized as follows. Section 2 summarizes the re-
lated work. Section 3 introduces TRISO-Model semantic specifications. Section 4
creates a new process benchmark SPW-2006 Example for effective evaluation of
integrated software development processes. Section 5 presents a new approach of
TRISO-Model based assessment and improvement. The paper is concluded in Section
6 with a summary and directions for future work.

2 Related Work

From the last 80s, some process modeling languages and corresponding tools, such as
Little-JIL [2] and ADELE-TEMPO [3], have been designed to provide precise and
comprehensive ways to represent various software process elements. Cost estimation
methods, such as COCOMO II [4] and Web-COBRA [5], are invented to gain better
predictability and quantitative control from the perspective of economics. Boehm’s
recent work on Value-Based Software Engineering [6] tries to further integrate value
considerations into all of the existing and emerging software engineering principles
and practices. The Personal Software Process (PSP) [7] and People Capability Matur-
ity Model (P-CMM) [8] stress the factor of people, and provide a guide towards de-
veloping, motivating, and organizing the work force.

As Reifer lists in [9], the top challenges for nowadays developments fall into a
large variety of interwoven areas such as technology, people, economy, change man-
agement and so on. CMMI [10] provides a framework covering most factors related
to software development. MBASE [11] proposes a framework for avoiding model
clash among different models (i.e. Process Model, Product Model, Property Model,
and Success Model) in software development.

In SPW2005, the latest achievements on integrating different aspects of software
development, besides TRISO-Model, are also presented by some researchers. Es-
tublier relates processes, software production and humans in a pyramid framework to
show and contrast the new and original potential uses of process technology [12].
Rombach proposes integrated software process & product lines (SPPL) [13] as a sys-
tematic way to choose both artifacts and processes needed for a given project. Oster-
weil [14] and Warboys [15] suggest different angle of views to integrate microprocess
and macroprocess, respectively.

A simulation model is a computational model that represents an abstraction or a
simplified representation of a complex dynamic system [16]. It offers the possibility
of experimenting with different management decisions. Kellner et al. cluster the many
reasons for using processes simulations into six categories of purpose, including [17]:
strategic management, planning, control and operational management, process im-
provement and technology adoption, understanding, and training and learning.

Continuous modeling and discrete modeling are the two main approaches to build
models in the simulation domain [18]. A continuous simulation model represents the

 Assessing 3-D Integrated Software Development Processes: A New Benchmark 17

interactions between key process factors, as a set of differential equations, where time
is increased step by step. On the other hand, discrete modeling is based on the meta-
phor of a queuing network, where time advances when a discrete event occurs. Con-
tinuous modeling and discrete modeling only enhance the analysis of some aspects of
the process, at a cost to other aspects [19]. A software process, however, shows both
discrete system aspects (start/end of an activity, reception/release of an artifact by an
activity) and continuous system ones (recourse consumption by an activity, percent-
age of developed product, percentage of discovered defects). It would be desirable to
use a continuous modeling for the dynamic environment, and a discrete one for tasks
and resources [20]. A combined model would allow investigation of the effects of
discrete resource changes on continuously varying productivity. There are some other
simulation techniques, like state based process models, rule based languages, petri
nets [21], and agent-based simulation [22].

A benchmark is a test or set of tests used to compare the performance of alternative
tools or techniques [23]. It usually has three components: motivating comparison, task
sample and performance measures. A proto-benchmark is a set of tests that is missing
one of these components. The most common proto-benchmarks lack a performance
measure and are sometimes called case studies or exemplars. These are typically used
to demonstrate the features and capabilities of a new tool or techniques. A software
process benchmark is an average reference value that the process statistically per-
forms in a given sector or a given region [24].

For the purpose of making comparisons between different software process tech-
nologies, the ISPW-6 Example [25] was proposed as a benchmark problem at the 6th
International Software Process Workshop. It has been used successfully to exam the
essential features of some main software process methods in the last 90s, e.g., OPSIS
[26] applies a view mechanism to graph-based process modeling languages of type
Petri-net; MVP-L1 [27] is oriented towards process-modeling-in-the-large to concen-
trate on the formalization of interrelations between individual processes; MERLIN
[28] uses a PROLOG-based language as a basis of the process definition. It was later
extended to incorporate teamwork and process change (ISPW-7)[29].

The ISPW-6 Example is mainly designed for assessing the software process mod-
eling approaches, and as a reasonable simplification, pays less attention to some other
software development critical factors. However, “change” is a much more complex
problem in real-world software development [30]. Because of the complexity, even
though the problem caused by requirements changes has been noticed quite a long
time ago, it is still one of the most frequent reasons for project failure. Nowadays the
paradigm has shifted to be driven by a set of interwoven factors, such as technology,
management, quality, knowledge, and economic considerations, so some extensions
should be made to the ISPW-6 Example from process-oriented perspective to a multi-
perspective framework. Relevant factors, such as economy, technology, and human,
as well as the interactions among these factors should be incorporated into the frame-
work.

SPEM (Software Process Engineering Metamodel) [31] is a software process mod-
eling standard put forward by OMG (Object Management Group). In SPEM, a com-
mon syntax and structure for software development process [32] is provided based on
the abstraction of process models such as RUP. As an extension of UML [33], SPEM
inherits the expressiveness and popularity. With the graphic notations, SPEM offers a

18 M. Li

comprehensive and documented view of the process model, which facilitates the
communication of process stakeholders.

As a standard proposed by OMG aiming to be the unified software process model-
ing language, SPEM is being widely accepted. However, as a description language,
the disciplines related to project management and analysis, process automation, etc.
have not been involved. Furthermore, the dynamic semantics has not been addressed
in SPEM.

MOF (Meta Object Facility) [34] is the meta-meta-model provided by OMG as the
unified standard for domain metamodeling, and it provides common abstract syntax
and semantic definition mechanism. MOF is suitable for constructing an integrated
model of multi-dimension factors. However, a metamodel constructed in the MOF-
based metamodeling method, as well as UML and SPEM, is an informal metamodel
which has no precise semantics. Thus it is necessary to map it into another description
using some formal method to reduce the ambiguity.

Figure 1 illustrates a segment (Review Design) of ISPW-6 Example represented by
SPEM.

Review Design

Modify Design

DesignSpec

Modify Code

Design Review Team

[Approved]

[Not approved] Approved
Design

Review
Feedback

WorkProduct

WorkDefinition

ProcessRole

SPEM Notations:

Fig. 1. Segment of ISPW-6 Example Represented by SPEM

CSP is developed by Hoare to address the concurrency and non-determinism in
computing systems [35]. The basic idea is that those systems can be readily decom-
posed into subsystems which operate concurrently and interact with each other as well
as with their common environment. As for the software process, Greenwood tenta-
tively introduces CSP as a tool to model the software process [36]. LOTOS, another
process algebra language similar to CSP, is employed to separate a whole software
process into several concurrent subprocesses executed by different actors in [37]. But
the actors and artifacts are just treated as communication channels, so it is difficult to
present more information about those elements.

Using CSP, the segment (Review Design) of ISPW-6 Example in Figure 1 can be
specified as follows:

 Assessing 3-D Integrated Software Development Processes: A New Benchmark 19

Fig. 2. Integrated Framework of TRISO-
Model

6

ISPW Part ModifyDesign|| ReviewDesign

ModifyDesign assigntodesigner designspec modifydesign

modifieddesign ModifyDesignLoop

ModifyDesignLoop assigntodesigner designspec reviewfeed

=
= → →
→ →

= → →

 (

back

modifydesign modifieddesign ModifyDesignLoop

ReviewDesign modifieddesign assigntoreviewteam reviewdesign

approved approveddesign reportmeasurementda

→ → →
= → → →

→ → |

)

ta SKIP

notapproved reviewfeedback ReviewDesign

→
→ →

3 TRISO-Model and Its Semantic Specifications

Based on the Technology-Process-Human triad conception and successful software engi-
neering methodologies in the past, TRISO-Model presents a 3-D integrated methodology
for software development processes, i.e.
software development processes should
be integrated improved from three
perspectives of technology, process, and
human. This expanded view incorporates
the benefits gained from integrations
among technologies, processes and
humans.

TRISO-Model classifies the essential
elements of the software development
process into three dimensions: SE
Technology, SE Process and SE Human.
From the viewpoint of TRISO-Model, a
software development process is thought of
as a process driven by the interactions
among the entities in the three dimensions.
The entities may be abstracted to the activities for SE Process, the actors for SE Human,
and the input/output artifacts for SE Technology respectively. The interactions are mod-
eled in Figure 2 as six integrations: (1) Development Integration; (2) Process Integration;
(3) Service Integration; (4) Data Integration; (5) Management Integration; and (6) Use
Integration. The former three are internal integrations; and the latter three are external
integrations.

3.1 Static Semantic Specification of TRISO-Model

The static semantics of TRISO-Model is represented by the elements of the entities in
the three dimensions and the relationships among them. A static structure of TRISO-
Model is shown as Figure 3.

Figure 4 illustrates the core concept of SPEM. The main idea is that a software
development process is a set of collaborations among ProcessRoles that perform
WorkDefinitions in which the WorkProducts are operated.

20 M. Li

Fig. 3. Static Structure of TRISO-Model

The metaclasses in SPEM, ProcessRole, WorkDefinition and WorkProduct, may
be viewed as the abstracted elements of human (or actor), process (or activity), and
technology (or artifact) in TRISO-
Model as shown in Figure 3. How-
ever, SPEM is over-simplified so that
it cannot provide enough support to
the integrated methodology. It has to
be extended to describe the elements
of entities in SE Human, SE Process
and SE Technology dimensions of
TRISO-Model and their relationships.

In TRISO-Model, an integrated
soft-ware development process is ex-
pected to relate to the three dimensions.
As an example shown in Figure 3, for each actor in the integrated process, there are
corresponding actors in SE Process, SE Technology and SE Human dimensions; and it
is the same with the activities and artifacts.

To support the idea stated above, we extend SPEM to Integrated SPEM (I-SPEM
for short; more details will be introduced in another paper) with the metaclasses en-
hanced in three dimensions of SE Human, SE Process, and SE Technology. I-SPEM
is defined as a M2 layer metamodel based on MOF, in which integrated elements in
three dimensions and their relationships are specified in a consistent method as illus-
trated in Figure 5.

WorkProduct

ProcessRole

0..n

1

0..n

responsible for

WorkDefinition

0..n

0..n

+input
0..n

0..n

use

0..n

0..n

+output

0..n

0..n

produce

0..n1

perform

0..n1

Fig. 4. Core Concept of SPEM

 Assessing 3-D Integrated Software Development Processes: A New Benchmark 21

Fig. 5. Illustration of Static Semantics of TRISO-Model

In I-SPEM, there are six integration packages defined with the same names corre-
sponding to Figure 2. The concepts and their relationships in three dimensions are
defined in three internal integration packages; the integrations among the dimensions
are defined in three external integration packages. The common elements and facili-
ties are defined in the Common Elements package.

MOF, the M3 layer meta-metamodel, provides a consistent semantic base for every
dimension specific metamodels in the framework of TRISO-Model. M1 layer models,
the lowest abstraction level, are the instances of I-SPEM and the combination of dis-
crete-type simulation, continuous-type simulation and analytical model. In Figure 5,
CMMI, COCOMO II and Waterfall model are chosen only as the examples for the
three dimensions. A different organization may have other choices. For instance, the
ISO 9001 may be chosen to replace the CMMI.

3.2 Dynamic Semantic Specification of TRISO-Model

The dynamic semantics of TRISO-Model is represented by the evolutions of the enti-
ties in the three dimensions, and the communications and/or the coordination among
them. A dynamic structure of TRISO-Model is shown as Figure 6. The activities,
actors, and artifacts are the essential entities of the corresponding SE Process, SE
Human, and SE Technology dimensions. Each entity has its own pattern of behaviors.
It may communicate with other entities in the same dimension and/or coordinate with
other entities in different dimensions through the synchronizations on some specific
events.

22 M. Li

Fig. 6. Dynamic Structure of TRISO-Model

In the dynamic semantics, all the entities of TRISO-Model are mapped to three
types of basic CSP processes, which are the activity, actor, and artifact processes. The
three processes representing the three dimensions are combined together and coordi-
nated by the synchronizations on some particular events. Each dimension is repre-
sented by a CSP process formed by the internal dimension integrations of the corre-
sponding type of basic CSP processes. It can be taken as an agent possessing the nec-
essary knowledge about how to evolve itself forward and having the exposed inter-
faces to synchronize with other dimensions.

Additionally, to make the content more comprehensible, all the illustrations pre-
sented in this section exclusively centralize on one problem, i.e., an abstracted soft-
ware development process. The process is composed of the “requirement” and “de-
sign” activities only. The “requirement” activity begins with the requirements analysis
and ends with outputting the requirements specification. In the “design” activity, the
requirements specification is firstly input and then the system is designed. These two
activities are sequentially arranged as those in the Waterfall lifecycle model. If the
“requirement” activity and “design” activity are represented by two CSP processes,
named Requirement and Design respectively, then the software development process can
be denoted as:

 : :DevelopemntProcess req Requirement;des Design= (1)

To fully describe TRISO-Model, several aspects should be considered as the exten-
sions on CSP, i.e. CSP Extensions for TRSIO Model (CTM for short; and will be dis-
cussed more in another paper). Firstly, CSP has to be extended to include asynchro-
nous communication. In CSP, Hoare has chosen synchronized communications as
basic. The synchronized communication means that a receiver blocks until a compati-
ble agent is ready to send. Furthermore, CSP allows bi-party communications only.

 Assessing 3-D Integrated Software Development Processes: A New Benchmark 23

Expression (1) cannot be implemented based on the synchronized communications,
but it can be modeled by the following asynchronous communication. Secondly, in
order to model the across dimension collaboration of TRISO-Model, a collaboration
operator is needed. Two processes will be synchronized on the automatically inserted
dummy actions indicated by the operator. Finally, a process in CSP is the behavior
pattern of an entity. But the entity may have some attributes other than actions. In
CTM, a process is extended with attributes that can be accessed by other processes.

The extension of asynchronous communication does not change the rule that the
communications between processes are purely based on synchronizations. A buffer
process is implicitly introduced between two communicating processes. The existence
of the buffer process is transparent to the specifier. He or she can input or output any
object freely without the need to considering the synchronization between the inputs
and outputs. But the interactions among the inputting, outputting, and buffering proc-
esses are based on the synchronized communications. Here we recur to a set process
to ease some constraints imposed by the buffer process. The set process, acting as the
storage media, is one component of the environment. A set process based on the sub-
ordination operator is presented in [38].

Let the operator, !!, represent the asynchronous output. When using this operator,
the specified object will be put into the set used for containing the artifacts of a soft-
ware development process.

A CTM process outputting something to the environment can be set as:

!!Re CTM requirementanalysis requirementspec SKIPquirement = → → (2)

where the subscript
CTM

 means that the expression uses some notations that are de-

fined in the CTM.
The above expression can be equivalently expressed in CSP notations as:

()
(: //

. !)
CSP set SETRequirement

requirementanalysis set add requirementspec SKIP

=

→ →

where SET represents the set process and add is the channel used for inserting an ob-
ject into the set.

Let the operator, ??, represent the asynchronous input. It means that the process
needs an input from the buffered set process. As an example, the design activity may
use the requirementspec produced in (2):

?? !CTM requirementspec y design SKIPDesign = → → (3)

where, ?? !requirement y means retrieve requirementspec from the set process and put the
result into the variable y . (3) can also be described in CSP notations as:

(: //

(. ! . ?))
CSP set SETDesign

set isin requirementspec set result y design SKIP

=
→ → →

where isin is a channel used for retrieving an object and the result can be got from the
result channel. A minor change may be made on the definition of the set process pre-
sented in [38]. A NIL or a referenced object should be returned from the result channel
instead of a Boolean value. When the needed object requirementspec does not exist, the
set process returns NIL. The inputting process will be blocked and retested later.

24 M. Li

The three dimensions are represented by CTM processes in TRISO-Model. The
software development process is the combination of the three processes. It is the syn-
chronizations among the three processes that seamlessly integrate the three dimen-
sions. In the dynamic semantics of TRISO-Model, the alphabets of the three dimen-
sions are not obliged to have common actions. Thus each dimension can be separately
defined in a divide-conquer strategy. The synchronization is carried out on the auto-
matically inserted dummy actions. It is implemented by the following collaboration
operator.

The operands of the collaboration operator are two CTM processes. The operator,
modeling the external integrations of TRISO-Model, is denoted as:

:{ 1, 2 ,...}synchronizationname label labelΘ

where
 the name of the synchronization

{{ 1, 2},...} a set of synchronized points

{ 1, 2} a tuple representing a point

1, 2 the lable o

synchronizationname

label label

label label

label label f the subprocesses that

 should be synchronized in the operands

This operator ensures that each step of the two processes is synchronized on the
automatically inserted dummy actions.

As examples, two processes are defined as:

1; 2; 3 ,and 1; 2; 3P P P P Q Q Q Q= =

then,

:{{ 1, 1},{ 3, 3}}

((1. . 1 1: 1); 2;(3. . 3 3 : 3)) ||

((1. . 1 1: 1); 2;(3. . 3 3 : 3))

utilize p q p qP Q

p uitilize q p P P p uitilize q p P

p uitilize q q Q Q p uitilize q q Q

=Θ
→ →
→ →

Here the representation of a dummy action is composed of the corresponding sub-
processes, the name of synchronization, and the dots. But this does not violate the
atomic property of an action in CTM.

It should be noted that two successive collaboration operators are syntactically le-
gitimate. The synchronization points are the unions of the two operators. In this sense
the two operators meet the communicative law.

4 3-D Integrated Software Engineering Process Benchmarking

As stated in Section 2, ISPW-6 Example is not competent in the face of the complex
system nowadays, in which multi-dimension issues have to be considered. As the
extension and improvement to ISPW-6 Example, we design a new benchmark, a 3-D
Integrated Software Engineering Modeling Example Problem. It may be used to
evaluate the emerging integrated software development models/methodologies like
TRISO-Model. In correspondence with ISPW-6 Example, it could be called SPW-
2006 Example in this paper.

 Assessing 3-D Integrated Software Development Processes: A New Benchmark 25

4.1 SPW-2006 Example Problem

Extended from ISPW-6 Example, the SPW-2006 Example focuses on the various
aspects that are affected by a change caused by a requirements change request. These
aspects include not only the engineering process, but also the management process,
support process, process improvement process, and so on. SPW-2006 Example ex-
tends ISPW-6 Example by:

 Expanding the problem to an integrated software development scenario in which
process, technology, and human are all essential factors.

 Generalizing steps to activities; refining organizations to actors.
 Classifying steps into two categories, component activities that may occur step

by step such as Review Design and ongoing activities that keep on going as Con-
figuration Management

 Adding more steps/activities that may occur concurrently
 Adding more actors for expanding the organizational scope from development to

the whole organization
 Extending constraints to interactions

In the following description, we use Italic font to differentiate the added or modi-
fied elements from those of ISPW-6 Example.

 Activities
♦ Component Activities

 Requirements Change Decision
 Technical Solution Decision
 Integration Test
 Schedule and Assign Tasks
 Modify Design
 Review Design
 Modify Code
 Modify Test Plans
 Modify Unit Test Package
 Test Unit

♦ Ongoing Activities
 Configuration Management
 Cost Estimation
 Project Management (extended from “Monitor Progress” in ISPW-6

Example)
 Measurement and Improvement (including “Process Change” in

ISPW-7 extension)
 Training
 Knowledge Management and Reuse

 Actors
♦ SEPG
♦ CCB (Configuration Control Board)

 SCM

26 M. Li

♦ Project Team
 SQA (extended from “QA engineers” in ISPW-6 Example)
 Knowledge Engineer
 Estimation Expert
 Requirements Engineer
 Project manager
 Design engineers
 Software engineers

♦ User Representative
♦ Trainer

 Artifacts
♦ Input + Source (Artifact, Actor, or Activity) + Physical communication

mechanism
♦ Output + Destination (Artifact, Actor, or Activity) + Physical communica-

tion mechanism
 Interactions (extended from “Constraints regarding step sequencing” in

ISPW-6 Example)
♦ Teamwork (as mentioned in ISPW-7 extensions)
♦ Integration

Fig. 7. Segment of SPW-2006 Example Represented by I-SPEM

 Assessing 3-D Integrated Software Development Processes: A New Benchmark 27

Table 1. From ISPW-6 Example to SPW-2006 Example

 ISPW-6 Example SPW-2006 Example
DesignReviewTeam
KnowledgeEngineer

Actor DesignReviewTeam

EstimationExpert
ReviewDesignSpec
ReviewDesignTech

Activity ReviewDesign

ReviewDesignCapability
DesignSpec
DesignTech

Artifact DesignSpec

DesignCapability

In order to highlight the extension we made in SPW-2006 Example, comparing to
ISPW-6 Example in Figure 1, we also use Review Design as the segment example in
this section. Using I-SPEM, the problem is considered in the three dimensions of
TRISO-Model, as shown in Figure 7. The Actor, Activity and Artifact are all expanded
to groups of corresponding elements involved in the three dimensions. The mapping
of these elements, from 1-D to 3-D, is illustrated in Table 1.

Using CTM, the dynamic semantics of the segment around the Review Design ac-
tivity for the SPW-2006 Example is presented as follows:

_ 2006 ; ;

 _ 2006 ;

SPW Part ModifyDesign ReviewDesign

SKIP approved SPW Part ModifyCode

=

A design is firstly modified and then the modified design is reviewed. If the modi-
fied design is not approved, the design should be modified again. Otherwise the
source code will be changed according to the approved design.

An activity in TRISO-Model is described from the three dimensions. The follow-
ing three processes are used for modeling an activity:

 describing the actions taken out by the activity;

 describing the involved actors;

 describing the involved artifacts;

ProcessActivity

HumanActivity

TechnologyActivity

 (4)

As for the Review Design activity, the processes in (4) can be correspondingly de-
fined as:

: ; : ;

 :

: ; : ;

ProcessReviewDesign rds ReviewDesignSpec rdt ReviewDesignTech

rdc ReviewDeisignCapability

HumanReviewDesign drt DesignReviewTeam ke KnowledgeEngineer

=

=
 :

: ; : ;

 :

ee EstimatonExpert

ArtifactReviewDesign desspec DesignSpec dt DesignTech

dc DesignCapability

=

 (5)

Firstly, the SE Process and SE Human dimensions are combined together through
the Management Integration. We have,

:{{ , },{ , },{ , }}MI rds drt rdt ke rdc ee

ReviewDesignMI

ProcessReviewDesign HumanReviewDesign= Θ

Then the ArtifactsReviewDesign process integrates this above process through the Data
Integration and the Use Integration. Thus the Review Design activity is modeled as:

28 M. Li

:{{ , },{ , },{ , }} :{{ , },{ , },{ , }}

UI desspec drt dt ke dc ee DI desspec rds dt rdt dc rdc

ReviewDesign ArtifactReviewDesign

ReviewDesignMI

=

Θ Θ

It should be noted that the order of the application of the three external integrations
does not matter.

4.2 Evaluations with the SPW-2006 Example

S.Fogle et al proposed six phases of a benchmarking project [39]: project initiation,
planning, benchmarking partner identification, data collection, data analysis, and
reporting. D.Card and D.Zubrow summarized three critical factors to success [40]:
well-defined objectives, careful planning and cautious interpretation. The SPW-2006
Example benchmarking may be conducted according to the following three steps:

(1) Planning: decompose the benchmarked object into the corresponding or rela-
tive elements in SPW-2006 Example, based on its evaluation goals;

(2) Benchmarking: compare the decomposed elements with those in SPW-2006
Example;

(3) Evaluating: analyze the benchmarked object’s similarities and differences
with SPW-2006 Example and report the result.

As defined in section 4.1, the SPW-2006 Example benchmark includes 4 aspects,
31 elements. We use three levels of satisfactions to identify the current practice gaps
to the SPW-2006 Example benchmark: Not Satisfied (N), Partially Satisfied (P) and
Fully Satisfied (F). A benchmarked element at N or P level indicates a further soft-
ware development process improvement opportunity.

Table 2 illustrates the SPW-2006 Example evaluation result to TRISO-Model. All
the decomposed elements in TRISO-Model are Fully Satisfied (F) in comparison with
the elements in the SPW-2006 Example benchmark. It shows that TRISO-Model is a
good model to describe 3-D integrated software development processes.

Like the ISPW-6 Example, the SPW-2006 Example is originally designed for as-
sessing the software process modeling approaches, particularly for the evaluation of
an integrated software development process model, i.e., TRISO-Model. Furthermore,
it expands the problem from one dimension of process to an integrated software de-
velopment scenario in which three dimensions of process, technology, and human are
all essential factors. Thus, it also may be used to evaluate software organizations,
software projects and software development processes.

Table 2 also shows the evaluation results to other models for software develop-
ment processes, CMM [41]/CMMI [10], ISO 9001[42], and SEPRM[43], with the
SPW-2006 Example. In Table 2, many elements of the ISO 9001 standard is labeled
with Partially Satisfied (P) or Not Satisfied (N) for the reason that the corresponding
elements are just discussed in a broad sense. The difference between TRISO-Model
and the other two ones is minor. However, from an analysis to the similarities and
differences between each one-to-one element in the benchmarked object and SPW-
2006 Example, a consensus conclusion should be reached that the CMM/CMMI is
suitable for a software process integrated process, project and engineering manage-
ment, but not suitable for detailed technological support, knowledge-based solution
and cost estimation; ISO 9001 is suitable for a general process control, but not

 Assessing 3-D Integrated Software Development Processes: A New Benchmark 29

Table 2. Evaluations with the SPW-2006 Example

SE
PR

M

ISO

9001

C
M

M
/

C
M

M
I

T
R

IS
O

-
M

odel

F P F F Requirements Change Decision
 P P P F Technical Solution Decision

F F F F Integration Test
F F F F Schedule and Assign Tasks
F P F F Modify Design
F P F F Review Design
F P F F Modify Code
F P F F Modify Test Plans
F P F F Modify Unit Test Package
F P F F Test Unit

C
om

ponent A
ctivities

F P F F Configuration Management
F N F F Cost Estimation
F F F F Project Management
F P F F Measurement and Improvement
F F F F Training
P N P F Knowledge Management and Reuse

O
ngoing A

c-
tivities

A
ctivities

F N F F SEPG
F P F F SCM CCB
F P F F SQA
N N N F Knowledge Engineer
P N P F Estimation Expert
F F F F Requirements Engineer
F F F F Project manager
F F F F Design engineers
F F F F Software engineers

P
roject T

eam

F F F F User Representative
F F F F Trainer

A
ctors

F F F F Input + Source + physical communication
mechanism

F F F F Input + Destination + physical communication
mechanism

A
rtifacts

F P F F Teamwork

F P F F Integration

Interactions

SPW
-2006 E

xam
ple B

enchm
ark

Not Satisfied (N), Partially Satisfied (P), and Fully Satisfied (F)

30 M. Li

suitable for specific software process management; SEPRM is a very good software
engineering process reference model integrated 3 process subsystems of organiza-
tion, development and management, but still lack of enough support to technology,
knowledge and economy. TRISO-Model is a fully support reference model for inte-
grated software development processes from the three most important dimensions of
process, technology, and human naturally.

TRISO-Model has many unique features that are beneficial to the performance,
analysis, and improvement of software processes. In TRISO-Model, the interrelation-
ships among the elements of the software development process entities can be repre-
sented in I-SPEM, which includes more stereotypes and suits the convenience of mod-
elers; and all the entities are uniformly described in their behavior patterns and are
mapped onto activity, artifact, and actor in three dimensions through CTM, which
guides the performance of development processes with rigorous operational seman-
tics. New techniques for the analysis of software processes can be put forward based
on the formalism. With the description of artifacts, the technical factors that trans-
form the user requirement into the final product are covered in TRISO-Model. As
human constitutes the major part of the cost of a project, various models for meas-
urement and cost estimation can be integrated into the model through the modeling of
actor.

In a simulated world, SPW-2006 Example benchmarking only adopts pass/fail
strategy. Some parts of SPW-2006 Example may be changed to a quantitative way for
real applications, e.g., “Measurement and Improvement” element was developed to an
effective measurement method [44], which can be used to help identifying, analyzing,
and solving the problems arising during the development processes.

In terms of the seven desiderata for successful benchmarks presented by Sim et al.
in [23], the SPW-2006 Example fared very well as follows: (1) Accessibility: the
SPW-2006 Example is an extended ISPW-6 Example and easily to be understood, to
be found and to be used. (2) Affordability: people may use it to have an overall as-
sessment to integrated software development processes. The costs are caused by hu-
man efforts and tools support, depending on how details the assessment needs to be.
(3) Clarity: SPW-2006 Example is clear enough to describe software development
processes through the elements in the three necessary aspects of activities, actors,
artifacts and their interactions. (4) Relevance: it can be used to assess not only a gen-
eral software development process, but also some specific software engineering proc-
esses like requirement engineering, software measurement. (5) Solvability: it is a
good example to evaluate other software process models, and/or to evaluate software
organizations, software projects and also software development processes, particu-
larly 3-D integrated software development processes. (6) Portability: it is of course
easy to be implemented at a variety of platforms. (7) Scalability: it is an extended
version of ISPW-6 Example and definitely may be further extended to more compli-
cated examples or even to a commercial product.

5 TRISO-Model Based Assessment and Improvement

The purpose of the assessment process is to efficiently find evidence of key process
areas and identify areas for improvement [45]. The essential process activities are:

 Assessing 3-D Integrated Software Development Processes: A New Benchmark 31

plan the assessment, distribute assessment material, prepare for assessment meeting,
conduct assessment, make changes for improvement, and follow-up. The input to an
assessment is the work item (project) to be scrutinized, the relevant checklists enu-
merating the types of key process areas to be identified, and other documents such as
procedures and standards. The output of an assessment is firstly the log of the key
process areas uncovered and secondly the areas for improvement and thirdly a sum-
mary report showing the score.

Several software process assessment models have been developed, such as
CMM/CMMI, ISO 9001, ISO/IEC 15504 [46], and SEPRM.

5.1 TRISO-Model Based Assessments

There are two kinds of TRISO-Model based assessments: TRISO-Model Qualitative
Assessment and TRISO-Model Quantitative Assessment.

The TRISO-Model Qualitative Assessment provides a checklist-based assessment
method. It is also a kind of benchmark-based assessment. The benchmark is SPW-
2006 Example in this paper. By comparing each element in the given software devel-
opment process with the one in SPW-2006 Example, a pass/fail checklist will be given
and the final assessment result will be made according to the pass/fail information. It
is a very simple assessment methodology. It may be used to evaluate whether an as-
sessed integrated software development process is well defined or not. But it is not
helpful in step-by-step process improvement.

The TRISO-Model Quantitative Assessment provides a flexible software develop-
ment process assessment method, based on the evaluation to integrated capability
maturity levels. It may be written in a triplet as follows:

TRISO-Model Quantitative Assessment = (PCM Level, TCM Level, HCM Level)

where PCM represents Process Capability Maturity, TCM represents Technology
Capability Maturity and HCM represents Human Capability Maturity. The PCM
Level, TCM Level and HCM Level mean its process capability maturity level or status,
technology capability maturity level or status, and human capability maturity level or
status, respectively, in an integrated software development process for a software
organization or a software project.

Each of capability maturities in the TRISO-Model three dimensions may be mod-
eled as some available assessment model or a new assessment model. The integration
of the three assessment models will be the TRISO-Model quantitative assessment
model.

Based on CMM/CMMI and P-CMM for PCM Level and HCM Level respectively,
this section presents a TRISO-Model Quantitative Assessment Reference Model. Ac-
cordingly, there are five defined maturity levels in PCM Level: Initial focuses on
competent people and heroics (1), Repeatable focuses on basic project management
(2), Defined focuses on process standardization (3), Managed focuses on quantitative
management (4) and Optimizing focuses on continuous process improvement (5); and
five defined maturity levels in HCM Level: Initial initiates no processes (1), Repeat-
able focuses on establishing basic workforce practices and eliminating problems that
hinder work performance (2), Defined addresses organizational issues, as the organi-
zation tailors its defined workforce practices to the core competencies required by its

32 M. Li

business environment (3), Managed focuses on building competency-based teams and
establishing a quantitative understanding of trends in the development of knowledge
and skills and in the alignment of performance across different levels of the organiza-
tion (4) and Optimizing covers issues that both the organization and individuals must
address in implementing continuous improvements in their capability (5).

Here we define the maturity levels in TCM Level on our own, also five levels to
match PCM Level and HCM Level: Initial initiates software development (1), Repeat-
able focuses on establishing necessary domain knowledge support (2), Defined ad-
dresses technology standardization and tool support (3), Managed emphasizes tech-
nology innovation and management (4) and Optimizing aims at a technological lead-
ership and continuous technology improvement (5).

Thus, an assessment result based on TRISO-Model Quantitative Assessment Refer-
ence Model will be the three numbers combination of the triplet between (1, 1, 1) and
(5, 5, 5). For an example, an assessment result (4, 3, 4) means that the assessed software
development process achieved an integrated level (4, 3, 4), with Managed process capa-
bility maturity level, Defined technology capability maturity level and Managed human
capability maturity level, respectively. It performed a quantitative process management,
used development tools support and possessed a good qualified team.

Table 3 shows a TRISO-Model based assessment form. The TRISO-Model Quanti-
tative Assessment evaluates the assessed software development process from the three
dimensions of Process Capability Maturity (PCM) Level (1-5), Technology Capabil-
ity Maturity (PCM) Level (1-5) and Human Capability Maturity (PCM) Level (1-5),
by assessing the six integrations as shown in Figure 2. It can be conducted through
three steps as follows.

Table 3. TRISO-Model Based Assessment Form

TRISO-Model Quantitative Assessment
PCM Level

(1-5)
TCM Level

(1-5)
HCM Level

(1-5)
Process Integration — —
Development Integration — —
Service Integration — —
Data Integration —
Management Integration —
Use Integration —
Assessment Result

Firstly, it assesses the three internal integrations of Process Integration, Develop-
ment Integration and Service Integration.

Secondly, it assesses the three external integrations of Data Integration, Manage-
ment Integration and Use Integration. To assess Data Integration, factors in both
process dimension and technology dimension have to be taken into account; and it is
similar with Management Integration and Use Integration.

Finally, it accounts the assessment result to each dimensional capability maturity
level, i.e., achieving the result of Process Capability Maturity (PCM) Level by

 Assessing 3-D Integrated Software Development Processes: A New Benchmark 33

accounting the three assessment scores of the internal Process Integration and the two
relative external Data Integration and Management Integration; it is the same with
the Technology Capability Maturity (TCM) Level and the Human Capability Maturity
(HCM) Level.

From the viewpoint of model framework structures, Wang and Bryany observe the
current assessment methods as three types [47]: (1) Checklist-based assessment, i.e., a
software process assessment method that is based on a pass/fail checklist for each prac-
tice and process specified in a process model. The ISO 9001 model provides a checklist-
based assessment method. (2) 1-D process-based assessment, i.e., a software process
assessment method that determines a software development organization’s capability
from a set of processes in a single process dimension. CMM is an example of 1-D as-
sessment models. (3) 2-D process-based assessment, i.e., a software process assessment
method that employs both process and capability dimensions in a process model, and
derives process capability by evaluating the process model against the capability model.
ISO/IEC 15504 and SEPRM are examples of 2-D assessment models.

As the above discussions, the TRISO-Model Qualitative Assessment is a checklist-
based assessment method; and the TRISO-Model Quantitative Assessment presents a
new type of assessment method, i.e., a kind of “3-D” process-based assessment from
the three dimensions of process, capability (human in TRISO-Model) and technology.

5.2 Improving 3D Integrated Software Development Processes

There are three key categories of philosophies underpinning software process im-
provement [47]: (1) Goal-oriented process improvement, i.e., a software process im-
provement approach by which process system capability is improved by moving to-
wards a predefined goal, usually a specific process capability level. It is simple and
the most widely adopted software engineering philosophy. ISO 9001 provides a
pass/fail goal; CMM, ISO/IEC 15504, and SEPRM provide a 5/6-level capability
goal. (2) Benchmark-based process improvement, i.e., a software process improve-
ment approach by which process system capability is improved by moving towards an
optimum combined profile according to software engineering process benchmarks,
rather than a maximum capability level. It presents empirical indications of process
attributes. This approach provides an organization with sufficient margins of compe-
tence in every process. (3) Continuous process improvement, i.e., a software process
improvement approach by which process system capability is required to be improved
all the time, and toward ever higher capability levels. Using this approach, software
process improvement is a continuous, spiral-like procedure and there is no end to
process optimization. It provides a basis for sustainable long-term strategic planning.
The Deming Circle, plan-do-check-act, is a typical component of this philosophy.

Though there is a criticism that the goals for improvement are not explicitly stated
in continuous process improvement philosophy and top management has to make
clear the current goal, as well as the short, middle, and long-term ones, TRISO-Model
is principally a continuous improvement approach with some staged goals or bench-
marks to provide more precise assessment results.

There are three basic software process improvement methods [47]: (1) Assessment-
based improvement, i.e., a software process improvement method in which a process
system can be improved by basing its performance and capability profile on either a

34 M. Li

model-based or a standard-based assessment. Using this approach, the processes in-
herent in a software development organization are improved, according to a process
system model with step-by-step suggestions like CMM, or a standardized process
system model like ISO/IEC 15504. (2) Benchmark-based improvement, i.e., a soft-
ware process improvement method in which a process system can be improved by
basing its performance and capability profile on a benchmark-based assessment. Us-
ing this approach, the processes inherent in a software development organization are
improved according to a set of process benchmarks. SEPRM is a benchmarked model,
which provides an optimized and economical process improvement solution. (3) Inte-
grated improvement, i.e., a combined model-based and benchmark-based software
process improvement method in which a process system can be improved by basing
its performance and capability profile on a integrated model-based and benchmark-
based assessment. Using this approach, the processes inherent in a software develop-
ment organization are improved according to a benchmarked process system model.
SEPRM is designed to support integrated model- and benchmark-based process im-
provement, which inherits the advantages of both absolute and relative software proc-
ess improvement methods.

TRISO-Model basically is a model-based process improvement methodology, but
also it may introduce some benchmark-based improvement, and then to be an inte-
grated improvement.

The conventional goal-based process assessment and improvement technologies
have been widely accepted. However, its philosophy of “the higher the better” has
been questioned in practice [24]. The determination of target capability levels for
specific organization tends to be virtual, infeasible, and sometimes overshoot.
Benchmark-based process assessment and improvement supports the philosophy of
“the smaller the advantage, the better”. CMMI continuous representation offers a
flexible approach to process improvement [10]. An organization may choose to im-
prove the performance of a single process-related trouble spot, or it can work on sev-
eral areas that are closely aligned to the organization’s business objectives; and to
improve different processes at different rates.

TRISO-Model presents a new integrated improvement method. It adopts the phi-
losophy of “the smaller the integrated goal, the better”. The target capability maturity
levels of given software development processes will be set relative to the next inte-
grated goal, rather than to the virtually highest level as in a goal-based process as-
sessment and improvement, or to the benchmarks of the software industry as in a
benchmark-based process assessment and improvement.

For the given assessment result example (4, 3, 4) in section 5.1, it is a very good
software organization if it focuses on international outsourcing. However, when it
would like to evolve into a software product vendor, i.e., developing its own innova-
tive technology or product, it has to improve its technology capability maturity firstly.

TRISO-Model is not only suitable for process improvement from process scope to
project and organization scopes because it may provide precise measurement for
every process at all the capability levels like ISO/IEC 15504 and SEPRM, but also
very important for process improvement in technology scopes because it may provide
advanced software technologies support to either software development processes for
higher capability levels, or the project or organization’s schedule/budget control.

 Assessing 3-D Integrated Software Development Processes: A New Benchmark 35

As a simulation-based research up to now, also, more work is needed to mature the
overall approach in order to make it a reliable, cheap, and easy-to-apply support tool
for decision makers in software process improvement programmes, as Pfahl and Birk
indicated in [48].

6 Conclusions and Future Work

TRISO-Model is developed to improve software development practices in the current
complex and dynamic environment by describing and managing the elements contrib-
uting to project success in three interactive dimensions, i.e. SE Human, SE Process,
SE Technology, and their integrations. With TRISO-Model, various aspects of pro-
jects, such as people, tools, and processes, can be modeled and managed systemati-
cally. The static semantics and the dynamic semantics of TRISO Model are specified
by an extension of SPEM, I-SPEM; and by an extension of CSP, CTM, respectively.
New techniques for the analysis of software development processes can be put for-
ward based on the formalism.

In order to simulate and evaluate the modeling ability of TRISO-Model, we create
a new process benchmark, SPW-2006 Example, by extending the ISPW-6 Example.
Unlike the process-centered ISPW-6 Example, the SPW-2006 Example is not oriented
to any specific single aspect of software development but it incorporates more aspects
by adding more elements and interactions. It may be used to evaluate other software
process models, and/or to evaluate software organizations, software projects and also
software development processes, particularly 3-D integrated software development
processes. The evaluation shows that the TRISO-Model approach is effective in mod-
eling and managing different aspects and their complex interactions in today’s soft-
ware development.

With the SPW-2006 Example and its evolution for quantitative evaluation to 3-D
integrated software development processes, we present two kinds of TRISO-Model
based assessments: TRISO-Model Qualitative Assessment and TRISO-Model Quanti-
tative Assessment. It enables a new integrated improvement method for software de-
velopment processes.

The TRISO-Model Qualitative Assessment provides a checklist-based assessment
method. It may be used to evaluate whether an assessed integrated software develop-
ment process is well defined or not, based on the SPW-2006 Example benchmark. The
TRISO-Model Quantitative Assessment provides a flexible software development
process assessment method, based on the evaluation to integrated capability maturity
levels of process, technology and human. It may be used in an integrated environ-
ment, as a continuous improvement approach with some staged goals or benchmarks
to provide more precise assessment results.

Last, but not least, from the viewpoint of end-users (consumers) or investors (pro-
ducers), software is always viewed as a true investment, not just a development activ-
ity, and therefore is evaluated in terms of the value created rather than only the func-
tionality delivered. Thus, all the 3-D software development process assessment and
improvement should be mapped into the return on investment (ROI) factor finally
[49]. It is of course the next direction for further research.

36 M. Li

Acknowledgements

The presentation was supported partly by the National Natural Science Foundation of
China (Grant Number: 60573082). Also, I appreciate all the help offered by my col-
leagues (particularly to Qing Wang, Yongji Wang and Chen Zhao) and students (spe-
cially to Feng Yuan, Qiusong Yang, Jizhe Wang and Da Yang) in the Lab for Internet
Software Technologies, Institute of Software at Chinese Academy of Sciences.

References

1. M.Li: Expanding the Horizons of Software Development Processes: A 3-D Integrated
Methodology. In: Mingshu Li, Barry Boehm and Leon J. Osterweil (eds.), Unifying the
Software Process Spectrum, Software Process Workshop (SPW2005; May 25-27, 2005).
LNCS 3840, Springer-Verlag (2005) 54-67

2. A.Wise et al.: Using Little-JIL to Coordinate Agents in Software Engineering. In: Proc. of
the Automated Software Engineering Conf. (2000) 155-163

3. N.Belkhatir et al.: Adele/Tempo: An Environment to Support Process Modeling and Enac-
tion. In: A.Finkelstein et al., Software Process Modelling and Technology, John Wiley &
Sons, Inc. (1994) 187-217

4. B.W.Boehm et al.: Software Cost Estimation with COCOMO II. Prentice-Hall (2000)
5. M.Ruhe, R.Jeffery and I.Wieczorek: Cost Estimation for Web Applications. In: Proc. of

25th Int. Conf. on Software Engineering (ICSE 25) (2003) 270-279
6. B.Boehm and A.Jain: An Initial Theory of Value-Based Software Engineering. In: A. Au-

rum et al.(eds.): Value-Based Software Engineering. Springer-Verlag (2005)
7. W.S.Humphrey: Introduction to the Personal Software Process. Addison-Wesley (1997)
8. B.Curtis et al.: People Capability Maturity Model. Addison-Wesley (2001)
9. D.Reifer: Ten Deadly Risks in Internet and Intranet Software Development. IEEE Soft-

ware, March/April (2002) 12-14
10. M.B.Chrissis et al.: CMMI: Guidelines for Process Integration and Product Improvement.

Addison-Wesley (2003)
11. B.Boehm and D.Port: Balancing Discipline and Flexibility with the Spiral Model and

MBASE. Crosstalk, Vol.11(12) (2001) 23-28
12. J.Estublier: Software are Processes Too. In: Mingshu Li, Barry Boehm and Leon J. Oster-

weil (eds.), Unifying the Software Process Spectrum, Software Process Workshop
(SPW2005; May 25-27, 2005). LNCS 3840, Springer-Verlag (2005) 25-34

13. H.D.Rombach: Integrated Software Process & Product Lines. In: Mingshu Li, Barry Boehm
and Leon J. Osterweil (eds.), Unifying the Software Process Spectrum, Software Process
Workshop (SPW2005; May 25-27, 2005). LNCS 3840, Springer-Verlag (2005) 83-90

14. L.J.Osterweil: Integrating Microprocess and Macroprocess Software Research. In: Ming-
shu Li, Barry Boehm and Leon J. Osterweil (eds.), Unifying the Software Process Spec-
trum, Software Process Workshop (SPW2005; May 25-27, 2005). LNCS 3840, Springer-
Verlag (2005) 68-74

15. B.Warboys: Active Models: A Possible Approach to the Integration of Objective and Sub-
jective Process Models. In: Mingshu Li, Barry Boehm and Leon J. Osterweil (eds.), Unify-
ing the Software Process Spectrum, Software Process Workshop (SPW2005; May 25-27,
2005). LNCS 3840, Springer-Verlag (2005) 100-107

16. M.Ruiz et al.: A Dynamic Integrated Framework for Software Process Improvement.
Software Quality Journal, 10 (2002) 181-194

 Assessing 3-D Integrated Software Development Processes: A New Benchmark 37

17. M.I.Kellner, R.J.Madachy and D.M.Raffo: Software Process Simulation Modeling: Why?
What? How? Journal of Systems and Software, 46 (2/3) (1999) 91-105

18. M.Ruiz et al.: Using Dynamic Modeling and Simulation to Improve the COTS Software
Process. In: F.Bomarius and H.Iida (eds.), PROFES 2004. LNCS 3009, Springer-Verlag
(2004) 568-581

19. P.Donzelli and G.Iazeolla: Hybrid Simulation Modeling of the Software Process. Journal
of Systems and Software, 59 (2001) 227-235

20. R.H.Martin and D.Raffo: A Model of the Software Development Process Using both Con-
tinuous and Discrete Models. Software Process Improvement and Practice, 5 (2000) 147-
157

21. H.Neu and U.Becker-Kornstaedt: Learning and Understanding a Software Process through
Simulation of its Underlying Model. In: S.Henninger and F.Maurer (eds.), LSO 2002.
LNCS 2640, Springer-Verlag (2002) 81-93

22. N.David et al.: Towards an Emergence-Driven Software Process for Agent-Based Simula-
tion. In: J.S.Sichman et al. (eds.), MABS 2002. LNAI 2581, Springer-Verlag (2003) 89-
104

23. S.E.Sim et al.: Using Benchmarking to Advance Research: A Challenge to Software Engi-
neering. In Proc. of the 25th Int. Conf. on Software Engineering (2003) 74-83

24. Y.Wang and G.King: A New Approach to Benchmark-Based Process Improvement. In:
Proc. of European Software Process Improvement 2000 (2000) 140-149

25. M.I.Kellner et al.: ISPW-6 Software Process Example. In Proc. of the First Int. Conf. on
Software Process. IEEE Computer Society Press (1991) 176-186

26. D.Avrilionis et al.: OPSIS: A View Mechanism for Software Processes which Supports
their Evolution and Reuse. In Proc. of the 18th Int. Conf. on Software Engineering (1996)
38-47

27. C.M.Lot and H.D.Rombach: A MVP-L1 Solution for the Software Process Modeling
Problem. In Proc. of 6th Int. Software Process Workshop (ISPW 6) (1990)

28. G.Junkermann et al.: Merlin: Supporting Cooperation in Software Development through a
Knowledge-based Environment. In Software Process Modelling and Technology. John
Wiley & Sons, Inc. (1994) 103-127

29. N.Belkhatir, J. Estublier and W.L.Melo: Software Process Modeling in Adele: the ISPW-7
Example. In: Proc. of the 7th International Software Process Workshop (1991) 48 -50

30. F.P.Brooks: No Silver Bullet: Essence and Accidents of Software Engineering. Computer,
Vol.20(4) (1987) 10-19

31. OMG: Software Process Engineering Metamodel Specification, Version 1.1 (formal/2005-
01-06). (2005) (http://www.omg.org)

32. P.Kruchten: A Process Engineering MetaModel. (2001) (http://www.forsoft.de/zen/sdpp
02/papers/Kruc01.pdf)

33. C.Kobryn: UML 2001: A Standardization Odyssey. Communications of the ACM, 42(10)
(1999) 29-37

34. OMG: MOF Core Specification, Version2.0 (ptc/2003-10-04). (2003) (http://www.omg.
org)

35. C.A.R.Hoare: Communicating Sequential Processes. Prentice Hall International (1985)
36. R.M.Greenwood: Using CSP and System Dynamics as Process Engineering Tools. In

Proc. of the 2nd European Workshop on Process Technology (Trondheim, Norway, Sept.
7-8, 1992). Springer-Verlag (1992) 138-145

37. K.Yasumoto et al.: Software Process Description Using LOTOS and its Enaction. In Proc.
of the 16th Int. Conf. on Software Engineering (1994) 169-178

38. A.W.Roscoe: The Theory and Practice of Concurrency. Prentice-Hall Pearson (2005)

38 M. Li

39. S.Fogle et al.: The Benchmarking Process: One Team’s Experience. IEEE Software, Sep-
teber/October (2001) 40-47

40. D.Card and D.Zubrow: Benchmarking Software Organizations. IEEE Software, Septe-
ber/October (2001) 16-18

41. CMU SEI: The Capability Maturity Model Guidelines for Improving the Software Proc-
ess. Addison-Wesley, Pearson Education (1994)

42. International Standard: ISO 9001 Quality Management System – Requirements (2000)
43. V.Chiew and Y.Wang: Software Engineering Process Benchmarking. In: M.Oivo and

S.Komi-Sirvio (eds.), PROFES 2002. LNCS 2559, Springer-Verlag (2002) 519-531
44. Q.Wang and M.Li: Measuring and Improving Software Process in China. In: Proc. of 2005

International Symposium on Empirical Software Engineering (ISESE) (2005) 183-192
45. E.Gray et al.: An Incremental Approach to Software Process Assessment and Improve-

ment. Software Quality Journal, 13 (2005) 7-16
46. International Standard: ISO/IEC 15504 - 1-9, Software Process Assessment – Parts 1-9

(2000)
47. Y.Wang and A.Bryany: Process-Based Software Engineering: Building the Infrastructures.

Annals of Software Engineering, 14 (2002) 9-37
48. D.Pfahl and A.Birk, Using Simulation to Visualise and Analyse Product-Process Depend-

encies in Software Development Projects. In: F.Bomarius and M.Oivo (eds.), PROFES
2000. LNCS 1840, Springer-Verlag (2000) 88-102

49. K.E.Emam: The ROI from Software Quality. Auerbach Publications, Taylors & Francis
Group (2005)

Q. Wang et al. (Eds.): SPW/ProSim 2006, LNCS 3966, pp. 39 – 47, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Ubiquitous Process Engineering: Applying Software
Process Technology to Other Domains

Leon J. Osterweil

Laboratory for Advanced Software Engineering Research,
Department of Computer Science, University of Massachusetts, Amherst MA 01003 USA

ljo@cs.umass.edu

Abstract. Software engineering has learned a great deal about how to create clear
and precise process definitions, and how to use them to improve final software
products. This paper suggests that this knowledge can also be applied to good ef-
fect in many other domains where effective application of process technology can
lead to superior products and outcomes. The paper offers medical practice and
government as two examples of such domains, and indicates how process tech-
nology, first developed for application to software development, is being applied
with notable success in those areas of endeavor. The paper also notes that some
characteristics of these domains are highlighting ways in which current process
technology seems to be inadequate, thereby suggesting ways in which this re-
search is adding to the agenda for research in software process.

1 Introduction

In earlier papers we have argued that the processes that are used to develop software
should themselves be viewed as software [1, 2]. We have suggested that software
processes should themselves be developed by means of careful processes, starting
with requirements specification, proceeding through architecture and design, and then
defined precisely with languages that have execution semantics. We have argued that
the execution of such process programs can effect the superior coordination of agents,
both human and automated [1]. In more recent work we have also demonstrated that
there can be considerable value in taking such executable processes as the subjects of
dynamic analyses such as simulation runs [3] and as the subjects of static defect
analyses [4, 5], [6]. Our view is that these analyses are essential components in con-
tinuous process improvement loops that 1) baseline existing processes, 2) use analysis
to identify defects and shortcomings in these processes, 3) propose improvements to
the processes, 4) use analysis to verify the value of the proposed improvements, and
5) deploy the improved processes, thereby creating the basis for the next improvement
iteration. The ultimate goal of all of this is the establishment of a discipline of soft-
ware process engineering in which the continuous enhancement of processes leads to
increasing quality in final products, and increasing efficiency in producing them. In a
previous paper [7] we have argued that more precise and comprehensive process
definitions are more effective bases for the kinds of definitive analyses that lead more
efficiently to successful improvement efforts. We referred to research aimed at such
more precise and definitive languages and analyses as microprocess research.

40 L.J. Osterweil

Concurrently with these increasing understandings of the possible mechanics of
continuous software process improvement, and the particular value of microprocess
research, has come the realization that software development is only one of a multi-
tude of diverse domains in which the continuous improvement of processes can lead
to important benefits. We observe that processes are found universally in our society,
and indeed that there are many domains in which the role of processes is at least as
central as is the case in software engineering. Most of the work of government, for
example, is essentially the creation and execution of processes. Likewise, medical
care is centered importantly upon the devising and careful execution of processes.
Processes are also at the core of such other domains as business, engineering, finance,
dispute resolution, and law. Many other example domains can be identified quite
readily. This observation immediately suggests, therefore, that the software process
technologies that our community has developed have much to offer these other disci-
plines. Significantly, our preliminary investigations of these other areas has sug-
gested that the notions of process in those domains are far less well developed than
they are in software engineering, and that the rigor that we increasingly employ to
good effect in software process engineering is lacking in process approaches in these
other areas. Thus our current view is that these other domains have much to gain
from the application of technologies that we have developed in software process
engineering.

This paper explores that premise, indicating the sorts of process issues that we have
encountered in other problem domains, and the ways in which we are finding soft-
ware process technology to be relevant and effective. We also note that certain short-
comings of our process technologies have been highlighted in attempting to apply
them in these other domains, suggesting areas for further research.

2 Goals and Motivations for Process Research

To understand the relevance of software process technology to other domains, it helps
to note that the goals of all of these communities have quite a lot in common. In
software process research, there is a very wide range of specific technologies and
approaches, but the main goals are far smaller in number. These goals, some of
which are elaborated upon briefly below, are generally shared by many other do-
mains, as shall be indicated. This suggests that technologies that have been success-
fully applied in our domain of software development, should have relevance in the
others. Here are some of the key goals of process technology.

Team Coordination. Much of the most difficult and challenging work in virtually all
sectors of society requires synergistic collaboration among many diverse contributors.
In software development, a product requires careful coordination among designers,
coders, testers, managers, documentation specialists, and clerical personnel. In gov-
ernment, such activities as licensing, running elections, and legislation itself, require a
similar sort of collaboration among bureaucrats, citizen volunteers, boards, panels,
and elected officials. In both domains, a clear and precise specification of the proc-
esses to be carried out can improve the chances that all members of the team have the
same view of what they should be doing, and how they are to interact with each other.

Ubiquitous Process Engineering: Applying Software Process Technology to Other Domains 41

Efficiency Improvement. An immediate corollary of the previous goal is that
improved understanding of the ways in which teams should coordinate their efforts
facilitates the identification of bottlenecks and other obstacles to improved team
efficiency. In emergency room medical care this is a particularly serious problem, as
delays are pervasive, and can cause pain and loss of life. Identification of bottlenecks
and inefficiencies, based upon a clear specification of how agents must coordinate
their efforts can be used to identify where process changes, or resource reallocations
can speed processing, and increase productivity.

Automated Support. Carrying the previous point further, we note that the performers
in such processes need not always be humans. In software development, compilers,
design tools, test automation tools, etc. can play useful roles. In medicine, medication
dispensers, infusion pumps, medical records databases, and patient monitoring
devices play similar roles. In both cases, an executable process definition can be used
to delineate the exact roles of such automated devices, and to provide APIs and other
interfaces that enable such automation aids to be coordinated with human activities.
The executable process can then be used as an integration structure for the insertion
(and incremental growth) of automation.

Education and Training. Process technology can be particularly useful in supporting
the training and education of the humans who will participate in processes. Most
large software organizations require that newcomers acquire indoctrination in the
methods that their new organizations use to build software. In a similar way,
commercial enterprises, such as banks and manufacturers also require such training to
assure that new employees can become proficient at their jobs more rapidly. Process
simulation technologies are an example of an approach that can provide strong
support in this area.

Continuous Improvement. Highly visible activities such as the CMM [8], CMMI,
and ISO 9000 [9] projects have emphasized the key role of process in effecting
continuous improvement in software development. Other areas, such as
manufacturing, have made similar observations. Indeed the use of such institutions as
quality circles has resulted in impressive gains in quality and productivity in industry.
In both cases, strong understandings of the current process, precise understandings of
proposed improvements, and effective devices for measuring results are some keys to
success in process improvement. A particularly key aspect of such improvement
efforts seems to be effective analysis of both the current, and the proposed new,
processes. Analysis that identifies defects is needed to trigger improvement, and
analysis aimed at demonstrating that new processes actually achieve desired
improvements (without creating new problems) is needed to carry the improvement
processes further.

Reinvention. It has been suggested that, while steady incremental improvement is
useful in software development, there must also be a place periodically for radical
change, or reinvention. This is certainly also true in such areas as dispute resolution,
where face-to-face negotiation is increasingly giving way to computer-mediated
Online Dispute Resolution (ODR). In both domains, radical change can happen only
after a firm understanding of the essentials of processes can be distilled. Such deep

42 L.J. Osterweil

understandings are facilitated by the use of powerful formalisms, employing appro-
priate abstractions to suppress superficial detail and accentuate deeper conceptual
issues. Thus, pursuit of formal process abstractions is useful in helping various do-
mains seek and achieve radical change.

The foregoing has convinced us that the overarching goals that software process
research seeks to address with its technologies are goals that are shared by medicine,
government, business, and a wide range of other human endeavors. Thus we em-
barked upon a program of research aimed at determining the extent to which this is
correct, attempting to apply software process technologies to specific problems in
these other domains. In the following sections, we indicate how technologies origi-
nally developed for software process are now being employed in other domains where
processes are also of central importance. In some of these domains, as had once been
the case in software development, the centrality of process issues had been largely
overlooked. But, with growing recognition of the centrality of process issues, the
potential for important and fundamental contributions of process technology is grow-
ing rapidly.

3 Medical Safety

A highly influential report from the US Institute of Medicine [10] estimated that each
year at least 97,000 people die from preventable medical errors in US hospitals. Far
more suffer pain and non-lethal damage from such errors. The costs in money are far
harder to estimate, but must be measured at least in hundreds of billions of US dollars
each year. While there are many causes of the problems leading to these deplorable
statistics, it seems clear that one of the most central is lack of control of the processes
that are used to deliver medical care. A team consisting of University of Massachu-
setts software engineering researchers, and faculty from the School of Nursing, is
working with administrators and workers at Baystate Medical Center in Springfield,
Massachusetts, USA, to investigate ways in which process definition and analysis
technologies might be effective in addressing medical care improvement goals. Our
research team has identified three specific process areas as candidates for the applica-
tion of process technology. In each area the goals are strikingly similar to software
process goals, and the applicability of software process technology is proving to be
correspondingly appropriate.

Emergency Room Operations. The Baystate Emergency Division is like most other
Emergency Divisions in that patients must endure very long delays, and often simply
leave without receiving care at all. We are investigating the use of process definition
and simulation to determine how they might be used to improve efficiency in emer-
gency room operations. Clearly scarcity of such resources as beds and physicians
contribute to waiting. But process inefficiencies seem to exacerbate this situation. We
are using process simulations to explore how different resources mixes (eg. providing
additional doctors and/or nurses) can be expected to reduce waiting times and increase
overall capacity to provide services, especially in response to disasters. We are also
using these definitions and simulations to support the exploration of radical change in
the operation of the Emergency Division. Languages and simulators originally in-
tended for supporting software process studies are proving to be very appropriate and

Ubiquitous Process Engineering: Applying Software Process Technology to Other Domains 43

effective in this work, facilitating consideration not only of resource reallocation
schemes, but also reinvention of the entire range of Emergency Division operations.

This research is, however, underscoring the difficulties in developing accurate defi-
nitions of highly concurrent processes. Emergency medical care is characterized by
the need for promptness in acute medical situations, and the need for resources to be
assigned to multiple tasks concurrently. These, and similar, reasons dictate that stan-
dard medical care procedures may need to be quite flexible, and yet must sill conform
to some very basic procedural requirements. Our attempts to use software process
definition languages to represent these processes are sharpening our understanding of
the shortcomings of such languages in areas such as concurrency specification.

Chemotherapy Administration. We are investigating the use of precise process
definition and analysis technologies to improve team coordination in chemotherapy
administration, and to remove defects from the processes that those teams execute. A
major focus of this work is the use of process definition and analysis techniques to
identify process defects, and to incorporate continuous process improvement into the
operations of the Chemotherapy Division of the Cancer Center. Chemotherapy is the
process of using extremely powerful and dangerous drugs to destroy cancer cells,
without causing undue harm to other cells in the body. Chemotherapy requires ex-
tremely careful measurements of the human body, and the very carefully monitored
infusion of drugs over extended periods of time. The reaction of the patient’s body to
this regime must be monitored closely by diverse agents, and from different perspec-
tives. Negative reactions must be noted and responded to appropriately, and interac-
tions with other drugs that might be used to deal with other medical situations, must
be continuously considered and adjusted for.

The processes for doing all of the above are complex, and require coordination
among various doctors, nurses, pharmacists, clerical personnel, and the patient. One
of the particularly noteworthy features of such processes is that they incorporate con-
siderable amounts of redundancy, aimed at the prompt detection of errors and preven-
tion of harm to the patient. Precise definition and analysis of these processes has
helped the Chemotherapy Division to identify ways in which team coordination can
be improved, and process defects can be detected. All of this has led to an under-
standing of how continuous process improvement can lead to overall benefits. One
specific example is that our rigorous analysis of these processes has led to the identi-
fication of paths through the processes where some redundancy checking can poten-
tially be bypassed, and other paths that seem to cause excessive amounts of redun-
dancy checking.

Blood Transfusion. We are also investigating the use of process definition to im-
prove the education and training of nurses in such processes as blood transfusion, and
the use of process monitoring and analysis to reduce the incidence of such catastro-
phic errors as the infusion of incorrect blood types into patients. The goals here are
improved team coordination, facilitation of training, detection and removal of defects,
and continuous improvement. As in the cases of the other medical process projects,
we are finding that much of our process technology is highly applicable. In particu-
lar, we have applied fault tree analysis to suggest such vulnerabilities as single points
of failure in existing processes [11], suggesting ways and places were redundancy
should be added.

44 L.J. Osterweil

4 Digital Government

The application of software process technology to the domain of government seems
no less appropriate, and our work is demonstrating that it should be quite effective
here as well. In this domain, such familiar goals of teamwork improvement, effi-
ciency enhancement, defect removal, reinvention, and automation are also of great
importance.

License Renewal. In earlier work [12] we have demonstrated that precise process
definition can provide important benefits in the domain of license renewal. The US
state of Massachusetts, like most governmental units worldwide, is responsible for the
issuance of literally hundreds of different kinds of licenses. The processes for doing
this are more complex than is generally understood, typically involving the receipt of
a renewal request, the search of various records and archives (eg. for the existence of
complaints), the receipt of funds, and the issuance of the actual licensing materials.
All of these activities must take into account the possibility of various kinds of excep-
tional situations. We have applied precise process definition and analysis technolo-
gies to this problem area and have identified places where process details were lack-
ing, places where increased redundancy was desirable, and ways in which computer
automation could be inserted, leading to transition strategies for digital (electronic)
government.

Election Processes. We note that elections are highly complex processes, starting
with voter registration activities, and continuing on through the conduct of actual
elections, the accumulation of results, and the need to administer recounts and various
dispute resolutions. Much attention in the US has been focused on elections since the
contentious 2000 Presidential election. Most of this attention has been directed to the
possibility of incorporation of electronic vote recording devices into election proc-
esses. While analysis of the soundness of these devices is clearly important, our own
work emphasizes the importance of assuring the soundness of the election processes
themselves, and the appropriate integration of electronic voting devices into these
overall processes [5]. We note that elections require the coordination of a wide range
of humans, as well as automated devices. We are starting to study these processes,
emphasizing the identification of defects, searching for appropriate levels of redun-
dancy, appropriate use of electronic voting devices, and the vulnerability of election
processes to frauds and collusions. In this latter work, we have used our process defi-
nition technologies to represent the behaviors of fraudulent and collusive election
agents, as well as the election processes themselves. Early results of this research are
contained in a paper in these proceedings [5].

Labor-Management Dispute Resolution. We have also explored the application of
process technology to the domain of dispute resolution through a project involving
collaboration with the US National Mediation Board (NMB). While it may initially
seem that dispute resolution is an area in which rigorous process definition would be
unlikely to be effective, our initial research has indicated that this is not the case. As
with many other process domains, dispute resolution requires a great deal of human
ingenuity and initiative, but also a great deal of discipline and structure. The NMB
has long since recognized this and has over the years developed some structured

Ubiquitous Process Engineering: Applying Software Process Technology to Other Domains 45

approaches to bringing disputants together in productive negotiation sessions. We
have applied our rigorous process definition technologies to define these processes.
In doing so, it has been easier to identify ways in which technology can support these
processes [13].

In addition, our work with NMB has suggested the possibility of radical change to
negotiation processes. For many years, NMB negotiations were carried out primarily
in face-to-face sessions. But with the growth in the number of disputes to be re-
solved, and the increased availability of computer and communications technologies,
NMB has become increasingly interested in augmenting or replacing face-to-face
negotiation session with Online Dispute Resolution (ODR) approaches. In doing so,
it has become increasingly clear that ODR requires more radical change to existing
processes than simple replacement of some existing process steps with automation.
Our process definitions have become the basis for the radical change to ODR that
NMB needs to undertake.

The NMB project has also suggested another important goal for process technol-
ogy, namely the involvement of broader stakeholder groups in the specification of
requirements for processes, and indeed for the automated systems imbedded in them.
NMB has noted that the acceptance of the agreements reached in dispute resolution is
strongly enhanced when the parties to the dispute have had an active and effective
role in designing the dispute resolution processes, and in monitoring that the proc-
esses have indeed been followed. The use of a clear, yet complete and precise, for-
malism for defining NMB’s dispute resolution processes is being explored as just
such a vehicle for developing processes that are sufficiently transparent that dispu-
tants will be more receptive to acceptance of dispute resolution outcomes [14]. We
are currently engaged in work aimed at involving disputants in definition of ODR
processes that will be used in resolving their disputes. Our technologies will also be
used as the basis for displaying the progress through these processes to assure dispu-
tants that the agreed upon processes are indeed being followed.

5 Additional Domains

As noted above, many other domains seem equally appropriate for the application of
process technology. Our own research has applied these technologies to the definition
of processes that should be used in creating scientific datasets that are suitable for use
by researchers other than those who have created these datasets [15]. Our work has
indicated that many such datasets contain data that has undergone considerable com-
plex transformation and analysis before being published. Scientists using these data-
sets for their own work are well advised to be aware of the various transformations that
have been applied to this data, but generally documentation of such transformations is
unavailable. Early work aimed at providing that documentation has indicated that the
level of precision needed in order to assure safe reuse of these datasets require the use
of process definition languages that employ strong semantic power. These process
technology approaches resemble in striking ways approaches previously developed and
applied in software process, especially as used in configuration management.

46 L.J. Osterweil

The application of process technologies to such other domains as manufacturing,
banking, management, law, and military operations seems quite promising, and in-
deed has been begun in some cases. Software process researchers would do well to
consider the benefits derived from applying the technologies in their grasp at present
to these new domains.

As noted above, these domains will benefit from such work, but consideration of
the applicability of these technologies will also lead to understanding of ways in
which the technologies could benefit from extensions in directions indicated by the
demands of these new application domains. We have already noted that defining
processes in medicine has suggested the need for stronger language features for defin-
ing concurrency. Other process language and analysis shortcomings, such as the need
for superior process abstractions, the importance of clearer artifact flow definition,
and the need for improved support for specification of process properties, all have
been underscored by this research, suggesting new roadmaps for software process
technology research.

Acknowledgments

The author wishes to express his gratitude to numerous individuals who have partici-
pated in this research, and clarified the points made in this paper. Sandy Wise, a key
architect of the Little-JIL process definition language, has supported every aspect of
this work. My co-investigators, Lori A. Clarke, George Avrunin, and Beth Henneman
have been key leaders of the work on Medical Safety. Special thanks go to Phil Hen-
neman and Fidela Blank for support of the Emergency Division research, and Wilson
Mertens and Lucy Cassels for their strong support of our Chemotherapy process re-
search. My co-investigators, Ethan Katsh, Dan Rainey, and Norm Sondheimer have
been key leaders in the Digital Government work. Many students have also supported
this work. Special thanks go to Mohammed S. Raunak, Dave Miller, Irina Ros, Rachel
Smith, Matt Goetz, Bin Chen, Matt Marzilli, Natalie Podrazik, and Dan Gyllstrom.

This material is based upon work supported by the US National Science Founda-
tion under Award Nos. CCR-0427071, CCR-0204321 and CCR-0205575. The views
and conclusions contained herein are those of the author and should not be interpreted
as necessarily representing the official policies or endorsements, either expressed or
implied, of The National Science Foundation, or the U.S. Government.

References

1. L. J. Osterweil, "Software Processes Are Software, Too, Revisited," presented at 19th In-
ternational Conference on Software Engineering, Boston, MA, 1997.

2. J. Osterweil, "Software Processes are Software, Too," presented at Ninth International
Conference on Software Engineering, Monterey, CA, 1987.

3. B. Chen, G. S. Avrunin, L. A. Clarke, and L. J. Osterweil, "Automatic Fault Tree Deriva-
tion from Little-JIL Process Definitions," Department of Computer Science, University of
Massachusetts, Amherst UM-CS-2006-01, January 2006 2006.

Ubiquitous Process Engineering: Applying Software Process Technology to Other Domains 47

4. M. S. Raunak and L. J. Osterweil, "Process Definition Language Support for Rapid Simu-
lation Prototyping," presented at Proceedings of the Software Process Workshop, Beijing,
China, 2005.

5. M. S. Raunak, B. Chen, A. Elssamadisy, L. A. Clarke, and L. J. Osterweil, "Definition and
Analysis of Election Processes," University of Massachusetts, Amherst, Technical Report
2006-19, March 12, 2006 2006.

6. L. A. Clarke, Y. Chen, G. S. Avrunin, B. Chen, R. Cobleigh, K. Frederick, E. A. Henne-
man, and L. J. Osterweil, "Process Programming to Support Medical Safety: A Case Study
on Blood Transfusion," presented at Proceedings of the Software Process Workshop, Bei-
jing, China, 2005.

7. L. Osterweil, "Unifying Microprocess and Macroprocess Research," presented at Proceed-
ings of the Software Process Workshop (SPW2005), Beijing, China, 2005.

8. W. S. Humphrey, "A Discipline for Software Engineering," in SEI Series in Software En-
gineering. Reading, MA: Addison-Wesley, 1995.

9. R. S. Pressman, Software Engineering - A Practitioner's Approach, Fifth ed. New York:
McGraw-Hill, 2001.

10. L. T. Kohn, J. M. Corrigan, and M. S. Donaldson, "To Err is Human: Building a Safer
Health System." Washington DC: National Academy Press, 1999.

11. B. Chen, G. S. Avrunin, L. A. Clarke, and L. J. Osterweil, "Automatic Fault Tree Deriva-
tion from Little-JIL Process Definitions," University of Massachusetts, Computer Science
Department, Shanghai, China, Technical Report 2006-01, January 6, 2006 2006.

12. N. K. Sondheimer, L. J. Osterweil, C. Schweik, M. Billmers, D. Canavan, A. Kelly, C.
Lee-Davis, C. Li, and J. Sieh, "Online License Renewal Analysis: Process Modeling and
State Practice," Electronic Enterprise Institute and the Center for Public Policy and Ad-
ministration, University of Massachusetts, Amherst May 7, 2002 2002.

13. E. Katsh, L. Osterweil, and N. K. Sondheimer, "Process Technology for Achieving Gov-
ernment Online Dispute Resolution," presented at National Conference on Digital Gov-
ernment Research, Seattle, WA, 2004.

14. L. J. Osterweil, N. K. Sondheimer, L. A. Clarke, E. Katsh, and D. Rainey, "Using Process
Definitions to Facilitate the Specifications of Requirements," University of Massachusetts,
Amherst, Technical Report UM-CS-2006-11, March 11, 2006 2006.

15. A. M. Ellison, L. J. Osterweil, J. L. Hadley, A. Wise, E. Boose, L. A. Clarke, D. Foster, A.
Hanson, D. Jensen, P. Kuzeja, E. Riseman, and H. Schultz, "An Analytic Web to Support
the Analysis and Synthesis of Ecological Data," submitted to Ecology/Ecological Mono-
graphs, 2004.

Q. Wang et al. (Eds.): SPW/ProSim 2006, LNCS 3966, pp. 48 – 55, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Dependencies Between Data Decisions

Frank G. Goethals, Wilfried Lemahieu, Monique Snoeck, and Jacques Vandenbulcke

F.E.T.E.W. – K.U.Leuven – Naamsestraat 69, B-3000 Leuven, Belgium
SAP-leerstoel Extended Enterprise Infrastructures

{Frank.Goethals, Wilfried.Lemahieu, Monique.Snoeck,
Jacques.Vandenbulcke}@econ.kuleuven.be

Abstract. In this paper we show that storing and transmitting data is a complex
practice, especially in an inter-organizational setting. We found 18 data aspects
on which heavy consideration and coordination is important during a software
process. We present these data aspects and point out that these data aspects are
dealt with at different levels within Extended Enterprises. A good software
process embraces the idea that choices have to be made on these 18 data
aspects, and it recognizes the dependencies between the aspects, and the
dependencies between decisions made at different levels in the enterprise.

1 Introduction

Setting up an enterprise is a very complex matter. We distinguish between two views
on an enterprise: tasks that change the state of an enterprise, and data that maintain
the state of an enterprise (see Simon [1] and Hirscheim [2]). In this paper we draw
attention to the data-side of the enterprise. The complexity of this side follows from
the fact that many data-related decisions have to be made (18 ‘data aspects’ are
presented in this paper), and that many dependencies exist among these decisions.
Decisions on these aspects should thus be aligned. This is, however, not the only
complicating factor: the decisions reoccur along three dimensions (see Figure 1).

Strategic
Level

Tactical
Level

Operational
Level

Extended Enterprise

Individual Enterprise

Business side ICT side

Strategic
Level

Tactical
Level

Operational
Level

Extended Enterprise

Individual Enterprise

Business side ICT side

Extended Enterprise

Individual Enterprise

Business side ICT side

Fig. 1. Three dimensions along which the decisions re-occur (as discussed in [3])

First, decisions are made at the business-side and at the ICT-side of an enterprise.
Secondly, decisions are made at strategic level (general principles and the like),
operational level (decisions for a specific project), and tactical level (decisions valid

 Dependencies Between Data Decisions 49

for all projects). Thirdly, we need to acknowledge that companies nowadays integrate
their systems with those of other companies. Data exchanges within so-called
Extended Enterprises (EEs, i.e., collections of partnering companies [4]) are even
more difficult to realize than internal data exchanges. Therefore, a third dimension in
the picture shows decisions are made at the level of an individual enterprise and at the
level of the collection of collaborating enterprises.

The decisions made in the boxes of this figure should be aligned. Every software
development process should therefore recognize 1) the dependencies across different
boxes, and 2) the dependencies among the decisions made within each single box.
That is, decisions makers are dependent upon each other. Therefore, coordination is
needed. Importantly, this is not only true when entirely proprietary software is used,
but also in the case of (1) proprietary software using standards, or (2) Commercial
Off-the-Shelf (COTS) software. (1) Standards are the coordination instrument in a
Business-to-Business setting. However, standards hardly deal with all 18 aspects in all
boxes of Figure 1, let alone that they would deal with the links between the different
boxes. (2) While COTS software packages may deal with all 18 aspects at operational
level at the ICT-side; a fit is still needed with decisions on the 18 aspects made in
other boxes as well.

There are thus a big number of dependencies that need to be managed during the
software process. We note that this ‘dependency-view’ is – at least theoretically – also
acknowledged in the Enterprise Architecture way of working. However, in practice,
the attention there often goes entirely to the architectural descriptions rather than to
the usage of these descriptions to manage dependencies. The dependency-driven way
of working suggested here is to be imbedded in an Enterprise Architecture-driven one.
By doing that, it is acknowledged that architectural descriptions should be
‘Enterprise’-wide in the broadest sense of the word: the descriptions are meant to
manage dependencies across projects, across business- and ICT people, and across the
individual enterprises that form an Extended Enterprise.

In what follows, we first discuss the link between Enterprise Architecture and
dependencies in some more detail. Then we present the 18 data aspects and we
illustrate why coordination on these 18 aspects is important by showing the
(sometimes infinite) range of possible values. Finally, it is acknowledged that making
decisions on all 18 aspects at once is unrealistic, and that ‘decision-components’ need
to be made that are placed in some sequence to get a process.

2 Enterprise Architecture and Dependencies

Cook [5] states that architectural descriptions work like standards: they restrict people in
choices they can make. Standards function as a coordination instrument (see Mintzberg,
[6]). One key question is then ‘what needs to be coordinated?’, or stated differently:
‘what dependencies need to be managed?’ (see Malone and Crowston’s definition of
coordination [7]). We expected to find an answer to this question by assessing important
Enterprise Architecture (EA)-frameworks, and the models they suggest to create (see
e.g. [8, 9, 10, 11, 12, 13, 14]). Unfortunately, the answers we found were disappointing.
The suggested models do not seem to be based on a thorough investigation of the
dependencies that exist, and are as such far from complete.

50 F.G. Goethals et al.

The renowned Zachman-framework for example [8] is said to be comprehensive.
We argue it is not. While other critique could be added, here we restrict ourselves to
one line of thought. As we stated, there are basically two views on an Enterprise:
tasks that change the state of an enterprise, and data that maintain the state of an
enterprise. In Zachman’s framework a ‘data’ model is something like an ER-diagram.
For one thing, this neglects the fact that data is often not present in structured form,
and often not even made explicit (i.e., implicit/tacit knowledge). More importantly,
this neglects the fact that data is not just there: data is made by a system in a location
at some moment and has to be transmitted using some medium at some moment to
another location for use by another system and this has to happen in a timely,
secure, … fashion. Data dependencies do thus range much further than just knowing
which data exists in which database so it can be reused in other projects. We note that
such dependencies become particularly visible in an EE setting where different
companies are dependent upon each other with respect to the decisions made on data
aspects.

EA-frameworks do thus not seem to give a good overview of the dependencies
they should manage. Unfortunately, classic dependency-theory [15, 16, 17, 18, 19, 20,
21, 22] seems to be scarcely out of the egg as well. The main focus of such theories is
that one resource put out by one task is needed as an input for another task, and that a
number of dependencies between tasks can therefore be suggested. Unfortunately,
similarly as what we mentioned for Zachman’s framework, classic dependency-theory
only looks at what data is needed for (or created by) what task. It does not assess
when data should be transported using what means to what location, etc.

Having a complete image of choices that need to be made and respected, and links
between those choices is important not only to realize an effective system, but also to
confront enterprise architects with the wide range of options they actually have.
Companies who try to get competitive advantages have to be creative. Creativity
should show in creative enterprise architectures, rather than in creative programming.
While programmers know the building blocks to play with and are creative in using
them, enterprise architects have a hard time to oversee their building blocks and thus
to use them creatively. If one truly manages the building blocks, one will see that the
building blocks can be arranged differently for different companies the company is
doing business with. For example, imagine the case of a supplier with relatively
expensive high-quality products, and who is assessing the ‘data format’ (see below) to
be used. A long-term partner may get the price list in an xml format so it can easily be
entered into his system. Other companies may get a nice graphical brochure with the
prices. The latter 1) makes it harder for them to automatically compare prices across
companies and 2) immediately shows them other information on the product: contents
on which the supplier wants to compete.

In order to get a more complete image of the dependencies that do exist at the data
side, we decided to study literature on diverse Business-to-Business integration
(B2Bi) standards and B2Bi case studies. From this, we derived 18 data aspects that
need to be dealt with. As such, these aspects can be seen as an extension to Enterprise
Architecture frameworks, and to dependency-theory. The aspects are presented in the
following paragraph.

 Dependencies Between Data Decisions 51

3 The 18 Data Aspects

Space limitations make it impossible to deal with the aspects in detail. The first three
aspects will be discussed in some more detail, to show the relevance of the three
dimensions shown in Figure 1. We primarily point at issues that are interesting in a
B2B situation.

1. Data content. Companies of course have to determine the content they want to
share. While this may seem straightforward, it is not. For example, data content
alignment is needed between different companies at a high level and at a low level.
Alignment at a high level is for instance illustrated by Hansen, Nohria and Tierney
[23]. They talk about two strategies for content management within companies. One
strategy is to make information on the business itself explicit (to ‘codify’ information)
so that it can be reused. Another strategy (the ‘personalization’ strategy) is to make
information explicit about who knows what. They found that the content management
strategies have to fit the business proposition of the companies. For example,
companies like McKinsey and Bain primarily use the personalization strategy because
they are strategy consulting firms. They are expected not to deal with standard
solutions for standard problems, and thus not to store standard solutions. The market
expects such practices, however, from Ernst & Young for example, which deals with
the same problems over and over again. Once companies know what type of
information they need to share, they can investigate what concrete information is
needed (i.e. low-level alignment). Please note that in an Extended Enterprise setting, a
collection of companies may want to appear to the outside world as one entity, and
that the content they share with the outside world should reflect this. Also, in an
Extended Enterprise it may be possible to create new content. For example, if an
airline company, a car rental company and a hotel chain together offer trips they
generally only have information on their own sales. By keeping the information
together at the level of the collection of collaborating companies, data is available on
how many customers booked an airplane seat as well as a hotel and a car. This data
may then be linked to data on (individual/grouped) marketing campaigns and the like
to do data mining.
2. Data format. Data has to be transmitted in some format. This first involves choosing
between textual format or graphical format for example. If a textual format is chosen, it
has to be decided whether a proprietary format or a standard format will be used. If a
standard format is to be used, a concrete standard has to be chosen. For example, UBL,
CBL, and cXML all offer standardized business documents. UBL (Universal Business
Language) for example defines seven documents such as ‘order’, and ‘invoice’, and
gives accompanying XML-schema definitions. Interestingly, specifications exist for
automatically rendering a classic visual of the content of the XML documents, for
example as a .pdf document, meant for human usage. This visual can serve as a
boundary object between the business people of the different companies, while the
XML files serve as a boundary object between their computer systems.
3. Roles. Different systems play different roles in a data exchange. In our research we
have identified seven primitive roles. The Needy wants to process some data. The
Needy may differ from the Initiation Event Originator. The latter is a node where an
event originates (e.g., a ‘request’) that initiates the message transmission towards the

52 F.G. Goethals et al.

Needy. An Initiation Event Emitter (e.g., a ‘requestor’) is a party that transmits such
an initiation event. This event can be sensed by an Initiation Event Sensor (e.g., an
intermediary that groups requests from many parties). This party receives an initiation
event from outside. The data that is needed by the Needy originates at the node of the
Response Data Originator (e.g., the creator of a requested price list). A party that
sends the data towards the Needy is called a Response Sender. A party that receives
the data is called a Response Receiver. The roles are illustrated in the figure below.

In
iti

at
io

n
em

itt
er

R
es

po
ns

e
Se

nd
er

Needy
RespOr

In
iti

at
io

n
Se

ns
or

R
es

po
ns

e
Re

ce
iv

er

InitEvOr
InitEvOr

In
iti

at
io

n
em

itt
er

R
es

po
ns

e
Se

nd
er

Needy
RespOr

In
iti

at
io

n
Se

ns
or

R
es

po
ns

e
Re

ce
iv

er

InitEvOr
InitEvOr

Fig. 2. The seven basic roles in an end-to-end transmission

In practice, one system may play several roles and one role may be played by
several systems (and e.g., only vis-à-vis specific other systems). Roles may be
discussed at the level of entire enterprises, departments within enterprises, specific
people or computer systems within departments, etc.
4. Data distribution. Data may only be stored in one location, or in several locations.
For example, in the health care industry the idea has arisen to share information on
patients among authorized institutions if a patient enters one of these organizations for
help. Because so many different institutions may have information on the patient, an
institution needing information would need to contact all other institutions. Therefore,
a central point has been entered in the network (an additional Provider role) where a
Needy can request information. In the Netherlands, the central point itself does not
have a copy of the patient’s data. However, it has information on where information
on some patient can be found. In the English set-up, however, the central point does
contain information on the patients.
5. Exact physical system location. For each system that is involved, a specific
physical location has to be determined. Data may for example be replicated on the
premises of a close partner, or on the premises of a trusted third party. Also, it may all
be stored together (‘centrally’), it may be stored close to users, in a big city or not, etc.
6. Storage medium. Two angles can be considered per the storage medium: 1) the
availability, reliability, capacity, security, transportability etc. of the medium, and 2)
distinguishing between ICT-systems (ranging from Database-systems to CD-Roms
and USB-keys), people (with knowledge in their minds), paper, etc.
7. Transmission network. Which nodes will be connected directly? For example,
one could connect every node to every other node or connect every node only to one
other node, or connect all nodes to a central node.
8. Transmission area. Through which geographical areas will connections pass? One
may have to pay attention to ‘hostile territories’.
9. Transmission medium. As for the storage medium, two viewpoints can be taken:
1) availability, reliability, capacity, security, etc. of the medium, and 2) distinguishing
between specific media such as telephone, Internet, postal mail, etc. As an illustration,

 Dependencies Between Data Decisions 53

note that business people and ICT people may have a different perception of the
medium (e.g., Internet telephony).
10. System availability. A data transmission can only happen during the ‘operational
time’ of nodes and connections and if capacity is available.
11. Initiation events. Different (combinations of) events can initiate and inhibit a
message transmission.
12. Initiator party. Initiating events may originate in different nodes. For instance,
the sending-system (Response Sender) may initiate transmissions itself (e.g., when
sending purchase orders), or initiations may happen by a Needy-system.
13. Immediately or postponed. A transmission may (have to) be started immediately
or the transmission may be postponed for some time (e.g., because messages are not
permanently being processed within the node).
14. Transmission relationships. Messages may be related to each other in different
ways. In short, it has to be assessed whether a message sent to one system
can/cannot/has to be sent to another system as well at the same moment or at a later
moment (i.e., simultaneous start or arrival or not). Also, it should be investigated
whether the transmission of message A can/cannot/has to be accompanied or followed
by the transmission of a message B. In classic database systems development
cardinalities get much attention. In a B2B context, putting cardinality requirements
upon data transmissions rather than on the data itself seems more realistic. For
example, if a supplier receives an order, this order has to be forwarded to his supplier
(not knowing whether he will store the data persistently or not).
15. Unit/Batch. Data can be transmitted in units or in batches. We note this
distinction is different from the one between sending data immediately and
postponing transmissions (see 13. above), although both aspects are often grouped
under the name ‘real-time vs. batch’.
16. Coarse/Fine-grained. The data that is stored and transmitted may be fine-grained
or coarse-grained. Different parties may want to use the data for different purposes
and may desire different levels of granularity for those purposes.
17. Meta-data/Production-data. Data may be meta-data or production data. For
example, an intermediary (e.g., playing the Initiation Event Sensor and the Initiation
Event Emitter roles) may only have meta-data about where requested data is stored.
18. Authorizations. Authorizations may be related to the content that is transmitted,
the party to who it is transmitted, the format, the timing, the location, etc. (i.e.,
authorizations are related to all issues mentioned above).

Now we know the 18 aspects on which coordination is needed, let us have a short
look at their interdependencies.

4 A Dependency-Driven Software Process?

The fact that there are 18 data aspects makes it impossible for decision makers to deal
with all aspects at once. Some order has to be taken, and only a small number of data
aspects can be dealt with during every step. Interestingly, there are interdependencies
between different decisions. Examples of interdependencies are the following:

54 F.G. Goethals et al.

(9→5) If a fast transmission medium is available a big distance is acceptable.
(1→6) If data content is highly confidential use a very secure storage medium.
(2→1) If you use some standard format (e.g. RosettaNet) then you may restrict

yourself to transmitting only the content defined there.
(6→11) If the storage medium is human it is not desirable to fire a request for

updates every minute, but rather to subscribe.

Given the fact that there are dependencies between the different data aspects
presented above, one would expect that some order could be given to the data aspects,
or at least that some (highly interdependent) data aspects should be dealt with
simultaneously, while others can be treated apart.

In our research we have tried to group data aspects on which decisions are highly
interdependent. While looking for the interdependencies between the aspects we,
unfortunately, found that most aspects are dependent upon most other aspects.
Moreover, the degree of dependence is likely to differ from case to case. From this, it is
clear that it is inappropriate to suggest the existence of components of data aspects that
should be dealt with together in general. Therefore, we have created a ‘tool’ (actually an
Excel-sheet) that shows the interdependencies between different data aspects. That is,
for each of the aspects it is investigated how the choice of this aspect depends upon
choices made for each of the other aspects. We have also suggested a value for each
dependency (from 0 to 9). Remarkably, this value is likely to fluctuate from case to
case. Assumed that values are given, an algorithm could evaluate all possible
combinations of components of data aspects that should be dealt with together.
Although forming components on such a basis is not academically correct, one needs to
be pragmatic in this matter: companies cannot deal with all interdependencies at once,
and need to make abstractions.

5 Conclusions

The contribution of this paper is that it identifies 18 data aspects that can be used
creatively, and on which stakeholders throughout the Extended Enterprise need to reach
agreement. While we cannot claim the 18 aspects are all the data aspects that actually
exist, it seems very unlikely that any important ones would be missing. It is important to
consider the 18 aspects and their interdependencies in every software process.
Moreover, this paper acknowledges that the software process is not just taking place at
the operational ICT level but is an integrated part of the entire Enterprise Architecture
effort. Alignment is needed between business and ICT decisions; between strategic,
tactical and operational decisions; and between decisions made for individual
enterprises and those made for the collection of collaborating companies. Any software
process that is not embedded in this philosophy is likely to result in software that is not
aligned with the business, with other internal projects, or with other parts of the
Extended Enterprise project that are being implemented by partnering companies.

Acknowledgements. This paper has been written as part of the ‘SAP-leerstoel’-
project on ‘Extended Enterprise Infrastructures’ sponsored by SAP Belgium.

 Dependencies Between Data Decisions 55

References

1. Simon H.A. (1994). The sciences of the artificial (2nd ed). The MIT Press, Cambridge,
Massachusetts, p 247.

2. Hirschheim, R., H. Klein and K. Lyytinen, "Control, Sense-Making and Argumentation:
Articulating and Exploring the Intellectual Structures of Information Systems",
Proceedings of the Fifth Australasian Conference on Information Systems, G. Shanks and
D. Arnott (eds.), Melbourne, Australia, September 27-29, 1994, pp.1-25.

3. Goethals F., Vandenbulcke J., Lemahieu W., Snoeck M., Structuring the development of
inter-organizational systems: Web Information Systems Engineering conference - Brisbane
November 22-24, 2004. Springer LNCS-series, Volume 3306, pp. 454-465.

4. Goethals F., Vandenbulcke J., Lemahieu W., Snoeck M., Cumps B. (2005), Two Basic
Types of Business-to-Business integration, International Journal of E-Business Research,
1(1), 1-15, Available at http://www.idea-group.com/downloads/samples/IJEBR.pdf.

5. Cook, M. (1996). Building Enterprise Information Architectures. Prentice-Hall, 179.
6. Mintzberg, H. Structure in Fives, Designing effective organizations. Prentice-Hall,

Englewood Cliffs, New Jersey, 1993, p. 305.
7. Malone T.W., Crowston K. (1994). Towards an Interdisciplinary Theory of Coordination,

Computing Surveys, 26(1), 1994.
8. Zachman J. (1987), A framework for information systems architecture, IBM Systems

Journal, Vol. 26, No.3, pp. 276-292.
9. Kruchten P. (November 1995), The 4+1 View Model of Architecture, IEEE Software, pp.

42-50.
10. Soni, D., R.L. Nord & C. Hofmeister, ‘Software architecture in industrial applications’, in:

R. Jeffrey, D. Notkin (eds.), Proceedings of the 17th International Conference on Software
Engineering, ACM Press, 1995, pp. 196-207.

11. Tapscott D., Caston A. (1993), The New Promise of Information Technology, McGraw-
Hill, pp. 313.

12. The Chief Information Officers Council (September 1999), Federal Enterprise
Architecture Framework Version 1.1, pp. 41.

13. Department of Defense - C4ISR Architectures Working Group, (December 1997), C4ISR
Architecture Framework Version 2.0, pp. 239. Retrieved from http://www.c3i.osd.mil/

14. Department of the Treasury, Treasury Enterprise Architecture Framework, Version 1, pp.
164. Retrieved from http://ustreasury.mondosearch.com/

15. Van de Ven, A.H., Delbecq, A.L., Koenig, R. Jr. 1976). Determinants of coordination
modes within organizations. American sociological review, 41 (April), 322-338.

16. Tillquist J., King J.L., Woo C. (2002), A representational scheme for analyzing informa-
tion technology and organizational dependency. MISQuarterly, Vol. 26 No.2, pp. 91-118.

17. Thompson, J.D. (1967). Organizations in Action: Social Science Bases of Administrative
Theory. New York: McGraw-Hill.

18. Alexander E.R. (1995). How organizations act together. Gordon and Breach, p 384.
19. Chisholm Donald (1992). Coordination without hierarchy, informal structures in

multiorganizational systems. University of California Press, p 273.
20. O’Toole L.J., and Montjoy R.S., 1984. Interorganizationl policy implements: a theoretical

perspective, Public Administration Review 44(6): 491-503.
21. Pfeffer J., Salancik G.R., 2003 (1978), The external control of organizations. A Resource

Dependence perspective. Stanford University Press, California.
22. Crowston, K. 2003. A taxonomy of organizational dependencies and coordination

mechanisms. In T. W. Malone & K. Crowston & G. Herman (Eds.), The Process
Handbook: 85–108. Cambridge, MA: MIT Press.

23. Hansen M.T., Nohria N., Tierney T. (1999). What’s Your strategy for managing
knowledge?, Harvard Business Review, March-April 1999, p.106-116.

Q. Wang et al. (Eds.): SPW/ProSim 2006, LNCS 3966, pp. 56 – 63, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Tailor the Value-Based Software Quality Achievement
Process to Project Business Cases

Liguo Huang1, Hao Hu2, Jidong Ge2, Barry Boehm1, and Jian Lü2

1 Computer Science Department, University of Southern California,
Los Angeles, CA 90089-0781, USA

{liguohua, boehm}@sunset.usc.edu
2 State Key Lab for Novel Software Tech., Institute of Computer Software,

Nanjing University, Nanjing, 210093, China
{myou, gjd, lj}@ics.nju.edu.cn

Abstract. This paper proposes a risk-based process strategy decision-making
approach. To improve the flexibility in applying the Value-Based Software Qual-
ity Achievement (VBSQA) process framework, we embed the risk-based process
strategy decision-making approach into the VBSQA process framework. It facili-
tates project managers to tailor the VBSQA process framework to different pro-
ject business cases (schedule-driven, product-driven, and market trend-driven). A
real world ERP (Enterprise Resource Planning) software project (DIMS1) in
China is used as an example to illustrate different process strategies generated
from process tailoring.

1 Introduction

1.1 VBSQA Process Framework

Value-Based Software Quality Achievement (VBSQA) process framework [1] is
generated from the WinWin Spiral Model [2] and the theories of value-based soft-
ware engineering [3]. It provides a general guideline to generate process instances
in order to achieve stakeholder WinWin-balanced software quality requirements
based on risk-driven concurrency. Instead of using one-size-fits-all metrics to meas-
ure software quality achievement, VBSQA process framework enables its users to
elicit success-critical stakeholders’ value propositions (i.e., prioritization, expected
& desired values) with respect to quality (Q-) attributes. It also helps identify and
resolve their value conflicts on Q-attributes through risk analysis, technol-
ogy/architecture evaluation and milestone reviews. Note that we also consider
schedule and cost as Q-attributes in software projects. Furthermore, the framework
guides us to use real earned value to monitor and control the progress toward
achieving the Q-attribute requirements. The top-level steps and anchor point stake-
holder commitment milestones (bolded) of VBSQA process framework [1] are
listed in Table 1.

1 This DIMS project is anonymous for the sake of commercial confidentiality.

 Tailor the VBSQA Process to Project Business Cases 57

Table 1. The top-level steps of VBSQA process framework

1.
Identify top-level mission objectives and stages
– including quality (Q-) objectives

2.
Perform project cost/benefit analysis
– Estimate project budget
– Develop results chain to identify success-critical stakeholders and their top-level value propositions

3. Stakeholders negotiate mutually satisfactory (Win-Win) quality (and other) goals and relevant mission scenarios.

4. Concurrently engineer top-level Q-attribute and other requirements and solution tradeoff spaces.

5. Identify top-level Q-risks, execute risk-mitigation spirals.

6. Develop system top-level design and initial Feasibility Rationale Description (FRD).

7.
Hold Life Cycle Objective (LCO) Review
– Pass: go to 8. Fail: go to 4.

8. Concurrently engineer detailed Q-attribute and other requirements and solutions; resolve risks.

9. Develop system detailed design and detailed Feasibility Rationale Description (FRD).

10.
Hold Life Cycle Architecture (LCA) Review
– Pass: go to 11. Fail: go to 8.

11.

Construct, test, and deploy system
– Use the mission scenarios and Q-attribute requirement levels as progress metrics and test cases
– Core Capability Demo (CCD)
– Monitor progress and change requests; perform corrective actions

12. Initial Operational Capability (IOC) Readiness Review

1.2 Implications of Applying the VBSQA Process to ERP Software
Development in China

VBSQA process framework covers all phases and milestones through the entire soft-
ware development life cycle in the WinWin Spiral model [2]. It also includes various
software development activities to incorporate the value-based consideration. For
most ERP (Enterprise Resource Planning) solution providers in China, different soft-
ware quality assessment criteria are set based on different business cases [5] and dif-
ferent process strategies shall be selected to meet them. Three process strategies
(schedule-driven, product-driven and market-trend driven) can be selectively applied
in the ERP software development based on different business cases. Therefore a
flexible process generation platform is expected to enable the trim or addition of the
steps/milestones/activities in VBSQA process framework.

2 Process Strategy Decision-Making in VBSQA Process

In general, schedule-driven processes are lightweight processes that employ short
iterative cycles while product-driven processes employ longer iterative cycles. Our
risk-based process decision-making approach, summarized in Fig. 1, uses the project
business case and risk analysis to tailor the VBSQA process into an overall software
development strategy [4]. Embedding the risk-based process decision-making ap-
proach into VBSQA process framework provides a feasible solution to a flexible
process generation based on project business cases. This approach relies heavily on
project key stakeholder identification, project business case analysis and the collabo-
ration of the core development team with other project stakeholders. Thus we insert
the process decision-making point after Step 3 (stakeholders negotiate quality and
other goals) in the current VBSQA process framework described in Table 1.

58 L. Huang et al.

Fig. 1. Summary of risk-based process decision-making approach

Business case analysis aims to elicit success-critical stakeholders’ value proposi-
tions. Risk analysis aims to identify and mitigate risks particularly associated with
project schedule and software quality achievement. The results of risk analysis can be
used to answer such questions as “How much software quality investment is
enough?” by balancing the risk of investing too little on software quality with the risk
of investing too much. Examples of such questions related to software quality
achievement are “How much prototyping is enough?”, “How much review is
enough?”, and “How much testing is enough?” As another aspect of quality achieve-
ment, we extend the approach to also consider the question “How much architecting
and planning is enough?” Risk analysis is closely related to business case analysis in
that project risks are prioritized based on the business case analysis by emphasizing
the high-priority stakeholder value.

If schedule risks dominate quality risks, risk-based schedule-driven process is ap-
plied. If quality-risks dominate schedule risks, risk-based product-driven process is
applied. If neither dominates, then architect the application to encapsulate the sched-
ule-driven parts which applies the risk-based schedule-driven process and go risk-
based product-driven process elsewhere. Based on this approach, we can tailor the
VBSQA process framework and establish an overall project strategy by integrating
individual risk mitigation plans [4].

Since no decision is perfect for all time, as indicated in Step 5 in Fig. 1, project
management team needs to continuously monitor and control the performance of
the selected process in order to adapt to changes in the project business case. In this
way, we can always monitor and control the opportunity for realizing stakeholders’
value.

 Tailor the VBSQA Process to Project Business Cases 59

3 Tailor VBSQA Process to Different Business Cases

Using the process decision-making approach embedded in the VBSQA process
framework, we are able to tailor the VBSQA process to different project business
cases when generating a process instance for a software project. When tailoring the
process, we may skip some process steps/milestones, relax the deliverables/outputs of
a particular process step/milestone, select a particular process activity or decide the
participants of a process activity.

3.1 Characteristics of Three Example Business Cases

We first determine whether the project is dominated by schedule risks or quality risks
before process tailoring. Table 2 compares the different characteristics of three typical
business cases in ERP software projects. Then we use a real-world ERP software
system, a Documents and Images Management System (DIMS) built by Neusoft, as
an example to illustrate how to use the risk-based process decision-making approach
to tailor the VBSQA process to three different business cases. Four success-critical
stakeholder classes were identified in DIMS project, including the System Acquirer,
DB Administrators, Software Maintainers and Developers.

Table 2. Characteristics of Three Example Business Cases in ERP Software Development

Business Case Schedule-Driven Market Trend-Driven Product-Driven
Primary
Objective

Rapid value by adding
small extra functionalities

Rapid Market Share Occupa-
tion

Version upgrade with Q-attribute
achievement: reliability, availability,
performance, evolvability, etc.

Quality Risks Low Medium High; major business losses
Schedule Risks High; major business

losses
High; market share loss Low

Stakeholders Single collocated represen-
tatives

Many success-critical stake-
holders

Multiple success-critical stakeholders
with various Q-attribute requirements

Requirements 1) A few specific and
stable requirements;
2) Mostly functional

1) Goals generally known (e.g.,
platform changes);
2) Detailed requirements often
vague, volatile and emergent;
3) Functional and non-
functional [6]

1) Critical and conflicting Q-attribute
requirements from various stake-
holders;
2) Most requirements relatively stable;
others volatile, emergent
3) Functional and nonfunctional;

Architecture 1) Extend from existing
system architecture
2) Little architecting effort
3) Stakeholder high confi-
dence

1) Brand new architecture;
2) Most architecting effort;
3) Stakeholder low confidence

1) Evolve based on existing product-
line architecture
2) High confidence in some parts; low
confidence in others

Refactoring Inexpensive with skilled
people

More expensive with mix of
people skills

Very expensive, with mix of people
skills

3.2 Tailor VBSQA Process to Schedule-Driven Business Case

Schedule-driven business case applies when rapidly accommodating a few minor
product upgrading requirements from one or two departments within an organization.
The examples of such requirements can be adding, deleting, updating certain attrib-
utes in the current DIMS database schema. Those functionalities are usually needed
urgently. Delivering the functionalities on time becomes the stakeholders’ highest-
priority value proposition. Thus, we need to prioritize the process steps/activities and

60 L. Huang et al.

tailor the VBSQA process framework to only retain the most effective process
steps/milestones/activities. In this case, system users are willing to tolerate some qual-
ity degradation and delay the Q-attribute requirements until the system operation.

Based on the schedule-driven business case in Table 2, the added functionalities
are extended from the existing system architecture and stakeholders are more confi-
dent in the existing architecture. There is no need to propose or review several feasi-
ble architectural options. Requirements are specific enough to skip the high-level
design and to proceed directly to the detailed design stage. In this case, process steps
in Life Cycle Objective (LCO) stage are less effective than those in the Life Cycle
Architecture (LCA) stage in VBSQA process framework. For the same reason, we
may also skip the intermediate milestone Core Capability Demo (CCD) and proceed
to Initial Operational Capability (IOC) Readiness Review. Since the quality risks are
relatively low and developers only need to extend from the existing system architec-
ture, Selected Architectural Internal Review within the developer team is performed
in LCA stage instead of onsite External Review with the participation of all stake-
holders in order to meet the delivery deadline. Fig. 2 shows an example of schedule-
driven process strategy for DIMS project.

Fig. 2. An example of schedule-driven process strategy for DIMS project

3.3 Tailor VBSQA Process to Product-Driven Business Case

Product-driven business case applies when accommodating a system upgrading re-
quest to a higher version after aggregating common upgrading requirements from
various departments. In this case, quality of the upgraded product is the process driver
rather than meeting a delivery deadline. Quality risks are dominant compared with
schedule risks as shown in Table 2. The requirements are relatively stable. Since the
requirements are aggregated from various project stakeholders, the Q-attribute re-
quirements may conflict with one another. An example is the DIMS version upgrade
from 6.0 to 7.0. Functional requirements and their associated Q-attribute requirements
were prioritized through stakeholder WinWin negotiation in Table 3.

Multiple project increments can be proposed based on the priorities of require-
ments. A process instance is generated for each increment. Fig. 3 shows an example
of product-driven process strategy in DIMS upgrade project. R1, R2, R3 and R4 are
grouped into the first increment due to their higher priorities and cohesion. R5 and R6
are grouped into the second increment. In product-driven business case, process in-
stances of multiple increments can proceed concurrently since the functional and

 Tailor the VBSQA Process to Project Business Cases 61

Table 3. Prioritized requirements in DIMS upgrade from 6.0 to 7.0

Requirements Description Category Priority
R1 Data migration from old DB platform to upgraded DB platform Functional High

R2
Data migration shall be completed within 1 day and within the
storage space

Quality
(Performance)

High

R3
Accommodate different DB platforms and schema in data migra-
tion

Quality
(Evolvability)

Medium

R4 Add a printing function in DIMS system Functional High

R5
Build a unified log in user interface for different DIMS subsys-
tems

Functional Medium

R6 Improve search response time from 2 seconds to 0.5 seconds
Quality

(Performance)
Medium

Q-attribute requirements are relatively stable. In each increment, process strategy
shall place emphasis on involving stakeholders in identifying and resolving conflict-
ing Q-attributes, concurrently identifying and mitigating Q-risks with architec-
ture/technology evaluation and milestone reviews. Thus, its iteration cycle is longer
than schedule-driven process in order to address the Q-risks and maintain the product-
line architecture.

LCO/LCA reviews and CCD are all necessary to identify and mitigate Q-risks in
each increment. It is also important to involve all success-critical stakeholders in the
prototype evaluation and each milestone review (i.e., LCO, LCA, CCD, IOC). There-
fore, performing onsite External Prototype Evaluation, Architecture Options External
Review and Selected Architecture External Review with the participation of the Sys-
tem Acquirer, DB Administrators, Software Maintainers and Developers, is more
effective than their internal counterparts within developer team.

3.4 Tailor VBSQA Process to Market Trend-Driven Business Cases

Market trend-driven business case applies when the upgrade of the product is driven
by the market trend or competing companies’ products, such as a change from Cli-
ent/Server architecture to web-based architecture in the DIMS. In this case, providing
superior capabilities to capture greater market share as early as possible is the key
process driver.

The priorities of schedule risks and quality risks are comparable for market trend-
driven business case as shown in Table 2. Therefore, the process strategy for market
trend-driven business case is a mixture of the schedule-driven and product-driven
process strategies. It is similar to schedule-driven process strategy in that it maintains
the short iteration cycle in the first project increment to meet the product delivery
deadline for capturing the market share early. However, since stakeholders are less
confident in the web-based architecture, it is different from schedule-driven process
strategy in that stakeholders should be closely involved in the prototype evaluation
and each milestone review (LCO, LCA, CCD, IOC) as shown in Fig. 4.

It is similar to product-driven process strategy in that it emphasizes stakeholder in-
volvement and multiple project increments can be proposed based on stakeholders’
priorities of functional and Q-attribute requirements. However, it is different from
product-driven process strategy in that only the top-priority capabilities can be

62 L. Huang et al.

F
ig

. 3
. A

n
ex

am
pl

e
of

 p
ro

du
ct

-d
ri

ve
n

pr
oc

es
s

st
ra

te
gy

 f
or

 D
IM

S
ve

rs
io

n
up

gr
ad

e

F
ig

. 4
.

A
n

ex
am

pl
e

of
 m

ar
ke

t t
re

nd
-d

ri
ve

n
pr

oc
es

s
st

ra
te

gy
 f

or
 c

ha
ng

in
g

fr
om

 C
li

en
t/

S
er

ve
r-

ba
se

d
D

IM
S

to
 w

eb
-b

as
ed

 D
IM

S

 Tailor the VBSQA Process to Project Business Cases 63

accommodated in the first increment (see Fig. 4) based on the Schedule/Cost/Quality
as Independent Variable (SCQAIV) process strategy [7]. Stakeholders are usually
willing to tolerate some quality (e.g., performance, evolvability) degradation at the
initial trial of the system. In addition, the process strategy in the following increments
heavily depends on the market feedback of the product delivered in the first incre-
ment. Thus, there is a gap between each increment to wait for the market feedback.
As the operation of new platform becomes stable with sufficient market feedback,
product-driven process strategy can be applied in the following increments.

4 Conclusion and Future Work

The risk-based process strategy decision-making approach embedded in VBSQA
process framework enables us to tailor the process to various project business cases. It
improves the flexibility in applying the process framework. Business case and risk
analyses are critical success factors in selecting an appropriate process strategy.

We are investigating the interactive tool support for project managers to tailor the
VBSQA process framework and generate an appropriate process instance for a spe-
cific project business case.

References

1. Huang, L.: A Value-Based Process for Achieving Software Dependability”, Proceedings of
International Software Process Workshop (2005), Beijing, China. LNCS, Springer Verlag

2. Boehm, B., Hansenzz, W.: Understanding the Spiral Model as a Tool for Evolutionary Ac-
quisition”, CrossTalk, May, (2001)

3. Boehm, B., Jain, A.: An Initial Theory of VBSE, in A. Aurum, S. Biffl, B. Boehm, H. Er-
dogmus, and P. Gruenbacher, Value-Based Software Engineering, Springer Verlag (2005)

4. Boehm, B., Turner, R.: Balancing Agility and Discipline, Addison Wesley, (2004)
5. Reifer, D.: Making the Software Business Case, Addison Wesley, (2002)
6. Chung, L., Nixon, B., Yu, E., Mylopoulos; J.: Non-Functional Requirements in Software

Engineering, Kluwer, (1999)
7. Boehm, B., Port, D., Huang, L., and Brown, W.: Using the Spiral Model and MBASE to

Generate New Acquisition Process Models: SAIV, CAIV, and SCQAIV, CrossTalk, vol.
15, no. 1, January, (2002), pp. 20-25.

Q. Wang et al. (Eds.): SPW/ProSim 2006, LNCS 3966, pp. 64 – 71, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Optimizing Process Decision in COTS-Based
Development Via Risk Based Prioritization

Ye Yang and Barry Boehm

Center for Software Engineering, University of Southern California,
941 W. 37th Place, SAL 330,
Los Angeles, CA 90089 USA

{yangy, boehm}@sunset.usc.edu

Abstract. Good project planning requires the use of appropriate process model
as well as effective decision support technique(s). However, current software
process models provide very little COTS-specific insight and guidance on help-
ing COTS-based application developers to make better decisions with respect to
their particular project situations. This paper presents a risk based prioritization
approach that is used in the context of COTS Process Decision Framework [6].
This method is particularly useful in supporting many dominant decisions dur-
ing COTS-based development process, such as establishing COTS assessment
criteria, scoping and sequencing development activities, prioritizing features to
be implemented in incremental development, etc. In this way, the method not
only provides a basis for optimal COTS selection, but also helps to focus the
limited development resource on more critical tasks that represent greater risks.

1 Introduction

There is considerable consensus about the new technical, economical, and manage-
ment challenges associated with COTS-based development (CBD) [1, 2, 4, 5]. How-
ever, traditional software process models fail to accommodate many of these chal-
lenges, because their process guidance is overly sequential (as with waterfall-based
models [4]) or underdetermined (such as EPIC [2]). This often leads to the selection
of best-of-breed but incompatible COTS products, without considering the increased
costs and reduced benefits incurred by trying to integrate them together.

Extended from the general risk-driven Spiral Model [10], the CBD process deci-
sion framework [6] provides a value-based set of processes that helps CBD project
teams avoid or minimize such value losses. It enables CBD projects to generate flexi-
ble process instances from its composable process elements that best fit their project
situation and dynamics. However, making optimal process decision is never an easy
job, and it requires a comprehensive evaluation of COTS costs, benefits, and risks
within the feasibility analysis and project business case [8].

In the last two years, we have had the opportunity to instruct and apply framework
to 13 e-services projects at the University of Southern California (USC) and observe
their process execution. This environment provided us with a unique way of introduc-
ing, experimenting, validating, and improving the CBD process decision framework.

 Optimizing Process Decision in CBD Via Risk Based Prioritization 65

In this paper we introduce the CBD process decision framework, present the risk
based prioritization strategy for improving its process decision support, and show
three example scenarios where the strategy is used to generate flexible process in-
stances.

2 CBD Process Decision Framework

Empirical analysis on both USC e-services and industry CBD projects has led us to
develop and evolve a value-based CBD process decision framework as a COTS-
specialized risk-driven Spiral framework. It consists of a set of composable process
elements, accommodating concurrent CBD activities and frequent go-backs based on
new and evolving stakeholder value propositions and risk considerations, as illus-
trated in Fig. 1. A CBD process instance starts by “walking” a path from start to de-
ploy that connects activity areas (boxes) and decisions (ovals). The small circles with
letters A, T, G, C indicate the assessment, tailoring, glue code, and custom code de-
velopment process elements, respectively. Each activity area may enter and exit in
numerous ways.

P1: Identify Objective,

Constraints and

Priorities (OC&Ps)

P2: Do Relevant COTS

Products Exist?

P3: Assess COTS

Candidates

P4: Tailoring Required?

Single Full-COTS solution

satisfies all OC&Ps

Yes or Unsure

P6: Can adjust

OC&Ps?
No

No acceptable or risky

COTS-Based Solution

P5: Multiple COTS

cover all OC&Ps?
Partial COTS solution best

P7: Custom Development

NoYes

P10: Develop

Glue Code

P8: Coordinate

custom code and glue

code development

P9: Develop Custom

Code

No, Custom code

Required to satisfy

all OC&Ps

Yes

P11: Tailor COTS
P12: Productize,

Test and Transition

NoYes

Deploy

Deploy

A

Process

Area

Decision

/Review

Assess-

ment

Tailoring

Glue-

Code

T

No

G

G

T

A

Start

Custom

code
C

C

C

Fig. 1. CBD process decision framework

The framework emphasizes that stakeholders must be identified and their value
propositions are prioritized (about features, platforms, performance, budgets, schedules,
and so on) and a mutually satisfactory or win-win set of objectives, constraints, and
priorities (OC&P’s) is negotiated (P1). As the project progresses, risk considerations,
stakeholders’ priority changes, new COTS releases, and other dynamic considerations

66 Y. Yang and B. Boehm

can alter the OC&Ps. In particular, if the team identifies no suitable COTS packages
(P6), the stakeholders can change the OC&Ps and the process begins anew with these
revised considerations. The framework looks sequential, but its elements support recur-
sive and reentrant use to support the frequent go-backs involved in CBD processes.
We’ve studied these and found frequently occurring ATGC patterns or “genetic codes”
that characterize CBD processes [3].

3 Applying CBD Process Decision Framework to USC e-Services
Projects

During the last two years, 13 USC e-service projects applied our CBD process deci-
sion framework in their development. At the same time, we use four other process
drivers to help the development teams making their process decisions with respect to
the volatile project situations. These include: the CBD Experience Base, cost estima-
tion models (i.e. COCOMO II and COCOTS), key stakeholders’ win-win negotiation,
and COTS market watch. Each of these process drivers plays a different role in help-
ing developers to generate appropriate process instances from the framework.

 The CBD Process Decision Framework is used as a comprehensive baseline for
generating a particular COTS process. The CBD Experience Base is a knowledge
base of guidelines, patterns, and models that is empirically formulated and used to
support the decision-making activity during CBD development. The Constructive
COTS cost model (COCOTS) [1] is primarily used to estimate the COTS associated
efforts. And the COCOMO II model is used to estimate the portion of custom devel-
opment effort. The estimation results will be used during the cost/benefit analysis for
choosing COTS options that produce the best life cycle expected cost-benefit. Differ-
ent stakeholders have different expectations and priorities. Explicitly recognizing and
involving them into win win negotiations will ensure all relevant areas are better iden-
tified and addressed. COTS market and COTS vendor are two important variation
sources that introduce the most change factors. Therefore, it is critical for the devel-
opers to keep monitoring competitive COTS candidates by collecting and evaluating
information from COTS market/vendor.

Using the information gathered from the 8 first year projects, we found that with
applying the CBD process decision framework, the teams performed better than those
who did not. More specifically, the statistical results show a factor of 1.28 in improv-
ing team performance and a factor of 1.6 in increasing client satisfaction. However, it
is also found that a number of decision times where the framework and its guidelines
were not sufficient enough in supporting developers’ decision-making. This is mainly
because most developers are computer science major graduate students who are skill-
ful in programming but have little or no experience on project management, esp. risk
management. Moreover, the framework is able to handle changes and provide guid-
ance on what activity sequences the developers should follow in order to mitigate
their risk, but nothing in the framework actually addressed how/how much one can
do this.

 Optimizing Process Decision in CBD Via Risk Based Prioritization 67

4 Optimizing Decision Processes Via Risk Based Prioritization

To address this problem, we have developed a COCOTS Risk Analyzer [7] to auto-
mate the COTS project risk assessment with the set of cost driver ratings that user
enters to obtain a COCOTS
cost/schedule estimate. The
automated risk assessment
workflow is shown in Fig. 2. It
is based on an expert Delphi
analysis of the relative risks
involved in the most critical
combinations of COCOTS cost
driver ratings. Our previous
study also showed that it has
done an effective job of estimat-
ing the relative risk levels of a
sample of CBD projects.

With COCOTS Risk Ana-
lyzer, risk based prioritization
can be used as a fundamental
strategy to structure decision
procedures within our framework to prioritize both product and process alternatives
that compete for limited resources. Table 1 summarizes how the risk strategy steps,
spiral quadrants, and CBD process framework steps all relate to each other:

Table 1. Steps of Risk Based Prioritization Strategy

Risk

Strategy

Step

Spiral

Quad-

rants

CBD process

Decision Frame-

work Step

Description

S1 Q1 P1, P2 Identify OC&Ps, COTS/other alternatives
S2 Q2a P3 Evaluate COTS vs. OC&Ps (incl.

COCOTS)
S3 Q2a P3 Identify risks, incl. COCOTS risk analysis
S4 Q2b P3 Assess risks, resolution alternatives; If

risks manageable, go to S7
S5 Q2b,

Q1
P6 Negotiate OC&P adjustments; If none

acceptable, drop COTS options (P7)
S6 Q2a P3 If OC&P adjustments successful, go to

S7; If not, go to S5
S7 Q3 P4 or P5 Execute acceptable solution

Next, we use four example scenarios to illustrate how to use this risk based priori-
tization strategy in supporting decision processes.

4.1 Establishing COTS Evaluation Criteria

The small circle with letter A (i.e. P3) in Fig.1 represents the COTS assessment proc-
ess element, which can be further decomposed into steps A1-A6 as elaborated in [6].

Knowledge
Base

Knowledge
Base

Risk Rule s

Ri sk Level
Scheme

Mitigation
Strategy

User

1. Identify Cost
Factor’s Risk

Potential Rating

3. Evaluate Risk
Probability

4. Analyze Risk
Severity

2. Identify
Risks 5. Asse ss

Overall Risk

6. Provide Risk
Mitigation

Advice s

Input (Cost
Factor Ratings)

Output
(Risk Summary)

Knowledge
Base

Knowledge
Base

Risk Rule s

Ri sk Level
Scheme

Mitigation
Strategy

User

1. Identify Cost
Factor’s Risk

Potential Rating

3. Evaluate Risk
Probability

4. Analyze Risk
Severity

2. Identify
Risks 5. Asse ss

Overall Risk

6. Provide Risk
Mitigation

Advice s

Input (Cost
Factor Ratings)

Output
(Risk Summary)

Fig. 2. COCOTS Risk Analyzer

68 Y. Yang and B. Boehm

Establishing evaluation criteria is a major task included in step A1, where inexperi-
enced CBD developers often report difficulty and problematic.

Selection of COTS products is typically based on an assessment of each product in
light of certain product attributes as evaluation criteria. Inappropriate COTS selection
can cause many late rework even project failure, therefore, it is very important to have
an essential set of product attributes in the first place. To do this, follow risk based
prioritization strategy starting with identifying an initial broad set of relevant attrib-
utes such as functionality, security, cost, etc. (A comprehensive list of COTS product
attributes is defined in COCOTS [1], which can be used as a good starting point.).

In this case, major risks reflect the risk of not including certain product attributes
into the evaluation criteria, resulting in inappropriate COTS choices. To assess the
risk exposures of such risks, the COCOTS inputs include two types of voting (Step S2
in Table 1). With respect to each attribute, developers will vote its ease of evaluation;
while the client will vote its importance to organization. The voted score is on a 0-10
normalized scale, representing an increasing degree of ease or degree of importance.
And the risk rank value for each attribute is quantified according to the following
equation (Step S3 in Table 1):

Risk rank = Degree of ease of evaluation * Degree of importance to organization

Therefore, attributes with higher risk rank values reflect those that are important to
the organization and easy to evaluate. In general, as risk mitigation strategy, these
attributes should have higher prioritization to be included to the evaluation criteria
list. One thing needs to be mentioned here is that when conflicts exist among the
votes (e.g. two extreme scores for the same attributes from different developers), the
conflicts should be resolved first through further discussion before proceeding to
finalize on evaluation criteria set.

4.2 Scoping COTS Assessment Process

Project teams often scope the COTS assessment process based on the COTS products’
likely cost. A better scope criterion is to apply our risk based prioritization strategy to
calculate the amount of risk exposure involved in choosing the wrong COTS combi-
nation. For example, a supply chain application started with an $80,000 effort on
COTS initial filtering, using separate weighted-sum evaluations of the best-of-breed
enterprise resource planning (ERP), advanced planning scheduling (APS), transaction
management (TM), and customer relationship management (CRM) COTS package
candidates based on documentation reviews, demos, and reference checking. The
team quickly identified the best-of-breed COTS choices that seemed to be the strong-
est choices. However, there was a chance that the best-of-breed COTS combination
could have many technical and business-model-assumption incompatibilities indi-
cated by the COCOTS risk analysis results. For example, among the best-of-breed
COTS combination, the COCOTS run (Step S2 and S3 in Table 1) for the COTS AB
combination had an APCPX (interface complexity) rating of Very High and an
ACSEW (supplier extension willingness) of Very Low, indicating a significant inte-
gration risk.

In this case, the risk based prioritization strategy suggests a better risk mitigation
strategy that is to use the separate analyses (i.e. prototyping) to further assess the

 Optimizing Process Decision in CBD Via Risk Based Prioritization 69

leading choices and identify the major interoperability risk exposures, then use the
size of the overall risk exposure to scope a more detailed COTS interoperability as-
sessment. The analyzed results showed that this would lead to a $3 million, eight-
month overrun and associated system effectiveness shortfalls. Had they invested more
than $80,000 in COTS assessment to include interoperability prototyping, they would
have been able to switch to a more compatible COTS combination with only minor
losses in effectiveness and without expensive, late rework. The CBD process decision
framework accommodate this by two types of assessment tasks: initial filtering (A2)
and detailed assessment (A3-A5) [6].

4.3 Sequencing COTS Integration Activities

Patterns exist between COTS activity sequences and their indicated risks [3]. Appro-
priately sequencing COTS activities following a pattern can be used as a valid means
to mitigate its corresponding risk. However, it requires an overall evaluation with
respect to a particular project situation.

In general, there are five types of risk mitigation strategies: buy information, risk
avoidance, risk transfer, risk reduction, and risk acceptance [9]. In the above supply
chain application example, the developers were actually using detailed COTS assess-
ment to buy information to select a more compatible COTS choice. Considering the
stakeholders may have different value propositions, Fig. 3 illustrates different risk
mitigation strategies they can follow in terms of flexibly composing their COTS ac-
tivity sequences, with the following stakeholder propositions in each situation:

• Risk avoidance: The team could use an adequate alternative COTS C and fol-
low the sequence (a) to avoid the risk of COTS A and B not talking to each
other.

• Risk transfer: If the customer insists on using COTS B, the developers can
have them establish a risk reserve to be used to the extend that A and B cant
talk to each other and follow the sequence (b).

• Risk reduction: If the customer decides to build the wrappers to get A and B
talk through CORBA connections, the development cost will increase but the
schedule delay will be minimized;

• Risk acceptance: If the developer prefers to solve the A and B interoperability
problem, they will have a big competitive edge on the future procurements.
“Let’s do this on our own money, and patent the solution”.

To illustrate these in our risk strategy, for example, if in steps S2 and S3, the
COCOTS run shows the COTS AC combination had an ACPER (performance ade-
quacy) rating of Low and an ACSEW rating of Very Low, also indicating a fairly
significant risk. Then in Step S4, the developers prototyped the AB interface com-
plexity state of nature and found that it incurred a significant added cost and sched-
ule. Step S5 involves the developers and the customer evaluating the 4 risk resolution
alternatives and determining an adjustment of the OC&P’s that leads to an acceptable
COTS solution in Step S6.

70 Y. Yang and B. Boehm

Choose

COTS C

Integrate

COTS A, C

Develop

Application
Deliver

(a) Risk Avoidance :

COTS C adequate

Choose

COTS B

Develop

Application ,

Integrate A & B

Develop

Application

Deliver

(b) Risk Transfer :

COTS C not

adequate

OK

Use risk reserve

to fix problem
Problem

Choose

COTS B

Develop parts of

application , use

wrappers to

integrate A and B

Develop rest

of application
Deliver

(c) Risk Reduction :

Custom $, IP

(d) Risk Acceptance :

Developer $, IP
Package

wrappers for

future use

Fig. 3. Different risk mitigation resulting in different activity sequence

4.4 Prioritization of Top Features

Stakeholders win win negotiation plays an important role in converging on a mutually
satisfactory set of product features to be implemented within 24 weeks schedule. In
this case, COCOTS Risk Analyzer provides risk analysis that can be used in risk
based prioritization for prioritizing the project requirements and converging on a
feasible feature set. In an example USC e-services project, “Open source discussion
board and research platform”. During the win win negotiation, stakeholders agreed
that the full operational capability includes three top-level features: discussion board,
instant messenger, and other user management features supporting Internet Explorer,
Mozilla, and Netscape Navigator web browsers. However, the development team only
included 6 people and was under a strict schedule limit of 24 weeks. Using the
COCOTS Risk Analyzer, the project followed the risk based prioritization strategy to
find out that including support for Mozilla and Netscape Navigator web browsers
would cause 6 weeks schedule overrun, and including instant messenger feature
would cause 4 weeks schedule delay. Therefore, the stakeholders came into agree-
ment to leave the feature of supporting other web browsers and instant messenger to
the evolution requirements, which will be implemented in a later increment but still
be used in determining the system architecture in order to facilitate evolution to full
operational capability.

4.5 Discussion

In the second year, the risk based prioritization principle was experimented within the
context of CBD framework on 5 projects, and an end-of-project survey was given to

 Optimizing Process Decision in CBD Via Risk Based Prioritization 71

all developers to collect the usage data and feedback. Out of the total 24 responses, 19
commented that the framework is useful in preparing life cycle plan, and 21 reported
that the risk based prioritization principle helped in their risk analysis. We believe that
this is a satisfactory and encouraging indicator in evaluating the performance of the
improved framework.

5 Conclusions

COTS-based applications pose unique development challenges that traditional process
models can’t anticipate. The CBD process decision framework can help developers to
generate flexible process instances with respect to their particular project situations,
providing a set of COTS-specific process areas and decision points.

This paper presented the risk based prioritization as a general principle for deriving
optimal decision with the support of a tool named COCOTS Risk Analyzer. Using
three critical decision scenarios, it also elaborated on the application of the principle.
Statistical analysis results has shown that applying this principle within the CBD
process framework can help steer CBD projects toward successful, cost-effective
integration of components and applications. We will further investigate the effective-
ness of this approach to improve decision support in CBD process framework.

References

1. C. Abts, B. Boehm, and E. Bailey Clark, “COCOTS: A Software COTS-Based System
(CBS) Cost Model,” Proceedings, ESCOM 2001, April 2001, pp. 1-8.

2. C. Albert and L. Brownsword, “Evolutionary Process for Integrating COTS-Based Sys-
tems (EPIC): An Overview,” Technical Report, CMU-SEI-2002-TR-009, July 2002.

3. Y. Yang, “Process Patterns for COTS-Based Development,” Proceedings, SPW2006, May
2005.

4. M. Morisio, C. Seaman, A. Parra, V. Basili, S. Kraft, and S. Condon, “Investigating and
Improving a COTS-Based Software Development Process,” Proceedings, ICSE 22, June
2000, pp. 32-41.

5. B. Boehm, D. Port, Y. Yang, and J. Buhta, “Not All CBS Are Created Equally: COTS-
Intensive Project Types,” Proceedings, ICCBSS’03, Ottawa, Canada, Feb. 2003, pp. 36-
50.

6. Y. Yang, J. Buhta, B. Boehm, and D. Port, “Value-Based Processes for COTS-Based Ap-
plications,” IEEE Software, July.Aug 2005.

7. Y. Yang, B. Boehm, and B. Clark, “Assessing COTS Integration Risk Using Cost Estima-
tion Inputs”, accepted by ICSE 2006.

8. D. J. Reifer, Making the Software Business Case. Addison-Wesley, September 2001.
9. Barry W. Boehm, Software Risk Management: Principles and Practices, IEEE Software,

v.8 n.1, p.32-41, January 1991.
10. B. Boehm, A. Egyed, J. Kwan, D. Port, A. Shah, and R. Madachy, “Using the WinWin

Spiral Model: A Case Study,” IEEE Computer, July 1998.

Q. Wang et al. (Eds.): SPW/ProSim 2006, LNCS 3966, pp. 72 – 79, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Project Replayer – An Investigation Tool to Revisit
Processes of Past Projects

Keita Goto1, Noriko Hankawa2, and Hajimu Iida1

1 Graduate School of Information Science, Nara Institute of Science and Technology, Japan
keita-g@is.naist.jp, iida@itc.naist.jp

2 Faculty of Management Information, Hannan University, Japan
hanakawa@hannan-u.ac.jp

Abstract. In order to help knowledge acquisition and accumulation from past
experiences, we propose a KFC (Knowledge Feedback Cycle) framework
among engineers and researchers. Three tools (Empirical Project Monitor,
Simulator, and Replayer) are used to circulate captured knowledge in KFC. Pro-
ject Replayer is a most characteristic tool used to review data of past projects
derived from development logs; version control, bug reports and e-mails. With
Project Replayer, past projects can be easily revisited and complicated phenom-
ena of past projects can be investigated. As a result of preliminary experiments,
we have confirmed that Project Replayer helps researchers construct and vali-
date hypotheses of software process. We also confirmed that developers have
acquired new knowledge about a certain problem extracted from past projects.

1 Introduction

Recently, software development scale becomes bigger, and software quality’s impact
to our society is significantly increasing. On the other hand, lifetime of software is
getting shorter. In order to develop software with certain qualities in a limited time,
developers require various knowledge such as cost estimation or risk management,
as well as other software engineering techniques. Some of such knowledge should be
extracted and accumulated through their own experiences. However, acquiring and
accumulating such knowledge require long time and large efforts. In other words, it is
very difficult for developers to become matured engineers in a short period.

In order to help knowledge acquisition and accumulation for novice software engi-
neers, we propose a framework for cycling engineering and management knowledge
among experienced developers, software engineering researchers and novice develop-
ers. We call this cycle KFC (Knowledge Feedback Cycle). In the KFC environment,
knowledge, mainly concerning risk management and cost estimation, is extracted
from past experiences for future reuse. Three tools, EPM (Empirical Project Monitor),
Project Replayer, and Project Simulator, are used to capture and circulate knowledge
in KFC. EPM [1] is a tool to automatically collect project data from source code re-
pository, bug-reports and e-mails. Project Replayer is a tool used to review data of
past projects. Project Simulator is used to provide actual feedback to developers.
Developers can avoid mistakes that is not happened in their experiences but happened
in other developers’ experiences before.

 Project Replayer – An Investigation Tool to Revisit Processes of Past Projects 73

This paper mainly describes the concept of the KFC and features of Project Re-
player. Section 2 shows related works. In section 3, we present a conceptual environ-
ment of KFC. In section 4, outline of Project Replayer and its feature are explained.
In section 5, preliminary experiments to evaluate capability of the Replayer are
shown. In section 6, we discuss experiment result. Finally, in section 7, conclusions
and further work are shown.

2 Related Work

Recently, many works are published in the field of the software process simulations.
Some of them focus to help understanding of process behavior and training of process
management using software process simulators [2].

For example, Pfahl et al. present the system with integrated simulation compo-
nent called CBT that is designed for software engineering education [3]. CBT pro-
vides an interactive environment using standard web browsers to learn knowledge
of project management. The CBT simulation module employs the model to repre-
sent the characteristic of a project is generated by the event diagram based on a
COCOMO model. RoleEnact is a tool to support simulation, evaluation and im-
provement of software development processes [4]. RoleEnact focuses on develop-
ers’ roles. Once part of the existing process has been captured in the model genera-
tor, the model stepper and simulator evaluate the results of running process while
RoleEnact revise the process.

Most of these works treat abstracted model to show behaviors of software proc-
esses, even though they are obtained from real project experiences. Though real
project data is not directly handled by those systems, investigation of real project
data is very important to understand the behavior of the project in detail. Real pro-
ject investigation also plays a major role in construction and validation of process
simulation models, especially when we construct organization-specific models
based on their own experiences. Usually, project investigation is very time-
consuming task, and reducing the cost of investigation task is the key factor of
knowledge extraction.

3 Knowledge Feedback Cycle

The purpose of KFC environment is to circulate knowledge from experience of past
projects to future projects. Developers are supposed to acquire new knowledge while
experiencing software development projects. If such knowledge can be transferred to
future projects at low-cost, it is quite valuable and helpful for the members.

To establish such cycle, KFC employs three tools; EPM, Project Replayer and
Project Simulator (See Fig. 1). KFC also involves two human roles – software de-
velopers and software engineering researchers. Developers utilize the KFC environ-
ment in order to acquire new knowledge from past projects while researchers utilize
the KFC environment in order to construct simulation models which are embedded
to the Project Simulator.

74 K. Goto, N. Hankawa, and H. Iida

A typical scenario in KFC would be as follows;

Step1: Various development data (records of code modification, bug tracking, and
e-mails) is automatically captured by EPM during the project enactment
(See “EPM” part of Fig. 1).

Step2: Researchers analyze collected data to construct various simulation models
using Project Replayer and analysis tools (See “Researcher” part of Fig. 1).

Step3: Using Project Replayer, developers review past projects. Events and acci-
dents that are not recorded by EPM are also clarified in interview with de-
velopers (See “Project Replayer” part of Fig. 1).

Step4: Regarding results of reviews and interviews, researchers refine their simula-
tion models that were made in Step2. The models are embedded into the
Project Simulator (See “Simulation Model” part of Fig. 1).

Step5: Using the Project Simulator, novice developers learn complicated phenom-
ena in past projects. Developers can also utilize the Project Simulator to
make their next project plans. The planned project is regarded as the target
of Step1 of the next cycle (See “Project Simulator” part of Fig. 1).

Fig. 1. Knowledge Feedback Cycle environment

The whole mechanism of the KFC environment is currently under development in
our group, while a prototype of Project Replayer has been implemented at first to
evaluate its capability. Following parts of this article describe the feature of Project
Replayer and results of preliminary experiments using the Replayer.

4 Project Replayer

4.1 Purpose of the Tool

Project Replayer is a tool to replay project data collected by EPM in order to help
understanding behavior of past projects. Project Replayer accelerates knowledge
circulation by supporting both of two roles in KFC; developers can use Project Re-
player to revisit their past projects for postmortem evaluations, while researchers can
use Project Replayer to deeply understand and analyze dynamic behavior of the

Project
Replayer

Project
Simulator

EPM
Gnats
CVS
Mail-

Project Data Supply
Comment

Review

Developer Researcher

Project Data
Summary

Bug Tracking data
Version Management data
Communication logs

Building
Simulation
Model

Simulation Model
Project
behavior
& detail

Project Execution Training

 Project Replayer – An Investigation Tool to Revisit Processes of Past Projects 75

Fig. 2. Screen image of Project Replayer

projects. Replaying past real project is also important for education and training be-
cause simulators sometimes provide practitioners with quite less reality that is derived
from abstract and ideal models. Project Replayer faithfully replays various behaviors
of past projects. Developers are more familiar with the behaviors of past projects than
behavior of the virtual projects.

4.2 Features

Current implementation of Project Replayer has four views (Event list view, File
view, Graph view and Member view) and a time-control bar.

Event list view shows various (CVS: Concurrent Versions System, bugs, and e-
mail) events collected through EPM are listed in order of time (See “Event list view”
part of Fig. 2). The first column of each line works as a button to jump to the time of
the event, which is indicated in the second column. The third column indicates the
type of the event, the fourth column shows owner of the event, and the fifth column
shows related filename.

File view presents source files in CVS repository (See “File view” part of Fig. 2).
Each file item is shown with its name and progress bar. The progress bar shows rate
of progress calculated as ratio of current CLoC (Cumulative modified Lines of Code)
to the final CLoC. Graph view shows transitions of various data including total LoC
(Line of code) and CLoC (See “Graph view” part of Fig. 2). Y-axis of the line chart
indicates quantitative value such as LoC or CLoC, while x-axis indicates calendar
time (days) of the project.

Member view lists project members with their role names and current actions (See
“Member view” part of Fig. 2). The first row of a member item shows the member’s

Events list
view

Member
view

Graph
view

File
view

76 K. Goto, N. Hankawa, and H. Iida

name, the second row shows the member’s portrait (or avatar), third row indicates
current action s/he has performed, and fourth row shows active files that are currently
being modified by the member.

The time control bar indicates the time (date) currently shown in replaying. Mov-
ing the slider changes the time currently displayed. The bar also provides buttons such
as start and pause.

5 Preliminary Experiments

5.1 Planning of the Experiments

To evaluate features of Project Replayer, we conducted preliminary experiments. The
aim of the experiments is to observe how Project Replayer’s features help the re-
searcher and developers to make a new simulation model and to acquire new knowl-
edge respectively. Since experiments focused two viewpoints, i.e. developers’ bene-
fits, and researchers’ benefits, we prepared four subjects; Subject0 is a researcher, and
Subject1~3 are developers (graduate school students). Experiments form three phases,
researcher’s analysis, developers’ review, and construction of simulation model by
the researcher.

In the first phase, a researcher analyzes project’s phenomena using Project Re-
player. The researcher is requested to construct simulation models regarding the ana-
lyzed phenomena of the project. The researcher may have some questions about phe-
nomena because information exposed by Project Replayer still does not include all
detailed events that occurred in the project. Therefore, the researcher draws some
questions about specific phenomena. The developers’ answer to the questions, which
is provided in the second phase, will help the researcher make a simulation model.

In the second phase, Project Replayer is used by developers to search answers to
the questions. Project Replayer also helps to extract their recall. Originated questions
are also important because they provide the developers with practical focus to deeply
review the specific phenomena in past project. Just reviewing projects without any
specific focus would be a very hard task.

In the third phase, the researcher tries to improve the simulation model according
to the answer provided by developers.

The target project was for development of a typing-game. The project is operated
for 24 days by six developers (students at NAIST). Program consists of 105 modules
(.cpp files) and the final code size was 9,578 lines in total.

5.2 Results of the Experiments

In the first phase, the researcher (Subject0) made two hypotheses as follows;

(H1) If developers start to develop modules (.cpp files) on the end stage of project,
the quality of the module is low.

(H2) If CVS’s event behavior does not match to bug reports and e-mail data, the
project is in confusion, and resulting software quality is low.

 Project Replayer – An Investigation Tool to Revisit Processes of Past Projects 77

Meanwhile, the researcher also issued following questions about the phenomena of
the projects:

(Q1) Why did not CVS data change from May 25th to June 5th?
(Q2) Why did the members delete many files from June 4th to 6th?
(Q3) How was the quality of these four modules: RankingScore.cpp, ScoreMan-

ager.cpp, ClickSocre.cpp, and GameSceneClickScore.cpp?
(Q4) Why was not CVS renewed during the last three days?
(Q5) How was the quality of the completed program?

In the second phase, the developers searched for the answers using Project Re-
player. Resulting answers are shown as follows;

(A1: answer to Q1)
Subject1~3: I remember that we had an examination in that period so we had to

suspend the development.
(A2: answer to Q2)

Subject1: I remember that we deleted image and sound files because it took long
time to checkout from CVS repository.

Subject2: We deleted image files because we changed image format from BMP
to PNG. I confirmed deletion of many image files by the Replayer.

Subject3: I think that some trouble occurred in the multimedia files, because the
Replayer presented deletions of many image file and sound files.

(A3: answer to Q3)
Subject1: H2 is doubtful, because the Replayer shows that any modules were not

changed after the module completion.
Subject2: Most of them have good quality except of one module that was devel-

oped in only one day. Other modules were not revised once after they
were completed. Therefore, the developers made carefully those mod-
ules, and those qualities were good. I confirmed this by the Replayer.

Subject3: It is bad. I expected the modules were developed in a hurry at the end
of project. I confirmed in Project Replayer.

(A4: answer to Q4)
Subject1: Because the last three days were maintenance phase.
Subject2: Maybe, the last three days were demonstration periods.
Subject3: (No Answer)

(A5: answer to Q5)
Subject1: I remember that the total quality is not high because bugs occurred in

scoring functions.
Subject2: The quality is not high. I remember there were bugs. I also found the

existence of bugs using Project Replayer.
Subject3: Not good. I realized that the LoC graph of Project Replayer indicates

the growth of the curve was not to meet the deadline.

In the third phase, regarding provided answers, the researcher validated the hy-
potheses. The validation results and new findings are discussed in the following
section.

78 K. Goto, N. Hankawa, and H. Iida

6 Discussion

In this section, we discuss the validation of the researcher’s hypotheses and the new
finding in the experiments of Project Replayer.

At first, validation of the researcher‘s hypotheses is discussed. The first hypothesis
H1 was not clearly backed up by the developers’ answers. Especially Subject2 said
definitely that quality was good (See A3) though other subjects had doubt to the mod-
ule quality. Therefore, we would say that the researcher should have to consider other
factors, not just two factors, i.e. development period (only one day) and calendar time
(the end of project). After additional analysis of the four modules in detail using Pro-
ject Replayer, the researcher found that those were developed at the end of the pro-
ject. Two of them that use other modules handling game-scores were assigned sud-
denly to two new developers, while game-scoring modules were completed later. It
can be assumed that the two new developers didn’t have sufficient knowledge about
game-scoring specification. In fact, first two modules couldn’t properly handle game-
scores. Other two modules were assigned to another developer who developed game-
scoring. Therefore, Hypothesis: H1 should change to the following;

(H1’) If developers start developing modules at the end of project and if the devel-
opers have little experience of developing the similar functions, the modules’
qualities are not good (This hypothesis may be regarded as a concrete case of
Brooks’ law that is "adding people to a late project makes it later"[5].)

Next, the second hypothesis H2 is discussed. The researcher at once considered
that the deadline was the 16th of June because CVS data was recorded until the 16th
of June. Then the researcher set the hypothesis H2 because it seems strange that the
growth of LoC has stopped before the last day. After regarding the developers’ an-
swer A4, the researcher realized that true deadline was the 14th of June. With true
deadline, no modification to the source code during June14th-16th seems quite natural
now. Therefore, the researcher has withdrawn the hypothesis H2.

In general, researchers can validate their hypotheses in many projects with help of
Project Replayer just like this way. After the hypotheses have been refined in many
validations with Project Replayer, the hypotheses will be raised to simulation models.

Now, we discuss the usefulness of Project Replayer in the developer’s viewpoint.
The developers replayed past project using Project Replayer in search for the answers
to the questions. The developers can review past projects when developers acquire
new knowledge in past projects’ phenomena. All developers successfully recognized
the problem of the file size in BMP format in Q2. Subject2 and Subject3 identified
this problem using Project Replayer. They will use different file format (PNG) to
avoid the problem in future projects.

In addition, Subject1 and Subject3 noticed the problem of program quality in Q3
and Q5. If the developers do not review past project, they would not have any re-
thinking about their program quality. Once the project has completed, the devel-
oper’s matter of concern moves to other topics, or real engineers in industry do not
have enough time to review past projects. Project Replayer provides developers
with easy way to review past projects in very short time. Subject1 and Subject3

 Project Replayer – An Investigation Tool to Revisit Processes of Past Projects 79

deeply re-thought the program quality. They searched logically, not intuitionally,
for the problematic programs in short time. Project Replayer also helps the develop-
ers think logically in various situations.

7 Conclusion

We have proposed the KFC concept to circulate valuable knowledge acquired from
past project processes. In the KFC concept, valuable knowledge is finally formalized
as a simulation model that will be used in future projects. Project Replayer and Pro-
ject Simulator are key tools of KFC to accelerate the knowledge circulation.

This paper mainly described features of Project Replayer. We also conducted pre-
liminary experiments of Project Replayer, and showed that developers can acquire
knowledge from past project with help of Project Replayer. Project Replayer was also
applicable to support researchers make simulation models. In order to establish the
KFC environment, we regard other tools such as Project Simulator also to be imple-
mented and embedded. Moreover, we perform further evaluation and validation of the
KFC’s effectiveness by more controlled experiments in many organizations.

Acknowledgements

We would thank the anonimous reviewers for their valuable comments and sugges-
tions to improve this paper. We would like to thank Kimiharu Ohkura in Software
Design Lab. at NAIST for his contribution in implementation of the Replayer

This research was partially supported by the Japan Ministry of Education, Culture,
Sports, Science and Technology, Grant-in-Aid for Scientific Research (C) 17500024,
and also by the EASE project [6] in Comprehensive Development of e-Society Foun-
dation Software program of the Japan Ministry of Education, Culture, Sports, Science
and Technology.

References

1. Ohira, M., et al.: Empirical Project Monitor: A System for Managing Software Develop-
ment Projects in Real Time. in Proceeding of ISESE2004, Vol.2 (2004) 37-38.

2. Navarro, O., E., van der Hoek, A.: SIMSE: An Interactive Simulation Game for Software
Engineering Education. in Proceeding of CATE, (2004)12-17.

3. Pfahl, D., Klemm, M., Ruhe, G.: A CBT module with integrated simulation component for
software project management education and training. The Journal of System and Software,
No.59, (2001)283-298.

4. Henderson, P., et al.: A tool for evaluation of the software development process. The Jour-
nal of System and Software, No.59,(2001)355-362.

5. Brooks, P., F.: The Mythical Man-Month. Addison-Wesley Pub, 1995.
6. EASE Project, http://www.empirical.jp/

Q. Wang et al. (Eds.): SPW/ProSim 2006, LNCS 3966, pp. 80 – 87, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Software Process Measurement in the Real World:
Dealing with Operating Constraints

Luigi Lavazza1,2 and Marco Mauri2

1 Università dell’Insubria – Varese, Dipartimento di Informatica e Comunicazione,
Via Mazzini, 5 – Varese, Italy

2 CEFRIEL, Via Fucini, 2 - 20133 Milano, Italy
{lavazza, mmauri}@cefriel.it

Abstract. Process measurement occurs in an increasingly dynamic context,
characterized by limited resources and by the need to deliver results at the pace
of changing technologies, processes and products. Traditional measurement
techniques (like the GQM) have been extensively and successfully employed in
situations with little or no operating constraints. This paper reports about a
measurement project in which –in order to limit the cost and duration of the ac-
tivities– the team could not perform ad hoc measurements, but had to rely al-
most exclusively on the data that could be extracted automatically from devel-
opment and measurement tools already in use. Exploiting the flexibility of the
GQM technique, and with the support of a tool supporting the GQM, it was
possible to define and execute the measurement plan, to analyze the collected
data, and to formulate results in only three months, and spending a very small
amount of resources.

Keywords: Process metrics, Product metrics Goal/Question/Metrics, Process
quality assessment.

1 Introduction

The work described here was carried out in an organization of Banca Caboto in
charge of the maintenance of a dozen banking applications, consisting mainly of Java
code, SQL code, and HTML code. The size of the applications ranged from about 30
KLOCs (300 Function Points) to over 500KLOCs (over 9000 Function Points). The
maintenance process employed 41 full-time people (13 employees and 28 people
hired from external organizations) organized in three groups, each coordinated by a
maintenance team leader.

The management of the organization needed to perform some basic evaluations of
the process and products in order to support estimation activities and decision-making.
For this purpose –having realized that objective quantitative data were needed– the
management had started two measurement initiatives. The first one aimed at measuring
the static properties of the managed software. For this purposed they adopted the
CAST tool (http://www.castsoftware.com/). Measurement of the code was performed
every three months on the whole set of applications. The collected data included for
each application: LOCs, number of artifacts, backfired function points, number of files,

 Software Process Measurement in the Real World 81

number of classes, average Java coupling and complexity, number of SQL artifacts,
average SQL coupling and complexity, number of web pages. In addition, the differ-
ence between subsequent versions was assessed by measuring the variation of the
aforementioned qualities. On the basis of these measures CAST computed a set of
high-level indicators (most of which predefined), such as the “artifact granularity”,
functional size index, artifact coupling, technical complexity and standard violations. A
second initiative consisted in measuring the Change Requests (CRs) stored in the tool
adopted to keep track of changes (ClearQuest). The organization managed the CRs
according to a standard lifecycle; transitions between lifecycle states were recorded by
means of ClearQuest. The established measurement procedures provided the number
of CRs per application and per state.

Although these initiatives provided the management with some useful data, they
were not able to satisfy more complex evaluation needs, which the management ex-
pressed as a set of questions: Are we doing our job well? Is the quality of the managed
applications good? How good are the people in charge of maintenance?

These questions were originated by the need to control, verify, estimate and evalu-
ate the process and products, and ultimately to support management decisions.

The authors were asked to set up a measurement process that could deliver the re-
quired evaluation. It was thus decided to employ the GQM method [3, 4], which was
suitable for converting the strategic goal into a measurement plan, and which had
been previously successfully used by the authors [5, 9]. Throughout this paper we
assume that the reader is familiar with the GQM.

The organization posed a few constraints that forced the GQM team to deviate
from the standard GQM process. The constraints were:

− The measurement team had to provide results in three months. These could be
initial results; however they had to be reasonably meaningful and reliable.

− The budget for data collection was quite limited.
− The measurement process had to be as non-intrusive as possible: the maintenance

process was not to be disturbed. Only one project manager could be involved in the
“manual” collection of data, and only for a very small fraction of her time.

The latter concern was originated by the need to keep the productivity of the mainte-
nance process as high as possible –therefore people should not be distracted from
their work– and by the awareness that the introduction of measurement programmes
often generates resistance [7]: the management wanted to avoid problems with the
acceptance of metrics programmes by developers.

The paper describes how the measurement activities were carried out in confor-
mance of the constraints. We report what data it was possible to collect, how the
original goals were affected by the limitations in measurement, and how it was neces-
sary to redesign the GQM plan in order to fulfill the constraints.

The paper is organized as follows: Section 2 reports about the definition of the
GQM plan. Section 3 describes the measurement phase; limits to the fulfillment of the
GQM plan due to unavailable data are also described. Section 4 describes the data that
it was possible to measure and the results that could be derived from such data. Sec-
tion 5 illustrates related work. Finally, Section 6 summarizes the lessons learned and
draws some conclusions.

82 L. Lavazza and M. Mauri

2 The Planning Phase

The planning phase was carried out without taking into consideration any constraint.
Although it was clear from the beginning of the work that only some of the required
metrics were going to be collected, it was decided to build a complete GQM plan, i.e.,
a GQM plan that could in principle satisfy as thoroughly as possible the strategic
goals. The rationale for this decision was twofold:

− It was not known in advance which metrics it will have been possible to collect.
Excluding some metrics from the plan implied the risk of excluding metrics that
actually could be collected without violating the operating constraints.

− The GQM team expected that the unconstrained GQM plan could provide a frame-
work for assessing the relevance and quality of the available metrics, and for evalu-
ating their meaning and reliability.

The strategic goals given by the management were translated –in a rather straightfor-
ward way– into the following set of GQM goals:

Goal 1: Analyze the maintenance process for the purpose of evaluating the quality of
the product, from the point of view of the management of the organization.

Goal 2: Analyze the maintenance process for the purpose of evaluating the duration
and cost of maintenance activities, from the point of view of the management
of the organization.

Goal 3: Analyze the resources employed in the maintenance process for the purpose
of evaluating their adequacy, from the point of view of the management of
the organization.

The definition of the GQM plan was carried out employing the GQM tool [5, 10]. The
tool supports the execution of GQM processes, by addressing both the generation of
the GQM plan (including the precise definition of the metrics) and the successive
phases of the process, namely data collection and analysis. The tool also integrates the
measures database.

Given the very short time frame available for carrying out the whole GQM process,
the availability of the GQM tool was fundamental. By employing the tool, the GQM
team was able to define the GQM plan affectively and efficiently. In fact, in this
phase the tool is particularly helpful in maintaining the GQM documentation in order,
in identifying inconsistencies, redundancies and feasibility problems with the plan,
and in generating the documentation for the management.

The GQM goals reported above were refined into abstraction sheets, questions and
metrics according to the consolidated GQM practice. The complete GQM plan in-
cluded 37 questions and 58 metrics.

The main object of the measurement activities was the execution and management
of a Change Request. Therefore, most metrics concerned the CR. Every CR was char-
acterized in terms of time and effort spent, type (defect correction or enhancement),
lifecycle (i.e., the sequence of its states), application involved, amount and quality of
the resources employed to perform the change, characteristics of the change (critical-
ity, urgency, size, etc.).

 Software Process Measurement in the Real World 83

3 The Measurement Phase

In order to produce reasonably sound and interesting results, while satisfying the
constraints, the following operating criteria were adopted:

− Tools that were employed in the maintenance process had to be exploited to auto-
matically derive as many measures as possible. This approach was expected to
provide reliable data at a very low cost, and to provide measures as soon as the as-
sociated phenomena were available in the environment [9].

− Measurement tools that were already in place should have been exploited as well.
− Subjective data that did not require a big effort for collection (e.g., data that could

be collected una tantum) were going to be obtained via interviews. For this pur-
pose, the management designated one of maintenance team leaders to cooperate
with the GQM team.

The analysis of the maintenance environment confirmed that the application of the
criteria described above could result in deriving measures from CAST and from
ClearQuest, and in obtaining some subjective data via interviews.

In order to ease the analysis phase, it was necessary to store all the collected data in
a unique repository. ClearQuest records were initially extracted from the ClearQuest
repository (currently implemented on top of an Oracle database) and inserted in a
specifically designed Access database. All the measures corresponding to the GQM
metrics were obtained by means of a step-by-step approach, which consisted of ad-
hoc queries and some post-processing. In some cases the GQM team had to directly
manipulate the contents of the tables. In the worst case, a simple Java program was
needed to compute the relevant information concerning the durations of changes. The
extraction of data from CAST was more difficult, since its internal repository was not
designed (nor documented) in a way that allowed the final user to extract data from it.
As a result, only some of the required data were extracted from the repository, while
other data were obtained via the Web interface. Some of the data could not be ob-
tained at all. Finally, all the collected data were inserted in an Access database, de-
signed to store both measurements of code and data concerning difference between
subsequent code versions. Differently from the CR information extracted from Clear-
Quest, no further post-processing activities were required.

When all the possible ways of extracting data from tools had been thoroughly ex-
plored, it appeared that the available data had a few quite serious limitations:

− The data was not at the required granularity level. In fact most of the metrics of the
GQM plan were intended to capture the characteristics of each CR. On the con-
trary, the application code was measured every three months: thus the available
data concerned versions that were “separated” by tens or hundreds of changes.

− It was not possible to retrieve the correspondence between every CR and the code
modified in the execution of the request, since the ClearQuest records did not indi-
cate which source files had been affected by the CR.

− Some fields in ClearQuest records were not regularly or consistently compiled. In
particular, the indications concerning the estimated and actual effort required to
manage a CR were often lacking or imprecise.

84 L. Lavazza and M. Mauri

− Some subjective metrics were not collected, because the person that had to support
the GQM team was too busy in her regular work to be able to dedicate enough time
to the measurement activities.

As a consequence of these limitations it was quite clear that the original GQM plan
could not be executed without modifications.

Fig. 1. Highlighting the available and not available metrics of the GQM plan

In order to understand the consequences of the unavailability of some metrics, and in
particular in order to define a “simplified” GQM plan that could be successfully sup-
ported by the available metrics we proceeded as follows:

1. The metrics of the GQM plan were marked according to their availability. In Fig. 1
metrics are highlighted in different ways: boxed = available; blacked = not avail-
able; grayed = available with some limitations.

2. The structure of the GQM plan was exploited to understand the consequences of
metrics unavailability: questions that had grayed or blacked metrics in their refine-
ment could not be answered as planned. By considering the meaning of each gray
and black element and its role in the GQM plan it was possible to assess to what
extent the missing element could affect the goal.

3. On the basis of this assessment the whole GQM plan was revised in order to fit into
the constraints. For instance the granularity of several questions changed: instead of
referring to the management of the single CRs, they had to refer to the set of activi-
ties carried out in a three months period. As a consequence the involved goals did
not change, but the associated results became less precise and accurate.

4. The GQM plan revision process was dynamic. In fact –also because of the short
time available to complete the measurement process– it was not possible to fully
understand what metrics were going to be collected before actually starting the col-
lection phase. Therefore it was necessary to dynamically adjust the plan whenever a
metric proved to be unavailable.

 Software Process Measurement in the Real World 85

In summary, for goal 1, 14 questions out of 27 were modified and 2 were cancelled;
for goal 2, 7 of 12 were modified; for goal 3, 4 of 13 were modified, and 2 cancelled.

4 Data Analysis and Results

The data collected from ClearQuest contained valuable information about the lifecy-
cle of each CR. It was therefore possible to count the changes that were rejected, i.e.,
those that did not pass the acceptance test. It was found that the number of rejected
changes was generally quite small, except for applications still under development.

Another type of analysis concerned the distribution in time of the CRs, according
to their state. Fig. 2 shows the number of assigned, resolved and rejected changes per
week. It indicates a generally good ability of the CR management process to satisfy
the incoming requests, even in presence of peaks. However, it was not possible to
estimate whether the volume of the work done to satisfy the CRs in a given time pe-
riod was actually close to the amount required.

0

5

10

15

20

25

30

35

40

1 2 3 4 5 6 7 8 9 10 11 12 13

N
u

m
b

er
 o

f
d

ef
ec

ts

Assigned CRs
Rejected CRs
Resolved CRs

Weeks

Fig. 2. Number of defect CRs per state in time

The GQM plan suggested also a type of analysis that was completely out of the scope
of the previous measurement initiatives. In particular, the GQM plan indicated that
the quality of the maintained product should be assessed in terms of defect density,
which could be computed by combining the data derived from ClearQuest with the
data derived from CAST. In particular, the dependency of the number of defects of an
application from the characteristic of the application code was studied. It was thus
found that no correlation could be established between the number of defects and the
size (either measured in LOCs or in Function Points) of the applications. On the con-
trary, we found a good correlation between the number of defects and the number of
Java classes contained in the code. In practice, data indicated that the object-oriented
parts of applications were responsible for most defects.

Other results at the metric and question level are not reported here for space rea-
sons. The results that could be obtained at the goal level are the following:

Goal 1. The maintenance process appears to be effective and the products of fairly
good quality. Blocking defects and rejected changes are a small minority.
Code changes do not affect quality.

86 L. Lavazza and M. Mauri

Goal 2. Since it was not possible to collect measures on the “difficulty” of the CRs,
nor on the effort required to perform changes, the part of the goal concerning
costs could not be satisfied. The durations of maintenance activities appear
reasonable and adequate with respect to priority.

Goal 3. The lack of data prevented the evaluation of the coherence between esti-
mated and actual durations and costs. The resources appear generally ade-
quate to satisfy the requests, preventing the creation of backlogs.

The results of the measurement process were presented (in much greater detail than
given above) to the top management of Banca Caboto. They appreciated both the
results and the method employed. They were also satisfied by the reusability of the
measurement and analysis process and toolset in future measurement campaigns.

5 Related Work

Several experiences concerning “normal” usage of the GQM in industrial settings
have been reported [5, 6, 13]. However, not much was reported about the usage of
GQM in situations were data collection was severely constrained; in particular, we are
not aware of any publication reporting the usage of the GQM as a tool easing the
management of the operating constraints affecting the measurement process.

Actually, Mendonça and Basili [12] developed an approach combining the top-down
GQM method with a bottom-up method based on a data mining. It is aimed at applying
the principles of goal-oriented measurement in an environment that is already equipped
with measurement practices. It aims at assessing if the user goals can be fulfilled by the
data that is already being collected. Although this approach shares some objectives with
ours, it is clearly more suitable for cases where large amounts of heterogeneous data are
available. In our case, the identity and nature of the available data could be evaluated
directly by the GQM team, who could assess whether user goals could be fulfilled by
the available data and, when not, what modifications of the GQM plan were needed.

Concerning tool support, several articles address the problem of building frame-
works specifically conceived to support measurement programmes [8, 2]. Unfortu-
nately, it is often the case that a measurement programme has to be carried out in an
environment that is not equipped with a suitable tool framework. Even worse, quite
often the environment cannot be changed, or the allowed changes do not include the
possibility of deploying new tools that could affect the development (or maintenance)
process, e.g., changing the way developers (or maintainers) work.

Auer et al. evaluated tools that can be used in a measurement programme [1], but
addressed rather low level issues, and considered only measurement tools, while other
tools like ClearQuest can also play an important role as data providers.

6 Lessons Learned and Conclusions

A first observation is that tools (including development tools not specifically con-
ceived for supporting measurement) can provide useful metrics. Data provided by
tools –with the contribution of a small number of manually collected subjective data–
can be sufficiently numerous and rich to support a whole measurement programme.
Interestingly, tools provided the needed data in a quite non intrusive way.

 Software Process Measurement in the Real World 87

In our case it was easier to extract data from a problem tracking tool than from a
measurement tool: when selecting measurement tools, the possibility of exporting
measures should be taken into due account.

The GQM tool was useful in organizing and documenting effectively the plan, and
in supporting the identification of data unavailability and the evaluation of the conse-
quences. For this purpose, the visibility “at a glance” of the plan, combined with the
rigorous description of the GQM elements, greatly eased the task of revising the plan.

The GQM can provide a measurement framework that is useful even in presence of
constraints that prevent several metrics from being collected. In the revision of the
plan according to the data restrictions, the GQM was used –quite unusually– in a
bottom-up fashion, as the decisions at the conceptual (goal/question) level were per-
formed taking into account the situation at the operating (metrics/data) level.

In conclusion, the experience reported here can be seen as another confirmation of
the value of the GQM, which performed well even in difficult and unprecedented oper-
ating conditions. Additional details on the work reported here can be found in [11].

References

1. Auer M., Graser B., Biffl S., A Survey on the Fitness of Commercial Software Metric
Tools for Service in Heterogeneous Environments: Common Pitfalls, 9th International
Software Metrics Symposium (METRICS'03), Sydney, Australia, September 2003

2. Aversano L., Bodhuin T., Canfora G. and Tortorella M., A Framework for Measuring Busi-
ness Processes based on GQM, 37th Hawaii Int. Conference on System Sciences – 2004

3. V. Basili, GQM approach has evolved to include models, IEEE Software, vol.11, n.1, 1994.
4. Basili V., and Rombach H.D., The TAME project: towards improvement-oriented soft-

ware environments, IEEE Transactions on Software Engineering, June, 1988.
5. Fuggetta A., Lavazza L., Morasca S., Cinti S., Oldano G., Orazi E., Applying G/Q/M in an

Industrial Software Factory, ACM ToSEM, vol. 7, n. 4, October 1998.
6. Gresse C., Rombach D., and Ruhe G., Tutorial: A practical approach for building GQM-

based measurement programs - Lessons learned from three industrial case studies, in Pro-
ceedings of 10th Brasilian Symposium on Software Engineering, Sao Carlos (Brasil), 1996

7. Hall, T. and Fenton N., Implementing software metrics — the critical success factors,
Software Quality Journal, Kluwer Academic Publishers B.V., vol.3, n. 4, December 1994.

8. Kempkens R., Rösch P., Scott L., and Zettel J., Instrumenting Measurement Programs
with Tools, in Proc. PROFES 2000, Oulu, Finland, June 2000, F. Bomarius and M. Oivo
Eds. LNCS Vol. 1840

9. Lavazza, L., Providing automated support for the GQM measurement process, IEEE Soft-
ware, vol. 17, n. 3, May-June 2000.

10. Lavazza, L. and Barresi, G., Automated Support for Process-aware Definition and Execu-
tion of Measurement Plans, ICSE 2005, St. Louis, May 2005.

11. Lavazza, L. and Mauri, M., Measurement tool support in the real world: a GQM experi-
ence, CEFRIEL Technical Report RT06001, March 2006.

12. Mendonça M.G. and. Basili V.R,, Validation of an Approach for Improving Existing
Measurement Frameworks, IEEE TSE, Vol. 26, No. 6, June 2000.

13. van Solingen R., van Latum F., Oivo M., and Berghout E., Application of software meas-
urement at Schlumberger RPS, in Proceedings of Sixth European Software Cost Modeling
Conference, Paris, 1995.

Q. Wang et al. (Eds.): SPW/ProSim 2006, LNCS 3966, pp. 88 – 96, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Evaluation of Project Quality: A DEA-Based Approach

Shen Zhang1,2, Yongji Wang1,3, Jie Tong1,3, Jinhui Zhou1,3, and Li Ruan1,3

1 Laboratory for Internet Software Technologies, Institute of Software,
The Chinese Academy of Sciences, Beijing 100080, China

{zhangshen, ywang, tongjie, jinhui,
ruanli} @itechs.iscas.ac.cn
2 Key Laboratory for Computer Science,

The Chinese Academy of Sciences, Beijing 100080, China
3 Graduate University, The Chinese Academy of Sciences, Beijing 100039, China

Abstract. The evaluation of project quality exhibits multivariable, VRS (variable
return to scale) and decision maker’s preference properties. In this paper, we
present a Data Envelopment Analysis (DEA) based evaluation approach. The
DEA VRS model, which handles multivariable and VRS effectively, is used to
measure project quality. And the DEA cone ratio model, which utilizes Analytical
Hierarchy Process (AHP) to constrain quality metrics with respect to decision
maker’s preference, is also adopted to analyze the return to scale of the projects. A
case study, which assesses 10 projects from ITECHS and 20 “Top active” projects
on sourceforge.net with the novel method, is demonstrated. The results indicate
that our approach is effective for quality evaluation and can get accurate estimates
of future possible improvements.

1 Introduction

Evaluation of project quality can lead to a better control of the schedule, cost and
resources allocation, furthermore smooth the way for process improvement efforts.
However, there are three characteristics embedded in the evaluation problem.

Firstly, defect, which is a key measure of software quality, consists of multiple
attributes, such as defect severity, defect priority, etc. Thus, the quality evaluation has
to deal with multi-attribute problem. Secondly, to evaluate project quality, we usually
take software scale and defect attributes as input and output. However, as is stated in
[5][6], the relationship between system size and the number of defects or defect-
density is nonlinear. Thus, the problem of evaluation exhibits VRS (variable return to
scale, i.e. the relationship between the input and the output is non-linear). Thirdly,
generally speaking, the evaluation should be consistent with managerial goal of the
organization. Thus, incorporating subjective managerial preference into quality
assessment must be taken into account [2]. In a word, an efficient evaluation method
is needed to fulfill these requirements of multivariate, VRS and decision maker’s
preference properties.

Data Envelopment Analysis (DEA) developed by A. Charnes and W. W. Cooper
[12] in 1978 is a non-parametric mathematical programming approach. It can be used
to evaluate the relative performance of a number of decision making units (DMU),
which may have multivariate input and output. Henceforth, dozens of DEA extension

 Evaluation of Project Quality: A DEA-Based Approach 89

models have been brought into the world, Banker, Charnes and Cooper improved the
basic theory and established the first DEA VRS model (BCC) [9] in 1984. Five years
later, the C2WH cone ratio model [11] with respect to “preference of decision maker”
was brought forward by Charnes in 1989. At present, DEA has been widely accepted
in the computing industry.

In this paper, we present a DEA-based approach to evaluate the project quality.
The approach utilizes DEA CCR model and its extension models to calculate the
quality score, which is the basis of the evaluation result. Since the datasets used for
studies and analysis are collected from defect report and tracking systems, where cost
and schedule information is insufficient, we only extract defect-related attributes from
defect reports as input/output metrics in our approach. And then the quantitative
results to measure the further possible improvements of low quality projects are
discussed. Furthermore, the return to scale of each project with respect to decision
maker’s preference is also investigated.

2 Relate Work

[1] proposes to use DEA VRS model to measure the performance of ERP projects.
Their method can handle multivariate data and VRS well, but doesn’t take into
account subjective managerial goal. Since they only evaluate the productivity as
performance score, quality measurement is recommended to improve their work. Our
work can be thought an extension of their study.

[10] presents a case study on an OSS(Open Source Software) development project,
the FreeBSD project, and then compares the quality of OSS projects with that of
commercial projects. But the evaluation only focuses on defect-density, which is the
key quality metric, and ignores the impact brought about by other defect attributes.
Also, their measurement can’t deal properly with VRS.

J.C. Paradi et al. [2] introduce a DEA-based model to measure the performance
of a group of software development projects and investigate the effect of quality on
software maintenance projects. Decision maker’s preference is incorporated into
their model as well. However, the definition of quality used in their paper is quite
narrow and omits other quality indicators, which can be easily extracted from defect
reports.

In a word, compared with the existing models and methods for performance eval-
uation, our approach has the advantage of dealing with multivariate, VRS and decision
maker’s preference issues properly at the same time.

3 The DEA-Based Project Quality Evaluation Approach

In this section, we present our DEA-based project quality evaluation approach, which
can be divided into four steps: constructing project dataset; establishing the input/output
of DMUs; assessing project quality; analyzing Return to Scale. Figure 1 illustrates the
flow chart of our approach.

90 S. Zhang et al.

3.1 Constructing Project Dataset

Constructing project dataset is to determine reference DMU sets. For the purpose of
project quality measurement, we select each project under evaluation as a DMU.
Moreover, because our DEA-based approach evaluates the relative quality among the
similar DMUs, the basic requirement of the DMU selection is that the DMUs must be
homogenous. The homogenous DMUs mean that they are project sets satisfying the
same conditions, such as they are both object oriented projects and developed by the
same language, so that the DMUs are comparable in quality.

Fig. 1. DEA-based project quality evaluation approach

3.2 Establishing the Input/Output of DMUs

After constructing project dataset, we will establish input/output of DMUs [8] which
largely depends on the selection of quality metrics.

Firstly, the defect reports specification of the projects under evaluation should be
taken into account. It is because the selection of quality metrics is based mainly on the
indicators provided by these defect reports. For example, when we choose quality
metrics for the projects on sourceforge.net, we can’t gather the information of defect
priority and defect life-cycle, since defect reports on sourceforge.net don’t provide
any indicators of defect priority and defect life cycle at all.

Secondly, we must consider the relationship of the quality metrics. Because these
metrics are not isolated, they may influence the cognizance of other variables. For
example, we should discard a variable if its information has been covered by other
several variables or has strong relationship with some other input/output variables.

Thirdly, we filter out the metrics that can’t be quantified easily, for example, the
customer satisfaction (corresponding to the comments submitted by customers in
defect reports) and so on. Then we can generate the remaining metrics value for all
the DMUs. Note that they are all positive values.

Fourthly, according to the efficiency ratio principle of DEA model, we prefer the
smaller input values and bigger output values.

 Evaluation of Project Quality: A DEA-Based Approach 91

3.3 Assessing Project Quality

In order to evaluate the project quality, we adopt DEA VRS Model (BCC) [9] to deal
with the nonlinear relationship inherent in the evaluation issue. The BCC model is
written as:

()2

1 1

0
1 1

0
1 1

B

1

max ()

1

0, 1, ,

0, 1, ,

0, 1, ,

m s

i k
i k

n m

j j i
j i

n s

j j kO
j k

C
n

j
j

j

i

k

s s

X s X

Y s Y
D

j n

s i m

s k s

θ ε

λ

λ θ

λ

λ

− +

= =

−

= =

+

= =

=

+

+

+ +

+ =

− =
=

=

≥ =

≥ =

≥ =

(1)

From (1) we calculate the quality score the peer weight λ and slack variable s. The
quality score is between 1 and A project with quality score of 1 is of relative
 high quality, otherwise the project is of relative low quality. Each project
can be presented by a linear combination of the DMU sets, such as:

0j i i k k j j
DMU DMU DMU DMUλ λ λ= + + + . The peer weight iλ provides the

degree that high-quality project i for the relatively low-quality project j0 to emulate.
The slack variable s can be divided into two parts: input slack variable s- and output
slack variable s+. The former represents the over use of work effort scale, while the
latter represents the insufficient quality metrics. Since we focus on defect elimination,
we present the formula (2) to calculate the quantitative improvement of every quality
metric for low-quality projects:

0 0j j j
y s yθ +Δ = + −

(2)

3.4 Analyzing Return to Scale

After computing the results using DEA VRS model, we analyze return to scale
between software scale and the quality metrics represented by defect attributes. For
this purpose, we should take into account whether some specific managerial
preference exists. When there is no impact of managerial preference, we can combine
the results of DEA CRS model and VRS model to judge return to scale. First,
calculate the quality score with DEA CRS model, then compare with , there are
three conditions: 1) < the project exhibits IRS ; 2) = the project exhibits
CRS; 3) > the project exhibits DRS. —IRS (DRS) indicates that an increase in
one unit’s inputs will yield a greater (or less) proportionate increase of its outputs.

92 S. Zhang et al.

Otherwise, when it is necessary to incorporate subjective managerial preference in
return to scale analysis, we should utilize the DEA cone ratio model [11] to fulfill
managerial goals. In order to constrain the weights of quality metrics according to
managerial preference, we adopt AHP (Analytical Hierarchy Process) [7]. Firstly, we
gather opinions of several project managers on “the importance of each quality
metrics”, then establish the AHP Decision Matrix Am and calculate the max latent root

maxλ of Am. Secondly, we construct weight constraint

{ }max
| () 0

m m
A Eμ λ μΓ = − ≥ (3)

where μ in Γ means the weights of quality metrics. Thirdly, incorporating Γ into
DEA cone ratio model (4),(5) and calculate the parameter μ0 which is the indicator of
return to scale. There are also three conditions: 1) μ0<0, the project exhibits DRS; 2)
μ0=0, the project exhibits CRS; 3) μ0>0, the project exhibits IRS;

()2

0

^

0

max

1 min()

0, 1, ,

1

() 0

T

T T

j j
C R

T

m m

V X

X Y j n
P

Y

A E

ω

ω μ

μ

λ μ

− ≥ =
=

=

− ≥

=

(4) ()2

0 0

^
0

0

max

2 min()

0, 1, ,

1

() 0

T

T T T

j j
BC

T

m m

V X

X Y e j n
P

Y

A E

ω μ

ω μ μ

μ

λ μ

− + ≥ =
=

=

− ≥

= −

 (5)

4 Case Study

In this section, an empirical study is presented based on the sequence in Section 3.
Firstly, we construct the evaluation data sets. The first dataset consists of 10

projects from one single organization —ITECHS [3]. On the contrary, our second
dataset consists of 20 “Top active” projects on sourceforge.net [4], which are
developed by different organizations. These projects of the two datasets are all
developed in Java. Especially the projects in the first dataset are all J2EE Web
Applications, so the DMUs can be regarded as homogenous.

Secondly, according to the specification of defect reports of selected projects (13
metrics in total), we have chosen the following metrics for the first dataset. While
only defect severity, system size and work effort are used in the second dataset as its
Input/Output metrics.

Table 1. Input/Output metrics for evaluation

Metrics Type Meaning
Defect Severity Output Defects can be divided into four levels by severity: C,S,N,M.

Defect
Life Cycle

Output Defects can be divided into five class by the length of its life
cycle: I,S,M,L,E

Defect Priority Output Defects can be divided in to three level by priority: H,M,L

System Size Output

Work Effort Input

 Evaluation of Project Quality: A DEA-Based Approach 93

Thirdly, the results of the quality measures on the ITECHS dataset using DEA VRS
model are presented in Table 2. We observe that only two DMUs 6,7 are of relative low
quality, while other eight DMUs are all of relative high quality. Moreover, the relative
low quality projects can be improved under relative high quality projects’ guidance in
the future. For example, DMU6 can be shown in the following form:
0.06*DMU1+0.48*DMU2+0.25*DMU9+0.20*DMU10, so the DMU2 is of more
benefit to help quality improvement since its peer weight is larger than others’.

Table 2. Quality scores and peer weights obtained from DEA VRS model (Dataset 1)

DMU Quality
score

 1λ 2λ
3λ 4λ 5λ 6λ 7λ 8λ 9λ 10λ

1 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2 1.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
3 1.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
4 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00
5 1.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00
6 1.36 0.06 0.48 0.00 0.00 0.00 0.00 0.00 0.00 0.25 0.20
7 1.22 0.15 0.31 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.55
8 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00
9 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00
10 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00

In Table 3, the output slack variables s+ can be used to calculate the margin of
quality improvement for each quality metric. For example, in order to reduce the
defects whose life-cycle is 6-10 days (“M”—Medium in defect life-cycle defined in
table 1) in project 6, we combine the slack variable s8

+ =217 with formula(2) in
section 3.3, then calculate the 9. The result means that the defects, whose life-
cycle is “M” in project 6, can get an optimal reduction by 9 under the relative high
quality projects’ guidance in the future development.

Based on the Sourceforge dataset, we get the similar aggregate result. In Table 4,
we only show the quality scores of the 20 projects.

Table 3. Slack variables obtained from DEA VRS model (Dataset 1)

Defect Severity Defect Life-Cycle Defect Priority Work
Effort

System
Size C S N M I S M L E H M L

DMU

1s
−

 1 2 13, , ,s s s+ + +

6 248 0 3 10 43 49 0 62 217 36 25 0 98 0
7 0 0 2 34 72 106 4 77 83 75 59 0 131 174

Table 4. Quality scores obtained from DEA VRS model (Dataset 2)

DMU 1 2 3 4 5 6 7 8 9 10
 3.79 5.59 5.38 3.02 3.65 1.00 1.98 2.78 7.39 6.53

DMU 11 12 13 14 15 16 17 18 19 20
 5.02 10.18 1.00 3.77 7.64 3.79 10.49 6.74 5.49 3.58

94 S. Zhang et al.

Fig.2 illustrates a comparison of two methods for quality evaluation of the two
datasets. The first method is our DEA-based approach, while the second is to assess
quality by defect-density (abbreviated as DD). In the chart, x-axis denotes project
number, y-axis denotes quality score. Fig.2 reveals that DEA-based approach can make
a more fair evaluation than DD, which can’t handle VRS. For example, the third project
in the second dataset is regarded as a project of the lowest quality by DD, since its
defect-density is nearly 20 times greater than that of project 13, whose defect-density is
the lowest. But using DEA-based approach, the quality score is only 5 times greater
than that of the highest quality project. The reason for this is that project 3 is the biggest
project with 409829 lines of code and 2113 defects, while project 13 has only 115144
lines of code and 43 defects. It is obvious that the comparison between a large project
like 3 and a small project like 13 in defect-density is inappropriate, since the evaluation
problem exhibits VRS. In general, it seems more reasonable to compare a project with
other projects of similar size. So applying our VRS approach is more appropriate to
solve the problem. Besides, as can be seen in Fig.2, the curve of dataset 1 is much
smoother and closer to 1 than that of dataset 2 in our approach. It means that the process
performance of ITECHS is significantly higher than that of the projects in dataset 2.

Fig. 2. Comparison between DEA-based approach and defect-density

Table 5. Return to scale obtained from DEA cone ratio model (Dataset 1)

DMU 1 2 3 4 5 6 7 8 9 10

V1 2.04 1.00 1.38 1.17 1.46 1.86 1.61 1.44 1.35 1.35

V2 1.00 1.00 1.00 1.00 1.00 1.42 1.31 1.00 1.00 1.00

μ0 minus 0 minus minus minus minus minus minus minus minus

result DRS CRS DRS DRS DRS DRS DRS DRS DRS DRS

In the last step, we present how to use our approach to analyze the return to scale
of each DMU. As we have consulted several project managers from ITECHS for their
preference on the quality metrics listed in table 1, we are convinced that the cone ratio

 Evaluation of Project Quality: A DEA-Based Approach 95

DEA model should be adopted to investigate the return to scale for the first dataset.
After building the AHP Decision Matrix by incorporating the managerial goals, we
use the modified model (4),(5) to calculate the results which is shown in Table 5. As
we can see, all the projects except the second have DRS, which means the rate of
various defects attributes in these projects increases quicker than the rate of the
expending work effort. So the managers should consider of slowing down the scale
expansion of these projects, then turn to make improvements in process efficiency.

5 Conclusion

The paper focuses on three intrinsic characteristics of project quality evaluation:
multivariable, Variable Return to Scale (VRS) and preference of decision maker. To
overcome the difficulties caused by these characteristics, we advocate a DEA-based
approach which can fulfill these requirements. A case study illustrates the principle of
our approach well. The results of the DEA-based approach is helpful to assess the
project quality and estimate the margin of future possible improvement. The return to
scale analysis can also help managers to make a decision on an expansion or a
reduction in software scale.

Acknowledgements

This paper was partially supported by the National Natural Science Foundation of
China (Grant Number: 60373053), 863 Program (Grant Number: 2005AA113140),
the Plan of Hundreds Scientists in the Chinese Academy of Sciences, and the key
program of the National High-Tech Research and Development Program of China
(Grant Number: 2003AA1Z2220).

References

1. Stensrud, E., Myrtveit, I.: Identifying High Performance ERP Projects. IEEE Transaction
on Software Engineering, 29(5) (2003) 387-416

2. Paradi, J.C., Reese, D.N., Rosen, D.: Applications of DEA to measure the efficiency of
software production at two large Canadian banks. Annals of Operations Research
73(1997)91 – 115

3. http://itechs.iscas.ac.cn/
4. http://sourceforge.net/index.php
5. Malaiya, Y.K. Denton, J.: Module Size Distribution and Defect Density Software

Reliability Engineering. Software Reliability Engineering, (2000)62-71
6. Rosenberg, J.: Some Misconceptions About Lines of Code. Software Metrics Symposium,

(1997) 137-142
7. Golden, B.L., Wasil, E.A., Harker, P.T. (Eds.): The Analytic Hierarchy Process -

Applications and Studies. Springer-Verlag (1989)
8. Liang L, CUI J.C.: Selection of Input-output Items and Data Disposal in DEA. Journal of

Systems Engineering, 18(6) (2003) 487-490

96 S. Zhang et al.

9. Banker R.D., Charnes A., Cooper W.W.: Some Models for Estimating Technical and Scale
Inefficiencies in Data Envelopment Analysis. Management Science, 30(9) (1984) 1078-
1092.

10. Dinh-Trong T. Bieman J.M.: Open source software development: a case study of FreeBSD
Software Metrics, Software Metrics, (2004) 96 - 105

11. Charnes A., Cooper W.W., Wei Q.L., etc.: Cone Ratio Data Envelopment Analysis and
Multi-Objective Programming. International Journal of System Science, Vol. 20. 7 (1989)
1099-1118

12. Charnes A., Cooper W.W., Rhodes E.: Measuring the Efficiency of Decision Making
Units. European J. Operational Research, Vol. 2. (1978) 429-444

Q. Wang et al. (Eds.): SPW/ProSim 2006, LNCS 3966, pp. 97 – 104, 2006.
© Springer-Verlag Berlin Heidelberg 2006

A Pattern-Based Solution to Bridge the Gap Between
Theory and Practice in Using Process Models

Antonio Amescua, Javier García, Maria-Isabel Sánchez-Segura,
and Fuensanta Medina-Domínguez

Computer Science Department, Carlos III Technical University of Madrid,
Avda. Universidad, 30, Leganes 28911, Madrid, Spain

{amescua, jgarciag, misanche, fmedina}@inf.uc3m.es

Abstract. In order to extend the use of software process improvement programs
and to make it independent of organizational features, this work describes the
results obtained using a knowledge based model and tool, and proposes a pattern-
based solution, using a SPEM (Software Process Engineering Metamodel) exten-
sion, in order to improve the efficiency of use of the knowledge-based model
proposed.

1 Introduction

The implementation of a software process improvement program is very expensive,
especially for SMEs (Small and Medium Enterprises) and those organizations that
first undertake an initiative of this type [1].

Due to the importance for organizations to develop improvement programmes in
order to be competitive, their handicap in implementing them and the cost and time
required, it is necessary to make improvement programmes accessible to most
organizations, independently of the features of each organization.

The experience of the Federal Aviation Administration (FAA) of the United States of
America indicates that knowledge management combines positively with process
improvement, benefits the organization and the process improvement programmes [2].
Some other works, like the one published in [3], suggest that a knowledge infrastructure
consisting of technology, structure and culture, along with knowledge process
architecture of acquisition, conversion, application, and protection, are essential
organizational capabilities or "preconditions" for effective knowledge management.

Knowledge management is based on four elements: data-information-knowledge-
innovation. We believe that the knowledge management discipline can work together
with software engineering in order to translate software engineering data and
information, described as process models, standards, methodologies, etc., to
knowledge and innovation once the knowledge of experts on process model,
standards, methodologies, etc., is elicited and translated into a computable model.
Therefore, a software system can deal with this knowledge in order to reduce the cost
of process definitions and increase the maturity of the processes faster.

Data and information must be encapsulated to allow their subsequent recovery and
reuse, and their evolution into knowledge. The artefact to encapsulate these data and

98 A. Amescua et al.

information is based on the concept of process patterns which define a general
solution to a specific recurring problem [4]. The authors propose the concept product
pattern that has been formalized using the SPEM (Software Process Engineering
Metamodel) standard [5]. Knowledge management techniques will be used to recover
and reuse the concept product pattern.

Although process improvement can be applied to a very wide range of processes,
the importance of project management in the failure or success of a project is widely
recognized [6] [7] [8]. This is why we are focusing on a specific set of project
management processes improvement.

The research results included in this paper are divided into two main phases:

• The first represents the previous work of this research team to demonstrate the
importance and the validity of working together in the fields of knowledge
management and software process improvement. These results are illustrated
in the paper through a brief description of the PIBOK-Model and the PIBOK-
Tool as well as the results obtained from the use of both.

• The second is an improvement on the first and represents the current work,
using the concept product patterns formalized with SPEM [5].

This paper is structured as follows: section 2 identifies some works related to the
one presented in this paper; section 3 describes the PIBOK-Model in a static way,
focusing on the model components and, in a dynamic way, explains how the model
should be used. This section also summarises the results obtained using the PIBOK-
model on real projects; section 4 describes the improvements under development with
the version of PIBOK-Model presented, using the product pattern concept formalized
with SPEM language; and finally section 5 presents the conclusions.

2 Related Works

Currently, there are no results in combining knowledge management discipline with
software process improvement based on process patterns. There are some related
works, however, where the concept of pattern has been used to support development
processes [9][[10]. These works try to describe the process pattern in different ways.

In [9] the authors used templates for process pattern description; most of the fields
in this template were described in natural language. This is a deficiency as the natural
language is abstract and ambiguous.

The above deficiency was solved by proposing the Process Pattern Description
Language, which embodies the concept process pattern without using natural language
[11]. In [10], the authors also presented the metamodel PROPEL (Process Pattern
Description Language) which provides concepts for the semiformal description of
process pattern, but this metamodel is not a formalization of process patterns
themselves. In this sense, we propose a process pattern formalization based on a
conceptual model oriented towards defining processes called SPEM [5]. The purpose of
SPEM is to support the definition of software development processes, specifically
including those processes that involve the use of UML [5]. SPEM provides XMI (XML
Metadata Interchange) that is based on the W3C’s eXtensible Markup Language
(XML). Therefore, SPEM provides a graphic language formalization.

 A Pattern-Based Solution to Bridge the Gap Between Theory and Practice 99

In some related works [9][10], the process patterns are defined to support
development processes as a general solution to a certain recurring problem. However,
in the software development process, projects execute processes that produce software
products. This is why we believe that the general solutions to be reused are not the
processes but the software products, and we propose the concept “product pattern” to
gather the knowledge of software engineering experts in order to obtain a specific
software product. More details about product patterns can be found in section 4.

3 Previous Work: Software Process Improvement and Knowledge
Management can Work Together

3.1 PIBOK-Model: A Knowledge Based Model Approach to Process
Improvement

We believe, as well as the authors mentioned in section 1, that a knowledge-based
approach can enhance the implementation of improvement programmes. This section
is dedicated to describing the results obtained from the use of the PIBOK-Tool
supporting the PIBOK-Model as well as the improvements to the above-mentioned
model and tool after analyzing the data obtained from organizations.

With the description of the problem and our hypothesis, the main goals of the work
achieved from 2002 to 2004 were:

1. to develop a knowledge-based software process improvement model (PIBOK-
Model: Process Improvement Based On Knowledge management Model) and a
support tool (PIBOK-Tool: Process Improvement Based On Knowledge
management Tool) that would allow organizations to evaluate the current state of
their processes and assist in defining their project management processes.

2. to determine the validity and ease of use of PIBOK-Tool in assessing and
defining the organization’s project management processes.

In order to provide the infrastructure needed to support the proposed PIBOK-
Model we identified a set of components and defined how the PIBOK-model must be
used. Fig. 1 summarizes both the components and the procedure for using the PIBOK-
Model. It shows the logical architecture of the model.

PIBOK-Model is intended to improve software project management processes
based on the standard PMBOK (Project Management Body of Knowledge) [12],
software engineering reference models such as SW-CMM [13], CMMI [14][15], ISO
15504 [16], etc. and the most important project management methodologies such as
Prince2 and Métrica3, DOIT, TenStep.

Each component of the model is identified with a number in brackets. The
description of each component follows:

1. The PMBOK process framework configures the core of PIBOK-Model.
2. The PMBOK processes are detailed using experts’ opinion and are based on the

software reference models practices, for example, SW-CMM, CMMI, ISO
15504.

3. The process details are enhanced with the process assets of the most important
project management methodologies, for example, Métrica 3, Prince2, TenStep.

100 A. Amescua et al.

4. The creation of a knowledge base that contains the meta software project
management process definitions is the result of this model.

5. Using the PIBOK-Model, all the organization’s process assets, which enhance the
software project management process definition, are gathered during the process
assessment phase. These software process definitions and their assessment
information are stored in the knowledge base.

6. As an aid to improving the processes, PIBOK-Model also offers the possibility of
adapting generic process assets, which are stored in the knowledge base and are
taken from the most important project management methodologies. The standard
software project management processes will be defined semi-automatically from
the assessment results.

7. Once the organization has the standard definition of its software project
management processes, the PIBOK-Model allows the standard processes to adapt
to each concrete project.

8. The knowledge base also allows the products generated during the execution of
management activities to be stored, thereby configuring a software project
management historical data base within the organization.

“Actual” State A S IS

O rgan ization dom a in

Repository of
organization processes

Phase B
Definition and
evaluation of

a standard set
o f processes

Process
Assets

D istance from “rea l”
state to “ideal” s tate

Softw are
R eference

Models

PM BO K

Pro jects
Managem ent

Methodologies

Phase A
C reation of a

know ledge base

Know ledge
Base

Assets

Practices and
process detailed
descriptions

Processes
Framework

“Ideal” State T O B E

Phase C
Process im provem ent

tracking

R epository of
organization projects

M
easurem

ent, C
ontrol and

P
rocess

Im
provem

ent

C.1 Defin ition of the pro ject processes.

C .2 Configuration of pro ject results as instances of process assets .

C .3 Creation of the m echanism s to retrieve in form ation re lated to pro jects .

A .1 Defin ition of a s tandard structure for the software reference
m odels .

A .2 Identification of the process definition techniques and
e lem ents.

A .3 P rocess deta ils specification.

A .4 Enhancem ent of the process deta ils w ith the reference
m ethodologies assets .

B.1 Assessm ent of the organization ’s state of the practice.

B.2 Defin ition of the organisation’s processes and activities by
custom ization of the reference process.

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

“Actual” State A S IS

O rgan ization dom a in

Repository of
organization processes

Phase B
Definition and
evaluation of

a standard set
o f processes

Process
Assets

D istance from “rea l”
state to “ideal” s tate

Softw are
R eference

Models

PM BO K

Pro jects
Managem ent

Methodologies

Phase A
C reation of a

know ledge base

Know ledge
Base

Assets

Practices and
process detailed
descriptions

Processes
Framework

“Ideal” State T O B E

Phase C
Process im provem ent

tracking

R epository of
organization projects

M
easurem

ent, C
ontrol and

P
rocess

Im
provem

ent

C.1 Defin ition of the pro ject processes.

C .2 Configuration of pro ject results as instances of process assets .

C .3 Creation of the m echanism s to retrieve in form ation re lated to pro jects .

A .1 Defin ition of a s tandard structure for the software reference
m odels .

A .2 Identification of the process definition techniques and
e lem ents.

A .3 P rocess deta ils specification.

A .4 Enhancem ent of the process deta ils w ith the reference
m ethodologies assets .

B.1 Assessm ent of the organization ’s state of the practice.

B.2 Defin ition of the organisation’s processes and activities by
custom ization of the reference process.

“Actual” State A S IS

O rgan ization dom a in

“Actual” State A S IS

O rgan ization dom a in

Repository of
organization processes

Phase B
Definition and
evaluation of

a standard set
o f processes

Process
Assets

D istance from “rea l”
state to “ideal” s tate

Repository of
organization processes

Phase B
Definition and
evaluation of

a standard set
o f processes

Process
Assets

Process
Assets

D istance from “rea l”
state to “ideal” s tate
D istance from “rea l”
state to “ideal” s tate

Softw are
R eference

Models

PM BO K

Pro jects
Managem ent

Methodologies

Phase A
C reation of a

know ledge base

Know ledge
Base

Assets

Practices and
process detailed
descriptions

Processes
Framework

Softw are
R eference

Models

PM BO K

Pro jects
Managem ent

Methodologies

Phase A
C reation of a

know ledge base

Know ledge
Base

Assets

Practices and
process detailed
descriptions

Processes
Framework

“Ideal” State T O B E

Phase C
Process im provem ent

tracking

R epository of
organization projects

Phase C
Process im provem ent

tracking

R epository of
organization projects

M
easurem

ent, C
ontrol and

P
rocess

Im
provem

ent

C.1 Defin ition of the pro ject processes.

C .2 Configuration of pro ject results as instances of process assets .

C .3 Creation of the m echanism s to retrieve in form ation re lated to pro jects .

A .1 Defin ition of a s tandard structure for the software reference
m odels .

A .2 Identification of the process definition techniques and
e lem ents.

A .3 P rocess deta ils specification.

A .4 Enhancem ent of the process deta ils w ith the reference
m ethodologies assets .

B.1 Assessm ent of the organization ’s state of the practice.

B.2 Defin ition of the organisation’s processes and activities by
custom ization of the reference process.

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

Fig. 1. Architecture of the PIBOK-Model

3.2 PIBOK-Model and Tool Experimentation and Results Obtained

PIBOK (Model and Tool) has been validated in several software organizations by
training their high-level managers in the model concepts and their use in several
software process improvement programs.

The aim was to determine the validity and ease of use of the PIBOK-Model for
software process improvement.

During this validation phase, the researchers controlled the effort invested by seven
groups (a total of 32 people) in charge of defining and implementing a software project
management process using PIBOK-Model. This information was compared with the

 A Pattern-Based Solution to Bridge the Gap Between Theory and Practice 101

control data gathered from the six other workgroups (33 people) that had previously
defined and implemented a software project management process without using PIBOK
Model. The effort data used for this validation was computed using an effort registry
form that had to be filled in each week by each member of the working groups. Table 1
shows the effort accumulated by the software project management processes definition
and implementation work teams. For more information regarding the obtained results
see the information in http://163.117.154.99/Patterns/ResultsPIBOKModel-Tool.htm

Table 1. Effort of Software Process Improvement activities

 Number of
Groups

Time
(minutes)

Average (minutes)

Without PIBOK-Tool 6 62099 10349,8

With PIBOK-Tool 7 44706 6386,5

4 Current Work: Using a Formalization of Pattern Concept

Despite the good results using the PIBOK-Model during the experimentation phase,
there are some parameters we would like to focus on in an improved version. If we
take a look at the results using PIBOK-Model and Tool, we realize that the efficiency
of use and knowledge management capacity could be improved.

To achieve these, we are working on:

• improving the efficiency of use of the PIBOK-Model (understood as the number
of tasks performed per time unit), moving from the actual ETVX (entry tasks
verification exit) format to a graphical representation.

• achieving the next two knowledge management stages: knowledge and
innovation.

The concrete changes, which have already been approved and in course, are descr-
ibed in detail below.

4.1 Changes to Process Definition Technique

The first change adopted is related to how to represent the definition of software
processes. Currently, the processes are defined using an extended ETVX definition
technique containing the following information items: Purpose, Preceding Processes/
Activities, Subsequent Processes/Activities, Entry Criteria, Inputs, Activities/Tasks,
Outputs, Exit Criteria, Practices, Tools and techniques, Metrics/Measurements, Inter-
faces with other processes, Roles and Notes.

The new way to define the processes is using SPEM [5]. SPEM is a conceptual
model to define processes based on UML extensions. It provides a formal language,
that is an XMI extension, and a graphical language to represent processes following
UML basic diagrams.

In order to provide the functionalities related to process definition using SPEM, we
are working on several adaptations related to:

102 A. Amescua et al.

• the modification of the internal structure of PIBOK-model repository to maintain
specific information of processes considered in SPEM but not in extended
ETVX.

• the adaptation of SPEM to PIBOK-Model needs. To satisfy all our requirements,
SPEM model has to be extended to include information related to practices,
lessons learned, metrics and measurements information.

• the modification of PIBOK-Tool user interface. Currently, the definition of a
software process is exclusively based on text fields. SPEM provides a graphic
language to represent the concepts to model software process, so the new user
interface will be based on graphic components to draw the processes.

4.2 Changes to Process Definition Technique

In the last version of PIBOK-Model, the software processes are defined as a set of
activities that are extracted from PM-BOK and enriched with information from
software process reference models and the most outstanding software development
methods.

In order to improve the knowledge management capacity of PIBOK-Model, the
software process will now be defined in terms of the products to be elaborated and
used during the process execution. All the products available to define the processes
are also extracted from PMBOK and enriched with information from the most
outstanding software development methods. We have defined a new concept called
“product pattern” to determine how the products should be elaborated, updated and
used during a software process.

The concept “product pattern” is a new term that comes from the Alexandrian
Patterns [17], and is intended to gather the knowledge of software engineering experts
to obtain a specific software product, understanding product as anything to be
produced during the whole software development process. This product pattern is
described in terms of the following fields:

• Name: name of the product pattern
• Related patterns
• Initial Context: Present situation where the project is being executed.
• Resulting Context: Future situation as a result of executing the pattern.
• Problem: Improvements to be achieved.
• Forces: Forces can come from different sources. We have identified the

following sources of forces:
o Organization features
o Kind of system to be developed

o Kind of client
o Market Scope

• Solution: instantiations of products previously obtained in this context with this
problem entailing these forces, including time for completion.

• Roles
• Entries: previously obtained products necessary to develop this one.
• Lessons Learned
• Examples

 A Pattern-Based Solution to Bridge the Gap Between Theory and Practice 103

• Exit: Exit can come with the following attributes:
o Name
o Types of information content enclosed
o A check box to specify whether or not the exit has configuration management.

The product patterns solution, entries and exit will be defined using SPEM.
However, the rest of the information will be implemented using conceptual models.

These conceptual models are used because they allow the use of knowledge
management recovery techniques and transformation of the experts knowledge in
innovation. This transformation affects the component (4) in Fig. 1, which in the next
version of PIBOK-Model, from now PIBOK-PB-Model, is represented as product
patterns instead of ETVX format.

In the PIBOK-PB-Model, the selection of the concept product pattern as the
element to encapsulate knowledge is based on the idea that a product is the minimum
software engineering element to be obtained in any process model execution and the
same product can be involved in different process model. This is why we believe that
a “product” knowledge-based solution is more flexible and reusable than a
knowledge-based process solution.

In order to execute a software project, the project manager will find the appropriate
product patterns from (4) in Fig. 1, based on the following rule:

If you find yourself in this context (and) with this problem (and) entailing these forces
then
map a product pattern in your project (and)look for product patterns

At present we are working with software engineering experts on the identification of
the criteria that allows the appropriate classification and recovery of product patterns
according to the context, problem and forces of the project to be developed in which the
product patterns are being used. Some examples of the product patterns we are working
on can be reached at http://163.117.154.99/Patterns/ProductPatternsExamples.htm

5 Conclusions and Future Trends

The work achieved from 2002 to 2004 allowed the definition and implementation of
PIBOK-Model and Tool, and the validation demonstrated that software process
improvement field and knowledge management techniques work well together. As the
PIBOK-Model has been used in some organizations, this means that the proposed
model is able to support improvement programs in SMEs.

The software engineering field has evolved a lot in the formalization of software
processes, although today the proposed formalisms are difficult to use and their
efficiency of use is very low. The proposed PIBOK-Model and tools represent a first
step in bridging the gap between theory and practice in using software processes and,
in general, software engineering formalisms.

The new version of PIBOK-Model will be able to incorporate the capability to help
project managers implement an improvement program using a graphical interface.
The efficiency of use of processes will also be incremented. In addition, the rapid
technology evolution will allow us to go from the real version of PIBOK-Tool, which
is web based, to a version based on collaborative web environments.

104 A. Amescua et al.

Acknowledgements

This work has been partially funded by the Spanish Ministry of Science and
Technology through the TIC2004-7083 project.

References

[1] Pinto R. and Shoemaker D. “The Cost of CMM in a Conventional IT Organization: A
Field Study”, 2002.

[2] Burke, D., Howard, W. Knowledge Management and Process Improvement: A Union of
Two Disciplines. The journal of defense software engineering. Jun 2005. Available at:
http://www.stsc.hill.af.mil/crosstalk/2005/06/0506Burke.html

[3] Gold, A., Malhotra, A., and Segars, A. Knowledge Management: An Organizational
Capabilities Perspective. Journal of Management Information Systems. (2001). Vol. 18
No. 1, pp. 185 – 214.

[4] Gnatz, M, Marschall, F., Popp, G, Rausch, A, and Schwerin, W. Modular Process
Patterns supporting an Evolutionary Software Development Process. Lecture Notes in
Computer Science. (2001). Vol. 2188.Pages: 326 – 340.

[5] OMG, Software Process Engineering Metamodel Specification (SPEM) Versión 1.1,
January 2005

[6] White, D., Fortune, J., Current practice in project management – an empirical study.
(2002). International Journal of Project Management. Vol. 20, Issue 1, Pp. 1-11.

[7] Nienaber, R., Cloete, E. A software agent framework for the support of software project
management. (2003). Proceedings of the SAICSIT 2003. Pp 16-23.

[8] McConnell, E., Nine Deadly Sins of Project Management. From the Editor IEEE
Software, (2001). Available at: http://www.stevemcconnell.com/ieeesoftware/iec19.htm

[9] Iida, H. Pattern-Oriented Approach to Software Process Evolution. (1999).
[10] Hagen, M,, Gruhn, V. Process Patterns - a Means to Describe Processes in a Flexible

Way. (2004).
[11] Dittmann, T., Gruhn, V., Hagen, M. Improved Support for the Description and Usage of

Process Patterns. (2002)
[12] Project Management Institute (PMI), “The Project Management Body of Knowledge

(PMBOK)”, Project Management Institute, Upper Darby, PA, (1987).
[13] Paulk M., Garcia S., Chrissis M., and Bush M. Capability Maturity Model for Software,

Version 1.1, CMU/SEI-93-TR-24. Technical Report. Software Engineering Institute.
Carnegie Mellon University, (1993).

[14] Software Engineering Institute. "CMMI for Systems Engineering, Software Engineering,
Integrated Product and Process Development, and Supplier Sourcing (CMMI-
SE/SW/IPPD/SS, V1.1)", Carnegie Mellon University, March, (2002).

[15] Phillips M. “CMMI V1.1 Tutorial”. Software Engineering Institute. Carnegie Mellon
University, (2003).

[16] Standard ISO/IEC 15504-5:1999 Standard for Information Technology-Software process
assessment. (1999).

[17] Alexander, C. A Pattern Language: Towns, Buildings, Construction. Oxford University
Pres. (1977)

On Mobility of Software Processes�

Mingshu Li1,2, Qiusong Yang1,3, Jian Zhai1,3, and Guowei Yang1,3

1 Laboratory for Internet Software Technologies,
Institute of Software, Chinese Academy of Sciences, Beijing 100080, China
{mingshu, qiusong yang, zhaijian, yangguowei}@itechs.iscas.ac.cn

2 State Key Laboratory of Computer Science,
Institute of Software, Chinese Academy of Sciences, Beijing 100080, China

3 Graduate University of Chinese Academy of Sciences, Beijing 100039, China

Abstract. In this paper, the mobility of software processes is proposed
as a novel concept. It is defined as the structural change in a software
process resulting from interactions among linked process elements. The
concept addresses the essential change in a software process which brings
a high variability and unpredictability to process performance. Three
categories of the mobility that lead to the structural change are identified
and expounded upon. A reference model for describing the concept is put
forward based on the polyadic π-calculus. With the mobility of software
processes, it is possible to design a new PCSEE and associated PML with
increased flexibilities.

1 Introduction

The research on software processes is to enable people to produce high qual-
ity software systems and evolve them in an economic and timesaving fash-
ion. The main stream of effort has been on concepts definition, languages and
complete process-centered software engineering environments (PCSEEs). The
process “culture” is widely recognized and adopted. However, existing PCSEEs
fail today in satisfying the market’s evolution and the demand that may be sum-
marized by [1]: the support of long lived and widely distributed, heterogeneous,
evolving and flexible processes. The notion of flexible process support costs an
extra price. The more flexible and adaptable PCSEEs are (in other words, the
wider the variety of processes which can be supported), the weaker is the support
for a concrete process [2].

A software process is still human intensive and almost impossible to be im-
proved by a product view like in classic manufacturing. It is a set of activities
or operations that needs to always change for a variety of reasons. In order to
improve process support technology, we have to answer the following questions:

– What is the essential change in software processes?
– Based on the essential change, is it possible to define a novel concept?

� Supported by the National Natural Science Foundation of China under grant No.
60273026, 60473060, 60573082 and the Hi-Tech Research and Development Program
(863 Program) of China under grant No. 2004AA112080, 2005AA113140.

Q. Wang et al. (Eds.): SPW/ProSim 2006, LNCS 3966, pp. 105–114, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

106 M. Li et al.

– Is there a reference model that can be devised to describe the concept?
– Can this model be used to design a PCSEE/PML (process modelling lan-

guage) to support the essential change in software processes?

2 Mobility of Software Processes

It is widely accepted that the quality of software is related to not only the prod-
uct, but the organization and the production process. According to Webster’s
dictionary, a process is “a series of operations performed in the making or treat-
ment of a product” or “a series of actions, changes, or functions bringing about
a result”. Various definitions of the software process have been put forward from
different angles:

– A software process can be defined as a set of activities, methods, practices,
and transformations that people use to develop and maintain software and
the associated products (e.g., project plans, design documents, code, test
cases, and user manuals) [3].

– A set of partially ordered process steps, with sets of related artifacts, hu-
mans and computerized resources, organizational structures and constraints,
intended to produce and maintain the requested software deliverables [4].

– A sequence of tasks, actions, or activities, including the transition criteria
for progressing from one to the next, that brings about a result [5].

In this paper, a software process is defined as a set of process elements, links
and interactions. The execution of a software process constitutes a trace of in-
teractions among linked elements. Process elements are the basic entities of a
software process, including activities, humans, artifacts, computerized resources,
etc. A link is the abstraction of a certain type of relationship or a communication
channel between two process elements. Each element can interrelate with other
ones. The performance of a software process is a trace of interactions among
interrelated elements. The ordering of those interactions is regulated by some
constraints, methods, or practices. In addition, an interaction is carried out along
a link for the purpose of sending a piece of data or some information for con-
trol between process elements. The control flow and the information flow of a
software process are described through specifying its connecting structures and
interactions types.

2.1 Conception of Software Process Mobility

The structure of a software process states the way in which the process elements
are connected with each other through links, and the set of possible interactions
that can be carried out among linked process elements. In fact, it may change
during process performance as a result of interactions among process elements.
It is possible that new process elements are added to a software process, existing
ones deleted, and one process element replaced by another. For example, a new
human agent (a process element) may be added for the enrollment of a new

On Mobility of Software Processes 107

staff. On the other hand, a new link can be setup between two process elements
who are unknown to each other in advance and two linked process elements
may be disconnected. For example, a test engineer’s affiliation with the test
manager (a link) is shifted to a program manager when he or she is reassigned
to the team for implementation. Furthermore, the set of possible interactions of
a software process are altered correspondingly when the process elements or the
links change. It is the essential change in a software process that its structure
is altered during performance. It brings a high variability and unpredictability
to software processes and may cause inconsistencies between process enactment
and process performance.

Concerning the essential change in software processes, a novel conception, the
mobility of software processes is proposed. According to Webster’s dictionary,
the word mobility means the “the quality of moving freely”. The mobility’s syn-
onyms within context are: changeableness, sensibility (and commonalty, motion).
Thus, the mobility of software processes is defined as the structural change in
a software process, resulting from interactions among process elements through
links. As the logical relations among process elements remain immobile, the
physical movement of a process element is not treated as the mobility of soft-
ware processes. In addition, the situation that the internal state of a process
element is updated or one process element seizes control from another is also
not taken into account.

According to the definition of the mobility of software processes, it is the
interactions that result in the structural change in a software process. On the
other hand, the structure of a software process determines what interactions can
be carried out along links connecting process elements. In the mobility of software
processes, a software process is surveyed from the negativity of self-denial point of
view and interactions among linked process elements constitute the momentum
of process performance. Hence, based on the interactions among linked process
elements, it is possible to describe the mobility of software processes in a modest
but profound way.

2.2 Category of Software Process Mobility

Two basic categories of the mobility and a combination of them can be identified
according to the mobile unit during an interaction:

– Element Mobility: A process element is mobile without links.
– Link Mobility: A link is mobile without process elements.
– Combined Mobility: Both process elements and the links among them are

mobile.

Element Mobility. A process element is the mobile unit during an interaction.
The received element will be connected with other ones existing in the new con-
text. In addition, the creation of a new process element can also be expressed in
the element mobility, in which a new element is added to the environment along
the link between the element’s producer and the environment. The behavior and
the internal structure of the receiver can be dynamically updated.

108 M. Li et al.

Vacant Slot

Requirement A

Architecture A

Vacant Slot

Requirement B

Architecture B

Architect Team Architect Team Element

Link

Note

Receive

Send

Fig. 1. An Example of the Element Mobility

Project
Manager

Programmer

Module
Specification

Team
Manager

L4

L6L5

L1

Element

Link

Note

L2
L3

Project
Manager

Programmer

Module
Specification

Team
Manager

L4

L6
L5

L1 L2
L3

(a) (b)

Receive

Send

Fig. 2. An Example of the Link Mobility

In Fig. 1, there are more than one project that are simultaneously developed
within an organization. But the architecture of each project is developed by the
same Architect Team, responsible for devising an elegant architecture according
to the given Requirement. In general, there is only one project that is scheduled
for the Architect Team, which becomes mobile among those projects. Each
project receives the Architect Team from a link and collaborates with it to
produce an Architecture.

Link Mobility. It is a link to be mobile during an interaction. One process
element sends a link, which is already connected to another element, to the third
one. Thus, a new relationship can be set up between the latter two elements,
who are unknown to each other in advance. The link mobility sticks to the
fact that some process elements are dominated by some other ones or a meta-
process which has the necessary knowledge to maintain a whole software process.
It reflects the intrinsic dynamics in the control flow and information flow of a
software process.

Fig. 2 denotes a demonstration on how the incremental definition of a software
process is described in the link mobility. As shown in Fig. 2(a), a project manager
assigns a programmer to a specific team and the team manager will have the pro-
grammer implementing a module according to the module’s specification. As it
is in a highly dynamic environment, neither the team manager nor the program-
mer is aware of the existence of the other before the performance of the software
process. In Fig. 2(b), the project manager sends the link L5 to the programmer.
The programmer establishes a new connection with the team manager through
the link. The team manager sends the link L2 to the programmer and the pro-
grammer retrieves the module specification through the received link. Lastly, the
programmer outputs the produced source code of the module through the link L6.

Combined Mobility. A fragment of a software process, including elements
and links, is mobile. The combined mobility shows that a part of development

On Mobility of Software Processes 109

Programmer

Test
Engineer

Boundry

L1

L2

L3

Programmer

Test
Engineer

Boundry

Coding
&Test

L1

L3

Coding
&Test

L2

(a) (b)

Element

Link

Note

Receive

Send

Fig. 3. An Example of the Combined Mobility

is delegated to a partner or a development team. The receiver of the fragment
is responsible for establishing appropriate connecting structure for the received
fragment. A fragment

In Fig. 3, the Coding&Test fragment is migrated along a link across the bound-
ary. Connections can be constructed among the migrated fragment with those
process elements on the other side of the boundary. A potential usage for the
combined mobility is to present a process along with a software outsourcing con-
tract. Thus, not only the milestones but also the development process adopted
by the contractor can be fully specified. This provides a solution to problems
caused by ineffective communication between contractors.

3 Formal Semantics

This section presents formal definitions of the mobility of software processes and
three categories of the mobility. In addition, the polyadic π-calculus [6][7] proves
to be a perfect candidate for constructing a new PCSEE supporting the novel
concept.

Let a software process is represented as SP = S〈E , L, I〉, where, E , L, and
I respectively represent the set of process elements, links and interactions of
the software process, and S denotes the process’s structure. In addition, i〈l〉
represents an interaction along the link l between two linked process elements
and m denotes the mobile unit during the interaction. Then, a formal definition
of the mobility of software processes can be given as:

Definition 1 (Mobility of Software Processes). The mobility of software
processes is the structural change in a software process resulting from an inter-
action:

S〈E , L, I〉 i〈l〉
m

S′〈E ′, L′, I ′〉

where, S �= S′ (S and S′ are the structure of the software process before and
after the interaction respectively).

The mobility of software processes is classified into three categories, i.e. Element
Mobility, Link Mobility, Combined Mobility, according to the mobile unit m
during an interaction. Let RU(l) and SU(l) denote a process element which
respectively receives and sends a mobile unit from the link l. We then have three
similar definitions but significant differences of mobile unit:

110 M. Li et al.

Definition 2 (Element Mobility). Let n ≥ 1 and e ∈ E denotes a mobile
process element. The element mobility constitutes a series of interactions:

i〈l1〉
e

,
i〈l2〉

e
, · · · i〈ln〉

e

where, ∀i(i ≥ 1 ∧ i ≤ n − 1), RU(li) = SU(li+1). Then, RU(ln) instantiates the
mobile process element e and sets up an appropriate connecting structure for it.

Definition 3 (Link Mobility). Let n ≥ 1 and l ∈ L denotes a mobile link.
The link mobility constitutes a series of interactions:

i〈l1〉
l

,
i〈l2〉

l
, · · · i〈ln〉

l

where, ∀i(i ≥ 1 ∧ i ≤ n − 1), RU(li) = SU(li+1). Then, a new link is set up
between RU(ln) and the process element to which the link l is initially connected.

Definition 4 (Combined Mobility). Let n ≥ 1 and l&e denotes a set of linked
process elements. The combined mobility constitutes a series of interactions:

i〈l1〉
l&e

,
i〈l2〉
l&e

, · · · i〈ln〉
l&e

where, ∀i(i ≥ 1 ∧ i ≤ n − 1), RU(li) = SU(li+1). Then, RU(ln) sets up an
appropriate connecting structure for l&e and existing links in l&e are still there.

In addition, the mobility of software processes and three categories of the mobil-
ity can be modelled in the polyadic π-calculus. With the formalism, it is fairly
straightforward for working out a new PCSEE and associated PML supporting
the concept. Based on the polyadic π-calculus, an process element is represented
as a process in the untyped polyadic π-calculus (called π-process in this paper).
A link between two process elements is modelled as a channel connecting the two
corresponding π-processes. Interactions among process elements will be trans-
formed into events of concurrently combined π-processes. With the operator of
abstraction, a process element can be represented as:

Element
def
= (˜ch). (νg̃, s̃) (Up〈g̃, s̃,˜0〉 | Mp
〈g̃, s̃, ˜ch〉�) (1)

Up
def
= (g̃, s̃, ṽ). (V
〈g1, s1, v1〉�| · · · |V
〈gm, sm, vm〉�) (2)

V
�
= (g, s, u). (g(r). r̄u. V
〈g, s, u〉�) + s(v). V
〈g, s, v〉� (3)

Mp
�
= (g̃, s̃, ˜ch). (Action〈g̃, s̃, ˜ch〉 . Mp
〈g̃, s̃, ˜ch〉�) (4)

In (1), ˜ch represents links connected to a process element. We assume that an
element has a state and presents a certain type of behavior pattern (action).The
two processes, Up and Mp, represent the state and the action respectively. They
share the channels g̃ and s̃. Thus in the body of the action, state variables can
be respectively get or set through g̃ and s̃. The access to a variable is modelled

On Mobility of Software Processes 111

by the process (3). In (2), processes for each variable are concurrently combined
together to represent the private store of an element. The action of an element
has the form (g̃, s̃, ˜ch).P .

A set of linked elements is also modelled as a π-process through the application
notation. For example, a new linked element can be constructed from previously
defined ones:

ElementA
def
= (〈in, out〉)ElementABody

ElementB
def
= (〈in, out〉)ElementBBody

ElementC
def
= (〈in, out〉)(νch)(ElementA〈in, ch〉|ElementB〈ch, out〉)

As for the link mobility, it can be modelled by the name-passing of π-calculus.
For example, the Programmer in Fig. 2 can be defined as:

Programmer = (〈l7, l9〉)(l7(l8). l8(l5). l5(content). coding. l9code) (5)

where, the state of a Programmer is not taken into account.
For the reason that an process element and a set of linked elements are both

modelled as a π-process, the element mobility and the combined mobility are
represented by the process-passing of high order π-calculus. For example, the
equation

Fig3(b) = (〈l1, l2, l3〉)(l0(codingest).codingtest〈l1, l2, l3〉) (6)

depicts Fig. 3(b) that the migrated Coding&Test is received and invoked. A high
order π-calculus can be faithfully compiled down to the polyadic π-calculus (a
first-order calculi) according to [7].

4 Implementation in SoftPM

In this section, an example is presented to show how a process for testing is
expressed in SoftPM based on the mobility of software processes. SoftPM [8]
is a toolkit for software process management and has been widely adopted in
Chinese software organizations. The development teams of a customer are dis-
tributed across the whole city and there is one department, named Quality As-
surance Department, who is responsible for testing all the projects within the
organization. As an independent department assuming sole responsibility for its
profits and losses, it is necessary to manage all testing activities by creating a
new project in SoftPM.

However, it is difficult to predict the number of projects that are being tested
in advance and the schedule of a test is heavily depends on the progress of the
corresponding project. Thus, those process elements, including the project man-
ager, developers, test cases, and source code, have to be dynamically allocated
or deleted. In addition, to ensure that a bug is timely fixed, the tester conducts
tests on the source code against given test cases and sends any identified bug to

112 M. Li et al.

Tester

Project Manager

DeveloperBDeveloperA

Test Cases Source Code

Tester

Project Manager

DeveloperBDeveloperA

Test Cases Source Code

Tester

Project Manager

DeveloperBDeveloperA

Test Cases Source Code

Tester

Project Manager

DeveloperBDeveloperA

Test Cases Source Code

L1 L1 L1 L1
L2 L2 L2L3 L3 L3

L4 L4

L5 L6 L5 L5 L5L6 L6 L6

L7

(a) (b) (d)(c)

Fig. 4. A Process for Testing in the Link Mobility

the manager of the project being tested. Then, the bug is delegated to a devel-
oper according to its type. The developer fixes the bug and the result is fed back
to the tester. The project manager and developers that a tester should commu-
nicate with are not prescribed and the relationships among them are difficult to
be defined in a prescriptive manner.

The mobility of software processes surveys those problems from the angle
that the structure of a software process may change as a result of interactions
among process elements. In Fig. 4, the process for test is expressed in the link
mobility. The process commences with Fig. 4(a), in which the Tester has not
been assigned to a testing activity and is ready for accepting new tasks from
the link L1. Then, the links to the Test Cases and the Source Code of the
project to be tested is sent to the Tester along L1. New links, L2 and L3, are
set up as shown in Fig. 4(b). After the two previous interactions, a link to the
project manager is also sent to the Tester along the link L1. As a result, the
link L4 between the Tester and the Project Manager is created in Fig. 4(c).
Through the Project Manager, the link of the Tester is sent to the DeveloperB
and the link L7 is built up. In Fig. 4(d), a structure for communication among
those process elements is appropriately configured. As you can see, the high
variability and unpredictability of process performance is effectively addressed
in the mobility of software processes.

5 Conclusion

In this paper, a software process is abstracted as a set of process elements, links
and interactions. The execution of a software process constitutes a series of inter-
actions among linked process elements. The intrinsically complex interrelation-
ships among those entities involved during software development are described
by the structure of a software process. The structural change imposed by inter-
actions among linked process elements is considered as the essential change in
a software process and brings a high variability and unpredictability to process
performance. The mobility of software processes is presented as a novel concept
to address the structural change. It reflects the fact that a software process is
not static and it is changed through the negativity of self-denial driven by in-
teractions. According the mobile unit during an interaction, three categories of
the mobility are identified.

On Mobility of Software Processes 113

The mobility of software processes has a fundamental difference with the
evolution of software processes [9][10]. The latter mainly focuses on solutions
used for guiding how to apply an outer change request to a process or a model.
The concept of evolution generally assumes that the structure of a software
process is static, while the mobility states what a software process should be
and exploits the momentum for structural changes. It is also different from the
mobile software process described in [2] or [11][12], in which process parts, tools,
participants tend to change their site allocation during the process or a process
fragment is distributed in different workspaces. The dynamic ordering that the
ordering of activities can be dynamically built and modified is an identified
requirement for assessing a list of PCSEEs in [1]. However, the phrase is intended
for expressing the non-determinism in the building constructs of PMLs.

As a novel concept, some aspects of the mobility of software processes can be
exploited further:

– The mobility of software processes focuses on the structural change of a
software process. The evolution of software processes can be taken as any
change which takes place in software processes. In this way, the mobility of
software processes can be thought of as a special type of evolution. However,
as a novel concept, its correspondence with the evolution should be further
clarified.

– It is necessary to exploit strategies and policies for managing the mobility
of software processes. Inconsistencies between the process performance and
the process enactment can be minimized with appropriate control criteria
and policies for the mobility of software processes. A modelling approach
based on the polyadic π-calculus can be further studied to support the novel
concept. In particular, new techniques for analyzing software processes can
be put forward based on the formalism. In addition, some other formalisms
can also be examined to support the mobility of software processes.

– The mobility of software processes is classified into three categories according
to the mobile unit during an interaction. It is possible that a new standard
is adopted to produce different categories that define the extension of the
concept.

– Moreover, a new PCSEE and associated PML can be developed based on
the novel concept.

References

1. Arbaoui, S., Derniame, J.C., Oquendo, F., Verjus, H.: A comparative review of
Process-Centered Software Engineering Environments. Annal of Software Engi-
neering 14(1-4) (2002) 311–340

2. Gruhn, V.: Process-centered software engineering environments, a brief history
and future challenges. Annals of Software Engineering 14(1-4) (2002) 363–382

3. Paulk, M.C., Curtis, B., Chrissis, M.B., Weber, C.V.: Capability maturity model
for software, version 1.1. Technical Report CMU/SEI-93-TR-024, SEI, CMU (1993)

4. Lonchamp, J.: A structured conceptual and terminological framework for software
process engineering. In: ICSP. (1993) 41–53

114 M. Li et al.

5. IEEE Std. 1220-1998: IEEE standard for application and management of the
systems engineering process (1998)

6. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes – part I and II.
Journal of Information and Computation 100 (1992) 1–77

7. Sangiorgi, D., Walker, D.: The π-calculus: a Theory of Mobile Processes. Cam-
bridge University Press (2001)

8. Wang, Q., Li, M.: Software process management: Practices in China. In Li, M.,
Boehm, B.W., Osterweil, L.J., eds.: ISPW. Volume 3840 of LNCS., Springer (2005)
317–331

9. Conradi, R., Fernström, C., Fugetta, A.: Concepts for evolving software processes.
In A. Finkelstein, J. Kramer, B.N., ed.: Software Process Modelling and Technol-
ogy, John Wiley and Sons (1994) 9–31

10. Bandinelli, S., Nitto, E.D., Fuggetta, A.: Policies and mechanisms to support
process evolution in PSEEs. In: ICSP. (1994) 9–20

11. Ben-Shaul, I.Z., Kaiser, G.E.: A paradigm for decentralized process modeling and
its realization in the Oz environment. In: Proceedings of the Sixteenth International
Conference on Software Engineering, IEEE Computer Society Press (1994) 179–188

12. Wang, A.I.: Support for mobile software processes in CAGIS. In Conradi, R., ed.:
EWSPT. Volume 1780 of LNCS., Springer-Verlag (2000) 115–130

Q. Wang et al. (Eds.): SPW/ProSim 2006, LNCS 3966, pp. 115 – 123, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Software Process Fusion: Uniting Pair Programming and
Solo Programming Processes

Kim Man Lui and Keith C.C. Chan

Department of Computing, The Hong Kong Polytechnic University,
Hunghom, Hong Kong

{cskmlui, cskcchan}@comp.polyu.edu.hk

Abstract. The role of pair programming process in software development is
controversial. This controversy arises in part from their being presented as
alternatives, yet it would be more helpful to see them as complementary software
management tools. This paper describes the application of such a complementary
model, software process fusion (SPF), in a real-world software management
situation in China. Pair and solo programming are adopted at different stages of
the process and according to the background of programmers, as appropriate.
Unlike the usual practice of eXtreme Programming, in which all production code
must written in pairs, all-the-time pair programming, the proposed model
encourages programmers to design code patterns of their own in pairs and then to
use these patterns to build sub-modules solo. The report finds that the longer team
members work alone, the more code patterns they develop for reuse later in pairs.

1 Introduction

The success of a software development relies on not only a development paradigm but
also people management. Programmer management remains more of an art form than
an engineering principle. Pair programming (PP) is a form of teamwork in which two
developers sit together and collaborate on a single computer [1]. One programmer,
called the driver, controls the keyboard and implements the program while the other,
the observer, continuously examines the work, identifying defects and thinking ahead.
From this perspective, we may define a software process as being a pair process if a
team is performed by pairs and as a solo process if it is performed by individual
developers. It should be noted that pair programming includes not only programming
but also design, system analysis, testing, and other typical programmer activities.

The benefits of pair programming processes may include job rotation/succession
against personnel turnover, skills transfer for knowledge management, and, as a result
of pairs being able to explore a larger number of alternatives than a single person [2],
more creative thinking leading to better ways to solve problems. The processes of pair
programming also raise issues of staff appraisal, economics, and productivity [3, 4, 5].

Many empirical studies [3, 4, 6, 7, 8] have shown higher that pair programming
processes are more “productive” than solo programming process, particularly where
they consider novice programmers. One report, however, recounts the development
of highly negative attitudes towards management of professional programmers

116 K.M. Lui and K.C.C. Chan

implementing eXtreme Programming in real situations when software managers
enforced 100% pairing [9]. Similarly, in our experience in China in which we had
inexperienced programmers write production code pairs we found little evidence that
programmers were either motivated by the practice or that they were more productive.

In this paper we are interested in the use of a mixed pair programming-solo
programming method and its potential effect on the effectiveness and efficiency of the
management of developers and, in particular, inexperienced programmers in China.
We introduce the concept of Software Process Fusion (SPF) and propose its
application with a case study of pair programming process and solo programming
process that accounts not only for productivity but also considers staff motivation. It
should be noted that although many programmers may from time to time work in
pairs either willingly or out of necessity, at the moment we cannot say that this
practice is well-defined, especially in terms of its role in the context of general
professional practice.

This paper is organized as follows. Section 2 reviews the empirical studies on
productivity in pair programming. Section 3 introduces the concept of SPF and a
management case study in which inexperienced programmers are set to both pair
programming and solo programming activities. Section 4 reports an industrial case of
the use of SPF. The final section offers our Conclusion.

2 Pair Programming Process

All-the-time pair programming requires that all production code be written by pairs of
programmers. It is the core of extreme programming [1]. In the past, many agile
software practices individually proposed or re-introduced have been similar but have
been called by different names. However, none of the practices has been alike to pair
programming and this has made extreme Programming and pair programming so
undividable.

Many software processes are usually regarded as team processes. The basic unit
that forms the basis of a software team is an individual programmer, shown in (a) (b).

Fig 1.a. According to the team composition, we can categorize them as solo
programming process. Alternatively, when software processes are adopted by a team
formed by pairs as illustrated in (a) (b).

Fig 1.b, they are pair programming process. Collaborative Software Process by
Williams is such software process [4].

(a) (b)

Fig. 1. Teams for solo programming process and pair programming process

 SPF: Uniting Pair Programming and Solo Programming Processes 117

This section reviews the literature on pair programming productivity. Two
principles are reached in [3, 6, 7, 8]: The first principle is that a pair is much more
productive and can work out a better solution than two individuals when the pair is
new to design, algorithm, and coding of a program. The second principle is that pair
programming can lose its productivity when a pair has prior experience of a task.
Section 2.2 discusses an initial study in which pair programming is implemented as a
way of assisting newly-hired programmers [10].

2.1 Control Experiments on Pair Programming

Two studies that favor pair programming have found that pair programming can speed
up software development and at the same time produce better quality in terms of
readability and maintainability than does solo programming. In 1998, Nosek [3]
reported that full-time system programmers divided into five pairs and five singles were
asked to write a UNIX script that performs a database consistency check (DBCC) in a
Sybase database. On average, pairs took 42% longer than individuals on the same task;
however, pair programming, in comparison with solo programming, reduced the elapsed

time by 29% (i.e.
2

%421
%100

+−). In 2000, Williams [4] repeated the experiment in a

similar setting using forty-one university students writing a challenging web-based
program. The experiment showed that a pair took 15% longer than an individual on the

same task; the elapsed time was reduced by 42,5% (i.e.
2

%151
%100

+−). In terms of

productivity, the extra time was insignificant because pair programming achieves a
higher quality.

In 2001, Nawrocki and Wojciechowski [11] reported experimental results unfavorable
to pair programming, showing that pair programming consumed twice the time resources
of solo programming. Subjects were asked to write four programs for (1) finding the
mean and standard deviation of a sample of numerical data, (2) finding the linear
regression parameters, (3) counting the number of lines in a program and (4) counting the
total program LOC. The pairs took 100% longer than individuals. As the tasks of
programming statistical calculations and counting the number of lines in a program were
not new to the subjects, these experiments may indicate that pair programming is not as
productive as solo programming when subjects are working on familiar tasks.

In 2004 Lui and Chan reported on a series of experiments called Repeat
Programming in which pair and solo programmer subjects wrote the same program
eight times [6 7] or four times [8]. The purpose of this was to simulate the process
in which a novice programmer develops expert familiarity with a task and to measure
the change of productivity of pair programming versus solo programming. At the first
round, pairs spent 7.5% longer than individuals on the same task, 23% longer on the
second round, 40% on the third, deteriorating to 134% on the eighth. These results
indicate just how much the relative productivity of pair programming depends on
previous programming experience on a particular task. The less experience a pair has,
the better it performs relative to the two similarly inexperienced individuals. Lui and
Chan [7, 8] conclude that a pair is much more productive and can work out a better
solution than two individuals when the pair is new to design, algorithm, and coding of
a program. This advantage is lost, however, as subjects gain experience of the task.

118 K.M. Lui and K.C.C. Chan

2.2 Pair Programming for Newly-Hired Developers

Regarded as a process of learning and practicing, pair programming has a
considerable pedigree in the area of learning theory. Active learning has been adopted
in colleges [12]. It involves three processes: think-pair-share. Research into the
effectiveness of pair learning relative to group learning [13] has shown that the group
learning could be more effective than pair learning. Yet pair learning is still widely
used in teaching. Research on learning in pair includes English Vocabulary [14],
Physics [15], Mathematics [16], and recently, Computer Programming [17, 18]. When
student programmers are compared to novice programmers, the success of pair
learning formulates our research problem that pair programming can mentor less
experienced programmers in industrial software development.

In 2003, a research student, Poff, conducted an empirical study was conducted in
which two novice programmers in the company, TCMS, were selected to produce
portions of an application for the verification of payload hardware prior to integration
into the space shuttle at TCMS in the Kennedy Space Center [10]. The experiment
lasted one month and the data collected was compared with historical data at TCMS.
Two programmers were told that the experiment was of secondary priority; most
important was successful and timely development of the application. The two
programmers were then left to decide how often they would actually work together but
were asked to work as a pair at least 33% of the time, but if they wished could work as a
pair 100% of the time. The result was that the pair worked as a pair 50% of the time.

The author observed that a pair of novice-novice programmers could develop
technical and environmental knowledge more quickly. Although the author did not
mention a potential application of a mix of pair programming and solo programming,
the case illustrates that pair programming and solo programming have been optimized
in a reciprocal manner by a pair of newly-hired programmers.

Although Poff did not report the workspace layout, it should safely assume that
those two programmers have their own machine so that they can do solo
programming. If the two programmers are actually sitting closely and each other
machine, they are doing is side-by-side programming proposed by Cockburn [19] in
which the developers choose to work in pairs or solo on an ad hoc basis. In fact, two
programmers may not have to sit side-by-side as suggested. As far as they are closed
enough and can easily see both screens of each other which can be called “pseudo
side-by-side programming”, it probably achieve the same effect. In some cases, when
an effective working rapport has been built between two programmers, they may sit a
little far away or opposite to each other as far as they can easy talk and hear each
other in a collocated place. It is the people collaboration that makes them productive
and a workspace layout is just as a tool that facilities the collaboration.

In the Poff’s experiment, whether the pair was practicing side-by-side, pseudo
side-by-side programming or talk-and-hear programming, they cannot be considered
as a disciplined software practice because there are no clear guidelines when they
should pair up and split off. Section 3 will introduce Software Process Fusion (SPF).
As an example of SPF, we will describe a combination of pair programming and solo
programming.

 SPF: Uniting Pair Programming and Solo Programming Processes 119

3 Software Process Fusion (SPF)

The idea of software process fusion was brought from data fusion which is the process
of combining two (or more) independent data sets in order to produce information to the
user. As two data sets are independent, the challenging is to combine them by
formulating common variables in mathematics [20]. In data fusion, one is a recipient set
and the other is a donor set. The use of defined common variables allows the recipient
set to be enriched with extra information from the donor set. For example in retail, a
recipient set can be sales data and a donor set is a marketing survey.

In a similar fashion, A and B are two independent processes that can produce the
same work products. One of the processes, say A, is a recipient process and the other,
say B, is a donor process. It is possible to use the mechanisms of A and B to define a
set of transfer conditions so that, over time, the recipient process can temporarily
convert into the donor process for productivity and resource optimization.

In Software Process Fusion, we should start with and end in a recipient process.
Although it may appear that two processes alternately change and become an
alternating process (see Fig 2), the recipient process and the donor process cannot be
mixed up because the transfer conditions are bound to this relationship. A fused
process is a recipient process being merged with a donor process. We can draw an
analogy between common variables in data fusion that bring two data sets together
and transfer conditions in Software Process Fusion (SPF).

In Section 2.2, the real case reported by Poff would be Software Process Fusion as
long as transfer conditions could be clearly established. Without those conditions, the
alternating process in pair-and-solo programming appears uncontrolled and chaotic.
The core of data fusion is to mathematically define common variables between data
sets; the challenge in Software Process Fusion is to clearly establish a set of transfer
conditions.

Fig. 2. Software Process Fusion

120 K.M. Lui and K.C.C. Chan

Fig. 2 shows an example of Software Process Fusion. Both a recipient process and a
donor process can take and deliver the same input and output. Note that the recipient
process is pair programming. In Software Process Fusion, we always start with and end
at a recipient process. When the transfer conditions are satisfied during the pair
programming process, it stops and initiates a donor process, i.e. the solo programming
process. The donor process will not indefinitely take over the control and it will return
to the recipient process if the transfer conditions for donors are met. Obviously, defining
suitable transfer conditions is the key to the success of Software Process Fusion.

3.1 Transfer Conditions

In Section 2.1, previous studies have shown that it is productive for a pair of
programmers to design algorithms, seek design patterns, and code. The productivity of
pair programming will fall when the pair works on other modules in which the logic has
been similar to the previous modules previously done as a pair [6, 7, 8]. In this case, to
optimize resources, the pair should split off and the two individuals should complete
those modules solo. Once they have finished, they should pair up again and review the
overall task. This process is iterative until they complete their assignment.

Therefore, we define the transfer condition for a recipient process in Fig. 2 to
convert into a donor process (i.e. solo programming process) is that a pair of
developers has previously completed a similar task and they are individually able to
solve the same problem again in the same way. Straightforwardly, the transfer
condition for a donor process is for the individuals to pair up again after completing
their solo programming tasks.

Fig. 3. Application of SPF for Managing Inexperienced Programmers

 SPF: Uniting Pair Programming and Solo Programming Processes 121

The transfer conditions can be regarded as a number of intermediate targets. We
would like to reach such intermediate targets as many times as possible and hence the
transfer conditions drive that fused process to (1) look for design patterns and
implement them once in pairs, (2) reuse the same patterns in solo programming and
(3) review overall progress and perform integration testing in pairs.

3.2 A Fused Process

A fused process not only is the sum of a recipient process and a donor process, but
also includes necessary changes that come along with the transfer condition. This
section will present a fused process: combining pair programming with solo
programming processes. Fig. 3 illustrates the internal workflow of the fused process.
It starts with a recipient process (i.e. a pair programming process) in which pairs work
on design and algorithm and identify patterns of logic. Afterward, they code and test
sub-programs in pair programming. The pairs then split up and code and test as solo
programmers. Once those tasks are complete, they once again pair up, review their
work, and perform integration tests.

4 Industrial Case Study

We introduced the work to Huida Technology Ltd in Huizhou, China in 2005. The
company had seven technical staff, providing ERP/CRM solutions to their local
customers. Two had four years experience and the other five all less than one year.
The company would adopt what we proposed in this paper to work on their CRM
project for one month. Of the five junior programmers, four paired up and the other
worked as usual. Priority was given to the success of the inventory project, so that the
company was free to terminate the proposed fusion process at any time. The results,
shown in Table 1, were recorded and provided by two supervisory programmers.

The project was not an experimental test. It is a matter of happenstance that there
were five staff available for the experiment, so the use of a single programmer was
not intended to serve as a control group. Table 1 nonetheless provides for reference a
comparison of the pair and solo teams. The programmers appeared to develop more
(sub-) modules in terms of stored procedures and GUI. We are particularly interested

Table 1. Experimental Test in 2005

Item Measurement Description Huida Programmers
 Pair Pair Single
1 Number of GUI Developed 7 6 2
2 Number of Stored Procedures Written 15 9 5
3.a Programming Time (%) 49% 41% 40%
3.b Testing Time (%) 26% 18% 20%
3.c Debugging Time (%) 25% 31% 40%
4 Fusion Ratio 1.7 1.9 N/A

4.a Pair Time (%) 37% 34% N/A
4.b Solo Time (%) 63% 66% 100%

122 K.M. Lui and K.C.C. Chan

in a fusion ratio, defined by the total time required for donor processes over the total
time required for a recipient process. The fusion ratio was higher than Poff’s
measurement, which was around 1.0 [10].

The supervisors worked with those five programmers daily and knew them well.
Their comments on the process are of interest.

1. They found that they were able to spend less time supervising the pairs as
they tended to support and monitor themselves.

2. Coding standards were much better.
3. The fused process encouraged junior programmers to actively seek design

patterns for reuse. This has rarely been seen before as the programmers just
wanted to complete the program on time, rather than considering software
reuse. Hitherto, it was common to see duplications of logic in the junior
programmer’s code as they had the habit of simply cutting and pasting code.

It has been reported that pair programming comes with pair pressure that a pair
does not want to let its partners down and that this leads to pairs budgeting their time
more wisely [4]. The supervisors failed to observe any signs of pair pressure;
however, it was clear that programmers were glad to move on to solo programming as
it demonstrated that they managed to discover reusable patterns of their own. The
team had been motivated and influenced by its achievements of pattern discovery. In
addition, the time that they split off demonstrated their supervisors that they were
making progress.

5 Conclusions

The paper contributes to our understanding of software process fusion. Software
methods/processes need not be defined as being in opposition or competition. Rather,
they can be seen as complementary. We also presented a case study of the application
of SPF in the management of inexperienced programmers in a real industrial project
in China. The initial results and comments show that SPF is a promising software
management approach.

Researchers on pair programming are divided. Some believe it is more efficient
and effective than solo programming whereas others argue it doubles the resources
that are consumed in software development. Perhaps, the truth lies between these two
views. Software Process Fusion encourages not programming in pairs but working out
coding patterns in pairs. Developers can pair up and split off. The proposed fused
process has successfully been implemented in a small company in China.

References

1. Beck, K.: Extreme Programming Explained: Embraced Change (2nd Edition), Addison-
Wesley, Boston, MA (2005)

2. Flor, N. and Hutchins, E.: Analyzing Distributed Cognition in Software Teams: A Case
Study of Team Programming During Perfective Software Maintenance, In J. Koenemann-
Belliveau, T. Moher and S. Robertson (Eds.), Empirical Studies of Programmers: Fourth
Workshop, Norwood, NJ: Ablex (1991)

 SPF: Uniting Pair Programming and Solo Programming Processes 123

3. Nosek, J.T.: The Case for Collaborative Programming, Communications of the ACM,
March (1998) 105-108

4. Williams, L.: The Collaborative Software Process, Ph.D. Dissertation, University of Utah,
(2000)

5. Miller, M.M. and Padberg, F.: Extreme Programming from an Engineering Economics
Viewpoint, In Proceedings of the Fourth International Workshop on Economics-Driven
Software Engineering Research (2002)

6. Lui, K.M. and Chan, K.C.C.: When Does a Pair Outperform Two Individuals. In
Proceedings of Extreme Programming and Agile Processes in Software Engineering, Italy
(2003) 215-224

7. Lui, K.M. and Chan, K.C.C.: A Cognitive Model for Solo Programming and Pair
Programming. In Proceedings of the Third IEEE International Conference on Cognitive
Informatics, Canada (2004) 94-102

8. Lui, K.M. and Chan, K.C.C.: Productivity of Pair Programming: Novice-Novice and Expert-
Expert, Tentatively Accepted by International Journal of Human Computer Studies (2006)

9. Stephens, M. and Rosenberg, D.: Extreme Programming Refactored: The Case Against
XP, Apress (2003)

10. 10 Poff, M. A.: Pair Programming to Facilitate the Training of Newly-Hired Programmers,
M.Sc. Thesis, Florida Institute of Technology (2003), Available online at
http://www.cs.fit.edu/~tr/tr2003.html

11. Nawrocki, J. and Wojciechowski, A.: Experimental Evaluation of Pair Programming”,
Proceedings of the 12th European Software Control and Metrics Conference, England
(2001) 269-276

12. Bonwell, C.C. and Eison, J. A.: Active Learning: Creating Excitement in the Classroom.
ASHE-ERIC Higher Education Report. Washington, D.C. (1991)

13. Roth,V., Goldstein,E. and Marcus,G. : Peer Lead Team Learning A Handbook for Team
Leaders. Upper Saddle River, NJ: Prentice- Hall, Inc. (2001)

14. Jones, M.S., Levin, M. E., Levin, J. R. and Beitzel, B. D.: Can Vocabulary-Learning
Strategies and Pair-Learning Formats Be Profitably Combined? Journal of Educational
Psychology, Vol. 92, No. 2 (2000) 256-262

15. Warnakulasooriya, R. and Pritchard, D.: Learning and Problem-Solving Transfer between
Physics Problems using Web-based Homework Tutor. In Proceedings of World
Conference on Educational Multimedia, Hypermedia and Telecommunications,
Chesapeake, VA (2005) 2976-2983

16. Keeler, C.M. and Steinhorst, R.K.: Using Small Groups to Promote Active Learning in the
Introductory Statistics Course, Journal of Statistical Education, [Online journal] (1995)
available at
http://www.amstat.org/publications/jse/v3n2/keeler.html

17. McDowell, C., Hanks, B. and Werner, L.: Experimenting with Pair Programming in the
Classroom, In Proceedings of the 8th Annual Conference on Innovation and Technology in
Computer Science Education, Thessaloniki, Greece (2003)

18. McDowell, C., Werner, L., Bullock, H. and Fernald, J.: The Impact of Pair Programming
on Student Performance, Perception, and Persistence, In Proceedings of the 25th
International Conference on Software Engineering (2003) 602 – 607

19. Cockburn, A.: Crystal Clear: a human-powered methodology for small teams, Boston:
Addison-Wesley (2005)

20. van der Putten, P., Kok, J.N. and Gupta, A.: Why the Information Explosion Can Be Bad
for Data Mining, and How Data Fusion Provides a Way Out. In Proceedings of
Proceedings of the Second SIAM International Conference on Data Mining (2002)

Q. Wang et al. (Eds.): SPW/ProSim 2006, LNCS 3966, pp. 124 – 131, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Towards an Approach for Security Risk Analysis in
COTS Based Development

Dan Wu and Ye Yang

Center for Software Engineering, University of Southern California,
 941 W. 37th Place, SAL Room 328,

Los Angeles, CA 90089-0781
{danwu, yey}@usc.edu

Abstract. More and more companies tend to use secure products as COTS to
develop their secure systems due to resource limitations. The security concerns
add more complexity as well as potential risks to COTS selection process, and
it is always a great challenge for developers to make the selection decisions. In
this paper, we provide a method for security risk analysis in COTS based de-
velopment (CBD) based on Common Criteria and our previous work in identi-
fying general risk items for CBD. The research result provides useful insights
for developers in identifying security risks, so that it can be used to aid for the
COTS selection decision.

1 Introduction

The use of Commercial-Off-The-Shelf (COTS) product(s) has become increasingly
important in software system development. In more and more organizations, pressures
from budget and schedule constraints force development teams to use preexisting
components to implement security requirements such as encrypting, digital signing,
access control, and authentication [1]. Generally speaking, the COTS product selec-
tion decision is made by considering many factors such as vendor maturity, customer
support, product complexity and so on. With the addition of security concerns in large
scale system development, the COTS selection process can become much more com-
plex and risk-prone by adding some additional factors addressing application’s secu-
rity properties. Current state of practice in secure COTS selection is often in an ad hoc
manner due to the lack of technique/method support. This usually leaves it a great
challenge for developers to make decisions on selecting secure COTS as components
for security sensitive systems and often results in wrong decision, tremendous rework,
and schedule/cost overruns. Moreover, an inappropriate selection decision could bring
the security vulnerabilities that will leave on your system no matter how perfect the
glue codes are. While researchers have proposed some specific COTS-based devel-
opment processes such as COTS selection and evaluation processes [2, 3]; very few
of them have addressed issues to support the selection of secure COTS products for
building systems with security concerns.

In contrast to the perception of most people, COTS-based development (CBD) is
not a low risk development strategy. Many of the problems in CBD are a consequence

 Towards an Approach for Security Risk Analysis in CBD 125

of poor appreciation of the risks involved and their management. This is especially
true for building secure COTS-based systems. The black-box nature of COTS prod-
ucts, the lack of component interoperability standards, and complex implementation
of security mechanisms often result in the accidental introduction of serious flaws into
the system [4]. Hence, there needs to be a mechanism to help people evaluate and
mitigate their risk.

In this paper, we propose a quantitative security risk analysis method to address the
security issues in selecting secure COTS products. Our method integrates the Evalu-
ated assurance level (EAL) concept in the Common Criteria (CC) [5], an internation-
ally recognized standard for security requirements definition and evaluation for IT
systems, with our previous work on COCOTS Risk Analyzer [6], a rule-based risk
analysis method for analyzing COTS integration risks. The paper is organized as
following: Section 2 introduces EAL and COCOTS Risk Analyzer; Section 3 presents
3 new cost drivers to address security in COTS based development for secure sys-
tems. Section 4 shows our analysis result of security risk items and the corresponding
risk mitigation suggestions. Section 5 concludes our work and talks about the future
plans.

2 Overview of Related Work

2.1 EAL

Evaluated assurance level (EAL) is a term brought in by Common Criteria (CC) [5] for
providing confidence for security in secure systems. EAL can be viewed as a package of
security assurance requirements (SARs). Different from security functional require-
ments (SFRs) that represent the security capabilities and strength of these functions in
the system, SARs help provide the confidence about these SFRs, by defining executable
actions for developers such as independent testing, using configuration management
mechanisms, doing vulnerability assessment, etc. The higher EAL is, the more and
stronger the included SARs are, which by other words, providing more confidence of
security. By selecting SARs during early phase of the software development lifecycle
(SDLC) and executing action items defined in SARs through out the SDLC, developer
can claim the product that achieves the corresponding EAL. And a certified organization
or center will evaluate the product within the chosen SARs to make the claimed EAL
official. EAL adds another criteria in choosing secure COTS products, since it prevails
some information that was invisible but important to users. EAL also has its big user
group. National Institute of Standards and Technology (NIST) provides a list of secure
products with their EALs, which is viewable online [7]. Secure products in that list are
not only from general IT companies including Cisco, IBM, Microsoft, SUN, Apple,
Oracle, etc, but also from security specific companies such as NetScreen Technologies,
Inc., Symantec Corporation, McAfee, Inc., etc.

2.2 COCOTS Risk Analyzer

COCOTS is the acronym for the COnstructive COTS integration cost estimation
model, which is a member of the USC COCOMO II family of cost estimation models.
In our previous work of [6], the COCOTS risk analyzer enables the user to obtain a

126 D. Wu and Y. Yang

COTS integration risk analysis with no inputs other than the set of glue code cost
drivers the user enters to obtain a COCOTS glue code integration effort estimate. The
risk assessment is based on an expert Delphi analysis of the relative risks involved in
the most critical combinations of COCOTS cost driver ratings. We describe a risk
situation as a combination of two cost drivers at their extreme ratings, and formulate
such combination into a Risk Rule (RR). One example is a project condition whereby
COTS products complexity (APCPX) is very high and the staff’s experience on
COTS products (ACIEP) is low. In such case, cost and/or schedule goals may not be
met, since time will have to be spent understanding COTS, and this extra time may
not have been planned for. Hence, a corresponding Risk Rule is formulated as:

IF ((COTS Product Complexity > Nominal)
AND (Integrator’s Experience on COTS Product < Low))
THEN there is a project risk.

In order to capture and analyze the underlying relation between cost attributes and the
impact of their specific ratings on project risk, several sets of mapping scheme and
weighting scheme have been obtained through 2 rounds of expert Delphi survey. And
finally, the overall project risk is calculated according to a normalized scale from 0-100.
In this way, the COCOTS risk analyzer identifies and assesses risks in conjunction with
COCOTS estimation and further provide mitigation advices to create mitigation plans
based on the relative risk severities. Our preliminary evaluation result shows that it has
done an effective job of estimating the relative risk levels of a sample of COTS-based e-
services applications. Table 1 shows the 15 COCOTS cost drivers that are used to derive
the risk identification and assessment in COCOTS Risk Analyzer.

Table 1. COCOTS Glue Code Submodel Cost Drivers

No. Name Definition

1 Glue Code Size The total amount of COTS glue code developed for the system.

2 AAREN Application Architectural Engineering

3 ACIEP COTS Integrator Experience with Product

4 ACIPC COTS Integrator Personnel Capability

5 AXCIP Integrator Experience with COTS Integration Processes

6 APCON Integrator Personnel Continuity

7 ACPMT COTS Product Maturity

8 ACSEW COTS Supplier Product Extension Willingness

9 APCPX COTS Product Interface Complexity

10 ACPPS COTS Supplier Product Support

11 ACPTD COTS Supplier Provided Training and Documentation

12 ACREL Constraints on Application System/Subsystem Reliability

13 AACPX Application Interface Complexity

14 ACPER Constraints on COTS Technical Performance

15 ASPRT Application System Portability

 Towards an Approach for Security Risk Analysis in CBD 127

As we can see, COCOTS provides 15 cost drivers to capture project characteristics
of general COTS based development, however none of these drivers specifically ad-
dresses security. As security is becoming a more and more important, sometimes even
critical concern in software development nowadays, extending COCOMO/COCOTS
model to include security as a new cost driver is on the top of the Center for Software
Engineering’s (CSE) research task list. The security risk analysis approach that inte-
grates the EAL with the COCOTS Risk Analyzer is a summary of our latest research
progress in this direction.

3 New Security Drivers

As we already discussed before, EAL is well used in many organizations for measur-
ing security assurance levels. During the collaborative development of the COCOMO
security extension model [8], an ongoing research in CSE, there is a consensus among
researchers and industry practitioners that EAL plays as a critical cost factor in the
project development. Similar situation takes place in COTS based development.
Hence in our approach, three new drivers derived from EAL are proposed to specifi-
cally address security properties:

• APEAL (Application Evaluated Assurance Level). This driver represents the
future system’s targeted EAL.

• ACEAL (COTS Evaluated Assurance Level). This driver represents the EAL
for the COTS products that will be integrated for building the future system.

• ACPUF (percentage of COTS’ unused features). This driver represents the
percentage of COTS’ features that are not directly or indirectly used in the in-
tegrated application.

Security risks due to lack of security functional requirements, such as a risk of losing
confidentiality without using encryption on user-application compunctions, are not in
the scope of our list of risk items. Risks related with SFRs are heavily relied on the
system’s environment and threats from outside, hence are unpredictable without the
project-specific information such as domain types. For example, a database manage-
ment system (DBMS) in bank has the risk as loss of account’s integrity. While if a
DBMS is in a military use, the risk becomes loss of information confidentiality in-
stead. The assurance levels of COTS products and application are independent with
those factors, hence security risks related with EALs are able to be generalized re-
garding different types of projects. For instance, risk exists if application targeting on
higher EAL is built on COTS products with lower EALs. The mapping between rat-
ing levels of APEAL/ACEAL with CC EALS is shown in Table 2.

Table 2. Mapping between EALs and APEAL/ACEAL driver ratings

CC Evaluated
Assurance Level

EAL 1,2 EAL 3 EAL 4 EAL 5 EAL 6 EAL 7

Rating Levels Nominal High Very High Extra High Super High Ultra High

128 D. Wu and Y. Yang

The reason for including ACPUF is because it is critical to test these unused fea-
tures of COTS products to make sure that they will not cause any vulnerability into
the future application. Testing them indirectly affects the final system’s assurance
level. Only considering this factor, the more unused features it has, the bigger possi-
bility that risk will be generated, hence the less cost effective it is to use this COTS
product. The descriptions of ACPUF are shown in Table 3.

Table 3. ACPUF Driver Descriptions

ACPUF De-
scriptions

<=15% >15% &&
<=40%

>40% &&
<=65%

>65% &&
<85%

>85%

Rating Levels Very Low Low Nominal High Very High

We use the similar rating level of APEAL/ACEAL as the security driver’s (SECU)
in COCOMO security extension model [8], since they all based on EAL. The rating
level of ACPUF is derived from a mini-Delphi among the authors of this paper. These
rating levels will be used to determine relative risk severity level later. For example,
the risk of integrating two COTS product with ACEAL Nominal and Extra High is
more serious that the risk of integrating two COTS products with ACEAL Very High
and Extra High.

4 Security Risk Analysis

Our previous work [6] already identified 36 risk items when different COTS cost
drivers have extreme driver ratings. However, none of them addressing security risks.
In this paper, we will emphasize on the security risk items that need to be considered
and mitigated during COTS product selection process as well as integration process.
Following our definition in [6], security risks exist if there are conflicts or collisions
between any pair of the 3 security drivers and the other 15 COCOTS cost drivers. The
risk network in Figure 1 shows the initial list of our identified security Risk Rules,
where each line indicating a potential risk condition.

Fig. 1. Security Risk Items Network

COCOTS model groups its 15 cost drivers into three groups: Personnel, COTS
product, and Application. We identify 11 security risk conditions and discuss the
details of them by following the same classification.

ACEAL ACPUFAPEAL

ACREL

AAREN ACIEPACIPC

AXCIP APCON

ACPPS ACPTD

 Towards an Approach for Security Risk Analysis in CBD 129

4.1 Personnel Risks

• APEAL vs ACIEP Lack of experiences in COTS products may cause devel-
opers missing a particular feature that could leave a security hole in the future
application. For example, there is a risk that the claimed broadness of testing is
not satisfied due to this missing part, so that it fails to achieve the targeted
EAL.

• APEAL vs ACIPS Low integrator personnel capability will directly affect the
effectiveness of executing action items defined in SARs in the targeted EAL
package. For example, EAL 6 requires developers to do automated configura-
tion management (CM) using a configuration system (CS). Without some
knowledge of CM and CS, this SAR action item cannot be executed.

• APEAL vs AXCIP Whether there is a formal integration process inside the or-
ganization, how good it is and developers’ experiences with it will directly af-
fect whether developers can achieve the targeted EAL. For example, EAL 5 re-
quires developers to use a standardized life-cycle model for development.

• APEAL vs APCON Highly turnover rate brings security risks in two aspects:
First, left person may intentionally or accidentally divulge the critical informa-
tion of the system, however this kind of risks don’t necessarily affect achiev-
ing the targeted EAL. Second, new coming people are most happen less famil-
iar with the COTS product or application compared with left ones, which may
bring risks as previously discussed ones.

4.2 COTS Product Risks

• APEAL v ACPPS Because of the limited information COTS products pro-
vide, product support is important for achieving high level of EAL. We can
consider vendor of COTS product as one of the stakeholders, and there is a
risk for lack of communication between stakeholders.

• APEAL vs ACPTD If a COTS product with very little documentation is cho-
sen for implementing secure application, there are potential risks because all
EAL requires documentation of user and administrator guidance. Furthermore,
EALs higher than 4 require developers to provide formal/informal specifica-
tion for low-level design of the application, and developers can hardly do it
without enough COTS documentation.

• APEAL vs ACEAL It is a very tricky situation of choosing COTS products
with lower EALs to implement the application with higher EALs. Though it is
theoretically possible, the risks exist in increasing the EAL in COTS part may
cause great effort. And there are risks that it does not practically work because
of COTS products’ black box properties.

• APEAL vs ACPUF Unused features of COTS products may bring vulnerabili-
ties into future application. So besides necessary testing required for a certain
EAL to provide the confidence for security, it takes extra effort to either turn
off these features or wrap them off.

• ACEAL vs ACEAL Integrating COTS products with different EALs may
have risks to lose the confidence of security in COTS product with higher
EAL.

130 D. Wu and Y. Yang

4.3 Application Risks

• APEAL vs ACREL If a failure of application could cause threat to mission
critical requirements even safety critical requirements, the targeted EAL
should be high enough to obviate any potential risk.

• APEAL vs AAREN Application architecture engineering directly affects the
application EAL. All EALs require at least semiformal demonstration of the
correctness of correspondence between architecture and security requirements.
For example, there is a risk if the rating of AAREN is very low, i.e., no archi-
tecture validation is done.

The above 11 security risks provide an initial framework for developers in identifying
and analyzing their project security risks. All that the developers need to do is just to
check their ratings for the 18 cost drivers (3 new security driver plus the 15 COCOTS
driver) to see if there is any pair of them having conflict ratings, i.e. violating the Risk
Rules identified by our method.

4.4 Risk Assessment – Next Steps

To determine the relative risk severity levels and quantify overall project risk, similar
weighting mechanisms as in [6] will be used for a quantitative risk analysis. And the
overall project security risk is calculated using Eq-1.

 Project risk = risklevelij × effort_multiplier_productij Eq.-1

Finally, Table 4 shows some examples of risk mitigation suggestions for different
types of security risks, which is not a full list at this time. We will keep evolving more
detailed suggestions regarding each of the risk items in the future based on further,
broader expert Delphi results and continuous literature review.

Table 4. Risk Mitigation Suggestions

Type of Secu-
rity Risks

Personnel COTS Product Application

Examples of
Risk Mitigation
Suggestions

Training on nec-
essary sets of
knowledge

Use COTS products
with high similarities
as good references.

Establish rationale for
architecture design.

5 Conclusions and Future Work

Beyond the risk items we identified in our previous work for COTS based develop-
ment, we have further identified risk items for COTS based applications with security
concerns. Developers need to consider them during the COTS selection process as
well as the integration process and the COTS product selection decision should be
driven by these security risks. The future work will be doing several rounds of Delphi
to refine these new security drivers and calibrate effort multipliers for them. We will
do the quantitative risk analysis using similar weighting scheme and calculation for-

 Towards an Approach for Security Risk Analysis in CBD 131

mula as we used in [6]. The mitigation approaches for different groups of risks will be
refined to risk item level and stored in a knowledge base. Moreover, we want to auto-
mate our method to save developers more effort.

References

1. Devanbu, P. and Stubblebine, S.: Software Engineering for Security: a Roadmap. In the Fu-
ture of Software Engineering. Special volume of the proceedings of the 22nd International
Conference on Software Engieering – ICSE 2000, June 2000.

2. Kontio, J.: A Case Study in Applying a Systematic Method for COTS Selection, Proceed-
ings of the 18th international conference on Software engineering May 1996, Berlin, Ger-
many.

3. Brownsword, L.; Oberndorf, T.; Sledge, C. A. Developing New Processes for COTS-Based
Systems. IEEE Software, July/August 2000.

4. Lindqvist, U. and Jonsson, E.: A Map of Security Risks Associated with Using COTS. In
Computer, Vol. 31, No. 6, June 1998, pp. 60-66.

5. Common Criteria for Evaluation Criteria for IT Security V2.1. ISO/IEC 15408, National
Institute of Standards and Technology, 1999.

6. Yang, Y., Boehm, B., and Wu, D.: “COCOTS Risk Analyzer”, accepted by ICCBSS 20 06.
Feb. 2006, Orlando, FL, USA.

7. http://niap.nist.gov/cc-scheme/vpl/vpl_type.html
8. Colbert, E., Wu, D., Chen, Y. and Boehm, B.: “Costing Secure Systems”, in 18th Interna-

tional Forum on COCOMO and Software Cost Modeling, Los Angeles, CA,
10/2003.

Q. Wang et al. (Eds.): SPW/ProSim 2006, LNCS 3966, pp. 132 – 141, 2006.
© Springer-Verlag Berlin Heidelberg 2006

COCOMO-U: An Extension of COCOMO II for Cost
Estimation with Uncertainty*

Da Yang 1,2, Yuxiang Wan 1,2, Zinan Tang1,2 , Shujian Wu 1,2, Mei He 1,2,
and Mingshu Li 1,3

1 Laboratory for Internet Software Technologies, Institute of Software, Chinese Academy of
Sciences, Beijing 100080, China

2 Graduate University of Chinese Academy of Sciences, Beijing 100039, China
3 State Key Lab of Computer Science, Institute of Software, Chinese Academy of Sciences,

Beijing 100080, China
{yangda, wanyuxiang, tangzinan, wushujian, hemei,

mingshu}@itechs.iscas.ac.cn

Abstract. It is well documented that the software industry suffers from frequent
cost overruns, and the software cost estimation remains a challenging issue. A
contributing factor is, we believe, the inherent uncertainty of assessment of
cost. Considering the uncertainty with cost drivers and representing the cost as a
distribution of values can help us better understand the uncertainty of cost
estimations and provide decision support for budge setting or cost control. In
this paper, we use Bayesian belief networks to extend the COCOMO II for cost
estimation with uncertainty, and construct the probabilistic cost model
COCOMO-U. This model can be used to deal with the uncertainties of cost
factors and estimate the cost probability distribution. We also demonstrate how
the COCOMO-U is used to provide decision support for software development
budget setting and cost control in a case study.

1 Introduction

Software development cost estimation is important as it is the basis for project
bidding, budgeting and planning. Cost estimation is a practical part of any software
development. Bad cost estimation causes problems while good cost estimation makes
the whole process smoother. It can also be used to guide management, allocation of
resources, modification of original plans, software process improvement, etc. But how
to estimate the cost with high precision is still a largely unsolved problem. In the
report of Standish Group [1], cost overruns averaged to 189% of the original cost
estimate for all the projects in 1994 and remained as high as 45% in 2000. It is also
indicated in a recent review of estimation surveys [6] that there has been little
improvement in software cost estimation accuracy over the last 20 years.

We believe that one reason for this lack of improvement in software cost estimation
is the overlook of inherent uncertainties of cost estimation. To better estimate cost, we

* Supported by the National Natural Science Foundation of China under Grant No. 60573082;

the National High-Tech Research and Development Plan of China under Grant No.
2005AA113140.

 COCOMO-U: An Extension of COCOMO II for Cost Estimation with Uncertainty 133

need to better understand and deal with these uncertainties. For example, Kitchenham
stated in [8] that managers do not understand how to use estimates correctly and
particular they usually do not handle properly the uncertainty and risks inherent in
estimates.

Among the large number of different cost estimation models been proposed over
the last 20+ years, COCOMO II [4] is a well know and widely used one. The
COCOMO II is a deterministic model, which takes deterministic values as input and
estimates the most likely software development effort.

We believe at least two aspects of research can be done to improve the cost
estimation practice:

 To explicitly incorporate the uncertainty information of cost factors into cost
estimation.

 To explicitly assess the uncertainty of cost estimations and provide decision
support for budget setting and cost control.

Given these two motivations, we will extend the COCOMO II for cost estimation
with uncertainty in this paper.

2 Uncertainty in Cost Estimation

In software development, cost estimation uncertainty changes with time. It is
illustrated in [4] that the uncertainty ranges of cost estimations present a decreasing
trend as the software development lifecycle proceeds. Pendharkar [3] stated that
software development is a dynamic process and a manager’s beliefs about cost
estimation are likely to change over the development life cycle. Practitioners also
point out that many cost factors are uncertain at early phase of software life cycle and
the early estimates are extremely inaccurate.

Kitchenham proposed four sources of estimate uncertainty as: measurement error
about input variables, model error, assumption error of input parameters, and scope
error [8]. It has also been proposed by Kitchenham that uncertainty can be better
understood if costs are represented as a distribution of values [5]. Grimstad [11]
proposes a probabilistic view about software development effort, which means that
‘most likely effort’, ‘planned effort’, ‘budgeted effort’, etc., are values (with different
probabilities of being exceeded by actual effort) on an effort probability distribution.
Jørgensen asserts in [9] that reflecting the underlying uncertainty of cost estimation
will improve the budgeting and planning process.

COCOMO II takes the estimated project size and cost driver values as input, and
estimates the amount of effort in person-months for a project by the formula:

 ∏
=

××=
n

i
i

E EMSizeAPM
1

,
=

×+=
5

1

01.0
j

jSFBE (1)

In the above formulas, ‘Size’ is the estimated size of software project measured in
terms of KSLOC, A and B are constants that can be calibrated to existing project data;
SFs are scale factors count for the relative economies or diseconomies of scale
encountered for software projects of different sizes, and EMs are effort multipliers to
adjust the PM. The COCOMO II has the Early Design and the Post-Architecture

134 D. Yang et al.

models, and the Early Design cost drivers are obtained by combining the Post-
Architecture model cost drivers. The project size and other 22 cost factors are vital for
COCOMO II cost estimation.

COCOMO II only takes deterministic values as input and thus can not explicitly
assess the estimation uncertainty caused by the uncertainty of cost factors. Though
COCOMO II also provides an uncertainty range of the estimation result besides the
point forecast of the most likely effort, the uncertainty range is a static value
determined by the phases and milestones at which the estimation is made, and it can
not reflect the cause of uncertainty or the character of a certain project well.

BBN (Bayesian Belief Network) was introduced in [2] as a way of modeling
uncertainty and causal relationships. The input of the BBN can be probabilistic
values, and the output is a joint probability distribution and not a point forecast. A
decision-maker can use the joint probability distribution information to estimate the
probability or risk for that a budget will be overrun. Further, BBN provides a
capability of updating the probability distribution.

As BBN is powerful at representing and modeling uncertainty, in this paper, we
will use BBN to extend the COCOMO II for dealing with uncertainty.

The extension of COCOMO II named COCOMO-U can explicitly representing the
uncertainty of cost factors and estimate the effort distribution. It proposes a three
dimensional view of cost estimation: the first dimension of cost values, the second
dimension of probability to reflect the uncertainty ranges of cost estimations, and the
third dimension of time to reflect the dynamic changes of cost estimations during
software life cycle. COCOMO-U can be used to model the uncertainties of cost
estimation, continuously estimate the cost probability distributions when new
information is available, and provide decision support for budget setting and cost
control.

3 The COCOMO-U Cost Estimation Model

The extended COCOMO
II named COCOMO-U is
composed of three parts:
the probabilistic inputs for
measuring the uncertainty
of cost factors, the BBN
derived from COCOMO II
Formula (1) for making
estimation, and the prob-
abilistic output for deci-
sion support.

As Fig. 1 illustrates, the
COCOMO II takes deter-
ministic values of project
size and other 22 cost factors as input, and uses Formula (1) to make a point forecast
of effort. The extended COCOMO II will take probability distributions of the same

Fig. 1. COCOMO II and its Extension

 COCOMO-U: An Extension of COCOMO II for Cost Estimation with Uncertainty 135

cost factors as input, and use BBN derived from Formula (1) to estimate the effort
probability distribution. From the estimated effort, we can calculate the cost of
software development.

3.1 The COCOMO-U Input

The COCOMO-U takes the probability distributions of the estimated project size and
other 22 cost factors as input.

In COCOMO II, the project size is an estimated value and there will be uncertainty
to some extent in this estimation, but the model can’t represent this uncertainty.

 In our extension of COCOMO II, to represent the uncertainties or the confidence
of the estimator with the project size estimation, we assume that the probability
distribution of the log transformed size estimation (ls) is Normal 1 (Gaussian) (
ls~),(2δμN). The μ stands for the most likely value of ls, and δ reflects the

uncertainty of ls or the confidence of the size estimator.
As we assume that ls is Normal (Gaussian) distribution, given the estimated most

likely project size and the estimators confidence, we can easily calculate the values of
μ and δ . For example, an estimator makes an estimation of a project size as mls

with 90% confidence that the real project size will within the interval [mls-
deviate% × mls, mls+deviate% × mls]. When the size is log transformed, we transform
this confidence interval into a balanced one for simplicity as: [ln(mls)-
(ln(1+deviate%) - ln(1-deviate%))/2, ln(mls) + (ln(1+deviate%) - ln(1-deviate%))/2].
According to the property of Normal distribution (if x~),(2δμN then p{ μ -

1.65δ ≤ x ≤ μ +1.65δ } 0.9), we can easily calculate the value of μ and δ by

the following formula:

)ln(mls=μ 606.00.5deviate%))-ln(1deviate%)(ln(1 ××−+=δ (2)

The COCOMO-U includes the 5 scale factors and the 17 effort multipliers defined
in COCOMO II. Each of these factors has four to six ranks. In COCOMO-U, the
values of these factors are also input as probability distributions to represent the
uncertainty.

3.2 The COCOMO-U BBN-Based Cost Estimation Engine

The BBN-based cost estimation engine is derived form COCOMO II Formula (1) for
estimating effort probability distribution from the input. The colored leaf nodes are
the estimated project size, 5 scale factors, and 17 effort multipliers (further
explanation of these cost factors can be found in [4]). They are all fed into to the BBN
as probability distributions. To distinguish from the deterministic input in COCOMO
II, we use the superscript “’” to denote these cost factors of COCOMO-U.

1 Though a skewed distribution such as Gamma distribution may be more general to represent

the probability distribution of size and effort estimations, in this paper we only use the
symmetrical Normal distribution to model the uncertainties with software size and effort
estimations, as it is simple and easier to understand, calculate, and make inference.

136 D. Yang et al.

Fig. 2. Graph structure of the BBN-based Cost Estimation Engine

To limit the size of the NPTs for easily constructing it, we define each node to
have no more than four parent nodes in the BBN. The graph structure of the BBN is
illustrated in Fig 2:

The NPTs of the internal and output nodes are automatically calculated following
the expressions in Table 1, which are derived from the COCOMO II Formula (1).

Table 1. Expressions for NPT construction

Nodes in BBN Expressions for NPT construction
EFFORT’ MSIZE + SCALE
MSIZE A + SIZE’ × RISK
RISK B + CTRL + INCTRL
CTRL 0.01 × (TEAM’ + PMAT’ + RESL’)
INCTRL 0.01 × (FLEX’ + PREC’)
SCALE (TECHNOLOGY × PROCESS × HUMAN)
TECHNOLOGY PRODUCT × TOOL’ × PLATFORM
PRODUCT RELY’ × DATA’ × CPLX’ × RUSE’
PLATFORM TIME’ × STOR’ × PVOL’
PROCESS SITE’ × DOCU’ × SCED’
HUMAN CAPABILITY × PCON’ × EXPERIENCE
CAPABILITY ACAP’ × PCAP’
EXPERIENCE APEX’ × LTEX’ × PLEX

3.3 The COCOMO-U Output

The output of COCOMO-U is the probability distribution of software development
effort and not the most likely effort like what COCOMO II produces. We use le to
stand for the log transformed effort estimation. As le will be the linear transformation
of ls according to Formula (1), we assume that le is also Normal distribution
(le~),(2

11 δμN).

 The software development effort probability distributions can provide decision
support for budget setting. Given the estimated software development effort
le~),(2

11 δμN and the probability p% with which project is required to be within a

budget (bgt), as)1,0(~/)(11 Nle δμ− we can look up the statistical table [8] of

 COCOMO-U: An Extension of COCOMO II for Cost Estimation with Uncertainty 137

standard normal distribution and get the interval []upbound,∞− corresponding to

possibility p%. Then we can decide a budget bgt according to the following formula:

If p{cost within budget} = p% = p{ upboundle ×+≤ 11 δμ } , then

upboundbgt ×+≥
11

δμ

(3)

The software development effort probability distributions can also be used for cost
control. Once a budget has been set, we can calculate the possibility of cost overrun
and check if the project is under cost control.

4 Case Study

In this section, we present a web-based application development using COCOMO-U
for effort estimation. The developing team made two estimations of the project effort,
one after the requirement analysis and the other after a requirement change during the
development. We will demonstrate the use of COCOMO-U and compare it with
COCOMO II.

4.1 Project Description

The customer of this software development project is a journal office. In the late
2001, the office began to use a web-based online system, which includes functions
like online query, online paper transaction, etc. In late 2004, it decided to add new
functions such as online reviewing of drafts by readers, automatic reminding of drafts
reviewing, selecting readers by using keywords, etc. The selected project is well
documented, and the team members are all interviewed to complete a retrospective
case study.

4.2 The First Estimation for Budget Setting

When the team members began to gather information for estimating cost at the early
phase of the project lifecycle, they found that some cost factors like RUSE, CPLX,
RESL and SCED could not be determined by that time. For example, it was not
decided if the codes in this system were to be reused in other journal web service
systems, which made RUSE hard to determine. The project size estimation was also a
great source of uncertainty. Considering the uncertainties of these cost factors, it
seemed rather reasonable to use COCOMO-U to deal with the uncertainties and
estimate the cost probability distribution.

Through group discussion, the team made an approximate estimation of the
software size as 39ksloc, with 90% confidence that the fluctuation of this value would
be under 30%. According to Formula (2), the estimated software size can be fed into
COCOMO-U as Gaussian distribution)1876.0,6636.3(2N .

With these probabilistic inputs, the COCOMO-U then generated the logarithm
effort probability distribution as shown in Fig. 3. With this result, the project team
could set a budget (bgt) to ensure that with 80% probability the budget won’t be
exceeded.

138 D. Yang et al.

Fig. 3. EFFORT Estimations

According to Formula (3), the bgt appeared to be upboundbgt ×+≥ 11 δμ

345.485.0388.0015.4 =×+= , and the budget effort was exp(4.345)=77.1 person
months.

4.3 The Second Estimation for Cost Control

After a period of time, when developers submitted the prototype of the system, the
customer raised new functional requirements. Based on the knowledge gained from
the former development, developers gave a new estimated software size as 43ksloc,
with 90% confidence that the fluctuation of this value would be under 10%.
According to Formula (3), the size can be fed into COCOMO-U as N(3.7612,
0.06082). Meanwhile, the former uncertain cost factors became deterministic this time
(SCED=N, RESL=N, CPLX=N, RUSE=VH).

The COCOMO-U then estimated the effort probability distribution as N(4.051,
0.3242) which is shown in Fig. 3. As the budget was set to 4.345, we calculated out
the risk of cost overrun to be 18%. This value was high enough to force the team to
make some changes for the project. In fact, the developers took several measures to
catch up with the schedule and make sure the project would be delivered on time,
such as cutting some less vital functions, and working overtime.

4.4 Comparison of COCOMO-U with COCOMO II

For further explanation of our extension to COCOMO II, we made a comparison of
the input parameters and the estimated results of COCOMO-U and COCOMO II.
There are two main differences between the two estimation models.

1. When the cost drivers can not be determined accurately, COCOMO II adopts a
deterministic rating value with an offset calculated by linear interpolation, while
COCOMO-U adopts a probability distribution. Further more, COCOMO-U contains
the uncertainty information of the estimated software size as input. (shown in Table 2)

2. COCOMO II produces the most likely value of project effort, while COCOMO-
U yields the probability distribution of the estimated effort. As shown in Fig. 4,

 COCOMO-U: An Extension of COCOMO II for Cost Estimation with Uncertainty 139

COCOMO-U extends the COCOMO II to represent uncertainty information in the
Probability Dimension.

The probability distribution measurably describes the risk of cost overruns and can
help to set budget and control cost, which we have discussed in section 4.2 and 4.3.
As shown in Fig. 4, the budget is a plane in the COCOMO-U view and the probability
of cost overruns at a certain time is the areas of the cost probability distributions at the
right side of the budget plane.

Fig. 4. Cost Estimations in the Three Dimension COCOMO-U View

Table 2. Input parameters comparison of COCOMO II with COCOMO-U

(a) The first estimation

Variable COCOMO-U COCOMO II Variable COCOMO-U COCOMO II
PREC 100%H 2.48 PVOL 100%N 1.00
FLEX 100%H 2.03 ACAP 100%H 0.85
RESL 50%N, 50%H 3.54 PCAP 100%H 0.88
TEAM 100%VH 1.10 PCON 100%VH 0.81
PMAT 100%H 3.12 APEX 100%H 0.88
RELY 100%N 1.00 PLEX 100%H 0.91
DATA 100%N 1.00 LTEX 100%H 0.91
CPLX 40%L, 60%N 0.95 TOOL 100%H 0.90
RUSE 20%N, 50%H, 30%VH 1.08 SITE 100%N 1.00
DOCU 100%L 0.91 SCED 50%L, 50%N 1.07
TIME 100%N 1.00 SIZE N(3.6636,0.18762) 39
STOR 100%N 1.00

(b) The second estimation (values same as that in (a) are omitted)

Variable COCOMO-U COCOMO II Variable COCOMO-U COCOMO II
RESL 100%N 4.24 RUSE 100%VH 1.15
CPLX 100%N 1.00 SCED 100%N 1.00
SIZE N(3.7612, 0.06082) 43

140 D. Yang et al.

5 Discussion and Conclusion

Although there are already many published or proprietary models available for cost
estimation, the practice of software cost estimation still has much to be improved. The
uncertainty of cost factors and the cost estimation deserves further research.

In this paper we use Bayesian Belief Network to extend the COCOMO II for cost
estimation with uncertainty and construct the model COCOMO-U. We illustrate it in
the case study that COCOMO-U extends COCOMO II by: 1) explicitly taking the
probability distributions of cost factors as input for cost estimation, and 2)
representing uncertainty information in the Probability Dimension and generating the
cost probability distribution output. The COCOMO-U has been proved useful in
helping us better understanding the uncertainty of cost estimations, and its effort
probability distribution output can be used for budget determination, risk recognition,
and cost control.

Our study also contributes to improve BBN cost estimation models in which we
provide answers to the two questions: 1) how to construct a reliable BBN structure
when taking into account the many critical cost drivers, and 2) how to determine the
NPTs when increasing the node states to improve the outcome’s precision.

As the BBN uses discrete node states to represent continuous variables, some loss
of accuracy may occur when the number of node states is too small. Such error can be
controlled and minimized by increasing the node states and adjusting the BBN
structure.

Our model relies on the expertise of its users in terms of their ability to specify the
uncertainty of the cost drivers. The influence of the cost drivers’ uncertainty to the
cost estimation result will depend on both the uncertainty range and the sensitivity of
COCOMO II.

In our case study, the uncertainty information of cost drivers is assessed during
group discussions among the team members before using COCOMO-U. As it has
been reported that there is systematic bias in human judgment toward underestimation
of the uncertainty of software projects [12], a more structured process [8] can be used
when obtaining probability distributions from practitioners.

The research [13] on the sensitivity of COCOMO II indicates that the most critical
input variable is size S, closely followed by effort multipliers EMi, and the impact of
error in determining exponent scale factors Wi is relatively small. As the COCOMO II
is sensitive to Size and effort multipliers, adequate time and resources should be
devoted to their accurate assessment. The scale factors are much less important and
could be neglected (set to their nominal values) if necessary.

As discussed in section 2, for practitioners to handle properly the uncertainty and
risks inherent in cost estimation, a cost estimation model can be evaluated with
respect to the criteria: 1)explicitly take into account various kinds of uncertainty
sources, e.g., uncertainty of input variables, model error, assumption error of input
parameters, and scope error, 2)predict the uncertainty of the estimation result, and
3)represent the uncertainty information with the estimation results. COCOMO-U has
made an initial progress towards the above goal, and it can be improved by
incorporating and analyzing other uncertainty sources than uncertainty of input
variables.

 COCOMO-U: An Extension of COCOMO II for Cost Estimation with Uncertainty 141

The COCOMO-U can be easily adapted to incorporate new information gained in
the research on the cost estimation uncertainty. It can be further improved in several
ways. For example, the uncertainty of project size and estimated cost can be
represented with a more general probability distribution, like Gamma distribution, to
reflect more features of the uncertainties. Other research results [10] about reasons for
software effort estimation errors can also be included into COCOMO-U to
accommodate the uncertainty of cost estimation.

Reference

1. Standish Group, Technical Report (2000), www.standishgroup.com/sample_research/
PDFpages/extreme_chaos.pdf

2. Pearl J., Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference,
Morgan Kaufmann Publishers, San Mateo, CA, (1988)

3. Pendharkar P.C., Subramanian G.H., Rodger J.A., A probabilistic Model for Predicting
Software Development Effort, IEEE Transactions on Software Engineering, Vol. 31(7)
(2005)

4. Barry W. Boehm, et al. Software Cost Estimation with COCOMO II, Prentice Hall (2000)
5. Kitchenham B., Pickard L.M., Linkman S., Jones P.W. Modeling Software Bidding Risks,

IEEE Transactions on Software Engineering, Vol. 29(6) (2003)
6. Moløkken-Østvold K., Jørgensen M., A review of software surveys on software effort

estimation, Proceedings of International Symposium on Empirical Software Engineering
(2003) 223-230

7. Greene W.H., Econometric Analysis, Prentice Hall (2000)
8. Kitchenham B., Linkman S., Estimates, Uncertainty, and Risk, IEEE Software, May(1997)
9. Jørgensen M., Evidence-Based Guidelines for Assessment of Software Development Cost

Uncertainty, IEEE Transactions on Software Engineering, Vol. 31(11) (2005)
10. Lederer A.L., Prasad J., A Causal Model for Software Cost Estimating Error, IEEE

Transactions on Software Engineering, Vol. 24(2) (1998)
11. Grimstad S., Jørgensen M. and Kjetil Moløkken-Østvold, Software effort estimation

terminology: The tower of Babel , Information and Software Technology, In Press,
accepted 19 April 2005

12. Jørgensen, M., Teigen, K. H., et al., Better Sure than Safe? Overconfidence in Judgment
Based Software Development Effort Prediction Intervals, Journal of Systems and
Software, Vol. 70, no. 1-2, Feb. (2004)

13. Musílek P., Pedrycz W., Sun N., Succi G., On the Sensitivity of COCOMO II Software
Cost Estimation Model, IEEE Symposium on Software Metrics (2002)

Q. Wang et al. (Eds.): SPW/ProSim 2006, LNCS 3966, pp. 142 – 149, 2006.
© Springer-Verlag Berlin Heidelberg 2006

A Product Line Enhanced Unified Process

Weishan Zhang1 and Thomas Kunz2

1 School of Software Engineering, Tongji University,
No. 4800 Cao’an Highway, Shanghai, 201804, China

zhangws@mail.tongji.edu.cn
2 Department of Systems and Computer Engineering, Carleton University,

1125 Colonel By Drive, Ottawa, Canada K1S 5B6
tkunz@sce.carleton.ca

Abstract. The Unified Process facilitates reuse for a single system, but falls
short handling multiple similar products. In this paper we present an enhanced
Unified Process, called UPEPL, integrating the product line technology in order
to alleviate this problem. In UPEPL, the product line related activities are added
and could be conducted side by side with other classical UP activities. In this
way both the advantages of Unified Process and software product lines could
co-exist in UPEPL. We show how to use UPEPL with an industrial mobile de-
vice product line in our case study.

1 Introduction

The Unified Process (UP) or Rational Unified Process (RUP) [6] is one of the most
popular and complete process models that have been used by developers in recent
years. The main characteristics of UP are:

1. Using iterative and incremental development that has a lifecycle consisting of
several iterations;

2. Centering around software architecture, which is the highest-level concept of a
system in its environment;

3. Embracing change by considering feedbacks from stakeholders and then make
corresponding adaptations.

This architecture-centric approach is facilitating reuse for a single system develop-
ment. Although it is claimed in RUP that “it also allows reuse on a larger scale: the
reuse of the architecture itself in the context of a line of products that addresses dif-
ferent functionality in a common domain”, in reality, it is very difficult to achieve this
goal without the related supporting technology. There are no mechanisms in RUP to
handle the technical issues for a software product line [1], for example variability
management.

The current object-oriented technology and component-based development (e.g.,
with .NET™ or J2EE™), recommended in the RUP practice, provide many useful
reuse mechanisms, but in many instances fail to achieve the desired reusability and
maintainability. The main reasons come from the intrinsic problems of current pro-
gramming languages and development methodologies [11].

 A Product Line Enhanced Unified Process 143

In this paper, we present an enhanced Unified Process called UPEPL (Unified Proc-
ess Enhanced with Product Line) that incorporates the product line technologies im-
plemented with XVCL (XML based Variant Configuration Language) [11]. The archi-
tecture of the underlying system(s) is implemented as a hierarchy of meta-components,
which is called an x-framework in XVCL jargon. UPEPL was demonstrated with an
industrial mobile device project in which we achieved good reusability, development
and maintenance gains.

The rest of the paper is structured as follows: Section 2 presents the UPEPL proc-
ess in which product line related activities are added and could be conducted side by
side with other classical UP activities; then we demonstrate this process with the crea-
tion of a mobile game product line. In Section 4, we discuss our case study using the
UPEPL process. The related work and concluding remarks end the paper.

2 Unified Process Enhanced with Product Line Technology

In UPEPL, the integration of the product line into the Unified Process may start from
the end of the first iteration, or after the release of some products in the product fam-
ily just like the typical process of product line engineering. Here we show the related
activities in UPEPL starting from the early start of the inception phase.

There are four phases in the Unified Process, namely Inception, Elaboration, Con-
struction, and Transition. The inception phase ‘focused on ensuring that the project is
both worth doing and possible to do’, including the business case and the scope of the
system. In the elaboration phase, the architecture is created and validated, which lays the
foundation for the following activities. The construction phase focuses on the develop-
ment of the system according to the baselined architecture. The product is delivered to
the end user in the transition phase. As the transition phase is relatively simple, we will
elaborate other three phases that incorporate product line related activities.

The activities shown in the following figures will follow the style defined in UP,
with slight modifications where necessary, and activities and artifacts related to prod-
uct line are shown with italic fonts. To make the figures clear and concise, the sup-
porting activities, for example the change control, are not shown.

2.1 Inception

As shown in Fig. 1, besides the activities in a normal UP, the inception phase in UPEPL
involves additional activities for product line visioning, for example, product line scop-
ing to explore the degree of the commonality and variability, and conducting the initial
domain analysis, in order to decide whether the product line is feasible or not.

The main artifacts produced in the inception phase are outlined software require-
ments, proof-of-concept software architecture, and initial domain feature model.
Software requirements are organized in a use-case specification document, and a
supplementary requirement document. As the non-functional requirements may ap-
pear both in the use-case specification and the supplementary requirements, and
there are many similarities for a use case in different product line members, we are
using the requirement x-framework to remove the redundancies as proposed in [8,9].
This will keep different documents in consistency.

144 W. Zhang and T. Kunz

Fig. 1. Activities in inception phase

2.2 Elaboration

In the elaboration phase (Fig. 2), additional activities in UPEPL are related to the
feature model refinement, product line architecture development, etc. The proof-of-
concept architecture is refined to satisfy the requirements of the first product line
member, and this serves as the foundation to develop the first-cut product line archi-
tecture (PLA).

More variants and commonalities could be identified during the process of the do-
main analysis in elaboration phase. This leads to the refinement of the product line
requirement (represented as an x-framework), feature model, and product line archi-
tecture. The incorporation of the variants into various assets was discussed in previous
work [4, 5].

Fig. 2. Activities in elaboration phase

Meta-components for all kinds of assets (including requirements, models and code)
are developed incrementally. The first set of meta-components may stem from a typical
system and only address its own variants. As the developments proceeds, more variants

 A Product Line Enhanced Unified Process 145

will be added to make the meta-components more adaptable. And also the related meta-
architecture becomes more evolvable as more domain variants are resolved.

Meta-components are used to generate specific components according to the speci-
fication for a product line member. Therefore an additional ‘generate’ process is
added before the ‘build’ starts. The build activity may not be required if the generat-
ing process is not for code components, but for requirements, models and other
documentary assets.

2.3 Construction

More meta-components are developed in the construction phase. After the product
line is ready, the development of a new product line member may involve the selec-
tion of the meta-components from the meta-component repository. The selection
process starts from the examination of the feature model in order to select the appro-
priate variants, and then adapting them by writing specification meta-components and
modify related meta-components where necessary.

Unit testing and integration testing are also performed in this phase. The product is
evaluated against the acceptance criteria in order to make a smooth transition to the
end user. Activities in the construction phase are shown in Fig. 3.

Fig. 3. Activities in construction phase

3 Case Study with a Mobile RPG Product Line

Mobile gaming is becoming increasingly popular. With a Role-Playing Game (RPG),
the players take the roles of fictional characters and participate in the interactive story.
The player’s decision-making drives the story forward and the outcome varies de-
pending on the players’ actions.

For starting we will consider the Climb game (Figure 4) where the hero jumps up
and down the floor (a bar in the following screen), in order to avoid falling down to
the bottom of the mountain. Time elapsed and remaining is displayed with a thin bar
on the top of screen.

146 W. Zhang and T. Kunz

Fig. 4. Climb game screen shot Fig. 5. Common concepts in mobile RPG domain

3.1 Inception

First we will consider four RPGs including Climb we just introduced; Kongfu where
a young man learns kongfu skills from his ‘master’; Feeding where the hero tries to
pick up as much food as possible; In Hunt, the hero shoots animals and monsters with
arrows. All games are implemented with MIDP2.0 in J2ME platform.

When we look at all these RPGs, we do find some commonalities and variabilities
among them. For the commonalities, we can find that there are always heroes in the
game scenario, scores are increased or decreased, etc. It is very natural to consider
these RPGs as a game product line. A mobile RPG product line should bring prom-
ised advantages over the classical development.

The initial examination into the code verified this as there are many similar code
patterns inside the games. We analyzed this with our own code clone searching tool
called JCloneMiner.

To save space, we do not show the initial feature diagram and other related docu-
ments here.

3.2 Elaboration

In the first iteration of the elaboration phase, we further analyzed the mobile RPG
domain. The common concepts (implementation with MIDP) are illustrated with a
UML class diagram (Fig. 5).

Fig. 6. Feature model for the mobile RPG product line

 A Product Line Enhanced Unified Process 147

Climb.spc

Hero

ClimbScreen

Adapt

Legend

TimeManagerImport BackGround

Meta-component

MIDlet

CommonAction

Canvas

Floor

KongfuTemplate

Hero

KongfuScreen

Adapt
Legend

TimeManagerImport

Meta-component

MIDlet

CommonAction

ClimbTemplate

ClimbScreen

BackGround

Canvas

Floor

HuntScreen

HuntTemplate

QuarryArrow

FeedingScreen

FeedingTemplate

RPG.spc

 Fig. 7. the first-cut RPG PLA Fig. 8. the final RPG PLA

The feature model is shown in Figure 6. Please note that the feature model may be
refined as the iteration goes.

The first-cut RPG product line architecture (RPG PLA) was created by identifying
and developing meta-components starting from the Climb game, as shown in Figure 7.

In the second iteration, more meta-components were developed. The first-cut PLA
was refined to incorporate more domain commonalities and variants. During the crea-
tion of the meta-components and the refinement of the PLA, some of the optimiza-
tions were found and incorporated in the related meta-components, which will benefit
all components generated from these meta-components. This was discussed in more
detail in [10]. The final PLA is shown in Figure 8.

3.3 Construction

Since we have created the mobile RPG product line architecture, we can reuse it in the
construction phase to develop a product line member. For example, assume we want to
develop a game called Dig gem (Figure 9). The hero digs around the map to look for
various kinds of gems. Different scores for different gems will be added to the total
shown on the top. There may be traps and bombs which will consume the energy of the
hero. Time elapsed and remaining is displayed with a bar on the top of screen.

Some of the meta-components, such as Hero, TimeManager, etc. could be reused.
But other components, for example Cloud, PopUpMenu must be developed and added
to the meta-component repository for future reuse.

Fig. 9. screen shot of the Gig gem game

148 W. Zhang and T. Kunz

4 Discussion of the Case Study

We first use the typical Unified Process (which is also part of UPEPL) to develop the
four games, then we apply the UPEPL to incrementally build the mobile RPG product
line. This process is summarized in the following table. The reduced lines-of-code
(LOC) count is shown.

Table 1. The process of applying UPEPL to build the RPG product line

Original
LOC

Meta-components
LOC

Reduced
LOC

Reduced
Percentage

climb 941
feeding 463
subtotal 1404 1154 250 17.8%
kongfu 720
subtotal 2124 1579 545 25.7%
hunt 1286
Total 3410 2547 863 25.3%

From the above table we can see that for a new product line member that is very
similar to some of the existing members, the development efforts may decrease steadily.
But for a member who has more differences, the reuse ratio may decrease a bit. In the
case of the Kongfu game, as there are two heroes with different roles, the Hero meta-
component was adapted two times in order to generate specific code components for the
two heroes respectively. Therefore the reduced code percentage increases greatly.

In this process, the design and implementation of the mobile games could be uni-
fied, which is very important for software design and maintenance. The configurabil-
ity from XVCL will make the changes to the related components in a consistent way.

6 Related Work

Gomaa presented PLUS method in his work [2]. PLUS is a design method for soft-
ware product lines that describes how to conduct requirements modeling, analysis
modeling, and design modeling for software product lines in UML. He also discussed
the integration of PLUS with Unified Process. In essence, his method uses the same
methodology as UPEPL. In UPEPL, we use a specific product line technology im-
plemented with XVCL.

Massoni proposed RUPim [7] in order to support progressive and separate imple-
mentation of persistence, distribution, and concurrence control. This will reduce the
impact of requirement changes, and simplify testing and debugging. UPEPL is aimed
to improve the reusability and productivity hence, to inject the strong points of prod-
uct line technology into the traditional UP.

Other extensions include RUPSec [3] dedicated to security system, where threats
and security requirements can be captured and modeled by adding new Roles, Activi-
ties and Artifacts. If needed, such extensions could be added to UPEPL too to address
specific application domain issues.

 A Product Line Enhanced Unified Process 149

6 Conclusions and Future Work

We have proposed a product line enhanced Unified Process called UPEPL. The typi-
cal activities in the Unified Process could proceed side by side with product line re-
lated activities. UPEPL is demonstrated with a mobile RPG product line, in which
four games were considered to build the RPG PLA. It shows that UPEPL is an effi-
cient approach where both the advantages of Unified Process and software product
lines can co-exist.

In the future, further applications of UPEPL will be conducted with other domains,
such as the CRM systems. We are also considering developing an integrated develop-
ment workbench, in which meta-component mining, smarting editing and debugging
are all included. The UML modeling part are to use Rational Rose, where a plug-in
should be developed to link them together.

Acknowledgements

This research is sponsored by “Excellent Young Teacher Funds of Tongji Univer-
sity”. Thanks to Liu Wei and other participating develops from Meitong Co. Ltd.

References

1. Clements, P. & Northrop, L. “Software Product Lines: Practices and Patterns”. Addison-
Wesley, 2001.

2. Gomaa, Hassan.Designing Software Product Lines with UML: From Use Cases to Pattern-
Based Software Architectures. Addison Wesley, 2004

3. Jaferian, P. Elahi, G., Reza, M., Shirazi, A., Sadeghian, B. RUPSec: Extending Business
Modeling and Requirements Disciplines of RUP for Developing Secure Systems. Proc. of
EUROMICRO-SEAA’05. Porto, Portugal, Aug. 2005

4. Jarzabek, S., Zhang, H.: XML-Based Method and Tool for Handling Variant Require-
ments in Domain Models. RE 2001: 166-173

5. Jarzabek, S., Wai Chun Ong and Zhang, H. Handling Variant Requirements in Domain
Modeling. SEKE 2001: 61-68

6. Kruchten, Philippe. The Rational Unified Process, An Introduction, Second Edition. Addi-
son Wesley Longman, 2000

7. Massoni, TL. A RUP-Based Software Process Supporting Progressive Implementation, in
book ’UML and the Unified Process’, Idea Group Publishing, 2003

8. Zhang W., et al. Software evolution with XVCL. A chapter for the book “Software Evolu-
tion with UML and XML” Idea Group Publishing, Dec. 2004

9. Zhang W. Architecturally Reconfigurable Development of Mobile Games. Proc. of the
ICESS2005, Xi’an, China, IEEE CS, December 2005, pp 66-72

10. Zhang, W., Jarzabek, S. Reuse without Compromising Performance. Proc. of SPLC2005,
Rennes, France, September 2005, Springer LNCS3714, pp. 57-69

11. XVCL homepage. http://fxvcl.sourceforge.net

Q. Wang et al. (Eds.): SPW/ProSim 2006, LNCS 3966, pp. 150 – 158, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Automatic Fault Tree Derivation from Little-JIL
Process Definitions

Bin Chen, George S. Avrunin, Lori A. Clarke, and Leon J. Osterweil

Department of Computer Science, University of Massachusetts,
Amherst, MA 01003, USA

{chenbin, avrunin, clarke, ljo}@cs.umass.edu

Abstract. Defects in safety critical processes can lead to accidents that result in
harm to people or damage to property. Therefore, it is important to find ways to
detect and remove defects from such processes. Earlier work has shown that
Fault Tree Analysis (FTA) [3] can be effective in detecting safety critical proc-
ess defects. Unfortunately, it is difficult to build a comprehensive set of Fault
Trees for a complex process, especially if this process is not completely well-
defined. The Little-JIL process definition language has been shown to be effec-
tive for defining complex processes clearly and precisely at whatever level of
granularity is desired [1]. In this work, we present an algorithm for generating
Fault Trees from Little-JIL process definitions. We demonstrate the value of
this work by showing how FTA can identify safety defects in the process from
which the Fault Trees were automatically derived.

1 Introduction

A hazard in a safety critical system is “a state or set of conditions of the system that,
together with certain other conditions in the environment, will lead inevitably to an
accident” [2]. One fundamental requirement of developing a safety critical system,
therefore, is to prevent or control the potential hazards. This requires an understand-
ing of what hazards could occur in the system and how they could happen. A variety
of hazard analysis techniques have been developed to identify potential hazards, as-
sess their effect, and identify and evaluate the causal factors related to the hazards [2].

Fault Tree Analysis (FTA) [3] is a hazard analysis technique used to systematically
identify and evaluate all possible causes of a given hazard. It has been well accepted
and applied in many industries such as the nuclear industry [3] and the aerospace in-
dustry [4] etc. Given a potential hazard in a system, FTA deductively identifies events
(component failures, human errors, etc.) in the system that could lead to the hazard
and produces a fault tree, which provides a graphical depiction of all possible parallel
and sequential combinations of those events. Once a fault tree has been derived, quali-
tative and quantitative analysis can be applied to provide information, such as specific
sequences and sets of events that are sufficient to cause a hazard and overall system
vulnerability to a hazardous outcome resulting from the occurrence of a particular
event. This information can then be used as guidance for improvement of the design
or implementation of the system.

 Automatic Fault Tree Derivation from Little-JIL Process Definitions 151

Many processes such as medical processes are also safety critical. In this paper, we
discuss how FTA can help to identify the weaknesses in processes and provide guid-
ance on how to improve processes to reduce their vulnerability to hazards. Since
manual fault tree derivation is time-consuming and error-prone, we propose an algo-
rithm that automatically derives fault trees from processes specified using the Little-
JIL process definition language [5].

The rest of this paper is organized as follows. Section 2 provides background on
the Little-JIL process definition language. Section 3 gives a brief description of FTA
and uses a simple process to demonstrate how FTA can facilitate process improve-
ment. Section 4 presents our automatic fault tree derivation algorithm. The final sec-
tion presents conclusions and suggests future work.

2 Little-JIL Process Definition Language

Little-JIL is a visual language for coordinating tasks that are to be executed by either
computation or human agents. A process is defined in Little-JIL using hierarchically
decomposed steps, where a step represents some specified task to be done by the as-
signed agent. We first give a brief overview of the semantics and notation of Little-
JIL. For a detailed description of Little-JIL, see the Little-JIL Language Report [5].

Fig. 1. Little-JIL step icon

Steps: Steps are the basic elements of Little-JIL processes. As shown in Fig. 1, each
step has a name and a set of badges to represent the control flow, the interface, excep-
tions handled, etc. A step having no substeps is called a leaf step, and represents an
activity that is to be performed by an agent, without any guidance or control from the
process itself.

Step Sequencing: Every non-leaf step has a sequencing badge, which defines the order
in which its substeps execute. For example, a sequential step indicates that its substeps
are to be executed sequentially from left to right and is only completed after all of its
substeps have completed. A parallel step indicates that its substeps can be executed in
any (possibly arbitrarily interleaved) order. It, too, is only completed after all of its sub-
steps have completed. A try step also indicates that its substeps are to be executed from
left to right and it is completed as soon as one of its substeps is completed. A choice
step indicates that any one of its substeps can be selected in order to complete the step.

Artifacts and Artifact Flows: Artifacts are entities that are used or produced by
processes. Parameter declarations in the interface to a step specify artifacts read by
the step as IN parameters and artifacts produced by the step as OUT parameters. Re-
sources are special kinds of artifacts for which there is contention for access. They are
managed by an external resource manager and their acquisitions need to be explicitly

152 B. Chen et al.

specified in step interfaces. After being acquired, resources can be passed as parame-
ters like the other artifacts.

Exception Handling: A step in Little-JIL can throw exceptions when there are as-
pects of the step’s execution that fail. A thrown exception is handled by a matching
exception handler associated with the parent step of the step that throws the excep-
tion. An exception handler has an associated control-flow badge that indicates how
the step catching the exception executes after the handler finishes. For example, the
continue badge indicates that the step catching the exception should continue as if the
substep that throws the exception completed successfully.

Fig. 2. Simple Blood Transfusion Process

Fig. 2 shows a simple Blood Transfusion Process. The root step “Blood Transfu-
sion Process” is a sequential step, which means that its substeps, “Obtain Patient’s
Blood Type”, “Pick up Blood from Blood Bank”, and “Perform Transfusion”, should
be executed one by one, from left to right. Since “Obtain Patient’s Blood Type” is a
try step, it tries to execute step “Contact Lab for Patient’s Blood Type” first. With the
given patient ID passed as an argument, “Contact Lab for Patient’s Blood Type” at-
tempts to retrieve the patient’s blood type from the lab. If the patient’s blood type is
available, it is returned as an argument to, and completes, step “Obtain Patient’s
Blood Type”. Otherwise, an exception “Patient’s Blood Type Unavailable” is thrown.
This exception will be handled by an exception handler at “Obtain Patient’s Blood
Type”. Since this handler is a continue exception handler as indicated by the right
arrow, the process continues to execute “Test Patient’s Blood Type” to get the pa-
tient’s blood type. Once “Obtain Patient’s Blood Type” is completed, the patient’s
blood type is passed to “Pick up Blood from Blood Bank”, which acquires blood from
the blood bank. Finally, blood is transfused at “Perform Transfusion”.

3 Fault Tree Analysis for Processes

Event and Gates: The basic elements of a fault tree are events and gates. Events are
used to represent faults, such as component failures, human errors, or other pertinent

 Automatic Fault Tree Derivation from Little-JIL Process Definitions 153

conditions in the system or environment. Fig. 3 shows symbols of several commonly
used events and gates. Details about the others events and gates can be found in [3].

Fig. 3. Symbols of commonly used gates and events

Basic events are basic initiating faults or conditions. Undeveloped events are events
that are not developed any further, either because necessary information for deriving
the fault tree leading to these events is unavailable or because these events are consid-
ered to have insignificant consequence. Basic events and undeveloped events are also
called primary events because they require no further development. As opposed to
primary events, intermediate events are events that need to be developed.

Each gate connects one or more input events to a single output event. The output
event of an AND gate occurs if all of the input events occur. While the output event
of an OR gate occurs if any of the input events occurs.

Fig. 4 shows a fault tree that represents combinations of faults in the simple Blood
Transfusion Process that could lead to the hazard “The blood unit to be transfused is
wrong”.

Fig. 4. Fault tree for the simple Blood Transfusion Process

Deriving Fault Trees: To derive a fault tree, the given hazard is represented as an
intermediate event called the TOP event. Starting with this event, the fault tree deriva-
tion procedure proceeds to develop intermediate events until all leaf nodes in the fault
tree are primary events. An intermediate event is developed by investigating the proc-
ess, identifying the immediate, necessary, and sufficient events that cause this event,
and connecting those events to it via a proper gate.

154 B. Chen et al.

Analyzing Fault Trees: Once a fault tree has been derived, minimal cut sets (MCSs)
for this fault tree can be computed automatically using Boolean algebra. A cut set is a
set of primary events that ensure the TOP event to occur. A minimal cut set is a cut
set that cannot be further reduced. For example, MCSs of the fault tree in Fig. 4 are:
{E1, E3} {E2, E3} {E1, E4} {E5} {E6}. These MCSs indicate that the process is
exposed to the single point of failure - the hazard will definitely occur if either E5 or
E6 occurs. Therefore subsequent changes need to be made to the process to remove
these weaknesses.

There are usually several options that could be applied to control or eliminate a haz-
ard in a process, For instance, a failure-resistant agent could be assigned to some steps
where major faults could occur. Additionally, consistency check steps could be added
to well-chosen places in the process to stop the propagation of faults. Usually only a
few of the most effective options can be applied because of resource limitations or
other constraints. The effectiveness of an option can be decided by the reduction in the
probability of the hazard, if the probabilities of primary events are available. More
details about analyzing fault trees can be found in [3].

4 Automatic Fault Tree Derivation

Fault trees are usually derived manually based on a deep understanding of the proc-
ess. Due to complicated interleavings of events and inter-process communication,
manual fault tree derivation can be time-consuming and error-prone. Analysts might
fail to identify some events or include events that could not lead to the given event.
These errors directly affect the analysis results that decide the validity of decisions
made to improve the system.

Two main difficulties in manual fault tree derivation are: 1) how to be sure that one
has found all possible events that could occur in the various steps of the process and
2) how to be sure that one has accurately and completely identified all cause-
consequence relationships among events. In Little-JIL process definitions, steps have
simple uniform interfaces. Therefore we only need to consider a few kinds of events
that could possibly occur in these steps. Moreover, cause-consequence relationships
among Little-JIL steps follow several patterns, which can be captured using tem-
plates. With these events and templates, a simple algorithm can be applied to auto-
matically derive fault trees from Little-JIL process definitions.

Events: Several kinds of events can be defined based on Little-JIL step interfaces.
Four of them represent faults that might occur at that particular step. 1

− Resource r acquired at step S is wrong. When a step is started, resources needed by
that step are acquired from an external resource manager. Resources acquired
might be wrong because of errors in the resource manager, which is not captured in
the process. Therefore these kinds of events are defined as undeveloped events.

− Artifact o to step S is wrong. These kinds of events can be either undeveloped
events or intermediate events. They are intermediate events if the wrong artifacts

1 Without losing generality, we assume that no faults could occur during artifact passing. Unre-

liable artifact passing can be explicitly modeled using additional steps.

 Automatic Fault Tree Derivation from Little-JIL Process Definitions 155

are passed from some step in the process. If wrong artifacts are passed directly
from the environment, they are defined as undeveloped events,

− Artifact o from step S is wrong. Since these kinds of events are always directly
caused by other events that occur in the process, they are defined as intermediate
events that need to be developed further.

− All inputs and resources are correct, but step S produces wrong output o. These
kinds of events can only occur at leaf steps and represent the possibility that desig-
nated agents fail to execute those steps as required. They are defined as basic
events.

Two additional kinds of events are used to indicate conditions that decide where
faults of a step could be propagated to. They are defined as undeveloped events.

− No exceptions are thrown by S. Faults of a step could be propagated to its immedi-
ate successors only if no exceptions are thrown by this step.

− Exception e is thrown by S. If a step throws an exception, its faults can only be
propagated to the corresponding exception handling step.

According to [3], direct connections between gates should be avoided. Therefore
temporary events are introduced to connect gates if necessary. They are intermediate
events and do not change the semantics of fault trees. In the rest of this paper, tempo-
rary events are shown as rectangles drawn with dashed lines.

Templates: As noted above, Artifact o to step S is wrong and Artifact o from step S is
wrong could be intermediate events that need to be further developed. To identify
immediate events that could cause these events, several templates are defined based
on Little-JIL semantics.

 Templates for Artifact o from S is wrong

Fig. 5. Templates for Artifact o from S is wrong

If S is a leaf step, its OUT parameters are produced by S from IN parameters and
resources. Therefore if o is an OUT parameter of S, it might be wrong if any input to
S is wrong, any resource acquired at S is wrong, or S produces the wrong output al-
though all required artifacts are correct, as shown in Fig. 5 (a). On the other hand, if o
is not an OUT parameter of S, it cannot be changed by S. In this case, o from S is
wrong only if the same wrong o is passed to S, as shown in Fig. 5 (b).

If S is a non-leaf step, S itself does not change artifacts that are passed through it.
Any artifact that comes out of S is passed from its substeps. Therefore an artifact o
from S is wrong only if o coming from one or more of the substeps of S is wrong, as
shown in Fig. 5 (c). Since the template is defined to capture the immediate causes, Si

156 B. Chen et al.

in the figure should be a substep that could be the last substep of S to be executed.
Such substeps can be decided according to the control badge of S.

 Templates for Artifact o to S is wrong

Fig. 6. Templates for Artifact o to S is wrong

As shown in Fig. 6 (a), if S is not an exception handling step, wrong artifacts to S
might be propagated from a step Si that might immediately precede S. Moreover, if Si
could throw exceptions, wrong artifacts can only be propagated to S if Si does not
throw exceptions. Steps that might immediately precede S can easily be calculated
from the Little-JIL process definition.

For an exception handing step, it is executed only if the corresponding exception is
thrown by some steps. Therefore, one step could propagate wrong artifacts to the ex-
ception handling step only if it throws the exception handled by the handler step, as
shown in Fig. 6 (b).

Algorithm: With a given TOP event, the automated fault tree derivation algorithm
keeps expanding the fault tree by applying proper templates to intermediate events
that are leaf nodes until all leaf nodes are primary events. Applying this algorithm to
the simple Blood Transfusion Process, we can get a fault tree semantically equivalent
to the one shown in Fig. 4.

Limitations: The completeness a fault tree derived from a Little-JIL process by the
algorithm depends on the completeness of the process. Thus, in cases where the Lit-
tle-JIL process definition fails to completely represent steps in a real-world process
that have an effect upon critical artifact flows, our algorithm will, accordingly, pro-
duce an incomplete fault tree.

Moreover, since Little-JIL processes do not specify how a leaf step produces its
OUT parameters from its IN parameters and resources, our algorithm has to assume
that any OUT parameter of a leaf step depends on all its IN parameters and resources.
Thus, leaf steps that do not satisfy this assumption may cause the derived fault tree to
contain superfluous subtrees.

Related Works: There exist several approaches for automatic fault derivation. Leveson
et al. proposed a partially automated technique that derives fault trees from Ada pro-
grams based on templates [6]. We prefer the advantages of a fully automated approach.
Another approach by Leveson et al. is a fully automatic fault tree derivation, but from
the Requirements State Machine Language (RSML) specifications [7]. The approach by
Pai et al. automatically derives fault trees from UML models [8]. This approach requires
the dependency relationships to be explicitly specified. McKelvin et al. designed an

 Automatic Fault Tree Derivation from Little-JIL Process Definitions 157

algorithm that derives fault trees from Fault Tolerant Data Flow (FTDF) models [9].
These other automated approaches seem to us to suffer from their dependence upon
modeling formalisms that lack semantics that are sufficient to represent complex proc-
esses clearly, completely, and precisely. Different from these approaches, some ap-
proaches, such as [10] and [11], use model checking to generate fault trees. They require
explicit state machine models to represent the faults that can occur within components.

5 Conclusion

Fault Tree Analysis is a hazard analysis technique that is well accepted and applied to
complex systems in various industries. FTA can also help to improve processes. To
improve the efficiency and accuracy of FTA, fault trees can be automatically derived
if processes are specified by languages that have precise enough semantics. In this
paper, we present an automated fault tree derivation algorithm based upon Little-JIL
process definitions. The superior clarity and precision of Little-JIL should result in
more complete and definitive fault trees which should then subsequently lead to fault-
tree analysis that should help us improve the Little-JIL processes.

Acknowledgements

We would like to thank Zongfang Lin and Sandy Wise for their many helpful sugges-
tions with this work. This research was supported by the National Science Foundation
under Award Nos. CCR-0204321 and CCR-0205575. The U.S. Government is au-
thorized to reproduce and distribute reprints for Governmental purposes notwithstand-
ing any copyright annotation thereon. The views and conclusions contained herein are
those of the authors and should not be interpreted as necessarily representing the offi-
cial policies or endorsements, either expressed or implied of The National Science
Foundation, or the U.S. Government.

References

1. Clarke, L.A., Chen, Y., Avrunin, G.S., Chen, B., Cobleigh R.L., Frederick K., Henneman,
E.A., Osterweil, L.J.: Process Programming to Support Medical Safety: A Case Study on
Blood Transfusion. Proceedings of the Software Process Workshop (SPW2005), Beijing,
China. (2005)

2. Leveson N.G.: Safeware: System Safety and Computers. Addison-Wesley. (1995)
3. Vesely, W.E., Goldberg, F.F., Roberts, N.H., Haasl, D.F.: Fault-Tree Handbook, Reg.

0492. US Nuclear Regulatory Comm., Washington, D.C. (1981)
4. Vesely, W.E. et al.: Fault Tree Handbook with Aerospace Applications. NASA (2002)
5. Wise, A.: Little-JIL 1.0 Language Report. Technical report (UM-CS-1998-024), Depart-

ment of Computer Science, University of Massachusetts, Amherst, MA (1998)
6. Cha, S.S., Leveson, N.G., Shimeall, T.J.: Safety Verification in Murphy Using Fault Tree

Analysis. ICSE '88: Proceedings of the 10th International Conference on Software Engi-
neering, Singapore (1988) 377-386

158 B. Chen et al.

7. Ratan, V., Partridge, K., Reese, J., Leveson N.G.: Safety Analysis Tools for Requirements
Specifications. http://www.safeware-eng.com/index.php/publications/SafAnTooReq

8. Pai, G.J., Dugan, J.B.: Automatic Synthesis of Dynamic Fault Trees from UML System
Models.13th International Symposium on Software Reliability Engineering (ISSRE'02) 243

9. McKelvin M.L.Jr., Eirea, G., Pinello, C., Kanajan, S., Sangiovanni-Vincentelli,A.: A Formal
Approach to Fault Tree Synthesis for the Analysis of Distributed Fault Tolerant Systems.
Procs. of the 5th ACM International Conference on Embedded Software (2005) 237-246

10. Liggesmeyer, P., Rothfelder, M.: Improving System Reliability with Automatic Fault Tree
Generation. FTCS '98: Proceedings of the The Twenty-Eighth Annual International Sym-
posium on Fault-Tolerant Computing (1998) 90

11. Bozzano, M., Villafiorita, A.: Improving System Reliability via Model Checking: the
FSAP / NuSMV-SA Safety Analysis Platform. In Proceedings of SAFECOMP 2003,
LNCS 2788, Edimburgh, Scotland, United Kingdom (2003) 49-62

Q. Wang et al. (Eds.): SPW/ProSim 2006, LNCS 3966, pp. 159 – 166, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Workflows and Cooperative Processes

Jacky Estublier and Sergio Garcia

LSR-IMAG, 220 rue de la Chimie BP53,
38041 Grenoble Cedex 9, France

{Jacky.Estublier, Sergio.Garcia}@imag.fr

Abstract. Workflows emphasize the partial order of activities, and the flow of
data between activities. In contrast, cooperative processes emphasize the
sharing of artefact, and its gradual evolution toward the final product, under the
cooperative and concurrent activities of all the involved actors.

This paper contrasts workflow and cooperative processes and shows that
they are more complementary than conflicting and that, provided some
extensions, both approaches can fit into a single tool and formalism.

The paper presents Celine, a concurrent engineering tool that allows also to
define and support classic workflows and software processes. We claim that the
availability of both classes of features allows for the modelling and support of
very flexible processes, closer to software engineering reality.

1 Introduction

Since the early 90s, it is a common belief that defining and supporting processes is a
significant progress toward improving the predictability of the business at hand in
term of quality, cost and delays. [2]

Workflow and software processes aim at modelling and automating processes, seen
as a (partial) ordering of “steps”, or “task” or “activities” leading to the realization of
the business goal. In most workflow systems, the concept of activity is central. The
goal can be a service, but most often it is the realization of an artefact. For that reason,
most systems emphasize the fact that activities aim at creating or transforming a
product [1]. For workflows systems, a process is a sequence of steps in which products
are created/transformed; a process model is a graph where nodes are activities, and arcs
a data flow/control flow between activities. Artefact versioning is usually not a central
concern. The typical workflow is a simple sequence of activities as exemplified
bellow. [3]

Fig. 1. Typical Workflow sequence

160 J. Estublier and S. Garcia

By opposition, concurrent engineering emphasizes the fact that activities can be
performed concurrently on the same artefact, and for that reason emphasizes the
problems that can arise from concurrent modifications of the same artefact.
Concurrent engineering often sees the process of producing an artefact as the
continuous transformation of that artefact, performed simultaneously in multiple
“workspaces”. The concept of activity is not clearly identified, and the life cycle of a
workspace is often undefined, and can last for the full duration of the process.[5][7]

The typical process is a star, where the centre is the artefact repository, and
branches are concurrent workspaces contributing to the evolution of the artefact.
Versioning of the shared artefact is a major concern.

Fig. 2. Typical Concurrent Engineering process : the Star

The paper shows that, despite the differences, they are two complementary views
of what is a process, and we propose a way to combine or reconcile these views.

2 Workflows and Processes

The concept of activity and artefact are central in all process support systems (PSS).
In workflow, an activity is usually defined as taking some data in input, and
producing, after a while, data as output. The duty of an activity is understood as the
production of the output data, likely through the transformation of the input data, and
possibly creating artefacts during its activity. An activity therefore starts in a “well
defined” state of the process, and ends shortly after, when its duty is done.

The data provided to an activity is most often “owned” by the activity during its
execution. Sharing and versioning are usually not supported, or at least not directly
visible. This approach is a source of problems when it comes to handle concurrent
activities working on the same artefact [8]. Most often, this is prohibited, and
concurrent engineering on the same artefact is not possible. This is notably the case in
PDM, where the artefacts are handled by a central database that does not allow
concurrent changes to the same artefact.[4]

If the system allows concurrent changes on the same physical artefact, the
semantics is often unclear since the combination of the actions performed should be
clearly defined, which is often not the case. [9]

 Workflows and Cooperative Processes 161

In most CSCW [12] systems, document authoring, and many commercial
workflow like Staffware and COSA [6], there is only a single copy of the objects in a
global store. In many cases a physical artefact is split in independent logical artefacts
(e.g. in chapters for document authoring systems, or “composite blocks” in
FLOWer[6], etc.), owned by each activity. We are in the same situation as before (no
concurrency), at a lower granularity level.

If actions are undertaken simultaneously on the same logical document, a clear
semantics can be defined only if the data structure and actions are extremely simple
like inserting/deleting characters in a string. Blackboards, and some CSCW systems
are pertaining to this class of systems. Most workflow systems that allow concurrent
changes on the same logical document leave the problem of data consistency in the
hands of the workflow designer (e.g. COSA [6]).

A last approach is to consider that each activity owns a different copy of the shared
artefact. This solves the issue of concurrent changes, but since the whole process aims
at producing a unique artefact, this approach raises the problem of data reconciliation.
The problem of data reconciliation is tough; its semantics is very difficult to define,
and this is why it is usually not supported by workflow systems. Conversely, this is
the very goal in concurrent engineering. This approach is primarily found in Software
Configuration Management. Unfortunately, SCM systems only provide workspaces
and “mergers”; they do not provide concurrent engineering support, they do not allow
to define concurrent engineering policies, and the processes they provide (like change
control) are deterministic workflows that do not include any concurrency support.
Concurrent engineering systems ambition is to extend the SCM approach with
explicit, flexible and non deterministic concurrent engineering models and support.

No Copy No Copy Copies
No Sharing Sharing No Sharing

Activities

Sequential
Deterministic

Concurrency
Deterministic

Concurrency
Non determinism

Software
Process

Workflow

CSCW

SCM

Concurrent
Engineering

PDM

Data

Fig. 3. The different approaches to support engineering activities and data

3 Cooperative Processes in Software Engineering

Tasks in SE (typically fixing a bug) require some time to be performed, and a fairly
large, often unpredictable, fraction of the whole software [11]. Most often, being a
consistent unit of work by itself, each task should be performed and its result tested
individually. Consequently only two options are available : perform the work in

162 J. Estublier and S. Garcia

sequence (like workflows), or provide each actor a complete copy of the software.
The second case is supported in Software Engineering, using the concept of
workspace.

Cooperative processes can be modelled by [5][7]:

1. Concurrent engineering graph, in which nodes are workspaces and arcs the data
flow between workspaces. This graph defines how team work is structured and which
paths the data can follow.

2. Concurrent engineering policy, which defines under which conditions the
changes are allowed to flow along the cooperative graph.

3.1 Concurrent Engineering Graph

The typical concurrent engineering graph is the star presented above (fig 2), which is
implemented in almost all SCM concurrent engineering systems. But other concurrent
engineering graphs can be used like the following:

Fig. 4. Example of a workspaces graph

This graph may look like a workflow model, but it is not. Each icon represents a
workspace, not an activity : each workspace, potentially, works simultaneously on the
same data. Arrows are only data transfers between workspaces. At any point in time,
any workspace may ask to be source or destination of a transfer, and after the transfer,
to continue working or not.

Concurrent engineering is about producing a data in version Vn+1, from the same
data in version Vn, and to iterate. It is therefore, intrinsically, a cyclic process, and
concurrent engineering graphs reflect this property : at the beginning of a cycle, a well
identified workspace, called the reference workspace, contains Vn, and eventually
contains Vn+1 at the end of that cycle.

Therefore, cooperative graphs are not any graph, they are such that it exists a path
between the reference workspace and any other workspace (to allow a workspace to
get the latest common version), and conversely a path between any workspace and the
reference workspace (for that workspace to promote its work). This characteristic of
concurrent engineering graph is an important difference with usual workflows, since
most workflow graphs do not match these characteristics, but it is common to repeat a
process once terminated, which is a hidden cycle.

Using a UML like formalism, a concurrent engineering graph can be defined. The
star graph (fig 2) is simply defined by :

Reference <->* Development

 Workflows and Cooperative Processes 163

meaning that a single reference workspace is linked in both ways with an arbitrary
number of development workspaces. The graph in fig 4 can be defined by : Reference<-
>*A; Reference->B; B->C; C->Reference; meaning we have a star topology between
Reference and A, and a simple cycle (Reference->B->C->Reference).

Fig 4 could model a Software Engineering process in which a star (Reference and
A) develop changes on a product, and workspaces C and D are performing tests and
validation in sequence (on Linux then on Windows for example). The coordination of
all these workspaces is the duty of the concurrent engineering policy.

3.2 Concurrent Engineering Policies

Concurrent engineering emphasize the independent evolution, and reconciliation of
multiple copies of the same artefact. But since changes can be conflicting, and the
merge algorithm is unsafe, reconciliation, at least for software source code, is difficult
to perform and can lead to erroneous results. To a large extend, it is the risk of
inconsistent merge that makes concurrent engineering difficult; for that reason,
cooperative engineering is fundamentally about merge control.

Concurrent engineering can be made safer if the risk related to merging can be
controlled and reduced : it is the goal of concurrent engineering policies. A concurrent
engineering policy should state :

− In which workspace(s) an artefact can be present / changed / created.
− In which workspace(s) changes on artefact A performed in workspace X and

Y, can be merged.

For example, the usual CVS policy can be modelled as follows :

Graph : Reference <->* Development;
Read-only : Reference ;
Merge : Development, Development -> Development;

This policy means that the graph is a star (line 1), no changes are allowed in the
Reference workspace (line 2)(it is the CVS data base), and that changes performed in
Development workspaces can be merged in Development workspaces only, whatever
the artefact (line 3). Another policy on a star graph could be :

Graph : Reference (pull) < ->* Development (pull) ;
Merge : Development, Development -> Reference (source)

This policy, in line 1, not only indicates that we have a star graph, but also that it is
the person responsible of the Reference workspace that decides which work to
integrate first (Reference (pull)), and developers who decide when to synchronize
with the reference (Developer (pull)). Line 2 indicates that changes to the source1
artefact, performed in Development workspaces are merged in the Reference
workspace only. In this policy, all developers are working in parallel, but never
perform any merge; it is the reference that is in charge of integrating their changes.

1 The formalism proposed by Celine includes a data model definition allowing to define

different policies for different artefacts. This is not presented here for lack of space.

164 J. Estublier and S. Garcia

Taking into account the read-only characteristic, different data models (logical
objects), the different possible merges and transfers, even the simplest graphs (the star)
can support many different policies, all easily defined in our formalism. Of course, less
trivial graphs can support a very large range of concurrent engineering policies.

It is also possible to restrict the concurrency, using the “block” primitive, meaning
that once a transfer is done, the source workspace is not allowed to continue its work,
until the next loop. A policy could be :

Graph:Reference(push)->B; B(push)Block-> C; C(push) Block -> Reference;
Merge : Reference;

This policy expresses that workspaces B and C are very much like workflow
activities, they receive (push) the data they have to work on, and when they transfer
their work, they are blocked (Block) until next loop. Workspace Reference continue
working during the loop and can merge its activity with the one of the loop (and
maybe with A activity, depending on the star policy definition).

A transient workspace is a workspace which is created by the first transfer where it
is the destination, and deleted at the first transfer where it is the source.

4 Modeling Concurrent Engineering Workflows

In the Celine formalism, shortly introduced above, a traditional workflow can be
modelled as a degraded case of concurrent engineering, where activities are transient
workspaces, and control flow becomes workspace transfers. The reference workspace
has to be added at the beginning and at the end of the model. Not having any
concurrency, there is no merge and no need for any concurrent engineering policy.

Even if possible, we believe this kind of transformation, in general, is misleading :
a workspace is not an activity, but a place containing artefacts, where activities can
take place on these artefacts. In most our industrial experiments, a workspace has a
very long life cycle and supports many successive activities. We believe instead, that
workflows and concurrent engineering processes are complementary. The workflow
model indicates what are the sequence of activities and actors involved, in a rather
deterministic way. The concurrent engineering model indicates how artefacts are
handled, what can be performed in concurrence on which artefact, who and when
merges are to be performed, in a rather non deterministic way.

In its current form, the workflow tool is Apel; and the concurrent engineering tool
is Celine. They have been designed to be totally autonomous, and indeed are used
independently; the first one for activity and resource management, the second one for
workspace and artefact management. We are in the process of developing the
composition of Apel and Celine, at the level of their meta models, and composing
workflow and concurrent engineering models.

4.1 Implementation and Validation

Technically, the Celine system is based on a “file system spy” that notifies when a file is
changed or renamed. Celine can prohibit the change, or records who and when a given

 Workflows and Cooperative Processes 165

change has been performed. Prohibiting files to be changed is an implementation of a
locking mechanism.

Celine implements concurrent engineering policies using locks on artefacts and
prohibiting the execution of transfers between workspace, if they violate either the
graph or the policy. This analysis is performed statically on the graph and policy
definitions, and compiled into a lower level of locks and operation policy.

Celine relies on the spy and on an abstract versioning system for the storage of
versions. Therefore, Celine is independent on both the platform (as long as a file
system spy is available), the repository and the versioning system (currently available
with CVS, Synchronicity, Subversion and Monotone). Celine works, since 2004, in
industrial settings, on Windows and Unix systems (Linux and Solaris). The policy
support presented above is under development.

5 Conclusion

It is our belief that concurrent engineering is poorly supported currently, mainly
because concurrent engineering is not correctly understood, and addressed only at a
very low level of abstraction. It is interesting to mention that even a simple policy is
transformed into a fairly complex lock strategy, that is almost impossible to perform
by hand. Therefore, concurrent engineering policies can be defined and enforced only
if high level concepts are proposed, and transparently compiled into low level
technical means. It maybe explains why concurrent engineering policies has not been
implemented so far.

We believe that a first contribution of Celine is its very high level formalism for
concurrent engineering definition. But the fact this formalism can be analysed
statically and interactively during policy definition is another major contribution.
Indeed, it helps the designer to identify the properties and drawbacks of the graph
(process) and to find the policy best adapted to the desired graph, or vice-versa. It
allows to computes the next action, and in some case to anticipate transfers and
merges, allowing to improve performance, especially for large transfers. It allows to
find out all the possible states in a system, and to show explicitly to the users what is
the current states during execution, making users aware of the whole work and
allowing them to anticipate (or avoid) future merges [5][10].

While classic workflows can be defined and supported in Celine, we resisted the
temptation to develop THE unique universal workflow and concurrent engineering
system. The reason is that we believe that activity and resource modelling on one
side, and artefact and concurrent engineering modelling, on the other side, are two
complementary visions of a process. Some parts of the real process are better
described in one of these systems, while other parts require to be supported by a
composition of the two systems, the workflow describing the activities, and the
concurrent engineering system describing the fine grain cooperation between
activities. And, of course, other parts of the real process are not described nor
supported at all.

We believe this strategy allows to use the currently available workflow models and
systems, and to complement them with the concurrent engineering support needed for
a highly concurrent, but still safe, practice of concurrent engineering.

166 J. Estublier and S. Garcia

References

[1] Derniame J.-C., Kaba B., Wastell, D., “Software Process : Principles, Methodology and
Technology”. Springer-Verlag, Lecture Notes in Computer Science 1500, 1999.

[2] Georgakopoulos D., Hornick M.F., Sheth A.P., “An overview of workflow management-
from process modeling to workflow automation infrastructure”. Distributed and Parallel
Databases 3(2) : 119-153, 1995.

[3] J. Estublier, S. Dami, and M. Amiour. “APEL: A graphical yet Executable Formalism for
Process Modelling”. Automated Software Engineering, ASE journal. Vol. 5, Issue 1,
1998.

[4] J. Estublier, J.M. Favre and P. Morat. "Toward an integration SCM / PDM". SCM8,
Brussels, 20-21 July 1998. In LNCS 1439, Springer Verlag.

[5] J. Estublier, S. Garcia. “Process Model and Awareness in SCM”. 12th Software
Configuration Management Workshop. Lisboa, September 2005, Portugal

[6] N. Russel, A. H.M. ter Hofstede, D. Edmond. Workflow Data Patterns
http://is.tm.tue.nl/research/patterns/download/data_patterns%20BETA%20TR.pdf

[7] Jacky Estublier, Sergio Garcia, German Vega. "Defining and Supporting Concurrent
Engineering policies in SCM" SCM-11 May 2003, Portland, Oregon, USA

[8] Barghouti N. S., "Supporting Cooperation in the Marvel Process-Centered SDE", in: H.
Weber (Ed.), Fifth ACM SIGSOFT Symposium on Software Development
Environments, Vol. 17 of Special issue of Software Engineering Notes, Tyson's Corner
VA, 1992, pp. 21-31.

[9] Charoy F., Godart C., Grigori D. COO-flow: a Process Technology to Support
Cooperative Processes, International Journal of Software Engineering and Knowledge
Engineering, Special issue: Best Papers from SEKE 2003, vol. 14, n°1, January 2004

[10] Sarma, A., Noroozi Z., Van Der hoek, A.: "Palantir: Raising Awareness among
Configuration Management Workspaces". 25th International Conference on Software
Engineering. 05 03 – 05, 2003. Portland, Oregon

[11] Dewayne E. Perry, Harvey P. Siy, Lawrence G. Votta. "Parallel Changes in Large Scale
Software Development: An observational Case Study" ACM Transactions on Software
Engineering and Methodology (TOSEM). Volume 10 , Issue 3 July 2001.

[12] Godart C., "Tutorial : Les outils du travail coopératif. Un point de vue ingénierie des
données". 18ème Journées Bases de Données Avancées - BDA'02, Evry, France, October
2002.

Q. Wang et al. (Eds.): SPW/ProSim 2006, LNCS 3966, pp. 167 – 177, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Spiral Lifecycle Increment Modeling
for New Hybrid Processes

Raymond Madachy, Barry Boehm, and Jo Ann Lane

University of Southern California Center for Software Engineering,
941 W. 37th Place, Los Angeles, CA, USA

{madachy, boehm, jolane}@usc.edu

Abstract. The spiral lifecycle is being extended to address new challenges for
Software-Intensive Systems of Systems (SISOS), such as coping with rapid
change while simultaneously assuring high dependability. A hybrid plan-driven
and agile process has been outlined to address these conflicting challenges with
the need to rapidly field incremental capabilities. A system dynamics model has
been developed to assess the incremental hybrid process and support project de-
cision-making. It estimates cost and schedule for multiple increments of a hy-
brid process that uses three specialized teams. It considers changes due to ex-
ternal volatility and feedback from user-driven change requests, and dynami-
cally re-estimates and allocates resources in response to the volatility. Deferral
policies and team sizes can be experimented with, and it includes tradeoff func-
tions between cost and the timing of changes within and across increments,
length of deferral delays, and others. Both the hybrid process and simulation
model are being evolved on a very large scale incremental project and other po-
tential pilots.

1 Introduction

Our experiences in helping to define, acquire, develop, and assess 21st century SISOS
have taught us that traditional acquisition and development processes do not work
well on such systems [1][2]. We are using simulation modeling to help formulate and
assess new processes to meet the challenges of these systems.

The systems face ever-increasing demands to provide safe, secure, and reliable sys-
tems; to provide competitive discriminators in the marketplace; to support the coordi-
nation of multi-cultural global enterprises; to enable rapid adaptation to change; and
to help people cope with complex masses of data and information. These demands
will cause major differences in the current processes [2].

We and others have been developing, applying, and evolving new processes to ad-
dress SISOS. These include extensions to the risk-driven spiral model to cover broad
(many systems), deep (many supplier levels), and long (many increments) acquisi-
tions needing rapid fielding, high assurance, adaptability to high change traffic, and
complex interactions with evolving Commercial Off-the-Shelf (COTS) products,
legacy systems, and external systems.

The distinguishing features of a SOS are not only that it integrates multiple inde-
pendently-developed systems, but also that it is very large, dynamically evolving, and

168 R. Madachy, B. Boehm, and J.A. Lane

unprecedented, with emergent requirements and behaviors and complex socio-
technical issues to address. Thus we have developed a system dynamics model be-
cause the methodology is well-suited to modeling these dynamic phenomena and their
interactions [3].

1.2 The Scalable Spiral Model

The outlines of a hybrid plan-driven/agile process for developing a SISOS product
architecture are emerging. It is a risk-driven balance of agility and discipline [4]. In
order to keep SISOS developments from becoming destabilized from large amounts
of change traffic, it is important to organize development into plan-driven increments
in which the suppliers develop to interface specs that are kept stable by deferring
changes, so that the systems can plug and play at the end of the increment. But for the
next increment to hit the ground running, an extremely agile team needs to be concur-
rently doing continuous market, competition, and technology watch, change impact
analysis, COTS refresh, and renegotiation of the next increment's prioritized content
and the interfaces between the suppliers' next-increment interface specs.

The spiral model was introduced in 1986 and later elaborated for WinWin exten-
sions [5]. It has continued to evolve to meet the needs of evolving development proc-
esses. We have been converging on a scalable spiral process model for SISOS that,
for partial implementations to date, has scaled well from small e-services applications
to super-large defense systems of systems, and multi-enterprise supply chain man-
agement systems.

Fig. 1 shows a single increment of the development and evolution portion of the
model. It assumes that the organization has developed:

• A best-effort definition of the system’s steady-state capability;
• An incremental sequence of prioritized capabilities culminating in the steady-

state capability;
• A Feasibility Rationale providing sufficient evidence that the system architec-

ture will support the incremental capabilities, that each increment can be devel-
oped within its available budget and schedule, and that the series of increments
create a satisfactory return on investment for the organization and mutually sat-
isfactory outcomes for the success-critical stakeholders.

As seen in Fig. 1, the model is organized to simultaneously address the conflicting
challenges of rapid change and high assurance of dependability. It also addresses the
need for rapid fielding of incremental capabilities with a minimum of rework, and the
other trends involving integration of systems and software engineering, COTS com-
ponents, legacy systems, globalization, and user value considerations.

The hybrid process uses a three-team cycle (lean, plan-driven, stabilized develop-
ers; thorough V&Vers; and agile, pro-active rebaseliners) that plays out from one
increment to the next.

The need to deliver high-assurance incremental capabilities on short fixed sched-
ules means that each increment needs to be kept as stable as possible. This is particu-
larly the case for very large systems of systems with deep supplier hierarchies in

 Spiral Lifecycle Increment Modeling for New Hybrid Processes 169

Increment N Baseline

Future Increment BaselinesRapid
Change

High
Assurance

Agile
Rebaselining for
Future Increments

Short, Stabilized
Development
of Increment N

V&V
of Increment N

Increment N Transition/O&M

Current V&V

Short
Development
Increments

Future V&V

Stable Development
Increments

Continuous V&V

ConcernsArtifacts

Deferrals

Foreseeable
Change (Plan)

ResourcesResources

Increment N Baseline

Future Increment BaselinesRapid
Change

High
Assurance

Agile
Rebaselining for

Short, Stabilized
Development
of Increment N

V&V
of Increment N

Increment N Transition/O&M

Current V&V

Short
Development
Increments

Future V&V

Stable Development
Increments

Continuous V&V

ConcernsArtifacts

Deferrals

Foreseeable
Change (Plan)

ResourcesResources

Unforseeable Change
(Adapt)

Fig. 1. The Scalable Spiral Process Model: Increment Activities

which a high level of rebaselining traffic can easily lead to chaos. The risks of desta-
bilizing the development process make this portion of the project into a waterfall-like
build-to-specification subset of the spiral model activities. The need for high assur-
ance of each increment also makes it cost-effective to invest in a team of appropri-
ately skilled personnel to continuously verify and validate the increment as it is being
developed.

However, “deferring the change traffic” does not imply deferring its change impact
analysis, change negotiation, and rebaselining until the beginning of the next incre-
ment. With a single development team and rapid rates of change, this would require a
team optimized to develop to stable plans and specifications to spend much of the next
increment’s scarce calendar time performing tasks much better suited to agile teams.

The appropriate metaphor for addressing rapid change is not a build-to-
specification metaphor or a purchasing-agent metaphor but an adaptive “command-
control-intelligence-surveillance-reconnaissance” (C2ISR) metaphor. It involves an
agile team performing the first three activities of the C2ISR “Observe, Orient, Decide,
Act” (OODA) loop for the next increments, while the plan-driven development team
is performing the “Act” activity for the current increment. “Observing” involves
monitoring changes in relevant technology and COTS products, in the competitive
marketplace, in external interoperating systems and in the environment; and monitor-
ing progress on the current increment to identify slowdowns and likely scope defer-
rals. “Orienting” involves performing change impact analyses, risk analyses, and
tradeoff analyses to assess candidate rebaselining options for the upcoming incre-
ments. “Deciding” involves stakeholder renegotiation of the content of upcoming
increments, architecture rebaselining, and the degree of COTS upgrading to be done
to prepare for the next increment. It also involves updating the future increments’
Feasibility Rationales to ensure that their renegotiated scopes and solutions can be
achieved within their budgets and schedules.

A successful rebaseline means that the plan-driven development team can hit the
ground running at the beginning of the “Act” phase of developing the next increment,
and the agile team can hit the ground running on rebaselining definitions of the in-
crements beyond.

170 R. Madachy, B. Boehm, and J.A. Lane

As much as possible, usage feedback from the previous increment is not allowed to
destabilize the current increment, but is fed into the definition of the following incre-
ment. Of course, some level of mission-critical updates will need to be fed into the
current increment, but only when the risk of not doing so is greater that the risk of
destabilizing the current increment.

1.2 System Dynamics Modeling Introduction

System dynamics is a simulation methodology for modeling continuous systems.
Quantities are expressed as levels, rates and information links representing feedback
loops. It provides a rich and integrative framework for capturing myriad process phe-
nomena and their relationships. System dynamics is well-suited to deal with the com-
plexities of SOS because it captures dynamic feedback loops and interacting
phenomena that cause real-world complexity [3].

Fig. 2 serves as a model diagram legend showing the notation for system dynamics
elements in a simple system. These notations and following brief descriptions of the
elements may help understand the model described in Section 2.

level

rate

auxiliary variable

information link

source/
sink

Fig. 2. System Dynamics Model Notation

Levels are the state variables representing system accumulations over time. They
can serve as a storage device for material, energy, or information. Contents move
through levels via inflow and outflow rates. Levels are a function of past accumula-
tion of rates.

Sources and sinks represent levels or accumulations outside the boundary of the
modeled system. Sources are infinite supplies of entities and sinks are repositories for
entities leaving the model boundary.

Rates are also called flows; the “actions” in a system. They effect the changes in
levels. Rates may represent decisions or policy statements. Rates are computed as a
function of levels, constants and auxiliaries.

Auxiliaries are converters of input to output, and help elaborate the detail of stock
and flow structures. An auxiliary variable must lie in an information link that con-
nects a level to a rate. Auxiliaries often represent “score-keeping” variables.

Information links are used to represent information flow as opposed to material
flow. Rates, as control mechanisms, often require links from other variables (usually
levels or auxiliaries) for decision making. Information links can represent closed-path
feedback loops between elements.

 Spiral Lifecycle Increment Modeling for New Hybrid Processes 171

2 Model Overview

The primary portion of the system dynamics model diagram showing increment activi-
ties and the teams is in Fig. 3. It is built around a flow chain for capabilities and uses
arrays to model multiple increments. The flow chains for the increment activities show
multiple layers of levels and rates; these identify array elements that correspond to the
increments. Thus the flow chain and its equations are arrays of five to model five in-
crements (this preset number can be changed to model more or less increments).

Unanticipated changes arrive as a-periodic pulses via the volatility trends parame-
ter. This is how they actually come on the projects vs. a constant level of volatility
over time. The user can specify the pulses graphically (see the input for Volatility
Profile in Fig. 4) or use formulas. The capability volatility rate will flow the changes
into the corresponding increment for the current time.

From there they arrive in the level for capability changes and are then processed by
the agile rebaselining team. They analyze the changes per the average change analy-
sis effort parameter. Their overall productivity is a function of the agile team size (as
specified by the user in Fig. 4) and the average analysis effort.

required capabilities developed capabilities V & V'ed capabilities

field issues

development rate V & V rate

development team

capability changes

capability volatility
rate

non deferrable capability �
change rate �

to current increment

deferred capability �
change rate �

to successive increments

field issue rate

field issue delay

V &V team

average change analysis effort

volatility trends

agile rebaselining team

change deferral %

V & V productivity

development team
allocation rate

V & V team �
allocation rate

agile rebaselining team �
allocation rate

construction effort EAC construction schedule EAC

baseline effort baseline schedule

current increment

development productivity

Agile Team Size

Fig. 3. Model Diagram

172 R. Madachy, B. Boehm, and J.A. Lane

The change deferral % is a policy parameter to specify the percentage of changes
that must be deferred to later increments via deferred capability change rate to suc-
ceeding increments to required capabilities for the appropriate increments. The re-
maining ones are non-deferrable that flow into the required capabilities for the cur-
rent increment via the rate non deferrable capability rate change to current incre-
ment. The deferral policy parameter is also shown in the inputs in Fig. 4.

When an increment starts the required capabilities are developed by the develop-
ment team at the development rate and flow into developed capabilities (all using the
flow chain array index corresponding to the proper increment).

Similarly, the developed capabilities are then picked up the V&V team for their in-
dependent verification and validation. They do their assessment at the V & V produc-
tivity rate and the capabilities flow into V & V’ed capabilities.

The rates in the flow chain between capability changes, required capabilities, de-
veloped capabilities and V & V’ed capabilities are all bi-directional. This is a provi-
sion for capabilities to be “kicked back” or rejected by the various teams and sent
back up the chain. For example, there are times when the developers have major con-
cerns about a new capability and send it back to the re-baselining team. Likewise the
V&V team might find some serious defects to be re-worked by the developers.

Finally there are user-driven changes based on field experience with the system.
These are identified as field issues that flow back into the capability changes per the
field issue rate at a constant field issue delay time. The field issues parameter repre-
sents the amount of concern with the fielded system and accounts for a primary feed-
back loop.

The agile baselining team is shown in the top left of the diagram. The size of the
team can be specified as a constant size or a varying number of people over time via
the inputs in Fig. 4. The agile rebaselining team allocation rate flows people in or out
of the team to match the specified team size over time.

The development and V&V teams are shown at the bottom. Their allocation rates
are based on the construction effort and schedule for the required capabilities known
to-date. Currently the productivities and team sizes for development and V&V are
calculated with a Dynamic COCOMO [6] variant. They are equivalent to COCOMO

Fig. 4. Simulation Inputs

 Spiral Lifecycle Increment Modeling for New Hybrid Processes 173

for a static project (the converse situation of this model context) and continuously re-
calculated for changes. However, this aspect of the model whereby the team sizes are
parametrically determined from size and effort multipliers will be refined so that
constraints can be put on the development and V&V staff sizes.

An illustration of how the system responds to a volatility pulse in Increment 1 is in
Fig. 5. In the figure legends, “[1]’ refers to the increment number 1. An unanticipated
set of changes occurs at month 8, shown as a volatility trend pulse. The changes im-
mediately flow into the level for capability changes, which then starts declining to
zero as an agile team of five people works it off per the average change analysis effort
of four person-months.

The change is non-deferrable and it becomes incorporated into Increment 1, so the
total capabilities for the increment increases. As the new capabilities become required
for Increment 1, the development staffing responds to the increased scope by dynami-
cally adjusting the team size to a new level.

Fig. 5. System Response to Volatility – Increment 1

2.1 Tradeoff Functions

There are several functional relationships in the model that effect tradeoffs between
deferral times and cost/schedule. For one, it is costlier to develop software when there
is a lot of volatility during the development. If the required capabilities are added to
an increment being developed, the overall effort increases due to the extra scope as
well as the added volatility. The effort multiplier in Fig. 6 is used to calculate the
construction effort and schedule based on a volatility ratio of total required capabili-
ties to the baseline capabilities.

It is an aggregate multiplier for volatility from different sources. It works similarly
to the platform volatility multiplier in COCOMO II [6], except in this context there
may be many more sources of volatility (e.g. COTS, mission, etc.). This multiplier
effect only holds for an increment when changes arrive midstream. If new changes are
already in the required capabilities when an increment starts then it has no effect.

174 R. Madachy, B. Boehm, and J.A. Lane

Additionally, the later a new capability comes in during construction the higher the
cost to develop it. This is very similar to the cost-to-fix defects whereby the costs
increases exponentially. Fig. 7 shows the lifecycle timing multiplier based on a ratio
of the current time to the entire increment schedule.

Under normal circumstances, there is an additional cost of delaying capabilities to
future increments because there is more of a software base to be dealt with and inte-
grated into. Therefore we increase the cost of deferring to future increments by an
additional 25% relative to the previous increment (this parameter is easily changed).

2.2 Dynamic Resource Allocation

In response to changes in the capabilities, the model calculates the personnel levels
needed for the new increment size and interpolates for the amount of work done. If
the increment has just started, then the interpolated staffing level will be closer to the
higher level needed for the new Estimate-At-Completion (EAC). If the increment is
mostly done, then it doesn’t make sense to increase staff to the EAC level because
almost all the work is done anyway.

A Rayleigh curve staffing version of the model intrinsically changes the staffing
when changes occur with no interpolation necessary.

 Fig. 6. Volatility Effort Multiplier Fig. 7. Lifecycle Timing Effort Multiplier

2.3 Parameterizations

Since this is a macro model for very large systems, a capability is a “sky level” re-
quirement measure. It is defined as a very high level requirement that we have made
equivalent to 10 KSLOC for the purpose of estimation. The construction effort and
schedule is currently calculated with a Dynamic COCOMO approach using the
COCOMO II.2000 calibration [6].

The volatility impact multiplier is an extension of COCOMO for the SISOS situa-
tion. It is extrapolated from the current model and partially based on expert judgment.
Other parameterizations relying on expert judgment include the average change
analysis effort, lifecycle timing multiplier and amount of field issues. We are obtain-
ing data on these and will be updating them based on the empirical data.

 Spiral Lifecycle Increment Modeling for New Hybrid Processes 175

2.4 Sample Test Cases and Results

Table 1 shows the test cases results for varying the agile team size over two incre-
ments, each of 15 capabilities. The effort and schedule are for the development and
V&V activities (the effort shown does not include the cost of the agile team, which
does not account for substantial comparative differences). A change comes in at
month eight (same as Fig. 5) and is processed by the agile team. The change is non-
deferrable as it needs to be in Increment 1. However, the different team sizes will
analyze the change at different rates.

The larger team size will process the change and incorporate it faster; hence the ef-
fort and schedule for Increment 1 improves with larger team size. However, if the
team size is too small then it won’t even make it into Increment 1. For team sizes of
two and four it is processed too late and goes into Increment 2.

The total effort for four agile people is nearly equal to the total for a team size of
ten (within 5%), since the change was effectively deferred and didn’t incur lifecycle
timing losses. However, the smaller team will also incur business value losses. These
are not currently quantified in the model, but it is reasonable to assume that the value
could far outweigh the 5% cost differential. Also not shown for the stretched out In-
crement 1 cases are losses due to late delivery.

Table 1. Test Case Results

 Increment 1 Increment 2 Total Addi-
tional
Losses

Agile
Team
Size
(People)

Effort
(PM)

Schedule
(Mths.)

Effort
(PM)

Schedule
(Mths.)

Effort
(PM)

Schedule
(Mths.)

2 728 32.3 2875 50.8 3603 83.1 Inc.1
business
value

4 728 32.3 1171 37.8 1899 70.1 Inc.1
business
value

6 1618 42 728 32.3 2346 74.3
8 1448 40.5 728 32.3 2176 72.8

10 1278 38.9 728 32.3 2006 71.2

These results account for the lifecycle timing multiplier, volatility multiplier and
increment delay losses. The model shows that a sufficient level of agile re-baseliners
is necessary, or the cost and schedule for the project increases substantially. Enough
must be on-board and productive enough to analyze the changes in a timely manner.
Otherwise there could be a backlog of work to worry about at the beginning of a later
increment that could have been resolved earlier by the agile team or other losses.

176 R. Madachy, B. Boehm, and J.A. Lane

This set of test cases only varied agile team size, but another dimension to vary is
the deferral percentage. Additionally we will simulate all five increments and have
volatility occur in more than one increment in subsequent experiments.

3 Conclusions and Future Work

Processes need to rethought for current and upcoming SISOS, and the outlined hybrid
process based on the scalable spiral model appears to be an attractive option. The
dynamic model will help to further refine the hybrid process and determine optimized
variants for different situations.

This first major iteration of the model already provides interesting results. It shows
that if the agile team doesn’t do their work, then developers will have to do it at a
higher cost. Further experiments are underway to vary the deferral percentages, in-
clude rework, and constrain the staff sizes for development and V&V.

Both the hybrid process and the model will be further proven and evolved. Various
improvements in the model are already identified and briefly discussed below, but
further changes will come from users of the model. Additionally, empirical data to
help calibrate and parameterize the model will come from users in the field and other
data collection initiatives at USC.

This version of the model uses step function staffing profiles that adjust dynami-
cally to changes. Another version uses Rayleigh curves for more realistic staffing
patterns that adjust on the fly to midstream changes. These models will be integrated
to allow the user to specify the type of staffing.

In the current test cases, only the optimum personnel levels are used for develop-
ment and V&V, but in reality there may be staffing constraints. The model will be
refined so users can constrain the development and V&V staff sizes. Another set of
tests will compare tradeoffs between different agile team staffing policies (e.g. level-
of-effort vs. demand-driven).

Patterns of changes and change policies will be experimented with. We will vary
the volatility profiles across increments and demonstrate kick-back cases for capabili-
ties flowing back up the chain from the developers or V&V’ers. Additionally we will
model more flexible deferral policies across increments to replace the current binary
simplification of allocating changes to the current or next increment.

As previously noted, the model currently does not account for business/mission
value losses due to delays. Business value should be part of the overall process analy-
sis, so provisions will be made to quantify the timed value of capabilities.

Parts of model have been parameterized based on actual empirical data, but not the
change traffic. We will be getting actual data on volatility, change traffic trends and
field issue rates from our USC affiliates and other users of the model. Data for the
change analysis effort and volatility cost functions will also be analyzed.

After we get change data to populate the model and make other indicated im-
provements, we will be using it to assess increment risk for a very large scale SISOS
program. It will also be used by contractors on the program in addition to our own
independent usage to assess process options.

 Spiral Lifecycle Increment Modeling for New Hybrid Processes 177

We also plan to apply it to other projects we are involved with, and the model will
be provided to our USC-CSE industrial affiliates for assessing and improving their
processes. They will also provide an opportunity to obtain additional empirical data
for model parameters.

References

1. Boehm, B., Brown, A.W., Basili, V., Turner, R.: “Spiral Acquisition of Software-Intensive
Systems of Systems”, CrossTalk. May (2004)

2. Boehm, B.: “Some Future Trends and Implications for Systems and Software Engineering
Processes”, USC-CSE-TR-2005-507 (2005)

3. Madachy R.: Software Process Dynamics, IEEE Computer Society Press (2006)
4. Boehm, B., Turner, R.: Balancing Agility and Discipline, Addison Wesley (2003)
5. Boehm, B., Egyed, A., Kwan, J., Port, D., Shah, A., and Madachy, R.: “Using the WinWin

Spiral Model: A Case Study” IEEE Computer, July (1998)
6. Boehm, B., Abts C., Brown A., Chulani S., Clark B.,Horowitz E., Madachy R.,Reifer D.,

Steece B.: Software Cost Estimation with COCOMO II, Prentice-Hall (2000)

Q. Wang et al. (Eds.): SPW/ProSim 2006, LNCS 3966, pp. 178 – 185, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Definition and Analysis of Election Processes

Mohammad S. Raunak, Bin Chen, Amr Elssamadisy,
Lori A. Clarke, and Leon J. Osterweil

Department of Computer Science,
University of Massachusetts,
Amherst, MA 01003, USA

{raunak, chenbin, samadisy, clarke, ljo}@cs.umass.edu

Abstract. This paper shows that process definition and analysis technologies
can be used to reason about the vulnerability of election processes with respect
to incorrect or fraudulent behaviors by election officials. The Little-JIL lan-
guage is used to model example election processes, and various election worker
fraudulent behaviors. The FLAVERS finite-state verification system is then
used to determine whether different combinations of election worker behaviors
cause the process to produce incorrect election results or whether protective ac-
tions can be used to thwart these threats.

1 Introduction

In previous work, we have demonstrated that it is possible to define complex proc-
esses with precision that is sufficient to support definitive demonstrations that the
processes either do, or do not, have worrisome defects. Our preliminary work with
healthcare processes [3], for example, shows that it is possible to identify potentially
life-threatening defects, even in large complex medical processes. Our work with the
US National Mediation Board has suggested that automating carefully defined proc-
esses that have been clearly understood by all stakeholders, can lead to increased trust
and confidence in the workings of government.

This paper extends our previous process definition and analysis work to election
processes. A novel aspect of this work is its approach to assessing the potential
impact of fraudulent behavior. In our earlier work (e.g. with healthcare processes
[3]) we assumed that participating agents (e.g. doctors and nurses) always try to
perform assigned tasks correctly. We dealt with incorrect or inadequate perform-
ance through the use of pre- and post-condition checks and exception processing.
But, in analysis of elections, we now attempt to deal with the consequences of the
performance of tasks by agents whose actions may be intentionally incorrect or
malicious. An interesting challenge of this work is how to represent such behaviors
and assess how well processes defend against their negative effects. Early positive
results of this work suggest the possibility of a discipline of election process engi-
neering, in which costs and benefits of specific safeguards can be measured against
specific election fraud risks.

 Definition and Analysis of Election Processes 179

2 Related Work

There is now considerable interest in assuring the correct performance of elections.
The 2000 US Presidential election yet again demonstrated that elections may have
many and varied defects and loopholes [1], [4], [6], [8]. In response there have been
many efforts to improve the conduct of elections [7], [9]. Most efforts focus on using
electronic devices to record and tabulate votes and emphasize the potential for such
devices to commit errors or frauds. Because electronic voting machines use software
for vote recording and tabulation, software analysis is used to reason about the code in
such machines. Our work differs in that it seeks to discover and correct defects in the
overall processes of which voting machines are only a part. Elections generally have
many different steps and activities, and are performed by many different agents (e.g.
the voter, precinct officials, and district voting officials) in addition to just the actual
vote recording device. Thus, opportunities for frauds and errors go far beyond those
that can be accomplished by the software code in a voting machine. Our work em-
ploys analysis techniques and approaches that are applicable to reasoning about soft-
ware code, and applies these techniques instead to rigorous definitions of overall
election processes to demonstrate the presence or absence of specified defects and the
resistance (or its lack) in specific processes to specific frauds.

3 Our Approach

For this research we used our process language, Little-JIL [2], [10] to define an elec-
tion process. We used the resource specification and dataflow annotation features of
Little-JIL to represent artifact flow and agent binding details in the process definition.
We specified election security requirements as finite state automata, and then used our
FLAVERS finite-state verification system [5] to identify vulnerabilities and to prove
whether a process can defend against a particular type of fraudulent behavior or
threat.

3.1 The Little-JIL Process Language

The Little-JIL language supports defining coordination amongst human and auto-
mated agents at different abstraction levels. It supports the definition of control flow,
including the handling of exceptions, and it also supports the definition of artifacts
and their flows. The central construct of a Little-JIL process is a step. Steps are organ-
ized into a hierarchy, whose leaves represent the smallest specified units of work,
each of which is assigned to an agent.

Figure 1 shows the graphical representation of a Little-JIL step with its different
badges and possible connections to other steps. The interface badge specifies arti-
facts either required for, or generated by, the step’s execution as well as the re-
sources needed to support step execution. Every step has a special resource, its
‘agent’, which is responsible for the step’s execution. A step may also include pre-
and/or post-requisite badges, representing steps that need to be executed before
and/or after this step. On the left, inside the central black box of every non-leaf step,
is a control flow badge that specifies the order in which the step’s sub steps are to be

180 M.S. Raunak et al.

executed. A child is connected to its parent by an edge, and artifact flows between
the parent and child are indicated by annotations on this edge. On the right of the
step bar is an X sign that represents the exception handling capabilities of the step.
Attached to this badge by exception edges are handlers that deal with exceptions
occurring in the step’s descendants. Each handler is itself a step annotated to indi-
cate the type of exception it handles. One of four exception continuation semantics
define how process flow continues.

Fig. 1. A Little-JIL step construct

There are four different non-leaf step kinds, namely “sequential”, “parallel”, “try”
and “choice”. Children of a “sequential” step are executed one after another from left
to right. Children of a “parallel” step can be executed in any order, including in paral-
lel. A “try” step attempts to execute its children one by one from left to right. A
“choice” step’s agent chooses which of its children will comprise the step’s execution.

A complete Little-JIL process definition also contains definitions of artifacts and
resources to complement this coordination definition. Artifacts are entities such as
data items, files, or access mechanisms that are passed between parent and child steps,
much in the same way that parameters are passed in a procedure invocation in a stan-
dard programming language. Complete details about Little-JIL can be found in [10].

3.2 Process Verification

We used a finite-state verifier (our FLAVERS tool) to determine whether or not elec-
tion soundness policies are violated by our election process definition. Given a prop-
erty that represents a policy in terms of the states of process steps and the artifacts
flowing between the steps, FLAVERS determines if this property always hold on all
possible process executions. When properties may not hold for all executions,
FLAVERS provides a counterexample execution showing where a violation occurs,
thereby providing process-improvement guidance.

4 An Election Process Example

Our election process assumes that one single DRE (direct recording electronic) voting
machine is being used at a precinct, that there is only one office for which an election
is being held, and that there are two candidates (A and B) running for the office.

 Definition and Analysis of Election Processes 181

Fig. 2. Top level election process

At the top level, as shown in figure 2, the state-wide election process consists of
Conduct of Election, followed by Canvass of Election, where state board officials
aggregate precinct level election results, and a possible Recount if something major
goes wrong. The child steps of the root step (Election) are elaborated in separate dia-
grams (e.g. Fig. 3 elaborates the details of Conduct of Election). The diagrams use
yellow post-it notes to provide still more detailed elaboration.

Fig. 3. Process model for Conduct of Election

Conduct of Election is a number of parallel activities taking place simultaneously
at each precinct. Conduct of Election at a Precinct includes the processing of individ-
ual votes for each voter throughout the voting period and preparation of two copies of
a precinct result summary called “Statement of Result” (SoR). Processing of Individ-
ual Vote is a reference to a step, which we have not elaborated in this paper due to
space constraints. In that subprocess, an individual voter is first authenticated before
being allowing to vote. A DRE is responsible for recording voter’s exerted intent
correctly, and the DRE keeps a running tally of the number of votes cast for each
candidate.

At the end of the voting period, each of the two poll workers independently looks
at the voting machine, and prepares a “Statement of Result” (SoR), consisting of the
total votes for candidate A (Machine_Total[A]) and for candidate B (Ma-
chine_Total[B]). The two SoRs are then sent to the State Election Board for statewide
aggregation and certification in Canvass of Election. Note that Prepare SoR is a task

182 M.S. Raunak et al.

assigned to a poll worker agent. The agent can carry out the task honestly or may
inadvertently or maliciously modify the numbers while preparing the SoR.

The State Election Board collects the precinct level result summaries (SoRs), vali-
dates the results reported in SoRs by matching them against each other, and aggregates
the precinct summaries into a statewide summary-sheet that holds the total votes for
candidates A and B. The State Election Board officials make sure that the totals re-
ported in SoR1 match the totals reported in SoR2. If there is a mismatch, the officials
examine the actual DRE to determine if one of the SoRs agrees with the machine. If so,
the other SoR is corrected accordingly. These actions are part of the agent behavior
represented by the Handle Validation Fail exception handling step. If neither SoR
agrees with the DRE, the precinct officials are called in for consultation and both SoRs
are corrected (these details are omitted from this example because of lack of space).
Upon proper aggregation of the precinct results, including handling of any potential
inconsistencies in the Statement of Results, the state board certifies the result and de-
clares it official. Figure 4 shows the model for the last part of this process. The figure
also shows how the Little-JIL system’s inspector tools supports looking inside a step
(Statewide Aggregation in this case) to reveal its resource and artifact definitions.

Fig. 4. Process model describing Canvass of Election

4.1 Analysis of Frauds

To analyze potential threats arising out of fraudulent agent behavior we use Little-JIL
to model not only an election process, but also details of how an agent carries out
tasks in this process. The analysis is applied to the process definition, potentially
paired with different agent behavior definitions to see which properties hold when
different processes are paired with different agent behaviors.

To demonstrate this, we consider the following property for our election process: If
two SoRs mismatch, the incorrect SoR gets detected and corrected before getting
added to the Statewide Summary. For this analysis, we paired the process described in

 Definition and Analysis of Election Processes 183

section 4.1 with specifications of the behaviors of two different poll workers, exactly
one of which is hypothesized to produce fraudulent SoR results. Space limitations
prevent us from showing how we used Little-JIL to model the agents’ performance of
the Prepare SoR step. But, informally, we defined the fraudulent behavior by indicat-
ing that the observed machine vote totals were redefined by the poll worker. Our
model of the performance of the correct poll worker showed that the totals reported
were unchanged from the original machine totals.

Our process verification framework proved that the above property holds for this
process/agent pairing. It also holds when both poll workers are honest. If we were to
pair this process with two dishonest agents producing identical, yet incorrect SoRs,
the process verification still proves, albeit misleadingly, that the property holds. This
means that this property is not sufficient for verifying this additional incorrect agent
behavior. This led us to develop a stronger property: An SoR will never get added to
the Statewide Summary if it is different from the Machine_Total. A subsequent analy-
sis showed that this new property is sometimes violated by the process when there are
two dishonest poll workers. This led us to improve the process to have safeguards
against this additional incorrect agent behavior.

In this iterative process improvement procedure, we specify a property, verify it
holds for a process, specify a stronger property, attempt to verify the new property to
identify where it fails and improve the process with additional safeguards and prove
the strength of the new process through the verification of the new property.

In what follows we describe the detail of how the property verification works in
our mechanism through the example of verifying the first property mentioned above.
The formalism we used for specifying this property is a finite state automaton (FSA)
shown in figure 5. For each poll worker, the following property should hold.

Fig. 5. A security property for the Election process

The labels associated with the transitions in this property representation automaton
correspond to events in the process. The execution of a Little-JIL step is an event, but
only some step execution events are germane to the property being analyzed. In the
above property, the event “Match SoR1 with SoR2 succeeds” represents the execution
of step Match SoR1 with SoR2 is completed, while the event “Match SoR1 with SoR2
fails” represents the execution of step Match SoR1 with SoR2 is terminated raising
some exception. Similarly, the “Correct Incorrect SoR” transition represents execu-
tion of the step Handle Validation Fail is completed. Tools such as the FLAVERS
system used here trace all possible paths through a process model and move the
automaton from state to state as events in the automaton alphabet are encountered
along a path. If the automaton is always in an accepting state after tracing all possible
paths, then the property is verified. If not, it means FLAVERS has discovered a proc-
ess execution path along which the property is violated.

184 M.S. Raunak et al.

We now show that for one honest poll worker and one dishonest poll worker, the
property specified above holds. Since only one poll worker changes the SoR, two
SoRs are not identical. Therefore when the execution goes to Match SoR1 with SoR2,
exception “ValidationFail” will be thrown. The event “Match SoR1 with SoR2 fails”
occurs and the property automaton goes to state 1. The exception is then handled by
the exception handler Handle Validation Fail. When Handle Validation Fail step
completes, the event “Correct Incorrect SoR” occurs and leads the property to state 2.
Since the exception handler is a continue handler, the step Add to Statewide Summary
will be executed. Completion of this step triggers the event “Add to Statewide Sum-
mary”, which drives the property to state 3. The property remains in the accepting
state 3 until the whole process completes. Thus the property holds.

The property may also hold if both poll workers are dishonest. When both poll
workers change their SoRs, two SoRs could either be identical or different. If they are
identical, when execution goes to step Match SoR1 with SoR2, no exception will be
thrown. Thus event “Match SoR1 with SoR2 Succeeds” occurs and the property goes
to state 2. Then Add to Statewide Summary step is executed and event “Add to State-
wide Summary” occurs. The property goes to the accepting state 3 and remains in this
state until execution ends. On the other hand, if two SoRs are different, the “Valida-
tionFail” exception will be thrown by the step Match SoR1 with SoR2. The rest of the
execution is the same as the one for only one dishonest poll worker, as shown above.
In this case, the property is also in the accepting state when the execution ends. Thus
the property may hold if both poll workers are dishonest.

The original property only detects a fraud if the poll workers produce different
SoRs. Therefore the current process and analysis are inadequate to detect a fraud
where the poll workers change both SoRs in the same way. We have to modify the
process and/or include a more complex property to check for this kind of fraud.
While it may be possible to verify these properties by careful inspection, we argue
that such manual inspection quickly becomes infeasible as the process and agent be-
haviors grow larger and more complex.

5 Conclusion and Future Work

This paper describes how rigorous process definition and analysis can identify vulner-
abilities introduced by agent behaviors. We verified an important property for a particu-
lar election process and a specific combination of agent behaviors, and indicated how to
iteratively improve the process to make it robust against more complicated fraudulent
behavior. We plan to model more complicated and elaborate election processes with
many more agents and more complex fraudulent behavior. Modeling collusion among
agents and developing processes to defend against such intricate frauds and collusions is
an important direction in this work. These technologies seem to be the basis for a disci-
pline of election process engineering and continuous improvement.

Acknowledgements

Matthew Goetz was very helpful at an early stage of this work. Prof. George Avrunin
provided valuable feedback about the work. This research was partially supported by

 Definition and Analysis of Election Processes 185

the National Science Foundation under Award Nos. CCR-0204321 and CCR-
0205575. The U.S. Government is authorized to reproduce and distribute reprints for
Governmental purposes notwithstanding any copyright annotation thereon. The views
and conclusions contained herein are those of the authors and should not be inter-
preted as necessarily representing the official policies or endorsements, either ex-
pressed or implied of The National Science Foundation, or the U.S. Government.

References

1. Bannet, J., Price, D.W., Rudys, A., Singer, J., Wallach, D.S.: Hack-a-vote: Security issues
with electronic voting systems. Security & Privacy Magazine, IEEE, Vol. 2(1). Jan.-Feb.
(2004) 32 – 37

2. Cass, A.G., Lerner, B.S., McCall, E.K., Osterweil, L.J., Sutton Jr., S.M., Wise, A.: Little-
JIL/Juliette: A process definition language and interpreter. In: Proc. of the 22nd Interna-
tional Conference on Software Engineering, Limerick, Ireland (2000) 754-757

3. Clarke L.A., Chen Y., Avrunin G.S., Chen B., Cobleigh R., Frederick K., Henneman E.A.,
Osterweil L.J.: Process Programming to Support Medical Safety: A Case Study on Blood
Transfusion. In: Proceedings of the Software Process Workshop (SPW2005), Beijing,
China, May 25-27 (2005), Springer-Verlag Lecture Notes in Computer Science, Vol.
3840, 347-359

4. Dugger, R.: Counting votes. Annals of Democracy. New Yorker Vol. 64 (38) Nov 7, 1988
5. Dwyer, M.B., Clarke L.A., Cobleigh J.M., and Naumovich G.: Flow Analysis for Verify-

ing Properties of Concurrent Software Systems. ACM Transactions on Software Engineer-
ing and Methodology, October (2004) 359-430

6. Kohno, T., Stubblefield, A., Rubin, A., and Wallach, D.: Analysis of an Electronic Voting.
System IEEE Symposium on Security and Privacy 2004. IEEE Computer Society Press,
May 2004.

7. Robinson S.: Did Your Vote Count? New Coded Ballots May Prove It Did. New York
Times, March 2nd 2004, http://www.nytimes.com/2004/03/02/science/02VOTE.html?ex=
1084334400&en=88f5c6e6696ccdcf&ei=5070

8. U.S. presidential election, 2000: Wikipedia, http://en.wikipedia.org/wiki/U.S._presidential
_election,_2000.

9. Verified Voting Foundation, http://www.verifiedvotingfoundation.org
10. Wise A.: Little-JIL 1.0 language report. Technical Report No. UM-CS-1998-024, Depart-

ment of Computer Science, University of Massachusetts, Amherst, MA (1998)

Q. Wang et al. (Eds.): SPW/ProSim 2006, LNCS 3966, pp. 186 – 194, 2006.
© Springer-Verlag Berlin Heidelberg 2006

The Design of a Flexible Software Process Language*

Beijun Shen1 and Cheng Chen2

1 Dept. Of Computer Science, Shanghai Jiaotong University, Shanghai 200240, China
bjshen@sjtu.edu.cn

2 Wonders Information Co., Ltd., Shanghai 200230, China
chen_goodwin@yahoo.com

Abstract. We propose a flexible process language (FLEX) to specify both
process model and meta-process model within a uniform framework based on
process ontology. A process ontology and some kernel meta-activities are
presented as the fundament for process support, such as modeling, enaction and
evolution. In contrast to other process languages that only can evolve process
model while encoding meta-process logic within PSEEs, our approach can also
evolve meta-process model for adjusting process support mechanism flexibly.

1 Introduction

A process language should support the change of software process model in a flexible
manner while the process is enacting, because there are full of indeterminacy during
software project development. Furthermore the change of process representation may
cause the change of related meta-processes. Conradi [1] remarked that “it is not
possible to identify one universal meta-process for all possible process.” So we
believe that both process representation and meta-processes should also be user-
defined and user-evolved.

In this paper, we propose a flexible process language (FLEX) to specify both
process model and meta-process model within a uniform ontology-based framework,
which also supports to specify customizable process enaction logic in meta-process
model. The most significant feature of FLEX is the process ontology, which can be
defined statically and modified dynamically through operation primitives during
process evolution. It allows users to customize the representation of process elements
and to define new operation primitive for extending the representation capability of
language. On the other hand, general users can use it easily by pre-defined
representation and operation primitives, so they needn’t be involved in the detail of
semantics. With this approach, we try to provide users customizable process language
to reach the goals of flexibility, ease to use and semantic richness. Secondly, in
contrast to most of PMLs, e.g. EPOS SPELL [1], Merlin [2], PEACE/PDL [3],
SPADE/SLANG [4], that only specify process model while encoding meta-process
logic within PSEEs, FLEX can obtain some significant advantages since it specifies
meta-process model to support flexible process management. Based on some kernel

* This research is supported by the National Natural Science Foundation of China (No.

60373074).

 The Design of a Flexible Software Process Language 187

meta-process models, we are able to define, enact and evolve software process model
and meta-process model themselves continuously.

We introduce the concept of process ontology in Section 2. Section 3 proposes the
fundamental process ontology, i.e. the pre-defined process modeling language,
including the pre-defined operation primitives and the representation of process
elements. Section 4 proposes the kernel of meta-process models and the mechanism
of process enaction and evolution. We assess our approach and conclude in Section 5.

2 Process Ontology

In the view of AI, ontology is an explicit specification of a conceptualization: the
objects, concepts, and other entities that are presumed to exist in some area of interest
and the relationships that holds them [5]. Similar to ontology, we define process
ontology as a specification of representation of process elements, i.e. the definitions
of classes, relations, and semantics of process elements. There are several main parts
in process ontology:

1) Super Ontology: This optional part specifies the super process ontology. Process
ontology can inherit all observable process elements and related syntax and semantics
from its super process ontology.

2) Syntax: It specifies the syntax of each process element with context-free grammar,
which determines the representation of process elements user can use. We regard
process model and its related process elements as a type system, which has some pre-
defined types. We can define new types by some operations on those pre-defined
types, i.e. $boolean, $number, $string, $name, $time, $set, and $currency. The name
of process element is a particular pre-defined attribute with type $name, who can
exclusively determine a process element in a process model. A process element
should have explicit name while it may be referred by other process elements. For
avoiding the name conflict in process model, we use the form <process element
name>.<attribute name> to refer an attribute of a process element.

3) Semantics: It defines semantics of process elements and user-defined operation
primitives by pre-defined operation primitives and system-supplied semantics.

There are six pre-defined operation primitives with implicit semantics in FLEX,
which are $relation, $consist, $derive, $alias, $semantic and $mask.

− The primitive $relation implies that two process elements have some kind of
relation.

− The primitive $consist defines the combination of process elements, and has the
form of [A $consist {A1, A2, …, An}], where A, A1, A2, …, An are process elements
represented by their type descriptor.

− The primitive $derive defines the derivation of some defined process elements, has
the form of [A $derive B], where A and B are process elements. We call that A is
sub process element of B, and B is super process element of A. A process element
can inherit all attributes and corresponding semantics from its super process
element and keep the syntax of its super process element except its type descriptor.

188 B. Shen and C. Chen

− The primitive $alias defines the equivalence between two semantic specifications.
The valid operation expression is remarked as semantic specification. Users can
define new operation primitives by $alias.

− The primitive $semantic is similar to $alias. The difference between them is the
left of $semantic should be a keyword in syntax and the right of $semantic should
be a defined operation primitive. For example, let an operation expression (consist
$semantic $consist), where consist is a keyword in syntax part of the process
ontology, and its semantics will be equivalent to $consist.

− The primitive $mask makes some process elements and operation primitives to be
invisible outside.

In addition, it also supports the form such as first order predication, FAM,
temporal operator, and DPDA to specify semantics. Users can construct their detail
semantic specification based on them.

3 Pre-defined Process Language

In the framework of process ontology above, we propose the fundamental process
ontology for process model, meta-process model, and organization model.
Organization models of different organization can have varied forms, but we
prescribe that they must consist of the ontology of agent and skill.

For reaching the goal to describe process model in the following four views:
function view, behavior view, organization view and information view, our pre-
defined process language defines the attributes of process model in the following
semantics:

Process Model $consist {Name, Interface, $set(Activity), $set(Product), set(Role),

$set(Trigger), $set(Pattern), $set(Conflict), $set(Relation), $set(Exception
Handler), $set(SubProcess Model)}

1) Interface

Interface $consist {$set(Input Process Element), $set(Output Process Element)}

Input process elements are the external process elements used in the process
model, and output process elements are the internal process elements that can be used
in other process models.

2) Activity
It defines an atomic or composite step that contributes towards the achievement of a
goal.

Activity $consist {Name, Interface, Precondition, Postcondition, Workload,

Planned Duration, State, State Transition Diagram, $set(Role), $set(Sub Activity),
$set(Involved Sub Process Model)}

− Precondition and Postcondition are conditional expressions. The activity can be
enacted while the Precondition becomes true, and can be finished successfully
while the Postcondition becomes true. While the Precondition becomes true, the set

 The Design of a Flexible Software Process Language 189

of available products in input products is called the active product set of the
activity. While the Postcondition becomes true, the set of usable product in output
products is called the generated product set of the activity.

− State is a user-defined set {initial, ready, running, finished, aborted}.
− State Transition Diagram (STD) is a FAM, which defines state transition after

performing an action. An action is a tuple Â = <HA(R’,o), o, A>, where o is an
action name, which refers to meta-activity A’, HA(R’,o) is a human agent who is
assigned to meta-role R’ in meta-activity A’, and A is type descriptor of an
activity.

− Role is a tuple <R, HN>, where R is the role for enacting the activity, HN is the
number of human agents of R needed in the activity.

− Involved Sub Process Model is a tuple <SA, SPMs>, where SA is the sub activity,
and SPMs is a set that consists of the sub process models that SA is referred by.

3) Product
It defines a set of information that facilitates and supports the process.

Product $consist {Name, Identifier, State, State Transition Diagram, Tool Set, Sub
Products, Involved Sub Process Models}

− State is a user-defined set {initial, available, submitted, unavailable}
− State Transition Diagram (STD) is a FAM, which defines state transition after

performing some kind of operation.
− An operation is a tuple Ô = <HA(R,A), o, P>, where HA(R,A) is a human agent

who is assigned to role R in activity A, P is a product that should be one of the
output products of A, and o is an operator name, which refers to a meta-activity in
corresponding meta-process model, two system-supplied operator is {r, w}.

4) Role
It defines a set of skills expected of an agent of the organization.

Role $consist {Name, Skill Requirement}

The latter is a set of Skill, which consists of skill type and degree. Skill and the
relationship between Human Agent and Skill are specified in organizational model.
Only those agents who reach the Skill Requirement can be assigned to the role.

5) Trigger
Trigger has the form of [Condition Behavior], or only [Behavior], which is a
equivalence of [true Behavior]. Condition is a conditional expression. The
Behavior can be

− [do X], where X is an action or operation, or

− [{enable | disable} SX], where SX is a set of patterns and conflicts.

6) Pattern and Conflict
In the domain of software process, there is no stable correctness criterion like
serializable isolation in 2-phase lock because the transactions of software process are
long, open-ended, dynamic, iterative and cooperative. Hence we allow user-defined
correctness criterion.

190 B. Shen and C. Chen

Patterns and conflicts are used to define the correctness criteria for process model
in detail, which specify the interleaving of actions/operations. Similar to [6], we
express pattern by a set of rules that describe the grammar in LR(0) form. In these
rules, we represent the nonterminals as script letters, e.g. A, B, with S reserved as the
start symbol. The terminals are extended to action Â of the form <HA(R’,o), o, A> or
operation Ô of the form <HA(R,A), o, P>, which are defined above. A trigger can
activate patterns and conflicts. An active pattern must be satisfied and an active
conflict must be forbidden, otherwise an exception will be thrown.

5) Relation
We mainly focus on the relations between activities, between activity and product,
and between products. Some operation primitives are given to define those relations,
which can be transformed into temporal expression or some triggers, patterns, and
conflicts.

− Relation between activities: [T (C1, C2)], where T can be ‘before’, ‘after’,
‘contains’, C1 and C2 are conditional expressions. It means that T1 {before | after |
contains} T2, where Ti is the time interval when the value of Ci is true. Some pre-
defined relations are follow, synchronization, and concurrent. For example, (A1
follow A2) $alias (after (A1.state = running, A2.state = finished))

− Relation between activity and product is specified by a 3-tuple <A, P, o>, where A
is an activity, P is a product and o is the operation to P. It can be transformed into a
pattern PA1 and a conflict CF1. Both of them have only one production:

PA1 S → <HA(R, A), o, P>, where R is free

CF1 S → <HA(R, A), o, P>, where R is free

They construct the semantics that only those who participate the activity A can
perform operation o to product P. There are two pre-defined operations: r (read)
and w (write).

− There is a pre-defined relation between products: depends. Its semantics is
(P1 depends P2) $alias (∃A(<A, P1, generate> <A, P2, use>) enable PA)

Where PA is a pattern that has the following production:

PA2

S → <M, w, P2> B, where M is free

B → <HA(R, A1), r, P2>, where R is free, A1 satisfies <A1, P2, use>

B → <HA(R, A1), w, P1, reject> B, where R is free, A1 satisfies <A1, P2, use>

6) Exception Handler
Like the form of trigger, exception handler has the form of [handle E Behavior],
where E is the name of an exception, and Behavior is [do SEQX], where SEQX is a
sequence of actions and operations. For example, if one conflict occurs and it throws

 The Design of a Flexible Software Process Language 191

an exception E1 while enacting activity A1, the simplest treatment is to abort the
activity. The logic can be expressed as

handle E1 do abort A1.

7) Meta-Process Model
Meta-process model is also a process model. For distinguishing it from process
model, we note activity, product and role in meta-process model as meta-activity,
meta-product, and meta-role. An instance of meta-product is some kind of process
element, identified by its type descriptor. Action is the reference to the meta-activity
that is no interaction with human agents. Through invoking an action, process model
can invoke corresponding meta-activity. Meta-activity mainly deals with activity and
product, and we also call the reference to the latter as operation. Action can be
regarded as traditional transaction because it suits ACID properties.

4 Process Management Mechanism

There is a system-supplied kernel meta-process model, which contains some popular
meta-process activities, such as process modeling, process enaction and process
evolution, and is enacted by FLEX interpreter. In this paper, we focus on the
mechanism of process enaction and evolution based on the initial process language
and kernel meta-process model.

4.1 Process Enaction Mechanism

There are five key meta-activities and corresponding actions in process enaction, the
form of those actions are specified in the following:

− r, read a process element.
− w, write a process element.
− start, start to enact an activity/meta-activity and translate its state to ‘running’.
− commit, finish the enaction of an activity/meta-activity, commit the influence of

the enaction to system, and translate its state to ‘finished’.
− compensate, withdraw the influence of committed or un-committed activity/meta-

activity, consist of necessary compensation to related activities/meta-activities.

Those actions will be executed in the constraint of some general correctness
criteria, such as:

− (CC1) If an activity A1 writes product P1, any other activities can’t write P1 before
A1 is committed.

CC1 PA1

S → <HA(R, A1), w, P1> B, where R is free

B → <HA(R’, commit), commit, A1>, where R’ is free

B → <HA(R, A1), w, P1, reject> B, where R is free

192 B. Shen and C. Chen

− (CC2) Let activity A1, A2 and product P1, A1 generates P1 and A2 uses P1. If A1
writes P1 again after A2 has read P1, A2 must read P1 again before it commits or
writes anything.

CC2 PA2

S → <HA(R, A2), r, P1> B, where R is free

B → <HA(R, A1), w, P1> D, where R is free

D → <HA(R, A2), r, P1>, where R is free

D →<HA(R’, commit), commit, A2, reject> D, where R’
is free

D → <HA(R, A2), w, X, reject> D, where R and X is free

CC3 CF1 S → <HA(R, A1), w, P1>, where R is free

− (CC3) Any activity can not write its input products. Let activity A1 and product P1,
A1 uses P1.

CC3 CF1 S → <HA(R, A1), w, P1>, where R is free

The execution of an action consists of three parts. Firstly, PSEE should judge
whether the action can be executed, based on the patterns and conflicts user-defined
or system-generated. Then PSEE can perform the meta-activity corresponding to
invoked action. In the end, if the action is performed successfully, the process
scenario should be calculated. In this section, we assume that the process model is
stable.

Definition 1 (action history). Let A = {A1, …, An} be a set of actions. An action
sequence AS over A is a 2-tuple <A, >, where is the partial order on A. must
satisfy all of the correct criteria. Action history AH is the action sequence from
enacting the model.

Definition 2 (process scenario). Let PM be a process model, PA = {PA1, …, PAn}be
the set of patterns of PM, and CF = {CF1, …, CFm} be the conflict of PM. Process
scenario PS is a set of 2-tuple <Ci, SC>, where Ci PA CF, and SC is a stack of
Ci, that contains nonterminals of accepted partial production.

Because we extend the definition of terminal in LR(0) grammar of patterns and
conflicts, we propose an operation primitive suit to judge whether an action is
matching to required terminal.

Operation primitive 1 (suit)
Let action history AH, process scenario PS, expected terminal Ti of Ci, current action
a = <M, o,O>, where M is a member, o is an action name, O is an object identifier.

(a suit Ti) $alias (((Ti = <HA(R,A), o’, P>) (M HA(R,A)) (o = o’) (O
= P)) ((Ti = <HA(R’,A’), o’’, A>) (M HA(R’,A’)) (o = o’’) (O = A)))

Now we propose the pseudo-program of performing an action.

 The Design of a Flexible Software Process Language 193

Algorithm 1 (Perform an action)

let a set SA, which contains values with type $number;
for each Ci in current PS begin

for all Ti that a suit Ti, look the SC of Ci and get the matching
production Pr of Ci;

if (Ci is a conflict) and (Pr is S) and (SC is empty), reject the action;
otherwise add the subscript of Ci into SA;

end;
for each Ci in SA begin

invoke a;
calculate the expected terminal Ti of each production;
push the left non-terminal of Pr into SC;

end

4.2 Process Evolution Mechanism

Almost anything in FLEX, including process ontology, process model, meta-process
model, and organization model, can be evolved continuously. In this paper, we only
give a simple example to show the process evolution.

Suppose an organization, which uses FLEX for their process management, wants
to enhance an activity state, such as ‘suspended’. The requirement can be reached by
the following steps:

1) add ‘suspended’ value into the activity state set in process ontology;
2) create two meta-activities: suspend_activity and resume_activity, to suspend or

resume an activity;
3) create two actions: suspend and resume to refer to suspend_activity and

resume_activity;
4) add necessary correctness criteria in corresponding meta-model to reject any

actions to the activity, except resume, to be performed while an activity state is
‘suspended’;

5) modify the STD of activity in process ontology.

5 Conclusions

We have proposed a flexible process language FLEX as an approach to specify
process model and meta-process model within a uniform framework, based on
process ontology. FLEX has some features that can meet the requirement of software
process domain:

− Semantic Richness and Ease of Use. FLEX proposes process ontology as the
framework to specify process elements. On the one hand, experts can customize
the attributes and representation of process elements and can define new operation
primitives to extend the capability of process management. On the other hand,
general users can work with the PSEE easily because FLEX provides them with
pre-defined and expert-defined operation primitives, so that they must not be
involved in the detail of semantics of process management.

194 B. Shen and C. Chen

− Flexible. Not only the representation of process elements, but also the process
management logic is flexible to be customized. Customizable meta-process model
allows users to control process in different way, and to adjust process control
mechanism as expected during process enaction. Furthermore, each process model
has a set of patterns and conflicts that define its own correctness criteria to control
the sequence of actions over the process model.

− Reflective. We regard meta-process model as special process model, so the functions
of meta-process model can be applied to themselves. For example, user can define a
meta-process model by invoking process modeling and following the same step of
defining a process model. Both process model and meta-process model can be
evolved through invoking process evolution.

Now we have developed FLEX interpreter and a prototype of PSEE based on
FLEX. Further research will focus on a formalism foundation for FLEX.

References

1. Conradi, R. et al.: EPOS: Object-Oriented and Cooperative Process Modeling. In: Software
Process Modeling and Technology. Research Studies Press Ltd. (1994)

2. Derniame, J.C., et al.: Software Process: Principles, Methodology, and Technology. Lecture
Notes in Computer Science, Vol. 1500. Springer-Verlag, Berlin Heidelberg New York
(1999)

3. Arbaoui, S., Oquendo, F.: PEACE: Goal-Oriented Logic-Based-Formalism for Process
Modeling. In: Software Process Modeling and Technology. Research Studies Press Ltd.
(1994)

4. Bandinelli, S., et al.: SPADE: An Environment for Software Process Analysis, Design, and
Enactment. In: Software Process Modeling and Technology. Research Studies Press Ltd.
(1994)

5. Genesereth, M.R., et al.: Logical Foundations of Artificial Intelligence. San Mateo, CA:
Morgan Kaufmann Publishers (1987)

6. Nodine, M.H., et al.: A Cooperative Transaction Model for Design Databases. In: Database
Transaction Models for Advanced Applications. Morgan Kaufmann (1992)

7. Kirk, D.: A Flexible Software Process Mode. Proceedings of 26th International Conference
on Software Engineering (2004)

8. Zhao, X.P., et al.: Applying Agent Technology to Software Process Modeling and Process-
centered Software Engineering Environment. Proceedings of ACM Symposium on Applied
Computing (2005)

Q. Wang et al. (Eds.): SPW/ProSim 2006, LNCS 3966, pp. 195 – 203, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Building Business Process Description and Reasoning
Meta-model Mbp in A-Prolog

Hai Wan1,2, Yunxiang Zheng1, Yin Chen3, and Lei Li1

1 Software Research Institute, Sun Yat-Sen University, Guangzhou, 510275, PRC
2 Computer Science & Tech Department, Sun Yat-Sen University, Guangzhou 510275, PRC

whwanhai@163.com
3 Computer Science Department, South China Normal University, Guangzhou 510631, PRC

Abstract. In order to elicit and describe business processes of Complex Infor-
mation System (CIS) in requirements analysis phase definitely, avoid inconsistent
or ambiguous process definitions, and help reasoning, checking and planning
processes, Business Process Meta-model Mbp in A-Prolog is proposed, which is
composed of three hierarchical representations: interactive multi-business proc-
esses Multi-pro, business process Pro, and business Bus cored by Role-Action-
Form. This paper presents the applicability of A-Prolog to the representation of
business process and multiple aspects of reasoning about processes and effects.
Finally, based on BPPA system (Business Process Planning based on A-Prolog)
which has been applied in CIS development, an example of applying business
process reasoning to workflow planning demonstrates that Mbp can simplify and im-
prove business process representation and analysis of CIS reasonably and effectively.

Keywords: Business process, Meta-model, A-Prolog, Requirements analysis.

1 Introduction

Eliciting and describing business processes precisely and accurately is critical and
important to develop Complex Information System (CIS), typically: Enterprise Re-
source Planning (ERP), Workflow System, e-business or e-government system, etc.,
also the main task and aim of CIS requirements elicitation and analysis [1].

Because of the complexity and variety of business processes in CIS, a variety of
different methods and tools have been developed to represent, model, and analyze
business processes, then map into software process, which can be cataloged as: Ob-
ject-oriented (such as OOA, OOSE, or UML, etc.), Process-oriented (such as SA,
SADT, or VDM, etc.), Data-oriented (such as JSD or ER), Control-oriented (such as
DFD), Goal-oriented, Aspect-oriented, Model-driven, etc [6]. Letier has discussed
how to reason about partial goal satisfaction for non-functional requirements in [3].

However it is inappropriate to apply these methods and tools in CIS requirements
elicitation and analysis directly, the reasons of which are as following: many factors
concerned in representing business logic, such as relationship between roles, data,
forms, and actions, etc., which may confuse requirement staffs or system users and
lead to indefinite or imperfect requirements specification; because of difficulties in
communication with users, requirements boundary definition, iteration in requirements

196 H. Wan et al.

phase, business process specification is often unavoidably incomplete, inconsistent, or
ambiguous; lake of inference engine is the main deficiency in requirements tools, is
it possible to represent processes of reasonable size involving complex effects of ac-
tions, and is there an available inference engine to compute solutions in an efficient
manner?

This paper proposes applying A-Prolog to elicit, describe and reason business
process, which is the research branch of applying the methods of artificial intelligence
to solve the problems of requirement analysis. Business process is meant to be repre-
sented in formal specification, with which business logic can be described more de-
clarative and unambiguous by reducing the errors caused by misunderstanding.

The paper is organized as follows. In the next section, we depict the syntax and
semantics of A-Prolog, and business process paradigms in CIS. Section 3 considers
business process from meta-model perspective and defines Mbp. Section 4 proposes
formalization and reasoning methods of business process in A-Prolog with theorems
and proofs. Finally, based on BPPA system, an example of applying business process
reasoning to workflow planning is presented, which demonstrates that Mbp can simplify and
improve process representation and analysis of CIS reasonably and effectively.

2 A-Prolog and Business Process Paradigms

A-Prolog extends “classical” Prolog [8] by classical negation and disjunction for
representing commonsense knowledge related with nonmonotonic reasoning or nega-
tion in logic programming, and is a declarative logic programming and new pro-
gramming paradigm based on Stable models / Answer sets semantics, allowing the
encoding of defaults and various other types of knowledge contained in dynamic
domains, typically, the representation of actions, action sequence and effects [4, 5].

Definition 1 A-Prolog program. A-Prolog is a pair { , }, where is a signature and
 is a collection of rules over ;

--- Signature = <T,C,F,P>, where T, C, F, and P are sets of symbols, members of
the set T are called types, the set C contains object constants for each type in T, sym-
bols from sets F and P are typed functions and predicate constants, respectively. Term
is either a typed object constant, or a string of the form f(t1,…, t n),where t1,…,t n are
terms of T, and f is a typed function of F. Atom is a sting of the form p(t1,…,t n), where
t1,…,t n are terms of T, and p is a typed predicate of P. Literal is either an atom (posi-
tive literal), or an atom preceded by called classical negation (negative literal).

--- Rule of is a statement of the form:

 l0 ← l1, …, l m, not lm+1, …, not ln (n≥ m≥ 0,and li’s are literals over) (1)

where not is a logical connective called negation as failure or default negation.

Definition 2 Answer set of A-Prolog program. Set S is an answer set of if:

 S = Cn(S) (2)

where is an arbitrary ground program in A-Prolog, for any set S of ground literals
of its signature , let the reduct of relative to S, denoted S, be the program ob-
tained by deleting from : each rule that has a negative literal in its body belonging

 Building Business Process Description and Reasoning Meta-model Mbp in A-Prolog 197

to S; and all negative literals in the bodies of remaining rules; if S satisfies:

closed under the rules of ground , and if S contains an atom p and its negation
p, then S contains all ground literals, denoting S as Cn(S), i.e., program with

at least one consistent answer set Cn(S).
From definition 2, we assume the sets of all ground literals over as lit(), then a

literal l lit() is true if l Cn(S); l is false if l Cn(S); otherwise, l is unknown;
it is easy to see that programs of A-Prolog are nonmontonic, which is important for
the representation of knowledge of business processes and gives the means for rea-
soning about actions, processes and effects. We can show this by example 1.

Example 1. Assume that the signature 1 contains two object constants {a,b}, with
program 1:{q(a). ; p(X)←not q(X).}. From definition 1, 1 has the unique answer set
S={ q(a), p(b)}, i.e. 1 p(b); however, if some new information, q(b) is added into

1, it forces the withdrawal of the previous conclusion p(b), i.e., the new program 1

{q(b)} has the unique answer set {q(a), q(b)}.
Answer set semantics of A-Prolog belongs to a higher level of computational com-

plexity and has more expressive and very useful for nonmonotonic reasoning. A-
Prolog is a new form of declarative logic programming, interpreting a logic program
as a constraint on sets of literals, just as a propositional formula can be viewed as a
constraint on assignments of truth values to atoms. The idea of A-Prolog application
is to represent a given computational problem as a logic program and apply answer
set solver to find answer sets. A-Prolog has been applied in several combinatorial
problems, including planning, wire routing, and phylogeny reconstruction, etc. [2, 4].

Currently, several systems have been developed, which can be applied to compute
the answer sets of a logic program based on answer sets semantics, such as DLV and
SMODELS [2]. SMODELS has two parts, smodels and lparse. The first part, smodels
is the actual logic programming engine doing all the hard work and lparse work as
variable grounding which maps a subset of variables of a rule into ground terms.

Fig. 1. Relationship between Buss in single business process

Business process representation is critical to depict users’ requirements and should
identifies process actions, transitions, participant specification, relevant data, and
processes interaction, etc., which may be complicated to requirement staffs and sys-
tem users. This paper assumes business process paradigms can be simplified and
divided into 2 categories based on whether there exist communications or interactions
between processes: one is single business process, the other is multi-business process.

198 H. Wan et al.

Assuming basic unit in single business process is Bus, based on relationships be-
tween Buss, single business process can be classified as 7 categories(Fig.1). There are
4 logic connective symbols between Buss:Sequence ,And *,Or +,and Exclusive or .

Multi-business process depicts message or data transition between two or more
single business processes, based on difference of interactive types: synchronization or
asynchronism, it can be classified as 4 types (as show in Fig.2)

Fig. 2. Interactive types of multi-business process

3 Business Process Meta-model Mbp

As indicated in the business process paradigms, process model includes various enti-
ties whose scope may be complicated, such as, participants, actions, and relevant data,
etc. By defining Business Process Meta-model Mbp, business process can be repre-
sented hierarchically, helping analyzing various entities simply and reasonably.

Fig. 3. Framework of Business Process Meta-model Mbp

The Mbp is generally composed of three architectural levels (shown in Fig.3). The top
level describes interactive multi-business processes Multi-pro, comprised of business process
Pro based on Forms in second level. As describing in section 2, the basic unit Pro is Bus,
consisting of three parts: Role, Action and Form, which we have described iconically
as Subject, Predicate and Object respectively in [9].

 Building Business Process Description and Reasoning Meta-model Mbp in A-Prolog 199

Definition 3. Business Bus: can be specified by a triple:

 Bus = <Role, Action, Form> (3)

where Role represents all the roles in relative business, Action is a set of actions per-
formed by Role, and Form is various data forms Role processes. Bus describes which
Role can do what Action to what data in which Form. Address Bus in detail:

Role =<Dept,User>, where Dept represents relative department, User is the staff,
organization, or system in Dept. Action ACTION, ACTION is atom action sets,
consisting of Access, Delete, Add, Update. Form=<Field,Forms>, where Forms repre-
sent various data forms (real or virtual forms) and Fields are the items of Forms;

The Bus in Pro can be figured as directed graph (shown in Fig.3), in which node
represents State S expressed by first-order predicate logic formula regarding Field in
Forms as Term, and edge represents Bus. Assuming C as conversion condition and E
as event which triggers Pro converts from S when satisfying C, then Bus conversion
definition can be given as following (shown in Fig.4):

Definition 4. Bus Conversion: has two type formulas:

 Cause bus if s e[c] (4)

 Impossible bus’ if s e’[c’] (5)

mean when condition c is satisfied, and event e is triggered, bus should be converted
from state s to next state s’; or when condition c’ is satisfied, and event e’ is triggered,

bus’ should not be converted from state s to next state s’.

Fig. 4. Conversion relationship of Buss and States

Based on Bus conversion we can represent relationships between Buss in single
business process definitely as shown in Fig.2.

Definition 5. Business Process Pro: can be specified by:

 Pro = < form, s, bus, t, s , s > (6)

Pro is related with a specific form and composed of state set s, business set bus and
bus conversion set t, in which s , s s, s is beginning state, s is ending state.

Definition 6. Process Message Msg: can be specified by:

 Msg = < Pro, Pro’, bus, bus’, e, type, data> (7)

Pro and Pro’ are two interactive business processes; bus and bus’ are business in Pro
and Pro’ respectively; e is event which triggers Msg; type means type of Msg, there
are two types: synchronization and asynchronism; data is the content of Msg.

Based on definition of Bus, Pro, and Msg, we can present Mbp in the top level.

200 H. Wan et al.

Definition 7. Business Process Meta-model Mbp: can be specified by:

 Mbp = < PRO, MSG > (8)

Where PRO is business process set in Mbp, and MSG is process message set in Mbp. If
Msg(pro,pro’) MSG, pro, pro’ PRO, there exists interaction between pro and pro’.

According to Business Process Meta-model Mbp above, we can definitely elicit
business process easily, because the processes are related with specific forms and can
be represented clearly and definitely.

4 Business Process Formalization and Reasoning in A-Prolog

Given business process description P based on Mbp, it can be translated into A-Prolog
(P) consisting of domain facts and constraint rules describing Role, Action, and

Form respectively, and then find the answer sets of (P), allowing us to reason and
do some checking or planning work. Business process description (P) over a signa-
ture is a collection of atoms: • role(ri,di). (role ri belongs to department di);
• action(ai).(atom action ai); • form(fieldi, formsi).(field fieldi belongs to form formsi);
• bus(formsi,t).(t business bus related with formsi); • s(formsi,t).(t state s related with
formsi); • pro(formsi).(process pro related with formsi);• msg(m).(message msg).

By an observation, O() means a set which depicts business:

{occ(bus(formsi,t): role(ri, di), action(ai), form(fieldi, formsi))} -- denotes that bus
(formsi,t) is composed of role role(ri,di), action action(ai), form form(fieldi,formsi).

In order to represent the relationship between business bus and state s, we need to
define state and transition relation <s0,bus,s1>, where s1 is the state after bus is proc-
essed in previous state s0, and relation holds(F,T) denotes fluent F holds at step T.

O() indicates three types of definition paradigms: static constraint law (expressed
by g if f), dynamic casual law (expressed by a causes f if g, as shown in formula 4),
and commonsense of law of inertia (i.e. normally, things tend to stay as they are).

By domain description D(P,),i.e.D(P,) = (P) O(),we can depict business
process, which is the base of business process checking and planning.

We demonstrate reasoning method with theorems as following:

Theorem 1. Let set S be the set of all the answer sets of the D(P,).If S=ø, then some
inference rules are wrong or missed.

Proof. According to A-Prolog semantics, if there is no answer set for a logic program,
it means that through the domain facts and inference rules none of the atoms can be
found by answer set solver i.e. each atom can be proved true by the resolution mecha-
nism. Suppose f is hold at the beginning and goal is g, so we find the answer sets by
‘compute all {f,g}’. Here f(g) is a fluent which can be roles or forms. If there is no
answer sets, there is no way to reach to goal state from the initial. It is impossible for
business process reasoning and some inference rules must be wrong or missed.

In this situation, reasonable plan can not be derived, so we must check business proc-
ess specification and find the wrong rules and modify it.

 Building Business Process Description and Reasoning Meta-model Mbp in A-Prolog 201

Theorem 2. Let set S be the set of all the answer sets of the D(P,). if (S) 2, where
(S) means the number of elements S contains, ambiguity may exists.

Proof. Consider this example: if a program contains these two rules in the action part
and they are both possible at time T: occ(a1,T) :- not occ(a2,T) ; occ(a2,T) :- not
occ(a1,T). Apparently, we will get at least two answer sets, for we can’t decide which
action will occur at time T. We need some constraints for this case.

When this happens, i.e. there are more than one answer sets for a program; we may
need to check our business processes specification.

Business process reasoning has two aspects in detail: Business process planning
for workflow design; Checking errors in business process specification, such as:
relationships between roles and departments, data origin relationships between forms,
operation-data relationships between actions and forms, etc.

5 Example and Experience

In this section we demonstrate an example: EOrder Main Process of applying busi-
ness process planning for workflow design, which is illustrated in [7].

Example 2. EOrder Main Process takes a formatted string as an input and returns a
string that indicates whether the order was confirmed or rejected (as shown in Fig.5)

EOrder Main Process in Fig.5 confuses control and data flow, besides, without
solver to help workflow planning. So we design BPPA system (Business Process
Planning based on A-Prolog), which represents business process in Mbp with

Fig. 5. EOrder Main Process

Fig. 6. Improved EOrder Main Process based on Mbp in A-Prolog

202 H. Wan et al.

graphical interface, written in Java, allowing users to (1) draw business process
diagram, (2) automatically translate a process drawing to A-Prolog.

The improved EOrder Main Process based on Mbp in A-Prolog is showed in Fig.6.
After BPPA translating process drawing into A-Prolog program based on SMODELS
solver, we can easily plan business process to show reasonable workflows.

Limited by page sizes, we only present above part of A-Prolog program translated
from EOrder Main Process shown in Fig.6, by which there are four derived planning
workflow as following with S0 as beginning state s and S9 as ending state s :

BPPA system has been applied to elicit, describe and plan business processes in
developing Vantage ERP System of Zhongshan, Digital Platform of Donghua Cam-
pus, and Resource Scheduling System of Guangdong Telecom.

6 Conclusion and Future Works

This paper has presented a new approach and business process description and rea-
soning meta-model Mbp in A-Prolog, described how to apply this model to business
process planning and checking with answer sets solver SMODELS in detail. Mbp is
composed of three hierarchical representations: Multi-pro, Pro, Bus cored by Roles-
Actions-Forms. In addition, an example on representing business process and rea-
soning suitable workflow demonstrates that Mbp can simplify and improve business
process Description and Reasoning in CIS requirements analysis phase reasonably
and effectively. There are several issues to be addressed: Mbp and the framework are
to be formalized and followed by the validation of requirements specification to
some extent.

Acknowledgments. This effort is supported by PH.D Subject Construction Project of
Sun Yat-Sen University in the Software Field.(35000-3253201). Many thanks to our
colleagues and the same thanks to the anonymous reviewers for their helpful sugges-
tions that improved the quality of this paper.

 Building Business Process Description and Reasoning Meta-model Mbp in A-Prolog 203

References

1. Andrés Silva. Requirements, domain and specifications: a viewpoint-based approach to re-
quirements engineering. In Proceedings of the 22rd International Conference on Software
Engineering, ICSE 2002, pp.94-104, Orlando, USA. ACM 2002.

2. Esra Erdem. Theory and Applications of Answer Set Programming. Ph.D Dissertation,the
University of Texas at Austin,2002 August.

3. Emmanuel Letier and Axel van Lamsweerde. Reasoning about Partial Goal Satisfaction for
Requirements and Design Engineering. In proceedings of 12th International ACM
SIGSOFT Symposium on the Foundations of Software Engineering (FSE-12),Newport
Beach, Califonia, USA, Oct.31-Nov.5, 2004 pp.53-62.

4. M.Gelfond and N.Leone. Logic Programming and Knowledge Representation – An A-
Prolog perspective. In Artificial Intelligence, 138(1-2), pp.3-38, June 2002.

5. M.Gelfond. Representing Knowledge in A-Prolog, Computational Logic: Logic Program-
ming and Beyond, Essays in Honor of Robert A. Kowalski, volume 2408, Part II,pp.413-
451, Springer-Verlag, Berlin, 2002.

6. LU Mei and LI Ming Shu. Review of Methods and Tools of Software Requirements Engi-
neering. (in Chinese with English abstract). Computer Research & Development Jan. 1999
Vol.36, No.11 pp.1289-1300.

7. WfMC(Workflow Management Coalition). Workflow Process Definition Interface - XML
Process Definition Language(Ver1.0).Document Number WFMC-TC-1025.October
25,2002.

8. S.Ceri, Gottlob, L.Tanca, Logic Programming and Database, Springer-Verlag,1990.
9. Yunxiang Zheng, Hai Wan, Lei Li. A New Software Requirement Method Based on Sub-

ject- Predicate-Object Logic. Software Process Workshop 2005, Beijing, China, May 25-
27,2005.

Q. Wang et al. (Eds.): SPW/ProSim 2006, LNCS 3966, pp. 204 – 213, 2006.
© Springer-Verlag Berlin Heidelberg 2006

A Process-Agent Construction Method for
Software Process Modeling in SoftPM*

Qing Wang1, Junchao Xiao1,2, Mingshu Li1,3, M. Wasif Nisar1,2,
Rong Yuan1,2, and Lei Zhang1,2

1 Laboratory for Internet Software Technologies, Institute of Software,
The Chinese Academy of Sciences, Beijing 100080, China

{wq, xiaojunchao, mingshu, wasif, yuanrong,
zhanglei}@itechs.iscas.ac.cn

http://www.cnsqa.com
2 Graduate University of Chinese Academy of Sciences, Beijing 100039, China

3 Key Laboratory for Computer Science, The Chinese Academy of Sciences
Beijing 100080, China

Abstract. Software development, unlike manufacturing industry, is highly de-
pendent on the capabilities of individual software engineers and software de-
velopment teams. SEI presents PSP and TSP to establish personal and team
capabilities in the software process, to maintain them and assist organizations in
conducting CMMI-Based process improvement. Thus, executors’ capabilities
should be taken into account as a key issue of the software process modeling
method. ISCAS conducts research on Organization-Entities capabilities- based
software process modeling and presents a corresponding method. The Organi-
zation-Entities have definite capabilities and are called Process-Agents. The
modeling method applies Agent technology to organize the basic process units
and to establish the project process system self-adaptively according to the spe-
cial project goal and constraining environment. In this paper, we present the
method for constructing the Process-Agent. Each Process-Agent is comprised
of two parts: Firstly, the infrastructure to describe Process-Agent’s knowledge,
and secondly the engine driven by external environment, used for reasoning
Process-Agent’s behavior based on its knowledge.

1 Introduction

Software processes are knowledge-intensive and one of their characteristics is their high
dependence on the capabilities of individual software engineers and software develop-
ment teams. However, process resources especially capabilities of human resource that
mainly impact the process, have not been well considered. Traditional methods, such as
activity-based method [1] [2], artifact-based method [3] and role-based method [4] were
known to have resulted in the instability and unpredictability in regards to the execution
process, leading to some extent, the loss in significance of process modeling.

* Supported by the National Natural Science Foundation of China under grant Nos. 60473060,

60273026 as well as the Hi-Tech Research and Development Program (863 Program) of
China under grant No. 2004AA112080.

 A Process-Agent Construction Method for Software Process Modeling in SoftPM 205

Several researches have been conducted into the capabilities of engineers and
teams in the software process, e.g. SEI presented PSP [5] and TSP [6] to see the pos-
sibility of improved performance for the two above, in regards to efficacy linked to
products and hence helping organizations improve the CMMI-Based [7] process.

Other attempts have been made to apply the agent technology to process modeling.
They focus on business processes modeling and their automation by adopting multiple
kinds of agents [8] [9] [10] use software agent in representing the flexible organiza-
tion structure of the software development process model [11].

In [12], ISCAS presents a solution for software process management and also im-
plements a toolkit: SoftPM. Process-Agent was used to organize the Process Assets
and, based on it, a process modeling method [13] [14] called Organization-Entity
Capability Based Software Process Modeling (OEC-SPM) was presented to model
standard processes. OEC-SPM considers the Organization-Entity’s capabilities a
decisive factor for determining what a software process can do, how it can be done
and how many resources are needed. Thus it can better reflect the essence of software
process.

This paper aims to introduce most importantly, the method that defines and con-
structs a Process-Agent. Each Process-Agent comprises two parts: the Infrastructure
and the Engine. The infrastructure contains the descriptive knowledge, the process
knowledge and the experience of a Process-Agent. Process-Agent can determine what
it can do by using descriptive knowledge, how to do by using process knowledge, and
how many resources would be needed. The engine provides a working mechanism for
the Process-Agent, it is used to reason the Process-Agent’s behavior based on the
infrastructure and driven by environment where the Process-Agent resides.

2 Process-Agent in OEC-SPM

As we know, most software process modeling methods focus on establishing an ap-
propriate process network according to what processes can do. However, software
development is a special kind of production process that is highly human sensitive.
Different performers would produce productions with varying quality and quantity
even in a same software process. It is not enough to consider only the relationships
among processes, but also take into account the three aspects of the above-mentioned
process:

(1) What can the process do?
(2) How does the process work?
(3) How many resources, such as cost, schedule etc., are needed?

Process capabilities are determined by devices’ capabilities in traditional methods.
These methods usually consider the first aspect rather than the second, and rarely the
third. Focusing on the special characters of the software process, OEC-SPM takes into
account not only the first two aspects but the third aspect as well. It constructs an
organization entity with definite capabilities (e.g. a java coding team with definite
productivity) as a Process-Agent. All the historical data, experience and knowledge of
this entity are encapsulated in the Process-Agent that can determine its specific capa-
bilities and performance baseline based on these data as well as its self-learning

206 Q. Wang et al.

mechanism. Based on Process-Agent, OEC-SPM is able to consider not only relation-
ships among process elements, but also capabilities of process. It guarantees the stable
and predictable performing of process network as a result and that effectively sup-
ports quantitative process management.

In SoftPM, Process-Agent is used in the organization and management of the proc-
ess asset, based on that, OEC-SPM establishes and maintains standard processes and
project processes, as denoted in Fig.1.

Fig. 1. OEC-SPM in SoftPM

When project process under a specific environment requires establishment, the
Process-Agent can respond actively and autonomously to the software process envi-
ronment and self-adaptively establish the project process henceforth achieving the
goals of software development. During the process execution, the process data will be
collected by the Process-Agents in order to optimize and improve their capabilities.
The process is denoted in Fig. 2.

Fig. 2. OEC-SPM Process

 A Process-Agent Construction Method for Software Process Modeling in SoftPM 207

Fig. 3. Structure of the Process-Agent

The OEC-SPM comprises of a set of process goals with their constraints, knowl-
edge in the goals’ context and a group of Process-Agents. It can be defined as a triple.
OEC-SPM = (G, EK, PA), here:

1. G represents a set of environment goals under specify constraints, G = {g1, g2,
…, gn}; each gi in G can be defined as a triple. gi= (gsi, gsei, gci):
a) gsi is the goal statements, it is a string and describes what the goal is;
b) gsei is the goal size estimation;
c) gci is a set of goal constraints that realize the goal g in Process-Agent, such

as TC (Time Constraint), CC (Cost Constraint), QC (Quality Constraint), LC
(Language Constraint), etc.

2. EK is the environment knowledge that comprises a number of facts as the ba-
sis to realize goals and the premises to know the world.

3. PA is a group of Process-Agents, PA = {pa1, pa2, …, pan}.

3 Construction Method of the Process-Agent

As an agent, Process-Agent is defined as a duple, PA = (PAI, PAE), where PAI is the
Infrastructure which describes the knowledge of the Process-Agent and is used as the
basis for PAE, while PAE is the
Engine which reasons the be-
havior of Process-Agent
based on its PAI and is driven
by external environment. The
structure of a Process Agent is
shown in Fig. 3.

Actually, the method focuses
on problem solutions in the
software process modeling. The
three parts of knowledge are
used to determine

 What the Process-Agent
can do with its descriptive
knowledge

 How to do with its process
knowledge

 How many resources will be needed with its experience data.

In addition, the engine of Process-Agent will help reason and make these decisions.

3.1 Process-Agent Infrastructure (PAI)

PAI is defined as a triple, PAI = (DK, PK, EL), that is, the Descriptive Knowledge
(DK), the Process Knowledge (PK) and Experience Library (EL).

Process Agent

Engine

Infrastructure

Perceptor

Reactor

Reasoning Engine

Enactment Engine

Descriptive
Knowledge

Process
Knowledge

Experience
Library

Learning Engine

208 Q. Wang et al.

 Descriptive Knowledge (DK)
DK describes what the Process-Agent looks like and can be used to determine what

the Process-Agent can do, it is composed of 6 elements, DK = (BA, AG, CRM, SK,
RC, AEG):

(1) In the BA part, some basic attributes of the Process-Agent are taken into ac-
count BA = (EN, PAN, Description), where “EN” is the name of the entity
which the Process-Agent represents, “PAN” is the Process-Agent’s Name and
“Description” shows what the Process-Agent is.

(2) AG is composed of a goal string; it describes the Process-Agent’s goal, that is,
it’s intention and end goals.

(3) CRM is the control rule model, inclusive of the pre-conditions (PreC) and
post-conditions (PostC) whose function is behavioral control of the Process-
Agent.

(4) SK is the skills set which the Process-Agent has, SK = {sk1, sk2, … , skn},
among this, ski = (Type, Name, Level), where, “Type” is the skill type, e.g.,
“Language” . “Name” is the skill e.g. C++ or Java. “Level” is the skill rank
which may be High, Medium, Low or NONE.

(5) RC is the resource constraint of the Process-Agent; it is the schedulable re-
source of the Process-Agent. RC can have different kinds of constraints, for
example, constraint of time resource (tr), human resource (hr), tool resource
(tlr), etc.

(6) AEG is the resources estimation on the goal, and it shows the estimate of Time
(T), Human Resource (HR), Cost (C), Quality (Q), etc., to realize the given
goal, these estimations can be obtained on the basis of the given goal and EL.

 Process Knowledge (PK)
PK describes the Process-Agent’s realization of its goal. It is composed of policy,

procedures, templates, rules, and other process related knowledge.
 Experience Library (EL)

EL is the basis for resource utilization in the process of realizing the goal. It com-
prises historical data such as the time, cost, defect, etc. On the basis of EL, each Proc-
ess-Agent can establish and refine its process performance baseline.

The three parts of the PAI are closely interwoven. Actually, DK and PK are de-
pendent on EL. They use the data and experience to determine if it can meet the re-
quirements and how to do it.

3.2 Process-Agent Engine (PAE)

PAE is used to reason the behaviors based on its knowledge. PAE has five functional
modules, it can be defined as PAE = (P, R, LE, EE, RE), among this:

1. P is the Perceptor of the Process-Agent and it can perceive the environment knowl-
edge, goals and their constraints from the environment.

2. R is the Reactor of the Process-Agent. It will generate the action of the Process-
Agent.

3. LE is the Learning Engine of the Process-Agent whose provisions include the
learning mechanism to facilitate Process-Agent efficacy in terms of intelligence.

 A Process-Agent Construction Method for Software Process Modeling in SoftPM 209

4. EE is the Enactment Engine, controlling the other modules to realize the intelligent
behaviors of the Process-Agent.

5. RE is the Reasoning Engine. It performs some reasoning in the behavior judgment
of Process-Agent.

Process-Agent

Infra-
structure

Perceptor

Plan

Reactor

Experience
Library

Process
Knowledge

Descriptive
Knowledge

Activity
Execution

Activity
Executing

Information
Feedback

Outside Environment
(Environment Knowledge

+ Goal + Constraints)

Experience

Reasoning
Engine Learning Engine

Perceptor

Control Flow

Data Flow

E
nactm

ent E
ngine

Fig. 4. Behavior Reasoning Process

Fig. 4 shows the process of behavior reasoning. In the Engine, EE is the core of the
implementation mechanism and is used to control the other modules. Firstly, the
Process-Agent perceives the outside environment, goals, and constraints. Then, RE
will enact the following reasoning process to generate the plan for the perceived envi-
ronment goal:

Step1: Judge whether the Process-Agent’s goal matches the description of the envi-
ronment goal.
Step 2: Determine whether the Process-Agent’s pre-conditions can be satisfied
Step3: Judge whether the Process-Agent’s skills can satisfy the goal’s constraints.
Step 4: Estimate the resources needed to realize the goal by the Process-Agent. Based
on EL and the environment goal’s size estimation; RE uses the estimating function to
give the value of AEG.
Step 5: Compare whether the estimated resources of Process-Agent meet the envi-
ronment goal’s constraints.
Step 6: Generate the local plan for realizing the environment goal.

If any of the above reasoning conditions are not satisfied, the Process-Agent lacks
the capabilities to perform the current given goal and will terminate the behavior
reasoning process.

At last, the processes executing information will be perceived by the Perceptor and
relay feedback to the Process-Agent. The information will be inclusive to the PAI
through LE and improve the knowledge of the Process-Agent.

210 Q. Wang et al.

4 An Example

As we may well know, coding plays a crucial role in the software process. In order to
explain the intention of each part of the formation of a Process-Agent in a software
process, we establish a software process that realizes coding by making use of several
typical Process-Agents to illustrate what the functions of each part of the infrastruc-
ture of a Process-Agent are, how every components of the engine are working based
on the knowledge of the Infrastructure. Thereby makes the Process-Agent able to
realize the perception to the given goal as well as the reasoning to behaviors, ulti-
mately makes the Process-Agents who hold the capabilities of achieving the goal to
produce the project software process that achieves the goal.

4.1 Hypothesis

We suppose in the environment there is a goal requiring code in Java. The size of the
goal is 12KLOC and it needs to be realized between January 1st and March 15th in
2006. The knowledge in the environment indicates the existence of a design document
for realizing the goal. The goal g and environment knowledge EK are described as
follows:

1. g = (gs, gse, gc), here:
a) gs = “Coding”, i.e., the goal is to code an application;
b) gse = “12KLOC”, i.e., size estimation is 12KLOC;
c) gc = {TC=[2006-01-01, 2006-03-15], LC=”Java”}, here:

 TC is time constraint of the goal, meaning the goal must be realized be-
fore 2006-03-15;

 LC is language constraint of the goal and its value is “Java”, that means
Java is the language that must be used to realize the goal.

2. EK = {DesignDoc(g)}, is indicative of the presence of a design document in
the environment for realizing the goal g.

In brief supposition let us picture that there are three Process-Agents relating to
coding. These three Process-Agents have different characteristics in aspects of skills
and resource restriction, thereby reveal different capabilities. The descriptive knowl-
edge of three Process-Agents is illustrated in table 1.

Table 1. Descriptive Knowledge of Process-Agents

DK\Process-Agent PA1 PA2 PA3
EN XIELIZI ZHANGLEI LIUDAPENG
PAN PA1 PA2 PA3

BA
Description programmer with Java programmer with C++ programmer with Java

AG Coding Coding Coding

PreC ∃DesignDoc(x) ∧(x∈G) ∃DesignDoc(x) ∧(x∈G) ∃DesignDoc(x) ∧(x∈G)
CRM

PostC Code(x) ∧(x∈G) Code(x) ∧(x∈G) Code(x) ∧(x∈G)

SK (sk0) (Language, Java, Middle) (Language, Java, NONE) (Language, Java, High)

RC Tr [06-01-15,2006-04-20] [06-02-10,2006-03-10] [06-01-20,2006-01-30]
AEG -- -- --

 A Process-Agent Construction Method for Software Process Modeling in SoftPM 211

AEG will be determined by the perceived environment goal and Process-Agent’s
EL and expressed here with “--”.

In EL, according to its historical data, we only present the baseline of productivity,
which is shown in table 2.

Table 2. Baseline productivity of the Process-Agent

EL\ Process-Agent PA1 PA2 PA3
Productivity(KLOC/PDay) 0.4 0.1 0.6

4.2 Behaviors Reasoning

On the basis of goal coding, environment knowledge and self-capabilities, Process-
Agent PA1, PA2, and PA3 independently and automatically reason their behaviors,
determining their respective actions in this process, analyzing the resources needed,
and finally generating the plan to realize the coding goal:

Step1: Match Process-Agent’s goal: if the Process-Agent’s AG has the same meaning
as the environment goal’s gs, then AG matches the description of goal.

PA1.PAI.DK.AG = g.gs, ∴ PA1’s goal matches the environment goal.
Similarly, PA2’s and PA3’s goal matches the environment goal.

Step 2: Determine whether the pre-condition of the Process-Agent can be satisfied: if
the environment knowledge makes its pre-conditions that are described in CRM to be
true, then the Process-Agent’s process can be executed.

Since there exists DesignDoc(g) in the EK, so ∃DesignDoc(x)∧(x∈G) is true, i.e.,
pre-condition of PA1, PA2 and PA3 are all satisfied

Step3: Judge whether the Process-Agent’s skill can satisfy the goal’s constraints: if
the Process-Agent has the skills described by the goal’ constraints, then it satisfies the
goal’s skill constraints.

For Process-Agent PA1:
(DK.SK.sk0.Type = = "Language") ∧ ((DK.SK.sk0.Name = = g.gc.LC)
∧ (DK.SK.sk0.Level != NONE)) PA1’s skill satisfies the goal’s constraint
Similarly, PA2 does not satisfy and PA3 satisfies.

Step 4: Estimate the executing time based on Process-Agent’s EL and the environ-
ment goal’s size

PA1: AEG.T = g.gse/EL.Productivity= 12KLOC/(0.4KLOC/PDays)= 30 PDays
PA3: AEG.T = g.gse/EL.Productivity= 12KLOC/(0.6KLOC/PDays)= 20 PDays

Step 5: Compare AEG with the Process-Agent’s time resource
For PA1, from environment goal, the time constraint is 53 workdays from [06-01-
01, 06-03-15]), PA1 need 30 person-day and it has only one person. From its
available starting date, ‘06-01-15’+30 = 06-02-13, it satisfies.
Similarly, for PA3 it can be reasoned that there is not ample time to facilitate this
goal.

Step 6: Generate the local plan of the Process-Agent for realizing the environment
goal.

After the behavior reasoning process, PA1 meets all the constraints and gets the au-
thority to perform the coding task. PA1 will generate its local plan on the basis of its

212 Q. Wang et al.

Fig. 5. Global Project Plan

PK and EL knowledge and
this local plan will be
merged into global project
plan as shown in Fig. 5.

Since PA1 has the capa-
bilities to achieve the goal,
the project software process
generated on the basis of its
capabilities that is used to achieve the goal can be executed by the Organizational-
Entities who have proper capabilities, so it makes the result of the execution stable
and predictable.

4.3 Perform and Monitor in SoftPM

After reasoning and generating the project plan, it will be under the process manage-
ment of SoftPM, as is shown in Fig. 6. When significant deviation occurs, the related
Process-Agent will perceive the change requirements and constraints in decision mak-
ing regarding supports based on its knowledge and reasoning.

Fig. 6. Plan Perform and Monitor in SoftPM

The actual perform data will be collected with SoftPM and fed backed to Process-
Agent. SoftPM also uses this data to evaluate the Process-Agent and improve them
continually.

5 Conclusions

This paper presents a method for defining and constructing the Process-Agent. For
each Process-Agent, it organizes and describes its knowledge such as goal, skill,
resource, experience, etc. in PAI, and reasons and determines its capabilities to meet
the given goal by PAE. With this method, the Process-Agent can determine what it

Coding by PA1: XIELIZI

Coding 30days

 A Process-Agent Construction Method for Software Process Modeling in SoftPM 213

can do, how to do, and how many resources are needed self-adaptively. On the basis
of the Process-Agent and its modeling method, SoftPM can organize the process
asset as an appropriate form and granularity, providing the capabilities and perform-
ance of process predictability and stability in regards to the quantitative process
management. According to its self-learning, the Process-Agent can make self-
improvements continually.

References

1. S. Bandinelli, M. Braga, A. Fuggetta, L. Lavazza.: The Architecture of the SPADE Proc-
ess-Centered SEE. B. Warboys, ed.: Proceedings 3rd European Workshop on Software
Process Technology (EWSPT’94), Villard-de-Lans, France, 1994, pp. 15-30.

2. A. G. Cass, B. S. Lerner, E. K. McCall, L. J. Osterweil, S. M. Sutton Jr., A. Wise: Little-
JIL/Juliette: A Process Definition Language and Interpreter. Proceedings of 22nd Interna-
tional Conference on Software Engineering, Limerick, Ireland, 2000, pp. 754-757.

3. G. Cugola, and C. Ghezzi, Design and Implementation of PROSYT: A Distributed Process
Support System, Proceedings of IEEE 8th International Workshops on Enabling Tech-
nologies: Infrastructure for Collaborative Enterprise, Palo Alto, California, 1999, pp.
32-39.

4. L. Briand, W. Melo, C. Seaman, and V. Basili: Characterizing and Assessing A Large-
Scale Software Maintenance Organization. D. Perry ed., Proceedings of the 17th Interna-
tional Conference on Software Engineering, ACM Press, Seattle, Washington, 1995, pp.
133-143.

5. W. S. Humphrey: A Discipline for Software Engineering. Addison-Wesley, 1995
6. W. S. Humphrey: Introduction to the Team Software ProcessSM. Addison-Wesley, 2000.
7. SEI: Capability Maturity Model Integration (CMMISM) version 1.1 CMMI-SE/SW Con-

tinuous Representation. Technical Report CMU/SEI-2002-TR-001, Software Engineering
Institute, Carnegie Mellon University, 2002.

8. A. I. Wang: A Process Centered Environment for Cooperative Software Engineering. Pro-
ceedings of SEKE’ 02, ACM Press, 2002, 457-468.

9. H. Gou, B. Huang, W. Liu, Y. Li, S. Ren: Agent-Based Virtual Enterprise Modeling and
Operation Control. Proceedings of IEEE International Conference on Systems, Man, and
Cybernetics, IEEE Press 2001, 1053-1057.

10. L. Zeng, A. Ngu, B. Benatallah, M. O. Dell: An Agent-Based Approach for Supporting
Cross-Enterprise Workflows. Proceedings of Australiasian Database Conference, Gold
Coast, Queensland, Australia, 2001, pp.123-130

11. N. Glaser, J-C. Derniame: Software Agents: Process Models and User Profiles in Distrib-
uted Software Development. Proceedings of 7th International Workshop on Enabling
Technologies: Infrastructure for Collaborative Enterprises, California, USA, 1998, pp.
45-50.

12. Q. Wang, M. Li: Software Process Management: Practices in China. M. Li, B. Boehm, and
L.J. Osterweil (Eds.): SPW 2005, LNCS 3840, pp. 317–331

13. X. Zhao, M. Li, Q. Wang, K. Chan, H. Leung: An Agent-Based Self-Adaptive Software
Process Model. Journal of Software, Vol. 15, No. 3, 2004, pp. 348–359.

14. X. Zhao, K. Chan, M. Li: Applying Agent Technology to Software Process Modeling and
Process-Centered Software Engineering Environment. The 20th Annual ACM Symposium
on Applied Computing (SAC’05), Santa Fe, New Mexico, USA, 2005, pp. 1529-1533

Q. Wang et al. (Eds.): SPW/ProSim 2006, LNCS 3966, pp. 214 – 221, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Applying Little-JIL to Describe Process-Agent
Knowledge in SoftPM

Junchao Xiao1,2, Leon J. Osterweil3, Lei Zhang1,2, Alexander Wise3, and Qing Wang1

1 Laboratory for Internet Software Technologies, Institute of Software,
The Chinese Academy of Sciences, Beijing 100080, China

{xiaojunchao, zhanglei, wq}@itechs.iscas.ac.cn
http://www.cnsqa.com

2 Graduate University of Chinese Academy of Sciences, Beijing 100039, China
3 Department of Computer Science University of Massachusetts,

Amherst, MA 01003-4610 USA
{ljo, wise}@cs.umass.edu

Abstract. In a software process modeling method based upon the Organization-
Entity capability, the Process-Agent is a well-defined unit whose role is to en-
capsulate an entity’s knowledge, skill etc. The Process-Agent’s infrastructure
comprises descriptive knowledge, process knowledge and an experience library.
The process knowledge is represented by process steps, whose execution de-
termines the behaviors of the Process-Agent. This causes Process-Agent knowl-
edge to be precisely described and well organized. In this paper, Little-JIL, a
well-known process modeling language, is used to define a Process-Agent’s
process knowledge. Benefits for process element knowledge representation aris-
ing from Little-JIL’s simplicity, semantic richness, expressiveness, formal and
precise yet graphical syntax etc., are described.

1 Background

Software processes are highly people-dependent and they rely on the capabilities of a
group of developers and their creative work. In a software organization, the executers
of the process are the Organization-Entities who have the needed capabilities. These
entities generally display dynamic, autonomous and active behaviors whose precise
definition would seem to be a requisite element in software process modeling.

In [1], ISCAS presents a solution and implements a toolkit, SoftPM, for software
process management. The concept of Process-Agent is used to organize the Process
Assets in SoftPM. A process modeling method [2] [3] called Organization-Entity
Capability Based Software Process Modeling (OEC-SPM) has been presented as the
basis for modeling the software process, and for subsequent process management. A
Process-Agent is an abstract model of an Organization-Entity that has definite capa-
bilities. The entity’s experience, skill, and historical data are all encapsulated as a
Process-Agent in order to assure that the Process-Agent has the knowledge to deter-
mine what it can do, how to do these things, and how many resources are needed.
Obviously, the way in which this knowledge is described and organized has a most
important impact upon the power of a Process-Agent.

 Applying Little-JIL to Describe Process-Agent Knowledge in SoftPM 215

Little-JIL [4] is process language that offers simplicity, semantic richness and ex-
pressiveness, formal and precise yet graphical syntax etc. Thus, using Little-JIL as the
vehicle for describing the knowledge of a Process-Agent seems to offer advantages
such as graphic depiction of a process specification, control over activity implementa-
tion, etc.

This paper tries to use Little-JIL to describe the knowledge of a Process-Agent.
The method uses Little-JIL semantics to describe the process knowledge and organize
it through a precise construction.

2 Little-JIL Language Overview

Little-JIL was developed to coordinate software development processes [5]. But it
has also been used to define complex processes in robotics, data mining, e-commerce
and complex data analysis processes [6]. These process definitions have generally
been clear, detailed, and precise. Space limitations prevent presentation of full details
about Little-JIL (the details can be found in [4]). Therefore, we instead suggest key
language features only very briefly here. Process steps in Little-JIL are represented
visually by a step name that is positioned directly above a bar that is surrounded by
several graphical badges that represent aspects of step semantics. The leftmost ele-
ment in the bar indicates how substeps are to be executed. For example, a sequential
badge (an arrow) indicates that substeps are executed in order, left to right, while a
parallel badge (two parallel lines), indicates that substeps may be performed simulta-
neously.

A Little-JIL step may also have a prerequisite and/or postrequisite, represented by
triangles on the left and right of the step name, respectively. The body of the requisite
is a separately specified step possibly containing multiple substeps. This feature sup-
ports the ability to program processes that perform internal runtime checks for the
validity of evolving results. When exceptions are thrown, exception handlers may
handle them elsewhere in the process. Exception handlers are attached to the right
side of a step bar. Exception handlers may be simple or complex subprocesses, repre-
sented by additional substeps, and may integrate with the nominal control flow in
multiple ways. This affords latitude in responding to unexpected results. Examples of
Little-JIL process definitions will be incorporated into subsequent sections of this
paper.

3 Knowledge in Process-Agent

The OEC-SPM uses the concept of an Organization-Entity based Process-Agent to
encapsulate an entity’s knowledge, skill etc. as a well-defined process unit and uses
the Process-Agent as the basic unit for modeling processes. When a process system
needs to be developed as a component of a process environment, the Process-Agent is
able to determine what it can contribute by examining properties such as its skills,
comparing them to required goals, and analyzing how to realize the goals, including
determining an estimate of how many resources will be required. In order to do this,
the Process-Agent must contain three types of knowledge:

216 J. Xiao et al.

 Descriptive Knowledge (DK): describes what the Process-Agent looks like and
what it can do;

 Process Knowledge (PK): describes how the Process-Agent can proceed to re-
alize its goals by means of process steps organized into defined sequences;

 Experience Library (EL): constructed from historical data generated by the
previous executions of steps by this Process-Agent. This experience can be used
to estimate how many resources are likely to be required in order to achieve the
process goals.

PK consists of a potentially large and complex set of process elements and the rela-
tionships among these elements. It determines the goals of the Process-Agent and the
ways in which Process-Agent will attempt to achieve them. The Process-Agent de-
termines what it can do based on its capability as described in DK. After this determi-
nation, it will decide what it can do to realize its goal by using PK. PK is captured as a
group of steps that are the abstract representation of the Process-Agent’s activities
given its particular knowledge level.

In particular, we define the Process Knowledge as PK= {st1, st2, …, stn}. Each
step sti in PK is an 8-tuple, sti = (SIDi, SDi, Ri, SCRMi, IPi, OPi, IMPi, PRIi), here:

(1) SIDi is the identification of the process step;
(2) SDi is the form of natural language, informal, descriptive words of the process

step;
(3) Ri is the role being played by the Process-Agent while executing the step, e.g.,

if the type of the step is review, then Ri is “QA”.
(4) SCRMi is the step’s control rule model. It comprises pre-conditions and post-

conditions, such as constraint specifications on the process elements (e.g. the
existence of artifacts or resource constraints etc.) The process step can be exe-
cuted only if all preconditions are satisfied, and the step can be successfully
completed only if all postconditions are satisfied; thus the SCRMi controls the
behaviors of the process step and conditions under which it will be executed.

(5) IPi is step’s input parameters, such as the artifacts needed for executing the
step;

(6) OPi is step’s output parameters, such as the artifacts produced by the step’s
execution;

(7) IMPi describes the way the step is implemented. A step can be directly im-
plemented by Process-Agent (DIRECT), or assigned to other Process-Agents
as a cooperative goal (SUBPROCESS).

(8) PRIi is the priority of the step, if several steps in a Process-Agent have the
same behaviors, the step that has the highest priority will be performed.

4 Applying Little-JIL to Describe Process Knowledge

As the definitions above show, process knowledge is step-based knowledge. As PK is
composed of steps, the description of PK is essentially the description of steps and
their organization. Thus the specificity we seek in agent behavior definition would
seem to be best supported by a language whose fundamental semantics focus on the
concepts of a step and organization of steps into structures. The Little-JIL language

 Applying Little-JIL to Describe Process-Agent Knowledge in SoftPM 217

draws on the lessons of the work of [7] using the "step" as the central abstraction and
capturing process coordination structure by using such semantic features as scoping
and hierarchy. In the next sections we will discuss in detail how to apply Little-JIL to
the definition of PK.

4.1 Step Elements Description

The steps in PK can be represented by Little-JIL steps, and, in particular, each tuple in
sti can be represented by available Little-JIL semantic features:

(1) The “Step Name” uniquely identifies the step and it is used to represent the SID
in PK.

(2) “Annotation” in Little-JIL facilitates the specification of SD. Annotations are
associated with a step, and they are identified by their type [8]. We can represent
the description (SD) of the process knowledge step (st) by creating and associat-
ing a document type of annotation with st.

(3) Because a specific step can only be executed by a certain role, the R in a st is
described by a Little-JIL “pre-requisite” that is checked before step execution
and assures that the step is being executed by the right role.

(4) As requisites provide the mechanism for defining guards on the entry to, and
exit from, steps, they seems very well adapted to represent SCRM: we repre-
sent pre-conditions and post-conditions included in SCRM respectively by two
Little-JIL steps that are referenced as prerequisite and postrequisite from the
Little-JIL step that represents st. Fig. 1 depicts an example. Sticky notes placed
beside the requisite badges of st are used to provide descriptive material about
the pre/post-requisite of the step.

Fig. 1. Single Condition Fig. 2. Multiple Conditions

If the SCRM has multiple complex pre- or post-conditions, Little-JIL steps
that represent each of these can be specified separately, but then can be grouped
under a higher-level step. This higher-level step can specify sequential step de-
composition if the order of evaluation is known and significant. Parallel step de-
composition can be specified if the order of evaluation is not important. Fig. 2
depicts an example of sequential precondition representation.

(5) Since “Parameters” in a Little-JIL step have the same meanings as IP and OP
in PK’s step, according to the parameter passing mode, IP and OP are repre-
sented by the In parameter and Out parameter respectively.

(6) “Annotation” is adapted to be applied to IMP. In particular, an annotation
type “ImplementationWay” can be created and associated with st. Its value is
utilized to represent the meaning of IMP, e.g. if sti must cooperate with

218 J. Xiao et al.

another Process-Agent to pursue a cooperative goal its “ImplementaionWay”
value is set to “SUBPROCESS”; otherwise its value is set to “DIRECT”.

(7) We can also apply annotation to describe PRI by creating an annotation type
“PRI”.

4.2 Step Organization Description

The executions of the steps in a PK definition are not completely independent of each
other. They collaborate via mechanisms defined through SCRM. Little-JIL is adept at
representing the ways in which steps and the agents executing them are supposed to
coordinate their efforts. Specifically, Little-JIL’s four step kinds, "sequential," "paral-
lel," "try," and "choice", facilitate far more precise and articulate specification of
activity sequencing. By the sequencing, the steps in PK can be organized as follows:

1) If a group of steps sts = {stj, stk, stl, …stn} in PK have the relationship that post-
conditions of stj are precisely the pre-conditions of stk and post-conditions of stk
are precisely the pre-conditions of
stl…. till stn, thus these steps imply
the sequential relationship of stj: stk : stl
: … :stn. A new Little-JIL "sequential"
step will be created as the parent of
these steps, making the sequential rela-
tionship of these steps clear and ex-
plicit. The parent step must satisfy
qualifications that pre-conditions of sti are precisely the pre-conditions of stj and
post-conditions of stn are precisely the post-conditions of sti and so on. Fig. 3
shows this transformation.

2) If several steps in PK have the same pre-conditions, these steps can be imple-
mented concurrently. A new Little-JIL "parallel" step can be created as the par-
ent step of these steps to construct such a relationship, it has the same pre-
requisites as its sub-steps’ and its post-requisites is the conjunction of the post-
requisites of all sub-steps. Fig. 4
shows the relationship.

3) If several steps have the same SCRM
and PRI, they have a “choice”-like re-
lationship, the Process-Agent will only
choose one of them to perform in or-
der to realize the goal. A new Little-
JIL "choice" step can be created as
parent step of these steps to make the
relationship clear and explicit, and this
parent step has the same pre-requisites
and post-requisites as its sub-steps’.
Fig. 5 shows this relationship.

4) If several steps have the same SCRM
but different PRI, they have a “try”-
like relationship. The substeps should

Fig. 3. Sequential

Fig. 5. Choice

Fig. 4. Parallel

 Applying Little-JIL to Describe Process-Agent Knowledge in SoftPM 219

be arranged so that their priorities are in decreasing order from left to right. Little-
JIL semantics require that the Process-Agent must select steps in order from left to
right assuring that they will be tried
in the correct priority order. Thus a
new Little-JIL “Try” step can be cre-
ated as the parent step of these steps
to make such relationship clear and
explicit; this parent step has the same
pre-requisites and post-requisites as
the sub-steps’. Fig. 6 shows this rela-
tionship.

5) No sub step connection will be created between step sti and steps in sts= {stj, stk,
stl …stn} unless they are related to each other according to the conditions listed in
1), 2), 3), or 4). Fig. 7 depicts one example of this rule.

Fig. 7. An example where steps are not related by any of the conditions listed in 1), 2), 3),4)

5 An Example

Here we present an example of a simple software module development to illustrate
how Little-JIL is applied to describe the step elements and organization in a Process-
Agent’s knowledge.

A Process-Agent Dev-Team holds process knowledge about how to develop a sim-
ple software module, where the knowledge is captured in the form of the steps de-
scribed in the table below:

SCRM
SID SD

Pre Post
IP OP IMP PRI

Requirement Requirement Analyze G RD G RD DIRECT 0
OOD Object Oriented Design RD DD RD DD DIRECT 0
SOD Structure Oriented Design RD DD RD DD DIRECT 0

Coding DD CD DD CD DIRECT 0
By Tester Write test cases by tester RD TC RD TC DIRECT 1
By Coder Write test cases by coder RD TC RD TC DIRECT 0

Test
TC;
CD

AM
TC;
CD

AM DIRECT 0

Annotation: RA-Requirement Analyze; Imp-Implementation; PM-Product Manager; AH-Architect;
PE-Program Engineer; TE-Test Engineer; G-Goal; RD-Requirement Document; DD-Design Document;
CD-Code; TC-Test Case; AM-Accomplished Module; Pre-Pre-Condition; Post-Post-Condition

We can see from the SCRM that this is a complex process with multiple control-
ling structures. Representing such a process clearly yet precisely requires a method
that is semantically concise, expressive, and precise. Little-JIL has these characteris-
tics, and thus provides a powerful capability for representing an Agent.

Fig. 6. Try

220 J. Xiao et al.

Fig. 8 depicts the Little-JIL representation of the process knowledge using step
elements and process knowledge step organization. The Little-JIL description seems
to provide a representation that is both precise and graphically clear in representing
the process knowledge in this simple software module development for the Process-
Agent Dev-Team.

Fig. 8. Little-JIL representation of Process Knowledge for Process-Agent Dev-Team on a sim-
ple software module development

6 Future Work Discussions

This paper has presented a method that uses Little-JIL to specify the process knowl-
edge of a Process-Agent in SoftPM. This method makes use of Little-JIL semantics to
describe process elements, and takes advantage of Little-JIL’s language constructs to
combine behaviors of Process-Agents. And by using Little-JIL, behaviors of Process-
Agents can be determined effectively and precisely. Hence it seems that this is a par-
ticularly powerful approach to Process Asset definition in SoftPM.

However, the use of Little-JIL to represent Process-Agents still presents several
potential problems that suggest possible research issues:

 Description of the Role and its Capability: In a process modeled by Little-JIL,
we can express easily what a role should do but there is no mechanism provided to
express whether the selected role has the capabilities that are necessary in order to
perform it. Process-Agents in OEC-SPM take into account the capabilities of enti-
ties in the process model and assure that the entities have desired capabilities;
hence using OEC-SPM in conjunction with using Little-JIL as a process model
can help to assure that appropriate capabilities participate in the process execution.

 More Precise Control of Concurrency:
Concurrency in Little-JIL can be defined
using the parallel step, whose semantics
are essentially “fork and join”. But there
are cases in which more precise control
of the interleaving of concurrent steps
might be needed. For example, in Fig. 9,
the completion of steps A, B and E will
be sequential; C and D, the children steps Fig. 9. Reverse Dependent

 Applying Little-JIL to Describe Process-Agent Knowledge in SoftPM 221

of B could be executed concurrently; one of F and G, the children steps of E will be
selected to execute. While we know that F (or G) cannot be executed until both C
and D have completed, we may wish to assure that F immediately follows execution
of C, for example, without any intervening execution of D, while if G is selected, we
may not care. Thus, our preference with respect to the order of execution of step D
may need to depend on the execution decision of a step that comes after step D; we
refer to this situation as “reverse dependent”. There is no easy way in Little-JIL to
deal with this potentially important issue. It is a specific case of the need for more
powerful concurrency constructs in Little-JIL.

Acknowledgments

This research was supported in part by the National Natural Science Foundation of
China under grant Nos. 60473060, 60273026 as well as the Hi-Tech Research and De-
velopment Program (863 Program) of China under grant No. 2004AA112080. It was
also supported by the National Science Foundation under Award Nos. CCR-0204321
and CCR-0205575. The U.S. Government is authorized to reproduce and distribute
reprints for Governmental purposes notwithstanding any copyright annotation thereon.
The views and conclusions contained herein are those of the authors and should not be
interpreted as necessarily representing the official policies or endorsements, either ex-
pressed or implied of The National Science Foundation, or the U.S. Government.

References

[1] Q. Wang, M. Li: Software Process Management: Practices in China. M. Li, B. Boehm, and
L.J. Osterweil (Eds.): SPW 2005, LNCS 3840, pp. 317–331

[2] X. Zhao, M. Li, Q. Wang, K. Chan, H. Leung: An Agent-Based Self-Adaptive Software
Process Model. Journal of Software, Vol. 15, No. 3, 2004, pp. 348–359.

[3] X. Zhao, K. Chan, M. Li: Applying Agent Technology to Software Process Modeling and
Process-Centered Software Engineering Environment. The 20th Annual ACM Symposium
on Applied Computing (SAC’05), Santa Fe, New Mexico, USA, 2005, pp. 1529-1533

[4] A, Wise. Little-JIL 1.0 Language Report. Technical Report 98-24, Laboratory for Advanced
Software Engineering Research, University of Massachusetts, Amherst. 1998-04-16

[5] A. G. Cass, H. Lee, B. S. Lerner, L. J. Osterweil: Formally Defining Coordination Process
to support Contract Negotiations. Department of Computer Science, University of Massa-
chusetts, Amherst, MA 01003, June 1999. (UM-CS-1999-039)

[6] D. Jensen, Y. Dong, B. S. Lerner, E. K. McCall, L. J. Osterweil, S. M. Sutton, Jr., A. Wise:
Coordinating Agent Activities in Knowledge Discovery Processes. Proceedings of Work
Activities Coordination and Collaboration Conference (WACC 1999), San Francisco, CA,
1999, pp. 137-146

[7] S. M. Sutton, Jr. and L. J. Osterweil. The design of a next generation process language. In
Proc. of the Joint 6th European Software Engineering Conj and the 5th ACM SICSOFT
Symp. On the Foundations of Software Engineering, pages 142-158. Springer-Verlag, 1997.

[8] LASER Process Working Group. Getting Started With Little-JIL Using Visual-JIL. 2002,
Laboratory for Advanced Software Engineering Research, University of Massachusetts,
Amherst.

Q. Wang et al. (Eds.): SPW/ProSim 2006, LNCS 3966, pp. 222 – 233, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Reusable Model Structures and Behaviors
for Software Processes

Raymond Madachy

University of Southern California Center for Software Engineering,
941 W. 37th Place, Los Angeles, CA, USA

madachy@usc.edu

Abstract. An organization of increasingly complex system dynamics model
structures and behaviors has been developed to promote modeling reuse for
software processes. It uses an object-oriented framework for describing struc-
tures in a class hierarchy with inheritance relationships. This original approach
provides a set of common assets that can be referenced for a “product line” of
software process models. The structures and their behaviors are process patterns
that frequently occur, and the recurring structures are model building blocks
that can be reused. They provide a framework for understanding, modifying and
creating system dynamics models regardless of experience. Previous work can
be understood easier and the structures incorporated into new models with
minimal modification. A goal of this work is to help accelerate software process
modeling and simulation activities. Experience indicates that the model assets
scale from small to large, complex models. Examples of the constructs and ex-
ecutable versions of associated models are also available.

1 Introduction

This work organizes system dynamics model structures and behaviors for software
processes starting with elemental components, incorporating them into basic flow struc-
tures and building up to larger infrastructures. The taxonomy and process representa-
tions provided generalized and adaptable “plug and play” components of varying
complexity. This is similar to the domain engineering results for a software product line,
but in this case the product line consists of software process models for anyone to build.

The structures and their behaviors are process patterns that frequently occur. The
recurring structures are model “building blocks” that can be reused. They provide a
framework for understanding, modifying and creating system dynamics models re-
gardless of experience. With access to reusable formulations that have been repeat-
edly proven, previous work can be understood easier and the structures incorporated
into new models with minimal modification.

System dynamics was developed by Forrester [1], from which this work is ultimately
derived. Since the pioneering work of Abdel-Hamid to create an integrated software
project model [2], many system dynamics applications have been developed for soft-
ware processes. However, the modeling task may be difficult and time consuming for
new or even experienced modelers. This work attempts to fill the knowledge gap for the
software domain, and make the modeling easier.

 Reusable Model Structures and Behaviors for Software Processes 223

Previous work for classifying system dynamic structures was been done in [3],
where relatively small scale “modeling molecules” are described. Simulation pack-
ages often come with usage examples, such as [4] which provides descriptions of
common building blocks. However, no other work has examined and provided a
comprehensive taxonomy for a specific domain. Nor has an object-oriented frame-
work been used to categorize inheritance properties of the structures. This presenta-
tion of the modeling craft is intended to resonate with software engineers.

This paper is a highly condensed summary from work to be published in [5] which
contains further detailed illustration of all the structures, relevant equations and model
outputs. Due to the space limitations of this paper, only a few short examples are
shown that lead up to an integrated model of Brooks’s Law phenomena. The book [5]
also describes a system dynamics modeling process that leverages on the reusable
structures. Additionally, applied examples of the structures are shown for different
software process aspects. Executable models are provided for the smaller infrastruc-
tures up through large, complex application models [5].

2 Background and Overview

Below is an overview of terminology related to model structures and behavior:

• Elements are the smallest individual pieces in a system dynamics model: levels,
rates, sources/sinks, auxiliaries and feedback connections.

• Generic flow processes are small microstructures and their variations comprised
of a few elements, and are sometimes called modeling molecules. They are the
building blocks, or substructures from which larger structures are created and
usually contain approximately 2-5 elements.

• Infrastructures refer to larger structures that are composed of several microstruc-
tures, typically producing more complex behaviors.

• Flow chains are infrastructures consisting of a sequence of levels and rates
(stocks and flows) that often form a backbone of a model portion. They house the
process entities that flow and accumulate over time, and have information con-
nections to other model components through the rates.

Not discussed explicitly are archetypes. They present lessons learned from dy-
namic systems with specific structure that produces characteristic modes of behavior.
The structures and their resultant dynamic behaviors are also called patterns. Whereas
molecules and larger structures are the model building blocks, archetypes interpret the
generic structures and draw dynamic lessons from them. Senge discusses organiza-
tional archetypes based on simple causal loop diagrams in The Fifth Discipline [6].

2.1 A Class Hierarchy

An object-oriented software framework is convenient to understand the model build-
ing blocks and their inheritance relationships described in this chapter. Consider a
class or object to be a collection of model elements wired in a way that produces
characteristic behavior. Fig. 1 shows the model structures in a class hierarchy with
inheritance. Object instances of these generic classes are the specific structures used

224 R. Madachy

for software process modeling (e.g. software artifact flows, project management poli-
cies, personnel chains, etc.).

The specific structures and their respective dynamic behaviors are the inherited at-
tributes and operations (likened to services or methods). The hierarchy in Fig. 1 also
shows multiple inheritance since some infrastructures combine structure and behavior
from multiple generic classes. Not shown are the lower levels of the hierarchy con-
sisting of specific software process instances that all inherit from this tree.

The simplest system is the rate and level combination, whereby the level accumu-
lates the net flow rate (via integration over time). It can be considered the super class.
The next level of structures include the generic flow processes, which are all slight
variants on the rate and level system. Each of them adds some structure and produces
unique characteristic behavior. For example the compounding process adds a feedback
loop from the level to the rate with an auxiliary variable that sets the rate of growth.
The new behavior derived from this structure is an exponential growth pattern.

Rate and level
system

Compounding
process

Draining
process

Cyclic loop
Production

process
Adjustment

process

Reinforcing
feedback

Co-flow
process

Attribute
tracking

Split flow
process

Multiple level
flow chain

Goal seeking
feedback

Attribute
averaging

Delay

Oscillation
S-shaped

growth
Information

smooth

Fig. 1. Class hierarchy for model structures

This hierarchy only includes systems explicitly containing rates and levels. There
are also structures using auxiliary variables instead of levels that can produce similar
dynamics. For more on how the object-oriented modeling concept can be extended
and automated see [5].

3 Model Structures and Behaviors

Next is a review of the basic model elements, generic flows and infrastructures. Spe-
cific structures for software process models and some behavioral examples will be
identified. All of the software process structures are derived from one or more generic
structures. Each structure can be represented with a diagram, summary of critical
equations, and behavioral output. All of these are provided in [5].

 Reusable Model Structures and Behaviors for Software Processes 225

3.1 Model Elements

The basic elements of system dynamics models are levels, flows, sources/sinks, auxil-
iaries and connectors or feedback loops. Fig. 2 serves as a legend showing the stan-
dard notation of these elements in a rate and level system with an auxiliary variable
connected to the rate via an information link. Next the standard elements are briefly
reviewed with sample instantiations for software processes.

level

rate

auxiliary variable

information link

source/
sink

Fig. 2. Model Notation Example of a Rate and Level System

Levels are the state variables representing system accumulations. Typical state
variables are software work artifacts, defect levels, or personnel levels. These exam-
ples may be broken out further per the following:

• work artifacts – these may include tasks, requirements, design, lines of code, test
procedures, UML models, reuse library components, documentation pages, etc.
These can be new, reused, planned, actual, etc. Sub levels like high-level design
could be differentiated from low-level design, etc.

• defect levels – these can be per phase, activity, severity, priority or other dis-
criminator.

• personnel levels – often segregated into different experience or knowledge pools
(e.g. junior and senior engineers).

Other level examples include effort and costs expenditures, schedule dates, person-
nel attributes such as motivation, staff exhaustion or burnout levels, process maturity,
key process areas and process changes.

Sources and sinks represent levels or accumulations outside the boundary of the
modeled system. Sources are infinite supplies of entities and sinks are repositories for
entities leaving the model boundary. Typical examples of software process sources
could be requirements originating externally or outsourced hiring pools. Sinks could
represent delivered software leaving the process boundary or personnel attrition re-
positories for those leaving the organization.

Rates in the software process are necessarily tied to the levels. Levels don’t change
unless there are flow rates associated with them. Some examples include software
productivity rate, software change rate, requirements evolution, defect generation,
personnel hiring and de-allocation, and learning rate.

226 R. Madachy

Auxiliaries often represent “score-keeping” variables. Example for tracking pur-
poses include the percent of job completion or other progress measures, percent of
tasks in certain states, calculated defect density, other ratios or percentages used as
independent variables in dynamic relationships.

3.2 Generic Flow Processes

Generic flow processes are the smallest, essential structures based on a rate/level
system that model common situations and produce characteristic behaviors. They
consist of levels, flows, sources/sinks, auxiliaries and sometimes feedback loops. See
Table 1 for a summary of generic flows and example applications.

Table 1. Generic flow processes and example software process applications

Example Description
Rate and Level
System

The simple rate and level system (also called stock and flow) is
the primary structure from which all others are derived. This
system has a single level and a bi-directional flow that can fill or
drain the level. It can be considered a super class for subsequent
structures, because each one builds on top of this basic structure
with additional detail and characteristic behavior.

Flow Chain with
Multiple Rates
and Levels

The single rate and level system can be expanded into a flow
chain incorporating multiple levels and rates. It can be used to
model a process that accumulates at several points instead of
one, and is also called a cascaded level system. A generic flow
chain within itself does not produce characteristic behavior with-
out other structure and relationships.

Compounding
Process

The compounding structure is a rate and level system with a
feedback loop from the level to an input flow, and an auxiliary
variable representing the fractional amount of growth per period.
A compounding process produces positive feedback and expo-
nential growth in the level. Modeling applications include cost-
to-fix trends, user bases, market dynamics, software entropy,
social communication patterns (e.g. rumors, panic), etc.

Draining Process Draining can be represented similarly as the compounding proc-
ess, except the feedback from the level is to an outflow rate and
the auxiliary variable indicates how much is drained in the level.
Draining is a common process that underlies delays and expo-
nential decays. Personnel attrition, promotion through levels,
software product retirement, skill loss and other trends can be
modeled as draining processes.

Production Proc-
ess

A production process represents work being produced as a rate
equal to the number of applied resources multiplied by the re-
source productivity. It typically has an inflow to a level that
represents production dependent on another level in an external
flow chain representing a resource. It can also be used for pro-

 Reusable Model Structures and Behaviors for Software Processes 227

duction of other assets beside software artifacts.
Adjustment
Process

An adjustment process is an approach to equilibrium. The struc-
ture for it contains a goal variable, a rate, level, and adjusting
parameter. The structure models the closing of a gap between the
goal and level. The change is more rapid at first and slows down
as the gap decreases. The inflow is adjusted to meet the target
goal. This basic structure is at the heart of many policies and
other behaviors.

Co-Flow Process Co-flows are a shortened name for coincident flows; flows that
occur simultaneously through a type of slave relationship. The
co-flow process has a flow rate synchronized with another host
flow rate, and normally has a conversion parameter between
them. This process can model the co-flows of software artifacts
and defects, it can be used for personnel applications such learn-
ing or frustration, resource tracking such as effort expenditure, or
tracking revenue as a function of sales.

Split Flow Proc-
ess

The split flow process represents a flow being divided into mul-
tiple sub flows, or disaggregated streams. It contains an input
level, more than one output flow, and typically has another vari-
able to determine the split portions. Applications include defect
detection chains to differentiate found vs. escape defects (i.e.
defect filters), or personnel flows to model dynamic project re-
source allocation at given organizational levels.

Cyclic Loop A cyclic loop represents entities flowing back through a loop.
The difference from non-closed chains is that a portion of flow
goes back into an originating level. This structure is appropriate
to represent iterative software development processes, artifact
rework, software evolution and other phenomena.

3.2.1 Example Generic Flow for Production Process
Fig. 3 shows an example of a classic production structure. The production rate is the
number of applied resources multiplied by the productivity per Equation 1. This

resources

tasks completedproduction rate

productivity

Fig. 3. Example Production Structure

228 R. Madachy

structure is what associates personnel entities with task production in a model. The
level for resources is typically contained in another flow chain for personnel re-
sources (the single level in Fig. 3 doesn’t show its associated flow rates), as demon-
strated in the integrated example in Section 4 that builds upon this generic structure.

production rate = resources * productivity (1)

3.3 Infrastructures and Behaviors

The infrastructures in Table 2 are based on one or more of the generic flow types with
additional structural details. The additional structure typically leads to characteristic
dynamic behaviors. A few of the structures herein do not cause specific dynamic be-
haviors, but instead are used for intermediate calculations, converters or instrumenta-
tion of some kind. The examples listed for the infrastructures are provided in [5].

Table 2. Example infrastructures and behaviors with examples

Example Description
Exponential
Growth

Growth structures are based on the generic compounding flow
process. Examples are defect cost-to-fix over time or software
entropy growth.

S-shaped
Growth and S-
curves

An S-shaped growth structure contains at least one level, provi-
sions for a dynamic trend that rises and another that falls. There
are various representations because S-curves may result from
several types of process structures representing the rise and fall
trends. Examples are cumulative effort or knowledge diffusion.

Delays Delays are based on the generic draining process. An example is
a hiring delay. Exponential decay results when the outflow con-
stant represents a time constant from a level that has no inflows.
The decay declines exponentially towards zero. A higher order
delay behaves like a connected series of first order delays.

Balancing Feed-
back

Balancing feedback (also called negative feedback) occurs when
a system is trying to attain a goal, such as reaching a hiring goal.

Oscillation Oscillating behavior may result when there are at least two levels
in a system. Normally there is a parameter for a target goal that
the system is trying to reach, and the system is unstable as it tries
to attain the goal. Examples are oscillating personnel systems.

Smoothing An averaging over time. Random spikes will be eliminated when
trends are averaged over a sufficient time period. An example is
perceived quality.

Production and
Rework

The classic production and rework structure accounts for incor-
rect task production and its rework. Work is performed, and the
percentage done incorrectly flows into undiscovered rework.
Rework occurs to fix the problems at a specified rate. The work
may cycle through many times. This structure is also related to
the cyclic loop, except this variant has separate sources and sinks
instead of directly connected flow chains. A number of other

 Reusable Model Structures and Behaviors for Software Processes 229

structures can be combined with this, such as using the produc-
tion structure for the task development rate.

Integrated Pro-
duction Struc-
ture

This infrastructure combines elements of the task production and
human resources personnel chains. Production is constrained by
both productivity and the applied personnel resources external to
the product chain. The level of personnel available is multiplied
by a productivity rate.

Personnel
Learning Curve

The continuously varying effect of learning can be modeled via a
classic feedback loop between the completed tasks and produc-
tivity, to account for becoming more proficient at a task. It can be
a representation where the learning is a function of the percent of
job completion, or the learning would be expressed as a function
of the volume of tasks completed.

Rayleigh Curve
Generator

The Rayleigh generator produces a Rayleigh staffing curve. It
contains essential feedback that accounts for the work already
done and the current level of elaboration on the project, produc-
ing the familiar hump shaped curve. The manpower buildup
parameter sets the shape of the Rayleigh curve. The Rayleigh
curve is also frequently used to model defect levels.

Attribute Track-
ing

Important attributes to track are frequently calculated from lev-
els. They can be used as inputs to other model portions, such as a
decision structure. For example, defect density can be calculated
by dividing the software size by the total number of defects.

Attribute Aver-
aging

A structure for attribute averaging (similar to attribute tracking)
calculates a weighted average of an attribute associated with two
or more levels. It can be easily extended for more entities to
average across and for different weighting schemes.

Effort Expendi-
ture Instrumenta-
tion

Effort or cost expenditures are co-flows that can be used when-
ever effort or labor cost is a consideration. Frequently this co-
flow structure serves as instrumentation only to obtain cumula-
tive effort and does not play a role in the dynamics of the system.
It could be used for decision making.

Decision Struc-
tures

 Infrastructures for decision policies that frequently determine
rates. Some common decision structures relevant to software
processes [5] include:
• Desired Staff
• Resource Allocation
• Scheduled Completion Date
• Defect Rework Policies.

3.3.1 Example Infrastructure and Behavior for a Delay
An example structure for a first order delay is shown in Fig. 4 that models outflow
from a level as introduced in Table 2. Equation 2 expresses the outflow rate as a
function of the level and average delay time. It produces the characteristic exponential

230 R. Madachy

level

outflow rate

delay time

Fig. 4. Example Delay Structure

decline shown in Fig. 5 for a starting level of 10 and average delay time of 20 days.
The integrated example in Section 4 incorporates this delay structure to model per-
sonnel assimilation on a project.

outflow rate = level / delay time (2)

Fig. 5. Example First Order Delay Behavior

3.4 Software Process Chain Infrastructures

This section identifies flow chain infrastructures related to software processes consist-
ing mostly of cascaded levels for software tasks, defects and people. These infrastruc-
tures can be used as pieces in a comprehensive software process model, or could serve
as standalone base structures for isolated experimentation.

The chains represent basic flows pervasive in software processes. When applying
system dynamics, the question must be asked: What is flowing? Determination of
what kinds of entities flow through a software process is of primary importance to
identify the chains to build models on top of. As always when modeling with system
dynamics, the level of aggregation used in the chains depend on the modeling goals
and desired level of process visibility. Applied examples of these chains from past
modeling applications are highlighted in [5] to illustrate the concepts.

 Reusable Model Structures and Behaviors for Software Processes 231

Software products are software artifact sequences modeled as conserved flows,
where each level has the same unit, or in non-conserved flow chains where product
transformation steps are modeled using distinct artifact types. Each level has dif-
ferent units in non-conserved chains. An elegant aspect of system dynamics is the
simplification of using conserved flows; hence many models employ a generic
“software task”. But if the process and modeling goals dictate that sequential arti-
facts be modeled in their respective units then non-conserved flows are used. An
example product flow chain is in the integrated model in Section 4 and shown in the
top of Fig. 6.

Defects are an important process measure that can provide many insights. There
are a number of ways to represent defects including their generation, propagation,
detection and rework. Defects are the primary focus in the chains, but are inextri-
cably tied to other process aspects such as task production, quality practices,
process policies to constrain effort expenditure, various product and value attrib-
utes, etc.

Examples infrastructures related to defects detailed in [5] include, defect genera-
tion, defect co-flows, Rayleigh defect generation, defect detection (filters), defect
detection and rework, defect amplification and defect categories.

People flows are conserved flow chains traditionally accounting for experience
pools. Chains for personnel are mainstays of models that account for human labor
and may also correspond to attributes for different skillsets, labor grades, or other
differentiators requiring more detail than auxiliaries or single levels can provide.
Frequently the chains contain two or more experience levels. Varying degrees of
detail and enhancements are possible, such as adding chain splits for attrition from
any experience level. See [5] for examples of personnel chains with increasing
levels of detail. An example personnel chain is in the model in Section 4 and at the
bottom of Fig. 6.

4 Integrated Example: Brooks’s Law Model

A model for Brooks’s Law phenomena in Fig. 6 illustrates integrating the aforemen-
tioned components to model the effects of adding people to a late project [5]:

• Product chain with requirements being developed in developed software per the
software development rate

• Personnel chain where new personnel are added when the project is late
through the personnel allocation rate and they assimilate into experienced per-
sonnel

• Production structure with a composite productivity formula for the software de-
velopment rate accounting for communication overhead, training overhead and
differences in productivity between new vs. experienced people

• Delay structure for the assimilation of new personnel to experienced personnel
per the average assimilation delay.

232 R. Madachy

developed software

software development rate

new personnel
experienced personnel

personnel allocation rate assimilation rate

~

communication overhead %
nominal productivity

experienced personnel
needed for training

~

planned software

average assimilation delay

training overhead:
% FTE experienced

requirements

Fig. 6. Brooks’s Law Model

There is also an information feedback loop from developed software to compare to
planned software for the decision to add people. The resulting behavior in Fig. 7 for
varying the personnel added once to catch up on schedule indicates the optimum is
adding 5 people in this case. See [5] for more details of the model and its behavior.

Fig. 7. Sensitivity of Software Development Rate to Varying Personnel Allocation Pulses
(1: no additions, 2: add 5 people on 110th day, 3: add 10 people on 110th day)

5 Summary and Conclusions

Models are composed of building blocks, many of which are generic and can be
reused. Model elements can be combined into increasingly complex structures that
can be incorporated into specific applications. There are few structures that have

 Reusable Model Structures and Behaviors for Software Processes 233

not already been considered for system dynamics models, and modelers can save
time by leveraging existing and well-known patterns.

This work provides reusable knowledge of those patterns specifically tailored for
the software processes domain. The hierarchy of model structures and software proc-
ess examples can be likened respectively to classes and instantiated objects. Charac-
teristic behaviors are encapsulated in the objects since their structures cause the be-
haviors.

Generic flow processes, flow chains and larger infrastructures are examples of re-
curring structures. Generic flow processes have structural detail to model compound-
ing, draining, production, adjustment, co-flows, splits and cyclic loops.

The structures all have multiple applications for software processes. Common main
chain infrastructures are centered on products (software artifacts), defects, and people.
Decision structures are also important to represent, such as policies to allocate staff,
adjust project goals/estimates as a project progresses and defect rework policies.

The generic structures can be combined in different ways and detail added to create
larger infrastructures and complex models. This was illustrated when integrating a few
simple structures into the Brooks’s Law model of complex and interacting effects.

The reusable structural/behavioral assets have been the result of culling many soft-
ware process applications. Experience has shown that they are useful for creating new
applications. The assets are further detailed and provided in [5] as executable models.
Students, researchers and practitioners are encouraged to use and experiment with
them.

References

1. Forrester JW: Principles of Systems. Cambridge, MA: MIT Press (1968)
2. Abdel-Hamid T, Madnick S: Software Project Dynamics, Englewood Cliffs, NJ, Prentice-

Hall (1991)
3. Hines J: Molecules of Structure Version 1.4, LeapTec and Ventana Systems, Inc. (2000)
4. Richmond B, et al.: Ithink User's Guide and Technical Documentation, High Performance

Systems Inc., Hanover, NH (1990)
5. Madachy R.: Software Process Dynamics, IEEE Computer Society Press (2006)
6. Senge P: The Fifth Discipline, Doubleday, New York, NY (1990)

Q. Wang et al. (Eds.): SPW/ProSim 2006, LNCS 3966, pp. 234 – 241, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Organization-Theoretic Perspective for Simulation
Modeling of Agile Software Processes

Levent Yilmaz and Jared Phillips

M&SNet: Auburn Modeling and Simulation Group
yilmaz@auburn.edu

Computer Science and Software Engineering,
Auburn University Auburn, AL, USA

Abstract. Software development is a team effort that requires cooperation
among individuals via task allocation, coordination of actions, and if necessary
avoidance and/or management of conflicts among members of the organization.
This perspective contrasts with the production focused view of software
development. That is, interaction becomes the central activity, not a side-effect
of a method’s prescription. Understanding the principles and components of
organizational behavior for inclusion in software process models improves the
level of fidelity and credibility of existing process simulations. Furthermore,
there are strong connections between the neo-information processing view of
organizations and agile software development. This paper introduces the
conceptual basis for an agent-based simulation modeling test-bed, Team-RUP,
which is based on an organization-theoretic perspective for simulation modeling
of agile software processes.

1 Introduction

Software production methods are enacted via interactions of software teams that
cooperate to build software (Sawyer 1994). As such, organizational dynamics can
have significant effect on project coordination. Software development is carried out
by teams of people that have to be coordinated within an organizational structure.
Therefore, it is critical to pay attention to complex interrelations between technical,
product-oriented activities and organizational factors that affect the performance of
software processes. The lack of conceptualization and inclusion of human, social, and
organizational dynamics in software process models is a critical obstacle in exploring
socio-technical aspects of software processes [1]. Hofstede [2] and others [3] point
out that organizational culture can have significant effect on project coordination, and
yet, this is not reflected in current project management paradigms applicable to
software development [4].

This paper presents a strategy for developing software process simulation models
from an organization-theoretic perspective, and it illustrates the utility of the
framework using an agent-based simulation test-bed (Team-RUP), which is originally
developed for studying cooperative team behavior in software development
organizations that exercise agile processes such as Rational Unified Process (RUP).
Agile processes promote communication among team members. Communication is a

 Organization-Theoretic Perspective for Simulation Modeling 235

fundamental part of any software development project. When a project is developed
in pieces, understanding how the pieces fit together is vital to creating the finished
product. There is more to integration than simple communication. Quickly integrating
a large project while increments are being developed in parallel requires
collaboration. As such, the premise of the presented strategy is based on the following
observations: Human organizations, including software development organizations,
(1) continually acquire, manipulate, and produce artifacts through joint cooperative
activities and (2) they are comprised of multiple distributed agents (i.e., software
engineers) that exhibit collective properties via communication, interaction via
collaboration and coordination. Furthermore, the characteristics of agile processes
(i.e., iterative, time-bound, parsimony, adaptive, incremental, convergent, people-
oriented) impose new challenges on model design. Team-RUP focuses on these
challenges in terms of a novel task and organizational model.

Human organizations are the subject of study of organization theory, and our
framework is grounded in the science of organizations (contingency theory [5] and
computational organization theory [6]). In our work, the organization-theoretic
perspective to simulation modeling of software processes entails characterizing the
components of organizational design, as well as established types of organizational
paradigms [7,8,9]. We present the conceptual basis and design aspects underlying the
agent-based simulation test-bed, called Team-RUP.

The rest of the paper is organized as follows. Section 2 presents the basic
organizational concepts used during the conceptualization of Team-RUP. Section 3
provides a brief synopsis regarding the realization of these concepts within the design
and implementation of the model. Finally, in section 4 we conclude by discussing
potential avenues of further research.

2 Organizational Concepts for Software Process Simulation

To design an organization we must first know what are the components and features
of the organization we can select and combine. Figure 1 presents the partial
conceptual model that can be used to specify the conceptual models of organizations.

Organization Design: The structure of the organization includes a set of relations
between its members (i.e., agents), skills, and resources, task-resource, task-skill,
resource access, task-precedence, and task assignment [6] are among the fundamental
elements of organizational structure. In a software development organization, we are
also interested in the execution of a complex function that can be decomposed into
sub-functions, so that the agents capable of solving, distributing, and routing subtasks
and sub-results can collectively and cooperatively solve the problem. The
specification of this function is defined here as the behavior of the organization. The
functions that designate the behavior of an organization constitute the primitive and
composite tasks. Each task requires a number of skills provided by agents that play
certain roles such as project manager, designer, and tester.

Organizational Behavior Moderators: Behavior moderators or stressors [6] such as
time pressure, deadlines, turnover, trust, reward mechanisms, influence the observed
behavior of a software process. As variations in technology [6] and human dynamics

236 L. Yilmaz and J. Phillips

such as anxiety, stress, emotions, and personality continue to be embedded with
software process models, the fidelity and variability of simulations will improve.

Organizational Roles and Intelligent Agents: Most recent advancements in
computational organization theory are being achieved through the agent-based
modeling methodology. Agent-based simulation modeling is well-established as a
method for simulating Complex Adaptive Systems, i.e., those with many participants,
(often many kinds of participants), whose behavior both adapts to, and influences
emerging conditions. The purpose of agent-based models is not necessarily to predict
the outcome of a system, rather it is to reveal and understand the complex and
aggregate system behaviors that emerge from the interactions of the various
individuals involved.

Fig. 1. Partial Conceptual Model of Team-RUP’s Organizational Design

Organizational Strategy and Paradigms: The strategy of an organization is its
future intention of how it will attain its objectives that are designated by the
organizational performance model. A strategy is realized in terms of cooperation
mechanisms that require coordination and collaboration among the members of the
organization. A strategy can be realized in terms of coordination mechanisms such as
planning, rules, mutual agreement, and hierarchy. Constantine [7] outlines a
comprehensive framework that he calls organization paradigms. In this framework
organizational paradigms are viewed as the mechanisms by which groups control and
coordinate their efforts on a common task. Four types of paradigms are identified [7].
Tasks can be coordinated by a traditional hierarchy (closed teams), by reliance on

 Organization-Theoretic Perspective for Simulation Modeling 237

individual initiative and innovative independence (random teams), by collaborative
discussion and negotiation (open teams), or by virtue of harmonious alignment
(synchronous teams).

Task-Environment Model: The task-environment model refers to the environmental
and task characteristics that affect the performance of the organization. These
characteristics include type, size, rate of change, uncertainty, interdependence,
complexity, and granularity of tasks.

Performance (Objective) Model: To maximize the applicability of the results across
the vast diversity of software development objectives and constraints, efficiency and
effectiveness are used as common performance indicators. Often, organizational
efficiency is measured in terms of productivity and staff utilization, while
effectiveness is viewed as a combination of timeliness and software quality.

3 Team-RUP: A Test-Bed Toward Next-Generation Software
Development Organization Models

Team-RUP is an agent-based simulation model that is used to explore cooperative
behavior in software development organizations that employ Rational Unified
Process. The model focuses on three levels of organizational character and the
feedback loop they produce: process activities via an explicit task model,
organizational design, and various team archetypes.

3.1 Organization Design

As connoted by its name, Team-RUP provides a test-bed for studying collaboration
and coordination among teams at multiple resolutions guided by the Rational Unified
Process [10]. The organizational model addresses the structure of the organization and
agents, the coordination of tasks, and agent collaborations. The structure of an
organization modeled in the Team-RUP framework is shown in figure 2. As is most
common among software development organizations, the Team-RUP is structured as
a hierarchy of agents. It consists of a project manager, a design manager, and teams of
engineers. The remainder of the software development organization, including an
independent testing group, acts as a hook point and is implemented via parameterized
components so that detailed models can later be plugged in to the Team-RUP
framework.

3.2 Organizational Paradigms Used in Team-RUP

To represent cooperation at the team level, Team-RUP considers four group
archetypes based on characteristics resulting from collaboration and coordination
techniques. Ferber [11, p. 80] defines a collaboration technique as “being of those
that enable agents to distribute tasks, information and resources (among themselves)
in the advancement of a common labour.” We classify teams in terms of the degree of
autonomy afforded by such strategies. In particular, team collaboration strategies are
classified as top-down or bottom-up. As the former entails step-wise refinement, a
large degree of oversight is required, which diminishes autonomy. The latter,

238 L. Yilmaz and J. Phillips

however, provides more flexibility since the structure of the final integrated product is
not entirely preconceived. These categories are further subdivided in terms of
coordination. According to Ferber [11, p. 400], coordination of actions means “the
articulation of the individual actions accomplished by each of the agents in such as
way that the whole ends up being a coherent and high-performance operation.” We
classify team behavior according to the degree of concurrency realized through
coordination. In particular, teams can function sequentially or concurrently.

Project
Manager

Design
Manager

Leader 1 Leader n

Designer 1 Coder1 Tester1 Designer n Coder n Tester n

<<Black Box>>

Requirements
Elicitation and

Analysis

<<Black Box>>

Independent
Testing Group

Fig. 2. Team-RUP Organizational Structure

3.3 The Team-RUP Task Model

In accord with RUP, the development of software in Team-RUP is viewed as a multi-
stage transformation. During a series of time-boxed iterations, the design manager and
its subordinates map the analysis model into a design model and implementation.
Construction begins with the analysis model being passed to the project manager, who
forwards it to the design manager. During a series of time-boxed iterations, the design
manager and its subordinates map the analysis model into a design model and
implementation. For simplification purposes, the latter two artifacts are not
syntactically distinct entities in the model. As will be evident later, both are sub-lists of
the same (semi-) sorted list. To reflect RUP’s incremental nature, testing occurs during
each iteration. We recall that in the Rational Unified Process, software projects are
completed through a sequence of time-boxed iterations, each of which may comprise
design, implementation, and/or testing. Development organizations using RUP should
complete some subset of the final system at the end of each iteration. Because of its
iterative nature, RUP allows an organization to cope with requirements changes. RUP
also stipulates that those parts of the project involving greater risk should be addressed
in early iterations so that overall risk to the project can be mitigated. To model this
incremental and iterative process, the organization sorts integer arrays using a variation
of a well-known iterative sorting algorithm; namely, Shell sort. In the Team-RUP
framework, an array of integers represents a project configuration, and problem facets
are modeled as ordered pairs of elements. The set of all possible facets pertaining to a
configuration C (and hence a project) is the following set:

 Organization-Theoretic Perspective for Simulation Modeling 239

(){ }jiCCyx ji <×∈,

Suppose (xi , yj) is a problem facet corresponding to a configuration C and let zk be an
element of C. If jk ≥ , comparing xi and zk translates into performing a task

associated with (xi , yj) . Similarly, if ik ≤ , comparing zk and yj is also analogous to
performing a task associated with (xi , yj). Clearly, many tasks can be accomplished
via a single comparison. As in the real world, not all facets of a problem need to be
addressed to accomplish a given project; certain tasks can remain undone. Team-
RUP classifies tasks according to two categories. A supporting task does not reverse
the order of a problem facet pair. Principal tasks are the second form of task, and they
address a special form of problem facet. Team-RUP represents requirements in terms
of inversions; that is, pairs of array elements that are out of order. A single inversion
is interpreted as a principal, atomic task yet to be performed. Thus, a set of inversions
is an incomplete requirement fulfillment (ie. principal task), and removing a set of
inversions corresponds to fulfilling a requirement. Sets of inversions can be
decomposed into subsets just as a task can be decomposed into subtasks. With this
mapping of tasks to inversions, Shell sort provides a strong analogy for RUP for
several reasons. Obviously, the algorithm’s approach of removing inversions in
phases coincides with RUP iterations. Of greater significance is the fact that a Shell
sort phase does not undo work performed in earlier phases: 2-sorting a 5-sorted list
generates a 5-sorted (as well as 2-sorted) list. This reflects the fact that each RUP
iteration produces part of the final system rather than draft-quality, throw-away
workproducts. Recall that Shell sort initially swaps unordered elements that are far
apart and decreases with each phase the distance between the elements it compares.
Because it eventually sorts the set of adjacent elements, the algorithm is guaranteed to
sort the entire list. Since inversions inserted by an outside entity during the execution
of Shell sort will ultimately be removed by later phases, the algorithm reflects RUP’s
ability to cope with changing customer requirements.

As mentioned before, we interpret Shell sort phases to be RUP iterations. In each
phase of Shell sort, the base array is partitioned into sub-arrays whose lengths are
determined by a particular increment sequence. Each of these sub-arrays is sorted
using some secondary sorting algorithm (typically insertion sort) (Weiss, 1999). By
varying the way this secondary sorting occurs, we use this feature of Shell sort to
model alternative team behaviors. That is, the sorting is performed by agents
cooperatively and consistent with the specific sorting strategy. Comparing array
elements and performing element exchanges represent the design and implementation
phases performed by agents. Ascertaining the number of inversions in sub-arrays is
seen as testing. Several sub-arrays can be tested during each iteration. Thus, in
accordance with RUP, our model organization avoids a linear lifecycle approach. The
project ends when the originally proposed deadline for the final time-box expires,
regardless of the state of the array.

3.4 The Team-RUP Design, Implementation, and Experimentation

Team-RUP framework is developed using the Repast Agent Simulation Toolkit.
Figure 3 illustrates a screenshot of the GUI during a simulation run. The lower left-

240 L. Yilmaz and J. Phillips

hand window displays the current state of the list being sorted. In particular, it shows
a Cartesian coordinate system in which ordinates increase from top to bottom and
abscissa increase from left to right. Suppose L is the list of n integers being sorted.
The dots are plots of the points in the set

Fig. 3. Team-RUP GUI

(){ }njiLLyxS ji ≤<≤×∈≡ 1,

Let () Syx lk ∈, be given. If kk yx < , then ()lk yx , is not an inversion and

corresponds to a green dot. If lk yx > , then ()lk yx , is an inversion and corresponds

to a red dot. In the case of an inversion, darker dots represent greater values of the
difference kl − . The information shown in the right window of Figure 3 displays the
simulation run’s model parameters. The complexity value is the percent of inversions
found in the initial list. LowErrors and HighErrors provide upper bounds on inversion
percentages used by the testing department to classify work products.
NumberOfTeams refers to the number of engineering teams in the software
construction team. The scope is the size of the list to be sorted. Stability relates
(inversely) to the percent of insertions injected into the list at the end of the first
iteration. This value decreases as simulation time progresses. Obviously, the team
behavior parameter takes on the values shown in Figure 3. In the Team-RUP model,
the nature of collaboration varies with the selection of team behavior. While always
centralized due to organizational constraints, task allocation possesses characteristics
from both the imposed and brokered paradigms [11]. Task assignments involving the
project manager are imposed. In contrast, the design manager can exhibit trader
qualities. For example, Synchronized teams query the design manager to ascertain the
team whose skill set matches a service needed by the inquiring team. Likewise, Agile
teams consult the design manager to discover which team manages a particular

 Organization-Theoretic Perspective for Simulation Modeling 241

requirement. In contrast, imposed allocation characterizes the autonomous team
behaviors. Team interaction, another aspect of collaboration, exhibits even greater
diversity among behaviors.

4 Conclusions

With its extensive tool set and corporate support, the Rational Unified Process has
garnered large support from software developers. Understanding its interaction with
human agents, therefore, is extremely important. We believe our current
implementation will serve as a test-bed for a larger scale project. The value of the
work so far is found in our demonstration that team culture can indeed be simulated.
In the past, software developers have relied solely on “folk-wisdom” heuristics or
studies bound by historical circumstance. Simulation provides software development
organizations a tool for understanding why a project progresses the way it does. More
importantly, it affords the opportunity to try new avenues for improvement in a risk-
free environment.

References

1. Acua, T. Silvia and N. Juristo (2005). Software Process Modeling (page xix). Springer
Science and Business Medias Inc.

2. Hofstede, G. (1998) Identifying Organizational Subcultures: An Empirical Approach,
Journal of Management Studies, Vol. 35, pp. 32-49.

3. Cabrera, A., Cabrera, E. F. and Barajas, S. (2001) ‘The key role of organizational culture
in a multi-system view of technology-driven change’, International Journal of Information
Management, Vol. 21, pp.245-261.

4. Boehm, B. W., Abts, C., Brown, A. W., Chulani, S., Clark, B. K., Horowitz, E., Madachy,
R., Reifer, D. and Steece, B. (2000) Software Cost Estimation with Cocomo II, Prentice
Hall PTR, Upper Saddle River, New Jersey.

5. Scott, W. R. (1992). Organizations: Rational, Natural, and Open Systems, third edition.
Englewood-Cliffs, N.J. Prentice Hall.

6. Carley, M. K. and L. Gasser (1999). “Computational Organization Theory, “In Multi-
Agent Systems: A Modern Approach to Distributed Artificial Intelligence. (Ed. Weiss G.).
The MIT Press.

7. Constantine, L. (1993) “Work Organization: Paradigms for Project Management and
Organization,” Communications of the ACM, Vol. 36, No. 10, pp.35-43.

8. Armour, G. P. (2004). The Laws of Software Process: A New Model for the Production
and Management of Software. Auerbach Publications.

9. Dyba, Tore (2000). “Improvisation in Small Software Organizations,”IEEE Software
September/October 2000. pp. 82-87.

10. Krutchen, P. (1999). The Rational Unified Process: An Introduction. Reading, MA:
Addison Wesley Longman.

11. Ferber, J. (1999). Multi-Agent Systems: An Introduction to Distributed Artificial
Intelligence. New York, NY: Addison Wesley Longman Inc.

Q. Wang et al. (Eds.): SPW/ProSim 2006, LNCS 3966, pp. 242 – 253, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Semi-quantitative Simulation Modeling of Software
Engineering Process

He Zhang1,2 and Barbara Kitchenham2

1 School of Computer Science and Engineering, UNSW
2 National ICT Australia

{he.zhang, barbara.kitchenham}@nicta.com.au

Abstract. Software process simulation models hold out the promise of improv-
ing project planning and control. However, purely quantitative models require a
very detailed understanding of the software process, i.e. process knowledge rep-
resented quantitatively. When such data is lacking, quantitative models impose
severe constraints, restricting the model’s value. In contrast, qualitative models
display all possible behaviors but only in qualitative terms. This paper illus-
trates the value and flexibility of semi-quantitative modeling by developing a
model of the software staffing process and comparing it with other quantitative
staffing models. We show that the semi-quantitative model provides more in-
sights into the staffing process and more confidence in the outcomes than the
quantitative models by achieving a tradeoff between quantitative and qualitative
simulation. In particular, the semi-quantitative simulation produces a set of pos-
sible outcomes with the ranges of real numeric values. The semi-quantitative
model allows us to determine the solution boundaries for specific scenarios un-
der the conditions of limited knowledge.

1 Introduction

In the late 80’s, Abdel-Hamid and Madnick (AHM) proposed the use of quantitative
System Dynamics models to simulate the dynamic aspects of software projects [1].
Since then, other researchers have continued their work and extended their approach.
This approach is intended to attain a detailed understanding of project behavior, im-
proving both project planning and project control. Although it has shown great prom-
ise, in practice, it is not frequently used.

One major problem with quantitative simulation models is that they require very
detailed understanding of the processes to be simulated. Such models require reliable
data for their initial construction, and additional data to tailor the general model to the
specific practices of a particular organization. When the knowledge of software proc-
ess is limited or inadequate, quantitative simulation models impose strict constraints
on the models which results in deterministic outcomes that neglect other possibilities.

As an alternative to the quantitative approach, qualitative simulation has been in-
troduced to model and simulate software processes. Ramil and Smith developed
qualitative models with reference to the quantitative models to extract the high-order
qualitative trends of software evolution [2]. Zhang et al. developed a qualitative simu-
lation model of a software staffing process, and presented a new approach to examine

 Semi-quantitative Simulation Modeling of Software Engineering Process 243

the Brooks’ Law [9]. So far, these are the only examples of software process model-
ing using qualitative simulation.

Semi-quantitative simulation involves combining incomplete quantitative and
qualitative knowledge. It provides a smooth transition between qualitative and quanti-
tative modeling. In this paper, we introduce a semi-quantitative model of the staffing
process of software project and apply it to develop a QSIM+Q2 simulation. The simu-
lation displays a set of behaviors which display all possible quantitative outcomes
when team size changes. We examine the generated behaviors of our model by com-
paring them with the results of other quantitative models.

Section 2 introduces semi-quantitative simulation modeling. We address the qualita-
tive constraints and quantitative bounds of the software staffing process model in Section
3. Then, we illustrate the model results of the EXAMPLE project (Section 4), followed
by the comparison with the previous models and discussion of the relevant factors (Sec-
tion 5). Finally, Section 6 presents our conclusions and intentions for future work.

2 Semi-quantitative Simulation

Semi-quantitative simulation can be implemented in two stages, i.e. qualitative simu-
lation and quantitative constraint propagation. In this section, we briefly introduce
their mechanisms.

2.1 Qualitative Simulation

Qualitative models represent systems in the real world at an abstract level. Fewer as-
sumptions are required than for quantitative models. Qualitative simulation is imple-
mented in the QSIM tool [4].

A system is normally modeled as a set of ordinary differential equations (ODEs),
which involves quantitative information. At a higher level, a qualitative differential
equation (QDE) represents a large set of possible ODEs, for example, each M+ (or M-)
function represents the set of all monotonically increasing (or decreasing) functions.
When only incomplete knowledge is available, we can replace ODEs with QDEs to
represent the relationships and values of system variables qualitatively [3].

A QDE is the input constraint model to QSIM. The values of its variables are given
relative to sets of qualitatively significant landmarks, e.g. 0 and infinity.

Qualitative simulation starts from a given initial system state. The output generated
by QSIM is a set of possible qualitative behaviors and each behavior consists of a se-
quence of states. Each state in a behavior describes an open temporal interval or a
time point. These qualitative states represent graphically the system behavior from its
initial state to its final state. Time is treated as a qualitative variable in QSIM. Its
landmarks are produced by QSIM when necessary, they indicate critical points of
other variables [4].

2.2 Q2 Extension

Semi-quantitative simulation uses bounding intervals to represent partial quantitative
knowledge. Q2 (Qualitative + Quantitative) is the basic semi-quantitative reasoner
implemented as an extension to QSIM [4].

244 H. Zhang and B. Kitchenham

The qualitative behaviors generated by QSIM provide the framework for semi-
quantitative reasoning. Given interval bounds on the values of some landmarks and
envelopes on the monotonic functions, its QDE defines a constraint-satisfaction prob-
lem (CSP). A solution to this CSP is an assignment of an interval to each landmark
consistent with the constraints. Because a few qualitative behaviors cover a wide
range of real possibilities, a contradiction refutes a qualitative behavior and all the
real possibilities it describes [3]. Fig. 1 shows how a system described by single QDE
implements a semi-quantitative simulation (QSIM+Q2).

Fig. 1. Overview of QSIM + Q2

3 QSIM+Q2 Model for Staffing Process

Several previous researches have investigated the software staffing process using
quantitative and qualitative models. This section first gives a brief description of these
models, and then presents our semi-quantitative (QSIM+Q2) model for this process.

3.1 Related Models

Abdel-Hamid and Madnick (AHM) modeled the basic process of software human re-
source management as a part of their integrated model [5]. They assumed two work-
force levels, i.e. "newly hired workforce" and "experienced staff", and then formu-
lated the assimilation process as a first-order exponential delay.

Madachy developed a software staffing model to examine the Brooks' Law [6]. He
simplified AHM's model by focusing on the assimilation procedure, i.e. "new project
personnel" is transformed into "experienced personnel" at "personnel allocation rate".

Both of these staffing models were System Dynamics models and used to verify
Brooks’ Law. Unfortunately, these models were built using a set of specific numeric

 Semi-quantitative Simulation Modeling of Software Engineering Process 245

values, which were selected from the literature or historical data of company projects,
to represent the factors in the models. Further, they simulated the process with the
data from specific projects or example as inputs.

Stutzke developed a simple model in order to perform a similar investigation [7].
He believed that the added burden of communication was a second-order effect.

Zhang et al. extracted the basic qualitative assumptions of the staffing process and
developed a qualitative model [9]. The qualitative simulation generated all possible
behaviors that arise when the workforce changes during a project. This paper extends
their work by combining the qualitative model with partial quantitative knowledge.

3.2 Qualitative Modeling

Both AHM's and Madachy's models are quantitative simulation models which consist
of a set of ODEs. To develop the semi-quantitative model, a qualitative model has to
be created first on the base of a minimal set of assumptions of the staffing process.
We refine Zhang’s qualitative model and combine the quantitative extensions later.

3.2.1 Qualitative Abstract Elements
The qualitative model is derived from some basic assumptions, including the unstated
assumptions in previous models. We summarize these assumptions and extract the
corresponding qualitative constraints in Table 1.

Table 1. Basic Assumptions of Staffing Model

Assumption Constraint

1. no changes of requirements SP

2. reworking is included in SP
constant SP

3. SP is transformed to product by RSD SC + SR = SP, RSD = d(SC)/dt

4. workforce WFTL consists of WFEX and WFNW WFTL = WFEX + WFNW

5. RND is the product of productivity PD and WF
REXD = PDEX * WFEX,

RNWD = PDNW * WFNW
6. increasing WFTL increases RCM due to an increase in

LCM
LCM = M+(WFTL),
RCM = RND * LCM

7. RSD is difference between RND and RCO RSD = RND - RCM

8. PDEX is constant on average, and higher than PDNW PDNW < PDEX , constant PDEX

9. more WFNW need to be trained by more WFET WFET = M+(WFNW),

10. WFNW are assimilated into WFEX by RAS
WFET + WFED = WFEX,

RAS = d(PDNW)/dt

Based on these assumptions, the qualitative abstract structure was created to visual-
ize the qualitative constraint structure of software staffing process as shown in Fig.2.

As time progresses, the remaining size (SR), initially equal to the requirements (SP),
decreases until it becomes equal to completed size (SC). The project will be completed
when SC equals the initial requirements, or, equivalently, SR drops to zero.

246 H. Zhang and B. Kitchenham

Fig. 2. Qualitative Abstracting Structure of Software Staffing Process

The experienced workforce (WFEX) and the new workforce (WFNW) work at differ-
ent productivities. When the new employees join the project (WFNW >0), a portion of
experienced staff (WFET) have to leave their original tasks to train the new personnel.

There are two major differential components in this model. The first one is the
software development rate (RSD), which represents the development speed of the
software project. It is determined by two factors: the nominal development rate (RND),
and the equivalent communication and motivation overhead rate (RCM). The RND can
be further decomposed into development rate contributions from the experienced
workforce (REXD) and the newly hired workforce (RNWD). The second differential rela-
tion is the assimilation rate (RAS) of the new employees, which indicates how quickly
their productivity increases to the level of experienced staff by the training process.

3.2.2 QDE Programming
Two QDEs are developed to convert the qualitative abstract model (Fig. 2) to con-
straint programs. One QDE is used to describe the normal software development
process, and the other to describe the interaction and relations in the assimilation
process.

Normal Software Development QDE
The constraint clauses of this QDE are shown as below. It represents the normal soft-
ware development process without new employees hired. All the constraints are based
on the first seven assumptions in Section 3.2.1.

 Semi-quantitative Simulation Modeling of Software Engineering Process 247

(constraints (add Sc Sr Sp)(constant Sp)(d/dt Sc Rsd)
 (constant WFnw 0)(constant WFex)(add WFex WFnw WFtl)
 (constant PDex)(Mult PDex WFed Rexd)(constant Rnwd 0)
 (add Rexd Rnwd Rnd)(M+ WFtl Lcm)(Mult Rnd Lcm Rcm)
 (add Rsd Rcm Rnd))

Assimilation Process QDE
The assimilation process can be refined in two different ways.

Refinement 1: The newly hired workforce will be gradually transferred into the ex-
perienced staff pool at the assimilation rate (RAS). WFNW will be reduced to zero when
the assimilation process finishes. The productivity of new staff stays at the initial low
level during assimilation. Because of the positive monotonic relationship, the experi-
enced workforce for training (WFET) reduces to simultaneously with WFNW.
Refinement 2: The newly hired workforce are transferred into the experienced staff
pool only when the assimilation process finishes. However, their average productivity
will be increasing until it reaches the experienced workforce productivity (PDEX). The
amount of experienced trainers required (WFET) does not change.

Refinement 2 is consistent with AHM's enhanced model, which separated the as-
similation procedure into four stages with the different productivity levels of new
staff [5]. We use this refinement in this paper. The new and changed constraints from
the first QDE required to represent the assimilation process are highlighted below.

(constraints (constant WFnw)(add WFed WFet WFex)
 (M+ WFnw WFet)(d/dt PDnw Ras)(Mult PDnw WFnw Rnwd))

Two transition functions are used to switch between the QDEs. One triggers the as-
similation procedure at a particular time point during development. The other moni-
tors the increase of the new employees’ productivity until it equals the experienced
level. Then it switches the simulation back to the first QDE.

3.3 Quantitative Extension

The qualitative model can be extended by Q2 equations for semi-quantitative simula-
tion. Q2 equations, including parameter intervals and envelope functions, are repre-
sentations of incomplete quantitative knowledge and uncertain scenarios.

3.3.1 Parameter Intervals
Variable units and unit conversion were not addressed in the qualitative model be-
cause the landmark values are symbolic names with unknown real values (like alge-
braic variables). All quantities are assumed to have appropriate and compatible units.
However, because some quantitative interval bounds are involved in semi-quantitative
simulation, the units must be explicitly denoted for the interval arithmetic (Table 3).

Ratio of Productivity
According to AHM’s summary of the literature and interviews, the estimates for the
productivity of newly hired workforce relative to that of experienced personnel vary
from 0.33 to 0.64. We pick the interval of [0.4 0.6] for the quantitative extension.

248 H. Zhang and B. Kitchenham

Assimilation Delay
The range of proposed assimilation delay is quite large in the literature. It was set at
80 days by AHM [5], but 20 days by Madachy [6]. Although some attributes of their
projects are different, the team size and project duration are comparable. We use a
prototype project from AHM as our example project, so we employ a moderate range,
[60 80] days, for this parameter.

The value ranges of Project Size and Workforce Levels highly depend on the par-
ticular project and organization. They are specified in Section 4.1.

3.3.2 Envelope Functions
As Fig. 2 indicates, there are two monotonic functions in the qualitative staffing
model. Thus, we need to specify two numerical envelope functions for Q2 inference.

(M+ WFNW WFET).

When more new employees join in the project, more experienced people have to be
assigned to train them. A linear relationship was reported in the literature. AHM
summarized the ratio ranges from 15% to 25%, and set it to 20% [5]. Madachy set the
value to 0.25[6]. We use the range of [0.15 0.25] in our example.

(M+ WFTL LCM).

Brooks suggests that communication and motivation overhead (RCM) increases by a
factor of n(n-1)/2, where n is the project team size [8]. This implies that increasing the
project team size increases RCM. AHM used the function (0.06n2) to formulate a
nonlinear relation between total workforce (WFTL) and the percentage of communica-
tion and motivation loss (LCM), which is consistent with Brooks’ assumption.

An exact function (i.e. upper equal to lower) is imported into the Q2 equations.
These two envelope functions are shown as below.

(envelopes ((M+ WFnw WFet)(upper (lambda (x) (* x 0.25)))
 (u-inv (lambda (y) (* y 4)))
 (lower (lambda (x) (* x 0.15)))
 (l-inv (lambda (y) (/ y 0.15))))
 ((M+ WFtl Lcm)(exact (* 0.0006 (square (x))))
 (e-inv (sqrt (/ y 0.0006)))))

4 Illustrative Example

4.1 Prototype Project

To illustrate the semi-quantitative simulation, we select AHM’s EXAMPLE project,
a prototype project for experimentation. EXAMPLE is a medium-size project and
the workforce level is calculated by COCOMO. Its main attributes are shown in
Table 2.

AHM specified two scenarios to investigate an aggressive manpower acquisition
policy which adds new personnel at day 260, when testing starts, and increase the

 Semi-quantitative Simulation Modeling of Software Engineering Process 249

Table 2. Attributes of EXAMPLE Project

Attributes Values
Project size 64 KDSI
Man-days 3,795 man-days
Duration 430 days
Initial team size 4 men
Maximum team size 8/18 men
Average ratio of Productivity 0.5
Ratio of experienced mentors to novices 0.2
Average productivity of experienced workforce 36 DSI/man-day

Table 3. Value Ranges of Q2 Extension

Parameters Value Ranges
Initial experienced workforce [4 5] men
Newly hired workforce [3 4]1/[11 12]2/[7 8]3 men
Ratio of Productivity [0.4 0.6]
Ratio of experienced mentors to novices [0.15 0.25]
Assimilation delay [60 80]days

total workforce either to 8 or 18 [5]. We replicate these two scenarios in semi-
quantitative simulation, and add one medium scenario for comparison: adding [3 4]
new staff at day 260 (Scenario 1), adding [11 12] new staff at day 260 (Scenario 2);
and adding [7 8] new staff at day 260 (Scenario 3).

With reference to the quantitative extension and EXAMPLE project, the numeric
ranges assigned to parameters of the semi-quantitative model are shown in Table 3.

WFet

WFnw4 8 12

1

2

3

WFet = 0.25 × WFnw

WFet = 0.15 × WFnw

Scenario 2

Scenario 1

Scenario 3

Fig. 3. Envelope Function of (M+ WFTL LCM)

Accordingly, the monotonic envelope function (M+ WFTL LCM) has been updated
with the value ranges of workforce as Fig. 3. The area of the broken line rectangle be-
tween two linear equations indicates the possible value range for each scenario.

250 H. Zhang and B. Kitchenham

4.2 Possible Behaviors

The QSIM staffing model generates 112 possible behaviors [9]. They can be classi-
fied into two categories:

Type 1: behaviors only passing the first transition point when the new staff are in-
jected, i.e. the project finishes before the assimilation is complete;
Type 2: behaviors also passing the second transition point when the assimilation com-
pletes, and then being followed by project closure.

After the quantitative constraint propagation, Q2 outputs only 9 behaviors for Sce-
nario 1 and 3 behaviors for Scenario 2 as final solutions. Comparing with the behav-
iors generated by QSIM, we found that all behaviors of Scenario 2 and 3 behaviors of
Scenario 1 are Type 1, passing single transition, and other behaviors of Scenario 1 are
Type 2, i.e. passing both transitions. (The behaviors of Scenario 3 are a mix of 2 of
Type 1 plus 3 of Type 2.)

Fig. 4 shows the changes of main variables in Beh. 1 of Scenario 1. It is similar to
the changes in most behaviors except the different numeric ranges of the landmarks.

Fig. 4. Behavior 1 of Scenario 1

4.3 Software Development Rate

Because the project duration and development speed are directly determined by soft-
ware development rate (RSD), it can be regarded as the critical variable of our model.
It also exhibits complex changes and important differences among the behaviors.

Fig. 5 shows three behavior patterns of RSD in scenario 2, which are similar in sce-
nario 1: when the new staff are injected, 1) RND ascends and RSD falls immediately; 2)
RND increases and RSD starts to increase gradually; 3) both climb suddenly.

All behaviors indicate that the training overhead is less than the additional devel-
opment rate of the new workforce. Pattern 1 implies the communication and motiva-
tion overhead (RCM) is greater than the increase of RND. It results in the drop-off of
RSD. Whereas, RCM is equal to and less than the extra RND in Pattern 2 and 3.

We note that Pattern 2 and 3 may be inconsistent with Brooks’ Law, i.e. adding man-
power imposes no negative impact on the overall software development productivity.

 Semi-quantitative Simulation Modeling of Software Engineering Process 251

Fig. 5. Behavior Patterns of RND and RSD in Scenario 2

4.4 Project Completion

The remaining size (SR) and completed size (SC) change in opposite directions during the
project, at the Software Development Rate (RSD). By investigating its behaviors in Fig. 5,
the positive impact of new staff injection can be easily identified (Pattern 2 and 3), and
it must lead to reduction in completion time.

Table 4. Simulated Project Completion Times

Scenario Completion Comment
S1 [339 423]days add [3 4] @ day 260
S2 [309 386]days add [11 12] @ day 260
S3 [320 396]days add [7 8] @ day 260

Table 4 illustrates the simulated value ranges of project closure time for each sce-
nario, instead of one numeric result generated from the quantitative model.

Fig. 6 shows the envelopes against the original completion time (430 days). Each
rectangle indicates the injected new workforce and the corresponding possible project

WFnw

days100 200 300 400

4

8

12

Scenario 1

Scenario 2

Scenario 3

C
om

pl
et

io
n

T
im

e

Fig. 6. Project Durations of Workforce Scenarios

252 H. Zhang and B. Kitchenham

duration. Given these three scenarios, it is guaranteed that the EXAMPLE project can
finish earlier than initially planned.

5 Comparison and Discussion

Because a semi-quantitative simulation model may generate more than one possible
behavior of a system, it cannot be fully evaluated by particular sets of quantitative
data. In this section, we conduct the comparison with the previous related models.

5.1 Comparison with AHM’s Model

AHM’s model provides detailed insights into what happens under several assump-
tions as to how much manpower is added and when. According to their simulation,
the completion times are less than but close to 400 days [5]. This outcome is included
in the value ranges generated by the semi-quantitative model (Table 4). AHM also
identified that new personnel always have an immediate negative impact on software
development rate, and concluded that “Adding more people to a late project always
makes it more costly, but it does not always cause it to be completed later”.

Based on the outputs through the semi-quantitative simulation (Section 4),

1. adding new personnel might bring the immediate negative or positive impact on
software development rate, but it does not always make a project completed later;

2. adding a large number of new staff in a late phase (e.g. testing) obviously makes
the project costly, and might contribute more slightly to the schedule (Fig. 6).
These findings are supported by the results of AHM’s and Madachy’s models.

5.2 Discussion

For the specified scenarios, the semi-quantitative simulation indicates that the
EXAMPLE project is mostly completed earlier than the original completion time.
Thus, it is inconsistent with Brooks’ Law. Other researchers also found Brooks’ Law
questionable. They suggested the causes as being the number of new manpower hired
and when. In our model, we can identify other factors that may cause this result.
These factors are located among the variables associated with the value ranges and the
constrained monotonic functions, i.e. M+ or M-.

Assimilation delay. Different researchers reports very different assimilation delay val-
ues. The actual delay is affected by many factors. Our model uses a quantitative value
range instead of a specific value allowing all consequent possible behaviors and their
corresponding impacts to be examined.
New employees’ productivity. The low productivity of new manpower is believed to
be the vital factor that leads to the immediate decline of RSD. Its value is different in
different quantitative models. In contrast, the semi-quantitative model assumes the
low productivity of new employees is [0.4 0.6] of experienced personnel’s.
Ratio of experienced mentors relative to novices. Most researchers agree that the ratio
should be set between 0.15 to 0.25 rather than a specific number. Adding more people
results in an increase in trainers, which may increase the impact in the purely quanti-
tative model. The semi-quantitative model simulates all possible states consistent with
the specified range.

 Semi-quantitative Simulation Modeling of Software Engineering Process 253

Thus, the practical meaning of Brooks’ Law is to warn project managers against
blindly making a simplistic response to a late project. However, by applying appro-
priate hiring, training and task assignment strategies, it is possible to assimilate nov-
ices without the consequent schedule problems.

6 Conclusion and Future Work

This paper reports a study of the applicability of semi-quantitative simulation to the
software staffing process modeling with a set of qualitative assumptions and quantita-
tive bounds. Semi-quantitative modeling and simulation are presented as powerful
techniques for developing and running models if there is incomplete knowledge and
uncertain scenarios. They allow qualitative models to be progressively refined while
maintaining the integrity of final solutions. By contrast, a purely quantitative simula-
tion is a one-point sample of the possible solutions [3]. Even if sensitivity analysis is
applied, it only focuses on the finite impact of one factor with the risk of missing im-
portant behaviors and states of the process.

Semi-quantitative techniques can be extended to encompass other aspects of soft-
ware process. Our future research plans include:

1. Investigating the use of semi-quantitative modeling in other areas of software en-
gineering, e.g. modeling the relationships among the software risk factors.

2. Developing a procedure for evaluating non-quantitative (i.e. qualitative and semi-
quantitative) simulation models of software process.

References

1. Abdel-Hamid, T., The Dynamics of Software Project Staffing: A System Dynamics Based
Simulation Approach. IEEE Transactions on Software Engineering, 1989. 15(2): p. 109-119.

2. Ramil, J.F., Smith, N., Qualitative Simulation of Models of Software Evolution. Software
process: Improvement and Practice, 2002. 7: p. 95-112.

3. Kuipers, B.J., Qualitative Reasoning: Modeling and Simulation with Incomplete Knowl-
edge. . 1994, Cambridge, Massachusetts: MIT Press.

4. Kuipers, B., Qualitative Simulation, in Encyclopedia of Physical Science and Technology,
R.A. Meyers, Editor. 2001, NY: Academic Press. p. 287-300.

5. Abdel-Hamid, T.K., Madnick., S.E., Software Project Dynamics: An Integrated Approach.
1991, Englewood Cliffs, NJ: Prentice-Hall.

6. Madachy, R., Tarbet D., Case Studies in Software Process Modeling with System Dynamics.
Software process: Improvement and Practice, 2000. 5: p. 133-146.

7. Stutzke, R.D., A Mathematical Expression of Brooks's Law, in Ninth International Forum
on COCOMO and Cost Modeling. 1994: Los Angeles.

8. Brooks, F.P., The Mythical Man-Month: Essays on Software Engineering 1975: Addison-
Wesley.

9. Zhang, H., Huo, M., Kitchenham, B., Jeffery, R., Qualitative Simulation Model for Software
Engineering Process, in Australian Software Engineering Conference. 2006: Sydney

Analysis of Software-Intensive System
Acquisition Using Hybrid Software Process

Simulation�

KeungSik Choi and Doo-Hwan Bae

Department of EECS, Korea Advanced Institute of Science and Technology (KAIST),
Daejon 305-701, Korea

{kschoi, bae}@se.kaist.ac.kr

Abstract. Many sources have reported that the technical and manage-
rial maturity of the acquirer is the essential key to success of Software-
Intensive System Acquisition (SISA) and recommended to adopt the best
practices. However, DoD is inactive to implement the SISA practices be-
cause DoD doesn’t fully understand how and why the SISA practices
affect the performance of software-intensive system development.

In this research, we analyze the effects of SISA practices on acquirer
and developer using hybrid software process simulation modeling. Our
approach represents the dynamic characteristics (e.g., the interactions of
acquisition organization and development organization and the effects of
several SISA practices) and discrete characteristics (e.g., specific char-
acteristics of discrete phase, etc.) of SISA programs. This research will
contribute to reveal how the acquirer’s activities influence the perfor-
mance of the developer’s process.

1 Introduction

The software is becoming a more dominant portion in defense systems such as
weapon systems and C4I systems (Command, Control, Communications, Com-
puters and Intelligence). Based on the report of the Defense Science Board (DSB)
in 2000, the percentage of functionality requiring software of F-16 combat air-
craft is 45% and that of F-22 is 80% [1]. Moreover, the annual cost to acquire,
develop, and maintain defense software is approaching 20 Billion dollars [1].

The software-intensive characteristic of a defense system increases the com-
plexity and uncertainty in Software-Intensive System Acquisition (SISA). A
number of reports from the Inspector General (IG) and General Accounting
Office (GAO) have raised issues with the way the U.S. DoD acquires software-
intensive systems, and have identified numerous acquisition programs to be late,
over-budget, and low quality [2][3].

The DSB concluded that the software acquisition problems came not from
technical difficulties, but from poor management and recommended to adopt
� This work was supported by the Ministry of Information & Communication, Korea,

under the Information Technology Research Center (ITRC) Support Program.

Q. Wang et al. (Eds.): SPW/ProSim 2006, LNCS 3966, pp. 254–261, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Analysis of SISA Using Hybrid Software Process Simulation 255

best practices for SISA [1] such as DoD-5000.2-R [4], 16 Critical Practices from
Software Program Managers Network (SPMN) [5], Software Acquisition Capa-
bility Maturity Model (SA-CMM) [6], etc. A Best practice is a documented
practice aimed at lowering an identified risk in system acquisition [7]. The prac-
tices are identified to improve the performance of the acquisition organization
whose roles are illustrated in Fig. 1.

User
Organization

Acquisition
Organization

Development
Organization

User Needs,
Operational Concept

Requirements,
Acquisition Strategy

Operational
System

Artifacts to Review,
System to Test

(Acquirer) (Developer)

Fig. 1. Roles of acquisition organization in SISA

However, DoD was inactive in response to recommendations to implement
best practices. Turner reported that the actual implementation is average 25%
in 2002 [7]. Lisa Pracchia, a member of the Naval Air Systems Command’s
Software Resource Center, stated that subsequent DoD’s inaction in response to
GAO’s recommendations played a pivotal role in Congress legislating software
acquisition process improvement [8].

This phenomena indicate that there are some barriers to implement the ac-
quisition practices in defense acquisition organizations. Some of the barriers
reported were lack of management understanding, management commitment,
and credible evidence [7]. This implies the acquisition managers don’t fully un-
derstand how and why the acquisition best practices affect the performance of
software intensive system development and don’t believe the importance and
effectiveness of the acquisition management practices.

In this research, we analyze the relationships between acquirer and developer
and the effects of acquisition practices using hybrid software process simulation
modeling (SPSM) method. This will help acquisition managers understand the
importance of and evaluate the effects of the acquisition practices on software
development organizations. We study the characteristics of SISA, analyze the
potential effects of acquisition practices qualitatively, derive the quantitative
information, and implement the simulation model.

We plan to apply the DEVS-based hybrid SPSM [9] method to realistically
model the SISA. The military project usually takes long time, develops a large
size product, and constrains the development process to follow various military
standards (e.g., DoD 5000 series), which strictly distinguishes the milestones.
The staffing profile can change discontinuously during the development because
of the long development time and unexpected subcontract change. Moreover,
large military software projects devote more effort to producing paper documents
and to removing bugs or defects than to producing source code [10]. Therefore,
we need a hybrid simulation modeling method which can analyze the specific
characteristics of each phase with continuously changing dynamic properties.

256 K. Choi and D.-H. Bae

The structure of this paper is as follows. In Section 2, we introduce previ-
ous SPSM approaches for acquisition. In Section 3, we qualitatively analyze
the effects of SISA practices on acquisition programs and describe the hybrid
simulation modeling approach. Section 4 describes the expected results and con-
tributions.

2 Related Work

Häberlein [11] developed a system dynamics model for software acquisition
projects. He captured causal structures common to all models of acquisition
projects and designed a system dynamics framework focuses on the supplier
monitoring and controlling activity. He analyzed that the acquisition projects
are more complex because of the subjective variables such as perceived state of
the project and reported state of the project. However, Häberlein’s model does
not clearly define the interactions between acquirer’s and supplier’s activities.

McCray and Clark [12] developed a system dynamics model for outsourcing
decision support. The questions they ask and the problems they model are differ-
ent from our research goal. They ask ”Given a certain market or organizational
situation, is it advisable to outsource software development and maintenance in
the long run?”.

D. Houston [13] identified significant software development risk factors and
developed a dynamic simulation model to study the effects of risk factors. He de-
veloped the base model from published system dynamics models such as Abdel-
Hamid & Madnick [14] and Tvedt [15], then incorporated the effects of risk
factors in the base model. The simulation model is used to support risk analysis
and risk management in software development organization. This approach gave
us some insight into how to model the effects of acquisition practices on software
development organization.

3 Develop Simulation Model for SISA

3.1 Qualitative Analysis of the Effects of Acquisition Practices

Fig. 2 qualitatively analyzes the relationships between acquirer and developer
and describes the potential effects of acquisition practices on SISA. This figure
does not include all the aspects of SISA, but tries to represent the most influential
factors of general SISA environment. We derive the developer’s external risk
factors caused by the lack of acquirer’s technical and managerial maturity, which
affect the performance of the developer. The acquirer’s technical and managerial
maturity represents the overall performance of the acquirer, which is caused by
many factors as shown in Fig. 2. The acquisition practices improve the technical
and managerial maturity of the acquirer and mitigate or eliminate the external
risk factors of developers.

We derive the developer’s external risk factors by literature review [10][16][17],
experts interview, andour experience: ”Creeping requirements”, ”Excessivepaper-
work”, ”Long review/approval cycles”, and ”Variability in development process”.

Analysis of SISA Using Hybrid Software Process Simulation 257

Lack of technical and managerial maturity
of acquisition organization

Creeping
requirements

Comm overhead Design rework

Schedule pressure

Long review/
approval cycles

Project duration

+

Reqs Trade-off &
Negotiation

-

Independent Expert Review

Lack of acquirer
technical knowledge

-

-

Stability of
acquisition personnel

-
Lack of

process discipline

Education for
acquisition personnel

-

Variability in
development process

Excessive
paperwork

Productivity Morale

Defect generation

Demonstration-based Review

Senior management
commitment

-

Job size

Quality of
requirements

Amount & depth
of review

- -- -

-

-

Incapable
acquisition management

- - -

Capability of
monitoring, controlling,

scoping

-
-

-

-

Acquisition
Organization

--

+ + +

-

- -

-

+

+ +

-

-
-

-

+ + - -
+

+

Development
Organization

-

-

-

+

Fig. 2. Qualitative analysis of SISA

“Creeping requirements” are the requirements emerging slowly after basic re-
quirements have been agreed, which cause the job size, communication overhead,
and design rework to be increased and the morale to be decreased. ”Excessive
paperwork” can be caused by bureaucratic acquisition organization which ad-
heres to overly detailed development process or caused by acquisition staff inex-
perience, etc. ”Excessive paperwork” makes the productivity and morale to be
lowered. ”Long review/approval cycles” are due to the lack of acquirer’s technical
knowledge on the project or lack of process discipline, which cause the project
duration increased. ”Variability in development process” is caused by acquirer’s
lack of process discipline, which causes the schedule pressure to be high and the
project duration to be increased.

258 K. Choi and D.-H. Bae

We also define the acquirer’s risk factors which affect the performance of the
acquirer. We use negative names for risk factors rather than neutral names to
represent the acquisition practices to mitigate the risk factors. In contrast to
the developer, the acquirer does not produce the software system directly but
monitors and controls the development process. Based on these characteristics
of acquirer, we define the performance of an acquirer as follows: ”Capability
of monitoring, controlling, scoping”, ”Quality of requirements”, and ”Amount
& depth of review”. If the ”Capability of monitoring, controlling, scoping” is
low, the developer is put at risk of ”Creeping requirements” and ”Excessive
paperwork”. If the ”Quality of requirements” are low, the developer can suffer
the ”Creeping requirements” risk. If the ”Amount & depth of review” is small &
not intensive, the developer can be in trouble of ”Long review/approval cycles”.

We analyze some of the acquisition practices discussed in Turner [7] for our
research. Fig. 2 explains that the acquisition practices can mitigate the risk
factors of SISA if an acquisition program adopts the practices. The Require-
ments Trade-off and Negotiation practice requires Program Managers to explic-
itly trade required functionality for schedule, time, project/product stability,
and risk without compromising the overall system objectives [1]. This practice
can mitigate the risks of ”Incapable acquisition management” and ”Creeping
requirements”.

The Demonstration-based Review recommends using executable demonstra-
tions of relevant scenarios as an integral part of project reviews to stimulate
earlier convergence on integration, support tangible understanding of design
trade-offs, and eliminate architectural defects as early as possible [7]. This prac-
tice can mitigate the risks of ”Incapable acquisition management”, ”Creeping
requirements”, ”Excessive paperwork”, and ”Long review/approval cycles”.

The Independent Expert Review intends to help the acquirer ensure that: the
disciplined processes and methodologies are in place, the program’s resources are
adequately allocated, the technical baseline is understood and solid with atten-
dant risks and opportunities identified and managed, and the adequate progress
is being achieved [1]. The review team should consist of government, academic,
and industry experts who have program and software management skills, tech-
nical skills appropriate to the program, and requisite domain knowledge. This
practice can mitigate the risks of ”Lack of process discipline”, ”Lack of acquirer’s
technical knowledge”, ”Long review/approval cycles”, and ”Variability in devel-
opment process”.

3.2 Hybrid SPSM for SISA

The software process simulation model should represent the dynamic interactions
between acquirer and developer as well as discrete characteristics of SISA. The
SISA program usually takes long time and distinguishes the milestones strictly,
which makes the development phase to have specific characteristics (e.g., differ-
ent production rate in each phase and discretely changing quality of staff).

Fig. 3 illustrates the high level view of software process simulation model
for SISA. The process model of a developer should have an explicit interaction

Analysis of SISA Using Hybrid Software Process Simulation 259

points to integrate with the acquirer’s practice modules. Some of the practices
can only be applied to a specific phase of a developer. The practice modules are
plugged in to evaluate the effects on the development organization’s process.

Requirements Design Code Test

Development OrganizationAcquisition Organization

Practice A Practice B Practice C

Fig. 3. High level view of hybrid SPSM for SISA

We apply the DEVS-based Hybrid SPSM approach which fully incorporates
the feedback mechanism of the system dynamics, explicitly represents the dis-
crete process phase, and analyzes the performance of it [9]. This approach also
provides the explicit extension points to easily integrate the process models. For
more detailed description, please read K.S. Choi et al. [9].

The simulation model implementation is still in progress at this point. We
are implementing the base model of the development organization which shows
the characteristics of the large size military software project by analyzing the
previous models such as Tvedt [15] and Houston [13]. We are implementing the
simulation model of the acquisition organization and deriving the parameters
and equations for the model from the literatures and surveys.

Table 1 shows an excerpt of the SISA best practice profile reported in Turner’s
dissertation [7]. He surveyed various software-intensive system working groups1

including renowned researchers such as Dr. Victor Basili, Dr. Barry Boehm, and
Dr. Lawrence Putnam. Turner analyzed the responding data and developed a
best practice profile which provides a reference for a practice that would include
descriptive, qualitative, and quantitative information as shown in Table 1.

Table 1 provides high-level data for relationships between SISA practices and
the performance of the project, so we will use the information as a reference
behavior mode and to validate our simulation model. We also plan to apply the
V&V guidelines by Richardson [18]. This will make our model useful to SISA
managers.

4 Expected Results and Contributions

We defined the interactions between acquisition organization and development
organization in SISA. The performance of the acquisition organization such as
“Capability of monitoring, controlling, and scoping”, “Quality of requirements”,
1 the Defense Software Collaborators, the Software Engineering Science and Technol-

ogy Summit, the National Defense Industrial Association, the Tri-service Assessment
Initiative assessor cadre, etc.

260 K. Choi and D.-H. Bae

Table 1. Excerpt of the SISA practices profile [7]

Software-intensive System Acquisition Best Practice Profile

Name Requirements trade-off and negotiation

Description
Within a funding constrained environment, engaging in the explicit
trade-off between required functionality, schedule, time, and risk with-
out compromising overall system objectives

Characteristics Overall Result
Ease of Implementation Moderate (4-6%)

Cost to Apply Moderate (4-6%)
Cost to Achieve Readiness Moderate (4-6%)
Benefit to Cost (Effort) High (15-30%)

Benefit to Schedule Very High (> 30%)
Benefit to Quality (Defects) High (15-30%)

and ”Amount & depth of review” affects the external risk factors of the devel-
opment organization. The external risk factors of the development organization
affect the performance of the SISA program. The SISA practices are effective
because they mitigate or eliminate the risks of acquisition organization and de-
velopment organization. We analyzed the effects of the acquisition practices on
the SISA programs qualitatively and showed the high level view of the DEVS-
based hybrid software process simulation model.

We expect to develop a simulation model which can show the effects of SISA
practices quantitatively. The results will contribute to persuade the decision
makers and managers of SISA to fully understand and believe the importance
of acquisition practices to make a success of SISA. Particularly, this research
will reveal how the activities of the acquisition organization influence the perfor-
mance of the development organization’s process and provide integrative view
on the SISA program. Furthermore, we can use this simulation model as a deci-
sion support system by analyzing the effects of new acquisition practices before
actually implementing the practices.

However, this research is still in progress and has difficulties to derive the
parameter values and equations for the simulation model. The most difficult
problem is validating our model to give confidence on our results because we
have very limited historical project data on SISA.

References

1. Defense Science Board (2000), Report of the Defense Science Board Task Force on
Defense Software, Washington, DC, Department of Defense, (2000)

2. Summary of Audits of Acquisition of Information Technology, Washington, DC,
Office of the Inspector General, Department of Defense, (2000)

3. Defense Software: Review of Defense Report on Software Development Best Prac-
tices, Washington, DC, General Accounting Office, (2000)

Analysis of SISA Using Hybrid Software Process Simulation 261

4. DoD Regulation 5000.2-R, Mandatory Procedures for Major Defense Acquisition
Programs (MDAPS) and Major Automated Information System (MAIS) Acquisi-
tion Programs, Washington, DC, Department of Defense, (2002)

5. 16 Critical Software Practices For Performance-Based Management, Version 5.2,
Inegratred Computer Engineering

6. J. Cooper and M. Fisher: Software Acquisition Capability Maturity Model (SA-
CMM), Version 1.03, Pittsburgh, PA, Carnegie Mellon University: Software Engi-
neering Institute, (2002)

7. R. Turner: Implementation of Best Practices in US Department of Defense
Software-Intensive System Acquisition, Ph.D Dissertation, The School of Engi-
neering and Applied Science, George Washington University, (2002)

8. Lisa Pracchia: Improving the DoD Software Acquisition Processes, CrossTalk: The
Journal of Defense Software Engineering, April, (2004)

9. KeungSik Choi, Doo-Hwan Bae, and TagGon Kim: An Approach to a Hybrid Soft-
ware Process Simulation using DEVS Formalism, Software Process Improvement
and Practice, John Wiley & Sons, NJ (2006), will be published in Special Issue of
ProSim’05

10. Capers Jones: Software Cost Estimation Methods for Large Projects, CrossTalk:
The Journal of Defense Software Engineering, April, (2005)

11. T. Häberlein: Common Structures in System Dynamics Models of Software Acqui-
sition Projects, Software Process Improvement and Practice, John Wiley & Sons,
NJ 9 (2004) 67-80

12. McCray G.E. and Clark T.D.: Using system dynamics to anticipate the organiza-
tional impacts of outsourcing, System Dynamics Review 15(4) (1999) 345-373

13. D. Houston: A Software Project Simulation Model for Risk Management, Ph.D
Dissertation, Department of Computer Science & Engineering, Arizona State Uni-
versity, Tempe, AZ (2000)

14. T. Abdel-Hamid and S. Madnick: Software Project Dynamics: An Integrated Ap-
proach, Prentice-Hall, Englewood Cliffs, NJ, (1991)

15. J. Tvedt: An extensible model for evaluating the impact of process improvement
on software development cycle time, Ph.D Dissertation, Department of Computer
Science & Engineering, Arizona State University, Tempe, AZ (1996)

16. Capers Jones: Applied Software Measurement, Second Edition, McGraw-Hill, NY,
(1996)

17. The Thomsett Company: Managing Large Projects, (2000)
http://www.thomsett.com.au/main/articles/largeprojects/
managing large projects.pdf,

18. G.P. Richardson and A.L. Pugh: Introduction to System Dynamics Modeling with
DYNAMO, The M.I.T. Press, Cambridge, MA, (1981)

Q. Wang et al. (Eds.): SPW/ProSim 2006, LNCS 3966, pp. 262 – 273, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Simulation-Based Stability Analysis for Software
Release Plans

Dietmar Pfahl1, Ahmed Al-Emran1,2, and Günther Ruhe1,2

1 University of Calgary, Schulich School of Engineering, Calgary, Canada
2 University of Calgary, Software Engineering Decision Support Laboratory, Calgary, Canada

{dpfahl, aalemran, ruhe}@ucalgary.ca

Abstract. Release planning for incremental software development assigns fea-
tures to releases such that most important technical, resource, risk and budget
constraints are met. The research presented in this paper is based on a three
staged procedure. In addition to an existing method for (i) strategic release plan-
ning that maps requirements to subsequent releases and (ii) a more fine-grained
planning that defines resource allocations for each individual release, we
propose a third step, i.e., (iii) stability analysis, which analyzes proposed release
plans with regards to their sensitivity to unforeseen changes. Unforeseen
changes can relate to alterations in expected personnel availability and produc-
tivity, feature-specific task size (measured in terms of effort), and degree of task
dependency (measured in terms of work load that can only be processed if cor-
responding work in predecessor tasks has been completed). The focus of this
paper is on stability analysis of proposed release plans. We present the simula-
tion model REPSIM (Release Plan Simulator) and illustrate its usefulness for
stability analysis with the help of a case example.

1 Introduction

Software release planning addresses the assignment of requirements to a sequence of
releases. This process is a central planning task in incremental software development.
The task is of extreme importance because without a good release plan, critical fea-
tures are not provided at the right time. This might result in unsatisfied customers,
time and budget overruns, and in decreased competitiveness. However, the question is
how to determine ‘good’ release plans, e.g., plans that are efficient in terms of the
resources to be used and effective in terms of the stated objective(s).

Both the formulation and solution of the planning problem is inherently difficult.
Many factors of uncertainty are impacting the actual release decisions. The require-
ments to be assigned are not necessarily well understood. They are evolving over
time. The effort estimates the planning is based upon are uncertain as well. The over-
all development process is human driven, and this again imposes uncertainties on the
availability and productivity of the involved resources.

Decision support is considered an unstructured or semi-structured problem where
you support the actual human user in the process to make decisions. Support might
refer to different stages of the problem solving process to

 Simulation-Based Stability Analysis for Software Release Plans 263

(i) facilitate understanding and structuring of the problem under investigations,
(ii) understand the information needs for making good decisions,
(iii) provide access to information that would otherwise be unavailable or diffi-

cult to obtain;
(iv) generate and evaluate solution alternatives,
(v) prioritize alternatives by using explicit models that provides structure for
 particular decisions, and
(vi) explain solution alternatives.

In this paper, we consider decision support for software release planning with empha-
sis on evaluating solution alternatives in terms of their robustness to changes of prob-
lem parameters. For real-world decision-making it is important to know if and to what
extend a proposed release plan remains feasible in the case of changes to the underly-
ing developing process, changes in the availability of resources, or changes in the
effort consumed to realize the proposed requirements. The purpose of our research is
to proactively evaluate the impact of potential changes and initiate adaptive actions.
Simulation is a fundamental and well-proven technique to address these issues.

The approach is applicable for a solution received from any of the existing release
planning methods. However, the results are the more meaningful, the more qualified
the proposed solution is. For our purposes, we consider a three staged solution proce-
dure: (i) Planning of releases on a strategic level (which requirements are expected to
be in which release?), (ii) Planning on a more fine-grained level for the next release
(which resources are allocated to which tasks?) and (iii) Analyzing stability (for a
proposed plan: how robust is the plan against changes?). In the remainder of the pa-
per, we exclusively focus on stage (iii). Detailed information on existing methods
supporting stages (i) and (ii) can be found in [9].

The paper is structured into five sections. Section 2 gives an overview of existing
related work. Section 3 introduces and describes the simulation model REPSIM. Sec-
tion 4 illustrates the applicability and usefulness of REPSIM with the help of a case
example. Finally, Section 5 provides conclusions and makes suggestions for future
extensions of REPSIM.

2 Related Work

A comparative analysis of both formal and informal release planning approaches was
done in [11]:

• Estimation-Based Management Framework for Enhancive Maintenance [8]
• Incremental Funding Method [2],
• Cost-Value Approach for Prioritizing Requirements [6],
• Optimizing Value and Cost in Requirements Analysis [5],
• The Next Release Problem [1],
• Planning Software Evolution with Risk Management [3], and
• Hybrid Intelligence (EVOLVE*) [10].

Tasks, Features, and Developers serve as index variables. In addition, a level variable
S (size) represents the amount of effort that – according to expert estimates – has to

264 D. Pfahl, A. Al-Emran, and G. Ruhe

be spent on a specific task (per feature). The size level S is controlled by the rate
variables S-inflow and S-outflow:

ReleasePlanner® (www.releaseplanner.com) is a tool suite that provides a flexible
and web-based support for release planning. The tool was developed in the Labora-
tory for Software Engineering Decision Support (http://www.seng-
decisionsupport.ucalgary.ca), University of Calgary, Canada. The overall architecture
of this approach called EVOLVE* [10] is designed as an iterative and evolutionary
procedure mediating between the real world problem of software release planning, the
available tools of computational intelligence for handling explicit knowledge and
crisp data, and the involvement of human intelligence for tackling tacit knowledge
and fuzzy data. The existing approach provides a two-staged optimization method for
solving both issues -- feature placement in subsequent releases and optimal resource
allocation. Stage (i) applies integer programming to a relaxed version of the full prob-
lem. Stage (ii) uses genetic programming to generate operational plans for the in-
volved human and non-human resources.

The simulation model REPSIM (Release Plan Simulator) studied in this paper is a
continuation of the effort to combine computationally efficient methods for generat-
ing and analyzing solutions with human expertise. In our case, the expert is supposed
to get early indication of potential risks and bottlenecks. Based on simulation results
from REPSIM, re-planning of individual releases can be initiated.

To our knowledge, there exists only one simulation model that directly addresses
the release planning problem [4]. This model helps analyzing release planning man-
agement processes by investigating potential bottlenecks within individual releases
induced by requirements prioritization and resulting requirements distributions over
subsequent releases. All analyses, however, are conducted on a coarse-grain level and
do not take under consideration feature-specific assignment of individual resources
(developers) to tasks (e.g., design, implementation, test). Hence, this model mainly
relates to strategic release planning (stage (i) of our solution procedure), while
REPSIM evaluates individual releases by systematically varying crucial parameters of
a proposed release plan on a detailed level.

3 The REPSIM Model

REPSIM is a process simulation model that makes extensive use of subscripting in
order to allow for individual representation of multiple features, tasks, and resources
(developers). It was developed using the VENSIM® (http://www.vensim.com), a
System Dynamics modeling and simulation tool.

3.1 Model Variables and Parameters

The current version of REPSIM defines the following variables:

• Tasks: T = {T[1], …, T[3]}, with
T[1] represents “Design”,
T[2] represents “Implementation”,

 T[3] represents “Test”.
The set of tasks T can easily be extended if needed.

 Simulation-Based Stability Analysis for Software Release Plans 265

• Features: F = {F[1], …, F[8]}.
• Developers: D = {D[1], …, D[6]}.

Tasks, Features, and Developers serve as index variables. In addition, a level variable
S (size) represents the amount of effort that – according to expert estimates – has to
be spent on a specific task (per feature). The size level S is controlled by the rate
variables S-inflow and S-outflow:

• Effort to be spent to complete a task (per feature):
 S[j,k], with j = Feature index, k = Task index.

• Inflow rate to define the size of S (in terms of effort) based on the estimated ef-
fort of specific (feature, task)-combinations:

 S-inflow, with j = Feature index, k = Task index.
• Outflow rate to reduce the size of S (in terms of effort) by the amount of work

spent on a specific (feature, task)-combination:
 S-outflow, with j = Feature index, k = Task index.
The REPSIM model offers the following input parameters (constants):

• Estimated Effort per Feature and Task:
 Eff-F-S[j, k], with j = Feature index, k = Task index.
• Estimated Productivity per Developer and Task:

 Prod-D-S[i, k], with i = Developer index, k = Task index.
• Planned assignment of Developers to (Feature, Task) combinations:

 Lookup-Availability-D-F-S[i, j, k], with i = Developer index, j = Feature
 index, k = Task index.

• Work load (effort) dependency between subsequent tasks:
 S1-S2-Dependency: percentage of feature-specific implementation work that
 can only be started if the related design work has been completed.
 S2-S3-Dependency: percentage of feature-specific test work that can only be
 started if the related implementation work has been completed.
 For both parameters, the default value equals 0, implying that there is no
 dependency of a task on completion of work in a predecessor task. The other

 extreme of the range, i.e., a dependency of 100%, implies that a predecessor
 task must fully be completed before work on a subsequent task can start.

In order to make intermediate calculations explicit, REPSIM defines the following
auxiliary variables:

• Work load (effort) transformation factor between subsequent tasks (per feature):
 S1-S2-Transformation[j]: effort relationship between tasks Design and
 Implementation, with j = Feature index.
 S2-S3-Transformation[j]: effort relationship between tasks Implementation
 and Test, with j = Feature index.

• Actual productivity of the workforce per (Feature, Task) combinations:
 actual-Prod-D-F-S[i, j, k] , with i = Developer index, j = Feature
 index, k = Task index.
To support aggregated output presentation, REPSIM defines the following auxiliary
variables:

• Aggregated size per task: Sum-S[k], with k = Task index.
• Aggregated size inflow rate per task: Sum-S-inflow[k], with k = Task index.

266 D. Pfahl, A. Al-Emran, and G. Ruhe

• Aggregated size outflow rate per task: Sum-S-outflow[k], with k = Task index.
• Aggregated workforce availability per developer: Sum-Availability-D[i], with i

= Developer index.

The complete set of model equations can be found in Appendix A.

3.2 Model Structure

Figure 1 shows the structure of the REPSIM model in terms of its flow-graph. The
structure is very simple. The subscripted level variable S is in the centre of the model.
It represents the size of a (feature, task)-combination represented in terms of effort to
be processed. The size level is determined by rate variables S-inflow and S-outflow,
using the following integral equation:

−=
t

duukjoutflowSukjinflowStkjS
0

))](,[_)](,[_()](,[

<TIME STEP>

S
S-inflow S-outflow

Lookup-Availability-D-F-SEff-F-S

Prod-D-S

actual-Prod-D-F-S

<Time>

S1-S2-Transformation

S2-S3-Transformation

S1-S2-
Dependency

Sum-S

Sum-S-inflow

Sum-S-outflow

Sum-Availability-D

S2-S3-
Dependency

Fig. 1. Flow-graph of REPSIM

3.3 Model Calibration

The calibration of the REPSIM model is straightforward. All parameters are initially set
to 0. As soon as effort estimates for (feature, task)-combinations, task-specific developer
productivities, workforce allocations to (feature, task)-combinations and the degree of
task dependency are known, the parameters Eff-F-S[j, k], Prod-D-S[i, k], Lookup-
Availability-D-F-S[i, j, k], S1-S2-Overlap, and S2-S3-Overlap are defined accordingly.

4 Release Planning Simulation Application

In this section, we present a case example using several scenarios to demonstrate
the applicability and usefulness of the simulation model REPSIM for analyzing the

 Simulation-Based Stability Analysis for Software Release Plans 267

stability of a proposed release plan. For all scenarios of the case example, the fol-
lowing situation is given:

• Planned duration for realizing the proposed release plan: 12 weeks
• Features included in the release: F1, …, F8
• Tasks to be conducted per release: T1, …, T3
• Developers available: D1, …, D6

The assumed productivity (in person-weeks per week) of developers per task type is
shown in Table 1.

Table 1. Productivity of developers per task type

Task Type
Developer

T1: Design T2: Implementation T3: Test
D1 1.4 2 1.2
D2 1 0 2
D3 2 0 1
D4 1 2 1
D5 1 1.5 2
D6 2 1 2

Table 2. Estimated effort per feature and task, and allocation of developers to tasks

268 D. Pfahl, A. Al-Emran, and G. Ruhe

The starting point for the stability analyses conducted with the help of REPSIM is
a release plan generated by the optimization algorithm described in [7]. The generated
release plan is shown in Table 2. For a given set of features and tasks, the release plan
allocates developers to (feature, task)-combinations. This allocation is optimal with
regards to a defined objective function. The allocation is calculated using information
about estimated effort per feature and task, and assumed productivity of developers
per task type as defined in Table 1.

4.1 Scenario 1: Baseline

The Baseline scenario reproduces the situation summarized in Table 2. The REPSIM
model is calibrated using the data provided in Tables 1 and 2. Moreover, to ade-
quately reflect an underlying assumption of the release planning algorithm, i.e., that
per feature all tasks can potentially be conducted in parallel, task dependency is set to
0 (i.e., no task dependency).

Eff-S-gap

60

45

30

15

0

3
3

3 3
3

3
3

3
3

3
3

3 3 3 3

2 2
2

2
2

2
2

2
2

2
2

2
2

2
2

2

1
1

1
1

1
1 1 1 1

1 1
1

1
1

1 1
0 1 2 3 4 5 6 7 8 9 10 11 12

Time (Week)

"Eff-S-gap"[T1] : Baseline000 1 1 1 1 1 1 1 1 1 1

"Eff-S-gap"[T2] : Baseline000 2 2 2 2 2 2 2 2 2

"Eff-S-gap"[T3] : Baseline000 3 3 3 3 3 3 3 3 3 3

Effort (Person-Week) Eff-S-gap

60

45

30

15

0

3
3

3 3
3

3
3

3
3

3
3

3 3 3 3

2 2
2

2
2

2
2

2
2

2
2

2
2

2
2

2

1
1

1
1

1
1 1 1 1

1 1
1

1
1

1 1
0 1 2 3 4 5 6 7 8 9 10 11 12

Time (Week)

"Eff-S-gap"[T1] : Baseline000 1 1 1 1 1 1 1 1 1 1

"Eff-S-gap"[T2] : Baseline000 2 2 2 2 2 2 2 2 2

"Eff-S-gap"[T3] : Baseline000 3 3 3 3 3 3 3 3 3 3

Effort (Person-Week)

Fig. 2. Work load reduction per task type with S1-S2-Dependency = S2-S3-Dependency = 0

The simulation output for the baseline scenario is shown in Figure 2. It shows per task
type, at any point in time during release development, how much work (in terms of
estimated effort) still has to be processed. For each task type, the effort is cumulated
over all features. As expected, at the end of week 12, all tasks are completed, i.e., the
estimated effort has fully been spent.

From the simulation modeling point of view, the baseline scenario can be inter-
preted as a reference mode of REPSIM. The following scenarios 2 and 3 demonstrate
how REPSIM can be used to analyze the stability of the reference mode by altering
some of its underlying assumptions or starting conditions.

 Simulation-Based Stability Analysis for Software Release Plans 269

4.2 Scenario 2: Increasing Task Dependency

One assumption of the optimization algorithm that generated the release plan in Table
2 requires that for each feature a task cannot be finished before the completion of the
predecessor task. This is a relatively weak assumption about task dependency. With
the help of parameters S1-S2-Dependency and S2-S3-Dependency stronger depend-
encies between subsequent tasks can be defined. For example, setting both parameters
to 1 implies that 100% of the work on a task can only be started when the work on the
predecessor task (related to the same feature) has been completed.

Figure 3 shows the simulation output for this extreme condition. It can be seen that
for the release plan defined in Table 2, there is no relevant effect on work related to
Tasks 1 and 2 (Design and Implementation). There is, however, a considerable nega-
tive impact on work related to Task 3 (Test). A work backlog of about 12 person-
weeks, i.e., 28% of the 43 person-weeks planned in total for Task 3, cannot be proc-
essed with the task schedule and developer allocation proposed in Table 2.

Eff-S-gap

60

45

30

15

0

3
3

3 3
3

3
3

3 3
3

3 3 3 3 3

2 2
2

2
2

2
2

2
2

2
2

2
2

2
2

2

1
1

1
1

1
1 1 1 1

1 1
1

1
1

1 1
0 1 2 3 4 5 6 7 8 9 10 11 12

Time (Week)

"Eff-S-gap"[T1] : Baseline100 1 1 1 1 1 1 1 1 1 1

"Eff-S-gap"[T2] : Baseline100 2 2 2 2 2 2 2 2 2

"Eff-S-gap"[T3] : Baseline100 3 3 3 3 3 3 3 3 3 3

Effort (Person-Week) Eff-S-gap

60

45

30

15

0

3
3

3 3
3

3
3

3 3
3

3 3 3 3 3

2 2
2

2
2

2
2

2
2

2
2

2
2

2
2

2

1
1

1
1

1
1 1 1 1

1 1
1

1
1

1 1
0 1 2 3 4 5 6 7 8 9 10 11 12

Time (Week)

"Eff-S-gap"[T1] : Baseline100 1 1 1 1 1 1 1 1 1 1

"Eff-S-gap"[T2] : Baseline100 2 2 2 2 2 2 2 2 2

"Eff-S-gap"[T3] : Baseline100 3 3 3 3 3 3 3 3 3 3

Effort (Person-Week)

Fig. 3. Work load reduction per task type with S1-S2-Dependency = S2-S3-Dependency = 1

Figure 4 shows for each task type the resulting potential work backlog, if the model
variables S1-S2-Dependency and S2-S3-Dependency vary over the full value range
[0, 1]. Of particular interest are the values related to Task 3. It can be seen that the
proposed feature test plan is stable until a task dependency of 30% is reached. Then,
there is a moderate increase of test work backlog until a task dependency of 50% is
reached. Beyond 50% task dependency, there is a constant increase of test work back-
log up to 12 person-weeks (in the case of 100% task dependency).

The simulation results can be used by a decision maker in several ways. Firstly, the
dependencies between implementation and test tasks can be further analyzed. If the
test methods and techniques can be applied in its majority without the need to wait for
a complete implementation of a feature, the risk of a delayed release is small. Sec-
ondly, if the dependency analysis shows tight coupling between test and implementa-
tion, the decision maker can try to modify the release plan, e.g., by adding developers

270 D. Pfahl, A. Al-Emran, and G. Ruhe

0.0

5.0

10.0

15.0

20.0

25.0

30.0

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

Task Dependency

W
o
rk

 s
ti
ll

to
 b

e
co

m
p
le

te
d
 a

t
t=

12
 w

ee
ks

 [
%

 o
f
es

ti
m

at
ed

 t
o
ta

l e
ff

o
rt

 p
er

 T
as

k]

Sum-S[T1]

Sum-S[T2]

Sum-S[T3]

Fig. 4. Task-specific work backlog (cumulated over features) for varying task dependency

and/or revising the task schedules. This re-planning is supported by REPSIM by pro-
viding detailed work backlog data for each feature individually (not shown here due
to space limitations). Thirdly, the modified release plan can be evaluated by running a
new simulation with a re-calibrated REPSIM model.

4.3 Scenario 3: Effort (or Productivity) Variation

The release plan presented in Table 2 is based on feature-specific effort estimates and
developer-specific productivities for each task type. REPSIM can be used to analyze
the sensitivity of the proposed release plan to variations of these parameters. Since
increase in actual effort consumption is comparable to decrease in developer produc-
tivity, we will exclusively focus on an effort variation scenario (cf. Figure 5).

As in Section 4.2 (Scenario 2) we express sensitivity to variation in feature-specific
task effort in terms of generated work backlog (measured in person-weeks). Figure 5
shows three different simulation outcomes for task dependency set to 0 (Figure 5a),
0.5 (Figure 5b), and 1 (Figure 5c). In all cases, feature specific task effort varies in the
interval [0.8, 1.2], representing a factor that is multiplied with the nominal effort es-
timates of the reference mode (Baseline – Scenario 1).

As is to be expected, in Figure 5a no work backlog is generated if feature-specific
task effort is smaller than 100% of the estimated effort (for each feature), while a pro-
portional work backlog is generated if it is above 100%. Figure 5b shows that even if
the actual effort needed is 20% below the expert estimate, for Task 3 (Test) there is still
work backlog generated, though of relatively marginal size (about 1% of the total esti-
mated effort for testing). Figure 5c shows the most extreme situation (i.e., task depend-
ency = 100%). Even if the actual feature-specific task effort is 20% below the expert
estimate, there is still a work backlog of almost 15% for test tasks if no re-planning of
the task schedule and developer allocation is performed. Again, as in Scenario 2,
REPSIM can be used to evaluate the effectiveness of modified release plans.

 Simulation-Based Stability Analysis for Software Release Plans 271

(a) (b)

0.00

5.00

10.00

15.00

20.00

25.00

80 85 90 95 100 105 110 115 120

F
o

r
T

as
k

D
ep

en
d

en
cy

 =
 0

:
W

o
rk

 s
ti

ll
to

 b
e

co
m

p
le

te
d

 a
t

t=
12

 w
ee

ks
[%

 o
f

es
ti

m
at

ed
 t

o
ta

l e
ff

o
rt

 p
er

 T
as

k
(T

1=
D

es
ig

n
, T

2=
Im

p
le

m
en

ta
ti

o
n

, T
3=

T
es

t)
]

Sum-S[T1]

Sum-S[T2]

Sum-S[T3]

0.00

5.00

10.00

15.00

20.00

25.00

80 85 90 95 100 105 110 115 120

F
o

r
T

as
k

D
ep

en
d

en
cy

 =
 0

.5
:

W
o

rk
 s

ti
ll

to
 b

e
co

m
p

le
te

d
 a

t
t=

12
 w

ee
ks

[%
 o

f
es

ti
m

at
ed

 t
o

ta
l e

ff
o

rt
 p

er
 T

as
k

(T
1=

D
es

ig
n

, T
2=

Im
p

le
m

en
ta

ti
o

n
, T

3=
T

es
t)

]

T3
T1
T2

T1
T2
T3

0.00

5.00

10.00

15.00

20.00

25.00

80 85 90 95 100 105 110 115 120

F
o

r
T

as
k

D
ep

en
d

en
cy

 =
 0

:
W

o
rk

 s
ti

ll
to

 b
e

co
m

p
le

te
d

 a
t

t=
12

 w
ee

ks
[%

 o
f

es
ti

m
at

ed
 t

o
ta

l e
ff

o
rt

 p
er

 T
as

k
(T

1=
D

es
ig

n
, T

2=
Im

p
le

m
en

ta
ti

o
n

, T
3=

T
es

t)
]

Sum-S[T1]

Sum-S[T2]

Sum-S[T3]

0.00

5.00

10.00

15.00

20.00

25.00

80 85 90 95 100 105 110 115 120

F
o

r
T

as
k

D
ep

en
d

en
cy

 =
 0

.5
:

W
o

rk
 s

ti
ll

to
 b

e
co

m
p

le
te

d
 a

t
t=

12
 w

ee
ks

[%
 o

f
es

ti
m

at
ed

 t
o

ta
l e

ff
o

rt
 p

er
 T

as
k

(T
1=

D
es

ig
n

, T
2=

Im
p

le
m

en
ta

ti
o

n
, T

3=
T

es
t)

]

T3
T1
T2

T1
T2
T3

(c)

0.00

10.00

20.00

30.00

40.00

50.00

60.00

80 85 90 95 100 105 110 115 120

Percentage of total estimated effort per Task (T1=Design,T2= Implementation, T3=Test)

F
o
r
T
as

k
D

ep
en

d
en

cy
 =

 1
:
W

o
rk

 s
ti
ll

to
 b

e
co

m
p
le

te
d
 a

t
t=

12
 w

ee
ks

[%
 o

f
es

ti
m

at
ed

 t
o
ta

l e
ff

o
rt

 p
er

 T
as

k
(T

1=
D

es
ig

n
, T

2=
Im

p
le

m
en

ta
ti
o
n
, T

3=
T
es

t)
]

T1

T2

T3

0.00

10.00

20.00

30.00

40.00

50.00

60.00

80 85 90 95 100 105 110 115 120

Percentage of total estimated effort per Task (T1=Design,T2= Implementation, T3=Test)

F
o
r
T
as

k
D

ep
en

d
en

cy
 =

 1
:
W

o
rk

 s
ti
ll

to
 b

e
co

m
p
le

te
d
 a

t
t=

12
 w

ee
ks

[%
 o

f
es

ti
m

at
ed

 t
o
ta

l e
ff

o
rt

 p
er

 T
as

k
(T

1=
D

es
ig

n
, T

2=
Im

p
le

m
en

ta
ti
o
n
, T

3=
T
es

t)
]

T1

T2

T3

Fig. 5. Task-specific work-backlog (cumulated over features) for varying effort estimates. (a): with
task dependency = 0% (b): with task dependency = 50% (c) with task dependency = 100%.

5 Summary and Future Work

In this paper, we presented the idea of a simulation-based approach to stability analy-
sis of proposed release plans. We presented the simulation model REPSIM (Release
Plan Simulator) and illustrate its usefulness with the help of a case example, demon-
strating the feasibility of the proposed approach.

It should be pointed out, however, that the presented material is just the starting
point of a work in progress. Future work will focus on validation of the proposed
approach in an industrial environment, improvement of model usability (data input
via GUI, connection to data base, etc.), and – most importantly – enhancement of the
REPSIM model. Enhancement of REPSIM will in particular aim at adding a heuristic
that allows for automatic allocation of unused manpower and for generating proposals

272 D. Pfahl, A. Al-Emran, and G. Ruhe

for adding additional manpower if needed. Another enhancement aims at capturing
feature dependencies within a release and their impact on the order in which features
will be tested.

References

1. Bagnall, A.J., Rayward-Smith, V.J., and Whittley, I.M.: The Next Release Problem. In-
formation and Software Technology, Vol. 43, No. 14 (2001) 883-890

2. Denne, M. and Cleland-Huang, J.: The Incremental Funding Method: Data Driven Soft-
ware Development. IEEE Software, Vol. 21, No. 3 (2004) 39-47

3. Greer, D.: Decision Support for Planning Software Evolution with Risk Management. In:
Proceedings of 16th International Conference on Software Engineering and Knowledge
Engineering (SEKE'04), Banff, Canada (2004) 503-508

4. Höst, M., Regnell, B., Dag, J., Nedstam, J., and Nyberg, C.: Exploring Bootlenecks in
Market-Driven Requirements Management Processes with Discrete Event Simulation.
Journal of Systems and Software, Vol. 59, No. 3 (2001) 323-332

5. Jung, H.-W.: Optimizing Value and Cost in Requirements Analysis. IEEE Software (1998)
74-78

6. Karlsson, J. and Ryan, K.: A Cost-Value Approach for Prioritizing Requirements. IEEE
Software, Vol. 14, No. 5 (1997) 67-74

7. Ngo-The, A. and Ruhe, G.: Optimized Resource Allocation for Incremental Software De-
velopment. Technical Report of the Laboratory for Software Engineering Decision Sup-
port, Report No. 049/2006 (2006)

8. Penny, D.A.: An Estimation-Based Management Framework for Enhancive Maintenance
in Commercial Software Products. In: Proceedings of International Conference on Soft-
ware Maintenance (ICSM'02), Montreal, Canada (2002) 122-130

9. Ruhe, G.: Software Release Planning. In: Handbook of Software Engineering and Knowl-
edge Engineering, Vol. 3. World Scientific Publishing (2005) 365-394

10. Ruhe, G. and Ngo-The, A.: Hybrid Intelligence in Software Release Planning. Interna-
tional Journal of Hybrid Intelligent Systems, Vol. 1, No. 2 (2004) 99-110

11. Saliu, O. and Ruhe, G.: Supporting Software Release Planning Decisions for Evolving
Systems. In: Proceedings of 29th IEEE/NASA Software Engineering Workshop, Green-
belt, MD, USA, 6-7 April (2005)

Appendix A. Model Equations

"S-inflow"[Feature,T1]="Eff-F-S"[T1,Feature]*PULSE(0,TIME STEP)/TIME STEP
"S-inflow"[Feature,T2]=

"Eff-F-S"[T2,Feature]*PULSE(0,TIME STEP)/TIME STEP*(1-"S1-S2-
Dependency")+"S1-S2-Dependency"*"S-outflow"[Feature,T1]*"S1-S2-
Transformation" [Feature]

"S-inflow"[Feature,T3]=
"Eff-F-S"[T3,Feature]*PULSE(0,TIME STEP)/TIME STEP*(1-"S2-S3-
Dependency")+"S2-S3-Dependency"*"S-outflow"[Feature,T2]*"S2-S3-
Transformation" [Feature]

S[Feature,Task]= INTEG ("S-inflow"[Feature,Task]-"S-outflow"[Feature,Task],0)
"S-outflow"[Feature,Task]=

 Simulation-Based Stability Analysis for Software Release Plans 273

MIN(SUM("actual-Prod-D-F-S"[Feature,Task,Developer!]),S[Feature,Task]/
TIME STEP)

"Lookup-Availability-D-F-S"[F1,T1,D1](
 [(0,0)-(12,2)],(0,0),(1,0),(1,0),(2,0),(2,0),(3,0),(3,0),(4,0),(4,0),(5,0),(5,0),(6,

0),(6,0),(7,0),(7,0),(8,0),(8,0),(9,0),(9,0),(10,0),(10,0),(11,0),(11,0),(12,0))
(…)
"Lookup-Availability-D-F-S"[F8,T3,D6](
 [(0,0)-(12,2)],(0,0),(1,0),(1,0),(2,0),(2,0),(3,0),(3,0),(4,0),(4,0),(5,0),(5,0),(6,
 0),(6,0),(7,0),(7,0),(8,0),(8,0),(9,0),(9,0),(10,0),(10,0),(11,0),(11,0),(12,0))
"Eff-F-S"[Task,Feature]=1,8,1,2,6,8,10,6;6,4,10,4,4,6,6,8;6,2,8,6,4,1,6,10;
"Prod-D-S"[Task,Developer]=1.4,1,2,1,1,2;2,0,0,2,1.5,1;1.2,2,1,1,2,2;
"S1-S2-Dependency"=0
"S2-S3-Dependency"=0
"S1-S2-Transformation"[Feature]="Eff-F-S"[T2,Feature]/"Eff-F-S"[T1,Feature]
"S2-S3-Transformation"[Feature]="Eff-F-S"[T3,Feature]/"Eff-F-S"[T2,Feature]
"actual-Prod-D-F-S"[Feature,Task,Developer]=
 "Prod-D-S"[Task,Developer]*"Lookup-Availability-D-F-S"[Feature,Task,

Developer](Time)
"Sum-S-inflow"[Task]=SUM("S-inflow"[Feature!,Task])
"Sum-S"[Task]=SUM(S[Feature!,Task])
"Sum-S-outflow"[Task]=SUM("S-outflow"[Feature!,Task])
"Sum-Availability-D"[Developer]=
 SUM("Lookup-Availability-D-F-S"[Feature!,Task!,Developer](Time))
Developer: D1,D2,D3,D4,D5,D6
Task: T1, T2, T3
Feature: F1,F2,F3,F4,F5,F6,F7,F8
FINAL TIME = 12 ~ Week / The final time for the simulation. |
INITIAL TIME = 0 ~ Week / The initial time for the simulation. |

Q. Wang et al. (Eds.): SPW/ProSim 2006, LNCS 3966, pp. 274 – 285, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Exploring the Impact of Task Allocation Strategies for
Global Software Development Using Simulation

Siri-on Setamanit1, Wayne Wakeland2, and David Raffo1

1 School of Business Administration, Portland State University, 631 SW Harrison St.,
Portland, OR, USA

{sirion, raffod}@pdx.edu
2 Systems Science PhD, Portland State University, 1604 SW 10th Ave., Portland, OR, USA

wakeland@pdx.edu

Abstract. We describe a hybrid computer simulation model of the software de-
velopment process that is specifically architected to study alternative ways to
configure global software development projects, including phased-based, mod-
ule-based, and follow-the-sun allocation strategies. The model is a hybrid sys-
tem dynamics and discrete event model. In this paper, test cases have been de-
veloped for each allocation strategy, and project duration under each
configuration is computed under a range of plausible assumptions for key pa-
rameters. The primary finding is that although under ideal assumptions, follow-
the-sun is able to produce impressive reductions in time-to-market, under more
realistic assumptions the reverse is true, thus corroborating findings by other re-
searchers. Further analysis reveals the presence of some interaction between the
assumptions, but the results remain robust.

1 Global Software Development

Since 1990, as communication media have become increasingly advanced, especially
with the emergence of the Internet, there has been a growing trend towards the
transition of software development from the traditional centralized, co-located form of
development to a form in which software teams, working on the same project or
system, collaborate across national boundaries or are dispersed geographically, hence
the name “Global Software Development (GSD)”. Currently, there are almost 100
nations participating in GSD [1]. There are several factors that drive companies to
move toward GSD, including reduction in time-to-market, reduction in development
costs, better use of scarce resources, and business advantages from proximity to
customers [1-5]. The major reasons are reduction in development cost and the
reduction in development time [1, 6].

Ideally, with the use of follow-the-sun or 24-hour development, it is expected that
the cycle time can be reduced by 20% to 35% [2]. Unfortunately, follow-the sun
development requires much more communication and coordination. Together with
time-zone difference and cultural and language differences, few GSD projects have
been able to realize the full (theoretical) benefits of follow-the-sun.

An IBM team described in Carmel’s book [2] decided to abandon follow-the-sun
strategy since the daily handoffs between sites were too difficult to coordinate. In

 Exploring the Impact of Task Allocation Strategies for GSD Using Simulation 275

addition, based on an empirical studies, Herbsleb and Mockus found that for work of
equal size and complexity, multi-site software development takes much longer than
single-site development [7, 8]. The authors further recommend that the way to speed
the development is to decouple the work so that each site can operate more
independently.

This raises the question whether follow-the-sun development with daily handoffs is
the best way to pursue if the goal of the GSD project is to reduce the cycle time.
What factors contribute to the delay? Is there any better way to distribute work
between sites?

The results from empirical study are often influenced by several factors. It is
difficult to separate the factors and identify which factor actually influences the result
and to what degree. For example, with empirical study and statistical modeling
techniques, Herbsleb et al. [7, 8] found that communication, coordination, and social
networks in multi-site development may differ from single-site development such that
it requires more people to participate, and therefore introduces additional delays. The
authors recognize that several factors such as “teamness” and cultural and language
differences may also contribute to delay. Unfortunately, with their research design, it
was not possible to assess the relative effect of each of these factors.

We believe that simulation models can be used to help expand and identify the
factors that contribute to project delays. In Section 2, we explain how simulation
modeling can help address this important issue. This model is a hybrid system
dynamics and discrete event simulation model. We provide an overview of our GSD
simulation model in Section 3. Experimental results are provided in Section 4,
followed by discussion in Section 5.

2 A Simulation Model as an Experimentation Platform

In software engineering it is easy to propose hypotheses; however, it is very difficult
to test them [9]. Controlled experiments are costly and time consuming [10], and are
nearly impossible to conduct. In addition, the isolation of the effect and the
evaluation of the impact of any given factor within a large, complex, and dynamic
project environment (such as GSD) can be remarkably difficult [11].

With available empirical data software process simulation models can be
constructed and calibrated so that they reflect real world behavior quite accurately.
Such models can then be used as an experimental platform to investigate the
situation/system and evaluate new hypotheses and theories. By varying individual
parameters or combinations thereof, the magnitude and strength of the impact on
variables of interest can be measured [12]. Simulation models enable controlled
experimentation that allows the researcher to identify factors that profoundly impact
the outcome. It is far less costly and less time-consuming to perform experimentation
using simulation models.

The next section describes our hybrid simulation model of global software
development.

276 S. Setamanit, W. Wakeland, and D. Raffo

3 A GSD Simulation Model

3.1 GSD Model Structure

As described previously [13], our proposed GSD model is a hybrid model combining
system dynamics (SD) and discrete-event (DES) paradigms. A system dynamics sub-
model is inspired by and adapted from the system dynamics model of software
development created by Abdel-Hamid and Madnick [14]. The interface between SD
and DES sub-models is inspired by the hybrid model of the software development
process created by Martin [15].

In this paper we will give an overview of the complete GSD model at a high-level.
Then, we will describe how the model works, focusing on the unique mechanisms and
structures of the model that enable us to investigate alternative GSD configurations.

At a high level, the GSD model has three major components: DES sub-model, SD
sub-model, and Interaction Effect (IE) sub-model. The DES sub-model includes a
global DES sub-model and a site-specific DES sub-model for each development site.
Each development site may have different process steps depending on how tasks are
allocated and specific activities are performed. The site-specific DES allows us to
represent these differences and to capture their impact. Different time zones are also
be modeled. Artifacts or work products pass from one site to another at different
times, depending upon the allocation strategy, in order to capture the effect of
distribution overhead and distribution effort loss. The global DES sub-model
aggregates the information from the site-specific DES sub-models to determine
overall project progress.

The SD sub-model includes a global SD sub-model and a site-specific sub-model
for each development site. The global SD sub-model captures the overall project
environment, including the planning and controlling activities. The global SD sub-
model has 3 modules: Human Resources (HR), Planning, and Control. The Human
Resources module acts as an interface between HR module from each development
site and the other modules in global SD sub-model. The control module receives
information about the project progress (from global DES sub-model) and then
evaluates whether adjustments to the schedule or the work rate are needed. The
planning module monitors and identifies the workforce level required to meet the
overall project schedule.

Each development site has its own site-specific SD sub-model. The site-specific
SD sub-model represents aspects that may be different between development sites,
including human resources (HR), productivity (PD), manpower allocation (MP), and
defect generation and detection rates (QA). The HR module deals with human
resource management, which includes hiring, training, assimilation, and transferring
human resources in a particular site. The PD module models the rate at which
developers at a particular site can develop software (productivity rate). The MP
module assigns workforce to different activities. The QA module models defect
generation, detection, and correction rates.

The IE sub-model comes into play when staff from different sites need to
collaborate or work closely together; for example, during follow-the-sun development.
When developers work with their colleagues from the same site, information such as
productivity and defect rates will be sent from within the site-specific SD sub-models.

 Exploring the Impact of Task Allocation Strategies for GSD Using Simulation 277

However, when developers have to collaborate with their colleagues from other sites,
their productivity will be different. The IE sub-model takes those effects into account.
More information about the GSD model logic is explained in section 3.2. Section 3.3
provides additional detail about the IE sub-model. Figure 1 shows the overall GSD
model structure with two development sites.

Fig. 1. Overview of the GSD model structure

3.2 GSD Model Logic

The GSD model is designed to be flexible and expandable. At the simplest level, the
GSD model can be used to represent a single-site software development project. To
add additional development sites, one site-specific SD and one site-specific DES sub-
model are added to represent the characteristics of each new development site.

Assume that there are two development sites involved in a project (as shown in
Figure 1). The following discussion illustrates how the GSD model works. The site-
specific HR modules (HR1 and HR2) will send information about the workforce
available to the site-specific MP module. The MP module will allocate the workforce
to different tasks such as development and quality assurance. The PD module deter-
mines the productivity of the staff (depending on the workforce mix and the schedule
pressure). The productivity rate will be sent to the IE module. If the developers in a
particular site work only with other developers from the same site, the IE module will
pass along the productivity rate to the site-specific DES without any modification.
On the other hand, if the developers have to work with their colleagues from other
sites, the IE module will modify the productivity rate before sending it to the DES
sub-model.

HR = Human Resource MP = Manpower Allocation PD = Productivity QA = Quality

Global DES

PlanningPlanning Control

Workforce
Needed

Workforce Available

HR1

PD1PD1

QA1QA1

MP1MP1

M
P

 A
llo

ca
ti

on

Total Tasks Completed

Site 2Site 1

Human
Resource

Workforce
Needed

HR2

PD2PD2

QA2QA2

MP2MP2

M
P

 A
llocationDefect Rates

Global SD

Site-specific SD Site-specific SD

Site-specific DES Site-specific DES

Workforce
Needed

Effort Remained

Tasks Completed

Workforce Available

Defect Rates

Productivity Productivity
Interaction Effect

278 S. Setamanit, W. Wakeland, and D. Raffo

The productivity rate and the manpower will be sent to site-specific DES sub-
model. This information drives the software development activity in a particular site.
Each site then sends information about tasks completed to the global DES sub-model.

The global DES sub-model aggregates information from all sites to determine the
total task completion. The global DES sub-model sends information about total task
completion to the control module. The control module reviews the project progress
information and determines whether the schedule or work rate should be adjusted. If
the schedule should be adjusted, the control module will signal the planning module.
The planning module will adjust the schedule and also determine the number of staff
needed to complete the remaining project tasks. The planning module will then send
information about the workforce needed to the human resource module (in the global
SD). The human resource module will determine the workforce needed for each de-
velopment site and then send the information to site-specific HR module of each site.
The site-specific HR module adjusts its workforce to correspond to the workforce
needed. This cycle repeats until the project is completed.

3.3 Interaction Effect (IE) Sub-model

The structure of the interaction effect (IE) sub-model is based on literature regarding
global software development, distributed development, and virtual teams. Factors and
quantitative models relevant to the GSD model are reported in [13]. The IE sub-
model impacts many factors including productivity and defect generation.

Interaction Effect on Productivity Rate. For knowledge-based work such as
software development, tight coordination among various efforts is required for the
project to be successful [16]. Problems of coordination leads to losses in productivity
[17, 18]. Due to distance and time-zone differences, coordination within and across
multi-site development teams is even more difficult, which further impacts
productivity. The IE sub-model calculates the coordination efficiency of the
distributed team (relative to the coordination efficiency of the single-site team), and
then applies the coordination effect to the productivity before sending it to the DES
sub-model. If the coordination efficiency of the distributed team is lower, the
productivity will be lower. Figure 2 shows the interaction effects on productivity rate.

Fig. 2. The interaction effects on productivity rate

Trust

Communication
Frequency

Coordination
Efficiency

Distance

Culture
Difference

Familiarity

Meeting

+

+

+
+

+

-

-

Productivity
(from PD module)

Productivity
Multiplier

Send to DES
sub-model

Productivity
(Multi-site)

 Exploring the Impact of Task Allocation Strategies for GSD Using Simulation 279

There are two primary factors that have a significant impact on coordination effi-
ciency: Communication Frequency and Trust. More information about these two fac-
tors is provided in the next two sections.

Communication Frequency. Team members coordinate their work through communi-
cation (exchange of information). Several studies of software development projects
[16, 19-21] found that informal, unplanned, and ad hoc communication is extremely
important in supporting collaboration. Discussions with peers is the most used and
valued coordination technique [16]. Thus, teams with frequent communications
among their members tend to coordinate better. However, the distance between team
members negatively affects the amount of communication [22]. This agrees with the
finding by Kraut et al. [23] that physical proximity increases the likelihood of col-
laboration among scientists. In our GSD model, the IE sub-model will determine the
relative frequency of communication when team members are at different sites com-
pared to when they are at the same site. The relative communication frequency will
positively impact the coordination efficiency.

Trust. Trust is a basic feature of social situations that requires cooperation and interde-
pendence [24]. Without trust, it is unlikely that a team will work together effectively
since the team members are unwilling to communicate openly across sites. Teams
with higher trust tend to coordinate better, thus achieve better performance [25].

In the GSD model, trust will be modeled as a dynamic variable. The initial level of
trust is determined by culture (individualist or collectivist, as defined by Hofstede
[26]) and team member familiarity [27]. People from the same culture develop trust
more quickly than people from different cultures. In addition, individuals from an in-
dividualistic culture tend to be more ready to trust others than individuals from a col-
lectivist culture [28, 29]. Trust will be higher when team members become more fa-
miliar with each other.

Unfortunately, without face-to-face communication, trust tends to decrease over-
time [30]. However, the GSD model includes a mechanism that triggers meetings be-
tween team members to re-establish trust whenever the trust level falls below a prede-
termined threshold.

Interaction Effect on Defect Injection Rate. When teams are separated by time
and/or distance, communication effectiveness is hampered both in quality and
timeliness [31]. Rich communication media (such as face-to-face interaction) tend to
be more effective than leaner media (such as telephone or email). The leaner the
communication media, the higher the likelihood of miscommunication, which can
introduce defects [31]. In addition, different cultures (high-context and low-context
[32]) also lead to miscommunication.

In our GSD model, communication media affects the defect generation multiplier.
For example, email will lead to higher defect generation multiplier than telephone.
The defect generation multiplier is applied to the defect generation rate from the QA
module. The value of the defect generation multiplier is based on information from
the coordination cost model developed by Espinosa and Carmel [33].

There are 3 factors that determine the choice of communication media: time-zone
differences, message urgency, and native language. When there is no overlap work-
ing time, the choice of communication media is limited to asynchronous media.

280 S. Setamanit, W. Wakeland, and D. Raffo

The urgency of communication increases the use of synchronous communication. It
has been reported that developers prefer to use telephone over email when the ur-
gency category is within 10 minutes [34]. Regarding language, nonnative English-
speaking people prefer asynchronous communication such as email over synchro-
nous since it allows them to read and write at their own pace [35-37]. Therefore, if
the developers speak different languages, they will prefer to use email instead of
synchronous communication, except when the urgency is within 10 minutes.

Currently, there are three communication media options represented in our model:
telephone, instant messaging (chat), and email.

4 Model Results

To illustrate the functionality and the usefulness of the GSD model, we created a sim-
ple example project. The example project has 2 development sites (site A and B), and
has 5 phases including Requirements (REQ), Design (DES), Coding (CODE), Testing
(TEST), and Rework (RWK). We created four model configurations. Each configu-
ration represents a different task allocation strategy as defined by Carmel [2]: single-
site, module-based, phase-based, and follow-the-sun, as shown in Figure 3.

Fig. 3. Four configurations of the GSD model

4.1 Ideal Situation

It has been expected that global software development can reduce the development
cycle time, especially the follow-the-sun strategy. In this scenario, we assume that
everything is perfect. Developers can coordinate with colleagues from other sites just
as efficiently as when they coordinate with their colleagues from the same site. There
are no problems regarding cultural or language differences. In other words, the full
benefit of GSD can be achieved. To represent this situation, we configure the GSD

REQ DES CODE TEST RWK
Site A

Single-site

REQ DES CODE TEST RWK
Site A

Module-based
REQ DES CODE

Site B

REQ TEST RWK
Site A

Phase-based
DES CODE

Site B

REQ DES CODE TEST RWK
Site A

Follow-the-sun

REQ DES CODE
Site B

TEST RWK

REQ DES CODE TEST RWK
Site A

Single-site

REQ DES CODE TEST RWK
Site A

Module-based
REQ DES CODE

Site B

REQ TEST RWK
Site A

Phase-based
DES CODE

Site B

REQ DES CODE TEST RWK
Site A

Follow-the-sun

REQ DES CODE
Site B

TEST RWK

 Exploring the Impact of Task Allocation Strategies for GSD Using Simulation 281

model to exclude all the effects from GSD factors mentioned in Section 3.3. Figure 4
shows project progress against time for the four configurations.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 50 100 150 200 250 300
Days

P
er

ce
n

t
C

o
m

p
le

te
d

Single-siteFollow -the-Sun

Phase-based

Module-based

Fig. 4. Project progress comparison (Ideal Situation)

As expected by GSD enthusiasts, when everything works perfectly, follow-the-sun
development has the shortest development cycle time. The development cycle time
using follow-the-sun strategy is about 70% of the time it takes using single site.
Module-based took a little longer than the follow-the-sun strategy since there is only
one site working at the end of the development cycle. Phase-based took about the
same time as single site since we assumed that the staff in both sites has approxi-
mately the same productivity rate.

4.2 Real World Situation

As mentioned before, there are several factors that may affect the efficiency and the
effectiveness of the development in distributed environment. In this scenario, we in-
clude all the GSD factors described in section 3.3 such as coordination costs due to
distance, language differences, time zone differences, culturally differences and so
forth. Figure 5 shows the project progress against time for the four configurations.

When GSD factors are taken into account, the follow-the-sun strategy is no longer
is the shortest. Communication and coordination problems coupled with cultural and
language differences make it difficult to coordinate, which reduces the development
productivity. Follow-the-sun took about 37% longer than single-site development.
This agrees with the finding that multi-site development can take longer than single-
site development [8].

The module-based approach has the shortest cycle time. This agrees with Herbsleb
et al.’s [7, 8, 21] suggestion that the best strategy is to decouple the work so that each
site can operate more independently.

282 S. Setamanit, W. Wakeland, and D. Raffo

One can imagine that it may be possible to speed up the module-based strategy by
reducing the time to integrate work products from different sites (note the almost flat
line at time 120 to 170). This is the same for phase-based development. There are
two hand-off points. If the hand-offs can be made smoother and faster, then cycle
times can be reduced. For the follow-the-sun strategy, coordination difficulties affect
productivity, which leads to long cycle times. If coordination can be made more effi-
cient, then cycle times could be reduced.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 50 100 150 200 250 300 350 400
Days

P
er

ce
n

t
C

o
m

p
le

te
d

Follow-the-Sun

Module-based

Phase-basedSingle-site

Fig. 5. Project progress comparison (Real World Situation)

4.3 Further Experimentation

Using realistic assumptions, we ran 30 replications of each configuration. The results
indicated that the duration from single site and module-based configurations cannot
be distinguished from each other. Follow-the-sun consistently takes the longest, with
phase-based in the middle.

We then created a factorial design, varying the values for Distance, Culture, Lan-
guage, Trust, and Time zone. Each had a plausible “high” value and “low” value.
We applied this design to each configuration.

For the follow-the-sun configuration, the primary effects showed Distance and
Trust to be the most influential, with a 30% impact on project duration. The further
the distance between sites, the longer the duration of the project is. This is because
the distance negatively affects the coordination efficiency, which reduces the produc-
tivity of the developers. On the other hand, trust among team members increases pro-
ductivity, which in turn reduces the project duration. Time zone had a 5% impact by
comparison. The impact of Culture and Language were negligible.

For the phased-based configuration, Distance and Time zone had the largest im-
pacts, 15% and 10% respectively. The productivity of the developers is lower when
they are far apart because of the difficulty in coordination, which leads to longer cycle
time. Regarding the time zone, the cycle time tends to be shorter when there is less

 Exploring the Impact of Task Allocation Strategies for GSD Using Simulation 283

overlap working time between development sites (lower distribution effort loss). The
other parameters had negligible impact.

For the module-based configuration, the impacts were negligible--less than 2% in
all cases. The module-based strategy allows each site to work independently most of
the times so the effects of the GSD factors are rather weak.

4.4 Discussion

The results provided above are just hypothetical results to illustrate the functionality
and the usefulness of the GSD model. The model was calibrated with information
from literature and the industry standard data collected by Capers Jones [38].

Despite the fact that our results are based on simplified models that were drawn
from the literature, it is quite clear that the success of global software development
depends on many factors. It is interesting to see how different factors affected the
performance of different allocation strategies in unique ways. Hence, a specific ap-
proach might reduce development time by 20% under certain conditions while actu-
ally increasing development time under other conditions.

5 Conclusion

In this paper, we used the GSD model to evaluate the choice of task allocation strat-
egy and its impact on project duration. By using the GSD simulation model, we were
able to capture and assess the impact of a number of real world factors that have been
presented in the literature. These included the factors of distance, culture, language,
trust, and time zone. The results obtained, were consistent with those found in the lit-
erature [2, 7, 8, 21]. The results provided insight into how different factors dominate
different task allocation strategies indicating that different strategies are appropriate
for different types of development. This matches with real world experience and pro-
vides some initial validation for the model. In the future, we will collect the real world
data and work with experts in the field to further calibrate and validate the GSD
model.

We believe that a well implemented hybrid simulation model, constructed using an
architecture similar to that shown here, could be used by managers to help determine
which type of GSD configuration is likely to work the best for their particular situa-
tion. In addition, the GSD model also shows promise for exploring other globally dis-
tributed development issues such as:

General GSD project:
• Should work be distributed across multiple sites or should it be centralized at

single site?
• Under what circumstances do dispersed teams perform better than co-located

teams? When should a global software development approach be chosen?
• What are the critical success factors in GSD projects?
• What characteristics make a project suitable for GSD?
• What practices and tools are effective and worthwhile to apply to GSD pro-

jects?

284 S. Setamanit, W. Wakeland, and D. Raffo

Specific GSD project:
• Which development sites should be included in the project?
• How should work be divided up across sites? What task allocation strategy

should be used for a particular project?
• What is the forecasted project performance in terms of cost, quality, and

schedule?
• What is the impact of process changes in a GSD context? Should we add

process A? Can we minimize or skip a portion of process B?

References

1. Carmel, E., Tija, P.: Offshoring Information Technology: Sourcing and Outsourcing to a
Global Workforce. Cambridge University Press, Cambridge, UK (2005)

2. Carmel, E.: Global Software Teams. Prentice Hall PTR, Upper Saddle River, NJ (1999)
3. Gorton, I., Motwani, S.: Issues in Co-operative Software Engineering Using Globally Dis-

tributed Teams. Information and SoftwareTechnology 38 (1996) 647-655
4. Herbsleb, J.D., Moitra, D.: Global Software Development. IEEE Software (2001) 16-20
5. Norbjerg, J., Havn, E.C., Bansler, J.P.: Global Production: The Case of Offshore Pro-

gramming. In: Krallmann, H. (ed.): Wirtschaftsinformatik ‘97, Physica-Verlag, Berlin
(1997)

6. King, J.: IT's Global Itinerary: Offshore Outsourcing Is Inevitable. Computerworld (2003)
7. Herbsleb, J.D., Grinter, R.E., Finholt, T.A.: An Empirical Study of Global Software De-

velopment: Distance and Speed. ICSE 2001, Toronto, Canada (2001) 81-90
8. Herbsleb, J.D., Mockus, A.: An Empirical Study of Speed and Communication in Globally

Distributed Software Development. IEEE Transactions on Software Engineering 29 (2003)
481-494

9. Abdel-Hamid, T.: The Economics of Software Quality Assurance: A Simulation-Based
Case Study. MIS Quarterly (1988) 394-411

10. Myers, G.J.: Software Reliability: Principle and Practices. John Wiley & Sons, Inc., New
York (1976)

11. Glass, R.L.: Modern Programming Practices: A Report from Industry. Prentice-Hall, Inc.,
Englewood Cliffs, NJ (1982)

12. Rus, I., Biffl, S., Halling, M.: Systematically Combining Process Simulation and Empirical
Data in Support of Decision Analysis in Software Development. The fourteenth Interna-
tional Conference on Software Engineering and Knowledge Engineering (SEKE'02).
ACM, Ischia, Italy (2002)

13. Raffo, D., Setamanit, S.: A Simulation Model for Global Software Development Project.
The International Workshop on Software Process Simulation and Modeling, St. Louis, MO
(2005)

14. Abdel-Hamid, T., Madnick, S.: Software Project Dynamics: An Integrated Approach.
Prentice-Hall (1991)

15. Martin, R.: A Hybrid Model of the Software Development Process. Systems Science Ph.D.
Program. Portland State University, Portland, OR (2002)

16. Kraut, R.E., Streeter, L.A.: Coordination in Software Development. Communications of
the ACM 38 (1995) 69-81

17. Steiner, I.D.: Models for Inferring Relationships Between Group Size and Potential Group
Productivity. Journal of Behavioral Science 5 (1966) 273-283

18. Brooks, F.P.: The Mythical Man-Month. Addison-Wesley, Reading, MA (1975)

 Exploring the Impact of Task Allocation Strategies for GSD Using Simulation 285

19. Curtis, B., Krasner, H., Iscoe, N.: A Field Study of the Software Design Process for Large
Systems. Communications of the ACM 31 (1988) 1268-1287

20. Perry, D.E., Staudenmayer, N.A., and Votta, L.G.: People, Organizations, and Process Im-
provement. IEEE Software 11 (1994) 36-45

21. Herbsleb, J.D., Grinter, R.E.: Splitting the Organization and Integrating the Code: Con-
way's Law Revisited. International Conference on Software Engineering (ICSE'99). ACM
Press, Los Angeles, CA (1999) 85-95

22. Allen, T.J.: Managing the Flow of Technology. MIT press, Cambridge, MA (1977)
23. Kraut, R.E., Egido, C., Galegher, J.: Patterns of Contact and Communication in Scientific

Research Collaborations. In: Galegher, J., Kraut, R.E., and Egido, C. (ed.): Intellectual
Teamwork: Social Foundations of Cooperative Work. Lawrence Erlbaum Associates, New
Jersey (1990) 149-172

24. Jennings, E.E.: Routes to the Executive Suite. McGraw-Hill, New York (1971)
25. Jarvenpaa, S.L.: Communication and Trust in Global Virtual Teams. Journal of Computer

Mediated Communication 3 (1998)
26. Hofstede, G.: Culture's Consequences: Comparing values, behaviors, institutions, and or-

ganizations across nations. Sage Oublications, Inc., Thousand Oaks, CA (2001)
27. Consortium, S.P.: Measurement for Distributed Teams. Software Productivity Consortium,

Herndon, Virginia (2002) 68
28. Pearce, W.B.: Trust in interpersonal communication. Speech Monographs 41 (1974) 236-

244
29. Gudykunst, W.B., Matsumoto, Y., Ting-Toomey, S., Nishida, T., Linda, K.W., Heyman,

S.: The influence of cultural individualism-collectivism, self construals, and individual
values on communication style across cultures. Human Communication Research 22
(1996) 510-543

30. Meyer, D.: A. Tech talk: how managers are stimulating global R&D communication.
Sloan Management Review (1991)

31. Espinosa, J.A., Carmel, E.: The Impact of Time Separation on Coordination in Global
Software Teams: A Conceptual Foundation. Software Process Improvement and Practice 8
(2003) 249-266

32. Hall, E.T.: Beyond Culture. Doubleday Books, New York, NY (1976)
33. Espinosa, J.A., Carmel, E.: Modeling the Effect of Time Separation on Coordination Costs

in Global Software Teams. The 37th Hawaii International Conference on System Sciences,
Hawaii, USA (2003)

34. Wijayanayake, J., Higa, K.: Communication media choice by workers in distributed envi-
ronment. Information and Management 36 (1999) 329-338

35. Ishii, H.: Cross-Cultural Communication and CSCW. In: Harasim, L.M. (ed.): Global
Networks: Computers and International Communication. MIT Press, Cambridge, MA
(1993) 143-151

36. Carmel, E., Agarwal, R.: Tactical Approached for Alleviating Distance in Global Software
Development. IEEE Software (2001) 22-29

37. Keil, L., Eng., P.: Experiences in Distributed Development: A Case Study. The Interna-
tional Workshop on Global Software Development, Portland, OR USA (2003) 44-47

38. Jones, C.: Applied Software Measurement: Assuring Productivity and Quality. McGraw-
Hill, New York (1977)

Users and Developers: An Agent-Based
Simulation of Open Source Software Evolution

Neil Smith1, Andrea Capiluppi2, and Juan Fernández-Ramil1

1 Centre for Research in Computing, The Open University,
Milton Keynes, MK7 6AA, UK

{N.Smith, J.F.Ramil}@open.ac.uk
http://mcs.open.ac.uk/{ns938/,jfr46/}

2 University of Lincoln, Brayford Pool, Lincoln, LN6 7TS, UK
acapiluppi@lincoln.ac.uk

http://hemswell.lincoln.ac.uk/~acapiluppi/

Abstract. We present an agent-based simulation model of open source
software (OSS). To our knowledge, this is the first model of OSS evo-
lution that includes four significant factors: productivity limited by the
complexity of software modules, the software’s fitness for purpose, the
motivation of developers, and the role of users in defining requirements.
The model was evaluated by comparing the simulated results against
four measures of software evolution (system size, proportion of highly
complex modules, level of complexity control work, and distribution of
changes) for four large OSS systems. The simulated results resembled all
the observed data, including alternating periods of growth and stagna-
tion. The fidelity of the model suggests that the factors included here
have significant effects on the evolution of OSS systems.

Keywords: simulation models, software process, open source software,
software evolution.

1 Introduction

Computing is a rapidly evolving discipline and there is a need to understand
the evolutionary processes that prevail in new forms of software development,
such as open source software (OSS) systems. Evolution in proprietary systems
is becoming understood [1], but many OSS systems do not evolve in the same
way [2, 3]. This suggests that existing theories of software evolution are partial
accounts of OSS evolution. Extending these theories can have a practical output
by informing good practice, leading to the more efficient prodution of better
software. This paper reports our attempts to use theories of software evolution
to replicate and explain empirical observations of a set of OSS systems.

OSS evolution involves a community of individuals providing their work mainly
on a voluntary basis and without a strong centralised leadership [4, 5]. This inval-
idates one of the assumptions of many simulation models: the existence of a cen-
tralised management which reacts to the state of the software system by altering

Q. Wang et al. (Eds.): SPW/ProSim 2006, LNCS 3966, pp. 286–293, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Users and Developers: An Agent-Based Simulation of OSS Evolution 287

the pattern of work performed [6]. This emphasis on individuals suggests that an
agent-based model of the OSS evolution process is appropriate [7, 8].

We propose that each module within an OSS system is monolithic and will be-
have as such [1, 9]. However, the modular architecture will restrict the impact of
growth stagnation to small parts of the system, where it will not have a signif-
icant global effect. To investigate this hypothesis, we have developed an agent-
based model of OSS development. To our knowledge, the model presented here is
the first model of open source evolution that includes four significant factors: the
complexity of the software modules as a limiting factor in productivity; the fitness
of the software to the requirements; the motivation of developers; and the role of
users in defining requirements. We believe, based on our experiments, that these
are important factors that need to be included in OSS evolution theories.

2 Agent-Based Simulation Model

Our motivation for developing this model lies in our understanding of the actions
of individual OSS developers [10, 4]. OSS development is decentralised and non-
coercive: generally, developers choose to become involved in an OSS project
and choose which aspects of the project to work on. This focus on individual
developers and specific software components suggests that such objects should
be the primitive elements of our model, with the evolution of the OSS system
being an emergent property of the interactions of those primitive elements.

We used the NetLogo [11] multi-agent simulation tool. In this tool, agents
move around a virtual world (a grid of “patches”), interacting with it and with
other agents. Each agent and patch has its own state and procedures. Simula-
tion proceeds by each agent and patch performing its behaviour independently,
often by following stochastic functions influenced by the agent’s state and lo-
cal environment. Agents perform their own actions asynchronously; there is no
centralised co-ordination of the agents’ actions.

In our model, patches represent modules of software source code and different
types of agents represent developers, unfulfilled requirements, and users.

A module is a single modular part of a software system. Modules that are
near each other are functionally related. Each module records both its fitness for
purpose and its complexity. The complexity of a module acts as an inhibitor to
future changes to that module. To model the changes in external requirements
that drive software evolution, patches have a stochastic process for decreasing
their fitness over time. Finally, modules have a chance to capture the attention
of a developer passing through cyberspace and so create a new developer agent
in the model; this only happens if the module is interesting (i.e. its fitness is
below the developer’s ‘boredom threshold’; see below).

Users are responsible for adding new requirements to the system. Users walk
randomly around the system space and, when they meet a code patch or an ex-
isting requirement, they create a new requirement that extends the functionality
in this area. Newly created requirements attract new users, which reflects the
tendency of users to suggest modifications to existing requirements.

288 N. Smith, A. Capiluppi, and J. Fernández-Ramil

Fig. 1. An example of simulated OSS development. The squares are code patches. The
black circles are unfulfilled requirements. Note how the vertical “stem” in the top left
is loosely connected to the rest of the system.

Developers walk randomly around the software system, changing code as they
go. Agents have four behaviours, depending on their location. If a developer is
on an unfulfilled requirement, it creates a new module that fulfils that require-
ment, with a certain (low) fitness and complexity. If a developer is on a module
with high complexity and high fitness, it may attempt to refactor that module.
Refactoring leaves the module’s fitness unchanged, but reduces its complexity by
a random amount. If the developer chooses not to refactor a module, it will at-
tempt to develop the module: this increases the module’s fitness and complexity
by a random amount. However, if the module is complex, the agent may not be
able to improve the module, in which case the module is left unchanged. Finally,
developers have a boredom threshold. If the fitness of the module they are on is
above this threshold, there is a chance that the developer will find the project
boring and leave. Developers may also leave if they wander onto a patch and
have no module or requirement to work on.

Simulation starts with a single module and a single user. These spawn new
requirements and attract the attention of developers. The developers create mod-
ules to fulfil the requirements. As the project grows, more developers and users
are attracted and more requirements are identified. The model’s source code is
available from http://mcs.open.ac.uk/ns938/simulation/.

3 Empirical Data

To validate the model, we compared the simulated output to empirically observed
behaviour. The empirical data was derived from data in OSS repositories. Pre-
vious research has shown that data such as change-log records, program headers
and configuration management offer a suitable source of data for the study of
software evolution [12, 13, 14]. For this study, we selected four OSS systems which
we have examined in previous studies [13, 14]. Table 1 indicates the data sources

Users and Developers: An Agent-Based Simulation of OSS Evolution 289

Table 1. Data sources used

Software System Studied
(URL of Code Repository)

Change Log? CVS? Number of Releases
Considered

Arla (www.stacken.kth.se/projekt/arla) Yes Yes 70
Gaim (http://gaim.sourceforge.net) N/A Partial 100

MPlayer (www.mplayerhq.hu) N/A Partial 81
Wine (www.winehq.com) Yes Partial 90

(a) Empirical size trends (b) Trends of size and cumulative
complexity control work of Gaim

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

S
iz

e
(r

el
at

iv
e)

Time (relative)

Arla
Gaim

MPlayer
Wine

 0

 1000

 2000

 3000

 4000

 5000

 6000

01/0001/0101/0201/0301/0401/05
 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

S
iz

e

C
um

ul
at

iv
e

C
om

pl
ex

ity
 C

on
tr

ol

Time

Size
Cuml Cplx Ctrl

Fig. 2. Empirical trends

we used to extract the empirical data used in this research. We extracted several
attributes for each software system, taking measurements over releases.

Size was evaluated using number of source functions (as a surrogate for the
systems’ growth). Figure 2(a) shows the size trends for all the systems, using
relative sizes and times. Only Wine has a smoothly increasing trend; the other
systems had at least one period of reduced growth (i.e. stagnation).

Complexity was measured at the level of functions. We used the McCabe
cyclomatic number [15] as a measure of complexity and the accepted threshold
value of 15 to distinguish highly complex functions [16]. In all the analysed
systems, the highly complex functions never make up more than 10% of the
overall system.

We measured complexity control work by comparing every function between
two consecutive releases and counting how many of them reduced in complex-
ity. There is a high correlation between the trend of the size growth and the
cumulative amount of complexity control work: figure 2(b) shows this for Gaim.

A function is touched when it is added, deleted, or modified. A small subset
of elements is touched a large number of times by developers, whilst most of the
elements receive few touches. The skewness of these distributions ranges from
2.73 in Wine to 4.55 in Arla.

290 N. Smith, A. Capiluppi, and J. Fernández-Ramil

(a) Simulated size trends (b) Simulated size and cumulative
complexity control work

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 10 20 30 40 50 60 70 80

S
iz

e
(r

el
at

iv
e)

Time (relative)

System 1
System 2

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 5 10 15 20 25 30 35 40

S
iz

e
(r

el
at

iv
e)

C
um

ul
at

iv
e

C
om

pl
ex

ity
 C

on
tr

ol

Time

Size
Cuml Cplx Ctrl

Fig. 3. Simulated trends

4 Results and Validation

We used the empirical data described above to calibrate and evaluate our model.
We did this by exploring the parameter space of the models, looking at the
generated output, and comparing it to the empirical evidence from the four OSS
systems. Throughout most of the parameter space, the model generated results
that were very similar to the empirical results.

The model was most sensitive to the value of the boredom threshold para-
meter, which controls when new developers join and leave the project. If the
boredom threshold of developers was high, high-fitness modules attracted devel-
opers rather than forcing them to leave. The number of developers grew rapidly
and soon swamped the development environment. In contrast, if the boredom
threshold was low, the evolution of the first few modules resulted in a system that
attracted no new developers; the original developers soon left and the project
became moribund.

The behaviour of the users was important to produce both discontinuous and
smooth growth patterns (figure 3(a)). Without the users clustering around new
requirements, the requirements were spread evenly around the system and only
smooth growth patterns were produced [17]. Even with the clustering, some
simulations produced smooth growth.

In the simulations, the proportion of complex functions remained at a con-
stant and low level as long as new modules have an initial complexity below
the reporting threshold, similar to the empirical results. This behaviour was not
seen if refactoring was ineffectual or not attempted. Moving to complexity con-
trol work, figure 3(b) shows that the simulation reproduces the empirical pattern
of increasing complexity control work that eventually follows the growth trend.

Finally the simulation is able to partially reproduce the long-tailed distribu-
tion of touches, though the skew value is typically only 0.8–0.9.

The closeness of the simulated results to the empirical data indicate that our
model reflects many of the processes that occur in OSS evolution.

Users and Developers: An Agent-Based Simulation of OSS Evolution 291

5 Related Work

The OSS domain was originally studied using quantitative metric data extracted
from OSS systems [10, 13, 14]. Godfrey & Tu [2] highlighted differences between
the evolution of Linux and previously studied systems, particularly its appar-
ently super-linear growth. Our model provides a possible explanation for such
a super-linear growth: access to an effectively unlimited pool of developers and
complexity which constrains productivity to the module level only.

Antoniades et al.’s [18] simulation of OSS processes has reproduced empir-
ically observed patterns of growth and developer numbers. Robles et al. [19]
propose a biologically-inspired simulation, where developers learn from other
developers only through observing changes in the source code. Their research
shares our focus on product characteristics (e.g. size and complexity) and on evo-
lution. However, to our knowledge, the model presented here is the first model
of open source evolution that includes the complexity of the software modules as
a limiting factor in productivity, the fitness of the software to the requirements,
and the motivation of developers.

6 Further Work

Our further work will initially focus on two areas. First is the surprising need
to include the behaviour of the users in creating new requirements. As far as
we know, the role of users in the evolution of OSS systems has not been deeply
explored. We will examine the empirical data to try to identify how and when
users generate new requirements and how they are dealt with by developers.
Second is inability of the model to produce touch distributions that were as
skewed as the empirical data. This may be due to the undiscriminating behaviour
of the developer agents in modifying existing code patches and the initial values
of a module’s fitness and complexity: it appears that many modules in real
systems are rarely touched because their initial implementation is adequate and
not subject to change.

The other aspect of developer behaviour that we will soon add to the model is
to take account of developers’ experience in controlling and approving changes
made to the system. In many OSS systems, there is a core of highly experienced
super-developers that have a great influence on the evolution of the system [20].
We anticipate that including such super-developers in the model will have a
significant effect on the simulation.

7 Conclusions

This paper presented an agent-based simulation model of OSS evolution. Our
model, while simple, incorporates many of the features that may explain some
of the differences between OSS and proprietary development [2, 3]. We found
that the model was able to replicate the observed patterns in all four of the
areas examined (size, complexity, complexity control, distribution of changes)

292 N. Smith, A. Capiluppi, and J. Fernández-Ramil

in the four systems studied. The model presented here appears to provide an
explanation for the unbounded growth trends observed in some OSS software
[2, 3]. This is an important contribution. We included four novel factors in our
model: the complexity of software modules as a limiting factor in productivity,
the fitness of the software to its requirements, the motivation of developers, and
the role of users in incrementally defining requirements. As discussed in section
4, all four of these factors are required for the model to produce plausible results.

In conclusion, we have shown that an agent-based model of OSS evolution
can faithfully produce the empirical behaviour of OSS systems, but only by
including a number of factors that are not immediately obvious. This suggests
that studies into the factors driving software evolution need to look beyond just
the behaviour of developers.

Acknowledgements

Andrea Capiluppi acknowledges the Faculty of Maths and Computing, The Open
University, and in particular to Drs Bashar Nuseibeh and Uwe Grimm, for fi-
nancial support that made this work possible. Juan Fernández-Ramil gratefully
acknowledges the UK EPSRC for funding under grant GR/590782/01 (2004–5).

References

1. Lehman, M.M., Fernández-Ramil, J.: Software Evolution. In: Software Evaluation
and Feedback — Theory and Practice. Wiley (2006)

2. Godfrey, M., Tu, Q.: Growth, evolution and structural change in open source
software. In: Proceedings of the 4th International Workshop on the Principles of
Software Evolution, Vienna, Austria (2001)

3. Herraiz, I., Robles, G., Gonzalez-Barahona, J.M., Capiluppi, A., Fernández-Ramil,
J.: Comparison between SLOCs and number of files as size metrics for software
evolution analysis. In: Proceedings, 10th European Conference on Software Main-
tenance and Reengineering. (2006)

4. Raymond, E.S.: The Cathedral and the Bazaar. O’Reilly Media, Inc. (2001)
5. Scacchi, W.: Understanding Open Source Software Evolution. In: Software Evolu-

tion and Feedback, Theory and Practice. Wiley, NY (2006)
6. Smith, N., Capiluppi, A., Fernández-Ramil, J.: A study of open source software

evolution data using qualitative simulation. Software Process Improvement and
Practice 10 (2005) 287–300

7. Madey, G., Freeh, V.W., Tynan, R.O.: Agent-based modeling of open source using
SWARM. In: Proceedings of the Americas Conference on Information Systems
(AMCIS 2002), Dallas, USA (2002)

8. Dalle, J.M., David, P.A.: imCode: Agent-based simulation modelling of open-source
software development. Technical report, MIT (2004)

9. Brooks, F.: The Mythical Man-Month: Essays on Software Engineering. 20th an-
niversary edn. Addison-Wesley (1995)

10. Mockus, A., Fielding, R.T., Herbsleb, J.: Two case studies of open source software
development: Apache and mozilla. ACM Transactions Software Engineering and
Methodology 11 (2002) 309–346

Users and Developers: An Agent-Based Simulation of OSS Evolution 293

11. NetLogo: http://ccl.northwestern.edu/netlogo/ (2005)
12. Capiluppi, A.: Models for the evolution of OS projects. In: Proceedings, ICSM

2003, Amsterdam (2003) 65–74
13. Capiluppi, A., Morisio, M., Fernández-Ramil, J.: The evolution of source folder

structure in actively evolved open source systems. In: Proceedings of the 10th
International Symposium on Software Metrics, Chicago, USA (2004) 2–13

14. Capiluppi, A., Morisio, M., Fernández-Ramil, J.: Structural evolution of an open
source system: A case study. In: Proceedings of the 12th International Workshop
on Program Comprehension (IWPC), Bari, Italy (2004) 172–182

15. McCabe, T.: A complexity measure. IEEE Transactions on Software Engineering
2 (1976) 308–320

16. McCabe, T.J., Butler, C.W.: Design complexity measurement and testing. Com-
munications of the ACM 32 (1989) 1415–1425

17. Smith, N., Capiluppi, A., Fernández-Ramil, J.: Agent-based simulation of open
source evolution. Software Process Improvement and Practice (to appear)

18. Antoniades, P., Samoladas, I., Stamelos, I., Bleris, G.L.: Dynamical simulation
models of the Open Source Development process. In: Free/Open Source Software
Development. Idea Group, Inc. (2005)

19. Robles, G., Merelo, J.J., Gonzalez-Barahona, J.M.: Self-organized development in
libre software: a model based on the stigmergy concept. In: ProSim 2005, St. Louis,
USA (2005)

20. Mockus, A., Fielding, R.T., Herbsleb, J.: A case study of open source software
development: the apache server. In: Proc. ICSE 22, Limerick, Ireland (2000) pp.
263 – 272

Q. Wang et al. (Eds.): SPW/ProSim 2006, LNCS 3966, pp. 294 – 301, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Simulating the Structural Evolution of Software

Benjamin Stopford1 and Steve Counsell2

1 School of Computer Science and Information Systems,
Birkbeck, University of London

2 School of Information Systems, Computing and Mathematics,
Brunel University, London

Abstract. As functionality is added to an ageing piece of software, its original
design and structure tends to erode. The underlying forces which cause such
degradation have been the subject of much research. However, progress in this
field is slow due to the difficultly faced in generating empirical data [6] as well
as attributing observed effects to the various points in the causal chain [7]. This
paper tackles these problems by providing a framework for simulating the struc-
tural evolution of software. A complete model is built by incrementally adding
modules to the framework, each of which contribute an individual evolutionary
effect. These effects are then combined to form a multi-faceted simulation that
evolves a fictitious code base approximating real world behavior. Validation of
a simple set of evolutionary parameters is provided, demonstrating agreement
with current empirical observations.

1 Introduction

Software evolution is a complex phenomenon and deriving formulations for the inter-
actions that make up its whole is a significant challenge. In fact, no theoretical frame-
work exists to describe the evolution of software. There are nevertheless, a variety of
behavioral observations and heuristics that describe the evolution of software. Exam-
ples vary from laws of software evolution, such as those proposed by Lehman [8], to
more specific underlying behaviors such as the coupling types of Briand et al. [1].
Simulating rules individually is within the bounds of a software model and combining
such effects would provide an interesting basis for experimentation.

This paper presents a method for exploring software evolution from the inside out.
Individual laws can be proposed and added to a simulation framework. The effects of
these laws can then be measured in isolation, under different environmental condi-
tions and against other proposed laws.

The majority of research in software engineering simulation is concerned with the
simulation of software process. Prominent examples of this include the modeling of
project planning [4], defect levels and staffing profiles [9] as well as system size and
effort trends [10]. The aims of process simulations are to investigate the processes by
which people, technology and practices are organized to transform information, mate-
rials and energy into a piece of software. Conversely, this paper focuses on the effect
that evolution has on the structure of software at a source code level and how this

 Simulating the Structural Evolution of Software 295

structure varies over the evolution of a project. It is thus the code structure that is
under analysis rather than the process through which it is generated.

2 The Simulation Model

The framework is based around a fictitious code base which defines the basic rules of
software development such as the existence of classes and methods as well as their
means of interaction. Agents (simulated developers) then evolve this code base
through the addition and processing of requirements. The specifics of evolving and
measuring the system are left to customizable plug-ins which can be tailored to fit
individual experimental aims. The framework thus presents a controlled environment
that enforces the evolution of the code base in a realistic manner - the direction that
this evolution takes rests in the hands of the experimenter. The proposed model fol-
lows a simple feedback network. Its four basic elements are requirements, evolution,
code metrics and the code base. The latter three are connected in a feedback circuit as
shown in Figure 1:

Simulated Development Processes Simulated Physical Structures

Feedback

Agent (s)

Evolution
Policy

Code Metric

Requirements

Code Base

Fig. 1. An overview of the basic elements of the simulation framework and the data flows
between them. The feedback loop from the Code Base back to the Agent via the Code Metric is
also shown.

1. Requirements: Requirements are generated through a stochastic, configurable
process and can be reused across experiments or created afresh. Requirements con-
trol the conceptual content of the simulation to later be turned into code constructs.

2. Evolution: The Agent and Evolution Policy evolve the code base using the re-
quirements specified. Evolution is concerned with turning the hierarchy of re-
quirements of different types into a structure of code constructs.

3. Measurement: Code metrics provide a means for the Agent to evaluate the code base
prior to changing it. This supplies the closing section of the feedback loop in which
agents can respond differently depending on their observation of the code base.

4. Code Base: The evolution of the relationships between physical code constructs is
modeled inside the Code Base. The simulation considers only entities greater than,
or at method level.

296 B. Stopford and S. Counsell

A run of the simulation starts with the generation of a set of requirements. These
are then passed to an Agent to implement. The Agent implements the requirements
through the use of an evolution policy specified for the particular experiment. The
evolution policy defines a set of rules dictating how to structure code as it is added.
The evolution policy can also take into account information on the current state of the
code base fed back to it from the code metrics.

The evolution of the code base is measured using a cost function. The cost function
is an arbitrary measure that can be used to compare the relative costs of different runs
of the simulation. The costing model is split into two separate sections covering the
implementation and metric costs. The implementation cost is that associated with the
physical creation and alteration of code and is proportional to the number and size of
the structures created. The metric cost is that associated with comprehension of code.
In the default implementation the metric represents a basic complexity measure taking
into account the local topology of the code.

The code metrics allow experimenters to model the cost of comprehending differ-
ent structures as well as a means for agents to observe the code base. The act of ob-
serving the code base through metrics causes information to be fed back from the
code base into the evolution policy so that the code base structure can influence how
it is evolved. This is important since it allows the state of the code base to alter the
evolutionary decisions made by agents. Such feedback loops, formed from simple
concepts, are responsible for many of the processes observed in complex systems [3].
As such, the simulation can create responses that are likely to differ significantly from
those formed by static analysis.

2.1 Requirements

Requirements control the conceptual content of the simulation to later be turned into
code constructs; the separation of requirements from evolution is important. Running
with different requirements allows the simulation to model different development
environments (for example green field developments vs. mature products). Experi-
ments can then either hold the requirements constant or deliberately vary them to
explore how they effect the simulation. Requirements are generated though a stochas-
tic process and can be serialized and reused across different experimental runs.

2.2 The Code Base

The code base acts as a repository for different code constructs created and linked
together by Agents. These constructs can then refer to one another via the various
calls made open to them by the simulation framework such as “Reference” or “Create
Function”. The code base encapsulates all creational calls and references so that re-
sponsibility for enforcing integrity within the resulting code is retained.

The code constructs used by the simulation are based on the work suggested by
Kelsen [5]. They include Classes, Functions, Events, Properties and References.
Classes and Functions represent standard classes and functions that might be encoun-
tered in a real code base. Events denote an interaction with an event outside of the
system. Properties represent the internal storage of state through variables of a speci-
fied type. References link code constructs in a directional manor. References also

 Simulating the Structural Evolution of Software 297

specify a Coupling Type, determined by the evolution policy. Coupling types define
the effect that a reference has on the code construct it operates upon, for example
describing whether data is retrieved or changed through the coupling.

The execution path of the simulation starts at one of the system events. The code
base in the simulation is constructed in such a way that this execution path is always
enforced.

2.3 The Agent and Evolution Policy

The Agent is a system concept that embodies the role of a developer in a real software
project. Agents are stateful with the ability to ‘learn’ about the system as they modify
and add to it; the agent’s primary concern is to facilitate the conversion of require-
ments into code using an “Evolution Policy”. The Evolution Policy is the plug-in
responsible for turning requirements into code. The agent is responsible for facilitat-
ing this (for example, by locating the class to change).

Each agent has a memory of the code constructs that they were responsible for im-
plementing. This memory dissipates as time elapses in the simulation. An agent’s
memory can be accessed from the evolution policy or complexity metric to improve
the depth of the simulation, particularly when considering multiple agents acting on
the code base. When multiple agents are configured, each new requirement is imple-
mented by an agent selected randomly from the pool.

The Evolution Policy is the plug-in that bears responsibility for evolving the code
base and is thus a focal point for defining experiments. The experimenter must im-
plement three functions in the Evolution Policy in response to the major categories of
requirement type: New, Change and Augment. In addition, the evolution policy also
provides a set of utilities that allow the experimenter to customize their implementa-
tion. These include:

� Code Metric: The evolution policy uses a code metric to retrieve feedback from the
code base before making a change. The code metric also records a cost used as a
measure of the experiment (see section 2.4).

� Memory: The memory of the agent is accessible from the evolution policy. This
provides feedback on the agent’s recall of the various code constructs that they cre-
ated.

� Coupling Type: A specific coupling type is associated with References as they are
created detailing the nature of interactions made through references.

As an example, consider the evolution policy that processes requirements that aug-
ment existing business functionality. In the default implementation this policy will
cycle through all existing classes that are associated with the task being augmented.
New functions will be added along with the addition of couplings to existing func-
tions and properties.

2.4 Measurement

The simulation is measured via a cost function that provides a measure for comparing
different runs. The total cost is split into two different sections that indicate the sepa-
ration between the cost of creating and the cost of understanding code.

298 B. Stopford and S. Counsell

� Metric Cost is calculated by the code metric plug-in. This provides the means for
customizing experiments by allowing an experimenter to specify how the evolu-
tionary factors modeled in the experiment should be measured.

� Implementation Cost is that incurred through the physical creation of code. This is
calculated automatically and is proportional to the number and type of code con-
structs created.

2.5 Complexity Injection

Complexity Injection is a feature of the framework that allows a random distribution
of extra features (references, properties etc) to be added to a code construct when it is
created. This allows the complexity of the simulation to be controlled without altering
the logic in the evolution policy.

The Complexity Injector and the Evolution Policy have similar, but fundamentally
different, roles. The Complexity Injector is responsible for the monotonous detail
added to all code constructs when they are created (classes need functions and refer-
ences, etc). The Evolution Policy is responsible for shaping how the structure between
classes and functions evolve.

2.6 Default Plug-In Implementations

A default set of plug-ins are supplied and shipped with the simulation. They define a
basic set of policies through which the code base can be evolved and are used in the
validation experiments presented in this paper. It is anticipated that future experi-
ments will improve on the basic assumptions they make, incorporating more realistic
evolution policies and metrics. To this end, they are created in an extensible manner.

3 Using the Framework to Conduct Experiments

The Framework includes a GUI designed to ease the comprehension of the code base
structure during a simulation run. The GUI has three views: one for the requirements
and two for the code base. The code base views include a graphical representation of
the class hierarchy and can be drilled into by the user. A second view represents the
set of execution paths. More structured analysis can be performed using data provided
through an output data file. The method for conducting an experiment is:

1. Identify the problem to be investigated and develop a dynamic hypothesis that
describes its cause.

2. Create an evolution policy plug-in that changes the code base according to the
dynamic hypothesis.

3. Amend the code metrics plug-in to ensure that it is sensitive to the evolutionary
changes expected.

4. Test the evolution policy and metric in isolation to ensure that provide the expected
behavior.

5. Add the implemented policy to the full simulation model so that it can be investi-
gated in conjunction with other existing simulated factors.

 Simulating the Structural Evolution of Software 299

4 Validation of the Simulation Framework

The simulation framework is validated through a suite of tests that analyze perform-
ance over different experimental conditions. The aim of each test is to validate a basic
behavior of the system against an intuitive understanding or empirical observation.

4.1 Validation (1): Linear Evolution of Code Base Size

Empirical observations of the increase in size of an evolving code base, as measured
by Capiluppi et al [2], show a linear increase in size over time. The simulation frame-
work was used to reproduce this behavior using the default plug-ins. Both the original
and simulated results show a linear increase corroborating this basic behavior.

Capiluppi et al. also provide a study of the distribution of average lines of code per
file over various releases stating that the average number of lines per file should in-
crease slightly as the system evolves. A comparable result was generated with the
simulation framework.

In this paper Capiluppi’s linear results were preferred as they provide a sound em-
pirical and widely recognized basis from which the model could be validated. How-
ever research by other prominent authors has demonstrated examples of system
growth that are inverse-square [11] and super-linear [12]. The validation of these
behaviors through different evolution policies is left as a matter for future work.

4.2 Validation (2): The Effect of Requirement Type

An important function of the simulation is its ability to respond to different types of
requirement in a distinct manner. This aspect is validated by measuring how Re-
quirement Types affect evolution of the code base and ensuring that this agrees with
expected behavior. The proposition is that developments simulated from requirements
that include a high degree of re-visitation will cost more to develop. This assumption
is made from the real world observation that existing code is harder to change (as it
must be understood). The results in Figure 2(a) corroborate this hypothesis with the
cost being significantly higher for simulations that have to revisit code.

4.3 Validation (3): Response to Different Numbers of Agents

The simulation provides a facility for specifying the number of agents that contribute
to evolution. Each agent “remembers” the code they created and this memory is taken
into account by the default code metric. The effect of this is to drop the associated
metric cost incurred by an Agent that is changing code they were responsible for
creating (and that they therefore remember). This effect was validated via the experi-
ment results displayed in Figure 2(b). These show that development with two agents
is most efficient and the one with thirty agents is least efficient. Where there are fewer
developers, the cost is lower as each developer is responsible for the original con-
struction of a higher proportion of the code base (and thus has less to learn). This
validates the simulation through observation of an expected behavior.

The results presented in this section provide a level of confidence that the simula-
tion performs in a manner approximating real world behavior. This conclusion is
corroborated by both intuitive expectations and empirical results.

300 B. Stopford and S. Counsell

(a

0 5 10 15 20 25 30

Run
Run 2
Run 1

Epoch

(b)

0 1 2 3 4 5 6

Cost

2 Agents
4 Agents
8 Agents
16 Agents
32 Agents

Cost

Epoch

Fig. 2. (a) Metric Cost for Simulations with varying requirement types. Run (3) is the control,
Run (2) represents requirements that incorporate a large proportion of changes and Run (1) is
predominantly new requirements. (b) Evolution with different numbers of agents. The different
profiles result from the effect of agent memory.

5 Conclusions

The evolution of software, in particular its structural erosion over successive generations
is a primary concern of software engineering today. This paper presents a novel ap-
proach for investigating this problem. From a theoretical standpoint, the simulation
framework can be used to build a causal model of software evolution from individual
behaviors. These behaviors can be investigated in isolation as well as part of a collective
model. Such a bottom-up approach cannot easily be replicated by any other method.

From an empirical standpoint, such a causal model can be calibrated with a rela-
tively small amount of empirical data (Simple calibrations are presented here as space
limitations preclude more detailed validation through methods such as sensitivity
analysis; we thus consider this an aspect for future work). Once calibrated, the scope
can be broadened to include different environments with little or no effort. This re-
duces the need for long and expensive empirical investigations.

Much as in other disciplines, simulation may provide a valuable window into a
world otherwise inaccessible to current research, expediting the crystallization of laws
as well as opening the doors to new insights. Full source code for the simulation
framework can be found at: http://www.benstopford.com/devsim/devsim.shtml

References

[1] “A Unified Framework for Coupling Measurement in Object-Oriented Systems”: L.C.
Briand, J.W. Daly, J.K. Wust: IEEE Transactions on Software Engineering, Vol 25, No
1, Jan/Feb 1999

[2] “Studying the Evolution of Open Source Systems at Different Levels of Granularity”:
Capiluppi, Morisio and Ramil: Proceedings of the 12th International Workshop on Pro-
gram Comprehension

[3] “Urban Dynamics” Forrester, J. W. Cambridge MA: Productivity Press. 1969.

 Simulating the Structural Evolution of Software 301

[4] “Software Process Modeling Support for Management Planning and Control”. Kellner,
M. Proceedings of the first international conference on the software process 1991.

[5] “A Simple Static Model for Understanding the Dynamic Behavior of Programs.” Kelsen:
International Workshop on Program Comprehension 2004

[6] “Need for more Longitudinal Studies of Software Maintenance”: C.F. Kemerer, S.
Slaughter, Proc. Int’l Workshop Empirical Studies Software Maintenance, Monterey
Calif., 1996

[7] “An Empirical Approach to Studying Software Evolution”: C.F. Kemerer, S. Slaughter,
IEEE Transactions on Software Engineering, Vol. 25, No. 4 July/August 1999

[8] "Program, Life Cycle and the Law of Program Evolution", M. Lehman, Proceedings of
the IEEE, 68, 1060-1078, 1980

[9] “Modeling Software Processes Quantitatively and Assessing the Impact of Potential
Process Changes on Process Performance” Raffo, D. – PhD Dissertation. Carnegie Mel-
lon University 1996

[10] “Software Process White Box Modeling for FEAST/1”, Wernick and Lehman: Journal of
Software Systems 1999

[11] “Implications of Evolution Metrics on Software Maintenance”, Lehman, Perry and
Ramil: Proc of the 1998 Intl. Conf. of Software Maintenance (ICSM98)

[12] “Evolution in Open Source Software: A Case Study”, Godfrey and Tu: Proceedings of
the International Conference on Software Maintenance (ICSM00)

Q. Wang et al. (Eds.): SPW/ProSim 2006, LNCS 3966, pp. 302 – 313, 2006.
© Springer-Verlag Berlin Heidelberg 2006

An Empirical Study on SW Metrics for
Embedded System

Taehee Gwak and Yoonjung Jang

SE Group, SE Team, Software Laboratories, Samsung Electronics Co., Ltd.,
416, Maetan-3Dong, Yeongtong-gu, Suwon-City, Gyeonggi-Do 443-742, Korea

{th.gwak, yun.jang}@samsung.com

Abstract. One of the most important reasons to measure software projects is to
increase visibility of the development process. High visibility enables the
development team to estimate their project more accurately and to establish a
reasonable project plan. It also provides a rationale for improving the software
development process. We propose standard metrics needed for our organization
to develop embedded systems and present the results of related data collection
and measurement. To define software metrics, the GQM (Goal Question
Metric) approach was used. This empirical study should benefit people on the
SEPG (Software Engineering Process Group) of each software development
division who drive to improve their software development process.

1 Introduction

As we face increasingly demanding software portions in embedded systems, it is
needed to understand more precisely about what is happening during a software-
intensive project and how to improve effectiveness of software development. To solve
these problems related to visibility and effectiveness in software development, an
evaluation of a software project and process should be preceded and measurement is a
way to achieve this. Measurement enables us to understand how our current process
works and see the potential areas of improvement. Besides, measurement provides the
data needed to track our work and cope with difficulties timely and these data can also
be used to make an estimate or a plan for the following projects.

Software projects and process can be measured in numerous ways. Therefore, a
measurement program must include metrics that help us analyze various characteristics
or attributes[7] of software projects, process or products. In establishing an
organizational measurement program, it is helpful to start by considering what metrics
we can use as standard throughout all the divisions of our organization. Currently,
different process is applied to software development by divisions or by product types
and measurements are conducted occasionally. Although measurement programs are
operated systematically, there are many difficulties in data gathering and analysis due to
conflictions of metrics between divisions. Our proposal for defining the standard
metrics involves extracting common metrics from the diverse metrics in use through a
survey of current measurement programs. These common metrics become candidates
for the standard metrics. We’ll also show that proposed standard metrics are applicable
and useful to our organization by the results of actual measurements.

 An Empirical Study on SW Metrics for Embedded System 303

The remainder of this paper is organized as follows: In section 2, we introduce
software metrics and the GQM Method used to define metrics for our organization. In
section 3, we examine the current status of measurement programs in our organization
and propose standard software metrics for embedded system. In section 4, we analyze
the results of measurement and experiment conducted. Finally, describing the worth
of proposed metrics and operational issues of measurement program, we conclude in
section 5.

2 Related Studies

2.1 Software Metrics

Software metric define a way of measuring some characteristics of the software
development process, product, and project. Software metrics can be classified into
three categories: product metrics, process metrics, and project metrics[4]. Product
metrics describe the characteristics of the product such as size, complexity, design
features, performance, and quality level. Process metrics include defect removal
effectiveness, testing defect arrival pattern, and response time of the fix process and
they can be used for improving the software process. Finally, project metrics deal with
the project characteristics and execution such as cost, schedule, and productivity.
These metrics can be primitive or computed[3]. Primitive metrics such as the lines of
code or the number of defects are directly countable. Computed metrics are
combinations of two or more primitive metrics. Defect density or size estimation error
range are some examples of computed metrics. In this study, proposed standard metrics
deal with computed metrics on the assumption that primitive metrics regarding size,
time, and defect are measured.

2.2 The Goal Question Metric

In order to be effective measurement, metrics must be based on the environmental
characteristics and goals of the organization. The GQM methodology is a top-down
approach for defining useful metrics from measurable goals. The GQM approach is
based upon the assumption that for an organization to measure in a purposeful way
it must first specify the goals for itself and its projects, then it must trace those
goals to the data that are intended to define those goals operationally, and finally
provide a framework for interpreting the data with respect to the stated goals[5].
The result of GQM approach is a measurement model that has three levels as
described below.

• GOAL: A goal is defined for an object derived from industrial interests. Objects of
measurement are products, processes, and resources.

• QUESTION: A set of questions for each goal is defined to determine whether or
not the goals have been achieved.

• METRIC: Each question is refined into relevant metrics in order to answer the
questions in a quantitative way.

304 T. Gwak and Y. Jang

3 Standard Software Metrics for Embedded System

There is no generally applicable collection of metrics that will satisfy the needs and
characteristics of all organizations[1]. Our study aims to define a set of metrics for
Samsung Electronics which is appropriate to measure some characteristics of
embedded system. We first examined measurement programs that were operated in all
software development divisions of our organization and extracted metrics used in
common, so that the raw data can be easy to collect. Then we identified several
metrics to be used as standard with consideration of the needs and environmental
characteristics of our organization.

Standard metrics for our organization were defined by four steps as shown in
Figure 1. We describe details in section 3.1 to 3.4.

Fig. 1. Procedures for defining standard metrics

3.1 Examine Current Status of Measurement Programs in Organization

An examination started with making and distributing a questionnaire on measurement
conditions. The targets of investigation were eleven divisions that had attained a
certificate of software process capability. All possible metrics that could be measured
in our organization were enumerated on the questionnaire and people on
SEPG(Software Engineering Process Group) of each division were expected to answer

 An Empirical Study on SW Metrics for Embedded System 305

the questions of what metrics were defined, how they were measured, who measured
them, and how well they were used. The metrics included in the questionnaire consist
of sixteen base metrics related to time, size, and defect and twenty-nine derived metrics
with respect to productivity, schedule, quality, and risk.

The results of investigation showed that for base metrics, 45% of divisions
measured them periodically, whereas derived metrics were used in only 17% of
divisions.

3.2 Extract Common Metrics

The key area to investigate is to ascertain what metrics are applicable to all divisions.
Therefore, it is important to extract common metrics from all the metrics listed in
Table 1. Common metrics are a set of metrics which are used in common at all
divisions that have measurement program as shown in Figure 2. However, because
common metrics were not designed to support all the needs of our organization, we
regarded them merely as candidates for standard metrics. Table 1 lists the extracted
common metrics. If there are special needs or goals in only a few divisions, these
should be dealt with in only metric set of those divisions and not common metrics.

Fig. 2. Common Metrics

Table 1. Common Metrics

Measure Metric
Time Development time, Time in phase
Size The number of pages of document, Lines of source code, The number of test cases
Defect Total defects, Defects removed by phase, Post development defects(Problems)
Productivity Development productivity, Productivity by phase
Quality Audit score by phase, Average defect fix time, Defect density by phase
Schedule Cost Performance Index(CPI), CPI by phase, Size estimate error

3.3 Identify Metrics with Respect to the Goals of Organization

There are many things we can measure about the software project or process.
Therefore, for measurement activities to be cost effective, we should have definite
goals of measurement devised to support the goals of organization. In order to establish

306 T. Gwak and Y. Jang

the goals for our organization and extract metrics with respect to each goal, the GQM
approach was used in this study.

The primary focus of our organization is to produce high-quality software on
schedule and improve software development process. For each goal, questions in
order to determine whether the specific goal is achieved or not and the metrics to
answer these questions were identified as follows:

• Goal 1 To produce software on schedule by periodical monitoring
− Question 1.1 What was checked periodically to develop software within scheduled time?

− Metric 1.1.1 Cost Performance Index [6]
− Question 1.2 Which elements have impact on development schedule?

− Metric 1.2.1 Development Productivity[6]
• Goal 2 To detect defect early by quantitative quality management

− Question 2.1 Which elements have impact on software quality management?
− Metric 2.1.1 Defect Density[4]

− Question 2.2 What was checked for early defect detection?
− Metric 2.2.1 Defect Removal Effectiveness[4]

• Goal 3 To improve software process based on data collected from project to which software
process are applied
− Question 3.1 Which data is needed to understand and to improve current process?

− Metric 3.1.1 Size Estimation Error[6]
− Metric 3.1.2 Inspection (Review) Rate[6]
− Metric 3.1.3 Defect Removal Efficiency[4]
− Metric 3.1.4 Backlog Management Index[4]

3.4 Define Standard Metrics for Embedded System

Unlike the directly countable base metrics, derived metrics are for measuring
characteristics or attributes of measurable entities indirectly. Standard metrics should
be indicators that illustrate characteristics of project or process, so they must be a set
of derived metrics. Because derived metrics consist of two or more base metrics and
both planned data and actual data are need to measure the accuracy of estimating in
project planning, defining standard metrics is based on two assumptions; 1) measure
of base metrics with regard to time, size, and defect is mandatory, and 2) when base
metrics are measured, both planned data and actual data should be collected.

To be standard metrics, they should support the goals of organization and be
applicable to all divisions. Therefore, we defined an intersection set between a set of
common metrics described in Section 3.2 and the set of metrics with respect to the
goals of organization as described in Section 3.3 as standard metrics. This intersection
included Metric 1.1.1, Metric 1.2.1, Metric 2.1.1, and Metric 3.1.1 in Section 3.3.
Although Metric 2.2.1, the defect removal effectiveness was not included in the
intersection, it was included in standard metrics because it is measurable at the current
status and needed to check early defect detection. The development productivity and
the cost performance index are related to the first goal and the defect density and the
defect removal effectiveness are related to the second goal. For the third goal, the size
estimation error was selected. Table 2 illustrates definition and measurement formula
of five metrics selected as standard metrics.

 An Empirical Study on SW Metrics for Embedded System 307

Table 2. Standard Metrics

Metric Name Description

Definition
This metric refers how many outputs can be produced per unit
time.
(The rate of output to investment)

Development
Productivity

Measurement Size / Time (LOC/Hr, LOD/Hr)

Definition
This metric is the number of defects found per unit size of
product. Defect Density

Measurement Defects / Size (Defects/KLOC, Defects/KLOD)

Definition

This metric is the percentage of defects removed during that
phase.
Originally, this metric refers to the ability of the phase to remove
defects that were present at that time. However, defect removal
effectiveness as discussed here was calculated as just the formula
below because our organization doesn’t collect information on
defect origin

Defect Removal
Effectiveness

Measurement Defects removed in that phase / Total defects *100 (%)

Definition
This metric indicates the degree to which actual time spent is
meeting time commitments.

Cost
Performance
Index Measurement Planned total development time / Actual total development time

Definition
This metric indicates the degree to which the estimate matches
the actual size.

Size Estimation
Error

Measurement (Actual size – Planned size) / Planned size * 100 (%)

4 An Empirical Study

In this section, we analyze the measurement results of standard metrics defined in
Section 3.4. These five metrics were empirically studied to ascertain their usefulness.

We developed a data collection form for measuring standard metrics and
distributed it to people on SEPG in each division. The input of measurement consisted
of raw data related to time, size, and defect and project information such as project
type, the number of developers, programming language, and precedentedness[2](the
degree of domain experience of the development organization). Project information
facilitates analyzing the result of measurement by project characteristics. Targets were
eight divisions that developed various embedded systems such as printer, TV,
multimedia system and network device. The data from fifteen projects, one or more
projects per each division, were gathered. Although this study was based on the data
from just fifteen projects, if there had been more number of projects, the analysis
would have been more reliable.

4.1 Analyze Measurement Results of Standard Metrics

In analyzing the results, the primary criterion was project type. Project type is divided
into two categories, in-house development and commercial development. Generally,
final deliverable of in-house development projects is software system and end users
are other developers compared to the end user of commercial development being
customers. Unlike most projects in commercial development which handle the same
line of products, in-house development are mainly for performance optimization or
application of new technology and the development team has little previous

308 T. Gwak and Y. Jang

experience. Cases that don’t meet the assumption mentioned in Section 3.4 were
excluded from the analysis because the result was not valid; 1) when size data is
recorded without time data, 2) when only defect data in a specific phase was
collected, and 3) when plan data doesn’t exist. The measurement result of each metric
is as follows.

• Development Productivity
Figure 3 illustrates document and code productivity by project types. Document
productivity was calculated as lines of document per hour and one page was assumed
to be 30 lines. In measuring code productivity, only lines of code newly added or
modified in the current version were included. For every project except for project O,
the code productivity of commercial development projects in which the team had
abundant previous experience was higher than that of in-house development projects
as shown in Figure 3. In addition, the data of projects of the same type agreed that the
more experienced the team, the higher the productivity. L, P, and N on Figure 3
indicates the level of precendentedness and stands for Largely, Partially, and Not,
respectively.

These measurement results can be referred when project planning. That is, the team
can investigate the development productivity of previous similar projects and use it as
benchmark for effort estimation or project scheduling.

Fig. 3. Development Productivity by Project Types

• Defect Density
The defect density is an indicator which shows the quality level of product and is
calculated as the number of defects per kilo lines of document or source code. For
requirement and design phase, the number of defects removed by inspection is the
numerator while for implementation and test phase, the number of defects removed by
review, inspection, and test is the numerator. As shown in Figure 4, defect density of
in-house development projects is on the decrease after design phase, whereas, in
commercial development projects, defect density of test phase is much larger than that
of implementation phase. Consequently, we can conclude that many defects escaped
from previous phases are being found in test phase in commercial development
projects considering the defect injection of test phase is usually a small number.

 An Empirical Study on SW Metrics for Embedded System 309

Fig. 4. Defect Density

The results of this metric can be used for quality management during the
development. For example, the team can compare the defect density of the current
project with that of the previous project and decide if additional activities for defect
removal are needed.

• Defect Removal Effectiveness
The defect removal effectiveness is the proportion in percentage of the number of
defect removed at a particular phase out of the total number of defects. Testing is a
very expensive way to find and fix defects compared to review or inspection [6]. It is
thus desirable to remove as many defects as possible before test phase. Figure 5
shows the defect removal effectiveness by phase. For in-house development projects,
the rate of defects removed before test phase is over 60% but for commercial
development projects, it is not. This is due to the properties of commercial
development that there is less uncertainty of requirements or design and testing is
strengthened for product release.

This metric is used to evaluate defect removal effectiveness by development phase
and find the phase that should be improved and also can be a benchmark for quality
planning.

Fig. 5. Defect Removal Effectiveness

310 T. Gwak and Y. Jang

• Cost Performance Index
The cost performance index shows the ratio of actual development time to the planned
time. That is, a CPI of 1 means that total development time is equal to planned total
development time and a CPI of greater than 1 implies that the work will finish within
the planned time. A CPI of less than 1 implies that it will take more time than
estimated. Therefore, it is possible to determine schedule performance based on the
CPI. While 40% of projects in commercial development had finished within the
planned time, all projects in in-house development had a CPI of less than 1, signifying
that it took more time than estimated as shown in Figure 6.

With this metric, the team can calculate schedule growth due to effort estimation,
predict when the project is completed and temper its concerns timely during the
development.

Fig. 6. Cost Performance Index

• Size Estimation Accuracy
The size estimation error divides the difference between actual size and estimate size
by estimates and then converts it into a percentage. This is for measuring the degree
of accuracy in the size estimation. A value of less than zero indicates an overestimate
and a value of greater than 1 an underestimate. Zero value implies that the estimate
size exactly corresponds to the actual size. In Figure 7, we can see that most projects
in in-house development are under-estimated and the estimation error runs in the
range between –27.31% and 266.65%. However, the size estimation error of
commercial development projects range from –6.32% to 15.81and it is closer to zero
than that of in-house development.

When project planning, the development effort estimates is usually based on the
estimated size. We can examine the adequacy of the above approach and improve the
estimating errors using this metric.

We have outlined the measurement results in Table 3. In conclusion, commercial
development projects based on previous experience are superior to in-house
development projects in terms of the development productivity, the defect density, the
cost performance index, and the size estimate error, whereas in-house development
projects are excellent in just the defect removal effectiveness before test phase.

 An Empirical Study on SW Metrics for Embedded System 311

Fig. 7. Code Size Estimation Error

Table 3. The Measurement Result Summary by Project Types

 In-house Development Commercial Development
Average Development
Productivity

Doc: 14.2 LOD/hr
Code: 13.3 LOC/hr

Doc: 41.6 LOD/hr
Code: 46.4 LOC/hr

Average Defect Density 14.5 Defs/Klines 10.3 Defs/Klines
Average Defect Removal
Effectiveness before test phase

83.6% 30.4%

Average Cost Performance Index 0.81 1.31
Average |Size Estimation Error| 101.1% 11.0%

4.2 Analyze Relationship Between Metrics

Additionally, several regression analyses were conducted in order to understand the
relationship between metrics. Should the value of one metric influence the value or
interpretation of other metrics, examining their relationship is helpful to find out
process areas to improve and to avoid misinterpretation of the metrics. Table 4 reports
the results of a linear regression between metrics. The R-squared value denotes how
well a regression line approximates real data points and varies from 0 to 1. If the
value of R-squared is greater than 0.5, two sets of data are considered to be correlated.
The value in parenthesis is the significance of correlation. It is for measuring the
probability that the relationship could have occurred by chance. A significance of less
than 0.05 is considered as strong evidence that there is a relationship between them.

As can be seen in Table 4, regardless of project type, the development time is
proportional to the program size. In in-house development projects, the percentage of
time in test phase decreases in proportion to the percentage of time in requirement and
design phase and the size estimate error influences the time estimate error. In
commercial development projects, the defect removal effectiveness and code
productivity are considered to be correlated.

Therefore, for in-house development projects, the more the accurate size estimation, the
better the time estimation. It is also necessary to strengthen requirement analysis and
design activities in order to reduce time in test phase. For commercial development
projects, it is important to remove defect as early as possible to increase code productivity.

312 T. Gwak and Y. Jang

Table 4. The Relationship between Metrics

Independent Value
(X)

Dependent Value(Y)
In-house
Development

Commercial
Development

Size Development Time
Y = - 807 + 0.145 X
R2= 0.9158 (0.011)

Y = - 265 + 0.0165 X
R2= 0.9434 (0.029)

% Time in Requirement
and Design

% Time in Test
Y = 81.6 - 1.34 X
R2= 0.6768 (0.023)

Y = 55.2 - 0.850 X
R2= 0.3028 (0.158)

Size Estimate Error
(Implementation Phase +
Test Phase) Time
Estimate Error

Y = 0.406 + 0.00344 X
R2= 0.8304 (0.030)

Y = 0.649 - 0.044 X
R2= 0.0692 (0.743)

(Requirement Phase
+Design Phase
+Implementation
Phase) Defect Removal
Effectiveness

Code Productivity
Y = - 16.1 + 0.363 X
R2= 0.3527 (0.291)

Y = 6.51 + 1.13 X
R2= 0.9155 (0.043)

5 Conclusions

We can see where we are through the measurement of process or project and metrics
is the vehicle of achieving such means. In this study, we defined standard metrics for
our organization whose domain of development is the embedded system and analyzed
the result of measurement. In addition, we described the relationship between metrics
and ways to improve effectiveness in software development through an empirical
study.

Metrics proposed in this paper have the following three contributions. First,
because the selection of standard metrics was based on survey of current
measurement program of our organization, it is applicable without the induction of a
new measurement system or changing the current process. Second, the standard
metrics were devised with relation to the goals of organization, so measuring them
will be helpful to understand and solve the problems in software development of our
organization. Third, the measurement results of each metric vary according to project
types, languages, or the levels of previous experience. This point facilitates
understanding of focus areas to improve by divisions or by project types.

In addition, many pending issues of organization can be settled as follows:

 Before After
The number and type of metrics Too many About right
Useless metrics Exist Not exist
The concept and criteria of metrics Different Identical
Standardization of managerial regulations Not Possible Possible

Because size, time, and defect data are being collected by separate tools, there
exists a limit that the data were gathered manually. However, if a tool to automate
data gathering and measuring, and guidelines for measuring and analyzing are
developed, the proposed standard metrics will be more useful. Finally, the basis for
analyzing ROI (Return Of Investment) in view of cost will be provided through
connection with cost estimate technique based on size.

 An Empirical Study on SW Metrics for Embedded System 313

References

1. Bassman, M.J.; McGarry, F. & Pajerski, R. Software Measurement Guidebook Revision 1
(Software Engineering Laboratory Series SEL-94-102). Greenbelt, MD: NASA Goddard
Space Flight Center, June 1995

2. COCOMO II Model Definition Manual, Available at URL:
http://sunset.usc.edu/research/COCOMOII

3. Robert B. Grady and Deborah L. Caswell, Software Metrics: establishing a company-wide
program, Prentice-Hall, Englewood Cliffs, NJ, 1987

4. Stephen H. Kan, Metrics and Models in Software Quality Engineering, Addison Wesley,
Reading, MA, 1995

5. Victor R. Basili, Gianluigi Caldiera, and H. Dieter Rombach, The Goal Question Metric
Approach, Encyclopedia of Software Engineering, Volume 1, pp. 528-532, edited by John J.
Marciniak, John Wiley & Sons, 1994

6. Watts S. Humphrey, A Discipline for Software Engineering, Addison Wesley, Reading,
MA, 1995

7. William A. Florac, Robert E. Park, and Anita D. Carleton, “Practical Software
Measurement: Measuring for Process Management and Improvement”, CMU/SEI-97-
HB-003, 1997

Q. Wang et al. (Eds.): SPW/ProSim 2006, LNCS 3966, pp. 314 – 321, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Process-Family-Points

Sebastian Kiebusch1, Bogdan Franczyk1, and Andreas Speck2

1 University of Leipzig, Faculty of Economics and Management,
Information Systems Institute, Germany

kiebusch@wifa.uni-leipzig.de,
franczyk@wifa.uni-leipzig.de

2 University of Jena, Faculty of Economics and Business Administration,
Commercial Inf. Systems, Germany
andreas.speck@uni-jena.de

Abstract. Software system families are characterized through a structured reuse
of components and a high degree of automation based on a common
infrastructure. It is possible to increase the efficiency of software system
families by an explicit consideration of process flows in application domains
which are driven by processes. Based on that fact this article briefly describes
the approach of process family engineering. Afterwards the metrics of Process-
Family-Points are explained in detail. These are the only framework to measure
the size and estimate the effort of process families. Subsequently this paper
shows the first results from a validation of the Process-Family-Points in the
application domains of eBusiness and Automotive. After an evaluation of these
empirical data this paper concludes with an outlook on future activities.

1 Introduction

Software systems families obtain a reduction of development time and costs as well as
an improvement of quality in comparison to the traditional software engineering [cf.
10]. The consideration of software internal process flows realizes an additional
optimization of the approach of software system families in domains which are driven
by processes. These process families (PF) allow an inexpensive software engineering
based on a optimized reuse and automation. PF require an adoption of the
requirements from the focused domain due to the high complexity of software internal
process flows. This work has been done so far for the domains of eBusiness and
Automotive [cf. 9]. Figure 1 illustrates the actual version of the domain specific
approach of process family engineering.

The size of the implementation and the effort of developing software products are
dependant on the particular approach of software engineering. New paradigms in
software engineering such as PF are characterized by reuse, automation and an
explicit consideration of process flows. Therefore we need appropriate metrics to
measure the size and estimate the effort for PF.

Due to the novelty of process family engineering there are no methods for
quantifying the economic advantages of this new software engineering approach.
However the existence of software metric is a main attribute for the acceptance of PF

 Process-Family-Points 315

in the future. Only a reliable measurement of economic advantages enables the
practical use of process family engineering. The extensive utilization of PF will be
restricted as long as there are no methods available to manage the cost, time and
quality of development for PF.

Fig. 1. Process family engineering [cf. 1]

The following essays were analyzed in detail as related work to our approach [cf. 5]:

• Böckle, G., et al.: A Cost Model for Software Product Lines [2];
• Lamine, S.: A Software Cost Estimation Model for Product Line Engineering [7];
• Poulin, J.: The Economics of Software Product Lines [8];
• Withey, J.: Investment Analysis of Software Assets for Product Lines [10].

The software metrics described in these articles measure the characteristics of
software system families only from a certain and restricted viewpoint. Moreover they
disregard the explicit process focus of PF and lose sight of quality influences or effort
estimation. Because of these reasons the so called metrics of Process-Family-Points
(PFP) were developed to realize a size measurement and effort estimation for PF. All
PFP metrics are derived by goal-oriented actions according to the approved technique
of the Goal Question Metric (GQM) paradigm.

2 Size Measurement

The functional specification of the requirements from a new PF-product are the
informational foundation of the PFP approach in compliance with figure 2. Additional

316 S. Kiebusch, B. Franczyk, and A. Speck

Fig. 2. Size measurement [cf. 5]

information about the specific reuse of common and variable PF-assets are necessary
as well. These data are the main results of the asset scoping which is an central
activity within the domain scoping of a PF according to figure 1.

The determination of the “type of count” is the first step for a size measurement by
the PFP analysis corresponding to figure 2. The “type of count” defines if the PF is
developed from scratch or built by a modification of an existing infrastructure. A third
counting type is offered to measure a single software product which is derived from
the PF. The determination of these counting types is similar to the Function Point
Analysis (FPA) and affects the calculation of the implementation size from a PF.
Based on these “types of count” the results of the PFP approach and the measures of
the FPA are comparable. Therefore the general acceptance of the PFP metrics will be
supported by this compatibility.

The following stage of the PFP analysis is called “demarcation” and identifies the
counting scope as well as the system borders of the PF. At this point the dynamic
boundaries are outlined between the common and variable assets. Hence it is possible
to identify single variants of software products from the PF. The main goal of this
stage is the meaningful differentiation of the assets which are to measure in the
focused PF. An iterative execution of the demarcation (initial, interim and final
calculation) enables the consideration of the evolution in the infrastructure of a PF as
shown in figure 1. Consequently this step accesses the evolution which triggers the
exchange between the common and variable assets in a PF. Furthermore the creeping
scope phenomenon is considered during the development of a PF.

The micro analysis in figure 2 is characterized as an accumulation of software
metrics to calculate an unadjusted size measure for PF. These metrics are partitioned
in two sections as a result of the domain specific PF-usage:

 Process-Family-Points 317

• eBusiness: The actions to measure a PF in the domain of eBusiness comprise a data
oriented and a process focused perspective. Both viewpoints realize a classification
of the properties from PF in categories which differ in relation to their
implementation size. Subsequently to this categorization a complexity weighting of
every data and process function compose the foundation for the calculation of
unadjusted PFP.

• Automotive: The metrics to measure PF in the automotive domain comprehend the
characteristics of a real time and a process viewpoint with an important influence
of the implementation size. The process to calculate the size measure of unadjusted
PFP is also organized into the sections of categorization, complexity weighting and
transformation.

Subsequently all calculated size measures were accumulated based on the preassigned
“type of count” and attached to a project or a product. This sum of unadjusted PFP
can be used as an early indicator to estimate future efforts. Furthermore this size
measure is companionable to unadjusted FP and the COSMIC functional size unit
(Cfsu). Consequently it is possible to compare PF with classical development
approaches in the area of software engineering.

3 Effort Estimation

The PFP metrics which forecast efforts in developing or modifying a PF constitute a
high flexible system to evaluate external influences in software engineering. Hence
these metrics quantify environmental influences in a dynamic way and can be
considered as an all-purpose concept. In addition to adjusting the PFP measures the
macro analysis also enables a substitution of the out-of-time weighting procedures

Fig. 3. Effort estimation [cf. 5]

318 S. Kiebusch, B. Franczyk, and A. Speck

from the FPA or Mark II analysis. With the flexible process model of figure 3 it is
possible to take account of relevant effort influences which are up-to-date.

The domain independent software metrics from figure 3 consider four common
conditions of PF, each subclassified in five exemplary influences. Environmental
factors like “documentation”, “infrastructure”, “transition process” and “knowledge
transfer” are evaluated as exemplary parameters of the flexible architecture from the
PFP macro analysis. This general part of the PFP macro analysis calculates a
numerical degree of influence which is connected to the evaluated factors and
quantifies their impact on the effort to develop or modify a PF. The numeral influence
of every domain independent influencing factor is calculated like in table 1.

Table 1. Documentation influences

ID documentation value effect on effort
yes increase A

01
Is it necessary to create technical and/or
functional specifications? no decrease

yes increase A
02

Is it a must to documentate the usage of
software metrics? no decrease

yes increase A
03 Is it planned to documentate the code?

no decrease
yes increase A

04 Is it a must to develop a user guide?
no decrease
yes increase A

05
Is it planned to documentate defects and/or
create a test paper? no decrease

numeral influence increasing values

After this evaluation of general influences the software metrics in figure 3 focus 30
exemplary characteristics which are domain dependent. Typical influences with a
high impact on the development or modification effort for a PF in the automotive
domain are for instance “computing power”, “safety” and “memory volume”. On the
other hand influences like “flexibility”, “marketing” and “legal position” have an
effect on the development or modification of a PF in the domain of eBusiness. At this
stage a second numeral influence will be calculated for the specific domain.

The consideration of 27 quality factors according to ISO/IEC 9126 is not obligatory
in contrast with the preview metrics which are mandatory to execute [cf. 3]. The
additional application of this optional part from the PFP macro analysis enables the
computation of a third numeral influence with a quality focus.

According to the process model in figure 3 the size measure of adjusted PFP is
calculated by the numeral influences from the domain dependent and the domain
specific software metrics. Beside the percentage of adjustment, the number of general
and domain specific influences can be selected in a flexible way. Furthermore the
preassigned “type of count” guarantees a comparability between adjusted PFP and
adjusted FP.

The optional size measure of quality adjusted PFP is a refinement of the adjusted
PFP. An additional consideration of quality attributes realizes a high correlation
between quality adjusted PFP and the effort for developing or modifying a PF. At the

 Process-Family-Points 319

same time quality adjusted PFP are not compatible with alternative size measures
because other metrics do not consider quality attributes on a satisfactory scale.

Normally the adjusted PFP are calculated to compare the productivity between PF
and traditional approaches in software engineering. On the other hand quality adjusted
PFP are preferred if alternative size measures are not available for a comparison and a
high precision of the effort estimation is important.

The concluding estimation of effort for developing or modifying a PF is computed
by usage of empirical equations. A number of functions to forecast efforts in man
hours based on historical data are offered for the size measures of unadjusted,
adjusted and quality adjusted PFP [figure 4, figure 5].

4 Validation

The correlation between the size measures of the PFP analysis and the effort to
develop or modify a PF was investigated by scenarios of empirical validation. Within
this framework it was possible to collect historical data for a derivation of domain
specific equations to estimate the efforts in a PF project.

Every part of the PFP analysis with a focus on the domain of eBusiness was
initially validated within a project at the University of Leipzig. Additionally to the
development of a PF all efforts were estimated by a parallel usage of the PFP analysis
and the traditional FPA. The size measures of the latter approach were characterized
by a low correlation to the recorded efforts. On the other side the results of the PFP
analysis have a significant higher coherence to the required efforts for developing a
PF in the domain of eBusiness. Figure 4 illustrates the PFP size measure with the
highest effort correlation. Furthermore an equation to estimate man hours in
dependence on quality adjusted PFP (y=3,4784x) is calculated by a linear regression.

y = 3.4784x

R2 = 0.9672

0

20

40

60

80

100

120

140

160

180

0 10 20 30 40 50

quality adjusted PFP

p
er

so
n

 h
o

u
rs

Fig. 4. Quality adjusted PFP and man hours (eBuiness)

320 S. Kiebusch, B. Franczyk, and A. Speck

A first validation of the PFP analysis to measure the size and estimate the effort for
PF in the automotive domain was executed in cooperation with DaimlerChrysler
Research and Technology. The potential effort to realize a theoretical PF was
identified within the framework of a Delphi-Study as a multistage expert interview.
Therefore it was possible to compare the identified person hours for developing a PF
with the precalculated size measures of the PFP analysis and the COSMIC Cfsu. In
contrast to the Cfsu all PFP size measures were characterized by a much higher
correlation to the determined efforts. Figure 5 shows the coherence between quality
adjusted PFP and the efforts for developing a PF in the domain of automotive by a
empirical based equation (y=2,0534x).

y = 2.0534x
R2 = 0.9677

0

20

40

60

80

100

120

140

0 10 20 30 40 50 60 70

quality adjusted PFP

p
er

so
n

 h
o

u
rs

Fig. 5. Quality adjusted PFP and person hours (automotive)

The described validation is to be characterized as an laboratory study with an
restricted scope. Nevertheless the PFP analysis is the only valid framework of
software metrics to measure the size and forecast the effort in developing or
modifying a PF. Moreover it is planned to collect additional data by usage of
prototypical, domain specific implementations of the PFP software metrics.1 Based on
these measurement tools the actual equations to estimate the efforts will be calibrated
and optimized during the research project Process Family Engineering in Service-
Oriented Applications (PESOA).

5 Conclusion

The PFP analysis which was described in this article allows the identification of
different influences to a project and supports an efficient problem management in
software engineering for a PF. Furthermore, the discussed metrics enable a precise

1 Downloadable at: http://www.kiebusch.de

 Process-Family-Points 321

project planning and a tracking of the development progression. Based on the delivery
of size measures and the estimation of future effort the PFP software metrics calculate
valuable information for the economical management of PF.

Despite the fact that these software metrics are the only approach to measure a PF
they are first of all a scientific starting point which can be extended in different
perspectives. For instance it is imaginable to match the PFP analysis with the rules of
a functional size measurement according to ISO/IEC 14143 [cf. 4].

At the end it is to mention that the PFP macro analysis describes a high flexible
system to access the impact of external influences which can be used also with
traditional metrics like the FPA. These PFP metrics offer a model to optimize the
accuracy of alternative approaches for effort estimation in the area of software
engineering.

References

1. Bayer, J., Buhl, W., Giese, C., Lehner, T., Ocampo, A., Puhlmann, F., Richter, E.,
Schnieders, A., Weiland, J.: Process Family Engineering: Modeling variant-rich processes.
PESOA Report No. 18/2005, 2005.

2. Böckle, G., Clements, P., McGregor, J. D., Muthig, D., Schmid, K. A Cost Model for
Software Product Lines. In: van der Linden, F. (Ed.) Software Product-Family
Engineering: 5th International Workshop, PFE 2003. Springer LNCS 3014, Berlin u. a.
2004, S. 310-316.

3. International Organization For Standardization/International Electrotechnical Commission
(Ed.): Software engineering – Product quality – Part 1: Quality model. ISO/IEC
9126:2001, Geneva 2001.

4. International Organization For Standardization/International Electrotechnical Commission
(Ed.): Information technology – Software measurement – Functional Size Measurement –
Part 1: Definition of concepts. ISO/IEC 14143-1:1998, Geneva 1998.

5. Kiebusch, S. Metriken für prozessorientierte Software-System-Familien: Umfangs-
kalkulation sowie Aufwandsprognose im Electronic Business und Automobilbereich.
Dissertation, University of Leipzig, Leipzig 2006.

6. Kiebusch, S., Franczyk, B., Speck, A.: Measurement of Embedded Software System
Families. In: Proceedings of the 6th International Workshop on Software Process
Simulation and Modeling, St.-Louis 2005, pp. 48-56.

7. Lamine, S. Modèle d’estimation de coûts pour le développement logiciel basé sur la
réutilisation: Cas de l’approche PLE. Master-Thesis, National School of Computer
Science, Tunis 2004.

8. Poulin, J.: The Economics of Software Product Lines. In: International Journal of Applied
Software Technology, 3 (1997) 1, pp. 20-34.

9. Process Family Engineering in Service-Oriented Applications (Ed.): PESOA
Publikationen. http://www.pesoa.org/pages/Publications.html, 2005-12-23.

10. Withey, J.: Investment Analysis of Software Assets for Product Lines. CMU/SEI-96-
TR-010, Carnegie Mellon University, 1996.

Automated Recognition of Low-Level Process:
A Pilot Validation Study of Zorro for

Test-Driven Development

Hongbing Kou and Philip M. Johnson

Collaborative Software Development Laboratory,
Department of Information and Computer Sciences,

University of Hawai’i,
1680 East-West Rd. POST307,

Honolulu, HI 96822, USA
{hongbing, johnson}@hawaii.edu
http://csdl.ics.hawaii.edu

Abstract. Zorro is a system designed to automatically determine whe-
ther a developer is complying with the Test-Driven Development (TDD)
process. Automated recognition of TDD could benefit the software engi-
neering community in a variety of ways, from pedagogical aids to support
the learning of test-driven design, to support for more rigorous empirical
studies on the effectiveness of TDD in practice. This paper presents the
Zorro system and the results of a pilot validation study, which shows
that Zorro was able to recognize test-driven design episodes correctly
89% of the time. The results also indicate ways to improve Zorro’s clas-
sification accuracy further, and provide evidence for the effectiveness of
this approach to low-level software process recognition.

1 Introduction

While software process research has historically focused on high-level, long-
duration phases in software development, increasing attention is now being paid
to low-level, short-duration activities as well. While a high-level activity such
as “requirements specification” might take from weeks to months to complete,
a low-level activity such as “refactor class Foo to extract interface IFoo” might
take only seconds to complete in a modern interactive development environment.

The frequency and rapidity with which low-level process activities occur cre-
ates new barriers to answering classic software process questions, such as: what
process is actually occurring (as opposed to what process is supposed to be oc-
curring), what is the impact of a given process on important outcomes such as
productivity and quality, and how could a given process be improved and/or
tailored to a new domain?

Fortunately, the increasing sophistication of tool support for software develop-
ment creates new ways to investigate low-level process. By capturing the behav-
ior of developers as represented in their interactions with software development

Q. Wang et al. (Eds.): SPW/ProSim 2006, LNCS 3966, pp. 322–333, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Automated Recognition of Low-Level Process 323

tools, it may be possible to gain new insight into what low-level processes are
occurring during development and their impact on productivity and quality.

This paper presents recent results from our ongoing research into automated
support for recognition and analysis of low-level software processes. Our ap-
proach leverages the Hackystat framework for automated software engineering
process and product data collection and analysis [1], which provides infrastruc-
ture for gathering a broad variety of developer behaviors. On top of Hackystat,
we developed a generic, rule-based recognizer system for sensor data called “Soft-
ware Development Stream Analysis” (SDSA). On top of SDSA, we developed a
set of rules and other specializations designed to recognize a specific low-level
process called Test-Driven Development (TDD) [2]. The system resulting from
this combination of Hackystat, SDSA, and TDD-specific extensions is called
“Zorro”.

Test-driven development is an interesting low-level process to study because
substantial claims have been made for its effectiveness. For example, TDD has
been claimed to naturally generate 100% coverage, improve refactoring, provide
useful executable documentation, produce higher code quality, and reduce defect
rates [2, 3, 4]. It would be a significant contribution to the software engineering
community to rigorously test these claims in controlled and/or professional set-
tings to better understand the conditions under which they hold, and to further
the evolution of the method itself.

Zorro can automatically monitor developer behavior and produce analyses
describing certain sequences of behaviors as test-driven development and other
sequences of behaviors as non-test-driven development. If Zorro recognizes TDD
correctly, then we would have a powerful mechanism for exploring how test-
driven development is used in practice and its effects on quality and productivity.
The ease with which Hackystat sensors can be installed and the non-intrusive
nature of data collection and analysis would make possible both classroom and
industrial case studies into TDD compliance, the potential discovery of alter-
native processes, and the investigation of the impact of TDD on productivity
and quality. Finally, Zorro could be used to teach TDD by providing real-time
feedback to the developer on whether they are carrying out TDD or not.

Before we can apply Zorro to these TDD research questions, however, we
must answer two general validation questions: (1) Does the system collect the
behaviors necessary to determine TDD, and (2) Does the recognizer infer the
TDD process correctly from the collected behaviors?

In this paper, we present the design of Zorro and the results from a pilot
validation study. To do the validation, we needed an independent source of in-
formation about low-level developer behavior to compare to Zorro’s. For this
purpose, we designed and implemented an open source system called “Eclipse
Screen Recorder” (ESR), [5]. ESR is a plug-in to the Eclipse IDE that captures
a screen image approximately once per second and produces a quicktime movie
of the developer’s behaviors with respect to the Eclipse window.

Our validation analysis compared the representation of developer behavior
captured by ESR to the representation of developer behavior inferred by Zorro,

324 H. Kou and P.M. Johnson

and classified the frequency and types of differences between these two inde-
pendent representations. We discovered that Zorro classifies developer behavior
correctly 89% of the time, and also discovered ways we can enhance the system
in future to improve its classification accuracy further.

The contributions of this research include initial evidence that Zorro can be
an effective tool for automatic recognition of the TDD low-level process. Zorro
also provides evidence that SDSA is a useful framework for software process
recognition. Finally, our results reveal the importance of validation using inde-
pendent data sources as a component of the process modelling research process,
and the usefulness of mechanisms like ESR for this purpose.

2 Related Work

Osterweil has developed a view of software process research that recognizes two
complementary levels: macroprocess and microprocess [6]. Macroprocess research
is focused on the outward manifestations of process—the time taken, costs in-
curred, defects generated, and so forth. Macroprocess research traditionally cor-
relates such outcome measures to other project characteristics, which can sug-
gest the impact of process changes to these outcomes, but which suffers from
the lack of any underlying causal theory. Bridging this gap is the province of
microprocess research, according to Osterweil, in which languages and formal
notations are used to specify process details at a sufficient level of rigor and
precision that they can be used to support causal explanation of the outcome
measures observed at the macroprocess level. Our research most readily fits into
the “microprocess” level, except that instead of producing a top-down language,
our approach involves bottom-up recognition.

The Balboa research project, like Zorro, was concerned with inference of
process from low-level event streams [7]. In Balboa, the event streams were
taken from the commit records of a configuration management system, and finite
state machines were created that could model the commit stream data observed
in practice. Unlike Balboa, Zorro uses instrumentation attached to the devel-
oper’s IDE, which enables access to much lower-level events than those available
through the commit records of a configuration management system. Also, the
Balboa research project was retrospective in nature, with the researchers limited
to historical project records. Zorro’s focus on active development makes addi-
tional research possible, such as the validation studies presented in this paper.

Our research also compares in interesting ways to recent work on understand-
ing processes associated with open source software development processes [8].
In this research, “web information spaces” are mined with the goal of discover-
ing software process workflows via analysis of their content, structure, update,
and usage patterns. Our approach in Zorro has both strengths and weaknesses
relative to this research. A strength of the Zorro approach is that by attaching in-
strumentation to the IDE, we can capture more detailed information concerning
developer behavior than is possible from inspection of web information spaces.

Automated Recognition of Low-Level Process 325

However, this can also be viewed as a weakness, in that this instrumentation
creates an adoption barrier not present when mining already publically available
information.

Another strand of related research occurs in the areas of knowledge discov-
ery and data mining, in which time ordered input streams are processed to dis-
cover and classify naturally recurring patterns. For example, the Episode Discov-
ery (ED) algorithm supports natural forms of periodicity in human-generated
timestamp data [9]. While such approaches are an interesting future research
area for SDSA, our current episode discovery algorithm uses rules to decide
upon episode boundaries regardless of their frequency of occurrence.

Finally, our research relates to prior research on evaluating test-driven design
practices and their impact on productivity and quality [10, 11, 12, 13, 14, 15]. In
these studies, researchers had limited ability to verify that the programmers
who were supposed to be using test-driven development were, in fact, using that
methodology. Zorro, if validated, would be an important contribution to this
research community by providing a tool to ensure compliance with the process
under the experimental conditions.

3 The Design of Zorro

The design of Zorro is highly modular and consists of three basic layers: Hack-
ystat, an extension to Hackystat called Software Development Stream Analysis,
and a set of rules and enhancements to SDSA to support recognition of the TDD
process.

3.1 Hackystat

Hackystat is an open source framework for automated collection and analysis
of software engineering process and product data that we have been develop-
ing since 2001. Hackystat supports unobtrusive data collection via specialized
“sensors” that are attached to development environment tools and that send
structured “sensor data type” instances via SOAP to a web server for analysis
via server-side Hackystat “applications”. Over two dozen sensors are currently
available, including sensors for IDEs (Emacs, Eclipse, Vim, VisualStudio), con-
figuration management (CVS, Subversion), bug tracking (Jira), testing and cov-
erage (JUnit, CppUnit, Emma, JBlanket), system builds and packaging (Ant),
static analysis (Checkstyle, PMD, FindBugs, LOCC, SCLC), and so forth. Ap-
plications of the Hackystat Framework in addition to our work on SDSA and
Zorro include in-process project management [16], high performance computing
[17], and software engineering education [18].

3.2 SDSA

Software Development Stream Analysis (SDSA) is a Hackystat application that
provides a framework for organizing the various kinds of data received by Hack-
ystat into a form amenable for time-series analysis. Figure 1 illustrates the start

326 H. Kou and P.M. Johnson

Fig. 1. Development Streams

of this process in which the various kinds of process and product data collected
by Hackystat sensors are filtered and merged into an abstraction called a Devel-
opment Stream.

The next stage of SDSA processing, called Tokenizing, involves partitioning
the development stream into a sequence of “episodes” which should constitute
the atomic building blocks of whatever process is being recognized. We have
developed four kinds of tokenizers for identifying episode boundaries: the commit
tokenizer uses configuration management checkins, the command tokenizer uses
a distinguished commands or command sequences, the test pass tokenizer uses
passing test invocations, and the buffer transition tokenizer uses sequences of
buffer transitions. Figure 2 illustrates the process of splitting up the development
stream into discrete episodes via tokenizers.

The final step in SDSA is to classify each episode according to the process
model of interest. In SDSA, this classification is performed using the JESS rule
based system augmented with rules to specify a particular process. Figure 3
illustrates this process.

3.3 SDSA Specializations for TDD

Zorro extends SDSA with rules and analyses oriented to the recognition and
classification of TDD behaviors. Figure 4 illustrates the four kinds of behavioral

Automated Recognition of Low-Level Process 327

Fig. 2. Tokenizing into episodes

Fig. 3. Episode classification

sequences associated with test-driven development. Zorro includes JESS rules to
recognize each of these four kinds of test-driven development behaviors.

Refactoring, in which the developer alters the programs internal structure
without affecting its external behavior, is also a valid behavior during test-driven
development. Figure 5 illustrates the four kinds of refactoring recognized by the
Zorro rule base.

Finally, Zorro includes a user interface in the Hackystat server web application
for display of the episodes, their classification, and their internal structure. Figure
6 illustrates the Zorro interface.

4 The Pilot Validation Study

As noted above, in order to feel confident in Zorro as an appropriate tool to
investigate TDD, we must answer two basic validation questions: (1) Does Zorro
collect the behaviors necessary to determine when TDD is occurring, and (2)
Does Zorro recognize test-driven development when it is occurring? To answer

328 H. Kou and P.M. Johnson

Test Creation

Compilation Error

Test Fails

Code Production

Code Test Case

Code Production

Test Passes

Type 1

Complete Test-Driven

Iteration

Test Creation

Compilation Error

Code Production

Code Test Case

Test Passes

Type 2

Test-Driven Iteration

without Test Failure

Test Creation

Test Fails

Code Production

Code Test Case

Code Production

Test Passes

Type 3

Test-Driven Iteration

without Compilation

Error

Test Creation

Code Production

Code Test Case

Test Passes

Type 4

Test-Driven Iteration

without Compilation

Error and Test Failure

Fig. 4. TDD episode description

these questions, one must somehow gather an independent source of data re-
garding the developer’s behaviors and compare that data to what was collected
and analyzed by Zorro.

One approach to validating the system is to have an observer watching devel-
opers as they work, and take notes as to whether they are performing TDD or
not. We considered this but discarded it as unworkable: the use of a human ob-
server would be quite costly, and given the rapidity with which TDD cycles can
occur, it would be quite hard for an observer to notate all of the TDD-related
events that can occur literally within seconds of each other. We would end up
having to validate our validation technique!

Instead, we developed a plugin to Eclipse that generates a Quicktime movie
containing time-stamped screen shots of the Eclipse window at regular intervals.
Figure 7 shows the Quicktime viewer with one screen image. The design of ESR
allows adjustment of frame rate and resolution: the higher the frame rate and/or
resolution, the larger the size of the resulting Quicktime file. We have found that
a frame rate of 1 frame per second and a resolution of 960x640 pixels is sufficient
for validation, while producing relatively compact Quicktime files (typically 7-8
MB per hour of screenshots). The Quicktime movie created by ESR provides
a visual record of developer behavior that can be manually synchronized with
the Zorro analysis using the timestamps and used to answer the two validation
questions.

Our pilot validation study involved the following procedure. First, we obtained
agreement from seven volunteer student subjects to participate in the pilot study.
These subjects were experienced with both Java development and the Eclipse
IDE, but not necessarily with test-driven development. Second, we provided them
with a short description of test-driven design, and a sample problem to implement

Automated Recognition of Low-Level Process 329

Start

Test Refactor

Test Pass

Code Test

Code Test

Test Fails

Type 1

Test Refactor

Code Test

Start

Production

Refactor

Test Fails

Test Pass

Type 3

Production

Refactor

Code Production

Code Production

Code Production

Start

Test Refactor

Test Pass

Code Test

Type 2

Test Refactor

without failure

Code Test

Start

Production

Refactor

Test Pass

Type 4

Production Refactor

without failure

Code Production

Code Production

Fig. 5. Refactoring episode description

in a test-driven design style. The problem was to develop a Stack abstract data
type using test-driven design, and we supplied them with an ordered list of tests
to write and some sample test methods to get them started. Finally, they carried
out the task using Eclipse with both ESR and Zorro data collection enabled.

To analyze the data, we created a spreadsheet in which we recorded the re-
sults of watching the Quicktime movie and manually encoding the developer
activities that occurred. Then, we ran the Zorro analyses, added their results to
the spreadsheet, and validated the Zorro classifications against the video record.

5 Results of the Pilot Study

Figure 8 summarizes the results of our analyses. Seven subjects participated,
and spent between 28 and 66 minutes to complete the task. Zorro partitioned
the overall development effort into 92 distinct episodes, out of which 86 were
classified as either Test-Driven, Refactoring, or Test-Last; the remainder were
“unclassified”, which normally corresponded to startup or shutdown activities.

The most important result of this study is indicated by the “Wrongly Clas-
sified Episodes” column, which shows the results of comparing the ESR videos
of the developer’s Eclipse window to the classifications automatically made by
the Zorro recognizer. Out of the 92 episodes under study, 82 were validated as
correctly classified, for an accuracy rate of 89%.

The validation analysis also revealed several ways to increase the accuracy
of Zorro. First, we discovered that our underlying Hackystat sensor sometimes

330 H. Kou and P.M. Johnson

hongbing@hawaii.edu
Development Stream Episode

Alicia admin | analyses | preferences | alerts | extras | help | home

Development Stream: Displays Development stream and episode classification. (more...) Analyze

Project: StackWithTDD

StartDay: 01 January 2006

EndDay: 02 January 2006

Episode

Classification

Episode Actions

(tdd, 2) 01/01/2006 23:29:20 TestStack.java ADD IMPORT import junit.framework.TestCase

01/01/2006 23:29:21 TestStack.java MOVE CLASS edu.hawaii.hongbing.tddstack --> TestStack.java

01/01/2006 23:30:03 TestStack.java ADD METHOD void testEmpty()

01/01/2006 23:30:54 TestStack.java TEST EDIT 34sec MI=+1, SI=+2, TI=+1, AI=+1

01/01/2006 23:30:54 TestStack.java COMPILE Stack cannot be resolved to a type

01/01/2006 23:31:03 Stack.java ADD CLASS Stack.java

01/01/2006 23:31:03 TestStack.java COMPILE The method isEmpty() is undefined for the type Stack

01/01/2006 23:31:07 Stack.java BUFFTRANS FROM TestStack.java

01/01/2006 23:31:22 TestStack.java BUFFTRANS FROM Stack.java

01/01/2006 23:31:35 Stack.java ADD METHOD Object isEmpty()

01/01/2006 23:31:37 Stack.java BUFFTRANS FROM TestStack.java

01/01/2006 23:32:21 Stack.java PRODUCTION EDIT 31sec MI=+1, SI=+1

01/01/2006 23:32:31 TestStack.java UNIT TEST TEST OK

(tdd, 1) 01/01/2006 23:32:49 TestStack.java ADD METHOD void testPushOne()

01/01/2006 23:34:23 TestStack.java TEST EDIT 63sec MI=+1, SI=+3, TI=+1, AI=+1

01/01/2006 23:34:23 TestStack.java COMPILE The method push(Object) is undefined for the type Stack

01/01/2006 23:34:29 Stack.java ADD METHOD void push(Object)

01/01/2006 23:35:02 Stack.java PRODUCTION EDIT 0sec MI=+1, SI=0

01/01/2006 23:35:13 TestStack.java UNIT TEST TEST FAILED

01/01/2006 23:35:55 Stack.java ADD FIELD boolean emptyFlag

01/01/2006 23:36:19 Stack.java PRODUCTION EDIT 0sec MI=0, SI=+1

01/01/2006 23:36:34 TestStack.java UNIT TEST TEST OK

Fig. 6. Zorro interface

failed to record an edit to the program under development when the ESR video
showed that the developer made a “quick change” lasting only a few seconds.
Second, the sensor also failed to record a compilation error when a change to the
production code created a compilation error in the non-active test code. Finally,
the current Zorro rule set sometimes failed to partition the development stream
along optimal episode boundaries, making it problematic for the classifier to
recognize the developer’s behaviors during this time period correctly. We intend
to fix these issues in the next version of the system, which should raise the
accuracy rate significantly.

It is also interesting to review the classification results apart from their ac-
curacy, as they provide insight into the appropriate design of future studies. All
four types of Test-Driven Development were recognized by Zorro, although only
two of the four types of Refactoring were found. We believe that the simplicity of
the software system under development in this study may have been a factor in
the limited types of refactoring, and intend to scale up the problem complexity
in future studies.

A provocative result of this study is that half the episodes (46) were classified
as test-last, even though the subjects were instructed to do test-first develop-
ment. To some extent, this may also be an artifact of the simplicity of the
software under development. But it also reveals a hidden “secret” of test-first
development: sometimes, while implementing the code to address one unit test,
you can’t help but implement additional features as well. At that point, the
rational behavior is to implement the unit tests for those additional features,
which effectively constitutes test-last design. The nature and frequency of em-
bedded test-last within test-first development is an interesting topic for future
research.

Automated Recognition of Low-Level Process 331

Fig. 7. An ESR Quicktime file

6 Conclusions and Future Directions

The pilot study has been successful in developing an effective validation method-
ology for the Zorro system, and in identifying several opportunities for improve-
ment to the system that should result in higher classification accuracy in future.

After making these improvements, our next task will be to design and carry
out a broad-scale validation study. We intend to expand the total number of
subjects participating in the study, and solicit both student and professional
developer participation. While we will provide a sample problem to implement
in a test-driven design approach, we also hope to collect “in vivo” data from
professionals who use test-driven design in their daily work. As before, we will
collect both ESR and Zorro data from each subject and analyze it to assess the
classification accuracy of Zorro, discover opportunities for improvement in the
system, and perhaps discover new insights into the nature of test-driven design.

If the broad-scale validation study results demonstrate that Zorro has achieved
high accuracy (95% or better) in recognizing TDD, then we will proceed to the
next stage, which is the design of experiments to see how developers use (or don’t
use) TDD in practice, the factors influencing their decision, and the outcomes
of their decisions on productivity and quality.

332 H. Kou and P.M. Johnson

Fig. 8. Summary Results

Another area of future research is the application of the SDSA framework to
model other low-level software development processes. For example, there are a va-
riety of best practices surrounding when a developer should commit their changes
to a configuration management repository which we could model and assess using
SDSA along with different sensors and different classification rule sets.

References

1. Johnson, P.M.: Hackystat Framework Home Page. (http://www.hackystat.org/)
2. Beck, K.: Test-Driven Development by Example. Addison Wesley, Massachusetts

(2003)
3. George, B., Williams, L.: An Initial Investigation of Test-Driven Development in

Industry. ACM Sympoium on Applied Computing 3(1) (2003) 23
4. Maximilien, E.M., Williams, L.: Accessing Test-Driven Development at IBM. In:

Proceedings of the 25th International Conference in Software Engineering, Wash-
ington, DC, USA, IEEE Computer Society (2003) 564

5. Kou, H.: Eclipse Screen Recorder Home Page.
(http://csdl.ics.hawaii.edu/Tools/Esr/)

6. Osterweil, L.J.: Unifying microprocess and macroprocess research. In: Proceedings
of the International Software Process Workshop. (2005) 68–74

7. Cook, J.E., Wolf, A.L.: Automating process discovery through event-data analy-
sis. In: ICSE ’95: Proceedings of the 17th international conference on Software
engineering, New York, NY, USA, ACM Press (1995) 73–82

8. Jensen, C., Scacchi, W.: Experience in discovering, modeling, and reenacting open
source software development processes. In: Proceedings of the International Soft-
ware Process Workshop. (2005)

9. Heierman, E., Youngblood, G., Cook, D.: Mining temporal sequences to discover in-
teresting patterns. In: Proceedings of the 2004 International Conference on Knowl-
edge Discovery and Data Mining, Seattle, Washington (2004)

10. George, B., Williams, L.: A Structured Experiment of Test-Driven Development.
Information & Software Technology 46(5) (2004) 337–342

11. Muller, M.M., Hagner, O.: Experiment about Test-first Programming. In: Empir-
ical Assesment in Software Engineering (EASE), IEEE Computer Society (2002)

12. Olan, M.: Unit testing: test early, test often. In: Journal of Computing Sciences
in Colleges, The Consortium for Computing in Small Colleges (2003) 319

13. Edwards, S.H.: Using software testing to move students from trial-and-error to
reflection-in-action. In: Proceedings of the 35th SIGCSE technical symposium on
Computer science education, ACM Press (2004) 26–30

Automated Recognition of Low-Level Process 333

14. Geras, A., Smith, M., Miller, J.: A Prototype Empirical Evaluation of Test Driven
Development. In: Software Metrics, 10th International Symposium on (MET-
RICS’04), Chicago Illionis, USA, IEEE Computer Society (2004) 405

15. Pancur, M., Ciglaric, M.: Towards empirical evaluation of test-driven development
in a university environment. In: Proceedings of EUROCON 2003, IEEE (2003)

16. Johnson, P.M., Kou, H., Paulding, M.G., Zhang, Q., Kagawa, A., Yamashita, T.:
Improving software development management through software project telemetry.
IEEE Software (2005)

17. Johnson, P.M., Paulding, M.G.: Understanding HPCS development through au-
tomated process and product measurement with Hackystat. In: Second Workshop
on Productivity and Performance in High-End Computing (P-PHEC). (2005)

18. Johnson, P.M., Kou, H., Agustin, J.M., Zhang, Q., Kagawa, A., Yamashita, T.:
Practical automated process and product metric collection and analysis in a class-
room setting: Lessons learned from Hackystat-UH. In: Proceedings of the 2004
International Symposium on Empirical Software Engineering, Los Angeles, Cali-
fornia (2004)

Q. Wang et al. (Eds.): SPW/ProSim 2006, LNCS 3966, pp. 334 – 341, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Process Evolution Supported by Rationale:
An Empirical Investigation of Process Changes

Alexis Ocampo and Jürgen Münch

Fraunhofer Institute for Experimental Software Engineering,
Fraunhofer-Platz 1, 67663, Kaiserslautern, Germany
{ocampo, münch}@iese.fraunhofer.de

Abstract. Evolving a software process model without a retrospective and, in
consequence, without an understanding of the process evolution, can lead to se-
vere problems for the software development organization, e.g., inefficient per-
formance as a consequence of the arbitrary introduction of changes or difficulty
in demonstrating compliance to a given standard. Capturing information on the
rationale behind changes can provide a means for better understanding process
evolution. This article presents the results of an exploratory study with the goal
of understanding the nature of process changes in a given context. It presents
the most important issues that motivated process engineers changing important
aerospace software process standards during an industrial project. The study is
part of research work intended to incrementally define a systematic mechanism
for process evolution supported by rationale information.

1 Introduction

Software process models are used as a means for supporting software engineers in
systematically performing the engineering processes needed to develop software prod-
ucts. As these processes are performed, suggestions for adjustment or refinement can
arise, which in turn demand evolving the models. Usually, certain events such as the
introduction of a new software development technology in a development team (e.g.,
new testing support tools and techniques), a new/updated process engineering technol-
ogy (e.g., a new process modeling technique), new/updated standards/guidelines for
software development or process engineering, new/updated regulatory constraints, or
new/updated best practices emerging from community experience generate issues that
must be resolved by performing changes to the software process models.

In many cases, precipitous and arbitrary decisions are taken, and process models
are evolved without storing or keeping track of the rationale behind such changes.
One of the reasons is that this is an expensive activity that demands a dedicated role
in the organization [1], especially because identifying the rationale of a change, or
driving evolution activities in terms of rationale, is not an easy task. A mechanism
(concept and tool) that can be used for collecting information about process changes
and that could help in evolving the process in a systematic way is needed.

We believe that the first step towards such a systematic mechanism is to understand
the nature of process changes. We assume that by having a predefined classification of

 Process Evolution Supported by Rationale 335

the most common reasons for process changes, the task of collecting the information
related to such a rationale can be simplified and become more suitable for use in real
process evolution projects. Additionally, this can be seen as an initial step for building
a mechanism that supports systematic process evolution. Once this is understood, a
structured conceptual model of rationale can be produced and tested in process evolu-
tion projects.

This article presents the results of an initial attempt to achieve such a predefined
classification as follows: Section 2.1 briefly presents the basic concepts that we use
for understanding the nature of changes to the software process and software process
evolution. Section 2.2 provides short descriptions of related work where concepts for
understanding process changes have been developed; Section 3 presents the context of
the study performed for understanding the nature of changes to a process standard.
Section 4 presents the issues derived from a repository of changes performed to a
process standard, and an interpretation of the frequency with which such issues ap-
peared during the project. Section 5 presents a discussion of the most relevant find-
ings of the study together with research questions to be addressed in the future.

2 Background

2.1 Process Evolution Supported by Rationale

We believe that software process evolution should describe the relationships between
an existing process model and its pre-existing version(s). Such relationships denote
differences between versions due to distinguishable modifications.

One can distinguish the meaning of such modifications if one can understand the
rationale behind them. Rationale is defined as the justification of decisions [1]. His-
torically, much research about rationale has focused on software/product design [9],
[10], [11], and [12]. Rationale models represent the reasoning that leads to the system,
including its functionality and its implementation [3]. In general, the capture, organi-
zation, and analysis of change rationale appears to be a research topic extensively
addressed by software product designers but unknown to, or considered unimportant
by, software process engineers. This conflicts with the obvious requirement that proc-
ess engineers need to know the process evolution history in order to be able to effec-
tively and efficiently tailor processes or update them. For example, tailoring a process
model without considering what is or is not suitable for a given project can lead to
undesired results. This was observed in the study presented in this paper. Process
engineers found through interviews that a tailored process forced process practitioners
to take part in system design activities that they felt they did not belong to, especially
because this was not part of their work scope. Practitioners assured them that such
activities were part of the tailored process although they did not know why, since a
previous version of the tailored process did not have them. As a consequence, practi-
tioners and process engineers were all confused and without information that could
lead to a suitable solution. Tailoring can be successfully accomplished if a process
engineer knows the issues, alternatives, arguments, and criteria that justify the defini-
tion of a process model. Equally, updating a process model without having knowledge
of its history can lead to process models that do not reflect actual practices. Some

336 A. Ocampo and J. Münch

other benefits of using the rationale as driver for software process model evolution
are: supports reworking of software process standards; supports understanding the
impact of changes due to specific issues; encourages making rational decisions in-
stead of emotional ones; supports the analysis and identification of non-systematic
and rushed decisions.

2.2 Related Work

There are not many studies that report on a classification or taxonomy of reasons for
changing a process model. Nguyen and Conradi [2] present a framework for catego-
rizing process evolution based on six dimensions (origin, cause, type, how, when, and
by whom). A change categorized by this framework is called a change pattern. The
change pattern, project characteristics, and product quality attributes are stored to-
gether so that they can be used for future projects. Data on the evolution of a software
development project were collected in a case study performed in the software devel-
opment department of a banking institution. With regard to the “where”, i.e., the
sources of process changes, 40% of the recorded changes were due to customer re-
quests, and 60% were due to changes from senior or middle management. The most
common observed reasons (why) were the following: a) misunderstanding originating
from the customer; b) resources and competence was not always available; c) a new
approach for solving the problem was adopted.

Madhavji [5] presents the Prism model of changes, which is an abstract description
of a software environment specialized in the treatment of changes in a software de-
velopment project. The Prism model serves as a classification scheme for structuring
the decisions that change an item and as an information base suitable for analyzing
the history changes that can help to make future decisions. Unfortunately, Madhavji
[5] does not provide a deeper insight or data that show a classification of reasons.

Bandinelli et al. [4] identify three significant categories of changes caused by a vari-
ety of reasons and needs. They are: 1) incremental definition: Processes cannot be
completely defined at the beginning of a project; therefore, changing them continu-
ously can be viewed as a type of change that adds new parts to the process model; 2)
environmental/organizational: Changes of this type are caused because, e.g., the com-
pany has acquired new tools to support the software development staff; 3) customiza-
tion: Changes of this type allow process agents (humans who use the process) to select
the parts of the process that suit them. There is no evidence of data or validation of
such categories in the study.

Nejmeh and Riddle [6] present a Process Evolution Dynamics Framework that al-
lows process change agents to describe, understand, learn from, plan, and manage
process evolution efforts. They consider the organization’s context as the determinant
factor for defining and sequencing process evolution cycles and recommend exploring
the context factors that influence process changes in order to better understand proc-
ess evolution. Customer desires, market pressure, personnel availability, personnel
capability, business goals, regulatory constraints, and available technologies are,
among others, important business context factors.

Bhuta et al. [7], propose the development of process elements that can be built with
reusable strategies, and be reused for creating different project plans. One strategy can
be, e.g., to search for a process element, select a process element, understand the

 Process Evolution Supported by Rationale 337

process element selected, and, if required, adapt the process element. This means that
process elements must be accompanied by important information that can be easily
understood by project managers. Examples of such information are: What the process
element does, its value, how it could be executed, which resources are required to
execute it, and its context information. Butha et al. [7] refer to Basili et al. [8] for the
problems of capturing and storing context information in a project repository. Unfor-
tunately, the case study presented by Butha et al. [7] neither provides evidence on
context information, nor reasons for selecting certain process elements as part of a
project plan.

3 Study Context

The study presented in this article was performed in the context of a project that
aimed at the evolution of space standards.

The European Cooperation for Space Standardization (ECSS) [13] is an initiative
established to develop a coherent, single set of easy-to-use standards for all European
space activities, covering all areas of space activities, including engineering, quality
assurance, and project management. Organizations or projects part of the European
Space Agency (ESA) are supposed to develop and use their specific tailoring(s) of the
ECSS standards. Tailoring can be done in a project-specific way (i.e., a separate tai-
loring for each project) or in an organization-specific way (i.e., one tailoring per or-
ganization, to be used for all their projects). The ESA Space Operations Center ESOC
(i.e., the ESA organization where the project took place) chose the organization-
specific tailoring approach. The applicable implementation of their ECSS tailoring
was the Software Engineering and Management Guide (SEMG) [14], which was used
for all their major projects.

After some years of experience with the ECSS standards, they were revised by
ESA, and a new version was published. This also meant that the SEMG had to be
revised, in order to be compliant to the revised ECSS standard. This compliance had
to be proven by means of traceability of every ECSS requirement to its implementa-
tion, and by providing a tailoring justification for every tailored requirement. The
process engineers’ task was to tailor the relevant parts of the ECSS (comprising sev-
eral hundred requirements) to ESOC’s needs and to apply this tailoring in an update
of their implementation of the standard, the SEMG.

Another important task assigned to process engineers was to improve the ease of
use of the SEMG. For the purposes of this project, process engineers considered that
the ease of use of a document is positively influenced by improving: (1) internal con-
sistency, i.e., avoiding that one part of the document contradicts another, (2) external
consistency, i.e., avoiding that the document at hand contradicts other documents and
that links to external sources are correct, and (3) conciseness, i.e., indexed tables of
contents allow people to find important things quickly, different concepts are ex-
plained and marked clearly, and the document is not larger than necessary.

Finally, process engineers had to maintain detailed change logs on a per-section
basis, because of very different stakeholders who wanted to keep track of the changes
performed to the SEMG and their justifications.

338 A. Ocampo and J. Münch

One initial analysis concerned compliance and showed that the SEMG was only
partially compliant to the new ECSS software standard, and had to be updated accord-
ingly. Another initial analysis concerned ease-of-use and was done by analyzing the
SEMG documents and by means of structured interviews with SEMG users. Process
engineers observed that the most predominant wish was for output simplification and
clarification. Furthermore, the SEMG structure did not reflect actual process execu-
tion any more and had to be adjusted accordingly.

The SEMG was modified iteratively and incrementally as follows: Process engi-
neers changed the SEMG and delivered a new version for review. Afterwards, re-
viewers discussed changes performed to the SEMG and accepted or rejected such
changes. The reviewers documented their decisions and sent comments and sugges-
tions to the process engineers. Process engineers reworked the SEMG based on the
comments and suggestions. This iterative process allowed updating the SEMG in a
controlled way and enabled a constant review of the accomplishment of the tasks.

4 Data Analysis

Process engineers documented the information related to the changes and their justifi-
cations and stored them in a database as they were evolving the SEMG. Two versions
of the SEMG resulted from the editing-reviewing iterations. This was an initial at-
tempt at collecting the rationale of process changes in order to understand the nature
of changes and to understand how to capture rationale information adequately. The
information collected about the changes was used as the basis for a detailed study of
the most important and common issues that were resolved by each change. We ac-
complished this by querying the database that contains information on changes to the
SEMG and by understanding each change’s justification. While doing this, we de-
rived a list of the most common issues that process engineers faced while doing the
SEMG evolution. The following is the list and an explanation of the issues:

1. Improper sequence of processes: Process engineers found that the prescribed con-
trol flow of activities differed from the one followed in real projects.

2. Ambiguous activity description: Process engineers found activity descriptions ca-
pable of being understood in two or more possible senses or ways.

3. Improper placement of an output: Process engineers found that the prescribed
product flow differed from the one present in real projects.

4. Non-compliant activity: Process engineers found cases where activities did not
fulfill the requirements stated in the ECSS standards.

5. Ambiguous additional explanatory text: Process engineers found explanatory text
that could be understood in two or more possible senses or ways.

6. Improper placement of additional explanatory text: Process engineers found ex-
amples of explanations that were incorrectly referenced.

7. Misleading name of an activity: Process engineers found names that did not re-
flect the meaning of the process for practitioners.

8. Activity description not concise: Process engineers found activity descriptions
that contain superfluous or unnecessary statements.

9. Redundant activity description: Process engineers found duplicated descriptions
of activities.

 Process Evolution Supported by Rationale 339

10. Additional explanatory text not concise: Process engineers found examples or ex-
planations that contained superfluous or unnecessary statements.

11. Ambiguous output description: Process engineers found output descriptions ca-
pable of being understood in two or more possible senses or ways.

Version 1 & 2 - # of issues

60
62

53

38
36

11

33

0
2 3

0

72

33

3

15

9

31

6

32

19

3 4

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8 9 10 11

issue id

o

f o
cc

u
rr

en
ce

s

Version 1

Version 2

Fig. 1. # Occurrences per issue

Fig. 1 reflects the number of changes caused by the issues listed above when edit-
ing the process standards during the first and second iterations. It was found that dur-
ing the first iteration, issues such as “improper sequence of processes”, “ambiguous
activity description”, and “improper placement of an output”, i.e., (1), (2), and (3)
respectively, caused the largest number of changes to the process standards. This can
be explained by the fact that in the first iteration, the process standards contents and
its architecture were extensively modified in order to fulfill the objective of increasing
the standard’s ease of use.

The next most frequent issue is “non-compliant activity” (4), because one of the
goals was to correct the standard’s contents so that they were closer to the higher level
standard. This leads to the suspicion that process standards were previously evolved
without any historical perspective, producing as a consequence standards that totally
deviated from the higher level standard.

Fig. 1 also reflects the relationship between the issues listed above and the number
of changes they caused when editing the process standards during the second itera-
tion. Compared to the first iteration, it can be seen how the number of changes due to
“ambiguous activity description” (2) and “non-compliant activity” (4) were reduced
more or less to half. Other issues such as “improper placements of an output” (3) and
“ambiguous additional explanatory text” (5) were also drastically reduced. This sug-
gests that after the first iteration, process engineers partially accomplished increasing

340 A. Ocampo and J. Münch

ease of use and compliance to process standards. However, the number of occurrences
for issues such as: “improper sequence of processes” (1), “redundant activity descrip-
tion” (9), and “improper placement of additional explanatory text” (6) increased. This
can be attributed to the reviewers. Although reviewers were satisfied at the end of the
first iteration with the reduced number of “non-compliant activity” issues (4) with
respect to the ECSS and less “ambiguous activity descriptions” (2), they still believed
that activity descriptions were not correctly grouped. In fact, there were several dis-
cussions about the interfaces (inputs and outputs) between system engineering and
software engineering processes that demanded a better understanding of the actual
practices and reflection in the standards. The reviewers were satisfied concerning the
improvement of the process standards at the end of the first iteration and saw the
opportunity of having high quality standards at the end of the second iteration. There-
fore, they were stricter and demanded higher quality of the process standard contents
for the second iteration. This is possibly the reason why new issues appeared such as:
“activity description not concise” (8), and “ambiguous output description” (11).

5 Summary and Outlook

Processes may be more easily and rationally changed if the information about the
process, its context, and the rationale of its evolution is captured. Existing approaches
recognize the need for a mechanism (concept and tool) that can be used for collecting
information about process changes that could help evolve the process in a systematic
way. We observed that most of the approaches did not consider rationale information
as an important part of their frameworks. This can be the reason for the small amount
of evidence available on the rationale of process evolution. Having a predefined clas-
sification of the rationale for process changes, the task of collecting the information
related to such rationale can be simplified and become more suitable for use in real
process evolution projects. This may be seen as an initial step for building a mecha-
nism that supports systematic process evolution. Therefore, more research effort
should be invested into understanding how to introduce these rationale concepts for a
systematic well-grounded evolution of software process models. The list of issues
derived from analyzing the database with the information about the evolution of proc-
ess standards provides an initial insight on the type of changes performed in the con-
text of this type of projects. It can be said that the issues that generated the major
number of occurrences such as “improper sequence of processes” (1), “ambiguous
activity description” (2), and “improper placement of an output” (3), reflected the
distance that existed between the process description and the actual understanding of
stakeholders. It was observed that systematically documenting changes and discussing
them in reviews provided a much more organized and well-grounded process standard
evolution. However, a more structured mechanism for collecting the rationale of
changes is needed for clearly identifying the observed alternatives and criteria, as well
as the arguments and final resolution. More research has to be done for describing
more precisely this initial list of issues, so that they are as orthogonal as possible.
More empirical data is needed for that purpose. As part of our future work we will use
the issues list as the basis for new process evolution projects.

 Process Evolution Supported by Rationale 341

Acknowledgements. We would like to thank Michael Jones and Mariella Spada from
ESA Space Operations Center (ESOC) and Dr. William E. Riddle for their support
and their valuable comments. Additionally, we would like to thank Sonnhild Nam-
ingha from Fraunhofer IESE for preparing the English editing of this paper. This
work was supported in part by the German Federal Ministry of Education and Re-
search (V-Bench Project, No.01| SE 11 A).

References

[1] Dutoit, H, A., Paech, B.: Rationale Management in Software Engineering. Stuttgart: Ex-
pected date of publication: Beginning of 2006.

[2] Nguyen, M, N., Conradi, R.: Towards a rigorous approach for managing process evolu-
tion. Software process technology: 5th European workshop, EWSPT '96, Nancy, France.
1996.

[3] Bruegge, B., Dutoit, A.H.: Object-Oriented Software Engineering. Using UML, Patterns,
and Java. 2nd ed. Upper Saddle River: Pearson Education 2004.

[4] Bandinelli, S., Fugetta, A, Ghezzi, C.: Software Process Model Evolution in the SPADE
environment. IEEE Transactions on Software Engineering 19:1128-1144. 1993

[5] Madhavji, N.: Environment evolution: The Prism model of changes. IEEE Transactions
on Software Engineering, 18(5):380-392.

[6] Nejmeh, Brian A., Riddle, William E.: The PERFECT Approach to Experience-based
Process Evolution. Advances in Computers, M. Zelkowitz (Ed.), Academic Press, 2006.

[7] Bhuta, J., Boehm, B., Meyers, S.: Process Elements: Components of Software Process
Architectures. Software Process Workshop, China, (2005).

[8] Basili V., McGarry F.: The Experience Factory: How to Build and Run One. 19th Inter-
national Conference on Software Engineering, Boston, Massachusetts, May (1997)

[9] Kunz, W., Rittel, H.: Issues as Elements of Information Systems. Working Paper No.
131, Institut für Grundlagen der Plannung, Universität Stuttgart, Germany, (1970).

[10] Lee, J.: A Qualitative Decision Management System. In P.H. Winston & S. Shellard
(eds.) Artificial Intelligence at MIT: Expanding Frontiers, Vol.1, pp. 104-133, MIT
Press, Cambridge, MA, 1990.

[11] MacLean, A., Young, R.M., Belloti, V., Moran, T.: Questions, Options, and Criteria:
Elements of Design Space Analysis. Human-Computer Interaction, Vol. 6, pp. 201-250,
1991.

[12] Chung, L., Nixon, B.A., Yu, E., Mylopoulos, J.: Non-Functional Requirements in Soft-
ware Engineering. Kluver Academic, Boston, 1999.

[13] European Cooperation for Space Standardization (ECSS) Standards
available at http://www.ecss.nl. Last checked 2006-01-06.

[14] Ground Segment Tailoring of ECSS for ESOC (SETG),
available at http://www.estec.esa.nl/wmwww/EME/Bssc/BSSCdocuments.htm, Last
checked 2006-01-06

Q. Wang et al. (Eds.): SPW/ProSim 2006, LNCS 3966, pp. 342 – 347, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Implementing Process Change in a Software
Organization – An Experience Based Study

Shaowen Qin

School of Informatics and Engineering , Flinders University,
GPO Box 2100, Adelaide, South Australia 5001

Shaowen.qin@flinders.edu.au

Abstract. No matter how much better our software process becomes, it would
not bring us much benefit without being adopted by the targeted process users.
Based on the author’s recent industrial working experience at Motorola Global
Software Group (GSG) as an organizational technology deployment champion,
with the implementation of Motorola’s Enterprise Project Management System
in GSG during 2001 - 2003 as a background story, this paper presents a study
on the real world challenges in implementing process change in today’s
software organizations. Upon reflection of the good practices and the do-
differentlies, the paper provides some strategic as well as practical recommend-
dations on dealing with the challenges, and points out the key success practices
for software process change management.

1 Introduction

Most of the relatively mature software development organizations today have realized
the importance of software process to their business, and therefore have committed to
implementing the best available processes at the start of the business. However,
software processes inevitably evolve as researchers and industrial practitioners try to
improve the reputation of the software industry, which calls for the change
deployment in the real world. Managing software process change is much more
difficult than implementing a new one for the simple reason that most people are
intrinsically resistant to change, especially when they don’t see the immediate benefit
of such a change, or worse yet, when they perceive the change as inconvenient.
Further more, as software project teams – the process users - are always under the
pressure of balancing the schedule, budget and quality of a software delivery, it is
only natural that process improvement is given a much lower priority, even when the
process users agree that the change is necessary.

Based on more than 5 years of work experience at Motorola Global Software
Group(GSG) as an organizational technology deployment champion, this paper
attempts to provide some insights into the real-world challenges in software process
change implementation, together with some practical strategies for success. Section 2
will present the background story of this paper – implementing Motorola’s Enterprise
Project Management System (EPMS) across GSG’s many software centres world-
wide. Section 3 will identify the challenges. Section 4 will reflect upon what worked

 Implementing Process Change in a Software Organization – An Experience Based Study 343

and the do-differentlies (a self-explanatory expression quite commonly used in
Motorola and some other organizations for a learning best practice), and provide
strategic as well as practical recommendations on how to deal with the challenges.
Section 5 will present the concluding remarks on the key success practices in software
process change management.

2 The Background Story – Implementing EPMS in GSG

EPMS is the common project management system selected by the Motorola System
and Product Development Operation Council in 2001. It is a Motorola customized
system that provides an integrated project management environment with tools (Pri-
mevera TeamPlay/TeamPlayer tool suite, Motorola project tracking/reporting tools)
and methodologies (Motorola M-gate process, PMBOK, and organizational templates
and best practices). The benefits of adopting EPMS include:

• Enterprise-wide Project Management data integration and rollup
• Improved resource coordination between organizations
• Visibility of resource utilization and project status
• Promote reuse and cycle-time reduction by adopting common processes and

tools
• Improved customer satisfaction

However, only with 100% deployment we could reap substantial benefits from using
EPMS.

GSG operates as Motorola’s internal software service provider, with about a dozen
software centers located world wide. GSG has a strong tradition on process im-
provement, and many of the GSG centers have been assessed as SEI CMM or CMMI
level 5 organizations. GSG differs from the rest of Motorola in many aspects includ-
ing mixture of project domain, short project duration and small to medium team size,
workforce cultural and experience profile, and the strong process and commitment
oriented work style, most of them are typical characteristics of a software organiza-
tion. Of course, all centers already had their individual choices of project management
processes and tools, which makes EPMS deployment a project management proc-
ess/tool change implementation task.

GSG has been actively participating in the Motorola-wide implementation of
EPMS since 2001. The project goal was to achieve 100% EPMS deployment
throughout GSG by end of Q3 2003. In detail, the goal meant that

1. All projects shall use Teamplay as the sole project management tool, and
2. All projects shall use Teamplayer as the sole effort tracking and resource man-

agement tool. All billed engineers shall report both project and non-project ac-
tivities using TeamPlayer.

We will skip the detailed activities involved in establishing the deployment program
management plan, forming deployment team, assigning of roles and responsibilities,
defining deployment requirement, providing training and setting up support model, etc.

344 S. Qin

at this point, and highlight the strategic decisions in dealing with specific challenges in
Section 4.

A brief summary of the deployment status at key stages are as follows:

− Q2 2002: GSG-Australia achieved 100% deployment. A success story was pub-
lished in Motorola EPMS News Letter.

− Q1 2003: Several other centers achieved 100% deployment.
− Q3 2003: The deployment goal was reportedly achieved as planned. However, it

was understood that some projects use EPMS very proficiently, while some oth-
ers only used the bare minimum functions to satisfy the deployment requirement.

− 2004: The journey continued with a focus on using GSG as a vehicle to achieve
software production process commonality across GSG and integrating EPMS
with other software engineering tools used in GSG.

3 Challenges

A close examination of the EPMS deployment story reveals the following challenges:

1. Software project teams are always busy, and they are concerned that making
changes to the way they do things might make their lives more difficult.

2. It is a top-down initiative. A top-down initiative is unlikely to get support and
commitment from people who were not involved in making the deployment
decision. It makes the change deployment involuntary for most of the process
users. Top-down deployment is the most often seen mode in the real world.

3. Accountability is lacking. Process change is managed by the Process and Quality
Department (PQD) that is perceived as playing a supporting role. There is no
direct negative impact on performance appraisal for putting a request from PQD
on hold.

4. Deployment sponsor is not totally committed at all times. Since 2 is almost
always true, the commitment and open communication of it from the General
Manager of the organization becomes crucial to getting collaboration from
stakeholders.

5. Diverse cultural backgrounds and experience profiles. One deployment plan does
not fit all centers.

6. Unsynchronized training and application of the acquired knowledge and skills.
Training is often offered at one go with a full coverage of relevant materials but
for many users, a large portion of the learning is not applied until a later stage due
to various reasons and is therefore forgotten.

7. Limited deployment resources. There is not enough face to face meeting and
training opportunities offered to some sites due to budget constrains. This has
become more common in recent years as companies become more cost conscious.

8. The Deployment Champion role and the associated roadblocks are often under-
appreciated by both the senior managers and the process users. In addition, the
Deployment Champion almost always wields no real power and must rely on the
goodwill of the often remotely located delegates who have their own functions
and priorities to deal with.

 Implementing Process Change in a Software Organization – An Experience Based Study 345

4 Dealing with Challenges

The following paragraphs will reflect upon what worked and the do-differentlies for
some situations, provide strategic recommendations for others as appropriate, and
then link them to the numbered challenges listed in Section 3.

Staged Deployment: The deployment of EPMS through GSG was planned to be
conducted in 2 stages:

• Stage 1: Local Pilot Stage: The Local Pilot will use the EMPS product at a local
level to manage projects in a controlled manner. The pilots will feed requirements
to both GSG and the Motorola EPMS steering committee. They will be the prime
mechanism used by centres to gain skills in using the tool and to resolve local and
GSG technical and managerial issues.

• Stage 2: Institutionalization across GSG: At this point it is expected that all new
projects will start using this tool and that the tool will work for them. It is also ex-
pected that the GSG EPMS support infrastructure will be in place to enable this to
happen.

The importance of local piloting can not be over emphasized. As with any
change implementation, there will be small numbers of enthusiasts who are willing
to be the early adopters [1, 2]. It is important to work with them at this stage. Feed-
back from different local pilots will help us tailor the deployment plan for each
center (challenge 5). The early adopters usually become the so-called subject
matter experts (SMEs) who can provide hands-on help to the new local users (chal-
lenges 6 & 7).

Stage 2 requires much more effort than stage 1, and often takes a much longer time
to complete. At this stage, collaboration from all stakeholders is necessary yet diffi-
cult to obtain. It may take a long time before progress is seen. Sometimes one does
need a lucky break from somewhere. The early success we had with GSG-Australia
was largely due to the firm commitment made by a newly hired deputy managing
director who used a similar project management system in her previous organization.
This proves again the well known Chinese saying about the three factors for success:
right time (Tian Shi), right place (Di Li), and right people (Ren He).

The success we had with GSG-Australia also proves the effectiveness of face to
face communication and training – two of the key deployment drivers are based in
Australia.

Getting Senior Manager’s Commitment: By Q1 2003, we were more than half-way
towards reaching our goal. However, deployment to the remaining sites required an
extraordinary push. This was the time to work on getting a Senior Manager’s Com-
mitment renewal. With the effort of the deployment team and the help from the PQ
department managers, an edict from GSG’s General Manager was issued, which be-
came the driving force for reaching the final goal (challenges 3 & 4).

Getting commitment from other stakeholders: Plan early. Build the change de-
ployment into stakeholder’s performance commitment list. Provide formal apprecia-
tion to supportive people and their supervisors through email, which could be used as
a bonus at their annual performance appraisal (challenge 3).

346 S. Qin

Project Selection: Some times we have no choice but to implement a top-down ini-
tiative, although we could still try to tap into the “pulls” from the end users. If we
have the opportunity to select a process improvement project, prioritization should be
given to where “push” and “pull” meet. Consideration of return on investment is also
important (challenge 2).

Communication: With a top-down initiative, the benefit should be thoroughly com-
municated at all levels to get buy-in from all stakeholders, especially the middle level
managers who have to sponsor the change implementation and the process users who
are directly impacted by the change (challenges1 & 2).

The change implementation program should be discussed and tracked at a monthly
organizational review meeting. This provides the whole organization visibility of the
importance of the initiative, and the progress being made. It also ensures systematic
progress towards milestones, provides a forum for the organization to debate strategy,
and provides inputs to initiative deployment decisions (challenges 3 & 4).

Creating Win-Win [3] Scenarios for All Stakeholders: Make the change easier for
users to follow. Users are more likely to accept change when it helps to improve their
work efficiency yet is an easy thing to do. For example, a win-win situation was cre-
ated by making common Work Breakdown Structure/Activity list templates available
in EPMS, which becomes an attractive feature to users. Deployment champions
should always be thinking of ways to create win-win scenarios for all stakeholders
(challenge 1).

Flexible Training Options: EPMS training was a two day course. We had delivered
the training as it was during the early stages of the deployment. We later realized that
a large portion of the learning does not get to be applied until a later stage, therefore is
forgotten and needs repeating. We made the following changes to solve this problem
(challenge 6):

• Have a 30 minute benefit overview training
• Break the 2 days training to 4 parts. Each can be delivered on demand.

Although face to face training is preferable, it is still possible to achieve a
satisfactory level of effectiveness through training over the internet. In such cases, it
is important to keep the group size small to increase effectiveness (challenge 7).

Don’t take it personal when others are not supportive: Change deployment cham-
pions should be enthusiastic yet realistic about their job, and don’t take it personal
when others are not supportive. Setting realistic short term and long term goals would
help in keeping them motivated and focused (challenge 8).

5 Concluding Remarks

Managing process change is one of the most difficult, yet inevitable tasks in today’s
software organization. The key success practices are thorough communication of the
change benefit at all levels of the organization, and to create win-win scenarios for all
involved. Although most process change projects are seemingly less successful than
desired, more benefit will emerge in the long term.

 Implementing Process Change in a Software Organization – An Experience Based Study 347

References

1. Geoffrey A. Moore, Crossing the Chasm: Marketing and Selling Technology Products to
Mainstream Customers. Harper Business (1991)

2. Rogers, E.: Diffusion of Innovations. 3rd edn. New York: The Free Press (1983)
3. Boeam, B., Egyed, A., Kwan, J., Port, D., Shah, A., and Madachy, R.: Using the Win-Win

Spiral Model: A Case Study, IEEE Computer (July, 1998) 33-44
4. Qin, S.: GSG EPMS Deployment Program Management Notes (2001-2003)
5. Guinta L.R. and Praizler, N. C.: The QFD Book: The Team Approach to Solving Problems

and Satisfying Customers through Quality Function Deployment. New York: AMACOM
(1993)

6. Kotter, J.P.: Leading Change: Why Transformation Efforts Fail. Harvard Business Review
(March-April, 1995) 59-67

Q. Wang et al. (Eds.): SPW/ProSim 2006, LNCS 3966, pp. 348 – 354, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Practical Experiences of Cost/Schedule Measure Through
Earned Value Management and Statistical

Process Control

Qing Wang1, Nan Jiang1,2
, Lang Gou1,2, Meiru Che1,2, and Ronghui Zhang1,2

1 Laboratory for Internet Software Technologies, Institute of Software,
The Chinese Academy of Sciences, Beijing 100080, China

2 Graduate University of Chinese Academy of Sciences, Beijing 100039, China
{wq, jiangnan, goulang, chemeiru,
hangronghui}@itechs.iscas.ac.cn

Abstract. Cost and schedule measures are the most important support activities
for the success of a project; it provides the basis for process improvement and
project management. This paper reports practical experiences on using EVM
(Earned Value Management) and SPC(Statistical Process Control) in cost/
schedule measure. The analysis of experience data indicates the distributions of
CPI(Cost Performance Index) and SPI(Schedule Performance Index) index are
generally following the normal distribution. And consequently, it is reasonable
and effective to employ SPC in EVM.

1 Introduction

The ideal goal of software project is to produce high quality software within the limits
of cost and schedule. However, a lot of cost and schedule of projects is out of control.
The research based on practical project data shows that there are about 1/3 projects
exceeding their estimations of cost and schedule by 25% [1]. Therefore, how to manage
cost and schedule effectively is one of the most important problems concerned by most
software organizations.

EVM[10][11] is a technology which is widely used to measure project cost and
schedule performance. But there are some problems when applying EVM to software
projects. The primary one is that it is too sensitive to detect abnormal signals. Each
variance between earned value and planned value (or actual value) is considered as an
abnormal signal. As we all know, software project is different from traditional
engineering project by nature. Hence, variances between pairs of earned value and
planned value are very common in software projects. Most of these variances are not
influential to the success of the project, but they are still reported as abnormal signals
by EVM, and the managers must spend a lot of unnecessary effort in processing these
misreported abnormal signals. To solve this problem, we must set reasonable
boundaries to determine those variances that affect the success measures.

SPC[6] is a method of quality control. There are a lot of studies in the last two decades
discussing whether the SPC approach is suitable for software process [2][3][4][5], and a

 Practical Experiences of Cost/Schedule Measure Through EVM and SPC 349

lot of real-life examples of applying SPC in software process are reported[7]. The
primary problem for using SPC in software process is that this technique is suitable for
small piece or large batch repeatable process, however, software projects are often long
term and do not completely follow any repeatable process. On the other hand, since cost
and schedule data can be collected from every project, it is possible to construct a
sufficiently large sample set. Therefore, it is reasonable to use SPC to control EVM
indicators. Additionally, because SPC provides various control charts for different
distributions, we must determine what distributions EVM indicators are in order to
effectively apply SPC in controlling these indicators.

Lipke applied SPC techniques to two EVM indicators: CPI and SPI, to control the
cost and schedule of software projects[8]. After further studies, he found that SPC did
not provide reliable results when applied to CPI and SPI, it very seldom detects
abnormal signals for CPI or SPI values less than 1.0[9]. His studies indicate
distributions of CPI and SPI are not normal distribution and they are right-skewed.
Lipke believed that the skew of the distribution was the likely culprit for the problem.
So he suggested using SPC to the natural logarithm of CPI and SPI, instead of to CPI
and SPI themselves.

In the practice of process improvement in ISCAS (Institute of Software, Chinese
Academy of Sciences), we applied the method which integrates EVM and SPC, and
collected a lot of real-life projects data. We applied the same indicators as Lipke did:
CPI and SPI in EVM. However different results were concluded from our study. We
believe that CPI and SPI are normally distributed, and in this case, applying SPC to CPI
and SPI are more meaningful. In this paper, we report our experience using SPC to
control EVM indicators, results we obtained from cost/schedule measure, and lessons
learned from the experience.

2 Data Sample Construction

EVM contains three basic metrics: BCWS(Budgeted Cost of Work Scheduled),
BCWP(Budgeted Cost of Work Performed), and ACWP(Actual Cost of Work
Performed). There are many methods to get these three values. In our practice of project
management, task is the basic unit of project. So, in this paper, we calculate BCWS,
BCWP, and ACWP based on task plans and task reports. The method we used to
calculate basic metrics of EVM contains labor effort only, other indirect cost must be
converted to task efforts before they can be calculated. Since the labor is the most
important factor of cost, it is reasonable for our study to only concentrate on labor. It is
not reasonable to applied SPC to these three basic values directly. Because what we
concerned are the variances between BCWP and BCWS (or ACWP), we use two
derived indictors: CPI and SPI. Their definitions are: ACWPBCWPCPI /= and

BCWSBCWPSPI /= .
We have developed a tool called PM, which was integrated in SoftPM [12], based on

our approach for cost/schedule measure, to help software organizations collect task
reports and calculate CPI and SPI automatically.

In the last 3 years, we applied this Cost/Schedule measure in more than 15 projects,
and collected lots of empirical data. The organization which we collected data from has

350 Q. Wang et al.

high software process capability maturity level, which is CMMI level 4. Its applications
cover different domains, such as Software process improvement, software quality
assurance, software measurement. We select 6 projects in the organization. All these
projects are web-based applications; use the same techniques and the same organization
standard processes. The staffs are about 10 and stable, and the projects durations are 4-6
months, all the tasks are reported weekly. Table 1 shows SPI and CPI data from these
projects.

Table 1. SPI and CPI data of projects in 2004-2005

NO. SPI CPI NO SPI CPI NO. SPI CPI NO. SPI CPI NO. SPI CPI

1 1.00 1.00 22 0.96 0.97 43 0.99 0.94 63 0.90 1.03 83 0.89 1.04

2 1.00 1.07 23 0.96 0.98 44 0.99 1.04 64 0.98 1.02 84 0.92 1.07

3 1.00 1.09 24 0.96 0.97 45 0.99 1.03 65 0.99 1.02 85 0.85 1.06

4 1.00 1.03 25 0.94 0.97 46 0.99 0.84 66 1.05 1.02 86 0.93 1.08

5 1.00 1.01 26 0.91 0.97 47 0.99 0.85 67 1.00 1.01 87 0.93 0.95

6 1.00 1.02 27 0.91 0.97 48 0.97 0.85 68 1.02 1.01 88 0.96 1.08

7 1.00 0.98 28 1.00 1.00 49 0.97 0.83 69 1.01 1.04 89 0.97 1.07

8 1.00 0.97 29 0.87 1.03 50 1.00 0.83 70 1.00 1.09 90 0.97 1.08

9 1.00 0.94 30 0.99 0.88 51 0.91 0.83 71 0.98 1.07 91 0.96 1.09

10 1.00 0.95 31 1.01 0.86 52 1.08 0.87 72 0.97 1.08 92 1.00 1.07

11 0.99 0.94 32 0.99 0.89 53 1.05 0.91 73 0.98 1.06 93 1.00 1.07

12 0.99 0.94 33 1.05 0.93 54 1.01 0.91 74 0.99 1.04 94 1.00 1.12

13 0.97 0.95 34 0.96 0.86 55 0.92 1.00 75 0.98 1.03 95 0.92 1.06

14 0.89 0.95 35 0.99 0.92 56 0.92 1.05 76 0.99 0.99 96 0.99 1.04

15 0.96 0.95 36 0.98 0.94 57 0.90 0.95 77 0.99 0.95 97 1.00 1.06

16 0.96 0.93 37 0.98 0.99 58 0.92 1.00 78 0.99 0.95 98 1.00 1.06

17 1.03 0.99 38 0.99 0.98 59 0.91 0.95 79 0.93 0.95 99 1.00 1.06

18 0.96 0.97 39 0.99 0.97 60 1.00 0.95 80 1.00 1.00 100 1.00 1.06

19 0.96 0.92 40 0.99 0.97 61 1.03 0.99 81 1.10 1.06 101 1.00 1.06

20 0.96 0.98 41 1.04 0.96 62 0.90 0.93 82 0.91 0.94 102 1.00 1.06

21 0.96 0.98 42 1.01 1.00

Based on these data, we can construct a data sample of 102 task data points.

3 Analysis of Experience Results

3.1 Study on the Distribution of CPI and SPI

There are many SPC methods to make process control, which is appropriate depends on
what statistical distribution of the data sample appears. Obviously, SPI and CPI is
continuous distributed statistics. It is risky to use SPC to control continuous but

 Practical Experiences of Cost/Schedule Measure Through EVM and SPC 351

non-normally distribution data sample. At first, we must test the normality of SPI and
CPI. Lipke[8] found that SPI and CPI do not obey normally distribution, so they cannot
be controlled by SPC directly. But in our empirical study, an interest and different
phenomena appears. We use SPI data in table 1 as an example. First, we create
frequency histogram of these data. The result is shown in table 2 and the frequency
histogram is illustrated in Fig 1.

From the frequency histogram, SPI is approximately distributed normally. We use a
statistical method for hypothesis testing the normality of data, which called
skewness-kurtosis test. The null hypothesis is

H0: Data sample is derived from normal population

Table 2. Frequency

Subgroup Number Frequency

0.845-0.875 2 0.0196

0.875-0.905 5 0.0490

0.905-0.935 13 0.1275

0.934-0.965 14 0.1373

0.965-0.995 31 0.3039

0.995-1.025 29 0.2843

1.025-1.055 6 0.0588

1.055-1.085 1 0.0098

1.085-1.115 1 0.0098

Fig. 1. Frequency Histogram

Assume
nxxx ……21, is a sample of population x, the skewness of sample is

2/3
231 μμ=g , and the kurtosis of sample is 2

242 μμ=g , where k
n

i
ik xx

n
)(

1

1=

−=μ

. We define ()
()()31

26
1 ++

−=
nn

nσ , ()()
() ()()531

3224
22 +++

−−=
nnn

nnnσ and
1

6
3

+
−=

n
μ . From the

knowledge of statistics, if the distribution of population is normal, when the volume of
sample n is large enough, the statistic

111 σgU = and () 222 σμ−= gU are

approximately standard normal distribution. So if
1U or

2U is large enough, we can

reject H0. For data in table 1, at the significance level 05.0=α ,

1U =1.809< 4αu =2.24, 2U =1.766< 4αu =2.24, so we can accept H0.

Similarly, we tested for CPI data in table 3. At the significance level 05.0=α ,

1U =1.843< 4αu =2.24,
2U =0.785< 4αu =2.24, so we can also accept H0.

From these studies, we conclude SPI and CPI are normally distributed.
Similar tests are taken for other projects in the same organization and two other

organizations. All the CPI and SPI data in these three organizations are likely
distributed normally.

352 Q. Wang et al.

3.2 Statistical Control the SPI/CPI Indicator

Once we confirm the normality of the SPI and CPI distribution, we can use the method
of parameter estimation to get the parameters of population distribution. For example,

to the SPI data in table 3, we can get the average of population μ =0.98, and the

standard deviation =σ 0.04. So the limits of SPI indicator fluctuating is σμ 3± . In
other word, the upper control limit is 1.10, and the lower control limit is 0.86. Then we
can use these limits to control new projects. Table 3 is SPI data of a new project, and
Fig 2 is control chart for this project:

Table 3. SPI data of a project

NO. SPI NO. SPI NO. SPI

1 1.00 7 0.92 13 0.91

2 0.85 8 0.92 14 1.01

3 0.91 9 0.90 15 0.99

4 1.08 10 0.84 16 1.13

5 1.05 11 0.92 17 1.00

6 1.01 12 0.87 18 1.01

Fig. 2. Control Chart for SPI

In Fig.2, we can find the 2nd data is an abnormal signal (lower than LCL), which
means the schedule delay at the 2nd data report period is out of control. We can identify
all tasks which are behind schedule at this report period and classify them by cause, as
shown in Table 4 and Fig.3.

In Fig 3 we can find there are 17 tasks delaying for the lack of communication,
which is the primary cause of schedule variance. In fact this data comes from the

Table 4. Causes of schedule variance

Cause
Quantity

of tasks
Freq

Cum

Freq.

LoCo: Lack of communication 17 46% 46%

PoP: Poor quality of task

performing
8 22% 68%

VoT: Variance of other task 4 11% 78%

IoE: Inaccuracy of Estimation 3 8% 86%

LoR: Lack of resource 2 5% 92%

PoI: Poor quality of input 2 5% 97%

LoCp: Lack of Capability 1 3% 100%

Total 37 100%

Pareto Diagram

0
5

10
15
20

LoC
o

PoPVoT IoE LoR Po
I
LoC

p

0%

50%

100%

150%

Fig. 3. Pareto Diagram

 Practical Experiences of Cost/Schedule Measure Through EVM and SPC 353

beginning of design phase in the project. Designers and requirement engineers didn’t
reach agreement and consistency with each other about the requirement, which led to a
lot of reworks. For other abnormal signals in the control chart, the similar analysis
could be applied. In traditional EVM, managers either analyze all the data not equal 1.0,
or set glancing limits by experience(such as 1.0±0.2). Our approach applies SPC to
EVM, and derives reasonable control limits from historical projects data[13], which
can make cost and schedule alarm appropriately.

4 Conclusions

Our experience results show that the distributions of SPI/CPI are likely normal
distributed. In this case, applying SPC to these two indicators of EVM is more
reasonable. There are at least two benefits of this approach. First, it reduces the
complexity of project state judgment. The SPC provides a set of rules to detect
abnormal signals. We can simply use these rules to judge whether the cost and schedule
are out of control. Second, it reduces the cost of measure and analysis; most false
alarms (which SPI or CPI is not equal 1.0 exactly, but fall into the limits) are filtrated.
The manager can concentrate on real problems of projects.

We have applied this approach more than 30 software organizations which use our
SoftPM toolkit. Practical results show this approach is effective. The complexity and
cost of measurement in these organizations are reduced, and most of warning points are
identified effectively without the disturbing of false alarms.

Acknowledgements

This work is supported by the National Natural Science Foundation of China under
Grant Nos. 60273026 and 60473060; the Hi-Tech Research and Development Program
(863 Program) of China under Grant Nos. 2004AA1Z2100 and 2005AA113140.

References

1. L.H.Putnam and W.Myers. Industrial Strength Software-Effective Management Using
Measure. IEEE Computer Society Press, 1997

2. Weller E F. Practical applications of statistical process control. IEEE Software, 2000, 17(3):
48-55

3. Florac W A. Statistical process control: Analyzing a space shuttle onboard software process.
IEEE Software, 2000,17(4): 97-105

4. Stephen H.Kan Metrics And Models In Software Quality Engineering. Addison-Wesley
Publishing Company, 2003

5. Layman, B., B. Curtis, J. Puffer, and C. Webet. Solving the Challenge of Quantitative
Management, Section 4: Problems in the use of Control Charts. SEPG 2002 QM Tutorial,
Phoenix, Arizon, Februay 18-21, 2002

354 Q. Wang et al.

6. Florac W A. Measuring software process- Statistical process control for software process
improvement. Addson-Wesley, 1999

7. P. Jalote, CMM in Practice – Processes for executing software projects at Infosys,
Addison-Wesley Longman,SEI Series on Software Engineering, 1999.

8. Lipke, W., Statistical Process Control of Project Performance, CrossTalk, The Journal of
Defense Software Engineering, Vol 15, NO.3 March 2002, pp.15-18

9. Lipke, W., A Study of the Normality of Earned Value Management Indicators , The
Measurable News, December 2002

 Departments of the Air Force, the Army, the Navy, and the Defense Logistic Agency.
Cost/Schedule Control Systems Criteria Joint Implementation Guide.1980

11. Department of the Air Force. Air Force Systems Command. Software Management
Indicators. 1986

12. Wang, Q., Li, M.S., Software Process Management: Practices in China, In Proc. of the
Software Process Workshop 2005 (SPW2005), Beijing, 2005.

13. Wang, Q., Jiang, N., BSR: A Statistic-based Approach for Establishing and Refining
Software Process Performance Baseline, The 28th International Conference on Software
Engineering (ICSE2006). Shanghai, May 20-28, 2006, accepted.

Author Index

Al-Emran, Ahmed 262
Amescua, Antonio 97
Avrunin, George S. 150

Bae, Doo-Hwan 254
Boehm, Barry 1, 56, 64, 167

Capiluppi, Andrea 286
Chan, Keith C.C. 115
Che, Meiru 348
Chen, Bin 150, 178
Chen, Cheng 186
Chen, Yin 195
Choi, KeungSik 254
Clarke, Lori A. 150, 178
Counsell, Steve 294

Elssamadisy, Amr 178
Estublier, Jacky 159

Fernández-Ramil, Juan 286
Franczyk, Bogdan 314

Garćıa, Javier 97
Garcia, Sergio 159
Ge, Jidong 56
Goethals, Frank G. 48
Goto, Keita 72
Gou, Lang 348
Gwak, Taehee 302

Hankawa, Noriko 72
He, Mei 132
Hu, Hao 56
Huang, Liguo 56

Iida, Hajimu 72

Jain, Apurva 1
Jang, Yoonjung 302
Jeffery, Ross 11
Jiang, Nan 348
Johnson, Philip M. 322

Kiebusch, Sebastian 314
Kitchenham, Barbara 242
Kou, Hongbing 322
Kunz, Thomas 142

Lane, Jo Ann 167
Lavazza, Luigi 80
Lemahieu, Wilfried 48
Li, Lei 195
Li, Mingshu 15, 105, 132, 204
Lü, Jian 56
Lui, Kim Man 115

Madachy, Raymond 167, 222
Mauri, Marco 80
Medina-Domı́nguez, Fuensanta 97
Münch, Jürgen 334

Nisar, M. Wasif 204

Ocampo, Alexis 334
Osterweil, Leon J. 39, 150, 178, 214

Pfahl, Dietmar 262
Phillips, Jared 234

Qin, Shaowen 342

Raffo, David 274
Raunak, Mohammad S. 178
Ruan, Li 88
Ruhe, Günther 262

Sánchez-Segura, Maria-Isabel 97
Setamanit, Siri-on 274
Shen, Beijun 186
Smith, Neil 286
Snoeck, Monique 48
Speck, Andreas 314
Stopford, Benjamin 294

Tang, Zinan 132
Tong, Jie 88

Vandenbulcke, Jacques 48

Wakeland, Wayne 274
Wan, Hai 195

356 Author Index

Wan, Yuxiang 132
Wang, Qing 204, 214, 348
Wang, Yongji 88
Wise, Alexander 214
Wu, Dan 124
Wu, Shujian 132

Xiao, Junchao 204, 214

Yang, Da 132
Yang, Guowei 105
Yang, Qiusong 105

Yang, Ye 64, 124
Yilmaz, Levent 234
Yuan, Rong 204

Zhai, Jian 105
Zhang, He 242
Zhang, Lei 204, 214
Zhang, Ronghui 348
Zhang, Shen 88
Zhang, Weishan 142
Zheng, Yunxiang 195
Zhou, Jinhui 88

	Frontmatter
	Keynotes
	A Value-Based Software Process Framework
	Exploring the Business Process-Software Process Relationship
	Assessing 3-D Integrated Software Development Processes: A New Benchmark
	Ubiquitous Process Engineering: Applying Software Process Technology to Other Domains

	Process Tailoring and Decision-Support
	Dependencies Between Data Decisions
	Tailor the Value-Based Software Quality Achievement Process to Project Business Cases
	Optimizing Process Decision in COTS-Based Development Via Risk Based Prioritization

	Process Tools and Metrics
	Project Replayer -- An Investigation Tool to Revisit Processes of Past Projects
	Software Process Measurement in the Real World: Dealing with Operating Constraints
	Evaluation of Project Quality: A DEA-Based Approach

	Process Management
	A Pattern-Based Solution to Bridge the Gap Between Theory and Practice in Using Process Models
	On Mobility of Software Processes
	Software Process Fusion: Uniting Pair Programming and Solo Programming Processes
	Towards an Approach for Security Risk Analysis in COTS Based Development
	COCOMO-U: An Extension of COCOMO II for Cost Estimation with Uncertainty
	A Product Line Enhanced Unified Process

	Process Representation, Analysis and Modeling
	Automatic Fault Tree Derivation from Little-JIL Process Definitions
	Workflows and Cooperative Processes
	Spiral Lifecycle Increment Modeling for New Hybrid Processes
	Definition and Analysis of Election Processes
	The Design of a Flexible Software Process Language
	Building Business Process Description and Reasoning Meta-model {\itshape M}<Subscript>{\itshape bp}</Subscript> in {\itshape A-Prolog}
	A Process-Agent Construction Method for Software Process Modeling in SoftPM
	Applying Little-JIL to Describe Process-Agent Knowledge in SoftPM

	Process Simulation Modeling
	Reusable Model Structures and Behaviors for Software Processes
	Organization-Theoretic Perspective for Simulation Modeling of Agile Software Processes
	Semi-quantitative Simulation Modeling of Software Engineering Process

	Process Simulation Applications
	Analysis of Software-Intensive System Acquisition Using Hybrid Software Process Simulation
	Simulation-Based Stability Analysis for Software Release Plans
	Exploring the Impact of Task Allocation Strategies for Global Software Development Using Simulation
	Users and Developers: An Agent-Based Simulation of Open Source Software Evolution
	Simulating the Structural Evolution of Software

	Experience Report
	An Empirical Study on SW Metrics for Embedded System
	Process-Family-Points
	Automated Recognition of Low-Level Process: A Pilot Validation Study of Zorro for Test-Driven Development
	Process Evolution Supported by Rationale: An Empirical Investigation of Process Changes
	Implementing Process Change in a Software Organization -- An Experience Based Study
	Practical Experiences of Cost/Schedule Measure Through Earned Value Management and Statistical Process Control

	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

