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Abstract. In this paper, we propose the compositional test method (C-method), 
which exploits the structure of component-based communication systems. The 
C-method first tests each component separately for output and/or transfer faults, 
using one of the traditional test methods, then checks for composability, and 
finally tests the composite system for composition faults. To check for 
composability and to derive the test suite for the detection of composition 
faults, it is not required to construct the global state machine. Instead, all 
information is derived from the component state machines, which avoids a 
potential state explosion and lengthy test cases. Furthermore, the test suite 
checks for composition faults only. This substantially reduces the size of the 
test suite and thus the overall test effort.  

1   Introduction 

Systematic methods for testing protocol implementations have a long and successful 
record. The relevance and the potential of protocol testing are first recognized in [16], 
which has initiated a research stream that has produced a diversity of test methods 
with different foci. These methods usually assume that the design of the protocol 
implementation to be tested is given in the form of a finite state machine (FSM), and 
that this state machine is minimal, completely specified, and fully connected. Some 
methods further assume the FSM to be deterministic [3,7,20], while others relax this 
constraint [12]. Recently, the focus has shifted to real-time systems testing [6,17,18], 
interoperability testing [1,2,4,5] and testing in context [14,15].  

On the other hand, component-based software engineering is becoming an 
important trend among practitioners. This approach aims at shortening the 
development process and therefore reducing the cost. Once developed and tested, 
components are reused and glued together in different contexts. The testing of such 
systems formed by reused components remains an open and challenging issue [21], 
mainly because components are developed and reused by different people without or 
with very little information sharing.  

The purpose of this paper is to propose a formal approach for testing component-
based communicating systems, which we call compositional testing (C-method). 
Here, communication systems are perceived as being built from components that can 
be modeled as FSMs. Each of these components is tested using well-proven 
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techniques, such as the UIOv-method [20] or the Wp-method [7]. However, when 
these components are composed, no monolithic FSM is constructed in order to derive 
test cases for the composite system, which would lead to lengthy test cases, large test 
suites, and a repetition of tests already performed on component level. Instead, the 
composite system is only tested for composition faults, i.e., faulty composition code 
(also called glue code) - a new type of fault that extends and complements the 
classical fault model. We position our compositional testing approach among the 
existing and related techniques that also view systems as a set of interacting 
components, such as interoperability testing, testing in context and other 
compositional testing techniques.  

In this paper, we will develop these ideas up to a certain point, and illustrate them 
through examples. We focus on a specific type of composition, called concurrent 
com-position. However, other types of composition may be considered as well. 
Section 2 defines the concurrent composition of asynchronously communicating 
FSMs, and states necessary conditions for composability. The compositional test 
method (C-method) is defined in Section 3. An application of the C-method is shown 
in Section 4.  In Section 5, related work is reviewed and the contributions of this 
paper are positioned. We draw conclusions and indicate future research topics in 
Section 6.  

2   Concurrent Composition 

In this section, we define the concurrent composition of two FSMs. Further types of 
composition such as sequential composition are perceivable, for instance, in the 
context of micro protocols [8] or general component-based software systems. At 
specification level, composition can be expressed by defining a composition operator. 
At implementation level, this operator is usually realized by a piece of code that  
we call glue code.  

Concurrent composition may be applied to put local and/or remote components 
together. From the conceptual viewpoint, this should not make any difference. For 
instance, we may compose protocol entities PE

1,1
 and PE

1,2
 as well as PE

1,2
 and PE

2,2 

 

PE1,1

PE1,2

PE2,1

PE2,2

medium

c)

d)

PE1,1

PE1,2

PE2,1

PE2,2

a)

b)

 

Fig. 1. Concurrent composition of protocol entities  
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concurrently, as shown in Figure 1a and b, respectively. For the local composition, the 
glue code may consist of internal data structures and operations to add signals to the 
input queue of the other protocol entity (Figure 1c). For the remote composition, the 
glue code may comprise an entire logical communication medium, which may in turn 
be a composite system (Figure 1d). From the practical viewpoint, the usual constraints 
concerning observability and controllability apply, which may be handled by external 
coordination procedures.  

In this paper, we use the standard definition of FSM, and a derived notion:  

Definition 1: A finite state machine (FSM) M is a tuple (S,I,O,s
0
,λ

e
) with:  

• S is a finite set of states.  
• I is a finite input alphabet.  
• O is a finite output alphabet.  
• s

0 
∈ S is the initial state.  

• λ
e
 ⊆ S×I×O×S defines the transitions of M.  

A finite state machine is completely specified, if for each state and each input, a 
transition is defined. There exist several ways to extend a given FSM to a completely 
specified machine, e.g., by assuming implicit transitions (cf. SDL [10]). The standard 
definition of FSMs (see Definition 1) does not distinguish between explicit and 
implicit transitions. We consider explicit transitions as regular behavior. Implicit 
transitions are undesired behavior, but included to enhance testability of the 
implementation. In this paper, we adopt this interpretation, but the proposed test 
method does work for any interpretation of implicit transitions.  

Definition 2: A completely specified finite state machine (csFSM) N = (S,I,O
e
,s

0
,λ) is  

derived from an FSM M = (S,I,O,s
0
,λ

e
) as follows:  

• S, I, s
0
 as in M.  

• O
e
 = O ∪ {e}, where e ∉ O is called error output.  

• λ = λ
e 
∪λ

i
 is the transition relation of N. Tuples of λ are called transitions of N.  

• λ
e
 defines the explicit transitions of N.  

• λ
i
 = { (s,i,e,s) | s ∈ S ∧ i ∈ I ∧ ¬∃o ∈ O, s’ ∈ S: (s,i,o,s’) ∈λ

e 
} defines the 

implicit transitions of N.  

In the rest of the paper, we omit the error output e and the relation λ
i
 for brevity.  

To define the concurrent composition of csFSMs, we assume that they 
communicate by asynchronous reliable signal exchange, where sending and receiving 
of signals is modeled as output and input of the communicating csFSMs, respectively. 
Therefore, an input queue collecting signals that are delivered, but not yet consumed, 
is associated with each csFSM. Furthermore, each signal carries identifications of the 
sending and receiving machine, which may be evaluated as needed. The 
identifications are determined dynamically from the sending machine, the connection 
structure of the communicating csFSMs consisting of typed channels, and explicit 
addressing, if necessary.  
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Definition 3: Let N
1
 = (S

1
,I

1
,O

1
,s

0,1
,λ

1
) and N

2
 = (S

2
,I

2
,O

2
,s

0,2
,λ

2
) be csFSMs. Let OI

1,2 
= 

O
1 
∩ I

2
 (OI

2,1 
= O

2 
∩ I

1
) be the set of signals exchanged between N

1
 and N

2 
(N

2
 and N

1
), 

called internal signals. The concurrent composition of N
1 
and N

2
, denoted N

1 
|| N

2
, is 

defined by the derived state machine Q = (S,I,O,s
0
,λ) with:  

• S = S
1 
× I

1
* × S

2 
× I

2
* is the set of states.  

• I = (I
1 
− OI

2,1
) ∪ (I

2 
− OI

1,2
) is the (finite) input alphabet.  

• O = (O
1 
− OI

1,2
) ∪ (O

2 
− OI

2,1
) is the (finite) output alphabet.  

• s
0
 = (s

0,1
,<>,s

0,2
,<>) is the initial state, consisting of the initial states of N

1
 and N

2
 

and the initial states of input queues associated with N
1
 and N

2
, respectively.  

• λ ⊆ S×I×O×S is the transition relation of Q. Tuples of λ are called transitions 
of Q. λ is derived from λ

1
 and λ

2
 as follows:  

(s,i,o,s’)  with s = (s1,q1,s2,q2) and s’ = (s1’,q1’,s2’,q2’) iff
( (s1,i,o,s1’) 1: ( q1 = <i> q1’ q2’ = if o OI1,2 then q2 <o>

else q2 s2 = s2’))
( (s2,i,o,s2’) 2: ( q2 = <i> q2’ q1’ = if o OI2,1 then q1 <o>

else q1 s1 = s1’))  

This definition includes the concurrent composition of two independent csFSMs, i.e., 
two csFSMs that do not exchange signals. In this case, OI

1,2
 = OI

2,1
 = {}.  

A csFSM can be represented as a labeled directed graph, where states correspond 
to nodes, and transitions correspond to edges labeled with input and output.  

Definition 4: A labeled directed graph G is a tuple (V,L,E), consisting of a set of 
nodes V, a set of labels L, and a relation E ⊆ V×V×L, defining the directed edges of 
the graph. A path is a non-empty sequence of consecutive edges. A tour is a path that 
starts and ends at the same node. It is called minimal, if no edge is contained more 
than once in the tour. An initial tour is a tour that starts and ends at the initial node. A 
directed graph G is strongly connected, if for each pair of nodes (v,v’), where v ≠ v’, 
there is a path from v to v’.  

Example 1: Figure 2 shows the concurrent composition of deterministic, strongly con-
nected csFSMs N

1
 and N

2
. Note that the error output as well as the implicit transitions 

are not shown in the figure. The machines interact via channel ch, which is typed by  
 

N1:

s0 s1

I1 = {x1,i2,i3}
O1 = {x4,x6,i1}

x1/i1

i3/x6

i2/x4

N2:

s0 s1

I2 = {x3,x5,i1}
O2 = {x2,i2,i3}

i1/x2

x5/i3

x3/i2

OI1,2 = {i1}

OI2,1 = {i2,i3}
ch

Xenv,1 = {x1}

X1,env = {x4,x6}

Xenv,2 = {x3,x5}

X2,env = {x2}
ch1 ch2

 

Fig. 2. Concurrent composition: component machines N
1
 and N

2
 (Example 1) 
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OI
1,2

 and OI
2,1

, and are connected to the environment by typed channels ch
1
 and ch

2
. 

The resulting behavior after composition (see Figure 3) can be represented by the 
state machine Q = N

1 
|| N

2
, where states are represented as tuples (s

1
,q

1
,s

2
,q

2
) denoting 

the states of N
1
 and N

2
, and of their input queues.  

While it is syntactically possible to compose all kinds of csFSMs, this is not 
always meaningful. Which csFSMs to compose first of all depends on the intended 
global behavior, which is problem specific. However, some general composition 
criteria can be stated:  

CC
1
.  Internal signals of either machine are eventually consumed by the other machine 

in an explicit transition, i.e., the composed system is free of internal un-
specified receptions. This excludes transitions that have been added to obtain a 
completely specified state machine, i.e., implicit transitions yielding an error 
output (see Definition 2).  

CC
2
.  The composed system is free of internal deadlocks. Since it is assumed that 

external signals can be produced in any order, this again restricts the internal 
interaction only.  

X2,env = {x2}X1,env = {x4,x6}
ch2ch1 Xenv,2 = {x3,x5}Xenv,1 = {x1}

Q = N1 || N2:

s0, ,s0,

i3/x6

i2/x4

s1, i2 ,s0,

s1, ,s1,

s1, ,s0,<i1

s1, i3 ,s0,

x1/i1

i1/x2

x3/i2

x5/i3
 

Fig. 3. Concurrent composition: derived machine Q (Example 1)  

3   Compositional Testing of Concurrently Composed csFSMs  

In this section, we will show how to derive test suites for testing the implementation 
of concurrently composed csFSMs. We make certain assumptions about the 
component csFSMs (e.g., strongly connected, deterministic) and their 
implementations (e.g., concerning the number of states), and we assume that the 
implementation of each csFSM can be tested using a test method that detects all 
output and transfer faults.  

A direct approach to test the composite system would be to determine its global 
state machine, and then apply one of the existing test methods to derive test cases for 
this machine. This, however, has the following drawbacks:  
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• The state set of the global state machine may be very large. Firstly, this can 
consume considerable computational resources to determine the machine. 
Secondly, it can lead to a large test suite containing lengthy test cases, implying 
a testing effort that could quickly become unmanageable.  

• The global state machine may be non-deterministic, due to the concurrency of 
the composite system, which reduces the applicability of existing test methods.  

• All tests already executed at the component level are repeated. This is a severe 
drawback in general, and especially if components are to be reused in different 
protocol configurations.  

To avoid these disadvantages, a test method satisfying the following properties is 
sought:  

• It is not necessary to compute the global state machine.  
• Only tests checking the correctness of the glue code of the csFSMs are derived.  
• Tests already performed at the component level are not repeated.  

These properties can only be satisfied if the implementations of the design 
components, which have been tested at the component level, remain unchanged. This 
means that only glue code to realize the specific type of composition is added, and all 
what remains to be checked in this case is the correct implementation of the 
composition operator. 

In the following, we introduce a method for compositional testing - henceforth 
called compositional test method (C-method) - that satisfies the above properties. We 
start by defining the fault model, then introduce concepts, notations, and an initial 
tour coverage graph, and finally give a procedural definition of the C-method.  

3.1   Fault Model 

The common way to check that a conformance relation that is defined on an infinite 
set of input sequences holds between two FSMs is to reduce the set of possible 
implementations to a finite number by assuming a fault model [13]. The classical fault 
model for protocol testing assumes that the implementation I can be treated as a 
mutant of the specification S, where a mutant may be obtained by altering outputs of 
transitions (out-put faults), by altering tail states of transitions (transfer faults), by 
adding states up to a given number as well as extra transitions to and from these 
states. This general fault model is sometimes reduced to output and transfer faults by 
assuming that the number of implementation states is less than a given maximum 
number, and to deterministic implementations.  

Implementations are tested by applying input sequences and observing the output 
sequences. An implementation fault is detected, if an observed output sequence 
differs from the expected output sequence. Whether this fault is an output fault or a 
transfer fault, or due to an extra state or an extra transition, depends on the fault 
model, on the diagnosis capability of the test method, and on the knowledge about the 
implementation at the time of test execution.  

The classical fault model is usually applied to single components that are specified 
by an FSM, e.g., a single protocol entity. It may also be applied to a composite 
system, e.g., protocol entities and an underlying medium, if an FSM of that system 
can be constructed. This, however, causes the aforementioned problems (large state 
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spaces, non-determinism, repetition of tests). In order to avoid these problems, we 
propose to take the structural aspect of the composition into account, and to 
distinguish the following fault categories:  

• component fault: the implementation of a component does not satisfy its 
specification  

• composition fault: the glue code does not satisfy its specification in the given 
contex 

The problem of compositional testing can then be stated as follows: 

Let N
1
 and N

2
 be the specifications of two components, and I

1
 and I

2
 be their 

implementations, where I
1
 and I

2 
satisfy their specifications N

1
 and N

2
, 

respectively. Then, derive a minimal test suite that is sufficient to check whether 
the system I consisting of I

1
, I

2
, and glue code satisfies the specification N

1 
|| N

2
.  

As usual, implementations are tested by applying input sequences, and comparing 
the observed and the expected output sequences. Again, it depends on the fault model, 
the diagnosis capability of the test method, and the knowledge about the 
implementation at the time of test execution how a detected fault may be classified. 
For instance, if the components have already been tested successfully, and their 
implementations are reused in the composite system, then detected faults can be 
classified as composition faults.  

To derive a minimal test suite that is sufficient to check the composed system, a 
model of the glue code is needed. In general, the glue code could be a component or a 
composite system itself, for instance, a logical communication medium, which may 
have further attached components. As testing would be unfeasible in this general 
setting, we make the following assumption:  

i) Whenever I
1
 and I

2 
are both in their initial states, the glue code is in a 

determined state w.r.t. I
1
 and I

2
.  

ii) The behavior of the glue code is deterministic w.r.t. I
1
 and I

2
.  

iii) If the glue code interacts with other components, this has no effect on its 
behavior towards I

1
 and I

2
.  

iv) The glue code is not creating messages for I
1
 or I

2
.  

The first assumption limits the maximum length of test suites to the set of all initial 
tours, i.e., paths that start and end in the initial state. All assumptions together ensure 
that a finite number of test cases are sufficient.  

Notice that if a model of the glue is given as an FSM, then the composition fault 
could be refined further into the same basic faults of an FSM based implementation.  

3.2   Concepts and Notations  

The following definitions recall and introduce some concepts and notations for 
testing:  
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Definition 5: A test case tc is a non-empty sequence of inputs i
1
.i

2
.....i

n
. A test suite ts 

is a non-empty set of test cases {tc
1
,tc

2
,...,tc

m
}. An augmented test case atc is defined 

as a non-empty sequence of transitions (also called test elements) i
1
/o

1
.i

2
/o

2
.....i

n
/o

n
. An 

augmented test suite ats is a non-empty set of augmented test cases {atc
1
,atc

2
,...,atc

m
}. 

Definition 6: Let atc
1
 and atc

2
 be augmented test cases (sequences of transitions) of 

deterministic csFSMs N
1
 and N

2
 that communicate via a common channel ch with sets 

OI
1,2

 and OI
2,1

 of internal signals. The concurrent composition of atc
1
 and atc

2
, denoted 

atc
1 
|| atc

2
, is one path atc

1,2 
of the tree obtained by sequencing the test elements in atc

1 

and atc
2
 according to the following ordering constraints:  

• the order of test elements of atc
1
 and atc

2
 is preserved;  

• a test element of atc
1
 (atc

2
) triggered by an internal signal is constrained by the 

corresponding test element in atc
2
 (atc

1
) that produces this internal signal;  

• the order of outputs is preserved.  

Example 2: For the csFSMs N
1
 and N

2 
of Example 1, the following augmented test 

cases can be derived and composed:  

• atc
1
 = x

1
/i

1
.i

2
/x

4 
 

• atc
2
 = i

1
/x

2
.x

3
/i

2 
 

• atc
1
 || atc

2
 = x

1
/i

1
.i

1
/x

2
.x

3
/i

2
.i

2
/x

4 
 

In this case, the composition produces only one path because the test elements are 
totally ordered.  

Definition 7: The concurrent composition of two augmented test cases is called 
complete, iff all their test elements are included, and the input queues of the 
corresponding csFSMs will be empty after their execution. Otherwise, it is called 
incomplete.  

Example 3: The concurrent composition of atc
1
 and atc

2
 in Example 2 is complete. 

However, the concurrent composition of atc
1
 and atc

2
’ = i

1
/x

2
 results in x

1
/i

1
.i

1
/x

2
, 

which is incomplete.  

3.3   Initial Tour Coverage Tree  

Selected augmented test cases of components form the basis for deriving a test suite 
for validating the correct implementation of their composition. These test cases are 
derived from a so-called initial tour coverage tree, reduced to the set of relevant test 
cases, and composed with matching test cases of the other component.  

Definition 8: Let N = (S,I,O
e
,s

0
,λ) be a csFSM with the underlying graph G, where G 

is strongly connected. An initial tour coverage tree T is a tree containing all minimal 
initial tours such that every edge is covered at least once and no tour is contained as a 
prefix or a suffix of another tour in the set.  
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The rationale behind this choice is that (i) transition coverage can be achieved this 
way1, and that (ii) both automata should be synchronized at least in their initial states, 
a criterion for composability. The concept of initial tour coverage is different from 
minimal transition tour, which visits every transition once and only once, but which 
also relies on stronger conditions to exist. To construct an initial tour coverage tree, 
we use a tree that, for a given state, captures all cycle free paths to the initial state, 
called hom-ing tree:  

Definition 9: Given a csFSM N = (S,I,O
e
,s

0
,λ) and a state s ∈ S, where the underlying 

graph is strongly connected, a homing tree H(s) is a minimal tree that covers all cycle-
free paths of N leading from s to the initial state s

0
.  

We give algorithms for the construction of homing trees and initial tour coverage 
trees in Tables 1 and 2, respectively. Both algorithms are illustrated.  

Table 1. Construction of a homing tree H(s)  

Step 1: Start the construction of H(s) with its root node nr, labeled with s.
Step 2: Assume that H(s) has been constructed up to level k, k  1. Then level k+1

is built by examining the nodes of level k:
Step 2.1:A node n of level k is terminated, if its label is identical to the

label of a node on level j, where 1 j < k, or if it is identical to s0.
Step 2.2:Otherwise, let s denote the label of node n. Then, for all transi-

tions (s,x,y,s’), attach a branch and successor node to the current 
node, labeled x/y and s’, respectively.

Step 3: Prune the resulting tree by successively removing all leaf nodes that have
a label s s0, and the corresponding edges. 

 

N: s0

s1 s2

x1/y1

x2/y2 x3/y3

x4/y4

x5/y5

x6/y6

x7/y7

s0 s1

s0s0 s1 s2

s1

s2
H(s0): H(s1): H(s2):

x6/y6 x7/y7 x4/y4

x3/y3

x5/y5

s1

s0s0 s1 s2

x6/y6
x7/y7 x4/y4

x3/y3

x5/y5

 

Fig. 4. Homing trees (example)  

3.4   The C-Method  

In Section 2, we have stated general composition criteria CC
1
 and CC

2 
that should be 

satisfied for a meaningful composition at the design level. First, the composed system 

                                                           
1 Initial tour coverage is a reduced form of path coverage. 
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should be free of internal unspecified receptions, which means that receptions 
occurring during „normal operation“ have to be consumed by explicit transitions. This 
excludes transitions that have been added for mere technical reasons to obtain fully 
specified state machines (see Definition 2). Also, the composed system should be free 
of internal deadlocks.  

To check whether two csFSMs N
1
 and N

2
 meet these criteria, we assume that they 

are always capable to resynchronize in their initial states. In other words, if N
1
 is in its 

initial state and stays there, N
2
 should be able to reach its initial state without further 

 

Table 2. Construction of an initial tour coverage tree T 

Step 1: For each state s of N, construct a homing tree H(s).
Step 2: Start the construction of T with the root node nr, labeled with the initial

state s0 of N. This is level 1 of T.
Step 3: Assume that T has been constructed up to level k, k  1. Then level k+1 is 

built by examining the nodes of level k:
Step 3.1:A node n of level k is terminated, if its label is identical to the

label of a node on level j, where 1 j < k.
Step 3.2:Otherwise, let s denote the label of n. Then, for each transition

(s,x,y,s’), attach a branch and successor node to the current node,
labeled x/y and s’, respectively. 

Step 4: To each leaf node n, attach the homing tree H(s) by merging the root node
of H(s) with n, where s denotes the label of n.

 

N: s0

s1 s2

x1/y1

x2/y2 x3/y3

x4/y4

x5/y5

x6/y6

x7/y7

s2

s1

s0s0

T: s0

s0 s1

s0s0

x1/y1 x2/y2

x7/y7x6/y6

x4/y4
x3/y3

x5/y5

x6/y6 x7/y7

s1

s0s0

x7/y7x6/y6

 

Fig. 5. Initial tour coverage tree (example)  
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Table 3. The C-method  

C-method
Step 1: Test the implementations I1 and I2 of components N1 and N2.

Step 1.1:Select a test method (e.g., DS [11], UIOv [20], Wp [12]).
Step 1.2:Derive the test suites for N1 and N2.
Step 1.3:Execute the tests. If all tests are successful, continue with Step 2.

If not, correct the faults and repeat Step 1.
Step 2: Test the implementation of the concurrent composition of N1 and N2.

Step 2.1:Remove all transitions of N1 and N2 that yield an error output.
These transitions have already been tested during component
testing, and need not be tested again.

Step 2.2:Build the initial tour coverage trees for N1 and N2, and determine
all maximal paths, i.e., all paths that start at the root node and end
at a leaf node, constituting augmented test suites ats1 and ats2.

Step 2.3:From the augmented test suites ats1 (ats2), remove all internally
triggered test cases, i.e., those test cases that are triggered by N2
(N1).

Step 2.4:From the augmented test cases, remove all local tours, i.e., 
(sub)sequences of test case elements that (1) start and end in the 
same state, and (2) contain only external inputs and outputs.
They have already been checked during component testing, and 
need not be tested again.

Step 2.5:Remove the maximum suffix that does not contain an interaction
with the other component. These test elements have been 
checked already. 

Step 2.6:For each test case atc1,j of the augmented test suite ats1 after 
Step 2.5, find an augmented test case atc2,j of N2 from Step 2.2
such that atc1,j || atc2,j is complete, and determine atc1,2,j = atc1,j
|| atc2,j, yielding the concurrent augmented test suite ats1,2.
Analogously for each test case atc2,j of ats2.

Step 2.7:Based on ats1, ats2, and ats1,2, check whether N1 and N2 meet the 
composition criteria CC1 and CC2, i.e., whether for each test
case of ats1 (ats2), there is a matching test case of N2 (N1). Yes:
continue with Step 2.8; no: stop.

Step 2.8:For each test case in ats1,2: merge adjacent test case elements in 
cases where (1) the internal output of the first matches the inter-
nal input of the second, and (2) the output is the only signal in 
the queue after being sent. Replace internal inputs and outputs by 
“-”, and remove test case elements “-/-”. 

Step 2.9:Execute the test. 
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interaction with N
1
, and vice versa. If this assumption is satisfied, it suffices to 

consider the explicit initial tours of both automata, i.e., the explicit transition 
sequences starting and ending in the initial states, and to check whether for each 
explicit initial tour, there is a matching explicit initial tour of the other automaton 
such that their concurrent composition is complete. This design criterion can also be 
stated in terms of concurrent composition of augmented test suites, and thus be 
checked as a by-product of test case derivation.  

In Table 3, the C-method is defined in a procedural style. We point out that in the 
course of applying the test procedure, it is checked whether N

1
 and N

2
 satisfy the 

composition criteria. This is a constraint imposed on design level, which should be 
checked before implementing the design and testing the implementation. Thus, all 
steps except Steps 1.2, 1.3, 2.8, and 2.9 should be executed in the design phase. Step 
2.6 could be optimized further by reducing the number of considered compositions 
(see [5]).  

As expected, the augmented test suites ats
1
 and ats

2
 are reduced to empty test suites 

in case N
1
 and N

2
 do not interact, i.e., in case of independent concurrent composition, 

which, among other things, satisfies the criterion for concurrent composability. The 
rea son is that all necessary testing has already been done on component level. Of 
course, one can argue that in the implementation, interaction of the two components 
may occur, and has to be excluded. This, however, is not covered by this type of tests. 
When protocol components are reused, it is sufficient to test them once, which means 
in a certain sense that testing is reused, too. In these cases, compositional testing starts 
with Step 2. 

4   Application of the C-Method  

To illustrate the C-method, we apply it to the Initiator Responder (InRes) protocol [9]. 
The InRes protocol is a connection-oriented communication protocol for the reliable 
exchange of message over an order-preserving, connection-less medium. It provides 
an asymmetrical service: the initiator requests connections and sends data, the 
responder accepts, refuses, and clears connections, and receives data. In this example, 
the InRes protocol entities I and R are the components that are composed 
concurrently, yielding a composite system I || R. In the implementation of this system, 
the glue code is represented by the underlying medium. To be able to use this medium 
for the implementation of the I || R, we assume that it does not lose messages.  

Figure 6 shows the specifications I and R of the InRes protocol entities and their 
concurrent composition. Both automata contain further transitions that can be derived 
by applying Definition 2, and thus are fully-specified. To avoid cluttering, we have 
omitted these transitions in the figure. The underlying graphs are deterministic, and 
strongly connected. We assume that Step 1 of the C-method that tests the 
implementations of I and R separately has already been executed successfully. Below, 
we go through Step 2:  

• Step 2.1: Removal of transitions yielding an error output  
These transitions have been omitted in the figure, therefore, starting point for 
Step 2.2 are the finite state automata shown in Figure 6.  
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• Step 2.2: Build initial tour coverage trees, and determine ats
I
 and ats

R. 
The initial tour coverage trees for I and R are shown in Figure 7. Test suites are:  
ats

I
 = {atc

I,1
,atc

I,2
,atc

I,3
,atc

I,4
}, with  

atc
I,1

 = ICONreq/CR . DR/IDISind  
atc

I,2
 = ICONreq/CR . CC/ICONcnf . DR/IDISind  

atc
I,3

 = ICONreq/CR . CC/ICONcnf . IDATreq/DT . DR/IDISind  
atc

I,4
 = ICONreq/CR . CC/ICONcnf . IDATreq/DT . AK/-. DR/IDISind  

ats
R
 = {atc

R,1
,atc

R,2
,atc

R,3
,atc

R,4
}, with  

atc
R,a

 = DT/atc
R,b

 = CR/ICONind . IDISreq/DR  
atc

R,c
 = CR/ICONind . ICONrsp/CC . IDISreq/DR  

atc
R,d

 = CR/ICONind . ICONrsp/CC . DT/IDATind . -/AK . IDISreq/DR  

• Step 2.3: Remove test cases triggered by internal inputs. 
All test cases of R are triggered by inputs of the Initiator and therefore removed:  
ats

I
‘= {atc

I,1
,atc

I,2
,atc

I,3
,atc

I,4
}  

ats
R
‘= {}  

• Step 2.4: Remove external local tours. 
Not applicable in the InRes example.  

• Step 2.5: Remove suffix containing external interaction only.  
Not applicable in the InRes example.  

• Step 2.6: For each augmented test case in ats
I
 (ats

R
) after Step 2.5, find an 

augmented test case of R (I) from Step 2.2 such that their concurrent composition 
is complete, and determine the concurrent augmented test suite ats

1,2
.  

ats1,2 = { atcI,1 || atcR,a, atcI,2 || atcR,b, atcI,3 || atcR,c, atcI,4 || atcR,d }, with:
atcI,1 = ICONreq/CR . DR/IDISind

atcR,a = CR/ICONind . IDISreq/DR
atcI,1 || atcR,a = { ICONreq/CR . CR/ICONind . IDISreq/DR . DR/IDISind }

atcI,2 = ICONreq/CR . CC/ICONcnf . DR/IDISind
atcR,b = CR/ICONind . ICONrsp/CC . IDISreq/DR
atcI,2 || atcR,b = { ICONreq/CR . CR/ICONind . ICONrsp/CC . CC/ICONcnf .

IDISreq/DR . DR/IDISind,
ICONreq/CR . CR/ICONind . ICONrsp/CC . IDISreq/DR .
CC/ICONcnf . DR/IDISind }

atcI,3 = ICONreq/CR . CC/ICONcnf . IDATreq/DT . DR/IDISind
atcR,c = CR/ICONind . ICONrsp/CC . IDISreq/DR . DT/-
atcI,3 || atcR,c = { ICONreq/CR . CR/ICONind . ICONrsp/CC . CC/ICONcnf .

IDATreq/DT . IDISreq/DR . DR/IDISind . DT/-,
ICONreq/CR . CR/ICONind . ICONrsp/CC . CC/ICONcnf .
IDATreq/DT . IDISreq/DR . DT/- . DR/IDISind,
ICONreq/CR . CR/ICONind . ICONrsp/CC . CC/ICONcnf .
IDISreq/DR . IDATreq/DT . DT/- . DR/IDISind,
ICONreq/CR . CR/ICONind . ICONrsp/CC . IDISreq/DR .
CC/ICONcnf . IDATreq/DT . DT/- . DR/IDISind }  
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wait4CC

wait4AK

connected

idle

ICONreq/CR
DR/IDISind

CC/ICONcnf

IDATreq/DT
AK/-

DR/IDISind

DR/IDISind

wait4ICONrsp

AK2send

connected

idle

CR/ICONind
IDISreq/DR

ICONrsp/CC

DT/IDATind
-/AK

IDISreq/DR

DT/-

R:I:

OIR,I = 
{CC,DR,AK}

OII,R = {CR,DT}

ch

Xenv,I = {ICONreq,IDATreq}

XI,env = {ICONcnf,IDISind}
ch1

Xenv,R = {ICONrsp,IDISreq}

XR,env = {ICONind,IDATind}
ch2

 

Fig. 6. InRes protocol entities I and R  
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idle
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4
 

Fig. 7. Initial tour coverage trees of I and R 
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atcI,4 = ICONreq/CR . CC/ICONcnf . IDATreq/DT . AK/- . DR/IDISind
atcR,d = CR/ICONind . ICONrsp/CC . DT/IDATind . -/AK . IDISreq/DR
atcI,4 || atcR,d = { ICONreq/CR . CR/ICONind . ICONrsp/CC . CC/ICONcnf .

IDATreq/DT . DT/IDATind . -/AK . AK/- . IDISreq/DR . 
DR/IDISind, ICONreq/CR . CR/ICONind . ICONrsp/CC .
CC/ICONcnf . IDATreq/DT . DT/IDATind . -/AK .
IDISreq/DR . AK/- . DR/IDISind}  

• Step 2.7: Check the composition criteria CC
1
 and CC

2 
 

For each test case of ats
I
, there is a test case of R such that their concurrent com-

position is complete. This trivially holds for ats
R
, which is empty.  

• Step 2.8: Merge test case elements, and replace internal inputs and outputs by „-“ 
ats

1,2
 = { atc

I,1
 || atc

R,a
, atc

I,2
 || atc

R,b
, atc

I,3
 || atc

R,c
, atc

I,4
 || atc

R,d
 }, with:  

atc
I,1

 || atc
R,a

 = {ICONreq/ICONind . IDISreq/IDISind }  
atc

I,2
 || atc

R,b
 = {ICONreq/ICONind . ICONrsp/ICONcnf . IDISreq/IDISind } 

atc
I,3

 || atc
R,c

 = { ICONreq/ICONind . ICONrsp/ICONcnf .  
[ IDATreq/- ||| IDISreq/- ] . -/IDISind }  

atc
I,4

 || atc
R,d

 = {ICONreq/ICONind . ICONrsp/ICONcnf . IDATreq/IDATind .  

IDISreq/IDISind }  

Note that test case atc
I,3

 || atc
R,c

 requires that test input IDATreq and IDISreq are to 
be applied concurrently to stimulate this behavior. This is expressed by the notation  
[ tce

1 
||| tce

2
 ]. The resulting test suite ats

1,2 
consists of 4 test cases, with 14 test case 

elements. In addition, component tests are to be performed.  

5   Related Work  

The purpose of this section is not to review deeply all the rich literature on FSM-
based testing, but to position the proposed C-method with respect to the related types 
of testing such as interoperability testing, testing in context and compositional testing.  

5.1   Interoperability Testing  

Interoperability testing [1,2,4,5] aims at checking if two implementations, which are 
conforming to a common specification, interact correctly and provide a required 
service when interconnected through a communication medium.  The communication 
medium, i.e. the glue between the two protocol entities, is assumed to behave 
correctly. This is different from the C-Method, where we assume that any integration 
problem or fault is coming from the glue, once the components have been 
individually tested. In addition, the C-Method also checks whether a required service 
is provided (see Step 2.7 - composition criteria checking). However, these general 
composition criteria are checked at the specification level in case of the C-Method, 
while it is done at testing time in case of interoperability testing.  
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5.2   Testing in Context  

Testing in context [14,15] consists of testing a component Cp in a given context Cx 
formed by other components, with the purpose of detecting faults in Cp. The 
component Cp is generally not directly observable from the environment or only 
partially. The specifications of context Cx and component Cp are both available.  

Testing in context is about testing the component Cp, not the behavior of the whole 
system. However, since the component is not directly accessible, or only partially, but 
it is tested through its context. Therefore, we select the observable behavior of the 
global system that will stimulate the behavior of the component as much as possible, 
and interpret the system output. This system reaction is generally coming from the 
context following a reaction from the component under test. The global state space is 
generally not constructed.  

The aim of the C-method is to test a composed system that consists of n 
components by testing individually each component against its specification, by 
checking the composability of these components, and by testing the glue, which is 
putting all these components together to obtain a particular system.  It aims at 
validating the whole system instead of the glue in context only, but by testing only 
portions of the system behavior. Once the components are tested successfully, their 
behavior is not questioned anymore. If an error happens, only the behavior of the glue 
is in question.  

5.3   Compositional Testing  

An approach for compositional testing has been proposed in [19]. It is based on ioco 
and therefore on a synchronous communications setting.  The aim of this approach is 
to find the conditions under which the conformance of the components to their 
respective specification leads automatically, without any extra testing, to the 
conformance of the system implementation to the system specification. The operator 
considered so far is parallel composition. There is no glue code in this approach.  

6   Conclusions and Future Work  

In this paper, the compositional method (C-method) for testing communicating 
systems has been introduced. The C-method first tests each protocol component 
separately for component faults (output and/or transfer faults), using one of the 
traditional test methods, and then checks their composition for composition faults.  

To apply the C-method, it is not necessary to compute the global state machine. In-
stead, composition tests are derived from local initial tour coverage trees. Only tests 
checking the glue code are derived. We have introduced and justified a fault model 
for the glue code that leads to manageable composition test suites.  

The work on compositional testing has been triggered by the component based 
software engineering trend and our results on micro protocols [8], a concept to 
structure communication systems and to foster reuse of protocol designs. Micro 
protocols are protocols with a single (distributed) functionality and the required 
collaboration among protocol entities. To develop customized communication systems, 
micro protocol designs are selected from a library, composed to yield a complete 
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design, and implemented. We expect that the C-method will contribute to the testing of 
customized communication systems that are composed of micro protocols.  

The results presented in this paper leave room for further work. The following im-
provements and enhancements are perceivable:  

• So far, only composition of two FSMs has been considered. It would be useful 
to extend the C-method to compositions of more than two FSMs, and also to the 
composition of composites that have already been tested successfully.  

• Other types of compositions, for instance, concurrent composition with shared 
variables, or composition through inheritance, are perceivable. Again, this re-
quires extensions to the C-method.  

• The justification of the C-method and its benefits should be treated more rigor-
ously, developing a test theory rich enough to provide a formal proof that the 
derived test suite is both necessary and sufficient to detect composition faults.  

• The complexity of the C-method in comparison to other testing approaches 
should be formally assessed. Since the C-method exploits the structure of the 
system under test to reduce the number and length of test cases, we expect 
significant improvements.  

Finally, a generic testing approach, where interoperability testing, testing in context, 
and compositional testing are seen as specific instances with different goals and 
assumptions, will be an interesting research issue to pursue.  
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