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Abstract. Application of a test or checking sequence in a distributed
test architecture often requires the use of external coordination message
exchanges among multiple remote testers for eluding potential control-
lability and observability problems. Recent literature reports on condi-
tions on a given finite state machine (FSM) under which controllability
and observability problems can be overcome without using external co-
ordination messages. However, these conditions do not guarantee that
any test/checking sequence constructed from such FSMs are free from
controllability and observability problems. For a given test or checking
sequence, this paper investigates whether it is possible to eliminate the
need for external coordination messages and proposes algorithms to iden-
tify or construct subsequences either within the given sequence or as an
extension to the given sequence, respectively.

Keywords: Finite state machine, testing, distributed test architecture,
observability, controllability.

1 Introduction

In a distributed test architecture, there is one tester at each interface/port of
the system under test (SUT) N . These testers participate in applying a given
test sequence [1, 15, 16] or checking sequence [7, 9, 11, 19] which is a sequence
of input/output pairs, constructed from the specification M of the SUT N .
The use of multiple remote testers in a distributed architecture brings out the
possibility of controllability and observability problems during the application
of a test or checking sequence. A controllability problem arises when a tester is
required to send the current input and because it did not send the previous input
and did not receive the previous output it cannot determine when to send the
input. An observability problem arises when a tester is expecting an output in
response to either a previous input or the current input and because it is not the

M.Ü. Uyar, A.Y. Duale, and M.A. Fecko (Eds.): TestCom 2006, LNCS 3964, pp. 213–226, 2006.
c© IFIP International Federation for Information Processing 2006



214 J. Chen and H. Ural

sender of the current input, it cannot determine when to start and stop waiting
for the output.

These problems and their solutions have been studied in the context where
M is a Finite State Machine (FSM) and N is a state-based system whose
externally observable behavior can also be represented by an FSM. Much of
the previous work has been focused on automatically generating test or check-
ing sequences from FSMs that causes no controllability or observability prob-
lems during its application in a distributed test architecture (see, for exam-
ple, [2, 6, 8, 10, 13, 17, 18, 20]). For some FSMs, there have been test/checking se-
quences in which the coordination among testers can be achieved indirectly via
their interactions with N [14, 16]. For some others, it may be necessary for testers
to communicate directly by exchanging external coordination messages among
themselves over a dedicated channel for overcoming the controllability and ob-
servability problems encountered during the application of the test/checking se-
quence [2, 3, 17]. Using external coordination messages introduces delays and the
necessity to set up a dedicated communications channel among testers. Thus,
the emphasis of the recent work is to minimize the use of external coordina-
tion message exchanges among testers [3, 10] or to identify conditions on a given
FSM M under which controllability and observability problems can be overcome
without using external coordination messages [4, 5].

Such conditions lead to the algorithms for identifying paths within a given
FSM M that provide evidence for the possibility of eliminating the controllability
and observability problems [4, 5]. [4] gives conditions on M so that each transition
involved in an observability problem can be independently verified at port p. By
verified at port p, it is meant that one can conclude that the output of this
transition at port p is correct if one observes the correct output sequence on a
certain path within M . By independently, it is meant that the above conclusion
regarding the output at port p for a transition does not rely on the correctness
of any other transitions. Since the notion of independence may not be required
in some cases, the above condition on M can be weakened in these cases. [5]
gives an algorithm that determines whether M satisfies this weaker condition
and when it does so, identifies paths within M that check the output of the
transitions.

In this paper, we assume that the given FSM M satisfies the condition in [5].
Then, we pose the following problem and solve it in a restricted setting: Given
an FSM M and a synchronizable test or checking sequence τ0 starting at the
initial state of M , extend τ0 with minimal number of subsequences to form a
synchronizable test or checking sequence τ∗ such that the detectability of the
observability problems in τ0 is guaranteed without using external coordination
messages exchanged among remote testers.

The rest of the paper is organized as follows. Section 2 introduces the pre-
liminary terminology. Section 3 gives a formal definition of the general problem
and defines a restricted version of this problem. Section 4 presents our solution.
Section 5 concludes the paper with our final remarks.
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2 An n-Port FSM and Directed Graphs

An n-port Finite State Machine M (called henceforth an FSM M) is defined as
M = (S, I, O, δ, λ, s0) where S is a finite set of states; s0 ∈ S is the initial state;
I =

⋃n
i=1 Ii, where Ii is the set of input symbols of port i, and Ii ∩ Ij = ∅ for

i, j ∈ [1, n], i �= j; O =
∏n

i=1(Oi ∪ {−}), where Oi is the set of output symbols
of port i, and − means null output; δ is the transition function that maps S × I
to S; and λ is the output function that maps S × I to O. Each y ∈ O is a vector
of outputs, i.e., y = 〈o1, o2, ..., on〉 where oi ∈ Oi ∪{−} for i ∈ [1, n]. A transition
of an FSM M is a triple t = (s1, s2, x/y), where s1, s2 ∈ S, x ∈ I, and y ∈ O
such that δ(s1, x) = s2, λ(s1, x) = y. s1 and s2 are called the starting state and
the ending state of t respectively. The input/output pair x/y is called the label
of t. p ∈ [1, n] will denote a port and we use y |p or t |p to denote the output at
p in output vector y or in transition t respectively. We use T to denote the set
of all transitions in M .

A path ρ = t1 t2 . . . tk (k ≥ 0) is a finite sequence of transitions such that for
k ≥ 2, the ending state of ti is the starting state of ti+1 for all i ∈ [1, k−1]. We say
t is contained in (or simply in) ρ if t is a transition along path ρ. When the ending
state of the last transition of path ρ1 is the starting state of the first transition
of path ρ2, we use ρ1ρ2 to denote the concatenation of ρ1 and ρ2. The label of
a path (s1, s2, x1/y1) (s2, s3, x2/y2) . . . (sk, sk+1, xk/yk) (k ≥ 1) is the sequence
of input/output pairs x1/y1 x2/y2 . . . xk/yk which is an input/output sequence.

When ρ is non-empty, we use first(ρ) and last(ρ) to denote the first and last
transitions of path ρ respectively and pre(ρ) to denote the path obtained from
ρ by removing its last transition.

Given an FSM M and a path t1t2 . . . tk (k > 1) of M with label x1/y1
x2/y2 . . . xk/yk, a controllability (also called synchronization) problem occurs
when, in the labels xi/yi and xi+1/yi+1 of two consecutive transitions, there
exists p ∈ [1, n] such that xi+1 ∈ Ip, xi �∈ Ip, yi |p= − (i ∈ [1, k − 1]). If this
controllability problem occurs then the tester at p does not know when to send
xi+1 and the test/checking sequence cannot be applied. Consecutive transitions
ti and ti+1 form a synchronizable pair of transitions if ti+1 can follow ti without
causing a synchronization problem. Any path in which every pair of consecutive
transitions is synchronizable is called a synchronizable path. An input/output
sequence is synchronizable if it is the label of a synchronizable path.

We assume that for every pair of transitions (t, t′) there is a synchronizable
path that starts with t and ends with t′. If this condition holds, then the FSM
is called intrinsically synchronizable.

Suppose that we are given an FSM M and a synchronizable path ρ =
t1t2 . . . tk of M with label x1/y1x2/y2 . . . xk/yk. An output shift fault in an im-
plementation N of M exists if one of the following holds for some 1 ≤ i < j ≤ k:

a) For some p ∈ [1, n] and o ∈ Op, yi |p= o in M and for all i < l ≤ j, yl |p= −
in M whereas for all i ≤ l < j, N produces output − at p in response to
xl after x1 . . . xl−1, and N produces output o at p in response to xj after
x1 . . . xj−1.
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b) For some p ∈ [1, n] and o ∈ Op, yj |p= o in M and for all i ≤ l < j, yl |p= −
in M whereas for all i < l ≤ j, N produces output − at p in response to
xl after x1 . . . xl−1, and N produces output o at p in response to xi after
x1 . . . xi−1.

In a) the output o shifts from being produced in response to xi to being
produced in response to xj and the shift is from ti to tj (i.e., a forward shift). In
b) the output o shifts from being produced in response to xj to being produced
in response to xi and the shift is from tj to ti (i.e., a backward shift).

An instance of the observability problem manifests itself as a potentially
undetectable output shift fault if there is an output shift fault related to o ∈
Op in two transitions ti and tj in ρ with labels xi/yi and xj/yj , such that
xi+1 . . . xj �∈ Ip. The tester at p will not be able to detect the faults since it will
observe the expected sequence of interactions in response to xi . . . xj . Both ti
and tj are said to be involved in the potentially undetectable output shift fault.
When j = i + 1, we also call it potentially undetectable 1-shift output fault.

In the following, τ0 is a given test/checking sequence, which is the label of
path ρ0 = t1t2 . . . tm. We will use Tρ0,p to denote the set of transitions of M
that can be involved in potentially undetectable output shift faults in ρ0. Thus
t ∈ Tρ0,p if there exists a transition t′ and a synchronizable path tρt′ or t′ρt such
that both t and t′ are involved in a potentially undetectable output shift fault
when we apply τ0 to N .

Let t be a transition, and U a set of transitions in M . ρ is an absolute verifying
path upon U for (t, p) if

– ρ is a synchronizable path;
– t is contained in pre(ρ);
– first(ρ) and last(ρ) and only these two transitions in ρ have input at p;
– t �∈ U and for all t′ contained in pre(ρ), either t′∈ U or t′ |p=− ⇔ t |p=− [5].

Note that given t and ρ we will typically consider a minimal set U that
satisfies the above conditions: if t′ |p= − ⇔ t |p= − then t′ �∈ U .

Suppose that U is a set of transitions of M , R ⊆ U × U is a relation, and P
is a function from U to synchronizable paths of M . Let p be any port in M . The
set U of transitions is verifiable at p under R and P if the following hold [5].

(a) For all t ∈ U , P(t) is an absolute verifying path upon {t′ | (t, t′) ∈ R} for
(t, p);

(b) R ∪ {(t, t)|t ∈ U} is a partial order.

Where such R and P exist we also say that U is verifiable at p.
Let Tp be the set of all transitions involved in some potentially undetectable

output shift faults in M at port p. In this paper, we assume that Tp is verifiable
at p for all p ∈ [1, n].

A directed graph (digraph) G is defined by a tuple (V, E) in which V is a set
of vertices and E is a set of directed edges between the vertices. An edge e from
vertex vi to vertex vj is represented by (vi, vj). A walk is a sequence of pairwise
adjacent edges in G. A digraph is strongly connected if for any ordered pair of
vertices (vi, vj) there is a walk from vi to vj .
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3 The Problem Definition

Given a deterministic, minimal, and completely specified FSM M which is intrin-
sically synchronizable, and a synchronizable test/checking sequence τ0 starting at
the initial state of M , we consider the problem of constructing a synchronizable
test/checking sequence τ∗ that can be applied to resolve observability problems
in τ0 without using external coordination message exchanges by identifying the
subsequences within τ0 or to be appended to τ0.

Clearly, for each t ∈ Tρ0,p, we should verify its output at port p. As we
discussed in [5], to verify the output of transition t at port p, we can construct
an absolute verifying path upon a set U of transitions whose outputs at p are
verified. Such a path ρ has the following properties:

– it is synchronizable;
– we are able to determine the output sequence of ρ at p by applying the label

of ρ from the starting state of ρ;
– from the correct output sequence of ρ at p we can determine that the output

of t at p is correct.

This is because (i) no matter how ρ is concatenated with other subsequences,
we can always determine the output sequence produced at p in response to the
first |pre(ρ)| inputs in the label of ρ since this output sequence is immediately
preceded and followed by input at p; (ii) the condition for all t′ contained in
pre(ρ), either t′ ∈ U or t′ |p= − ⇔ t |p= − allows us to determine the correct
output of (t, p) from the correct output sequence of ρ at p (Proposition 2 in [5]).

Thus, to verify the outputs of the transitions in Tρ0,p at port p, we search for
an acyclic digraph of transitions such that all transitions in Tρ0,p are present,
and each transition has an absolute verifying path upon a set of transitions that
appear as its successors in the digraph. In other words, we search for R and P
such that set Tρ0,p of transitions is verifiable at p under R and P .

It is possible that ρ0 contains some absolute verifying paths for transitions in
Tρ0,p. Let Qp be the set of all those paths in codomain(P) but not as subsequences
in ρ0. τ∗ will be the label of a path ρ∗ which contains both ρ0 and all paths in Qp.

Clearly, for efficiency reasons,

– We should maximize the images of P in ρ0. That is, whenever possible, we
should define P(t) as a subsequence in ρ0 for any t ∈ T .

– No path in Qp should appear as a subsequence of another path in Qp. This
is always true as the absolute verifying paths have input at port p only in
its first and last transitions.

– There is no redundant path in Qp. An absolute verifying path ρ is redundant
in Qp if we can modify P (and R correspondingly) by changing the mapping
of all transitions whose image is ρ under P to some other paths in Qp while
keeping the property that Tρ0,p is verifiable at p under the modified defini-
tions of P and R. Figure 1(a) shows a case where {t1, t2, t3} is verifiable at
p under P and R where P(ti) = ρi for i = 1, 2, 3. Suppose that ρ2 is also
an absolute verifying path upon {t3} for (t1, p), then Figure 1(b) shows an



218 J. Chen and H. Ural

t2

ρ1: an absolute verifying path upon {t2} for (t1, p)

t1

t3

ρ2: an absolute verifying path upon {t3} for (t2, p)

ρ3: an absolute verifying path upon φ for (t3, p)

t2t1

t3

ρ2: an absolute verifying path upon {t3} for (t1, p) and (t2,p)

ρ3: an absolute verifying path upon φ for (t3, p)

(a) (b)

Fig. 1. An example of reducing paths in Qp

alternative way to verify {t1, t2, t3} which requires less paths in Qp to be
considered in constructing τ∗: P(t1) = P(t2) = ρ2, P(t3) = ρ3.

4 Our Proposed Solution

Now we present our solution to construct Qp and τ∗.

4.1 Identifying Transitions Involved in Observability Problems

Recall that τ0 = x1/y1 x2/y2 . . . xm/ym is a test/checking sequence of M which
is the label of a path ρ0 = t1t2 . . . tm. First we need to calculate Tρ0,p, the set of
transitions involved in potentially undetectable output shift faults at port p in
ρ0, for all p ∈ [1, n]. Figure 2 shows an algorithm for this purpose. It scans τ0
and uses emptyPointer and nonEmptyPointer as auxiliary variables. We do not
consider the case when |τ0| = 0 which is meaningless. Suppose we are currently
considering xi/yi ∈ τ0.

emptyPointer is the minimal index of the transitions in τ0 such that

– ∀k ∈ [emptyPointer + 1, i − 1]. xk �∈ Ip and
– ∀k ∈ [emptyPointer, i − 1]. yk |p= −

nonEmptyPointer is the index of the transitions in τ0 such that

– yk |p �= − for k = nonEmptyPointer and
– ∀k ∈ [nonEmptyPointer + 1, i − 1]. xk �∈ Ip ∧ yk |p= −

If neither emptyPointer nor nonEmptyPointer is null, then for all k ∈ [non-
EmptyPointer, i−1], tk is involved in a potentially undetectable forward output
shift fault. Furthermore, in the case xi �∈ Ip and yi |p= −, ti is also involved in
a potentially undetectable forward output shift fault.

If emptyPointer is not null, no matter whether nonEmptyPointer is null or
not, tk is involved in a potentially undetectable backward output shift fault for
all k ∈ [emptyPointer, i] when xi �∈ Ip and yi |p �= −.



Detecting Observability Problems in Distributed Testing 219

1: input: an FSM M , a port p, a test/checking sequence τ0 = x1/y1 x2/y2 . . . xm/ym

of M
2: output: Tρ0,p

3: nonEmptyPointer := null
4: emptyPointer := null
5: i := 1
6: while i < m do
7: if xi �∈ Ip then
8: if yi |p �= − then
9: if emptyPointer �= null ∧ nonEmptyPointer �= null then

10: add tnonEmptyPointer, . . . , ti to Tρ0,p

11: end if
12: if emptyPointer �= null ∧ nonEmptyPointer = null then
13: add temptyPointer, . . . , ti to Tρ0,p

14: end if
15: nonEmptyPointer := i
16: emptyPointer := null
17: else
18: if nonEmptyPointer = i − 1 then
19: emptyPointer = i
20: end if
21: end if
22: else
23: if emptyPointer �= null ∧ nonEmptyPointer �= null then
24: add tnonEmptyPointer, . . . , ti−1 to Tρ0,p

25: end if
26: if yi |p �= − then
27: nonEmptyPointer := i
28: emptyPointer := null
29: else
30: nonEmptyPointer := null
31: emptyPointer := i
32: end if
33: end if
34: i := i + 1
35: end while
36: if emptyPointer �= null ∧ nonEmptyPointer �= null then
37: add tnonEmptyPointer, . . . , tm to Tρ0,p

38: end if
39: if emptyPointer �= null ∧ nonEmptyPointer = null then
40: if xm �∈ Ip then
41: add temptyPointer, . . . , tm to Tρ0,p

42: else
43: add tm to Tρ0,p

44: end if
45: end if
46: if emptyPointer = null ∧ nonEmptyPointer �= null then
47: if xm �∈ Ip and ym |p= − then
48: add tm−1, tm to Tρ0,p

49: else
50: add tm to Tρ0,p

51: end if
52: end if

Fig. 2. Algorithm 1: Construction of Tρ0,p
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Note that some transitions at the end of ρ0 that are not involved in any
potentially undetectable output shift fault in ρ0 may be involved in such faults
in the constructed ρ∗. All these transitions are also added into Tρ0,p in lines
36-52 which specifically handle the case when i = m.

The execution of Algorithm 1 can be done in O(|τ0|) time.

4.2 Identifying Verifiable Transitions

By definition, the transitions in T − Tρ0,p all have correct output at p. On the
other hand, not all transitions in Tρ0,p need to be verified for its output at p
with additional subsequences. This is based on the following two observations:

– A transition in Tρ0,p may appear in a different place in ρ0 where it is not
involved in any potentially undetectable output shift faults at p in ρ0, and
thus its output at p is verified in ρ0.

– Given a transition t ∈ Tρ0,p, there may exist an absolute verifying path upon
T − Tρ0,p for (t, p) in ρ0.

In general, before constructing additional subsequences to be appended to
τ0, we would like to find R0, P0 and U0 ⊂ Tρ0,p such that

– U0 is verifiable at p under R0 and P0 in ρ0, in the sense that U0 is verifiable
at p under R0 and P0, and the paths in codomain(P0) are all in ρ0;

– U0 is maximized, in the sense that for any R′
0, P ′

0 and U ′
0 such that U ′

0 is
verifiable at p under R′

0 and P ′
0 in ρ0, U ′

0 ⊆ U0.

The following proposition follows directly from the definition.

Proposition 1. Let ρ be a synchronizable path with input at p only in first(ρ)
and last(ρ), and t ∈ pre(ρ). Let Dt,ρ be the set of transitions in pre(ρ) such that
for any t′ ∈ Dt,ρ, t′ |p= − ⇔ t |p �= −. Then ρ is an absolute verifying path upon
Dt,ρ for (t, p).

Let ρ be a subsequence in ρ0 with input at p both at the beginning and at
the end. Based on the above proposition, if the set of all those transitions in
ρ with empty output at p is verifiable, then the set of all transitions in ρ is
verifiable using ρ as an absolute verifying path. Analogously, if the set of all
those transitions in ρ with non-empty output at p is verifiable, then the set of
all transitions in ρ is verifiable.

Thus, we can derive from ρ0 a set of so-called counter-pairs (L1, L2) of sets
of transitions. Each counter-pair (L1, L2) corresponds to a potential candidate
of absolute verifying path in ρ0 that can be used in defining P . It is obtained in
this way: for any subsequence ρ of ρ0 with input at p both at the beginning and
at the end (and no other input at p in it), there is a counter-pair (L1, L2) where
L1 contains all transitions in pre(ρ) with empty output at p, and L2 contains
all transitions in pre(ρ) with non-empty output at p. Such counter-pairs hold
the following property: for any set A of transitions in T , the outputs of all
transitions in L1 are verifiable upon A implies the outputs of all transitions
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1: input: an FSM M , a port p, a test/checking sequence τ0 = x1/y1x2/y2 . . . xm/ym

of M , and Tρ0,p

2: output: a set U0 of transitions that is verifiable at p in ρ0, and a set Θ of counter-
pairs of p

3: Θ := ∅
4: Let r ≤ m, s.t. xr ∈ Ip and ∀k, 1 ≤ k < r, xk �∈ Ip

5: while ∃j. r < j ≤ m s.t. xj ∈ Ip and ∀k, r < k < j, xk �∈ Ip do
6: let j be such that r < j ≤ m, xj ∈ Ip and ∀k, r < k < j, xk �∈ Ip

7: if ∃r ≤ k < j s.t. tk ∈ Tρ0,p then
8: L1 := ∅
9: L2 := ∅

10: for k, r ≤ k < j do
11: if yk |p= − then
12: add tk to L1

13: else
14: add tk to L2

15: end if
16: end for
17: add (L1,L2) to Θ
18: end if
19: r = j
20: end while
21: (U ′, Θ′) := counterPairsUpdate(T − Tρ0,p, Θ)
22: return U ′ and Θ′

Fig. 3. Algorithm 2: Construction of U0 and Θ

in L2 are verifiable upon A ∪ L1; and the outputs of all transitions in L2 are
verifiable upon A implies the outputs of all transitions in L1 are verifiable upon
A ∪ L2. Consequently, for any t ∈ L1, the path corresponding to (L1, L2) can
be used as an absolute verifying path upon U for (t, p) if L2 ⊆ U . Conversely,
for any t ∈ L2, the path corresponding to (L1, L2) can be used as an absolute
verifying path upon U for (t, p) if L1 ⊆ U .

Figure 3 gives an algorithm to calculate set U0 of transitions whose outputs
at p are verifiable in ρ0. Set Θ contains those counter-pairs that correspond to
potential candidates of absolute verifying paths. Given a set U0 of transitions
that is verifiable at p under R0 and P0 in ρ0, we can check if any potential
candidate of absolute verifying path can be used to extend U0. This operation
is performed in Figure 4. Counter-pairs whose corresponding paths will no more
be used during the construction of R0 and P0 are removed from Θ.

Note that if there is no input in τ0 that will be given at port p, then we are
not able to construct an absolute verifying path for any output at p. Since we
assume that Tp is verifiable, this implies that Tρ0,p = ∅, and thus there is no
need for the subsequences to be appended to ρ0 for port p. Hence we consider
there is at least one input at p in τ0.

At the end of Algorithm 2, we have that (i) U0 is verifiable at p under R0
and P0 in ρ0, and it is maximized; (ii) all potential absolute verifying paths in
ρ0 for further use have their correspondence in Θ.
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1: input: U and Θ
2: output: updated U and Θ
3: change := true
4: while change = true do
5: for each (L1, L2) ∈ Θ do
6: L1 := L1 − U
7: L2 := L2 − U
8: end for
9: change := false

10: for each (L1, L2) ∈ Θ do
11: if L1 = ∅ then
12: add all transitions in L2 to U
13: remove (L1, L2) from Θ
14: change := true
15: end if
16: if L2 = ∅ then
17: add all transitions in L1 to U
18: remove (L1, L2) from Θ
19: change := true
20: end if
21: end for
22: end while

Fig. 4. Procedure of counterPairsUpdate

We know that Σ(L1,L2)∈Θ(|L1| + |L2|) ≤ |τ0|, and |U| ≤ |T |. So in Figure 4,
the first for-loop will be executed maximally |τ0|× |T | times, and the second for-
loop will be executed maximally |τ0| times. The while-loop each time removes
at least one counter-pair from Θ. So in total it takes O(|τ0| × |T | × |Θ|) time to
perform counterPairsUpdate. Consequently, it takes O(|τ0| × |T | × |Θ|) time to
run Algorithm 2.

4.3 Identifying Subsequences to Be Added to τ0

Given an initial set U0 of transitions that is verifiable at p in ρ0, and a set Θ
of counter-pairs corresponding to some potential absolute verifying paths, we
define P and R such that Tρ0,p is verifiable at p under R and P ; the images
of P in ρ0 is maximized; there is no redundant path in U . This leads to the
construction of Qp that we want.

Figure 5 gives an algorithm to construct Qp. Here checkset is used to keep the
transitions that we may need to construct additional subsequences to verify their
output at p. Since we assume that Tp is verifiable at port p, Tρ0,p−U is also verifi-
able. So for each iteration of the outer while-loop, we can surely find an absolute
verifying path upon U for some t ∈ checkset before checkset becomes empty.

Whenever we find an absolute verifying path upon U for some t ∈ checkset,
we add to U all transitions in pre(ρ) such that they have empty output at p if
and only if t has empty output at p. This is because if ρ is an absolute verifying
path upon U for (t, p), then ρ is an absolute verifying path upon U for (t′, p) for
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1: input: p, Tρ0,p, Θ and U0

2: output: Qp

3: U = U0

4: while Tρ0,p − U �= ∅ do
5: checkset := Tρ0,p − U
6: found := false
7: while found = false do
8: let t ∈ checkset
9: if there exists an absolute verifying path upon U for (t, p) then

10: let ρ be a minimal-length absolute verifying path upon U for (t, p)
11: add ρ to Qp

12: for each transition t′ ∈ pre(ρ) s.t. t′ |p= − ⇔ t |p= −, add t′ to U
13: (U , Θ) := counterPairsUpdate(U , Θ)
14: found := true
15: else
16: checkset := checkset − {t}
17: end if
18: end while
19: end while

Fig. 5. Algorithm 3: Construction of Qp

all t′ ∈ pre(ρ) such that t′ |p= − ⇔ t |p= − (Proposition 1 in [5]). This also
guarantees that when we search for an absolute verifying path upon U for (t, p),
we do not need to check whether previously constructed subsequences in Qp can
be re-used. Consequently, there is no redundant path in U .

Whenever an additional sequence is constructed and added to Qp, U is up-
dated. Correspondingly, we call procedure counterPairsUpdate to check if based
on the updated U any potential absolute verifying path in ρ0 can be used. As
the initial value of U is from Algorithm 2, this guarantees that for any ρ ∈ Qp,
ρ is not a subsequence of ρ0. Thus, the images of P in ρ0 is maximized.

¿From [5], we know that if ρ is an absolute verifying path upon U for (t, p),
then when we apply the label of ρ from a state in N similar to the starting state
of ρ, then we can verify that the output of t at p is correct. So, when we have
Tρ0,p − U = ∅ at the end of the algorithm, we know that if we apply τ0 from the
initial state of N and apply the label of ρ from a state similar to the starting
state of ρ for all ρ ∈ Qp, then we can verify that there is no undetectable output
shift faults occurred in applying τ0 to N .

To find a minimal-length absolute verifying path upon U for (t, p), similar as
in [5], we can construct G[t, U ] which is obtained from G by removing all edges
except those corresponding to a transition t′ in one of the following cases:

– t′ has input at p;
– t′ |p= − if and only if t |p= −;
– t′ ∈ U

We then use breadth-first search to construct minimal-length synchronizable
path in G[t, U ] that starts with input at p and ends with input at p. Note that
there may exist more than one such path with minimal-length.
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Note also that while more transitions are added to U , there may exist shorter
path for a transition whose image under P was previously added to Qp.

Now we turn to the complexity of the algorithm. For each outer while-loop, U
is augmented by at least one transition. So the outer while-loop will be executed
at most v times where v is the number of transitions to be verified. For the inner
while-loop, we need to check if we can find an absolute verifying path upon U
for some t ∈ checkset where |checkset| ≤ v. This can be realized by trying to
construct an absolute verifying path upon U for each t in checkset until such
a path is found. This takes at most |checkset| times of effort for each attempt.
For each attempt to construct an absolute verifying path upon U for a given
transition t, it takes O(w × |T |) times where w is the number of states in M . In
summary, the time complexity of Algorithm 3 is O(v2 × w × |T |).

4.4 Adding Subsequences to τ0

Finally, given ρ0 and Qp for each p, we need to construct a minimal-length
test/checking sequence τ∗ so that (i) it is synchronizable; (ii) it starts with
τ0 and it contains all the input/output sequences of the paths in Qp for each
p ∈ [1, n]. Figure 6 gives such an algorithm. It generates a synchronizable path
ρ∗ and its label τ∗.

1: input: M , τ0, and Qp for each p ∈ [1, n]
2: output: test/checking sequence τ∗

3: Let Q = ∪p∈[1,n]Qp ∪ {ρ0}
4: Let graph G contain one vertex vρ for each path ρ in Q
5: for each ordered pair (ρ1, ρ2) ∈ Q such that ρ1 �= ρ2 do
6: find a shortest path ρ′ in M such that last(ρ1) ρ′ first(ρ2) is a synchronizable

path.
7: In G, add an edge e = (vρ1 , vρ2), with |ρ′| as its weight
8: let f1(e) = ρ1, f2(e) = ρ1ρ

′, f3(e) = ρ1ρ
′ρ2

9: end for
10: Find a walk r = e1e2 . . . ek in G that visits all vertices at least once with minimal

cost, and that f1(e1) = ρ0

11: Let ρ∗ = f2(e1)f2(e2) . . . f2(ek−1)f3(ek)
12: Let τ∗ be the label of ρ∗

Fig. 6. Algorithm 4: Addition of elements of Qp to ρ0 to form ρ∗

As we assume that M is intrinsically synchronizable, G is a strongly-
connected digraph. This guarantees the existence of r. In general, the time com-
plexity of Algorithm 4 is equivalent to that of finding a travelling saleman tour
in a digraph. Efficient heuristics exist for the solution of Travelling Saleman
Problem, cf. [12].

Note that ρ∗ may introduce new observability problems. However, since each
path in Qp has input at p in its first and last transitions, a new observability
problem cannot happen between a transition in a connecting path, i.e. a path
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used to connect paths in Qp, and a transition in an absolute verifying path in Qp.
It can only happen (i) within a connecting path; (ii) within an absolute verifying
path; or (iii) between a transition in ρ0 and a transition in a connecting path.
The new observability problems occurred in cases (i) and (ii) do not affect the
ability of τ∗ to verify that there is no undetectable output shift faults when τ0 is
applied to N . The new observability problems in case (iii) are resolved because
we have included into Tρ0,p all transitions that may possibly get involved in
some potentially undetectable output shift fault between a transition in ρ0 and
a transition in a path concatenated to the end of ρ0 (cf. Algorithm 1).

5 Conclusions and Final Remarks

We have presented a method for eliminating the use of external coordination
message exchanges for resolving observability problems in a given test/checking
sequence constructed from an FSM satisfying conditions given in [5]. There are
various optimization problems remaining to be solved. First, the existence of
multiple minimal-length absolute verifying paths can be used to optimize the
total length of ρ∗. Second, in our solution, the order of generating the subse-
quences will have an effect on the final set of additional subsequences. It will be
interesting to find approaches for eliminating this effect. Third, our solution only
considers the subproblem of constructing the subsequences for each port p indi-
vidually. It remains as an interesting problem to consider the global optimization
problem among all ports. Fourth, it will be quite interesting to incorporate some
of the algorithms proposed here into a checking sequence construction method to
construct a checking sequence in which there are no external coordination mes-
sage exchanges. It is anticipated that the complexity of the last two optimization
problems will be very high.
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