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Abstract. Logic of proofs LP, introduced by S. Artemov, originally de-
signed for describing properties of formal proofs, now became a basis for
the theory of knowledge with justification. So far, in epistemic systems
with justification the corresponding “evidence part”, even for multi-agent
systems, consisted of a single explicit evidence logic. In this paper we in-
troduce logics describing two interacting explicit evidence systems. We
find an appropriate formalization of the intended semantics and prove
the completeness of these logics with respect to both symbolic and arith-
metical models. Also, we find the forgetful projections for the logics with
two proof predicates which are extensions of the bimodal logic S42.

1 Introduction

The Logic of Proofs LP introduced by S. Artemov in 1995 (see the detailed
description in [1, 2]) was originally designed to express in logic the notion of
a proof. It is formulated in the propositional language enriched by new atoms
[[t]]F with the intended meaning “t is a proof of F”. Proofs are represented by
proof terms constructed from proof variables and proof constants by means of
three elementary computable operations: binary ·, + and unary ! specified by
the axioms

[[t]](A → B) → ([[s]]A → [[t · s]]B) application
[[t]]A → [[t + s]]A, [[s]]A → [[t + s]]A nondeterministic choice
[[t]]A → [[!t]][[t]]A positive proof checker

LP is axiomatized over propositional calculus by the above axioms and the prin-
ciple

[[t]]A → A weak reflexivity

The rules of inference are modus ponens and axiom necessitation rule. The latter
allows to specify proof constants as proofs of the concrete axioms

[[a]]A
, where a is an axiom constant, A is an axiom of LP.

The intended semantics for LP is given by formal proofs in Peano Arithnmetic
PA: proof variables are interpreted by codes of PA-derivations, [[t]]F stands for
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the arithmetical proof predicate “t is a proof of F”. It is proven in [2] that
LP is arithmetically complete with respect to the class of all proof systems.
Furthermore, LP suffices to realize Gödel’s provability logic S4 and thus provides
S4 and intuitionistic logic with the exact provability semantics.

In [3] it was suggested to treat [[t]]F as a new type of knowledge operator
called evidence–based knowledge with the meaning “t is an evidence for F .”
Evidence based knowledge (EBK ) systems are obtained by augmenting a multi–
agent logic of knowledge with a system of evidence assertions [[t]]F . Three main
cases of EBK–systems were introduced in [3] in which the base knowledge logic
is Tn, S4n or S5n. The evidence part for all of them consists of a single logic of
proofs LP.

In this paper we study multiple interacting EBK–systems, namely, we study
logics that describe the behavior of two reasoning agents P1 and P2 which some-
how communicate to each other. For simplicity, let us think about a reasoning
agent as a proof system, then evidences are proofs in this system. We develop
a language with two proof operators [[·]]1(·) and [[·]]2(·) representing proof predi-
cates for P1 and P2. In general, proofs of these two systems are distinct, so proof
terms for a proof system Pi (i = 1, 2) are constructed from its own atomic proofs
represented by proof variables pi

k and proof constants ci
k. We suppose that both

P1 and P2 has all the power of LP, so we reserve a copy of LP–operations ×i,
+i and !i for application, nondeterministic choice and positive proof checker in
Pi (i = 1, 2).

For the minimal logic of two proof systems denoted by LP2 we assume that
there is no communication between them, except that all axioms are common
knowledge, so we extend the axiom necessitation rule and allow it to derive all
the formulas

[[ck1
j1

]]k1 [[c
k2
j2

]]k2 . . . [[ckn

jn
]]knA, where all ki ∈ {1, 2}, A is an axiom.

Going further, we may assume that the two systems P1 and P2 are allowed to
communicate, that is, one of the proof systems is able to derive something about
the other one. We study two types of communications.

Proof checking. We assume that P2 can verify all proofs of P1 and introduce
a unary operation !21 specified by the axiom

[[t]]1A → [[!21t]]2[[t]]1A.

Further, we can consider the case when both P1 and P2 are able to verify
each other, then we add the dual operation !12 with the specification

[[t]]2A → [[!12t]]1[[t]]2A.

The resulting logics are denoted by LP2
! and LP2

!! respectively.
Proof embedding. Here we suppose that all proofs of P1 can be converted to

P2–proofs; this is done by the operation ↑2
1 specified by the principle

[[t]]1A → [[↑2
1 t]]2A.
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If P1 can also imitate P2–proof, we add a converse operation ↑1
2 with the

specification
[[t]]2A → [[↑1

2 t]]1A.

We denote the resulting logics by LP2
↑ and LP2

�.

In this paper for all the logics L mentioned above we do the following:

– describe symbolic semantics and prove completeness of L;
– find the forgetful projection of L, i.e. a bimodal logic obtained from L by

replacing all occurrences of [[t]]i by �i for i = 1, 2;
– describe arithmetical interpretation and prove completeness of L.

The structure of the paper is the following. In section 2 we give a precise
description of the language and the logics we are dealing with. In section 3 the
modal counterparts of all the described logics are found. It turned out that the
forgetful projections of LP2

! and LP2
!! coincide with the projections of LP2

↑ and
LP2

� respectively. Section 4 is devoted to symbolic and arithmetical semantics.

2 Explicit Evidence Logics for Two Agents: Definitions

Definition 1. The minimal language L of the bimodal explicit evidence logic is
denoted by LP2. It contains

– propositional variables SVar = {S1, S2, . . .};
– two disjoint sets of proof variables PVar i = {pi

1, p
i
2, . . .} and two disjoint sets

of proof constants {ci
1, c

i
2, . . .} where i = 1, 2;

– two copies of every operation on proofs from LP: binary ×1, +1, ×2, +2 and
unary !1 and !2;

– Boolean connectives and two operational symbols [[·]]1(·) and [[·]]2(·) of the
type proof → (proposition → proposition)

We also consider extensions of L. The first option is to add one or both of the
unary functional symbols !21 and !12; we denote the result by LP2

! , LP2
!! respectively.

Another option is to add one or both of the unary functional symbols ↑2
1 and ↑1

2;
the result is denoted by LP2

↑, LP2
� respectively.

For every language L from the definition above we define two sets of terms
Tmi(L), (i = 1, 2). For L = LP2 the set Tmi(L) consists of all terms constructed
from variables and constants labelled with sup-i by operations labelled by i.
Namely, for i = 1, 2, every proof variable pi

j or proof constant ci
j is an element

of Tmi(L) and if t, s ∈ Tmi(L), then t ×i s, t +i s and !it belong to Tmi(L) too.
For the extensions of the minimal language we add the following clauses to the
definition of terms

– for L = LP2
! , if t ∈ Tm1(L) then !21t ∈ Tm2(L);

– for L = LP2
!!, if t ∈ Tm1(L) then !21t ∈ Tm2(L) and if t ∈ Tm2(L) then

!12t ∈ Tm1(L);
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– for L = LP2
↑, if t ∈ Tm1(L) then ↑2

1 t ∈ Tm2(L);
– for L = LP2

�, if t ∈ Tm1(L) then ↑2
1 t ∈ Tm2(L) and if t ∈ Tm2(L) then

↑1
2 t ∈ Tm1(L).

Formulas of the language L are constructed from sentence variables by boolean
connectives and according to the rule: for i = 1, 2 if t ∈ Tmi(L) and F is a
formula of L then [[t]]iF is a formula of L too. The set of all formulas is denoted
by Fm(L). Formulas of the form and [[t]]iF are called q-atomic, the set of such
formulas is denoted by QFmi(L). We write QFm(L) for QFm1(L) ∪ QFm2(L).

Operations on proofs are specified by the following formulas (t, s are terms,
A, B are formulas):

Ax(×i) [[t]]i(A → B) → ([[s]]iA → [[t ×i s]]iB)
Ax(+i) [[t]]iA → [[t +i s]]iA, [[s]]iA → [[t +i s]]iA
Ax(!i) [[t]]iA → [[!it]]i[[t]]iA
Ax(!21) [[t]]1A → [[!21t]]2[[t]]1A
Ax(!12) [[t]]2A → [[!12t]]1[[t]]2A
Ax(↑2

1) [[t]]1A → [[↑2
1 t]]2A

Ax(↑1
2) [[t]]2A → [[↑1

2 t]]1A

Definition 2. For every language L from Definition 1 we define the correspond-
ing bimodal logic of proofs L. It is axiomatized by the following schemas:

A0 classical propositional axioms
A1 [[t]]iA → A, i = 1, 2
A2. . . axioms for all operations of L.

The rules of inference are modus ponens and axiom necessitation rule

[[ck1
j1

]]k1 [[c
k2
j2

]]k2 . . . [[ckn

jn
]]knA, where all ki ∈ {1, 2}, A is an axiom.

Informally speaking, the language LP2 describes the structure which contains
objects of three types: propositions represented by formulas, proofs1 and proofs2
represented by proof terms. We suppose that there are two proof systems P1 and
P2; the system Pi tries to find t ∈ proofsi for A ∈ propositions. The structure is
supplied with two proof predicates [[t]]1A and [[t]]2A, which correspond to P1 and
P2. Both proof predicates are supposed to be recursive. For every p ∈ proofsi

the set of propositions proved by p in Pi is finite and the function that maps
proofs to the corresponding sets is total recursive.

Both proof systems P1 and P2 are supplied with operations on proofs taken
from LP, thus, they are capable of internalizing there own proofs. The mini-
mal language LP2 corresponds to the situation when two proof systems do not
communicate. The only information about P1 which is available to P2 and vise
versa is transferred via the axiom necessitation rule. For example, the second
proof system knows that !1 is a proof checker of the first one since we can derive
[[c2]]2([[t]]1A → [[!t]]1[[t]]1A). Externally we can prove that something is provable
in P1 iff it is provable in P2, that is, the following two assertions are equivalent:
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there exists a term t ∈ Tm1(LP2) such that LP2 � [[t]]1A
and

there exists a term s ∈ Tm2(LP2) such that LP2 � [[s]]2A

However, this fact cannot be derived in LP2, that is, there is no term t ∈
Tm2(LP2) such that LP2 � [[p1]]1S → [[t]]2S (this fact easily can be proven using
symbolic semantics from section 4). So, neither P1 nor P2 is able to formalize or
proof the equivalence just mentioned.

The communication between the two proof systems becomes possible in the
extensions of LP2. In LP2

! and LP2
↑ it is one-way: P2 can derive some facts about

P1. In LP2
!! in LP2

� information can be transferred symmetrically both-ways.
Operations !21 and !12 are proof checkers. LP2

! corresponds to the case when P2 is
able to check proofs of P1; in LP2

!! we suppose that both of Pi can proof-check
each other. Operations ↑2

1 or ↑1
2 appear if one of the systems can prove everything

that the other one can.
Operations !21 and ↑2

1 can imitate each other in the following sense.

Lemma 1. 1. For every term t ∈ Tm1(LP2
! ) and formula F ∈ Fm(LP2

! ), there
is a term s ∈ Tm2(LP2

! ) such that LP2
! � [[t]]1F → [[s]]2F .

2. For every term t ∈ Tm1(LP2
↑) and formula F ∈ Fm(LP2

↑), there is a term
s ∈ Tm2(LP2

↑0 such that LP2
↑ � [[t]]1F → [[s]]2[[t]]1F .

Proof. 1. Derive in LP2
! 2. Derive in LP2

↑
[[t]]1F → [[!21t]]2[[t]]1F [[t]]1F → [[!1t]]1[[t]]1F
[[c2]]2([[t]]1F → F ) [[!1t]]1[[t]]1F → [[↑2

1!1t]]2[[t]]1F
[[t]]1F → [[c2 ×2 (!21t)]]2F [[t]]1F → [[↑2

1 (!1t)]]2[[t]]1F
take s = c2 ×2 (!21t) take s =↑2

1 (!1t).

Lemma 2 (Internalization property). Let L be one of the logics from De-
finition 2. If L � F , then for i = 1, 2 there exists a term ti constructed from
constants with the help of operations ×i and !i such that L � [[ti]]iF .

Proof. Standard induction on derivation of F .

Lemma 3. Let L be one of the logics from definition 2. For i = 1, 2 let δi be a
∧,∨–combination of q-atoms from QFmi(L). Let δ stand for a ∧,∨–combination
of q-atoms from QFm1(L) ∪ QFm2(L).

1. There exists a term ti such that L � δi → [[ti]]iδi.
2. If L contains either !21 or ↑2

1 then there exists a term t ∈ Tm2(L) such that
L � δ → [[t]]2δ.

3. If L contains either !12 or ↑1
2 then there exists a term t ∈ Tm1(L) such that

L � δ → [[t]]1δ.

Proof. 1. Induction on the construction of δi. If δi = [[t]]iF then apply Ax(!i) to
obtain L � δi → [[!it]]iδi. If δi = αi ∧ βi or δi = αi ∨ βi then, by the induction
hypothesis, there exist terms u and v such that L � αi → [[u]]iαi and L � βi →
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[[v]]iβi. By the axiom necessitation rule, L � [[ci]]i(αi → (βi → (αi ∧ βi)). Using
Ax(×i), we derive

L � αi ∧ βi → [[ci ×i u ×i v]]i(αi ∧ βi).

By axiom necessitation we also have L � [[ci
1]]i(αi → αi ∨ βi) and L � [[ci

2]]i(βi →
αi ∨ βi). Hence L � αi → [[ci

1 ×i u]]i(αi ∨ βi) and L � βi → [[ci
2 ×i v]]i(αi ∨ βi).

Therefore L � αi ∨ βi → [[(ci
1 ×i u) +i (ci

2 ×i v)]]i(αi ∨ βi).
2. The induction step is similar to the previous case. For the induction base

now we should consider two options [[t]]1F and [[s]]2F instead of one. The second
option is treated similarly with the previous case. For δ = [[t]]1F we have LP2

! �
[[t]]1F → [[!21t]]2[[t]]1F . In LP2

↑ we reason as follows: LP2
↑ � [[t]]1F → [[!1t]]1[[t]]1F

and LP2
↑ � [[!1t]]1δ1,2 → [[↑2

1!1t]]δ1,2. Hence LP2
↑ � δ1,2 → [[↑2

1!1t]]δ1,2.
3. Similar to 2.

3 Realization of Bimodal Logics

In [2] it is proven that LP is able to realize all derivations in the modal logic S4,
namely, if A is a theorem of S4 then there is an assignment of LP–terms to all
occurrences of �’s in A such that the resulting formula is a theorem in LP. In
this section we describe the modal counterparts of the logics LP2, LP2

! and LP2
↑.

We need the bimodal logic S42 and its extension S42
mon. S42 is given by the

following axioms and rules of inference: for i = 1, 2,

A1 propositional tautologies
A2 �iA → A
A3 �i(A → B) → (�iA → �iB)
A4 �iA → �i�iA
R1 Modus Ponens: A, A → B � B
R2 Necessitation: if � A then � �iA.

S42
mon is an extension of S42 by the principle

A5 �1F → �2F.

We prove that the analog of the realization theorem for S4 and LP holds for
the following pairs of logics: S42 and LP2, S42

mon and LP2
! , S42

mon and LP2
↑. We

need the following definition.

Definition 3. Let L be one of the languages from definition 1. Suppose that A is
a formula with two modalities. A realization of A in the language L is a formula
Ar ∈ Fm(L) which is obtained from A by substitution of terms from Tmi(L) for
all occurrences of �i in A. A realization is normal if all negative occurrences of
modalities are assigned proof variables.

Theorem 1. 1. S42 � A iff there exists a normal realization r in the language
LP2 such that LP2 � Ar.

2. For L ∈ {LP2
! , LP2

↑}, S42
mon � A iff there exists a normal realization r in

the language L such that L � Ar.
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The proof of this theorem goes along the lines of the proof of realization of
S4 in LP (sf. [2]). First of all, we need the normalized Gentzen-style versions
of S42 and S42

mon. Sequential calculus for S42, denoted by GS42, has the same
axioms and rules as sequential calculus for classical propositional logic plus four
modal rules (two for each modality):

(Left�i)
A, Γ ⇒ Δ

�iA, Γ ⇒ Δ
(Right�i)

�iΓ ⇒ A

�iΓ ⇒ �iA
(i = 1, 2).

In the Gentzen-style version of S42
mon denoted by GS42

mon the rule (Right�2) is
replaced by a stronger version

�1Γ1, �2Γ2 ⇒ A

�1Γ1, �2Γ2 ⇒ �2A
.

Theorem 2. For a logic L ∈ {S42, S42
mon} the following connection between L

and its Gentzen-style version G holds:

G � Γ ⇒ Δ iff L �
∧

Γ →
∨

Δ.

Theorem 3. Any logic G ∈ {GS42, GS42
mon} enjoys cut-elimination: if G �

Γ ⇒ Δ then Γ ⇒ Δ can be derived in G without using of the Cut-rule.

Lemma 4. 1. GS42 � Γ ⇒ Δ iff there exists a normal realization r such that
LP2 � (

∧
Γ →

∨
Δ)r.

2. For L ∈ {LP2
! , LP2

↑}, GS42
mon � Γ ⇒ Δ iff there exists a normal realization

r in the language L such that L � (
∧

Γ →
∨

Δ)r.

Proof. Similar to the proof of the realization theorem for LP. Goes by induction
on the cut-free proof of Γ ⇒ Δ. Uses Internalization and δ-completeness.

4 Symbolic and Arithmetical Semantics

Models of multi-agent logics of explicit knowledge below are natural generaliza-
tions of Mkrtychev models for LP (cf. [6]).

Definition 4. Let L be any language from definition 1. An L–model M =
(#, v) consists of two objects

– # is a mapping from proof terms of L to sets of formulas of L, called an
evidence function;

– v is a truth evaluation of sentence variables.

For every functional symbol from L the evidence function # should satisfy the
corresponding closure condition from the list given below: suppose that t, s are
in Tmi(L), i = 1, 2
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– if (A → B) ∈ #(t), A ∈ #(s) then B ∈ #(t ×i s);
– if A ∈ #(t) then A ∈ #(t +i s) and A ∈ #(s +i t);
– if A ∈ #(t) then [[t]]iA ∈ #(!it);
– if A ∈ #(u) and u ∈ Tm1(L) then [[u]]1A ∈ #(!21u);
– if A ∈ #(v) and v ∈ Tm2(L) then [[v]]2A ∈ #(!12v);
– if A ∈ #(u) and u ∈ Tm1(L) then A ∈ #(↑2

1 u);
– if A ∈ #(v) and v ∈ Tm2(L) then A ∈ #(↑1

2 v).

Definition of the truth relation M |= A is inductive: for propositional variables
M |= S iff v(S) = true, |= commutes with Boolean connectives and for ti ∈ Tmi

M |= [[t]]iA � A ∈ #(t) and M |= A.

A model M = (#, v) is called finitely generated (or f.g. for short) if

– for every term t the set #(t) is finite; the set {p ∈ PVar | #(p) 
= ∅} is finite;
– the set of terms, for which the converse of the conditions on the evidence

function does not hold, is finite;
– the set {S ∈ SVar | v(S) = true} is finite.

Definition 5. For any logic L from definition 2 a constant specification CS
is any finite set of formulas derived by the axiom necessitation rule. We say
that L � A meeting CS if all axiom necessitation rules in the derivation of A
introduce formulas from CS. We say that an L–model M meets CS if M |=
(
∧

CS ).

Theorem 4. Let L be any logic from definition 2.
1. If L � A meeting CS then for every L-model M meeting CS one has

M |= A.
2. If L 
� A meeting CS then there exists a f.g. L-model M meeting CS such

that M 
|= A.

Proof. We give the sketch of the proof for L = LP2; for the remaining systems the
proof differs in saturation and completion algorithms (see below) to which the
cases corresponding to the additional operations should be added. It is enough
to consider the case CS = ∅; the general case can be reduces to this one by the
deduction theorem which holds in all logics L. We omit all the proofs of technical
lemmas.

Soundness can be easily proven by induction on the derivation of A. In or-
der to prove completeness suppose that LP2 
� A. We will construct a finitely
generated model M = (#, v ) such that M 
|= A.

Step 1: Saturation algorithm. It constructs a finite set of formulas Sat(A)
which is called an adequate set. We need the following definition: the complexity
of a proof term t denoted by |t| is the length of the longest branch in the tree
representing this term. The saturation algorithm works as follows:

1. Initialization. Put Sat0(A) := SubFm(A). Calculate the maximal complexity
of terms which occur in A; let N denote the result.
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2. For every l = 1, . . . , N + 1 we calculate the set Sat l(A) as follows.
– Initially Sat l(A) := Sat l−1(A).
– if [[t]]i(A → B), [[s]]iA ∈ Sat l−1(A) then extend Sat l(A) by [[t ×i s]]iB;
– if [[t]]iA ∈ Sat l−1(A) and |s| ≤ l then extend Sat l(A) by [[t +i s]]iA and

[[s +i t]]iA;
– if [[t]]iA ∈ Sat l−1(A) then extend Sat l(A) by [[!it]]i[[t]]iA.

3. Put Sat(A) := SatN+1(A).

Lemma 5. (Properties of adequate sets.) For every l = 0, . . . , N + 1,

1. Sat l(A) is closed under subformulas, that is, SubFm(Sat l(A)) ⊆ Sat l(A).
2. If G ∈ Sat l+1(A) \ Sat l(A) then G has the form [[t]]E and |t| ≥ l + 1.
3. If [[t]]i(F → G), [[s]]iF ∈ Sat(A) and |t ×i s| ≤ N then [[t ×i s]]iG ∈ Sat(A).

If [[t]]iG ∈ Sat(A) and |t +i s| ≤ N , then [[t +i s]]iG, [[s +i t]]iG ∈ Sat(A).
If [[t]]iG ∈ Sat(A) and |!it| ≤ N then [[!it]]i[[t]]iG ∈ Sat(A).

Proof. Joint induction on l.

Step 2. Now we describe a translation of the language LP2 into the pure propo-
sitional language. For every q-atom [[t]]iB ∈ Sat(A) we reserve a fresh propo-
sitional variable St,i,B. For every formula G whose all q-atomic subformulas
belong to Sat(A) by G′ we denote the result of substitution of all outermost
occurrences of q-atomic subformulas in G by the corresponding propositional
variables. Namely, we define G′ by induction on the construction of G in the
following way: for propositional variables S′ � S; (·)′ commutes with boolean
connectives and ([[t]]iB)′ � St,i,B.

Let Ax(A) stand for the conjunction of all substitutional instances of axioms
A1–A4 whose all q-atomic subformulas are from Sat(A). Put Ap � (Ax(A) →
A)′. Since LP2 
� A we conclude that Ap is not provable in propositional logic
(otherwise after the reverse substitution of [[t]]iB for St,i,B in the derivation of Ap

in propositional calculus we get LP2 � Ax(A) → A, hence LP2 � A). Therefore,
there exists an evaluation w of propositional letters from Ap by (true, false) such
that w(Ap) = false. Define

Γ0 � {B ∈ Sat(A) | w(B′) = true},
Δ0 � {B ∈ Sat(A) | w(B′) = false}.

Lemma 6. The sets Γ0 and Δ0 has the following properties:

1. Γ0 ∩ Δ0 = ∅.
2. If [[t]]E ∈ Γ0 then E ∈ Γ0.
3. If [[t]]i(F → G), [[s]]iF ∈ Γ0 and |t ×i s| ≤ N then [[t ×i s]]iG ∈ Γ0.

If [[t]]iG ∈ Γ0 and |t +i s| ≤ N then [[t +i s]]iG ∈ Γ0 and [[s +i t]]iG ∈ Γ0.
If [[t]]iG ∈ Γ0 and |!it| ≤ N then [[!it]]i[[t]]iG ∈ Γ0.

Step 3. Completion algorithm. It goes through infinite number of iterations;
the l-th iteration produces the set Γl which is finite. Start with Γ0. For every
l = 1, 2, . . . on the l-th iteration construct the set Γl as follows
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– Initially Γl := Γl−1.
– if [[t]]i(A → B), [[s]]iA ∈ Γl−1 then extend Γl by [[t ×i s]]B;
– if [[t]]iA ∈ Γl−1 and |s| ≤ l then extend Γl by [[t +i s]]iA and [[s +i t]]iA;
– if [[t]]iA ∈ Γl−1 then extend Γl by [[!it]]i[[t]]lA;
– Go to the next l.

Put Γ :=
⋃

l Γl.

Lemma 7. For every l = 0, 1, 2, . . .,

1. The set Γl is finite and Γl ∩ Δ = ∅
2. If E ∈ Γl+1 \ Γl then E is of the form [[t]]G and |t| ≥ N + l + 1.
3. Γl ∪ Δ0 is closed under subformulas, that is, SubFm(Γl ∪ Δ) ⊆ Γl ∪ Δ.
4. If [[t]]i(F → G), [[s]]iF ∈ Γ then [[t×is]]iG ∈ Γ . If [[t]]iG ∈ Γ then [[t+is]]iG ∈

Γ and [[s +i t]]iG ∈ Γ . If [[t]]iG ∈ Γ then [[!it]]i[[t]]iG ∈ Γ .
5. For every term t the set I(t) = {E | [[t]]E ∈ Γ} is finite and the function

t �→ I(t) is primitive recursive.

Proof. Induction on l.

Step 4. For every t ∈ Tmi and S ∈ SVar put

#(t) � {E | [[t]]E ∈ Γ} v(S) � w(S).

Lemma 8. For every formula G one has

G ∈ Γ ⇒ M |= G;
G ∈ Δ ⇒ M 
|= G.

Proof. Induction on G. We use lemma 7.

From lemmas 8 and 7 it follows that M is a finitely generated model for LP2.
Since w(A′) = false we conclude A ∈ Δ, hence M 
|= A. This completes the
proof of the theorem.

Corollary 1. LP2 is decidable.

Epistemic semantics for LP2 is given by the following natural generalization of
Fitting models (cf. [4]). For any language L from definition 1 one could define a
Fitting model as follows. An L–model M = (W, R1, R2, E , v) has the following
parameters

– a nonempty set of possible worlds W ;
– two reflexive transitive accessibility relations on W denoted by R1, R2

– an evidence function E which maps W × Tm(L) to sets of formulas of L,
– for every x ∈ W a truth evaluation v(x) maps propositional variables to

{true, false}.
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We require that for every node x ∈ W the restriction of E to x satisfies all the
conditions for # and E is monotone in the following sense: for i = 1, 2 if xRiy
and t ∈ Tmi(L) then E(x, t) ⊆ E(y, t).

The truth relation for every node x ∈ W is defined in the standard way; we
put M, x |= [[t]]iF iff F ∈ E(x, t) and M, y |= F for every y ∈ W such that xRiy.

Note that a model in the sense of definition 4 is a Fitting model, namely, take
W a singleton set and R1, R2 total relations on W . It is easy to prove that all
the logics considered in this paper are sound and complete with respect to the
models just described. In particular, the completeness with respect to Fitting
semantics follows from Theorem 4 and the fact that aforementioned Mkrychev
models are singleton versions of the corresponding Fitting models.

Now let us describe the interpretation of bimodal logics of proofs in Peano
Arithmetic PA (the definition of PA and related topics can be found in [7]).

Definition 6. A normal proof predicate Prf is an arithmetical provably Δ1
formula satisfying the following conditions:
1) for every arithmetical formula ϕ PA � ϕ iff there exists a natural number n

such that Prf (n, �ϕ�);
2) for every n the set Th(n) � {ϕ | Prf (n, �ϕ�)} is finite and the function

n �→ Th(n) is total recursive;
3) for every finite set of arithmetical theorems Γ there exists a natural number

n such that Γ ⊆ Th(n).

Lemma 9. Let L be a language from definition 1. For every pair of normal
proof predicates Prf 1, Prf 2 and every operation of L there exist a total recursive
function which satisfies the corresponding axiom. For example, there exists a
function appi such that for all natural numbers k, n for all arithmetical sentences
ϕ, ψ

PA � Prf i(k, �ϕ → ψ�) → (Prf i(n, �ϕ�) → Prf i(appi(k, n), �ψ�))

Definition 7. Let L be one of the languages from definition 2. An arithmeti-
cal interpretation ∗ = (Prf 1,Prf 2, (·)∗) for the language L has the following
parameters:

– two normal proof predicate Prf 1 and Prf 2;
– total recursive functions for operations of L which satisfy lemma 9
– an evaluation (·)∗ that assigns natural numbers to proof variables and arith-

metical sentences to propositional variables.

Arithmetical evaluation (·)∗ can be extended to all LP2 terms and formulas in
the following way. It commutes with the Boolean connectives and

([[t]]iA)∗ � ∃x (i = i ∧ x = �A∗� ∧ Prf i(t
∗, x)).

Note that PA � ([[p]]A)∗ ↔ Prf (p∗, �A∗�). The reasons why we interpret the proof
predicates in the more sophisticated way is that it makes the following problem
decidable: being given Prf i, an arithmetical formula ϕ and an L-formula F ,
decide whether there exists (·)∗, such that F ∗ = ϕ. If such ∗ exists then it is
unique.
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Theorem 5. [ Arithmetical soundness and completeness]
For every LP2 formula A the following three propositions are equivalent:

1) LP2 � A;
2) for every interpretation ∗, PA � A∗;
3) for every interpretation ∗, A∗ is true.
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