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Abstract. We study a quantitative model of traces, i.e. trace series which as-
sign to every trace an element from a semiring. We show the coincidence of
recognizable trace series with those which are definable by restricted formulas
from a weighted logics over traces. We use a translation technique from formu-
las over words to those over traces, and vice versa. This way, we show also the
equivalence of aperiodic and first-order definable trace series.

1 Introduction

Traces as introduced by Mazurkiewicz [19] model concurrency by a global indepen-
dence relation on a finite alphabet, i.e. traces are congruence classes of words modulo
the independence relation. A fruitful theory of combinatorics on traces and of trace
languages has developed the last twenty years, see [6, 5] for an overview. Droste and
Gastin [7] started to explore quantitative aspects of traces a few years ago. They en-
riched the model with weights from a semiring as it was done for words already in
the 1960s by Schützenberger [23]. Droste and Gastin obtained a result in the style of
Kleene and Schützenberger, i.e. the coincidence of recognizability and a restricted form
of rationality. Moreover, they defined and characterized in [8] a weighted concept of
aperiodicity for traces. Kuske [16] showed recently the coincidence of recognizable
trace series with those recognized by weighted asynchronous cellular automata, both in
the non-deterministic and deterministic case. However, a characterization by weighted
logics in the lines of Büchi [4] and Elgot [12] was missing even for words. This gap
was closed recently by an introduction of weighted logics over words by Droste and
Gastin [9]. The semantics of this weighted MSO-logics is a formal power series over
words, i.e. a function from the free monoid into a semiring. Weighted logics was already
extended to trees by Droste and Vogler [10] and to pictures by Mäurer [18].

Naturally, the question arises whether this concept carries over to traces and, there-
with, generalizes the results of Droste and Gastin for weighted logics over words [9] on
the one hand and the logical characterization of trace languages as done by Ebinger and
Muscholl [11] and Thomas [24] on the other hand. Moreover, one could be interested
in the execution time of a trace or in the multiplicity of a certain property satisfied by
a trace. Such problems can be formulated often better by a logical formula than by a
direct construction of a weighted automaton for traces. Therefore, we are interested in
weighted logics over traces and in a result that states the coincidence of logically defin-
able and recognizable trace series. Moreover, such a coincidence should be effective in
order to open the way to something like quantitative model checking over traces.
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Here, we can avoid to repeat the proof of [9] for traces. Instead of this we adapt
a technique introduced by Ebinger and Muscholl [11] for their result about the coin-
cidence of definable and recognizable trace languages. There, a formula over traces is
translated into an appropriate one over words and vice versa using the lexicographic
normal form. This way one is able to transfer the coincidence of definable and recog-
nizable word languages to trace languages. For the weighted case the main problem
is to keep the right weighted semantics within the translation of the formulas. Indeed,
disjunction and existential quantification result in an addition, whereas conjunction and
universal quantification result in multiplication within the underlying semiring. Cer-
tainly, these operations are not idempotent in general. Therefore, we are in need of
certain “unambiguity” results that will guarantee the right semantics. We obtain such a
result for first-order formulas over more general relational structures with a well-order
on their elements which is definable by a propositional formula. We apply this result
to traces, prove the “translation lemma”, and succeed in proving the coincidence of
recognizable trace series with trace series defined by restricted monadic second-order
formulas. Moreover, for the underlying semiring being either a computable field or be-
ing locally finite we will show that decidability results carry over from words to traces.
Finally, the coincidence of aperiodic and first-order definable trace series is shown.

For further research the consequences of these results should be explored more in
detail. Moreover, application of weighted logics to other models of concurrency like
sp-posets [17, 21, 20], MSCs [3], and Σ-DAGs [2] is in work.

2 Basic Concepts

Let Σ be a finite alphabet, Σ∗ the free monoid, and I ⊆ Σ2 an irreflexive and sym-
metric relation, called the independence relation. Then D = Σ2 \ I is reflexive and
symmetric and called the dependence relation. We define ∼ ⊆ Σ∗ × Σ∗ by

u ∼ v ⇐⇒ u = w1abw2 ∧ v = w1baw2 for (a, b) ∈ I and w1, w2 ∈ Σ∗.

By abuse of notation we denote the reflexive and transitive closure of ∼ also by ∼.
Now ∼ is a congruence relation on Σ∗ and the resulting quotient is called the trace
monoid � = �(Σ, D). Its elements are called traces. Let ϕ : Σ∗ → � be the canonical
epimorphism with ϕ(w) = [w] where [w] is the congruence class of w. For t ∈ � there
is a prominent representative among ϕ−1(t), the lexicographic normal form LNF(t) of
t, i.e. the least representative of t with regard to the lexicographic order. The set of all
lexicographic normal forms is denoted by LNF. L ⊆ � is called a trace language.

A semiring � = (K, ⊕, ◦, �, �) is a set K equipped with two binary operations,
called addition ⊕ and multiplication ◦, such that

1. (K, ⊕, �) is a commutative monoid and (K, ◦, �) a monoid,
2. multiplication distributes over addition: k ◦ (l ⊕ m) = (k ◦ l) ⊕ (k ◦ m) and

(l ⊕ m) ◦ k = (l ◦ k) ⊕ (m ◦ k) for all k, l, m ∈ K , and
3. � ◦ k = k ◦ � = � for all k ∈ K .

If the multiplication is commutative we speak of a commutative semiring. Examples
of semirings are the natural numbers � = (�, +, ·, 0, 1), the tropical semiring
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� = (� ∪ {−∞}, max, +, −∞, 0), and the Boolean semiring � = ({0, 1}, ∨, ∧, 0, 1)
which equals the two-element Boolean algebra. For an overview about semirings
see [13, 14].

A formal trace series or just trace series over a trace monoid �(Σ, D) and a semi-
ring � is a function T : �(Σ, D) → � . It is often written as a formal sum

T =
∑

t∈�(Σ,D)

(T, t) t

where (T, t) = T (t). Functions S : Σ∗ → � are called here word series. The collection
of formal trace series over � and � is referred to as � 〈〈�〉〉, and, similarly, � 〈〈Σ∗〉〉 is
defined. For an overview about formal word series see [22, 15, 1].

For the Boolean semiring � there is a one-to-one correspondence between trace
series T =

∑
t∈�(Σ,D)(T, t) t over � and their support supp(T ) = {t ∈ �(Σ, D) |

(T, t) �= �}. Vice versa, a trace language L ⊆ �(Σ, D) corresponds to its characteristic
series �L where

(�L, t) =

{
� if t ∈ L,

� otherwise.

Hence, formal power series extend formal language theory.

3 Recognizable Trace Series

Let � be a trace monoid and � a semiring. Let � n×n denote the monoid of n × n-
matrices over � equipped with multiplication. A recognizable trace series is a trace
series T ∈ � 〈〈�〉〉 such that there are an n ∈ �, a monoid homomorphism μ : � →
�

n×n, λ ∈ K1×n, and γ ∈ Kn×1 with (T, t) = λμ(t)γ for all t ∈ �. The triple
(λ, μ, γ) is called a linear representation of T . For ϕ : Σ∗ → � the canonical epimor-
phism and S ∈ � 〈〈�〉〉 we define ϕ−1(S) ∈ � 〈〈Σ∗〉〉 by (ϕ−1(S), w) = (S, ϕ(w)).
Furthermore, for S′ ∈ � 〈〈Σ∗〉〉 we denote by S′

|LNF the restriction of S′ to LNF, i.e.

(S′
|LNF, w) =

{
(S′, w) w ∈ LNF,

� otherwise.

The following theorem is implicit in [7].

Theorem 3.1. Let � be a commutative semiring. Then S ∈ � 〈〈�〉〉 is recognizable iff
S′ = ϕ−1(S)|LNF ∈ � 〈〈Σ∗〉〉 is recognizable.

The next lemma can be shown as for word series, cf. [1, L. III.1.3].

Lemma 3.2. Let � be a semiring and L ⊆ � a recognizable trace language. Then
�L ∈ � 〈〈�〉〉 is a recognizable trace series.

Corollary 3.3. Let Li ⊆ � be recognizable trace languages and ki ∈ � for i = 1,
. . . , n. Then S =

∑n
i=1 ki�Li is a recognizable trace series.

The last corollary justifies the name recognizable step function for a series of the form
S =

∑n
i=1 ki�Li with Li ⊆ � recognizable for all i = 1, . . . , n.
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4 Definable Trace Series

We represent every trace t ∈ �(Σ, D) by its dependence graph. A dependence graph is
(an isomorphism class of) a node-labeled acyclic graph (V, E, l) where V is an at most
countable set of nodes1, E ⊆ V × V is the edge relation such that (V, E) is acyclic and
the induced partial order is well-founded, l : V → Σ is the node-labeling such that

(l(x), l(y)) ∈ D ⇐⇒ (x, y) ∈ E ∪ E−1 ∪ idV .

A concatenation of dependence graphs is defined by the disjoint union provided with
additional edges between nodes with dependent labels, i.e.

(V1, E1, l1) · (V2, E2, l2)
=(V1 ∪̇ V2, E1 ∪̇ E2 ∪̇ {(x, y) ∈ V1 × V2 | (l1(x), l2(y)) ∈ D}, l1 ∪̇ l2) .

The monoid �(Σ, D) of finite traces can be identified with the monoid of finite depen-
dence graphs.

Let t = (V, E, l) ∈ � and w = a1 . . . an ∈ Σ∗ with ϕ(w) = t. Then we represent
w as (V, <, (Ra)a∈Σ) where < is a strict total order on V (the order of positions) and
Ra = {v ∈ V | l(v) = a} for all a ∈ Σ.

Definition 4.1. The syntax of formulas of weighted MSO-logic over traces from � and
over a semiring � is given by

Φ ::= k | Pa(x) | ¬Pa(x) | E(x, y) | ¬E(x, y) | x ∈ X | ¬x ∈ X |
Φ ∨ Ψ | Φ ∧ Ψ | ∃x.Φ | ∃X.Φ | ∀x.Φ | ∀X.Φ

with k ∈ � and a ∈ Σ. This class of formulas is denoted by MSO(� ,�).

Remark 4.2. The weighted MSO-logic is a generalization of the usual MSO-logic.
Weighted MSO-logic differs in two aspects. Firstly, atomic formulas of type k for
k ∈ K are added. Secondly, negation is applied to “unweighted” atomic formulas only.
This is due to the fact that a semantics of something like ¬k cannot be defined properly
for arbitrary semirings. Hence, we cannot negate neither k nor general MSO-formulas.
Thus negation is pulled through the unweighted atomic formulas and conjunction and
universal quantification have to be added.

Note 4.3. A weighted MSO-logic for words, denoted by MSO(� , Σ) was defined in
[9]. It uses k, x ≤ y, Pa(x), and x ∈ X as atomic formulas2. Here, we do not include
the formula x = y in our syntax because for traces this can be written as

∨

a∈Σ

(Pa(x) ∧ Pa(y)) ∧ ¬E(x, y) ∧ ¬E(y, x) .

1 Here, we deal with finite objects, i.e. finite traces, only. But we stick to the more general case,
keeping in mind the possibility to consider infinite objects.

2 Later on, we will use for words x < y instead of x ≤ y which is just a slight technical
difference.
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A variable is free in Φ if it is not within the scope of a quantifier. The collection of all
free variables of Φ is denoted by free(Φ). Let V be a finite set of first-order and second-
order variables and t = (V, E, l). A (V , t)-assignment σ is a function mapping first-
order variables of V to elements of V and second-order variables of V to subsets of V .
An update σ[x → v] for v ∈ V is defined as σ[x → v](x) = v and σ[x → v](y) = σ(y)
for all y �= x, and, similarly, for σ[X → W ] where W ⊆ V . A pair (t, σ) where σ is
a (V , t)-assignment will be encoded as a trace over an extended dependence alphabet
ΣV = Σ × {0, 1}V . The new dependence relation DV is defined by (a, x̄)DV(b, ȳ)
iff aDb for a, b ∈ Σ and x̄, ȳ ∈ {0, 1}V . A trace t′ over ΣV will be written as a pair
(t, σ) where t is the projection of t′ over Σ and σ is the projection over {0, 1}V . Then
σ represents a valid V-assignment if for any first-order variable x ∈ V the x-row of σ
contains exactly one 1. Similarly, valid V-assignments are defined for words.

Proposition 4.4. The trace language AV = {(t, σ) | σ is a valid V-assignment} is
recognizable.

For any formula Φ of MSO we simply write ΣΦ = Σfree(Φ) and AΦ = Afree(Φ). Now
we turn to the semantics of our formulas.

Definition 4.5. Let Φ ∈ MSO(� ,�) and let V be a finite set of variables with
free(Φ) ⊆ V . The semantics of Φ is a formal trace series [[ Φ ]]V ∈ � 〈〈�(Σ∗

V , DV)〉〉
defined as follows: Let (t, σ) ∈ �(ΣV , DV). If σ is not a valid V-assignment, then
[[ Φ ]]V(t, σ) = �. Otherwise, we define [[ Φ ]]V(t, σ) for t = (V, E, l) inductively as
follows:

– [[ k ]]V(t, σ) = k,

– [[ Pa(x) ]]V (t, σ) =

{
� if l(σ(x)) = a,

� otherwise,

– [[ E(x, y) ]]V (t, σ) =

{
� if (σ(x), σ(y)) ∈ E,

� otherwise,

– [[ x ∈ X ]]V(t, σ) =

{
� if σ(x) ∈ σ(X),
� otherwise,

– if Φ is of the form Pa(x), E(x, y), or x ∈ X , then

[[ ¬Φ ]]V(t, σ) =

{
� if [[ Φ ]]V(t, σ) = �,

� if [[ Φ ]]V(t, σ) = �,

– [[ Φ ∨ Ψ ]]V(t, σ) = [[ Φ ]]V (t, σ) ⊕ [[ Ψ ]]V(t, σ),
– [[ Φ ∧ Ψ ]]V(t, σ) = [[ Φ ]]V (t, σ) ◦ [[ Ψ ]]V(t, σ),
– [[ ∃x.Φ ]]V (t, σ) =

⊕
v∈V [[ Φ ]]V∪{x}(t, σ[x → v]),

– [[ ∃X.Φ ]]V(t, σ) =
⊕

W⊆V [[ Φ ]]V∪{X}(t, σ[X → W ]),
– [[ ∀x.Φ ]]V (t, σ) =

∏
v∈V [[ Φ ]]V∪{x}(t, σ[x → v]),

– [[ ∀X.Φ ]]V(t, σ) =
∏

W⊆V [[ Φ ]]V∪{X}(t, σ[X → W ]).

where we fix some order both on V and on P(V ) so that the last two products are
defined even if � is not commutative. We simply write [[ Φ ]] for [[ Φ ]]free(Φ).
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If Φ is a sentence, then [[ Φ ]] ∈ � 〈〈�〉〉. As usual, the semantics of some formula Φ
depends on the free variables only. We call S =

∑n
i=1 ki�Li a definable step func-

tion if the languages Li are definable trace languages, or word languages respectively,
for all i = 1, . . . , n. For words and traces the notions of recognizable and definable
step functions coincide because of the results of Büchi & Elgot [4, 12] and Ebinger &
Muscholl [11].

Definition 4.6. A formula Φ ∈ MSO(� , Σ) or Φ ∈ MSO(� ,�) is called restricted, if
it contains no universal quantification of second-order ∀X.Ψ , and whenever Φ contains
a universal first-order quantification ∀x.Ψ , then [[ Ψ ]] is a definable step function.

Remark 4.7. Droste and Gastin [9] had to use restricted MSO-formulas over words
to preserve recognizability of the defined series. For universal FO-quantification ∀x.Ψ
they required [[ Ψ ]] =

∑n
i=1 ki�Li being a recognizable step function. Since we define

a class of formulas, we favor to speak of the logical counterpart, i.e. definable step
functions.

RMSO(� ,�) is the class of all restricted formulas from MSO(� ,�). Moreover, let
REMSO(� ,�) contain all restricted existential formulas Φ ∈ RMSO(� ,�), i.e. Φ
is of the form ∃X1.∃X2 . . . ∃Xn.Ψ with Ψ ∈ RMSO(� ,�) containing no second-
order quantification anymore. FO and RFO denote the classes of first-order formulas
and restricted first-order formulas, respectively. Similar notations are used for formulas
over words.

5 Characteristic Series of FO-Definable Languages

Let C be a class of finite relational structures. We define formulas of a weighted MSO-
logic over C in the same manner as for traces, i.e. atomic formulas are beside k for k ∈
K , and x ∈ X the relation symbols of C and possibly x = y, and negation is applied
to atomic formulas only. The formulas are provided with the appropriate semantics
S : C → � as for traces, i.e. atomic formulas are interpreted by the characteristic series
of the defined language (a valid V-assignment provided) and the semantics of composed
formulas is given as above. Similarly, an unweighted MSO-logic for C is defined with
a semantics of languages L ⊆ C. Moreover, we suppose that there is a propositional
formula Ω(x, y) (i.e. one without any quantifier) with free FO-variables x, y such that
for any structure t ∈ C the binary relation defined by Ω is a linear order on the elements
of t. We say that C has a simply definable linear order.

Let L ⊆ C be a language of C and L = C \ L the complement of L.

Lemma 5.1. Let C be a class of finite relational structures with a simply definable
linear order. Let L = L(Φ) be defined by an FO-formula Φ. Then both �L and �L are
definable in RFO.

Proof (sketch). Let L ⊆ C be defined by Φ. We proceed by induction giving for each
FO-formula Φ RFO-formulas Φ+ and Φ− such that [[ Φ+ ]] = �L and [[ Φ− ]] = �L.
The interesting cases are (∃x.Φ)+ and (∀x.Φ)−. Therefore, we choose the “smallest”
element that satisfies Φ+, and Φ− respectively, by using Ω(x, y) defining the linear
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order ≤Ω . Since Ω(x, y) is a propositional formula we can already define Ω+(x, y).
Now we put

(
∃x.Φ(x)

)+ = ∃x.
(
Φ+(x) ∧ ∀y.

(
Φ−(y) ∨ Ω+(x, y)

)+
)

.

This is an RFO-formula. Indeed, Φ+(x) is an RFO-formula by induction hypothesis and
so are Φ−(y) and Ω+(x, y). Moreover,

(
Φ−(y) ∨ Ω+(x, y)

)+
defines a definable step

function by induction hypothesis. Since we choose the “smallest” element x satisfying
Φ we get for a valid V-assignment

[[ (∃x.Φ(x))+ ]]V(t, σ) =

{
� if there is an v such that (t, σ[x → v]) satisfies Φ,

� otherwise.

Similarly we proceed for (∀x.Φ)−. ��

Corollary 5.2. Let L be an FO-definable trace language. Then �L is RFO-definable.

Proof. For a fixed linear order � on the alphabet Σ put

Ω(x, y) =
∨

(a,b)∈≺

(
Pa(x) ∧ Pb(y)

)
∨

∨

a∈Σ

(
Pa(x) ∧ Pa(y) ∧ ¬E(y, x)

)

and apply Lemma 5.1. ��

6 The Coincidence of Recognizable and Definable Trace Series

We will follow the ideas of the proof as given for trace languages, cf. [5, pp. 497–505]
and use the result of the previous section.

Lemma 6.1. Let � be a commutative semiring, ϕ : Σ∗ → � the canonical epimor-
phism, and T ∈ � 〈〈�〉〉 a trace series. The following are equivalent:

(i) T is definable in RMSO, and REMSO respectively.
(ii) ϕ−1(T ) ∈ � 〈〈Σ∗〉〉 is definable in RMSO, and REMSO respectively.

(iii) S = ϕ−1(T )|LNF ∈ � 〈〈Σ∗〉〉 is definable in RMSO, and REMSO respectively.

Proof. (i) =⇒ (ii) Let T ∈ � 〈〈�〉〉 be defined by some sentence Ψ . Let t = (V, E, l)
be any trace and w ∈ Σ∗ with ϕ(w) = t. We have for v1, v2 ∈ V that (v1, v2) ∈ E iff
v1 < v2 in w and (l(v1), l(v2)) ∈ D. Thus, replacing every atomic formula E(x, y) in
Ψ by the propositional formula

x < y ∧
∨

(a,b)∈D

(Pa(x) ∧ Pb(y)) (1)

yields an new sentence Ψ̃ . One shows easily ([[ Ψ ]], t) = ([[ Ψ̃ ]], w) for each t ∈ �, w ∈
Σ∗ with ϕ(w) = t by structural induction.
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It still remains to show that for Ψ ∈ RMSO(� ,�) also Ψ̃ ∈ RMSO(� , Σ). Clearly,
if Ψ contains no universal second-order quantification neither does Ψ̃ . Consider Ψ =
∀x.Φ with [[ Φ ]] =

∑n
i=1 ki�Li for definable and, hence, recognizable trace languages

Li ⊆ � for i = 1, . . . , n. As we have shown, [[ Ψ̃ ]](w, σ) = [[ Ψ ]](t, σ) where ϕ(w) =
t. Consider the word series S =

∑n
i=1 ki�ϕ−1(Li). It is a recognizable and, hence,

definable step function over words since ϕ−1(Li) is recognizable for i = 1, . . . , n.
Moreover, (w, σ) ∈ ϕ−1(Li) for some i implies that σ is a valid V-assignment. For
(w, σ) with σ a valid V-assignment we have

S(w, σ) =
n⊕

i=1

ki�ϕ−1(Li)(w, σ) =
⊕

{i|w∈ϕ−1(Li)}
ki =

⊕

{i|t=ϕ(w)∈Li}
ki = [[ Φ ]](t, σ).

Hence, S = Φ̃ is a definable step function. Thus, if Ψ is reduced so is Ψ̃ . Moreover, for
Ψ ∈ REMSO(� ,�) also Ψ̃ ∈ REMSO(� , Σ) because (1) is a propositional formula.

(ii) =⇒ (iii) Let ϕ−1(T ) ∈ � 〈〈Σ∗〉〉 be defined by an RMSO-formula Φ, let S =
ϕ−1(T )|LNF, and let � be the fixed order on Σ. The language LNF of all lexicographic
normal forms is defined by the FO-sentence

∀i∀k.
[
(i ≤ k) −→

(
l(i) � l(k) ∨ ∃j.

(
i ≤ j < k ∧ (l(j), l(k)) ∈ D

))]

where implication −→, l(i) � l(k), and (l(j), l(k)) ∈ D are obvious abbreviations. By
Corollary 5.2, there is an RFO-formula Λ with [[ Λ ]] = �LNF. Hence, S = [[ Φ ∧ Λ ]]. If
Φ = ∃X1 . . . ∃Xn.Ψ is an REMSO-formula, then S is defined by the REMSO-formula
∃X1 . . . ∃Xn.(Ψ ∧ Λ) because Λ is from RFO.

(iii) =⇒ (i) Let S = ϕ−1(T )|LNF be defined by Φ ∈ RMSO. Then supp(S) ⊆
LNF. We replace every atomic formula x < y in Φ by a new formula lex(x, y) that mod-
els the order in the lexicographic normal form, i.e. for every t and a valid V-assignment
σ we get (t, σ) |= lex(x, y) iff σ(x) < σ(y) in LNF(t). The formula lex(x, y) can be
found in the literature (cf.[5, p. 502]) and is an FO-formula because transitive closure of
E can be expressed for traces in FO. Hence, we apply Corollary 5.2 and obtain an RFO-
formula lex+(x, y) defining �L(lex(x,y)), and similarly �L(¬ lex(x,y)) can be defined by
an RFO-formula lex−(x, y). Let Ψ be any formula over words and Ψ̃ the formula over
traces obtained from Ψ by replacing every occurence of the atomic formula x < y by
lex+(x, y), and any occurence of ¬(x < y) by lex−(x, y). Then we get for every trace
t and every valid V-assignment σ

[[ Ψ̃ ]]V (t, σ) = [[ Ψ ]]V(LNF(t), σ). (2)

We still have to show that Ψ̃ is restricted. For an RMSO-formula ∀x.Ψ over words
[[ Ψ ]]V is a definable and recognizable step function, i.e. [[ Ψ ]]V (t, σ) =

∑n
i=1 ki�Li

with recognizable word languages Li (i = 1, . . . , n). Now we have by Equation (2)
[[ Ψ̃ ]]V =

∑n
i=1 ki�ϕ(Li∩LNF). By [6, Thm. 6.3.12] the trace languages ϕ(Li ∩ LNF)

are recognizable languages. Thus [[ Ψ̃ ]]V is a recognizable and, hence, definable step
function. Hence, if S ∈ � 〈〈Σ∗〉〉 with supp(S) ⊆ LNF is defined by some sentence Φ
from RMSO then T = ϕ(S) ∈ � 〈〈�〉〉 is defined by the RMSO-sentence Φ̃. Certainly,
if Φ is in REMSO so is Φ̃. ��
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Remark 6.2. The translations of formulas over traces to those over words and vice versa
as given in the proof of Lemma 6.1 are effective.

By Lemma 6.1 and the result for word series [9, Thm. 3.7] we get:

Theorem 6.3. Let � be a commutative semiring and T ∈ � 〈〈�〉〉. The following are
equivalent:

(i) T is recognizable,
(ii) T is definable by some sentence of RMSO,

(iii) T is definable by some sentence of REMSO.

Proof. Let T be recognizable. Then S = ϕ−1(T )|LNF is a recognizable word series by
Theorem 3.1. Hence, S is definable in RMSO and REMSO by the main result of [9].
By Lemma 6.1, T is definable in RMSO and REMSO, respectively.

Conversely, let T be definable in RMSO and REMSO, respectively. Then the series
ϕ−1(T )|LNF is definable by Lemma 6.1, hence recognizable by [9]. Now, Theorem 3.1
shows the recognizability of T . ��

Example 6.4. Let � = (�∪ {−∞}, max, +, −∞, 0). We show that H ∈ � 〈〈�〉〉 map-
ping every t ∈ � to height(t), i.e. the length of the longest chain in t, is recognizable.
Let

chain(X) = ∀x, y ∈ X.
(
x = y ∨ (x, y) ∈ E+ ∨ (y, x) ∈ E+)

be an unweighted formula stating that X is a chain. Since transitive closure of E can be
expressed for traces by an FO-formula (cf. [5, p. 501]), chain(X) is an FO-formula. By
Corollary 5.2, there is an RFO-formula chain(X)+ defining �L(chain(X)). Moreover,
the formula

card(X) = ∀x.
(
(x ∈ X −→ 1) ∧ (¬x ∈ X −→ 0)

)

has the semantics |X | over � . Hence, H =
∑

t∈� height(t) t is defined by

Φ = ∃X. chain(X)+ ∧ card(X) .

By Theorem 6.3, H ∈ � 〈〈�〉〉 is recognizable.

7 Some Notes About Decidability

Given a weighted MSO-formula Φ over traces, there are two immediate questions:

– It is decidable whether Φ is an RMSO-formula?
– If Φ is in RMSO, can we effectively compute the semantics of Φ, i.e. compute

([[ Φ ]], t) for every trace t ∈ �?

Droste and Gastin [9] answer these questions for weighted logics over words where the
underlying semiring is either a computable field or a locally finite semiring. We cannot
expect to do any better. By the effective translation of formulas the results carry over.
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Proposition 7.1. Let � be a computable field, and let Φ ∈ MSO(� ,�). It is decidable
whether Φ is reduced. In this case we can compute effectively for every trace t ∈ � the
coefficient ([[ Φ ]], t) in a uniform way.

Corollary 7.2. Let � be a computable field, and let Φ, Ψ ∈ RMSO(� ,�). It is decid-
able whether [[ Φ ]] has empty support, whether [[ Φ ]] = [[ Ψ ]], and whether [[ Φ ]] and [[ Ψ ]]
differ for finitely many traces only.

Recall that a semiring � is locally finite, if each finitely generated subsemiring of
� is finite. A monoid M is locally finite, if each finitely generated submonoid of M is
finite. Clearly, a semiring (K, ⊕, ◦, �, �) is locally finite iff both monoids (K, ⊕, 0) and
(K, ◦, �) are locally finite. Now even every MSO-definable trace series is recognizable
as it is true for word series [9, Thm. 6.4].

Theorem 7.3. Let � be a locally finite commutative semiring and T ∈ � 〈〈�〉〉. Then
the following are equivalent:

(i) T is definable in MSO.
(ii) T is recognizable.

Proposition 7.4. Let � be a locally finite commutative semiring and Φ ∈ MSO(� ,�).
Then the coefficient ([[ Φ ]], t) can be computed effectively for every t ∈ � in a uniform
way. Moreover, it is decidable

(a) whether two MSO(� ,�)-formulas Φ and Ψ satisfy [[ Φ ]] = [[ Ψ ]], and
(b) whether an MSO(� ,�)-formula Φ satisfies supp([[ Φ ]]) = �.

8 FO-Definable Trace Series

By considering Lemma 6.1 and its proof we get:

Lemma 8.1. Let � be a commutative semiring and ϕ : Σ∗ → � the canonical epi-
morphism. The following are equivalent:

(i) T ∈ � 〈〈�〉〉 is definable in RFO (in FO, respectively).
(ii) ϕ−1(T ) ∈ � 〈〈Σ∗〉〉 is definable in RFO (in FO, respectively).

(iii) ϕ−1(T )|LNF ∈ � 〈〈Σ∗〉〉 is definable in RFO (in FO, respectively).

Droste and Gastin showed that the classes of aperiodic word series, RFO-definable and
FO-definable word series coincide for commutative weakly bi-aperiodic semirings [9,
Thm. 7.8]. A monoid M is weakly aperiodic, if for each m ∈ M there is an n ≥ 0
such that mn = mn+1. M is aperiodic if there is an n ≥ 0 such that mn = mn+1

for all m ∈ M . A semiring � is weakly bi-aperiodic, if both (K, ⊕) and (K, ◦) are
weakly aperiodic monoids. Note that every commutative weakly aperiodic semiring K
is locally finite. Let S ∈ � 〈〈M〉〉 be a recognizable series over an arbitrary monoid M .
Then S is called aperiodic if there exists a representation S = (λ, μ, γ) with μ(M)
aperiodic, i.e. there is some integer n ≥ 0 such that μ(un) = μ(un+1) for all u ∈ M .
A recognizable series S is weakly aperiodic if there exists some integer n ≥ 0 such that
(S, uvnw) = (S, uvn+1w) for all u, v, w ∈ M . Clearly, every aperiodic series is also
weakly aperiodic. The converse is true for locally finite semirings as already Droste and
Gastin noted [8, Sect. 3].
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Lemma 8.2. Let � be a locally finite semiring, M a finitely generated monoid, and
S ∈ � 〈〈M〉〉 a recognizable series. Then S is aperiodic iff S is weakly aperiodic.

Using Lemma 8.2, we can clarify the relation between aperiodic trace and aperiodic
word series.

Proposition 8.3. Let � be a locally finite semiring. Then T ∈ � 〈〈�〉〉 is aperiodic iff
ϕ−1(T ) ∈ � 〈〈Σ∗〉〉 is aperiodic.

Proof. If T has the aperiodic representation T = (λ, μ, γ) such that there is an r ∈ �

with μ(tr) = μ(tr+1) for all t ∈ �. Then ϕ−1(T ) has the aperiodic representation
(λ, μ◦ϕ, γ). Vice versa, let ϕ−1(T ) be aperiodic and, hence, also weakly aperiodic, i.e.
there is some r ∈ � with (ϕ−1(T ), uvrw) = (ϕ−1(T ), uvr+1w) for all u, v, w ∈ Σ∗.
By t′ we denote some representative for the trace t. Now we have

(T, xtry) = (ϕ−1(T ), (xtry)′) = (ϕ−1(T ), x′t′ry′) = (ϕ−1(T ), x′t′r+1y′)

= (ϕ−1(T ), (xtr+1y)′) = (T, xtr+1y)

and, thus, T is weakly aperiodic. By Lemma 8.2, T is aperiodic. ��

Theorem 8.4. Let � be a commutative, weakly bi-aperiodic semiring and T ∈ � 〈〈�〉〉.
Then the following are equivalent:

(i) T is aperiodic.
(ii) T is weakly aperiodic.

(iii) T is RFO-definable.
(iv) T is FO-definable.

Proof. Recall that a commutative, weakly bi-aperiodic semiring � is locally finite.
Then the equivalence of (i) and (ii) is clear by Lemma 8.2. Now, let T be aperiodic.
Then ϕ−1(T ) ∈ � 〈〈Σ∗〉〉 is aperiodic by Proposition 8.3. Now, [9, Thm. 7.8] implies
RFO- and FO-definability of ϕ−1(T ). By Lemma 8.1, T is RFO- and FO-definable,
respectively. The converse direction follows similarly. ��

Acknowledgements. The author would like to thank Dietrich Kuske for a lot of fruitful
discussions.

References

1. J. Berstel and C. Reutenauer. Rational Series and Their Languages, volume 12 of EATCS
Monographs on Theoret. Comp. Sc. Springer, 1988.

2. B. Bollig. On the expressiveness of asynchronous cellular automata. In Proceedings
of the 15th International Symposium on Fundamentals of Computation Theory (FCT’05),
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4. J.R. Büchi. Weak second-order arithmetic and finite automata. Z. Math. Logik Grundlagen
Math., (6):66–92, 1960.

5. V. Diekert and Y. Métivier. Partial commutation and traces. In G. Rozenberg and A. Sa-
lomaa, editors, Handbook of Formal Languages, Beyond Words, volume 3, chapter 8, pages
457–534. Springer, 1997.

6. V. Diekert and G. Rozenberg, editors. The Book of Traces. World Scientific, 1995.
7. M. Droste and P. Gastin. The Kleene-Schützenberger theorem for formal power series in

partially commuting variables. Information and Computation, 153:47–80, 1999.
8. M. Droste and P. Gastin. On aperiodic and star-free formal power series in partially commut-

ing variables. In Formal Power Series and Algebraic Combinatorics (Moscow 2000), pages
158–169. Springer Berlin, 2000.

9. M. Droste and P. Gastin. Weighted automata and weighted logics. In Automata, Languages
and Programming (32nd ICALP, Lissabon), volume 3580 of Lecture Notes in Comp. Sc.,
pages 513–525. Springer, 2005.

10. M. Droste and H. Vogler. Weighted tree automata and weighted logics. submitted, 2005.
11. W. Ebinger and A. Muscholl. Logical definability on infinite traces. Theoret. Comp. Sc.,

(154):67–84, 1996.
12. C.C. Elgot. Decision problems of finite automata design and related arithmetics. Trans.

Amer. Math. Soc., (98):21–52, 1961.
13. J.S. Golan. Semirings and their Applications. Kluwer Academic Publishers, 1999.
14. U. Hebisch and H.J. Weinert. Semirings: Algebraic Theory and Application. World Scien-

tific, 1999.
15. W. Kuich and A. Salomaa. Semirings, Automata, Languages, volume 5 of EATCS Mono-

graphs on Theoret. Comp. Sc. Springer, 1986.
16. D. Kuske. Weighted asynchronous cellular automata. In STACS 2006, volume 3884 of

Lecture Notes in Comp. Sc., pages 685–696. Springer, 2006.
17. D. Kuske and I. Meinecke. Branching automata with costs – a way of reflecting parallelism

in costs. Theoret. Comp. Sc., 328:53–75, 2004.
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