
Extending Dijkstra’s Algorithm
to Maximize the Shortest Path by

Node-Wise Limited Arc Interdiction

Leonid Khachiyan1,�, Vladimir Gurvich2, and Jihui Zhao1,�

1 Department of Computer Science, Rutgers University,
110 Frelinghuysen Road, Piscataway, New Jersey 08854, USA

{leonid, zhaojih}@cs.rutgers.edu
2 RUTCOR, Rutgers University,

640 Bartholomew Road, Piscataway, New Jersey 08854, USA
gurvich@rutcor.rutgers.edu

Abstract. We consider the problem of computing shortest paths in a
directed arc-weighted graph G = (V, A) in the presence of an adversary
that can block (interdict), for each vertex v ∈ V , a given number p(v)
of the arcs Aout(v) leaving v. We show that if all arc-weights are non-
negative then the single-destination version of the problem can be solved
by a natural extension of Dijkstra’s algorithm in time

O
�
|A| + |V | log |V | +

�
v∈V \{t}(|Aout(v)| − p(v)) log(p(v)+ 1)

�
.

Our result can be viewed as a polynomial algorithm for a special
case of the network interdiction problem where the adversary’s budget
is node-wise limited. When the adversary can block a given number p of
arcs distributed arbitrarily in the graph, the problem (p-most-vital-arcs
problem) becomes NP-hard. This result is also closely related to so-called
cyclic games. No polynomial algorithm computing the value of a cyclic
game is known, though this problem belongs to both NP and coNP.

1 Introduction

1.1 Main Problems

Let G = (V, A) be a directed graph (digraph) with given arc-weights w(e), e ∈ A,
and let s, t ∈ V be two distinguished vertices of G. We consider the problem of
maximizing the shortest path from s to t in G by an adversary who can block
(interdict), for each vertex v ∈ V , some subsets X(v) of the arcs A(v) = {e ∈
A | e = (v, u)} leaving v. We assume that the blocking arc-sets X(v) ⊆ A(v) are
selected for all vertices v ∈ V independently and that for each v, the collection
B(v) of all admissible blocks X(v) forms an independence system: if X(v) ∈ B(v)
is an admissible block at v, then so is any subset of X(v). Hence, we could replace

� [On April 29th, 2005, our co-author Leonid Khachiyan passed away with tragic
suddenness while we were finalizing this paper].

D. Grigoriev, J. Harrison, and E.A. Hirsch (Eds.): CSR 2006, LNCS 3967, pp. 221–234, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

222 L. Khachiyan, V. Gurvich, and J. Zhao

the independence systems B(v) by the collections of all inclusion-wise maximal
blocking arc-sets. In general, we will only assume that the blocking systems B(v)
are given by a membership oracle O :
Given a list X(v) of outgoing arcs for a vertex v, the oracle can determine
whether or not the arcs in the list belong to B(v) and hence can be simultaneously
blocked.
A similar formalization of blocking sets via membership oracles was introduced
by Pisaruk in [27]. We will also consider two special types of blocking systems:
(B1) The blocking system is given by a function p(v) : V → Z+, where p(v) ≤

|A(v)| = out-deg(v). For each vertex v, the adversary can block any col-
lection of (at most) p(v) arcs leaving v. The numbers p(v) define digraphs
with prohibitions considered by Karzanov and Lebedev in [21].

(B2) There are two types of vertices: control vertices, where the adversary can
choose any outgoing arc e ∈ A(v) and block all the remaining arcs in
A(v), and regular vertices, where the adversary can block no arc. This
case, considered in [17] and [6], is a special case of B1: p(v) = |A(v)| − 1
for control vertices, and p(v) = 0 otherwise.

Let us call a digraph G′ = (V, A′) admissible for G = (V, A) if A′ is obtained
from A by deleting some sets of outgoing arcs X(v) ∈ B(v) for each vertex v ∈ V .
Consider the following problem:
Given an arc-weighted digraph G = (V, A, w) and a blocking system B, find an
admissible digraph G′ that maximizes the distance from a given start vertex s to
a given terminal vertex t:

d(s, t) def= max{s-t distance in G′ | G′ is an admissible digraph of G}.

We call d(s, t) the blocking distance from s to t. We will see from what follows
that, for any fixed terminal vertex t ∈ V , the adversary can select an optimal
admissible digraph that simultaneously maximizes the distances from all start
vertices s. In other words, there exists an admissible digraph Go such that for
all vertices v ∈ V \ {t}, we have 1

d(v, t) ≡ v-t distance in Go.
For this reason, it is convenient to consider the single-destination version of the
above problem:

MASPNLAI (Maximizing all shortest paths to a given terminal by node-
wise limited arc interdiction): Given an arc-weighted digraph G = (V, A, w),
a terminal vertex t ∈ V , and a blocking system B, find an optimal admissible
digraph Go that maximizes the distances from all vertices v ∈ V \ {t} to t.

1.2 Network Interdiction Problem

MASPNLAI is a special (polynomially solvable) case of the so-called network
interdiction problem. Interdiction (or inhibition) is an attack on arcs which de-
stroys them, or increases their effective lengths, or decreases capacities. The goal
1 Note, however, that if we fix a start vertex s, then distinct terminal vertices t may

require distinct optimal admissible digraphs.

Extending Dijkstra’s Algorithm to Maximize the Shortest Path 223

of the interdiction is to expend a fixed budget most efficiently, that is to maxi-
mize the shortest path or minimize the maximum flow between two given nodes.
The problem was originally motivated by military applications, see McMasters
and Mustin [23], Ghare, Montgomery, and Turner [13]. Then models of pollution
and drug interdiction were developed by Wood [31], see also [30]. Minimizing the
maximum flow was considered by Phillips [26]. Maximizing the shortest path was
first studied by Fulkerson and Harding [11] and also by Golden [14]; see Israeli
and Wood [18] for a short survey. An important special case of the latter problem
is so-called p-most-vital-arcs problem [2][3][7][22] when the adversary is allowed
to destroy exactly p arcs. For p = 1 a polynomial algorithm to maximize the
shortest path was given by Corley and Shaw [7], however, in general the problem
is NP-hard, as it was shown by Bar-Noy, Khuller, and Schieber [3].

MASPNLAI is the shortest path interdiction problem under the assumption
that adversary’s budget is node-wise limited. We will show that this special case
is polynomially solvable.

To illustrate, suppose that for each arc e = (u, v) we are given a probability
p(e) that some undesirable transition (for example, contraband smuggling) from
u to v can be carried out undetected. Then, assuming the independence and
letting w(e) = − log p(e) ≥ 0, we can interpret problem MASPNLAI as the uni-
form maximization of interception capabilities for a given target t under limited
inspection resources distributed over the nodes of G.

1.3 Cyclic Games

Another application of MASPNLAI is related to a class of games on digraphs
known as cyclic or mean payoff games [8][9][17][24][25]. Björklund, Sandberg
and Vorobyov [6] observed that this class of games is polynomially reducible to
problem MASPNLAI with blocks of type B2, provided that the arc-weights in
G have arbitrary signs. A mean payoff game is a zero-sum game played by two
players on a finite arc-weighted digraph G all vertices of which have positive
out-degrees. The vertices of the digraph (positions) are partitioned into two sets
controlled by two players, who move a chip along the arcs of the digraph, starting
from a given vertex s ∈ V (the initial position). A positional strategy of a player
is a mapping which assigns an outgoing arc to each his position. If both players
select positional strategies then the sequence of moves (the play) settles on a
simple directed cycle of G whose average arc-weight is the payoff corresponding
to the selected strategy.

Ehrenfeucht and Mycielski [8][9] and Moulin [24][25] introduced mean payoff
games on bipartite digraphs and proved the existence of the value for such games
in positional strategies. Gurvich, Karzanov and Khachiyan [17] extended this
result to arbitrary digraphs and suggested a potential-reduction algorithm to
compute the value and optimal positional strategies of the players. In many
respects this algorithm for mean cycle games is similar to the simplex method
for linear programming.

Let us assume that the vertices assigned to the maximizing (respectively,
to the minimizing) player are controlled (respectively, regular) vertices for B2.

224 L. Khachiyan, V. Gurvich, and J. Zhao

Then the determination of an optimal positional strategy for the maximizing
player reduces to computing a B2-admissible digraph G′ = (V, A′) that max-
imizes the minimum average arc-cost for the cycles reachable from the initial
position s. Beffara and Vorobyov [4] report on computational experiments with
the potential-reduction algorithm [17] in which it was used to solve very large
instances of mean payoff games. However, for some special instances with expo-
nentially large arc-weights, this algorithm may require exponentially many steps
[17][5]. Interestingly, computational experiments [5] seem to indicate that such
hard instances become easily solvable if the game is modified into an equivalent
one by a random potential transformation.

Karzanov and Lebedev [21] extended the potential-reduction algorithm [17]
to so-called mean payoff games with prohibitions, that is to blocking systems of
type B1. Pisaruk [27] further extended these results to blocking systems defined
by an arbitrary membership oracle, and showed that in this general setting, the
potential-reduction algorithm [17] is pseudo-polynomial. Zwick and Paterson [32]
gave another pseudo-polynomial algorithm for blocks of type B2.

As mentioned above, mean payoff games can be reduced to shortest paths
with blocks and arc-weights of arbitrary sign. For instance, if we fix a start vertex
s, then determining whether the value of a mean payoff game on G = (V, A)
exceeds some threshold ξ is equivalent to the following decision problem:

(ξ) : Is there an admissible digraph G′ such that the average arc-weight of each
cycle reachable from s in G′ is at least ξ?

After the substitution w(e) → w(e)−ξ we may assume without loss of generality
that ξ = 0, and then (ξ) becomes equivalent to determining whether or not the
blocking distance d(s, v) is equal to −∞ for some vertex v ∈ V .

Björklund, Sandberg and Vorobyov [6] recently showed that mean payoff
games can be solved in expected sub-exponential time. However, the question
as to whether this class of games can be solved in polynomial time remains
open, even though the decision problem (ξ) is obviously in NP ∩ coNP [21][32].
Accordingly, for arc-weights of arbitrary sign and magnitude, no polynomial
algorithm is known for MASPNLAI , though a pseudo-polynomial one exists [6].

1.4 Main Results

In this paper, we show that for non-negative arc-weights, MASPNLAI can be
solved in strongly polynomial time by a natural extension of Dijkstra’s algorithm.

Theorem 1. Given a digraph G = (V, A), a non-negative weight function w :
A →
+, and a terminal vertex t ∈ V ,

(i) The special case of problem MASPNLAI for blocking systems B1 can be solved
in time

O

(
|A| + |V | log |V | +

∑
v∈V \{t}[out-deg(v) − p(v)] log(p(v) + 1)

)
.

In particular, for blocking systems B2 the problem can be solved in O(|A| +
|V | log |V |) time;

Extending Dijkstra’s Algorithm to Maximize the Shortest Path 225

(ii) For arbitrary blocking systems defined by membership oracles, MASPN-
LAI can be solved in O(|A| log |V |) time and at most |A| monotonically increasing
membership tests;
(iii) When all of the arcs have unit weight, problem MASPNLAI can be solved
in O(|A| + |V |) time and at most |A| monotonically increasing blocking tests.
The special cases B1 and B2 can be solved in O(|A| + |V |) time.

We show parts (ii) and (iii) of the theorem by using an extension of Dijkstra’s
algorithm and breadth-first search, respectively. As mentioned in the theorem,
both of these algorithms employ monotonically increasing membership queries
and never de-block a previously blocked arc. This is not the case with the variant
of Dijkstra’s algorithm used in the proof of part (i). Note also that for blocks
of type B1 and B2, the above bounds include the blocking tests overhead, and
that the bound stated in (i) for B2 is as good as the running time of the fastest
currently known strongly-polynomial algorithm by Fredman and Tarjan [10] for
the standard shortest path problem, without interdiction.

Let us also mention that by Theorem 1, problem MASPNLAI can be solved in
strongly polynomial time for any digraph G = (V, A) that has no negative total
arc-weight directed cycles. Indeed, Gallai [12] proved that if G has no negative
cycle then all input arc-weights w(v, u) can be made non-negative by a potential
transformation w(v, u) → w(v, u)+ε(v)−ε(u), where ε : V →
 are some vertex
weights (potentials); see [1][28]. Clearly, the weights of all directed cycles remain
unchanged and the total weight of a directed path � from s to t is transformed
as: w(�(s, t)) → w(�(s, t)) + ε(s) − ε(t). Hence, the set of optimal arc blocks for
MASPNLAI remains unchanged, too. Karp [20] showed that such a potential
transformation can be found in O(|A||V |) time.

1.5 Main Remarks

We proceed with two negative observations.
1) It is well known that the standard shortest path problem is in NC, that

is it can be efficiently solved in parallel. In contrast, problem MASPNLAI is
P-complete already for blocking systems of type B2 and acyclic digraphs G =
(V, A) of out-degree 2. This is because determining whether the blocking distance
between a pair of vertices s, t is finite: d(s, t) < +∞ includes, as a special case,
the well-known monotone circuit value problem [15][16].

2) The independence systems B ⊆ 2A considered in this paper are Cartesian
products of the systems B(v) ⊆ 2A(v) defined on the sets A(v) of outgoing arcs
for each vertex v of G = (V, A), that is B =

⊗
v∈V \{t} B(v). When B ⊆ 2A is

not decomposable as above, maximizing the shortest path becomes NP-hard for
very simple blocking systems and unit arc-weights; the problem is NP-complete
for both directed or undirected graphs if the adversary can block a given number
p of arcs or edges arbitrarily distributed in the input graph (so-called p-most-
vital-arcs problem) [3]. However, the following related problem can be solved in
polynomial time:

226 L. Khachiyan, V. Gurvich, and J. Zhao

B : Given a digraph G = (V, A) with two distinguished vertices s, t ∈ V and
positive integers p and q, determine whether there exists a subsets A′ of at
most p arcs such that any directed path from s to t in G contains at least q
arcs of A′.

Suppose without loss of generality that t is reachable from s in G, and let A′

be an arbitrary q-cut, i.e. |A′ ∩ P | ≥ q for any s-t path P ⊆ A. Then, denoting
by Vi the set of vertices that can be reached from s by using at most i arcs
from A′, we conclude that A′ contains q disjoint s-t cuts Ci = cut(Vi−1, Vi)
for i = 1, . . . , q. Conversely, the union of any q arc-disjoint s-t cuts is a q-cut
separating t from s. Hence problem B can be equivalently stated as follows:

B : Given a digraph G = (V, A), two distinguished vertices s, t ∈ V , and pos-
itive integers p and q, determine whether there exist q arc-disjoint s-t-cuts
C1, . . . , Cq such that |C1| + . . . + |Cq| ≤ p.

The latter problem is polynomial. Moreover, Wagner [29] showed that its
weighted optimization version can be solved in strongly polynomial time.

B′
w : Given a digraph G = (V, A) with two distinguished vertices s, t ∈ V , a

weight function w : A →
+, and a positive integer q, find q arc-disjoint
s, t-cuts C1, . . . , Cq of minimum total weight w(C1) + . . . + w(Cq).

Finally, let us remark that “the node-wise limited interdiction problems are
usually easier than the total ones”. For example, given a digraph G = (V, A)
and a positive integer p, is it possible to destroy all directed cycles of G by
eliminating at most p arcs of A, or in other words, whether G has a feedback of
at most p arcs ? This decision problem is NP-hard [19]. However, if instead of p,
for each vertex v ∈ V , we are given a number p(v) of outgoing arcs which can be
eliminated then it is easy to decide whether all directed cycles can be destroyed.
Indeed, they definitely can not be destroyed if p(v) < out-deg(v) for each v ∈ V .
Yet, if p(v) ≥ out-deg(v) for a vertex v ∈ V then all outgoing arcs in v should
be eliminated, since in this case we can eliminate the vertex v itself. Repeating
this simple argument we get a linear time algorithm.

2 Proof of Theorem 1

We first describe an extension of Dijkstra’s algorithm for MASPNLAI that uses
blocking queues and may temporarily block and then de-block some arcs. This
extension, presented in Section 2.2, is used to show part (i) of Theorem 1. Then
in Section 2.4 we present another implementation of the extended algorithm to
prove part (ii) of the theorem. Part (iii) is shown in Section 2.5.

2.1 Blocking Queues

Let B be a blocking (i.e. independence) system on a finite set E, for example on
the set A(v) of arcs leaving a given vertex v of G. Given a mapping k : E →
,
and a set Y ⊆ E, let

Extending Dijkstra’s Algorithm to Maximize the Shortest Path 227

kB(Y) = max
X∈B

min
e∈Y \X

k(e), (1)

where, as usual, it is assumed that the minimum over the empty set is +∞.
For instance, if Y = {e1, e2, e3, e4} and (k(e1), k(e2), k(e3), k(e4)) = (1, 3, 3, 5),
then

kB(Y) =

⎧⎪⎪⎨
⎪⎪⎩

1, if {e1} /∈ B;
3, if {e1} ∈ B but {e1, e2, e3} /∈ B;
5, if {e1, e2, e3} ∈ B but Y /∈ B;
+∞, if Y ∈ B.

Considering the image {k(e), e ∈ Y } as a sets of keys, we define a B-queue
as a data structure for maintaining a dynamic set of keys under the following
operations:

1. Make queue: Create an empty queue Y = ∅;
2. Insert: Expand Y by adding a new element e with a given key value k(e);
3. Return kB(Y): Compute the right-hand side of (1) for the current key set.

Note that when the independence system is empty, |B| = 0, we obtain the
customary definition of a minimum priority queue.

When B is a blocking system of type B1, i.e., X ∈ B whenever |X | ≤ p for
some given integer p ≤ |E|, then

kB(Y) =
{

+∞, if |Y | ≤ p;
(p + 1)st smallest key of Y , if |Y | ≥ p + 1.

Hence, by maintaining a regular maximum priority queue of at most p + 1 ele-
ments of E,

A sequence of d ≥ p queue operations for an initially empty B1-queue can
be implemented to run in O(p + (d − p) log(p + 1)) time.

For general blocking systems B, each B-queue operation can be performed
in O(log |Y |) time and O(log |Y |) oracle queries. This can be done by using a
balanced binary search tree on the set of keys in Y . Specifically, inserting a new
key into Y takes O(log |Y |) time and no oracle queries, while computing the
value of kB(Y) can be done by searching for the largest key k in the tree for
which the oracle can block the set of all keys smaller than k. Note that each
query to the blocking oracle can be specified by a list of keys if we additionally
maintain a sorted list of all keys in Y along with pointers from the search tree
to the list.

We close this subsection by defining, for each set Y ⊆ E of keys, a (unique)
inclusion-wise minimal blocking set X̂(Y) ∈ B such that

kB(Y) = min
e∈Y \X̂(Y)

k(e).

228 L. Khachiyan, V. Gurvich, and J. Zhao

We will refer to X̂(Y) ⊆ Y as the lazy block for Y . For instance, if, as before,
Y = {e1, e2, e3, e4} and (k(e1), k(e2), k(e3), k(e4)) = (1, 3, 3, 5), then

X̂(Y) =

⎧⎪⎪⎨
⎪⎪⎩

∅, if {e1} �∈ B;
{e1}, if {e1} ∈ B, but {e1, e2, e3} �∈ B;
{e1, e2, e3}, if {e1, e2, e3} ∈ B, but Y �∈ B;
Y, if Y ∈ B.

For an unsorted list of keys {k(e), e ∈ Y }, the lazy block X̂(Y) can be computed
in O(|Y |) time and O(log |Y |) oracle queries by recursively splitting the keys
around the median. For blocking systems B1 this computation takes O(|Y |)
time.

2.2 Extended Dijkstra’s Algorithm for MASPNLAI

Given a digraph G = (V, A), a non-negative weight function w(v) : A →
+, a
vertex t ∈ V , and a blocking system B, we wish to find an admissible graph Go

that maximizes the distance from each start vertex v ∈ V to t. In the statement
of extended Dijkstra’s algorithm below we assume without loss of generality that
the out-degree of the terminal vertex t is 0, and the input arc-weights w(e) are
all finite. By definition, we let d(t, t) = 0.

Similarly to the regular Dijkstra’s algorithm, the extended version maintains,
for each vertex v ∈ V , an upper bound ρ(v) on the blocking v-t distance:

ρ(v) ≥ d(v, t) def= max
G′ admissible

{distance from v to t in G′}.

Initially, we let ρ(t) = 0 and ρ(v) = +∞ for all vertices v ∈ V \{t}. As the regular
Dijkstra’s algorithm, the extended version runs in at most |V | − 1 iterations
and (implicitly) partitions V into two subsets S and T = V \ S such that
ρ(v) = d(v, t) for all v ∈ T . We iteratively grow the initial set T = ∅ by
removing, at each iteration, the vertex u with the smallest value of ρ(v) from
S and adding it to T . For this reason, the values of ρ(v), v ∈ S are stored
in a minimum priority queue, e.g., in a Fibonacci heap. Once we remove the
minimum-key vertex u from S (and thus implicitly declare that ρ(u) = d(u, t)),
we update ρ(v) for all those vertices v ∈ S that are connected to u by an
arc in G. Recall that the regular version of Dijkstra’s algorithm uses updates
of the form ρ(v) ← min{ρ(v), w(v, u) + ρ(u)}. The updates performed by the
extended version use blocking queues Y (v) maintained at all vertices v ∈ V \{t}.
Initially, all these B(v)-queues are empty, and when the value of ρ(v) needs to
be updated for some vertex v ∈ S such that e = (v, u) ∈ A, we first insert
arc e with the key value k(e) = w(v, u) + ρ(u) into Y (v), and then let ρ(v) ←
kB(Y (v)) def= maxX∈B(v) mine∈Y (v)\X k(e). In particular, for the standard
shortest path problem, we obtain the regular updates.

Finally, as the regular Dijkstra’s algorithm, the extended version terminates
as soon as ρ(u) = min{ρ(v), v ∈ S} = +∞ or |S| = 1.

Extending Dijkstra’s Algorithm to Maximize the Shortest Path 229

EXTENDED DIJKSTRA’S ALGORITHM

Input: A digraph G = (V, A) with arc-weights {w(e) ∈ [0, +∞), e ∈ A}, a
destination vertex t ∈ V , and a blocking system B.

Initialization:
1. ρ(t) ← 0;
2. For all vertices v ∈ V \ {t} do:
3. ρ(v) ← +∞; Set up an empty blocking queue Y (v);
4. Build a minimum priority queue (Fibonacci heap) S on the key
values ρ(v), v ∈ V .

Iteration loop:
5. While |S| > 1 do:
6. If min{ρ(v), v ∈ S} = +∞, break loop and go to line 12;
7. Extract the vertex u with the smallest key value ρ(·) from S;
8. For all arcs e = (v, u) ∈ A such that v ∈ S, do:
9. k(e) ← w(e) + ρ(u);
10. Insert k(e) into Y (v);
11. Update the value of ρ(v) : ρ(v) ← kB(Y (v)).

Output:
12. For each vertex v ∈ V \ {t}, return ρ(v) with the lazy block X̂(Y (v)).

Bounds on running time for blocks of type B1. Line 12 and the initialization
steps in lines 1-4 take linear time O(|V | + |A|). Let n ≤ |V | − 1 be the number of
iteration performed by the algorithm. Denote by Yi(v) (the set of key values in)
the blocking queue at a fixed vertex v ∈ V \{t} after the execution of iteration i =
1, . . . , n, and let Y0(v) = ∅ be the initial queue at v. As Y0(v) ⊆ Y1(v) ⊆ . . . ⊆ Yn,
the values of ρi(v) = kB(Yi(v)) are monotonically non-increasing: +∞ = ρ0(v) ≥
ρ1(v) ≥ . . . ≥ ρn(v). Since S is a (minimum) Fibonacci heap, the decrease-key
operations in line 11 can be executed in constant amortized time per iteration,
provided that the values of kB(Yi(v)) are known. Lines 6 and 7 take O(1) and
O(log |V |) time per iteration, respectively. In view of the bounds on the B1-queue
operations 10-11 stated in Section 2.1, the overall running time of the algorithm
is thus within the bound stated in part (i) of Theorem 1.

To complete the proof of part (i) it remains to show that the extended
algorithm is correct.

2.3 Correctness of Extended Dijkstra’s Algorithm

Let us show that upon the termination of the extended Dijkstra algorithm,

– ρ(v) = d(v, t) def= maxG′admissible{distance from v to t in G′} for all vertices
v ∈ V , and

– The digraph Go =
(
V, A \

⋃
v∈V \{t} X̂(Y (v)

)
obtained by deleting the lazy

blocking sets of arcs X̂(Y (v)) is an optimal admissible digraph for all ver-
tices : d(v, t) ≡ v-t distance in Go.

Let Si and Ti = V \ Si be the vertex partition maintained by the algorithm for
i = 0, 1, . . . , n ≤ |V | − 1. We have S0 = V ⊃ S1 = V \ {t} ⊃ . . . ⊃ Sn−1 ⊇ Sn,

230 L. Khachiyan, V. Gurvich, and J. Zhao

where Sn−1 = Sn if and only if the algorithm terminates due to the stopping
criterion in line 6. For the given arc weights w(e), e ∈ A, consider the following
weight functions wi : A →
+ ∪ {+∞},

wi(e) =
{

+∞, if both endpoints of e are in Si,
w(e), otherwise.

Clearly, we have w0(e) = +∞ ≥ w1(e) ≥ . . . ≥ wn(e) ≥ w(e). Let
di(v, t) def= max{G′ admissible}{wi-distance from v to t in G′},

then d0(v, t) = +∞ ≥ d1(v, t) ≥ . . . ≥ dn(v, t) ≥ d(v, t) for all v ∈ V \ {t}. The
correctness of the algorithm will follow from the following two invariants:
for all i = 0, 1, . . . , n,

IS
i : ρi(v) = di(v, t) for all vertices v ∈ Si;

IT
i : If v ∈ Ti = V \ Si, then ρi(v) = d(v, t) and the admissible digraph Go

i =(
V, A \

⋃
v∈V \{t} X̂(Yi(v))

)
is an optimal blocking digraph for v. Moreover,

min{ρi(v), v ∈ Si} ≥ max{d(v, t), v ∈ Ti} and for each vertex v ∈ Ti there
exists a shortest v-t path in Go

i which lies entirely in Ti.

Note that by IT
i , the algorithm removes vertices from S and determines their

blocking distances in non-decreasing order.

Proof of invariants IS
i and IT

i is similar to that for the regular Dijkstra’s
algorithm. Since T0 = ∅, invariant IT

0 holds trivially. IS
0 follows from the

initialization steps of the algorithm: for S0 = V we have w0(e) ≡ +∞, and
hence ρ0(t) = d0(t, t) = 0 and ρ0(v) = d0(v, t) = +∞ for all vertices v ∈ V \ {t}.

In order to prove by induction that IS
i+1and IT

i+1follow from IS
i and IT

i , let
us first suppose that the ith iteration loop breaks due to the stopping criterion in
line 6: min{ρi(v), v ∈ Si} = +∞. Then i = n − 1 and Sn−1 = Sn, which means
that dn(v, t) ≡ dn−1(v, t) and ρn(v) ≡ ρn−1(v). Consequently, the statements of
IS

n and IT
n become identical to IS

n−1 and IT
n−1, and we have nothing to prove.

Moreover, as all vertices of Sn are disconnected from t in Go = Go
n, invariant

IT
n also shows that the algorithm correctly computes the blocking distances and

the optimal blocking digraph Go for all vertices.
We may assume henceforth that n = |V | − 1 and |Sn| = 1. Consider the

vertex u that moves from Si to Ti+1 at iteration i:

ρi(u) = min{ρi(v), v ∈ Si} < +∞. (2)

To show that ρi(u) = d(u, t), observe that by IS
i , ρi(u) = di(u, t) ≥ d(u, t).

In other words, ρi(u) is an upper bound on the w-cost of reaching t from u,
regardless of any admissible blocks selected by the adversary. So we will have
ρi(u) = d(u, t) if we can find an admissible digraph G′ such that

ρi(u) = w-distance from u to t in G′. (3)

Let G′ = Go
i be the admissible digraph defined in IT

i . Then (3) follows from IT
i ,

the non-negativity of the input arc-weights, and the fact that ρi(u) = k(e∗) =
w(e∗) + ρi(v), where e∗ = (u, v) ∈ A is the arc with the smallest key value in
the (Si , Ti)-cut of G′.

Extending Dijkstra’s Algorithm to Maximize the Shortest Path 231

After u gets into Ti+1, the value of ρ(u) never changes. Hence ρi+1(u) =
d(u, t), as stated in IT

i+1. Note that (2) and invariant IT
i also tell us that

min{ρi(v), v ∈ Si}= d(u, t) ≥ max{d(v, t), v ∈ Ti}.

Let us now show that after the algorithm updates ρ(v) on Si+1, we still have

min{ρi+1(v), v ∈ Si+1} ≥ d(u, t) = max{d(v, t), v ∈ Ti+1}, (4)

again as stated in IT
i+1. Suppose to the contrary, that ρi+1(v) < d(u, t) = ρi(u)

for some vertex v ∈ Si+1. Then from (2) it would follow that e = (v, u) is an
arc of G = (V, A) and consequently Yi+1(v) = Yi(v) ∪ {e}. Moreover, we must
have e ∈ X̂(Yi+1(v)), for otherwise the value of ρi+1(v) = kB(Yi+1(v)) could
not have dropped below the minimum of ρi(v) and k(e) = w(v, u) + d(u, t),
which is at least d(u, t). But if e ∈ X̂(Yi+1(v)) then again kB(Yi+1(v)) ≥ k(e),
contradiction.

To complete the proof of IT
i+1, it remains to show that Go

i+1 is an optimal
admissible digraph for each vertex v ∈ Ti+1, and that some shortest v-t path in
Go

i+1 lies in Ti+1. This readily follows from (4) and the fact that the sub-graphs
of Go

i and Go
i+1 induced by Ti+1 are identical.

Finally, IS
i+1follows from the updates ρi+1(v) ← kB(Yi+1(v)) performed by

the algorithm in lines 8-11. �
Since we assume that n = |V | − 1 and |Sn| = 1, the correctness of the algorithm
readily follows from IS

n and IT
n . When Sn is a singleton s ∈ V , then wn(e) ≡

w(e). Hence dn(v, t) ≡ d(v, t), and IS
n yields ρn(s) = dn(s, t) = d(s, t). By

IT
n , we also have ρn(v) = d(v, t) for the remaining vertices v ∈ Tn = V \ {s}.

Invariant IT
n also guarantees that Go = Go

n is an optimal admissible digraph
for all vertices v ∈ V .

2.4 Modified Dijkstra’s Algorithm

In this section we prove part (ii) of Theorem 1 by modifying the algorithm
stated in Section 2.2.

The modified algorithm keep all arcs across the current (S, T)-cut in a min-
imum priority queue Q, implemented as a binary heap. As in the previous al-
gorithm, each arc e = (v, v′) across the cut is assigned the key value k(e) =
w(e)+ ρ(v′), where ρ(v′) = d(v′, t) for all vertices v′ ∈ T . In addition to the arcs
in the current cut, Q may also contain some arcs e = (v, v′) for which endpoints
v, v′ are both in T . In order to compute the vertex u to be moved from S to
T , we repeatedly extract the minimum-key arc e from Q, and check whether
e = (v, v′) belongs to the current cut and can be blocked along with the arcs
that have already been blocked at v. The first arc e = (v, v′) in the cut that
cannot be blocked defines the vertex u = v. We then move u to T , insert all arcs
e = (v, u) ∈ A for which v ∈ S into Q, and iterate.

The outputs of the modified algorithm and the extended Dijkstra’s algorithm
presented in Section 2.2 are identical. It is also easy to see that the running time
and the number of membership tests required by the modified algorithm satisfy
the bounds stated in part (ii) of Theorem 1.

232 L. Khachiyan, V. Gurvich, and J. Zhao

MODIFIED ALGORITHM

Input: A digraph G = (V, A) with arc-weights {w(e) ∈ [0, +∞), e ∈ A},
a terminal vertex t ∈ V , and a blocking system B ⊆ 2A defined via a
membership testing subroutine.

Initialization:
1. Initialize arrays T [1 : V] ≡ FALSE and d[1 : V, t] ≡ +∞ ;
2. T [t] ← TRUE, d[t, t] ← 0;
3. For each vertex v ∈ V \ {t} initialize an empty list X̂(v);
4. For each arc e = (v, t) ∈ A, insert e with key k(e) = w(e) into an
initially empty binary heap Q.

Iteration loop:
5. While Q �= ∅ do:
6. Extract the minimum-key arc e = (u, v) from Q;
7. If T [u] = FALSE and T [v] = TRUE do:
8. If X̂(u) ∪ {e} can be blocked at u, insert e into X̂(u)
9. else { T [u] ← TRUE; Return X̂(u) and d[u, t] = k(e);
10. For all arcs e = (v, u) ∈ A such that T [v] = FALSE,

Insert e with key value k(e) = w(e) + d[u, t] into Q}.

2.5 Unit Arc-Weights

When w(e) = 1 for all e ∈ A, and the blocking systems B(v) are all empty, the
single-destination shortest path problem can be solved in linear time by breadth-
first search. The extended Dijkstra’s algorithm for problem MASPNLAI can be
similarly simplified to prove part (iii) of Theorem 1.

BREADTH-FIRST SEARCH FOR MASPNLAI

Input: A digraph G = (V, A) with a destination vertex t ∈ V , and a
blocking system B defined by a membership subroutine.
Initialization:
1. Initialize d(1 : V, t) ≡ +∞ and an empty first-in first-out queue T ;
2. d(t, t) ← 0; Enqueue t into T ;
3. For each vertex v ∈ V \ {t} initialize an empty list X̂(v);

Iteration loop:
4. While T �= ∅ do:
5. Extract the first vertex u from T ;
6. For all arcs e = (v, u) ∈ A, do:
7. If d(v, t) = +∞ and X̂(v) ∪ {e} can be blocked, insert e into X̂(v);
8. else d(v, t) ← d(u, t) + 1, enqueue v into T , and return d(v, t), X̂(v).

The above algorithm runs in at most |A| iterations. It follows by induction on
d(v, t) that it correctly computes the blocking distances and that the admissible
digraph Go =

(
V, A \

⋃
v∈V \{t} X̂(v)

)
is optimal.

Extending Dijkstra’s Algorithm to Maximize the Shortest Path 233

References

1. R.K. Ahuja, T.L. Magnanti and J.B. Orlin, Network Flows: Theory, Algorithms,
and Applications, Prentice Hall, New Jersey, 1993.

2. M.O. Ball, B.L. Golden and R.V. Vohra, Finding the most vital arcs in a network,
Operations Research Letters 8 (1989), pp. 73-76.

3. A. Bar-Noy, S. Khuller and B. Schieber, The complexity of finding most vital
arcs and nodes, University of Maryland, Institute of Anvanced Computer Studies,
College Park, MD, Technical Report CS-TR-3539, 1995.

4. E. Beffara and S. Vorobyov, Adapting Gurvich-Karzanov-Khachiyan’s algorithm
for parity games: Implementation and experimentation, Technical Report 020,
Department of Information Technology, Uppsala University, 2001 (available at
https://www.it.uu.se/research /reports/#2001).

5. E. Beffara and S. Vorobyov, Is randomized Gurvich-Karzanov-Khachiyan’s
algorithm for parity games polynomial? Technical Report 025, Department of
Information Technology, Uppsala University, 2001
(available at https://www.it.uu.se/research/reports/#2001).

6. H. Björklund, S. Sandberg and S. Vorobyov, A Combinatorial strongly subexpo-
nential strategy improvement algorithm for mean payoff games, DIMACS Technical
Report 2004-05 (2004)
(available at http://dimacs.rutgers.edu/TechnicalReports/2004.html).

7. H.W. Corely and D.Y. Shaw, Most vital links and nodes in weighted networks,
Operations Research Letters 1 (1982), pp. 157-160.

8. A. Eherenfeucht and J. Mycielski, Positional games over a graph, Notices of the
American Mathematical Society 20 (1973), A-334.

9. A. Ehrenfeucht and J. Mycielski, Positional strategies for mean payoff games,
International Journal of Game Theory 8 (1979), pp. 109-113.

10. M.L. Fredman and R.E. Tarjan, Fibonacci heaps and their uses in improved
network optimization algorithms, Journal of the ACM 34(3) (1987), pp. 596-615.

11. D.R. Fulkerson and G.C. Harding, Maximizing the minimum source-sink path
subject to a budget constraint, Mathematical Programming 13 (1977), pp. 116-118.

12. T. Gallai, Maximum-minimum Sätze über Graphen. Acta Mathematica Academiae
Scientiarum Hungaricae 9 (1958) pp. 395-434.

13. P.M. Ghare, D.C. Montgomery, and T.M. Turner, Optimal interdiction policy for
a flow network, Naval Research Logistics Quarterly 18 (1971), pp. 37-45.

14. B.L. Golden, A problem in network interdiction, Naval Research Logistics Quar-
terly 25 (1978), pp. 711-713.

15. L.M. Goldschlager, The monotone and planar circuit value problem are log space
complete for P, SIGACT News 9(2) (1977), pp. 25-29.

16. R. Greenlaw, H.J. Hoover and W.L. Ruzzo, Limits to Parallel Computation:
P-Completeness Theory, Oxford University Press, 1995.

17. V. Gurvich, A. Karzanov and L. Khachiyan, Cyclic games and an algorithm to find
minimax cycle means in directed graphs, USSR Computational Mathematics and
Mathematical Physics 28 (1988), pp. 85-91.

18. E. Israely and K. Wood, Shortest-path network interdiction, Networks 40(2)
(2002), pp. 97-111.

19. R. Karp, Reducibility among combinatorial problems, in: R.E. Miller and J.W.
Thatcher, eds., Complexity of Computer Computations, Plenum Press, New York
(1972) pp. 85-103.

234 L. Khachiyan, V. Gurvich, and J. Zhao

20. R. Karp, A Characterization of the Minimum Cycle Mean in a Digraph, Discrete
Math. 23 (1978), pp. 309–311.

21. A.V. Karzanov and V.N. Lebedev, Cyclical games with prohibition, Mathematical
Programming 60 (1993), pp. 277-293.

22. K. Malik, A.K. Mittal, and S.K. Gupta, The k most vital arcs in the shortest path
problem, Operations Research Letters 8 (1989), pp. 223-227.

23. A.W. McMasters and T.M. Mustin, Optimal interdiction of a supply networks,
Naval Research Logistics Quarterly 17 (1970), pp. 261-268

24. H. Moulin, Prolongement des jeux à deux joueurs de somme nulle, Bull. Soc. Math.
France, Memoire 45, (1976).

25. H. Moulin, Extension of two person zero sum games, Journal of Mathematical
Analysis and Apllication 55 (2) (1976), pp. 490-507.

26. C.A. Phillips, The network inhibition problem, Proceedings of the 25th Annual
ACM Symposium on the Theory of Computing, 1993, pp. 776-785.

27. N.N. Pisaruk, Mean cost cyclical games, Mathematics of Operations Research
24(4) (1999), pp. 817-828.

28. A. Schrijver, Combinatorial Optimization: Polyhedra and Efficiency, Algorithms
and Combinatorics 24, Springer, 2003.

29. D.K. Wagner, Disjoint (s, t)-cuts in a network, Networks 20 (1990), pp. 361-371.
30. A. Washburn and K. Wood, Two-person zero-sum games for network interdiction,

Operations Research 43(2) (1995), pp. 243-251.
31. R.K. Wood, Deterministic network interdiction, Mathematical and Computer

Modelling 17 (1993), pp. 1-18.
32. U. Zwick , M. Paterson, The complexity of mean payoff games on graphs, Theo-

retical Computer Science 158(1-2) (1996), pp. 343-359.

	Introduction
	Main Problems
	Network Interdiction Problem
	Cyclic Games
	Main Results
	Main Remarks

	Proof of Theorem 1
	Blocking Queues
	Extended Dijkstra's Algorithm for MASPNLAI
	Correctness of Extended Dijkstra's Algorithm
	Modified Dijkstra's Algorithm
	Unit Arc-Weights

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

