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Preface

The International Symposium on Computer Science in Russia (CSR 2006) was
held on June 8–12, 2006 in St. Petersburg, Russia, hosted by the Steklov Institute
of Mathematics at St. Petersburg. It was the first event in a planned series of
regular international meetings that are united by their location (Russia).

The symposium was composed of two tracks: Theory and Applications/Tech-
nology. The opening lecture was given by Stephen A. Cook and ten other
invited plenary lectures were given by Boaz Barak, Gerard Berry, Bob Colwell,
Byron Cook, Melvin Fitting, Russell Impagliazzo, Michael Kaminski, Michael
Kishinevsky, Pascal Koiran, and Omer Reingold. This volume contains the ac-
cepted papers of both tracks and also some of the abstracts of the invited speak-
ers. The scope of the proposed topics for the symposium was quite broad and
covered basically all areas of computer science and its applications. We received
279 papers in total, the contributors being from 45 countries. The Program
Committee of the Theory Track selected 35 papers out of 121 submissions. The
Program Committee of the Applications/Technology Track selected 29 papers
out of 158 submissions.

Two workshops were co-located with CSR 2006:

– Workshop on Words and Automata (WOWA 2006);
– Tutorial on Automata-Based Programming.

The reviewing process was organized using the EasyChair conference system,
thanks to Andrei Voronkov.

We are grateful to our sponsors:

– The U.S. Civilian Research & Development Foundation;
– Russian Foundation for Basic Research.

We also thank the local Organizing Committee: Dmitry Karpov, Arist Ko-
jevnikov, Alexander Kulikov, Yury Lifshits, Sergey Nikolenko, Svetlana Obraztso-
va, Alexei Pastor, and, in particular, Elena Novikova.

March 2006 Dima Grigoriev
John R. Harrison
Edward A. Hirsch
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Non-black-box Techniques in Cryptography

Boaz Barak

Princeton University

Abstract. In cryptography we typically prove the security of a scheme
by reducing the task of breaking the scheme to some hard computational
problem. This reduction usually done in a black-box fashion. By this we
mean that there is an algorithm that can solve the hard problem given
any black-box for breaking the scheme.

This lecture concerns exceptions to this rule: that is, schemes that are
proven secure using a non-black-box reduction, that actually uses the
code of a scheme-breaking attacker to construct a problem-solving algo-
rithm. It turns out that such reductions can be used to obtain schemes
with better properties that were known before. In fact, in some cases
these non-black-box reductions can be obtain goals that were proven
to be impossible to achieve when restricting to black-box reductions. In
particular, we will present constructions of zero-knowledge protocols that
are proven secure under various compositions [1, 2, 3].

We’ll also discuss some of the limitations and open questions regarding
non-black-box security proofs.

References
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2. Pass, R.: Bounded-concurrent secure multi-party computation with a dishonest
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3. Barak, B., Sahai, A.: How to play almost any mental game over the net - concurrent
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Complexity of Polynomial Multiplication
over Finite Fields

Michael Kaminski

Department of Computer Science,
Technion – Israel Institute of Technology,

Haifa 32000, Israel
kaminski@cs.technion.ac.il

Abstract. We prove the 3 + (q − 1)2

q5 + (q − 1)3
n − o(n) lower bound on

the quadratic complexity of multiplication of two degree-n polynomials
over a q-element field. The proof is based on a novel combination of two
known techniques. One technique is the analysis of Hankel matrices rep-
resenting bilinear forms defined by linear combinations of the coefficients
of the polynomial product. The other technique is a counting argument
from the coding theory.

D. Grigoriev, J. Harrison, and E.A. Hirsch (Eds.): CSR 2006, LNCS 3967, p. 2, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Synchronous Elastic Circuits

Mike Kishinevsky1, Jordi Cortadella2, Bill Grundmann1,
Sava Krstić1, and John O’Leary1

1 Strategic CAD Labs, Intel Corporation, Hillsboro, Oregon, USA
2 Universitat Politècnica de Catalunya, Barcelona, Spain

Synchronous elastic circuits (also known as latency-insensitive and latency-
tolerant) behave independently of the latencies of computations and communi-
cation channels. For example, the three sequences

X = 〈1, ∗, ∗, 2, ∗, 5, 3, . . .〉 Y = 〈2, ∗, 0, ∗, 1, ∗, 4, . . .〉 Z = 〈∗, 3, ∗, 2, ∗, ∗, 6, ∗, 7, . . .〉

are an acceptable behavior of an elastic adder with input channels X, Y and
output channel Z, where the absence of transfer on a particular channel at
a given cycle is indicated by ∗. Indeed, the associated transfer subsequences
(obtained by deleting the ∗’s) make up a behavior of an ordinary (non-elastic)
adder:

X ′ = 〈1, 2, 5, 3, . . .〉 Y ′ = 〈2, 0, 1, 4, . . .〉 Z ′ = 〈3, 2, 6, 7, . . .〉

Current interest in elasticity is motivated by the difficulties with timing and
communication in large synchronous designs in nanoscale technologies. The time
discretization imposed by synchronicity forces to take early decisions that often
complicate changes at the latest stages of the design or efficient design scaling.
In modern technologies, calculating the number of cycles required to transmit
data from a sender to a receiver is a problem that often cannot be solved until
the final layout has been generated. Elastic circuits promise novel methods for
microarchitectural design that can use variable latency components and tolerate
static and dynamic changes in communication latencies, while still employing
standard synchronous design tools and methods.

We will first present a simple elastic protocol, called SELF (Synchronous
Elastic Flow) and describes methods for an efficient implementation of elastic
systems and for the conversion of regular synchronous designs into an elastic
form. Every elastic circuit E implements the behavior of an associated standard
(non-elastic) circuit C, as in the adder example above. For each wire X of C,
there are three in E : the data wire DX , and the single-bit control wires VX and
SX (valid and stop). This triple of wires is a channel of E . A transfer along the
channel occurs when VX = 1 and SX = 0, thus requiring cooperation of the pro-
ducer and the consumer. [CKG06] provides more details on the implementation
of SELF.

We will next review theoretical foundations of SELF. Our main result states
that (under favorable circumstances) “the network of elasticizations is an elasti-
cization of the given network”: if we have elastic circuits E1, . . . , En implementing

D. Grigoriev, J. Harrison, and E.A. Hirsch (Eds.): CSR 2006, LNCS 3967, pp. 3–5, 2006.
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standard circuits C1, . . . , Cn and if C is a standard network obtained by connect-
ing some wires of the circuits Ci, then connecting the corresponding channels
(wire triples) of the elastic circuits Ei will produce a new elastic circuit which
implements C. As a special case, we prove the characteristic property of elas-
tic circuits: plugging an empty elastic buffer in a channel of an elastic network
produces an equivalent elastic network. The details of the theory can be found
in [KCKO06].

Related Work

Some researchers advocate for the modularity and efficiency of asynchronous
circuits to devise a beter methodology for complex digital systems. However,
asynchronous circuits require a significantly different design style and the CAD
support for such circuits is still in its prehistory.

Our work addresses the following question: is there an efficient scheme that
combines the modularity of asynchronous systems with the simplicity of syn-
chronous implementations?

Other authors have been working towards this direction. Latency-insensitive
(LI) schemes [CMSV01] were proposed to separate communication from compu-
tation and make the systems insensitive to the latencies of the computational
units and channels. The implementation of LI systems is synchronous [CSV02,
CN01] and uses relay stations at the interfaces between computational units.

In a different scenario, synchronous interlocked pipelines [JKB+02] were pro-
posed to achieve fine-grained local handshaking at the level of stages. The
implementation is conceptually similar to a discretized version of traditional
asynchronous pipelines with request/acknowledge handshake signals.

A de-synchronization [HDGC04,BCK+04] approach automatically transforms
synchronous specifications into asynchronous implementations by replacing the
clock network with an asynchronous controller. The success of this paradigm
will depend on the attitude of designers towards accepting asynchrony in their
design flow.
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Abstract. In this paper we classify several group-theoretic computa-
tional problems into the classes PZK and SZK (problems with per-
fect/statistical zero-knowledge proofs respectively). Prior to this, these
problems were known to be in AM ∩ coAM. As PZK ⊆ SZK ⊆ AM ∩
coAM, we have a tighter upper bound for these problems.

1 Introduction

Motivated by cryptography, zero knowledge proof systems were introduced by
Goldwasser et al [9]. These are a special kind of interactive proof systems in
which the verifier gets no information other than the validity of the assertion
claimed by the prover. The notion of zero knowledge is formalized by stipulating
the existence of a randomized polynomial time simulator for a given protocol. For
a given input, the simulator outputs strings following a probability distribution
indistinguishable from the verifier’s view of the interaction between prover and
verifier for that input. Indistinguishability can be further qualified, leading to
different notions of zero knowledge. The protocol is perfect zero knowledge if
the simulator’s distribution is identical to the verifier’s view for all inputs. It
is statistical zero knowledge if the two distributions have negligible statistical
difference. The more liberal notion is computational indistinguishability where
the two distributions cannot be distinguished by polynomial-size circuits.

Natural problems like Graph Isomorphism (GRAPH-ISO) and Quadratic
Residuosity, their complements, a version of the discrete log problem are all
known to have perfect zero-knowledge protocols. Some of these protocols have
found cryptographic applications. For example, the Fiat-Shamir-Feige identifi-
cation scheme is based on the ZK protocol for quadratic residuosity.

Our focus is complexity-theoretic in the present paper. As a complexity class
SZK is intriguing. It is closed under complement and is contained in AM∩coAM.
It is open if SZK is coincides with AM ∩ coAM. One approach to studying SZK
is to explore for new natural problems that it contains. In [13, 8], investigating
SZK, it is shown that two natural promise problems, Statistical Difference (SD)
and Entropy Difference (ED) are complete for SZK. We use this to exhibit sev-
eral natural group-theoretic problems in SZK and PZK. These are well-studied
problems and known to be in NP ∩ coAM or in AM ∩ coAM [2, 5].

� Part of the work done was during visits to Berlin supported by a DST-DAAD project.
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In this paper we put several group-theoretic problems for permutation groups
in PZK, and for general black-box groups in SZK. We give a unified argument,
showing that an appropriately defined group equivalence problem is reducible to
Statistical Difference. One problem that requires a different technique is solvable
permutation group isomorphism.

2 Preliminaries

Definition 1 (Statistical Difference). Let X and Y be two distributions
on a finite set S. The statistical difference between X and Y is SD(X, Y ) =
1
2

∑
s∈S |Pr(X = s)− Pr(Y = s)|.

A distribution X on S is ε-uniform if 1
|S| (1− ε) ≤ Pr[X = s] ≤ 1

|S|(1 + ε). If X

is ε-uniform on S then SD(X, US) ≤ ε/2, where US is the uniform distribution
on S. We next define SZK.

Definition 2. [6] An interactive proof system (P, V ) for a language L is statis-
tical zero-knowledge (i.e. L is in SZK) if for every randomized polynomial-time
interactive machine V ∗, there is a probabilistic polynomial-time algorithm M∗

such that for x ∈ L and all k, M∗(x, 1k) outputs fail with probability at most 1
2

and M∗ has the following property: let m∗(x, 1k) be the random variable for the
distribution of M∗(x, 1k) conditioned on M∗(x, 1k) �=fail. Let 〈P, V 〉(x, 1k) be
the message distribution between P and V . Then SD(m∗(x, 1k), 〈P, V 〉(x, 1k)) ≤
o( 1

kO(1) ). Additionally, the protocol is perfect zero-knowledge (L ∈ PZK) if this
statistical difference is 0 for all x and k.

A boolean circuit X : {0, 1}m −→ {0, 1}n induces a distribution on {0, 1}n by the
evaluation X(x), where x ∈ {0, 1}m is picked uniformly at random. We use X to
denote this distribution encoded by circuit X . For 0 ≤ α < β ≤ 1, we define the
promise problem SDα,β = (SDα,β

Y , SDα,β
N ): the input is two distributions X and

Y given by circuits, and has “yes instances” SDα,β
Y = {(X, Y ) | SD(X, Y ) ≤ α}

and “no instances” SDα,β
N = {(X, Y ) | SD(X, Y ) ≥ β}. We recall some important

results from [13, 14].

Theorem 1 (Sahai-Vadhan). [13] The class SZK is closed under complement,
and SD1/3,2/3 is complete for SZK. Furthermore, SD0,1 is in PZK.

We recall some basic group theory. The action of a group G on a set X is
defined by a map α : X × G −→ X such that for all x ∈ X (i) α(x, id) = x,
i.e., the identity id ∈ G fixes each x ∈ X , and (ii) α(α(x, g1), g2) = α(x, g1g2)
for g1, g2 ∈ G,. We write xg instead of α(x, g) when the group action is clear
from the context. The orbit of x ∈ X under G action, denoted xG, is the set,
{y|y ∈ X, y = xg for some g ∈ G}. Notice X is partitioned into orbits.

Let G be a permutation group, i.e., G ≤ Sn. Each π ∈ G maps i ∈ [n]
to iπ, which is the natural action of G on [n]. The subgroup G(i) of G ≤ Sn

that fixes each of {1, . . . , i} is a pointwise stabilizer subgroup. Thus, we have a
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tower of subgroups G = G(0) ≥ G(1) ≥ G(2) ≥ · · · ≥ G(n−1) = {id}. Notice that
[G(i−1) : G(i)] ≤ n. Let Ri be a set of complete and distinct coset representatives
of G(i) in G(i−1) for each i. Then

⋃n−1
i=1 Ri generates G and is known as a strong

generating set for G.
The subgroup generated by {xyx−1y−1 | x, y ∈ G} is the commutator sub-

group G′ of G. Recall that G′ is the unique smallest normal subgroup of G such
that G/G′ is commutative. The derived series of G is G � G′ � G′′ � · · ·. We
say G is solvable if this series terminates in {id}. There are polynomial-time
algorithms to compute the derived series and to test solvability for permutation
groups G given by generating sets (see e.g. [11]). A composition series of G is a
tower of subgroups {id} = G1 �G2 � · · ·�Gm = G such that Gi/Gi+1 is simple
for each i. Recall that G is solvable iff Gi/Gi+1 is cyclic of prime order for each
i in any composition series for G.

3 Group Problems in PZK

We now show that various permutation group problems (not known to be in
P) are in PZK. Examples are Coset Intersection, Double Coset Membership,
Conjugate Subgroups etc. We define these problems below (see [11] for details).
These are problems known to be harder than GRAPH-ISO. We show they are
in PZK by a general result. We define a generic problem Permutation Group
Equivalence PGE and show it is polynomial-time many-one reducible to SD0,1.
Since SD0,1 ∈ PZK it follows that PGE ∈ PZK. The problem PGE is generic in
the sense that all considered permutation group problems (except group isomor-
phism) are polynomial-time many-one reducible to GE and hence are in PZK.
Permutation group isomorphism requires a different approach. In fact, in this
paper we show only for solvable groups that this problem is in PZK.

Definition 3. Permutation Group Equivalence PGE has inputs of the form
(x, y, T, τ), where T ⊂ Sn and x, y ∈ {0, 1}m, for m = nO(1). Let G = 〈T 〉.
The map τ : G × S −→ S is a polynomial-time computable group action of G
on S, for some S ⊆ {0, 1}m. More precisely, given g ∈ G and s ∈ S, the image
sg = τ(g, s) is polynomial-time computable. The PGE problem is the promise
problem: given (x, y, T, τ) such that x, y ∈ {0, 1}m with the promise that τ de-
fines a group action of G = 〈T 〉 on some S ⊆ {0, 1}m with x, y ∈ S, the problem
is to decide if τ(g, x) = xg = y for some g ∈ G.

Theorem 2. PGE is polynomial-time many-one reducible to SD0,1.

Proof. Let (x, y, T, τ) be an input instance of PGE such that x, y ∈ S and
S ⊆ {0, 1}m. Define two circuits Xx,T , Xy,T : {0, 1}k −→ {0, 1}m, where k is
polynomial in n to be fixed later. In the sequel we assume that it is possible
to uniformly pick a random element from the set [i] for each positive integer i
given in unary. The circuit Xx,T on input a random string r ∈ {0, 1}k will use r
to randomly sample an element from the group G = 〈T 〉. This is a polynomial-
time procedure based on the Schreier-Sims algorithm for computing a strong
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generating set
⋃n−1

i=1 Ri for G, where Ri is a complete set of distinct coset repre-
sentatives of G(i) in G(i−1) for each i. Then we can sample from G uniformly at
random by picking xi ∈ Ri uniformly at random and computing their product
gr = x1x2 · · ·xn−1. The circuit Xx,T then outputs xgr . By construction, xgr is
uniformly distributed in the G-orbit of x. Likewise the other circuit Xy,T will
output a uniformly distributed element of the G-orbit of y. Since G defines a
group action on S, the two orbits are either disjoint or identical. In particular,
the orbits are identical if and only if x = yg for some g ∈ G. Thus, the statistical
difference between Xx,T and Xy,T is 0 or 1 depending on whether x = yg for
some g ∈ G or not. This proves the theorem.

We show that several permutation group problems are reducible to PGE. There
is a table of reductions for permutation group problems in Luks’ article [11].
It suffices to show that the following two “hardest” problems from that table
are reducible to PGE (apart from permutation group isomorphism which we
consider in the next section).

The Subspace Transporter Problem SUBSP-TRANS has input consisting of a
subgroup G of Sn given by generating set T , a representation τ : G −→ GL(Fm

q ),
and subspaces W1, W2 ⊆ Fm

q given by spanning sets. The question is whether
W g

1 = W2 for some g ∈ G. Here the size q of the finite field is a constant. Notice
here that by W g

1 is meant the image of the subspace W1 under the matrix τ(g).
The Conjugacy of Groups Problem CONJ-GROUP has inputs consisting of

three permutation groups G, H1, H2 in Sn, given by generating sets. The question
is whether there is a g ∈ G such that Hg

1 = H2 (where Hg
1 = g−1H1g).

Lemma 1.

(a) Let Fq be a fixed finite field. Given as input X ⊂ Fn
q , there is a polynomial-

time algorithm A that computes a canonical basis B of the subspace W
spanned by X. The output is canonical in the following sense: if A is given
as input any spanning set of W , the output of A will be B.

(b) Given as input X ⊂ Sn, there is a polynomial-time algorithm A that com-
putes a canonical generating set B of the subgroup G generated by X. The
output is canonical in the sense that A will output B, given any generating
set X ′ of G as input.

Proof. First we prove (a). Order the elements of Fq lexicographically. First, we
search for the least i such that there is a vector (v1, . . . , vn) ∈ W with vi = 1
(Notice that v1, . . . vi−1 have to be zero for all elements of W ). For this we can
use a polynomial-time algorithm for testing feasibility of linear equations over
Fq. Having found i, we search for the least vi+1 ∈ Fq such that vi = 1. Since q
is a constant we can do this search with a constant number of similar feasibility
tests. After finding the least vi+1 we fix it and search similarly for the least
vi+2 and so on. Continuing thus, we can compute the lex least nonzero element
u1 in W . Next, in order to find a basis we look for the least index j > i such
that there is a nonzero vector (v1, . . . , vn) ∈ W with v1 = v2 = . . . = vj−1 = 0
and vj = 1 again by O(n) feasibility tests. After finding j, we can again pick
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the lex least nonzero vector u2 with the property that the jth index is least
nonzero coordinate in u2. Continuing in this manner, we will clearly obtain a
basis {u1,u2, . . . ,uk} of W . By our construction this basis is canonical.

Now we prove (b). The algorithm A will compute a strong generating set
from X for the group G using the Schreier-Sims algorithm [11]. Then using the
fact that the lex least element of a coset xH (where x and H are from Sn) can
be computed in polynomial time [1] we can replace each coset representative in
the strong generating set by a lex least coset representative. This generating set
is canonical by construction.

Theorem 3. The problems SUBSP-TRANS and CONJ-GROUP are polynomial-
time many-one reducible to PGE.

Proof. We first consider SUBSP-TRANS. Let (T, S1, S2, π) be an input. Let G =
〈T 〉 and S1, S2 ⊂ Fm

q be spanning sets of W1 and W2 respectively. The repre-
sentation is given by π : G −→ GL(Fm

q ). The reduction from SUBSP-TRANS
to PGE maps (T, S1, S2, π) to (x, y, T, τ) where x and y are the canonical bases
for W1 and W2 respectively, in the sense of lemma 1. The set S in Definition 3
corresponds to the set of canonical bases of all possible subspaces of Fm

q . The
group action τ is the algorithm that given B ∈ S and g ∈ G, first computes the
set of vectors π(g)(B). Next, using the algorithm in Lemma 1, τ computes the
canonical basis of subspace spanned by π(g)(B).

The reduction is similar for CONJ-GROUP. Let (T, S1, S2) be an instance of
CONJ-GROUP, where T , S1 and S2 generate G, H1, and H2 respectively. The
reduction maps (T, S1, S2) to (x, y, T, τ) where x and y are the canonical strong
generating sets for H1 and H2 respectively in the sense of Lemma 1. The set S
in Definition 3 is the set of canonical strong generating sets for all subgroups of
Sn. The group action τ is the algorithm that given B ∈ S and g ∈ G, applies
the algorithm A in lemma 1 to compute the canonical generating set for the
subgroup generated by {g−1xg | x ∈ B}.

Corollary 1. The problems of Set Transporter, Coset Intersection, Double
Coset Membership, Double Coset Equality, Conjugacy of Elements, Vector Trans-
porter etc are all in PZK as they are polynomial time many-one reducible to
SUBSP-TRANS or CONJ-GROUP.

3.1 Group Nonequivalence and PZK in Liberal Sense

We now consider the complement problems. To the best of our knowledge, it
is open if SD0,1 ∈ PZK. However, for this part we need the following liberal
definition of PZK [9], because only such PZK protocols are known for even
problems like GRAPH-NONISO and Quadratic Nonresiduosity.

An interactive protocol (P, V ) is perfect zero knowledge in the liberal sense
if for every probabilistic polynomial time interactive machine V ∗ there exists an
expected polynomial-time algorithm M∗ such that for every x ∈ L the random
variable 〈P, V ∗〉(x) and M∗(x) are identically distributed. Notice that in this de-
finition [9] the simulator is required to be an expected polynomial time algorithm
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that always outputs some legal transcript. The definition we used in Section 3
is more stringent.

Similar to the proof that GRAPH-NONISO ∈ PZK in liberal sense, we can
show that Permutation Group Nonequivalence PGE is in PZK in the liberal
sense. Combined with Theorem 3 we have the following.

Theorem 4. PGE is in PZK in liberal sense. As a consequence, the comple-
ment of the following problems are all in PZK in liberal sense: Set Transporter,
Coset Intersection, Double Coset Membership, Double Coset Equality, Conju-
gacy of Elements, Vector Transporter.

4 Solvable Permutation Group Isomorphism is in PZK

In this section we consider permutation group isomorphism PERM-ISO: given two
subgroups 〈S〉, 〈T 〉 ≤ Sn the problem is to test if 〈S〉 and 〈T 〉 are isomorphic.

Remark. PERM-ISO is in NP∩ coAM [11]. It is harder than GRAPH-ISO [11]
and seems different in structure from GRAPH-ISO or PGE. Like PGE if we try to
formulate PERM-ISO using group action we notice that isomorphisms between
groups are not permutations on small domains (unlike PGE). Thus, we do not
know how to prove certain complexity-theoretic statements for PERM-ISO that
hold for GRAPH-ISO. E.g. we do not know if it is in SPP or even low for PP [10],
although GRAPH-ISO is in SPP [1]. Indeed, we do not know if PERM-ISO is
in SZK. However, in this section we show that PERM-ISO for solvable groups is
reducible to SD0,1 and is hence in PZK.

Definition 4. Let X be a finite set of symbols and FG(X) be the free group
generated by X. A pair (X, R) is a presentation of a group G where X is a
finite set of symbols and R is a set of words over X ∪ X−1 where each w ∈ R
defines the equation w = 1. The presentation (X, R) defines G in the sense
that G ∼= FG(X)/N , where N is the normal closure in FG(X) of the subgroup
generated by R. The size of (X, R) is ‖X‖ +

∑
w∈R |w|. Call (X, R) a short

presentation of the finite group G if the size of (X, R) is (log |G|)O(1).

It is an important conjecture [4] that all finite groups have short presentations.
It is known to be true for large classes of groups. In particular, it is easy to prove
that solvable finite groups have short presentations.

Notice that two groups are isomorphic if and only if they have the same set
of presentations. Our reduction of solvable permutation group isomorphism to
SD0,1 will use this fact. Specifically, to reduce solvable PERM-ISO to SD0,1 we
give a randomized algorithmA that takes as input the generating set of a solvable
group G ≤ Sn and outputs a short presentation for G. We can consider A(G)
as a circuit with random bits as input and a short presentation for G as output.
Clearly, if G � H then the circuits A(G) and A(H) will output distributions
with disjoint support. On the other hand, if G ∼= H , the circuits A(G) and A(H)
will compute identical probability distributions on the short presentations (for
G and H).
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We describe A in two phases. In the first phase A computes a random com-
position series for the input solvable group G = 〈T 〉 following some distribution.
In the second phase, A will deterministically compute a short presentation for
G using this composition series. An ingredient for A is a polynomial-time sam-
pling procedure from L \ N where L ≤ Sn and N � L are subgroups given by
generating sets. We describe this algorithm.

Lemma 2 (Sampling Lemma). Let L ≤ Sn and N � L, where both L and N
are given by generating sets. There is a polynomial-time algorithm that samples
from L \N uniformly at random (with no failure probability).

Proof. Let L = 〈S〉 and N = 〈T 〉. Recall that applying the Schreier-Sims al-
gorithm we can compute a strong generating set for L in polynomial time.
More precisely, we can compute distinct coset representatives Ri for L(i) in
L(i−1) for 1 ≤ i ≤ n − 1, where L(i) is the subgroup of L that fixes each of
1, 2, . . . , i. Notice that ‖Ri‖ ≤ n for each i. Thus, we have the tower of sub-
groups L = L(0) ≥ L(1) ≥ . . . ≥ L(n−1) = 1.

We can use the strong generating set
⋃

Ri to sample uniformly at random
from L as explained in proof of Theorem 2. This sampling procedure can be
easily modified to sample uniformly from L \ {1}.

We will build on this idea, using some standard group-theoretic algorithms
from [11] to sample uniformly from L \ N . Since N � L each set NL(i) is a
subgroup of L. Furthermore, for each i

‖NL(i−1)‖
‖NL(i)‖ ≤ ‖L(i−1)‖

‖L(i)‖ ≤ n− i + 1.

Thus, L = NL(0) ≥ NL(1) ≥ . . . ≥ NL(n−1) = N is also a subgroup tower
with each adjacent pair of subgroups of small index. Furthermore, Ri also forms
coset representatives for NL(i) in NL(i−1). However, Ri may not be all distinct
coset representatives. Since we have the generating set for NL(i) (the union of T
and the generating set for L(i)) we can find the distinct coset representatives in
polynomial time by using membership tests in NL(i), using the fact that x, y ∈
Ri are not distinct coset representatives for NL(i) in NL(i−1) iff xy−1 ∈ NL(i).
Let Si ⊆ Ri be the distinct coset representatives for each i. Let ‖Si‖ = mi for
each i. We can ignore the indices i for which Si has only the identity element.

Now, each gN ∈ L/N is uniquely expressible as gN = (g1N) · · · (gn−1N) =
g1 · · · gn−1N , gi ∈ Si.

Partition the nontrivial elements of L/N into sets Vi = {gi · · · gn−1N | gj ∈
Sj and gi �= 1}. Clearly, L/N \ {1N} =

⊎n−1
i=1 Vi. Furthermore, let ‖Vi‖ = (mi −

1)
∏n−1

j=i+i mj = Ni for each i. We can sample uniformly from Vi by uniformly
picking gi ∈ Si \ {1} and gj ∈R Sj , j = i + 1, . . . , n − 1. Thus, we can sample
uniformly from L/N by first picking i with probability Ni

‖L‖/‖N‖−1 and then
sampling uniformly from Vi. Finally, to sample from L \ N , notice that after
picking the tuple (gi, . . . , gn−1) while sampling from Vi we can pick x ∈ N
(by first building a strong generating set for N). Clearly, g = gi · · · gn−1x, is
uniformly distributed in L \N .
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We now describe algorithm A. Suppose S is the input to A, where G = 〈S〉
is a solvable group. In Phase 1, A first computes the derived series of G (in
deterministic polynomial time [11]).

Next, A(G) refines the derived series for G into a random composition series
by inserting a chain of normal subgroups between consecutive groups of the
series. It suffices to describe this refinement for G′ � G, where G′ = Gm−1 and
G = Gm. We can refine each Gi � Gi+1 similarly.

Suppose ‖G/G′‖ = pα1
1 pα2

2 · · · pαl

l = m, p1 < p2 < · · · < pl. Using standard
algorithms from [11] we can compute m in polynomial time. As m is smooth (all
pi ≤ n) we can also factorize m in polynomial time to find the pi. We will use
the ordering of the pi.

Let G′ = 〈T 〉. Since G/G′ is abelian, the p1-Sylow subgroup of G/G′ is L/G′

where L is generated by the union of T and {gm/p
α1
1 | g ∈ S}. Notice that

G′ � L � G. Applying Lemma 2, A can sample uniformly an x ∈ L \ G′. As
‖L/G′‖ = pα1

1 , the order of xG′ is pt
1 for some t �= 0. This t is easily computed

by repeated powering. Clearly, xpt−1
1 G′ is of order p1. Let x1 = xpt−1

1 and define
N1 = 〈T ∪ {x1}〉. Clearly, G′ is normal in N1 and ‖N1/G′‖ = p1. Since G/G′ is
abelian it follows that G′ � N1 � L � G.

We now repeat the above process for the pair of groups N1 and L. Using
Lemma 2 we randomly pick x ∈ L\N1 find the order ps

1 of xN1 in G/N1 and set
x2 = xps−1

1 . This will give us the subgroup N2 generated by N1 and x2. Thus,
we get the refinement G′ � N1 � N2 � L � G, where {N2/N1} = p1. Continuing
thus, in α1 steps we obtain the refinement G′ � N1 � N2 � · · ·� Nα1 = L � G.

Now, let M/G′ be the p2-Sylow subgroup of G/G′. We can find a generating
set for M as before. Notice that L � ML � G. Thus, applying the above process
we can randomly refine the series L � ML into a composition series where each
adjacent pair of groups has index p2. Continuing thus, A refines G′ � G into a
random composition series between G and G′. This process can be applied to
each pair Gi �Gi+1 in the derived series. To obtain a random composition series
for G.

After phase 1, the computed composition series for G is described by a
sequence (x1, x2, · · · , xm) of elements from G, where the composition series is
id � 〈x1〉� 〈x1, x2〉� · · ·� 〈x1, x2, · · · , xm〉 = G.

Observe that if φ : G → H is an isomorphism and if id = G0 � G1 � · · · �
Gm−1 � Gm = G and id = H0 � H1 � · · · � Hm−1 � Hm = H are the derived
series of G and H respectively, then φ must isomorphically map Gi to Hi for
each i. Furthermore, if (x1, x2, · · · , xm) describes a composition series for G then
(φ(x1), φ(x2), · · · , φ(xm)) describes a composition series for H . Let Xi denote
the random variable according to which xi is picked in the above description for
G. Similarly, let Yi denote the random variable for the group H . It is easy to see
that Pr[X1 = x1] = Pr[Y1 = φ(x1)]. Now,

Pr[Xi = xi 1 ≤ i ≤ m] = Pr[X1 = x1] ·
m∏

i=2

Pr[Xi = xi|Xj = xj , 1 ≤ j < i].
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Notice that to construct xi+1 the algorithm refines 〈x1, x2, · · · , xi〉� Gj , where
Gj is the appropriate group in the derived series. Now, if the algorithm finds
φ(x1), φ(x2), · · · , φ(xi) as the first i components of the composition series for H ,
then the next element yi is obtained by refining 〈φ(x1), φ(x2), · · · , φ(xi)〉 � Hj ,
where φ : Gj −→ Hj is an isomorphism. Thus, it is easy to see that for i ≥ 2
also we have

Pr[Xi = xi | Xj = xj 1 ≤ j < i] = Pr[Yi = φ(xi) | Yj = φ(xj) 1 ≤ j < i].

It follows that Pr[Xi = xi 1 ≤ i ≤ m] = Pr[Yi = φ(xi) 1 ≤ i ≤ m].
In the second phase, the algorithm A computes a short presentation for G

from its composition series given by (x1, x2, · · · , xm). Let p1 = |〈x1〉|, pj =
|〈x1, x2, · · · , xj〉|/|〈x1, x2, · · · , xj−1〉| for j > 1. Let the primes in this order be
p1, p2, · · · , pm (not necessarily distinct). Notice that each g ∈ G can uniquely be
expressed as g = xlm

m , x
lm−1
m−1 , · · · , xl1

1 , 0 ≤ li ≤ pi − 1.
A will compute the short presentation inductively. The cyclic subgroup 〈x1〉

has the representation (X1, R1) where X1 = {α1} and R1 = {αp1
1 }. We as-

sume inductively that 〈x1, x2, · · · , xi〉 has the presentation (Xi, Ri) where Xi =
{αi, α2, · · · , αi}. We let Xi+1 = Xi ∪ {αi+1}. In order to define Ri+1 we notice
that xi+1〈x1, · · · , xi〉 = 〈x1, · · · , xi〉xi+1 and x

pi+1
i+1 ∈ 〈x1, x2, · · · , xi〉. Thus, the

new relations are: x
pi+1
i+1 = ui+1, ui+1 ∈ 〈x1, x2, · · · , xi〉, and ∀j, 1 ≤ j ≤ i,

xjxi+1 = xi+1wi+1,j , where wi+1,j ∈ 〈x1, x2, · · · , xi〉.
To find ui+1 notice that if x ∈ 〈x1, x2, · · · , xi〉 then x belongs to one of

the cosets xj
i 〈x1, x2, · · · , xi−1〉, j = 0, · · · , pi − 1. To find the exact coset A can

do membership tests x−j
i x ∈ 〈x1, x2, · · · , xi−1〉 for each j. As all the primes pi are

small, this is a polynomial-time step. By repeating the same for 〈x1, x2, · · · , xi−1〉,
〈x1, x2, · · · , xi−2〉, · · ·, 〈x1〉 the algorithm will be able to find ui+1 = xli

i · · ·x
l1
1 .

The corresponding relation will be α
pi+1
i+1 = αli

i · · ·α
l1
1 . The algorithm can com-

pute wi+1,j and the corresponding relation similarly. Now, Ri+1 is just Ri union
the new relations. The number of relations T (i) for 〈x1, x2, · · · , xi〉 follows the
recurrence relation T (i + 1) = T (i) + i + 1, T (1) = 1. So, the number of re-
lation is O(m2). But m = O(log |G|). Hence the presentation is of polynomial
length (more precisely it is O(m3)). Suppose φ : G −→ H is an isomorphism
and 〈x1, · · · , xm〉 describes a composition series for G. Then 〈φ(x1), · · · , φ(xm)〉
describes a composition series for H .

We notice that the composition series for G described by (x1, · · · , xm) for
G and the composition series for H described by (φ(x1), · · · , φ(xm)) yield the
same presentation. This can be seen by observing that the process of obtaining
ui+1 and wi+1,j is identical in both the cases. Thus, when G ∼= H it follows that
the distributions produced by A(G) and A(H) will be identical. On the other
hand, if G � H , A(G) and A(H) will have disjoint support. We have proved the
following.

Theorem 5. The problem of isomorphism testing of solvable permutation groups
is polynomial time many-one reducible to SD0,1 and is hence in PZK.
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5 Black Box Group Problems

We next consider analogous problems over black-box groups [2, 5]. The black-box
group model essentially abstracts away the internal structure of the group into
a “black-box” oracle that does the group operations. In order to give uniform
zero-knowledge protocols we generalize PGE to black-box groups: the Group
Equivalence Problem GE. The key difference from the results of Section 3 is
that while permutation groups can be uniformly sampled by a polynomial-time
algorithm, there is no polynomial-time uniform sampling algorithm for black-
box groups. However, the following seminal result of Babai for almost uniform
sampling from black-box groups suffices to show that the considered black-box
group problems are in SZK.

Theorem 6. [3] There is a randomized algorithm that takes as input a generator
set for a black-box group G and an ε > 0 and in time polynomial in log |G|
and log(1/ε) it outputs a random element r of G such that for any g ∈ G,
(1− ε)/|G| ≤ Prob[r = g] ≤ (1 + ε)/|G|.

As the distribution produced by the above algorithm is only ε-uniform, it turns
out that we can only show that the black-box group problems are in SZK.

Theorem 7. GE is reducible to SD
1
3 ,1 (relative to the black box group oracle B).

Proof. The proof is similar to Theorem 2. We reduce GE to SDε1,1 for some small
ε1. Let (q, x, y, T, τ) where elements of {0, 1}q represents group elements, T is
the set of generating elements of group G and τ is a polynomial time routine
that computes the group action and has access to the group oracle B. The
reduction maps (q, x, y, T, τ) to the pair of circuits (X1, X2), both having access
to the black box group oracle B. The circuit X1 samples g ∈ G using Babai’s
algorithm. If the algorithm fails the circuit sets g to be any fixed element of G.
Then it produces xg. The circuit X2 is similarly defined for y. As in Theorem 2,
we can argue that if x and y are not in the same G-orbit the statistical difference
between the two circuits will be 1. But if they are in the same orbit then we
can verify that the statistical difference is less than a chosen small number ε1.
We can make ε1 close to the ε specified by Theorem 6 by repeating Babai’s
algorithm and thus reducing the error introduced due to failure. As ε is inverse
exponential, we can make ε1 less than 1

3 .

Theorem 8. GE is in SZKB (where SZKB stands for SZK in which both prover
and verifier have access to the group oracle B).

Proof. It suffice to observe that the proof [13] that SD1/3,2/3 ∈ SZK relativizes
and that SD1/3,1 is trivially reducible to SD1/3,2/3.

As a corollary we also get that several problems considered in [2] and some gen-
eralization of permutation group problems are in SZKB. This partially answers
an open question posed in [2] whether the considered problems are in SZK. How-
ever, we do not know if the order verification problem and group isomorphism
for black-box groups are in SZK, although they are in AM ∩ coAM.
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Corollary 2. Black box group membership testing, Disjointness of double cosets,
Disjointness of subcosets, Group factorization etc are in SZKB.

Proof. Let (q, x, T ) be an instance of black box group membership testing prob-
lem, where q is the length of the strings encoding group elements, T generates
the group G. To reduce it to GE we notice that x ∈ G if and only if some
element t ∈ T and x are in the same G-orbit where the G action is just right
multiplication, i.e., zg = gz.

Let (q, s, t, A, B) be an instance of double coset disjointness, where H = 〈A〉,
K = 〈B〉 and the problem is to decide if HsK and HtK are disjoint. Here we
notice that HsK ∩HtK �= φ iff s and t are in the same H ×K-orbit where the
action is defined by z(h,k) = h−1zk.

Disjointness of double coset and group factorization are equivalent because
Hs ∩Kt �= φ iff H ∩Kts−1 �= φ iff ts−1 ∈ KH .

Let (q, x, A, B) be an instance of Group factorization, where G = 〈A〉, H =
〈B〉. The problem is to decide if x ∈ GH . We notice that x ∈ GH iff x and the
identity element e are in the same G ×H-orbit. The group action is defined as
z(g,h) = g−1zh.

6 SZK Proof with Efficient Provers

An important question is whether we can design SZK protocols with efficient
provers for all problems in SZK. A notion of efficient provers, considered useful
for problems in SZK∩NP, is where the prover has to be a randomized algorithm
that has access to an NP witness for an instance x of a language in SZK ∩NP.
This question is studied in [12] where it is shown that SD1/2,1 has such an
SZK protocol. Consequently, any problem polynomial-time many-one reducible
to SD1/2,1 also has such efficient provers.

As a consequence of Theorem 7 where we show that Group Equivalence for
black-box groups is reducible to SD1/3,1 it follows from Corollary 2 and the
above-mentioned result of [12] that all NP problems considered in Section 5
have SZK protocols with efficient provers.

Theorem 9. Black box group membership testing, Double coset membership,
Subcoset intersection, Group factorization etc are in NP∩ SZKB and have SZK
protocols with efficient provers.

7 Concluding Remarks

In this paper we show that SZK (and PZK) contains a host of natural com-
putational black-box problems (respectively permutation group problems). As
complexity classes SZK and PZK are quite intriguing. We do not known anything
beyond the containment PZK ⊆ SZK ⊆ AM ∩ coAM and the closure of SZK
under complement. In this context it is interesting to note that all considered
permutation group problems (except solvable group isomorphism) are known to
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be low for PP: we can put PGE in SPP using the methods of [1, 10]. Could it
be that the class PZK (or even SZK) is low for PP? We make a final remark in
this context. The SZK-complete problem Entropy Difference (ED) is complete
even for “nearly flat” distributions, where “flatness” is a technical measure of
closeness to the uniform distribution [14]. If we consider ED with the stronger
promise that the two input distributions are uniform on their support then we
can prove that the problem is low for PP.

Acknowledgment. For comments and discussions during visits supported by
a DST-DAAD project we thank Johannes Köbler.
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10. J. Köbler, U. Schöning, J. Torán, Graph Isomorphism is Low for PP. Com-
putational Complexity, 2: 301-330 (1992).

11. E. M. Luks, Permutation groups and polynomial-time computation,in Groups and
Computation, DIMACS series in Discrete Mathematics and Theoretical Computer
Science, 139-175, 11 (1993).

12. D. Micciancio, S. Vadhan, Statistical Zero-Knowledge Proofs with Efficient
Provers: Lattice Problems and More, Proceedings of the 23rd CRYPTO confer-
ence, LNCS 2729, 282-298, 2003.

13. A. Sahai, S. Vadhan, A Complete Promise Problem for Statistical Zero-
Knowledge, Foundations of Computer Scienceq, 448-457, 1997.

14. S. Vadhan, A Study of Statistical Zero-Knowledge Proofs, Ph.D Thesis, MIT,
1999, Revised 8/00, http://www.eecs.harvard.edu/ salil/papers/phdthesis.ps.



Canonical Decomposition of a Regular Factorial
Language�

S.V. Avgustinovich and A.E. Frid

Sobolev Institute of Mathematics SB RAS,
pr. Koptyuga, 4, 630090, Novosibirsk, Russia

{avgust, frid}@math.nsc.ru

Abstract. We consider decompositions of factorial languages to con-
catenations of factorial languages and prove that if the factorial language
is regular, then so are the factors of its canonical decomposition.

1 Introduction and the Main Statement

In this paper we consider concatenation of languages, that is, equalities of the
form L = XY = {xy|x ∈ X, y ∈ Y }, where L, X, Y ∈ Σ∗ for some finite alphabet
Σ. In general, a language L ∈ Σ∗ can be decomposed to a concatenation of other
languages in many ways. Even a finite language on the unary alphabet can admit
several decompositions: for example,

(λ + a2 + a3 + a4)(λ + a2) = (λ + a2 + a3)2.

As it is shown by Salomaa and Yu [5], the situation may be even more so-
phisticated than in this easy example. Another result demonstrating non-trivial
properties of concatenation of languages has been obtained by Kunc [3] who has
disproved a long-standing conjecture by Conway [2]. Conversely to the intuition,
if Y is the maximal language such that XY = Y X for a given X , then Y can
be not recursively enumerable even if X is finite.

In order to find a situation where the properties of the concatenation would
be more predictable, the authors restricted themselves to considering factorial
languages, where the word “factorial” means that the language is closed under
taking a factor of an element, that is, that for all v ∈ L the equality v = sut
implies u ∈ L; here s, u, t ∈ Σ∗ are arbitrary (possibly empty) words called a
prefix, a factor and a suffix of v, respectively.

Note that a factorial language can also have several essentially different de-
compositions to factorial languages: e. g., 0∗1∗ = 0∗(1∗ + 0∗) = (0∗ + 1∗)1∗.
However, as the authors show in [1], we can always choose a canonical decompo-
sition of a factorial language, which is unique. More precisely, a decomposition
L = X1 · · ·Xn, where L and all Xi are factorial languages, is called canonical if

– Each of Xi is indecomposable, which means that Xi = Y Z implies Xi = Y
or Xi = Z;
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– The decomposition is minimal, that is, for each i and for all X ′
i ⊂ Xi we

have L �= X1 · · ·Xi−1X
′
iXi+1 · · ·Xn.

Theorem 1 ([1]). A canonical decomposition of a factorial language exists and
is unique.

The theorem is proved in a non-constructive way: in particular, we just assume
that we can check if a language is decomposable. So, the methods of the proof
could not be used for solving the following problem, first stated by Yu. L. Ershov:

Suppose that L is regular. Are all factors of its canonical decomposition
also regular?

Regular factorial languages have been studied, e. g., by Shur [6]. Note that
in general, some factors of a decomposition of a factorial language can be not
regular.

Example 1. The regular language 0∗1∗2∗ admits a decomposition

0∗1∗2∗ = F ({0n1n2n}) · 2∗.

Here

F ({0n1n2n}) = 0∗1∗ + 1∗2∗ + {0k1n2m|n, k, m ∈ N, k, m ≤ n}

is the factorial closure of the language {0n1n2n|n ∈ N}; clearly, it is not regular.

After Conway’s conjecture had been disproved, we could not bring ourselves
to forecast the answer to Ershov’s question. But fortunately, the answer turns out
to be positive and not difficult to prove. So, in this note we prove the following

Theorem 2. All factors of the canonical decomposition of a regular factorial
language are regular.

2 Proof

The main part of the proof is contained in the following

Lemma 1. Let L, X1, . . . , Xn be factorial languages, where L is regular and
L = X1 · · ·Xn. Then there exist regular factorial languages Y1, . . . , Yn such that
Yi ⊆ Xi for i = 1, . . . , n and L = Y1 · · ·Yn.

Proof. Let A = A(L) be an automaton recognizing L. Without loss of generality
and following the notation of e. g. [4], we assume that all transitions of A(L)
are labelled with symbols of the alphabet Σ of the language L. Also, since L
is factorial, we may assume that all the states of A(L) are initial and terminal,
so that A(L) =< Q, E, Σ, Q, Q >, where Q is a finite set of states and E ⊆
Q × Q × Σ; here e = (p, r, a) ∈ E is a transition with the source p and the
destination r, labelled with a. A computation in A is a sequence of transitions
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e1, . . . , ek such that the sourse of ei is the destination of ei−1 for all i > 1. Since
all states in A are initial and terminal, all computations in it are successful,
which means that their labels are always words of L. In its turn, L is the set of
labels of all (successful) computations in A.

For each i = 1, . . . , n let us define the subset Ei ⊆ E as follows: e ∈ Ei if
and only if all computations in A(L) whose last transition is e are labelled with
words from X1 · · ·Xi but among them there is a transition labelled with a word
not belonging to X1 · · ·Xi−1 . Note that each transition of E belongs to exactly
one of the sets Ei, so E = E1 ∪ E2 ∪ . . . ∪ En is a partition of E.

Let Yi be the language recognized by the automaton Ai =< Q, Ei, Σ, Q, Q >.
By the construction, each of the languages Yi is regular and factorial. We should
only show that L = Y1 · · ·Yn and Yi ⊆ Xi for all i.

Let us consider a computation e1, . . . , em in A labelled with a word a1 · · · am ∈
L and prove that if ei ∈ Ek and ej ∈ El for i < j, then k ≤ l. Indeed, ei ∈ Ek

means in particular that there exists a computation f1, . . . , ft, ei in A labelled
with a word b1 · · · btai which does not belong to X1 · · ·Xk−1. But since the
language X1 · · ·Xk−1 is factorial, the label b1 · · · btai · · · aj of the computation
f1, . . . , ft, ei, . . . , ej, which is clearly a computation in A, also does not belong
to X1 · · ·Xk−1. We see that l ≥ k, which was to be proved.

So, in the computation e1, . . . , em we observe a (possibly empty) group of
transitions from E1 labelled with a word from Y1, followed by a (possibly empty)
group of transitions from E2 labelled with a word from Y2, etc., so a1 · · · am ∈
Y1 · · ·Yn. Since the word a1 · · · am ∈ L was chosen arbitrarily, we have L ⊆
Y1 · · ·Yn.

Now let us consider an arbitrary computation g1, . . . , gk in Ai labelled with
a word c1 · · · ck ∈ Yi and prove that c1 · · · ck ∈ Xi. This will mean that Yi ⊆ Xi

for all i. Indeed, g1 ∈ Ei implies that some computation h1, . . . , hl, g1 in A is
labelled with a word d1 · · · dlc1 ∈ (X1 · · ·Xi)\(X1 · · ·Xi−1). Let d1 · · ·dj be its
longest prefix from X1 · · ·Xi−1; here 0 ≤ j ≤ l. Now let us consider the com-
putation h1, . . . , hl, g1, . . . gk, which is also a computation in A, and its label
d1 · · · dlc1 · · · ck ∈ X1 · · ·Xi since gk ∈ Ei. The longest prefix of d1 · · · dlc1 · · · ck

which belongs to X1 · · ·Xi−1 is still d1 · · · dj since X1 · · ·Xi−1 is a factorial lan-
guage. Hence dj+1 · · · dmc1 · · · ck ∈ Xi; since Xi is factorial, the suffix c1 · · · ck

also lies in it. We have proved that Yi ⊆ Xi.
Thus, Y1 · · ·Yn ⊆ X1 · · ·Xn = L. Together with the inclusion L ⊆ Y1 · · ·Ym

proved above, this gives L = Y1 · · ·Yn which proves the lemma. �

Proof of Theorem 2. Let us apply Lemma 1 to the canonical decomposition
L = X1 · · ·Xn of a regular language L. If we had Yi ⊂ Xi for some i, this would
contradict to the minimality of the decomposition L = X1 · · ·Xn. So, Yi = Xi

for all i, and thus all languages Xi are regular, which was to be proved. �

3 Discussion and Examples

Note that Lemma 1 itself does not necessarily give a minimal (and all the more
canonical) decomposition.
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Fig. 1. A (non-minimal) automaton A recognizing the language 0∗1∗
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Fig. 2. Automata A1 and A2

Example 2. The automaton A from Fig. 1 recognizes the language L = 0∗1∗.
However, if we decompose it starting from the decomposition L = (0∗ + 1∗)1∗,
this decomposition will not be reduced, and we will have Y1 = 0∗ + 1∗, Y2 = 1∗

(see Fig. 2).
Here and below, we do not mark initial and terminal states of automata since

we presume that all states are initial and terminal.

In the above proof, we walked the transitions from left to right. Symmetrically, we
could walk from right to left and define the sets E′

i ⊆ E as the set of all transitions
e such that all computations in A(L) whose first transition is e are labelled with
words from Xi · · ·Xn, but among them there is a transition labelled with a word
not belonging to Xi+1 · · ·Xn. These two proofs are equivalent, but they may
lead to different automata A1, . . . , An and even to different decompositions.

Example 3. If we consider the language L from the previous example and start
with the automaton from Fig. 1 and the decomposition L = (0∗ + 1∗)1∗, but
follow the “right to left” proof, then we get the automata from Fig. 3. They give
Y ′

1 = 0∗ and Y2 = 1∗, which correspond to the canonical decomposition of L.

It also follows from the proof of the theorem that if a regular factorial lan-
guage L is decomposable, then the factors of its canonical decompositions can
be recognized by sub-automata of any automaton A recognizing L. The study of
all possible partitions of A to transition-disjoint sub-automata will necessarily
lead to the canonical decomposition of L, so finding a canonical decomposition
of a regular factorial language is decidable.

Moreover, the non-deterministic state complexity of each of the factors of the
canonical decomposition thus clearly cannot exceed the non-deterministic state
complexity of the initial language. We can also note that for factorial languages,
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Fig. 3. Automata A′
1 and A′

2

deterministic automata do not seem to be the most convenient tool for a study.
It is more natural to consider automata with all the states being initial and
terminal, as we did here.
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Abstract. Bidirected graphs (a sort of nonstandard graphs introduced
by Edmonds and Johnson) provide a natural generalization to the no-
tions of directed and undirected graphs. By a weakly acyclic bidirected
graph we mean such a graph having no simple cycles. We call a bidi-
rected graph strongly acyclic if it has no cycles (even non-simple). We
present (generalizing results of Gabow, Kaplan, and Tarjan) a modifi-
cation of the depth-first search algorithm that checks (in linear time) if
a given bidirected graph is weakly acyclic (in case of negative answer
a simple cycle is constructed). We use the notion of skew-symmetric
graphs (the latter give another, somewhat more convenient graph lan-
guage which is essentially equivalent to the language of bidirected
graphs). We also give structural results for the class of weakly acyclic
bidirected and skew-symmetric graphs explaining how one can construct
any such graph starting from strongly acyclic instances and, vice versa,
how one can decompose a weakly acyclic graph into strongly acyclic
“parts”. Finally, we extend acyclicity test to build (in linear time) such
a decomposition.

1 Introduction

The notion of bidirected graphs was introduced by Edmonds and Johnson [3]
in connection with one important class of integer linear programs generalizing
problems on flows and matchings; for a survey, see also [9].

Recall that in a bidirected graph G three types of edges are allowed: (i) a usual
directed edge, or an arc, that leaves one node and enters another one; (ii) an
edge from both of its ends; or (iii) an edge to both of its ends. When both ends
of edge coincide, the edge becomes a loop.

In what follows we use notation VG (resp. EG) to denote the set of nodes
(resp. edges) of an undirected or bidirected graph G. When G is directed we
speak of arcs rather than edges and write AG in place of EG.

A walk in a bidirected graph G is an alternating sequence P = (s = v0, e1,
v1, . . . , ek, vk = t) of nodes and edges such that each edge ei connects nodes
vi−1 and vi, and for i = 1, . . . , k − 1, the edges ei, ei+1 form a transit pair at
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vi, which means that one of ei, ei+1 enters and the other leaves vi. Note that e1
may enter s and ek may leave t; nevertheless, we refer to P as a walk from s to
t, or an s–t walk. P is a cycle if v0 = vk and the pair e1, ek is transit at v0; a
cycle is usually considered up to cyclic shifts. Observe that an s–s walk is not
necessarily a cycle.

If vi �= vj for all 1 ≤ i < j < k and 1 < i < j ≤ k, then walk P is called node-
simple (note that the endpoints of a node-simple walk need not be distinct). A
walk is called edge-simple if all its edges are different.

Let X be an arbitrary subset of nodes of G. One can modify G as follows:
for each node v ∈ X and each edge e incident with v, reverse the direction of
e at v. This transformation preserves the set of walks in G and thus does not
change the graph in essence. We call two bidirected graphs G1, G2 equivalent if
one can obtain G2 from G1 by applying a number of described transformations.

A bidirected graph is called weakly (node- or edge-) acyclic if it has no (node-
or edge-) simple cycles. These two notions of acyclicity are closely connected.
Given a bidirected graph G one can do the following: (i) replace each node v ∈ VG

by a pair of nodes v1, v2; (ii) for each node v ∈ VG add an edge leaving v1
and entering v2; (iii) for each edge e ∈ EG connecting nodes u, v ∈ VG add
an edge connecting ui and vj , where i = 1 if e enters u; i = 2 otherwise;
similarly for j and v. This procedure yields a weakly edge-acyclic graph iff the
original graph is weakly node-acyclic.The converse reduction from edge-acyclicity
to node-acyclicity is also possible: (i) replace each node v ∈ VG by a pair of nodes
v1, v2; (ii) for each edge e ∈ EG connecting nodes u, v ∈ VG add a node we and
four edges connecting ui, vi with we (i = 1, 2); edges uiwe should enter we; edges
wevi should leave we; the direction of these edges at ui (resp. vi) should coincide
with the direction of e at u (resp. v).

In what follows we shall only study the notion of weak edge-acyclicity.
Hence, we drop the prefix “edge” for brevity when speaking of weakly acyclic
graphs. If a bidirected graph has no (even non-simple) cycles we call it strongly
acyclic.

One possible application of the weak acyclicity test is described in [4]. Let
G be an undirected graph and M be a perfect matching in G (that is, a set of
edges such that: (i) no two edges in M share a common node; (ii) for each node v
there is a matching edge incident with v). The problem is to check if M is the
unique perfect matching in G. To this aim we transform G into the bidirected
graph G by assigning directions to edges as follows: every edge e ∈ M leaves
both its endpoints, every edge e ∈ EG \M enters both its endpoints. One easily
checks that the definition of matching implies that every edge-simple cycle in
G is also node-simple. Moreover, each such simple cycle in G gives rise to an
alternating circuit in G with respect to M (a circuit of even length consisting of
an alternating sequence of edges belonging to M and EG \M). And conversely,
every alternating circuit in G with respect to M generates a node-simple cycle
in G. It is well known (see [8]) that M is unique iff there is no alternating circuit
with respect to it. Hence, the required reduction follows.



Acyclic Bidirected and Skew-Symmetric Graphs 25

2 Skew-Symmetric Graphs

This section contains terminology and some basic facts concerning skew-symmet-
ric graphs and explains the correspondence between these and bidirected graphs.
For a more detailed survey on skew-symmetric graphs, see, e.g., [10, 6, 7, 1].

A skew-symmetric graph is a digraph G endowed with two bijections σV , σE

such that: σV is an involution on the nodes (i.e., σV (v) �= v and σV (σV (v)) = v
for each node v), σA is an involution on the arcs, and for each arc e from u to
v, σE(e) is an arc from σV (v) to σV (u). For brevity, we combine the mappings
σV , σA into one mapping σ on VG ∪ AG and call σ the symmetry (rather than
skew-symmetry) of G. For a node (arc) x, its symmetric node (arc) σ(x) is also
called the mate of x, and we will often use notation with primes for mates,
denoting σ(x) by x′.

Observe that if G contains an arc e from a node v to its mate v′, then e′ is
also an arc from v to v′ (so the number of arcs of G from v to v′ is even and
these parallel arcs are partitioned into pairs of mates).

By a path (circuit) in G we mean a node-simple directed walk (cycle), un-
less explicitly stated otherwise. The symmetry σ is extended in a natural way
to walks, cycles, paths, circuits, and other objects in G. In particular, two
walks or cycles are symmetric to each other if the elements of one of them
are symmetric to those of the other and go in the reverse order: for a walk
P = (v0, a1, v1, . . . , ak, vk), the symmetric walk σ(P ) is (v′k, a′

k, v′k−1, . . . , a
′
1, v

′
0).

One easily shows that G cannot contain self-symmetric circuits (cf. [7]). We call
a set of nodes X self-symmetric if X ′ = X .

Following terminology in [6], an arc-simple walk in G is called regular if it
contains no pair of symmetric arcs (while symmetric nodes in it are allowed).
Hence, we may speak of regular paths and regular circuits.

Next we explain the correspondence between skew-symmetric and bidirected
graphs (cf. [7, Sec. 2], [1]). For sets X, A, B, we use notation X = A � B when
X = A∪B and A∩B = ∅. Given a skew-symmetric graph G, choose an arbitrary
partition π = {V1, V2} of VG such that V2 is symmetric to V1. Then G and π
determine the bidirected graph G with node set V1 whose edges correspond to
the pairs of symmetric arcs in G. More precisely, arc mates a, a′ of G generate
one edge e of G connecting nodes u, v ∈ V1 such that: (i) e goes from u to v if
one of a, a′ goes from u to v (and the other goes from v′ to u′ in V2); (ii) e leaves
both u, v if one of a, a′ goes from u to v′ (and the other from v to u′); (iii) e
enters both u, v if one of a, a′ goes from u′ to v (and the other from v′ to u). In
particular, e is a loop if a, a′ connect a pair of symmetric nodes.

Conversely, a bidirected graph G with node set V determines a skew-sym-
metric graph G with symmetry σ as follows. Take a copy σ(v) of each element
v of V , forming the set V

′
:=

{
σ(v) | v ∈ V

}
. Now set VG := V � V

′
. For each

edge e of G connecting nodes u and v, assign two “symmetric” arcs a, a′ in G so
as to satisfy (i)-(iii) above (where u′ = σ(u) and v′ = σ(v)).

Also there is a correspondence between walks in G and pairs of symmetric
walks in G. More precisely, let τ be the natural mapping of VG ∪AG to VG ∪EG

(obtained by identifying the pairs of symmetric nodes and arcs). Each walk P =
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(v0, a1, v1, . . . , ak, vk) in G induces the sequence τ(P ) := (τ(v0), τ(a1), τ(v1), . . . ,
τ(ak), τ(vk)) of nodes and edges in G. One can easily check that τ(P ) is a walk
in G and τ(P ) = τ(P ′). Moreover, for any walk P in G there are exactly two
preimages τ−1(P ) — these are certain symmetric walks P, P ′ in G satisfying
τ(P ) = τ(P ′) = P .

Let us call a skew-symmetric graph strongly acyclic if it has no directed
cycles. Each cycle in G generates a pair of symmetric cycles in G and vice versa.
To obtain a similar result for the notion of weak acyclicity in bidirected graphs,
suppose G is not weakly acyclic and consider an edge-simple cycle C in G having
the smallest number of edges. Then C generates a pair of symmetric cycles C, C′

in G (as described above). Cycles C, C′ are circuits since otherwise one can
shortcut them and obtain (by applying τ) a shorter edge-simple cycle in G.
Moreover, C and C′ are regular (or, equivalently, arc-disjoint). Indeed, suppose
C contains both arcs a and a′ for some a ∈ AG. Hence C traverses the edge
τ(a) at least twice, contradicting the assumption. Conversely, let C be a regular
circuit in G. Trivially C := τ(C) is an edge-simple cycle in G. These observations
motivate the following definition: we call a skew-symmetric graph weakly acyclic
if is has no regular circuits.

For a given set of nodes X in a directed graph G we use notation G[X ] to
denote the directed subgraph induced by X . In case G is skew-symmetric and
X ′ = X the symmetry on G induces the symmetry on G[X ].

An easy part of our task is to describe the set of strongly acyclic skew-
symmetric graphs. The following theorem gives the complete characterization of
such graphs. (Due to lack of space we do not include proofs here; these proofs
will be given in the full version of the paper.)

Theorem 1. A skew-symmetric graph G is strongly acyclic iff there exists a
partition Z�Z ′ of VG, such that the induced (standard directed) subgraphs G[Z],
G[Z ′] are acyclic and no arc goes from Z to Z ′.

Corollary 1. A bidirected graph G is strongly acyclic iff G is equivalent to a
bidirected graph that only has directed edges forming an acyclic graph and edges
leaving both endpoints.

3 Separators and Decompositions

In this section we try to answer the following question: given a skew-symmetric
weakly acyclic graph what kind of a natural certificate can be given to prove the
absence of regular circuits (or, equivalently, regular cycles) in it?

Our first answer is as follows. Let G be a skew-symmetric graph. Suppose
VG is partitioned into four sets A, B, Z, Z ′ such that: (i) A and B are self-
symmetric and nonempty; (ii) exactly one pair of symmetric arcs connects A
and B; (iii) G[A] and G[B] are weakly acyclic; (iv) no arc leaves Z, no arc enters
Z ′. If these properties are satisfied we call (A, B, Z) a weak separator for G
(see Fig. 1(a)).
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Z ′

(a) Weak separator.
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b′

A B

(b) Strong separator.

Fig. 1. Separators. Solid arcs should occur exactly once, dashed arcs may occur arbi-
trary number of times (including zero).

Theorem 2. Every weakly acyclic skew-symmetric graph G is either strongly
acyclic or admits a weak separator (A,B,Z). Conversely, if (A,B,Z) is a weak
separator for G, then G is weakly acyclic.

Thus, given a weakly acyclic graph G one can apply Theorem 2 to split VG

into four parts. The subgraphs G[A], G[B] are again weakly acyclic, so we can
apply the same argument to them, etc. This recursive process (which produces
two subgraphs on each steps) stops when current subgraph becomes strongly
acyclic. In such case, Theorem 1 provides us with the required certificate.

Motivated by this observation we introduce the notion of a weak acyclic de-
composition of G. By this decomposition we mean a binary tree D constructed
as follows. The nodes of D correspond to self-symmetric subsets of VG (in what
follows, we make no distinction between nodes in D and these subsets). The root
of D is the whole node set VG. Any leaf X in D is a self-symmetric subset that
induces a strongly acyclic subgraph G[X ]; we attach a partition X = Z � Z ′

as in Theorem 1 to X . Consider any non-leaf node X in D. It induces the sub-
graph G[X ] that is not strongly acyclic. Applying Theorem 2 we get a partition
of X into subsets A,B,Z,Z ′ and attach it to X ; the children of X are defined
to be A and B.

An appealing special case arises when we restrict our attention to the class of
strongly connected (in standard sense) skew-symmetric graphs, that is, graphs
where each two nodes are connected by a (not necessarily regular) path. We need
to introduce two additional definitions. Given a skew-symmetric graph H and a
node s in it we call H s-connected if every node in H lies on a (not necessarily
regular) s–s′ path. Suppose the node set of a skew-symmetric graph G admits a
partition (A,B) such that: (i) A and B are self-symmetric; (ii) exactly one pair
of symmetric arcs {a′b, b′a} connects A and B (a, a′ ∈ A, b, b′ ∈ B); (iii) G[A] is
weakly acyclic and a-connected, G[B] is weakly acyclic and b-connected. Then
we call (A,B) a strong separator for G (see Fig. 1(b) for an example).

Now we describe a decomposition of an arbitrary weakly acyclic skew-sym-
metric graph in terms of strongly connected components (hence, providing an-
other answer to the question posed at the beginning of the section).
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Z

Z ′

B1 B2 Bk

Fig. 2. Decomposition of a weakly acyclic skew-symmetric graph G. Dashed arcs may
occur arbitrary number of times (including zero). Subgraphs G[Z], G[Z′] are acyclic,
subgraphs G[Bi] are strongly connected and weakly acyclic.

Theorem 3. A skew-symmetric graph G is weakly acyclic iff there exists a par-
tition of VG into sets Z,Z ′,B1, . . . ,Bk such that: (i) (standard directed) sub-
graphs G[Z], G[Z ′] are acyclic; (ii) sets Bi are self-symmetric, subgraphs G[Bi]
are strongly connected and weakly acyclic; (iii) no arc connects distinct sets Bi

and Bj; (iv) no arc leaves Z, no arc enters Z ′.

Theorem 4. A skew-symmetric graph B is strongly connected and weakly acyc-
lic iff it admits a strong separator (A,B).

An example of such decomposition is presented in Fig. 2. For k = 0 the
decomposition in Theorem 3 coincides with such in Theorem 1.

Consider an arbitrary weakly acyclic skew-symmetric graph G. Add auxiliary
nodes {s, s′} and arcs {sv, v′s′}, v ∈ VG \ {s, s′} thus making G s-connected.
Similarly to its weak counterpart, a strong acyclic decomposition of G is a tree D
constructed as follows. The nodes of D correspond to self-symmetric subsets of
VG. Each such subset A induces the a-connected graph G[A] for some a ∈ A.
The root of D is the whole node set VG. Consider a node A of D. Applying
Theorem 3 one gets a partition of A into subsets Z,Z ′,B1, . . . ,Bk and attaches
it to A. Each of Bi is strongly connected and thus Theorem 4 applies. Hence,
we can further decompose each of Bi into Xi � Yi (X ′

i = Xi, Y ′
i = Yi) with

the only pair of symmetric arcs {x′iyi, y′ixi} (xi ∈ Xi, yi ∈ Yi) connecting Xi

and Yi. The induced subgraphs G[Xi] (resp. G[Yi]) are xi-connected (resp. yi-
connected). We define the children of A to be X1, Y1, . . . , Xk, Yk. Clearly, leaf
nodes of D correspond to certain strongly acyclic subgraphs.

4 Algorithms

We need some additional notation. For a set of nodes X denote the set of arcs
entering (resp. leaving)X by δin(X) (resp. δout(X)). Denote the set of arcs having
both endpoints in X by γ(X).
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(b) Graph G/τ together with a shaded
path P .

Fig. 3. Buds, trimming, and path restoration. Base and antibase nodes b, b′ are marked.
Path P is a preimage of P .

Let Vτ be a symmetric set of nodes in a skew-symmetric graph G; aτ ∈
δin(Vτ ). Let vτ denote the head of aτ . Suppose every node in Vτ is reachable
from vτ by a regular path in G[Vτ ]. Then we call τ = (Vτ , aτ ) a bud. (Note that
our definition of bud is weaker than the corresponding one in [6].) The arc aτ

(resp. node vτ ) is called the base arc (resp. base node) of τ , arc a′
τ (resp. node v′τ )

is called the antibase arc (resp. the antibase node) of τ . For an arbitrary bud τ we
denote its set of nodes by Vτ , base arc by aτ , and base node by vτ . An example
of bud is given in Fig. 3(a).

Consider an arbitrary bud τ in a skew-symmetric graph G. By trimming τ we
mean the following transformation of G: (i) all nodes in Vτ \ {vτ , v

′
τ} and arcs in

γ(Vτ ) are removed from G; (ii) all arcs in δin(Vτ )\{aτ} are transformed into arcs
entering v′τ (the tails of these arcs are not changed); (iii) all arcs in δout(Vτ )\{a′

τ}
are transformed into arcs leaving vτ (the heads of these arcs are not changed).
The resulting graph (which is obviously skew-symmetric) is denoted by G/τ .
Thus, each arc of the original graph G not belonging to γ(Vτ ) has its image in
the trimmed graph G/τ . Fig. 3 gives an example of bud trimming.

Let P be a regular path in G/τ . One can lift this path to G as follows: if P
does not contain neither aτ , nor a′

τ leave P as it is. Otherwise, consider the case
when P contains aτ (the symmetric case is analogous). Split P into two parts:
the part P1 from the beginning of P to vτ and the part P2 from vτ to the end of
P . Let a be the first arc of P2. The arc a leaves vτ in G/τ and thus corresponds
to some arc a leaving Vτ in G (a �= a′

τ ). Let u ∈ Vτ be the tail of a in G and
Q be a regular vτ–u path in G[Vτ ] (existence of Q follows from the definition of
bud). Consider the path P := P1 ◦Q ◦P2 (here U ◦V denotes the path obtained
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by concatenating U and V ). One can easily show that P is regular. We call P a
preimage of P (under trimming G by τ). Clearly, P is not unique. An example
of such path restoration is shown in Fig. 3: the shaded path P on the left picture
corresponds to the shaded path P on the right picture.

Given a skew-symmetric graphG we check if it is weakly acyclic as follows (we
refer to this algorithm as Acyclicity-Test). For technical reasons we require
G to obey the following two properties:

(i) Degree property: for any node v in G at most one arc enters v or at most
one arc leaves v.

(ii) Loop property: G must not contain parallel arcs connecting symmetric nodes
(these arcs correspond to loops in bidirected graphs).

Degree property implies that a regular walk in G cannot contain a pair of
symmetric nodes (loosely speaking, the notions of node- and arc-regularity coin-
cide for G). This property can be satisfied by applying the reductions described
in Section 1. It can be easily shown that degree and loop properties are preserved
by trimmings.

Our algorithm adopts ideas from [4] to the case of skew-symmetric graphs.
The algorithm is a variation of both depth-first-search (DFS) procedure (see [2])
and regular reachability algorithm (see [6]). It has, however, two essential differ-
ences. Firstly, unlike standard DFS, which is carried out in a static graph, our
algorithm changes G by trimming some buds. Secondly, unlike regular reachabil-
ity algorithm, we do not trim a bud as soon as we discover it. Rather, trimming
is postponed up to the moment when it can be done “safely”.

Let H be a current graph. Each pair of symmetric nodes in G is mapped to
a certain pair of symmetric nodes in H . This mapping is defined by induction
on the number of trimmings performed so far. Initially this mapping is identity.
When a bud τ is trimmed and nodes Vτ \ {vτ , v

′
τ} are removed, the mapping is

changed so as to send the pairs of removed nodes to {vτ , v
′
τ}. Given this mapping,

we may also speak of the preimage X of any self-symmetric node set X in H .
The algorithm recursively grows a directed forest F . At every moment this

forest has no symmetric nodes (or, equivalently, does not intersect the symmetric
forest F ′). Thus, every path in such forest is regular. The algorithm assigns
colors to nodes. There are five possible colors: white, gray, black, antigray, and
antiblack. White color assigned to v means that v is not yet discovered. Since
the algorithm processes nodes in pairs, if v is white then so is v′. Other four
colors also occur in pairs: if v is gray then v′ is antigray, if v is black then v′ is
antiblack (and vice versa). All nodes outside both F and F ′ are white, nodes in
F are black or gray, nodes in F ′ are antiblack or antigray.

At any given moment the algorithm implicitly maintains a regular path start-
ing from a root of F . As in usual DFS, this path can be extracted by examining
the recursion stack. The nodes on this path are gray, the symmetric nodes are
antigray. No other node is gray or antigray. Black color denotes nodes which
are already completely processed by the algorithm; the mates of such nodes are
antiblack.
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The core of the algorithm is the following recursive procedure. It has two
arguments — a node u and optionally an arc q entering u (q may be omitted
when u is a root node for a new tree in F ). Firstly, the procedure marks u as
gray and adds u to F (together with q if q is given). Secondly, it scans all arcs
leaving u. Let a be such arc, v be its head. Several cases are possible (if no case
applies, then a is skipped and next arc is fetched and examined):

(i) Circuit case: If v is gray, then there exists a regular circuit in the current
graph (it can be obtained by adding the arc a to the gray v–u path in F ).
The procedure halts reporting the existence of a regular circuit in G (which
is constructed from C in a postprocessing stage, see below).

(ii) Recursion case: If v is white, the recursive call with parameters (v, uv) is
made.

(iii) Trimming case: If v is antiblack, the procedure constructs a certain bud
in the current graph and trims it as follows. One can show that each time
trimming case occurs the node v′ is an ancestor of u in F . Let P denote the
corresponding u–v′ path. Let aτ be the (unique) arc of F entering u (u has
at least two outgoing arcs and hence cannot the a root of F , see below).
Let H denote the current graph. Finally, let Vτ be the union of node sets
of P and P ′. One can easily show that τ = (Vτ , aτ ) is a bud in H (buds
formed by a pair of symmetric regular paths are called elementary in [6]).
The procedure trims τ and replaces H by H/τ . The forest F is updated
by removing nodes in Vτ \ {u, u′} and arcs in γ(Vτ ). All other arcs of F
are replaced by their images under trimming by τ . Since aτ belongs to F ,
it follows that the structure of forest is preserved. Note that trimming can
produce new (previously unexisting) arcs leaving u.

When all arcs leaving u are fetched and processed the procedure marks u as
black, u′ as antiblack and exits.

Acyclicity-Test initially makes all nodes white. Then, it looks for symmet-
ric pairs of white nodes in G. Consider such a pair {v, v′} and assume, without
loss of generality, that out-degree of v is at most 1. Invoke the above-described
procedure at v (passing no arc) and proceed to the next pair.

If all recursive calls complete normally, we claim that the initial graph is
weakly acyclic. Otherwise, some recursive call halts yielding a regular circuit C
in a current graph. During the postprocessing stage we consider the sequence of
the trimmed buds in the reverse order and undo the corresponding trimmings.
Each time we undo a trimming of a certain bud τ we also replace C by its
preimage (as described in Section 3). At each such step the regularity of C is
preserved, thus at the end of postprocessing we obtain a regular circuit in the
original graph, as required.

It can be shown that this algorithm is correct and can be implemented to
run in linear time.

Now we address the problem of building a weak acyclic decomposition. We
solve it by a modified version of Acyclicity-Test which we call Decompose.
Let G be a skew-symmetric graph with a designated node s. Suppose we are



32 M.A. Babenko

s

s′

S

S′

Vτ1 Vτ2 Vτk M

Fig. 4. A barrier. Solid arcs should occur exactly once, dashed arcs may occur arbitrary
number of times (including zero).

given a collection of buds τ1, . . . , τk in G together with node sets S and M .
Additionally, suppose the following properties hold: (i) {S,S′,M, Vτ1 , . . . , Vτk

}
is a partition of VG with s ∈ S; (ii) no arc goes from S to S′ ∪M ; (iii) no arc
connects distinct sets Vτi and Vτj ; (iv) no arc connects Vτi and M ; (v) the arc eτi

is the only one going from S to Vτi . Then we call the tuple B = (S,M ; τ1, . . . , τk)
an s–s′ barrier ([6], see Fig. 4 for an example).

Let us introduce one more weak acyclicity certificate (which is needed for
technical reasons) and show how to construct a weak decomposition from it.
Let B = (S,M ; τ1, . . . , τk) be a barrier in G. Put G̃ := G/τ1/ . . . /τk, W :=
S ∪ {vτ1 , . . . , vτk

}. We call B acyclic if the following conditions are satisfied:
(i) subgraphs G[M ], G[Vτ1 ], . . . , G[Vτk

] are weakly acyclic. (ii) the (standard di-
rected) subgraph G̃[W ] is acyclic.

Suppose we are given an acyclic barrier B ofG with M = ∅. Additionally, sup-
pose that weak acyclic decompositions of G[Vτi ] are also given. A weak acyclic de-
composition ofG can be obtained as follows. Consider the graph G̃ and the setW
as in definition of an acyclic barrier. Order the nodes in W topologically: W =
{w1, . . . , wn}; for i > j no arc in G̃ goes from wi to wj . Also, assume that buds τi
are numbered according to the ordering of the corresponding base nodes vτi inW .
Let these base nodes separate the sequence w1, . . . , wn into parts Z1, . . . ,Zk+1
(some of them may be empty). In other words, let {Zi} be the collection of
sequences of nodes such that w1, . . . , wn = Z1, vτ1 ,Z2, . . . ,Zk, vτk

,Zk+1. Addi-
tionally, put Ai := (Z1 ∪ Z ′

1) ∪ Vτ1 ∪ . . . ∪ Vτi−1 ∪ (Zi ∪ Z ′
i). Obviously, sets Ai

are self-symmetric, Ak+1 = VG. The graph G[A1] is strongly acyclic (this readily
follows from Theorem 1 by putting Z := Z1). One can show that for each i ≥ 2
the triple (Ai−1, Vτi−1 ,Zi) is a weak separator for G[Ai]. Using known decom-
positions of G[Vτi ] these separators can be combined into a decomposition of G.
An example is depicted in Fig. 5.

Buds that are trimmed by the algorithm are identified in a current graph but
can also be regarded as buds in the original graph G. Namely, let H be a current
graph and τ be a bud in H . One can see that (V τ , aτ ), where aτ (resp. V τ ) is
the preimage of aτ (resp. Vτ ), is a bud in G. This bud will be denoted by τ .
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aτ1

a′τ1

aτ2

a′τ2

Z1

Z ′
1

Z2

Z ′
2

Z3

Z ′
3

Vτ1 Vτ2

A2A1

Fig. 5. Constructing a weak decomposition from an acyclic barrier. Solid arcs should
occur exactly once, dashed arcs may occur arbitrary number of times (including zero).
Not all possible dashed arcs are shown.

Observe that the node sets of preimages τ of buds τ trimmed by Acyclicity-
Test are distinct sets forming a laminar family in VG. At any moment the
current graph H can be obtained from G by trimming the set of inclusion-wise
maximal buds (which were discovered up to that moment). For each such bud τ
we maintain an acyclic v′τ -barrier Bτ with the empty M -part.

Nodes in H can be of two possible kinds: simple and complex. Simple nodes
are nodes that were not touched by trimmings, that is, they do not belong to
any of Vτ sets for all trimmed buds τ . Complex nodes are base and antibase
nodes of maximal trimmed buds.

The following key properties of Acyclicity-Test can be shown: (i) the
(standard directed) subgraph induced by the set of black nodes is acyclic; (ii)
no arc goes from black node to gray, white or antiblack node.

Decompose consists of two phases: traversal and postprocessing. During
the first phase we invoke Acyclicity-Test modified as follows. Suppose the
algorithm trims a bud τ in H . First, suppose that the node vτ was simple prior
to that trimming. We construct Bτ as follows. Let B be the set of black simple
nodes in Vτ , τ1, . . . , τk be the preimages (in G) of trimmed buds corresponding
to base nodes in Vτ . Putting Bτ := (B∪{v′τ} , ∅; τ1, . . . , τk) we obtain a required
acyclic barrier for τ .

Situation gets more involved when vτ is a complex node (hence, the algorithm
performs several trimmings at this node). Define B as above. Let φ be the
already trimmed inclusion-wise maximal bud at vτ . Consider a barrier Bφ =
(Q, ∅;φ1, . . . , φl). We put Bτ := (Q∪B; ∅;φ1, . . . , φl, τ1, . . . , τk). It can be shown
that Bτ is a required acyclic barrier for τ .

When traversal of G is complete the algorithm builds a final acyclic barrier
in G. Observe that at that moment all nodes are black or antiblack. The set of
simple black nodes B∗ in the final graph and the inclusion-wise maximal trimmed
buds τ∗1, . . . , τ

∗
k induce the acyclic barrier B∗ := (B∗, ∅; τ∗1, . . . , τ∗k) in G. During

the postprocessing phase the algorithm constructs the desired decomposition of
G from acyclic barriers recursively as indicated above.
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Abstract. Parametric inductive types can be seen as functions taking
type parameters as arguments and returning the instantiated inductive
types. Given functions between parameters one can construct a function
between the instantiated inductive types representing the change of pa-
rameters along these functions. It is well known that it is not a functor
w.r.t. intensional equality based on standard reductions. We investigate
a simple type system with inductive types and iteration and show by
modular rewriting techniques that new reductions can be safely added
to make this construction a functor, while the decidability of the inter-
nal conversion relation based on the strong normalization and confluence
properties is preserved. Possible applications: new categorical and com-
putational structures on λ-calculus, certified computation.

1 Introduction

This paper is part of a larger project where we consider how some new compu-
tational rules may be incorporated in a λ-calculus with inductive types.

One of the main difficulties in applications of computer assisted reasoning
based on λ-calculus is that the representation of real computations is very indi-
rect, it is in fact complex coding, satisfactory for theoretical results but lacking
the directness and transparency required for efficient applications. Extensions
of typed systems using "real-life" inductive types like natural numbers, lists,
and trees, with corresponding constructors and iteration/recursion operators are
helpful but not sufficient.

Symbolic computation, for example, often includes the transformations of
symbolic expressions that were never studied from the point of view of properties
of the corresponding rewriting system. The importance of the problem of certified
computation, symbolic or numerical (i.e., computation together with the proof
of its correctness) was emphasized several years ago (cf. [2]) but since it was
studied in a very limited number of cases.

The possibility used in most proof-assistants is to obtain a proof-term repre-
senting the proof of equality of two terms representing computations. This term
should be carried everywhere, and this turns out to be very cumbersome and
inefficient.

D. Grigoriev, J. Harrison, and E.A. Hirsch (Eds.): CSR 2006, LNCS 3967, pp. 35–45, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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One of the reasons is that the reduction system incorporated in the under-
lying typed λ-calculus is very restrictive. Thus even very simple equalities used
routinely very often require the proof-term corresponding to this equality to be
carried with it. It may require quite complex manipulations if the equality is
used within another computation.

Our approach is based on extensions of reduction systems preserving good
properties of the system as a whole, such as strong normalization (SN) and
Church-Rosser property (CR).

In this paper we address the problem of rules representing the func
toriality of the schemas of inductive types. We show that the corresponding
extensions of the λ-calculus remain SN and CR. As result, the categorical com-
putations using functoriality can be safely incorporated in "an intensional way"
into proof-assistants. This will considerably lighten the proofs used in certified
computations.

Notice, that there are well known categorical structures defined on certain
systems of simply-typed λ-calculus, for example, cartesian closed structure on
the calculus with surjective pairing and terminal object. These structures have
numerous applications. Our approach will permit to "lift" them to corresponding
classes of parametrized inductive types and obtain new categorical models and
computational structures.

Details of proofs can be found on the web: http://www.tcs.informatik.
uni-muenchen.de/ barral/doc/Proofs.pdf

2 Systems of Inductive Types

Given functions between parameters of inductive types with the same schema,
one can construct by iteration the function between these types representing
the change of parameters along these functions (it can be seen as a generalized
Map function for arbitrary inductive types). The "minimal" system to study
this "generalized Map" is the system of inductive types equipped with itera-
tion. We shall consider only inductive types satisfying the condition of strict
positivity.

2.1 Types and Schemas

We will use the appropriate vector notation for finite lists of syntactic expres-
sions. Within more complex type and term expressions it is to be unfolded as
follows:

– −→ρ → σ ::= σ | −→ρ → ρ→ σ .
– λ−→x .t ::= t | λxλ−→x .t .
– t−→s ::= t | (ts)−→s
– fσ→τ ◦ g

−→ρ→σ ::= λ
−→
xρ.f(g−→x )

We assume that the countable sets TVar of type variables and Const of construc-
tors are given.
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Definition 1 (Types). We define simultaneously

– the grammar of types:

Ty � ρ, σ ::= ρ→ σ | μα (
−−−−−−−−→
c : κ−→ρ ,−→σ (α)).

where α ∈ TVar, −→c ⊆ Const,
−−−−−−→
κ−→ρ ,−→σ (α) are constructor types over α.

– and the set KT−→ρ ,−→σ (α) of constructor types over α with type parameters
−→ρ ,−→σ (we assume α �∈ FV (−→ρ ,−→σ )):

KT−→ρ ,−→σ (α) � κ−→ρ ,−→σ (α) = −→ρ →
−−−−−−→
(−→σ i → α)1�i�n → α

with −→σ1 :: · · · :: −→σn = −→σ .

The types with → as main symbol are called arrow or functional types, those
with the binding symbol μ are called inductive types.

In the above definition −→ρ and
−−−−−−→
(−→σ i → α) stand for the types of the arguments

of a constructor. The types of the form ρ are called parametric operators, those
of the form −→σ → α are called recursive operators, (0-recursive if −→σ is empty
and 1-recursive otherwise)

We assume that the constructors are uniquely determined by their inductive
type and that the constructors within an inductive type are different.

The types of constructors defined above verify the so-called strict positivity
condition.

Note, that we have fixed a particular order of arguments of a constructor (first
parametric and then recursive), It doesn’t influence significantly the expressivity
of the system and simplifies the presentation.

A constructor type κ(α) has always the form −→τ → α. We shall write κ−(α)
for the list of types −→τ . For μ = μα (

−−−−−−−−→
c : κ−→ρ ,−→σ (α)), we will write ck : κ−→ρ ,−→σ (α) ∈ μ

if ck : κ−→ρ ,−→σ (α) ∈
−−−−−−−−→
c : κ−→ρ ,−→σ (α)

Definition 2 (Schema of inductive type). Given a list of variables
−→
k for

inductive type constructors, type variables −→π ,−→θ , α (with α �∈ −→π ∪ −→θ ), and a
constructor type κ−→π ,−→θ (α), we define the schema of inductive type S by

S−→π ,−→θ (
−→
k ) ::= μα(

−−−−−−−−→
k : κ−→π ,−→θ (α))

Each inductive type μα (
−−−−−−−−→
c : κ−→ρ ,−→σ (α)) is obtained by instantiation of the con-

structor variables
−→
k and type parameters −→π ,−→θ of a schema of the inductive

type μα(
−−−−−−−−→
k : κ−→π ,−→θ (α)).

The schemas considered in the following example represent all types of con-
structors of inductive types relevant to our study. The same inductive types will
be used later to illustrate main technical ideas of this paper.

Example 1. N = μα(k1 : α, k2 : α → α) (schema of the type of natural num-
bers);Lπ = μα(k1 : α, k2 : π → α→ α) (schema of lists over ρ);
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Tπ,θ = μα(k1 : α, k2 : π → (θ → α) → α) (θ-branching tree).
Instantiations of these schemas may be N = N(0, s) = μα(0 : α, s : α →

α (natural numbers), N′ = N(0′, s′) (a “copy” of N), L(N′) = LN′(nil, cons)
(lists over N′ with standard names of constructors), T(N,N) = TN,N(leaf, node)
(infinitely branching tree over N), TN,N′(leaf′, node′) etc.

Sometimes, when the names of parameters are not relevant, we may omit
them altogether.

2.2 Terms

The terms of our systems are those of the simply typed λ-calculus extended by
constructor constants from Const and iteration operators (iterators) �−→t �μ,τ for
all inductive types μ and τ (μ stands for the source and τ for the target type).

Definition 3 (Terms). The set of terms Λ is generated by the following gram-
mar:

Λ � t ::= x | λxτ t | (t t) | ck | �−→t �μ,τ ,

with x ∈ Var, ck ∈ Const and τ, μ ⊆ Ty.

Definition 4 (Typing). the typing relation is defined by

(x, ρ) ∈ Γ
Γ � x : ρ

Γ, x : ρ� r : σ
Γ �λxρ.r : ρ→ σ

Γ � s : ρ Γ � r : ρ→ σ

Γ � rs : σ

(ck : κ−→ρ ,−→σ (α) ∈ μ) Γ �−→r : κ−−→ρ ,−→σ (μ)

Γ � ck
−→r : μ

μα (
−−−−−−−−→
c : κ−→ρ ,−→σ (α)) = μ Γ �

−−−−−−−−→
t : κ−→ρ ,−→σ (τ)

Γ � �−→t �μ,τ : μ→ τ

Example 2. Let μ = N, L(ρ),T(ρ, σ), and τ be the “target-type” in the last rule.
The types of iterator terms −→t (step types) must be:

- τ and τ → τ in case of N;
- τ and ρ→ τ → τ in case of lists L(ρ);
- τ and ρ→ (σ → τ) → τ in case of trees T(ρ, σ).

Their particularly simple form is due to the use of iteration (as opposed to
primitive recursion where the step type should contain type for the argument of
the constructor as well).

2.3 Reductions

Simultaneous substitution of terms −→s to variables −→y in a term t, t{−→s /−→y } is
defined by structural induction as usual:
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x{−→s /−→y } ::=
{
si if x = yi with i the smallest index s.t. yi ∈ −→y
x otherwise

(λxτ t){−→s /−→y } ::= λxτ t{−→s /−→y } where x �∈ −→y and x �∈
−−−−→
FV (s)

(t t){−→s /−→y } ::= t {−→s /−→y }t{−→s /−→y }
�−→t �μ,τ{−→s /−→y } ::= �−−−−−→t{−→s /−→y }�μ,τ

Note that we can always ensure the condition of the second clause by α-conversion
(variable condition).

Definition 5 (β-reduction). We define the relation of β-reduction by the fol-
lowing rule:

(β) (λxτ · t) u �−→β t{u/x}

Definition 6 (η-expansion). We define the relation of η-expansion by the fol-
lowing rule:

(η) t �−→η λxτ · t x

where t : τ → υ, t is not an abstraction, x �∈ FV(t).

Usual restriction concerning applicative position is incorporated in the definition
of one-step reduction below.

We define two ι-reductions ; first the traditional one:

Definition 7 (ι-reduction). Let μ ≡ μα (
−−−−−−−−→
c : κ−→ρ ,−→σ (α)), ck : κ−→ρ ,−→σ (α) ∈ μ, and

κ ≡ −→ρ → (−→σ i → α)1�i�n → α over α in μ. Given a term ck
−→p −→r , where −→p (with

pi of type ρi) denotes parameter arguments and −→r (with ri of type −→σ i → μ) n
recursive arguments, and the terms −→t of step type

−−−−−→
κ−→ρ ,−→σ (τ), the ι-reduction is

defined by:

(ι) �−→t �μ,τ (ck
μ−→p −→r ) �−→ι tk

−→p
−−−−−−−−−→
(�−→t �μ,τ ◦ ri) = tk

−→p
−−−−−−−−−−−−−→
(λ−→x �−→t �μ,τ (ri−→x )) .

This reduction may create β-redexes. Obvious redexes may appear due to the
composition at the right part of the term and if iteration terms are abstractions.
If abstracted variables corresponding to 1-recursive arguments are in applicative
position inside this also may produce subsequent β-redexes. Good news is that
this “cascade” of β-reductions will stop short because the types of arguments of
ri and of arguments of variables corresponding to 1-recursive arguments inside
iteration terms are always inductive, not arrow types.

Since our system is equipped with η-expansion, one can always expand
1-recursive variables inside iteration terms as a pre-condition and then define a
modified ι-reduction carrying out all these administrativeβ-reductions in one step.

Specialization of iteration terms and modified substitution:

Definition 8. Let −→y = y
−→σ1→τ
1 , ..., y

−→σn→τ
n we define inductively the set of terms

It(−→y ) where these variables always appear applied to maximal number of argu-
ments

It(−→y ) � t ::= (yi
−→
t )τ | x | λz.t | tt | �−→t � | ck

−→
t
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Definition 9. Modified simultaneous substitution of composition of −→u and −→r
(with ui : μi → τ, ri : −→σi → μi) in t, t〈−−→u•r/−→y 〉, is defined recursively on It(−→y ):

yi
−→
t 〈−−→u•r/−→y 〉 ::= u(r

−−−−−→
t〈−−→u•r/−→y 〉) essential case

x〈−−→u•r/−→y 〉 ::= x

(λz.t)〈−−→u•r/−→y 〉 ::= λz.t〈−−→u•r/−→y 〉 where z �∈ −→y and z �∈
−−−−−−−→
FV (−−→u • r)

(tt)〈−−→u•r/−→y 〉 ::= t〈−−→u•r/−→y 〉t〈−−→u•r/−→y 〉
�−→t �〈−−→u•r/−→y 〉 ::= �−−−−−→t〈−−→u•r/−→y 〉�
ck
−→
t 〈−−→u•r/−→y 〉 ::= ck

−−−−−→
t〈−−→u•r/−→y 〉

(At the third line α-conversion may be needed.)

Definition 10 (ι2-reduction). Let μ ≡ μα (
−−−−−−−−→
c : κ−→ρ ,−→σ (α)), ck : κ−→ρ ,−→σ (α) ∈

μ, and κ ≡ −→ρ → (−→σ i → α)1�i�n → α over α in μ. Let a term ck
−→p −→r be

given, where −→p (pi of type ρi) denote parameter arguments and −→r (ri of type
−→σ i → μ) the n recursive arguments of ck respectively. Let the terms −→t be the
terms of step-type (iteration terms) with tk be fully η-expanded externally, i.e.,

tk =
−−−−−−−−−→
λ
−→
xρ
−−−−→
y
−→σ i→τ .sk, and, moreover sk ∈ It(

−−−→
y
−→σi→τ
i ). Under these conditions the

ι2-reduction is defined by:

�. . . ,−−−−−−→λ−→x−→y .sk, . . .�(ck
−→p −→r ) �−→ι sk{

−→p /−→x }〈
−−−→
�t�•r/−→y 〉

Example 3 (multiplication by 2). Although primitive recursion is encodable
in our system, for sake of simplicity we present here a function directly encodable
using iteration, the multiplication by 2 of natural numbers:

×2 ≡ �0, λx.s(sx)�
the associated ι2-reduction for the term s t is:

(×2)st −→ι2 s(s((×2)t))

the selection of even branches in a tree can be defined as:

sel2 ≡ �leaf, λxy.nodex (λz.y((×2)z))�
the associated ι2-reduction for the term node t f is:

sel2(node t f) −→ι2 node t (λz.sel2(f((×2)z)))

The "true" reduction relation of our system is defined now via contextual clo-
sure. The usual restriction on applicative position in η-expansion is incorporated
here.
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Definition 11 (One-step Reduction). The One-step reduction −→R is de-
fined as the smallest relation such that:

r �−→R r
′

r −→R r
′

s −→R s
′

rs −→R rs
′

r −→R r
′

λx.r −→R λx.r
′

r −→R r
′ r ��−→η r

′

rs −→R r
′s

t −→R t
′

�−→r , t,−→s � −→R �−→r , t′,−→s �
R can be for example β, η, ι, ι2.

The transitive, resp. transitive symmetric, closure of −→R will be written −→+
R,

resp. −→∗
R The R-derivations (sequences of terms such that two successive terms

are in a one step reduction relation −→R) will be denoted by d, e.... The expres-
sion t ∞−→R will denote an infinite derivation beginning at t.

2.4 General Results

Theorem 1. βηι is convergent (cf [3]).

The alternative ι-reduction is proved convergent using the fact that it is a (par-
ticularly simple) embedding (i.e., a reduction preserving encoding of a system
within another).

Theorem 2. 1. βηι2 is embeddable in βηι,
2. βηι2 is convergent.

2.5 Inductive Type Schemas as Functors

We define the category I whose class of objects I0 is the set of Inductive Types
μ and the class of arrows I1 is the set of terms A of types μ→ μ′ (where μ and
μ′ are inductive types) defined inductively as follows:

I1 � a, a′ ::= λxμ.x | �−→t � | a ◦ a′

Definition 12 (Instantiation of schemas). We define the function Cp0
S for

each schema of inductive type taking as arguments the constructor names −→c and
inductive types −→ρ ,−→σ ∈ I0 and returning the corresponding instantiated inductive
type S{−→c ,−→ρ ,−→σ /−→k ,−→π ,−→θ }

Cp0
S : Const|

−→
k | × I|−→ρ |+|−→σ | → I

(−→c ,−→ρ ,−→σ ) �→ ϕ = S{−→c ,−→ρ ,−→σ /−→k ,−→π ,−→θ }

If moreover, given inductive types
−→
ρ′ ,

−→
σ′ there exists terms in I1,

−→
f : −→ρ →

−→
ρ′ ,

and
−→
f ′ :

−→
σ′ → −→σ , we define the function Cp1

S taking these terms and the
relabeling function l : −→c �→

−→
c′ as arguments by:

Cp1
S(l,

−→
f ,
−→
f ′) := �−→t � : Cp0

S(−→c ,−→ρ ,−→σ )→ Cp0
S(
−→
l(c),

−→
ρ′ ,
−→
σ′ )
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where −→t = t1, . . . , tn, l(ck) = c′k, and

tk = λ
−→
xρ
−−−−→
y
−→σi→ϕ′ · c′k

−−−→
◦x(f)

−−−−−−−−→
λ−→z .y

−−−→
◦z(f ′) .

where the function ◦x(fk) which returns a β-reduced form of fkx is defined re-
cursively:

– ◦x(λxμ.x) = x

– ◦x(�−→t �) = �−→t �x
– ◦x(a ◦ a′) = ◦x(a){◦x(a′)/x}

With the notation of the definition above and given constructor names
−→
c′′, types−→

ρ′′,
−→
σ′′, relabelling functions l′ :

−→
c′ →

−→
c′′, and terms g : −→ρ →

−→
ρ′′ ∈ I1 and

g′ :
−→
σ′′ → −→σ ∈ I1, the following equalities are provable:

Cp1
S(l,−→g ,

−→
g′ ) ◦Cp1

S(l,
−→
f ,
−→
f ′) = Cp1

S(l′ ◦ l,−−→g ◦ f ,
−−−→
f ′ ◦ g′)

Cp1
S(id,

−→
id ,
−→
id ) = idCp0

S

This means that with respect to an extensional model the pair (Cp0
S,Cp1

S)
defines a functor. This result is well known, and a categorical proof (of a gen-
eralization of this result) can be found for example in Varmo Vene’s doctoral
thesis ([4]). However, these equalities do not hold w.r.t. the conversion relation.
We shall extend the reduction relation in order to obtain a functor w.r.t. the
conversion relation while preserving confluence and strong normalization of the
underlying rewrite system.

In the following we will lighten the notation and omit all unnecessary ma-
terial. In spirit of category theory we will write CpS instead of Cp0

S, Cp1
S and

often just Cp when Cp will be clear from context. In the same way we will not
write the relabelling functions which we will not consider as part of the calculus.

Definition 13 (χ-reductions).

Cp(−→g ,
−→
g′ )(Cp(

−→
f ,
−→
f ′)t) �−→χ◦ Cp(

−−→
g ◦ f ,

−−−→
f ′ ◦ g′)t

Cp(
−→
id ,
−→
id )t �−→χid t

Example 4. The function sel2 of the previous example can be written as
CpT (id,×2). The χ◦-reduction states that selecting even branches from a tree
where one as already selected even branches should reduce to selecting the even
branches of the even branches of this tree.

CpT (id,×2)(CpT (id,×2)t) −→χ◦ CpT (id,×2 ◦ ×2)t

And now, to prove that CpT (id,×2)(CpT (id,×2)t) = CpT (id,×4)t, one only
has to prove ×2 ◦ ×2 = ×4.



Inductive Type Schemas as Functors 43

3 Main Theorems

3.1 Adjournment

Definition 14 (Adjournment). Given two reduction relations S and R, we
say that S is adjournable w.r.t. R in a derivation d, if

d = t −→S−→R
∞−→RS⇒ ∃ e = t −→R

∞−→RS

If S is adjournable w.r.t. to R for derivation d, then we say that S is adjournable
w.r.t. to R (cf. [1]).

Remark 1. S is adjournable w.r.t. R in particular in the case: S;R ⊆ R;R∪S.
The notion of adjournability is traditionally expressed with this weaker condition
(where d is not taken into account).

Lemma 1 (Adjournment). If R and S are strongly normalizing and S is
adjournable w.r.t. to R then RS is strongly normalizing.

3.2 Convergence of βηιχ◦

Theorem 3 (Strong normalization of βηιχ◦). The χ◦-reduction is strongly
normalizing and adjournable with respect to βηι-reduction.

By Newman lemma, a strongly normalizing and locally confluent system is con-
fluent, so we need only to check local confluence.

Theorem 4 (Confluence). The λ-calculus with βηιχ◦-reduction is locally con-
fluent.

3.3 Pre-adjusted Adjournment

Definition 15 (insertability). Given two reduction relation R, T , with T ⊂
R, T is said to be insertable in R if there exists a relation S on the support of
R with T ⊆ S and the two following conditions hold:

S−1; (R \ T ) ⊆ R+;S−1 S−1;R ⊆ T ∗;S−1

R+

��

S
���������

R\T ���
��

��
��

S

��

T∗

��

S
���������

R ���
��

��
��

S

��

Lemma 2 (insertion). Given two reduction relations R, T such that T is in-
sertable in R and T is strongly normalizing. If there exists an infinite derivation
d from t and an object t′ with t→T t

′, then there exists an infinite derivation d′

from t′.



44 F. Barral and S. Soloviev

Definition 16 (Conditional Adjournment). Let R,S be reduction relations,
an infinite derivation d = t −→S−→R

∞−→RS beginning with t and P a predicate
on the objects. Then S is adjournable w.r.t. R in d under condition P, if

d = t −→S−→R
∞−→RS ∧P(t)⇒ ∃ e = t −→R

∞−→RS .

S is adjournable w.r.t. R under condition P, if S is adjournable w.r.t. R in d
under condition P for all d.

Definition 17 (realization). Let T be a reduction relation and P a predicate
on the objects. T realizes P for t if ∃ t′, t→∗

T t
′∧P(t′). T realizes P if T realizes

P for all objects.

Lemma 3 (pre-adjusted adjournment). Given reductions relations R,S, T
with S, T ⊆ R, S is adjournable with respect to R under condition P and T is
insertable in R, strongly normalizing and realizes P, then S is adjournable w.r.t.
R.

Definition 18 (unrestricted η-expansion η). we define the rewrite rule for
unrestricted η-expansion η by:

t �−→η λx
ρ.tx if t : ρ→ σ

The one step reduction reduction relation −→η is defined as the contextual clo-
sure of �−→η

Lemma 4 (weak condition for insertability). In the definition of the inser-
tability, if the relation S is the transitive reflexive closure of a reduction relation
T ′, we establish some sufficient condition for T to be insertable. Given reduction
relations R, T, T ′, if the relation T ′ verifies

T ′−1;R \ T ⊆ R∗;R \ T ;R∗; (T ′−1)
∗ ∧ T ′−1;T ⊆ R∗; (T ′−1)

∗

then it T is insertable:

(T ′−1)
∗
;R \ T ;R+; (T ′−1)

∗ ∧ (T ′−1)
∗
;R;T ∗; (T ′−1)

∗

Proof. cf [3]

Lemma 5. η-expansion is insertable.

3.4 Convergence of βηιχ

The difficult case is an overlap with ι-reduction, trying to adjourn directly:

Cp−→
id ,

−→
id (node p x) −→χid node p x −→βηι node p′ x

results in first applying a ι-contraction and then a χid-contraction:

Cp−→
id ,

−→
id (node p x) −→ι nodexλz.yz{p/x}〈Cp−→

id ,
−→
id
•x/y〉

≡ node p λz.Cp−→
id ,

−→
id (xz)

−→χid node p λz.xz
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And there is no way to close the fork with the initial sequence. We need to
incorporate some η-expansion in the first sequence before being able to apply
the adjournment lemma.

Theorem 5 (Strong Normalization).

1. χid -reduction is strongly normalizing,
2. χid -reduction is adjournable with respect to βηιχ◦ under the condition that

1-recursive arguments −→r = r1 . . . rn of a constructor c−→p −→r of type μ are
fully eta-expansed externally, i.e. ri = r′i = λ−→x .(r′i−→x )μ.

Theorem 6 (Confluence). βηιχ is locally confluent.

4 Conclusion

We have designed a system where the reduction relation ensures the functorial
laws w.r.t. intensional equality for certain classes of categories of inductive types.

The extension of this result to primitive recursion or to more general induc-
tive types satisfying the monotonicity condition seems to be more difficult, but
feasible.

An interesting task is to handle more categorical properties as studied by
Vene [4] or Wadler [5].

Another motivating goal is to incorporate directly (and in a more efficient
way) certain computations into proof-assistants based on type theory.

Acknowledgements. We would like to thank David Chemouil for fruitful dis-
cussions and Ralph Sobek, Andreas Abel and anonymous referees for useful
remarks that helped to improve this paper.
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Unfolding Synthesis of Asynchronous Automata�
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Abstract. Zielonka’s theorem shows that each regular set of Mazurkiewicz traces
can be implemented as a system of synchronized processes provided with some
distributed control structure called an asynchronous automaton. This paper gives
a new algorithm for the synthesis of a non-deterministic asynchronous automaton
from a regular Mazurkiewicz trace language. Our approach is based on an unfold-
ing procedure that improves the complexity of Zielonka’s and Pighizzini’s tech-
niques: Our construction is polynomial in terms of the number of states but still
double-exponential in the size of the alphabet. As opposed to Métivier’s work,
our algorithm does not restrict to acyclic dependence alphabets.

1 Introduction

One of the major contributions in the theory of Mazurkiewicz traces [5] characterizes
regular languages by means of asynchronous automata [17] which are devices with a
distributed control structure. So far all known constructions of asynchronous automata
from regular trace languages are quite involved and yield an exponential explosion of
the number of states [7, 12]. Furthermore conversions of non-deterministic asynchro-
nous automata into deterministic ones rely on Zielonka’s time-stamping function [8, 13]
and suffer from the same state-explosion problem. Interestingly heuristics to build small
deterministic asynchronous automata were proposed in [15].

Zielonka’s theorem and related techniques are fundamental tools in concurrency
theory. For instance they are useful to compare the expressive power of classical mod-
els of concurrency such as Petri nets, asynchronous systems, and concurrent automata
[10, 16]. These methods have been adapted already to the construction of communicat-
ing finite-state machines from collections of message sequence charts [1, 6, 11].

In this paper we give a new construction of a non-deterministic asynchronous au-
tomaton. Our algorithm starts from the specification of a regular trace language in the
form of a possibly non-deterministic automaton. The latter is unfolded inductively on
the alphabet into an automaton that enjoys several structural properties (Section 4). Next
this unfolding automaton is used as the common skeleton of all local processes of an
asynchronous automaton (Section 3). Due to the structural properties of the unfolding
this asynchronous automaton accepts precisely the specified regular trace language.

We show that the number of local states built is polynomial in the number of states
in the specification and double-exponential in the size of the alphabet (Subsection 4.4).
Therefore our approach subsumes the complexity of Zielonka’s and Pighizzini’s con-
structions (Subsection 2.3).
� Supported by the ANR project SOAPDC.
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2 Background and Main Result

In this paper we fix a finite alphabet Σ provided with a total order �. An automaton
over a subset T ⊆ Σ is a structure A = (Q, ı, T,−→, F ) where Q is a finite set of
states, ı ∈ Q is an initial state, −→⊆ Q × T × Q is a set of transitions, and F ⊆ Q
is a subset of final states. We write q

a−→ q′ to denote (q, a, q′) ∈−→. An automaton
A is called deterministic if we have q

a−→ q′ ∧ q a−→ q′′ ⇒ q′ = q′′. For any word
u = a1...an ∈ Σ
, we write q

u−→ q′ if there are some states q0, q1, ..., qn ∈ Q
such that q = q0

a1−→ q1...qn−1
an−→ qn = q′. The language L(A) accepted by some

automaton A consists of all words u ∈ Σ
 such that ı
u−→ q for some q ∈ F . A subset

of words L ⊆ Σ
 is regular if it is accepted by some automaton.

2.1 Mazurkiewicz Traces

We fix an independence relation ‖ over Σ, that is, a binary relation ‖ ⊆ Σ ×Σ which
is irreflexive and symmetric. For any subset of actions T ⊆ Σ, the dependence graph
of T is the undirected graph (V,E) whose set of vertices is V = T and whose edges
denote dependence, i.e. {a, b} ∈ E ⇔ a � ‖b.

The trace equivalence ∼ associated with the independence alphabet (Σ, ‖) is the
least congruence over Σ
 such that ab ∼ ba for all pairs of independent actions a‖b.
For a word u ∈ Σ
, the trace [u] = {v ∈ Σ
 | v ∼ u} collects all words that are
equivalent to u. We extend this notation from words to sets of words in a natural way:
For all L ⊆ Σ
, we put [L] = {v ∈ Σ
 | ∃u ∈ L, v ∼ u}.

A trace language is a subset of words L ⊆ Σ
 that is closed for trace equivalence:
u ∈ L ∧ v ∼ u ⇒ v ∈ L. Equivalently we require that L = [L]. As usual a trace
language L is called regular if it is accepted by some automaton.

2.2 Asynchronous Systems vs. Asynchronous Automata

Two classical automata-based models are known to correspond to regular trace lan-
guages. Let us first recall the basic notion of an asynchronous system [3].

DEFINITION 2.1. An automaton A = (Q, ı,Σ,−→, F ) over the alphabet Σ is called
an asynchronous system over (Σ, ‖) if we have

ID: q1
a−→ q2 ∧ q2 b−→ q3 ∧ a‖b implies q1

b−→ q4 ∧ q4 a−→ q3 for some q4 ∈ Q.

The Independent Diamond property ID ensures that the language L(A) of any asyn-
chronous system is closed for the commutation of independent adjacent actions. Thus
it is a regular trace language. Conversely it is easy to observe that any regular trace
language is the language of some deterministic asynchronous system.

We recall now a more involved model of communicating processes known as asyn-
chronous automata [17]. A finite family δ = (Σk)k∈K of subsets ofΣ is called a distri-
bution of (Σ, ‖) if we have a � ‖b ⇔ ∃k ∈ K, {a, b} ⊆ Σk for all actions a, b ∈ Σ. Note
that each subset Σk is a clique of the dependence graph (Σ, � ‖) and a distribution δ is
simply a clique covering of (Σ, � ‖). We fix an arbitrary distribution δ = (Σk)k∈K in the
rest of this paper. We call processes the elements ofK . The location Loc(a) of an action
a ∈ Σ consists of all processes k ∈ K such that a ∈ Σk: Loc(a) = {k ∈ K | a ∈ Σk}.
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DEFINITION 2.2. An asynchronous automaton over the distribution (Σk)k∈K consists
of a family of finite sets of states (Qk)k∈K , a family of initial local states (ık)k∈K
with ık ∈ Qk, a subset of final global states F ⊆

∏
k∈K Qk, and a transition relation

∂a ⊆
∏

k∈Loc(a)Qk ×
∏

k∈Loc(a)Qk for each action a ∈ Σ.

The set of global states Q =
∏

k∈K Qk can be provided with a set of global transitions
−→ in such a way that an asynchronous automaton is viewed as a particular automaton.
Given an action a ∈ Σ and two global states q = (qk)k∈K and r = (rk)k∈K , we put

q
a−→ r if ((qk)k∈Loc(a) , (rk)k∈Loc(a)) ∈ ∂a and qk = rk for all k ∈ K \ Loc(a).

The initial global state ı consists of the collection of initial local states: ı = (ık)k∈K .
Then the global automaton A = (Q, ı,Σ,−→, F ) satisfies Property ID of Def. 2.1.
Thus it is an asynchronous system over (Σ, ‖) and L(A) is a regular trace language. An
asynchronous automaton is deterministic if its global automaton is deterministic, i.e.
the local transition relations ∂a are partial functions.

2.3 Main Result and Comparisons to Related Works

Although deterministic asynchronous automata appear as a restricted subclass of deter-
ministic asynchronous systems, Zielonka’s theorem asserts that any regular trace lan-
guage can be implemented in the form of a deterministic asynchronous automaton.

THEOREM 2.3. [17] For any regular trace language L there exists a deterministic
asynchronous automaton whose global automaton A satisfies L = L(A).

In [12] a complexity analysis of Zielonka’s construction is detailed. Let |Q| be the
number of states of the minimal deterministic automaton that accepts L and |K| be the
number of processes. Then the number of local states built by Zielonka’s technique in
each process k ∈ K is |Qk| � 2O(2|K|.|Q| log |Q|). The simplified construction by Cori
et al. in [4] also suffers from this exponential state-explosion [5].

Another construction proposed by Pighizzini [14] builds a non-deterministic asyn-
chronous automaton from particular rational expressions. This simpler approach pro-
ceeds inductively on the structure of the rational expression. Each step can easily be
shown to be polynomial. In particular the number of local states in each process is (at
least) doubled by each restricted iteration. Consequently in some cases the number of
local states in each process is exponential in the length of the rational expression.

In the present paper we give a new construction that is polynomial in |Q| (Th. 5.9):
It produces |Qk| � (3.|Σ|.|Q|)d local states for each process, where d = 2|Σ|, |Σ|
is the size of Σ, and |Q| is the number of states of some (possibly non-deterministic)
asynchronous system that accepts L.

With the help of two simple examples we present our new approach in the next
section. It consists basically in two steps: A naive construction applied on an unfolded
automaton. Comparisons with known techniques is hard since this twofold approach
has no similarity with previous methods. On the other hand we have applied recently
our unfolding strategy in the framework of Message Sequence Charts [2]. We believe
also that our approach can be strengthened in order to build deterministic asynchronous
automata from deterministic asynchronous systems with a similar complexity cost.
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3 Twofold Strategy

In this section we fix a (possibly non-deterministic) automaton A = (Q, ı,Σ,−→, F )
over the alphabet Σ. We fix also a distribution δ = (Σk)k∈K of (Σ, ‖). We introduce

a basic construction of a projected asynchronous automaton Â associated with A. In
general L(Â) �= L(A) even if we assume that A satisfies Axiom ID of Def. 2.1. Our
strategy will appear as a method to unfold an asynchronous system A into a larger au-
tomaton AUnf that represents the same language: [L(AUnf)] = L(A) and such that the
projected asynchronous automaton of the unfolding AUnf yields a correct implementa-
tion: L(ÂUnf) = [L(AUnf)] = L(A). Note that AUnf will not fulfill ID in general.

The construction of the projected asynchronous automaton Â over δ from the au-
tomaton A proceeds as follows. First the local states are copies of states of A: We put
Qk = Q for each process k ∈ K . The initial state (ı, ..., ı) consists of |K| copies of
the initial state of A. Moreover for each a ∈ Σ, the pair ((qk)k∈Loc(a) , (rk)k∈Loc(a))
belongs to the transition relation ∂a if there exist two states q, r ∈ Q and a transition
q

a−→ r in A such that the two following conditions are satisfied:

– for all k ∈ Loc(a), qk
u−→ q in A for some word u ∈ (Σ \Σk)
;

– for all k ∈ Loc(a), rk = r; in particular all rk are equal.

To conclude this definition, a global state (qk)k∈K is final if there exists a final state

q ∈ F such that for all k ∈ K there exists a path qk
u−→ q in A for some word

u ∈ (Σ \Σk)
. The next result can be proved straightforwardly.

PROPOSITION 3.1. We have L(A) ⊆ [L(A)] ⊆ L(Â).

EXAMPLE 3.2. We consider the independence alphabet (Σ, ‖) where Σ = {a, b, c},
a‖b but a � ‖c � ‖b. Let A be the asynchronous system depicted in Fig. 1 and δ be the
distribution with two processes Σa = {a, c} and Σb = {b, c}. We assume here that all
states of A are final. Then we get L(Â) = Σ
 whereas the word cc does not belong to
L(A). Consider now the asynchronous system A′ depicted in Fig. 2. We can check that
L(A′) = L(A) and L(Â′) = L(A).

This example shows that for some automata A the naive construction of the pro-
jected asynchronous automaton does not provide a correct implementation. However it
is possible to unfold the automaton A to get a larger automaton A′ for which the naive
construction is correct. The aim of this paper is to show that this unfolding process is
feasible with a polynomial cost for any asynchronous system A.

a, b

a, b, c
aa, c

b

b

b

b

a a, c

Fig. 1. Asynchronous system A Fig. 2. Asynchronous system A′
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4 Unfolding Algorithm

In the rest of the paper we fix some asynchronous system A = (Q, ı,Σ,−→, F ) that
is possibly non-deterministic. The aim of this section is to associate A with a family of
automata called boxes and triangles which are defined inductively. The last box built by
this construction is called the unfolding of A (Def. 4.1).

Boxes and triangles are related to A by means of morphisms which are defined
as follows. Let A1 = (Q1, ı1, T,−→1, F1) and A2 = (Q2, ı2, T,−→2, F2) be two
automata over a subset of actions T ⊆ Σ. A morphism σ : A1 → A2 from A1 to A2
is a mapping σ : Q1 → Q2 from Q1 to Q2 such that σ(ı1) = ı2, σ(F1) ⊆ F2, and
q1

a−→1 q
′
1 implies σ(q1)

a−→2 σ(q′1). In particular, we have then L(A1) ⊆ L(A2).
Now boxes and triangles are associated with an initial state that may not correspond

to the initial state of A. They are associated also with a subset of actions T ⊆ Σ. For
these reasons, for any state q ∈ Q and any subset of actions T ⊆ Σ, we let AT,q denote
the automaton (Q, q, T,−→T , F ) where−→T is the restriction of−→ to the transitions
labeled by actions in T : −→T=−→ ∩(Q× T ×Q).

In this section we shall define the box �T,q for all states q ∈ Q and all subsets
of actions T ⊆ Σ. The box �T,q is a pair (BT,q , βT,q) where BT,q is an automaton
over T and βT,q : BT,q → AT,q is a morphism. Similarly, we shall define the triangle
�T,q for all states q and all non-empty subsets of actions T . The triangle�T,q is a pair
(TT,q, τT,q) where TT,q is an automaton over T and τT,q : TT,q → AT,q is a morphism.

The height of a box �T,q or a triangle �T,q is the cardinality of T . Boxes and
triangles are defined inductively on the height. We first define the box �∅,q for all states
q ∈ Q. Next triangles of height h are built upon boxes of height g < h and boxes of
height h are built upon either triangles of height h or boxes of height g < h, whether
the dependence graph (T, � ‖) is connected or not.

The base case deals with the boxes of height 0. For all states q ∈ Q, the box �∅,q
consists of the morphism β∅,q : {q} → Q that maps q to itself together with the au-
tomaton B∅,q = ({q}, q, ∅, ∅, F∅,q) where F∅,q = {q} if q ∈ F and F∅,q = ∅ otherwise.
In general a state of a box or a triangle is final if it is associated with a final state of A.

DEFINITION 4.1. The unfolding AUnf of A is the box BΣ,ı.

4.1 Building Triangles from Boxes

Triangles are made of boxes of lower height. Boxes are inserted into a triangle recur-
sively on the height along a tree-like structure and several copies of the same box may
appear within a triangle. We want to keep track of this structure in order to prove prop-
erties of triangles (and boxes) inductively: This enables us to allow for different copies
of the same box within a triangle.

To do this, each state of a triangle is associated with a rank k ∈ N such that
all states with the same rank come from the same copy of the same box. It is also
important to keep track of the height each state comes from, because boxes of a tri-
angle are inserted recursively on the height. For these reasons, a state of a triangle
�T◦,q◦ = (TT◦,q◦ , τT◦,q◦) is encoded as a quadruple v = (w, T, q, k) such that w is a
state from the box �T,q with height h = |T | and v is added to the triangle within the
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�∅,q◦

�{a},qa �{b},qb
�{c},qc

�{a,b},qa,b
�{a,b},q′

a,b
�{a,c},qa,c

�{a,c,d},qa,c,d
�{a,b,c},qa,b,c

Fig. 3. Tree structure of triangles �T◦,q◦ with T ◦ = {a, b, c, d}

k-th box inserted into the triangle. Moreover this box is a copy of �T,q . In that case
the state v maps to τT◦,q◦(v) = βT,q(w), that is, the insertion of boxes preserves the
correspondance to the states of A. Moreover the morphism τT◦,q◦ of a triangle�T◦,q◦

is encoded in the data structure of its states.
We denote by B′ = MARK(B, T, q, k) the generic process that creates a copy B′ of

an automaton B by replacing each state w of B by v = (w, T, q, k). The construction
of the triangle �T◦,q◦ starts with using this marking procedure and building a copy
MARK(�∅,q◦ , ∅, q◦, 1) of the base box �∅,q◦ which gets rank k = 1 and whose marked
initial state (ı�,∅,q◦ , ∅, q◦, 1) becomes the initial state of�T◦,q◦ . Along the construction
of this triangle, an integer variable k counts the number of boxes already inserted in the
triangle to make sure that all copies inserted get distinct ranks. The construction of
the triangle �T◦,q◦ proceeds by successive insertions of copies of boxes according to
the single following rule.

RULE 4.2. A new copy of the box �T ′,q′ is inserted into the triangle �T◦,q◦ in con-
struction if there exists a state v = (w, T, q, l) in the triangle in construction and an
action a ∈ Σ such that

T1: βT,q(w) a−→ q′ in the automaton AT◦,q◦ ;
T2: T ′ = T ∪ {a} and T ⊂ T ′ ⊂ T ◦;
T3: no a-transition relates sofar v to the initial state of some copy of the box �T ′,q′ in

the triangle in construction.

In that case some a-transition is added in the triangle in construction from v to the
initial state of the new copy of the box �T ′,q′ .

Note here that Condition T2 ensures that inserted boxes have height at most |T ◦| −
1. By construction all copies of boxes inserted in a triangle are related in a tree-like
structure built along the application of the above rules. It is easy to implement the
construction of a triangle from boxes as specified by the insertion rules above by means
of a list of inserted boxes whose possible successors have not been investigated, in a
depth-first-search or breadth-first-search way. Condition T2 ensures also that if a new
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copy of the box �T ′,q′ is inserted and connected from v = (w, T, q, l) then T ⊂ T ′ ⊂
T ◦. This shows that this insertion process eventually stops and the resulting tree has
depth at most |T ◦ − 1|. Moreover, since we start from the empty box and transitions in
boxes �T,q carry actions from T , we get the next obvious property.

LEMMA 4.3. If a word u ∈ Σ
 leads in the triangle �T◦,q◦ from its initial state to
some state v = (w, T, q, l) then u ∈ T 
 and all actions from T appear in u.

Note also that it is easy to check that the mapping τT◦,q◦ induced by the data struc-
ture builds a morphism from TT◦,q◦ to AT◦,q◦ . For latter purposes we define the list of
missing transitions to state q′ ∈ Q in the triangle�T◦,q◦ as follows.

DEFINITION 4.4. Let T ◦ ⊆ Σ be a subset of actions and q◦, q′ be two states of A.
The set of missing transitions MISSING(T ◦, q◦, q′) consists of all pairs (v, a) where
v = (w, T, q, l) is a state of�T◦,q◦ and a is an action such that

– βT,q(w) a−→ q′ in the automaton AT◦,q◦ ;
– T ⊂ T ∪ {a} = T ◦.

Note here that the insertion rule T2 for triangles forbids to insert a copy of the box
BT◦,q′ and to connect its initial state with a transition labeled by a from state v. Note
also that |MISSING(T ◦, q◦, q′)| is less than the number of states in�T◦,q◦ .

4.2 Building Boxes from Triangles

As announced in the introduction of this section the construction of the box �T◦,q◦

depends on the connectivity of the dependence graph of T ◦. Assume first that T ◦ ⊆ Σ is
not connected. Let T1 denote the connected component of (T ◦, � ‖) that contains the least
action a ∈ T ◦ w.r.t. the total order � over Σ. We put T2 = T ◦ \ T1. The construction
of the box �T◦,q◦ starts with building a copy of the box �T2,q◦ . Next for each state w
of �T2,q◦ and each transition βT2,q◦(w) a−→ q in AT◦,q◦ with a ∈ T1, the algorithm
adds some a-transition from the copy of w to the initial state of a new copy of �T1,q .

We come now to the definition of boxes associated with a connected set of actions.
This part is more subtle than the two previous constructions which have a tree-structure
and create no new loop. Let T ◦ ⊆ Σ be a connected (non-empty) subset of actions.
Basically the box �T◦,q◦ collects all triangles�T◦,q for all states q ∈ Q. Each triangle
is replicated a fixed number of times and copies of triangles are connected in some very
specific way. We adopt a data structure similar to triangles (and unconnected boxes). A
node w of a box �T◦,q◦ is a quadruple (v, T ◦, q, k) where v is a node of the triangle
�T◦,q and k ∈ N. The rank k will allow us to distinguish between different copies of
the same triangle within a box.

The construction of the box �T◦,q◦ consists in two steps. First m copies of each
triangle�T◦,q are inserted in the box and the first copy of�T◦,q◦ gets rank 1; moreover
the first copy of its initial state is the initial state of the box. The value of m will be
discussed below. In a second step some transitions are added to connect these triangles
to each other according to the single following rule.

RULE 4.5. For each triangle�T◦,q , for each state q′ ∈ Q, and for each missing transi-
tion (v, a) ∈ MISSING(T ◦, q, q′) we add some a-transition from each copy of state v to
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�T◦,q1 �T◦,q1 . . . �T◦,q1

�T◦,q2 �T◦,q2 . . . �T◦,q2

...
...

�T◦,qn �T◦,qn . . . �T◦,qn

Fig. 4. Square structure of a box �T◦,q◦ with T ◦ connected

the initial state of some copy of triangle�T◦,q′ . In this process of connecting triangles
we obey to the two following requirements:

C1: No added transition connects two states from the same copy of a triangle.
C2: At most one transition connects one copy of�T◦,q to one copy of�T◦,q′ .

Condition C1 requires that there is no added transition from state (v, T ◦, q, l) with rank
l to the (initial) state (ı�,T◦,q, T

◦, q, l). To do so it is sufficient to have two copies of
each triangle. Condition C2 ensures that if we add from a copy of�T◦,q of rank l some
transition (v1, T ◦, q, l) a1−→ (ı�,T◦,q′ , T ◦, q′, l′) and some transition (v2, T ◦, q, l) a2−→
(ı�,T◦,q′ , T ◦, q′, l′) to the same copy of �T◦,q′ then v1 = v2 and a1 = a2. Recall
that the number of added transitions from a fixed copy of�T◦,q to copies of �T◦,q′ is
|MISSING(T ◦, q, q′)|. Altogether it is sufficient to take

m = max
q,q′∈Q

|MISSING(T ◦, q, q′)|+ 1 (1)

From the definition of missing transitions (Def. 4.4) it follows that the data-structure
defines a morphism from the box �T◦,q◦ to AT◦,q◦ . Furthermore Definition 4.4 and
Lemma 4.3 yield easily the following useful property.

LEMMA 4.6. Within a box �T◦,q◦ associated with a connected set of actions T ◦, if a
non-empty word u ∈ Σ
 leads from the initial state of a triangle to the initial state of a
triangle then the alphabet of u is precisely T ◦.

4.3 Some Notations and a Useful Observation

First, for each path s = q
u−→ q′ in some automaton G over Σ and for each action

a ∈ Σ we denote by s|a the sequence of transitions labeled by a that appear along s.
Let T be a non-empty subset of Σ. Let v be a state from the triangle TT,q . By

construction of TT,q , v is a quadruple (w, T ′, q′, k′) such that w is a state from the box
�T ′,q′ and k′ ∈ N. Then we say that the box location of v is l�(v) = (T ′, q′, k′).
We define the sequence of boxes L�(s) visited along a path s = v

u−→ v′ in TT,q as
follows:
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– If the length of s is 0 then s corresponds to a state v of TT,q and L�(s) = l�(v).
– If s is a product s = s′ · t where t is the transition v′′ a−→ v′ then L�(s) = L�(s′)

if l�(v′′) = l�(v′) and L�(s) = L�(s′).l�(v′) otherwise.

Similarly we define the sequence of boxes L�(s) visited along a path s in a box BT,q

where T is an unconnected set of actions and the sequence of triangles L�(s) visited
along a path s in a box BT,q where T is a non-empty connected set of actions.

By means of Lemma 4.6 the next fact is easy to show.

LEMMA 4.7. Let T be a non-empty connected set of actions. Let a ∈ T be some action.
Let s1 = v

u1−→ v′ and s2 = v
u2−→ v′ be two paths from v to v′ in a box BT,q . If

s1|a = s2|a then L�(s1) = L�(s2).

4.4 Complexity of This Unfolding Construction

For all naturals n � 0 we denote by Bn the maximal number of states in a box BT,q

with |T | = n and q ∈ Q. Similarly for all naturals n � 1 we denote by Tn the maximal
number of states in a triangle TT,q with |T | = n and q ∈ Q. Noteworthy B0 = 1 and
T1 = 1. Moreover Tn is non-decreasing because the triangle �T ′,q is a subautomaton
of the triangle �T,q as soon as T ′ ⊆ T . In the following we assume 2 � n � |Σ|.
Consider some subset T ⊆ Σ with |T | = n. Each triangle TT,q is built inductively
upon boxes of height h � n − 1. We distinguish two kinds of boxes. First boxes of
height h < n− 1 are inserted. Each of these boxes appears also in some triangle TT ′,q
with T ′ ⊂ T and |T ′| = n− 1. Each of these triangles is a subautomaton of TT,q with
at most Tn−1 states. Moreover there are only n such triangles which give rise to at most
n.Tn−1 states built along this first step. Second, boxes of height n− 1 are inserted and
connected to states inserted at height n − 2. Each of these states belongs to some box
�T ′,q′ with |T ′| = n − 2; it gives rise to at most 2.|Q| boxes at height n − 1 because
|T \ T ′| = 2: This produces at most 2.|Q|.Bn−1 new states. Altogether we get

Tn � n.Tn−1.(1 + 2.|Q|.Bn−1) � 3.|Σ|.|Q|.Tn−1.Bn−1 (2)

Assume now 1 � n � |Σ| and consider a connected subset T ⊆ Σ with |T | = n.
Then each box BT,q is built upon all triangles TT,q′ of height n. It follows from (1) that
m � Tn+1 � 2.Tn. Therefore the box BT,q contains at most 2.Tn copies of each trian-
gle TT,q′ . It follows that we have (∗) |BT,q| � 2.|Q|.T2

n. Consider now a non-connected
subset T ⊆ Σ with |T | = n. Then BT,q consists of at most 1 + (n− 1).Q.Bn−1 boxes
of height at most n − 1. Therefore we have also (∗∗) |BT,q| � |Σ|.|Q|.B2

n−1. From
(2), (∗), and (∗∗) we get the next result by an immediate induction.

LEMMA 4.8. If 1 � n � |Σ| then Tn � (3.|Σ|.Q)2
n−1 and Bn � (3.|Σ|.Q)2

n−1.

As a consequence the unfolding automaton AUnf has at most (3.|Σ|.Q)2
|Σ|−1 states.

5 Properties of the Unfolding Construction

In this section we fix a regular trace languageL over the independence alphabet (Σ, ‖).
We assume that the possibly non-deterministic automaton A fulfills Property ID of
Def. 2.1 and satisfies L(A) = L.



Unfolding Synthesis of Asynchronous Automata 55

5.1 Arched Executions for Boxes and Triangles

Let G be some automaton over Σ and Ĝ be its projected asynchronous automaton. For
each global state q of Ĝ we denote by q↓k the local state of process k in q. Let q1 and q2
be two global states of Ĝ. A true step q1

a−→ q2 of action a from q1 to q2 in Ĝ consists
of a transition q

a−→ r in G such that q1↓k = q2↓k for all k �∈ Loc(a), q1↓k = q and
q2↓k = r for all k ∈ Loc(a). If q1↓j = q2↓j for all processes j �= k, q1↓k a−→ q2↓k,
and k �∈ Loc(a) then q1

ε−→ q2 is called a ε-step of process k from q1 to q2.

DEFINITION 5.1. An execution of u ∈ Σ
 from q to q′ in Ĝ is a sequence of n true or
ε-steps qi−1

xi−→ qi such that q0 = q, qn = q′, and u = x1...xn with xi ∈ Σ ∪ {ε}.

For each execution s of u ∈ Σ
 and each process k ∈ K we denote by s↓k the path of
G followed by process k along s. For each state q of G we denote by q̂ the global state
of Ĝ such that each process is at state q. A global state is coherent if it is equal to some
q̂. Notice that the initial state and all final states of Ĝ are coherent. An execution from
q1 to q2 in Ĝ is called arched if both q1 and q2 are coherent. The next observation shows
how arched executions are related to the language of Ĝ.

PROPOSITION 5.2. For all words u ∈ Σ
 we have u ∈ L(Ĝ) if and only if there exists
an arched execution of u from the initial state of Ĝ to some of its final states.

The following result expresses a main property of boxes: It asserts that active pro-
cesses visit the same sequence of triangles along an arched execution within a box.

PROPOSITION 5.3. Let BT,q be a box with T a connected set of actions and s be an

arched execution in B̂T,q . Then L�(s↓k) = L�(s↓k′) for all k, k′ ∈ Loc(T ).

Proof. Since T is connected it is sufficient to show that for all actions a ∈ T and for all
processes k, k′ ∈ Loc(a) we have L�(s↓k) = L�(s↓k′). So we fix an action a ∈ T
and two processes k, k′ ∈ Loc(a). Since k and k′ synchronize on the same transition
at each occurrence of a, we have (s↓k)|a = (s↓k′)|a. It follows by Lemma 4.7 that
L�(s↓k) = L�(s↓k′).
Since processes inK\Loc(T ) are involved in ε-steps only, we can change their behavior
within an execution of u without affecting the resulting word u and we get:

PROPOSITION 5.4. Let BT,q be a box with T some connected set of actions and s be

an arched execution of u in B̂T,q from ŵ to ŵ′. Then there exists some arched execution

s◦ of u in B̂T,q from ŵ to ŵ′ such that L�(s◦↓k) = L�(s◦↓j) for all j, k ∈ K .

Noteworthy it is easy to adapt these remarks to unconnected boxes and triangles due to
their tree-like structure.

5.2 A Technical Lemma and a Key Property

We come now to the main technical lemma of this paper. It completes Proposition 5.4
and asserts that we can split any arched execution s associated with a box BT,q with a
connected set of actions T into an equivalent series of arched executions s0 · t1 · s1 ·
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t2 · ... · tn · sn where each si is an arched execution within a component triangle and
each ti corresponds to the unique added transition from a triangle to another triangle.
This decomposition will allow us to reason about arched executions inductively on the
construction of the unfolding.

LEMMA 5.5. Let BT,q be a box with T some connected set of actions and l1, ..., ln be
a sequence of triangle locations within BT,q with n � 2. Let s : ŵ u−→ ŵ′ be an arched

execution of u in B̂T,q from ŵ to ŵ′ such that L�(s◦↓k) = l1...ln for all k ∈ K . Then
there exist a transition w2

a−→ w3 in BT,q and three arched executions s1 : ŵ u1−→ ŵ2,
s2 : ŵ2

u2−→ ŵ3, and s3 : ŵ3
u3−→ ŵ′ such that

– L�(s1↓k) = l1 for all k ∈ K;
– s2↓k = w2

a−→ w3 for all k ∈ K;
– L�(s3↓k) = l2...ln for all k ∈ K;
– (s1 · s2 · s3↓k) = (s↓k) for all k ∈ K;
– s1 · s2 · s3 is an execution of u1.u2.u3 in B̂T,q and u1.u2.u3 ∼ u.

Intuitively we require that all processes leave together the first triangle along the unique
transition w2

a−→ w3 that leads from l1 to l2. This result relies on Lemma 4.6 and the
two properties C1 and C2 of Rule 4.5.

Observe now that the tree-structure of triangles and boxes associated to unconnected
sets of actions ensures that we can state a similar result for all triangles and all boxes.

LEMMA 5.6. Let T ⊆ Σ be a non-empty subset of actions. If s is an arched execution

of u from ŵ1 to ŵ2 in B̂T,q (resp. T̂T,q) then there exists some path w1
u′
−→ w2 in BT,q

(resp. TT,q) such that u′ ∼ u.

Proof. Observe first that this property holds also trivially for the empty boxes B∅,q . We
proceed now by induction on the size of T along the construction of triangles and boxes.
Let n = |T |. Assume that the property holds for all triangles TT †,q with |T †| � n.
Assume also that T is connected. By Lemma 5.5 we can split the execution s into an
equivalent series of arched executions s0 · t1 · s1 · t2 · ... · tn · sn where each si is an
arched execution within a component triangle and each ti corresponds to the unique
added transition from a triangle to another triangle. By induction hypothesis each si
corresponds to a path in the corresponding triangle. In that way we get a path for the
sequence s. The case where T is not connected is similar due to the tree-structure of
these boxes. The case of triangles is also similar.

Recall now that arched executions are closely related to the langage of the projected
asynchronous automaton (Prop. 5.2). As an immediate corollary we get the following
key result.

PROPOSITION 5.7. We have L(ÂUnf) ⊆ [L(AUnf)].

5.3 Main Result

Due to the morphisms from boxes and triangles to asynchronous systems AT,q we
have the inclusion relation [L(BT,q)] ⊆ L(AT,q) for each box BT,q and similarly
[L(TT,q)] ⊆ L(AT,q) for each triangle TT,q . We can check by an easy induction that
boxes satisfy the converse inclusion relation, which leads us to the next statement.
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PROPOSITION 5.8. We have [L(AUnf)] = L(A).

We come to the main statement of this paper.

THEOREM 5.9. The asynchronous automaton ÂUnf satisfies L(ÂUnf) = L(A). More-
over the number of states in each process is |Qk| � (3.|Σ|.|Q|)d where d = 2|Σ|.

Proof. By Proposition 5.8 we have [L(AUnf)] = L(A). By Proposition 3.1 we have

also [L(AUnf)] ⊆ L(ÂUnf) hence L(A) ⊆ L(ÂUnf). Now Proposition 5.7 shows that

L(ÂUnf) ⊆ [L(AUnf)] = L(A). The complexity result follows from Lemma 4.8.
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Abstract. We show that two equivalent K-automata are conjugate to
a third one, when K is equal to B, N, Z, or any (skew) field and that the
same holds true for functional tranducers as well.

extended abstract

1 Presentation of the Results

In a recent paper ([1]), we have studied the equivalence of Z-automata. This
equivalence is known to be decidable (with polynomial complexity) for more than
forty years but we showed there two results that give more structural information
on two equivalent Z-automata. We first proved that two equivalent Z-automata
are related by a series of three conjugacies — we shall define conjugacy later in
the paper — and then that every conjugacy relation can be decomposed into
a sequence of three operations: state (out-)splitting (also known as covering),
circulation of coefficients, and state (in-)merging (also known as co-covering).
Altogether, we reached a decomposition of any equivalence between Z-automata
as the one described at Figure 1 [Conjugacy is represented by double-line arrows,
coverings by simple solid arrows, co-coverings by simple dashed arrows, and
circulation by simple dotted arrows].

At the end of our ICALP paper we mentioned two problems open by the gap
between these results and those that were formerly known. First, whether three
conjugacies are necessary (in general), and, if yes, whether it is decidable when
two conjugacies suffice. Second, whether, in the case of N-automata, the whole
chain of conjugacies could be always realized with transfer matrices in N and, if
not, whether it is decidable when this property holds.

We answer these two questions here. By means of techniques different from
the ones that where developed in [1], we show that two conjugacies always suffice
and that this property holds not only for Z-automata but also for N-automata
and other families of automata as stated by the following.

Theorem 1. Let K be B, N, Z, or any (skew) field. Two K-automata are equiv-
alent if and only if there exists a third K-automaton that is conjugate to both of
them.
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Fig. 1. Structural decomposition of the equivalence of two Z-automata

Moreover, an analoguous result holds for functional transducers as well.

Theorem 2. Two functional transducers are equivalent if and only if there ex-
ists a third functional transducer that is conjugate to both of them

Together with these results on conjugacy, we extend the decomposition of con-
jugacy by means of covering, co-covering and “circulation” as follow (we shall
define covering and co-covering more precisely at Section 3). We state the first
one for sake of completeness.

Theorem 3 ([1]). Let K be a field F or the ring Z and let A and B be two
K-automata. We have A X=⇒ B if and only if there exists two K-automata C
and D and a circulation matrix D such that C is a co-K-covering of A, D a
K-covering of B and C D=⇒ D .
Theorem 4. Let K be the semiring N or the Boolean semiring B and let A
and B be two trim K-automata. We have A X=⇒ B if and only if there exists a
K-automaton C that is a co-K-covering of A and a K-covering of B.

Theorem 5. Let A and B be two trim functional transducers. We have A X=⇒
B if and only if there exists two (functional) transducers C and D and a diagonal
matrix of words D such that C is a co-covering of A, D a covering of B and
C D=⇒ D .

In other words, Figure 1 can be replaced by Figure 2 where A and B are taken
in any family considered in Theorems 1 and 2.

The present result on conjugacy is both stronger and broader than the pre-
ceeding ones. Stronger as the number of conjugacies is reduced from three to two,
broader as the result apply not only to Z-automata (indeed to automata with

X Y
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C3

C4

C4 C5

C5

C1R1
R2

D1 D2

D4 D6

A B

Fig. 2. Structural decomposition of the equivalence of two K-automata
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multiplicity in an Euclidean domain) but to a much larger family of automata. It
answers in particular to what was a long standing problem for the authors: is it
possible to transform an N-automaton into any other equivalent one using only
state splitting and state merging? The answer is thus positive, and the chain of
operations is rather short. The benefit brought by the change from Z into N is
well illustrated by the following consequence.

Theorem 6. If two regular languages have the same generating function (i.e.
the numbers of words of every length is the same in both languages) then there
exists a letter-to-letter rational function that realizes a bijection between the two
languages.

2 Conjugacy and Covering of Automata

A finite automatonA over an alphabet A with multiplicity in a semiring K, or K-
automaton for short, can be written in a compact way as A = 〈I, E, T 〉 where E
is a square matrix of finite dimension Q whose entries are linear combinations
(with coefficients in K) of letters in A and where I and T are two vectors —
respectively row vector and column vector — with entries in K as well. We can
view each entry Ep,q as the label of a unique arc which goes from state p to
state q in the graph whose set of vertices is Q (if Ep,q = 0K, we consider that
there is no arc from p and q).

The behaviour of A, denoted |||A|||, is the series such that the coefficient of a
word w is the coefficient of w in I E|w|T . It is part of Kleene-Schützenberger
Theorem that every K-rational series is the behaviour of a K-automaton of the
form we have just defined. For missing definitions, we refer to [4, 2, 10].

2.1 Conjugacy

Definition 1. A K-automaton A = 〈I, E, T 〉 is conjugate to a K-automaton
B = 〈J, F, U〉 if there exists a matrix X with entries in K such that

I X = J, EX = XF, and T = XU.

The matrix X is the transfer matrix of the conjugacy and we write A X=⇒ B .

Remark that in spite of the idea conveyed by the terminology, the conjugacy
relation is not an equivalence but a preorder relation. Suppose that A X=⇒ C
holds; if C Y=⇒ B then A XY=⇒ B , but if B Y=⇒ C then A is not necessarily
conjugate to B, and we write A X=⇒ C Y⇐= B or even A X=⇒ Y⇐= B .

This being well understood, we shall speak of “conjugate automata” when the
orientation does not matter. For instance, we state that, obviously, two conjugate
automata are equivalent (i.e. have the same behaviour).

2.2 Covering

The standard notion of morphisms of automata — which consists in merg-
ing states and does not tell enough on transitions — is not well-suited to K-
automata. Hence the definitions of K-coverings and co-K-coverings. These have
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probably stated independently a number of times. We describe them here in
terms of conjugacy. A definition closer to the classical morphisms could be given
and then the definitions below become propositions (cf. [1, 10]).

Let ϕ : Q → R be a surjective map and Hϕ the Q × R-matrix where the
(q, r) entry is 1 if ϕ(q) = r, 0 otherwise. Since ϕ is a map, each row of Hϕ

contains exactly one 1 and since ϕ is surjective, each column of Hϕ contains at
least one 1. Such a matrix is called an amalgamation matrix ([6, Def. 8.2.4]).

Let A and B be two K-automata of dimension Q and R respectively. We say
that B is a K-quotient of A and conversely that A is a K-covering of B if there
exists a surjective map ϕ : Q→ R such that A is conjugate to B by Hϕ

The notion of K-quotient is lateralized since the conjugacy relation is not
symmetric. Somehow, it is the price we pay for extending the notion of morphism
to K-automata. Therefore the dual notions co-K-quotient and co-K-covering are
defined in a natural way. We say that B is a co-K-quotient of A and conversely
that A is a co-K-covering of B if there exists a surjective map ϕ : Q→ R such
that B is conjugate to A by tHϕ.

We also write ϕ : A → B and call ϕ, by way of metonymy, a K-covering, or
a co-K-covering from A onto B.

3 The Joint Reduction

The proof of Theorems 1 and 2 relies on the idea of joint reduction which is
defined by means of the notion of representation.

An automaton A = 〈I, E, T 〉 of dimension Q can equivalently be described
as the representation A = (I, μ, T ) where μ : A∗ → KQ×Q is the morphism
defined by the equality

E =
∑
a∈A

μ(a)a .

This equality makes sense since the entries of E are assumed to be linear combi-
nations of letters of A with coefficients in K. And the coefficient of any word w
in the series |||A||| is I μ(w)T .

The set of vectors {I μ(w) | w ∈ A∗} (row vectors of dimension Q), that is,
the phase space of A, plays a key role in the study of A, as exemplifyed by the
following two contrasting cases.

If A is a Boolean automaton, this set of vectors (each vector represents a
subset of the dimension Q) is finite and makes up the states of the determinized
automaton D of A (by the subset construction). Moreover, if we form the ma-
trix X whose rows are the states of D, then D is conjugate to A by X .

If A is a K-automaton with K a field, the left reduction of A — recalled with
more detail below — consists in choosing a prefix-closed set P of words such
that the vectors {I μ(p) | p ∈ P} is a basis of the vector space generated by
{I μ(w) | w ∈ A∗} (cf. [2]). Moreover the (left-)reduced automaton is conjugate
to A by the matrix X whose rows are the vectors {I μ(p) | p ∈ P} .

Let now A = (I, μ, T ) and B = (I ′, κ, T ′) be two K-automata of dimen-
sion Q and R respectively. We consider the union of A and B and thus the
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vectors [I μ(w)|I ′ κ(w)] of dimension Q∪R . These vectors, for w in A∗, gener-
ate a K-module W . The (left) joint reduction of A and B consists in computing
— when it is possible — a finite set G of vectors [x|y] which generate the same
K-module W . Then the matrix M whose rows are these vectors [x|y] provides
in some sense a K-automaton C which is conjugate to both A and B with the
transfer matrices X and Y respectively, where X and Y are the ‘left’ and ‘right’
parts of the matrix M respectively.

In every case listed in the above Theorems 1 and 2, and which we consider
now, the finite set G is effectively computable.

3.1 Joint Reduction in Fields

Let K be a field and let A = (I, μ, T ) be a K-automaton of dimension n.
The reduction algorithm for K-automata is split into two dual parts. The

first part consists in computing a prefix-closed subset P of A∗ such that the
set G = {I μ(w) | w ∈ P} is free and, for every letter a, and every word in P ,
I μ(wa) is lineary dependant from G. The set G has at most n elements and an
automaton C = (J, κ, U), whose states are the elements of G, is defined by:

Jx =

{
1 if x = I ,
0 otherwise ,

∀x ∈ G, Ux = xT ,

∀a, ∃!κ(a), ∀x ∈ G, xμ(a) =
∑
y∈G

κ(a)x,yy .

This can be viewed as a change of basis: the setG generates the smallest subspace
of Kn that contains every I μ(w) and if G is completed into a basis B, after
changing the canonical basis by B and projection, one gets the automaton C.
Finally, if M is the matrix whose rows are the elements of G, it holds C M=⇒A.

The second part is similar and consists in computing a basis of the subspace
of K|G| generated by the vectors κ(w)U . It is a nice result (by Schützenberger)
that after these two semi-reductions, the outcome is a K-automaton of smallest
dimension that is equivalent to A.

We focus here on the first part which we call left reduction. Let A = (I, μ, T )
and B = (I ′, μ′, T ′) be two equivalent K-automata and let C0 = (J, κ, U) be
the automaton obtained by left reduction of A+ B. The automaton A + B has
a representation equal to ([I|I ′], diag(μ, μ′), [T |T ′]), where [I|I ′] is obtained by
horizontally joining the row vectors I and I ′, [T |T ′] by vertically stacking the
column vectors T and T ′, and for every letter a, [diag(μ|μ′)](a) is the matrix
whose diagonal blocks are μ(a) and μ′(a).

The automaton C0 is conjugate to A+B by the matrix [X |Y ], in which every
row has the form [I μ(w)|I ′ μ′(w)] where w is a word. It holds:

J [X |Y ] = [I|I ′], ∀a, κ(a) [X |Y ] = [X |Y ] (diag(μ|μ′))(a), U = [X |Y ] [T |T ′]

As A and B are equivalent, XT = Y T ′ and thus U = 2XT = 2Y T ′. Let
C = 〈J, κ, U/2〉; it immediatly comes C X=⇒ A and C Y=⇒ B .
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3.2 Joint Reduction in Z

The result and the algorithm are basically the same as the previous ones if the
multiplicity semiring is Z. As in vector spaces, there is a dimension theory in
the free Z-modules and it is still possible to compute a basis G of the submodule
of Zn generated by the vectors I μ(w). However, this basis does not correspond
any more to a prefix-closed set of words. and the algorithm to compute it is
explained in [1].

3.3 Joint Reduction in N

There is no dimension theory in the N-modules and thus no reduction algorithm
for N-automata similar to the previous ones.

However, given A+B our aim is not the reduction itself but the computation
of a set G of vectors with the 3 properties: for every z = [x|y] in G, xT =
yT ′ holds, the N-module 〈〈〈G 〉〉〉 generated by G is closed under multiplication
by (diag(μ|μ′))(a), for every letter a (which is important to effectively build
the automaton C), and finally G is finite. It can be noted that in the preceeding
algorithms, the freeness of the generating setG is used only to garantee finiteness.
An algorithm that compute such a G for N-automata can be roughly sketched
as follows.

Start from G = {[I|I ′]}. While 〈〈〈G 〉〉〉 is not closed under (diag(μ|μ′))(a), take
z = [x|y] in G (diag(μ|μ′))(a) \ 〈〈〈G 〉〉〉 add z to G, and reduce G. The reduction
goes as follow: while G contains z and z′ such that z < z′ (in the product order
of NQ∪R) replace z′ by z′ − z. This algorithm ends since at every step, either
the size of vectors of G decreases or the size of G increases. The size of vectors
cannot decrease infinitely and as vectors of G are pairwise incomparable (after
the reduction step), G has only a finite number of elements.

The outcome of this algorithm is not canonically associated to A and B and
even its size (in contrast to what happens with fields) may depend on the order
in which comparable pairs are considered during the reduction step. Yet, an
automaton C whose states are the elements of G is built as the previous cases.

3.4 Joint Reduction in B

In B, as in many semirings that cannot be embedded in rings, there is no sub-
traction. Therefore it is quite difficult to reduce vectors [I μ(w)|I ′ μ′(w)] to find
a “minimal” set of generators. As B is finite, the simplest way is to keep all the
vectors [I μ(w)|I ′ μ′(w)] . The automaton C obtained from this set is nothing
else that the determinised automaton of A ∪ B. For the same reason as above,
this automaton is conjugate both to A and B.

3.5 Joint Reduction of Functional Transducers

With transducers, difficulties of automata with multiplicities and Boolean au-
tomata meet. On the one hand, if T = (I, μ, T ), the set {Iμ(w) | w ∈ A∗} may
be infinite and, in the other hand, as in the Boolean case, the substraction is
not allowed in the semiring of multiplicities that can be associated to them.
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If the transducers A and B were sequentialisable, it would be sufficient to
consider the sequentialised transducer of their union that would be conjugate to
each of them. The idea of the sequentialisation (cf. [3, 7]) is to compute a (finite)
set of vectors of words, each vector being the information that can not be output
and that is necessary for further computation.

On general functional transducers, this algorithm does not always end. We
present now a pseudo-sequentialisation, that stops on any functional transducer.
This algorithm allows to split vectors of words when their components are dif-
ferent enough, which induces non deterministic transitions.

We describe first this algorithm on one functional transducer and then explain
how to use it for the joint reduction.

Definition 2. Let k be a positive integer and X be a se of words. Two words
u and v of A∗ are k-related in X, if there exists a finite sequence w0, ..., wn of
words such that u = w0, v = wn, for every i in [1;n], d(wi−1, wi) � k and there
exists i in [1;n] such that wi is a prefix of u and v. The set X is k-related if
every pair of its elements is k-related in X.

The k-relation is an equivalence on X .

Definition 3. Let α be a vector of words. The k-decomposition of α is the small-
est set of vectors Dk(α) such that, for every β ∈ Dk(α) the set of components
of β is k-related and α =

∑
β∈Dk(α) β.

Obviously, the vectors of Dk(α) have disjoint supports. We shall applies this
decomposition to vectors of words and then reduce them with respect to their
greatest common prefix; this second step is exactly the same as in the classical
sequentialisation algorithm.

Definition 4. Let α be a vector of words. We denote
◦
α the greatest common

prefix of non zero components of α and α� =
◦
α
−1
α.

Definition 5. Let T = (I, μ, T ) be a functional transducer and let k be non
negative integer The k-pseudo-sequentialised transducer S of T is defined by:

– for every β in Dk(I), β� is an initial state with initial weight
◦
β;

– for every state α, for every letter a, for every β in Dk(αμ(a)), there is a

transition labeled by a with output
◦
β from α to β�.

– for every state α, α is final with output w = αT if w is non zero.

Proposition 1. For k, the k-pseudo-sequentialised transducer S of a functional
transducer T is a finite transducer that is conjugate to T .

The transducer S is finite since the components of its states (that are vectors)
are bounded by k.

If the k-pseudo-sequentialisation is applied to the union of two equivalent
functional transducers A = (I, μ, T ) and B = (I ′, μ′, T ′), it gives a transducer
C which is conjugate to A ∪ B with a matrix M = [X |Y ], but, in general, this
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transducer is not conjugate to A with X and to B with Y . Actually, if k is too
small, there may be rows [x|y] of M such that xT �= yT ′.

Let k be equal to n2L, where n is the maximum of dimensions of A and B
and L is the longest output of transitions or terminal functions of A and B. In
this case, the k-pseudo-sequentialised transducer is unambiguous, which implies
that xT = yT ′ for every state [x|y] of C. Therefore, the transducer C is conjugate
both to A and B.

Example 1. Figure 3 shows the transducer T1 and its k-pseudo-sequentialised S1
(the result is the same with any positive k), where T1 is the (left) transducer
that replaces systematically factors abb by baa when reading words from right
to left ; T1 is thus co-sequential, that is, input co-deterministic (cf. [10]). The
transducer S1 is conjugate to T1 with the transfer matrix M :

M =

⎡⎢⎢⎢⎢⎣
bb b 1
b 1 0
1 0 0
0 b 1
0 0 1

⎤⎥⎥⎥⎥⎦ .

1 2 3

|bb |b

b |b a |a
b |1

a |aa

b |1

a |ab bb, b, 1

b, 1, 0 1, 0, 0

0, b, 1 0, 0, 1

b |b a |a

a |baa

a |a

a |aa

b |1 b |1 a |baa

b |b

a |a

M

Fig. 3. The transducers T1 and S1

The above list may lead to think that a joint reduction procedure may be
found for any semiring. This is certainly not the case and the tropical semirings
for instance, or the non functional transducers, are not likely to admit a joint
reduction procedure.

4 From Conjugacy to Coverings

It remains to show Theorems 3, 4 and 5.

4.1 The Case of Fields and Integers

We have proved Theorem 3 in [1]. Actually, every matrix M can be decomposed
in a product HDK, where tH and K are amalgamation matrices and D is a
diagonal matrix whose entries are invertible. If K is a field, the dimension of D
is the number of non zero entries of M , and if K = Z, as the only invertible
elements are 1 and −1, every non zero element has to be decomposed in a sum of
±1 and the dimension of D is the sum of the absolute values of the entries of M .
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The proof consists then in proving that there exist automata C and D such
that A H=⇒ C D=⇒ D K=⇒ B. The construction of C and D amounts to fill in
blocks of their transition matrix knowing the sum of the rows and the columns.

For natural integers, the proof is exactly the same. The unique invertible
element of N is 1, thus D is the identity matrix. However, to get the expected
form, the matrix M must have no zero row or column.1 This is ensured by the
assumption that A and B are trim.

4.2 The Boolean Case

Let A = (I, μ, T ) and B = (J, κ, U) be two trim automata such that there exists
a n×m Boolean matrix X that verifies A X=⇒ B.

Let k be the number of non zero entries of matrix X . We define ϕ : [1; k] →
[1;n] and ψ : [1; k] → [1;m], such that xϕ(i),ψ(i) is the i-th non zero entry of
X . Let Hϕ and Hψ be the matrices associated to these applications. It holds
X = tHϕ Hψ. We define C = (K, ζ, V ) with dimension k by:

K = I tHϕ , V = HψU ,

∀(p, q) ∈ [1; k]2, ζ(a)p,q = μ(a)ϕ(p),ϕ(q) ∧ κ(a)ψ(p),ψ(q) .

It is then easy to check that C
tHϕ=⇒ A and C Hψ=⇒ B, which means that C is a

co-B-covering of A and a B-covering of B.
In the case were A is the determinised automaton of B (which arises if one

applies the algorithm given in the previous section), the automaton built in this
way is the Schützenberger covering of B, a construction that appears naturally
in a number of problems for automata with multiplicity (cf. [5, 9, 10]).

4.3 The Functional Transducer Case

Let A = (I, μ, T ) and B = (J, κ, U) be two trim functional transducers and let
X be a n×m matrix of words such that A X=⇒ B. Let k be the number of non
zero entries of X . The matrix X can be decomposed into HDK, where H and
K are Boolean matrices and D is a diagonal matrix of words of dimension k.

This diagonal matrix corresponds to a circulation of words. Actually, in the
framework of transducers, the circulation of words is a well-known operation
that is needed for instance in the minimisation of sequential transducers. This
operation can be related to the circulation of invertible elements for fields if we
consider words as elements of the free group.

We want to prove that there exists A′ = (I ′, μ′, T ′) and B′ = (J ′, κ′, U ′)
such that A H=⇒ A′ D=⇒ B′ K=⇒ B. We set I ′ = I H , J ′ = I ′D, U ′ = KU and
T ′ = DU ′.

For every letter a, there exists a matrix ζ(a) such thatH ζ(a) = μ(a)HD and
ζ(a)K = DKκ(a). As H and K are Boolean matrices, ζ(a) can be factorised
in μ′(a)D and Dκ′(a), which gives the solutions.
1 In the previous case, this technical item is handled by considering that 0 = 1+(−1).
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|bb |b

b |b a |ab |1

a |aa

b |1

a |ab

|bb |b

a |aa

a |ab

a |a

a |aa a |ab

a |a

a |ab

a |a

b |b

b |1 b |1

b |b
b |1 b |1

b |b

b |1

a |aa

b |1

b |b a |a

a |baa

a |a

a |aa

b |1
b |1 a |baa

b |b

a |a
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b

1

b

1

1

b

1 1

a |baa

a |a

a |a

a |baa

a |a

a |a

a |a

a |a

b |b

b |b

b |b

b |1

b |1

b |1

b |1

b |1

a |aa
b |b

D

Fig. 4. The instance of Theorem 5 for S1 and T1

5 An Application

Theorem 6 is a striking consequence of the strengthening of our conjugacy result
of [1] and answers a question on automatic structures.

LetA and B be two (Boolean) unambiguous automata the languages L andK
respectively and suppose that L and K have the same generating functions. It
amounts to say that if we forget the labels in A and B (and replace them all by
the same letter x) we have two equivalent N-automata A′ and B′: the coefficient
of xn in |||A′||| and thus in |||B′||| is the number of words of length n in L and thus
in K.

By Theorem 1, A′ and B′ are both conjugate to a same N-automaton C′ (on
x∗). By Theorem 4 there exist D′ and E ′ such that D′ is a co-N-covering of C′
and a N-covering of A′ and E ′ is a co-N-covering of C′ and a N-covering of B′.
By a diamond lemma ([1, Proposition 6]) there exists a N-automaton T ′ (on x∗)
which is a co-N-covering of D′ and of E ′.

Every transition of T ′ is mapped, via the co-N-coverings and the N-coverings
onto a transition of A′ and onto a transition of B′. But these are transitions of
A and B and every transition of T ′ may thus be labelled by a pair of letters
(one coming from A and one coming from B) and hence turned into a letter-to-
letter transducer T . As the projection on each component gives an unambiguous
automaton, T realises a bijective function.

Remark 1. Theorem 6 bears some similarity with an old result by Maurer and
Nivat (cf. [8]) on rational bijections. It is indeed completely different: it is more
restricted in the sense it applies only to languages with the same generating
functions whereas Maurer and Nivat considered bijections between languages
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b|d
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b|d
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b|d a|c

a|c

a|c

a|c

co-covering co-covering

covering co-covering
coveringco-covering

Fig. 5. Construction of a letter-to-letter bijective rational function

with ‘comparable’ growth functions, and it is much more precise in the sense
that the transducer which realizes the bijection is letter-to-letter. It is this last
property that makes the result interesting for the study of automatic structures.

Figure 5 shows the construction for the two languages L = a(a + b)∗ and
K = (c + dc + dd)∗ � cc(c + d)∗ recognized by their minimal deterministic (and
thus unambiguous) automata A and B.

References
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Abstract. The Steiner tree problem in unweighted graphs requires to
find a minimum size connected subgraph containing a given subset of
nodes (terminals). In this paper we investigate applications of the linear
matroid parity algorithm to the Steiner tree problem for two classes of
graphs: where the terminals form a vertex cover and where terminals
form a dominating set. As all these problems are MAX-SNP-hard, the
issue is what approximation can be obtained in polynomial time. The
previously best approximation ratio for the first class of graphs (also
known as unweighted quasi-bipartite graphs) is ≈ 1.217 (Gröpl et al. [4])
is reduced in this paper to 8/7 − 1/160 ≈ 1.137. For the case of graphs
where terminals form a dominating set, an approximation ratio of 4/3 is
achieved.

Keywords: Steiner trees, matroid, parity matroid problem, approxima-
tion ratio.

1 Introduction

One of the strongest results in matroid theory is the polynomial time solution
to the parity problem in linear matroids. Briefly stated, we have a collection of
2× n matrices, and our goal is to find a maximum size sub-collection such that
they can be stacked into a single matrix of maximum rank (i.e., its rank is equal
to the number of rows). This problem was solved by Lovász [6], and much more
efficient algorithms were later found by Orlin and Vande Vate [7] and Gabow
and Stallmann [3] for graphic matroids.

Numerous graph problems can be expressed in the language of linear ma-
troids, therefore one should expect that a number of them would be solved using
an algorithm for matroid parity. Known examples are finding minimum feedback
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vertex sets in cubic graphs, equivalently, finding maximum size acyclic induced
subgraphs and finding maximum planar subgraphs [2]. However, until now, very
few such applications were found. We hope that a technique described in this
paper will allow to find many more such applications.

We will show approximation algorithms for two MAX-SNP hard versions of
the unweighted Steiner tree problem. In each, we are given an undirected graph
G = (V,E) with a set P ⊆ V of n terminals. The goal is to find a subset of edges
that forms a tree containing all the terminals. The cost of the tree is defined as
the number of edges it contains. We measure the quality of our algorithm by the
performance ratio, i.e., the worst case ratio of the cost of the obtained solution
to the cost of an optimum solution.

In these two problems we restrict ourselves to graphs where P forms a vertex
cover or a dominating set, respectively. Our approximation algorithms for these
problems are based on solving a general base cover problem for matroids using
the algorithm for matroid parity.

The graphs where terminals form a vertex cover are also known as quasi-
bipartite graphs. The best approximation ratio for general quasi-bipartite graphs
is ≈ 1.279 [8] and for the subclass of uniform quasi-bipartite graphs (i.e., those
where all edges incident to the same Steiner point have the same weight) is
≈ 1.217 [4]. In this paper we give an approximation ratio of ≈ 1.137 for the
even narrower subclass of unweighted quasi-bipartite graphs. This class is espe-
cially interesting since it is one of the narrowest classes of graphs for which the
Steiner tree problem is MAX SNP complete.1 Note that the tight example for the
1.21-approximation algorithm of [4] used unweighted quasi-bipartite graphs, thus
showing that matroid parity essentially improves Steiner tree approximations.

In the next section we review notations and terminology. Section 3 shows how
to approximate the base cover problem with the performance ratio 8/7− 1/160.
Section 4 gives a 4/3-approximation algorithm for the case when the terminals
dominate all vertices.

2 Notation and Terminology

In this paper we use the following notation and terminology:

– P ⊆ V is the set of terminals.
– #A is the cardinality of A.
– N(a,B) is the set of nodes of B that are adjacent to a.
– If A is a set of objects and a is an object, A + a and A − a are shorthands

for A ∪ {a} and A− {a}.
– union(X) is the union of sets that belong to family X .

In a graph, collapsing a set of nodes means viewing them as a new single
node. Afterwards, internal edges of the set are disregarded, and edges incident
on any element of the set will be viewed as incident on the new node.
1 The reduction is from the vertex cover problem restricted to graphs of degree at

most 4.
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A Steiner tree is a tree (a connected acyclic subgraph) containing P, the set
of terminals. This tree is a union of maximal subtrees in which all terminals are
leaves. We call such subtrees full components. An internal node of a Steiner tree
is called a Steiner point if its degree is at least 3.

A matroid M = (X, I) is a finite set X with a family I of independent subsets
of X such that

– if A ∈ I and B ⊆ A then B ∈ I (hereditary property)
– if A,B ∈ I, |A| > |B|, then there exists a ∈ A − B such that B + a ∈ I

(exchange property)

Any maximal independent set of M (i.e., a base of M) has the same size
which is called the rank of M , rank(M). For any subset E of X , rank(E) is
the size of a maximal independent subset of E. The span of E, span(E) is the
maximum superset of E with the rank equal rank(E). If E is a set of subsets of
X , then we use span(E) for span(union(E)).

An undirected graph G = (V,E) is associated with a graphic matroid M =
(E, I), where a subset of edges A is independent, i.e., A ∈ I, if A does not
contain cycles. A graphic matroid is a linear matroid, i.e., it can be represented
as a linear space where each independent set is a linearly independent set of
elements. Any base of M corresponding to a connected graph G is a spanning
tree of G.

Given a partition of X into pairs (ei, ei+1), the matroid parity problem asks
for a maximum number of pairs whose union is independent. Lovász [5] showed
that the parity matroid problem can be solved efficiently for linear matroids.

3 The Base Cover Problem

When the terminals form a vertex cover in an unweighted graph G = (V,E),
then all full components are stars, i.e., subgraphs consisting of a Steiner node
connected to some subset of terminals. Then each Steiner tree chooses a set of
stars spanning all terminals. This section is devoted to the problem in matroids
corresponding to this Steiner tree problem.

We first formulate this problem as a base cover problem (BCP) in matroids
and give necessary notations. Then we prove two main properties of the solutions
for BCP and give the approximation algorithms based on solution of the matroid
parity problem. Finally, we prove a performance ratio of≈ 1.137 for the proposed
algorithms.

Let C be a hereditary family of subsets of X spanning a matroid H = (X, I),
i.e., rank(union(C)) = rank(H). A subfamily D = {d1, . . . , dm} of disjoint sets
from C is called valid if union(D) ∈ H . The cost of D is defined as cost(D) =∑m

i=1(1 + |di|).

The Base Cover Problem. Given a hereditary family of subsets C spanning
a matroid H , find the minimum cost valid subfamily D ⊆ C.
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We will approximate the base cover problem for the special case of the graphic
matroid H of the complete graph GP = (P,EP ) whose vertices are the terminals
P of a Steiner tree problem. A subset c of edges of GP is in C if all the endpoint
of edges in c are leaves of the same full component. Therefore, such a subset c
corresponds to a star in G (if the terminals form a dominating set).

Note that the rank of H , rank(H) = n, equals to the number of terminals
minus 1, and the rank of any edge set A is the number n − k, where k is the
number of connected components induced by A in GP .The cost of a Steiner tree
in an unweighted graph G = (V,E) equals to the number of terminals minus
1 (which is the rank of the matroid) plus the number of stars used to connect
them. Therefore, the cost of D equals the cost of the corresponding Steiner tree.

In two cases there exists a polynomial time exact algorithm. If C consists of
singleton sets, every solution costs 2n. If C is a collection of singletons and pairs,
this is equivalent to the linear matroid parity problem, as we are maximizing
the number of times when we can purchase two elements for the price of 3 (thus
minimizing the number of times when we purchase elements individually, for the
price of 2.)

We need some more notations:

Di = {d ∈ D |#d ≥ i}
valid(D) ≡ D is valid
validi(D) ≡ valid(D) and D = Di

cost1(D) = min{cost(E) | rank(E) = n and valid(E) andE2 = D}
(used if valid2(D), it is the cost of a solution obtained fromD
by adding singleton sets, equals cost(D) + 2(n− rank(D))

rank2(D) = max{rank(E) | and valid2(E) and E3 = D}
(used if valid3(D), it is the largest rank of a valid solution
obtained from D by inserting pairs)

cost2(D) = min{cost1(E) | valid(E) and E3 = D}
(used if valid3(D), it is the least cost of a valid solution
obtained from D by inserting pairs and singleton sets

rank3(D) = max{rank2(E) | valid3(E) and D ⊆ E}
(used if valid3(D), it is the largest rank of a valid solution
obtained from D by inserting non-singleton sets)

rmax = max{rank(D) | valid2(D)} = rank3(∅)
cmin = min{cost(D) | valid(D)}
H/I is defined for a subspace I of the linear space H , it is a result of a

linear mapping l such that l−1(0) = I

Our algorithm requires that we can compute rank(D) in polynomial time.
If valid2(D), then cost1(D) = 2n − (#union(D) − #D). Assuming valid3(D),
we can find the largest collection D′ of pairs of elements such that valid2(D ∪
D′) by solving the linear matroid parity problem in H/span(D); if #D′ = k,
then rank2(D) = rank(D) + 2k and cost2(D) = cost1(D) − k. Thus to min-
imize cost(D) such that valid(D) it suffices to minimize cost2(D) such that
valid3(D).
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The next two lemmas convey the crux of our method. Lemma 1 says that
we can restrict our search to partial solutions satisfying rank3(D) = rmax. In
other words, we prove that any maximum rank partial solution containing only
sets of size 2 or more will have the same singletons as some optimal solution.
Lemma 2 allows to compute rank3 and to perform the analysis of our (almost)
greedy algorithm.

Lemma 1. Assume valid2(D) and rank(D) = rmax. Then there exists E such
that span(E) = span(D) and cost1(E) = cmin.

Proof. Let conform(D,E) be the union of set intersections d∩e such that d ∈ D,
e ∈ E and #(d ∩ e) ≥ 2. Among the sets E such that valid2(E) and cost1(E) =
cmin we can choose one that maximizes the size of conform(D,E). It suffices to
show that span(D) ⊆ span(E): because rank(D) = rmax ≥ rank(E), span(E)
cannot properly contain span(D). Thus this inclusion implies equality.

Suppose, by the way of contradiction, that span(D) �⊆ span(E). Then
union(D) �⊆ span(E) and for some u ∈ d ∈ D we have u �∈ span(E). Be-
cause valid2(D) holds, d has another element say v. Vector v must satisfy one
of the following conditions.

Case 1: v �∈ union(E) and rank(union(E) + u + v) = rank(E) + 2. Then
E′ = E+{u, v} satisfies valid2(E′) and cost1(E′) is by 1 smaller than cost1(E) =
cmin, a contradiction.

Case 2: v �∈ union(E) and rank(union(E) + u+ v) = rank(E) + 1. Because
union(D) and union(E)+u are independent sets of elements, and union(E)+u+
v is not, there exists a w ∈ union(E)−union(D) such that the set union(E)+u+
v−w is independent. Let e be the set of w in E. One can see that E′ = (E−e+(e−
w) + {u, v})2 satisfies valid2(E′), cost1(E′) = cost1(E) and conform(D,E′) =
conform(D,E) + u+ v, a contradiction.

Case 3: v ∈ union(E)− conform(D,E). Let e be the set of v in E. One can
see that E′ = E − e + (e− v) + {u, v} gives the same contradiction as in Case 2.

Case 4: v ∈ conform(D,E), i.e., for some e ∈ E, v ∈ d ∩ e and #(d ∩ e) ≥ 2.
If e− d has at most one element, we obtain a contradiction with E′ = E − e +
((e ∩ d) + u), as valid2(E′) holds, cost1(E′) ≤ cost1(E) and conform(D,E′) =
conform(D,E) + u. If e − d has at least two elements, we obtain the same
contradiction with E′ = E − e + (e− d) + ((e ∩ d) + u). !�

Lemma 2. Assume valid3(D) and rank2(D) < rmax. Then there exists E such
that valid3(E), rank2(E) = rank2(D) + 1 and either
(1) E = (D − d + (d− w))3 for some w ∈ d ∈ D, or
(2) E = D + d for some triple d of elements.

Proof. Let F be such that valid2(F ) and rank(F ) = rmax. Among D′ such that
valid2(D′), D′

3 = D and rank(D′) = rank2(D) choose one that maximizes the
size of conform(D′, F ). Because rank(F ) > rank2(D) = rank(D′), for some
u ∈ f ∈ F we have u �∈ span(D′). Let v be another element of f ; this vector
must satisfy one of the following cases.
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Case 1: v �∈ union(D′) and rank(union(D′) + u+ v) = rank(D′) + 2. Then
valid2(D′ + {u, v}), (D′ + {u, v})3 = D and rank(D′ + {u, v}) = rank(D′) + 2,
a contradiction to our choice of D′.

Case 2: v �∈ union(D′) and rank(union(D′) + u + v) = rank(D′) + 1. As
in Case 2 of the previous proof, for some w ∈ union(D′) − union(F ), the set
union(D′)+u+v−w is independent. Let d be the set of w in D′, i.e., d ∈ w ∈ D′.

Case 2.1: #d = 2. Then we can replace d in D′ by {u, v}, and this will
preserve the property valid2(D′), and the values of D′

3 and rank(D′). However
the size of conform(D′, F ) will increase, a contradiction to our choice of D′.

Case 2.2: #d > 2. Then for D′′ = D′−d+(d−w)+{u, v} we have valid2(D′′)
while rank(D′′) = rank(D′) + 1 = rank2(D) + 1. Therefore we have found
E = D′′

3 such that rank2(E) = rank2(D)+1. Note that E = (D−d+(d−w))3,
which satisfies Case (1) of the claim.

Case 3: v ∈ union(D′)− conform(D′, F ). We can define w = v and proceed
exactly as in Case 2.

Case 4: v ∈ conform(D′, F ). Let d′ be the set of v in D′. If #d′ > 2, we can
proceed as in Case 2.2, with d = d′ and w = v. If #d′ = 2, then d′ ⊆ f ∈ F ,
consequently for d = d′ +u we have valid2(D′− d′ + d) and rank(D′− d′ + d) =
rank(D′) + 1. Note that E = (D′ − d′ + d)3 satisfies Case (2) of the claim. !�

One consequence of Lemma 2 is that the following algorithm, on input D
satisfying valid3(D), finds E such that D ⊆ E, valid3(E) and rank2(E) =
rank3(D), in particular, the algorithm computes rank3(D):

Algorithm 1:

E ← D
while there exists a triple d of elements such that

valid3(E + d) and rank2(E + d) > rank2(E) do
E ← E + d

return E

To see that this algorithm is correct, it suffices to analyze it for D = ∅. Let
us apply Lemma 2, starting from the empty collection of vector sets. Initially,
we have rank2 equal to some 2m. After k iterations consistent with Case (2), we
obtain rank2 equal to 2m+ k. Suppose that now we can apply Case (1) of the
lemma. Then we obtain E consisting of k−1 triples with rank2(E) = 2m+k+1.
This means that a sequence of k − 1 triple insertions increases rank2 by k + 1,
hence one of these insertions increases rank2 by at least 2, which is impossible.
Because rank2 is computable in polynomial time, this algorithm computes rank3
in polynomial time.

Now we have all the tools to analyze the following algorithm for approximat-
ing the base cover problem.
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Algorithm 2:

(* quick stage *)
A ← empty collection of vector sets
while there exists d such that valid(A + d) and #d ≥ 8

A ← A + d
(* careful stage *)
for i← 7 down to 3

while there exists d such that validi(A + d) and rank3(A + d) = rank3(A)
A ← A + d

(* finishing stage *)
while there exists d such that valid2(A + d) and rank2(A + d) = rank2(D)

A ← A + d
while there exists d such that valid(A + d)

A ← A + d
return A

Theorem 1. In polynomial time, Algorithm 2 produces a base cover with cost
at most 1 + 1/7− 1/160 times the optimum cost.

Proof. Say that a collection of vector sets B forms a best solution. We want to
find the worst case ratio cost(A)/cost(B). Each time the algorithm adds a set
d to the partial solution A, the remaining problem is to find the least cost base
cover for H/span(A). In the analysis, we modify B after each selection. Each
selection d reduces the rank of H/span(A) by #d, hence we have to remove #d
elements from the sets of B. At the same time, the cost of A increases by 1+#d.

During the quick stage the ratio between the increase of cost(A) and the
decrease of the remaining cost(B) is at most 9/8. Later we cannot argue in
the same manner, but we have to average the cost increases of the careful stage
with the mistake-free finishing stage. We achieve this goal as follows. First, at the
beginning of the careful stage we modify B so that it contains a minimum number
of singleton sets. By Lemma 1 this can be done without changing the solution
cost. Afterwards, during the careful stage, we monitor B3, while preserving the
invariant that rank3(B3) is maximal for the linear space H/span(A). During
this process, B3 consists of the “original” sets (with some elements removed)
and some “new” triples.

After selecting some d during the careful stage, we remove #d elements from
the sets of B. If one of these sets becomes empty, then the remaining solution
has #d = i fewer elements and 1 fewer set, so its costs decreases by i + 1, the
same as the increase of the cost of A. Otherwise, we need to account for the
difference between these two quantities, i.e., 1. We split 1 into i equal parts, and
we charge them to the elements of B3 that had elements removed.

Now, the size of elements of B3 drops for two reasons. First, we remove some
elements to maintain the invariant that union(B) is the base of H/span(A).
Second, if as a result some sets drop in size to 1, we have to reduce the number
of singleton sets in B to the minimum to maintain the second invariant. We do
it using the modifications described in Lemma 2. If even one such modification
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is of kind (2), it effectively replaces in B a singleton set and a pair by a triple
which decreases the cost of B, so there are no charges. A modification of kind
(1) removes one vector from a set of B3, while also replacing a singleton set in
B by a pair. As a result, we exchange a size decrease to 1 with a size decrease
to at least 2.

Summarizing, a selection of d during the careful stage makes i or fewer de-
creases of the sets in B3; if there are fewer than i decreases, this is a step without
a charge, otherwise there are exactly i decreases, each associated with a charge
of 1/i. Because we always select the largest possible set, a charge of 1/i can be
applied only to a set of size at most i, otherwise this set would be selected rather
than d. Once a set drops in size to 2, it does not accept further decreases (unless
there are no charges).

Now we can see what the possible ratios are between the cost of a set in B
and the charges it receives. Singleton sets and pairs do not accept any charges.
A triple can receive one charge, at most 1/3, and the resulting ratio is at most
(1/3)/4 = 1/12. A quadruple can receive a most two charges, the first at most
1/4, when it is reduced in size to a triple, and then at most 1/3, for the resulting
ratio (1/4 + 1/3)/5 = 7/60. For the larger sets we get the ratios (1/5 + 1/4 +
1/3)/6 = 47/360, (1/6 + 1/5 + 1/4 + 1/3)/7 = (1− 1/20)/7 = 1/7− 1/140 and
(1/7 + 1/6 + 1/5 + 1/4 + 1/3)/8 = (8/7− 1/20)/8 = 1/7− 1/160. !�

4 Terminals Forming a Dominating Set

Now we consider the case when all edges have length 1 and the set P of terminals
forms a dominating set (i.e., each node is in P or is adjacent to P ). To assure
an approximation ratio of 4/3 we may use a version of Algorithm 2. In the quick
stage, we first sequentially contract edges connecting the terminals, and then i-
stars for i ≥ 4; one can easily see that if we spend x in the quick stage, then opt,
the cost of the minimum Steiner tree, is decreased by at least 3x/4. Therefore
we may assume that we deal with a graph G that is an output of the quick stage,
and consequently P is an independent set (and a dominating set), and each node
in V − P is adjacent to at most 3 nodes from P .

The next 4 lemmas contain the necessary graph-theoretic observations. The
proof of Lemma 5 includes a description of the algorithm needed (a variation of
the careful and finishing stages) and shows an approximation ratio of 4/3.

For the sake of analysis, let G′ be obtained from G by deleting all edges
from the graph that are not incident on any one of the terminals. We will say
that connected components of G′ are V -components, while an intersection of a
V -component with P is a P -component.

We define an edge weighted graph GP = (P,EP ) where edges {u, v} in GP

are identified with simple paths between u and v within a full component of G.
The edge weights are the corresponding path lengths.

Because of space constraints, we refer to a planned journal version or the
web page of the second author, for the proof of the next three lemmas.
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Lemma 3. Any minimum spanning tree (MST) of GP can be formed as follows:
points of each P -component are connected with paths of length 2, and then P
components are connected with paths of length 3.

We say that a Steiner tree is normal if every internal node u is adjacent in the tree
to a terminal; in proofs we will use p(u) to denote a (unique) selected terminal
adjacent in the tree to u. As before, opt is the minimum cost of a Steiner tree.

Lemma 4. There exists a normal minimum tree with cost opt.

We say that a Steiner tree is special if (1) it is normal, (2) its full components
have at most 4 terminals each, (3) its full components have at most one Steiner
point, and (4) the union of minimum spanning trees of its full components forms
an MST of GP . For any Steiner tree T we will use aT and bT to denote the
number of full components with 3 and 4 terminals respectively, and exactly one
Steiner point. As before, mst denotes the cost of an MST of GP .

Lemma 5. The cost of a special Steiner tree T equals mst− aT − 2bT .

Lemma 6. There exists a special Steiner tree T with cost at most 4
3opt−

1
3bT .

Proof. Consider a normal Steiner tree T of P with cost opt (it exists by Lemma 4).
In the first part of the proof, we will transform it into a Steiner tree satisfying
conditions (1), (2) and (3). At an intermediate stage of the transformation let x
be the cost of the full components of T that satisfy conditions (2) and (3), y be
the cost of the remaining components. At each stage we will decrease y, while
satisfying the invariant x+ 4

3y + 1
3bT ≤ 4

3opt. Observe that this invariant holds
initially, because the cost of each component counted by aT has cost at least 4.

Assume then that y > 0 and consider a full component C that violates (2) or
(3). Suppose that a Steiner point u in C is adjacent (via edges or paths of length
2 that do not go through a Steiner point) to some four terminals, p(u), q, r and
s. Because no node is adjacent to more than 3 terminals, we may assume that
the path from u to s has length 2. We may remove the paths from u to q, r and
s from C, thus decreasing its cost by some z ≥ 4, and create a new component
consisting of these paths and the edge {u, p}. In such a stage 4

3y decreases by
4
3z ≥ z + 1 + 1

3 , while x increases by 1 and 1
3bT increases by 1

3 . If we cannot
perform a stage like that, we may infer that all full component with exactly one
Steiner node satisfy (2) and (3). Suppose then that C contains more than one
Steiner point; one of them, say u, is adjacent to exactly one other, say v. We
can accomplish a stage by removing the Steiner point u from C together with
the incident paths, and creating a new component consisting of these paths and
the edge {v, p(v)}. If the new component contains 3 terminals, we decreased y
by some z ≥ 3, and increased x by z + 1, and if the new component contains 4
terminals, we can repeat the previous calculation.

Now we may assume that y = 0 and x+ 1
3bT ≤ 4

3opt. Suppose that condition
(4) is violated, i.e., the union U of MSTs of the full components of T has cost
larger than mst (it is clear that U is a spanning tree of GP ). Let M be an MST
of GP . By Lemma 3, M consists of paths of length 2 and 3, and because T is
normal, U also consists of such paths. Therefore we can insert into U a path of
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length 2 from M , and from the resulting cycle remove a path of length 3, that
belongs to MST of a full component C. If C is just a path, we can replace C
by the new path of length 2, decreasing the cost of T . If C contains a Steiner
point u, then we removed from U a path of the form (p(u), u, v), and so we can
remove path (u, v) from C; because this path has length 2, x remains unchanged,
while bT could only decrease. Therefore we can decrease the cost of U without
increasing x+ 1

3bT . !�
Lemma 7. Assume that there exists a special Steiner tree T with cost c. Then
we can find a special Steiner tree with cost c + 1

3bT in polynomial time.

Proof. (Sketch) By Lemma 5, c = mst− aT − 2bT . Therefore it suffices to find
a special Steiner tree T ′ such that aT ′ + 2bT ′ ≥ aT + 2bT − 1

3bT .
We will use Algorithm 2 as follows. Our linear space will be over the field Z2;

the base elements will be nodes and P -components. Elements in the problem
presented to Algorithm 2 will correspond to paths that can be used in an MST
of GP according to Lemma 3. Assume that such a path connects the terminals
p1 and p2, which in turn belong to the P -components P1 and P2. If P1 = P2 (and
the length of this path is 2), we map this path into the vector p1 + p2, otherwise
(the case of a path of length 3), we map it into P1 + P2. Finally, we identify a
3-star or 4-star with a set of elements that correspond to the sets of paths that
form MSTs of these stars.

It is quite easy to see that Algorithm 2 results in bT ′ ≥ 1
3 bT . Moreover,

Lemma 2 assures that 2aT ′ + 3bT ′ ≥ 2aT + 3bT . We obtain the desired result by
dividing the above inequalities by 2 and adding them together. !�
Combining the previous Lemmas, we get:

Theorem 2. If the terminals form a dominating set, then the minimum Steiner
tree problem can be approximated in polynomial time with a performance ratio
of 4/3. !�
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Abstract. Disjoint NP-pairs are a well studied complexity theoretic
concept with important applications in cryptography and propositional
proof complexity. In this paper we introduce a natural generalization of
the notion of disjoint NP-pairs to disjoint k-tuples of NP-sets for k ≥ 2.
We define subclasses of the class of all disjoint k-tuples of NP-sets. These
subclasses are associated with a propositional proof system and possess
complete tuples which are defined from the proof system.

In our main result we show that complete disjoint NP-pairs exist if and
only if complete disjoint k-tuples of NP-sets exist for all k ≥ 2. Further,
this is equivalent to the existence of a propositional proof system in which
the disjointness of all k-tuples is shortly provable. We also show that a
strengthening of this conditions characterizes the existence of optimal
proof systems.

1 Introduction

During the last years the theory of disjoint NP-pairs has been intensively studied.
This interest stems mainly from the applications of disjoint NP-pairs in the field
of cryptography [9, 16] and propositional proof complexity [18, 13]. In this paper
we investigate a natural generalization of disjoint NP-pairs: instead of pairs we
consider k-tuples of pairwise disjoint NP-sets. Concepts such as reductions and
separators are smoothly generalized from pairs to k-tuples.

One of the major open problems in the field of disjoint NP-pairs is the ques-
tion, posed by Razborov [19], whether there exist disjoint NP-pairs that are
complete for the class of all pairs under suitable reductions. Glaßer et al. [6]
gave a characterization in terms of uniform enumerations of disjoint NP-pairs
and also proved that the answer to the problem does not depend on the re-
ductions used, i.e. there are reductions for pairs which vary in strength but are
equivalent with respect to the existence of complete pairs.

The close relation between propositional proof systems and disjoint NP-pairs
provides a partial answer to the question of the existence of complete pairs.
Namely, the existence of optimal propositional proof systems is a sufficient con-
dition for the existence of complete disjoint NP-pairs. This result is already
implicitly contained in [19]. However, Glaßer et al. [7] construct an oracle rela-
tive to which there exist complete pairs but optimal proof systems do not exist.
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Hence, the problems on the existence of optimal proof systems and of complete
disjoint NP-pairs appear to be of different strength.

Our main contribution in this paper is the characterization of these two
problems in terms of disjoint k-tuples of NP-sets. In particular we address the
question whether there exist complete disjoint k-tuples under different reduc-
tions. Considering this problem it is easy to see that the existence of complete
k-tuples implies the existence of complete l-tuples for l ≤ k: the first l com-
ponents of a complete k-tuple are complete for all l-tuples. Conversely, it is a
priori not clear how to construct a complete k-tuple from a complete l-tuple for
l < k. Therefore it might be tempting to conjecture that the existence of com-
plete k-tuples forms a hierarchy of assumptions of increasing strength for greater
k. However, we show that this does not happen: there exist complete disjoint
NP-pairs if and only if there exist complete disjoint k-tuples of NP-sets for all
k ≥ 2, and this is even true under reductions of different strength. Further, we
prove that this is equivalent to the existence of a propositional proof system in
which the disjointness of all k-tuples with respect to suitable propositional rep-
resentations of these tuples is provable with short proofs. We also characterize
the existence of optimal proof systems with a similar but apparently stronger
condition.

We achieve this by extending the connection between proof systems and NP-
pairs to k-tuples. In particular we define representations for disjoint k-tuples of
NP-sets. This can be done on a propositional level with sequences of tautologies
but also with first-order formulas in arithmetic theories. To any propositional
proof system P we associate a subclass DNPPk(P ) of the class of all disjoint
k-tuples of NP-sets. This subclass contains those k-tuples for which the disjoint-
ness is provable with short P -proofs. We show that the classes DNPPk(P ) possess
complete tuples which are defined from the proof system P . Somewhat surpris-
ingly, under suitable conditions on P these non-uniform classes DNPPk(P ) equal
their uniform versions which are defined via arithmetic representations. This en-
ables us to further characterize the existence of complete disjoint k-tuples by a
condition on arithmetic theories.

The paper is organized as follows. In Sect. 2 we recall some relevant definitions
concerning propositional proof systems and disjoint NP-pairs. We also give a very
brief description of the correspondence between propositional proof systems and
arithmetic theories. This reference to bounded arithmetic, however, only plays
a role in Sect. 5 where we analyse arithmetic representations. The rest of the
paper and in particular the main results in Sect. 6 are fully presented on the
propositional level.

In Sect. 3 we define the basic concepts such as reductions and separators that
we need for the investigation of disjoint k-tuples of NP-sets.

In Sect. 4 we define propositional representations for k-tuples and intro-
duce the complexity classes DNPPk(P ) of all disjoint k-tuples of NP-sets that
are representable in the system P . We show that these classes are closed un-
der our reductions for k-tuples. Further, we define k-tuples from propositional
proof systems which serve as hard languages for DNPPk(P ). In particular we
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generalize the interpolation pair from [18] and demonstrate that even these gen-
eralized variants still capture the feasible interpolation property of the proof
system.

In Sect. 5 we define first-order variants of the propositional representations
from Sect. 4. We utilize the correspondence between proof systems and bounded
arithmetic to show that a k-tuple of NP-sets is representable in P if and only if
it is representable in the arithmetic theory associated with P . This equivalence
allows easy proofs for the representability of the canonical k-tuples associated
with P , thereby improving the hardness results for DNPPk(P ) from Sect. 4 to
completeness results for proof systems corresponding to arithmetic theories.

The main results on the connections between complete NP-pairs, complete
k-tuples and optimal proof systems follow in Sect. 6.

Due to space limitations we only sketch proofs or omit them in this extended
abstract. The complete paper is available as a technical report [2].

2 Preliminaries

Propositional Proof Systems. Propositional proof systems were defined in
a very general way by Cook and Reckhow in [5] as polynomial time functions P
which have as its range the set of all tautologies. A string π with P (π) = ϕ is
called a P -proof of the tautology ϕ. By P �≤m ϕ we indicate that there is a P -
proof of ϕ of length ≤ m. If Φ is a set of propositional formulas we write P �∗ Φ
if there is a polynomial p such that P �≤p(|ϕ|) ϕ for all ϕ ∈ Φ. If Φ = {ϕn |n ≥ 0}
is a sequence of formulas we also write P �∗ ϕn instead of P �∗ Φ.

Proof systems are compared according to their strength by simulations intro-
duced in [5] and [14]. Given two proof systems P and S we say that S simulates
P (denoted by P ≤ S) if there exists a polynomial p such that for all tautologies
ϕ and P -proofs π of ϕ there is a S-proof π′ of ϕ with |π′| ≤ p (|π|). If such
a proof π′ can even be computed from π in polynomial time we say that S p-
simulates P and denote this by P ≤p S. A proof system is called (p-)optimal if
it (p-)simulates all proof systems. Whether or not optimal proof systems exist
is an open problem posed by Kraj́ıček and Pudlák [14].

In [3] we investigated several natural properties of propositional proof sys-
tems. We will just define those which we need in this paper. We say that a
propositional proof system P is closed under substitutions by constants if there
exists a polynomial q such that P �≤n ϕ(x̄, ȳ) implies P �≤q(n) ϕ(ā, ȳ) for all
formulas ϕ(x̄, ȳ) and constants ā ∈ {0, 1}|x̄|. We call P efficiently closed under
substitutions by constants if we can transform any P -proof of a formula ϕ(x̄, ȳ) in
polynomial time to a P -proof of ϕ(ā, ȳ). A system P is closed under disjunctions
if there is a polynomial q such that P �≤m ϕ implies P �≤q(m+|ψ|) ϕ ∨ ψ for
arbitrary formulas ψ. Similarly, we say that a proof system P is closed under
conjunctions if there is a polynomial q such that P �≤m ϕ∧ψ implies P �≤q(m) ϕ
and P �≤q(m) ψ, and likewise P �≤m ϕ and P �≤n ψ imply P �≤q(m+n) ϕ ∧ ψ
for all formulas ϕ and ψ. As with closure under substitutions by constants we
also consider efficient versions of closure under disjunctions and conjunctions.
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Propositional Proof Systems and Arithmetic Theories. In Sect. 5 we will
use the correspondence of propositional proof systems to theories of bounded
arithmetic. Here we will just briefly introduce some notation and otherwise re-
fer to the monograph [11]. To explain the correspondence we have to translate
first-order arithmetic formulas into propositional formulas. An arithmetic for-
mula in prenex normal form with only bounded existential quantifiers is called a
Σb

1-formula. These formulas describe NP-predicates. Likewise, Πb
1-formulas only

have bounded universal quantifiers and describe coNP-predicates. A Σb
1- or Πb

1-
formula ϕ(x) is translated into a sequence ‖ϕ(x)‖n of propositional formulas
containing one formula per input length for the number x. We use ‖ϕ(x)‖ to
denote the set {‖ϕ(x)‖n | n ≥ 1}.

The reflection principle for a propositional proof system P states a strong
form of the consistency of the proof system P . It is formalized by the ∀Πb

1-
formula

RFN(P ) = (∀π)(∀ϕ)PrfP (π, ϕ) → Taut(ϕ)

where PrfP and Taut are suitable arithmetic formulas describing P -proofs and
tautologies, respectively. A proof system P has the reflection property if P �∗
‖RFN(P )‖n holds.

In [15] a general correspondence between arithmetic theories T and propo-
sitional proof systems P is introduced. Pairs (T, P ) from this correspondence
possess in particular the following two properties:

1. Let ϕ(x) be a Πb
1-formula such that T � (∀x)ϕ(x). Then there exists a

polynomial time computable function f that on input 1n outputs a P -proof
of ‖ϕ(x)‖n.

2. T � RFN(P ) and if T � RFN(Q) for some proof system Q, then Q ≤p P .

We call a proof system P regular if there exists an arithmetic theory T such that
properties 1 and 2 are fulfilled for (T, P ). Probably the most important example
of a regular proof system is the extended Frege system EF that corresponds to
the theory S1

2 . This correspondence was established in [4] and [15].

Disjoint NP-Pairs. A pair (A,B) is called a disjoint NP-pair if A,B ∈ NP
and A∩B = ∅. The pair (A,B) is called p-separable if there exists a polynomial
time computable set C such that A ⊆ C and B ∩C = ∅. Grollmann and Selman
[9] defined the following reduction between disjoint NP-pairs (A,B) and (C,D):
((A,B) ≤p (C,D)) if there exists a polynomial time computable function f such
that f(A) ⊆ C and f(B) ⊆ D. This variant of a many-one reduction for pairs
was strengthened by Köbler et al. [10] to: (A,B) ≤s (C,D) if there exists a
function f ∈ FP such that f−1(C) = A and f−1(D) = B.

The link between disjoint NP-pairs and propositional proof systems was es-
tablished by Razborov [19], who associated a canonical disjoint NP-pair with
a proof system. This canonical pair is linked to the automatizablility and the
reflection property of the proof system. Pudlák [18] introduced an interpolation
pair for a proof system P which is p-separable if and only if the proof system P
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has the feasible interpolation property [12]. In [1] we analysed a variant of the in-
terpolation pair. More information on the connection between disjoint NP-pairs
and propositional proof systems can be found in [18, 1, 3, 8].

3 Basic Definitions and Properties

Definition 1. Let k ≥ 2 be a number. A tupel (A1, . . . ,Ak) is a disjoint k-tuple
of NP-sets if all components A1, . . . ,Ak are nonempty languages in NP which
are pairwise disjoint.

We generalize the notion of a separator of a disjoint NP-pair as follows:

Definition 2. A function f : {0, 1}∗ → {1, . . . , k} is a separator for a dis-
joint k-tuple (A1, . . . ,Ak) if a ∈ Ai implies f(a) = i for i = 1, . . . , k and all
a ∈ {0, 1}∗. For inputs from the complement A1 ∪ · · · ∪Ak the function f may
answer arbitrarily. If (A1, . . . ,Ak) is a disjoint k-tuple of NP-sets that has a
polynomial time computable separator we call the tuple p-separable, otherwise
p-inseparable.

Whether there exist p-inseparable disjoint k-tuples of NP-sets is certainly a
hard problem that cannot be answered with our current techniques. At least
we can show that this question is not harder than the previously studied ques-
tion whether there exist p-inseparable disjoint NP-pairs.

Theorem 3. The following are equivalent:

1. For all numbers k ≥ 2 there exist p-inseparable disjoint k-tuples of NP-sets.
2. There exists a number k ≥ 2 such that there exist p-inseparable disjoint
k-tuples of NP-sets.

3. There exist p-inseparable disjoint NP-pairs.

Proof. The implications 1 ⇒ 2 and 3 ⇒ 1 are immediate. To prove 2 ⇒ 3
let us assume that all disjoint NP-pairs are p-separable. To separate a k-tuple
(A1, . . . ,Ak) for some k ≥ 2 we evaluate all separators fi,j for all disjoint NP-
pairs (Ai,Aj) and output the number i such that we received 1 at all evaluations
fi,j . If no such i exists, then we know that the input is outside A1 ∪ · · · ∪ Ak,
and we can answer arbitrarily. !�

Let us pause to give an example of a disjoint k-tuple of NP-sets that is derived
from the Clique-Colouring pair (cf. [18]). The tuple (C1, . . . , Ck) has components
Ci that contain all i + 1-colourable graphs with a clique of size i. Clearly, the
components Ci are NP-sets which are pairwise disjoint. This tuple is also p-
separable, but to devise a separator for (C1, . . . , Ck) is considerably simpler than
to separate the Clique-Colouring pair: given a graph G we output the maximal
number i between 1 and k such that G contains a clique of size i. For graphs
with n vertices this number i can be computed in time O(nk).

Candidates for p-inseparable tuples arise from one-way functions. Let Σ =
{a1, . . . , ak} be an alphabet of size k ≥ 2. To an injective one-way function
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f : Σ∗ → Σ∗ we assign a disjoint k-tuple (A1(f), . . . ,Ak(f)) of NP-sets with
components

Ai(f) = {(y, j) | (∃x)f(x) = y and xj = ai}
where xj is the j-th letter of x. This tuple is p-inseparable if f has indeed the
one-way property.

Next we define reductions for k-tuples. We will only consider variants of
many-one reductions which are easily obtained from the reductions ≤p and ≤s

for pairs.

Definition 4. A k-tupel (A1, . . . ,Ak) is polynomially reducible to a k-tupel
(B1, . . . ,Bk), denoted by (A1, . . . ,Ak) ≤p (B1, . . . ,Bk), if there exists a poly-
nomial time computable function f such that f(Ai) ⊆ Bi for i = 1, . . . , k. If
additionally f(A1 ∪ · · · ∪Ak) ⊆ B1 ∪ · · · ∪Bk holds, then we call the reduction
performed by f strong. Strong reductions are denoted by ≤s.

From ≤p and ≤s we define equivalence relations ≡p and ≡s and call their
equivalence classes degrees.

Following common terminology we call a disjoint k-tuple of NP-sets ≤p-complete
if every disjoint k-tuple of NP-sets ≤p-reduces to it. Similarly, we speak of ≤s-
complete tuples.

In the next theorem we separate the reductions ≤p and ≤s on the domain of
all p-separable disjoint k-tuples of NP-sets:

Theorem 5. For all numbers k ≥ 2 the following holds:

1. All p-separable disjoint k-tuples of NP-sets are ≤p-equivalent. They form the
minimal ≤p-degree of disjoint k-tuples of NP-sets.

2. If P �= NP, then there exist infinitely many ≤s-degrees of p-separable disjoint
k-tuples of NP-sets.

Proof. Part 1 is easy. For part 2 we use the result of Ladner [17] that there exist
infinitely many different ≤p

m-degrees of NP-sets assuming P �= NP. Therefore
Ladner’s theorem together with the following claim imply part 2.
Claim: Let (A1, . . . ,Ak) and (B1, . . . ,Bk) be p-separable disjoint k-tuple of NP-
sets . Let further B1 ∪ · · · ∪Bk �= ∅. Then (A1, . . . ,Ak) ≤s (B1, . . . ,Bk) if and
only if Ai ≤p

m Bi for all i = 1, . . . , k. !�

4 Disjoint k-Tuples from Propositional Proof Systems

In [3] we defined propositional representations for NP-sets as follows:

Definition 6. Let A be a NP-set over the alphabet {0, 1}. A propositional rep-
resentation for A is a sequence of propositional formulas ϕn(x̄, ȳ) such that:

1. ϕn(x̄, ȳ) has propositional variables x̄ and ȳ such that x̄ is a vector of n
propositional variables.

2. There exists a polynomial time algorithm that on input 1n outputs ϕn(x̄, ȳ).
3. Let ā ∈ {0, 1}n. Then ā ∈ A if and only if ϕn(ā, ȳ) is satisfiable.
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Once we have propositional descriptions of NP-sets we can now represent
disjoint k-tuples of NP-sets in propositional proof systems.

Definition 7. Let P be a propositional proof system. A k-tuple (A1, . . . ,Ak) of
NP-sets is representable in P if there exist propositional representations ϕin(x̄, ȳi)
of Ai for i = 1, . . . , k such that for each 1 ≤ i < j ≤ k the formulas ϕin(x̄, ȳi)
and ϕjn(x̄, ȳj) have only the variables x̄ in common, and further

P �∗
∧

1≤i<j≤k

¬ϕin(x̄, ȳi) ∨ ¬ϕjn(x̄, ȳj) .

By DNPPk(P ) we denote the class of all disjoint k-tuples of NP-sets which are
representable in P .

For DNPP2(P ) we will also write DNPP(P ). In [3] we have analysed this
class for some standard proof systems. As the classes DNPPk(P ) provide natural
generalizations of DNPP(P ) we have chosen the same notation for the classes
of k-tuples. The next proposition shows that these classes are closed under the
reductions ≤p and ≤s.

Proposition 8. Let P be a proof system that is closed under conjunctions and
disjunctions and that simulates resolution. Then for all numbers k ≥ 2 the class
DNPPk(P ) is closed under ≤p.

Now we want to associate tuples of NP-sets with proof systems. It is not clear
how the canonical pair could be modified for k-tuples but the interpolation pair
[18] can be expanded to a k-tuple (I1(P ), . . . , Ik(P )) by

Ii(P ) = {(ϕ1, . . . , ϕk, π) | Var(ϕj) ∩Var(ϕl) = ∅ for all 1 ≤ j < l ≤ k,
¬ϕi ∈ SAT and P (π) =

∧
1≤j<l≤k

ϕj ∨ ϕl}

for i = 1, . . . , k, where Var(ϕ) denotes the set of propositional variables occurring
in ϕ. This tuple still captures the feasible interpolation property of the proof
system P as the next theorem shows.

Theorem 9. Let P be a propositional proof system that is efficiently closed
under substitutions by constants and conjunctions. Then (I1(P ), . . . , Ik(P )) is
p-separable if and only if P has the feasible interpolation property.

Searching for canonical candidates for hard tuples for the classes DNPPk(P )
we modify the interpolation tuple to the following tuple (U1(P ), . . . , Uk(P )) with

Ui(P ) = {(ϕ1, . . . , ϕk, 1m) | Var(ϕj) ∩Var(ϕl) = ∅ for all 1 ≤ j < l ≤ k,
¬ϕi ∈ SAT and P �≤m

∧
1≤j<l≤k

ϕj ∨ ϕl}

for i = 1, . . . , k. The next theorem shows that for all reasonable proof systems
P these tuples are hard for the classes DNPPk(P ).
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Theorem 10. Let P be a proof system that is closed under substitutions by
constants. Then (U1(P ), . . . , Uk(P )) is ≤s-hard for DNPPk(P ) for all k ≥ 2.

Proof. Let (A1, . . . ,Ak) be a disjoint k-tuple of NP-sets and let ϕin(x̄, ȳi) be
propositional representations of Ai for i = 1, . . . , k such that we have polynomial
size P -proofs of ∧

1≤i<j≤k

¬ϕin(x̄, ȳi) ∨ ¬ϕjn(x̄, ȳj) .

Then the ≤s-reduction from (A1, . . . ,Ak) to (U1(P ), . . . , Uk(P )) is performed by

a �→ (¬ϕ1
|a|(ā, ȳ

1), . . . ,¬ϕk
|a|(ā, ȳ

k), 1p(|a|))

for some suitable polynomial p. !�

5 Arithmetic Representations

In [19] and [1] arithmetic representations of disjoint NP-pairs were investigated.
These form a uniform first-order counterpart to the propositional representations
introduced in the previous section. We now generalize the notion of arithmetic
representations to disjoint k-tuples of NP-sets.

Definition 11. A Σb
1-formula ϕ is an arithmetic representation of an NP-set

A if for all natural numbers a we have N |= ϕ(a) if and only if a ∈ A.
A disjoint k-tuple (A1, . . . ,Ak) of NP-sets is representable in an arithmetic

theory T if there are Σb
1-formulas ϕ1(x), . . . , ϕk(x) representing A1, . . . ,Ak such

that T � (∀x)
∧

1≤i<j≤k ¬ϕi(x) ∨ ¬ϕj(x). The class DNPPk(T ) contains all dis-
joint k-tuples of NP-sets that are representable in T .

We now show that the classes DNPPk(T ) and DNPPk(P ) coincide for regular
proof systems P corresponding to the theory T .

Theorem 12. Let P ≥ EF be a regular proof system which is closed under
substitutions by constants and conjunctions and let T ⊇ S1

2 be a theory corre-
sponding to T . Then we have DNPPk(P ) = DNPPk(T ) for all k ≥ 2.

At first sight Theorem 12 might come as a surprise as it states that the non-
uniform and uniform concepts equal when representing disjoint k-tuples of NP-
sets in regular proof systems. Uniform representations of k-tuples are translated
via ‖.‖ to non-uniform representations in a straightforward manner. For the
transformation of propositional representations into first-order formulas it is,
however, necessary to essentially change the representations of the components.

We now observe that the k-tuples that we associated with a proof system P
are representable in P if the system is regular.

Lemma 13. Let P be a regular proof system. Then for all numbers k ≥ 2 the
k-tuples (I1(P ), . . . , Ik(P )) and (U1(P ), . . . , Uk(P )) are representable in P .
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Proof. We choose straightforward arithmetic representations for the components
Ui(P ) and Ii(P ). Using the reflection principle of P we can prove the disjointness
of the components of the U - and I-tuples in the theory T associated with P ,
from which the lemma follows by Theorem 12. !�

With this lemma we can improve the hardness result of Theorem 10 to a com-
pleteness result for regular proof systems. Additionally, we can show the ≤s-
completeness of the interpolation tuple for DNPPk(P ):

Theorem 14. Let P ≥ EF be a regular proof system that is efficiently closed
under substitutions by constants. Then for all k ≥ 2 the tuples (U1(P ), . . . , Uk(P ))
and (I1(P ), . . . , Ik(P )) are ≤s-complete for DNPPk(P ). In particular we have
(U1(P ), . . . , Uk(P )) ≡s (I1(P ), . . . , Ik(P )).

This theorem is true for EF as well as for all extensions EF + ‖Φ‖ of the
extended Frege system for polynomial time sets Φ of true Πb

1-formulas. The
equivalence of the interpolation tuple and the U -tuple for strong systems as
stated in Theorem 14 might come unexpected as the first idea for a reduction
from the U -tuple to the I-tuple probably is to generate proofs for

∧
1≤j<l≤k ϕj ∨

ϕl at input (ϕ1, . . . , ϕk, 1m). This, however, is not possible for extensions of EF ,
because a reduction from (U1(P ), . . . , Uk(P )) to (I1(P ), . . . , Ik(P )) of the form
(ϕ1, . . . , ϕk, 1m) �→ (ϕ1, . . . , ϕk, π) implies the automatizability of the system P .
But it is known that automatizability fails for strong systems P ≥ EF under
cryptographic assumptions [16, 18].

6 On Complete Disjoint k-Tuples of NP-Sets

In this section we will study the question whether there exist complete disjoint
k-tuples of NP-sets under the reductions ≤p and ≤s. We will not be able to
answer this question but we will relate it to the previously studied questions
whether there exist complete disjoint NP-pairs or optimal propositional proof
systems. The following is the main theorem of this section:

Theorem 15. The following conditions are equivalent:

1. For all numbers k ≥ 2 there exists a ≤s-complete disjoint k-tuple of NP-sets.
2. For all numbers k ≥ 2 there exists a ≤p-complete disjoint k-tuple of NP-sets.
3. There exists a ≤p-complete disjoint NP-pair.
4. There exists a number k ≥ 2 such that there exists a ≤p-complete disjoint
k-tuple of NP-sets.

5. There exists a propositional proof system P such that for all numbers k ≥ 2
all disjoint k-tuples of NP-sets are representable in P .

6. There exists a propositional proof system P such that all disjoint NP-pairs
are representable in P .

Proof. (Sketch) The proof is structured as follows: 1 ⇒ 2 ⇒ 3 ⇒ 6 ⇒ 1 and
3 ⇔ 4, 5 ⇔ 6. Apparently, items 1 to 4 are conditions of decreasing strength.
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For the implication 3 ⇒ 6 assume that (A,B) is a ≤p-complete pair. We choose
some representations ϕn and ψn for A and B, respectively. Using Proposition 8
we can show that all disjoint NP-pairs are representable in the proof system
EF + {¬ϕn ∨ ¬ψn | n ≥ 0}.

The most interesting part of the proof is the implication 6 ⇒ 1. Assuming
that all pairs are representable in the proof system P we first choose a sys-
tem Q ≥ P with sufficient closure properties. Then for each disjoint k-tuple
(A1, . . . ,Ak) all pairs (Ai,Aj) are representable in Q. However, we might need
different representations for the sets Ai to prove the disjointness of all these pairs.
For example proving A1 ∩ A2 = ∅ and A1 ∩A3 = ∅ might require two different
representations for A1. For this reason we cannot simply reduce (A1, . . . ,Ak) to
(U1(Q), . . . , Uk(Q)). But we can reduce (A1, . . . ,Ak) to a suitable modification
of the U -tuple of Q, thereby showing the ≤s-completeness of this tuple. !�

Using Theorem 12 we can also characterize the existence of complete disjoint
k-tuples of NP-sets by a condition on arithmetic theories, thereby extending the
list of characterizations from Theorem 15 by the following item:

Theorem 16. The conditions 1 to 6 of Theorem 15 are equivalent to the exis-
tence of a finitely axiomatized arithmetic theory in which all disjoint k-tuples of
NP-sets are representable for all k ≥ 2.

In Theorem 15 we stated that the existence of complete disjoint NP-pairs is
equivalent to the existence of a proof system P in which every NP-pair is repre-
sentable. By definition this condition means that for all disjoint NP-pairs there
exists a representation for which the disjointness of the pair is provable with
short P -proofs. If we strengthen this condition by requiring that this is possible
for all disjoint NP-pairs and all representations we arrive at a condition which
is strong enough to characterize the existence of optimal proof systems.

Theorem 17. The following conditions are equivalent:

1. There exists an optimal propositional proof system.
2. There exists a propositional proof system P such that for all k ≥ 2 the system
P proves the disjointness of all disjoint k-tuples of NP-sets with respect to all
representations, i.e. for all disjoint k-tuples (A1, . . . ,Ak) of NP-sets and all
representations ϕ1

n, . . . , ϕ
k
n of A1, . . . ,Ak we have P �∗

∧
1≤i<j≤k ¬ϕin∨¬ϕjn.

3. There exists a propositional proof system P that proves the disjointness of
all disjoint NP-pairs with respect to all representations.

Proof. (Sketch) For the implication 1 ⇒ 2 let P be an optimal proof system. For
all choices of representations of k-tupels the sequence of tautologies expressing
the disjointness of the tupel can be generated in polynomial time. Therefore
these sequences have polynomial size P -proofs.

For 3 ⇒ 1 we use the following fact: if optimal proof systems do not exist,
then every proof system P admits hard sequences of tautologies, i.e. the sequence
can be generated in polynomial time but does not have polynomial size P -proofs.
Given a proof system P and an NP-pair (A,B) we code these hard tautologies
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into propositional representations of A and B and obtain representations for
which P does not prove the disjointness of (A,B). !�

As an immediate corollary to Theorems 15 and 17 we get a strengthening of a
theorem of Köbler, Messner and Torán [10], stating that the existence of optimal
proof systems implies the existence of ≤s-complete disjoint NP-pairs:

Corollary 18. If there exist optimal propositional proof systems, then there ex-
ist ≤s-complete disjoint k-tuples of NP-sets for all numbers k ≥ 2.
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Constructive Equivalence Relations on
Computable Probability Measures

Laurent Bienvenu
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Abstract. We study the equivalence relations on probability measures
corresponding respectively to having the same Martin-Löf random reals,
having the same Kolmogorov-Loveland random reals, and having the
same computably random reals. In particular, we show that, when re-
stricted to the class of strongly positive generalized Bernoulli measures,
they all coincide with the classical equivalence, which requires that two
measures have the same nullsets.

1 Introduction

Since the first attempt made in 1919 by R. von Mises to define what it means for
an infinite sequence of zeros and ones to be random, many definitions of random-
ness have been proposed. The most satisfactory so far was given in 1966 by P.
Martin-Löf (and is now called Martin-Löf randomness), but some other propos-
als have also received a lot of attention, such as Mises-Wald-Churh stochasticity,
Kolmogorov-Loveland stochasticity, Kolmogorov-Loveland randomness, Schnorr
randomness, Kurtz randomness, computable randomness, etc. (for an excellent
and detailed survey, see [1]). Although they were originally meant to describe
randomness relative to the uniform measure, their definition can often be ex-
tended to other (computable) measures. It is for example the case for all the
above notions, except for stochasticity (it relies on the law of large numbers,
which does not hold for all computable measures). Relations between the differ-
ent notions have been extensively studied. In this paper, we propose a different
approach, as we look at these notions from the measure point of view. In classi-
cal probability theory, two probability measures are said to be equivalent if they
have the same nullsets, or, in other words, if they have the same sets of measure
1, which means that they are in some sense quite similar. Since defining a notion
of randomness means choosing for each computable measure μ a particular set of
μ-measure 1 and calling its elements random, it is natural to define at the same
time a constructive equivalence relation, saying that two measures are similar if
they have the same random elements.

This is what we do here, focusing on three particular notions of randomness:
Martin-Löf randomness, Kolmogorov-Loveland randomness, and computable ran-
domness. In Section 3, we discuss the particular case of generalized Bernoulli
measures. In classical probability theory, Kakutani’s theorem provides a very
simple characterization of equivalence for generalized Bernoulli measures. As
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Vovk did with Martin-Löf randomness, we prove an analogue of Kakutani’s the-
orem in terms of Kolmogorov-Loveland randomness and computable randomness
(we in fact prove the second half, the first having been done by Muchnik et al.
in [5]).

In Section 4, we study these three equivalence relations for arbitrary com-
putable measures. Theorem 23 is a first step in comparing them; we show in
particular that, for two computable measures, having the same Martin-Löf ran-
dom elements is a stronger condition than classical equivalence.

2 Definitions and Concepts

2.1 Measures and Semimeasures on the Cantor Space

The Cantor space is the set {0, 1}ω (which we abbreviate by 2ω) of infinite
binary sequences (also called reals) endowed with the product topology. For all
u ∈ {0, 1}∗, we denote by Ou the open set {α ∈ 2ω : ∀i < |u| αi = ui}. The set
{Ou : u ∈ {0, 1}∗} is a base for the product topology, and gives us a handy way
to describe measures on 2ω:

Theorem 1 (Caratheodory’s extension theorem). Let f be a real function,
taking its values in [0, 1], and such that f(2ω) = 1 and for all u ∈ {0, 1}∗, f(Ou) =
f(Ou0) + f(Ou1). There exists a unique measure μ on 2ω which extends f .

Hence, from now on we can identify a measure with its restriction to the open
sets Ou’s. The canonical measure on 2ω is the Lebesgue measure λ, defined by
λ(Ou) = 2−|u| for all u (it is of course computable).

The notion of measure can be extended to the notion of semi-measure:

Definition 2. A semimeasure is a real function μ defined on {Ou : u ∈ {0, 1}∗},
and taking its values in [0, 1], such that for all u ∈ {0, 1}∗: μ(Ou) � μ(Ou0) +
μ(Ou1).

In the remaining of this paper, we often abbreviate μ(Ou) by μ(u).

Definition 3. We say that a (semi)measure μ is computable if the function
u �→ μ(Ou) is computable.

We say that a semimeasure μ is enumerable if there exists a computable
function h : {0, 1}∗ × N → R such that for all u ∈ {0, 1}∗, n �→ h(u, n) is
non-decreasing and limn→+∞ h(u, n) = μ(Ou).

We finally recall the classical definition of equivalence:

Definition 4. Two measures μ and ν are equivalent if for all X ⊆ 2ω:

μ(X) = 0↔ ν(X) = 0

They are said to be inconsistent if there exists a set Y ⊆ 2ω whose measure is 1
for either μ or ν, and 0 for the other measure.
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2.2 Martin-Löf Randomness

Definition 5. An open set V is said to be computably enumerable (c.e.) if there
exists a computably enumerable A ⊂ {0, 1}∗ such that V =

⋃
u∈AOu.

A collection {Vn : n ∈ N} of c.e. open sets is said to be computable if there exists
a computable function f : N2 → {0, 1}∗ such that for all n, Vn =

⋃
k∈N

Of(n,k).
A μ-Martin-Löf test is a computable collection of c.e. sets {Vn}n such that

for all n, μ(Vn) � 2−n.

α ∈ 2ω is said to pass the μ-Martin-Löf test {Vn}n if α /∈
⋂
n Vn.

α ∈ 2ω is said to be μ-Martin-Löf random (μ-ML-random for short) if it passes
all μ-Martin-Löf tests. We denote by μMLR the set of μ-ML-random infinite
sequences.

For every μ-Martin-Löf test {Vn}n, it is obvious that μ(
⋂
n Vn) = 0. Since there

are only countably many μ-Martin-Löf tests, it immediately follows that:

Proposition 6. For every computable measure μ: μ(μMLR) = 1

We will use the following fundamental theorem, which gives a pure measure-
theoretic characterization of ML randomness:

Theorem 7 (Levin). (a) There exists a universal enumerable semi-measure,
that is there exists an enumerable semi-measure M such that for every enumer-
able semimeasure μ there exists a real constant c > 0 such that M � cμ.

(b) Let μ be a computable measure, and α ∈ 2ω. α ∈ μMLR if and only if
{M(α[0,n])
μ(α[0,n])

: n ∈ N} is bounded. Equivalently, α ∈ μMLR if and only if for

every enumerable semimeasure ν, { ν(α[0,n])
μ(α[0,n])

: n ∈ N} is bounded.

2.3 Kolmogorov-Loveland Randomness and Computable
Randomness

C. Schnorr argued (in [6] and [7]) that the notion of Martin-Löf randomness is
not fully satisfactory as a notion of effective randomness, since the definition of
a Martin-Löf test involves open sets which are only computably enumerable, and
not computable. He then proposed two alternative (and weaker) notions, which
are now known as Schnorr randomness (which we will not discuss here) and
computable randomness. The latter relies on the “unpredictability principle”: we
want to define a sequence α as being random if there is no computable strategy
which asymptotically wins an infinite amount of money by making bets on the
values of α’s bits. In [5], Muchnik et al. defined another (stronger than these
last two) notion of randomness, based on the same principle, which, following
Merkle et al. in [4], we call Kolmogorov-Loveland randomness. Intuitively, it is
based on the following infinite game, which depends on a measure μ. Suppose
that all the bits of an infinite sequence α are initially hidden. A player, whose
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initial capital is 1, tries to guess its bits. At the n-th move, the player chooses
a bit which has not been revealed yet and predicts its value (0 or 1) by betting
an amount of money which does not exceed his capital. The bit is then revealed
to the player. If his guess was wrong, the player loses his stake. If it was correct,
the player wins an amount of money which is equal to his stake multiplied by
μ(bet is incorrect|history)
μ(bet is correct|history) . This factor may seem strange at first, but it ensures that

the game is fair, i.e. that the player’s expectancy is 0 at every move. Suppose
we know the bit we are about to bet on has μ-probability 9

10 to be 1, and we
predict its value to be 1. Since we’re not taking a huge risk, if we turn out to be
correct, our reward will be smaller than our stake (in this particular example, it
will be equal to 1

9 times our stake). We now make this more formal:

Definition 8. A finite assignment (f.a.) is a sequence

x = (k0, v0)...(kn−1, vn−1) ∈ (N× {0, 1})∗

where the ki’s are pairwise distinct. The set {k0, k1, ..., kn−1} is called the domain
of x and is denoted by dom(x). We denote by x1.x2 the concatenation of two
consistent finite assignments. The set of all finite assignments is denoted by FA.

For all x ∈ FA, x = (k0, v0)...(kn−1, vn−1), we define Ox = {α ∈ 2ω : ∀i ∈
[0, n) αki = vi}, and abbreviate μ(Ox) by μ(x).

Definition 9. A strategy is a (total) function S : FA→ N×{0, 1}× [0, 1] such
that for all x, the first component of S(x) is not in dom(x). We call an element
of N× {0, 1} × [0, 1] a bet.

S is said to be monotonic if for all x ∈ FA, the first component of S(x) is
greater than every k ∈ dom(x).

This definition means that, having already bet on bits k0, ..., kn−1 and having
read the corresponding values v0, ..., vn−1, the player bets a fraction ρ of his cap-
ital on the fact that αkn = vn, where S((k0, v0), ..., (kn−1, vn−1)) = (kn, vn, ρ).

We now see how to run the strategy S on the sequence α. As the game
depends on the reference measure μ, we call it the μ-game of S against α. We
let x0 be the empty finite assignment, and we set V0(α,S, μ) = 1. We define by
induction:

– S(xn) = (kn, vn, ρn)
– xn+1 = xn.(kn, αn)
– If vn �= αkn , Vn+1(α,S, μ) = Vn(α,S, μ)(1 − ρn). And if vn = αkn , Vn+1(α,

S, μ) = Vn(α,S, μ)(1+ρn
μ(xn.(kn,v̄n))
μ(xn.(kn,vn)) ) where v̄n is 0 if vn is 1, and 1 if vn is 0.

By convention, if μ(xn.(kn, vn)) = 0 and ρn �= 0, we set Vn+1(α,S, μ) = +∞

xn represents the history of the game before the n-th move (by convention,
there is a 0-th move), and Vn(α,S, μ) represents the player’s capital before the
n-th move.

We say that S succeeds on α in the μ-game if lim supn Vn(α,S, μ) = +∞
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Definition 10. An infinite sequence α is said to be μ-Kolmogorov-Loveland ran-
dom (respectively μ-computably random) if no computable strategy (respectively
computable monotonic strategy) succeeds on it in the μ-game. We denote by
μKLR the set of μ-Kolmogorov-Loveland random sequences, and by μCR the
set of μ-computably random sequences.

Proposition 11 (Muchnik et al. [5]).For all computable measures μ,we have:

μMLR ⊆ μKLR ⊆ μCR

If μ is taken to be the uniform measure, the second inclusion is strict. One of the
most important open questions in the field of algorithmic randomness is whether
or not, in this case, the first inclusion is strict as well. It is not even known
whether there exists some computable measure μ such that the first inclusion is
strict.

3 Generalized Bernoulli Measures

We start our discussion with the class of generalized Bernoulli measures. In-
tuitively, a generalized Bernoulli measure corresponds to choosing an infinite
sequence in α ∈ 2ω, where the bits are chosen independently by biased coin
tosses, such that the probability of αi to be 1 is pi (that is, depends on i, and
only on i).

Definition 12. Let {pi}i∈N be a sequence of real numbers such that pi ∈ [0, 1]
for all i. The generalized Bernoulli measure μ of parameter {pi}i is defined by

μ(Ou) =
∏

i<|u|, αi=0

(1− pi)
∏

i<|u|, αi=1

pi

It is said to be strongly positive if there exists ε > 0 such that for all i, pi ∈
[ε, 1− ε].

Remark: The generalized Bernoulli measure μ of parameter {pi}i is computable
if and only if {pi}i is a computable sequence of real numbers.

The class of generalized Bernoulli measures is of high importance in the field of
algorithmic randomness. It is indeed one of the simplest extensions of Lebesgue
measure and has interesting applications. For example, as we will see below,
it has been used by Shen’ to distinguish between two notions of randomness,
namely Martin-Löf randomness and Kolmogorov-Loveland stochasticity (for a
definition of the latter, see for example [4]), the equivalence of which was left as
an open question by Kolmogorov.

In 1948, Kakutani gave a criterion for two generalized Bernoulli measures to
be equivalent.
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Theorem 13 (Kakutani [2]). Let μ and ν be two strongly positive generalized
Bernoulli measures, respectively of parameter {pi}i and {qi}i.
(a) If

∑
i(pi − qi)2 < +∞, then μ ∼ ν.

(b) If
∑

i(pi − qi)2 = +∞, then μ and ν are inconsistent.

Vovk proved an analogue of this theorem in terms of ML-randomness:

Theorem 14 (Vovk [10]). Let μ and ν be two computable strongly positive
generalized Bernoulli measures, respectively of parameter {pi}i and {qi}i. We
have:
(a) If

∑
i(pi − qi)2 < +∞, then μMLR = νMLR

(b) If
∑

i(pi − qi)2 = +∞, then μMLR ∩ νMLR = ∅
This last theorem is quite fundamental, as it is one of the main ingredients used
in [8] to prove that KL-stochasticity is not equivalent to Martin-Löf randomness
with respect to the uniform measure:

Theorem 15 (Shen’ [8] - van Lambalgen [9]). (i) If μ is a computable gen-
eralized Bernoulli measure of parameter {pi}i such that lim pi = 1

2 , then
μMLR ⊆ Stoch (Stoch denotes the set of KL-stochastic sequences).
(ii) There exists a computable measure μ such that μ(Stoch) = 1 whereas
μ(λMLR) = 0 (which obviously implies that these two sets are distinct).

(to get (ii) from (i), it suffices to take pi = 1
2 + 1√

i+4 and apply Theorem 14)

In turn, Muchnik et al. strengthened the part (b) of Theorem 14 as follows:

Theorem 16 (Muchnik et al [5]). Let μ and ν be two computable strongly pos-
itive generalized Bernoulli measures, respectively of parameter {pi}i and {qi}i.
If

∑
i(pi − qi)2 = +∞, then μCR ∩ νCR = ∅ (a fortiori, μKLR ∩ νKLR = ∅

and μMLR ∩ νMLR = ∅).
Looking at Theorem 14 and Theorem 16, it is natural to ask whether Theorem
14.a holds if one replaces MLR by CR or KLR. This is indeed the case, and
we will see later on that this in fact strengthens Theorem 14.a.

Theorem 17. Let μ and ν be two computable strongly positive generalized
Bernoulli measures, respectively of parameter {pi}i and {qi}i. If

∑
i(pi − qi)2 <

+∞, then μCR = νCR and μKLR = νKLR.

We will prove the following proposition. It immediately implies Theorem 17 since
by a well known result (see for example [7]), if there is a computable strategy
S such that lim supn Vn(α,S, μ) = +∞, there exists a computable strategy S′

such that limn Vn(α,S′, μ) = +∞
Proposition 18. Let μ and ν be two computable strongly positive generalized
Bernoulli measures, respectively of parameter {pi}i and {qi}i, with

∑
i(pi−qi)2 <

+∞. Let α ∈ 2ω, and suppose there exists a computable strategy S1 such that
limVn(α,S1, μ) = +∞. Then, there exists a computable strategy S2 such that
for all n (up to an additive constant): Vn(α,S2, ν) � ln Vn(α,S1, μ). Moreover,
if S1 is monotonic, S2 can be taken to be monotonic as well.
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Proof: Suppose there exists such a strategy S1. Let S2 be the strategy which
simulates S1 and, at the n-th move, when S1 makes a bet (in, vn, ρn), makes a
bet (in, vn, ρn

Vn(α,S2,ν)) Intuitively, this means that when S1 bets a fraction ρ of
its capital, S2 bets the amount ρ, independently of its capital. Notice that S2
might not have enough money to afford this bet; we will discuss this at the end
of the proof.

During the n-th move, there are three cases:

Vn+1(α,S1, μ)/Vn(α,S1, μ) Vn+1(α,S2, ν)− Vn(α,S2, ν)
P loses 1− ρn −ρn

P wins and αin = 0 1 + ρn
pin

1−pin
ρn

qin

1−qin

P wins and αin = 1 1 + ρn
1−pin

pin
ρn

1−qin

qin

Let xn be either −ρn or ρn
pin

1−pin
or ρn

1−pin

pin
, depending on the result of the

bet. With this notation, we have:

Vn+1(α,S1, μ)/Vn(α,S1, μ) Vn+1(α,S2, ν)− Vn(α,S2, ν)
P loses 1 + xn xn

P wins and αin = 0 1 + xn xn(1 + qin−pin

pin (1−qin ) )

P wins and αin = 1 1 + xn xn(1 + pin−qin

qin (1−pin ) )

It follows by induction:

Vn(α,S1, μ) =
n−1∏
k=0

(1 + xk)

By the hypothesis of strong positivity, let ε > 0 be such that for all i, pi ∈
[ε, 1−ε], and qi ∈ [ε, 1−ε]. By definition of xn, we have for all n: −1 � xn � ε−1.
Let C, C′ and C′′ be three positive constants such that:

– C =
√∑∞

i=0 |pi − qi|2.
– for all t ∈ [−1, ε−1]: ln(1 + t) � t− C′t2.
– for all t � 0: ε−2C

√
t � C′t+ C′′.

We then have:

ln Vn(α,S1, μ) =
n−1∑
k=0

ln(1 + xk) �
n−1∑
k=0

(xk − C′x2
k)

Concerning the strategy S2, we have in the three above cases:

Vn+1(α,S2, ν)− Vn(α,S2, ν) � xn − ε−2|xn||pin − qin |
Hence, by induction, for all n:

Vn(α,S2, ν) �
n−1∑
k=0

(xk − ε−2|xk||pik − qik |)
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By the Cauchy-Schwarz inequality:

Vn(α,S2, ν) �
n−1∑
k=0

xk − ε−2

√√√√n−1∑
k=0

|pik − qik |2

√√√√n−1∑
k=0

x2
k

By definition of C, C′, and C′′ :

Vn(α,S2, ν) �
n−1∑
k=0

(xk − C′x2
k)− C′′

and thus
Vn(α,S2, ν) � ln Vn(α,S1, μ)− C′′

Recall that we assumed limn Vn(α,S1, μ) = +∞. It follows that limn Vn(α,
S2, ν) = +∞. Hence, without loss of generality (up to modifying S2 for a fi-
nite number of bets), we can assume that for all n, Vn(α,S2, ν) � 1, and thus,
S2 is always allowed at the n-th move to make the bet (kn, vn, ρn

Vn(α,S2,ν)). Thus,
S2 wins against α in the ν-game. Moreover, by construction, if S1 is monotonic,
S2 is monotonic as well. This means that for all α ∈ 2ω: if α /∈ μKLR, then
α /∈ νKLR and if α /∈ μCR, then α /∈ νCR. By symmetry, the proposition is
proven. �

Remark: Although we do not discuss these notions here, we can apply Proposi-
tion 18 to get Theorem 17 for other notions of randomness which can be defined
in terms of strategies, like Schnorr randomness or Kurtz randomness (see for
example [1]).

The hypothesis of strong positivity of the above theorems cannot be removed,
as asserted by the following proposition, which is a simple effective version of
the Borel-Cantelli lemma.

Proposition 19. Let {pi}i be a computable sequence taking its values in (0, 1),
converging to 0. Let μ be the generalized Bernoulli measure of parameter {pi}i.

(a) If
∑

i pi < +∞, then μMLR = μKLR = μCR = {0, 1}∗0ω
(b) If

∑
i pi = +∞, then μCR∩{0, 1}∗0ω = ∅ (a fortiori μKLR∩{0, 1}∗0ω = ∅,

and μMLR ∩ {0, 1}∗0ω = ∅)

(We omit the proof of this fact, which is rather simple).
Thus, although

∑
i(

1
i+1 −

1
(i+1)2 )2 < +∞, the measures μ and ν of respective

parameter { 1
i+1}i and { 1

(i+1)2 }i do not satisfy μMLR = νMLR nor μKLR =
νKLR.

4 Arbitrary Computable Measures

We now turn our attention to arbitrary computable measures. We first show
that, similarly to Theorem 7, computable randomness has a purely measure-
theoretical characterization:
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Proposition 20. Let μ be a computable measure, and α ∈ 2ω. Then α ∈ μCR
if and only if for all computable measure ν, { ν(α[0,n])

μ(α[0,n])
: n ∈ N} is bounded.

Proof: Suppose there exists a measure ν such that sup{ ν(α[0,n])
μ(α[0,n])

: n ∈ N} = +∞.

We use a remark which can be found in [5], stating that the quantity ν(α[0,n])
μ(α[0,n])

can be interpreted as the capital after the n-th move of some strategy playing
the μ-game against α. Let S be the strategy which at the n-th move:

– if μ(α[0,n−1])ν(α[0,n−1]1)
μ(α[0,n−1]1)ν(α[0,n−1])

� 1, S bets (n, 0, 1− μ(α[0,n−1])ν(α[0,n−1]1)
μ(α[0,n−1]1)ν(α[0,n−1])

)

– else, S bets (n, 1, 1− μ(α[0,n−1])ν(α[0,n−1]0)
μ(α[0,n−1]0)ν(α[0,n−1])

)

By a simple calculation, in the μ-game, for all n: Vn(α,S, μ) = ν(α[0,n−1])
μ(α[0,n−1])

,
and hence, by the hypothesis, α /∈ μCR.

Conversely, suppose that there exists a monotonic strategy S such that in the
μ-game: lim supn Vn(α,S, μ) = +∞. Without loss of generality, we can assume
that for every β ∈ 2ω, S bets on every bit in order (up to betting 0 on the bits
S skips). We then define the measure ν by

ν(u) = V|u|(u0ω,S)μ(u)

(since by the fairness of the μ-game, for all u, V|u|(u0ω,S, μ) = V|u0|(u00ω,
S, μ)μ(u0)+V|u1|(u10ω,S)μ(u1), this does define a measure). S being a winning

strategy in the μ-game against α, if follows that lim supn
ν(α[0,n])
μ(α[0,n])

= +∞. �

From the remark we mentioned in the above proof, Muchnik et al. derived the
following important proposition:

Proposition 21 (Muchnik [5]). Let μ and ν be two computable measures. For
all α ∈ 2ω, if α ∈ μMLR \ νMLR, then α /∈ νCR

Proof: Since α ∈ μMLR, there exists a C > 0 such that for all n: M(α[0,n])
μ(α[0,n])

� C

(and hence μ(α[0,n])
M(α[0,n])

� C−1).

Since α /∈ νMLR, lim supn
M(α[0,n])
ν(α[0,n])

= +∞. Combining the two, we get

lim sup
n

μ(α[0,n])
M(α[0,n])

M(α[0,n])
ν(α[0,n])

) = +∞ i.e. lim sup
n

μ(α[0,n])
ν(α[0,n])

= +∞

Applying Proposition 20, we get α /∈ νCR. �

This last proposition has a quite negative consequence: it is not possible to find a
computable measure which, similarly to Theorem 15, would separate the notions
of μ-ML randomness and μ-KL randomness. In fact, it is even impossible to
find a computable measure wich separates μ-ML randomness and μ-computable
randomness:
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Proposition 22. For all computable measures μ and ν: ν(μCR \ μMLR) = 0

Proof: By Proposition 6, ν(νMLR) = 1, so: ν(μCR \ μMLR) = ν(νMLR ∩
μCR \μMLR). But by Proposition 21, νMLR∩μCR \μMLR = ∅, hence the
result. �

Proposition 23. For all computable measures μ and ν, we have the following
implications:

μCR = νCR μKLR = νKLR
↘ ↙
μMLR = νMLR⏐⏐�

μ ∼ ν

Proof: The first two implications are a direct consequence of Proposition 21.
Suppose μCR = νCR. Let α ∈ μMLR. If α /∈ νMLR, then by Proposition
21, α /∈ νCR, hence by the hypothesis, α /∈ μCR and thus α /∈ μMLR, a
contradiction. This proves μMLR ⊆ νMLR. By symmetry: μMLR = νMLR.
The other implication is entirely similar.

Let us now suppose that μ ∼/ ν and let us prove μMLR �= νMLR. Without
loss of generality, we can assume that there exists X ⊆ 2ω such that μ(X) > 0
and ν(X) = 0. Let q be a positive computable real number such that μ(X) � q.
Since ν(X) = inf{ν(O) : O open and X ⊆ O}, for all k, there is an open set O
such that X ⊆ O (and hence μ(O) � q) and ν(O) � 2−k. Since O can be written
as O =

⋃
u∈AOu for some subset A of ⊆ {0, 1}∗, there exists a finite subset B of

A such that μ(
⋃
u∈B Ou) � μ(

⋃
u∈AOu)− 2−k. Hence, μ(

⋃
u∈B Ou) � q − 2−k,

but since it is a subset of O, we also have ν(
⋃
u∈B Ou) � 2−k.

Given a k ∈ N, it is possible to effectively find a finite subset Ck of {0, 1}∗
such that μ(

⋃
u∈Ck

) � q − 2−k and ν(
⋃
u∈Ck

) � 2−k: it suffices to enumerate
the finite subsets {0, 1}∗ until we find one satisfying the two conditions (by the
above discussion, there exists such a set). Thus, the family {Vn}n defined by
Vn =

⋃
k�n

⋃
u∈Ck

Ou is a computable family of c.e. open sets. Moreover, we
have, for all n: μ(Vn) � q and ν(Vn) � 2−n+1. In other words, {Vn+1}n is a
ν-Martin-Löf test, and since {Vn}n is decreasing, we have: μ(

⋂∞
n=0 Vn) � q and

ν(
⋂∞
n=0 Vn) = 0.
Therefore, by definition of ML-randomness, νMLR ∩

⋂∞
n=0 Vn = ∅. But the

μ-measure of μMLR ∩
⋂∞
n=0 Vn is at least q (by Proposition 6), and thus it is

non-empty. It follows that μMLR �= νMLR. �

Remark: Combining Proposition 23 with Theorem 17, we obtain Theorem 14.a
as a corollary.

Back to generalized Bernoulli measures, we can make a synthesis of all the
above results:
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Theorem 24. Let μ and ν be two computable strongly positive generalized Ber-
noulli measures, of respective parameter {pi}i and {qi}i.

(a) The following are equivalent : (b) The following are equivalent :
(i) μ and ν are inconsistent (i) μ ∼ ν
(ii)

∑
i(pi − qi)2 = +∞ (ii)

∑
i(pi − qi)2 < +∞

(iii) μCR ∩ νCR = ∅ (iii) μCR = νCR
(iv) μKLR ∩ νKLR = ∅ (iv) μKLR = νKLR
(v) μMLR ∩ νMLR = ∅ (v) μMLR = νMLR

Proof: (a) By Theorem 13, we get: (i) → (ii). By Theorem 16: (ii) → (iii). (iii)
→ (iv) and (iv) → (v) are trivial. And finally, by Proposition 6: (v) → (i).

(b) Here too, we get (i) → (ii) by Theorem 13. (ii) → (iii) and (ii) → (iv)
is exactly Theorem 17. Finally, (iii) → (v), (iv) → (v), and (v) → (i) is exactly
Theorem 23. �

5 Open Questions

As a conclusion, we give the main questions this paper leaves open.

Open question: Is any other implication than the ones given in 23 hold ? Is
is true in particular that two computable measures are consistent if and only if
they have the same ML-random reals ?

Also, we have a fully satisfactory result for the class of strongly positive gen-
eralized Bernoulli measures, but it would be nicer to have one for the whole class
of generalized Bernoulli measures.

Open question: For the class of computable generalized Bernoulli measures
(not necessarily strongly positive), does the equivalence (iii) ↔ (iv) ↔ (v) of
Theorem 24.b still hold ?

Proposition 19 suggests that the answer might be yes.
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Abstract. Domino tilings of finite domains of the plane are used to
model dimer systems in statistical physics. In this paper, we study dimer
tilings, which generalize domino tilings and are indeed equivalent to per-
fect matchings of planar graphs. We use height functions, a notion previ-
ously introduced by Thurston in [10] for domino tilings, to prove that a
dimer tiling of a given domain can be computed using any Single-Source-
Shortest-Paths algorithm on a planar graph. We also endow the set of
dimers tilings of a given domain with a structure of distributive lattice
and show that it can be effectively visited by a simple algorithmical
operation called flip.

1 Dimer Tilings

A cell is a polygonal closed set of R2 and a domain is a finite set of cells with
disjoint interiors. Two cells of a domain are said adjacent if they share at least
one boundary edge. A domain C is said tileable if its cells can be grouped two
by two, two grouped cells being adjacent. If it exists, such a grouping is called a
dimer tiling of C. Notice that a tileable domain can admit many dimer tilings:
we denote by Δ(C) the set of dimer tilings of C. Fig. 1 illustrates these notions.

Dimer tilings arise for example in statistical physics to model the behavior of
dimer systems: the cells are squares and the dimer are rectangles, called dominoes
(see e.g. [5, 6]). In this context, it is particularly interesting to endow the set
of dimer tilings of a domain with a structure suitable for performing random
sampling.

Dimer tilings are also connected with perfect matchings of planar graphs.
Indeed, we can associate to a set of cells C an undirected planar graph denoted
by A(C): to each cell of C corresponds a vertex of A(C), two of them being
connected by an edge if the corresponding cells are adjacent. Then, there is a
natural bijection between the perfect matchings of A(C) and the dimer tilings of
C (see Fig. 2).

In this paper, we mainly focus on the two following problems: the first want
to compute a dimer tiling, and the second want to provide a way to move on
the set of dimer tilings of a fixed domain. This paper is organized as follows. In
Section 2, we associate to a domain a weighted directed graph and define height
function over the vertices of this graph. Such an approach has been firstly used
in [10] to compute in linear time a dimer tiling of a simply connected domain

D. Grigoriev, J. Harrison, and E.A. Hirsch (Eds.): CSR 2006, LNCS 3967, pp. 104–113, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Fig. 1. A domain of 16 cells (left) and a dimer tiling of it, the grouped cells being
represented by a single polygon (right)

Fig. 2. Left, the planar graph corresponding to the set of cells of Fig. 1. Right, the
perfect matching of this graph corresponding to the dimer tiling of Fig. 1.

made of square cells, and then extended in [1] to regular cells (all with the same
number of edges). We extend here these results to domain with holes made of
non-regular cells. First, we show in Section 3 and 4 that the computation of a
dimer tiling of a bipartite domain (or, equivalently, of a perfect matching of a
bipartite planar graph) can be reduced to a single-source-shortest-paths problem
on a planer graph. This yields in particular aO(n ln(n)3)-algorithm to compute a
dimer tiling of a domain which is, contrarily to [10, 1], neither necessarily simply
connected nor made of regular cells. Second, we endow in Section 5 the set of
dimer tilings of a domain with a structure of distributive lattice and defines a
simple effective operation, called flip, which allows to visit it. This can be used
for example to perform random sampling on the set of dimer tilings.

2 General Settings

2.1 Weight and Height Function

A directed graph is denoted by G = (V,E), V (resp. E) being the set of vertices
(resp. edges) of G.
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A directed path is a sequence e1, . . . , ep of edges such that ei points to the
vertex ei+1 starts from, and a circuit is a directed path whose last edge points
to the vertex the first edge of this path start from.

A weight function over G is a map w : E → R, extended to a set of edges X
(in particular a directed path or a circuit) by:

w(X) =
∑
e∈X

w(e).

Then, the height function associated to the weight function w and to the vertex
v∗ ∈ V is the map from V to R ∪ {−∞} denoted by hw,v∗ and defined by:

∀v ∈ V, hw,v∗(v) = inf{w(p) | p is a path from v∗ to v}.

2.2 The Graph of a Bipartite Domain

Let C be a domain as defined in Section 1. We suppose that C is bipartite: we
split it into two sets Cb and Cw (resp. the black cells and the white ones), such
that two adjacent cells never belong to the same set (that is, are of different
colors). Then, given an orientation of the plane, we define the directed graph
G(C) as follows (see Fig. 3):

– to each vertex of C corresponds a vertex of G(C);
– to an edge shared by two adjacent cells of C (and thus of different colors)

corresponds in G(C) an edge directed so that the black cell is on its left;
– to an edge on the boundary of the domain (and thus belongs to only one

cell) correspond in G(C) a bidirected edge.

v*

Fig. 3. The orientations of black and white cells of the bipartite domain of Fig. 1
(left). The corresponding directed graph, whose bidirected edges correspond to the
boundaries of the domain, the vertex v∗ being on the outer boundary (right).

In particular, to each cell of C naturally corresponds a circuit of G(C), called
cell-circuit in all what follows.

From now on and up to the end of the paper, C stands for a set of cells
whose union is a bipartite connected domain, and v∗ stands for a fixed
vertex of the outer boundary of G(C).



Planar Dimer Tilings 107

Once v∗ is fixed, we will simply denote by hw the height function hw,v∗

associated to the weight function w. Then, the idea of the paper is to define
particular weight functions on the graph G(C), such that height functions can
be used to compute the ones which correspond to dimer tilings of C.

3 Counters and Dimer Tilings

We define here counters and use them to give a characterization of tileable
domains. The results provided here are then used in the next section to compute
effectively a dimer tiling.

Definition 1. A counter over G(C) is a weight function δ such that δ(e) = 0 for
any bidirected edge e and δ(c) = 1 for any cell-circuit c. A counter is moreover
said binary if δ(e) ∈ {0, 1} for any edge e.

Clearly, a binary counter weights exactly one edge of a cell-circuit by 1, the other
ones having weight 0. Hence, grouping two cells which share an edge of weight
1 yields a dimer tiling (see Fig. 4). Conversely, it is straightforward to similarly
derive a binary counter from a dimer tiling. Thus, we use indifferently the terms
dimer tiling or binary counter in all that follows.
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Fig. 4. A counter (left) and the binary counter corresponding to the dimer tiling of Fig. 1
(right). For the sake of clarity, the weights 0 of bidirected edges are not represented.

Let us now consider two counters δ and δ′, and let c be a circuit of G(C).
One easily proves by induction on the size of c that δ(c) = δ′(c). In particular, if
C is tileable then one can consider δ′ to be a binary counter: one has δ′(c) ∈ N,
and this yields δ(c) ∈ N. Thus:

Proposition 1. If C is tileable, then δ(c) ∈ N for any counter δ.

Conversely, suppose that for any counter δ′ and any circuit c, δ′(c) ∈ N. In such
a case, we can define the notion of δ-shortest path from a vertex v to a vertex
v′: it is a path p (not necessarily unique) which satisfies

δ(p) = min{δ(p′) | p′is a path from v to v′}.
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Then one has the following properties:

Proposition 2. If δ and δ′ are counters over G(C), then any δ-shortest path is
also a δ′-shortest path.

Proposition 3. If δ and δ′ are counters over G(C), then hδ = h′δ yields δ = δ′.

We then prove:

Theorem 1. Let δ be a counter over G(C) and set for an edge e from v to v′:

δ⊥(e) = δ(e)− (hδ(v′)− hδ(v)).

Then, δ⊥ is the binary counter such that hδ⊥(v) = 0 for any vertex v.

Thus, Th. 1 and Prop. 1 yield that C is tileable if and only δ(c) ∈ N for any
counter δ over G(C) and any circuit c of G(C). This provide a characterization
of tileable bipartite domains that we use in the following section.

4 Computing a Binary Counter

The previous section has defined counters and binary counters. We are especially
interested in binary counters since they correspond to dimer tilings. Here, we first
show how to compute a counter in linear time, and we then use Th. 1 to derive
a binary counter from it.

The first step to compute counter consists in constructing a particular weigh-
ted tree. Let A(C) be the undirected graph associated to C as explained in the
introduction. Since the domain is bipartite and connected, so is A(C). Let us
assign color black or white to the vertices of A(C), so that two linked vertices
have different colors. Let then T be a spanning tree of A(C). If we remove from
T an edge e between a black vertex b and a white vertex w, this splits T into
two trees: we denote by Te,b the one which contains the vertex b and we set:

dT (e) = #{black vertices in Te,b} −#{white vertices in Te,b}.

It defines a function dT from the edges of T to Z (see Fig. 5). One checks:

Proposition 4. Let v be a vertex of T and e1, . . . , ek be the edges of T contain-
ing v. If the domain has as much black as white cells, then one has:

k∑
i=1

dT (ei) = 1.

Notice that a tileable bipartite domain has necessarily as much black as white
cells since each black cell is grouped with a white cell. Simple examples show
that the converse is however false.

The second step to compute a counter consists in deriving from the function
dT a counter δT over G(C). We proceed as follows. We set δT (e) = 0 for any
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Fig. 5. A spanning tree T of A(C) and the weights given by dT (left). The corresponding
weight function δT over G(C) is a counter (right).

bidirected edge (that is, an edge of the boundaries of the domain). Otherwise,
a directed edge e corresponds to an edge shared by two cells of C, say Cb and
Cw, which correspond in the graph A(C) respectively to two vertices b and w,
connected by an undirected edge e′ of A(C); we set δT (e) = dT (e′) if e′ belongs
to the tree T , δT (e) = 0 else (see Fig. 5). Prop. 4 then yields that δT (c) = 1 for
any cell-circuit c. Thus, δT is a counter.

Let us study the complexity of the construction of this counter. Let n be
the number of cells of the domain C, or equivalently, the number of vertices of
A(C). Constructing a spanning tree T can be done in linear time by a greedy
algorithm. Then, the weight function dT can be computed recursively in linear
time, starting from the leaves of T . Deriving δT from dT can be performed in
linear time since, the graph G(C) being planar, it has O(n) edges. Thus, the
counter δT can be computed in linear time.

Then, Th. 1 allows to derive in linear time the binary counter δ⊥ from the
height function of δT . This height function can be computed by any single-source-
shortest-paths algorithm on the planar graph G(C) weighted by δT , the source
being the vertex v∗. In particular, [3] provides a O(n ln(n)3)-algorithm to do
this. Thus, summing up all what preceeds leads to the following theorem:

Theorem 2. A dimer tiling of a bipartite tileable domain can be constructed by
a O(n ln(n)3)-algorithm.

The previous algorithm can also be used to detect the case no dimer tiling exists:

– if the bipartite domain is not balanced (hence not tileable), then the con-
struction of the weight function dT leads to a vertex such that the sum of
the weights of its adjacent edges is not equal to 1;

– otherwise, δT is a counter, and since C is not tileable, there exists a circuit
c such that δT (c) /∈ N; more precisely δT (c) < 0 since δT (c) ∈ Z by con-
struction. Thus, the shortest paths starting from v∗ are not defined, and the
algorithm of [3] detects it (as most of the shortest paths algorithms).
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Notice that our algorithm has a complexity similar to the O(n ln(n)) algorithm
of [9], which deals with the case of square cells and domain with a bounded
number of holes.

5 Random Sampling

In this section, we suppose that there exists at least one binary counter over
G(C), that is, the set Δ(C) of the dimer tilings of the domain C is not empty. We
endow Δ(C) with a structure of distributive lattice which can be visited using a
simple operation called flip.

5.1 Flips

Definition 2. Let δ be a binary counter over G(C). A δ-nodule is a maximal1
set of vertices of G(C) such that any two of them are linked by a directed path p
which satisfies δ(p) = 0.

Notice that if δ is a binary counter, then a path p such that δ(p) = 0 is always a
shortest path for δ. Thus, Prop. 2 yields that two binary counters define the same
nodules: we thus simply call nodule a δ-nodule. Moreover, it is worth noticing
that hδ is always constant over the vertices of a nodule: intuitively, a nodule can
be seen as an expanded vertex.

We call incoming (resp. outcoming) edge of a nodule a directed edge of G(C)
which links a vertex outside the nodule to a vertex inside of it (resp. inside to
outside). We also denote by A∗ the nodule which contains the vertex v∗, and we
then define the following operation:
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Fig. 6. The seven vertices which belong to the bidirected edges around the hole form
a nodule. A (decreasing) flip on this nodule transforms the binary counter on the left
into the one on the right. It corresponds on Fig. 7 to the flip from the upper dimer
tiling to the one immediatly below.

1 For inclusion.
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Fig. 7. The distributive lattice of all the dimer tilings of a domain. The dimer tiling
δ⊥ defined in Th. 1 is located at the bottom of this lattice. The flips allow to move
between connected tilings. Notice that, excepted the upper flip which is performed on
the nodule depicted in Fig. 6, all the other flips are performed on nodules reduceed to
a single vertex.
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Definition 3. Let A be a nodule, A �= A∗. Suppose that δ is a binary counter
such that δ(e) is equal to 1 (resp. 0) for each incoming edge of A, and δ(e) is
equal to 0 (resp. 1) for each outcoming edge of A. We call decreasing flip (resp.
increasing flip) the operation which exchanges the weights of the incoming and
outcoming edges of A.

One easily checks that a flip on a nodule A transforms a binary counter δ into
a binary counter, say δ′ (see Fig. 6). Moreover, if it is an increasing flip (resp.
decreasing), then hδ′(v) = hδ(v) + 1 (resp. hδ′(v) = hδ(v) − 1) if v ∈ A and
hδ′(v) = hδ(v) otherwise: flips act on heights in a very simple way.

5.2 A Distributive Lattice

We define two operations ∨ and ∧ over the set Δ(C) of dimer tilings of C:

Proposition 5. Let δ and δ′ be two binary counters over G(C). Then the height
functions min(hδ, hδ′) and max(hδ, hδ′) are height functions of binary counters
over G(C), respectively denoted by δ ∧ δ′ and δ ∨ δ′:

hδ∧δ′ = min(hδ, hδ′) and hδ∨δ′ = max(hδ, hδ′).

It is then easy to check that (Δ(C),∧,∨) is a distributive lattice. We denote
by * the associated partial order:

δ * δ′ ⇔ δ = δ ∧ δ′ ⇔ hδ ≤ hδ′ .

Notice that it is not difficult to endow a finite set with a structure of distributive
lattice. The interest of this specific definition will follows from the way the flips
act on this lattice. Recall first that, given δ and δ′ in Δ(C), one says that δ′
covers δ for the partial order * if δ ≺ δ′ and if, for any δ′′ ∈ Δ(C), δ ≺ δ′′ yields
δ′ * δ′′. Then one has:

Theorem 3. A binary counter δ′ covers a binary counter δ if and only if δ can
be obtained performing a decreasing flip on δ′.

In other words, the Hasse’s diagram of the distributive lattice (Δ(C),∧,∨) (two
elements are linked if and only if one covers the other) is isomorphic to the
undirected graph whose vertices correspond to dimer tilings, each of them being
connected to the ones it is covered by (see Fig. 7).

This structure of distributive lattice corresponds to the one given in [7] in
terms of orientations of graphs. However, the weight functions we use here allow
to perform effectively flips (it suffices to check the weights of the incoming and
outcoming edges of a nodule). Thus, the results of [8] concerning random sam-
pling over distributive lattice can be effectively applied to generate randomly a
dimer tiling of a given domain.

In [4], we also use this structure together with the flips to generate all the
|Δ(C)| dimer tilings of a domain C, performing less than 2|Δ(C)| flips. Since a
flip can be performed in linear time, this leads to an algorithm in O(n|Δ(C)|).
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It thus improves the O(n2) algorithm of [2] which is moreover restricted to the
case of square cells.
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satisfaction problems with templates that have a highly transitive au-
tomorphism group. A relational structure has such an automorphism
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1 Introduction

In a constraint satisfaction problem we are given a set of variables and a set of
constraints on those variables, and want to find an assignment of values to the
variables such that all the constraints are satisfied. The computational complex-
ity of the constraint satisfaction problem depends on the constraint language that
we are allowed to use in the instances of the constraint satisfaction problem, and
attracted a lot of interest in recent years; see e.g. [6] for an introduction to the
state-of-the-art of the techniques used to study the computational complexity of
constraint satisfaction problems.

Formally, we can define constraint satisfaction problems (CSPs) as homo-
morphism problems for relational structures. Let Γ be a (not necessarily finite)
structure with a relational signature τ . Then the constraint satisfaction prob-
lem CSP(Γ ) is a computational problem where we are given a finite τ -structure
S and want to know whether there is a homomorphism from S to Γ ; for the
detailed definitions, see Section 2. We show two examples.

� The second author has been supported by a Marie Curie fellowship of the gradu-
ate program “Combinatorics, Geometry, and Computation”, HPMT-CT-2001-00282.
Also supported by project 1M0021620808 of the Ministry of Education of the Czech
Republic.

D. Grigoriev, J. Harrison, and E.A. Hirsch (Eds.): CSR 2006, LNCS 3967, pp. 114–126, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



The Complexity of Equality Constraint Languages 115

Example 1. Let Γ be the relational structure (N; =, �=). Then CSP(Γ ) is the
computational problem to determine for a given set of equality or inequality
constraints on a finite set of variables whether the variables can be mapped to
the natural numbers such that variables x, y with a constraint x = y are mapped
to the same value and variables x, y with a constraint x �= y are mapped to
distinct values.

This problem is tractable: for this, we consider the undirected graph on the
variables of an instance S of CSP(Γ ), where two variables x and y are joined
iff there is a constraint x = y in S. Then it is easy to see that S does not have
a solution if and only if it contains an inequality-constraint x �= y such that y
is reachable from x in the graph defined above. Clearly, such a reachability test
can be performed in polynomial time.

Example 2. Let Γ be the relational structure (N; S), where S is the ternary
relation S := { (x1, x2, x3) ∈ N3 | (x1 = x2 ∧ x2 �= x3) ∨ (x1 �= x2 ∧ x2 = x3) }.
Here the problem CSP(Γ ) turns out to be NP-complete (see Section 5).

In this paper we consider constraint satisfaction problems where the infinite
template Γ = (D;R1, . . . , Rk) has a highly transitive automorphism group, i.e.,
if every permutation of D is an automorphism of Γ . That is, we study the con-
straint satisfaction problems for templates with the highest possible degree of
symmetry. We will see in Section 2 that Γ has a highly transitive automorphism
group if and only if all relations R1, . . . , Rk can be defined with a Boolean com-
bination of atoms of the form x = y. (A Boolean combination is a formula built
from atomic formulas with the usual connectives of conjunction, disjunction,
and negation.) We say that such a relational structure defines an equality con-
straint language. Later, we also discuss the case where the template has infinitely
many relation symbols R1, R2, . . . Note that Example 1 and 2 are both equality
constraint languages.

The main result of this paper is a full classification of the computational
complexity of equality constraint languages. They are either tractable, or NP-
complete. The containment in NP is easy to see: a nondeterministic algorithm
can guess which variables in an instance S denote the same element in Γ and can
verify whether this gives rise to a solution for S. To prove that certain equality
constraint languages are NP-hard (Section 5) we apply the algebraic approach
to constraint satisfaction, which was previously mainly applied to constraint
satisfaction with finite templates.

Some equality constraint languages are tractable. These languages are de-
scribed by certain closure properties. The most interesting languages here are
those that are closed under an injective binary operation. The polynomial-time
algorithm for such languages, which is presented in Section 6, is an instantia-
tion of the relational consistency algorithm as introduced in [8]. Our contribution
here is the proof that this algorithm is complete for equality constraint languages
that are closed under an injective binary polymorphism, this is, the algorithm
rejects an instance if and only if the instance does not have a solution.
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2 Fundamental Concepts for the Algebraic Approach

We introduce classical concepts that are fundamental for the algebraic approach
to constraint satisfaction. A general introduction to these concepts is [12]; for
clones and polymorphisms we refer to [17].

Structures. A relational language τ is a (here always at most countable) set of
relation symbols Ri, each associated with a finite arity ki. A (relational) structure
Γ over the (relational) language τ (also called τ -structure) is a countable set DΓ

(the domain) together with a relation Ri ⊆ Dki

Γ for each relation symbol of arity
ki from τ . For simplicity, we use the same symbol for a relation symbol and
the corresponding relation. If necessary, we write RΓ to indicate that we are
talking about the relation R belonging to the structure Γ . For a τ -structure Γ
and R ∈ τ it will also be convenient to say that R(u1, . . . , uk) holds in Γ iff
(u1, . . . , uk) ∈ R. We sometimes write u for a tuple (u1, . . . , uk) of some length
k. If we add relations to a given structure Γ , we call the resulting structure Γ ′

an expansion of Γ , and Γ is called a reduct of Γ ′.

Homomorphisms. Let Γ and Γ ′ be τ -structures. A homomorphism from Γ to
Γ ′ is a function f from DΓ to DΓ ′ such that for each n-ary relation symbol R in
τ and each n-tuple (a1, . . . , an), if (a1, . . . , an) ∈ RΓ , then (f(a1), . . . , f(an)) ∈
RΓ ′

. In this case we say that the map f preserves the relation R. Isomorphisms
from Γ to Γ are called automorphisms, and homomorphisms from Γ to Γ are
called endomorphisms. The set of all automorphisms of a structure Γ is a group,
and the set of all endomorphisms of a structure Γ is a monoid with respect to
composition.

Polymorphisms. Let D be a countable set, and O be the set of finitary operations
on D, i.e., functions from Dk to D for finite k. We say that a k-ary operation
f ∈ O preserves an m-ary relation R ⊆ Dm if whenever R(xi1, . . . , x

i
m) holds

in Γ for all 1 ≤ i ≤ k , then R
(
f(x1

1, . . . , x
k
1), . . . , f(x1

m, . . . , x
k
m)

)
holds in Γ . If

f preserves all relations of a relational τ -structure Γ , we say that f is a poly-
morphism of Γ . In other words, f is a homomorphism from Γ k = Γ × . . . × Γ
to Γ , where Γ1 × Γ2 is the (categorical- or cross-) product of the two relational
τ -structures Γ1 and Γ2. Hence, the unary polymorphisms of Γ are the endo-
morphisms of Γ , and the unary bijective polymorphisms are the automorphisms
of Γ .

Clones. An operation π is a projection if for all n-tuples, π(x1, . . . , xn) = xi
for some fixed i ∈ {1, . . . , n}. The composition of a k-ary operation f and k
operations g1, . . . , gk of arity n is an n-ary operation defined by

f(g1, . . . , gk)(x1, . . . , xn) = f
(
g1(x1, . . . , xn), . . . , gk(x1, . . . , xn)

)
.

A clone F is a set of operations from O that is closed under compositions
and that contains all projections. We write DF for the domain D of the clone F .
It is easy to verify that the set Pol(Γ ) of all polymorphisms of Γ is a clone with
the domain DΓ . Moreover, Pol(Γ ) is also closed under interpolations: we say
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that an operation f ∈ O is interpolated by a set F ⊆ O if for every finite subset
B of D there is some operation g ∈ F such that f |B = g|B (f restricted to B
equals g restricted to B, i.e., f(s) = g(s) for every s ∈ Bk). The set of operations
that are interpolated by F is called the local closure of F ; if F equals its local
closure, we say that F is locally closed. The following is a well-known fact:

Proposition 1 (see e.g. [16]). A set F ⊆ O of operations is locally closed if
and only if F is the set of polymorphisms of Γ for some relational structure Γ .

An operation is called essentially unary iff there is a unary operation f0 such
that f(x1, . . . , xk) = f0(xi) for some fixed i ∈ {1, . . . , k}. We say that a k-
ary operation f depends on argument i iff there is no k−1-ary operation f ′

such that f(x1, . . . , xk) = f ′(x1, . . . , xi−1, xi+1, . . . , xk). Hence, an essentially
unary operation is an operation that depends on one argument only. We can
equivalently characterize k-ary operations that depend on the i-th argument by
requiring that there are elements x1, . . . , xk and x′i such that f(x1, . . . , xk) �=
f(x1, . . . , xi−1, x

′
i, xi+1, . . . , xk). We refer to [16] and [17] for a general introduc-

tion to clones.

3 The Algebraic Approach

A τ -formula is called primitive positive, if it has the form ∃x1 . . . xk.ψ1∧· · ·∧ψl,
where ψi is an atomic τ -formula that might contain free variables and existen-
tially quantified variables from x1, . . . , xk. The atomic formula ψi might also
be of the form x = y. A formula is called existential positive, if it is a disjunc-
tive combination of primitive positive formulas (equivalently, if it is a first-order
formula without universal quantifiers and negations). Every formula with k free
variables defines on a structure Γ a k-ary relation. Primitive positive definability
of relations is an important concept in constraint satisfaction because primitive
positive definable relations can be ’simulated’ by the constraint satisfaction prob-
lem. The following is frequently used in hardness proofs for constraint satisfaction
problems; see e.g. [13].

Lemma 1. Let Γ be a relational structure and let R be a relation that has a
primitive positive definition in Γ . Then the constraint satisfaction problems of
Γ and of the expansion of Γ by R have the same computational complexity.

The algebraic approach to constraint satisfaction (see e.g. [4, 5, 13]) is based on
the following preservation statements that characterize syntactic restrictions of
first-order definability.

Theorem 1 (from [3,10,14]). Let Γ be a finite relational structure. Then

1. A relation R has a first-order definition in Γ if and only if it is preserved by
all automorphisms of Γ ;

2. A relation R has an existential positive definition in Γ if and only if it is
preserved by all endomorphisms of Γ ;
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3. A relation R has a primitive positive definition in Γ if and only if it is
preserved by all polymorphisms of Γ .

These statements do not hold for infinite structures in general. However, we have
the following.

Theorem 2 (from [2, 1]). Let Γ be a countably infinite relational structure.
Then Statement 1 of Theorem 1 holds if and only if Γ is ω-categorical, i.e., if
the first-order theory of Γ has only one countable model up to isomorphism. For
ω-categorical Γ , Statements 2 and 3 hold as well.

Let G be a permutation group on a countable infinite set D. An orbit of k-tuples
in Γ is a largest set O of k-tuples in Γ such that for all s, t ∈ O there is a
permutation α of Γ such that (α(s1), . . . , α(sk)) = (t1, . . . , tk). A permutation
group G on a countably infinite set D is called oligomorphic, if it has only
finitely many orbits of k-tuples from D, for all k ≥ 1; see [7]. The next theorem
can be seen as a reformulation of the theorem of Ryll-Nardzewski, Engeler, and
Svenonius (see [12]), and is also closely related to the first part of Theorem 2.

Theorem 3 (See [7]). Let Γ be a relational structure. Then the following are
equivalent.

– Γ is ω-categorical;
– the automorphism group of Γ is oligomorphic;
– every k-ary first-order definable relation in Γ is the union of a finite number

of orbits of k-tuples of the automorphism group of Γ .

Now it is easy to see that a relational structure Γ = (V ;R1, R2, . . . ) has a
highly transitive automorphism group if and only if all relations can be defined
with Boolean combinations of the equality relation. Clearly, such relations are
preserved by all permutations of V . On the other hand, if Γ has a highly tran-
sitive automorphism group, it is in particular ω-categorical. Hence, every k-ary
relation R from Γ is the union of a finite number of orbits of k-tuples of the
automorphism group of Γ . It is easy to see that the orbits of k-tuples of a highly
transitive permutation group can be described by a conjunction of equality and
inequality relations.

4 Representations of Relations

From now on, unless stated otherwise, Γ = (D;R1, R2, . . . ) is a relational struc-
ture on a countably infinite domain D where every relation Ri can be defined by
a Boolean combination of atoms of the form x = y. Note that the automorphism
group of Γ is the full symmetric group on D, which is clearly oligomorphic.

Both the hardness results and the algorithm for equality constraint languages
use a special representation of the relations in Γ , which we are now going to
describe. Theorem 3 implies that every k-ary relation in Γ is a union of orbits of
k-tuples of the automorphism group of Γ . Let s be a k-tuple from one of these
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orbits. We define the equivalence relation ρ on the set {1, . . . , k} that contains
those pairs {i, j} where si = sj . Clearly, all tuples in the orbit lead to the same
equivalence relation ρ. Hence, every k-ary relation R in Γ corresponds uniquely
to a set of equivalence relations on {1, . . . , k}, which we call the representation
of R. Sometimes we identify a relation R from Γ with its representation and for
example freely write ρ ∈ R if ρ is an equivalence relation from the representation
of R. Let |R| denote the number of orbits of k-tuples contained in R. Hence, |R|
also denotes the number of equivalence relations in the representation of R.

Definition 1. Let ρ and ρ′ be equivalence relations on a set X. We say that ρ is
finer than ρ′, and write ρ ⊆ ρ′, if ρ(x, y) implies ρ′(x, y) for each x, y ∈ X. We
also say that in this case ρ′ is coarser than ρ. The intersection of two equivalence
relations ρ and ρ′, denoted by ρ ∩ ρ′, is the equivalence relation σ such that
σ(x, y) if and only if ρ(x, y) and ρ′(x, y). Finally, let c(ρ) denote the number of
equivalence classes in ρ.

Lemma 2. For a k-ary relation R in an equality constraint language on a count-
able set D the following are equivalent.

1. R is preserved by every injection of D2 into D;
2. R is preserved by an injective binary operation on D;
3. R is preserved by a binary operation f and there are two k-element subsets

S1,S2 of the domain such that f restricted to S1 × S2 is injective;
4. The representation of R is closed under intersections, i.e., ρ∩ ρ′ ∈ R for all

equivalence relations ρ, ρ′ ∈ R;

Proof. The implication from (1) to (2) and from (2) to (3) is immediate. Let
ρ and ρ′ be two equivalence relations from the representation of R. Pick two
k-tuples s and s′ in R that lie in the orbits that are described by ρ and ρ′. Now,
let f be a binary operation of D that is injective on its restriction to S1×S2 for
two k-element subsets S1,S2. Let α1 and α2 be permutations of D that map the
entries of the k-tuples s and s′ to S1 and S2, respectively. Then by injectivity of
f the k-tuple s′′ := (f(α1(s1), α2(s′1)), . . . , f(α1(sk), α2(s′k))) satisfies s′′i = s′′j if
and only if ρ(i, j) and ρ′(i, j). Hence, we found a tuple in R that lies in the orbit
that is described by ρ∩ρ′, which is therefore also contained in the representation
of R, and therefore (3) implies (4). Every injection of D2 into D preserves every
relation with an intersection-closed representation, because it maps two tuples
that correspond to equivalence relations ρ and ρ′ to a tuple that corresponds to
ρ ∩ ρ′. We thus proved that (4) implies (1). !�

If a relation R has a representation that is closed under intersections, we also
write that R is ∩-closed.

Corollary 1. An operation f on a countable set D and the permutations on
D locally generate an injective binary operation g if and only if every equality
constraint relation that is preserved by f is ∩-closed.
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Proof. If f and the permutations locally generate an injective binary operation g,
then every relation R that is preserved by f is also preserved by g, and Lemma 2
shows that R is ∩-closed. Conversely, if every equality constraint relation R
preserved by f is ∩-closed, we claim that f and the permutations locally generate
all injective binary operations. Suppose the contrary. Then there is a relation R
that is preserved by f but not by an injective binary operation g. An application
of Lemma 2 in the other direction shows that R cannot be ∩-closed, contradicting
the assumption. !�

5 A Generic Hardness Proof

In this section we prove that every equality constraint language without a con-
stant unary or an injective binary polymorphism is NP-hard. Let us start with
a fundamental lemma on non-injective endomorphisms.

Lemma 3. If Γ has a non-injective endomorphism f , then Γ also has a constant
endomorphism.

Proof. Let f be an endomorphism of Γ such that f(x) = f(y) for two distinct
points x, y from D. Let a1, a2, . . . be an enumeration of D. We construct an
infinite sequence of endomorphisms e1, e2, ... where ei is an endomorphism that
maps the points a1, . . . , ai to a1. This suffices, since by local closure the mapping
defined by e(x) = a1 for all x is an endomorphism of Γ .

For e1 we take the identity map, which clearly is an endomorphism with the
desired properties. To define ei for i ≥ 2 let α be an automorphism of Γ that
maps a1 = ei−1(a1) = · · · = ei−1(ai−1) to x, and ei−1(ai) to y. Then the endo-
morphism f(α(ei−1)) is constant on a1, . . . , ai. There is also an automorphism α′

that maps f(α(ei−1(a1))) to a1. Then ei := α′(f(α(ei−1))) is an endomorphism
with the desired properties. !�

Lemma 4. If Γ does not have a constant endomorphism, then there is a prim-
itive positive definition of the relation x �= y in Γ .

Proof. Suppose Γ has a k-ary polymorphism f that does not preserve �=, i.e.,
there are k-tuples u and v such that ui �= vi for all i ∈ {1, . . . , k}, but f(u) �=
f(v). Let α2, . . . , αk be permutations of D that map u1 to ui and v1 to vi.
Then the endomorphism g(x) := f(x, α2(x), . . . , αk(x)) is not injective, because
g(u1) = f(u1, . . . , uk) = f(v1, . . . , vk) = g(v1), and by Lemma 3 locally generates
a constant, in contradiction to the assumptions. Hence, every polymorphism of Γ
preserves �=, and by Theorem 2 the relation �= has a primitive positive definition.

!�

Due to the following lemma we can focus on binary operations in some later
proofs.

Lemma 5. Every essentially at least binary operation together with all permu-
tations locally generates a binary operation that depends on both arguments.
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Proof. Let k be a k-ary operation, where k > 2, that depends on all arguments.
In particular, f depends on the first argument, and hence there are two k-tuples
(a1, . . . , ak) and (a′

1, a2, . . . , ak) with f(a1, . . . , ak) �= f(a′
1, a2, . . . , ak). Suppose

first that there are b1, . . . , bk such that bi �= ai for i ≥ 2 and f(b1, b2, . . . , bk) �=
f(b1, a2, . . . , ak). We can then define permutations αi of D for i ≥ 3, such that
a2 is sent to ai and d2 is sent to di. The binary operation g defined by g(x, y) =
f(x, y, α3(y), . . . , αk(y)) depends on both arguments, as g(a1, a2) �= g(a′

1, a2)
and g(b1, b2) �= g(b1, a2), and hence we are done in this case.

So suppose that for every b1 and every b2, . . . , bk such that bi �= ai for
i ∈ {2, . . . , k} it holds that f(b1, b2, . . . , bk) = f(b1, a2, . . . , ak). Since f de-
pends on the second coordinate, there are elements c1, c2, . . . , ck and c′2 with
f(c1, . . . , ck) �= f(c1, c

′
2, c3, . . . , ck). The value f(c1, a2, . . . , ak) can be equal to

either f(c1, . . . , ck) or to f(c1, c
′
2, c3, . . . , ck), but not to both. We can assume

without loss of generality that f(c1, . . . , ck) �= f(c1, a2, . . . , ak). Let us choose
d2, . . . , dk such that di �= ai and di �= ci for i ∈ {2, . . . , k}. Since ci and di are
distinct for all 2 ≤ i ≤ k, we can define permutations αi of D for i ≥ 3 such that
b2 is sent to bi and c2 is sent to ci.

We claim that the operation g defined by g(x, y) := f(x, y, α3(y), . . . , αk(y))
depends on both arguments. Indeed, from the beginning of the previous para-
graphs we know that g(a1, d2) = f(a1, d2, . . . , dk) = f(a1, a2, . . . , ak), and that
g(a′

1, d2) = f(a′
1, d2, . . . , dk) = f(a′

1, a2, . . . , ak). By the choice of the values
a1, . . . , ak and a′

1 these two values are distinct, and we have shown that g de-
pends on the first argument. For the second argument, note that g(c1, d2) =
f(c1, d2, . . . , dk) = f(c1, a2, . . . , ak) and that g(c1, c2) = f(c1, c2, . . . , ck). But in
the previous paragraph we also saw that these two values are distinct, and hence
g also depends on the second argument. !�

Now comes the central argument.

Theorem 4. Let f be a binary operation that depends on both arguments. Then
f together with all permutations locally generates either a constant unary oper-
ation or a binary injective operation.

Proof. Suppose that f does not locally generate a constant operation. We want
to use Corollary 1 and show that every equality constraint relation R that is
preserved by f is ∩-closed, which implies that f locally generates a binary in-
jective polymorphism. Suppose for contradiction that R is an n-ary equality
constraint relation, n ≥ 2, that is closed under f but not ∩-closed, i.e., there are
two equivalence relations ρ and ρ′ in R such that ρ ∩ ρ′ is not in R. Choose ρ
and ρ′ such that (c(ρ), c(ρ′)) is lexicographically maximal. Let s := (s1, . . . , sn)
and t := (t1, . . . , tn) be n-tuples of D that have the equivalence relations ρ and
ρ′. Because ρ is not finer than ρ′ we can find indices p and q such that sp = sq,
tp �= tq. Let r be the number of equivalence classes of ρ that are contained in
the equivalence class of p in ρ′. Choose p and q such that r is minimal.

Consider 2n−1 distinct elements a1, . . . , a2n−1 fromD. By the infinite pigeon-
hole principle, there is an infinite subset S1 of D such that f(a1, b) = f(a1, b

′)
for all b, b′ ∈ S1, or f(a1, b) �= f(a1, b

′) for all b, b′ ∈ S1. We apply the same
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argument to a2 instead of a1, and S1 instead of D, and obtain an infinite subset
S2 of S1. The argument can be iterated to obtain an infinite subset S2n−1 such
that for all a ∈ {a1, . . . , a2n−1} we either have f(a, b) �= f(a, b′) for all b, b′ ∈ B,
or f(a, b) = f(a, b′) for all b, b′ ∈ B. Then there is also an n-element subset A of
{a1, . . . , a2n−1} and an n-element subset B of S2n−1 such that either f(a, b) �=
f(a, b′) for all a ∈ A and b, b′ ∈ B, or f(a, b) = f(a, b′) for all a ∈ A and b, b′ ∈ B.
Not-e that in the latter case f(a, b) �= f(a′, b) for all distinct elements a, a′ ∈ A,
and b ∈ B. Otherwise, if f(a, b) = f(a′, b), then f does not preserve the inequality
relation, because there is a b′ ∈ B such that b′ �= b and f(a, b) = f(a, b′),
and hence f(a, b) = f(a′, b′), but a �= a′ and b �= b′. But this is impossible,
because Lemma 3 shows that in this case f locally generates a constant operation.
Therefore, we found two n-element sets A and B such that either f(a, b) �=
f(a′, b) for all a, a′ ∈ A and b ∈ B, or f(a, b) �= f(a, b′) for all a ∈ A and
b, b′ ∈ B. Without loss of generality we assume that the first case applies.

Since f cannot only depend on the first argument, there are elements u, v1,
and v2 in D such that v1 �= v2 and f(u, v1) �= f(u, v2). We can assume that v2 is
from B: For this, consider any element v′ of B. If f(u, v′) �= f(u, v1), we choose
v′ instead of v2 and are done. If f(u, v′) = f(u, v1), then f(u, v′) �= f(u, v2),
and we choose v′ instead of v2 and v2 instead of v1. We can also assume that
f(u, v) �= f(u′, v) for all u′ ∈ A, v ∈ B: The reason here is that if there are
elements a ∈ A and b1, b2 ∈ B such that f(a, b1) �= f(a, b2) we choose u = a,
v1 = b1, and v2 = b2. Otherwise, we know that f(a, b1) = f(a, b2) for all a ∈ A
and b1, b2 ∈ B. But then, f(u, v) = f(u′, v) is impossible for all u′ ∈ A and
v ∈ B due to Lemma 3.

Let α1 be a permutation of D that maps sp = sq to u and the other en-
tries in s to A. Let α2 be a permutation of D that maps tp to v1, tq to v2,
and the other entries in t to B. Consider the equivalence relation σ of the tuple
(f(α1(s1), α2(t1)), . . . , f(α1(sn), α2(tn))). Because f preserves R, we know that
σ is contained in R. If r = 0, then due to the way we apply the operation f
to α1(s) and α2(t) it is easy to see that σ has more equivalence classes than ρ,
contradicting the maximal choice of ρ. If r ≥ 1, then σ has more equivalence
classes than ρ′, for the following reason. Every equivalence class C of ρ′ either
consists of a union of equivalence classes from ρ, or contains an element from
an equivalence class in ρ that is not contained in C. But also in the latter case,
by the choice of p and q such that r is minimal, we can infer that C contains
some equivalence class from ρ. Hence, in both cases we can associate in that way
one equivalence class from ρ to every class in ρ′. Due to the way we apply the
operation f to α1(s) and α2(t), all these equivalence classes correspond to dis-
tinct equivalence classes in σ. Moreover, f(α1(sq), α2(tq)) will lie in yet another
equivalence class of σ. Thus, σ has more equivalence classes than ρ′. Since σ is
not coarser than ρ, the existence of the relations ρ and σ then contradicts the
choice of ρ and ρ′ where (c(ρ), c(ρ′)) was lexicographically maximal. !�

Hence, if the template is not preserved by a constant unary or an injective binary
operation, we have a primitive positive definition of every first-order definable
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relation, in particular for the relation S that was defined in Example 2 in the
introduction.

Lemma 6. If the relation S has a primitive positive definition in Γ , then CSP(Γ )
is NP-hard.

Proof. First observe that by identification of arguments x and y, if S has a
primitive positive definition in Γ , then the inequality relation has a primitive
positive definition in Γ as well. We prove the NP-hardness by reduction from the
NP-hard problem 3-coloring [9]. Let G = (V,E) be a graph that is an instance
of 3-coloring. We construct an instance of CSP(Γ ) that has a polynomial size
in |V | and |E| and is satisfiable if and only if G has a proper 3-coloring. Lemma 1
asserts we can use inequality constraints and the relation S to formulate this
instance. The set of variables in this instance is V ∪V ′ ∪{c1, c2, c3}, where V ′ is
a copy of V , and c1, c2, c3 are three new variables representing colors. We impose
inequality constraints on each pair in c1, c2, c3 and on each pair (u, v) for uv ∈ E.
We impose the constraint S on (c1, v

′, c2) for each v′ ∈ V ′, and on (v′, v, c3) for
each v ∈ V where v′ is the copy of v in V ′. By construction, a solution to these
constraints induces a proper 3-coloring of G. Conversely, a simple case analysis
shows that any proper 3-coloring can be extended in a way that satisfies these
constraints. !�

As we already mentioned in the introduction, the constraint satisfaction problem
for equality constraint languages is always contained in NP. By combining the
results obtained in this section and using Theorem 2 and Lemma 1 we therefore
proved the following main result of this section.

Theorem 5. If Γ has no constant unary and no injective binary polymorphism,
then CSP(Γ ) is NP-complete.

6 Algorithmic Results

The case that Γ contains a constant unary polymorphism gives rise to trivially
tractable constraint satisfaction problems: If an instance of such a constraint
satisfaction problem has a solution, then there is also a solution that maps all
variables to a single point. In this case an instance of CSP(Γ ) is satisfiable if and
only if it does not contain a constraint R where R denotes the empty relation
in Γ . Clearly, this can be tested efficiently. To finish the classification of the
complexity of equality constraint languages we are left with the case that Γ has
a binary injective polymorphism.

Lemma 7. Let Γ be closed under a binary injective polymorphism, and let R
be a k-ary relation from Γ . Then for every equivalence relation ρ on {1, . . . , k}
(note, that ρ need not be in R) either there is no σ ∈ R that is coarser than ρ,
or there exists an equivalence relation σ ∈ R such that σ is coarser than ρ and
σ is finer than any σ′ ∈ R coarser than ρ. Furthermore, σ can be computed in
time O(k2|R|).
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Proof. First we compute the set R′ of equivalence relations of R that are coarser
than ρ. The set R′ can be computed straightforwardly in time O(k2|R|) by
checking each equivalence relation in R. If R′ is empty we are done. Otherwise,
because R is closed under intersections, we know that σ = ∩σ′∈R′σ′ is in R. It
is even in R′, since if two equivalence relations are both coarser than another,
then so is their intersection. We can find σ with the following procedure.

– We start with an arbitrary equivalence relation τ in R′.
– For each σ′ ∈ R′, if σ′ is finer than τ , then set τ to be σ′.

The procedure clearly runs in time O(k2|R|). !�

Theorem 6. Let Γ be closed under a binary injective polymorphism, and let
S be an instance of CSP(Γ ) with n variables and q constraints. Let k be the
maximal arity of the constraints, and let m be the maximal number of equivalence
relations in the representations for the constraints. Then there is an algorithm
that decides the satisfiability of S in time O(qm(qmk2 + n)).

Proof. We start by assigning each variable a unique value. Then we check whether
each constraint is satisfied. If we find an unsatisfied l-ary constraint R, let
x1, . . . , xl be the variables of that constraint. Let ρ be the equivalence relation
on the elements {1, . . . , l} that contains all pairs {i, j} where xi got the same
value as xj . Using the algorithm from Lemma 7 we either find that there is no
σ ∈ R coarser than ρ, in which case we answer that the problem does not have
a solution. Otherwise we find the unique finest equivalence relation σ ∈ R. In
this case we reassign the values to the variables in the following way: If σ(i, j),
we assume without loss of generality that i < j, and change the value of all
variables with the value of xj to the value of xi. Finally we restart the procedure
with the new assignment for the variables. If all the constraints are satisfied we
have computed a solution.

To show the correctness of this algorithm we prove by induction that each
of the introduced equalities holds in every solution of the problem. In the be-
ginning we introduced no equality (all the values were mutually different). We
introduce an equality only if we find an unsatisfied constraint. In that case we
have computed the set of equalities (an equivalence relation) that is contained in
every other set of equalities acceptable for the constraint. Because the constraint
must be satisfied in every solution we introduce only the equalities that hold in
every solution.

Because the set of acceptable equivalence relations is made smaller each time
the constraints are not yet satisfied, we have to recompute the assignment at
most qm times. Finding the unsatisfied constraint can take O(qmk2) and chang-
ing the assignment can take O(n). Putting the terms together yields the claimed
bound on the time complexity. !�

Note that the asymptotic running time of the algorithm can be substantially
improved by using better data structures.

In the standard case that the signature of Γ is finite, the algorithm clearly
establishes the tractability of CSP(Γ ) for injective binary polymorphisms, since
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in this case k and m are bounded by constants that only depend on Γ . If Γ
has a countable signature, there are various possibilities to define tractability of
CSP(Γ ). We refer to the discussion in [6]. The definition of tractability chosen
there is to require that for every reduct Γ ′ of Γ with a finite signature the
problem CSP(Γ ′) is tractable. If Γ has an injective binary polymorphism, this
requirement is clearly fulfilled, because we can again use the above algorithm
with the same argument. If we allow that the instances contain arbitrary relations
from the signature, we have to discuss how to represent the constraints in the
instance. For equality constraint languages, one natural candidate to represent
the constraints in the instance is the representation that we already used in the
formulation of the algorithm: a constraint is represented by a list of equivalence
relations on its arguments. Now, the detailed complexity analysis given above
shows that we even obtain tractability in the stronger sense where instances
might contain arbitrary constraints in the above representation.

7 Conclusion and Remarks

We combine the results of Section 5 and Section 6 and obtain the following.

Theorem 7. An equality constraint language with template Γ is tractable if Γ
has a constant unary or an injective binary polymorphism. Otherwise it is NP-
complete.

In other words, unless P=NP, an equality constraint language with template
Γ is tractable if and only if every relation in Γ contains all tuples of the form
(a, . . . , a) for all a ∈ Γ , or if all relations are ∩-closed.

We would like to conclude with a remark on the relationship of the presented
results with questions from universal algebra. The lattice of clones that contain
all the permutations is a recent research focus in universal algebra [15,11], and a
full classification seems to be out of reach. However, the lattice of locally closed
clones that contain the set of all permutations Sω is considerably simpler. The
lattice has a smallest element, the clone that is locally generated by Sω. Above
this clone the lattice has exactly two minimal clones that correspond to the
maximally tractable equality constraint languages. Is it possible to give a full
description of the locally closed clones that contain all the permutations?
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Abstract. Given two strings (a text t of length n and a pattern p) and
a natural number w, window subsequence problems consist in deciding
whether p occurs as a subsequence of t and/or finding the number of size
(at most) w windows of text t which contain pattern p as a subsequence,
i.e. the letters of pattern p occur in the text window, in the same or-
der as in p, but not necessarily consecutively (they may be interleaved
with other letters). We are searching for subsequences in a text which is
compressed using Lempel-Ziv-like compression algorithms, without de-
compressing the text, and we would like our algorithms to be almost
optimal, in the sense that they run in time O(m) where m is the size
of the compressed text. The pattern is uncompressed (because the com-
pression algorithms are evolutive: various occurrences of a same pattern
look different in the text).

1 Introduction

We are concerned with searching information in a compressed text without de-
compressing the text. We will search to decide whether a pattern occurs as a
subsequence of a text: pattern p = p1 . . . pk is said to be a subsequence of text
t if p1, . . . , pk occur in t, in the same order as in p, but not necessarily consec-
utively (they may be interleaved with other letters). It is also demanded that
the subsequences consisting of p be contained in text windows of (at most) a
fixed size w. Pattern matching in compressed texts has already been studied in
e.g. [R99, GKPR96]. Subsequence matching within windows of size w at most
is a more difficult problem, which emerged due to its applications in knowl-
edge discovery and datamining [M02], and as a first step for solving problems
in molecular biology. One quite important use of subsequence matching consists
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in recognizing frequent patterns in large sequences of data. Knowledge of fre-
quent patterns is then used to determine association rules in databases and to
predict the behavior of large data. Consider for instance a text t consisting of
a university WWW-server logfile containing requests to see WWW pages, and
suppose we want to see how often, within a time window of at most 10 units of
time, the sequence of events e1e2e3e4 has occurred, where: e1 = ‘Computer Sci-
ence Department homepage’, e2 = ‘Graduate Course Descriptions’, e3 = ‘CS586
homepage’, e4 = ‘homework’. This will be achieved by counting the number of
10-windows of t containing p = e1e2e3e4 as a subsequence.

Most efficient compression algorithms are evolutive, in the sense that the text
represented by each compression symbol is determined dynamically, hence the
encoding of a subword is different for different occurrences of this subword in the
text. It is thus less useful for the search to encode the pattern. Moreover, pattern
sizes are usually smaller than text sizes by several orders of magnitude. We will
thus search for a plain (not encoded) pattern in an encoded (compressed) text.

We address several window subsequence problems in three models of com-
pression: Lempel-Ziv (in short LZ [LZ77]), Lempel-Ziv-Welch (in short LZW
[LZ78, W84]), and straight-line-programs (in short SLP [R03]). We show that,
for all three models, as soon as there is a significant (say quadratic) difference
in size between the compressed text and the original text, searching directly
in the compressed text is more efficient than the naive decompress-then-search
approach.

The paper is organised as follows: in Section 2, we recall the compression
models, in Section 3 we define five window subsequence problems, in Section 4
we describe auxiliary data structures, and show how to compute them, yielding
algorithms for the window subsequence problems.

Related Results

Different versions of pattern-matching and subsequence problems have been con-
sidered. Subsequence problems are different from pattern-matching problems in
two respects: 1. the letters of the pattern need not be consecutive in the text,
and 2. the size of the text window where the pattern occurs is bounded. Some
related problems are as follows.

It was shown in [GKPR96] that the pattern matching problem can be solved
in polynomial time, even if both text and pattern are given in LZ compressed
form.

It was shown in [L05, LL05] that problem 1 below (Section 3), is both NP
and co-NP-hard if both text and pattern are given in LZ compressed form.

It was shown in [ABF95] that finding the first occurrence of the pattern
(pattern matching with compressed text and uncompressed pattern) in an LZW-
style compressed text can be done in time O(m+ k2) or O(m log k + k).

Next, we should mention [BKLPR02], where Compressed Pattern Matching
problems were extended to the two-dimensional case: it was shown that com-
plexity increases in this setting. Compressed Pattern Matching is NP-complete
while Fully Compressed Pattern Matching is ΣP

2 -complete.
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Recently, applications for algorithms on compressed texts in analysis of mes-
sage sequence charts were found, see [GM02].

Besides pattern matching the membership of a compressed text in a formal
language was studied. In [GKPR96], the authors presented a polynomial algo-
rithm for deciding membership in a regular language. Recently, [MS04] showed
that this problem is P-complete. On the other hand, it was shown in [Loh04]
that deciding membership in a context-free language is PSPACE-complete.

2 Compression Algorithms

2.1 Notations

An alphabet is a finite non-empty set A = {a1 . . . , ai}. We will also use an extra
letter a0. A word t on A is a sequence t[1]t[2] · · · t[n] of letters from A (also
denoted by t1t2 · · · tn and called the text ). The number n is called the length
of t and will be denoted by |t|. The only length zero word is the empty word,
denoted by ε. Given integers k ≤ n, i < j ≤ n and t a length n word, let t[k]
(resp. t[−k], t[i..j]) denote the kth leftmost letter of t (resp. the kth rightmost
letter, the subword t[i]t[i+ 1] · · · t[j] of t).

Let t be a word from A∗.

2.2 Lempel-Ziv-Welch Algorithm

Compression

1. Let T0 = ε
2. Assume words T0, T1, . . . , Tk−1 were defined, and

ta0 = T0T1 . . . Tk−1s (1)

with s non-empty. Let Tk be the shortest prefix of s which is not among
T0, T1, . . . , Tk−1; there exists a unique pair consisting of a number rk and a
letter ck ∈ A ∪ {a0} such that rk < k and Tk = Trk

ck.

ta0 =
T1︷ ︸︸ ︷

∗ · · · ∗︸ ︷︷ ︸
Tr1

c1

T2︷ ︸︸ ︷
∗ · · · ∗︸ ︷︷ ︸
Tr2

c2 ∗ · · · ∗
Tm︷ ︸︸ ︷

∗ · · · ∗︸ ︷︷ ︸
Trm

cm (2)

The LZW–compression of t is the sequence of elements r1, c1, r2, c2, . . . , rm,
cm from A ∪ IN where m is defined by the condition cm = a0.

Decompression

1. Let T0 = ε
2. Repeat Tk = Trk

ck until ck = a0

3. Let t = T0T1 . . . Tm−1Tm
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2.3 Lempel-Ziv Algorithm

Compression

1. Let T0 = ε
2. Assume words T0, T1, . . . , Tk−1 were defined, and

t = T0T1 . . . Tk−1s (3)

with s non-empty. Let Tk be the longest prefix of s which is a subword of
T0T1 . . . Tk−1, if such a prefix exists, otherwise let Tk = aj where aj is the
first letter of S; in the former case there exists a unique pair of numbers qk
and rk such that 1 ≤ qk < rk ≤ |T0T1 . . . Tk−1| and Tk = t[qk..rk]; in the
latter case, we define formally qk = rk = −j.

t =
T1︷ ︸︸ ︷

∗ · · · ∗ ∗ . . . ∗ t[qk] · · · t[rk]︸ ︷︷ ︸
Tk

∗ . . . ∗
Tk−1︷ ︸︸ ︷
∗ · · · ∗

Tk︷ ︸︸ ︷
∗ · · · ∗ ∗ . . . ∗ (4)

The LZ–compression of t is the sequence of numbers q1, r1, q2, r2, . . . , qm, rm
where m is such that t = T1 . . . Tm.

Decompression

1. Let t = ε
2. For k = 1 to m do : if qk < 0 then let t := t a−qk

else let t := t t[qk..rk]

2.4 Straight-Line Programs

A straight–line program compression (in short SLP) P of size m is a sequence
of assignments: Xi := expi for i = 1, . . . ,m, where each Xi is a non-terminal
and each expression expi is either expi = a with a ∈ A, or expi = XjXk with
k, j < i. A straight–line program can be viewed as a context-free grammar with
initial symbol Xm generating a single word val(P) = val(Xm) which is the
decompression of the text represented in compressed form by the SLP.

2.5 Comparison of Compression Models

The Lempel–Ziv–Welch (resp. Lempel–Ziv) algorithm is usually called LZ78
(resp. LZ77). According to [R99] “LZ78 is less interesting [than LZ77] from the
theoretical point of view, but much more interesting from the practical point
of view”. The size of the LZ compression of a text is smaller than the size of
its LZW compression. The drawback is that the LZ compression is harder to
compute.

More specifically, LZ–decompression can yield an exponential blow-up, while
LZW–decompression is bounded by a quadratic growth of text size. Given an
LZW–compressed text of length m, we can easily construct in time O(m) an
SLP of size O(m) generating the decompression. Given an LZ–compressed text
of length m, and of original length n, we can construct in time O(m logn) an
SLP of size O(m log n) generating the same decompressed text [R03].
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3 The Problems

Let t = t1t2 · · · tn ∈ A∗ be the text and P = p1p2 · · · pk be the pattern also in A∗.
A size w window of t, in short w-window, is a size w subword ti+1ti+2 · · · ti+w

of t; words corresponding to different values of i are considered to be different
windows, even if they are equal as words; thus, there are n−w+1 such windows
in t. The word p is a subsequence of t iff there exist integers 1 ≤ i1 < i2 <
· · · < ik ≤ n such that tij = pj for 1 ≤ j ≤ k. If moreover, ik − i1 < w, p is
a subsequence of t in a w-window. A window containing p as a subsequence is
said to be minimal if neither ti+2 · · · ti+w nor ti+1ti+2 · · · ti+w−1 contain p.

Example 1. If t = “dans ville il y a vie” (a French advertisement), then “vie” is
a subword and hence a subsequence of t. “vile” is neither a subword, nor a subse-
quence of t in a 4-window, but it is a subsequence of t in a 5-window. “ville” and
“vie” are two minimal windows containing the pattern “vie”. See figure 1. !�

ylisnad v i l l i eve a

Fig. 1. A text with two 5-windows containing “vie” (in gray), and a single 5-window
containing “vile”

Given an alphabet A, a text t on A∗ and a pattern P , we consider five window
problems:

– Problem 1. Given a compression of t and a pattern P , to decide whether
pattern P is a subsequence of text t.

– Problem 2. Given a compression of t and a pattern P , to compute the
number of minimal windows of t containing pattern P as a subsequence.

– Problem 3. Given a compression of t and a pattern P , to decide whether
pattern P is a subsequence of a w-window of text t.

– Problem 4. Given a compression of t, a pattern P , and a number w, to
compute the number of w-windows of t containing pattern P as a subse-
quence.

– Problem 5. Given a compression of t, a pattern P , and a number w, to
compute the number of minimal windows of t which are of size at most w
and which contain pattern P as a subsequence.

4 The Window Subsequence Algorithm

4.1 Auxiliary Data Structures We Are Using

From now on we will consider a text t compressed by an SLP P of size m. Let
|P | = k, and let P1, . . . , Pl (by convention P1 = P ) be all the different subwords
of pattern P . We may note that l = 1 + 2 + · · ·+ k = k(k + 1)/2 ≤ k2.

We introduce two basic and three problem-oriented data structures.
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The basic structures are two m× l arrays.

Left inclusion array. For every non-terminal Xi of program P and every sub-
word Pj of pattern P , denote by Li,j the length of the shortest prefix of val(Xi)
containing Pj . If there is no such prefix we set Li,j =∞.

val(Xi) =

Li,j symbols

∗ . . . ∗ pα ∗ . . . ∗ pα+1 ∗ . . . ∗ pα+lj ∗ . . . ∗ (5)

Fig. 2. Li,j for Pj = pαpα+1 . . . pα+lj

Right inclusion array. For every non-terminal Xi of program P and every
subword Pj of pattern P , denote by Ri,j the length of the shortest suffix of
val(Xi) containing Pj . If there is no such prefix we set Ri,j = ∞.

The data structures we will use to solve the problems are the following three
one-dimensional integer arrays:

Minimal windows. For every non-terminal Xi of program P , we denote by
MWi the number of minimal windows of val(Xi) containing P .

Windows of constant size. For every non-terminal Xi of program P , we
denote by FWi the number of w-windows of val(Xi) containing P .

Bounded minimal windows. For every non-terminal Xi of program P , we
denote by BMWi the number of minimal windows of val(Xi) which contain P
and have size at most w.

4.2 Efficient Computation of These Data Structures

Let us show how to efficiently compute the above five arrays.

Left inclusion array. We use structural induction over non-terminals of the
SLP in order to compute the left inclusions array; the algorithm is as follows:
Basis. If expi = a, then

Li,j =
{ 1 if Pj = a,
∞ otherwise.

Induction. If expi = XpXq, two cases can occur:

(i) either Pj is contained in val(Xp), i.e. Lp,j �=∞; in that case we have Li,j =
Lp,j,

(ii) otherwise, let Pu be the longest prefix of Pj such that Lp,u <∞; in this case
Li,j = |val(Xp)|+ Lq,v where Pv is such that Pj = PuPv.

∗.. ∗
Pu subsequence︷ ︸︸ ︷

piu ∗ .. ∗ piu+1 ∗ .. ∗ piu+lu ∗..∗︸ ︷︷ ︸
val(Xp)

Lq,v symbols︷ ︸︸ ︷
∗.. ∗

Pv subsequence︷ ︸︸ ︷
piv ∗ .. ∗ piv+1 ∗ .. ∗ piv+lv ∗ ..∗︸ ︷︷ ︸

val(Xq)

(6)
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Using binary search to find Pu, the complexity of one inductive step will be
O(log k), and the overall complexity will be O(ml log k) ≤ O(mk2 log k).

Right inclusion array. Analogous to the left inclusions.

Minimal windows. We will use left and right inclusion arrays together with
structural induction on the SLP structure. Let us first describe the intuitive
idea. Minimal windows in val(Xi) for Xi := XpXq are of one of three types: (i)
either they are entirely inside val(Xp), (ii) or they are entirely inside val(Xq),
(iii) or they are overlapping on both val(Xp) and val(Xq). Type (iii) minimal
windows will be called boundary windows (see Figure 3). To count the number
of minimal windows in Xi we add the already counted numbers for Xp and
Xq together with the number Bp,q of boundary windows. Notice that for every
decomposition P = PuPv there is at most one boundary minimal window in
which Pu is inside val(Xp) and Pv is inside val(Xq). Using left and right inclusion
arrays we can determine decompositions of P for which such a boundary minimal
window exists. However, counting must be done carefully: the same boundary
window may correspond to several decompositions of P . So we run over all
decompositions from |Pu| = k−1 to |Pu| = 1 and update our counter only when
the following two conditions hold: 1) Pu (resp. Pv) is embedded in Xp (resp. Xq)
and 2) the window is shifted from the previous successful embedding. To check
these conditions, we will use a marker α in the program computing Bp,q: α will
be set to 1 if we know that the next-to-be-studied window cannot be minimal.
For the first and last boundary windows, we must also check that they do not
contain a minimal window of type (i) or (ii), and this is also taken care of by
marker α.

∗.. ∗

Rp,u symbols

Pu subsequence

p1 ∗ .. ∗ p2 ∗ ... ∗ pl ∗..∗
val(Xp)

Lq,v symbols

∗.. ∗
Pv subsequence

pl+1 ∗ .. ∗ pl+2 ∗ .. ∗ pk ∗ ..∗
val(Xq)

(7)

Fig. 3. A boundary window of length Rp,u + Lq,v for P = PuPv, Pu = p1 . . . pl, Pv =
pl+1 . . . pk

The algorithm is as follows.
Basis. If expi = a, then

MWi =
{ 1 if P = a,

0 otherwise.

Induction. If expi = XpXq, then MWi = MWp + MWq + Bp,q .
Bp,q is determined by the following FOR loop (by convention “advance” is a
shorthand for u := u′; v := v′; and we write u (resp v) instead of Pu (resp.
Pv) ):

B := 0; α := 0; u := p1 . . . pk−1; v := pk;
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IF (Rp,u = Rp,P <∞) THEN α := 1; ENDIF
FOR l = k − 1 TO 1 DO

l := l− 1; u′ := p1 . . . pl; v′ := pl+1 . . . pk;
IF (Lq,v′ = Lq,v ∧∞ > Rp,u ≥ Rp,u′) THEN α := 0; advance; ENDIF
IF (∞ > Lq,v′ > Lq,v ∧Rp,u = Rp,u′) THEN

IF α �= 1 THEN B := B + 1; α := 1; ENDIF advance; ENDIF
IF (∞ > Lq,v′ > Lq,v ∧∞ > Rp,u > Rp,u′) THEN

IF α �= 1 THEN B := B + 1; ENDIF α := 0; advance; ENDIF
ENDFOR
IF (Lq,P > Lq,v′ ∧ α �= 1) THEN B := B + 1; ENDIF
Bp,q = B;

Thus the complexity of computing each Bp,q is O(k) and the overall com-
plexity of computing the MW structure is O(mk).

Minimal windows of size bounded by w. Computing this structure is the
same as computing minimal windows. We just ignore boundary minimal windows
of size more than w (i.e. increment B only if (Rp,u + Lq,v) ≤ w).

Windows of constant size w. The main observation is that any w-window
containing P also contains a minimal window containing P . Again w-windows of
val(Xi) (with expi = XpXq) containing P are (i) either entirely inside val(Xp),
(ii) or entirely inside val(Xq), (iii) or overlapping on both val(Xp) and val(Xq).
Thus we only need to explain how to count boundary windows. In the same way
as in the previous section we run over all decompositions of P , starting from
P entirely contained in val(Xp) to finish with P entirely contained in val(Xq).
For every decomposition, using information from left and right inclusion arrays,
we find a minimal window corresponding to this decomposition. In counting the
number of boundary w-windows, we have to be careful, because several minimal
windows can be included in the same w-window containing P as a subsequence;
hence we cannot just count the number of w-windows containing a minimal
window: we have to only count the new w-windows contributed by the current
minimal window.

The number FBp,q of boundary w-windows is determined by a FOR loop
quite similar to the previous one; we replace the statement B := B + 1; by a
subprogram called “update” which is defined by:
IF (Rmin + Lq,v) ≤ w

THEN B := B +Rmin −Rp,u;
ELSE IF (Rp,u + Lq,v) ≤ w THEN B := B + w − (Rp,u + Lq,v) + 1; ENDIF

ENDIF
Rmin := Rp,u;

The number FBp,q boundary w-windows is defined by the following FOR loop:

B := 0; l := k; u := P ; Rmin := Rp,P ; // w-windows with P in val(Xp)
IF (Rmin < w) THEN B := B + w −Rmin; ENDIF
α := 0; u := p1 . . . pk−1; v := pk;
IF (Rp,u = Rp,P <∞) THEN α := 1; ENDIF
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FOR l = k − 1 TO 1 DO // w-windows with P in val(Xp) and val(Xq)
l := l− 1; u′ := p1 . . . pl; v′ := pl+1 . . . pk;
IF (Lq,v′ = Lq,v ∧∞ > Rp,u ≥ Rp,u′) THEN α := 0; advance; ENDIF
IF (∞ > Lq,v′ > Lq,v ∧Rp,u = Rp,u′) THEN

IF α �= 1 THEN update; α := 1; ENDIF advance; ENDIF
IF (∞ > Lq,v′ > Lq,v ∧∞ > Rp,u > Rp,u′) THEN

IF α �= 1 THEN update; ENDIF α := 0; advance; ENDIF
ENDFOR
IF (Lq,P > Lq,v′ ∧ α �= 1) THEN update; ENDIF
IF (Rmin+Lq,P ) ≤ w // w-windows with P in val(Xq)

THEN B := B +Rmin − 1;
ELSE IF Lq,P ≤ w THEN B := B + w − Lq,P ; ENDIF

ENDIF
FBp,q = B;

So we can estimate the complexity of this step by O(k) and and the overall
complexity of computing the FW structure is O(mk).

4.3 Final Algorithm and Its Complexity

Our structures contain answers to all five problems:

1. Pattern P is a subsequence of text t iff Lm,1 �= ∞ (letting P1 = P ),
2. The number of minimal windows of t which contain P is equal to MWm,
3. Pattern P is a subsequence of some w-window iff FWm �= 0,
4. The number of w-windows containing P is equal to FWm,
5. The number of minimal windows of size at most w and which contain P is

equal to BMWm.

So the final complexity of our algorithm in the case of compression by
straight-line program is O(mk2 log k), where m is the size of the compressed
text and k is the pattern size.

Since LZW is easily converted to SLP, for LZW compression the complexity
of our algorithm is O(mk2 log k), wherem is now the size of the LZW-compressed
text.

For LZ compression we also can convert it to SLP. That gives as complexity
O(mk2 log k logn). Herem is the size of the LZ-compressed text, n is the original
text size and k is the pattern size.

5 Conclusions

We introduced in the present paper a new algorithm for a series of window subse-
quence problems. We showed that for SLP and LZW compression our algorithm
is linear in the size of the compressed text. In the case of LZ compression it
is only logn times worse than linear. These results show that all subsequence
search problems can be done efficiently for compressed texts without unpacking.

An open question we have is the following. Is it possible to reduce the k-
dependant factor in our algorithm complexity?
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Efficient Algorithms in Zero-Characteristic
for a New Model of Representation

of Algebraic Varieties

Alexander L. Chistov

St. Petersburg Department of Steklov Mathematical Institute,
Fontanka 27, St. Petersburg 191011, Russia

Abstract. We suggest a model of representation of algebraic varieties
based on representative systems of points of its irreducible components.
Deterministic polynomial–time algorithms to substantiate this model are
described in zero–characteristic. The main result here is a construction
of the intersection of algebraic varieties. As applications we get efficient
algorithms for constructing the smooth stratification and smooth cover
of an algebraic variety introduced by the author earlier.

The present work concludes the series of papers [1], [2], [3], [4], [5], [6], [11], [7],
[8] (the correction of Lemma 2 [8], see in [9]), [9], [10], where the polynomial–time
algorithms for to algebraic varieties in zero–characteristic are suggested (we do
not use the results of [10] in the present paper; but the particular case of [10]
from [7] is necessary here). Before formulating our results we describe how to
give a quasiprojective algebraic variety using a representative system of points
of its irreducible components. The model of representation of algebraic varieties
suggested here slightly generalizes the one outlined in [6], see the remarks below.
In [6] the description of the algorithms for this representation was postponed. It
hase become possible only using the results of four more papers [4], [7], [8], [9].

Let k be a field of zero–characteristic with algebraic closure k. Let X0, X1, . . .
be independent variables over k. Denote by Pn(k), n ≥ 0, the projective space
over the field k with coordinates X0, . . . , Xn. We shall suppose that Pn(k) is
defined over k (the structure of defined over k algebraic variety on Pn(k) is
given here, e.g., by the homogeneous ring k[X0, . . . , Xn] defined over k). For
arbitrary homogeneous polynomials g1, . . . , gm ∈ k[X0, . . . , Xn] we shall denote
by Z(g1, . . . , gm) the set of all common zeroes of polynomials g1, . . . , gm in Pn(k).
The similar notations will be used for the sets of zeroes of ideals and polynomials
with other fields of coefficients in affine and projective spaces (this will be seen
from the context).

Let W be a quasiprojective algebraic variety in Pn(k) and W is defined over
k. Then we represent

W =
⋃

1≤i≤b

W (i) \
⋃

b+1≤i≤a

W (i), (1)

D. Grigoriev, J. Harrison, and E.A. Hirsch (Eds.): CSR 2006, LNCS 3967, pp. 137–146, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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where 1 ≤ b ≤ a are integers, and all W (i), 1 ≤ i ≤ a, are projective algebraic
varieties in Pn(k) defined over k. Each algebraic variety W (i), 1 ≤ i ≤ a, is a
union of some irreducible components of the variety V (i) = Z(f (i)

1 , . . . , f
(i)
m(i)) ⊂

Pn(k) where homogeneous polynomials f
(i)
1 , . . . , f

(i)
m(i) ∈ k[X0, . . . , Xn] are given,

m(i) ≥ 1. For every 0 ≤ s ≤ n denote by V (i,s) (respectively W (i,s)) the union of
all irreducible components of dimension n− s of Z(f (i)

1 , . . . , f
(i)
m(i)) (respectively

W (i)). Therefore W (i,s) is a union of some irreducible components of V (i,s). For
every 0 ≤ s ≤ n the family of linear forms L(i,s)

s+1 , . . . , L
(i,s)
n ∈ k[X0, . . . , Xn] is

given such that the number of points

#V (i,s) ∩ Z(L(i,s)
s+1 , . . . , L

(i,s)
n ) < +∞ (2)

is finite, every point ξ ∈ V (i,s) ∩ Z(L(i,s)
s+1 , . . . , L

(i,s)
n ) is a smooth point of the

algebraic variety Z(f (i)
1 , . . . , f

(i)
m(i)), and the intersection of the tangent spaces in

the point ξ of V (i)
s and Z(L(i,s)

s+1 , . . . , L
(i,s)
n ) is transversal, i.e.,

T
ξ,V

(i)
s
∩ Z(L(i,s)

s+1 , . . . , L
(i,s)
n ) = {ξ} (3)

(we consider the tangent space T
ξ,V

(i)
s

as a subspace of Pn(k)). The set of points

Ξ(i,s) = W (i,s) ∩ Z(L(i,s)
s+1 , . . . , L

(i,s)
n )

is given. Each point from Ξ(i,s) is represented in form (11), see below. Hence
the following property holds. Let ξ ∈ V (i,s) ∩ Z(L(i,s)

s+1 , . . . , L
(i,s)
n ) and E be the

uniquely defined irreducible over k component of the algebraic variety V (i,s) such
that ξ ∈ E. Then ξ ∈ Ξ(i,s) if and only if E is a component of W (i). In what
follows, unless we state otherwise, we assume that the degrees degX0,...,Xn

f
(i)
j <

d for all i, j.
Thus, formally the suggested in this paper representation ofW is a quadruple

(f, L,Ξ, b), (4)

where f is a family of polynomials

f
(i)
j , 1 ≤ j ≤ m(i), 1 ≤ i ≤ a, (5)

L is a family of linear forms

L(i,s)
w , s+ 1 ≤ w ≤ n, 0 ≤ s ≤ n, 1 ≤ i ≤ a, (6)

and Ξ is a family of finite sets of points

Ξ(i,s), 0 ≤ s ≤ n, 1 ≤ i ≤ a. (7)

Denote also
Ξ(i) =

⋃
0≤s≤n

Ξ(i,s). (8)
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In [6] only the case b = 1 is considered. In the present paper in comparison
with [6] we replace the lower index s by the upper one to avoid an ambiguity of
the notation when one considers more than one algebraic variety, see below.

Notice that (2) and (3) can be always verified using the algorithms from
[3], see the Introduction of [6] for details. Note also that for a given point y ∈
Pn(k) one can decide whether y ∈ W (i,s) using the algorithms from [3], see the
Introduction of [6]. Thus, for a given point y ∈ Pn(k) one can decide also within
the polynomial time whether y ∈ W (i), 1 ≤ i ≤ a, and whether y ∈W .

Let W =
⋃
i∈IWi be the decomposition of W into the union of defined

over k and irreducible over k (respectively irreducible over k) components and
representation (4) is given. Then using Theorem 1 [7] (or more strong Theorem 3
[9]) and Theorem 2 [7] one can construct for every i ∈ I the representation
(f, Li, Ξi, 1) of the irreducible componentWi. The working time of this algorithm
is polynomial in dn and the size of input, see [7] (and also the proof of Theorem 1
for the partial case ν = 1). Notice that the case when Wi is irreducible over k
is reduced to the one of irreducible over k components. Namely, we construct
the minimal field of definition ki of Wi containing k and replace the ground field
k by ki in the representation of Wi, see [7] for details. So in what follows we
consider only the decomposition into defined over k components.

Further, see Theorem 3 below, let W1,W2 be two quasiprojective algebraic
varieties which are similar to W and are given in the similar way (with the same
bound d for degrees of the polynomials). Then one can decide whether W1 = W2
within the time in dn and the size of input. In [6] this is proved only when W1
and W2 are projective algebraic varieties. The general case of quasiprojective
algebraic varieties is difficult.

For the proof of Theorem 2 (and hence also of Theorem 4) we need at first
describe an algorithm for constructing an intersection of ν quasiprojective alge-
braic varieties given in model under consideration within the time in dnν and
the size of input, see Theorem 1 below. This algorithm uses the reduction to the
diagonal. Here one needs to apply Theorem 1 [9]. The last theorem has a long
proof. It is based on [8], [7], [6] and other our papers, see the Introduction of [9].
Besides in Theorem 1 indices of intersection of algebraic varieties are computed
when they are defined. Notice here that at the output of the algorithm from
Theorem 1 the intersection of quasiprojective algebraic varieties is not given in
the model under consideration. The irreducible components of the intersections
not always can be given using representative systems of points of irreducible
components of an algebraic variety V with good upper bounds for degrees of
polynomials giving V . Still at the output of the algorithm from Theorem 1 we
get all the information about the intersection. One can consider the represen-
tation of the intersection of algebraic varieties from assertion (a) of Theorem 1
as a generalization of representation (4) to the case of intersections of algebraic
varieties given in form (4).

Denote m = m(1), and fi = f
(1)
i , 1 ≤ i ≤ m. Let V = Z(f1, . . . , fm) ⊂ Pn(k)

be an algebraic variety. Recall the following definition.
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Definition 1. Smooth cover of the algebraic variety V is a finite family

Vα, α ∈ A, (9)

of quasiprojective smooth algebraic varieties Vα ⊂ Pn(k), α ∈ A such that V is
represented as a union V = ∪α∈AVα. Further, we shall require that all irreducible
components of Vα have the same dimension (which depends only on α). Smooth
stratification of the algebraic variety V is a smooth cover Vα, α ∈ A, of V such
that additionally for any two α1, α2 ∈ A if α1 �= α2 then Vα1 ∩ Vα2 = ∅.
In this paper we assume that the degree of an arbitrary projective algebraic
variety is the sum of the degrees of all its irreducible components (of different
dimensions). The degree of a quasiprojective algebraic variety V is by definition
the degree of its closure in the corresponding projective space.

In [6] using the construction of local parameters from [4] we prove the exis-
tence of smooth cover as well as smooth stratification (9) of the algebraic variety

V with the bound for the degrees of strata 22nC

dn, and the number of strata
22nC

dn (respectively the number of strata 22nC

dn(n+1)/2) for an absolute con-
stant 0 < C ∈ R, see Theorem 2 [6]. The constructions of [6] are quite explicit. It
turns out that it is sufficient to use additionally only Theorem 1 and Theorem 2
(the last one only in the case (ν, nn1) = (3, 2)) to obtain the algorithms for con-
structing the smooth cover and smooth stratification from Theorem 2 [6] within

the time polynomial in 22nC

dn
2

and the size of input, see Theorem 4 below.
Now we proceed to the precise statements. Let the integers a, b;m(i), 1 ≤ i ≤

b, the homogeneous polynomials f
(i)
j ∈ k[X0, . . . , Xn], 1 ≤ j ≤ m(i), 1 ≤ i ≤ a,

the algebraic varieties V (i), W (i), and W be as above.
Let the field k = Q(t1, . . . , tl, θ) where t1, . . . , tl are algebraically indepen-

dent over the field Q and θ is algebraic over Q(t1, . . . , tl) with the minimal
polynomial F ∈ Q[t1, . . . , tl,Z] and leading coefficient lcZF of F is equal to 1.
We shall represent each polynomial f = f

(i)
j in the form

f =
1
a0

∑
i0,...,in

∑
0≤j<degZ F

ai0,...,in,jθ
jX i0

0 · · ·X in
n ,

where a0, ai0,...,in,j ∈ Z[t1, . . . , tl], G CD i0,...,in,j(a0, ai0,...,in,j) = 1. Define the
length l(a) of an integer a by the formula l(a) = min{s ∈ Z : |a| < 2s−1}.
The length of coefficients l(f) of the polynomial f is defined to be the maximum
of lengths of coefficients from Z of polynomials a0, ai0,...,in,j and the degree

degtγ (f) = max
i0,...,in,j

{degtγ (a0), degtγ (ai0,...,in,j)} ,

where 1 ≤ γ ≤ l. In the similar way we shall define degrees and lengths of integer
coefficients of other polynomials, in particular degtγ F and l(F ) are defined.
We shall suppose that we have the following bounds

degX0,...,Xn
(f (i)

j ) < d, degtγ (f (i)
j ) < d2, l(f (i)

j ) < M, (10)
degZ(F ) < d1, degtγ (F ) < d1, l(F ) < M1.
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for all 1 ≤ j ≤ m(i), 1 ≤ i ≤ a, 1 ≤ γ ≤ l. The size L(f) of the polynomial f is
defined to be the product of l(f) to the number of all the coefficients from Z of
f in the dense representation. We have

L(f (i)
j ) < (

(
d + n
n

)
d1 + 1)dl2M

Similarly L(F ) < dl+1
1 M1.

Remark 1. Unless we state otherwise, in what follows we suppose l to be fixed.
The working time of the algorithms from Theorem 1, Theorem 2 and Theorem 4,
see below, is essentially the same as for solving systems of polynomial equations
with a finite set of solutions in the projective space. So this theorems can be
formulated also in the case when l is not fixed. Notice that the constants O(. . .),
see Theorem 1, Theorem 2 and Theorem 4 below, in the estimate of the lengths
of integer coefficients of linear forms L′

j, Lj are absolute; they does not depend
on l.

We shall represent a point z ∈ V with coordinates from a finite extension of k as
follows. An index 0 ≤ i0 ≤ n is known such that Xi0(z) �= 0 and an isomorphism
of fields

k(z) = k((X1/Xi0)(z), . . . , (Xn/Xi0)(z)) = k[η] , k[Z]/(Φ) (11)

is given where η =
∑

0≤i≤n ci(Xi/Xi0)(z), the coefficients ci ∈ Z are given and
Φ ∈ k[Z] is minimal polynomial of η over k with leading coefficient lcZΦ = 1 (so
the point z is defined up to a conjugation over k).

Let g ∈ k[η] be an arbitrary element. Then g = G(η) for the uniquely defined
polynomial A ∈ k[Z] such that degZ G < degZ Φ. The length of integer coeffi-
cients l(g), the size L(g) and the degrees degtα g, 1 ≤ α ≤ l, of g are defined by
the formulas

l(g) = l(G), L(g) = L(G), degtα g = degtα G.

Let us define the size of the point z to be L(Φ) +
∑

0≤i≤n L(Xi/Xi0). Now let
Ξ be an arbitrary finite set of points defined over k, and every point from Ξ is
given in form (11). Hence Ξ gives a zero–dimensional algebraic varieties defined
over k. Put the size L(Ξ) of Ξ to be the sum of sizes of its irreducible over k
components.

Recall that in [9] we give the definition of transversality of intersection of
algebraic varieties. Now we give the analogous natural definition related to the
proper intersections. Let W1, . . . ,Wν ⊂ Pn(k), ν ≥ 1, be ν quasiprojective al-
gebraic varieties defined over k. Let E be an arbitrary defined over k and irre-
ducible over k component of W1 ∩ . . . ∩Wν . We shall say that the intersection
W1∩ . . .∩Wν is proper at E (in the ambient space Pn(k)) if and only if for every
defined over k and irreducible over k component Ei, 1 ≤ i ≤ ν, of Wi such that
Ei ⊃W the equality

∑
1≤i≤ν(n− dimEi) = n−dimE holds (and hence dimEi

depends only on i). The intersection of W1, . . . ,Wν is proper (in the ambient
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space Pn(k)) if and only if it is proper at every its defined over k and irreducible
over k component.

If ν = 2 then the index of intersection i(W1,W2;E) = i(W1,W2;E′) where E′

is an arbitrary irreducible over k component of E, and the index of intersection
i(W1,W2;E′) is defined in the usual way.

For an arbitrary ν > 2 we define the index of intersection i(W1, . . . ,Wν ;E) of
the algebraic varietiesW1, . . . ,Wν at E recursively by the formula i(W1, . . . ,Wν ;
E) =

∑
E′′ i(W1, . . . ,Wν−1;E′′)i(E′′,Wν ;E) where E′′ runs over all the irre-

ducible over k components of W1 ∩ . . . ∩Wν−1 such that E′′ ⊃ E. For ν = 1 it
is natural to put i(W1;E) = 1.

Here all the indices of intersection are considered in Pn(k). To specify this we
denote i

Pn(k)(W1, . . . ,Wν ;E) = i(W1, . . . ,Wν ;E). Assume that all Wj , 1 ≤ j ≤
ν, are subvarieties of an affine space An(k). One can identify An(k) = Pn(k) \
Z(X0). We shall denote also in this case i

An(k)(W1, . . . ,Wν ;E) = i(W1, . . . ,

Wν ;E) when the last index of intersection is defined.
We shall use the reduction to diagonal for indices of intersection. Namely,

let ν ≥ 1 be an integer. Let us identify the affine space Anν(k) = (An(k))ν . Put
Δ = {(x, x, . . . , x) ∈ Anν(k) : x ∈ An(k)} to be the diagonal subvariety. Now
we identify

An(k) = (An(k))ν ∩Δ. (12)

Let W1, . . . ,Wν be affine algebraic varieties in An(k) and E be a defined over k
and irreducible over k component of W1∩ . . .∩Wν such that the last intersection
is proper at E. Then by (12) the variety E is a defined over k and irreducible
over k component of (W1 × . . . ×Wν) ∩ Δ. Obviously the last intersection is
proper at E. We have

i
An(k)(W1, . . . ,Wν ;E) = i

Anν(k)(W1 × . . .×Wν , Δ;E). (13)

This formula of reduction to diagonal is well known for ν = 2. For an arbitrary
ν it is proved by the induction on ν using the general properties of indices of
intersection (we leave the details to the reader).

Let ν ≥ 1 be an integer. For every integer 1 ≤ α ≤ ν let mα(i), aα, bα,
f

(i)
α,j, Wα, Vα, W (i)

α , V (i)
α , W (i)

α , V (i,s)
α , W (i,s)

α , L(i,s)
α,β , Ξ(i,s)

α , (fα, Lα, Ξα, bα) = ρα

are similar to the introduced above m(i), a, b, f
(i)
j , W , V , W (i), V (i), W (i),

V (i,s), W (i,s), L(i,s)
β , Ξ(i,s), (f, L,Ξ, b) = ρ respectively. In what follows in this

paper we suppose that inequalities (10) with f
(i)
α,j in place of f

(i)
j hold for every

1 ≤ α ≤ ν.

Theorem 1. Assume that for every 1 ≤ α ≤ ν a representation (fα, Lα, Ξα,
bα) of a quasiprojective algebraic variety Wα is given. Then one can construct
linear forms L0, . . . , Ln+1 ∈ k[X0, . . . , Xn] with integer coefficients of length
O(nν log d +

∑
1≤i≤ν log bi + log(

∑
1≤i≤ν ai)), the finite set of indices J , and

for every j ∈ J the finite set Ξj of points from W1 ∩ . . . ∩Wν (each point is
represented in form (11)) such that the following assertions hold.
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(a) For every j ∈ J there is the unique defined over k and irreducible over k
component of W1 ∩ . . . ∩Wν (denote it by Ej) such that dimEj = n− s(j)
and Ξj = Ej ∩ Z(Ls(j)+1, . . . , Ln) in Pn(k). Conversely, for every defined
over k and irreducible over k component E′ of W1 ∩ . . .∩Wν there is j′ ∈ J
such that E′ = Ej′ . Hence W1 ∩ . . .∩Wν =

⋃
j∈J Ej is the decomposition of

W1∩ . . .∩Wν into the union of irreducible over k components. Let Ej be the
closure of Ej with respect to the Zariski topology in Pn(k). Then for every
j ∈ J

Ξj ∩ Z(L0) = ∅, #Ξj = #(Ln+1/L0)(Ξj) = degEj (14)

(here and below #(.) denotes the number of elements of a set), and all points
of Ξj are smooth points of W1 ∩ . . . ∩Wν . The variety

Ej = Ej \
( ⋃

1≤α≤ν

⋃
bα+1≤i≤aα

W (i)
α

)
.

(b) If the intersection of W1, . . . ,Wν is proper at Ej then one can compute the
index of intersection i

Pn(k)(W1, . . . ,Wν ;Ej), and for every point ξ ∈ Ξj the
equality i

Pn(k)(W1, . . . ,Wν ;Ej) = i
Pn(k)(W1, . . . ,Wν ,Z(Ls(j)+1, . . . , Ln); ξ)

holds.
(c) For an arbitrary point z ∈ Pn(k) (given in form (11)) one can decide whether

z ∈ Ej, and more than that, compute the multiplicity μ(z, Ej) of the point z
at Ej.

(d) Let us identify the set of all (n+2)–tuples of linear forms from k[X0, . . . , Xn]
with the affine space A(n+1)(n+2)(k). For every j ∈ J and an arbitrary λ∗ =
(L∗

0, . . . , L
∗
n+1), where all L∗

j ∈ k[X0, . . . , Xn] are linear forms, put Ξ∗
j =

Ej ∩ Z(L∗
s(j)+1, . . . , L

∗
n) ⊂ Pn(k). Let l ∈ A(n+1)(n+2)(k) be a line defined

over a field k′ such that λ = (L0, . . . , Ln+1) ∈ l. Then for all λ∗ ∈ l(k′)
(here l(k′) is the set of all k′–points of l), except at most a polynomial in
dnν(

∑
1≤i≤ν ai)

∏
1≤α≤ν bα number, assertion (a) holds with λ∗, Ξ∗

j , j ∈ J ,
in place of λ,Ξj, j ∈ J . For every element λ∗ ∈ l(k′) one can decide whether
assertions (a) hold with λ∗, Ξ∗

j , j ∈ J , in place of λ,Ξj, j ∈ J .

The working time of the algorithm for constructing linear forms L0, . . . , Ln
and the family of finite sets Ξj, j ∈ J , satisfying (a) and also of the algo-
rithm from assertion (b) is polynomial in dnν ,

∏
1≤α≤ν bα, and the sum of sizes∑

1≤α≤ν L((fα, Lα, Ξα, bα)). More precisely, this working time is polynomial in
dnν ,

∏
1≤α≤ν bα,

∑
1≤α≤ν aα, M , M1, d1, d2,

∑
1≤α≤ν, 1≤i≤aα

m(α, i), and∑
0≤s≤n, 1≤α≤ν, 1≤i≤aα

L(Ξ(i,s)
α ),

∑
0≤s≤n, s+1≤w≤n, 1≤α≤ν, 1≤i≤aα

L(L(i,s)
α,w ).

The working time of the algorithm from (c) (respectively (d)) is polynomial in
the same values and the size L(z) of the point z (respectively the size L(λ∗) of
the element λ∗).
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Theorem 2. Suppose that the assumptions of Theorem 1 hold, i.e., for every
1 ≤ α ≤ ν a representation (fα, Lα, Ξα, bα) of a quasiprojective algebraic va-
riety Wα is given. Let ν1 be an integer such that 1 ≤ ν1 ≤ ν. Then one can
construct linear forms L0, . . . , Ln+1 ∈ k[X0, . . . , Xn] with integer coefficients of
length O(nν log d+

∑
1≤i≤ν log bi+log(

∑
1≤i≤ν ai)), the finite set of indices J (1)

(respectively J (2)), and for every j ∈ J (1) (respectively j ∈ J (2)) the finite set
Ξj of points from W1 ∩ . . . ∩Wν1 (respectively Wν1+1 ∩ . . . ∩Wν) such that the
following assertions hold.

(a) For every j ∈ J (1) (respectively j ∈ J (2)) there is the unique defined over k
and irreducible over k component E of W1 ∩ . . .∩Wν1 (respectively Wν1+1 ∩
. . . ∩Wν) such that dimE = n − s(j) and Ξj = E ∩ Z(Ls(j)+1, . . . , Ln) in
Pn(k). Denote E = Ej. Conversely, for every defined over k and irreducible
over k component E′ of W1 ∩ . . .∩Wν1 (respectively Wν1+1 ∩ . . .∩Wν) there
is j′ ∈ J (1) (respectively j′ ∈ J (2)) such that E′ = Ej′ . Hence

W1 ∩ . . . ∩Wν1 =
⋃

j∈J(1)

Ej , Wν1+1 ∩ . . . ∩Wν =
⋃

j∈J(2)

Ej

are the decompositions of W1∩. . .∩Wν1 and Wν1+1∩. . .∩Wν into the unions
of irreducible over k components. Let Ej be the closure of Ej with respect to
the Zariski topology in Pn(k). Then for every j ∈ J (1) (respectively j ∈ J (2))

Ξj ∩ Z(L0) = ∅, #Ξj = #(Ln+1/L0)(Ξj) = degEj , (15)

and all the points of Ξj are smooth points of W1 ∩ . . . ∩Wν1 (respectively
Wν1+1 ∩ . . .∩Wν). Put A(1) = {1, . . . , ν1}, A(2) = {ν1 + 1, . . . , ν}. Then for
every j ∈ J (i), i = 1, 2 the variety

Ej = Ej \
( ⋃
α∈A(i)

⋃
bα+1≤i≤aα

W (i)
α

)
.

(b) One can decide for every j1 ∈ J (1) for every j2 ∈ J (2) whether Ej1 ⊂ Ej2 .
More precisely, for the constructed linear forms L0, . . . , Ln+1 the inclusion
Ej1 ⊂ Ej2 holds if and only if Ξj1 ⊂ Ej2 .

(c) One can decide for every j1 ∈ J (1) for every j2 ∈ J (2) whether Ej1 ⊂ Ej2 .

The working time of each of the algorithms from this theorem is polynomial
in dnν ,

∏
1≤α≤ν bα, and the sum of sizes

∑
1≤α≤ν L((fα, Lα, Ξα, bα)). More pre-

cisely, the considered working time is polynomial in dnν ,
∏

1≤α≤ν bα,
∑

1≤α≤ν aα,
M , M1, d1, d2,

∑
1≤α≤ν, 1≤i≤aα

m(α, i), and∑
0≤s≤n, 1≤α≤ν, 1≤i≤aα

L(Ξ(i,s)
α ),

∑
0≤s≤n, s+1≤w≤n, 1≤α≤ν, 1≤i≤aα

L(L(i,s)
α,w ).

As an immediate consequence of Theorem 2 we get the following result.

Theorem 3. Assume that representations (fα, Lα, Ξα, bα), α = 1, 2 of two
quasiprojective algebraic variety Wα are given. Then one can decide whether
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W1 ⊂W2. Hence one can decide also whether W2 ⊂W1 and whether W1 = W2.
The working time of this algorithm is polynomial in dn and the sizes L((fα, Lα,
Ξα, bα)) of the given representations of Wα, α = 1, 2.

Theorem 4. One can construct a smooth cover (respectively a smooth strati-
fication) Vα, α ∈ A, of the algebraic variety V such that every quasiprojective
algebraic variety Vα is defined over k, irreducible over k, and represented in the
accepted way. Let dimVα = n − s where 0 ≤ s ≤ n, and s = s(α) depends
on α. Let (4) be the constructed representation of Vα (it depends on α). Denote
hα,j = f

(1)
j , 1 ≤ j ≤ m(1), and Δα = f

(2)
1 if a ≥ 2, see (5). Then the constructed

representation of Vα satisfies the following properties.

(i) The integer b = 1. For the case of smooth cover a = 2 if s < n, and a = 1

if s = n. For the case of smooth stratification a ≤ 22nC

dn(n+1)/2 for an
absolute constant 0 < C ∈ R.

(ii) m(1) = s and if a ≥ 2 then m(2) = 1. Hence if a ≥ 2 then Vα is an
irreducible component of the algebraic variety Z(hα,1, . . . , hα,s) \Z(Δα) in
the case of the smooth cover (respectively an open in the Zariski topology
subset of an irreducible component of the latter algebraic variety in the case
of smooth stratification).

(iii) There are linearly independent linear forms Y0, . . . , Yn ∈ k[X0, . . . , Xn]
such that Xi =

∑
0≤j≤n xi,jYj, all the coefficients xi,j ∈ k, all xi,j are

integers with lengths O(2n
C

+ n log d) for an absolute constant C > 0, and

Δα = det(∂hα,i/∂Yj)1≤i,j≤s = det(
∑

0≤v≤n

xv,j∂hα,i/∂Xv)1≤i,j≤s.

Hence Vα is a smooth algebraic variety by the implicit function theorem.
Besides that, in the case of smooth cover one can take Yi = Xσ(i) for some
permutation σ of the set 0, . . . , n.

(iv) The lengths of integer coefficients of all linear forms from the family L is
O(2n

C

+ n log d) for an absolute constant 0 < C ∈ R.
(v) For all α ∈ A, 1 ≤ j ≤ s(α) degrees degX0,...,Xn

hα,j are less than n2s(α)C

d
for an absolute constant 0 < C ∈ R. In the case of smooth stratification for
all i > 2, j degrees degX0,...,Xn

f
(i)
j are less than 22nC

d.
(vi) For all α ∈ A, 1 ≤ j ≤ s(α) lengths of coefficients of polynomials hα,j

are bounded from above by a polynomial in n2s(α)C

dns(α), d1, d2, M , M1,
m for an absolute constant 0 < C ∈ R. Further, in the case of smooth
stratification lengths of coefficients of all polynomials from the family f are
bounded from above by a polynomial in 22nC

dn
2
, d1, d2, M , M1, m for an

absolute constant 0 < C ∈ R. The similar estimation holds for the size L(ξ)
of each point ξ ∈ Ξ(i,s) for all i, s, see (7).

(vii) The number of elements #A of A is bounded from above by 22nC

dn for

the case of smooth cover (respectively 22nC

dn(n+1)/2 for the case of smooth
stratification) for an absolute constant 0 < C ∈ R.
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The working time of the algorithm for constructing the smooth cover (respectively

the smooth stratification) in the size of the output and 22nC

dn
2
, d1, d2, M , M1,

m, where 0 < C ∈ R is an absolute constant.
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Resolution-Based Proof Systems�

Stefan Dantchev

Department Computer Science, Durham University,
Science Laboratories, South Road, Durham, DH1 3LE, UK

s.s.dantchev@durham.ac.uk

Abstract. We prove a number of simplified and improved separations between
pairs of Resolution with bounded conjunction proof systems, Res(d), as well
as their tree-like versions, Res∗ (d). The tautologies, which we use, are natural
combinatorial principles: the Least Number Principle (LNPn) and a variant of
the Induction Principle (IPn).

LNPn is known to be easy for resolution. We prove that its relativisation is
hard for resolution, and, more generally, the relativisation of LNPn iterated d
times provides a natural separation between Res (d) and Res (d + 1). We prove
the same result for the iterated relativisation of IPn if the tree-like proof system
Res∗ (d) is considered instead of Res (d).

1 Introduction

We study the power of relativisation in Propositional Proof Complexity, i.e. we are
interested in the following question: Given a propositional proof system is there a first-
order (FO) sentence which is easy but whose relativisation is hard (within the system)?

The main motivation for studying relativisation comes from a work of Krajicek,
[7]. He defines a combinatorics of first order (FO) structure and a relation of covering
between FO structures and propositional proof systems. The combinatorics contains
all the sentences, easy for the proof system. On the other hand, as defined in [7], it is
closed under relativisation. Thus the existence of a sentence, which is easy, but whose
relativisation is hard for the underlying proof system, would imply that it is impossible
to capture the class of “easy” sentences by a combinatorics.

The proof system we consider is Resolution with bounded conjunction, denoted by
Res(d). It is an extension of Resolution in which conjunctions of up to d literals are
allowed instead of single literals. The Tree-like Res(d) is usually denoted by Res∗ (d).
Krajicek proved that Tree-like Resolution, and even Res∗ (d), have combinatorics as-
sociated with it. This follows also from Riis’ complexity gap theorem for Tree-like
Resolution [10], and shows that the sentences, easy for Tree-like Resolution, remain
easy after having been relativised.

The next natural system to look at is Resolution. It is stronger than Res∗ (d) for
any d, 1 ≤ d ≤ n (equivalent to Res∗ (n), in fact), and yet weak enough so that one
could expect that it can easily prove some property of the whole universe, but cannot
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D. Grigoriev, J. Harrison, and E.A. Hirsch (Eds.): CSR 2006, LNCS 3967, pp. 147–158, 2006.
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prove it for an arbitrary subset. As we show in the paper, this is indeed the case. The
example is very natural, Least Number Principle (LNPn), saying that a finite partially
ordered n-element set has a minimal element. It is easy to see that LNPn is easy for
Resolution, and we prove that its relativisation Rel (LNPn) is hard. A more general
result has been proven in [3]; however the lower bound there is weaker. We also consider
iterated relativisation, Reld (d is the number of iterations, a constant), and show that
Reld (LNPn) is hard for Res(d), but easy for Res(d + 1).

We finally consider the relativisation question for Res∗ (d), where the FO language
is enriched with a built-in order. The complexity gap theorem does not hold in this
setting, and we are able to show that relativisation makes some sentences harder. There
is a variant of Induction Principle (IPn), saying that there is a property which: holds
for the minimal element; if it holds for a particular element, there is a bigger one for
which the property holds, too; therefore the property holds for the maximal element.
We prove that Reld (IPn) is easy for Res∗ (d + 1), but hard for Res∗ (d).

More precisely, our results are the following:

1. Any Resolution proof of the relativised Minimum Element Principle,Rel (LNPn)
is of size 2Ω(n). Firstly, this answers positively to the Krajicek’s question. Secondly,
observing thatRel (LNPn) has anO

(
n3

)
-size Res (2), we get an exponential sep-

aration between Resolution and Res (2). A similar result was proven in [12] (see
also [1] for a weaker, quasi-polynomial, separation). Our proof is rather simple, es-
pecially when compared to the proof in [12], which is a corollary of a more general
result,

2. Reld (LNPn) has an O
(
dn3

)
-size Res (d + 1) proof, but requires 2Ω(nε)-size

Res (d) proof. This holds for any constant d (ε is a constant, dependent on d). These
separations were first proven in [12]. As a matter of fact, we use their method but
our tautologies are more natural, and our proof is a bit simpler.

3. Reld (IPn) has an O
(
dn2

)
-size Res∗ (d + 1) proof, but requires Res∗ (d) proofs

of size 2Ω(n
d ). This holds for any d, 0 ≤ d ≤ n. A similar result was proven in [4].

Again, our tautologies are more natural, while the proof is simpler.

The rest of the paper is organised as follows. In the section 2 we define Resolution and
its extension Res(d), and outline general methods for proving lower bounds for these
proof systems. In the sections 3 and 4 we prove the results about Resolution complexity
of Minimal Element Principle and Tree-like Resolution complexity of Induction Prin-
ciple respectively.

2 Preliminaries

2.1 Denotations and Conventions

We use the notation [k] = {1, 2, . . . k}. We denote by . and ⊥ the boolean values
“true” and “false”, respectively. A literal is either a propositional variable or a negated
variable. A d-conjunction (d-disjunction) is a conjunction (disjunction) of at most d
literals. A term (d-term) is either a conjunction (d-conjunction) or a constant, . or
⊥. A d-DNF (or d-clause) is a disjunction of (unbounded number of) d-conjunctions.
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Sometimes, when clear from the context, we will say “clause” instead of “d-clause”,
even though, formally speaking, a clause is 1-clause.

As we are interested in translating FO sentences into sets of clauses, we assume that
a finite n-element universe U is given. The elements of U are the first n positive natural
numbers, i.e. U = [n]. When we say “element” we always assume an element from
the universe. We will not explain the translation itself; the details can be found in [11]
or [7].

2.2 Resolution and Extensions

We shall describe the proof system Res(d) which is an extension of Resolution, first
introduced by Krajicek [6]. It is used to prove inconsistency of a given set of d-clauses.
We start off with the given clauses and derive new ones. The goal is to derive the empty
clause.

There are four derivation rules. The ∧-introduction rule is

C1 ∨
∧
j∈J1

Lj C2 ∨
∧
j∈J2

Lj

C1 ∨ C2 ∨
∧
j∈J1∪J2

Lj
.

The cut (or resolution) rule is

C1 ∨
∨
j∈J
Lj C2 ∨

∧
j∈J
¬Lj

C1 ∨ C2
.

The two weakening rules are

C
C ∨

∧
j∈J
Lj

and
C ∨

∧
j∈J1∪J2

Lj

C ∨
∧
j∈J1

Lj
.

Here C’s are d-clauses, L’s are literals, and we have assumed that|J1 ∪ J2| ≤ d, |J| ≤ d.
A Res(d)-proof can be considered as a directed acyclic graph (DAG), whose sources

are the initial clauses, called also axioms, and whose only sink is the empty clause. We
will measure the size of a proof as the number of the internal nodes of the graph, i.e.
the number of applications of a derivation rule.

Whenever we say “we refute a FO sentence in Res(d)”, we mean is that we first
translate the sentence into a set of clauses defined on a finite universe of size n, and
then refute it with Res(d) . The size of the refutation is then a function in n. We will
often use “prove” and “refute” as synonyms.

In the denotation “Res(d)”, d is, in fact, a function in the number of propositional
variables. Important special cases are Res(log) as well as Res(const).

Clearly Res(1) is (ordinary) Resolution. In this case, we have only usual clauses,
i.e. disjunctions of literals. The cut rule becomes the usual resolution rule, and only the
first weakening rule is meaningful.

2.3 Proving Lower Bounds for Resolution and Res(d)

We will first describe the search problem, associated to an inconsistent set of clauses, as
defined in [6]: Given a truth assignment, find a clause, falsified under the assignment.
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We can use a refutation of the given clause to solve the search problem as follows.
We first turn around all the edges of the graph of the proof. The contradiction now
becomes the only root (source) of the new graph, and the axioms and the initial formulae
become the leaves (sinks). We perform a search in the new graph, starting from the root,
which is falsified by any assignment, and always going to a vertex which is falsified
under the given assignment. Such a vertex always exists as the inference rules are sound.
We end up at a leaf, which is one of the initial clauses.

Thus, if we want to prove existence of a particular kind of clauses in any proof,
we can use an adversary argument in solving the search problem. The argument is
particularly nice for Resolution as developed by Pudlak in [8]. There are two players,
named Prover and Adversary. An unsatisfiable set of clauses is given. Adversary claims
wrongly that there is a satisfying assignment. Prover holds a Resolution refutation, and
uses it to solve the search problem. A position in the game is a partial assignment of
the propositional variables. The positions can be viewed as conjunctions of literals.
All the possible positions in the game are exactly negations of all the clauses in the
Prover’s refutation. The game start from the empty position (which corresponds to .,
the negation of the empty clause). Prover has two kind of moves:

1. She queries a variable, whose value is unknown in the current position. Adversary
answers, and the position then is extended with the answer.

2. She forgets a value of a variable, which is known. The current position is then
reduced, i.e., the variable value becomes unknown.

The game is over, when the current partial assignment falsifies one of the clauses. Prover
then wins, having shown a contradiction.

We will be interested in deterministic Adversary’s strategies which allows to prove
the existence of certain kind of clauses in a Resolution refutation.

In order to prove lower bounds on Resolution proofs, we will use the known tech-
nique, “bottleneck counting”. It has been introduced by Haken in his seminal paper
[5] (for the modern treatment see [2]). We first define the concept of big clause. We
then design random restrictions, so that they “kill” (i.e. evaluate to .) any big clause
with high probability (whp). By the union bound, If there are few big clause, there is
a restriction which kills them all. We now consider the restricted set of clauses, and
using Prover-Adversary game, show that there has to be at least one big clause in the
restricted proof, which is a contradiction and completes the argument.

The case of Res(d) is not so easy. A general method for proving lower bounds is
developed in [12]. We first hit the refutation by random restrictions, such that all the d-
clauses in the proof, under the restrictions, can be represented by short boolean decision
trees whp. We then use the fact, proven in [12], that such a proof can be transformed
into small width Resolution proof. Finally we consider the restricted set of clauses, and
using Prover-Adversary game, show that there has to be at least one big clause in the
Resolution proof. This gives the desired contradiction to the assumption that the initial
Res(d) proof contains small number of d-clauses.

The case of Tree-like proofs, either Resolution or Res(d), is much simpler as a tree-
like proof of a given set of clause is equivalent to a decision tree, solving the search
problem. We can use pretty straightforward adversary argument against a decision tree,
in order to show that it has to have many nodes.
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3 Relativised Minimal Element Principle

3.1 Minimal Element Principle (LNPn) and Relativisation

The Minimal Element Principle, LNPn, states that a (partial) order, defined on a finite
set of n elements, has a minimal element. Its negation can be expressed as the following
FO sentence:

∃L ((∀x ¬L (x, x))∧
(∀x, y, z (L (x, y) ∧ L (y, z)) → L (x, z)) ∧ (1)

(∀x∃y L (y, x))) .

Here L (x, y) stands for x < y.

The encoding of LNPn as a set of clauses is as follows. The purely universal part (the
first two lines of (1)) translate straightforwardly into

¬Lii i ∈ [n]
¬Lij ∨ ¬Ljk ∨ Lik i, j, k ∈ [n] ,

while the last line translates into ∨
j∈[n]

sij i ∈ [n]

¬sij ∨ Lji i, j ∈ [n] ,

where s is the Skolem relation, witnessing the existential variable, i.e. for each i sij = .
implies that the j-th element is smaller than the i-th one.

The d-relativised Minimal Element Principle, Reld (LNPn), is as follows. Let Rp,
1 ≤ p ≤ d, be the unary predicates which we relativise by, and let us denote by R (x)
the conjunction

∧
p∈[d]R

p (x). Reld (LNPn) is the following sentence:

∃L ((∀xR (x) → ¬L (x, x))∧
(∀x, y, z R (x) ∧R (y) ∧R (z)→
(L (x, y) ∧ L (y, z)) → L (x, z)) ∧
(∀x∃y R (x) → (R (y) ∧ L (y, x))) ∧
(∃xR (x))) .

The corresponding translation into clauses gives

¬Ri ∨ ¬Lii i ∈ [n]
¬Ri ∨ ¬Rj ∨ ¬Rk ∨ ¬Lij ∨ ¬Ljk ∨ Lik i, j, k ∈ [n] ,

as well as ∨
j∈[n]

sij i ∈ [n]

¬sij ∨ ¬Ri ∨Rq
j i, j ∈ [n] , q ∈ [d] (2)

¬sij ∨ ¬Ri ∨ Lji i, j ∈ [n] ,
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which say that if the element i is in the setR and j is a witness of i (i.e. sij = .) then
j is in the setR, too, and moreover j is smaller than i. Finally we add∨

j∈[n]

tj

¬ti ∨Rp
i i ∈ [n] , p ∈ [d] , (3)

which say thatR, the intersection of the sets Rp, p ∈ [d], is nonempty. Note that in the
above a propositional variable of the form Rp

i corresponds to the formula Rp (x), and
therefore ¬Ri is the disjunction

∨
p∈[d] ¬R

p
i .

3.2 The Upper Bound

We will first prove that Reld (LNPn) is easy for Res (d + 1).

Proposition 1. There is an O
(
dn3

)
Res(d + 1) proof of Reld (LNPn).

Proof. The proof is an easy adaptation of the well known polynomial-size Resolution
refutation of LNPn It can be found in the full version of the paper. �

3.3 An Optimal Lower Bound

We will prove that Rel (LNPn) is exponentially hard for Resolution.

Proposition 2. Any Resolution proof of Rel (LNPn) is of size 2Ω(n).

Proof. The idea is to randomly divide the universe U into two approximately equal
parts. One of them, R, will represent the predicate R; all the variables within it will
remain unset. The rest, C, will be the “chaotic” part; all the variables within C and most
of the variables between C and R will be set at random. It is now intuitively clear that
while C kills with positive probability a certain number of “big” clauses, R allows to
show, via an adversary argument, that at least one such clause must be present in any
resolution refutation, after it has been hit by the random restrictions. Therefore a huge
number of “big” clauses must have been presented in the original refutation.

Let us first observe that the variables ti just ensure that the predicate R is non-empty.
W.l.o.g. we can eliminate them by setting tn = Rn = . and for all i �= n ti = ⊥.

The random restrictions are as follows.

1. We first set all the variables Ri, i ∈ [n− 1], to either . or ⊥ independently at
random with equal probabilities, 1/2. Let us denote the set of variables with Ri =
. by R, and the set of variables with Ri = ⊥ by C, C = U \ R.

2. We now set all the variablesLij with at least one endpoint in C, i.e. {i, j}∩C �= Ø,
to either . or ⊥ independently at random with equal probabilities, 1/2.

3. For each i ∈ C, j �= i we set sij to either . or ⊥ independently at random with
equal probabilities 1/2. Note that it is possible to set all the sij to ⊥, thus violating
an axiom. It however happens with small probability, 1/2n−1 for a fixed i.

4. We finally set all the variables sij with i ∈ R, j ∈ C to ⊥.
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Note the unset variables define exactly the non-relativised principle on R, LNP|R|.
By the Chernoff’s bound the probability that R contains less than n/4 elements is

exponentially small, and we therefore have:

Claim. The probability that the random restrictions are inconsistent (i.e. violate an ax-
iom) or |R| ≤ n/4 is at most (n-1) 2−(n−1) + e−n/16.

A big clause is one which contains at least n/8 busy elements. The element i is busy in
the clause C iff C contains one of the following variables, either positively or negatively:
Ri, Lij , Lji, sij for some j, j �= i.

It can be easily seen that

Claim. A clause, containing k busy elements, does not evaluate to . under the random
restrictions with probability at most (3/4)k/2.

Indeed, let us consider the different cases of a busy variable i in the clause C:

1. The variableRi is present in C: The probability that the corresponding literals does
not evaluate to . is 1/2.

2. The variable sij for some j �= i is present in C: The corresponding literal does not
evaluate to . if either i ∈ R, i.e. it remains unset, or i ∈ C, but it evaluates to ⊥.
The probability of this is 3/4.

3. Either the variable Lij or the variable Lji for some j �= i is present in C. Let us
denote the set of all such elements by V, |V| = l, and the corresponding sub-clause
by E . Construct the graph G with the vertex set V and the edge set E determined
by the variables Lij , i.e. E = {{i, j} | Lij is present in C}. Consider any spanning
forest of G. Assume that all the roots are in R as this only increases the probability
that E does not evaluate to .. Going from the root to the leaves in each tree, we see
that the probability that the corresponding edge does not evaluate to . is 3/4 (the
same reason as in the 2nd case). Moreover all the edge variables are independent
from each other, and also there are at most l/2 roots (exactly l/2 iff the forest
consists of trees having a root and a single leaf only). Therefore the probability that
the sub-clause E does not evaluate to . is at most (3/4)l/2.

As the events from 1, 2 and 3 are independent for different elements from U, we have
completed the argument for observation (3.3)

We can now present the main argument in the proof. Assume there is a resolution
refutation of Rel (LNPn) which contains less than (4/3)n/16 big clauses. From the
observations 3.3 and 3.3, using the union-bound on probabilities, we can conclude that
there is a restriction which is consistent, “kills” all the big clauses (evaluating them
to .), and leaves R big enough (|R| ≥ n/4). Recall that the restricted refutation is
nothing, but a resolution refutation of LNP|R| on R. What remains to show is that any
such refutation must contain a big clause which would contradict to the assumption
there were “few” big clauses in the original refutation.

We will the Prover-Adversary game for LNP|R|. At any time R is represented as
a disjoint union of three sets, R = B 0 W 0 F. B is the set of all the elements busy
in the current clause. The elements of B are always totally ordered. W is the set of
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witnesses for some elements in B, i.e. for each i ∈ B there is an element j ∈ W 0 B
such that sij = .. We assume that, at any time, any element of W is smaller than all the
elements of B. F is the set of all remaining elements which we call “free”. It is obvious
how Adversary maintains these sets in the Prover-Adversary game. When a variable,
which makes an element i ∈ W 0 F busy, is queried he adds i at the bottom of the
totally ordered set B, choose some j ∈ F and move it to W setting sij = .. When all
the variables, which kept an element B busy, are forgotten, Adversary removes i from
B and remove the corresponding witness j from W if it is there (note that it may be in
B, too, in which case it is not removed). In this way Adversary can maintain the partial
assignment consistent as far as B �= Ø. Note also that |B| ≥ |W|. Therefore at the
moment a contradiction is reached we have |B| ≥ |R| /2 ≥ n/8 as claimed. �

3.4 General Lower Bounds: Reld (LNPn) Is Sub-exponentially Hard for
Res (d)

We first give the necessary background from [12].

Definition 1. (Definition 3.1, [12]) A decision tree is a rooted binary tree in which
every internal node queries a propositional variable, and the leaves are labelled by
either . or ⊥.

Thus every path from the root to a leaf may be viewed as a partial assignment. Let
us denote by Brv (T), for v ∈ {.,⊥}, the set of paths (partial assignments) in the
decision tree T which lead from the root to a leaf labelled by v.

A decision tree T strongly represents a DNF F iff for every π ∈ Brv (T), F �π= v.
The representation height of F , h (F), is the minimum height of a decision tree

strongly representing F .

Definition 2. (Definition 3.2, [12])Let F be a DNF, and S be a set of variables. We
say that S is a cover of F iff every conjunction of F contains a variable from S. The
covering number of F , c (F), is the minimum size of a cover of F .

Lemma 1. (Corollary 3, [12]; see also [9] for an improved version) Let d ≥ 1, α > 0,
1 ≥ β, γ > 0, s > 0, and let D be a distribution on partial assignments such that for
every d-DNF G, Prρ∈D [G �ρ �= .] ≤ α2−β(c(G))γ

. Then for every d-DNF F :

Prρ∈D [h (F �ρ) ≥ s] ≤ αd2−2(β/4)d(s/2)γd

.

Lemma 2. (Theorem 10, [12]) Let C be a set of clauses of width at most w. If C has a
Res (d) refutation so that for each line F of the refutation, of Γ , h (F) ≤ w, then C
has a Resolution refutation of width at most dw.

We also need the following construction which is only mentioned in [12], but whose
proof can be found in the full version of the same paper.

Lemma 3. (Sub-sections 8.3 and 8.4 in the full version of [12]) There is an undirected
graph G ([n] ,E) on n vertices and max-degree θ (lnn) such that any Resolution refu-
tation of LNPn, restricted on G, is of width Ω (n).

LNPn, restricted on G, means that for each element i the witness j has to be a
neighbour of i in G, i.e. we set sij = ⊥ whenever {i, j} /∈ E.
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We can now prove the desired result:

Proposition 3. For every constant d ≥ 1 there is a constant εd ∈ (0, 1] such that any
Res(d) refutation of Reld (LNPn) is of size 2Ω(nεd ).

Proof. It is a fairly straightforward, though rather technical, application of Lemma 1. It
can be found in the full version of the paper. �

4 Relativised Induction Principle

In this section we consider a variant of the Induction Principle, denoted further by IPn.
It can be encoded as a FO sentence if a built-in predicate, defining a total order on the
universe, is added to the language. It is easy to show that IPn is easy for Tree-like Res-
olution, and so is Reld (IPn), but for Res∗ (d + 1). Finally we prove that Reld (IPn)
is hard for Res∗ (d).

4.1 Induction Principle

The negation of the Induction Principle, we consider, is the following simple statement:
Given an ordered universe, there is a property P , such that

1. The property holds for the smallest element.
2. If P (x) hold for some x, then there is y, bigger than x, and such that P (y) holds.
3. The property does not hold for the biggest element.

The universe U can now be considered as the set of first n natural numbers. In our
language we can use the relation symbol < with its usual meaning. We can also use any
constant c as well as n− c (note that in the language n denotes the maximal element of
U, while 1 denotes the minimal one). The Induction Principle, we have just described,
can be written as

P (1) ∧ ∀x∃y ((x< y) ∧ (P (x)→ P (y))) ∧ ¬P (n) .

The translation into propositional logic gives the following set of clauses

P1, ¬Pn
n∨

j=i+1

sij 1 ≤ i ≤ n− 1

¬sij ∨ ¬Pi ∨ Pj 1 ≤ i < j ≤ n.

The relativised version translation is

P1, ¬Pn
Rp

1, R
p
n p ∈ [d]

n∨
j=i+1

sij 1 ≤ i ≤ n− 1 (4)

¬sij ∨ ¬Ri ∨Rp
j 1 ≤ i < j ≤ n, p ∈ [d] (5)

¬sij ∨ ¬Ri ∨ ¬Pi ∨ Pj 1 ≤ i < j ≤ n. (6)
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4.2 The Upper Bound

We will first show that Reld (IPn) is easy for Res∗ (d + 1)

Proposition 4. There is an O
(
dn2

)
Res∗ (d + 1) proof of Reld (IPn).

Proof. It is rather straightforward, and can be found in the full version of the paper. �

4.3 The Lower Bound

We will first prove it for d = 1, i.e. that Rel (IPn) is exponentially hard for Tree-like
Resolution. We will then generalise it to any d.

Proposition 5. Any Tree-like Resolution proof of Rel (IPn) is of size 2Ω(n).

Proof. We will use an adversary strategy against the decision tree solving the search
problem.

We say that the variablesPi,Ri and sij for j > i are associated to the i-the element.
When one of these has been queried for the first time by Prover, Adversary fixes all
of them, so that the i-th element becomes busy. Initially only the maximum element
is busy as the singleton clauses ¬Pn and Rn force the values of the corresponding
variables. For technical reasons only, we assume that the (n− 1)-th element is busy
too, by setting sn−1 n = ., Rn−1 = . and Pn−1 = ⊥. The elements that are not busy
we call “free”, with a single exception, the source. The source is the biggest element
j, such that Rj = Pj = .. Initially the source is the first element. It is important to
note that no contradiction can be found as far as there is at least one free element bigger
than the source. All the variables associated to the elements smaller that the source
are set (consistently with the axioms) in the current partial assignment. Thus there are
free elements only between the source and the maximal element. Informally speaking,
Prover’s strategy is moving the source towards the end of the universe, the n − 2-nd
element.

We will prove that at any stage in the Prover-Adversary game, the number of free
elements can be used to lower bound the subtree, rooted at the current node of the tree.
More precisely, if S (k) is the size of the subtree rooted at a node, where there are k
such elements, we will show that S (k) ≥ ϕk. Here ϕk is the k-th Fibonacci number,
defined by

ϕ0 = ϕ1 = 1
ϕk = ϕk−1 + ϕk−2 for k ≥ 2.

Initially, we have n − 3 free elements bigger than the source, therefore the inequality

we claim, together with the known asymptotic ϕk ∼ 1√
5

(
1+

√
5

2

)k

, implies the desired

lower bound.
What remains is to prove S (k) ≥ ϕk. We use induction on k. The basis cases k = 0

or k = 1 are trivial. To prove the induction step, we consider all the possibilities for a
Prover’s query:

It is about either a busy element. As already explained, the value of such a variable
is already known in the current partial assignment. Adversary answers; the value of k
does not change.
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The query is about a free element i, and recall that it is bigger than the source. If
the variable queried is either Ri or Pi, Adversary first sets sin = ., sij = ⊥ for all j,
i < j < n, and then chooses between the two possibilities: either Ri = ., Pi = ⊥
or Ri = ⊥, Pi = .. If the variable queried is sij for some j > i Adversary first sets
Ri = Pi = ⊥ sil = . for all l �= j, and then chooses either sij = . or sij = ⊥. In any
of the above cases, Adversary was free to choose the value of the variable queried, i.e.
to force a branch of Prover’s decision tree, while keeping the current partial assignment
consistent. The number of free elements, k, decreases by one. Therefore we have

S (k) ≥ 2S (k − 1) .

By the induction hypothesis S (k − 1) > ϕk−1, and then S (k) ≥ 2ϕk−1 ≥ ϕk.
The query is about the source, i.e. the variable queried is sij , where i is the source’s

index. If the j-th element is busy, Adversary answers ⊥. If the j-th element is free, but
far away from the source, that is there are at least two free elements between the source
and the j-th element, Adversary answers ⊥, too. Neither the position of the source nor
the value of k changes. The only remaining case is when the j-th element is both free
and near to the source, that is one of the two smallest free elements, bigger than the
source. Adversary is now free to move the source to any of these two elements, by
giving the corresponding answer:. - source is moved to the j-th element or⊥ - source
is moved to the other nearest element. In one of these choices k decreases by one, and
in the other it decreases by two. Therefore we have

S (k) ≥ S (k − 1) + S (k − 2) .

The induction hypothesis gives S (k − 1) ≥ ϕk−1 and S (k − 2) ≥ ϕk−2. Thus

S (k) ≥ ϕk−1 + ϕk−2 = ϕk.

This completes the proof. �

We will show how to modify the proof in order to prove the following more general
proposition.

Proposition 6. Any Res∗ (d) proof of Reld (IPn) is of size 2Ω(n
d ).

Proof. The difference from the previous argument is that the number of free elements
may be reduced by at most d whenever a query (which is now a d-conjunction) has been
made. This gives the following recurrence

S (k) ≥ S (k − d) + S (k − d− 1)

whose solution gives the lower bound given in the statement. All the details can be
found in the full version of the paper. �
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6. J. Krajíĉek. Bounded Arithmetic, Propositional Logic, and Complexity Theory. Cambridge

University Press, 1995.
7. J. Krajicek. Combinatorics of first order structures and propositional proof systems. Archive

for Mathematical Logic, 43(4), 2004.
8. P. Pudlák. Proofs as games. American Mathematical Monthly, pages 541–550, June-July

2000.
9. A. Razborov. Pseudorandom generators hard for k – dnf resolution and polynomial calculus

resolution. 2002 – 2003.
10. S. Riis. A complexity gap for tree-resolution. Computational Complexity, 10:179–209, 2001.
11. S.M. Riis and M. Sitharam. Generating hard tautologies using predicate logic and the

symmetric group. Logic Journal of the IGPL, 8(6):787–795, 2000.
12. N. Segerlind, S. Buss, and R. Impagliazzo. A switching lemma for small restrictions

and lower bounds for k-dnf resolution. In Proceedings of the 43rd annual symposium on
Foundations Of Computer Science. IEEE, November 2002.



Bounded-Degree Forbidden Patterns Problems
Are Constraint Satisfaction Problems

Stefan Dantchev and Florent Madelaine

Department of Computer Science, University of Durham,
Science Labs, South Road, Durham DH1 3LE, UK
{s.s.dantchev, f.r.madelaine}@durham.ac.uk

Abstract. Forbidden Patterns problem (FPP) is a proper generalisa-
tion of Constraint Satisfaction Problem (CSP). FPP was introduced in
[1] as a combinatorial counterpart of MMSNP, a logic which was in turn
introduced in relation to CSP by Feder and Vardi [2]. We prove that
Forbidden Patterns Problems are Constraint Satisfaction Problems when
restricted to graphs of bounded degree. This is a generalisation of a result
by Häggkvist and Hell who showed that F -moteness of bounded-degree
graphs is a CSP (that is, for a given graph F there exists a graph H so
that the class of bounded-degree graphs that do not admit a homomor-
phism from F is exactly the same as the class of bounded-degree graphs
that are homomorphic to H). Forbidden-pattern property is a strict gen-
eralisation of F -moteness (in fact of F -moteness combined with a CSP)
as it involves both vertex- and edge-colourings of the graph F , and thus
allows to express NP -complete problems (while F -moteness is always in
P). We finally extend our result to arbitrary relational structures, and
prove that every problem in MMSNP, restricted to connected inputs of
bounded (hyper-graph) degree, is in fact in CSP.

Keywords: Logic in Computer Science, Constraint Satisfaction, Graph
Homomorphism, Duality, Monadic Second Order Logic.

1 Introduction

Graph Homomorphisms and related problems have received considerable atten-
tion in the recent years not only as a topic in Combinatorics and Graph Theory
but also in relation with Constraint Satisfaction. A lot of possible directions
of research in the area have been opened by different motivations, and have
been explored (the very recent monograph [3] serves as a good survey of the
area).

The present work was motivated mainly by Constraint Satisfaction Problem
(CSP) and its generalisations, Forbidden Patterns Problem (FPP), introduced in
[1]. Our results fall into the category of so-called (restricted) duality theorems,
and have the same flavour as the results in [4].

To better explain the motivation behind our work, we need to start with
MMSNP, a fragment of monadic second order logic, that was introduced in
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[2], and was motivated by the search of a logical characterisation of Constraint
Satisfaction Problem. Though computationally very closely related to CSP, the
logic MMSNP is too strong and captures problems which are not constraint
satisfaction problems [2, 5] (or, in a more general setting, at least not CSPs with
a finite template [6]). The combinatorial counterpart of MMSNP is the class of
Forbidden Patterns Problems. FPPs were studied at length in [7] where an exact
characterisation of FPPs that are not CSPs was proved. This characterisation
subsumes the characterisation of duality pairs obtained by Tardif and Nešetřil
in [4].

In [8], Häggkvist and Hell showed a new kind of (restricted) duality result
for Graph Homomorphism (or CSP). They built a universal graphs H for the
class of F -mote graphs, i.e. the class of graphs that do not admit a homomor-
phism from F , of bounded degree b. Thus, any degree-d graph G is F -mote if,
and only if, there is a homomorphism from G to H . The result can be seen
as a restricted form of duality and provides a “good characterisation” (in the
sense of Edmonds) for F -moteness. In the last decade, a series of papers built
upon the Häggkvist and Hell’s technique. In particular, a number of results by
Nešetřil and various coauthors are relevant to our work. First, the complexity
of H-colouring of bounded-degree graphs was investigated in more details in [9].
It was conjectured that if H is a triangle-free graph with chromatic number
three then the H-colouring problem for 3-bounded graphs is NP-complete. This
conjectured was disproved in a very recent paper [10], where the authors inves-
tigated more generally the existence of universal graphs for the class of graphs
that are simultaneously F -mote and H-colorable.

The main contribution of the present paper is a proof that Forbidden Pat-
terns Problems, restricted to inputs of bounded-degree, become Constraint Sat-
isfaction Problems. More precisely, given a forbidden patterns problem Ω and a
bound b on the degree of the input graph, we explicitly construct a graph H ,
such that any graph G of bounded degree b is a yes-instance of Ω if, and only
if, G is homomorphic to H . We say that H is a universal graph for Ω (and b) as
it does not depend on the input G.

This result is a significant jump in the (descriptive) complexity from the
result of Häggkvist and Hell as their result corresponds to problems, which are
captured by fragments of first-order logic, and therefore are in P. In our case we
retain problems which are NP -complete even on bounded-degree graphs.

Finally, we investigate the fragment of existential MSO logic that corresponds
to the original FPPs as defines in [1], Feder and Vardi’s logic MMSNP. It is
perhaps worth mentioning that in the present paper we assume a definition of
FPP that is more general than the original one in that the new definition allows
colourings not only of the vertices but also of the edges of the input graph.

The rest of paper is organised as follows. In section 2 we give the necessary
background as well as some motivating examples. Then we prove the main result
in section 3. Finally, in section 4, we briefly discuss the logic MMSNP and extend
our result to arbitrary relational structures. In 5, we conclude by a few questions
and open problems.
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2 Preliminaries

2.1 Definitions

To simplify the exposition, we shall assume mostly that the input is a graph G.
We use standard graph notation. We denote by V (G) the vertex set of G and by
E(G) the edge set of G. Let G and H be two graphs. A graph homomorphism is a
vertex mapping h : V (G) → V (H) such that for every vertices x and y in V (G),
if (x, y) belongs to E(G) then (h(x), h(y)) belongs to E(H). Let F and G be
two graphs. We say that G is F -mote if, and only if, there is no homomorphism
from F to G. The F -moteness is the property of being F -mote, a term that we
also use to refer to the corresponding decision problem.

Constraint Satisfaction Problems. The constraint satisfaction problem with
template H is the decision problem with,

– input: a graph G; and,
– question: does there exist a homomorphism from G to H?

Example 1. The constraint satisfaction problem with template K3 (the clique
with three elements, i.e. a triangle) is nothing else than the 3 colorability problem
from graph theory. Hence, the restriction to (undirected) graphs is also known
as the H-colouring problem.

We denote by CSP the class of constraint satisfaction problems (not necessarily
graph problems).

Edge and Vertex Coloured Forbidden Patterns Problems. Let V (respec-
tively, E) be a finite set of vertex colours (respectively, edge colours). A pattern
is a connected graph whose vertices are coloured with V and whose edges are
coloured with E. Formally, it is a triple (F, fV, fE), where F is a finite graph,
fV is a mapping from V (F ) to V and fE is a mapping from E(F ) to E.

Let G be a graph, gV : V (G) → V and gE : E(G) → E. Let H be a graph,
hV : V (H) → V and hE : E(H) → E. We say that a homomorphism h from G
to H preserve the colours (given by gV, gE, hV and hE) if, for every x in V (G),
gV(x) = hV ◦h(x) holds; and, for every e = (x, y) in E(G), gE(e) = hE(e′) holds,
where e′ = (h(x), h(y)) belongs to E(H). When the colours are clear from the
context, we simply write that h preserves colours. Note that the composition of
two homomorphism that preserve colours is also a homomorphism that preserve
colours.

In this paper, patterns are used to model constraints in a negative fashion
and consequently, we refer to them as forbidden patterns. Let F be a finite set
of forbidden patterns. Let G be a graph, gV : V (G) → V and gE : E(G) → E.
We say that (G, gV, gE) is valid with respect to F if, and only if, for any pattern
(F, fV, fE) there does not exist any homomorphism h from F to G that preserves
these colours

The problem with forbidden patterns F is the decision problem with,
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– input: a graph G
– question: does there exist any mapping gV : V (G) → V and gE : E(G) → E

such that (G, gV, gE) is valid with respect to F.

Remark 2. The class of forbidden patterns problems with colours over the ver-
tices only, corresponds to the problems that can be expressed by a formula
in Feder and Vardi’s MMSNP (Monotone Monadic SNP without inequalities,
see [2, 1]). Note that allowing colours over the edges does not amount to drop the
hypothesis of monadicity. Rather, it corresponds to a logic, let’s call it MMSNP2,
which is similar to MMSNP but allows first-order variables over edges (just like
Courcelle’s MSO (Monadic Second Order logic) and MSO2, see [11]).

2.2 Motivating Examples

In this section, we motivate this paper through the study of the following concrete
graph problems.

1. Vertex-No-Mono-Tri: consists of the graphs for which there exists a par-
tition of the vertex set in two sets such that no triangle has its three vertices
occurring in a single partition. It was proved in [2, 5] that this problem is
not in CSP and in [12] that it is NP-complete.

2. Tri-Free-Tri: consists of the graphs that are both three colourable (tripar-
tite) and in which there is no triangle. It was proved in [5] that this problem
is not in CSP.

3. Edge-No-Mono-Tri: consists of the graphs for which there exists a par-
tition of the edge set in two sets such that no triangle has its three edges
occurring in a single partition. It is known to be NP-complete (see [13]).

The above examples can be formulated as Forbidden Patterns Problems. The
corresponding set of forbidden patterns are depicted on Figure 1. In the case
of Edge-No-Mono-Tri, the two type of colours for edges are depicted with
dashed and full line respectively. In [8], Häggvist and Hell proved a result that
can be rephrased as follows.

Vertex-No-Mono-Tri

Tri-Free-Tri

Edge-No-Mono-Tri

Fig. 1. Some forbidden patterns problems
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Theorem 3. Let F be a connected graph and b a positive integer. There exists a
graph U such that there is no homomorphism from F to U ; and, for every graph
G of bounded degree b, there is no homomorphism from F to G if, and only if,
there is a homomorphism from G to U .

Using this theorem, we prove the following.

Corollary 4. Let b be a positive integer. The problem Vertex-No-Mono-Tri,
restricted to graph of bounded degree b, is a constraint satisfaction problem with
input restricted to graph of bounded degree b.

Proof. Let b be a positive integer. Let U be the universal graph for the class
of graph of bounded degree b given by Theorem 3 for F := K3. Let U ′ be the
graph that consists of two disjoint copies U1 and U2, together with all the edges
(x1, x2), where x1 ∈ V (U1) and x2 ∈ V (U2). Let G be a graph of bounded
degree b. We model Vertex-No-Mono-Tri as a forbidden patterns problem
with V := {1, 2} and two forbidden patterns (K3, c1) and (K3, c2) where c1 is
the constant 1 and c2 the constant 2. We drop altogether the notation for edge
colours since there is a single edge colour. Assume that G is a yes-instance of
Vertex-No-Mono-Tri. Let gV : V (G) → V such that (G, gV) is valid. Let
G1, respectively G2, be the subgraph of G induced by the vertices of colour 1,
respectively 2. It follows that there is neither a homomorphism from K3 to G1,
nor from K3 to G2. Thus, there exist a homomorphism h1 from G1 to U1 and a
homomorphism h2 from G2 to U2. Let h be the mapping induced by the union of
h1 and h2. It is a homomorphism from G to U ′ by construction of U ′. Conversely,
if there is a h homomorphism from G to U ′, it induces a colour map gV from
G to V, according to which copy of U a vertex of G is mapped to. Similarly
to the above, it follows that (G, gV) is valid. Thus, Vertex-No-Mono-Tri,
restricted to graph of bounded degree b, is the constraint satisfaction problem
with template U ′ and input restricted to graph of bounded degree b.

It does not seem to be straightforward to come up with a similar graph construc-
tion to prove the same for the problem Tri-Free-Tri. However, Theorem 3 has
been generalised in [10] and can be reformulated as follows. Here, we give a
shorter proof than in [10].

Theorem 5. Let F and H be connected graphs, b a positive integer. Then there
exists a graph U with the following properties:

1. there exists a homomorphism u from U to H;
2. For every graph G of bounded degree b such that there is no homomorphism

from F to G and there exists a homomorphism g from G to H, there exist a
homomorphism G a U such that g = u ◦ a; and,

3. there is no homomorphism from F to U .

Proof. By Häggvist an Hell’s theorem (Theorem 3), there exists a finite graph
UF,b such that for any graph G of bounded degree b, there is no homomorphism
from F to G if, and only if, there is a homomorphism from G to UF,b.
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Choose for U the (categorical) product of UF,b and H and denote by π1 and
π2 the two projections (see [3] for details). Choose for u the projection π2.

Let G be a graph of bounded degree b such that there is no homomorphism
from F to G and there is a homomorphism g from G to H . It follows that there
exists a homomorphism h from G to UF,b. We choose for a the homomorphism
(h, g) and by definition of the product we have g = u ◦ a.

Finally there can not be a homomorphism f from F to U as otherwise,
by composition with π1, there would be a homomorphism from F to UF,b in
contradiction with Theorem 3.

The above result involves problems that corresponds to the intersection of a
constraint satisfaction problem with template H , with a very simple forbidden
patterns problem that has a single vertex colour, a single edge colour and a
single forbidden pattern F . Applying this theorem with F = H = K3, we get
the problem Tri-Free-Tri (intersection of 3-colorability with triangle free, see
previous examples) and the following result.

Corollary 6. Let b be a positive integer. The problem Tri-Free-Tri, restricted
to graph of bounded degree b, is a constraint satisfaction problem with input
restricted to graph of bounded degree b.

Note that, it is unlikely that the problems corresponding to Theorem 5 are as
general as FPP, even when restricted to colours over vertices only.

Proposition 7. If P �= NP then Vertex-No-Mono-Tri can not be repre-
sented as a problem of the form of Theorem 5.

Proof. Let F and H be two graphs such that Vertex-No-Mono-Tri is the
intersection of a constraint satisfaction problem with template H with the very
simple forbidden patterns problem that has a single vertex colour, a single edge
colour and a single forbidden pattern F . By Proposition 13 in [14], H must
have a loop and a graph G is in Vertex-No-Mono-Tri if, and only if, there is
no homomorphism from F to G. This last property is expressible in first-order
logic. However, it was proved in [12] that this problem is NP-complete. Since
checking property expressible in first-order logic can be done in polynomial time,
the result follows.

We now turn our attention to the problem Edge-No-Mono-Tri. It seems to
be difficult to prove the same result for this problem as a direct corollary from
Theorem 5 or Theorem 3. We shall deal with this example as a corollary of our
main result: this result is a generalisation of Theorem 5 to the class of all (edge
and vertex coloured) forbidden patterns problems.

3 Bounded Degree Forbidden Patterns Problems

In this section, we prove that forbidden patterns problems over graphs, when
restricted to input of bounded degree, become constraint satisfaction problems.
In graph parlance, we show that there is a universal graph for the (yes-instance
of) bounded degree forbidden patterns problems.
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Theorem 8. Let b be a positive integer. Let Ω be the problem with forbidden
patterns F. There exists a universal graph U for the graphs of bounded degree b
in Ω. That is,

1. There exist uV : V (U)→ V and uE : E(U) → E such that (U, uV, uE) is valid
w.r.t. F;

2. For every graph G of bounded degree b such that there exist gV : V (G) → V

and gE : E(G) → E such that (G, gV, gE) is valid w.r.t. F, there exist a
homomorphism a from G to U that preserves these colours.

3. Conversely, for every graph G of bounded degree b, if there exists a homomor-
phism G a U then a induces colour maps gV and gE such that (G, gV, gE)
is valid w.r.t. F.

Remark 9. Using the standard notion of product of graphs, our new proof of
Theorem 5 makes this result a direct corollary of Häggvist and Hell’s theorem.
However the proof in [10] present an idea that is key to our paper: the fact that
Hell and Häggvist general technique can be extended to take coloured graphs into
account. Hence, apart from the fact that we allow also colours on the edges, one
could see Theorem 8 as the true statement behind Dreyer, Malon and Nešetřil’s
proof.

We shall first explain the intuition and ideas behind the proof by giving an
informal outline. Let us denote the largest diameter of a forbidden patterns by
m. This parameter, together with the degree-bound b, are absolute constants, i.e.
they are not part of the input of the FPP. The universal graph U has to contain
all possible small graphs that are yes-instances of the FPP, “small” meaning
“of diameter m+ 1” here and thereafter. The intuition then is that each graph
G, which is a yes-instance of the FPP, however big, can be homomorphically
mapped to U as such a mapping should be only locally consistent. Given that
the degree of G is bounded by b, we need to distinguish among no more than
X ≤ bm+2 vertices in a small neighbourhood, so we can use X many different
labels in constructing the vertex set of U . On the other hand, in order to define
the adjacency relation of the universal graph, i.e. to correctly “glue” all the
possible small neighbourhoods, any vertex of U should carry information not
only about its label, but also about its neighbourhood. In other words, any such
vertex will represent a small graph together with a vertex which is the “centre”
(or the root) of the small graph. Thus the vertex set of the universal graph will
consists of all such rooted small graphs vertex- and edge-coloured in all possible
ways that are yes-instances of the FPP. Two vertices will be adjacent in U if,
and only if, the graphs they represent “agree”, i.e. have most of their vertices
with the same labels and colours and the induced subgraphs of these vertices
coincide including the edge colours; for the precise definition of what “agree”
means, one should see the formal proof below. It is now intuitively clear why a
yes-instance G of the FPP should be homomorphic to the universal graph U :
the vertices of G can be labelled so that any two adjacent vertices get different
labels, then one can choose a good vertex- and edge-colouring of G, and because
of the construction of U now every vertex u in G can be mapped to the vertex of
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U that represents the small neighbourhood of u rooted at u. It is straightforward
to see that the mapping preserves edges.

The universal graph U has a very useful property, namely every small neigh-
bourhood of U rooted at a vertex v is homomorphic to the small graph repre-
sented by the vertex u (see Lemma 11 below). This property immediately implies
that a no-instance of the FPP cannot be homomorphic to U . Indeed, suppose
for the sake of contradiction, there is a no-instance G that is homomorphic to
U . Fix the colouring induced by the homomorphism and observe that G there
is a homomorphism from the FPP graph F into G. The composition of the two
homomorphisms gives a homomorphism from F into U , and by the property
above, by another composition, we get a homomorphism from the FPP graph
F to some small graph represented by a vertex of U . This gives a contradiction
with our construction as we have taken small no-instances only to be represented
by the vertices of the universal graph.

We illustrated the construction of Theorem 8 for our final example Edge-
No-Mono-Tri on Figure 2 for input of bounded degree b ≥ 3. Any input G can
be labelled by elements from {1, 2, . . . , 10, . . . , X} such that for every vertex x
in V (G), the vertices at distance at most 2 (the diameter of a triangle plus one)
of x have a different label.

Corollary 10. Let b be a positive integer. The problem Edge-No-Mono-Tri,
restricted to graph of bounded degree b, is a constraint satisfaction problem with
input restricted to graph of bounded degree b.

The remaining of this section is devoted to the formal proof of Theorem 8.
Let b be a positive integer and F be a set of forbidden patterns. We write

δ(G) to denote the diameter of a graph G: that is, the minimum for all vertices
x in V (G) of the maximum distance from x to any other vertex y in V (G). Let
m := max{δ(F ) such that (F, fV, fE) ∈ F}. Let X := 1 +Σm

j=0b(b− 1)j .

Construction of U . Let S be the set of connected graphs (S, sV, sE) that are
valid w.r.t. F, such that V (S) is a subset of {1, 2, . . . , X}. Let U be the graph
with:

– vertices (v, (S, sV, sE)), where (S, sV, sE) ∈ S and v ∈ S; and,
– such that (v, (S, sV, sE)) is adjacent to (v′, (S′, s′V, s′E)) if, and only if, the

following holds:
(i) (v, v′) belongs to both E(S) and E(S′); and,

(ii) the induced coloured subgraph of S induced by every vertex at distance
at most m of v (respectively, v′) is identical to the induced coloured
subgraph of S′ induced by every vertex at distance at most m of v
(respectively, v′).

U Is a Yes-Instance. We first define “universal colours” for U as follows.

– uV(v, (S, sV, sE)) := sV(v), for every vertex (S, sV, sE) in V (U); and,
– uE((v, (S, sV, sE))(v′, (S′, s′V, s′E))) := sE(v, v′), for every edge

((v, (S, sV, sE))(v′, (S′, s′V, s′E))) in E(U).
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(Edge) coloured graph S1 (Edge) coloured graph S2

1 2

3 4

5 6 7

8

1 2

3 4

5 6 7

The coloured graph induced by the
vertices at distance at most one
from the vertex 1 is identical in
both S1 and S2

The coloured graph induced by the
vertices at distance at most one
from the vertex 2 is identical in
both S1 and S2

1 2

3 4

5

1 2

3

7

The template U has the edge

(1, S1) (2, S2)

Fig. 2. Illustration of the construction for Edge-No-Mono-Tri

We need the following lemma.

Lemma 11. Let (v, (S, sV, sE)) in V (U). Let (B, cB, sE) be the coloured graph
induced by all vertices at distance at most m from (v, (S, sV, sE)). Then, there
exists a homomorphism from (B, cB, sE) to (S, sV, sE) that preserves the colours.

Proof. Let (v′, (S′, s′V, s′E)) in V (B). We set h(v′, (S′, s′V, s′E)) := v′. By induc-
tion on the distance from (v, (S, sV, sE)) to (v′, (S′, s′V, s′E)), using (i), it follows
that the vertex v′ belongs to V (S) and that h is homomorphism. Similarly, using
(ii) it follows that h preserves colours.

We now prove that (U, uV, uE) is valid with respect to the forbidden patterns
F. Assume for contradiction that (U, uV, uE) is not valid and that there exists
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some forbidden pattern (F, fV, fE) in F and some homomorphism f ′ from F to
U that preserves these colours. Since the diameter of F is at mostm, there exists
a vertex x in V (F ) such that every vertex of F is at distance at most m. Hence,
it is also the case for f ′(x) in the homomorphic image of F via f ′. By lemma 11,
there exists a homomorphism h from F to S, where f ′(F ) = (v, (S, sV, sE)).
Both homomorphisms are colour preserving, thus composing these two homo-
morphisms, we get that h◦f ′ is a colour-preserving homomorphism from F to S.
However, by definition of S, the coloured graph (S, sV, sE) is valid with respect
to the forbidden patterns F. We reach a contradiction and the result follows.

Yes-Instances Are Homomorphic to U . LetG be a graph of bounded degree
b for which there exist gV : V (G) → V and gE : E(G) → E such that (G, gV, gE)
is valid w.r.t. F. Since G has bounded degree b, for every vertex x in V (G), there
are at most X − 1 vertices y at distance at most m from x. Therefore, there
exists a map χ from V (G) to {1, 2, . . . , X} such that every two distinct vertices
within distance m or less take a different colour via χ. Thus, for every vertex
x in G, the subgraph of G induced by the vertices at distance at most m of x
can be identified (via the labelling χ) to a graph Sx with domain {1, 2, . . . , X}.
Similarly, the restriction of gV and gE to this subgraph induce colour maps sVx
and sEx of S. We set a(x) := (χ(x), (Sx, sVx , s

E
x)). It follows directly from the

definition of U that a is homomorphism that preserve colours.

No-instances Are Not Homomorphic to U . Let G be a graph of bounded
degree b that is a no instance of the forbidden patterns problem represented by
F and assume for contradiction that G a U. The homomorphism a together
with the universal colouring (U, uV, uE) induces colourings gV and gE as follows:
For every vertex x in V (G), set gV(x) := uV(a(x)); and, for every edge (x, y)
in E(G), set gE(x, y) := uE(a(x), a(y)). Since G is a no instance, there exists a
forbidden pattern (F, fV, fE) in F and a homomorphism f ′ from F to G that
preserve these colours. Composing the two homomorphisms, we get that a ◦ f ′

is a homomorphism from F to U that preserves the colours of F and U . This
contradicts the fact that (U, uV, uE) is valid w.r.t. F. This concludes the proof
of Theorem 8.

4 Logic

In [2], a fragment of MSO was defined in the search of a logic to capture CSP by
Feder and Vardi: the logic MMSNP (Monotone Monadic SNP without inequal-
ities). They proved that though CSP is strictly included in MMSNP, for every
problem Ω in MMSNP, there exists a problem Ω′ in CSP such that Ω reduces to
Ω′ by a polynomial-time Karp reduction and Ω′ reduces to Ω by a randomised
polynomial-time Turing reduction. While in [1], we attached ourselves to under-
stand the difference between CSP and MMSNP and characterised precisely the
problems in MMSNP that are not in CSP, we adopt the opposite stance in the
present work and show that the two classes coincide once restricted to input of
bounded degree.
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The proof technique of Theorem 8 generalises to arbitrary structures and
since every problem in MMSNP is a disjunction of problems that are forbidden
patterns problems without edge colours (i.e. with a single edge colour to be
precise), we get the following result (the proof has been omitted due to space
restriction and can be found in the online appendix [14]).

Theorem 12. On connected input of bounded degree, MMSNP coincides with
CSP.

5 Conclusion and Open Problems

We have proved that every forbidden patterns (with colours on both edges and
vertices) problem is in fact a constraint satisfaction problem, when restricted to
input of bounded degree. We derived from this result that the logic MMSNP
coincides with CSP on connected input of bounded degree (whereas CSP is
strictly included in MMSNP for unrestricted inputs).

Theorem 12 can be easily adapted to the extension MMSNP2 of MMSNP
with first order quantification over edges as well as vertices. Since CSP is sub-
sumed by MMSNP, this proves that MMSNP and MMSNP2 have the same
expressive power for connected input of bounded degree. This phenomenon can
be related to a result due to Courcelle [11], who proved that the same properties
of graphs of degree at most b, where b is a fixed integer, can be expressed by
monadic second-order formulae using edge and vertex quantifications (MSO2)
as well as by monadic second-order formulae using vertex quantifications only
(MSO1). Courcelle also proved that MSO2 is more expressive than MSO1 for un-
restricted input. This leads us to ask the following question. Is MMSNP2 more
restrictive than MMSNP1 for unrestricted input? Proving, for example, that the
problem Edge-No-Mono-Tri is not expressible in MMSNP1 would answer this
question affirmatively.

Courcelle has presented other restrictions over graphs and digraphs that en-
sure that MSO1 and MSO2 have the same expressive power, such as planarity
or bounded tree-width. This provokes the following questions. Is it the case that
MMSNP2 coincides with MMSNP1 for planar graphs or graphs of bounded tree
width? and, if it is the case, do they also collapse to CSP?
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3. Hell, P., Nešetřil, J.: Graphs and homomorphisms. Oxford University Press (2004)
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Abstract. Two methods are used usually for to establish the collapse
result for theories. They use the isolation property and the reducibility
property. Early it is shown that the reducibility implies the isolation. We
prove that these methods are equivalent.

1 Introduction

Relational database is a finite set of finite table. The content of tables changes
but its structure does not. Hence, a database is a finite structure of some fixed
language Ω which is called also a database scheme.

Elements of tables are usually from some infinite universe. In this case data-
bases are called finite states over the universe. For example such universe can
be the set of natural number, the set of real number, a set of string over some
alphabet etc. Such universe can have own relations which form some signature
Σ. For numbers these relations can be the addition, the multiplication, the order
relation. For strings the order and the concatenation can be used.

For extracting information from relational databases first order languages
are usually used, i.e. queries to databases are first order formulas. In query we
can use only database relations from Ω or database and universe relations from
(Ω,Σ). It is known that some information can’t be extracted using Ω-queries.
For example if Ω contain alone unary predicate symbol P it is impossible to
write Ω-query which will be true iff the cardinality of P is odd.

Gurevich Yu.Sh. demonstrated that if besides relations from Ω we use an
universe order relation then the expressive power of first order languages grows.
The problem is the following. Can the expressive power of FO languages grow
if we add to language (Ω,<) other universe relations? Queries of the language
(Ω,<) are called restricted and ones of the language (Ω,Σ) are called extended.

This problem is investigated in [2, 1, 3, 5, 7, 6]. The answer depends on an
universe and relations. For example if the universe is a set of natural number ω
and additional relations are + and × then the expressive power grows, but if we
add only + then it remains the same.

It is clear that investigating the expressive power we must consider only
queries expressing inner properties of a database. They must not depend on
� The work was sponsored by Russian Foundation of Basic Research, projects 04-01-

00015 and 04-01-00565.

D. Grigoriev, J. Harrison, and E.A. Hirsch (Eds.): CSR 2006, LNCS 3967, pp. 171–177, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



172 S.M. Dudakov

coding the database elements by universe elements. More formally we consider
only locally generic queries. A query is locally generic in a universe if it is pre-
served by all preserving the order database isomorphisms in the universe.

If in a universe for every database scheme every locally generic extended
query is equivalent over finite states to some restricted query then this universe
holds the collapse result. Elementary equivalent universes holds or lacks the
collapse result simultaneously because the collapse result can be expressed as a
set of closed Σ-formulas. Hence, the collapse result is the property of theories.

There are two main methods used for establishing the collapse result for
theories.

One method uses isolation properties. It was introduced in [1] and was im-
proved in [6]. Isolations properties imply the collapse result.

Other methods was proposed in [3] where it is proved that the collapse result
is held for universes without the independent property. In [5, 7] it is shown that
the previous result is a partial case of more general theorem: the collapse result
is implied by the reducibility property.

The discussed question is “which method is more general?” In [5, 7] it is
shown that the reducibility implies the second isolation properties.

In this paper we prove that any isolation property also implies the reducibil-
ity. Hence these methods are equivalent.

In the following section we give main definitions, then adduce our construc-
tion, and in the last section we prove main theorems. In the conclusion we
formulate an open question we are interested in.

2 Main Definitions

The main concepts of the model theory can be found in [4].
The notion φ(x̄) means the formula φ doesn’t contain free variables except x̄.

If φ(x̄) is a Σ-formula, A is a Σ-structure, and ā ∈ A is a tuple then the notion
φ(ā) means the value of φ when the value of the variable xi is ai for each i.

Definition 1. In a structure (A, D) of language (Σ,Q) the set D is pseudo-
finite if any (Σ,Q)-formula from Fin(A, Q) is true for (A, D).

Fin(A, Q) is a set of all (Σ,Q)-formulas which are true for all (Σ,Q)-
structures (A, D′) with finite D′.

We consider a (Σ,P )-structure (A, I). We suppose that the structure has a linear
order relation < and this symbol belongs to the language Σ.

Definition 2. (Σ,P )-structure (A, I) holds first (second) isolation property if I
is indiscernible sequence in A (in (A, I)) and for any (Σ,P )-structure (B, J) ≡
(A, I) for any pseudo-finite set D ⊆ J for any finite set E ⊆ B and for any
b ∈ B the type tp(b/D ∪ E) in B (in (B, J)) is isolated in B (in (B, J)) by
some type tp(b/D0 ∪E) for some countable set D0 ⊆ D, i.e. tp(b/D∪E) is the
unique type over D ∪ E containing tp(b/D0 ∪E).
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Definition 3. In the (Σ,P )-structure (A, I) a formula φ(x̄, ȳ) is called I-
reducible to order (or I-reducible) if there is a quantifier-free order formula
ψ(x̄, z̄) and for any ā ∈ A there is c̄ā ∈ I for which

φ(x̄, ā) ≡ ψ(x̄, c̄ā)

for any x̄ ∈ I. The variables x̄ we call I-bounded in this case.
The structure (A, I) is I-reducible if any Σ-formula is I-reducible.

Definition 4. Let A be a Σ-structure. Let a language Ω be disjoint with Σ and
contains only predicate and constant symbols. Such languages are called database
schemes. Ω-structure B is a finite state over A if the support of B is a finite
subset of the support of A. In this case the pair (B,A) can be considered as the
united (Ω,Σ)-structure. Two finite states B1 and B2 are order isomorphic in A
if there is an isomorphism from B1 to B2 preserving the order < in A.

A query is a first-order formula. Queries of the language (Ω,Σ) are called
extended. Queries of the language (Ω,<) are called restricted. A query is locally
generic in A if it is simultaneously true or false for any two order isomorphic
finite states.

Σ-structure A holds the collapse result if for any database scheme Ω and
for any locally generic extended query φ of language (Ω,Σ) there is a restricted
(Ω,<)-query ψ which is equivalent φ for any finite state over A. A theory holds
the collapse result if some its model holds it.

Theorem 1 (see [6]). If a structure (A, I) holds the first or second isolation
property then the theory Th(A) holds the collapse result.

Theorem 2 (see [7, 5] and [3]). If a structure (A, I) is I-reducible then there
are a structure (B, J ′) ≡ (A, I) and a set J ⊆ J ′ such that the structure (B, J)
holds the second isolation property.

3 Construction

We consider the structure (A, I) of the language (Σ,P ).

Definition 5. Let φ(x̄, ȳ) be a (Σ,P )-formula. Let ā ∈ A. Let d̄1, d̄2 ∈ I. We
call the pair (d̄1, d̄2) a difference pair for the formula φ(x̄, ā) if these tuples has
the same order type, there is a number i0 and d(i)

1 = d(i)
2 for all i �= i0, and

φ(d̄1, ā) �≡ φ(d̄2, ā).
If d̄(i0)

1 < d̄(i0)
2 then the interval [d(i0)

1 ; d(i0)
2 ] in I is called difference interval

and is denoted as diff[d̄1, d̄2].
If (d̄1, d̄2) and (d̄3, d̄4) are two difference pairs and intervals diff[d̄1, d̄2] and

diff[d̄3, d̄4] are disjoint then these pairs are also called disjoint.
An element e ∈ I is called defining for φ(x̄, ā) if for any its neighborhood O(e)

in I there is a difference pair (d̄1, d̄2) for φ(x̄, ā) such that diff[d̄1, d̄2] ⊆ O(e).
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Theorem 3. Let I be an indiscernible sequence in a Σ-structure A and the
order on I be dense and complete. Then a formula φ(x̄, ȳ) is I-reducible iff there
is a natural constant M ∈ ω and for any ā ∈ A a number of defining elements
for φ(x̄, ā) is bounded by M .

Proof. If φ(x̄, ȳ) is I-reducible by order formula ψ(x̄, z̄) then for each ā ∈ A there
is c̄ā ∈ I such that

(A, I) |= (∀x ∈ P )(φ(x̄, ā) ↔ ψ(x̄, c̄ā)).

Thus, all defining for φ(x̄, ā) elements are in c̄ā.
Suppose the number of defining elements of φ(x̄, ȳ) is bounded. It is enough

to prove that if c̄ ∈ I is defining elements for φ(x̄, ā) then for any d̄1, d̄2 ∈ I
having the same order type over c̄

φ(d̄1, ā) ≡ φ(d̄2, ā).

We use the induction by the number of unequal components of d̄1 and d̄2.
The base. Let an unequal component be unique: d(i0)

1 �= d(i0)
2 . Let us suppose

φ(d̄1, ā) �≡ φ(d̄2, ā).

Let us consider the set

C = diff[d̄1; d̄2] = I ∩ [d(i0)
1 ; d(i0)

2 ].

Let for any c ∈ C the notion d̄c means the tuple obtaining from d̄1 by replacing
d(i0)
1 with c. Let C1 be a set of all c ∈ C for which

φ(d̄c, ā) ≡ φ(d̄1, ā),

and C2 be a set of all c ∈ C for which

φ(d̄c, ā) ≡ φ(d̄2, ā).

As (C1, C2) is a partition of C and the order on C is dense complete so at least
one of C1 and C2 contains a boundary point e. Then e is a defining element for
φ(x̄, ā), hence, it belongs to c̄ and d̄1 and d̄2 have difference order types over c̄.
It contradicts the assumption.

Let d̄1 and d̄2 have n unequal components, n > 1. For example let us consider
the case when the least unequal component belongs to d̄1. Let this component
be d(i0)

1 . Let the tuple d̄′2 be obtained from d̄2 by replacing d(i0)
2 with d(i0)

1 . Then
the tuples d̄2 and d̄′2 have one unequal component and have the same order type
over c̄. Using the base we obtain that

φ(d̄2, ā) ≡ φ(d̄′2, ā).

The tuples d̄1 and d̄′2 have n − 1 unequal components and by the inductive
assumption

φ(d̄1, ā) ≡ φ(d̄′2, ā).
It implies

φ(d̄1, ā) ≡ φ(d̄2, ā).
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Theorem 4. Let I be an indiscernible sequence in a Σ-structure A. Let for any
Σ-formula φ(x̄, ȳ) there be a constant M such that for any ā ∈ A there aren’t
more than M disjoint difference pairs for φ(x̄, ā).

Then there are (Σ,P )-structure (B, J ′) ≡ (A, I) and a set J ⊆ J ′ such that
the structure (B, J) is J-reducible.

Proof. Let a structure (B, J ′) ≡ (A, I) be (2ω)+-saturated. Then J ′ contains a
subset J which is order isomorphic the set of real numbers. Thus, the order on
J is dense complete. Let us suppose that the structure (B, J) isn’t J-reducible.
Then by the theorem 3 there is a formula φ(x̄, ȳ) and a sequence of tuples āi ∈ B,
i ∈ ω such that there are more that i defining elements for φ(x̄, āi). Hence for
any i ∈ ω we can construct i disjoint difference pairs. Then the same is possible
in the structure (A, I) that contradicts the theorem assumption.

4 Main Result

Theorem 5. Let a structure (A, I) holds the first isolation property.
Then there is a structure (B, J ′) ≡ (A, I) and a set J ⊆ J ′ such that the

structure (B, J) is J-reducible.

Proof. Let us suppose there is no J-reducible structure (B, J) where (B, J ′) ≡
(A, I) and J ⊆ J ′. By the theorem 4 there is a Σ-formula φ(x̄, ȳ′) for which we
can construct i disjoint difference pair for any i ∈ ω. We suppose that in the
formula φ(x̄, ȳ′) the number of non-I-bounded variables ȳ′ is the least possible.
This number must be greater than 0. Let ȳ′ = (ȳ, z).

Let (āi, bi)i∈ω be a sequence of tuple such that for φ(x̄, ȳ, z) there are at least
i disjoint difference pairs: (d̄ij1 , d̄

ij
2 ), j = 1, . . . , i. Let for each j the tuple d̄ij3 is

obtained from d̄ij1 and d̄ij2 by replacing an unequal component with any element
inside diff[d̄ij1 , d̄

ij
2 ]. As φ(d̄ij1 , āi, bi) �≡ φ(d̄

ij
2 , āi, bi), so (d̄ij1 , d̄

ij
3 ) or (d̄ij2 , d̄

ij
3 ) isn’t

a difference pair.
Let Di be a set of these tuples:

Di = {(d̄ij1 , d̄
ij
2 , d̄

ij
3 ) : j = 1, . . . , i}.

Let us consider the structures (A, I,Di, āi, bi), i ∈ ω. Let (B, J,D, ā, b) be its
ultraproduct modulo any non-principal ultrafilter over ω. Then the set D is
pseudo-finite and has a cardinality not less than ω+. Let E be a set of element
of ā.

If F is a set of some tuples then let [F ] be a set of all elements of these
tuples. Let us consider the type K = tp(b/E ∪ [D]) in B. Let us suppose K can
be isolated by some type K0 = tp(b/E ∪D0) for some countable set D0 ⊆ [D].
As D0 is countable and D is not so there are at least ω+ tuples (d̄1, d̄2, d̄3) ∈ D
for which diff[d̄1, d̄2] ∩D0 = ∅. Let D′ be a set of all such tuples.

Let a formula Φ(ū, v̄, ȳ, z) mean that (ū, v̄) is a difference pair for φ(x̄, ȳ, z).
Evidently, Φ(d̄1, d̄2, z) is in K for any (d̄1, d̄2) from D′. Let us prove that a set
K0 ∪ {¬Φ(d̄1, d̄2, ā, z)} holds in B for some (d̄1, d̄2) from D′.
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Let us suppose B lacks the set K0∪{¬Φ(d̄1, d̄2, ā, z)} for all (d̄1, d̄2) from D′.
As all these sets are countable and B is ω+-saturated then for each (d̄1, d̄2) there
is finite subsetK(d̄1,d̄2)

0 ⊆ K0 which is not consistent with ¬Φ(d̄1, d̄2, ā, z). The set
D′ contains at least ω+ tuples (d̄1, d̄2, d̄3) and there are countable manyK(d̄1,d̄2)

0 ,
hence, for ω+ tuples from D′ the sets K(d̄1,d̄2)

0 are same. Let us denote this set
by K ′

0 and the set of tuples (d̄1, d̄2, d̄3) from D′ inconsistent with K ′
0 by D′′.

Let Ψ(d̄, d̄1, d̄2, ā, z) be a conjunction of all formulas from
K ′

0 ∪ {¬Φ(d̄1, d̄2, ā, x)} where d̄ ∈ D0. The count of non-I-bounded vari-
ables in the formula (∃z)Ψ(w̄, ū, v̄, ȳ, z) is less than in the formula φ(x̄, ȳ, z).
Hence, for (∃z)Ψ(w̄, ū, v̄, ā, z) the count of disjoint difference pairs (c̄k

1 , c̄
k
2) is

bound by some constant M . Let us consider any such pair (c̄k
1 , c̄

k
2). If the tuple

c̄k
3 is obtained from c̄k

1 and c̄k
2 by replacing an unequal component with any

element from diff[c̄k
1 , c̄

k
2 ] then (c̄k

1 , c̄
k
3) or (c̄k

3 , c̄
k
2) is a difference pair again. As

the count of difference pair is bounded then we can make intervals diff[c̄k
1 , c̄

k
2 ]

to intersect with no more than one diff[d̄1, d̄2] where (d̄1, d̄2, d̄3) ∈ D′′.
Let us select a tuple (d̄1, d̄2, d̄3) from D′′ such that diff[d̄1, d̄2] doesn’t

intersect with any diff[c̄k
1 , c̄

k
2 ]. Let us suppose the pair (d̄1, d̄3) isn’t difference

for φ(x̄, ā, b). As

diff[(d̄, d̄1, d̄2), (d̄, d̄1, d̄3)] = diff[d̄2, d̄3]

doesn’t intersect with any diff[c̄k
1 , c̄

k
2 ] so the formula (∃z)Ψ(d̄, d̄1, d̄2, ā, z) has

the same value as (∃z)Ψ(d̄, d̄1, d̄3, ā, z). But Ψ(d̄, d̄1, d̄3, ā, z) is true when
z = b. Hence the formula (∃z)Ψ(d̄, d̄1, d̄2, ā, z) is true also. It means the set
K ′

0 ∪ {¬Φ(d̄1, d̄2, ā, z)} holds in B. It contradicts the assumption.
We have proved that the set K0 ∪ {¬Φ(d̄1, d̄2, ā, z)} holds in B. It can be

expanded to some type K ′. But evidently the types K and K ′ are unequal.
Hence, the type K isn’t isolated by K0.

We prove that the type K isn’t isolated by any type K0 over countable
D0 ⊆ [D] in B. As (B, J) ≡ (A, I) and [D] ⊆ J is pseudo-finite so the structure
(A, I) lacks the first isolation property.

Theorem 6. Let a (Σ,P )-structure (A, I) holds the second isolation property.
Then there is a structure (B, J ′) ≡ (A, I) and a set J ⊆ J ′ such that the structure
(B, J) is J-reducible.

Proof. Let A′ = (A, I). Then the structure (A′, I) holds the first isolation prop-
erty. By the theorem 5 there is a structure (B′, J ′) ≡ (A′, I) and a set J ⊆ J ′

such that (B′, J) is J-reducible. But B′ = (B, J ′) where B is the reduct of B′

to the language Σ. Thus (B, J) is J-reducible also.

5 Conclusion

We have established that the method of the isolation properties and the method
of the reducibility are equivalent. We are interested in the following question.

Question 1. Does a theory exist which holds the collapse result but doesn’t hold
the isolation properties neither the reducibility?
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, and Pierre McKenzie3,




1 University of Texas at Austin
2 Mathematical Institute, Prague, Czech Republic

3 Université de Montréal

Abstract. We propose a new model of restricted branching programs
which we call incremental branching programs. We show that syntac-
tic incremental branching programs capture previously studied struc-
tured models of computation for the problem GEN, namely marking
machines [Co74] and Poon’s extension [Po93] of jumping automata on
graphs [CoRa80]. We then prove exponential size lower bounds for our
syntactic incremental model, and for some other restricted branching
program models as well. We further show that nondeterministic syn-
tactic incremental branching programs are provably stronger than their
deterministic counterpart when solving a natural NL-complete GEN sub-
problem. It remains open if syntactic incremental branching programs are
as powerful as unrestricted branching programs for GEN problems.

1 Introduction

Is the complexity class L of the problems solvable in deterministic logarithmic
space properly contained in the class P of problems solvable in polynomial time?
This question arose in the late 1960’s [Co71] and remains open today. As is well
known, L is captured by polynomial size branching programs. To separate L from
P, it thus suffices to identify a language in P that no polynomial size branching
program can recognize.

In this paper we focus on the problem GEN, a P-complete problem hav-
ing natural NL-complete and L-complete subproblems [Co74, JoLa77, BaMc91].
We consider a restriction on branching programs, that all currently known size-
efficient branching programs solving GEN and its subproblems seem to possess.
We call branching programs obeying this restriction incremental branching pro-
grams. As in other restricted branching program models, we consider syntactic
and semantic versions of the model: the syntactic restriction imposes a condition
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on all the graph-theoretic paths in the branching program, and the semantic re-
striction imposes a condition only on the paths actually traversed by an input.
We prove exponential size lower bounds for syntactic incremental branching pro-
grams computing GEN. We also obtain exponential lower bounds for some other
branching program models for computing GEN, that can be viewed in a com-
mon framework with incremental branching programs, but do not require the
incrementality restriction. We refer to this more general framework as tight com-
putation. This framework is specific to the n-way branching program model of
[BoCo82]. The models captured by this framework include read-once branching
programs and an extension of monotone nondeterministic branching programs
to n-way branching programs (called S-monotone programs where S is a subset
of the possible values of the variables), in addition to incremental branching
programs.

Why should one consider a new branching program restriction when so many
restrictions have been investigated (see for example [We00])? Here are our main
reasons:

1. The model that we propose offers a new perspective on the known structured
lower bounds for GEN.

2. Our analysis of incremental branching programs reveals certain properties
that any purported subexponential-size branching program solving GEN
must have (Remark 1). Hence the analysis of incremental branching pro-
grams may lead to new insights into computation of unrestricted branching
programs.

3. All currently known upper bounds for GEN and its various subproblems can
be achieved by syntactic incremental branching programs, and it remains
open if syntactic incremental branching programs are as powerful as unre-
stricted branching programs for GEN problems.

4. While so far we have not been able to analyze them, semantic incremental
branching programs may provide the answer to Cook’s [Co74] and Edmonds’
[EPA99] requests for a computational model intermediate between marking
machines and NNJAG’s on the one hand, and unrestricted branching pro-
grams on the other.

In this paper we show that strong exponential size lower bounds for syntac-
tic incremental branching programs for GEN follow from [Co74, PTC77] via our
Symmetrization lemma, and slightly weaker lower bounds can be derived from
monotone circuit depth lower bounds [RaMc99], revealing an informative con-
nection. In particular, marking machine lower bounds (albeit weaker than those
from [Co74, PTC77]) follow from monotone circuit depth lower bounds. Figure
1 summarizes our main bounds on the sizes of syntactic incremental branching
programs and {1}-monotone nondeterministic n-way branching programs solv-
ing the n × n instances of the P-complete problem GEN, of the NL-complete
GEN restriction GEN(2rows) and of the L-complete problem GEN(1row). For
GEN(2rows), we note a super-polynomial separation between the power of de-
terministic and nondeterministic syntactic incremental branching programs. See
Section 2 for the definition of GEN and our branching program models.
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Deterministic Nondeterministic Nondeterministic
syntactic syntactic {1}-monotone

incremental incremental
GEN O(n22n) ∩ Ω(2cn/ log n) O(2n) ∩ Ω(2cn/ log n) O(2n) ∩ Ω(2nδ

)

GEN(2rows) nΘ(log n) O(n2) O(n2)

GEN(1row) O(n2)

Fig. 1. Main size bounds presented in this paper. Here δ and c are specific constants.

Our proofs are based on reductions of varying degrees of difficulty and they
appeal to the lower bounds from [Co74, PTC77, RaMc99, EPA99]. Our work
raises the following open questions: Are f(n)-size semantic incremental branch-
ing programs strictly more powerful than O(f(n))-size syntactic incremental
branching programs? Can unrestricted (n-way) branching programs for GEN
be simulated by semantic, or even by syntactic incremental branching programs
without a significant size blowup? It should be noted that in the context of
read-k-times branching programs, the semantic variant is provably much more
powerful than its syntactic counterpart [Ju95, BJS01], indicating that semantic
incremental branching programs may also behave quite differently from their
syntactic counterparts.

Due to space constraints, we omit all proofs from this extended abstract.
Proofs and more details can be found in [GKM05] or in the forthcoming journal
version.

2 Definitions and Preliminaries

We write [n] for {1, 2, . . . , n}. When T ⊆ [n]×[n]×[n] and S ⊆ [n], we write 〈S〉T
for the closure of S under T , defined as the smallest S′ ⊇ S such that the fol-
lowing holds for every (i, j, k) ∈ [n]× [n]× [n]: if i ∈ S′ and j ∈ S′ and (i, j, k) ∈
T then k ∈ S′. We will work with the following problems:

Problem GEN: Given a function g : [n] × [n] → [n] prescribing T g ⊆ [n] ×
[n]× [n], determine whether n ∈ 〈{1}〉T g .

Problem RELGEN: Given an n3-length bit string prescribing a set T ⊆ [n]×
[n]× [n], determine whether n ∈ 〈{1}〉T .

We will talk about n-GEN and n-RELGEN when only a particular value n
is considered, this will be necessary since we work in nonuniform models. (The
name GEN comes from “Generating Problem” and the name RELGEN comes
from the relational version of the Generating Problem.) We will view n-RELGEN
as a Boolean function of n3 variables (n-RELGEN : {0, 1}n3 → {0, 1}), and n-
GEN as a function over n2 n-ary variables (n-GEN : [n]n

2 → {0, 1}). Note that
n-RELGEN is a monotone Boolean function while the Boolean version of n-
GEN (over n2 log2 n variables obtained by encoding the values of the n2 n-ary
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variables as log2 n-length bit strings) is not monotone. We call an instance T of
GEN or RELGEN positive if n ∈ 〈{1}〉T otherwise the instance T is negative.
It is known that (i) GEN (and thus RELGEN) is P-complete [Co74, JoLa77],
(ii) GEN(2rows), namely the restriction of GEN in which i ∗ j �= 1 ⇒ i ≤ 2, is
NL-complete [BaMc91], (iii) GEN(1row) namely the restriction of GEN in which
i ∗ j �= 1⇒ i = 1, is L-complete [BaMc91].

Fix n > 0. We call [n] the set of n-GEN elements. Both an n-GEN instance
and an n-RELGEN instance define a set of triples (i, j, k) ∈ [n]× [n]× [n] which
we denote i∗j = k (note that we retain this notation even when k is not uniquely
defined from i and j). Recall that an n-GEN instance is defined by a function
g : [n] × [n] → [n], thus the corresponding set of triples T g has the property
that for each pair (i, j) ∈ [n] × [n] there is exactly one value k ∈ [n] such that
(i, j, k) ∈ T g. On the other hand, n-RELGEN instances may involve arbitrary
sets T ⊆ [n]× [n]× [n], including the possibility that some i ∗ j is not assigned
any value, that is (i, j, k) �∈ T for any k. (The name RELGEN indicates that the
underlying set of triples corresponds to a relation, rather than a function.)

For i ∈ [n], we write χn(i) for the n-bit string 0i−110n−i (i.e. the charac-
teristic vector of the singleton set {i}), and we write χ(i) for χn(i) when n is
understood. Given an n-GEN instance g, we write χn(g) (or χ(g) when n is un-
derstood) for the length-n3 n-RELGEN instance χ(g(1, 1))χ(g(1, 2)) · · ·χ(g(n, n)).
Note that for any n-GEN instance g, GEN(g) = RELGEN(χn(g)).

An n-RELGEN instance w ∈ {0, 1}n3
is considered as divided up into n2

n-bit blocks denoted wi∗j for (i, j) ∈ [n]× [n] and concatenated to form w. We
will refer to the Boolean variables of n-RELGEN as wi,j,k.

A triple of the form i ∗ j = 1 for some i and j is called a trivial triple
(since the element 1 is always trivially included in the closure 〈{1}〉T ). For an n-
RELGEN instance w ∈ {0, 1}n3

, we write trivext(w) (for trivial extension) to
mean w∨(10n−1)n

2
, that is, the n-RELGEN instance obtained from w by adding

to the set of triples represented by w all the trivial triples, setting wi,j,1 = 1 for
each i, j ∈ [n]. A block wi∗j is said to be heavy if two (or more) of its bits are 1.

2.1 Branching Programs

Since n-GEN is defined over n-ary input variables, it is convenient for us to work
with n-way branching programs, first defined by Borodin and Cook [BoCo82].
We also need the nondeterministic extension of the model, defined by Borodin,
Razborov and Smolensky [BRS93].

Definition 1. [BRS93] A nondeterministic n-way branching program is a di-
rected acyclic rooted multi-graph with a distinguished sink node labeled ACCEPT.
The edges out of non-sink nodes are either unlabeled, or labeled “xi = j” for
some variable xi and j ∈ [n]. Only inputs satisfying the statement on the la-
bel may follow the labeled edges, all inputs are allowed to follow the unlabeled
edges. An input x1, . . . , xt is accepted by the program if there is at least one
directed path leading from the root to the ACCEPT node, such that the in-
put x1, . . . , xt is allowed to follow it. (As there may be multiple edges between
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two nodes in a branching program by a path we always understand a sequence
of edges (v1, v2), (v2, v3), . . . , (vm−1, vm) rather than just a sequence of vertices
v1, v2, . . . , vm.) A nondeterministic n-way branching program computes a func-
tion f : [n]t → {0, 1} if f(x1, . . . , xt) = 1 if and only if x1, . . . , xt is accepted
by the program. A deterministic n-way branching program must satisfy the ad-
ditional restrictions that it has no unlabeled edges, and there are exactly n edges
out of each non-sink node with the n possible labels x = j for j = 1, . . . , n for
the same variable x.

The size of a branching program is the number of its nodes. If the program
contains other sink nodes in addition to the ACCEPT node, they are labeled
REJECT. Note that deterministic programs computing non-constant functions
have at least one REJECT node, but REJECT nodes may be omitted from
nondeterministic programs. Note also that the nondeterministic model defined
above is usually called a switching-and-rectifier network if the underlying graph
is not required to be acyclic.

A path is called consistent if for every variable xi and for all values j1 �= j2,
the labels xi = j1 and xi = j2 do not both appear on the path. Note that since
no input will follow an inconsistent path, the correctness of the program in itself
gives no requirements for inconsistent paths.

Definition 1 contains as a special case (deterministic or nondeterministic)
Boolean branching programs if n = 2 (using the values 0 and 1 instead of 1 and
2, of course). Several slightly different definitions of nondeterministic branching
programs have appeared in the literature, in particular they may involve intro-
ducing guessing nodes. The size necessary to compute a given function under
these different definitions remains polynomially related (see e.g. [Ra91]), note
however that this is not automatically inherited in various restricted versions of
the models.

For an n-ary function f : [n]t → {0, 1} let fbin : {0, 1}t log2 n → {0, 1} be the
Boolean function obtained from f by encoding its variables as binary strings. If
f can be computed by n-way branching programs of size s(n) then fbin can be
computed by Boolean branching programs of size n ·s(n). No size increase occurs
in the reverse direction. Thus, proving super-polynomial size lower bounds for
deterministic or nondeterministic n-way branching programs computing n-GEN
would separate P from L or NL, respectively.

2.2 Tight Computation of GEN

Given a (deterministic or nondeterministic) n-way branching program P com-
puting n-GEN, we denote by mon(P ) the nondeterministic Boolean branching
program obtained from P as follows: replace each edge label of the form i∗ j = k
of P by the label wi,j,k = 1.

Since mon(P ) uses only edge labels of the form x = 1, it computes a
monotone Boolean function, which we denote by fmon(P ). Note that for any
n-GEN instance g, we have GEN(g) = RELGEN(χ(g)) = fmon(P )(χ(g)). On
the other hand, the fact that P computes n-GEN in itself does not place any
requirements on the value of fmon(P ) over inputs w ∈ {0, 1}n3

that are not



Incremental Branching Programs 183

of the form χ(g) for any n-GEN instance g. In particular, while we know that
mon(P ) computes a monotone Boolean function that agrees with RELGEN on
inputs of the form χ(g), we have no reason to expect that mon(P ) would actu-
ally compute n-RELGEN, or even agree with n-RELGEN on any other inputs
except what is implied by the monotonicity of fmon(P ).

It turns out that the following additional requirement on n-way branching
programs computing n-GEN is sufficient to obtain exponential lower bounds.
We require that in addition to inputs of the form χ(g), fmon(P ) agrees with
RELGEN also on the trivial extensions trivext(χ(g)). This is equivalent to
just requiring that if fmon(P )(χ(g)) = 0 then fmon(P )(trivext(χ(g))) = 0
as well, since fmon(P ) is monotone. Thus, we just require that for any n-GEN
instance g that has no accepting path in P , no path of P can reach the ACCEPT
node if the only edges used in addition to the edges that g could traverse are
labeled by trivial triples of the form i ∗ j = 1.

Definition 2. We say that a (deterministic or nondeterministic) n-way branch-
ing program P tightly computes n-GEN if it computes n-GEN, and for any
n-GEN instance g if fmon(P )(χ(g)) = 0 then fmon(P )(trivext(χ(g))) = 0.

Definition 3. We say that a Boolean function f : {0, 1}n3 → {0, 1} represents
n-GEN if f(χ(g)) = RELGEN(χ(g)) for any n-GEN instance g.

We say that a Boolean function f : {0, 1}n3 → {0, 1} tightly represents n-
GEN if it represents n-GEN and f(trivext(χ(g))) = RELGEN(trivext(χ(g)))
for any n-GEN instance g.

The following is immediate from the above definitions:

Proposition 1. An n-way branching program P computes n-GEN if and only if
fmon(P ) represents n-GEN, and an n-way branching program P tightly computes
n-GEN if and only if fmon(P ) tightly represents n-GEN.

Note that in models where inconsistent paths are excluded, for example in deter-
ministic read-once branching programs, tight computation is automatically guar-
anteed. Next we define two versions of the model that guarantee tight compu-
tation of GEN – without excluding inconsistent paths in general: {1}-monotone
nondeterministic n-way branching programs and syntactic incremental branch-
ing programs.

2.3 Monotone Nondeterministic n-Way Branching Programs

In the case of nondeterministic Boolean branching programs, Definition 1 can
easily be modified to define monotone nondeterministic Boolean branching pro-
grams, by simply forbidding labels of the form x = 0 (using the values 0 and 1
instead of 1 and 2, of course), see e.g. [Ra91].

We propose the following extension to nondeterministic n-way branching
programs when n > 2. Similarly to the Boolean case, we simply forbid some of
the n possible values to be used in edge labels. Just like in the case of Boolean
branching programs, “monotonicity” makes more sense in the nondeterministic
framework, and not every n-ary function can be computed under this restriction.
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Definition 4. Let ∅ �= S ⊂ [n]. A nondeterministic n-way branching program
is S-monotone if edge labels x = j with j ∈ S do not appear in the program.

Definition 5. Let x, y ∈ [n]t and ∅ �= S ⊂ [n]. We say that x <S y if for any
i ∈ [t] either xi = yi or xi ∈ S and yi �∈ S. A function f : [n]t → {0, 1} is
S-monotone, if for any x, y ∈ [n]t such that x <S y, we have f(x) ≤ f(y).

Note that our definition of S-monotone functions includes both monotone and
anti-monotone Boolean functions as a special case. Clearly, S-monotone branch-
ing programs can compute only S-monotone functions. Notice that GEN is a
{1}-monotone function, and the variant of GEN where the problem is to deter-
mine whether n is in the closure of some fixed starting set S is an S-monotone
function. We can match the current best upper bounds for various GEN sub-
problems by {1}-monotone nondeterministic n-way branching programs without
significant increase in size. That is, so far we have no results separating the power
of monotone and non-monotone nondeterministic n-way branching programs for
computing GEN.

2.4 Incremental Branching Programs

It seems natural for an n-way branching program solving n-GEN to try to find
the elements in the closure 〈{1}〉T g “incrementally”, that is by asking ques-
tions i ∗ j =? only for elements i, j already known to be in 〈{1}〉T g . In fact the
current best upper bounds (known to us) for various subproblems of GEN can
be achieved by constructions that have this property. We formally define the
incrementality property below.

Let P be a (deterministic or nondeterministic) branching program computing
n-GEN. For each vertex u of P , we will define the set A(u) (“available set”) of
elements that have already been generated along every path reaching u.

Given a path π from the root to some vertex u in P , let T π be the set of
triples that appear as edge labels along π. Let paths(u) denote the set of all
graph theoretic paths in P starting from the root and reaching u. Let A(u) =⋂
π∈paths(u)〈{1}〉Tπ . We obtain a potentially larger set, if we only require that

its elements are generated along every path reaching u that may be followed
by some GEN instance. Recall that a path in P is consistent if for every pair
(i, j) and for all values k1 �= k2, the labels i ∗ j = k1 and i ∗ j = k2 do not
both appear along the path. If π is consistent then T π ⊆ T g for some n-GEN
instance g. On the other hand, no GEN instance can follow an inconsistent
path. We denote by genpaths(u) the set of all consistent paths starting from
the root and reaching u. Let AGEN(u) =

⋂
π∈genpaths(u)〈{1}〉Tπ . Note that

genpaths(u) ⊆ paths(u), and thus A(u) ⊆ AGEN(u).

Definition 6. A (deterministic or nondeterministic) n-way branching program
for n-GEN is (semantic) incremental if for every edge with label i∗j = k directed
out of a node u the condition {i, j} ⊆ AGEN(u) holds. The program is syntactic
incremental if for every edge with label i ∗ j = k directed out of a node u the
stronger condition {i, j} ⊆ A(u) holds.
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Let P be a branching program for n-GEN and let π = (v0, v1), . . . , (v�, v�+1)
be a path in P . We allow # = 0 so the path may consist of a single edge. We say
that i ∈ [n] is useful for π if the last edge (v�, v�+1) of π is labeled by i∗j = k or by
j ∗ i = k for some j, k ∈ [n], and none of the edges (vt, vt+1) for t ∈ {0, . . . , #−1}
is labeled by k ∗ j = i for any j, k ∈ [n]. For a node u of P , let U(u) be the
set of elements that are useful for some path π starting in u and leading to an
arbitrary node of P . Notice, the program P is syntactic incremental if and only
if U(u) ⊆ A(u) for every node u of P . We denote by maxU(P ) the maximum
size of U(u) for any node u in P .

3 Lower Bounds Derived from Monotone Circuit Depth
Bounds

3.1 Lower Bounds in Models Without Requiring Incrementality

By the definitions of the previous section, every n-way branching program P
computing GEN has an associated monotone nondeterministic Boolean branch-
ing program mon(P ) computing some function fmon(P ) that represents GEN.
By standard arguments, this yields monotone formulae for fmon(P ). Thus, prov-
ing that every monotone function representing GEN requires large monotone
circuit depth would be sufficient to obtain lower bounds for unrestricted (deter-
ministic or nondeterministic) n-way branching programs computing GEN. We
can even define specific monotone Boolean functions representing GEN such
that monotone circuit depth lower bounds for them would imply lower bounds
for every monotone function representing GEN1. Unfortunately, we do not know
how to prove monotone circuit depth lower bounds for these functions.

However, the monotone circuit depth lower bounds of [RaMc99] for the REL-
GEN function are sufficient to derive the following statement.

Theorem 1. For some γ > 0 and any t large enough, any function f : {0, 1}t →
{0, 1} that tightly represents GEN requires monotone circuits of depth tγ.

Using Proposition 1 and Theorem 1 we derive the following.

Theorem 2. For some ε > 0 and all n large enough, any (deterministic or
nondeterministic) n-way branching program that tightly computes n-GEN has
size 2n

ε

.

Remark 1. Tight computation places no restrictions on the model itself, but
instead requires correctness of the computation in a slightly stronger sense: it
places requirements regarding acceptance on some graph-theoretic paths that
no GEN instance would follow. Correctness in the usual sense places no require-
ments on the computation along such paths. However, tight computation places
no requirements on paths with inconsistencies that do not involve trivial triples.
Hence the significance of Theorem 2 is that any purported subexponential size
1 For example, the n2-th slice function of n-RELGEN has this property. See e.g. [Be81,

We87] for more on slice functions.
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branching program P solving GEN would need to make critical use of trivial
triples, although such triples appear oblivious to any progress.

As noted at the end of Section 2.2, tight computation is automatically guar-
anteed in read-once deterministic branching programs.

Corollary 1. For some ε > 0 and all n large enough, any read-once determin-
istic n-way branching program computing n-GEN has size 2n

ε

.

Proposition 2. Any {1}-monotone nondeterministic n-way branching program
computing n-GEN computes n-GEN tightly.

Theorem 3. For some ε > 0 and all n large enough, any {1}-monotone non-
deterministic n-way branching program computing n-GEN has size 2n

ε

.

3.2 Lower Bounds for Syntactic Incremental Branching Programs

Proposition 3. Any (deterministic or nondeterministic) syntactic incremental
n-way branching program computing n-GEN computes n-GEN tightly.

The statement will follow from the following much stronger statement.

Proposition 4. Let P be a (deterministic or nondeterministic) syntactic in-
cremental n-way branching program computing n-GEN. Then, for every w ∈
{0, 1}n3

such that RELGEN(w) = 0, fmon(P )(w) = 0 as well.

Corollary 2. Any (deterministic or nondeterministic) syntactic incremental
n-way branching program computing n-GEN has size 2n

ε

for some ε > 0.

4 Syntactic Incrementality and Pebbling

Marking machines were defined by Cook [Co74] as a model for computing GEN.
Jumping automata on graphs were defined by Cook and Rackoff [CoRa80] as a
computational model for solving graph s-t-connectivity; Poon [Po93] defined an
extension of this model called node-named jumping automata on graphs (NN-
JAG). We show in this section that syntactic incremental branching programs
can be efficiently simulated by marking machines and NNJAG’s, and vice versa.

4.1 Marking Machines

We adapt Cook’s definition [Co74] to our terminology while using a slightly
different set of rules that are analogous to the pebbling rules of the games on
graphs introduced by Paterson and Hewitt [PaHe70]. We discuss the difference
between these rules in the full version of the paper. A marking machine M
operates on an instance T ⊆ [n]× [n]× [n] of n-GEN. Each configuration of M
is one of the subsets of [n]; it identifies the set of marked elements of [n]. The
initial configuration of M is the empty set. At each step of a computation, M
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(nondeterministically) changes its configuration C to C′ in one of the following
ways: M marks the element 1, i.e., C′ = C ∪ {1}, or M removes a mark from
an arbitrary element r ∈ C, i.e., C′ = C \ {r}, or it marks an element z �∈ C
provided that (x, y, z) ∈ T for some x, y ∈ C, i.e., C′ = C ∪{z}. A configuration
C is accepting if n ∈ C. M accepts input T iff there is a sequence of configurations
C0, C1, . . . , Cm, where C0 is the initial configuration, Ci follows from Ci−1 by
a legal move and Cm is an accepting configuration. We say that M accepts T
using only # markers if there is an accepting computation of M on T in which
all configurations are of size at most #.

We first establish the relationship between incremental branching programs
and marking machines. As the main measure of size of marking machines is the
number of marks used it should not come as a surprise that this measure relates
to maxU(·) of branching programs.

Proposition 5. 1. If P is a (deterministic or nondeterministic) syntactic in-
cremental n-way branching program computing n-GEN then there is a mark-
ing machine M that accepts every positive instance of n-GEN using at most
maxU(P ) markers.

2. If M is a marking machine M that accepts every positive instance of n-GEN
using at most # markers then there is a nondeterministic syntactic incre-
mental n-way branching program P of size 1 + (

∑�
i=1

(
n
i

)
)2 that computes

n-GEN.

This proposition means that lower bounds on the number of markers needed by
a marking machine to solve arbitrary instances of n-GEN imply lower bounds
on maxU(P ) for syntactic incremental branching programs computing n-GEN.
Such lower bounds can be further translated into lower bounds on the size of
these branching programs as the following lemma indicates.

Lemma 1 (Symmetrization lemma). Let k, n ≥ 2 be integers. Let P be a
nondeterministic syntactic incremental kn-way branching program that computes
kn-GEN. Then there is a nondeterministic syntactic incremental n-way branch-
ing program P ′ that computes n-GEN and such that size(P ′) ≤ size(P ) and
maxU(P ′) ≤ 2 + logk size(P ).

In [Co74] Cook proves that there are instances of n-GEN that cannot be accepted
by marking machines with o(

√
n) markers. This was later improved by Paul et

al. in [PTC77]:

Proposition 6 ([PTC77]). There is a constant c > 0 such that for all n ≥ 2
there is an instance T of n-GEN that cannot be accepted by any marking machine
using less than cn/ logn markers.

The previous three claims give us the following corollary.

Theorem 4. There is a constant c > 0 such that for all n large enough if a
nondeterministic syntactic incremental n-way branching program P solves n-
GEN then it has size at least 2cn/ logn.
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4.2 Jumping Automata on Graphs

By n-STCONN we denote the sub-problem of s-t-connectivity restricted to
graphs on n vertices.

As defined in [Po93], a (deterministic) NNJAG J is a finite state automaton
with p distinguished pebbles, q states and a transition function δ. (p, q and δ can
non-uniformly depend on n.) The input to J is an instance G of STCONN. J
computes on G by moving pebbles initially placed on vertex 1 along edges of G.
At each step of its computation J can also jump a pebble from its current location
to a vertex occupied by another pebble. J can detect the names of vertices that
are occupied by its pebbles. NNJAG solves n-STCONN if on every instance G
of n-STCONN, J accepts G iff there is a path from vertex 1 to vertex n in G.
The size of a NNJAG J is the number of its possible configurations, i.e., qnp.

Proposition 7. 1. For any deterministic syntactic incremental n2-way branch-
ing program P that computes n2-GEN(2rows) there is a NNJAG of size at
most 5n4 · size(P )2 that solves n-STCONN.

2. If J is an NNJAG solving n-STCONN then there is a deterministic syntactic
incremental n-way branching program P of size at most O(n2+n3(size(J))2)
that computes n-GEN(2rows).

There is a long sequence of lower bounds for various types of jumping automata
on graphs. The strongest one was obtained by Edmonds et al., which we use to
obtain Theorem 5.

Proposition 8. [EPA99] If NNJAG J solves n-STCONN then J has size at
least nΩ(logn).

Theorem 5. There is a constant c > 0 such that for all n large enough if a deter-
ministic syntactic incremental n-way branching program P solves n-GEN(2rows)

then it has size at least nc logn.

We should note here that Edmonds et al. [EPA99] in fact prove a lower bound for
probabilistic NNJAG’s. Their lower bound thus implies also a lower bound for
appropriately defined probabilistic syntactic incremental branching programs.

5 Upper Bounds

Our upper bounds are stated in Figure 1. We mention that the super-polynomial
separation between the power of deterministic and nondeterministic syntactic
incremental branching programs for GEN(2rows) cannot be made exponential as
a consequence of the following theorem (which also holds in the semantic model).

Theorem 6. If P is a nondeterministic syntactic incremental branching pro-
gram that computes n-GEN then there is a deterministic syntactic incremental
branching program P ′ of size at most size(P )O(log size(P )) that computes n-GEN.
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Abstract. The logic of proofs is known to be complete for the semantics
of proofs in Peano Arithmetic PA. In this paper we present a refinement
of this theorem, we will show that we can assure that all the operations on
proofs can be realized by feasible, that is PTIME-computable, functions.
In particular we will show that the logic of proofs is complete for the
semantics of proofs in Buss’ bounded arithmetic S1

2. In view of recent
applications of the Logic of Proofs in epistemology this result shows
that explicit knowledge in the propositional framework can be made
computationally feasible.

1 Introduction

In [1] the Logic of Proofs (LP) is shown to be arithmetically complete with
respect to the semantics of proofs in Peano Arithmetic PA. The mathematical
contribution of this paper is the extension of this result to the semantics of
proofs in S1

2. Although interesting in itself the extension of this theorem to S1
2 is

of fundamental value for computer science as well.
Namely, recently LP has been applied in the field of epistemic logic [2, 3]. One

of the main merits of LP over the more traditional epistemic logics is that LP
can express, using its proof terms, how hard it is to obtain certain knowledge.
In contrast, for any theorem A, the basic epistemic logic S4 proves �A. How-
ever in general, the work involved with obtaining knowledge of A (for example
by proving it, if it happens to be a theorem) does not polynomialy depend on
the length of A. And thus neither is the epistemic assertion �A. This under-
mines the real word way of reasoning about knowledge, in which we can safely
assume that certain agents do not posses certain information and or knowledge,
although in principle they could. For example, according to the modal logic of
knowledge everybody who knows the rules of chess also knows a winning strategy
for the White. However, in the real world such a strategy is simply not feasibly
obtainable.

This feature of epistemic logics like S4, called logical omniscience, is one of
the major problems in the field of epistemic logic. LP is not logical omniscient
in the following sense. For an assertion A, the epistemic assertion ‘A is known’

� Research supported by CUNY Community College Collaborative Incentive Research
Grant 91639-0001 “Mathematical Foundations of Knowledge Representation”

D. Grigoriev, J. Harrison, and E.A. Hirsch (Eds.): CSR 2006, LNCS 3967, pp. 191–201, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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takes the form t:A in LP. Where t is an object in a term language. By [4] t must
be at least as long as a derivation of A. Thus a theorem t:A of LP does not only
say that A is knowable in principle but also honestly reflects how hard it is to
obtain knowledge about A.

Looking at this from the other direction some information is still missing.
Namely, the length of a proof term can only be a good indication of an upper
bound for the complexity of the evidence it represents when the operations
that occur in it are feasibly computable. In this paper we give a mathematical
application for which LP is complete and in which each proof term represents a
PTIME-computable function.

The paper is organized as follows. In Section 2 we define the logic LP. In
Section 3 we discuss S1

2, the formalization of syntax and provability in S1
2, the

interpretation of LP in S1
2 and show that LP is complete with respect to this inter-

pretation. The proof is a refinement of the one given in [1] for the interpretation
of LP in PA.

The author would like to thank Professor Sergei Artemov and Walter Dean
for useful suggestions and remarks.

2 Logic of Proofs

LP has a long history and many variations. Here we consider the version from
[1]. For an extensive overview of LP we refer the reader to [5].

The language of LP consist of the following. We have countably many propo-
sitional variables p1, p2, . . ., countably many proof variables x1, x2, . . . and count-
ably many axiom constants c1, c2, . . . The following definitions show how we can
construct more complex expressions.

Definition 2.1 (LP-terms). We define LP-terms as follows.

– Axiom constants and proof variables are terms,
– If s and t are terms then so are s+ t, s · t and !t.

Definition 2.2 (LP-formulas). We define LP-formulas as follows.

– ⊥ and any propositional variable is a formula,
– If A and B are formulas then so is A→ B,
– If A is a formula and t is a term then t:A is a formula.

Definition 2.3 (LP). As axioms we take all instances of the following schemata.

A0 “Propositional logic”,
A1 t:A→ A,
A2 s:(A → B) → t:A→ (s·t):B,
A3 s:A → (s+ t):A ∧ (t+ s):A,
A4 t:A→!t:(t:A),
A5 c:A, c an axiom constant and A an instance of A0-A4.
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The set of theorems of LP is obtained by closing the set of axioms under modus
ponens.

Definition 2.4 (Constant specification). A constant specification is a set of
pairs 〈c, F 〉 where c is a proof constant and F an instance of one of A0−A4.

With LPCS we denote the fragment of LP, where A5 is restricted to c:A for
〈c,A〉 ∈ CS. Let us write

∧
CS for

∧
{c:A | 〈c,A〉 ∈ CS}. The following is

obvious.
LP∅ �

∧
CS → A⇔ LPCS � A .

Let X be a finite set of formulas. Let T (X) = {t | for some A, t:A ∈ X}.
We say that X is adequate when

– X is closed under subformulas,
– X is closed under single negation,
– If t ∈ Sub(T (X)) and A ∈ X then t:A ∈ X .

Clearly any finite set of formulas can be extended to a finite adequate set of
formulas. Also notice that when X is adequate, then Sub(T (X)) = T (X).

We say that a set of formulas Γ is inconsistent if for some X1, . . . , Xk ∈ Γ
we have LP � ¬X1 ∨ · · · ∨ ¬Xk. A set is consistent when it is not inconsistent.
We say that a set Γ is maximal consistent in X when Γ ⊆ X , Γ is consistent
and if Γ � Γ ′ ⊆ X , then Γ ′ is inconsistent.

The proof of the following lemma is standard.

Lemma 2.5. If Γ is maximal consistent in X then for every ¬A ∈ X we have
A ∈ Γ or ¬A ∈ Γ .

The following lemma is an immediate corollary to Lemma 2.5

Lemma 2.6. Let X be adequate and let Γ be maximally consistent in X. Then

1. If A,A → B ∈ Γ then B ∈ Γ ,
2. If t:A ∈ Γ then A ∈ Γ ,
3. If s:(A → B) ∈ Γ , t:A ∈ Γ and s · t ∈ T (X) then (s · t):B ∈ Γ ,
4. If s:A ∈ Γ or t:A ∈ Γ then s+ t ∈ T (X) implies (s+ t):A ∈ Γ ,
5. If t:A ∈ Γ and !t ∈ T (X) then !t:(t:A) ∈ Γ .

Notice that in the above two lemmas Γ is not necessarily finite. If we choose X
finite and Γ maximally consistent in X , then Γ is finite as well. In [1] an explicit
algorithm is given that, given a formula A such that LP �� A, constructs a finite
Γ that satisfies Lemma 2.6 such that ¬A ∈ Γ .

3 Arithmetical Interpretation

In this section we introduce the fragment of arithmetic S1
2 [6, 7, 8], the formal-

ization of syntax and provability in S1
2 and the interpretation of LP in S1

2. The
discussion on S1

2 is basically meant to fix the notation, for a detailed treatment
of the subject see [6, 8].
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3.1 Bounded Arithmetic

In this paper we will use the approach of [6]. In [6] the theory S2, a conservative
extension of IΔ0 +Ω1, and its fragments Si2 are formulated. The theories Si2 are
first-order theories in the language L = {+,×, 1 22, | |, %}. The intended meaning
of + and × is as usual. 1x2 2 is the bitwise shift-right operation, |x| is the length
of the binary representation of x and the intended meaning of x%y is 2|x||y|.

A quantifier in a formula is bounded if its of the form ∀x ≤ t or ∃x ≤ t, where
t is a term. We say that the quantifier is sharply bounded if t is of the form |t′|.
The classes of formulas Σb

i are defined as follows.

– A formula is Σb
1 if all quantifiers are bounded and all universal quantifiers

are sharply bounded.
– A formula is Πb

1 if its negation is Σb
1.

– The class of formulas Σb
i+1 is the least class that contains Σb

i ∪ Πb
i and

is closed under ∧, ∨ and bounded existential quantification and sharply
bounded universal quantification.

– The class of formulas Πb
i+1 is the least class that contains Σb

i ∪ Πb
i and is

closed under ∧, ∨ and bounded universal quantification and sharply bounded
existential quantification.

In addition we define

– A formula is Δb
i if it is both Σb

i and Πb
i .

These definitions relativize to arithmetical theories in the obvious way.
All the (axiomatizations of the) theories Si2 contain a basic set of axioms BA-

SIC, defining the recursive properties of the functions in the language. The the-
ories Si2 are then axiomatized over BASIC by the polynomial induction scheme
for Σb

i formulas φ:

φ(0) ∧ ∀x ≤ y
(
φ
(
1x
2
2
)
→ φ(x)

)
→ φ(y) .

An important relation of bounded arithmetic with complexity theory is as
follows.

Theorem 3.1. If σ(x, y) is a Σb
1 formula such that S1

2 � ∀x∃!yσ(x, y). Then
σ(x, y) defines the graph of a PTIME-computable function.

For a proof of this theorem, and its reverse: every PTIME-computable function
has a Σb

1-definition that is provably total in S1
2, see [6, 7].

One of the fundamental theorems of [9] projects to S1
2 as follows (see [8]).

Theorem 3.2 (Parikh’s Theorem). Let σ(x, y) be a Σb
1 formula such that

S1
2 � ∀x∃yσ(x, y). Then there exists a term t such that S1

2 � ∀x∃y ≤ t(x)δ(x, y).

Since the exponential function majorizes any term of S1
2, Parikh’s theorem im-

plies that exponentiation does not have a provably total Σb
1 definition.

One further fundamental result is as follows. Let f be a new function symbol
and let φ(x, y) be a Σb

1 formula such that S1
2 � ∀x∃!yφ(x, y). Let Σb

i (f) and S1
2(f)
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be defined exactly as Σb
1 and S1

2 but in the language L∪{f} (in particular f may
be used in bounding terms and induction schemes) and S1

2(f) has an additional
axiom f(x) = y ↔ φ(x, y).

Theorem 3.3. Si2(f) is conservative over Si2 and any Σb
i (f) formula is Si2(f)

equivalent to a Σb
i formula.

In more informal terms, Σb
i definable functions can be freely used. A similar

statement holds for Δb
1 definable predicates. For a proof see [8].

3.2 Formalization of Syntax

First some notation. Elements from N are printed in boldface: n, m etc. A
sequence x1, . . . , xn is usually written as x. The Gödel number of some syntactic
object ∫ is denoted by �∫�. For exact details on such a coding we refer the reader
to [6].

A simple but important definition is the canonical representation (numeral),
of an element of N. We define

0 = 0

n =

{
S(S(0)) ·m if n = 2m
S(S(S(0)) ·m) if n = 2m + 1

We can define a Σb
1 function num(x) in S1

2 such that for any n ∈ N we have

num(n) = �n� .

In addition we can define a function sub(x, y, z), Σb
1 definable in S1

2, that satisfies
the following.

S1
2 � sub

(
�φ(y, x)�, �x�, �t�

)
= �φ(y, t)� . (1)

Using such functions one can proof a fixed point theorem [8].

Lemma 3.4. For any formula φ(x, y) there exists a formula ε(x) such that

S1
2 � ε(x)↔ φ(x, �ε(x)�) .

From now on we will not make distinction between numerals and numbers (that
is, we systematically confuse numerals with elements of the standard model).

In what follows we let isProof(x) be a Δb
1-formula that defines the codes of

proofs. It is well known that there exists a Δb
1 formula Proof(x, y) for which we

have the following.

S1
2 � φ⇔ N |= ∃xProof(x, �φ�) . (2)

Moreover there exist PTIME computable functions ⊕, ⊗ and e for which the
following holds.

N |=Proof(x, �φ�) ∧ Proof(y, �φ→ ψ�)→ Proof(y ⊗ x, �ψ�) , (3)
N |=Proof(x, �φ�) ∨ Proof(y, �φ�)→ Proof(x⊕ y, �φ�) , (4)
N |=Proof(x, �φ�) → Proof(e(x), �Proof(x, �φ�)�) . (5)
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3.3 Arithmetical Interpretation of LP

Any Δb
1 formula Prf(x, y) that satisfies (2) will be called a proof predicate. If it

in addition comes with functions ⊕, ⊗ and e that satisfy the conditions (3), (4)
and (5) that way say that it is a normal proof predicate. We say that a structure

〈Prf(x, y),⊕,⊗, e, ∗〉

is an arithmetical interpretation (which we also denote by ∗) when Prf(x,y) is a
normal proof predicate with the functions ⊕, ⊗ and e. Moreover, ∗ is a mapping
from propositional variables to sentences of S1

2 and from proof variables and
proof constants to numbers.

Given an arithmetical interpretation 〈Prf(x, y),⊕,⊗, e, ∗〉, we can extend the
map ∗ to the full language of LP as follows.

– (s · t)∗ = s∗ ⊗ t∗, (s+ t)∗ = s∗ ⊕ t∗ and (!t)∗ = e(t∗),
– (A → B)∗ = A∗ → B∗,
– (t:A)∗ = Prf(t∗, �A∗�).

We immediate get the following.

Theorem 3.5 (Arithmetical soundness). If LPCS � A. Then for any arith-
metical interpretation ∗ such that S1

2 � CS∗ we have S1
2 � A∗.

3.4 Arithmetical Completeness

For now we focus on LP∅. We show that LP∅ is arithmetically complete. A
more general version, for arbitrary constant specifications, will be proved as an
corollary.

Apart from a formalization of the syntax of S1
2 in S1

2 we simultaneous assume
a disjoint formalization of the syntax of LP. So for any LP formula or term θ we
have a code �θ� and from this code we can deduce (in S1

2) that it is indeed the
code of an LP object (and not an S1

2 object).

Theorem 3.6 (Arithmetical completeness). LP∅ � A iff for any arithmeti-
cal interpretation ∗ we have that S1

2 � A∗

The proof of this theorem is what constitutes the rest of this section. The sound-
ness direction is a special case of Theorem 3.5. To show completeness assume
that LP∅ �� A. Let X be some adequate set such that ¬A ∈ X and let Γ be
maximal consistent in X such that ¬A ∈ Γ . (In particular Γ is finite.) We will
construct a proof predicate Prf(x, y), PTIME operations on codes of proofs ⊕̃,
⊗̃ and ẽ, and a mapping ∗ from propositional variables to sentences of S1

2, and
from proof variables and proof constants to N such that, (when ∗ is extended
to the full language of LP∅ as explained above) S1

2 � A∗ for all A ∈ Γ .
Let us first decide on what objects should serve as ‘proofs’. To begin with,

all usual proofs are ‘proofs’. That is all sequence of formulas, each of which is
an axiom of S1

2, or can be obtain by an inference rule from earlier formulas in
the sequence. This way the left to right direction of (2) is easily satisfied. As an
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extra source of ‘proofs’ we will use the finite set of LP terms T (X). The theorems
of a ‘proof’ t ∈ T (X) will be the set {A | t:A ∈ Γ}.

We now wish to formalize the contents of the last two paragraphs. Let us sup-
pose that we have a formula Prf(x, y). We define a translation from LP formulas
A and LP terms t to S1

2 sentences A† and numbers t† as follows.

1. p† ≡ �p� = �p�, if p ∈ Γ and p† ≡ �p� �= �p� otherwise,
2. t† = �t�, for any proof term t,
3. (A → B)† ≡ A† → B†,
4. (t:A)† ≡ Prf(t†, �A†�).

To carry out the proof as in [1], we would like to construct a function tr(p, f)
which, given a code p of a normal proof predicate Prf(x, y) and a code f of an
LP-formula F gives us the code of the S1

2 sentence F †. There is some difficulty
constructing a Σb

1 definition of such a function over S1
2.

Fact 1. There exists a sequence F0, F1, F2, . . . of LP formulas such that for any
S1

2 term s(x), there exists n ≥ 0 such that �F †
n� > s(�Fn�).

By Parikh’s theorem [7], such a function cannot be shown total in S1
2. Since we

only need �F †� for only finitely many F ’s, (namely those F ∈ X) the following
suffices. Let subx,y(p, z1, z2) be a Σb

1 definable and provably total function which
satisfies (see (1) above)

subx,y(�φ(x, y)�, �t1�, �t2�) = �φ(t1, t2)� .

As usual, we write →̇ for the Σb
1 definable and provably total function that

satisfies
�φ�→̇�ψ� = �φ→ ψ� .

For each F ∈ X we define with induction on F a Δb
1-formula φF (p, x), defining

the graph of tr(p, �F�), as follows.

– If F ≡ ⊥ then
φF (p, x) ≡ x = �0 �= 0�

– If F ≡ p ∈ Γ then
φF (p, x) ≡ x = ��p� = �p��

– If F ≡ p �∈ Γ then
φF (p, x) ≡ x = ��p� �= �p��

– If F ≡ F0 → F1 then

φF (p, x) ≡ ∃x0x1 ≤ x(φF0 (p, x0) ∧ φF1(p, x1) ∧ x = x0→̇x1)

– If F ≡ t:F ′ then

φF (p, x) ≡ ∃x′ ≤ x(φF ′(p, x′) ∧ x = subx,y(p, �t�, num(x′)))
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Let Prf(x,y) satisfy the following fixed point equation (see Lemma 3.4, also
recall that Γ is finite).

S1
2 � Prf(x, y)↔ Proof(x, y) ∨

∨
t:F∈Γ

(φF (�Prf(x, y)�, y) ∧ x = �t�) (6)

For briefity we put

T (x) ≡
∨
{x = �t� | t ∈ T (X)} ,

φF (u) ≡ φF (�Prf(x, y)�, u) .

With induction on F one easily shows that for all F,G ∈ Γ we have

S1
2 � φF (y)↔ y = �F †� (7)

and
F �≡ G⇒ F † �≡ G† . (8)

Lemma 3.7. Prf(x, y) is Δb
1 in S1

2

Proof. From (7) one easily derives that for each F ∈ Γ , φF is Δb
1 in S1

2. !�

Lemma 3.8. For all F ∈ X we have F ∈ Γ implies S1
2 � F † and F �∈ Γ implies

S1
2 � ¬F †.

Thus we have that, for each F ∈ Γ , F † is S1
2 provable. Since Γ is finite, we can

find one single S1
2 proof that proves them all. So let g be some number such that

for all A ∈ Γ we have
N |= Proof

(
g, �A†�

)
. (9)

Lemma 3.9. S1
2 � ∃xPrf(x, y) ↔ ∃xProof(x, y)

Proof. The right to left direction is clear by (6). For the other direction reason
in S1

2 and assume that for some x we have Prf(x, y). In the case Proof(x, y) we
are done at once so assume that this is not so. Then by (6) we have∨

t:F∈Γ
(φF (y) ∧ x = �t�) .

For each t:F ∈ Γ we have φF (y)→ y = �F †� and thus∨
t:F∈Γ

y = �F †� .

Since we have ∧
F∈Γ

Proof(g, �F †�)

we conclude that Proof(g, y). !�
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Let π(x) be a function such that for all n and all formulas φ for which N |=
Proof(n, �φ�) we have

N |= Proof(π(n),Proof(n, �φ�)→ Prf(n, �φ�)) . (10)

Let +, × and ! stand for Σb
1 definable functions that takes codes �t0�, �t1� of

LP terms t0 and t1 to codes �t0 + t1�, �t0 · t1� and �!t0� of the LP terms t0 + t1,
t0 · t1 and !t0 resp.

Recall that T (x) defines the codes of the terms in T (X) and that isProof(x)
defines the codes of ‘real’ proofs in S1

2. We define the function ⊕̃ as follows.

x⊕̃y =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

x⊕ y isProof(x) ∧ isProof(y)
g ⊕ y T (x) ∧ isProof(y)
x⊕ g isProof(x) ∧ T (y)
x+y T (x) ∧ T (y) ∧ T (x+y)
g T (x) ∧ T (y) ∧ ¬T (x+y)

Similarly we define the function ⊗̃ as follows.

x⊗̃y =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

x⊗ y isProof(x) ∧ isProof(y)
g ⊗ y T (x) ∧ isProof(y)
x⊗ g isProof(x) ∧ T (y)
x×y T (x) ∧ T (y) ∧ T (x×y)
g T (x) ∧ T (y) ∧ ¬T (x×y)

And finally we define the function ẽ as follows.

ẽ(x) =

⎧⎪⎨⎪⎩
!x T (x) ∧ T (!x)
g T (x) ∧ ¬T (!x)
π(x) ⊗ e(x) isProof(x)

And to finish we define the mapping ∗.

1. p∗ ≡ �p� = �p� if p ∈ Γ ,
2. p∗ ≡ �p� �= �p� if S �∈ Γ ,
3. x∗ ≡ �x�, a∗ = �a�.

Lemma 3.10. ⊕̃, ⊗̃ and ẽ are PTIME computable

Proof. All functions and predicates occurring in their definitions are PTIME
computable. !�

Now we have finished the definition of our translation of LP into S1
2. The relation

with our preliminary translation is as follows.

Lemma 3.11. If t ∈ T (X) then t† = t∗. If F ∈ X then F † = F ∗.
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Corollary 3.12. For all A ∈ Γ we have S1
2 � A∗

Proof. Induction on F . We only write out the case F ≡ t:F ′. We have that
φF ′(�F ′†�) is provable. If F ∈ Γ then Prf(�t�, �F ′†�)(= (t:F ′)†) is provable. If
F �∈ Γ then by (8) we have that φG′(�F ′†�) is provably false for any t:G′ ∈ Γ .
Since �t� is never the code of a ‘real’ proof in S1

2 we also have that Proof(�t�, �F ′†�)
is provably false and thus Prf(�t�, �F ′†�)(= (t:F ′)†) is provably false. !�

Lemma 3.13. Prf(x, y) is a normal proof predicate, that is:

1. N |= Prf(x, �φ�) ∧ Prf(y, �φ→ ψ�)→ Prf(y⊗̃x, �ψ�),
2. N |= Prf(x, �φ�) ∨ Prf(y, �φ�)→ Prf(x⊕̃y, �φ�),
3. N |= Prf(x, �φ�) → Prf(ẽ(x), �Prf(x, �φ�)�).

Proof. We only write out Item 3. Suppose Prf(x, �φ�). There are three cases, cor-
responding to the three disjunct that make up ẽ, to consider. Case 1: isProof(x).
In this case

ẽ(x) = π(x) ⊗ e(x) and Proof(x, �φ�) .

We thus have
Proof(e(x), �Proof(x, �φ�)�) ,

and
Proof(π(x), �Proof(x, �φ�)→ Prf(x, �φ�)�) .

Clearly now Proof(π(x) ⊗ e(x), �Prf(x, �φ�)�), and thus

Prf(π(x) ⊗ e(x), �Prf(x, �φ�)�) .

Case 2: T (x) and T (!x). In this case

ẽ(x) = !x .

And by (6) we have for some t:A ∈ Γ that

x = �t� and φ = A† .

But since !t ∈ T (X) we also have that !t:t:A ∈ Γ , and thus Prf(�!t�, �(t:A)†�) is
true. That is,

Prf(!x, �Prf(x, �φ�)�)

is true.
Case 3: T (x) but ¬T (!x). In this case

ẽ(x) = g .

Again we have for some t:A ∈ Γ that

x = �t� and φ = A† .

So (t:A)† = Prf(x, �φ�), so by choice of g we have Proof(g,Prf(x, �φ�)). !�
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Proof (of Theorem 3.4). Lemmata 3.7 and 3.9 show that Prf is a proof predicate
and Lemma 3.13 shows that it is normal. Finally Lemma 3.8 shows that, if S1

2
is consistent, S1

2 �� A∗. !�

Corollary 3.14. LPCS � A iff for any arithmetical interpretation ∗ that meets
CS we have S1

2 � A∗

Proof. Again, soundness is an easy consequence of the definitions. Suppose now
that LPCS �� A∗. Then LP∅ ��

∧
CS → A. As we have seen above this gives

us an arithmetical interpretation ∗ such that S1
2 � (

∧
CS)∗ ∧ ¬A∗. Clearly ∗

meets CS. !�
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Abstract. In this paper we answer an open question about the exact
bound on the maximal number of non-mergible states in nondeterministic
finite automaton (NFA). It is shown that the maximal possible number
of non-mergible states in a NFA that accepts a given regular language
L is not greater than 2n − 1, where n is the number of states in the
minimal deterministic finite automaton that accepts L. Next we show
that the bound is reachable by constructing a NFA that have exactly
2n − 1 non-mergible states. As a generalization of this result we show
that the number of states in a NFA that does not contain a subset of
k mergible states, where k > 1, is bounded by (k − 1)(2n − 1) and the
bound is reachable.

1 Introduction

In this paper we answer an open question about the exact bound on the maximal
number of non-mergible states in nondeterministic finite automaton (NFA). The
notion of mergibility is closely related to the problem of finding small represen-
tations of regular languages, for which there is both practical and theoretical
motivation.

It is well known that in some cases we can reduce the size of a finite automaton
by merging its states without changing its accepting power. The question about
reducing the number of states and transition of finite automata is well studied
and has efficient solution for deterministic finite automata (DFA), but it is more
complex for non-deterministic finite automata (NFA).

In many cases problems for non-deterministic automata are highly non-trivial
and usually cannot be solved using classical methods for deterministic automata
[6, 7]. For example the problem of identification of mergible states is quite dif-
ficult for NFA since the order of merging could lead to different non-mergible
representations of the same regular language.

In this paper we work on the problem of mergible states1 existence that can
be formulated as follows:
1 I.e. the states that we can merge without changing the accepted language of NFA.
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Problem 1. Given a regular language L. Is there a constant EL such that any
NFA that accepts L with a number of states greater than EL has mergible states?

According to [2] one can distinguish two main ways of merging states: (1)
a weak method (the weak mergibility), where two states are merged by sim-
ply collapsing one into the other and consolidating all their input and output
transitions, and (2) a strong method (the strong mergibility), where one state
is merged into another one by redirecting its input transitions toward the other
state and completely deleting all its output transitions.

Very recently the upper bound on non-mergible states in case of the weak
mergibility was found in [1]. Then it was shown in [2] that in the case of the
strong mergibility the upper bound does not exist. The proof of the upper bound
for the weak mergibility provided in [1] gives an effectively computable constant
which, however, is very large and involves some imbricated Stirling numbers. In
this paper we provide a solution for the Problem 1 (in a context of the week
mergibility) by proving the lower and upper bounds that match exactly. We
show that the maximal possible number of non-mergible states in a NFA that
accepts a given language L is not greater than 2n − 1, where n is the number
of states in the minimal deterministic finite automaton that accepts L. Next we
show that the bound is reachable by construction of a NFA that have exactly
2n − 1 non-mergible states. As a generalization of this result we show that the
number of states in a NFA that does not contain a subset of k mergible states,
where k > 1, is bounded by (k − 1)(2n − 1) and the bound is reachable.

The proof is based on our recent technique that was used in [4, 5] for char-
acterization of the languages representable by the undirected graphs. In this
paper, without loss of generality, we use edge labeled graphs instead of NFAs.
In particular we represent a language L as a set of all paths in an edge-labeled
graph that lead us to the final vertex instead of saying that L is accepted by
a NFA.

On the one hand, this approach helps to study the properties of mergible and
non-mergible states of a NFA in terms of edge-label graphs. On the other hand we
believe that presented proofs, in the current form, are more readable and can be
adapted for further research on graph representable languages [5]. The paper is
organized as follows. In the first part of the paper we introduce definitions and
prove several useful properties about equivalent and quasi-equivalent vertices.
Then in the next section we prove our main result. The paper ends with some
conclusions.

2 Preliminaries

2.1 Basic Notations and Definitions

Let X be a finite alphabet and X∗ be a free monoid on the set X . We denote
the empty word by e. The length of a word w = x1x2 . . . xk, where xi ∈ X ,
1 ≤ i ≤ k, is denoted by |w|. The concatenation of two words u ∈ X∗, v ∈ X∗

we denote as uv. We call u as a prefix of the word uv. We denote by Xe the
language X

⋃
{e}.
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Definition 1. Given languages L,L′ ⊆ X∗. The basic language operations that
we use are defined as follows:

– the concatenation of two languages: LL′ = {wu|w ∈ L, u ∈ L′}
– the prefix contraction of a word w from the language L: w−1L = {u|wu ∈ L}
– the prefix contraction of the language L′ from the language L: (L′)−1L =
∩w∈L′w−1L.

Note that (L′)−1L we can define as follows:

(L′)−1L = {u|∀w ∈ L′ : wu ∈ L}.

Definition 2. Let G = (S, X,E, s0, F ) be a simple (i.e. without multiple edges),
directed edge-labeled graph, where S is a set of vertices, X is a finite set of labels,
E ⊂ S×Xe×S is a set of directed labeled edges, F ⊂ S is a set of final vertices.
By sxt or (s, x, t) we denote an edge from the vertex s to the vertex t with the
label x.

Note that an edge in a graph G can be labeled with the empty word e. From
now on by a graph we understand an edge-labeled graph. Any path in a graph
is defined as a finite sequence

p = s1x1s2x2 . . . sk−1xk−1sk

such that sixisi+1 ∈ E for 1 ≤ i < k. The path p begins in the vertex s1 and
ends in sk. The word x1x2 . . . xk−1 ∈ X∗ is a label of the path p that we denote
as μ(p).

By s we denote the set of labels of all paths from the initial vertex to the
vertex s. The set of labels of all paths from a vertex s to final vertices we denote
by s−1. We also say that s−1 is a language generated by the vertex s and L(G)
is a language generated by the initial vertex of the graph G, i.e. L(G) = s−1

0 .
Let A be a NFA that accepts a regular language L. We can think about a

structure of A as a finite directed edge-labeled graph GA. In accordance with
our definitions we can state that L = L(GA). Moreover, it is obvious that we can
uphold the above language equality by adding/deleting any states or transitions
in A and adding/deleting corresponding vertices or labeled edges at the same
time in GA.

Definition 3. Two vertices s, t ∈ S are equivalent, if s−1 = t−1. The relation
between s and t we denote as ε.

Definition 4. Given a graph G that generates a language L. Two vertices s
and t from the graph G are quasi-equivalent if (s)−1L = (t)−1L. The relation
between s and t we denote as α.

Definition 5. A graph G is deterministic if every vertex of G does not have any
two outgoing incident edges with the same label and does not have any outgoing
edges lebeled by the empty word.
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Let us consider an equivalence relation ρ ⊆ S× S, i.e. a reflexive, transitive and
symmetric relation. By ρ(s), where s ∈ S, we denote a set {t|(s, t) ∈ ρ}.

Definition 6. The graph G/ρ = (G′, X ′, E′, s′0, F
′) is a factor graph of a graph

G if G′ = {ρ(s)|s ∈S}, ρ(s)xρ(s′) ∈ E′ for all edges sxs′ ∈ E, s′0 = ρ(s0) and
F ′ = {ρ(s)|s ∈ F}.

By the merging of two vertices we understand a weak method, where two vertices
are merged by simply collapsing one into the other and consolidate all their
incomming and outgoing edges. We say that the graph G/ρ can be constructed
from G by merging vertices of each set ρ(s), s ∈ S.

Definition 7. A subset R of vertices S in a graph G is mergible iff the lan-
guage generated by the graph after merging of these vertices does not change,
i.e. L(G) = L(G/ρ), where (s, t) ∈ ρ iff s = t or s, t ∈ R.

Now we define a simple graph that we call Line. Let w = x1x2 . . . xk−1 be a word
of a length k−1. By Line(w) we denote a directed graph that is isomorphic to the
graph with k vertices s1, ..., sk, and with the set of edges {sixisi+1|1 ≤ i < k}.
We also call the vertex s1 as initial and the vertex sk as final. An example of a
graph Line(w), where w = abcb is shown on the Figure 1.

a b c b

Fig. 1. An example of Line(w), where w = abcb

2.2 Intermediate Results

In this paper we consider languages in a given finite alphabet X , and graphs
with the same alphabet X for labels. Without loss of generality we assume that
all vertices in graphs are reachable from initial vertices and from any vertex at
least one finite vertex is reachable in G.

Lemma 1. Let G be a directed edge-labeled graph and s, t are two vertices in G,
that x−1t−1 ⊇ s−1, and the edge (t, x, s) does not belong to the graph G. Then
adding the new edge (t, x, s) into the graph G does not the language L(G).

Proof. Let us add one edge (t, x, s) to the graph G, that is obviously can only
extend a language L(G). Thus, it is enough to show that for any path p which
goes via the edge (t, x, s) from the initial vertex to a final one we can find a path
p′ from the initial vertex to a final one without passing the edge (t, x, s) with
the same label, i.e. μ(p) = μ(p′).

Let us consider a path p = s1x1s2x2 . . . sk−1xk−1sk from the initial vertex to
a final one such that passes the edge (t, x, s) in the extended graph G. Let i be
the maximum number, such that (t, x, s) = (si, xi, si+1). According to the initial
condition x−1t−1 ⊇ s−1 there is a path siy1t1y2t2 . . . tl−1yltl from si to a final
vertex tl with the label y1y2 . . . yl such that y1y2 . . . yl = xixi+1xi+2 . . . xk−1,
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where xi = x, but which does not pass the edge (t, x, s). Thus the number of
(t, x, s)-edges in the path p′ = s1x1s2 . . . siy1t1y2t2 . . . tl−1yltl is less than in p by
one. From it follows that, by repeating the above reduction a finite number of
times, for any path p in G from the initial vertex to a final one we can construct
a path p′ in G from the initial vertex to a final one, that does not contain the
edge (t, x, s), and μ(p) = μ(p′).

Lemma 2. For any (finite or infinite) graph G the identity L(G) = L(G/ε)
holds.

Proof. Let G be an initial edge-labeled graph and let s and t be equivalent
vertices in G. Let us assume that for some vertex s′ the graph G contains the
edge (s, x, s′) and there is no edge (t, x, s′) in the graph G. In this case we meet
initial condition of Lemma 1, so the language represented by the graph G would
not be changed by extending G with the edge (t, x, s′). Moreover, a language
generated by any vertex in the extended graph would not be changed as well.

Let us extend the graph G in the following way: for any equivalent vertices s
and t and some vertex s′ we add the edges (t, x, s′) iff the edge (s, x, s′) belongs
to the graph.

From it follows that the sequence ε(s1)x1ε(s2)x2 . . . xk−1ε(sk) is a path from
the initial vertex to a final one in the factor graph G/ε iff there exist a path
r1x1r2x2 . . . xk−1rk in the graph G, where ri ∈ ε(si), 1 ≤ i ≤ k. Above facts
show that for any graph G the equality L(G) = L(G/ε) holds.

Lemma 3. Given a graph G and a language L, then L(G) ⊆ L iff s−1 ⊆ (s)−1L
for any vertex s in the graph G.

Proof. The above lemma follows from the fact that a set of all paths via a
vertex s to a final vertex can be represented by ss−1. Since ss−1 ⊆ L holds it is
equivalent to s−1 ⊆ (s)−1L. The proof of the reverse part is trivial since from
the statement s−1 ⊆ (s)−1L, where s is the initial vertex, follows that L(G) ⊆ L.

The next lemma gives us the common property for equivalent and quasi-
equivalent vertices.

Lemma 4. For any graph G the identity L(G) = L(G/α) holds.

Proof. LetG be an initial edge-labeled graph. Note that the operation of merging
any two vertices in a edge-labeled graph can only extend the language that it
represents. Let us now assume that W = (s)−1L(G) = (t)−1L(G), i.e. s and t
are quasi-equivalent. From Lemma 3 follows that s−1 ⊆W and t−1 ⊆W .

Let us construct an extension of a graph G by adding new vertices and edges
in such a way that s−1 = t−1 = W holds in the extended graph. In particular
we can do it as follows. Let us add by direct sum all graphs Line(w), w ∈W , to
the graph G and merge the vertex s with the initial vertices of Line(w), w ∈ W .
Next we can repeat the same construction with the vertex t. According to the
Lemma 1 the language represented by a graph G after its extension has not been
changed.



On a Maximal NFA Without Mergible States 207

Since the vertices s and t are now equivalent in the extended graph G we can
merge s and t without changing the language represented by this graph. Now we
can delete all introduced edges and nodes to get a graph that can be constructed
by just merging quasi-equivalent vertices s and t.

Corollary 1. Quasi-equivalent vertices are mergible.

Definition 8. A graph G is saturated if for any vertex s the equality (s)−1L =
s−1 holds, i.e. any quasi-equivalent vertices in the graph are equivalent.

Lemma 5. Two vertices in a saturated graph are mergible iff they are equivalent.

Proof. It is obvious that equivalent vertices are mergible.
Assume s and t are not equivalent in a saturated graph G. Then there are

two words u and w, such that either u ∈ s, u /∈ t, w /∈ s−1, w ∈ t−1 or u /∈ s,
u ∈ t, w ∈ s−1, w /∈ t−1 holds. In this case the word uw does not belong to the
language L(G), but could belong to the language L(G) if we merge the vertices
s and t, i.e. s and t are not mergible.

3 Main Result

Theorem 1. Given a regular language L and a graph G such that it does not
contain any mergible vertices and L(G) = L. The number of vertices in the graph
G is bounded by 2n − 1, where n = |{w−1L|w ∈ L}| and the bound is reachable.

Proof. Let us consider a graph G satisfying to the above statement. Since quasi-
equivalent vertices are mergible then the maximum number of non-mergible
vertices is bounded by a maximal number of vertices that are not pairwise quasi-
equivalent. Since a set (W )−1L, where W ⊆ L, is defined as ∩w∈Ww−1L the
number of different quasi-equivalent classes in G cannot exceed the number of
different non-empty subsets of the set {w−1L|w ∈ L}, which is 2n − 1.

Now we prove that 2n− 1 is a reachable bound. The Figure 2 shows a deter-
ministic graph H with the initial vertex n and all final vertices. The vertex k,
1 ≤ k ≤ n, generates the language that contains only all possible initial prefixes
of the words from the language defined by the regular expression (a1a2 . . . an)∗,
where ai ∈ {0, 1} for i ∈ {1, 2, . . . , n}−{k} and ak = 0. Hence the graph H does
not have any equivalent vertices.

Let us construct a saturated graph G with 2n− 1 vertices such that L(H) =
L(G). First we define a set of vertices S= {s|s ⊆ {1, 2, . . . , n}, s �= ∅}. The vertex
{n} is initial, and all vertices are final. For any s ∈ S, t ∈ S the edge (s, 0, t)
belongs to G iff for all x ∈ s−{1} we have that x−1 ∈ t and if 1 ∈ s then n ∈ t.
For any s ∈ S, t ∈ S the edge (s, 1, t) belongs to G iff 1 /∈ s and for all x ∈ s we
have that x − 1 ∈ t. It follows from the construction that for each vertex s ∈ S
the equality s−1 =

⋂
i∈s i−1 holds, where i−1 is a language generated by a vertex

i from the graph H . Hence the graph G is saturated and for any vertex s ∈ S
the language s−1 consists of all possible prefixes of the language defined by the
regular expression (a1a2 . . . an)∗, where ai = (0 ∨ 1) for i ∈ {1, 2, . . . , n}− s and
ai = 0 for i ∈ s. From it follows that for different vertices s we have different



208 I. Grunsky, O. Kurganskyy, and I. Potapov

0,1 n−1n 0,10,1 1

0

Fig. 2. Deterministic graph with the initial vertex n and all final vertices

languages s−1 and according to the Lemma 5 there are no mergible vertices in
G. This ends our proof.

Corollary 2. Let k > 1 be an integer, L be a regular language, and G be a
finite graph that does not contain a subset of k mergible vertices and L(G) = L.
The number of vertices in the graph G is bounded by (k − 1)(2n − 1), where
n = |{w−1L|w ∈ L}| and the bound is reachable.

Proof. Let L be a regular language, G be a finite graph with a number of vertices
greater than (k−1)(2n−1) and such that L(G) = L, where n = |{w−1L|w ∈ L}|.
The number of different quasi-equivalent classes in G is not greater than 2n− 1.
According to the pigeonhole principle there is a subset of k quasi-equivalent and
therefore mergible vertices in the graph G.

Consider the graph G and the language L from the proof of the Theorem 1.
We have that n = |{w−1L|w ∈ L}| and G consists of (2n − 1) non-mergible
vertices. Let G1,G2,. . .,Gk−1 be k − 1 copies of G, and s0i the inital vertex of
Gi, where 1 < i < k. Let H be a graph constructed by direct sum of the graphs
Gi, 1 < i < k, and such that H has the initial vertex s01 and for all vertices
s, t in H , such that x−1t−1 ⊇ s−1 and the edge (t, x, s) does not belong to the
graph H we construct the edge (t, x, s). does not change the langauge L(H). By
applying Lemma 1 we state that the above construction does not change the
langauge L(H). So it is obvious that L(G) = L(H), all final vertices in H are
reachable and it does not contain a subset of k quasi-equivalent vertices.

Corollary 3. Let k > 1 be an integer, L be a regular language, and A be a NFA
that does not contain a subset of k mergible states and accept L. The maximal
number of states in A is bounded by (k − 1)(2n − 1), where n is the number of
states in the minimal deterministic finite automaton that accepts L.

Proof. The proof is straightforward and follows from the Corollary 2. By a NFA
A we understand the graph G from Corollary 2. In addition to it we use the fact
that a number of states in the minimal deterministic automaton that accepts L
is equal to the cardinality of a set {w−1L|w ∈ L}.

4 Conclusion

In this paper we answered a question about the exact bound on non-mergible
states in a nondeterministic finite automaton. It was shown that the tight bound
on the maximal possible number of non-mergible states in NFA that accepts
a given language L is 2n − 1, where n is the number of states in the mini-
maldeterministic finite automaton that accepts L. It is easy to see that the same
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bound holds for a case of ε-free NFA since the upper bound proofs cover a case
of ε-free NFA and the low bound constructions do not contain any ε-transitions.

Another interesting aspect of this paper is the use of quasi-equivalence rela-
tion that have a number of important properties not only for finite but also for
infinite graphs or automata.

Corollary 4. Let L be a regular language and G be an infinite graph such that
L = L(G). The factor graph G/α is finite.

Let us show using simple example that the above statement does not hold if we
substitute the relation α by ε. The infinite graph G on Figure 3 have one initial
vertex that is the vertex without incoming edges and one final vertex that is the
vertex without outgoing edges.

0 0 0 0
0 0 0 . . .

0

1

1 0 0

Fig. 3. A infinite graph G which is isomorphic to G/ε

1

0

0

Fig. 4. The graph G/α

It is easy to see that the language generated by G corresponds to the ex-
pression (00)∗1. The above graph does not have any equivalent vertices since
each vertex of G generates a different language. On the other hand, the vertices
colored with the same pattern are quasi-equivalent and mergible, because of the
fact that (02i)−1L(G) = L(G) and (002i)−1L(G) = 0−1L(G), for any i ≥ 0.

The factor graph G/α is shown on Figure 4.
The question about applicability of quasi-equivalence relation for the mini-

mization of NFA that accepts a given regular language could be promising next
step along the research initiated in [8].
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Abstract. We prove a conjecture by A. Pnueli and strengthen it show-
ing a sequence of “counting modalities” none of which is expressible in
the temporal logic generated by the previous modalities, over the real
line, or over the positive reals. We use this sequence to prove that over
the real line there is no finite temporal logic that can express all the
natural properties that arise when dealing with systems that evolve in
continuous time.

1 Introduction

Temporal Logic based on the two modalities “Since” and “Until” (TL) is a most
popular framework for reasoning about the evolving of a system in time. By
Kamp’s theorem [12] this logic has the same expressive power as the monadic first
order predicate logic. Therefore the choice between monadic logic and temporal
logic is merely a matter of personal preference.

Temporal logic and the monadic logic are equivalent whether the system
evolves in discrete steps or in continuous time, But for continuous time both
logics are not strong enough to express properties like: “X will happen within 1
unit of time”, and we need a better version of the logics.

Following the work R. Koymans, T. Henzinger and others,
[14, 3, 2, 13, 5, 17, 1, 7], and more, we introduced in [9, 11] the logic QTL (Quan-
titative Temporal Logic), which has besides the modalities Until and Since two
metric modalities: ♦1(X) and←−♦1(X). The first one says that X will happen (at
least once) within the next unit of time, and the second says that X happened
within the last unit of time. We proved:

1. This logic consumes the different metric temporal logics that we found in
the literature, like MITL [2, 1, 7].

2. The validity and satisfiability problem for this logic is decidable, whether
we are interested in systems with finite variability, or in all systems evolving
in time (a system has finite variability if it changes only at finitely many
points, in any finite interval of time).

An important question was not answered: is this logic expressive enough
to express all the important properties about evolving systems? If not, which
modalities should we add?
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A. Pnueli suggested the modality P2(X,Y ): “X and then Y will both occur in
the next unit of time”. P2(X,Y ) was probably thought of as a natural strength-
ening of the metric logics that were presented before. It can serve as a first in
a sequence of extensions of the logic, where for each natural number n, we add
the modality Pn(X1, , . . . , Xn). Pn(X1, , . . . , Xn) says that there is an increasing
sequence of points t1, , . . . , tn in the coming unit interval such that Xi(ti) holds
for i = 1, , . . . , n. It probably seemed pointless to define new modalities when
you cannot prove that they can express something new. Pnueli conjectured that
the modality P2(X,Y ) cannot be expressed in the different (equivalent) metric
logic that we defined above, but he left it at that (we were unable to locate where
this conjecture was first published. It is attributed to Pnueli in later papers like
[2] and [17]).

Here we prove Pnueli’s conjecture: We denote by C2(X) the modality “X
will be true at least twice in the next unit of time”. This is a special case of
P2(X,Y ) where Y = X . We prove:

– C2(X) cannot be expressed in QTL (and the equivalent languages). More-
over:

– For every n let us define the modality Cn(X) that says that X will hold
at least at n points of the next unit interval. Then the modality Cn+1(X)
cannot be expressed in the logic QTL(C1, , . . . , , Cn), which is generated by
QTL, and the extra n modalities QTL(C1(X), , . . . , , Cn(X))

Therefore there is a proper hierarchy of temporal logics, and it is important to
investigate how to extend the logic QTL to a full strength, yet decidable logic.
Counting modalities like Cn(X) are not a natural choice of a modality and it
maybe suspected that a better chosen finite set of modalities together with QTL
is as strong as, or even stronger than QTL with all the modalities Cn. Not so!
We were able to prove:

– No finite temporal logic can express all the statements Cn(X).

The last claim needs to be made exact: No finite temporal logic, whose modal-
ities are defined in a natural monadic predicate logic, can express all the counting
modalities over continuous time, extended in both directions; i.e, over the full
real line. We believe that the same is true also when we consider continuous time
with a first point 0, i.e, positive time line, but the proof will be more difficult.

When stated formally the result seems even stronger: Let L be second order
monadic logic of order, together with the predicate B(t, s) which says that s =
t+ 1. The modalities Cn(X) are expressible in this logic, but no temporal logic
with a finite or infinite family of modalities which are defined by formulas with
bounded quantifier depth can express all the modalities Cn(X).

In predicate logic the expressive power grows with the increasing of the quan-
tifier depth. In temporal logic this is achieved by increasing the nesting depth of
the modalities. Kamp showed that for the simplest logic of order iterating the
modal operations can replace the complex use of quantifier. Our result, together
with previous evidence (see [15]) suggests that this was a lucky peculiarity of
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the first-order monadic logic of linear order, and it cannot be expected to hold
for strong logics.

These results leave open and emphasize even more the main question: Is
the logic QTL enriched by all the modalities Pn(X1, , . . . , Xn) the appropriate
maximal decidable temporal logic? If not, what is its strength, and what is the
appropriate continuous metric temporal logic?

The paper is divided as follows: In section 2 we recall the definitions and
the previous results concerning the continuous time logics. In section 3 we prove
Pnueli’s conjecture and its generalization, that the modalities Ci create a strictly
increasing family of logics. In section 4 we discuss the more general and abstract
result: that no temporal logic based on modalities with finite quantifier depth
can express all the modalities Cn.

2 Monadic Logic and Quantitative Temporal Logic

2.1 MLO - Monadic Logic of Order

The natural way to discuss systems that evolve in time is classical predicate
logic. The language has a name for the order relation of the time line, and a
supply of unary predicate names to denote a properties that the system may or
may not have at any point in time. Hence:

The syntax of the monadic predicate logic of order - MLO has in its
vocabulary individual (first order) variables t0, t1, . . . , monadic predicate vari-
ables X0, X1, . . . , and one binary relation < (the order). Atomic formulas
are of the form X(t), t1 = t2 and t1 < t2. Well formed formulas of the
monadic logic MLO are obtained from atomic formulas using Boolean connec-
tives ¬,∨,∧,→ and the (first order) quantifiers ∃t and ∀t and the (second-order)
quantifiers ∃X and ∀X . The formulas which do not use ∃X and ∀X are called
first-order MLO formulas (FOMLO). Note that FOMLO formulas may contain
free monadic predicate variables, and they will be assigned to particular predi-
cates in a structure.

A structure for MLO is a tuple M = 〈A, <, P1, . . . , Pn〉, where A is a
set linearly ordered by the relation <, and P1, · · · , Pn, are one-place predicates
(sets) that correspond to the predicate names in the logic. We shall use the
simple notation 〈A, <〉 when the particular predicates are not essential to the
discussion.

The main models are: the continuous canonical model 〈R+, <〉, the non-
negative real line, and the discrete canonical model 〈N,<〉, the naturals.

As is common we will use the assigned formal names to refer to objects in
the meta discussion. Thus we will write:

M |= ϕ[t1, . . . , tk;X1, . . . , Xm]

where M is a structure, ϕ a formula, t1, · · · , tk elements of M and X1, . . . , Xm

predicates in M , instead of the correct but tedious form:

M, τ1, . . . , τk;P1, . . . , Pm |=
MLO

ϕ(t1, . . . , tk;X1, . . . , Xm),
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where τ1, . . . , τk and P1 · · · , Pm are names in the metalanguage for elements and
predicates in M .

2.2 Temporal Logics

Temporal logics evolved in philosophical logic and were enthusiastically em-
braced by a large body of computer scientists. It uses logical constructs called
“modalities” to create a language that is free from variables and quantifiers.
Here is the general logical framework to define temporal logics:

The syntax of the Temporal Logic TL(O(k1)
1 , . . . , O

(kn)
n , . . .) has in its vo-

cabulary monadic predicate names P1, P2, . . . and a sequence of modality names
with prescribed arity, O(k1)

1 , . . . , O
(kn)
n , . . . (the arity notation is usually omitted).

The formulas of this temporal logic are given by the grammar:

ϕ ::= True| P | ¬ϕ | ϕ ∧ ϕ | O(k)(ϕ1, · · · , ϕk)

A temporal logic with a finite set of modalities is called a finite (base) temporal
logic.

Structures for TL are again linear orders with monadic predicates M =
〈A, <, P1, P2, . . . , Pn〉, where the predicate Pi are those which are mentioned in
the formulas of the logic. Every modality O(k) is interpreted in every structure
M as an operator O(k)

M : [P(A)]k → P(A) which assigns “the set of points where
O(k)[S1, . . . ,Sk] holds” to the k-tuple 〈S1, . . . ,Sk〉 ∈ P(A)k. (Here P is the power
set notation, and P(A) denotes the set of all subsets of A.) Once every modality
corresponds to an operator the semantics is defined by structural induction:

– for atomic formulas: 〈M, t〉 |=
T L
P iff t ∈ P .

– for Boolean combinations the definition is the usual one.
– for O(k)(ϕ1, · · · , ϕk)

〈M, t〉 |=
T L
O(k)(ϕ1, · · · , ϕk) iff t ∈ O(k)

M (Aϕ1 , · · · ,Aϕk
)

where Aϕ = { τ : 〈M, τ〉 |=
T L

ϕ } (we suppressed predicate parameters
that may occur in the formulas).

We are interested in a more restricted case; for the modality to be of interest the
operator O(k) should reflect some intended connection between the sets Aϕi of
points satisfying ϕi and the set of points O[Aϕ1 , . . . ,Aϕk

]. The intended meaning
is usually given by a formula in an appropriate predicate logic:

Truth Tables: A formula O(t0, X1, . . .Xk) in the predicate logic L is a Truth
Table for the modality O(k) if for every structure M

OM (A1, . . . ,Ak) = {τ : M |=
MLO

O[τ,A1, . . . ,Ak]} .

The modalities until and since are most commonly used in temporal logic for
computer science. They are defined through the following truth tables:
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– The modality X U Y , “X until Y ”, is defined by

ψ(t0, X, Y ) ≡ ∃t1(t0 < t1 ∧ Y (t1) ∧ ∀t(t0 < t < t1 → X(t))).

– The modality X S Y , “X since Y ”, is defined by

ψ(t0, X, Y ) ≡ ∃t1(t0 > t1 ∧ Y (t1) ∧ ∀t(t1 < t < t0 → X(t))).

If the modalities of a temporal logic have truth tables in a predicate logic then
the temporal logic is equivalent to a fragment of the predicate logic. Formally:

Proposition 1. If every modality in the temporal logic TL has a truth table
in the logic MLO then to every formula ϕ(X1, . . . , Xn) of TL there corresponds
effectively (and naturally) a formula ϕ(t0, X1, . . .Xn) of MLO such that for every
M , τ ∈ M and predicates P1, . . . , Pn

〈M, τ, P1, . . . , Pn〉 |=
T L
ϕ iff 〈M, τ, P1, . . . , Pn〉 |=

MLO
ϕ .

In particular the temporal logic TL( U , S ) with the modalities “until” and
“since” corresponds to a fragment of first-order MLO (FOMLO).

The two modalities U and S are also enough to express all the formulas
of first-order MLO with one free variable:

Theorem 2. ([12, 6]) The temporal logic TL( U , S ) is expressively complete
for FOMLO over the two canonical structures: For every formula of FOMLO
with at most one free variable, there is a formula of TL( U , S ), such that the
two formulas are equivalent to each other, over the positive integers (discrete
time) and over the positive real line (continuous time).

2.3 QTL - Quantitative Temporal Logic

The logics MLO and TL( U , S ) are not suitable to deal with quantitative
statements like “X will occur within one unit of time”. In [8, 9, 10] we introduced
the Quantitative Temporal Logic, adding to TL the modalities ♦1X (X will
happen within the next unit of time) and ←−♦1X (X happened within the last
unit of time):

Definition 3 (Quantitative Temporal Logic). QTL, quantitative temporal
logic is the logic TL( U , S ) enhanced by the two modalities: ♦1X and ←−♦1X.
These modalities are defined by the tables with free variable t0:

(3) ♦1X : ∃t((t0 < t < t0 + 1) ∧X(t))

(4) ←−♦1X : ∃t((t < t0 < t+ 1) ∧X(t)) .

QTL was the latest in a list of metric logics for continuous time, developed over
approximately 15 years. When interpreted carefully all these logics are equiva-
lent. For completeness we list the two main modalities that were suggested before
QTL together with their natural truth table:
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1. The logic MITL [2] has as modalities X until(m,n)Y with natural numbers
m < n, which holds at t0 iff

∃t1[(t0 +m < t1 < t0 + n) ∧ Y (t1) ∧ ∀t(t0 < t < t1 → X(t))].

Other modalities with closed and half closed intervals as indices, and dual
modalities with ”since” replacing ”until” are defined similarly.

2. Manna and Pnueli [13] base their logic on modalities [Γ (X) > n] which holds
at t0 iff

∀t(t0 − n < t < t0 → X(t)).

The dual modality for the future is defined similarly. To these they add
modalities [Γ (X) = n] saying that X started exactly n units of time ago.

We proved in [9] and [11] that:

1. The logic QTL can express more liberal bounds in time like: “X will happen
in the future, within the period that starts in m units of time, and ends in n
units of time” (m < n). We may also include or exclude one of both of the
endpoints of the period.

2. QTL consumes the different decidable metric temporal logics that we found
in the literature, including MITL and the Manna-Pnueli logic described
above.

3. There is a natural fragment QMLO (quantitative monadic logic of order),
of the classical monadic logic of order with the +1 function, that equals in
expressive power to QTL.

4. The validity and satisfiability problem for this logic is decidable, whether we
are interested in systems with finite variability, or in all systems evolving
in time (a system has finite variability if it changes only at finitely many
points, in any finite interval of time).

The advantages of the logic QTL were the subject of [8, 9, 10, 11]. In particular,
it is decidable. Here we investigate the limitations of its expressive power.

3 Modalities Which Are Not Expressible in QTL

We start the investigation of the limitations of the temporal logic proving Pnueli’s
conjecture:

Theorem 4. The modality C2(X) is not expressible in QTL.

Proof. Let M be the real non negative line with the predicate P (t) that is true
exactly at the points n · 23 for all natural numbers n. Let us call the following four
predicates: P,¬P, T rue, False the trivial predicates. We show by structural
induction that for every statement ϕ of QTL there is a point tϕ such that from
this point on ϕ is equivalent to one of the trivial predicates.
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– This is trivially true for atomic statements.
– The collection of truth sets for the four trivial predicates is closed under

Boolean combinations. Therefore the set of formulas satisfying our claim is
closed under the Boolean connectors.

– Assume now that ϕ = (θ Untill ψ) and t0 is a point beyond which both θ
and ψ are equivalent to one of the trivial predicates. We check the different
possibilities for the truth value of ϕ at a point t beyond t0. If θ is equivalent
to P or to False then ϕ is false. If θ is equivalent to ¬P or to True then ϕ
is true if ψ is equivalent to either of P ,¬P or True, and ϕ is false if ψ is
equivalent to False. In every case ϕ is equivalent either to True or to False.

– For ϕ = (θ Since ψ) we need only a minor modification: Let t1 be an even
integer beyond t0 (so that P is true at t1). Then for points beyond t1 ϕ is
true if θ ≡ True and ψ occurred at t1 or earlier, or if θ ≡ ¬P and ψ is
equivalent to any of the special predicates except False (the choice of t1
ensures the case that ψ ≡ P ) in all other cases ϕ ≡ False.

– Assume that ϕ = ♦1θ and from t0 on θ is equivalent to one of the four trivial
predicates. If θ is equivalent to False then ϕ is equivalent to False from t0
on. In the other three cases ϕ is equivalent to True from t0 on.

– A similar argument works when ϕ = ←−♦1θ.

On the other hand the statement C2(P ) is false at any point in the interval
(n, n+ 1/3) if n is even and it is true at any point in the interval (n, n+ 1/3) if
n is odd. This shows that C2(P ) is not equivalent to any QTL formula.

The method of the proof can be modified to produce a hierarchy of temporal
logics, each stronger than the previous.

Definition 5. The counting modalities are the modalities Cn(X) for every n
which state that X will be true at least at n points within the next unit of time.

Theorem 6. The modality Cn+1(X) is not expressible in QTL(C1 · · · , Cn).

Proof. Let M be the real non negative line with the predicate P (t) that is true
exactly at the points k · 2

n+1 for all natural numbers k. Call again the following
four predicates: P,¬P, T rue, False the trivial predicates, and as before show
that every formula of QTL(C1 · · · , Cn) is equivalent from some point on to a
trivial predicate. On the other hand Cn+1(P ) is always true on the interval
(k, k + 1

n+1 ) if k is even, and false on the interval if k is odd.

4 No Finite Temporal Logic Is Fully Expressive

The hierarchy

TL < QTL < QTL(C2) < · · · < QTL(C1 · · · , Cn) < · · ·

raises the suspicion that it will be difficult to find a finite temporal logic that
includes all these logics. We showed that it is not difficult. It is impossible. To
be precise:
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Theorem 7. Let L be the second order monadic logic of order, with an extra
predicate B(t, s) that is interpreted on the real line as s = t + 1. Let L1 be a
temporal logic with possibly infinitely many modalities, for which there is a nat-
ural number m such that all the modalities have truth tables in L, with quantifier
depth not larger than m. Then there is some n such that Cn(X) is not equivalent
over the real line to any L1 formula.

The proof is quite technical, yet close in spirit to the proof of theorem 6: We
define an infinite family of very uniform models, with P their only unary pred-
icate. We define for each integer k > 0 the model Mk to be the full real line R
with P (t) occurring at the points m 1

k for every integer m (positive, negative or
zero). We show that any pair of models in this class that can be distinguished
by some formula in L1, can also be distinguished by one of finitely many simple
formulas. It follows that there is an infinite subfamily of models that satisfy the
same formulas of L1. On the other hand for large n < k the model Mn satisfies
Cn(P ) and the model Mk does not. Hence the formula Cn(X) is not definable
in L1.

Discussion:

1. The theorem says both more and less than what the title of the section says.
Less because we confined ourselves to temporal logics with truth tables in
the second order monadic logic of order with the addition of the +1 func-
tion. Allowing more arithmetical operations would produce more modalities.
Moreover, modalities need not have truth tables in any predicate logic, and
the following is a natural question:

Is there a finite temporal logic that includes all the modalities
Pn(X1, , . . . , Xn), if we do not require that the modalities are are defined

by truth tables?

On the other hand we prove more than is claimed because we prove that no
infinite temporal logic can express all the counting modalities Cn(X) if the
truth tables of the modalities are of bounded quantifier depth.

2. Second order monadic logic of order with the +1 function is a much stronger
logic than is usually considered when temporal logics are defined. All the
temporal logics that we saw in the literature are defined in a fragment of
monadic logic, with a very restricted use of the +1 function. All the decidable
temporal logics in the literature remain decidable when we add the counting
modalities Cn(X) [10]. On the other hand second order monadic logic is
undecidable over the reals even without the +1 function [16]. When the +1
function is added even a very restricted fragment of first order monadic logic
of order is undecidable over the positive reals.

3. A natural way to strengthen the predicate logic is by adding predicates
Bq(t, s) for every rational umber q, to express the relation s = t+ q. We call
this logic LQ. The proof of the theorem will not apply if we replace L by
LQ, and even modalities with truth tables of quantifier depth 2 distinguish
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any two models Mk and Mr in our class. On the other hand just as before
no finite temporal logic defined in this logic can express all the counting
modalities. This leaves open the question:

Is the theorem above true when the predicate logic L is replaced by LQ?

4. It is well known that to say in predicate logic ”there are at least n elements
with a given property” requires quantifier depth that increases with n. We
emphasize again that the theorem is much more significant than that. Tem-
poral logics do not have quantifiers, and the expressive power is achieved by
deeper nesting of the modalities. Thus to say that P will not occur in the
next n units of time requires formulas of predicate logic with quantifier depth
that increases with n. On the other hand QTL itself suffices to claim it for
any n (with increasing modality nesting), although all the modalities of QTL
have very simple truth tables with quantifier depth at most 2. Therefore it
is far from obvious that no finite temporal logic expresses all the modalities
Cn using unlimited modality nesting.
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Abstract. We consider the problem of computing shortest paths in a
directed arc-weighted graph G = (V, A) in the presence of an adversary
that can block (interdict), for each vertex v ∈ V , a given number p(v)
of the arcs Aout(v) leaving v. We show that if all arc-weights are non-
negative then the single-destination version of the problem can be solved
by a natural extension of Dijkstra’s algorithm in time

O |A|+ |V | log |V |+ v∈V \{t}(|Aout(v)| − p(v)) log(p(v)+ 1) .

Our result can be viewed as a polynomial algorithm for a special
case of the network interdiction problem where the adversary’s budget
is node-wise limited. When the adversary can block a given number p of
arcs distributed arbitrarily in the graph, the problem (p-most-vital-arcs
problem) becomes NP-hard. This result is also closely related to so-called
cyclic games. No polynomial algorithm computing the value of a cyclic
game is known, though this problem belongs to both NP and coNP.

1 Introduction

1.1 Main Problems

Let G = (V,A) be a directed graph (digraph) with given arc-weightsw(e), e ∈ A,
and let s, t ∈ V be two distinguished vertices of G. We consider the problem of
maximizing the shortest path from s to t in G by an adversary who can block
(interdict), for each vertex v ∈ V , some subsets X(v) of the arcs A(v) = {e ∈
A | e = (v, u)} leaving v. We assume that the blocking arc-sets X(v) ⊆ A(v) are
selected for all vertices v ∈ V independently and that for each v, the collection
B(v) of all admissible blocks X(v) forms an independence system: if X(v) ∈ B(v)
is an admissible block at v, then so is any subset ofX(v). Hence, we could replace

� [On April 29th, 2005, our co-author Leonid Khachiyan passed away with tragic
suddenness while we were finalizing this paper].
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the independence systems B(v) by the collections of all inclusion-wise maximal
blocking arc-sets. In general, we will only assume that the blocking systems B(v)
are given by a membership oracle O :
Given a list X(v) of outgoing arcs for a vertex v, the oracle can determine
whether or not the arcs in the list belong to B(v) and hence can be simultaneously
blocked.
A similar formalization of blocking sets via membership oracles was introduced
by Pisaruk in [27]. We will also consider two special types of blocking systems:
(B1) The blocking system is given by a function p(v) : V → Z+, where p(v) ≤

|A(v)| = out-deg(v). For each vertex v, the adversary can block any col-
lection of (at most) p(v) arcs leaving v. The numbers p(v) define digraphs
with prohibitions considered by Karzanov and Lebedev in [21].

(B2) There are two types of vertices: control vertices, where the adversary can
choose any outgoing arc e ∈ A(v) and block all the remaining arcs in
A(v), and regular vertices, where the adversary can block no arc. This
case, considered in [17] and [6], is a special case of B1: p(v) = |A(v)| − 1
for control vertices, and p(v) = 0 otherwise.

Let us call a digraph G′ = (V,A′) admissible for G = (V,A) if A′ is obtained
from A by deleting some sets of outgoing arcsX(v) ∈ B(v) for each vertex v ∈ V .
Consider the following problem:
Given an arc-weighted digraph G = (V,A, w) and a blocking system B, find an
admissible digraph G′ that maximizes the distance from a given start vertex s to
a given terminal vertex t:

d(s, t) def= max{s-t distance in G′ | G′ is an admissible digraph of G}.
We call d(s, t) the blocking distance from s to t. We will see from what follows
that, for any fixed terminal vertex t ∈ V , the adversary can select an optimal
admissible digraph that simultaneously maximizes the distances from all start
vertices s. In other words, there exists an admissible digraph Go such that for
all vertices v ∈ V \ {t}, we have 1

d(v, t) ≡ v-t distance in Go.
For this reason, it is convenient to consider the single-destination version of the
above problem:

MASPNLAI (Maximizing all shortest paths to a given terminal by node-
wise limited arc interdiction): Given an arc-weighted digraph G = (V,A, w),
a terminal vertex t ∈ V , and a blocking system B, find an optimal admissible
digraph Go that maximizes the distances from all vertices v ∈ V \ {t} to t.

1.2 Network Interdiction Problem

MASPNLAI is a special (polynomially solvable) case of the so-called network
interdiction problem. Interdiction (or inhibition) is an attack on arcs which de-
stroys them, or increases their effective lengths, or decreases capacities. The goal
1 Note, however, that if we fix a start vertex s, then distinct terminal vertices t may

require distinct optimal admissible digraphs.
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of the interdiction is to expend a fixed budget most efficiently, that is to maxi-
mize the shortest path or minimize the maximum flow between two given nodes.
The problem was originally motivated by military applications, see McMasters
and Mustin [23], Ghare, Montgomery, and Turner [13]. Then models of pollution
and drug interdiction were developed by Wood [31], see also [30]. Minimizing the
maximum flow was considered by Phillips [26]. Maximizing the shortest path was
first studied by Fulkerson and Harding [11] and also by Golden [14]; see Israeli
and Wood [18] for a short survey. An important special case of the latter problem
is so-called p-most-vital-arcs problem [2][3][7][22] when the adversary is allowed
to destroy exactly p arcs. For p = 1 a polynomial algorithm to maximize the
shortest path was given by Corley and Shaw [7], however, in general the problem
is NP-hard, as it was shown by Bar-Noy, Khuller, and Schieber [3].

MASPNLAI is the shortest path interdiction problem under the assumption
that adversary’s budget is node-wise limited. We will show that this special case
is polynomially solvable.

To illustrate, suppose that for each arc e = (u, v) we are given a probability
p(e) that some undesirable transition (for example, contraband smuggling) from
u to v can be carried out undetected. Then, assuming the independence and
letting w(e) = − log p(e) ≥ 0, we can interpret problem MASPNLAI as the uni-
form maximization of interception capabilities for a given target t under limited
inspection resources distributed over the nodes of G.

1.3 Cyclic Games

Another application of MASPNLAI is related to a class of games on digraphs
known as cyclic or mean payoff games [8][9][17][24][25]. Björklund, Sandberg
and Vorobyov [6] observed that this class of games is polynomially reducible to
problem MASPNLAI with blocks of type B2, provided that the arc-weights in
G have arbitrary signs. A mean payoff game is a zero-sum game played by two
players on a finite arc-weighted digraph G all vertices of which have positive
out-degrees. The vertices of the digraph (positions) are partitioned into two sets
controlled by two players, who move a chip along the arcs of the digraph, starting
from a given vertex s ∈ V (the initial position). A positional strategy of a player
is a mapping which assigns an outgoing arc to each his position. If both players
select positional strategies then the sequence of moves (the play) settles on a
simple directed cycle of G whose average arc-weight is the payoff corresponding
to the selected strategy.

Ehrenfeucht and Mycielski [8][9] and Moulin [24][25] introduced mean payoff
games on bipartite digraphs and proved the existence of the value for such games
in positional strategies. Gurvich, Karzanov and Khachiyan [17] extended this
result to arbitrary digraphs and suggested a potential-reduction algorithm to
compute the value and optimal positional strategies of the players. In many
respects this algorithm for mean cycle games is similar to the simplex method
for linear programming.

Let us assume that the vertices assigned to the maximizing (respectively,
to the minimizing) player are controlled (respectively, regular) vertices for B2.
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Then the determination of an optimal positional strategy for the maximizing
player reduces to computing a B2-admissible digraph G′ = (V,A′) that max-
imizes the minimum average arc-cost for the cycles reachable from the initial
position s. Beffara and Vorobyov [4] report on computational experiments with
the potential-reduction algorithm [17] in which it was used to solve very large
instances of mean payoff games. However, for some special instances with expo-
nentially large arc-weights, this algorithm may require exponentially many steps
[17][5]. Interestingly, computational experiments [5] seem to indicate that such
hard instances become easily solvable if the game is modified into an equivalent
one by a random potential transformation.

Karzanov and Lebedev [21] extended the potential-reduction algorithm [17]
to so-called mean payoff games with prohibitions, that is to blocking systems of
type B1. Pisaruk [27] further extended these results to blocking systems defined
by an arbitrary membership oracle, and showed that in this general setting, the
potential-reduction algorithm [17] is pseudo-polynomial. Zwick and Paterson [32]
gave another pseudo-polynomial algorithm for blocks of type B2.

As mentioned above, mean payoff games can be reduced to shortest paths
with blocks and arc-weights of arbitrary sign. For instance, if we fix a start vertex
s, then determining whether the value of a mean payoff game on G = (V,A)
exceeds some threshold ξ is equivalent to the following decision problem:

(ξ) : Is there an admissible digraph G′ such that the average arc-weight of each
cycle reachable from s in G′ is at least ξ?

After the substitution w(e) → w(e)−ξ we may assume without loss of generality
that ξ = 0, and then (ξ) becomes equivalent to determining whether or not the
blocking distance d(s, v) is equal to −∞ for some vertex v ∈ V .

Björklund, Sandberg and Vorobyov [6] recently showed that mean payoff
games can be solved in expected sub-exponential time. However, the question
as to whether this class of games can be solved in polynomial time remains
open, even though the decision problem (ξ) is obviously in NP∩ coNP [21][32].
Accordingly, for arc-weights of arbitrary sign and magnitude, no polynomial
algorithm is known for MASPNLAI , though a pseudo-polynomial one exists [6].

1.4 Main Results

In this paper, we show that for non-negative arc-weights, MASPNLAI can be
solved in strongly polynomial time by a natural extension of Dijkstra’s algorithm.

Theorem 1. Given a digraph G = (V,A), a non-negative weight function w :
A→ 7+, and a terminal vertex t ∈ V ,

(i) The special case of problem MASPNLAI for blocking systems B1 can be solved
in time

O

(
|A|+ |V | log |V |+

∑
v∈V \{t}[out-deg(v)− p(v)] log(p(v) + 1)

)
.

In particular, for blocking systems B2 the problem can be solved in O(|A| +
|V | log |V |) time;
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(ii) For arbitrary blocking systems defined by membership oracles, MASPN-
LAI can be solved in O(|A| log |V |) time and at most |A| monotonically increasing
membership tests;
(iii) When all of the arcs have unit weight, problem MASPNLAI can be solved
in O(|A| + |V |) time and at most |A| monotonically increasing blocking tests.
The special cases B1 and B2 can be solved in O(|A| + |V |) time.

We show parts (ii) and (iii) of the theorem by using an extension of Dijkstra’s
algorithm and breadth-first search, respectively. As mentioned in the theorem,
both of these algorithms employ monotonically increasing membership queries
and never de-block a previously blocked arc. This is not the case with the variant
of Dijkstra’s algorithm used in the proof of part (i). Note also that for blocks
of type B1 and B2, the above bounds include the blocking tests overhead, and
that the bound stated in (i) for B2 is as good as the running time of the fastest
currently known strongly-polynomial algorithm by Fredman and Tarjan [10] for
the standard shortest path problem, without interdiction.

Let us also mention that by Theorem 1, problem MASPNLAI can be solved in
strongly polynomial time for any digraph G = (V,A) that has no negative total
arc-weight directed cycles. Indeed, Gallai [12] proved that if G has no negative
cycle then all input arc-weights w(v, u) can be made non-negative by a potential
transformation w(v, u)→ w(v, u)+ε(v)−ε(u), where ε : V → 7 are some vertex
weights (potentials); see [1][28]. Clearly, the weights of all directed cycles remain
unchanged and the total weight of a directed path # from s to t is transformed
as: w(#(s, t)) → w(#(s, t)) + ε(s)− ε(t). Hence, the set of optimal arc blocks for
MASPNLAI remains unchanged, too. Karp [20] showed that such a potential
transformation can be found in O(|A||V |) time.

1.5 Main Remarks

We proceed with two negative observations.
1) It is well known that the standard shortest path problem is in NC, that

is it can be efficiently solved in parallel. In contrast, problem MASPNLAI is
P-complete already for blocking systems of type B2 and acyclic digraphs G =
(V,A) of out-degree 2. This is because determining whether the blocking distance
between a pair of vertices s, t is finite: d(s, t) < +∞ includes, as a special case,
the well-known monotone circuit value problem [15][16].

2) The independence systems B ⊆ 2A considered in this paper are Cartesian
products of the systems B(v) ⊆ 2A(v) defined on the sets A(v) of outgoing arcs
for each vertex v of G = (V,A), that is B =

⊗
v∈V \{t} B(v). When B ⊆ 2A is

not decomposable as above, maximizing the shortest path becomes NP-hard for
very simple blocking systems and unit arc-weights; the problem is NP-complete
for both directed or undirected graphs if the adversary can block a given number
p of arcs or edges arbitrarily distributed in the input graph (so-called p-most-
vital-arcs problem) [3]. However, the following related problem can be solved in
polynomial time:
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B : Given a digraph G = (V,A) with two distinguished vertices s, t ∈ V and
positive integers p and q, determine whether there exists a subsets A′ of at
most p arcs such that any directed path from s to t in G contains at least q
arcs of A′.

Suppose without loss of generality that t is reachable from s in G, and let A′

be an arbitrary q-cut, i.e. |A′ ∩ P | ≥ q for any s-t path P ⊆ A. Then, denoting
by Vi the set of vertices that can be reached from s by using at most i arcs
from A′, we conclude that A′ contains q disjoint s-t cuts Ci = cut(Vi−1, Vi)
for i = 1, . . . , q. Conversely, the union of any q arc-disjoint s-t cuts is a q-cut
separating t from s. Hence problem B can be equivalently stated as follows:

B : Given a digraph G = (V,A), two distinguished vertices s, t ∈ V , and pos-
itive integers p and q, determine whether there exist q arc-disjoint s-t-cuts
C1, . . . , Cq such that |C1|+ . . .+ |Cq| ≤ p.

The latter problem is polynomial. Moreover, Wagner [29] showed that its
weighted optimization version can be solved in strongly polynomial time.

B′
w : Given a digraph G = (V,A) with two distinguished vertices s, t ∈ V , a

weight function w : A → 7+, and a positive integer q, find q arc-disjoint
s, t-cuts C1, . . . , Cq of minimum total weight w(C1) + . . .+ w(Cq).

Finally, let us remark that “the node-wise limited interdiction problems are
usually easier than the total ones”. For example, given a digraph G = (V,A)
and a positive integer p, is it possible to destroy all directed cycles of G by
eliminating at most p arcs of A, or in other words, whether G has a feedback of
at most p arcs ? This decision problem is NP-hard [19]. However, if instead of p,
for each vertex v ∈ V , we are given a number p(v) of outgoing arcs which can be
eliminated then it is easy to decide whether all directed cycles can be destroyed.
Indeed, they definitely can not be destroyed if p(v) < out-deg(v) for each v ∈ V .
Yet, if p(v) ≥ out-deg(v) for a vertex v ∈ V then all outgoing arcs in v should
be eliminated, since in this case we can eliminate the vertex v itself. Repeating
this simple argument we get a linear time algorithm.

2 Proof of Theorem 1

We first describe an extension of Dijkstra’s algorithm for MASPNLAI that uses
blocking queues and may temporarily block and then de-block some arcs. This
extension, presented in Section 2.2, is used to show part (i) of Theorem 1. Then
in Section 2.4 we present another implementation of the extended algorithm to
prove part (ii) of the theorem. Part (iii) is shown in Section 2.5.

2.1 Blocking Queues

Let B be a blocking (i.e. independence) system on a finite set E, for example on
the set A(v) of arcs leaving a given vertex v of G. Given a mapping k : E → 7,
and a set Y ⊆ E, let
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kB(Y ) = max
X∈B

min
e∈Y \X

k(e), (1)

where, as usual, it is assumed that the minimum over the empty set is +∞.
For instance, if Y = {e1, e2, e3, e4} and (k(e1), k(e2), k(e3), k(e4)) = (1, 3, 3, 5),
then

kB(Y ) =

⎧⎪⎪⎨⎪⎪⎩
1, if {e1} /∈ B;
3, if {e1} ∈ B but {e1, e2, e3} /∈ B;
5, if {e1, e2, e3} ∈ B but Y /∈ B;
+∞, if Y ∈ B.

Considering the image {k(e), e ∈ Y } as a sets of keys, we define a B-queue
as a data structure for maintaining a dynamic set of keys under the following
operations:

1. Make queue: Create an empty queue Y = ∅;
2. Insert: Expand Y by adding a new element e with a given key value k(e);
3. Return kB(Y ): Compute the right-hand side of (1) for the current key set.

Note that when the independence system is empty, |B| = 0, we obtain the
customary definition of a minimum priority queue.

When B is a blocking system of type B1, i.e., X ∈ B whenever |X | ≤ p for
some given integer p ≤ |E|, then

kB(Y ) =
{

+∞, if |Y | ≤ p;
(p+ 1)st smallest key of Y , if |Y | ≥ p+ 1.

Hence, by maintaining a regular maximum priority queue of at most p + 1 ele-
ments of E,

A sequence of d ≥ p queue operations for an initially empty B1-queue can
be implemented to run in O(p+ (d− p) log(p+ 1)) time.

For general blocking systems B, each B-queue operation can be performed
in O(log |Y |) time and O(log |Y |) oracle queries. This can be done by using a
balanced binary search tree on the set of keys in Y . Specifically, inserting a new
key into Y takes O(log |Y |) time and no oracle queries, while computing the
value of kB(Y ) can be done by searching for the largest key k in the tree for
which the oracle can block the set of all keys smaller than k. Note that each
query to the blocking oracle can be specified by a list of keys if we additionally
maintain a sorted list of all keys in Y along with pointers from the search tree
to the list.

We close this subsection by defining, for each set Y ⊆ E of keys, a (unique)
inclusion-wise minimal blocking set X̂(Y ) ∈ B such that

kB(Y ) = min
e∈Y \X̂(Y )

k(e).
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We will refer to X̂(Y ) ⊆ Y as the lazy block for Y . For instance, if, as before,
Y = {e1, e2, e3, e4} and (k(e1), k(e2), k(e3), k(e4)) = (1, 3, 3, 5), then

X̂(Y ) =

⎧⎪⎪⎨⎪⎪⎩
∅, if {e1} �∈ B;
{e1}, if {e1} ∈ B, but {e1, e2, e3} �∈ B;
{e1, e2, e3}, if {e1, e2, e3} ∈ B, but Y �∈ B;
Y, if Y ∈ B.

For an unsorted list of keys {k(e), e ∈ Y }, the lazy block X̂(Y ) can be computed
in O(|Y |) time and O(log |Y |) oracle queries by recursively splitting the keys
around the median. For blocking systems B1 this computation takes O(|Y |)
time.

2.2 Extended Dijkstra’s Algorithm for MASPNLAI

Given a digraph G = (V,A), a non-negative weight function w(v) : A → 7+, a
vertex t ∈ V , and a blocking system B, we wish to find an admissible graph Go

that maximizes the distance from each start vertex v ∈ V to t. In the statement
of extended Dijkstra’s algorithm below we assume without loss of generality that
the out-degree of the terminal vertex t is 0, and the input arc-weights w(e) are
all finite. By definition, we let d(t, t) = 0.

Similarly to the regular Dijkstra’s algorithm, the extended version maintains,
for each vertex v ∈ V , an upper bound ρ(v) on the blocking v-t distance:

ρ(v) ≥ d(v, t) def= max
G′ admissible

{distance from v to t in G′}.

Initially, we let ρ(t) = 0 and ρ(v) = +∞ for all vertices v ∈ V \{t}. As the regular
Dijkstra’s algorithm, the extended version runs in at most |V | − 1 iterations
and (implicitly) partitions V into two subsets S and T = V \ S such that
ρ(v) = d(v, t) for all v ∈ T . We iteratively grow the initial set T = ∅ by
removing, at each iteration, the vertex u with the smallest value of ρ(v) from
S and adding it to T . For this reason, the values of ρ(v), v ∈ S are stored
in a minimum priority queue, e.g., in a Fibonacci heap. Once we remove the
minimum-key vertex u from S (and thus implicitly declare that ρ(u) = d(u, t)),
we update ρ(v) for all those vertices v ∈ S that are connected to u by an
arc in G. Recall that the regular version of Dijkstra’s algorithm uses updates
of the form ρ(v) ← min{ρ(v), w(v, u) + ρ(u)}. The updates performed by the
extended version use blocking queues Y (v) maintained at all vertices v ∈ V \{t}.
Initially, all these B(v)-queues are empty, and when the value of ρ(v) needs to
be updated for some vertex v ∈ S such that e = (v, u) ∈ A, we first insert
arc e with the key value k(e) = w(v, u) + ρ(u) into Y (v), and then let ρ(v) ←
kB(Y (v)) def= maxX∈B(v) mine∈Y (v)\X k(e). In particular, for the standard
shortest path problem, we obtain the regular updates.

Finally, as the regular Dijkstra’s algorithm, the extended version terminates
as soon as ρ(u) = min{ρ(v), v ∈ S} = +∞ or |S| = 1.
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EXTENDED DIJKSTRA’S ALGORITHM

Input: A digraph G = (V, A) with arc-weights {w(e) ∈ [0, +∞), e ∈ A}, a
destination vertex t ∈ V , and a blocking system B.

Initialization:
1. ρ(t) ← 0;
2. For all vertices v ∈ V \ {t} do:
3. ρ(v) ← +∞; Set up an empty blocking queue Y (v);
4. Build a minimum priority queue (Fibonacci heap) S on the key
values ρ(v), v ∈ V .

Iteration loop:
5. While |S| > 1 do:
6. If min{ρ(v), v ∈ S} = +∞, break loop and go to line 12;
7. Extract the vertex u with the smallest key value ρ(·) from S;
8. For all arcs e = (v, u) ∈ A such that v ∈ S, do:
9. k(e) ← w(e) + ρ(u);
10. Insert k(e) into Y (v);
11. Update the value of ρ(v) : ρ(v) ← kB(Y (v)).

Output:
12. For each vertex v ∈ V \ {t}, return ρ(v) with the lazy block X̂(Y (v)).

Bounds on running time for blocks of type B1. Line 12 and the initialization
steps in lines 1-4 take linear time O(|V |+ |A|). Let n ≤ |V | − 1 be the number of
iteration performed by the algorithm. Denote by Yi(v) (the set of key values in)
the blocking queue at a fixed vertex v ∈ V \{t} after the execution of iteration i =
1, . . . , n, and let Y0(v) = ∅ be the initial queue at v. As Y0(v) ⊆ Y1(v) ⊆ . . . ⊆ Yn,
the values of ρi(v) = kB(Yi(v)) are monotonically non-increasing: +∞ = ρ0(v) ≥
ρ1(v) ≥ . . . ≥ ρn(v). Since S is a (minimum) Fibonacci heap, the decrease-key
operations in line 11 can be executed in constant amortized time per iteration,
provided that the values of kB(Yi(v)) are known. Lines 6 and 7 take O(1) and
O(log |V |) time per iteration, respectively. In view of the bounds on the B1-queue
operations 10-11 stated in Section 2.1, the overall running time of the algorithm
is thus within the bound stated in part (i) of Theorem 1.

To complete the proof of part (i) it remains to show that the extended
algorithm is correct.

2.3 Correctness of Extended Dijkstra’s Algorithm

Let us show that upon the termination of the extended Dijkstra algorithm,

– ρ(v) = d(v, t) def= maxG′admissible{distance from v to t in G′} for all vertices
v ∈ V , and

– The digraph Go =
(
V,A \

⋃
v∈V \{t} X̂(Y (v)

)
obtained by deleting the lazy

blocking sets of arcs X̂(Y (v)) is an optimal admissible digraph for all ver-
tices : d(v, t) ≡ v-t distance in Go.

Let Si and Ti = V \ Si be the vertex partition maintained by the algorithm for
i = 0, 1, . . . , n ≤ |V | − 1. We have S0 = V ⊃ S1 = V \ {t} ⊃ . . . ⊃ Sn−1 ⊇ Sn,
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where Sn−1 = Sn if and only if the algorithm terminates due to the stopping
criterion in line 6. For the given arc weights w(e), e ∈ A, consider the following
weight functions wi : A→ 7+ ∪ {+∞},

wi(e) =
{

+∞, if both endpoints of e are in Si,
w(e), otherwise.

Clearly, we have w0(e) = +∞≥ w1(e) ≥ . . . ≥ wn(e) ≥ w(e). Let
di(v, t)

def= max{G′ admissible}{wi-distance from v to t in G′},
then d0(v, t) = +∞ ≥ d1(v, t) ≥ . . . ≥ dn(v, t) ≥ d(v, t) for all v ∈ V \ {t}. The
correctness of the algorithm will follow from the following two invariants:
for all i = 0, 1, . . . , n,

ISi : ρi(v) = di(v, t) for all vertices v ∈ Si;
ITi : If v ∈ Ti = V \ Si, then ρi(v) = d(v, t) and the admissible digraph Go

i =(
V,A \

⋃
v∈V \{t} X̂(Yi(v))

)
is an optimal blocking digraph for v. Moreover,

min{ρi(v), v ∈ Si} ≥ max{d(v, t), v ∈ Ti} and for each vertex v ∈ Ti there
exists a shortest v-t path in Go

i which lies entirely in Ti.

Note that by ITi , the algorithm removes vertices from S and determines their
blocking distances in non-decreasing order.

Proof of invariants ISi and ITi is similar to that for the regular Dijkstra’s
algorithm. Since T0 = ∅, invariant IT0 holds trivially. IS0 follows from the
initialization steps of the algorithm: for S0 = V we have w0(e) ≡ +∞, and
hence ρ0(t) = d0(t, t) = 0 and ρ0(v) = d0(v, t) = +∞ for all vertices v ∈ V \ {t}.

In order to prove by induction that ISi+1and ITi+1follow from ISi and ITi , let
us first suppose that the ith iteration loop breaks due to the stopping criterion in
line 6: min{ρi(v), v ∈ Si} = +∞. Then i = n− 1 and Sn−1 = Sn, which means
that dn(v, t) ≡ dn−1(v, t) and ρn(v) ≡ ρn−1(v). Consequently, the statements of
ISn and ITn become identical to ISn−1 and ITn−1, and we have nothing to prove.
Moreover, as all vertices of Sn are disconnected from t in Go = Go

n, invariant
ITn also shows that the algorithm correctly computes the blocking distances and
the optimal blocking digraph Go for all vertices.

We may assume henceforth that n = |V | − 1 and |Sn| = 1. Consider the
vertex u that moves from Si to Ti+1 at iteration i:

ρi(u) = min{ρi(v), v ∈ Si} < +∞. (2)

To show that ρi(u) = d(u, t), observe that by ISi , ρi(u) = di(u, t) ≥ d(u, t).
In other words, ρi(u) is an upper bound on the w-cost of reaching t from u,
regardless of any admissible blocks selected by the adversary. So we will have
ρi(u) = d(u, t) if we can find an admissible digraph G′ such that

ρi(u) = w-distance from u to t in G′. (3)

Let G′ = Go
i be the admissible digraph defined in ITi . Then (3) follows from ITi ,

the non-negativity of the input arc-weights, and the fact that ρi(u) = k(e∗) =
w(e∗) + ρi(v), where e∗ = (u, v) ∈ A is the arc with the smallest key value in
the (Si , Ti)-cut of G′.
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After u gets into Ti+1, the value of ρ(u) never changes. Hence ρi+1(u) =
d(u, t), as stated in ITi+1. Note that (2) and invariant ITi also tell us that

min{ρi(v), v ∈ Si}= d(u, t) ≥ max{d(v, t), v ∈ Ti}.
Let us now show that after the algorithm updates ρ(v) on Si+1, we still have

min{ρi+1(v), v ∈ Si+1} ≥ d(u, t) = max{d(v, t), v ∈ Ti+1}, (4)

again as stated in ITi+1. Suppose to the contrary, that ρi+1(v) < d(u, t) = ρi(u)
for some vertex v ∈ Si+1. Then from (2) it would follow that e = (v, u) is an
arc of G = (V,A) and consequently Yi+1(v) = Yi(v) ∪ {e}. Moreover, we must
have e ∈ X̂(Yi+1(v)), for otherwise the value of ρi+1(v) = kB(Yi+1(v)) could
not have dropped below the minimum of ρi(v) and k(e) = w(v, u) + d(u, t),
which is at least d(u, t). But if e ∈ X̂(Yi+1(v)) then again kB(Yi+1(v)) ≥ k(e),
contradiction.

To complete the proof of ITi+1, it remains to show that Go
i+1 is an optimal

admissible digraph for each vertex v ∈ Ti+1, and that some shortest v-t path in
Go
i+1 lies in Ti+1. This readily follows from (4) and the fact that the sub-graphs

of Go
i and Go

i+1 induced by Ti+1 are identical.
Finally, ISi+1follows from the updates ρi+1(v) ← kB(Yi+1(v)) performed by

the algorithm in lines 8-11. �
Since we assume that n = |V | − 1 and |Sn| = 1, the correctness of the algorithm
readily follows from ISn and ITn . When Sn is a singleton s ∈ V , then wn(e) ≡
w(e). Hence dn(v, t) ≡ d(v, t), and ISn yields ρn(s) = dn(s, t) = d(s, t). By
ITn , we also have ρn(v) = d(v, t) for the remaining vertices v ∈ Tn = V \ {s}.
Invariant ITn also guarantees that Go = Go

n is an optimal admissible digraph
for all vertices v ∈ V .

2.4 Modified Dijkstra’s Algorithm

In this section we prove part (ii) of Theorem 1 by modifying the algorithm
stated in Section 2.2.

The modified algorithm keep all arcs across the current (S, T )-cut in a min-
imum priority queue Q, implemented as a binary heap. As in the previous al-
gorithm, each arc e = (v, v′) across the cut is assigned the key value k(e) =
w(e)+ ρ(v′), where ρ(v′) = d(v′, t) for all vertices v′ ∈ T . In addition to the arcs
in the current cut, Q may also contain some arcs e = (v, v′) for which endpoints
v, v′ are both in T . In order to compute the vertex u to be moved from S to
T , we repeatedly extract the minimum-key arc e from Q, and check whether
e = (v, v′) belongs to the current cut and can be blocked along with the arcs
that have already been blocked at v. The first arc e = (v, v′) in the cut that
cannot be blocked defines the vertex u = v. We then move u to T , insert all arcs
e = (v, u) ∈ A for which v ∈ S into Q, and iterate.

The outputs of the modified algorithm and the extended Dijkstra’s algorithm
presented in Section 2.2 are identical. It is also easy to see that the running time
and the number of membership tests required by the modified algorithm satisfy
the bounds stated in part (ii) of Theorem 1.
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MODIFIED ALGORITHM

Input: A digraph G = (V, A) with arc-weights {w(e) ∈ [0, +∞), e ∈ A},
a terminal vertex t ∈ V , and a blocking system B ⊆ 2A defined via a
membership testing subroutine.

Initialization:
1. Initialize arrays T [1 : V ] ≡ FALSE and d[1 : V, t] ≡ +∞ ;
2. T [t] ← TRUE, d[t, t] ← 0;
3. For each vertex v ∈ V \ {t} initialize an empty list X̂(v);
4. For each arc e = (v, t) ∈ A, insert e with key k(e) = w(e) into an
initially empty binary heap Q.

Iteration loop:
5. While Q �= ∅ do:
6. Extract the minimum-key arc e = (u, v) from Q;
7. If T [u] = FALSE and T [v] = TRUE do:
8. If X̂(u) ∪ {e} can be blocked at u, insert e into X̂(u)
9. else { T [u] ← TRUE; Return X̂(u) and d[u, t] = k(e);
10. For all arcs e = (v, u) ∈ A such that T [v] = FALSE,

Insert e with key value k(e) = w(e) + d[u, t] into Q}.

2.5 Unit Arc-Weights

When w(e) = 1 for all e ∈ A, and the blocking systems B(v) are all empty, the
single-destination shortest path problem can be solved in linear time by breadth-
first search. The extended Dijkstra’s algorithm for problem MASPNLAI can be
similarly simplified to prove part (iii) of Theorem 1.

BREADTH-FIRST SEARCH FOR MASPNLAI

Input: A digraph G = (V, A) with a destination vertex t ∈ V , and a
blocking system B defined by a membership subroutine.
Initialization:
1. Initialize d(1 : V, t) ≡ +∞ and an empty first-in first-out queue T ;
2. d(t, t) ← 0; Enqueue t into T ;
3. For each vertex v ∈ V \ {t} initialize an empty list X̂(v);

Iteration loop:
4. While T �= ∅ do:
5. Extract the first vertex u from T ;
6. For all arcs e = (v, u) ∈ A, do:
7. If d(v, t) = +∞ and X̂(v) ∪ {e} can be blocked, insert e into X̂(v);
8. else d(v, t) ← d(u, t) + 1, enqueue v into T , and return d(v, t), X̂(v).

The above algorithm runs in at most |A| iterations. It follows by induction on
d(v, t) that it correctly computes the blocking distances and that the admissible
digraph Go =

(
V,A \

⋃
v∈V \{t} X̂(v)

)
is optimal.
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Abstract. We study a quantitative model of traces, i.e. trace series which as-
sign to every trace an element from a semiring. We show the coincidence of
recognizable trace series with those which are definable by restricted formulas
from a weighted logics over traces. We use a translation technique from formu-
las over words to those over traces, and vice versa. This way, we show also the
equivalence of aperiodic and first-order definable trace series.

1 Introduction

Traces as introduced by Mazurkiewicz [19] model concurrency by a global indepen-
dence relation on a finite alphabet, i.e. traces are congruence classes of words modulo
the independence relation. A fruitful theory of combinatorics on traces and of trace
languages has developed the last twenty years, see [6, 5] for an overview. Droste and
Gastin [7] started to explore quantitative aspects of traces a few years ago. They en-
riched the model with weights from a semiring as it was done for words already in
the 1960s by Schützenberger [23]. Droste and Gastin obtained a result in the style of
Kleene and Schützenberger, i.e. the coincidence of recognizability and a restricted form
of rationality. Moreover, they defined and characterized in [8] a weighted concept of
aperiodicity for traces. Kuske [16] showed recently the coincidence of recognizable
trace series with those recognized by weighted asynchronous cellular automata, both in
the non-deterministic and deterministic case. However, a characterization by weighted
logics in the lines of Büchi [4] and Elgot [12] was missing even for words. This gap
was closed recently by an introduction of weighted logics over words by Droste and
Gastin [9]. The semantics of this weighted MSO-logics is a formal power series over
words, i.e. a function from the free monoid into a semiring. Weighted logics was already
extended to trees by Droste and Vogler [10] and to pictures by Mäurer [18].

Naturally, the question arises whether this concept carries over to traces and, there-
with, generalizes the results of Droste and Gastin for weighted logics over words [9] on
the one hand and the logical characterization of trace languages as done by Ebinger and
Muscholl [11] and Thomas [24] on the other hand. Moreover, one could be interested
in the execution time of a trace or in the multiplicity of a certain property satisfied by
a trace. Such problems can be formulated often better by a logical formula than by a
direct construction of a weighted automaton for traces. Therefore, we are interested in
weighted logics over traces and in a result that states the coincidence of logically defin-
able and recognizable trace series. Moreover, such a coincidence should be effective in
order to open the way to something like quantitative model checking over traces.

D. Grigoriev, J. Harrison, and E.A. Hirsch (Eds.): CSR 2006, LNCS 3967, pp. 235–246, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Here, we can avoid to repeat the proof of [9] for traces. Instead of this we adapt
a technique introduced by Ebinger and Muscholl [11] for their result about the coin-
cidence of definable and recognizable trace languages. There, a formula over traces is
translated into an appropriate one over words and vice versa using the lexicographic
normal form. This way one is able to transfer the coincidence of definable and recog-
nizable word languages to trace languages. For the weighted case the main problem
is to keep the right weighted semantics within the translation of the formulas. Indeed,
disjunction and existential quantification result in an addition, whereas conjunction and
universal quantification result in multiplication within the underlying semiring. Cer-
tainly, these operations are not idempotent in general. Therefore, we are in need of
certain “unambiguity” results that will guarantee the right semantics. We obtain such a
result for first-order formulas over more general relational structures with a well-order
on their elements which is definable by a propositional formula. We apply this result
to traces, prove the “translation lemma”, and succeed in proving the coincidence of
recognizable trace series with trace series defined by restricted monadic second-order
formulas. Moreover, for the underlying semiring being either a computable field or be-
ing locally finite we will show that decidability results carry over from words to traces.
Finally, the coincidence of aperiodic and first-order definable trace series is shown.

For further research the consequences of these results should be explored more in
detail. Moreover, application of weighted logics to other models of concurrency like
sp-posets [17, 21, 20], MSCs [3], and Σ-DAGs [2] is in work.

2 Basic Concepts

Let Σ be a finite alphabet, Σ∗ the free monoid, and I ⊆ Σ2 an irreflexive and sym-
metric relation, called the independence relation. Then D = Σ2 \ I is reflexive and
symmetric and called the dependence relation. We define ∼ ⊆ Σ∗ ×Σ∗ by

u ∼ v ⇐⇒ u = w1abw2 ∧ v = w1baw2 for (a, b) ∈ I and w1, w2 ∈ Σ∗.

By abuse of notation we denote the reflexive and transitive closure of ∼ also by ∼.
Now ∼ is a congruence relation on Σ∗ and the resulting quotient is called the trace
monoid = (Σ,D). Its elements are called traces. Let ϕ : Σ∗ → be the canonical
epimorphism with ϕ(w) = [w] where [w] is the congruence class of w. For t ∈ there
is a prominent representative among ϕ−1(t), the lexicographic normal form LNF(t) of
t, i.e. the least representative of t with regard to the lexicographic order. The set of all
lexicographic normal forms is denoted by LNF. L ⊆ is called a trace language.

A semiring = (K,⊕, ◦, , ) is a set K equipped with two binary operations,
called addition⊕ and multiplication ◦, such that

1. (K,⊕, ) is a commutative monoid and (K, ◦, ) a monoid,
2. multiplication distributes over addition: k ◦ (l ⊕ m) = (k ◦ l) ⊕ (k ◦ m) and

(l ⊕m) ◦ k = (l ◦ k)⊕ (m ◦ k) for all k, l,m ∈ K , and
3. ◦ k = k ◦ = for all k ∈ K .

If the multiplication is commutative we speak of a commutative semiring. Examples
of semirings are the natural numbers = ( ,+, ·, 0, 1), the tropical semiring
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= ( ∪ {−∞},max,+,−∞, 0), and the Boolean semiring = ({0, 1},∨,∧, 0, 1)
which equals the two-element Boolean algebra. For an overview about semirings
see [13, 14].

A formal trace series or just trace series over a trace monoid (Σ,D) and a semi-
ring is a function T : (Σ,D) → . It is often written as a formal sum

T =
∑

t∈ (Σ,D)

(T, t) t

where (T, t) = T (t). Functions S : Σ∗ → are called here word series. The collection
of formal trace series over and is referred to as 〈〈 〉〉, and, similarly, 〈〈Σ∗〉〉 is
defined. For an overview about formal word series see [22, 15, 1].

For the Boolean semiring there is a one-to-one correspondence between trace
series T =

∑
t∈ (Σ,D)(T, t) t over and their support supp(T ) = {t ∈ (Σ,D) |

(T, t) �= }. Vice versa, a trace languageL ⊆ (Σ,D) corresponds to its characteristic
series L where

( L, t) =

{
if t ∈ L,
otherwise.

Hence, formal power series extend formal language theory.

3 Recognizable Trace Series

Let be a trace monoid and a semiring. Let n×n denote the monoid of n × n-
matrices over equipped with multiplication. A recognizable trace series is a trace
series T ∈ 〈〈 〉〉 such that there are an n ∈ , a monoid homomorphism μ : →
n×n, λ ∈ K1×n, and γ ∈ Kn×1 with (T, t) = λμ(t)γ for all t ∈ . The triple

(λ, μ, γ) is called a linear representation of T . For ϕ : Σ∗ → the canonical epimor-
phism and S ∈ 〈〈 〉〉 we define ϕ−1(S) ∈ 〈〈Σ∗〉〉 by (ϕ−1(S), w) = (S, ϕ(w)).
Furthermore, for S′ ∈ 〈〈Σ∗〉〉 we denote by S′

|LNF the restriction of S′ to LNF, i.e.

(S′
|LNF, w) =

{
(S′, w) w ∈ LNF,

otherwise.

The following theorem is implicit in [7].

Theorem 3.1. Let be a commutative semiring. Then S ∈ 〈〈 〉〉 is recognizable iff
S′ = ϕ−1(S)|LNF ∈ 〈〈Σ∗〉〉 is recognizable.

The next lemma can be shown as for word series, cf. [1, L. III.1.3].

Lemma 3.2. Let be a semiring and L ⊆ a recognizable trace language. Then
L ∈ 〈〈 〉〉 is a recognizable trace series.

Corollary 3.3. Let Li ⊆ be recognizable trace languages and ki ∈ for i = 1,
. . . , n. Then S =

∑n
i=1 ki Li is a recognizable trace series.

The last corollary justifies the name recognizable step function for a series of the form
S =

∑n
i=1 ki Li with Li ⊆ recognizable for all i = 1, . . . , n.
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4 Definable Trace Series

We represent every trace t ∈ (Σ,D) by its dependence graph. A dependence graph is
(an isomorphism class of) a node-labeled acyclic graph (V,E, l) where V is an at most
countable set of nodes1, E ⊆ V ×V is the edge relation such that (V,E) is acyclic and
the induced partial order is well-founded, l : V → Σ is the node-labeling such that

(l(x), l(y)) ∈ D ⇐⇒ (x, y) ∈ E ∪ E−1 ∪ idV .

A concatenation of dependence graphs is defined by the disjoint union provided with
additional edges between nodes with dependent labels, i.e.

(V1, E1, l1) · (V2, E2, l2)
=(V1 ∪̇ V2, E1 ∪̇ E2 ∪̇ {(x, y) ∈ V1 × V2 | (l1(x), l2(y)) ∈ D}, l1 ∪̇ l2) .

The monoid (Σ,D) of finite traces can be identified with the monoid of finite depen-
dence graphs.

Let t = (V,E, l) ∈ and w = a1 . . . an ∈ Σ∗ with ϕ(w) = t. Then we represent
w as (V,<, (Ra)a∈Σ) where < is a strict total order on V (the order of positions) and
Ra = {v ∈ V | l(v) = a} for all a ∈ Σ.

Definition 4.1. The syntax of formulas of weighted MSO-logic over traces from and
over a semiring is given by

Φ ::= k | Pa(x) | ¬Pa(x) | E(x, y) | ¬E(x, y) | x ∈ X | ¬x ∈ X |
Φ ∨ Ψ | Φ ∧ Ψ | ∃x.Φ | ∃X.Φ | ∀x.Φ | ∀X.Φ

with k ∈ and a ∈ Σ. This class of formulas is denoted by MSO( , ).

Remark 4.2. The weighted MSO-logic is a generalization of the usual MSO-logic.
Weighted MSO-logic differs in two aspects. Firstly, atomic formulas of type k for
k ∈ K are added. Secondly, negation is applied to “unweighted” atomic formulas only.
This is due to the fact that a semantics of something like ¬k cannot be defined properly
for arbitrary semirings. Hence, we cannot negate neither k nor general MSO-formulas.
Thus negation is pulled through the unweighted atomic formulas and conjunction and
universal quantification have to be added.

Note 4.3. A weighted MSO-logic for words, denoted by MSO( , Σ) was defined in
[9]. It uses k, x ≤ y, Pa(x), and x ∈ X as atomic formulas2. Here, we do not include
the formula x = y in our syntax because for traces this can be written as∨

a∈Σ
(Pa(x) ∧ Pa(y)) ∧ ¬E(x, y) ∧ ¬E(y, x) .

1 Here, we deal with finite objects, i.e. finite traces, only. But we stick to the more general case,
keeping in mind the possibility to consider infinite objects.

2 Later on, we will use for words x < y instead of x ≤ y which is just a slight technical
difference.
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A variable is free in Φ if it is not within the scope of a quantifier. The collection of all
free variables of Φ is denoted by free(Φ). Let V be a finite set of first-order and second-
order variables and t = (V,E, l). A (V , t)-assignment σ is a function mapping first-
order variables of V to elements of V and second-order variables of V to subsets of V .
An updateσ[x→ v] for v ∈ V is defined as σ[x→ v](x) = v and σ[x→ v](y) = σ(y)
for all y �= x, and, similarly, for σ[X → W ] where W ⊆ V . A pair (t, σ) where σ is
a (V , t)-assignment will be encoded as a trace over an extended dependence alphabet
ΣV = Σ × {0, 1}V . The new dependence relation DV is defined by (a, x̄)DV(b, ȳ)
iff aDb for a, b ∈ Σ and x̄, ȳ ∈ {0, 1}V . A trace t′ over ΣV will be written as a pair
(t, σ) where t is the projection of t′ over Σ and σ is the projection over {0, 1}V . Then
σ represents a valid V-assignment if for any first-order variable x ∈ V the x-row of σ
contains exactly one 1. Similarly, valid V-assignments are defined for words.

Proposition 4.4. The trace language AV = {(t, σ) | σ is a valid V-assignment} is
recognizable.

For any formula Φ of MSO we simply write ΣΦ = Σfree(Φ) and AΦ = Afree(Φ). Now
we turn to the semantics of our formulas.

Definition 4.5. Let Φ ∈ MSO( , ) and let V be a finite set of variables with
free(Φ) ⊆ V . The semantics of Φ is a formal trace series [[Φ ]]V ∈ 〈〈 (Σ∗

V , DV)〉〉
defined as follows: Let (t, σ) ∈ (ΣV , DV). If σ is not a valid V-assignment, then
[[Φ ]]V(t, σ) = . Otherwise, we define [[Φ ]]V(t, σ) for t = (V,E, l) inductively as
follows:

– [[ k ]]V(t, σ) = k,

– [[Pa(x) ]]V (t, σ) =

{
if l(σ(x)) = a,

otherwise,

– [[E(x, y) ]]V (t, σ) =

{
if (σ(x), σ(y)) ∈ E,
otherwise,

– [[x ∈ X ]]V(t, σ) =

{
if σ(x) ∈ σ(X),
otherwise,

– if Φ is of the form Pa(x), E(x, y), or x ∈ X , then

[[¬Φ ]]V(t, σ) =

{
if [[Φ ]]V(t, σ) = ,

if [[Φ ]]V(t, σ) = ,

– [[Φ ∨ Ψ ]]V(t, σ) = [[Φ ]]V (t, σ)⊕ [[Ψ ]]V(t, σ),
– [[Φ ∧ Ψ ]]V(t, σ) = [[Φ ]]V (t, σ) ◦ [[Ψ ]]V(t, σ),
– [[ ∃x.Φ ]]V (t, σ) =

⊕
v∈V [[Φ ]]V∪{x}(t, σ[x→ v]),

– [[ ∃X.Φ ]]V(t, σ) =
⊕

W⊆V [[Φ ]]V∪{X}(t, σ[X →W ]),
– [[ ∀x.Φ ]]V (t, σ) =

∏
v∈V [[Φ ]]V∪{x}(t, σ[x→ v]),

– [[ ∀X.Φ ]]V(t, σ) =
∏

W⊆V [[Φ ]]V∪{X}(t, σ[X →W ]).

where we fix some order both on V and on P(V ) so that the last two products are
defined even if is not commutative. We simply write [[Φ ]] for [[Φ ]]free(Φ).
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If Φ is a sentence, then [[Φ ]] ∈ 〈〈 〉〉. As usual, the semantics of some formula Φ
depends on the free variables only. We call S =

∑n
i=1 ki Li a definable step func-

tion if the languages Li are definable trace languages, or word languages respectively,
for all i = 1, . . . , n. For words and traces the notions of recognizable and definable
step functions coincide because of the results of Büchi & Elgot [4, 12] and Ebinger &
Muscholl [11].

Definition 4.6. A formula Φ ∈ MSO( , Σ) or Φ ∈ MSO( , ) is called restricted, if
it contains no universal quantification of second-order ∀X.Ψ , and whenever Φ contains
a universal first-order quantification ∀x.Ψ , then [[Ψ ]] is a definable step function.

Remark 4.7. Droste and Gastin [9] had to use restricted MSO-formulas over words
to preserve recognizability of the defined series. For universal FO-quantification ∀x.Ψ
they required [[Ψ ]] =

∑n
i=1 ki Li being a recognizable step function. Since we define

a class of formulas, we favor to speak of the logical counterpart, i.e. definable step
functions.

RMSO( , ) is the class of all restricted formulas from MSO( , ). Moreover, let
REMSO( , ) contain all restricted existential formulas Φ ∈ RMSO( , ), i.e. Φ
is of the form ∃X1.∃X2 . . .∃Xn.Ψ with Ψ ∈ RMSO( , ) containing no second-
order quantification anymore. FO and RFO denote the classes of first-order formulas
and restricted first-order formulas, respectively. Similar notations are used for formulas
over words.

5 Characteristic Series of FO-Definable Languages

Let C be a class of finite relational structures. We define formulas of a weighted MSO-
logic over C in the same manner as for traces, i.e. atomic formulas are beside k for k ∈
K , and x ∈ X the relation symbols of C and possibly x = y, and negation is applied
to atomic formulas only. The formulas are provided with the appropriate semantics
S : C → as for traces, i.e. atomic formulas are interpreted by the characteristic series
of the defined language (a valid V-assignment provided) and the semantics of composed
formulas is given as above. Similarly, an unweighted MSO-logic for C is defined with
a semantics of languages L ⊆ C. Moreover, we suppose that there is a propositional
formula Ω(x, y) (i.e. one without any quantifier) with free FO-variables x, y such that
for any structure t ∈ C the binary relation defined byΩ is a linear order on the elements
of t. We say that C has a simply definable linear order.

Let L ⊆ C be a language of C and L = C \ L the complement of L.

Lemma 5.1. Let C be a class of finite relational structures with a simply definable
linear order. Let L = L(Φ) be defined by an FO-formula Φ. Then both L and L are
definable in RFO.

Proof (sketch). Let L ⊆ C be defined by Φ. We proceed by induction giving for each
FO-formula Φ RFO-formulas Φ+ and Φ− such that [[Φ+ ]] = L and [[Φ− ]] = L.
The interesting cases are (∃x.Φ)+ and (∀x.Φ)−. Therefore, we choose the “smallest”
element that satisfies Φ+, and Φ− respectively, by using Ω(x, y) defining the linear
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order ≤Ω . Since Ω(x, y) is a propositional formula we can already define Ω+(x, y).
Now we put (

∃x.Φ(x)
)+ = ∃x.

(
Φ+(x) ∧ ∀y.

(
Φ−(y) ∨Ω+(x, y)

)+
)
.

This is an RFO-formula. Indeed,Φ+(x) is an RFO-formula by induction hypothesis and
so are Φ−(y) and Ω+(x, y). Moreover,

(
Φ−(y) ∨Ω+(x, y)

)+
defines a definable step

function by induction hypothesis. Since we choose the “smallest” element x satisfying
Φ we get for a valid V-assignment

[[ (∃x.Φ(x))+ ]]V(t, σ) =

{
if there is an v such that (t, σ[x→ v]) satisfies Φ,

otherwise.

Similarly we proceed for (∀x.Φ)−. !�

Corollary 5.2. Let L be an FO-definable trace language. Then L is RFO-definable.

Proof. For a fixed linear order * on the alphabetΣ put

Ω(x, y) =
∨

(a,b)∈≺

(
Pa(x) ∧ Pb(y)

)
∨

∨
a∈Σ

(
Pa(x) ∧ Pa(y) ∧ ¬E(y, x)

)
and apply Lemma 5.1. !�

6 The Coincidence of Recognizable and Definable Trace Series

We will follow the ideas of the proof as given for trace languages, cf. [5, pp. 497–505]
and use the result of the previous section.

Lemma 6.1. Let be a commutative semiring, ϕ : Σ∗ → the canonical epimor-
phism, and T ∈ 〈〈 〉〉 a trace series. The following are equivalent:

(i) T is definable in RMSO, and REMSO respectively.
(ii) ϕ−1(T ) ∈ 〈〈Σ∗〉〉 is definable in RMSO, and REMSO respectively.

(iii) S = ϕ−1(T )|LNF ∈ 〈〈Σ∗〉〉 is definable in RMSO, and REMSO respectively.

Proof. (i) =⇒ (ii) Let T ∈ 〈〈 〉〉 be defined by some sentence Ψ . Let t = (V,E, l)
be any trace and w ∈ Σ∗ with ϕ(w) = t. We have for v1, v2 ∈ V that (v1, v2) ∈ E iff
v1 < v2 in w and (l(v1), l(v2)) ∈ D. Thus, replacing every atomic formula E(x, y) in
Ψ by the propositional formula

x < y ∧
∨

(a,b)∈D
(Pa(x) ∧ Pb(y)) (1)

yields an new sentence Ψ̃ . One shows easily ([[Ψ ]], t) = ([[ Ψ̃ ]], w) for each t ∈ , w ∈
Σ∗ with ϕ(w) = t by structural induction.
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It still remains to show that for Ψ ∈ RMSO( , ) also Ψ̃ ∈ RMSO( , Σ). Clearly,
if Ψ contains no universal second-order quantification neither does Ψ̃ . Consider Ψ =
∀x.Φ with [[Φ ]] =

∑n
i=1 ki Li for definable and, hence, recognizable trace languages

Li ⊆ for i = 1, . . . , n. As we have shown, [[ Ψ̃ ]](w, σ) = [[Ψ ]](t, σ) where ϕ(w) =
t. Consider the word series S =

∑n
i=1 ki ϕ−1(Li). It is a recognizable and, hence,

definable step function over words since ϕ−1(Li) is recognizable for i = 1, . . . , n.
Moreover, (w, σ) ∈ ϕ−1(Li) for some i implies that σ is a valid V-assignment. For
(w, σ) with σ a valid V-assignment we have

S(w, σ) =
n⊕
i=1

ki ϕ−1(Li)(w, σ) =
⊕

{i|w∈ϕ−1(Li)}
ki =

⊕
{i|t=ϕ(w)∈Li}

ki = [[Φ ]](t, σ).

Hence, S = Φ̃ is a definable step function. Thus, if Ψ is reduced so is Ψ̃ . Moreover, for
Ψ ∈ REMSO( , ) also Ψ̃ ∈ REMSO( , Σ) because (1) is a propositional formula.

(ii) =⇒ (iii) Let ϕ−1(T ) ∈ 〈〈Σ∗〉〉 be defined by an RMSO-formula Φ, let S =
ϕ−1(T )|LNF, and let* be the fixed order onΣ. The language LNF of all lexicographic
normal forms is defined by the FO-sentence

∀i∀k.
[
(i ≤ k) −→

(
l(i) * l(k) ∨ ∃j.

(
i ≤ j < k ∧ (l(j), l(k)) ∈ D

))]
where implication−→, l(i) * l(k), and (l(j), l(k)) ∈ D are obvious abbreviations. By
Corollary 5.2, there is an RFO-formula Λ with [[Λ ]] = LNF. Hence, S = [[Φ ∧ Λ ]]. If
Φ = ∃X1 . . . ∃Xn.Ψ is an REMSO-formula, then S is defined by the REMSO-formula
∃X1 . . .∃Xn.(Ψ ∧ Λ) because Λ is from RFO.

(iii) =⇒ (i) Let S = ϕ−1(T )|LNF be defined by Φ ∈ RMSO. Then supp(S) ⊆
LNF. We replace every atomic formulax < y inΦ by a new formula lex(x, y) that mod-
els the order in the lexicographic normal form, i.e. for every t and a valid V-assignment
σ we get (t, σ) |= lex(x, y) iff σ(x) < σ(y) in LNF(t). The formula lex(x, y) can be
found in the literature (cf.[5, p. 502]) and is an FO-formula because transitive closure of
E can be expressed for traces in FO. Hence, we apply Corollary 5.2 and obtain an RFO-
formula lex+(x, y) defining L(lex(x,y)), and similarly L(¬ lex(x,y)) can be defined by
an RFO-formula lex−(x, y). Let Ψ be any formula over words and Ψ̃ the formula over
traces obtained from Ψ by replacing every occurence of the atomic formula x < y by
lex+(x, y), and any occurence of ¬(x < y) by lex−(x, y). Then we get for every trace
t and every valid V-assignment σ

[[ Ψ̃ ]]V (t, σ) = [[Ψ ]]V(LNF(t), σ). (2)

We still have to show that Ψ̃ is restricted. For an RMSO-formula ∀x.Ψ over words
[[Ψ ]]V is a definable and recognizable step function, i.e. [[Ψ ]]V (t, σ) =

∑n
i=1 ki Li

with recognizable word languages Li (i = 1, . . . , n). Now we have by Equation (2)
[[ Ψ̃ ]]V =

∑n
i=1 ki ϕ(Li∩LNF). By [6, Thm. 6.3.12] the trace languages ϕ(Li ∩ LNF)

are recognizable languages. Thus [[ Ψ̃ ]]V is a recognizable and, hence, definable step
function. Hence, if S ∈ 〈〈Σ∗〉〉 with supp(S) ⊆ LNF is defined by some sentence Φ
from RMSO then T = ϕ(S) ∈ 〈〈 〉〉 is defined by the RMSO-sentence Φ̃. Certainly,
if Φ is in REMSO so is Φ̃. !�
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Remark 6.2. The translations of formulas over traces to those over words and vice versa
as given in the proof of Lemma 6.1 are effective.

By Lemma 6.1 and the result for word series [9, Thm. 3.7] we get:

Theorem 6.3. Let be a commutative semiring and T ∈ 〈〈 〉〉. The following are
equivalent:

(i) T is recognizable,
(ii) T is definable by some sentence of RMSO,

(iii) T is definable by some sentence of REMSO.

Proof. Let T be recognizable. Then S = ϕ−1(T )|LNF is a recognizable word series by
Theorem 3.1. Hence, S is definable in RMSO and REMSO by the main result of [9].
By Lemma 6.1, T is definable in RMSO and REMSO, respectively.

Conversely, let T be definable in RMSO and REMSO, respectively. Then the series
ϕ−1(T )|LNF is definable by Lemma 6.1, hence recognizable by [9]. Now, Theorem 3.1
shows the recognizability of T . !�

Example 6.4. Let = ( ∪ {−∞},max,+,−∞, 0). We show thatH ∈ 〈〈 〉〉 map-
ping every t ∈ to height(t), i.e. the length of the longest chain in t, is recognizable.
Let

chain(X) = ∀x, y ∈ X.
(
x = y ∨ (x, y) ∈ E+ ∨ (y, x) ∈ E+)

be an unweighted formula stating thatX is a chain. Since transitive closure of E can be
expressed for traces by an FO-formula (cf. [5, p. 501]), chain(X) is an FO-formula. By
Corollary 5.2, there is an RFO-formula chain(X)+ defining L(chain(X)). Moreover,
the formula

card(X) = ∀x.
(
(x ∈ X −→ 1) ∧ (¬x ∈ X −→ 0)

)
has the semantics |X | over . Hence,H =

∑
t∈ height(t) t is defined by

Φ = ∃X. chain(X)+ ∧ card(X) .

By Theorem 6.3,H ∈ 〈〈 〉〉 is recognizable.

7 Some Notes About Decidability

Given a weighted MSO-formula Φ over traces, there are two immediate questions:

– It is decidable whether Φ is an RMSO-formula?
– If Φ is in RMSO, can we effectively compute the semantics of Φ, i.e. compute

([[Φ ]], t) for every trace t ∈ ?

Droste and Gastin [9] answer these questions for weighted logics over words where the
underlying semiring is either a computable field or a locally finite semiring. We cannot
expect to do any better. By the effective translation of formulas the results carry over.
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Proposition 7.1. Let be a computable field, and let Φ ∈MSO( , ). It is decidable
whether Φ is reduced. In this case we can compute effectively for every trace t ∈ the
coefficient ([[Φ ]], t) in a uniform way.

Corollary 7.2. Let be a computable field, and let Φ, Ψ ∈ RMSO( , ). It is decid-
able whether [[Φ ]] has empty support, whether [[Φ ]] = [[Ψ ]], and whether [[Φ ]] and [[Ψ ]]
differ for finitely many traces only.

Recall that a semiring is locally finite, if each finitely generated subsemiring of
is finite. A monoid M is locally finite, if each finitely generated submonoid of M is

finite. Clearly, a semiring (K,⊕, ◦, , ) is locally finite iff both monoids (K,⊕, 0) and
(K, ◦, ) are locally finite. Now even every MSO-definable trace series is recognizable
as it is true for word series [9, Thm. 6.4].

Theorem 7.3. Let be a locally finite commutative semiring and T ∈ 〈〈 〉〉. Then
the following are equivalent:

(i) T is definable in MSO.
(ii) T is recognizable.

Proposition 7.4. Let be a locally finite commutative semiring and Φ ∈ MSO( , ).
Then the coefficient ([[Φ ]], t) can be computed effectively for every t ∈ in a uniform
way. Moreover, it is decidable

(a) whether two MSO( , )-formulas Φ and Ψ satisfy [[Φ ]] = [[Ψ ]], and
(b) whether an MSO( , )-formula Φ satisfies supp([[Φ ]]) = .

8 FO-Definable Trace Series

By considering Lemma 6.1 and its proof we get:

Lemma 8.1. Let be a commutative semiring and ϕ : Σ∗ → the canonical epi-
morphism. The following are equivalent:

(i) T ∈ 〈〈 〉〉 is definable in RFO (in FO, respectively).
(ii) ϕ−1(T ) ∈ 〈〈Σ∗〉〉 is definable in RFO (in FO, respectively).

(iii) ϕ−1(T )|LNF ∈ 〈〈Σ∗〉〉 is definable in RFO (in FO, respectively).

Droste and Gastin showed that the classes of aperiodic word series, RFO-definable and
FO-definable word series coincide for commutative weakly bi-aperiodic semirings [9,
Thm. 7.8]. A monoid M is weakly aperiodic, if for each m ∈ M there is an n ≥ 0
such that mn = mn+1. M is aperiodic if there is an n ≥ 0 such that mn = mn+1

for all m ∈ M . A semiring is weakly bi-aperiodic, if both (K,⊕) and (K, ◦) are
weakly aperiodic monoids. Note that every commutative weakly aperiodic semiringK
is locally finite. Let S ∈ 〈〈M〉〉 be a recognizable series over an arbitrary monoid M .
Then S is called aperiodic if there exists a representation S = (λ, μ, γ) with μ(M)
aperiodic, i.e. there is some integer n ≥ 0 such that μ(un) = μ(un+1) for all u ∈ M .
A recognizable series S is weakly aperiodic if there exists some integer n ≥ 0 such that
(S, uvnw) = (S, uvn+1w) for all u, v, w ∈ M . Clearly, every aperiodic series is also
weakly aperiodic. The converse is true for locally finite semirings as already Droste and
Gastin noted [8, Sect. 3].
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Lemma 8.2. Let be a locally finite semiring, M a finitely generated monoid, and
S ∈ 〈〈M〉〉 a recognizable series. Then S is aperiodic iff S is weakly aperiodic.

Using Lemma 8.2, we can clarify the relation between aperiodic trace and aperiodic
word series.

Proposition 8.3. Let be a locally finite semiring. Then T ∈ 〈〈 〉〉 is aperiodic iff
ϕ−1(T ) ∈ 〈〈Σ∗〉〉 is aperiodic.

Proof. If T has the aperiodic representation T = (λ, μ, γ) such that there is an r ∈
with μ(tr) = μ(tr+1) for all t ∈ . Then ϕ−1(T ) has the aperiodic representation
(λ, μ◦ϕ, γ). Vice versa, let ϕ−1(T ) be aperiodic and, hence, also weakly aperiodic, i.e.
there is some r ∈ with (ϕ−1(T ), uvrw) = (ϕ−1(T ), uvr+1w) for all u, v, w ∈ Σ∗.
By t′ we denote some representative for the trace t. Now we have

(T, xtry) = (ϕ−1(T ), (xtry)′) = (ϕ−1(T ), x′t′ry′) = (ϕ−1(T ), x′t′r+1y′)

= (ϕ−1(T ), (xtr+1y)′) = (T, xtr+1y)

and, thus, T is weakly aperiodic. By Lemma 8.2, T is aperiodic. !�

Theorem 8.4. Let be a commutative, weakly bi-aperiodic semiring and T ∈ 〈〈 〉〉.
Then the following are equivalent:

(i) T is aperiodic.
(ii) T is weakly aperiodic.

(iii) T is RFO-definable.
(iv) T is FO-definable.

Proof. Recall that a commutative, weakly bi-aperiodic semiring is locally finite.
Then the equivalence of (i) and (ii) is clear by Lemma 8.2. Now, let T be aperiodic.
Then ϕ−1(T ) ∈ 〈〈Σ∗〉〉 is aperiodic by Proposition 8.3. Now, [9, Thm. 7.8] implies
RFO- and FO-definability of ϕ−1(T ). By Lemma 8.1, T is RFO- and FO-definable,
respectively. The converse direction follows similarly. !�
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Abstract. The nonforgetting restarting automaton is a restarting au-
tomaton that is not forced to reset its internal state to the initial state
when executing a restart operation. We analyse the expressive power of
the various deterministic and/or monotone variants of this model.

1 Introduction

The restarting automaton was introduced by Jančar et. al. [4] to model the
analysis by reduction, which is a technique used in linguistics to analyse sentences
of natural languages. According to this technique a sentence is processed by
simplifying it stepwise, in each step preserving the correctness or incorrectness
of the sentence. In Czech and German linguistics already several programs use
the idea of restarting automata [9, 13].

A (two-way) restarting automaton M consists of a finite-state control Q, a
finite tape alphabet Γ containing an input alphabet Σ, a flexible tape with a
left border marker c and a right border marker $, and a read/write window
of a fixed size k ≥ 1. Its actions are governed by a transition relation δ that
assigns to each pair (q, u) consisting of a state q ∈ Q and a possible contents
u of the window a finite set of transition steps, of which there are five types:
move-right and move-left steps, which change the internal state of M and shift
the window one position to the right or to the left, respectively, rewrite steps
that change the internal state and replace the contents of the window by some
shorter string, thereby shortening the tape, restart steps that place the window
over the left end of the tape and reset the internal state to the initial state q0,
and accept steps that cause M to halt and accept. Thus, each computation of M
proceeds in cycles: starting from a (restarting) configuration of the form q0cx$,
M performs move-right, move-left and rewrite steps until a restart operation
takes it back to a restarting configuration of the form q0cy$. As part of the
definition it is required that in each such cycle M executes exactly one rewrite
operation. The part of a computation that follows after the last application
of a restart step will be denoted as the tail of the computation. By now many
restricted variants of the restarting automaton have been studied, and it has been
shown that many well studied language classes can be characterised by variants
of the restarting automaton (see, e.g., [10, 11]). Actually the main variants of the
restarting automaton are obtained by combining two types of restrictions:

D. Grigoriev, J. Harrison, and E.A. Hirsch (Eds.): CSR 2006, LNCS 3967, pp. 247–258, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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(a) Restrictions on the movement of the read/write window (expressed by the
first part of the class name):
• RL- means no restriction,
• RR- means that no move-left operations are available,
• R- means that no move-left operations are available and that each

rewrite step is followed immediately by a restart step.
(b) Restrictions on the rewrite instructions (expressed by the second part of the

class name, where λ denotes the empty string):
• -WW means no restriction,
• -W means that no auxiliary symbols are available (that is, Γ = Σ),
• -λ means that each rewrite step simply deletes some symbols, that is,

if (q′, v) ∈ δ(q, u), then v is a scattered proper subword of u.
Obviously, each restarting automaton M can be simulated by a linear-bounded

automaton, and so the language L(M) of strings accepted by M is included in
the class CSL of context-sensitive languages. In fact, the restarting automaton
is more restricted than a linear-bounded automaton in two ways:

- each rewrite operation of a restarting automaton strictly reduces the length
of the tape (inscription), and

- between any two rewrite operations a restarting automaton must execute a
restart step, which has two effects:

(a) the automaton does not remember the place of the last rewrite operation,
as the window is moved back to the left end of the tape, and

(b) the automaton does not remember that it has at all done some rewrite
steps, as its internal state is reset to the initial state.

Thus, a restarting automaton must encode this information in the tape inscrip-
tion, but it can do so only in a very restricted way, as it can only perform a single
rewrite operation between any two restart steps, and, in addition, this rewrite
operation is length-reducing.

Here we investigate the influence of the first effect of the restart operation
listed above on the expressive power of the restarting automaton. For this we in-
troduce a more general model, the so-called nonforgetting restarting automaton.
As the standard model it is required to perform exactly one rewrite operation
between any two restart steps, but the restart operation is more powerful than
in the standard model as it involves a change of the internal state just like any of
the other operations. Hence, when executing a restart step, such an automaton
does not forget the information it has collected internally about the state of its
actual computation, but only the place of the latest rewrite operation is forgot-
ten. How much does this influence the expressive power of the various types of
restarting automata?

We will restrict our attention to nonforgetting restarting automata that are
deterministic or monotone. Deterministic RWW- and RRWW-automata accept
exactly the Church-Rosser languages (see, e.g., [10]), while monotone deter-
ministic R(R)(W)(W)-automata all accept the determinisitic context-free lan-
guages [5]. Here we will see that deterministic nonforgetting RWW-automata are
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strictly more expressive than the class CRL of Church-Rosser languages, while de-
terministic monotone nonforgetting R-, RW-, and RWW-automata still character-
ize the class DCFL of deterministic context-free languages. On the other hand, the
deterministic monotone nonforgetting RR-, RRW-, and RRWW-automata form
a strict hierarchy above DCFL. In particular, this means that the deterministic
monotone nonforgetting RWW-automaton is stricly weaker in expressive power
than the corresponding RRWW-automaton, which represents the first separation
result in the literature between an RWW- and an RRWW-automaton of the same
restricted form. Further, we will see that the nondeterministic monotone nonfor-
getting RWW- and RRWW-automata are just as powerful as the corresponding
standard models in that they still characterize the class CFL of context-free
languages.

2 Basic Notions and Examples

In [8] the shrinking restarting automaton was introduced as another generaliza-
tion of the restarting automaton. For such an automaton it is only required that
each rewrite operation reduces the weight of the tape content with respect to
some weight function. This turned out to be a very robust model in that the
class of languages accepted by shrinking restarting automata is not even effected
by allowing the automata to perform several (but constantly many) rewrite op-
erations between any two restart steps, or by making them nonforgetting [7]. As
these automata are equivalent in expressive power to the so-called finite-change
automata of [1], it follows that nonforgetting restarting automata only accept
deterministic context-sensitive languages.

In the following we will use the prefix nf- to denote classes of nonforget-
ting restarting automata, and the prefix det- to denote classes of deterministic
(nonforgetting) restarting automata.

Each cycle of each computation of an nf-RLWW-automaton M consists of
four phases: 1. scan the tape, 2. perform a rewrite operation, 3. scan the tape
again, 4. execute a restart step. During the first and the third of these phases M
behaves like a nondeterministic two-way finite-state acceptor. Hence, in analogy
to the proof that the language accepted by a two-way finite-state acceptor is
regular (see, e.g, [3]), it can be shown that, for each nf-RLWW-automaton M ,
there exists an nf-RRWW-automaton M ′ that executes exactly the same cycles
in each computation as M . Thus, in particular, the languages L(M) and L(M ′)
coincide. This is a slight generalization of a result of [12]. It should be pointed out
that a corresponding result does not hold for deterministic restarting automata.

For an nf-RRWW-automaton M , the first and the third phase of each cycle
consist only of MVR-steps, that is, during these phases M behaves just like
a (one-way) finite-state acceptor. Thus, the transition relation of M can be
described more compactly by so-called meta-instructions.

A meta-instruction for an nf-RRWW-automaton M is either of the form
(p1, E1, u → v, E2, p2) or (p1, E1,Accept), where p1 and p2 are internal states,
E1 and E2 are regular expressions, and u, v ∈ Γ ∗ are words satisfying |u| > |v|,
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which stand for a rewrite step of M . To execute a cycle M chooses a meta-
instruction of the form (p1, E1, u → v, E2, p2). On trying to execute this
meta-instruction M will get stuck (and so reject) starting from a configura-
tion p1cω$, if ω does not admit a factorization of the form ω = ω1uω2 such that
cω1 ∈ E1 and ω2$ ∈ E2. On the other hand, if ω does have factorizations of this
form, then one such factorization is chosen nondeterministically, and p1cω$ is
transformed into p2cω1vω2$. In order to describe the tails of accepting compu-
tations we use meta-instructions of the form (p1, E1,Accept), where the strings
from the regular language E1 are accepted by M in tail computations, that
is, without a restart. As an nf-RWW-automaton restarts immediately after ex-
ecuting a rewrite operation, the meta-instructions describing cycles of such an
automaton are of the simplified form (p1, E1, u→ v, p2).

Example 1 (Exponential languages). The language Lexpo := { a2n | n ∈ N } is
accepted by the det-nf-RWW-automaton with one auxiliary symbol B that is
given through the following meta-instructions:

(i) (q0, ca∗, aaaa$→ Baa$, q1), (iv) (q1, ca∗, aaB → Ba, q1),
(ii) (q1, c,B → λ, q0), (v) (q0, caa$,Accept).
(iii) (q0, ca$,Accept),

The language L′
expo := { a2n

b | n ∈ N } is accepted by the det-nf-RW-automaton
given through the following meta-instructions:

(i) (q0, ca+, aab$→ ba$, q1), (v) (q1, ca∗, aab→ ba, q1),
(ii) (q1, c, b → λ, q1), (vi) (q1, ca∗, aaaa$→ baa$, q1),
(iii) (q1, caa$,Accept), (vii) (q0, cab$,Accept).
(iv) (q0, caab$,Accept),

3 Deterministic Restarting Automata

Deterministic RWW- and RRWW-automata accept the Church-Rosser languages
(CRL) (see, e.g., [10]), which are the deterministic variants of the growing context-
sensitive languages (GCSL). While the language Lcopy := {ω#ω | ω ∈ {a, b}∗ } is
not even growing context-sensitive [2], it is accepted by the det-nf-R-automaton
that is given through the following meta-instructions:

(i) (q0, ca · {a, b}∗ ·#, a → λ, q1), (iv) (q1, c, a → λ, q0),
(ii) (q0, cb · {a, b}∗ ·#, b→ λ, q1), (v) (q1, c, b → λ, q0).
(iii) (q0, c#$,Accept),

As it is easily seen that the language Lexpo (L′
expo) is not accepted by any nf-RW-

automaton (nf-R-automaton), we have the situation depicted in Figure 1, where
L1 �� L2 expresses the fact that the language class L1 is properly contained
in the class L2, while L1 ?

�� L2 indicates an inclusion for which it is still open

whether or not it is proper.



On Nonforgetting Restarting Automata 251
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Fig. 1. The taxonomy of deterministic nonforgetting restarting automata

In addition, it is also open whether, for any choice of X ∈ {WW,W, λ}, any
of the inclusions L(det-nf-RX) ⊆ L(det-nf-RRX) ⊆ L(det-nf-RLX) is proper.

To further illustrate the expressive power of det-nf-RW-automata, we now
consider the language Lcopy∗ := { (ω#)+ | ω ∈ {a, b}∗ }.

Lemma 1. Lcopy∗ ∈ L(det-nf-RW).

Proof. A det-nf-RW-automaton M for the language Lcopy∗ proceeds as follows.
Given an input of the form ω1#ω2# . . .#ωm#, the last two symbols of ω1 are
replaced by a new copy of the symbol #, thus creating an occurrence of a factor
##, and stored in the state of M . In the next cycle M compares the stored
symbols to the last two symbols of ω2. If they do not agree, then M halts and
rejects, otherwise the last two symbols of ω2 are also replaced by the symbol #.
This continues until all syllables ω2, . . . , ωm have been processed. Then M enters
a new restart state, which causes M to replace each factor of the form ## by
the symbol #, one at a time, proceeding from left to right. Once this task is com-
pleted, every syllable ωi has been shortened by two symbols, which have been
verified to agree for all syllables. Now M reenters the initial state, proceeding to
process the now shortened word. This process continues until either a disagree-
ment between some factors is found, or until all factors have been shortened to
length at most 2, and their agreement can be checked simply by scanning the
tape from left to right. !�

Essentially the same method can be used to design a det-nf-RW-automaton for
the language VALC(T ) of all valid computations of a single-tape Turing ma-
chine T . This language consists of all words of the form ω0#ω1# . . .#ωn#,
where ω0 is an initial configuration of T , ωn is an accepting configuration of T ,
and ωi+1 is an immediate successor configuration of the configuration ωi for all
0 ≤ i ≤ n − 1. Each configuration ωi is of the form t0t1 . . . tj−1qtjtj+1 . . . tm,
where t0t1 . . . tm is the support of the tape inscription and q is the current state
of T , scanning tj .

Lemma 2. VALC(T ) ∈ L(det-nf-RW).
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Proof. To accept VALC(T ) a det-nf-RW-automaton M first checks that all syl-
lables ωi are configurations of T . This is done in the first cycle. Also M checks in
this cycle whether, for all 0 ≤ i ≤ n−1, ωi+1 is a possible successor configuration
of ωi. This means that, if ωi contains the factor tj−1qtjtj+1, where q is a state
of T , and ωi+1 contains the factor tl−1ptltl+1, where p is a state of T , then either

– δT (q, tj) = (p, tl−1, R) and tj+1 = tl, or
– δT (q, tj) = (p, tl, N), tj−1 = tl−1, and tj+1 = tl+1, or
– δT (q, tj) = (p, tl+1, L) and tj−1 = tl

holds, where δT denotes the transition function of T . When M reaches the end
of the tape, the last occurrence of the symbol # is removed, and M restarts in
a non-initial state, if all these tests were positive. In this first cycle M cannot
possibly check whether the various configurations are consistent with each other.
This is done in the next phase, where a variant of the method to accept the
language Lcopy∗ is used to shorten the tape content and to verify letter by letter
that the states occur at the correct places within the various configurations, and
that the tape content of each configuration is consistent with the tape content
of the next configuration. !�

Actually, using a properly chosen encoding (see, e.g., [11]) each det-nf-RW-
automaton can be simulated by a det-nf-R-automaton. These observations yield
the following undecidablility results.

Theorem 1. The following problems are in general undecidable:

INSTANCE : A det-nf-R-automaton M .
QUESTION 1 : Is the language L(M) non-empty?
QUESTION 2 : Is the language L(M) finite?
QUESTION 3 : Is the language L(M) regular?
QUESTION 4 : Is the language L(M) context-free?

Observe that for a det-R-automaton, emptiness of the language accepted is easily
decidable.

4 Monotone Restarting Automata

Each cycle C of each computation of a restarting automaton M contains a
unique configuration of the form cx1qx2$ in which a rewrite step is applied.
Hence, we can associate with this cycle the number Dr(C) := |x2| + 1, called
the right distance of C. A sequence C1, C2, . . . , Cm of cycles of M is monotone
if Dr(C1) ≥ Dr(C2) ≥ . . . ≥ Dr(Cm) holds. A computation of M is monotone if
the corresponding sequence of cycles is monotone, and M itself is monotone if
each of its computations that starts from an initial configuration is monotone.
It is known that monotone RWW- and RRWW-automata accept exactly the
context-free languages [5]. Extending the proof of this result (cf. the proof of
Theorem 3 below) the following generalization can be obtained.
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Theorem 2. CFL = L(mon-nf-RWW) = L(mon-nf-RRWW).

Monotonicity is a decidable property of RRWW-automata (see, e.g., [11]), and
this result extends to nonforgetting RRWW-automata.

For deriving some proper inclusion results we now consider the following ex-
ample languages:

Lpal := {ωωR | ω ∈ {a, b}∗ },
Lpal′ := {ωωR# | ω ∈ {a, b}∗ }, and
Lpal′′ := {ωcφ(ω)R | ω ∈ {a, b, c}∗ }, where φ(a) := b, and φ(b) := φ(c) := a.

The language Lpal is context-free, but based on the Error-Preserving Property
the following negative result can be shown.

Lemma 3. The language Lpal is not accepted by any monotone nf-RRW-
automaton.

Proof. Let M be a monotone nf-RRW-automaton. The Error Preserving Prop-
erty for M tells us that, starting from an initial configuration that corresponds
to an input word w �∈ L(M), M cannot reach any configuration that also occurs
in an accepting computation of M . Assume that M accepts the language Lpal.
We will now argue that the Error Preserving Property is necessarily violated
for M .

Let p be an integer that is larger than the number of states of M . Observe
that there exist strings ω ∈ Lpal such that each string u ∈ {a, b}k occurs as a
factor in ω at more than p positions, where k is the size of the read/write window
of M . Thus, if such a string ω = xxR is given as input, then there is no way
that M can mark the middle of its tape, as M has no auxiliary symbols. On the
other hand, as M is monotone, it cannot apply rewrite steps alternatingly to the
prefix of ω and to the suffix of ω.

Assume that in an accepting computation on input ω, M performs a large
number of rewrite steps within the prefix x, thus deriving the configuration
qcyxR$. Then there exists a pumping factor within x such that by deleting
this factor we obtain a word ω′ = x′xR �∈ Lpal such that, when starting from
input ω′, M will reach the same configuration qcyxR$. This, however, contradicts
the Error Preserving Property.

Finally assume that in an accepting computation on input ω, M first executes
a limited number of rewrite steps within the prefix x, which yields a configuration
of the form C1 := qcx1ux2vx3$. Here the factor u displayed lies in the middle
part of the tape. Further, assume that in the next cycle M rewrites the factor u
displayed into v, which leads to the restarting configuration C2 := q′cx1vx2vx3$.
As there are many occurrences of the factors u and v within x1, x2, and x3,
there exists a string ω′ �∈ Lpal such that, when starting with input ω′, M will
perform the same rewrite steps within the prefix of the tape content and reach
the configuration C3 := qcx1vx2ux3$. As M cannot possibly distinguish between
the configurations C1 and C3, it can also rewrite the factor u displayed in C3 into
v and in this way reach the restarting configuration C2. However, this contradicts
the Error Preserving Property again. This completes the proof of Lemma 3. !�
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For processing Lpal′ a mon-nf-RW-automaton can use the #-symbol to mark its
guess for the middle of the input. However, a mon-nf-RR-automaton is again
too weak for accepting this language. Finally, the language Lpal′′ is accepted by
the mon-RR-automaton that is given through the following sequence of meta-
instructions. Essentially it guesses the rightmost occurrence of the symbol c in
its input and then checks whether its guess was correct:

(i) (c · {a, b, c}∗, acb→ c, {a, b}∗ · $), (iii) (c · {a, b, c}∗, bca → c, {a, b}∗ · $),
(ii) (c · {a, b, c}∗, cca→ c, {a, b}∗ · $), (iv) (cc$,Accept).

On the other hand, the language Lpal′′ is not accepted by any mon-nf-RW-
automaton, as such an automaton cannot verify whether it has found the right-
most occurrence of the symbol c correctly. Even the option of performing rewrites
does not help, as it has no auxiliary symbol that it could use to mark this po-
sition. Of course, a det-mon-RL-automaton can easily find the rightmost occur-
rence of the symbol c, and so it can accept this language. These results yield the
taxonomy for monotone nonforgetting restarting automata displayed in Figure 2.

CFL = L(mon-nf-RWW)��

Lpal

= L(mon-nf-RRWW)��
Lpal

L(mon-nf-RRW)��
Lpal′′����������� ��

Lpal′L(mon-RW)

Lpal

��

L1 of [11]
�� L(mon-nf-RW)��

Lpal′ L(mon-nf-RR)��
Lpal′′������������

L(mon-R)

[5]

��

L1 of [11]
�� L(mon-nf-R)�� L(det-mon-RL)

[11]
��

DCFL

[5]
��

= L(det-mon-R) = L(det-mon-RRWW)

Lpal′′
��

Fig. 2. The taxonomy of monotone nonforgetting restarting automata

Actually, L(mon-nf-R) �⊆ L(mon-RRW) as seen from the example language
L2 considered below, but it is still open where exactly the classes L(mon-RRW)
and L(mon-RW) are located in relation to the various monotone nonforgetting
restarting automata.

5 Deterministic Monotone Restarting Automata

All types of deterministic monotone R- and RR-automata accept exactly the
deterministic context-free languages [5]. For nonforgetting restarting automata
this result only carries over to R-automata.

Theorem 3. For each X ∈ {λ,W,WW}, DCFL = L(det-mon-nf-RX).
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Proof. As DCFL = L(det-mon-R), the inclusions from left to right are obvious.
It remains to show that L(det-mon-nf-RWW) ⊆ DCFL holds.

So let M be a det-mon-nf-RWW-automaton with window of size k and the
set Q of internal states. We simulate M by a deterministic pushdown automa-
ton P , which uses a buffer of size k in its finite control. On starting the simulation
P reads the first k input symbols into this buffer. When simulating a MVR-step
of M , P reads the next input symbol into its buffer, pushing the leftmost sym-
bol from the buffer onto its pushdown store. Together with this symbol P also
writes, for each state q ∈ Q, that state on the pushdown in which M would be
at this point had it started the current cycle in state q, using |Q| many extra
tracks on its pushdown store. This continues until M executes a rewrite/restart
step (p, u)→ (q, v), which P simulates within its buffer, refilling the buffer from
the pushdown store by popping the topmost |u| − |v| symbols. Afterwards P
continues with the simulation of M by using the state from the track of the
pushdown store that corresponds to state q. As M is monotone, the next rewrite
step cannot occur to the left of the previous rewrite step. It follows that P ac-
cepts the language L(M). !�

Next we will see, however, that deterministic monotone nf-RR-automata are
strictly more powerful than the corresponding standard variant. For this we con-
sider the example language Lpal := {ωcφ(ω)R | ω ∈ {a, b, c}∗, |ω|c ≥ 1 }, where
|w|c denotes the number of c-symbols occurring in w, and φ is the morphism
defined by φ(a) := a, φ(b) := b, and φ(c) := λ.

Lemma 4. Lpal ∈ L(det-mon-nf-RR) � DCFL.

Proof. The language Lpal is accepted by the det-mon-nf-RR-automaton that is
given through the following meta-instructions:

(i) (q0, c · {a, b}∗, c→ λ, ({a, b}∗ · c)2 · {a, b, c}∗ · $, q0),
(ii) (q0, c · {a, b}∗, c→ λ, {a, b}∗ · c · {a, b}∗ · $, q1),
(iii) (q1, c · {a, b}∗, aca→ c, {a, b}∗ · $, q1),
(iv) (q1, c · {a, b}∗, bcb→ c, {a, b}∗ · $, q1),
(v) (q1, cc$,Accept).

It remains to show that the language Lpal is not deterministic context-free.
As DCFL = L(det-mon-R), it suffices to prove that this language is not accepted
by any deterministic monotone R-automaton.

So assume to the contrary that M is a deterministic monotone R-automaton
that accepts the language Lpal. For a sufficiently large integer m, the word ω :=
camcam ∈ Lpal cannot be accepted by M in a tail computation. Hence, starting
from the initial configuration q0ccamcam$, M will execute a cycle q0cω$ �cM
q0cω′$. As M is deterministic, ω′ ∈ Lpal, implying that ω′ = cam−icam−i for
some integer i > 0. As M restarts immediately after executing a rewrite step, M
will apply the same rewrite operation when starting from the initial configuration
q0ccamcamcam−iam−i$, that is, it will execute the cycle

q0ca
mcamcam−iam−i$ �cM q0ca

m−icam−icam−iam−i$.
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This contradicts the Error Preserving Property, as camcamcam−iam−i �∈ Lpal,
while cam−icam−icam−iam−i ∈ Lpal. !�

For establishing further separation results, we consider the following variants of
the above language Lpal , where ψ : {a, b, c}∗ → {a, b}∗ is the transduction that
is defined through the finite transducer with a single state and the transition
relation a �→ a, b �→ b, ca �→ b, cb �→ a, and cc �→ λ, and φ : {a, b, c}∗ → {a, b}∗
is the morphism defined by a �→ a, b �→ b, and c �→ a:

L′
pal

:= {ωcψ(ω)R | ω ∈ {a, b, c}∗, |ω|c ≥ 1, ω does not end with a c },
L′′
pal

:= {ωcφ(ω)R | ω ∈ {a, b, c}∗, |ω|c ≥ 1 }.

Lemma 5. (a) L′
pal
∈ L(det-mon-nf-RRW) � L(det-mon-nf-RR).

(b) L′′
pal
∈ L(det-mon-nf-RRWW) � L(det-mon-nf-RRW).

Thus, we obtain the following chain of proper inclusions, which represents the
first separation between the RWW- and the RRWW-variant for any type of
restarting automaton.

Theorem 4. DCFL = L(det-mon-nf-RWW) ⊂ L(det-mon-nf-RR)
⊂ L(det-mon-nf-RRW) ⊂ L(det-mon-nf-RRWW).

All the above languages belong to the class L(det-mon-nf-RL). Surprizingly,
the det-mon-nf-RLWW-automaton is not more powerful than the standard
det-mon-RL-automaton.

Theorem 5. L(det-mon-nf-RLWW) = L(det-mon-RL).

Proof. It is shown in [6] that L(det-mon-RL) = L(det-mon-RLWW) holds. In fact,
this equality even extends to shrinking restarting automata (cf. Section 2). This
extension is obtained as follows.

A language L is accepted by a deterministic monotone shrinking RLWW-
automaton (sRLWW) if and only if LR is accepted by a deterministic left-
monotone sRLWW-automaton (cf. Lemma 1 of [6]). From the main results of [8]
we see that L(det-left-mon-sRLWW) = L(det-left-mon-RLWW), while Theorem 3
of [6] yields L(det-left-mon-RLWW) = L(det-left-mon-RL). Hence, we see that
L(det-left-mon-sRLWW) = L(det-left-mon-RL). By using Lemma 1 of [6] again
we obtain L(det-mon-RL) = L(det-mon-sRLWW).

Thus, it remains to show that every deterministic monotone nonforgetting
sRLWW-automaton can be simulated by a deterministic monotone sRLWW-
automaton. Let M by a det-mon-nf-sRLWW-automaton. It is simulated by a
deterministic monotone sRLWW-automaton M ′ that uses two cycles for simulat-
ing a cycle of M .

First M ′ scans the tape from right to left searching for symbols that encode a
state and a tape symbol of M . In its internal state M ′ remembers the rightmost
state found in this way, and if no such symbol is found, then M ′ remembers the
initial state of M . Next M ′ starts with the simulation of M , either at the left end
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of the tape or at the position where the state symbol of M was found, if this state
is entered by M after executing a rewrite operation (see below). In the first case
M ′ continues with the simulation until it reaches the configuration in which M
would perform a rewrite operation. M ′ executes this rewrite operation, encoding
the state that M reaches afterwards as part of the new tape inscription together
with an indicator that it is currently in phase 1 of the actual simulation. In the
second case M ′ continues with the simulation until it reaches a configuration in
which M would now execute a restart operation. This M ′ does not execute yet,
but it remembers the new state that M would now enter, returns to the place
where the last rewrite operation was performed, encodes the new state of M
into the rightmost symbol produced by that rewrite operation, and restarts. As
M is monotone, the newly encoded state is the rightmost state encoded in the
tape inscription, and therewith it will be chosen correctly in the next cycle. It
is easily seen that M ′ simulates M cycle by cycle and that it accepts the same
language as M . !�

It is known that L(det-mon-RL) is contained in CRL ∩ CFL [11]. On the other
hand, the context-free language L2 := { anbn | n ≥ 0 }∪{ anbm | m > 2n ≥ 0 } is
Church-Rosser, but it is not accepted by any RLW-automaton [5], implying that
it does not belong to L(det-mon-RL). This yields the following proper inclusion.

Corollary 1. L(det-mon-nf-RLWW) ⊂ CRL ∩ CFL.

Actually as seen in the proof of Theorem 5 the above results even extend to
shrinking restarting automata. Note, however, that it is still open whether the
inclusion L(det-mon-nf-RRWW) ⊆ L(det-mon-nf-RLWW) is proper or not.

6 Concluding Remarks

As we have seen, deterministic nonforgetting restarting automata are in general
more powerful than their standard counterparts. This makes them an interest-
ing variant, although, as seen in Section 3, already for det-nf-R-automata many
algorithmic problems are undecidable.
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Abstract. Non-effective cut elimination proof uses Koenig’s lemma to
obtain a non-closed branch of a proof-search tree T (without cut) for a
first order formula A, if A is not cut free provable. A partial model (semi-
valuation) corresponding to this branch and verifying ¬A is extended to
a total model for ¬A using arithmetical comprehension. This contradicts
soundness, if A is derivable with cut. Hence T is a cut free proof of A. The
same argument works for Herbrand Theorem. We discuss algorithms of
obtaining cut free proofs corresponding to this schema and quite different
from complete search through all possible proofs.

1 Introduction

Unwinding means here obtaining explicit bounds from non-constructive proofs
of existential statements. We apply existing proof theoretic techniques to a non-
effective proof of the basic proof-theoretic result, cut elimination theorem, to
obtain an algorithm transforming any first order derivation of a first order for-
mula A into a cut free derivation of A. The first proof of this result by Gentzen
was constructive, but seemed rather complicated combinatorially. Gentzen’s Ex-
tended Main Theorem was a version of Herbrand’s theorem. Gödel’s proof of his
completeness theorem and related work by Skolem implicitly contained a ver-
sion of Herbrand’s theorem proved in a non-constructive way. These proofs led
via work by Schütte to non-constructive cut elimination proofs for higher order
systems. by Prawitz and Takahashi. The problem of constructivization of non-
constructive proofs has much longer history. Modern period began with negative
translation and Brouwer-Heyting-Kolmogorov interpretation of sentences fol-
lowed by functional interpretations including Kleene’s realizability and Godel’s
Dialectica interpretation.

Intuitionism and constructivism introduced a program of constructivizing
classical results preserving constructive proofs but sometimes drastically chang-
ing non-constructive arguments. G. Kreisel promoted (in [6, 7, 8] and other pa-
pers) a program of unwinding non-effective existence proofs using techniques
from proof theory including cut elimination and Dialectica interpretation which
transform a classical proof of an arithmetical Σ0

1–formula ∃xR(x) into a
number n satisfying R(n). A new tool was provided by H.Friedman [2] and
A. Dragalin [1].
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The potential of application of all methods mentioned above was drastically
increased by emergence of proof construction and manipulation systems such as
Coq, Isabel,MIZAR, Minlog etc.

A General Schema of Unwinding and Necessary Modifications
A straightforward schema looks as follows.

1. Starting with a non-effective proof d : A of a sentence A in some formal
system S one gets first an effective proof d− : Aneg of a negative translation
of A in an intuitionistic version Sint of S.

2. A proof d+ : A′ of an effective modification A′ of Aneg is obtained for example
by methods of [2, 1].

3. A functional interpretation of the system Sint is applied to d+ to extract an
effective content of the original proof d.

For A = ∀x∃yR(x, y) with a primitive recursive R one has

Aneg = ∀x¬¬∃yR(x, y), A′ = ∀x∃yR(x, y) (up to equivalence),

hence the Dialectica interpretation provides a function Y such that R(x, Y (x)).
The three steps are often combined into a functional interpretation of the original
classical system S. In this paper we use Shoenfield’s interpretation [13].

In practice for every non-trivial A each stage of this process presents signifi-
cant technical difficulties even when there are no difficulties in principle, that is
negative translation, the method of Friedman-Dragalin and a suitable functional
interpretation is applicable to the original proof d : A. Before the first stage d is
usually incomplete or the complete formalization in one of proof manipulation
systems is not human readable. The stage 1 itself turns d into much less readable
(and often less complete) proof d−, so that the functional interpretation is very
difficult to apply, and even if a result is obtained, it is difficult to interpret. This
is sometimes complicated by difficulties in principle: standard proof theoretic
transformations have to be modified to treat a given system S.

These difficulties are dealt with by using shortcuts at each stage. Accord-
ing to an observation by G. Kreisel they are often mathematically insignificant.
This refers both to “equivalent” reformulation of A and changes in the proofs
d, dneg, d+ that seem inessential to researchers establishing results like A by
proofs like d. From the logical point of view the effect of such shortcuts can be
quite dramatic. In our case the expected complexity ACA (Arithmetic Compre-
hension Axiom) is reduced to PRA (Primitive Recursive Arithmetic).

In the present paper proof theory is applied to unwind a non-effective proof of
cut elimination theorem. To simplify notation we work with existential (Skolem-
ized) formulas. This proof uses Koenig’s lemma to obtain a non-closed branch
of a proof-search tree T (without cut) for a first order formula A, if A is not cut
free provable. A partial model (semi-valuation) B corresponding to this branch
and verifying ¬A is extended to a total model for ¬A using arithmetical com-
prehension. This contradicts soundness, if A is derivable with cut. Hence the
proof search tree should close (with axioms in all branches) after finite number
of steps. This provides a cut free proof for A. The same argument works for
Herbrand Theorem.
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It may seem to correspond to complete search through all possible cut free
proofs. We show it give rise to a more sophisticated algorithm transforming a
given derivation d of the formula A with cut into a cut free derivation . When d
itself is cut free, a bound for the size of the proof search tree T is obtained using
considerations in [11]: every branch of d is contained in some branch of T which
is obtained primitive recursively. When d contains cuts, computations of the
values for functional interpretation (of the metamathematical argument above)
roughly corresponds to standard cut elimination steps applied to d, similarly
to [10].

Combining all this leads to the following primitive recursive algorithm: ap-
ply the standard cut elimination to the given proof d with cut, then compute
a primitive recursive bound for T by the method of [11] providing a cut free
proof. This looks very different from the method given by the literal applica-
tion of the functional interpretation. The proof along the lines of [10] that the
resulting bound for T (not the time of computation) is approximately the same
is a topic for future work. We gave explicit construction for some stages of the
Shoenfield’s interpretations to make it plausible. On the other hand, the rough
bounds obtained by straightforward arguments have much higher computation
complexity than our primitive recursive algorithm. Indeed, the lemma on exten-
sion of an arbitrary semivaluation V0 to a total model V ′ is non-arithmetical. If
for example V0 is a standard model of arithmetic which is primitive recursive
on atomic formulas, then its total extension is a truth definition for arithmetic,
hence non-arithmetical by Tarski’s theorem. This shows why the conservative
extension theorem for WKL0 over PRA is not sufficient in our context and may
explain why non-effective cut elimination proof did not yield up to now to U.
Kohlenbach’s methods.

In section 2 we describe a familiar construction of a proof serch tree, sec-
tion 3 presents Shoenfield’s interpretation and its important instance. Section
4 computes Shoenfield’s interpretation of the Weak Köning’s Lemma, a basic
ingredient of many projects in proof construction and proof mining. In section
5 the basic part of a non-effective proof of cut elimination is presented in suf-
ficient detail to make possible computing Shoenfield interpretation and justify
our algorithm.

Most of the results in this work were obtained when the author was on sab-
batical leave from Stanford University in Ludwig-Maximillian University, Mu-
nich, Germany. Discussions with G. Kreisel, H. Schwichtenberg, W. Buchholz,
P. Schuster, U. Berger were especially useful. Remarks by the anonymous referee
helped to focus the presentation.

2 Tait Calculus

We consider first order formulas in positive normal form (negations only at
atomic formulas). Negation Ā of a formula A is defined in a standard way by
de-Morgan rules. Derivable objects are sequents, that is multisets of formulas.
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Axioms: A,¬A, Γ for atomic A Inference Rules:

A, Γ B, Γ

A&B, Γ
&

A,B, Γ

A ∨B, Γ
∨

M(t), ∃xB(x), Γ
∃xB(x), Γ ∃

B(a), Γ
∀xB(x), Γ ∀ C, Γ C̄, Γ

Γ
cut

The variable a in ∀ inference should be fresh. The term t in the rule ∃ is called
the term of that rule. We are primarily interested in SkolemizedΣ–formulas with
a quantifier free matrix B.

A = ∃x1 . . .∃xqB := ∃xB (2.1)

Definition 2.1. The Herbrand Universe HU(A) of a formula A consists of all
terms generated from constants and free variables occurring in A by function
symbols occurring in A. If the initial supply is empty, add a free variable.

For a given formula A and given q (cf. (2.1)) list all q-tuples of terms in HU(A)
in a sequence

t1, . . . , ti, . . . (2.2)

2.1 Canonical Tree T

The canonical tree T for a Σ–formula A = ∃xB(x) is constructed by bottom-up
application of the rules &,∨ (first) and ∃ when &,∨ are not applicable.
T assigns sequents to nodes a of the tree of finite binary sequences (cf. begin-

ning of section 4). To express a �∈ T (when a is situated over an axiom or the
second premise of a one-premise inference rule) we write T (a) = 0.
T (<>) contains sequent A. If T (a) is already constructed and is not an axiom

(:=closed node or branch), then it is extended preserving all existing formulas.
Principal formulas of the propositional rules are preserved (for bookkeeping). If
all branches of T are closed, then the whole tree is closed.

The following fairness conditions are assumed. There exists a Kalmar ele-
mentary function f such that for each a ∈ TT and every b ⊇ a, b ∈ TT with
lth(b) ≥ lth(a) + F (a) (we use notation at the beginning of section 4):

1. If C&D ∈ T (a) then C ∈ T (b) or D ∈ T (b),
2. If C ∨D ∈ T (a) then C ∈ T (b) and D ∈ T (b),
3. B(ti) ∈ T (b) for every i ≤ lth(a).

3 Shoenfield’s Variant of the Dialectica Interpretation

We use here the notation and results from [13] Section 8.3. where a version of
Dialectica interpretation is defined for classical arithmetic. Primitive recursive
terms of higher types are constructed from constants and variables of all finite
types by substitution, primitive recursion and explicit definitions. Arithmetical
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formulas are formulas of the first order arithmetic (with constants for the prim-
itive recursive functions of natural numbers). Generalized formulas are expres-
sions ∀x1 . . .∀xn∃y1 . . .∃ymA, or shorter ∀x∃yA, where A is a quantifier
free formula of finite type. Note that this form is different from the “Skolem”
form ∃x∀yA used in Gödel’s Dialectica interpretation for first order arithmetic.

Definition 3.1. To every formula A of the arithmetic of finite type with con-
nectives {∀,∨,&,¬} a generalized formula A∗ is inductively assigned.

1. A∗ := A for atomic A.
2. If A = ¬B, B∗ = ∀x∃yB′[x,y, z], then A∗ := ∀y′∃x¬B′[x,y′(x), z] where

y′ is a sequence of fresh variables of appropriate types.
3. If A = B ∨ C,

B∗ = ∀x∃yB′[x,y, z], C∗ = ∀x′∃y′C′[x′,y′, z], (3.1)

then A∗ := ∀xx′∃yy′(B′[x,y, z] ∨ C′[x′,y′, z])
4. If A = B&C then A∗ := ∀xx′∃yy′(B′[x,y, z]&C′[x′,y′, z]).
5. If A = ∀wB then A∗ := ∀wx∃yB′[x,y, z].

The &-clause is added here compared to [13], but the next theorem is still true
after obvious addition to its proof in [13].

Theorem 3.2. If A is derivable in the classical arithmetic, and

A∗ = ∀x∃yA′[x,y, z],

then there is a sequence a of primitive recursive terms of higher types such that

A′[x,a, z] (3.2)

is derivable in quantifier-free arithmetic of finite types (Gödel’s system T). 8

Definition 3.3. Terms a in (3.2) are called realization of the formula A.

Comment. Often a is written as Y (x) or Y (x, z).
Let’s compute Shoenfield translation of classical existence formulas. Recall

that classically ∃wB ⇐⇒ ¬∀w¬B, hence if B∗ = ∀x∃yB′[x,y, z, w] then

(∃wB)∗ = ∀x′∃wy′B′[x′(w,y′),y′(x′(w,y′)), z, w]

since (¬B)∗ = ∀y′∃x¬B′[x,y′(x), z, w],

(¬∀w∀y′∃x¬B′[x,y′(x), z, w])∗ = ∀x′∃wy′B′[x′(w,y′),y′(x′(w,y′)), z, w],

Let’s also recall that the implication is defined in terms of ∨,¬ by B → C :=
¬A∨B, so (3.1) implies (B → C)∗ := ∀Yx′∃xy′(¬B′[x,Y(x), z] ∨C′[x′,y′, z]).
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3.1 Kreisel’s Trick

An especially important case of a functional interpretation is case distinction for
Σ0

1–formulas. It is similar to Hilbert’s Ansatz (approach) to epsilon substitution
method [4] and was made explicit by G. Kreisel who empoyed it to analyze a
proof by Littlewood that the difference π(x)− li(x) changes sign. The statement
to be proved can be expressed in Σ0

1 -form ∃yP (y). Littlewood’s proof consisted
of two parts: If Riemann Hypothesis RH is true, then ∃yP (y); If Riemann Hy-
pothesis RH is false, then ∃yP (y).

Kreisel’s analysis used the fact that RH can be expressed in Π0
1 -form ∀xR(x)

to deal with ∃xR̄(x) → ∃yP (y) and ∀xR(x) → ∃yP (y). The first of these
relations provided a computable function f such that

∀x(R̄(x) → P (f(x)) (3.3)

The second relation provided natural numbers x0, y0 such that

R̄(x0) ∨ P (y0) (3.4)

Combination of the latter two relations yields P (z0) where

z0 = the least z ∈ {f(x0), y0} such that P (z) (3.5)

4 König’s Lemma

Here we develop Shoenfield’s interpretation for a version of König’s Lemma for
binary trees. Let’s recall some notation concerning finite sequences of natural
numbers. We use a, b, c as variables for binary finite sequences

a =< a0, . . . , an > where ai ∈ {0, 1}, lh(a) := n+ 1, (a)i := ai.
Concatenation ∗:
< a0, . . . , an > ∗ < b0, . . . , bm >:=< a0, . . . , an, b0, . . . , bm >.
<> is the empty sequence with lh <>= 0. a ⊆ b :⇐⇒ ∃cb = a ∗ c;
a < b iff a if lexicographically strictly precedes b, that is situated strictly to

the left in the tree of all finite sequences:
a ⊂ b or for some j < lha, (a)i = (b)i for all i < j, and (a)j < (b)j .
In this section T (with subscripts etc.) denotes primitive recursive trees of

binary sequences with the root <>:

b ∈ T &a ⊆ b → a ∈ T ; a ∈ T → (∀i < lha)(a)i ≤ 1

Ta is the subtree of T with the root a: {b ∈ T : a ⊆ b}.
In fact we use labeled trees. T (a) = 0 means a /∈ T , while T (a) �= 0 means

that a ∈ T and contains some additional information. A node a ∈ T is a leaf if
b ⊃ a implies b �∈ T . In this case all btanches of T through a are closed.

T < l := (∀a : lha = l)(a /∈ T ); T > l := (∃a : lha = l + 1)(a ∈ T )

and similar bounded formulas with replacement of <,> by ≤,≥.
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We use an adaptation of König’s Lemma in the form:
For every infinite binary tree its leftmost non-closed branch B is infinite.
Let

Left(a,m) := (∀a′ < a)Ta′ < m; (a,m) ∈ B := Left(a,m)&∀l(Ta > l). (4.1)

Now the statement above can be expressed as follows:

∀l(T > l)→ ∀k∃m(∃a : lha = k)((a,m) ∈ B) . (4.2)

Let’s state some properties of this construction and compute their Shoenfield’s
interpretations and realizations.

Lemma 4.1. 1. B is a branch:

(a,m) ∈ B&(b, n) ∈ B→ a ⊆ b ∨ b ⊆ a (4.3)

2. If T is infinite then B is infinite:

∀l0(T > l0) → ∀k∃m(∃b : lhb = k)((b,m) ∈ B) (4.4)

3. Realizations of (4.3,4.4) are primitive recursive

Proof.

1. Assume (a,m) ∈ B, (b, n) ∈ B, a < b, that is a is to the left of b. Then
(b, n) ∈ B implies Ta < n contradicting ∀l(T > l) with l := n. Similarly
(a,m) ∈ B contradicts ∀l1(Tb > l1) with l1 := m. This proves (4.3) and
provides realizations for the quantifiers ∀l, ∀l1.

2. We use induction on k. For k = 0 put b =<>,m := 0. For the induction
step assume the values b(k),m(k) for k are given and note that

∀l(Tb > l) (4.5)

If b := b(k) has one son in T , say b ∗ {0}, put

b(k + 1) := b ∗ {0}; m(k + 1) := m(k) (4.6)

Assume there are two sons. If ∀l(Tb∗{0} > l), use (4.6) again. Otherwise there
is an l1 such that Tb∗{0} < l1, and (4.5) implies ∀lTb∗{1} > l. Put

b(l + 1) := b ∗ {1}; m(l + 1) := max(m(l), l1). (4.7)

Extracting realization from this non-effective proof, amounts to Kreisel’s
trick (see Section 3.1). Shoenfield’s interpretation of (4.4) has a form:

∀k∀L∃l0∃m[¬(T < l0) ∨ (∃b : lhb = k)(Left(b,m)&Tb > L(m))] (4.8)

Define realizations M(k, L), L0(k, L) for m, l0 and a function b(K,L) by
recursion. Put

M(0, L) := 0, b(0, L) :=<>, L0(0, L) = 1,

which covers also the case when T stops at <>.
Assume the values for k, L are defined and satisfy the condition in (4.8).

Consider possible cases.
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(a) T < L0(0, L). We are done. Make all realizations constant (the same as
for k) for all k′ > k.

(b) b := b(k, L) has one son in T , say b ∗ {0}.
i. Tb∗{0} > L(M(k, L)). Put b(k + 1, 0) := b ∗ {0} and preserve the

rest: M(k + 1, L) := M(k, L), L0(k + 1, L) = L0(k, L).
ii. Tb∗{0} ≤ L(M(k, L)).

If T ≤ max(k + 1,M(k, L), L(M(k, L))) := M0 then we are done.
Put L0(k+1, L) := M ′ +1 as in the case 2a. Otherwise list all a ∈ T
with b ∗ {0} ≤ a, lha = k + 1 in the list

b ∗ {0} := a0 < a1 < . . . < ak

and for i < k put: Mi+1 := max(Mi, L(Mi)). If T < Mi for some i,
we finish as before by defining L0(k + 1, L). Otherwise take the first
i such that Tai > Mi and define

b(k + 1, L) := ai, M(k + 1, L) := Mi−1, L0(k + 1, L) = L0(k, L)

(c) b := b(k, L) has two sons in T , namely b ∗ {0}, b ∗ {1}. Similar to the
previous case with the case distinctions according to which of b ∗ {0},
b ∗ {1} or a node to the right of b ∗ {1} fits as b(k + 1, L). 8

5 Bounds for the Proof Search Tree

In this section we assume a Σ–formula F of first order logic to be fixed and
T to be the canonical proof search tree for F , see section 2.1. Now every node
a ∈ T contains a sequent A1, . . . ,An and we write Ai ∈ T (a), i ≤ n. The main
property of the proof search tree is its fairness: there is a primitive recursive
function split insuring that all necessary splittings of formulas are eventually
made in the process of proof search, see (5.3), (5.4) below.

We define the leftmost non-closed branch B by (4.1) above. Satisfaction for
literals in a corresponding semivaluation is defined in a standard way: P t is
satisfied iff (¬P t) ∈ T (a) for some m with (a,m) ∈ B. Construction of realiza-
tions is slightly simplified if satisfaction is defined separately for the two kinds
of literals:

B |= P t :⇐⇒ ∃a∃m((¬P t) ∈ T (a)& (a,m) ∈ B) (5.1)

B |= ¬P t :⇐⇒ ∀a∀m[¬((¬P t) ∈ T (a))& (a,m) ∈ B)] (5.2)

Let’s write down interpretations of these satisfaction relations. If

Confirm(A, a,m, l) := A ∈ T (a)& Left(a,m)& Ta > l,

then
(B |= P t)∗ = ∀L∃a∃mConfirm(¬P t, a,m, L(a,m))

(B |= ¬P t)∗ = ∀a∀m∃l¬Confirm(¬P t, a,m, l)
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The satisfaction relation for composite formulas is defined in ordinary way:

B |= (A ∨B) := B |= A ∨B |= B; B |= (A&B) := B |= A&B |= B;

B |= ¬A := B �|= A;

B |= ∀xA(x) := ∀t(B |= A(t)); B |= ∃xA(x) := ∃t(B |= A(t))

with a quantifier over all terms t in the Herbrand universe of the formula F for
which the search tree T is constructed.

Lemma 5.1. For every formula A, (a,m) ∈ B& A ∈ T (a) → B �|= A with a
primitive recursive realization.

Proof. Induction on A. For computing realizations it is convenient to restate the
Lemma in the form

Left(a0,m0),A ∈ T (a0),B |= A→ ∃lTa0 < l

and construct realization for l in terms of hypothetical realizations of B |= A.

1. A = P t. Take (a′,m′) ∈ B with ¬P t ∈ T (a′). By Lemma 4.1.1 a0, a′ are
in the same branch. Hence at the level max(lha0, lha′) there is an axiom
P t,¬P t, Γ ∈ B. This contradicts Lemma 4.1.2.
Realization of (B |= P t)∗ provides A,M such that

∀LConfirm(¬P t,A(L),M(L), L(A(L),M(L))).

To realize ∃lT < l put: L(a,m) := max(lha, lha0,m,m0), l := L(A(L)) + 1.
To follow realization algorithm more literally one should use realizations
from the Lemma 4.1.

2. A = ¬P t. Take a := a0,m := m0 in B |= ¬P t. With A ∈ T (a0) this implies
a0 /∈ B, a contradiction.
Realization of B |= ¬P t provides a functional L(a,m) such that for all a,m,
¬Confirm(¬P t, a,m, L(a,m)). Put l := L(a0,m0).

3. A = B ∨C. From (a0,m) ∈ B, A ∈ T (a0) we have

∀a′(a′ ⊇ a0&lh(a′) ≥ split(A, 0)&T (a′) �= 0 → B ∈ T (a′)&C ∈ T (a′))
(5.3)

In particular, this is true for a′ ∈ B with lh(a′) = split(A, 0) which exists by
Lemma 4.1. By IH applied to one of the formulas B, C depending of B |= B
or B |= C we get the value of l. Realization is constructed in a similar way.

4. A = B&C. This time IH is applied to both B and C to produce two bounds
lB, lC for l, then put l := max(lB , lC).

5. A = ∃zB(z). Similar to the ∨–case. A ∈ Ta0 implies

∀t∀a′(a′ ⊇ a&lh(a′) ≥ split(A, t)&T (a′) �= 0 → B(t) ∈ T (a′)) (5.4)

Apply IH to t such that B |= B(t). dashv
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The next statement of soundness of predicate logic does not assume that the
canonical tree is unbounded. Instead of computing a realization we use a shortcut
below.

Lemma 5.2. d : A1, . . . ,An → B |= A1, . . . ,An

Proof. Standard induction on d. Every formal inference in d is simulated by the
inference using the same rule to obtain B |= A1, . . . ,An. 8

Corollary 5.3. 1. (a,m) ∈ B& A1, . . . ,An ∈ T (a)→ B �|= A1, . . . ,An

2. d : A → ∃lT < l.
Proof.

1. Use Lemma 5.1 and B |= A1, . . . ,An ⇐⇒ B |= A1 ∨ . . . ∨B |= An.
2. Use Lemma 5.2 and the part 1 for a =<>,m = 0 to obtain a contradiction

from (<>, 0) ∈ B, that is from ∀lT < l. dashv

The next series of arguments was obtained essentially by permuting the induction
used in the proof of Lemma 5.2, the cut over the formula B |= A1, . . . ,An used
in the argument for the Corollary 5.3.2 and computing realization. Only the final
result of this process is presented here.

Definition 5.4. We say that a sequent Γ is saturated with respect to a deriva-
tion d, written Sat(Γ, d) if Γ contains the endsequent of d and all side formulas
of ∃-inferences in d and is closed under propositional inferences:

(A&B) ∈ Γ implies that A ∈ Γ or B ∈ Γ ;
(A ∨B) ∈ Γ implies that A ∈ Γ and B ∈ Γ .

The next Lemma relies on (but does not use explicitly) the following intuitions
derived from [9],[11]. Infinite branches in the proof search tree T for a formula A
correspond to semivaluations refuting A. Every branch of a cut free derivation
d : A is contained in each sufficiently long non-closed branch of T .

Lemma 5.5. d : Γ& Left(a,m)& Γ ⊆ T (a)&Sat(T (a), d) implies that T (a)
is an axiom.

Proof. Induction on d. If d is an axiom, use the fact that T (a) contains the last
sequent of d. Otherwise use IH which is applicable in view of Sat(T (a), d). 8
Theorem 5.6. There is a primitive recursive function CE such that T < CE(d).
for any derivation d : A of a Σ–formula A and the proof search tree T for A.

Proof. Assume first d is cut free. Substituting an element of HU(A) for terms
not in HU(A) we can assume all ∃ inferences in d have terms in HU(A). There is
only a finite number of such terms in d. Using the function split find a number l
such that every sequent T (a) at the level l in T is saturated with respect to d. By
Lemma 5.5 every such sequent is an axiom, hence T < l + 1. This construction
is primitive recursive.

If d contains cuts, eliminate them by a standard reduction procedure which
is primitive recursive. 8
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Abstract. We present a new method of solving graph problems re-
lated to Vertex Cover by enumerating and expanding appropriate sets
of nodes. As an application, we obtain dramatically improved runtime
bounds for two variants of the Vertex Cover problem: In the case of
Connected Vertex Cover, we take the upper bound from O∗(6k) to
O∗(3.2361k) without large hidden factors. For Tree Cover, we show
exactly the same complexity, improving vastly over the previous bound
of O∗((2k)k). In the process, faster algorithms for solving subclasses of
the Steiner tree problem on graphs are investigated.

1 Vertex Cover Variants and Enumeration

Vertex Cover arguably constitutes the most intensely studied problem in
parameterized complexity [5], which is most perspicuously reflected by a long
history of improved runtime bounds [1, 2, 3, 10, 11] culminating in the algorithm
by Chen, Kanj, and Xia with running time O(1.2738k + kn) [4]. This naturally
led to the investigation of generalizations such as Connected Vertex Cover,
Capacitated Vertex Cover, and Maximum Partial Vertex Cover. Guo,
Niedermeier, and Wernicke recently proved upper bounds of O(6kn + 4kn2 +
2kn2 logn + 2knm), O((2k)kkn2) and O(1.2k2

+ n2) for Connected Vertex
Cover, Tree Cover and Capacitated Vertex Cover, respectively, as well
as W[1]-hardness for Maximum Partial Vertex Cover [8].

Let us define those three variants that are to play a rôle in what follows: Given
a graph G = (V,E) and a natural number k, the problem Vertex Cover asks
for a set C ⊆ V, |C| ≤ k, which intersects every edge. Connected Vertex
Cover introduces the additional constraint that the subgraph G[C] induced by
C be connected. In order for C to also be a solution to the Tree Cover problem
with weight bound W , G[C] needs to be spanned by a tree of weight at most W .

Fernau has investigated the complexity of enumerating vertex covers [7]: Given
a graph G = (V,E) and a number k, all minimal vertex covers of size at most k
can be enumerated in time O(2kk2 + kn). A lower bound of 2k can be shown
using the fact that the graph consisting of k disjoint P2’s simply has 2k different
minimal vertex covers of size k.
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Now this lower bound is derived from graphs that are not even connected,
while algorithms employed to solve graph problems are usually designed to con-
sider each component by itself. In the case of connected graphs, the worst exam-
ple which comes to mind is that of a path Pn, which has

(
k+1
n−k

)
minimal vertex

covers of size exactly k+1. These are 2knO(1) many for n = 3
2k. Hence, Fernau’s

bound also holds for connected graphs up to a polynomial factor, suggesting
that the complexity of enumerating all minimal vertex covers remains close to
2k unless restricted to very special graphs.

In order to accelerate algorithms that rely on the enumeration of vertex covers,
we thus take a different approach: Instead of going through all the minimal vertex
covers, we just enumerate subsets of vertex covers that can easily be expanded
to complete vertex covers. We call this method Enumerate and Expand.

Definition 1. Let C be a graph class. A C-cover for a graph G = (V,E) is a
subset C ⊆ V such that G[V \ C] ∈ C.

That is, a C-cover does not have to cover all edges, but the uncovered part of
the graph must be in C. For instance, C is a vertex cover if and only if C is an
I-cover, where I denotes the class of all graphs without edges.

Definition 2. Let G = (V,E) a graph, k ∈ N. A family of subsets of V is k-
representative if it contains a subset of every vertex cover C of G with |C| ≤ k.

Theorem 1. Let G = (V,E) be a graph, k ∈ N, and C a graph class that
contains all graphs with degree at most d and has a linear-time membership test.
A k-representative family of C-covers for G can be enumerated in O(ζkk2 + kn)
time, where ζ is the unique positive root of the polynomial zd+1 − zd − 1.

Proof. We first employ some preprocessing which resembles Buss’s kernelization
for vertex cover [5] and takes O(kn) time: Repeatedly remove vertices of degree
more than k from G until none remain. Call the set of removed vertices H . This
kernelization leaves a graph with at most O(k2) vertices, because if G[V \ H ]
contains more than k(k + 1) vertices, then G obviously has no vertex cover of
size at most k, and ∅ is a k-representative set of C-covers. As H is contained in
every vertex cover of size at most k, it is sufficient to first enumerate a (k−|H |)-
representative family of C-covers for G[V \ H ] and then add H to each of its
members.

On the remaining graph, apply the algorithm from Table 1. Let us prove that
the algorithm enumerates k-representative C-covers for a given graph G and a
given number k. It is clear that the algorithm outputs only C-covers. To show
that it outputs a C-cover that is a subset of any given vertex cover I with |I| ≤ k,
we follow an appropriate branch in the recursion tree: Whenever the algorithm
chooses v, follow the G \ {v} branch if v ∈ I and the G \N [v] branch otherwise,
which implies N(v) ⊆ I. In the branch selected in this fashion, C ⊆ I holds at
each stage. Since I is a C-cover and C grows in each recursion step, the node set
C eventually becomes a C-cover itself and will be output.

The runtime bound is easily shown: Obviously, we have |N [v]| > d whenever
the last line is executed, because otherwise G ∈ C (and the algorithm would have
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Table 1. Enumerate(G, k, ∅) enumerates a k-representative family of C-covers for G

Input: a graph G = (V, E), k ∈ N, a set C ⊆ V

if G ∈ C then output C; return fi;
if k ≤ 0 then return fi;
choose v ∈ V with maximum degree;
Enumerate(G \ {v}, k − 1, C ∪ {v});
Enumerate(G \ N [v], k − |N(v)|, C ∪ N(v))

terminated in the first line). Hence, we can bound the number of leaves in the
recursion tree by rk ≤ rk−1+rk−d−1. Standard techniques show that rk = O(ζk).
Choosing v, checking G ∈ C, and computing G \ {v}, G \N [v], etc. can be done
in linear time, resulting in an overall running time of O(ζkk2 + kn). !�

Let M be the class of all graphs with maximum degree one. Clearly, a graph
is in M if and only if its edges constitute a matching. We will see that the
enumeration of any k-representative family of M-covers is sufficient to compute
optimal connected vertex covers as well as tree covers. From now on, let φ =
(1 +

√
5)/2 denote the golden ratio.

Corollary 1. Given a graph G, a k-representative family of M-covers of size
at most k can be enumerated in O(φkk2 + kn).

Even though we focus onM-covers in this paper, the above ideas obviously lend
themselves to generalization. In general, it takes two steps to apply our technique.
Firstly, choose an appropriate graph class C and prove that a representative
family of C-covers can be enumerated efficiently. Secondly, find a way to decide
efficiently whether a C-cover can be expanded to a solution to the problem at
hand. The following meta theorem shows how to put the pieces together.

Theorem 2. Let (1) C be a graph class and P a property of node sets,1

(2) T1(n, k) denote the running time it takes to enumerate a k-representative
family of C-covers of size at most k in an n-node graph, and

(3) T2(n, k′) bound the running time it takes to determine whether we can add
at most k′ nodes to a given C-cover for an n-node graph in order to obtain a
vertex cover of size at most k that has property P .

Given a graph G = (V,E) with n = |V |, it is then possible to check whether
G has a size-k vertex cover with property P in time

O
( k∑
i=0

T1(n, i) · T2(n, k − i)
)
.

Proof. Since any size-k vertex cover with property P is a superset of some C-
cover and thus a superset of some minimal C-cover of size at most k, it suffices
1 More precisely, a property defined on node sets and graphs, such as independence,

being a dominating set, or connectedness.
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to enumerate a k-representative set of C-covers and check whether they can be
expanded into a size-k vertex cover with property P . In order to obtain a bound
tighter than the trivial O(T1(n, k) ·T2(n, k)) one, we instruct the meta algorithm
to look at all possible sizes i of minimal C-covers independently. The above
runtime bound follows from the fact that in our context, a C-cover of size i may
only be expanded by k − i nodes. !�

Please note that, if T1(n, k) = f1(k)poly(n) and T2(n, k′) = f2(k)poly(n) (mean-
ing that both parts are fixed-parameter tractable), then checking the existence of
a size-k vertex cover with property P is also fixed-parameter tractable. Moreover,
if the second part is even fixed-parameter tractable in k′—the number of nodes
to add— and the bounds are, say, T1(n, k) = O∗(ck

1) and T2(n, k′) = O∗(ck′
2 ),

then the overall runtime becomes O∗((max{c1, c2})k
)
. When applying the the-

orem, one should thus check whether adding k′ nodes to achieve property P is
fixed-parameter tractable with respect to k′. Unfortunately, this turns out not
to be the case in our application: It is W[2]-hard for both Connected Vertex
Cover and Tree Cover, as detailed in Section 5.

2 Restricted Steiner Tree Problems

In order to check whether a given vertex cover C is a subset of a connected vertex
cover of size at most k, Guo, Niedermeier, and Wernicke compute an optimum
Steiner tree for the terminal set C [8]. The answer to this question is “Yes” if
and only if the resulting tree has k or less nodes. Enumerating the up to 2k

minimal vertex covers takes O(2kk2 + kn) time, and computing the optimum
Steiner tree takes O(3kn + 2kn2 + n3) time for each of these when employing
the Dreyfus-Wagner algorithm [6]. The overall running time is thus O∗(6k) and,
using an asymptotically faster Steiner tree algorithm [9], can be improved to
O∗((4 + ε)k) for arbitrarily small ε > 0 at the price of an exorbitant polynomial
factor.

Their approach, however, does not exploit the fact that only a restricted ver-
sion of the Steiner tree problem needs to be solved: The terminals form a vertex
cover. In this section, we present an improved algorithm for this variant that
takes O∗(2k) time. In order to allow for the propagation of future improvement
on this bound and to reflect the interplay of the Steiner tree problem and variants
of Vertex Cover, we agree upon the following definitions:

Definition 3. Let S(n, k) denote the time it takes to compute an optimum
Steiner tree for any set C of k terminals that also forms a vertex cover in any n-
node network (G, #) with G = (V,E) and weight function # : E → Q+. Likewise,
S(n, k, n′) denotes the runtime bound if we further restrict the class of eligible
Steiner trees to contain at most n′ nodes.

Theorem 3. S(n, k) ∈ O(2kpoly(n)).

Proof. Consider the algorithm in Table 2. It is easy to see that its running time
is O(2kk3n) steps on a standard RAM.
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Table 2. Computing an optimum Steiner tree for a terminal set C that is a vertex
cover

for all v ∈ V , y, y′ ∈ C do
T ({y, v, y′}) ← an optimum Steiner tree for {y, v, y′};
T ({y, y′}, v) ← an optimum Steiner tree for {y, v, y′}

od;
for i = 3, . . . , |C| do

for all Y ⊆ C
i

do
T (Y, v) ← E;
for all v ∈ V , y �= y′ ∈ Y do

T1 ← T (Y \ {y′}) ∪ T ({y, v, y′});
T2 ← T (Y \ {y′}, v) ∪ T ({v, y′});
if ||T1|| ≤ ||T (Y, v)|| then T (Y, v) ← T1 fi;
if ||T2|| ≤ ||T (Y, v)|| then T (Y, v) ← T2 fi

od;
T (Y ) ← E;
for all v ∈ V do

if ||T (Y, v)|| ≤ ||T (Y )|| then T (Y ) ← T (Y, v) fi
od

od
od
return T (C)

To see the correctness, let us call a set of nodes Y regional if there is an
optimal Steiner tree for Y that is a subtree of a globally optimal Steiner tree
for C. By induction on i, the number of terminals processed in the main part of
the algorithm, we want to show that T (Y ) contains an optimum Steiner tree for
the terminal set Y whenever Y is regional.

The algorithm tries to compute an optimum Steiner tree for Y ′ by adding new
terminals to previously computed trees T (Y ) with Y ⊆ Y ′ and |Y | = |Y ′| − 1.
In any case, it computes a Steiner graph for Y ′. Unfortunately, we cannot be
sure that there is a regional Y ′ of every size along the way. However, since C is
a vertex cover, the distance between Y and a newly added terminal y′ cannot
exceed two. That is, for any size i, there is a set Y ⊂ C, such that either Y or
Y ∪ v for a suitable v ∈ V is regional.

After strengthening the induction hypothesis to moreover have T (Y, v) contain
a minimum Steiner tree for Y ∪v whenever this set is regional and v is a neighbor
of a terminal from Y , it suffices to distinguish the three cases depicted in Figure 1.
In whichever applies, we are assured that two smaller regional terminal sets are
united to form a larger regional set. By the induction hypothesis, the tables hold
optimal Steiner trees for the subsets. Because subtrees for regional sets can be
replaced by any locally optimal Steiner tree in a globally minimum Steiner tree
without changing the costs, their union is also optimal for the superset. !�

Corollary 2. S(n, k, n′) ∈ O(n′ · 2kpoly(n)).

Proof. Modify the above algorithm as follows: Instead of using one table of opti-
mum Steiner trees, keep n′ different tables for optimum Steiner trees consisting
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y

v = y′

(a)

y

v

y′

(b)

v
y′

y

(c)

Fig. 1. Three ways to add a terminal y′ to T (Y ) or T (Y, v)

of 1, 2, . . . , n′ nodes. It is easy to see that upon termination of the modified algo-
rithm, the n′ table cells for the entire terminal set C contain only valid Steiner
trees, at least one of which constitutes an optimum solution. !�

3 Connected Vertex Cover

In this section, we present an improved algorithm for Connected Vertex
Cover, where the improvement originates from two different modifications to
the algorithm by Guo, Niedermeier, and Wernicke. The first modification is that
we apply the Enumerate and Expand method. As suggested in Section 1, we
thus do not enumerate all minimal vertex covers, but only minimal M-covers,
of size at most k.

On the positive side, this reduces the number of enumerated entities drastically.
On the negative side, finding out whether an M-cover—rather than a regular
vertex cover—can be expanded to a connected vertex cover is obviously harder,
since simply computing an optimum Steiner tree for the cover does not suffice any
longer. We solve this problem by transforming the graph and theM-cover into a
different graph and a terminal set, such that an optimum Steiner tree for the new
instance reflects a Connected Vertex Cover for the original graph.

The second modification lies in replacing a general algorithm for the Steiner
tree problem by the specialized but more efficient one from Section 2. Recall
that this algorithm has a running time bounded by O∗(2k), but requires the
terminal set to form a vertex cover. Whereas this condition is obviously met in
the approach taken by Guo, Niedermeier, and Wernicke, we need to make sure
that it is not violated by the aforementioned transformation.

Lemma 1. The following problem can be solved in S(n, k) time:

Input: A graph G = (V, E), an M-cover C, a number k ∈ N
Parameter: k

Question: Is there a connected vertex cover Ĉ ⊇ C
of size at most k?
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Proof. Let M = {{s1, t1}, . . . , {sr, tr}} denote the matching obtained by remov-
ing C from G. Since any connected vertex cover Ĉ ⊇ C obviously contains at
least |C|+ r nodes, the answer is “No” if |C|+ r > k. Without loss of generality,
we can assume C to be nonempty. Now let G′ = (V ′, E′) with

V ′ = V ∪X and E′ = (E \M) ∪ {{s1, x1}, {x1, t1}, . . . , {sr, xr}, {xr, tr}},
where X = {x1, . . . , xr} are new nodes meant to subdivide the matching edges.
The claim follows if we can show that the number of nodes in an optimum Steiner
tree for C∪{x1, . . . , xr} in G′ exceeds the size of any minimum connected vertex
cover Ĉ ⊇ C for G by r.

Let Ĉ ⊇ C a connected vertex cover for G. Since both Ĉ and the subgraph of
G induced by Ĉ are connected, G contains a (|Ĉ|−1)-edge spanning tree T for Ĉ.
Construct a corresponding tree T ′ for G′ as illustrated in Figure 2: First, copy
every edge from E[T ]\M . Second, insert new edges for i ∈ {1, . . . , r}:(1) {si, xi}
if {si, ti} /∈ T and si ∈ Ĉ, (2) {xi, ti} if {si, ti} /∈ T and ti ∈ Ĉ, and (3) {si, xi}
and {xi, ti} if {si, ti} ∈ T . Obviously, T ′ constitutes a (|Ĉ| + r)-node Steiner
graph for C ∪X .

x1

x2

x3
x4

x1

x2

x3
x4

Fig. 2. The first row shows a graph G, an M-cover C for G, and the respective graph G′.
The second row shows a connected vertex cover Ĉ ⊇ C for G, a (|Ĉ|−1)-edge spanning
tree for Ĉ in G, and the respective tree T ′ in G′.

On the other hand, let T ′ a Steiner tree for C ∪X in G′. It remains to check
that V [T ′] \X is a connected vertex cover for G. It is a vertex cover: C alone
covers all edges except the ones in M . Moreover, for each i, at least one of si
and ti is contained in T ′, since xi can only be reached in T ′ via these. It is also
connected: Consider any path from u to v in T ′. Replacing any si−xi− ti bridge
in this path by the simple edge si − ti yields another path in G. !�
Theorem 1 and Lemma 1 comprise the building blocks for an application of the
meta theorem (Theorem 2). We immediately obtain the following result:

Corollary 3. The decision problem Connected Vertex Cover can be solved
in O∗(φkS(n, k)) = O∗((2φ)k) steps.

4 Tree Cover

Whereas we improved upon the running time for Connected Vertex Cover
essentially in only the base of the exponential part, we are now able to present a
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much more dramatical speed-up for Tree Cover. In fact, we establish the
first parameterized algorithm with exponential running time, as opposed to
O((2k)kkn2) [8].

Intuitively, there are several aspects that make tackling Tree Cover harder
than Connected Vertex Cover. If we already have a vertex cover C that
is a subset of an optimal Connected Vertex Cover or Tree Cover, then
an optimum Steiner tree for C yields a connected vertex cover—optimal in the
number of nodes and edges, because these numbers differ by exactly one in any
tree. In the case of Tree Cover, however, the two optimization goals of having
at most k vertices while minimizing the edge weights can be conflicting. This
difficulty, which was overcome at the price of a heavily increased running time
in earlier scholarship, is surprisingly easy to handle using Corollary 2. However,
the conflict springs up again when trying to find a one-to-one correspondence
between tree covers that expandM-covers and Steiner trees on modified graphs.
The solution lies in a case distinction, i.e., deciding beforehand which matching
edges would wind up in the tree cover.

Lemma 2. It takes no more than S(n, |C| + |M |, k + |M2|) steps to solve the
following problem:

Input: A network (G, �), an M-cover C with matching M , a
bipartition M = M1 ∪M2, a number k, and a number W

Question: Is there a tree cover for G with at most k nodes and
weight at most W that contains all nodes in C, all edges
from M1, and no edges from M2?

Proof. If |C|+ 2|M1|+ |M2| > k, the answer is “No.”
Let M1 = {{q1, q

′
1}, . . . , {qs, q′s}}. Let M2 = {{s1, t1}, . . . , {sr, tr}}. Without

loss of generality, we can assume C to be nonempty. Now let G′ = (V ′, E′)
with V ′ = (V \ {q′1, . . . , q′s}) ∪ X and E′ = ((E \ M) \ Q′) ∪ Q ∪ EX , where
X = {x1, . . . , xr} are new nodes meant to subdivide the edges in M2, Q′ =
{{q′i, v} ∈ E | {qi, q′i} ∈ M1} is replaced by Q = {{qi, v} | {q′i, v} ∈ Q′}, and
EX = {{s1, x1}, {x1, t1}, . . . , {sr, xr}, {xr, tr}}. We set

�′(e) =

{
W if e ∈ EX ,

�(e) otherwise.

We claim that the answer is “Yes,” if and only if there is a Steiner tree for
C ∪ {q1, . . . , qs} ∪X in G′ with at most k + r nodes and weight at most W −∑

e∈M1
�(e) + rW .

Let T be a tree cover for G that contains C, M1, and no edges from M2, has
at most k nodes, and weight at most W . Construct T ′ in G′ as follows: First,
adapt the edges from T in ((E[T ] \M) \Q′) ∪Q. Second, insert new edges for
i ∈ {1, . . . , r}: (1) {si, xi} if si ∈ T , and (2) {xi, ti} if si /∈ T and ti ∈ T .
Obviously, T ′ constitutes a k + r node Steiner graph for C ∪ V [M1] ∪ X with
weight W −

∑
e∈M1

�(e) + rW .
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q1

q′1

q2

q′2

s1

t1

s2

t2

q1 q2 s1

x1

t1

s2

x2

t2

Fig. 3. A graph G with M-cover C (marked) and |M1| = |M2| = 2, and the cor-
responding graph G′. An optimal tree cover and the corresponding Steiner tree are
highlighted.

On the other hand, let T ′ a Steiner tree of the above kind in G′. It remains
to check that T = (VT , ET ) with VT = (V [T ′] \X) ∪ V [M1] and ET = (E[T ′] \
EX) ∪M1 is a tree cover for G. It is a vertex cover: C alone covers all edges
except the ones in M . Moreover, for each i, at least one of si and ti is contained
in T ′, since xi can only be reached in T ′ via these. It is also obviously a tree,
and the node and weight bound are easily verified. !�

Fortunately, it turns out that the additional case distinction does not increase
the asympotic runtime, when analyzed properly.

Theorem 4. Tree Cover can be solved in O∗((2φ)k) steps.

Proof. Enumerate a k-representative family C of M-covers. Each C ∈ C has a
corresponding matching M . For each pair (C,M), cycle through all partitions
M1 ∪M2 = M . Check whether there exists a tree cover of size at most k and
weight at most W that contains all nodes from C, all edges from M1, and no
edge from M2. If such a tree cover is found, output “Yes.” Otherwise, if no such
cover is found for any pair (C,M), output “No.”

To see the correctness, observe that any feasible tree cover T also constitutes
a vertex cover, implying that at some point, the above algorithm looks at an
M-cover C ⊆ V [T ] and a corresponding matching M . Since there is a partition
M1 ∪M2 = M such that M1 ⊆ E[T ] and M2 ∩ E[T ] = ∅, the algorithm finds T
or another feasible tree cover.

According to Lemma 2, the running time is thus bounded by∑
(C,M)

∑
M1

·∪M2=M

S(n, |C|+ |M |, k + |M2|) =

∑
(C,M)

( ∑
M1

·∪M2=M
|M1|≤ 2

11 |M|

S(n, |C|+ |M |, k + |M2|) +
∑

M1
·∪M2=M

|M1|> 2
11 |M|

S(n, |C|+ |M |, k + |M2|)
)
.

If |M1| ≤ 2
11 |M |, then there are at most

( |M|
2|M|/11

)
= O∗(1.6067|M|) ways to

choose M1. By Corollary 1, there are no more than φ|C| ways to choose C. Thus,
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the first sum is bounded by O∗(φ|C|+|M|S(n, |C| + |M |, k + |M2|)) = O∗(φk2k)
according to Corollary 2.

In the second sum, we have |M1| > 2
11 |M |, and we can assume that |M | <

11
13 (k−|C|) because otherwise, |C|+ |M |+ |M1| > k—which already implies that
there is no feasible solution. There are no more than 2|M| ways to choose M1, and
again at most φ|C| ways to choose C. We also have that S(n, |C|+|M |, k+|M2|) ≤
2|C|+|M|. Hence, the second sum is bounded by O∗((2φ)|C|4|M|). This is easily
seen to be O∗((2φ)|C|4

11
13 (k−|C|)) = O∗((2φ)k). !�

5 Results on Hardness

In terms of our meta theorem (Theorem 2), it would be nice if the restriction
of the Steiner tree problem encountered in the preceding sections was fixed-
parameter tractable even in the number k′ of non-terminals in the Steiner tree.
More precisely, if this particular Steiner tree problem—where the terminal set
forms a vertex cover—could be solved in O∗(2k′

) time, we would get a new
runtime bound of O∗(φ|C|2k−|C|) = O∗(2k) for Connected Vertex Cover
immediately.

Unfortunately, this seems very unlikely, since this variant of the Steiner tree
problem turns out to be W[2]-hard. Moreover, because Tree Cover can be seen
as a generalization of Connected Vertex Cover, we thus cannot expect to
improve the runtime bound for Tree Cover this way, either.

Theorem 5. The following problem is W[2]-hard:

Input: A graph G, a vertex cover C, a number k′ ∈ N
Parameter: k′

Question: Is there a Steiner tree of size at most |C|+ k′

for the terminal set C?

Proof. Given a finite family of sets S = S1, . . . , Sn comprised of elements from
a universe U = {u1, . . . , um} and a number k, the problem Hitting Set is to
decide whether there exists a T ⊆ U , |T | ≤ k, such that T and Si share at least
one element for every i ∈ {1, . . . , n}. Since Hitting Set is W[2]-complete, we
can prove the above statement via reduction from Hitting Set.

Assume U = S1∪· · ·∪Sn and Si �= ∅ for all i ∈ {1, . . . , n} without loss of gen-
erality. Construct the bipartite graph G = (V1, V2, E) with V1 = {v0, v1, . . . , vn},
V2 = U = {u1, . . . , um}, and {vi, uj} ∈ E whenever uj ∈ Si or i = 0. Clearly, V1
is a vertex cover for G, and a set T ⊆ U = V2 constitutes a hitting set for S if and
only if its neighborhood in G contains all of V1. Observe that any Steiner tree for
the terminal set V1 consists of all the nodes of V1 as well as a subset of V2 whose
neighborhood contains all of V1, and vice versa. Hence, a k-hitting set T for S
exists if and only if there is a Steiner tree for V1 comprised of |V1|+k nodes. !�

In the case of Connected Vertex Cover, we can go even further. Theorem 5
suggests that, in order to obtain even better runtime bounds, we would have
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to let go of reducing to the first variant of the Steiner tree problem presented
in Section 2. After all, Connected Vertex Cover could very well be fixed-
parameter tractable for the parameter k−|C|. This, however, can be proven not
to be the case, unless FPT = W[2]:

Theorem 6. The following problem is W[2]-hard:

Input: A graph G = (V,E), an M-cover C, a number k′ ∈ N
Parameter: k′

Question: Is there a connected vertex cover Ĉ ⊇ C
of size at most |C|+ k′?

Proof. This is a generalization of the problem addressed in Theorem 5: If C
happens to be a vertex cover, then Ĉ ⊇ C is a connected vertex cover iff there
is a Steiner tree for C with node set Ĉ. !�
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Abstract. Most assertions involving Shannon entropy have their Kol-
mogorov complexity counterparts. A general theorem of Romashchenko [4]
states that every information inequality that is valid in Shannon’s the-
ory is also valid in Kolmogorov’s theory, and vice verse. In this paper
we prove that this is no longer true for ∀∃-assertions, exhibiting the
first example where the formal analogy between Shannon entropy and
Kolmogorov complexity fails.

1 Introduction

Since the very beginning the notion of complexity of finite objects was consid-
ered as an algorithmic counterpart to the notion of Shannon entropy [9]. Kol-
mogorov’s paper [6] was called “Three approaches to the quantitative definition
of information”; Shannon entropy and algorithmic complexity were among these
approaches. Let us recall the main definitions.

Let α be a random variable with a finite range a1, . . . , aN . Let pi be the
probability of the event α = ai. Then the Shannon entropy of α is defined as

H(α) = −
∑
i

pi log pi

(All logarithms in the paper are base 2.) Using the concavity of the function p �→
−p log p, one can prove that the Shannon entropy of every random variable does
not exceed its max-entropy, H0(α), defined as the logarithm of the cardinality of
the range of α (and is equal to H0(α) only for uniformly distributed variables).

Let β be another variable with a finite range b1, . . . , bM defined on the same
probabilistic space as α is. We define H(α|β = bj) in the same way as H(α);
the only difference is that pi is replaced by the conditional probability Pr[α =
ai|β = bj ]. Then we define the conditional entropy as

H(α|β) =
∑
j

Pr[β = bj ] ·H(α|β = bj).

� Supported in part by Grants 03-01-00475, 06-01-00122, NSh-358.2003.1 from Russian
Federation Basic Research Fund.

D. Grigoriev, J. Harrison, and E.A. Hirsch (Eds.): CSR 2006, LNCS 3967, pp. 281–291, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



282 An. Muchnik and N. Vereshchagin

It is easy to check that

H(〈α, β〉) = H(β) + H(α|β). (1)

Using the concavity of logarithm function, one can prove that

H(α|β) ≤ H(α), (2)

and that H(α|β) = H(α) if and only if α and β are independent. This inequality
may be rewritten as

H(〈α, β〉) ≤ H(α) + H(β). (3)

All these notions have their counterparts in Kolmogorov complexity theory.
Roughly speaking, the Kolmogorov complexity of a binary string a is defined

as the minimal length of a program that generates a; the conditional complexity
K(a|b) of a conditional to b is the minimal length of a program that produces
a having b as input. There are different refinements of this idea (called simple
Kolmogorov complexity, monotone complexity, prefix complexity, decision com-
plexity, see [5], [11]). However, for our purposes the difference is not important,
since all these complexity measures differ only by O(log n) where n is the length
of a.

Now we define these notions rigorously. A conditional description method
is a partial computable function F mapping pairs of binary strings to binary
strings. A string p is called a description of a conditional to b with respect to F
if F (p, b) = a. The complexity of a conditional to b with respect to F is defined
as the minimal length of a description of a conditional to b with respect to F :

KF (a|b) = min{l(p) | F (p, b) = a}.

A conditional description method F is called optimal if for all other conditional
description methods G there is a constant C such that

KF (a|b) ≤ KG(a|b) + C

for all a, b. The Solomonoff–Kolmogorov theorem [6, 10] (see also the textbook [5])
states that optimal methods exist. We fix an optimal F and define conditional
Kolmogorov complexity K(a|b) as KF (a|b). The (unconditional) Kolmogorov
complexity K(a) is defined as Kolmogorov complexity of a conditional to the
empty string. Comparing the optimal function F with the function G(p, b) = p
we see that Kolmogorov complexity does not exceed the length:

K(a) ≤ l(a) + O(1).

Fix a computable injective function a, b �→ [a, b] encoding pairs of binary
strings by binary strings (different computable encodings lead to complexities of
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K([a, b]) that differ only by O(1)). The inequalities (1), (2), and (3) translate
to Kolmogorov complexity as follows

K([a, b]) = K(b) + K(a|b) + O(log n), (4)
K(a|b) ≤ K(a) + O(1), (5)

K([a, b]) ≤ K(a) + K(b) + O(log n). (6)

Here n = l(x) + l(y). The inequalities (5) and (6) are easy. The inequality (4)
is easy in one direction:

K([a, b]) ≤ K(b) + K(a|b) + O(log n).

The inverse inequality is the famous theorem of Kolmogorov and Levin, see [5].
Following this analogy between Shannon entropy and Kolmogorov complex-

ity, Romashchenko proved in [4] that the class of linear inequalities for Shannon
entropy coincides with the class of inequalities for Kolmogorov complexity. To
state this result rigorously, we introduce the following notation. Let α1, α2, . . . , αm
be random variables having a joint distribution. For a set A ⊂ {1, 2, . . . ,m} let
αA denote the tuple 〈αi | i ∈ A〉. For instance, α{1,2,4} = 〈α1, α2, α4〉. Similarly,
for a sequence x1, . . . , xn of binary strings xA denotes [xi | i ∈ A], for example,
x{1,2,4} = [[x1, x2], x4].

Theorem 1 (Romashchenko). If an inequality of the form∑
A,B

λA,BH(αA|αB) ≤ 0 (7)

is true for all random variables α1, . . . , αm then for some function f(n) =
O(log n) the inequality ∑

A,B

λA,BK(xA|xB) ≤ f(n) (8)

holds for all binary strings x1, . . . , xm. Here n stands for the sum of lengths
of xi, the summation is over all subsets A,B of {1, 2, . . . ,m}, and λA,B de-
note arbitrary real numbers. Conversely, if for some function f(n) = o(n) the
inequality (8) is true for all x1, . . . , xm then (7) holds for all α1, . . . , αm.

This theorem shows that all “information inequalities” for Shannon entropy of
random variables are true for Kolmogorov complexity of binary strings with log-
arithmic accuracy, and vice versa. Information inequalities can be considered
as universal formulas in a language having ≤ as the only predicate symbol and
terms of the form

∑
A,B λA,BH(αA|αB). In this paper we compare Shannon’s

and Kolmogorov’s information theories using ∀∃-formulas in this language. We
show that there is ∀∃-formula that is valid in Kolmogorov’s theory but is false in
Shannon’s theory. Then we exhibit another ∀∃-formula that is true in Shannon’s
theory (assuming that all universal quantifiers range over sequences of inde-
pendent identically distributed random variables) but is false in Kolmogorov’s
theory.
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2 Relating Shannon Entropy and Kolmogorov
Complexity Using ∀∃-Formulas

Consider ∀∃-formulas with atomic formulas being OR of ANDs of information
inequalities:

∀α1 . . .∀αk∃αk+1 . . .∃αk+l

∨
i

∧
j

∑
A,B

λijA,BH(αA|αB) ≤ 0. (9)

Here the summation is over all subsets A,B of {1, 2, . . . , k+ l}, and λA,B denote
arbitrary real numbers. This formula expresses in a succinct form the following
statement: For all finite sets A1, . . . , Ak and jointly distributed random vari-
ables α̃1, . . . , α̃k in A1, . . . , Ak there are finite sets Ak+1, . . . , Ak+l and jointly
distributed random variables α1, α2, . . . , αk+l in A1, A2, . . . Ak+l such that the
marginal distribution of 〈α1, . . . , αk〉 is the same as that of 〈α̃1, . . . , α̃k〉 and∨
i

∧
j

∑
A,B λijA,BH(αA|αB) ≤ 0. For every such formula consider the corre-

sponding formula for Kolmogorov complexity:

∀x1 . . .∀xk∃xk+1 . . .∃xk+l

∨
i

∧
j

∑
A,B

λijA,BK(xA|xB) ≤ o(n). (10)

Here n denotes l(x1) + · · · + l(xk). Note that we include in the sum only the
length of strings under universal quantifiers. Otherwise, if we included also the
length of other strings, the assertion could become much weaker. We could choose
xj+1, . . . , xj+m of length much greater than that of x1, . . . , xj , and the accuracy
o(n) might become larger than K(xi) for i ≤ k.

Is it true that for all m and λijA,B Equation (9) holds if and only if Equation (9)
holds? The following trivial counter-example shows that this is not the case.
Consider the formula:

∀α∃β H(β) = H(α)/2, H(β|α) = 0.

This statement is false: let α be the random variable with 2 equiprobable out-
comes, thus H(α) = 1. If H(β|α) = 0 then β is a function of α and thus H(β) can
take only values 0, 1. On the other hand, the similar assertion for Kolmogorov
complexity is true:

∀x∃y K(y) = K(x)/2 + O(log n), K(y|x) = O(log n),

where n = l(x). Indeed, as y we can take the first half of the shortest description
of x. However, we think that this counter-example is not honest. Indeed, the
statement holds for Shannon entropy with accuracy O(1):

∀α∃β H(β) = H(α)/2 + O(1), H(β|α) = 0.

To prove this, define a sequence β0, β1, . . . , βN of random variables, where N is
the number of outcomes of α, as follows. Let β0 = α and βi+1 is obtained from βi
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by gluing any two outcomes of βi. Each βi is a function of α, hence H(βi|α) = 0.
It is easy to verify that gluing any two outcomes can decrease the entropy at
most by 1. As H(β0) = H(α) and H(βn) = 0 there is i with H(βi) = H(α)/2±1.

We think that it is natural, in the comparison of Shannon and Kolmogorov
theories, to consider the information inequalities for Shannon entropy also with
accuracy o(n) where n is the sum of “lengths” of the involved random variables.
As a “length” of a random variable α it is natural to consider its max-entropy
H0(α). Thus, instead of Equation (9) we will consider the following formula:

∀α1 . . .∀αk∃αk+1 . . .∃αk+l

∨
i

∧
j

∑
A,B

λijA,BH(αA|αB) ≤ o(n) (11)

where n = H0(α1) + · · · + H0(αk). This formula is a succinct representation of
the following assertion: there is a function f(n) = o(n) such that the formula

∀α1 . . .∀αk∃αk+1 . . .∃αk+l

∨
i

∧
j

∑
A,B

λijA,BH(αA|αB) ≤ f(n)

holds in the same sense, as (9) does. Is it true that Equation (11) holds if and only
if Equation (10) holds? This is true for formulas without existential quantifiers
(l = 0), as Romashchenko’s theorem holds (with the same proof) if we replace 0
by o(n) in the right hand side of (7).

3 Separating Shannon’s and Kolmogorov’s Information
Using Max-Entropy in Formulas

It is easy to find a counter-example if we allow to use the max-entropy in for-
mulas (and the length of strings in the corresponding formulas for Kolmogorov
complexity). Namely, in Kolmogorov theory, for every string x it is possible to
extract about K(x) bits of randomness from x: For every string x there is a
string y with

K(y|x) = O(log l(x)), K(y) = l(y) + O(1) = K(x) + O(1)

(let y to be the shortest description of x). This property of Kolmogorov com-
plexity translates to Shannon theory as follows. For every random variable α
there is a random variable β with

H(β|α) = o(n), H(β) = H0(β) + o(n) = H(α) + o(n), (12)

where n = H0(α). This statement is false. This is implied by the following The-
orem 2. Indeed, the inequalities (12) and the equality (1) imply that H(α|β) =
o(n). Thus the left hand side of the inequality (13) is equal to H0(β) + o(n) =
H(α) + o(n), which is much less than its right hand side.

Theorem 2. For every n there is a random variable α with 2n + 1 outcomes
such that for all random variables β it holds

H0(β) + 64H(α|β) > H(α) + n/2− 2. (13)



286 An. Muchnik and N. Vereshchagin

Proof. Let the outcomes of α be a0, a1, . . . , a2n and have probabilities p0 = 1/2
and pi = 2−n−1 for i = 1, . . . , 2n. Obviously, H(α) = n/2 + 1. Thus, given
a random variable β in a set B of cardinality 2d, we have to prove that d +
64H(α|β) > n− 1.

Let A denote the set {a1, . . . , a2n} (the element a0 is not included). Divide
all the pairs 〈a, b〉 in the set A×B into three groups:

(1) the pairs 〈a, b〉 with H(α|β = b) ≥ 8H(α|β);
(2) the pairs 〈a, b〉 outside (1) with with Pr[α = a|β = b] ≤ 2−64H(α|β);
(3) the pairs 〈a, b〉 with Pr[α = a|β = b] > 2−64H(α|β).

The sum of probabilities of pairs in (1) is at most 1/8, as the probability that
H(α|β = b) exceeds its expectation 8-fold is at most 1/8. The same argument
applies for pairs 〈a, b〉 in (2): for every fixed b the value − logPr[α = a|β = b]
is more than 64H(α|β) hence exceeds its expectation H(α|β = b) more than 8-
fold. And the total probability of pairs in (3) is at most 2d+64H(α|β)−n−1. Indeed,
for every b ∈ B there are less than 264H(α|β) pairs 〈a, b〉 in (3). Thus, the total
number of pairs in (3) is less than 2d+64H(α|β). The probability of each of them
is at most 2−n−1. Summing all probabilities we should obtain at least 1/2, the
probability of A×B. Thus we have

1/8 + 1/8 + 2d+64H(α|β)−n−1 > 1/2 ⇒ d+ 64H(α|β) > n− 1. !�

It is worth to mention here that a result on implicit extractors from [1] implies
that in Shannon’s theory it is possible to extract about H∞(α) random bits from
every random variable α. Here H∞(α) denotes the min-entropy of α defined as
min{− log pi, . . . ,− log pN) where p1, . . . , pN are probabilities of outcomes of α.
More specifically, the following is true.

Theorem 3. For every random variable α there is a random variable β with

H(β|α) = O(log n), H(β) = H0(β) + O(log n) = H∞(α) + O(log n),

where n = H0(α).

Proof. We use the following theorem on extractors from [1]. For all integer n ≥
m and positive ε there is a set C of cardinality O(n/ε2) and a function f :
{0, 1}n × C → {0, 1}m with the following property. Let α be a random variable
in {0, 1}n with min-entropy at least m and let u be uniformly distributed in C
and independent of α. Then the distribution of f(α, u) is at most ε apart from
the uniform distribution over {0, 1}m. This means that for every subset B of
{0, 1}m the probability that f(α, u) gets into B is |B|2−m ± ε.

Apply this theorem to n = 9H0(α):, m = 1H∞(α)2 and ε = logm/m. Let
β = f(α, u) (we may assume that α takes values in {0, 1}n). Then we have
H(β|α) ≤ log |C| ≤ logn− 2 log ε + O(1) = O(log n).

To estimate H(β) we need the following

Lemma 1. If β is at most ε apart from the uniform distribution over {0, 1}m
then H(β) ≥ m(1− ε)− 1.
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Proof. Let μ stand for the probability distribution of β, that is, μ(b) = Pr[β = b].
Let Bi denote the set of all b ∈ {0, 1}m with μ(b) > 2i−m. As β is at most ε
apart from the uniform distribution, we can conclude that μ(Bi) ≤ |Bi|2−m+ε <
2−i + ε. For all b outside Bi we have − logμ(b) ≥ m− i. Thus the entropy of β
can be lower bounded as

H(β) ≥ m−
m∑
i=1

i · μ(Bi−1 −Bi) = m−
m∑
i=1

i · (μBi−1 − μBi)

= m−
m−1∑
i=1

μBi > m−
m−1∑
i=1

(2−i + ε) ≥ m− 1− εm.

The lemma implies that

H(β) ≥ m− logm− 1 ≥ H0(β) −O(log n).

As H∞(α) = m + O(1) and H(β) ≤ H0(β), this inequality implies that the
difference between H(β), H0(β), H∞(α) is O(log n).

4 Separating Shannon’s and Kolmogorov’s Information
Theories

Looking for an assertion of the form (11) that distinguishes Shannon entropy and
Kolmogorov complexity, it is natural to exploit the following difference between
Shannon and Kolmogorov definitions of conditional entropy. In Kolmogorov’s
approach conditional complexity K(a|b) is defined as the length of a string,
namely the shortest description of a conditional to β. In Shannon’s approach
H(α|β) is not defined as the max-entropy or Shannon entropy of any random
variable. Thus the following easy statement could distinguish Kolmogorov’s and
Shannon’s theories:

∀x∀y∃z K(z) ≤ K(x|y) + O(1), K(x|[y, z]) = O(1)

(let z be the shortest description of x conditional to y). However it happens that
its analog holds also in Shannon’s theory:

Theorem 4. For all random variables α, β there is random variable γ such
that H(γ) ≤ H(β|α) + O(log n) and H(β|〈α, γ〉) = 0, where n = H(β|α) ≤
H0(α) + H0(β).

Proof. Let A,B denote the set of outcomes of α, β, respectively. Fix a ∈ A and
let βa denote the random variable in B which takes every value b ∈ B with
probability Pr[β = b|α = a]. Using Shannon or Fano code we can construct,
for each a, an injective mapping fa from B to the set of binary strings such
that the expected length of fa(βa) is at most H(βa) + O(1). Let γ = fα(β).
By construction the outcomes of α and γ together determine the outcome of β
uniquely. This shows that H(β|〈α, γ〉) = 0.
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It remains to show that H(γ) ≤ H(β|α)+O(log n). Let us first upper bound
the expectation of l(γ). It is less than the expectation of H(βα) + O(1), which
is equal to H(β|α) + O(1). Thus it suffices to show that Shannon entropy of
every random variable γ in the set of binary strings with expected length n
is at most n + O(log n). To this end consider the following “self-delimiting”
encoding x̄ of a binary string x. Double each bit of binary representation of
the length of x then append the string 10 to it, and then append x. Obviously
l(x̄) ≤ 2 log l(x) + 2 + l(x). The set of all strings of the form x̄ is a prefix
code. Thus the set of all strings c̄ where c is an outcome of γ is a prefix code,
too. By the Shannon noiseless coding theorem [9] its expected length is at least
H(γ). Therefore H(γ) is less than the expectation of l(γ) + 2 log l(γ) + 2. The
expectation of the first term here is equal to n. The expectation of the second
term is at most 2 logn by concavity of the logarithm function.

The previous discussion shows that it is not so easy to find a counter-example.
Looking for a candidate in the literature we find the following:

Theorem 5 ([2]). For all strings x, y there is a string z such that K(z) ≤
max{K(x|y),K(y|x)}+O(log n) and K(y|z, x) = O(log n), K(x|z, y) = O(log n)
where n = K(x|y) + K(y|x).

This theorem implies the following statement

∀x∀y∃z K(z) + K(y|z, x) + K(x|z, y) ≤ max{K(x|y),K(y|x)}+ O(log n)

where n = l(x) + l(y). The inner quantifier free formula here can be expressed
as an OR of two inequalities. Thus this formula has the form (10). And the
analogous statement for Shannon entropy is false:

Theorem 6. For every n there are random variables α, β with 2n + 1 outcomes
each such that for every random variable γ we have

H(γ) + H(α|β, γ) + H(β|α, γ) ≥ max{H(α|β), H(β|α)} + n/2. (14)

Proof. Let δ be a random variable having two equiprobable outcomes 0,1. The
random variables α and β have the range {a0, a1, . . . , a2n} and are defined as fol-
lows. If δ = 0 then α is equal to a0 and β is uniformly distributed in {a1, . . . , a2n}.
If δ = 1 then β is equal to a0 and α is uniformly distributed in {a1, . . . , a2n}.
Note that H(α|β) = H(α|β) = n/2, thus the right hand side of Equation (14) is
equal to n.

Let γ be a random variable. If δ = 0 then α is constant and β is uniformly
distributed in a set of cardinality 2n, therefore

n = H(β|α, δ = 0) ≤ H(β|α, γ, δ = 0) +H(γ|δ = 0) ≤ 2H(β|α, γ) +H(γ|δ = 0).

In a similar way we have

n ≤ 2H(α|β, γ) + H(γ|δ = 1).

Taking the arithmetical mean of these inequalities we get

n ≤ H(β|α, γ) + H(α|β, γ) +H(γ|δ) ≤ H(β|α, γ) +H(α|β, γ) + H(γ). !�
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5 Sequences of Identically Distributed Independent
Random Variables

A large part of the classical information theory is devoted to the study of se-
quences of independent identically distributed random variables. Following this
line, assume that the universal quantifiers in (11) range over sequences of i.i.d.
variables. More specifically let ξns , s = 1, . . . , k, n = 1, 2, . . . be random variables
such that the k-tuples 〈ξn1 , . . . , ξnk 〉 for n = 1, 2, . . . , have the same distribution
and are independent. Let αns denote the sequence of n first outcomes of ξs:

αns = ξ(n)
s = ξ1

s , . . . , ξ
n
s .

Consider the following formula:

(∀ i.i.d. 〈ξn1 , . . . , ξnk 〉) ∃αnk+1 . . .∃αnk+l

∨
i

∧
j

∑
A,B

λijA,BH(αnA|αnB) ≤ o(n). (15)

This formula represents the following statement: For all random variables ξns ,
s = 1, . . . , k, n = 1, 2, . . . such that the k-tuples 〈ξn1 , . . . , ξnk 〉 for n = 1, 2, . . . ,
have the same distribution and are independent there are sequences of ran-
dom variables αn1 , . . . , α

n
k+l, n = 1, 2, . . . , and a function f(n) = o(n) with∨

i

∧
j

∑
A,B λijA,BH(αnA|αnB) ≤ f(n), and 〈αn1 , . . . , αnk 〉 having the same distrib-

ution as 〈ξ(n)
1 , . . . , ξ

(n)
k 〉 has (for all n).

An example of (15) is the Slepian—Wolf theorem [7]: for every sequence
of i.i.d. pairs 〈ξn, ηn〉, n = 1, 2, . . . of random variables there is a sequence of
random variables {βn} such that

H(βn) = H(ξ(n)|η(n)) + o(n), H(βn|ξ(n)) = o(n), H(ξ(n)|〈η(n), βn〉) = o(n).

(To fit in our framework, we give here a formulation of Slepian—Wolf theorem
that differs slightly from that in [7].)

Is it true that for every theorem of the form (15) the analogous statement (10)
for Kolmogorov complexity is also true, and vice versa? We will show that this is
not the case. As a counter-example, it is natural to try the Slepian-Wolf theorem,
since its proof is very Shannon-theory-specific. Surprisingly, it turns out that the
analogous theorem holds for Kolmogorov complexity, too:

Theorem 7 ([8]). Let x and y be arbitrary strings of length less than n. Then
there exists a string z of complexity K(x|y) + O(log n) such that K(z|x) =
O(log n) and K(x|z, y) = O(log n). (The constants in O(log n)-notation do not
depend on n, x, y.)

The following easy fact about i.i.d. sequences of random variables gives an ex-
ample of a true statement of the form (15) whose analog is false for Kolmogorov
complexity.
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Theorem 8. For every sequence of i.i.d. pairs 〈ξn, ηn〉, n = 1, 2, . . . of random
variables there is a sequence {βn} of random variables such that

H(βn) ≤H(ξ(n)) + H(η(n))
2

+ O(1),

H(ξ(n)|βn) ≤ H(ξ(n)|η(n))
2

+ O(1), H(η(n)|βn) ≤ H(η(n)|ξ(n))
2

+ O(1).

Proof. Let βn = ξ1, ξ2, . . . , ξn/2, ηn/2+1, ηn/2+2, . . . , ηn.

On the other hand, the similar statement for Kolmogorov complexity is false:

Theorem 9. There are sequences of strings {xn}, {yn} of length O(n) such that
there is no sequence {zn} with

K(zn) ≤K(xn) + K(yn)
2

+ o(n),

K(xn|zn) ≤ K(xn|yn)
2

+ o(n), K(yn|zn) ≤ K(yn|xn)
2

+ o(n).
(16)

Proof. The proof easily follows from a theorem from [3]:

Theorem 10 ([3]). There are sequences of strings {xn}, {yn} such that l(xn) =
l(yn) = 2n + O(log n), K(xn|yn) = K(yn|xn) = n + O(log n) and for all but
finitely many n there is no zn satisfying the inequalities

K(zn) + K(xn|zn) + K(yn|zn) < 4n,
K(zn) + K(xn|zn) < 3n, K(zn) + K(yn|zn) < 3n.

Let xn, yn be the sequences from Theorem 10. Assume that there is zn sat-
isfying (16). Then

K(zn) ≤ (K(xn) + K(yn))/2 + o(n) ≤ 2n+ o(n),
K(xn|zn) ≤ K(xn|yn)/2 + o(n) ≤ n/2 + o(n),
K(yn|zn) ≤ K(yn|xn)/2 + o(n) ≤ n/2 + o(n).

and

K(zn) + K(xn|zn) + K(yn|zn) ≤ 3n + o(n) ; 4n
K(zn) + K(xn|zn) ≤ 5n/2 + o(n) ; 3n
K(zn) + K(yn|zn) ≤ 5n/2 + o(n) ; 3n.

!�
6 Conclusion and Open Problems

We have shown that Equation (15) does not imply Equation (10) and that Equa-
tion (10) does not imply Equation (11). Are the inverse implications always true?
The implication (11) ⇒ (15) is straightforward. Can it be split into two impli-
cations: (11)⇒ (10)⇒ (15)?
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Abstract. Systems of language equations used by Ginsburg and Rice
(“Two families of languages related to ALGOL”, JACM, 1962) to repre-
sent context-free grammars are modified to use the symmetric difference
operation instead of union. Contrary to a natural expectation that these
two types of equations should have incomparable expressive power, it is
shown that equations with symmetric difference can express every re-
cursive set by their unique solutions, every recursively enumerable set
by their least solutions and every co-recursively-enumerable set by their
greatest solutions. The solution existence problem is Π1-complete, the
existence of a unique, a least or a greatest solution is Π2-complete, while
the existence of finitely many solutions is Σ3-complete.

1 Introduction

The study of language equations began in early 1960s with a paper by Ginsburg
and Rice [8], who represented context-free grammars as systems of equations of
the form

Xi = αi1 ∪ . . . ∪ αimi (1 � i � n, mi � 1), (*)

where αij are concatenations of variables X1, . . . , Xn and terminal symbols. Such
equations actually give a more natural semantics of context-free grammars than
the Chomskian derivation: (*) explicitly states that a word w has property Xi

if and only if it has the property α1 or α2 or . . . or αn. In particular, this
definition exposes logical disjunction inherent to context-free grammars, which
suggests one to consider context-free grammars with other propositional con-
nectives. Such extensions were successfully defined: conjunctive grammars [12]
with disjunction and conjunction, Boolean grammars [15] further augmented
with a restricted form of negation, and dual concatenation grammars [16] with
disjunction, conjunction, concatenation and the logical dual of concatenation.

What if the logical or operation used in context-free grammars is replaced
with a related operation, the exclusive or, i.e., sum modulo two? That is, equa-
tions of the form (*) are replaced with

Xi = αi1� . . .�αimi (1 � i � n, mi � 1), (**)

where, by definition, K�L = (K \ L) ∪ (L \K). As an example, consider the
following two systems of language equations, one representing a context-free
� Supported by the Academy of Finland under grant 206039.

D. Grigoriev, J. Harrison, and E.A. Hirsch (Eds.): CSR 2006, LNCS 3967, pp. 292–303, 2006.
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grammar, and the other obtained from it by replacing union with symmetric
difference: ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

S = AB ∪DC
A = aA ∪ ε
B = bBc ∪ ε
C = cC ∪ ε
D = aDb ∪ ε

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
S = AB�DC
A = aA� ε
B = bBc� ε
C = cC� ε
D = aDb� ε

Each system has a unique solution, and the last four components of their solu-
tions are the same: A = a∗, B = {bncn |n � 0}, C = c∗ and D = {ambm |m � 0}.
However, the first component is different: it is S∪ = {aibjck | i = j or j = k} for
the system with union and S� = {aibjck | either i = j or j = k, but not both}
for the system with symmetric difference. The language S� is clearly not a
context-free language, so equations (**) can specify something outside of the
scope of (*). On the other hand, S∪ is an inherently ambiguous context-free lan-
guage, and it is not clear how to specify it using the symmetric difference only.
It is natural to ask whether there exist any context-free languages that cannot
occur in unique solutions of systems (**).

From the theory of functional systems of propositional logic developed by
Post [20] and brought to perfection in the Russian mathematical school [21],
it is known that disjunction and sum modulo two cannot be expressed through
each other. So a natural expectation would be that equations of the form (*) and
(**) define incomparable families of languages. However, we shall see that this is
not so, and language equations with symmetric difference only are strictly more
powerful than those with union only, in fact as powerful as the most general
known language equations [13].

This will lead us from formal grammars to the theory of language equations
of the general form, which is closely connected to computability and complexity,
and has recently received a considerable attention. The complexity of some de-
cidable problems for language equations has been studied by Baader and Küsters
[3], Bala [5], Meyer and Rabinovich [11] and Okhotin and Yakimova [19]. The
first undecidability result for language equations was obtained by Charatonik [6]
in connection with the related research on set constraints, see Aiken et al. [1].
A systematic study of the hardness of decision problems for language equations
of the general form is due to the author [13, 16, 17, 18], along with the results
on the computational universality in several classes of language equations. A
very interesting particular case of universality was found by Kunc [10] as an
unexpected solution to a problem raised by Conway [7].

Symmetric difference in language equations has not yet been studied. Though
van Zijl [22] used language equations with symmetric difference and one-sided
concatenation, the object of her study were finite automata and their descrip-
tional complexity, and language equations per se were not considered. Equations
of the form (**) constitute one of the basic uninvestigated cases of language equa-
tions [14], and their fundamental properties are determined in this paper, filling
quite an important gap in the emerging theory of such equations.
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The technical foundation of this study is an method of simulating intersec-
tion via symmetric difference and concatenation, which is given in Section 3. In
particular, this allows us to specify a variant of the language of computation
histories of Turing machines [4, 9]. This language is then used in Section 4 to
obtain hardness results for the main decision problems for these equations. All
problems considered are as hard as for equations with all Boolean operations
[13, 18], and the new proofs are peculiar elaborations of earlier ideas.

Next, in Section 5 the expressive power of these equations is determined. It
turns out that they do not define any new class of languages, and their expressive
power is the same as in the case of all Boolean operations [13]. This completes
the classification of systems of the form Xi = ϕ(X1, . . . , Xn) (1 � i � n) with
singleton constants, concatenation and different families of Boolean operations.

2 Language Equations and Boolean Operations

Let Σ be an alphabet, let (X1, . . . , Xn) be a vector of variables that assume
values of languages over Σ. We shall consider systems of language equations of
the form ⎧⎪⎨⎪⎩

X1 = ϕ1(X1, . . . , Xn)
...

Xn = ϕn(X1, . . . , Xn)

(1)

where ϕi are expressions that may contain arbitrarily nested concatenation,
symmetric difference and regular constant languages. A solution of a system is
a vector of languages (L1, . . . , Ln), such that the substitution Xj = Lj for all j
turns every equation in (1) into an equality.

Proposition 1 (Basic properties of symmetric difference).

i. For all K,L,M ⊆ Σ∗, K�(L�M) = (K�L)�M and K�L = L�K,
i.e., the symmetric difference is associative and commutative;

ii. For all L ⊆ Σ∗, L�L = ∅;
iii. For all L ⊆ Σ∗, L�∅ = L and L�Σ∗ = L;
iv. For all K,L ⊆ Σ∗, such that K ∩ L = ∅, K ∪ L = K�L, i.e., disjoint

union can be simulated by symmetric difference;
v. For all K,L,M ⊆ Σ∗, K�L = M if and only if K = L�M , i.e., terms

can be freely moved between the sides of an equation.
vi. (K�L) ·M �= (K�M) · (L�M) for some K,L,M ⊆ Σ∗, i.e., concatena-

tion is not distributive over symmetric difference.

It is interesting to see that the resolved form of equations (1), which is of a
great importance in the case of union and concatenation [8] and intersection
[12], means nothing when the symmetric difference is allowed, since terms can
be moved around by Proposition 1(v). One can thus transform an equation
Xi = ϕi(X1, . . . , Xn) to the form ϕi(X1, . . . , Xn)�Xi = ∅. Furthermore, if
|Σ| � 2, then multiple equations of the form ψ(X1, . . . , Xn) = ∅ can be joined
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into one: a system {ψ1(X1, . . . , Xn) = ∅, . . . , ψm(X1, . . . , Xn) = ∅} is equiva-
lent to a single equation x1ϕ(X1, . . . , Xn)� . . .�xnψ(X1, . . . , Xn) = ∅, for any
pairwise distinct x1, . . . , xn ∈ Σ∗ of equal length. Thus every system (1) can be
reformulated as

ξ(X1, . . . , Xn) = ∅ (2)

The converse transformation is also possible: an equation ξ(X1, . . . , Xn) = ∅ can
be trivially “resolved” as {X1 = X1� ξ(X1, . . . , Xn), X2 = X2, . . . , Xn = Xn}.

We shall, in particular, consider a restricted type of equations with linear
concatenation, that is, where one of the arguments of every concatenation used
in the right-hand sides of (1) must be a constant language. We shall also use the
following logical dual of concatenation [16], which can be expressed via concate-
nation and symmetric difference:

Definition 1. For any languages K,L ⊆ Σ∗, their dual concatenation is defined
as

K < L = K · L = {w | ∀u, v : w = uv ⇒ u ∈ K or v ∈ L}
The equivalence of these two definitions is known [16, Theorem 1].

Let us now construct some language equations with symmetric difference that
have interesting solutions.

3 Basic Expressive Power

The symmetric difference cannot express union, but we know that disjoint union
can be expressed. This allows us to simulate those context-free grammars where
union is assumed to be disjoint: the unambiguous grammars.

Lemma 1. For every unambiguous linear context-free grammar G there exists
and can be effectively constructed a system of language equations with symmetric
difference and linear concatenation, such that L(G) is the first component of its
unique solution.

Proof (a sketch). Assume, without loss of generality, that the grammar contains
no chain rules of the form A→ B, i.e., each rule in the grammar is of the form
A→ uBv, where uv ∈ Σ+, or of the form A→ ε. Then the system of language
equations representing this grammar is of the form

Xi =
(
{ε} or ∅

)
∪

�i⋃
j=1

uijLkijvij (3)

It is a so-called strict system [2, 12], which is known to have a unique solution.
Let (L1, . . . , Ln) be this unique solution.

Replace union with symmetric difference everywhere, obtaining a new system

Xi =
(
{ε} or ∅

)
�

�i�
j=1

uijLkijvij (3′)
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This system is also strict, so it has a unique solution as well. To show that the
unique solutions of (3) and (3′) coincide, it is sufficient to prove that (L1, . . . , Ln)
satisfies (3′).

Consider every i-th equation. If the right-hand side of (3) is instantiated with
(L1, . . . , Ln), the union is disjoint, because the original grammar is unambiguous.
Therefore, by Proposition 1(iv), the right-hand side of (3′) instantiated with
(L1, . . . , Ln) has the same value as (3), i.e., Li. This proves that (L1, . . . , Ln) is
a solution of (3′). !�

According to the theory of Boolean functions [20, 21], neither union nor inter-
section can be expressed via the symmetric difference. However, following is a
restricted case in which intersection can be simulated using symmetric difference
and dual concatenation. Denote Σ�k = {w | w ∈ Σ∗, |w| � k}.

Lemma 2. Let i ∈ {0, 1, 2} and let K,L ⊆ Σi(Σ3)∗, i.e., K and L are languages
over Σ and all words in K and in L are of length i modulo 3. Assume ε /∈ K.
Then, for every a ∈ Σ,

a(K ∩ L) = Σ�2 < (K ∪ aL)

Proof. Suppose aw ∈ a(K ∩L), i.e., w ∈ K and w ∈ L, and let us show that for
every factorization w = xy, such that x /∈ Σ�2, it holds that x ∈ K ∪ aL. Since
x /∈ Σ�2 means |x| � 1, there are only two factorizations to consider: for the
factorization aw = ε ·aw we have aw ∈ aL, while for aw = a ·w we have w ∈ K.
Then w ∈ Σ�2< (K ∪aL) by the definition of dual concatenation, which proves
one direction of inclusion.

Conversely, let w ∈ Σ�2 < (K ∪ aL). Clearly, w /∈ ε, since ε /∈ Σ�2 and
ε /∈ K ∪ aL. Then w = bu (b ∈ Σ) and bu, u ∈ K ∪ aL. Consider three cases:

– if |u| = i (mod 3), then u ∈ K and bu ∈ aL, i.e., b = a and u ∈ K ∩ L;
– if |u| = i+ 1 (mod 3), then |bu| = i+ 2 (mod 3), and therefore bu /∈ K ∪ aL,

which forms a contradiction, so this case is impossible;
– if |u| = i + 2 (mod 3), then u /∈ K ∪ aL, and this case is also impossible.

Therefore, w = au for u ∈ K ∩ L, i.e., w ∈ a(K ∩ L). !�

Corollary 1. Under the conditions of Lemma 2,

a(K ∩ L) =
(
Σ�1 · (K� aL�Σ∗)

)
�Σ∗

This special case of intersection is sufficient to represent a very important class of
languages. These are the languages of computation histories of Turing machines,
first used by Hartmanis [9] to obtain a series of fundamental undecidability and
succinctness results for context-free grammars. These languages have already
played a crucial role in the study of language equations [6, 13, 17, 18].

Following is a strengthened statement on the representation of these
languages, derived from Hartmanis [9] and Baker and Book [4]:
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Lemma 3. For every TM T over an input alphabet Σ there exists an alphabet
Γ and an encoding of computations CT : Σ∗ → Γ ∗, such that the language

VALC(T ) = {w�CT (w) | w ∈ Σ∗ and CT (w) is an accepting computation}

over the alphabet Ω = Σ∪Γ ∪{�} is an intersection of two LL(1) linear context-
free languages L1, L2 ⊆ Σ∗�Γ ∗. Given T , the corresponding LL(1) linear context-
free grammars can be effectively constructed.

The proof is based upon the idea of Baker and Book [4, Th.1], though the
result is somewhat stronger, since Baker and Book did not require L1, L2 to be
deterministic. Because this idea is well-known, the proof is omitted.

The plan is to use Lemma 2 to specify the intersection L1 ∩ L2. In order to
meet the requirements of the lemma, one has to observe a stricter form of these
computations, and to use the following language instead:

Lemma 4. For every TM T over an input alphabet Σ there exists an alphabet Γ
and an encoding of computations CT : Σ∗ → (Γ 3)∗, such that for every u ∈ Σ∗

the language

VALCu(T ) = {v�CT (uv) | v ∈ (Σ3)∗ and CT (uv) is an accepting computation}

is an intersection of two LL(1) linear context-free languages L1, L2 ⊆
(Σ3)∗�(Γ 3)∗. Given T and u, the corresponding LL(1) linear context-free gram-
mars can be effectively constructed.

This lemma is proved by a variant of the same construction as in Lemma 3.
Let us now put together all technical results of this section to specify the

language VALCu(T ) by our equations.

Theorem 1. For every TM T over Σ and for every u ∈ Σ∗ there exists and
can be effectively constructed a language equation with symmetric difference and
linear concatenation, which has a unique solution that contains the language
VALCu(T ) as one of its components.

Proof. By Lemma 4, VALCu(T ) = L(G1)∩L(G2) for some LL(1) linear context-
free grammars G1, G2. Since G1 and G2 are LL(1), they are unambiguous, and
hence, by Lemma 1, can be specified by language equations with symmetric
difference and linear concatenation. Let us combine these equations in a single
equation ϕ(X1, X2, Y1, . . . , Yn) = ∅ with a unique solution (L1, L2,K1, . . . ,Kn).
Introduce a new variable Z and the following equation:

aZ =
(
Ω�1 · (X1� aX2�Ω∗)

)
�Ω∗ (for some a ∈ Σ)

By Corollary 1, this is equivalent to aZ = a(X1 ∩X2), i.e., Z = X1 ∩X2, and
therefore (L1, L2,K1, . . . ,Kn, L1∩L2), is the unique solution of the constructed
system. The last component is the required language VALCu(T ). !�

Since the language of computation histories is “sliced” according to the length
of the input and a certain prefix u, let us introduce a corresponding notation for
slices of the language of words accepted by a Turing machine.
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Definition 2. Let T be a Turing machine over an input alphabet Σ. For every
u ∈ Σ∗, define Lu(T ) = {v | v ∈ (Σ3)∗, uv ∈ L(T )}.

It is easy to see that the main decision problems for the slices Lu(T ), for a
given T , are as hard as the corresponding questions for L(T ). This fact will
significantly simplify the proofs in the next section.

Lemma 5. Let Σ be an alphabet, let u ∈ Σ∗. The problem of testing whether
Lu(T ) = ∅ for a given T is Π1-complete. The problem of whether Lu(T ) = (Σ3)∗

is Π2-complete. The problem of whether (Σ3)∗ \ Lu(T ) is finite is Σ3-complete.

The hardness part is proved by reduction from the corresponding problems for
L(T ), while the containment is straightforward.

4 Decision Problems

The main decision problems for language equations of a general form with all
Boolean operations and unrestricted concatenation have recently been system-
atically studied [13, 18]. It was demonstrated that the problem whether a given
system has a solution is Π1-complete [13], the problems of whether a system
has a unique solution, a least solution (under a partial order of componentwise
inclusion) or a greatest solution are all Π2-complete [13], while the problem of
whether such a system has finitely many solutions is Σ3-complete [18].

On the other hand, for the language equations of Ginsburg and Rice [8] with
union and concatenation only, the problems of existence of least and greatest so-
lutions are trivial (there always are such solutions), while the solution uniqueness
problem is undecidable, though only Π1-complete [17]. For unresolved equations
with the same operations all these problems are undecidable, but their exact
hardness depends upon restrictions on concatenation [17].

It will now be demonstrated that for our equations with symmetric difference
all these problems are as hard as in the case of all Boolean operations [13], even
when the concatenation is restricted to linear.

Theorem 2. The problem of testing whether a system of language equations
with symmetric difference and concatenation, whether unrestricted or linear, has
a solution is Π1-complete.

Proof. The membership in Π1 is known [13], while the Π1-hardness is proved
by reduction from the following problem: “Given a Turing machine T over an
alphabet Σ, determine whether Lε(T ) = ∅”, which is Π1-complete by Lemma 5.

Given T , consider the language VALCε(L) that contains valid accepting com-
putations of T on words of length 0 modulo 3. By Theorem 1, construct the
language equation ϕ(X,Y1, . . . , Yn), such that the first component of its unique
solution is VALCε(L). Then add the equation X = ∅. The resulting system has
a solution if and only if VALCε(L) = ∅, which is equivalent to Lε(T ) = ∅. This
proves the correctness of the reduction. !�
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The rest of the proofs in this paper require a much more elaborate construction.
The following lemma contains the key technical element of that construction, to
be used in all subsequent theorems.

Lemma 6. For all T , u, there exists and can be effectively constructed a lan-
guage equation ϕ(X,Z1, . . . , Zn) = ∅ with linear concatenation and symmetric
difference that has the set of solutions

{(X, f1(X), . . . , fn(X)) | Lu(T ) ⊆ X ⊆ (Σ3)∗} (4)

for some monotone functions fi : 2Σ
∗ → 2Σ

∗
.

Proof. Consider the language VALCu(T ) ⊆ (Σ3)∗�(Γ 3)∗, let a ∈ Σ and let
Ω = Σ ∪ Γ ∪ {�}. The proof of the lemma is based upon the following claim: for
every X,Y ⊆ Ω∗,

Y = a3X ∪ ε (5a)

Y (Σ3)∗ = (Σ3)∗ (5b)

Ω�2 <
(
a(Y �(Σ3)∗)�(Γ 3)∗� a3VALCu(T )

)
= ∅ (5c)

holds if and only if

Y = a3X ∪ ε (6a)

X ⊆ (Σ3)∗ (6b)
Lu(T ) ⊆ X (6c)

First, (5a,5b) is equivalent to (6a,6b). This allows us to use Lemma 2 with i = 1,
K = a3VALCu(T ) and L = (Y �(Σ3)∗)�(Γ 3)∗ to show that (5c) is equivalent
to

(Y �(Σ3)∗)�(Γ 3)∗ ∩ a3VALCu(T ) = ∅, (7)

which essentially means that for every word w in Lu(T ), a3w must be in Y
(otherwise the intersection (7) contains a3w�CT (uw)), that is, w must be in X .
The latter condition is exactly (6c), which completes the proof of equivalence of
(5) and (6).

Now (5) can serve as a model for a system of equations with symmetric differ-
ence and linear concatenation. (5a) is replaced by Y = a3X� ε. (5b) is already
in the required form. In order to represent (5c), let us first specify VALCu(T ):
by Theorem 1, there exists an equation ξ(V1, . . . , Vn) = ∅, which has a unique
solution with VALCu(T ) as its first component. Then (5c) can be written as

Ω�1 ·
(
a(Y �(Σ3)∗)�(Γ 3)∗� a3V1�Ω∗) = Ω∗

The resulting system uses variables X,Y, V1, . . . , Vn and the conditions on X and
Y are equivalent to (6). In particular, the conditions on X , (6b,6c), are as in (4),
Y is defined as (6a), which is a monotone function of X , and Vi are determined
uniquely. Hence, the set of solutions is exactly as in (4). !�
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Theorem 3. The problem of testing whether a system of language equations
with symmetric difference and concatenation, whether unrestricted or linear, has
a unique solution (a least solution, a greatest solution) is Π2-complete.

Proof. All these problems are in Π2 for more general language equations [13].
To prove their Π2-hardness, let us use a reduction from the following problem:
“Given a TM T over Σ, determine whether L(T ) ∩ (Σ3)∗ = (Σ3)∗”.

Use Lemma 6 to construct an equation with the set of solutions (4). It is easy
to see that the bounds on X are tight if and only if Lu(T ) = (Σ3)∗, in which case
the unique solution is ((Σ3)∗, f1((Σ3)∗), . . . , fn((Σ3)∗)), and if Lu(T ) ⊂ (Σ3)∗,
then X = Lu(T ) and X = (Σ3)∗ give rise to different solutions.

If a new variable Y with an equation Y = X�(Σ3)∗ is added, then these
different solutions become pairwise incomparable, which extends the hardness
argument to the case of least and greatest solutions. !�

Theorem 4. The problem of testing whether a system of language equations
with symmetric difference and concatenation, whether unrestricted or linear, has
finitely many solutions is Σ3-complete.

Proof. The problem is known to be in Σ3 for a much more general class of
equations [18]. The reduction from the problem “Given T over Σ, determine
whether (Σ3)∗ \ L(T ) is finite” is exactly as in the proof of Theorem 3: the
equation given by Lemma 6 has finitely many solutions (4) if and only if (Σ3)∗ \
L(T ) is finite. !�

5 Characterization of Expressive Power

We have seen that the main decision problems for language equations with linear
concatenation and symmetric difference are as hard as in the case of all Boolean
operations and unrestricted concatenation. The proof was based upon the fact
that the questions about “slices” of a language accepted by a Turing machine
are as hard as the questions about the entire language.

Now this method will be applied to showing that the classes of languages
represented by solutions are the same for the general and the restricted class of
equations. The goal is now to represent exact languages rather than their slices,
and each language will be assembled from finitely many slices by the means of
disjoint union.

Theorem 5. The class of languages representable by least (greatest) solutions of
language equations with symmetric difference and concatenation, whether linear
or unrestricted, is the class of recursively enumerable (co-r.e., respectively) sets.

Proof. It is known that least solutions of more general classes of language equa-
tions are recursively enumerable [13], so it is left to represent every r.e. language
L ⊆ Σ∗ using equations with symmetric difference and linear concatenation.

Consider any Turing machine T . For each u ∈ Σ�2, by Lemma 6, there
exists a language equation ϕu(Xu, Z1, . . . , Zn) = ∅, such that its set of solutions
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is {(Xu, f1(Xu), . . . , fn(Xu)) | Lu(T ) ⊆ Xu ⊆ (Σ3)∗}. Let us assemble a system
of these equations for all u, and add one more variable X with the following
equation:

X =
�

|u|�2

uXu. (8)

Since the union
⋃

|u|�2 uXu is disjoint regardless of the values of Xu ⊆ (Σ3)∗,
X is always equal to

⋃
Xu, and thus the entire system has the set of solutions

{(X,Xu, fi(Xu))|u|�2 | Lu(T ) ⊆ Xu ⊆ (Σ3)∗ for all u;X =
⋃

Xu},

the least of which has Xu = Lu(T ) and X = L(T ).
The case of greatest solutions, which are known to be co-r.e. in a broader

setting [13], is handled by the same construction. For each u, Lemma 6 gives an
equation ψu(Xu, Z1, . . . , Zn) = ∅. Let us modify it as follows: ψu(Xu�(Σ3)∗,
Z1, . . . , Zn) = ∅; then the set of solutions becomes {(Xu, f1(Xu), . . . ,
fn(Xu))|Xu ⊆ (Σ3)∗\Lu(T )}. Once these equations are assembled into a system
and (8) is added, the greatest solution of the system has Xu = (Σ3)∗ \ Lu(T )
and X = Σ∗ \ L(T ). !�

Theorem 6. The class of languages representable by unique solutions of lan-
guage equations with symmetric difference and concatenation, whether linear or
unrestricted, is the class of recursive sets.

Proof. Unique solutions are always recursive [13, 18] for much more general
classes of language equations. Every recursive language L ⊆ Σ∗ can be rep-
resented using our equations as follows.

Consider two Turing machines, T and T̂ , such that L(T ) = L and L(T̂ ) =
Σ∗ \L. For each u ∈ Σ�2, use Lemma 6 for T to construct a language equation
ϕu(Xu, Z1, . . . , Zm) = ∅, and then for T̂ to obtain an equation ψu(Xu�(Σ3)∗,
Zm+1, . . . , Zn) = ∅. These equations share the same variable Xu, and the system
{ϕu = ∅, ψu = ∅} has the set of solutions {(Xu, f1(Xu), . . . , fn(Xu)) | Lu(T ) ⊆
Xu ⊆ (Σ3)∗ \ Lu(T̂ )}. Since L(T̂ ) = Σ∗ \ L, the bounds on Xu are tight, and
the unique solution is Lu(T ).

It is left to assemble equations for all u ∈ Σ�2 to obtain L(T ). !�

Corollary 2. The class of languages represented by unique solutions of systems
of language equations with symmetric difference and concatenation (whether lin-
ear or unrestricted) is closed under concatenation and all Boolean operations.

Moreover, this closure is even effective: given two systems with unique solutions,
one can construct Turing machines that recognize their solutions [13], then ap-
ply union, intersection or concatenation, obtaining a new Turing machine, and
finally convert it back to a language equation using the construction of Theo-
rem 6. It is interesting to compare this with the fact that, outside the context of
language equations, concatenation cannot be expressed via linear concatenation
and neither union nor intersection can be expressed via symmetric difference.
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6 Conclusions and Open Problems

A small variation of the algebraic definition of the context-free grammars [8]
turned out to have completely different properties: the full expressive power of
language equations with all Boolean operations is attained.

This fills an important gap in our knowledge on language equations. First
of all, it provides a definite answer to the question of what Boolean operations
are needed to attain computational universality in resolved language equations
[14]. Looking at Post’s lattice [20, 21] one can see that the only nonmonotone
clone below {⊕} and its variations is {¬}, and recently it was proved that lan-
guage equations with complementation and concatenation are not computation-
ally universal [19]. The rest of nonmonotone classes were shown to be universal
[14] before, and the following criterion of universality can now be formulated:

Proposition 2. A class of systems of language equations of the form Xi =
ϕi(X1, . . . , Xn) with concatenation and a certain set of Boolean operations F is
computationally universal if and only if x⊕ y⊕ z, x∨ (y&¬z) or x&(y∨¬z) can
be expressed as a superposition of functions in F .

This result, which is quite in the spirit of the Russian school of discrete mathe-
matics [21], brings us much closer to a complete classification of language equa-
tions with Boolean operations. For unrestricted concatenation and singleton
constants, it can now be stated that for different sets of Boolean operations
these equations define exactly seven distinct families of languages: the context-
free languages (union only [8]), the conjunctive languages (union and intersection
[12]), the recursive languages (all Boolean operations [13] or symmetric differ-
ence only), a strange non-universal class with complement only [19], and three
simple subregular classes [14]. The results obtained in this paper shall be useful
in extending this preliminary classification to other natural cases, which will help
to establish a general theory of language equations.

The new results suggest several questions to study. First, does there exist any
direct translation between language equations with all Boolean operations and
those with symmetric difference only? Could there be a stronger equivalence
between these families of equations: is it true that for every language equa-
tion ϕ(X1, . . . , Xn) = ∅ with all Boolean operations there exists a language
equation ψ(X1, . . . , Xn) = ∅ with symmetric difference only that has the same
set of solutions?

Another question concerns strongly unique solutions of equations, i.e., those
that are unique modulo every finite language [15]. If all Boolean operations are
allowed, these solutions provide semantics for Boolean grammars [15], which are
an extension of context-free grammars that still admits cubic-time parsing. Will
the expressive power remain the same if only symmetric difference is allowed?

One more interesting question is whether the characterizations of the expres-
sive power given in Theorems 5 and 6 could be established without adding any
auxiliary symbols to the alphabet. For systems with all Boolean operations this
is known to be true for |Σ| � 2 [13], and it is open for a unary alphabet.
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On Primitive Recursive Realizabilities

Valery Plisko


Faculty of Mechanics and Mathematics, Moscow State University,
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Abstract. An example of arithmetic sentence which is deducible in in-
tuitionistic predicate calculus with identity but is not strictly primitive
recursively realizable by Z. Damnjanovic is proposed. It is shown also
that the notions of primitive recursive realizability by Z. Damnjanovic
and by S. Salehi are essentially different.

1 Introduction

Constructive semantics of formal languages are widely used in intuitionistic
proof threory. Now the interest in such semantics is growing because of their
applications in theoretical computer science, especially in extracting algorithms
from constructive proofs. Historically, the first precise constructive semantics
of the language of formal arithmetic was recursive realizability introduced by
S. C. Kleene [4] in 1945. The main idea of recursive realizability is coding of in-
formation on intuitionistic truth of an arithmetic statement by a natural number
called its realization and using recursive functions instead of rather vague intu-
itionistic concept of effective operation. In this case a realization of the statement
Φ → Ψ is the Gödel number of a partial recursive function which maps every
realization of Φ to a realization of Ψ and this corresponds to the intuitionistic
treatment of the truth of an implication Φ→ Ψ as existence of an effective oper-
ation which allows to get a justification of the conclusion from the justification of
the premise. A realization of a universal statement ∀xΦ(x) is the Gödel number
of a recursive function mapping every natural number n to a realization of Φ(n)
and this corresponds to the intuitionistic treatment of the truth of a universal
statement ∀xΦ(x) as existence of an effective operation which allows to get a
justification of the statement Φ(n) for every n. Therefore an intuitionistic con-
cept of effectiveness is made more precise in Kleene’s definition of realizability
by means of recursive functions. In mathematics other more restricted classes of
computable functions are considered, for example, the primitive recursive func-
tions. One can to try to define a notion of primitive recursive realizability by
analogy with Kleene’s realizability.

In attempting to define a notion of realizability based on the primitive re-
cursive functions an obstacle appears because there is no universal primitive
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recursive function and, for example, we can not perform an application of a real-
ization of the implication to a realization of its premise in a primitive recursive
way.

Z. Damnjanovic [2] introduced the notion of strictly primitive recursive real-
izability. He overcomes the obstacle mentioned above by a combination of ideas
of realizability and Kripke models. Namely the Grzegorczyk hierarchy of the
primitive recursive functions is considered. For every Grzegorczyk’s class, there
exists a universal function in the next class. This fact allows to define a primitive
recursive realizability without using any concept of computability except primi-
tive recursiveness. It was proved in [2] that the primitive recursive intuitionistic
arithmetic is correct relative to the strictly primitive recursive realizability. Un-
fortunately there are gaps in that proof. In this paper we propose an example
of arithmetic sentence which is provable by means of the intuitionistic predicate
calculus with identity but is not strictly primitive recursively realizable. Hence
the Damnjanovic result needs a correction. It is possible that intuitionistic logic
must be replaced by a weaker logical system.

S. Salehi [7] introduced another notion of primitive recursive realizability for
the language of Basic Arithmetic. He used an indexing of the primitive recursive
functions relative to a recursive universal function. The correctness of the basic
predicate logic relative to Salehi’s realizability was proved. We show in this
paper that the notions of primitive recursive realizability by Damnjanovic and
by Salehi are essentialy different: there are arithmetic sentences realizable in one
sense but not in another. We begin with a description of an indexing of the
primitive recursive functions equally acceptable for both notions of primitive
recursive realizability.

2 Indexing of the Primitive Recursive Functions

Primitive recursive functions are the functions obtained by substitution and
recursion from the following basic functions: the constant O(x) = 0, the suc-
cessor operation S(x) = x + 1, and the family of the projection functions
Iim(x1, . . . , xm) = xi (m = 1, 2, . . .; 1 ≤ i ≤ m). The class of elementary
(by Kalmar) functions is defined as the least class containing the constant
f(x) = 1, the projection functions Iim, and the functions f(x, y) = x + y,

f(x, y) = x ÷ y, where x ÷ y =
{

0 if x < y,
x− y if x ≥ y,

and closed under substitu-

tion, summation ϕ(x, y) =
y∑

i=0
ψ(x, i), and multiplication ϕ(x, y) =

y∏
i=0

ψ(x, i),

where x is the list x1, . . . , xm. If a0, . . . , an are natural numbers, then 〈a0, . . . , an〉
denotes the number pa0

0 · . . . · pan
n , where p0, . . . , pn are sequential prime num-

bers (p0 = 2, p1 = 3, p2 = 5, . . .). Note that the functions π(i) = pi and
f(x, y) = 〈x, y〉 are elementary. In what follows, for a ≥ 1 and i ≥ 0 let [a]i
denote the exponent of pi under the decomposition of a into prime factors.
Therefore [a]i = ai if a = 〈a0, . . . , an〉. For the definiteness, let [0]i = 0 for
every i. Note that the function exp(x, i) = [x]i is elementary.
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An (m + 1)-ary function f is obtained by bounded recursion from an m-ary
function g, an (m + 2)-ary function h, and an (m + 1)-ary function j if the
following conditions are fulfilled:

f(0, x1, . . . , xm) = g(x1, . . . , xm);

f(y + 1, x1, . . . , xm) = h(y, f(y, x1, . . . , xm), x1, . . . , xm);

f(y, x1, . . . , xm) ≤ j(y, x1, . . . , xm)

for every x1, . . . , xm, y. For given functions θ1, . . . , θk, let E[θ1, . . . , θk] denote the
least class containing θ1, . . . , θk, the function S(x), all the constant functions and
the projection functions and closed under substitution and bounded recursion.
Consider a sequence of functions

f0(x, y) = y + 1; f1(x, y) = x + y; f2(x, y) = (x + 1) · (y + 1);

fn+1(y, 0) = fn(y + 1, y + 1); fn+1(y, x + 1) = fn+1(fn+1(x, y), x)

for n ≥ 2. A. Grzegorczyk [3] introduced a hierarchy of the classes of functions
En, where En = E[fn]. The class E3 contains all the elementary functions. It was
shown by Grzegorczyk [3] that the union of the classes En is exactly the class of
primitive recursive functions.

P. Axt [1] improved the description of the Grzegorczyk hierarchy in two
directions. First he showed that, for n ≥ 4, the usual bounded recursion in the
definition of the classes En can be replaced by the following scheme applicable
to every triple of suitable functions g, h, j:

f(0,x) = g(x);

f(y + 1,x) = h(y, f(y,x),x) · sg(j(y,x)÷ f(y,x)) · sg(f(y,x)),

where sg(x) =
{

0 if x = 0;
1 if x > 0.

The second improvement proposed by Axt was the construction of the Grze-
gorczyk classes by a general scheme of constructing hierarchies of the classes
of functions described by Kleene [5]. Namely for every collection of functions
Θ = {θ1, . . . , θm}, we denote by E4[Θ] the least class including Θ, containing
S(x), all the constant functions and the projection functions, the functions sg,
÷, f4 and closed under substitution and Axt’s bounded recursion. In [5] it is
proposed a way of indexing the functions which are primitive recursive relative
to θ1, . . . , θm. This way can be adopted to an indexing of the class E4[Θ]. The
functions in E4[Θ] obtain indexes according to their definition from the basic
functions. We list below the possible defining schemes for such functions and
indicate on the right the indexes of the defined functions.

( ) ϕ(x1, . . . , xki) = θi(x1, . . . , xki) 〈0, ki, i〉
(I) ϕ(x) = x+ 1 〈1, 1〉

(II) ϕ(x1, . . . , xn) = q 〈2, n, q〉
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(III) ϕ(x1, . . . , xn) = xi (where 1 ≤ i ≤ n) 〈3, n, i〉
(IV) ϕ(x) = sg(x) 〈4, 1〉
(V) ϕ(x, y) = x÷ y 〈5, 2〉

(VI) ϕ(x, y) = f4(x, y) 〈6, 2〉
(VII) ϕ(x) = ψ(χ1(x), . . . , χk(x)) 〈7,m, g, h1, . . . , hk〉

(VIII)

⎧⎨⎩
ϕ(0,x) = ψ(x)
ϕ(y + 1,x) = χ(y, f(y,x),x)·
·sg(ξ(y,x)÷ ϕ(y,x)) · sg(ϕ(y,x))

〈8,m + 1, g, h, j〉

Here g, h1, . . . , hk, h, j are respectively indexes of ψ, χ1, . . . , χk, χ, ξ.
Let InΘ(b) mean that b is an index of some function in the described index-

ing of the class E4[Θ]. It is shown in [1] that InΘ(b) is an elementary predicate.
If InΘ(b), then efΘb denotes the [b]1-ary function in E4[Θ] indexed by b. Follow-
ing [1], we set

efΘ(b, a) =
{

efΘb ([a]0, . . . , [a][b]1÷1), if InΘ(b);
0 else.

Therefore the function efΘ is universal for the class E4[Θ] and it is not in this
class. Every function in E4[Θ] has obviously infinetely many indexes relative to
the universal function efΘ. Now, following Axt, we define for every n a function
of two variables en by letting e0(b, a) = 0, en+1(b, a) = efe0,...,en(b, a). Finally the
class En is defined as E4[e0, . . . , en]. Axt proved (see [1, p. 58]) that En = En+4

for every n ≥ 0 and this is an improvement of the definition of the Grzegorczyk
classes mentioned above.

Let In(n, b) mean that b is an index of a function in En (or is an n-index). It
is shown in [1] that the predicate In(n, b) is elementary. It folllows immediately
from the definition of the indexing of the classes E4[Θ] that every n-index is also
an m-index of the same function for every m > n.

We see that the function en+1 is not in the class En but, for every b, the unary
function ψn

b (x) = en+1(b, x) is in En. Namely, en+1(b, x) is the constant function
O(x) = 0 if b is not an index of any function in En and en+1(b, x) is the function
ϕ([x]0, . . . , [x]m−1) if b is an index of anm-ary function ϕ(x1, . . . , xm) in En. Note
that an n-index of the function ψn

b can be found primitive recursively from b.
Namely let d0 be a 0-index of the function exp and ki = 〈7, 1, d0, 〈3, 1, 1〉, 〈2, 1, i〉〉.
Obviously, ki is a 0-index of the function [x]i, then 〈7, 1, b, k1, . . . , km〉 is an index
of ϕ([x]0, . . . , [x]m−1) if In(n, b). Unfortunately, m depends on b. We avoid this
obstacle by defining a function ξ(b, i) as

ξ(b, 0) = 〈7, 1, b, k0〉, ξ(b, i + 1) = ξ(b, i) · pki

i+3

and letting ε(b) = ξ(b, [b]1 ÷ 1). Now let in(n, b) be an elementary function such
that in(n, b) = 1 if In(n, b) and in(n, b) = 0 else. We define a binary function α
in the following way:

α(n, b) = (1 ÷ in(n, b)) · 〈2, 1, 0〉+ in(n, b) · ε(b).
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Clearly, α(n, b) is an n-index of ψn
b and α is a primitive recursive function. Let

αn(b) = α(n, b).

3 Strictly Primitive Recursive Realizability

Damnjanovic [2] defined a relation t �n A, where t, n are natural numbers, A is
a closed formula of the first-order language of arithmetic containing symbols for
all the primitive recursive functions and using logical connectives &,∨,→, ∀, ∃,
the formula ¬A being considered as an abbreviation for A→ 0 = 1. The relation
t �n A is defined by induction on the number of logical symbols in A.

If A is atomic, then t �n A ⇀↽ t = 0 and A is true.

t �n (B &C) ⇀↽ [t]0 �n B and [t]1 �n C.

t �n (B ∨ C) ⇀↽ [t]0 = 0 and [t]1 �n B or [t]0 = 1 and [t]1 �n C.

t �n (B → C) ⇀↽ In(n, t) and (∀j ≥ n)In(j, ej+1(t, 〈j〉) and
(∀j ≥ n)∀b[b �j B ⇒ ej+1(ej+1(t, 〈j〉), 〈b〉) �j C].

t �n ∃xB(x) ⇀↽ ∃m([t]1 �n B(m) and [t]0 = m).

t �n ∀xB(x) ⇀↽ In(n, t) and ∀m en+1(t, 〈m〉) �n B(m).

A closed arithmetic formula A is called strictly primitive recursively realizable if
t �n A for some t and n. Note that it follows from t �n A that t �m A for every
m > n. The following facts are implied by the definition:

1) for every closed arithmetic formula A, the formula ¬A is strictly prim-
itive recursively realizable if and only if A is not strictly primitive recursively
realizable;

2) a closed arithmetic formula A is strictly primitive recursively realizable if
and only if ¬¬A is strictly primitive recursively realizable;

3) if a closed arithmetic formula A is not strictly primitive recursively real-
izable, then a0 �0 ¬A, where a0 = 〈2, 1, 〈2, 1, 0〉〉.

This facts imply the following

Proposition 1. An arithmetic formula A is strictly primitive recursively real-
izable if and only if a0 �0 ¬¬A.

It is known that in the language of arithmetic containing symbols for the primi-
tive recursive functions every recursively enumerable predicate P (x) is expressed
by a Σ1-formula of the form ∃yA(x, y), where A(x, y) is an atomic formula. This
means that for every finite sequence of natural numbers m, P (m) holds if and
only if the formula ∃yA(m, y) is true.
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Proposition 2. Let a recursively enumerable predicate P (x) be expressed by
a Σ1-formula ∃yA(x, y), where A(x, y) is an atomic formula. Then for every
m, P (m) holds if and only if the formula ¬¬∃yA(x, y) is strictly primitive
recursively realizable.

Proof. Let P (m). Then ∃yA(m, y) is true. This means that atomic formula
A(m, n) is true for some n. Therefore 0 �0 A(m, n) and 〈n, 0〉 �0 ∃yA(m, y).
Thus the formula ∃yA(m, y) is strictly primitive recursively realizable. By Propo-
sition 1, a0 �0 ¬¬∃yA(m, y), i. e. ¬¬∃yA(x, y) is strictly primitive recursively
realizable. Conversely, if ¬¬∃yA(m, y) is strictly primitive recursively realiz-
able, then ∃yA(m, y) is strictly primitive recursively realizable too, consequently
t �n ∃yA(m, y) for some t, n. Then [t]1 �n A(m, [t]0). As A is atomic, the for-
mula A(m, [t]0) is true. Therefore ∃yA(m, y) is also true and P (m) holds. !�

Proposition 3. Let a recursively enumerable predicate P (x) be expressed by a
Σ1-formula ∃yA(x, y), where A(x, y) is an atomic formula. Then for every m,
the following conditions are equivalent:

1) P (m) holds;
2) the formula ¬¬∃yA(m, y) is strictly primitive recursively realizable;
3) a0 �0 ¬¬∃yA(m, y).

This is an immediate consequence of Propositions 1 and 2 and the facts listed
above.

4 Strictly Primitive Recursive Realizability and
Intuitionistic Logic

Now we prove the main result of this paper.

Theorem 1. There exists a closed arithmetic formula which is deducible in the
intuitionistic predicate calculus with identity but is not strictly primitive recur-
sively realizable.

Proof. Consider a ternary predicate ex+1([y]0, [y]1) = z. This predicate is ob-
viously decidable. It is expressed by an arithmetic Σ1-formula ∃uA(x, y, z, u),
the formula A(x, y, z, u) being atomic. Let B(x, y, z) be ¬¬∃uA(x, y, z, u). Now
we define a formula Φ as ∀x(∀y(0 = 0 → ∃zB(x, y, z)) → ∀y∃zB(x, y, z)). Ev-
idently, Φ is deducible in the intuitionistic predicate calculus with identity. We
shall prove that Φ is not strictly primitive recursively realizable.

We have defined in the section 2 a primitive recursive function α. Let n0 be
a natural number such that α ∈ En0 . Then, obviously, αn ∈ En0 for every n.

Lemma 1. If n ≥ n0, then there exists a natural t such that

t �n ∀y(0 = 0 → ∃zB(n, y, z)).
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Proof. Let n ≥ n0 be fixed. Let δ(y) = 〈7, 1, αn([y]0), 〈2, 1, [y]1〉〉. Obviously, for
every b, δ(b) is an n-index of the constant function ϕ(x) = ψn

[b]0([b]1). Further, let
c0 be a 0-index of the function ζ(x) = 2x ·3a0 and β(y) = 〈7, 1, c0, δ(y)〉. For every
b, the value β(b) is an n-index of the constant function ξ(x) = 2ψ

n
[b]0

([b]1) · 3a0 .
Finally, let γ(y) = 〈2, 1, β(y)〉. Clearly, for every b, the value γ(b) is an n-index
of the constant function φ(x) = β(b). Therefore

γ(y) = 〈2, 1, 〈7, 1, c0, 〈7, 1, αn([y]0), 〈2, 1, [y]1〉〉〉〉.

We see that γ is in En0 , hence it is in En. Let t be an n-index of γ. Let us
prove that

t �n ∀y(0 = 0 → ∃zB(n, y, z)). (1)

By the definition of the strictly primitive recursive realizability, (1) means that
In(n, t) holds (this condition is obviously fulfilled) and

en+1(t, < b >) �n 0 = 0 → ∃zB(n, b, z)

for every b. However en+1(t, < b >) = γ(b). Thus we have to prove, for every b,
that

γ(b) �n 0 = 0 → ∃zB(n, b, z). (2)

The condition (2) means that
1) γ(b) is an n-index of a function φ(j) in En such that
2) for any j ≥ n, φ(j) is a j-index of a unary function ξ in Ej such that for

every a, if a �j 0 = 0, then ξ(a) �j ∃zB(n, b, z).
As it was remarked, γ(b) is an n-index of the constant function φ(x) = β(b)

in E0. Thus 1) is fulfilled. Moreover, for every j, the value φ(j) is β(b) being
an n-index of the constant function ξ(x) = 2ψ

n
[b]0

([b]1) · 3a0 . Hence ξ is in E0.
Let a �j 0 = 0. Then ξ(a) = 2ψ

n
[b]0

([b]1) · 3a0 . Let d = ψn
[b]0([b]1). Thus we have

to prove that 2d · 3a0 �j ∃zB(n, b, z), i. e. a0 �j B(n, b, d). Note that B(n, b, d)
is the formula ¬¬∃uA(x, y, z, u). By Proposition 3, it is sufficient to prove that
en+1([b]0, [b]1) = d, but it is evident because en+1([b]0, [b]1) = ψn

[b]0([b]1). Thus
2) is also fulfilled. !�

Lemma 2. For every n, there exists no natural t such that t �n ∀y∃zB(n, y, z).

Proof. Let t �n ∀y∃zB(n, y, z). This means that t is an n-index of a function f
in En such that f(b) �n ∃zB(n, b, z), i. e. [f(b)]1 �n B(n, b, [f(b)]0). Thus for
every b, the formula B(n, b, [f(b)]0) is strictly primitive recursively realizable. By
Proposition 3, in this case en+1([b]0, [b]1) = [f(b)]0 for every b. In particular,

en+1(x, y) = [f(〈x, y〉)]0 (3)

for every x, y. The expression on the right in (3) defines a function in the class En,
consequently en+1 ∈ En. This contradiction completes the proof of Lemma 2. !�
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To complete the proof of Theorem 2, let us assume that t �n Φ for some t, n. We
may suppose that n ≥ n0. Then t is an n-index of a function g ∈ En such that

g(m) �n ∀y(0 = 0 → ∃zB(m, y, z))→ ∀y∃zB(m, y, z)

for every m. In paricular, g(n) �n ∀y(0 = 0 → ∃zB(n, y, z)) → ∀y∃zB(n, y, z).
This implies that en+1(g(n), 〈n〉) is an n-index of a function h such that

h(a) �n ∀y∃zB(n, y, z) (4)

if a � ∀y(0 = 0 → ∃zB(n, y, z)). By Lemma 1, there exists such a. It yields (4)
in a contradiction with Lemma 2. !�

5 Primitive Recursive Realizability by Salehi

Another notion of primitive recursive realizability was introduced by S. Salehi [7]
for the formulas of Basic Arithmetic. Basic Arithmetic is a formal system of
arithmetic based on basic logic which is weaker than intuitionistic logic. The
language of Basic Arithmetic contains symbols for the primitive recursive func-
tions and differs from the usual language of arithmetic by the mode of using
universal quantifier. Namely, the quantifier ∀ is used only in the formulas of the
form ∀x(A → B), where x is a finite (possibly empty) list of variables, A and
B being formulas. If the list x is empty, then ∀x(A → B) is written merely as
(A→ B). Obviously, every formula of Basic Arithmetic using universal quanti-
fiers only with empty or one-element lists of variables is also a formula of the
usual arithmetic language.

Salehi [7] defined a relation t rPRA, where t is a natural number, A is a closed
formula of the language of Basic Arithmetic. The definition is by induction on
the number of logical symbols in A. Let PR(b) mean ∃nIn(n, b) and [b]1 = 1; if
PR(b), let ψb be the function ψn

b , where n is such that In(n, b).

If A is atomic, then t rPRA ⇀↽ A is true.

t rPR (B &C) ⇀↽ [t]0 rPR B and [t]1 rPR C.

t rPR (B ∨ C) ⇀↽ [t]0 = 0 and [t]1 rPR B or [t]0 �= 0 and [t]1 rPR C.

t rPR ∃xB(x) ⇀↽ [t]1 rPRB([t]0).

t rPR ∀x(B(x) → C(x)) ⇀↽ PR(t) and ∀b,x(y rPR B(x) ⇒ ψt(〈y,x〉) rPR C(x)).

A closed arithmetic formula A is called primitive recursively realizable if t rPRA
for some t. Salehi proved that every formula deducible in Basic Arithmetic is
primitive recursively realizable.

Theorem 2. There exists a closed arithmetic formula which is strictly primitive
recursively realizable but is not primitive recursively realizable by Salehi.
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Proof. Consider a ternary predicate ex+1([y]0, [y]1) = z. It is recursive, there-
fore it is expressed by an arithmetic Σ1-formula ∃uA(x, y, z, u) with atomic
A(x, y, z, u). Let B(x, y, z) be ¬¬∃uA(x, y, z, u).

Consider a binary predicate ex(x, x) = y. It is expressed by an arithmetic
Σ1-formula ∃vC(x, y, v) with atomic C(x, y, v). Let D(x, y) be ¬¬∃vC(x, y, v).

Consider the formula

∀x(∀y(0 = 0→ ∃zB(x, y, z))→ ∃yD(x, y)). (5)

Clearly, this formula is also a formula of Basic Arithmetic, thus both concepts of
primitive recursive realizability are defined for it. The formula (5) is strictly prim-
itive recursively realizable but is not primitive recursively realizable by Salehi.
A detailed proof of this fact is stated in [6]. Note that the negation of (5) is
primitive recursively realizable by Salehi but is not strictly primitive recursively
realizable. !�
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Abstract. We introduce the logic of proofs whose modal counterpart is
the modal logic S5. The language of Logic of Proofs LP is extended by
a new unary operation of negative checker “?”. We define Kripke-style
models for the resulting logic in the style of Fitting models and prove the
corresponding Completeness theorem. The main result is the Realization
theorem for the modal logic S5.

1 Introduction

The Logic of Proofs LP was defined by S. Artemov in [1, 2]. It is formulated in the
propositional language enriched by formulas of the form [[t]]F with the intended
meaning “t is a proof of F”. Here t is a proof term which represents arithmetical
proofs. Proof terms are constructed from proof variables and proof constants
by means of the three functional symbols representing elementary computable
operations on proofs: binary “·”, “+”, and unary “!”. The Logic of Proofs LP
is axiomatized over propositional calculus by the weak reflexivity principle and
axioms for operations “ · ”, “+” and “ ! ”

The intended semantics for LP is formalized in Peano Arithnmetic PA; [[t]]F
is interpreted by an arithmetical proof predicate which numerates theorems of
PA. It is proved in [2] that LP is complete with respect to arithmetical interpre-
tations based on multi-conclusion proof predicates. It is also shown in [2] that the
modal counterpart of LP is Gödel’s provability logic S4. For every LP-formula
ϕ holds LP � ϕ ⇔ S4 � ϕ◦. Here ϕ◦ is the forgetful projection, i. e. the trans-
lation that replace all subformulas of the form [[t]]F by �F . This fact provides
S4 and, therefore, intuitionistic logic with the exact provability semantics. The
implication from right to left is proven using cut-elimination theorem for S4: the
algorithm assigns terms to all �’s in a cut-free S4-derivation in such a way that
all formulas sequens become derivable in LP.

A symbolic semantics for LP was proposed by A. Mkrtychevin in [6]. A model
consists of an evidence function which describes possible evidences for a sentence
and a truth evaluation of sentence letters. It is proven that LP is complete with
respect to these models. The semantical approach was further developed by
M. Fitting in [5] who proposed Kripke-style models for LP. It was shown in [5]
that LP is complete with respect to these models. This approach made it possible
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to re-established the Realization theorem for S4 by semantical means and does
not involve cut-elimination.

Our work is a part of a research effort to introduce justification into formal
epistemology. Hintikka’s style modal logic approach to knowledge captures only
two parts of Plato’s tripartate definition of knowledge as “justified true belief”.
Namely, the “justified” part was missing in formal epistemology despite a long
expressed desire to have it there too. The Logic of Proofs LP which was originally
designed to express in logic the notion of a proof became a basis for the theory of
knowledge with justification now extended to multi-agent systems; this approach
also provided a fresh look at the common knowledge phenomenon. S. Artemov in
[3] proposed to consider LP as the logic of so-called “evidence based knowledge”
(EBK), where the meaning of the formula [[t]]F is “t is an evidence for F”.
An (EBK)-system is obtained by augmenting a multi-agent logic of knowledge
with an evidence component described by LP with the following connection: if a
formula has an evidence then all agents know it. Note, that in all these systems,
the logic for the evidence part corresponds to S4, whereas the base knowledge
logics could be weaker (T), equal to (S4), or stronger (S5) then LP. The “forgetful
counterparts” of the above EBK-systems were also considered in [3]. They are
obtained by replacing all evidence terms with a new modality J. The epistemic
semantics of JF is “there is a justification for F .” The forgetful EBK-systems
are normal modal logics that respect the standard Kripke-style semantics. In [3]
it is shown that given a theorem ϕ in the forgetful language, one could recover
an evidence-carrying formula ψ such that ψ = ϕ◦ and ψ is derivable in the
corresponding EBK-system.

Our purpose is to describe a logic of proofs whose modal counterpart is the
modal logic S5. The first logic of explicit proof terms for S5 was suggested by
S. Artemov, E. Kazakov, and D. Shapiro in [4]. In the calculus LPS5, introduced
in that paper, the negative checker operation was axiomatized by the principle
[[t]](F → ¬[[s]]G) → (F → [[?t]]¬[[s]]G) which corresponds to the modal formula
�(F → ¬�G) → (F → �¬�G) that can be taken as an alternative to the
traditional axiom ¬�F → �¬�F for S5. Their realization theorem for S5 used
heavy proof-theoretical methods (e.g., Mints’ cut-free treatment of S5); it is not
clear whether these methods are extendable to multi-agent situations without
extra proof-theoretical work.

An alternative light-weight approach to finding the logic of justification terms
for S5 was suggested in 2005 independently by Eric Pacuit and Natalia Pubtsova.
The language of LP was extended by a new unary operation of negative checker
“?” described by the axiom

¬[[t]]F → [[?t]]¬[[t]]F.

The resulting logic is denoted by LP(S5). In this paper we define Kripke-style
models for LP(S5) in the style of [5] and prove the corresponding Completeness
theorem. The main result of this paper is the Realization theorem for the modal
logic S5, i. e. we prove that LP(S5) is sufficient to restore evidences in every
theorem of S5.
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2 Logic LP(S5)

In this section we define logic of proofs with negative checker LP(S5) and estab-
lish Internalization property for it.

Definition 1. The language of the logic LP(S5) contains objects of two sorts:
propositions and evidences. It consists of propositional variables P1, P2, . . ., pro-
positional constant ⊥, logical connective →, evidence variables x1, x2, . . .,
evidence constants c1, c2, . . ., function symbols +, · (binary) and !, ? (monadic)
and operator symbol of the type [[〈term〉]]〈formula〉.

Evidence terms are built up from evidence constants and evidence variables
using the function symbols. Ground terms are those without variables. Formulas
are constructed from propositional variables and propositional constant using →
and according to the rule: if t is a term and F is a formula then [[t]]F is a formula
too. Formulas of the form [[t]]F are called q-atomic.

Definition 2. The logic LP(S5) is axiomatized by the following schemas (X,Y
are formulas, t, s are evidence terms):
A0 Classical classical propositional axioms
A1 Reflexivity [[t]]X → X
A2 Application [[t]](X → Y )→ ([[s]]X → [[t · s]]Y )
A3 Sum [[t]]X → [[t + s]]X

[[s]]X → [[t + s]]X
A4 Positive Checker [[t]]X → [[!t]][[t]]X
A5 Negative Checker ¬[[t]]X → [[?t]]¬[[t]]X

There are two rules of inference

R1 Modus Ponens � X,X → Y ⇒ � Y
R2 Axiom Necessitation � [[c]]A where A is an axiom A0 – A5

and c is an evidence constant

Proposition 1 (Internalization). Given LP(S5) � X there is an evidence
term t such that LP(S5) � [[t]]X.

Proof. Induction on a derivation of a formula X .

3 Symbolic Semantics for LP(S5)

In this section we introduce models for LP(S5) which are Fitting models (see [5]).
The main idea of this semantic is to add an evidence function to Kripke-style
models. The evidence function assigns “admissible” evidence terms to a formula.
In general case a truth value of a formula does not play any role, but in our case
only true statements have evidences. A formula [[t]]X holds in a given world Γ
iff both of the following conditions are met: 1) t is an admissible evidence for X
in Γ ; 2) X holds in all worlds accessible from Γ . We add one more requirement
that is specific for LP(S5): if a sentence X has an evidence in a world Γ then X
must be true in all worlds accessible from Γ .
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A frame is a structure 〈G,R〉, where G is a non-empty set of possible worlds
and R is a binary accessability relation on G. The relation R is reflexive, tran-
sitive and symmetric. Given a frame 〈G,R〉, a possible evidence function E is
a mapping from possible worlds and terms to sets of formulas. We can read
X ∈ E(Γ, t) as “X is one of the formulas for which t serves as a possible evidence
in world Γ .” An evidence function must obey the conditions that respect the
intended meaning of the operations on evidence terms.

Definition 3. E is an evidence function on 〈G,R〉 if, for all terms s and t, for
all formulas X and Y , and for all Γ,Δ ∈ G:

1. Monotonicity ΓRΔ implies E(Γ, t) ⊆ E(Δ, t)
2. Application (X → Y ) ∈ E(Γ, t) and X ∈ E(Γ, s) implies Y ∈ E(Γ, t · s)
3. Sum E(Γ, t) ∪ E(Γ, s) ⊆ E(Γ, t + s)
4. Positive Checker X ∈ E(Γ, t) implies [[t]]X ∈ E(Γ, !t)
5. Negative Checker X �∈ E(Γ, t) implies ¬[[t]]X ∈ E(Γ, ?t)

A structure M = 〈G,R, E ,V〉 is called a pre-model, if 〈G,R〉 is a frame, E is an
evidence function on 〈G,R〉 and V is a mapping from propositional variables to
subsets of G.

Definition 4. Given a pre-model M = 〈G,R, E ,V〉, a forcing relation is defined
by the following rules. For each Γ ∈ G:

1. M, Γ � P for a propositional variable P if Γ ∈ V(P ).
2. M, Γ �� ⊥.
3. M, Γ � (X → Y ) iff M, Γ �� X or M, Γ � Y .
4. M, Γ � [[t]]X iff X ∈ E(Γ, t) and for every Δ ∈ G with ΓRΔ, M, Δ � X.

So, [[t]]X is true at a given world Γ iff t is an acceptable evidence for X in Γ and
X is true at all worlds Δ accessible from Γ . We say that X is true at a world
Γ ∈ G if Γ � X ; otherwise, X is false at Γ .

Definition 5. A pre-model M is called a model if X ∈ E(Γ, t) implies Δ � X
for all Δ ∈W with ΓRΔ.

As in [1, 2], proof constants are intended to represent evidences for elementary
truths. Those truths we know for reasons we do not further analyse. It is allowed
that a proof constant serves as an evidence for more than one formula, or for
nothing at all.

Definition 6. A constant specification CS is a mapping from evidence constants
to (possibly empty) sets of axioms of LP(S5). Given a constant specification CS,
a model M meets CS if M � [[c]]A whenever A ∈ CS(c). A derivation meets CS
if whenever rule R2 is used to produce [[c]]A, then A ∈ CS(c).

Definition 7. A constant specification CS is full (cf [3]), if it entails internal-
ization, namely, for every formula X if lp � X then there exists an evidence
term t such that LP(S5) � [[t]]X meeting CS.
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Remark 1. Note, that a constant specification is full iff it assigns a constant to
each axiom.

A set S of formulas is CS-satisfiable if there is an LP(S5) model M, meeting CS,
and a world Γ in it such that M, Γ � X for all X ∈ S. A formula X is valid
in a model M if M, Γ � X for every possible world Γ of M. A formula X is
CS-valid if X is valid in every model that meets CS.

Theorem 1 (Completeness theorem). Let CS be a constant specification. A
formula X is provable in LP(S5) meeting CS iff X holds in all LP(S5) models
meeting CS.

Proof. Soundness is proved by standard induction on derivation of X .
Completeness. A set of formulas S is called CS-inconsistent if there is a

finite subset {X1, . . . , Xn} ⊆ S such that (X1 ∧ . . . ∧ Xn) → ⊥ is provable in
LP(S5) meeting CS (with ∧ defined from → and ⊥ in the usual way). A set S is
called CS-consistent if it is not CS-inconsistent. A CS-consistent set S is maximal
CS-consistent if for any formula X , either X ∈ S or ¬X ∈ S. CS-consistent sets
can be extended to maximal CS-consistent sets, via the standard Lindenbaum
construction. Note that any maximal CS-consistent set contains all axioms of
the logic LP(S5) and is closed under modus ponens.

Now we define the canonical model M = 〈G,R, E ,V〉 for LP(S5) with a given
constant specification CS. Let G be the set of all maximal consistent sets of
LP(S5)-formulas. If Γ ∈ G, let Γ# = {X | [[t]]X ∈ Γ , for some t}. Define

ΓRΔ iff Γ# ⊆ Δ.

Let us check that the relation R is reflexive, transitive and symmetric.
The relation R is reflexive, since [[t]]X → X is an axiom of LP(S5) and

members of G are closed under modus ponens. Using positive checker axiom
[[t]]X → [[!t]][[t]]X we obtain that R is also transitive. Let us show that R is sym-
metric. Let ΓRΔ and [[s]]Y ∈ Δ, but [[s]]Y �∈ Γ . Since Γ is a maximal consistent
set we have ¬[[s]]Y ∈ Γ . Using negative checker axiom ¬[[s]]Y → [[?s]]¬[[s]]Y we
obtain [[?s]]¬[[s]]Y ∈ Γ and ¬[[s]]Y ∈ Γ#. Thus ¬[[s]]Y ∈ Δ, contradiction. So we
have Δ# ⊆ Γ , hence ΔRΓ .

This gives us a frame 〈G,R〉. For an evidence function E , simply set

E(Γ, t) = {X | [[t]]X ∈ Γ}.

The claim is that E satisfies the conditions for evidence functions from
Definition 3.

Here we verify only condition 5, the others are similar. Suppose X �∈ E(Γ, t).
By definition of E , we have [[t]]X �∈ Γ . Since Γ is maximal, we obtain ¬[[t]]X ∈ Γ .
Using the axiom ¬[[t]]X → [[?t]]¬[[t]]X we conclude that [[?t]]¬[[t]]X ∈ Γ , and hence
¬[[t]]X ∈ E(Γ, ?t).

Finally, define a mapping V in the following way: Γ ∈ V(P ) if P ∈ Γ .

Lemma 1. For each formula X and each Γ ∈ G

X ∈ Γ ⇐⇒ M, Γ � X
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Proof. Induction on the construction of X . The base and the Boolean case are
standard. Let us consider the case X = [[t]]Y .

Suppose first that [[t]]Y ∈ Γ . Then Y ∈ Γ#, so if Δ is an arbitrary member of
G with ΓRΔ we have Γ# ⊆ Δ and hence Y ∈ Δ. By the induction hypothesis,
M, Δ � Y . Also since [[t]]Y ∈ Γ , we have Y ∈ E(Γ, t). So, M, Γ � [[t]]Y .

Next, suppose M, Γ � [[t]]Y . This case is trivial. By the definition of � we
have Y ∈ E(Γ, t), so [[t]]Y ∈ Γ by the definition of E .

Let us verify that the pre-model M is a model. Suppose X ∈ E(Γ, t). By the
definition of E we have [[t]]X ∈ Γ , so X ∈ Γ#. Let Δ ∈ G be an arbitrary world
with ΓRΔ. Then X ∈ Δ and by Lemma 1 it follows that Δ � X .

It is easy to see now that the model M meets the constant specification CS.
Indeed, by the definition of a consistent set, CS ⊆ Γ , for each Γ ∈ G. Then
Γ � CS by Lemma 1.

The standard argument shows that if LP(S5) �� X meeting CS, then {X → ⊥}
is a consistent set. Extend it to a maximal consistent set Γ . Then Γ ∈ G and
M, Γ �� X by Lemma 1.

Corollary 1 (Compactness). For a given constant specification CS, a set of
formulas S is CS-satisfiable iff any finite subset of S is CS-satisfiable.

Definition 8. A model is Fully Explanatory provided that, whenever Δ � X for
every Δ such that ΓRΔ, then Γ � [[t]]X for some evidence term t.

Corollary 2 (Fully Explanatory property). For any full constant specifica-
tion CS, the canonical CS-model is Fully Explanatory.

4 Realization Theorem

Definition 9. A forgetful projection ()◦ of the language LP(S5) into the modal
language maps [[t]]X to �X and commutes with →.

Theorem 2 (Realization theorem). LP(S5)◦ = S5 i.e., S5 is forgetful pro-
jection of LP(S5).

Proof. The proof of LP(S5)◦ ⊆ S5 is given by a straightforward induction on
derivations in LP(S5). The existence of an LP(S5)-realization of any theorems
of S5 can be established semantically by methods developed in [5]. The main
ingredients of semantical realizability proof from [5] are the Fully Explanatory
property of LP(S5)-models with full constant specifications (Corollary 2) and
the Compactness property (Corollary 1).

Definition 10. By LP(S5)− we mean a variant of LP(S5) for restricted language
without + (so, the axioms A3 are also omitted). Models of LP(S5)− are the same
as for LP(S5) except that the evidence function is not required to satisfy the Sum
condition.
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Note that such features as Internalization and the Fully Explanatory property
of the canonical model hold for LP(S5)− and LP(S5)−-models as well.

Let ϕ be a modal formula in the standard language of modal logic, with
� as the only modal operator and no evidence terms. Assume that ϕ is fixed
for the rest of proof of Theorem 2. We work with ϕ and its subformulas, but
by subformulas we mean subformula occurrences. In what follows, A is any
assignment of evidence variables to each subformula of ϕ of the form �X that is
in a negative position. It is assumed that A assigns different variables to different
subformulas (the specific A will be chosen in the proof of Lemma 3). Relative to
A, we define two mappings wA and vA.

Definition 11. Both wA and vA assign a set of LP(S5) formulas to each sub-
formula of ϕ according to the following rules.

1. If P is an atomic subformula of ϕ then wA(P ) = vA(P ) = {P} (this includes
the case when P is ⊥).

2. If X → Y is a subformula of ϕ, put
wA(X → Y ) = {X ′ → Y ′ | X ′ ∈ wA(X), Y ′ ∈ wA(Y )}
vA(X → Y ) = {X ′ → Y ′ | X ′ ∈ vA(X), Y ′ ∈ vA(Y )}.

3. If �X is a negative subformula of ϕ, put
wA(�X) = {[[x]]X ′ | A(�X) = x and X ′ ∈ wA(X)}
vA(�X) = {[[x]]X ′ | A(�X) = x and X ′ ∈ vA(X)}.

4. If �X is a positive subformula of ϕ, put
wA(�X) = {[[t]]X ′ | X ′ ∈ wA(X) and t is any evidence term}
vA(�X) = {[[t]](X1 ∨ . . . ∨Xn) | X1, . . . , Xn ∈ vA(X) and t is any evidence
term}.

Fix a constant specification CS. LetM = 〈G,R, E ,V〉 be the canonical LP(S5)−-
model built from the given CS as in the proof of Theorem 1. Since R is reflexive,
transitive and symmetric, we can also think of it as an S5-model (E plays no role
in this).

If X is a subformula of ϕ we will write ¬vA(X) for {¬X ′ | X ′ ∈ vA(X)}.
Also, if S is a set of LP(S5)−-formulas, we will write M, Γ � S if M, Γ � Z for
every formula Z ∈ S. Since M is canonical, M, Γ � S is equivalent to S ⊆ Γ ,
by Lemma 1.

Lemma 2. Let CS be a full constant specification of LP(S5)− andM be a canon-
ical model for LP(S5)− that meets CS. Then for each Γ ∈ G:

1. If ψ is a positive subformula of ϕ and M, Γ � ¬vA(ψ) then M, Γ � ¬ψ.
2. If ψ is a negative subformula of ϕ and M, Γ � vA(ψ) then M, Γ � ψ.

Proof. The proof is by induction on the complexity of ψ. The atomic case is
trivial. Implication is treated similarly to [5].

Positive Necessity. Suppose ψ is �X , ψ is a positive subformula of ϕ, M, Γ �
¬vA(�X), and the result is known for X (which also occurs positively in ϕ).

The key item to show is that Γ#∪¬vA(X) is consistent. Then we can extend
it to a maximal consistent set Δ, and sinceM is the canonical model we will have
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Δ ∈ G, ΓRΔ and M, Δ � ¬vA(X). By the induction hypothesis, M, Δ �� X ,
hence M, Γ �� �X . So now we concentrate on showing this key item.

Suppose Γ# ∪ ¬vA(X) is inconsistent. Then for some Y1, . . . Yk ∈ Γ# and
X1, . . .Xn ∈ vA(X), LP(S5)− � (Y1 ∧ . . . ∧ Yk ∧ ¬X1 ∧ . . .¬Xn) → ⊥. Then
LP(S5)− � Y1 → (Y2 → . . .→ (Yk → X1∨ . . .∨Xn) . . .). By Proposition 1, there
is an evidence term s such that LP(S5)− � [[s]][Y1 → (Y2 → . . . → (Yk → X1 ∨
. . .∨Xn) . . .)]. Consider terms t1, t2, . . . , tk such that [[t1]]Y1, [[t2]]Y2, . . . , [[tk]]Yk ∈
Γ . By Axiom A2 and propositional reasoning, LP(S5)− � [[t1]]Y1 ∧ [[t2]]Y2 ∧ . . . ∧
[[tk]]Yk → [[s · t1 · t2 · . . . · tk]](X1 ∨ . . .∨Xn). Therefore Γ � [[s · t1 · t2 · . . . · tk]](X1∨
. . .∨Xn) which is impossible since [[s · t1 · t2 · . . . · tk]](X1 ∨ . . .∨Xn) ∈ vA(�X).
Thus Γ# ∪ ¬vA(X) is consistent and the case is done.

Negative Necessity. Suppose ψ is �X , ψ is a negative subformula of ϕ,M, Γ �
vA(�X) and the result is known for X (which also occurs negatively in ϕ).

Let X ′ be an arbitrary member of vA(X). Since �X is a negative subformula
of ϕ, [[x]]X ′ ∈ vA(�X), where x = A(�X), and so M, Γ � [[x]]X ′. Now if Δ is
an arbitrary member of G with ΓRΔ, we must have M, Δ � X ′. Thus M, Δ �
vA(X), so by the induction hypothesis, M, Δ � X . Since Δ was arbitrary,
M, Γ � �X .

Corollary 3. Let CS be a full constant specification. If S5 � ϕ then there are
ϕ1, . . . , ϕn ∈ vA(ϕ) such that LP(S5)− � ϕ1 ∨ . . . ∨ ϕm meeting CS.

Proof. Suppose S5 � ϕ but LP(S5)− �� (ϕ1 ∨ . . . ∨ ϕn) for every ϕ1, . . . , ϕn ∈
vA(ϕ) with a given full constant specification CS. Then every finite subset of
¬vA(ϕ) is satisfiable. By Corollary 1 adapted to LP(S5)−, there is a world Γ
in the canonical model M for LP(S5)− with CS such that M, Γ � ¬vA(ϕ).
By Lemma 2, M, Γ �� ϕ. Therefore, since ϕ is the theorem of S5, there are
ϕ1, . . . , ϕn ∈ vA(ϕ) such that LP(S5)− � (ϕ1 ∨ . . . ∨ ϕn).

Lemma 3. For every subformula ψ of ϕ and each ψ1, . . . , ψn ∈ vA(ψ), there is
a substitution σ of evidence terms for proof variables and a formula ψ′ ∈ wA(ψ)
such that:

1. If ψ is a positive subformula of ϕ then LP(S5) � (ψ1 ∨ . . . ∨ ψn)σ → ψ′.
2. If ψ is a negative subformula of ϕ then LP(S5) � ψ′ → (ψ1 ∧ . . . ∧ ψn)σ.

Proof. We use the fact that proof variables assigned to different (occurrences of)
subformulas ψ in ϕ are all different.

By induction on the complexity of ψ. If ψ is atomic then the result is imme-
diate, since vA(ψ) and wA(ψ) are both {ψ}, so one can take ψ′ to be ψ, and use
the empty substitution. Implication is treated similarly to [5].

Positive Necessity. Suppose ψ is �X , ψ is a positive subformula of ϕ, and the
result is known for X (which also occurs positively in ϕ).

In this case ψ1, . . . , ψn are of the form [[t1]]D1, . . . , [[tn]]Dn, where each of
Di is a disjunction of members of vA(X). Let D = D1 ∨ . . . ∨Dn. Then D is a
disjunction of formulas from vA(X), so by the induction hypothesis there is some
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substitution σ and X ′ ∈ wA(X) such that LP(S5) � Dσ → X ′. Consequently for
each i, LP(S5) � Diσ → X ′ and so, by Proposition 1, there is a proof polynomial
ui such that LP(S5) � [[ui]](Diσ → X ′). But then LP(S5) � ([[ti]]Di)σ → [[ui ·
tiσ]]X ′. Let s be the evidence term (u1 · t1σ)+ . . .+(un · tnσ). For each i we have
LP(S5) � ([[ti]]Di)σ → [[s]]X ′, and hence LP(S5) � ([[t1]]D1 ∨ . . . ∨ [[tn]]Dn)σ →
[[s]]X ′. Since [[s]]X ′ ∈ wA(�X), this concludes the positive necessity case.

Negative Necessity. Suppose ψ is �X , ψ is a negative subformula of ϕ, and
the result is known for X (which also occurs negatively in ϕ).

In this case ψ1, . . . , ψn are of the form [[x]]X1, . . . , [[x]]Xn, where Xi ∈ vA(X).
By the induction hypothesis there is some substitution σ and X ′ ∈ wA(X) such
that LP(S5) � X ′ → (X1 ∧ . . . ∧ Xn)σ. Put A(�X) = x, where the evidence
variable x is not in the domain of σ. Now, for each i = 1, . . . , n, LP(S5) �
X ′ → Xiσ, and so by Proposition 1 there is a proof polynomial ti such that
LP(S5) � [[ti]](X ′ → Xiσ). Let s be the proof polynomial t1 + . . . + tn; then
LP(S5) � [[s]](X ′ → Xiσ), for each i. It follows that LP(S5) � [[x]]X ′ → [[s ·
x]](Xiσ), for each i. Consider a new substitution σ′ = σ ∪ {x/(s · x)}, then we
have LP(S5) � [[x]]X ′ → ([[x]]Xi)σ′ for each i, and hence LP(S5) � [[x]]X ′ →
([[x]]X1 ∧ . . . ∧ [[x]]Xn)σ′, which establishes the result in this case.

To conclude the proof of Theorem 2, assume that S5 � ϕ. Then by Corollary 3
there are ϕ1, . . . , ϕn ∈ vA(ϕ) such that LP(S5) � ϕ1∨. . .∨ϕn. By Lemma 3, there
is a substitution σ and ϕ′ ∈ wA(ϕ) such that LP(S5) � (ϕ1 ∨ . . . ∨ ϕn)σ → ϕ′.
Since LP(S5) is closed under substitution, LP(S5) � ϕ′.
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Abstract. As specifications and verifications of concurrent systems em-
ploy Linear Temporal Logic (LTL), it is increasingly likely that logical
consequence in LTL will be used in description of computations and
parallel reasoning. We consider the linear temporal logic LT LU,B

N, N−1(Z)
extending the standard LTL by operations B (before) and N−1 (pre-
vious). Two sorts of problems are studied: (i) satisfiability and (ii) de-
scription of logical consequence in LT LU,B

N, N−1(Z) via admissible logical
consecutions (inference rules). The model checking for LTL is a tradi-
tional way of studying such logics. Most popular technique based on
automata was developed by M.Vardi (cf. [39, 6]). Our paper uses a re-
duction of logical consecutions and formulas of LTL to consecutions of a
uniform form consisting of formulas of temporal degree 1. Based on tech-
nique of Kripke structures, we find necessary and sufficient conditions for
a consecution to be not admissible in LT LU,B

N, N−1(Z). This provides an
algorithm recognizing consecutions (rules) admissible in LT LU,B

N, N−1(Z)
by Kripke structures of size linear in the reduced normal forms of the
initial consecutions. As an application, this algorithm solves also the
satisfiability problem for LT LU,B

N, N−1(Z).

Keywords: logic in computer science, algorithms, linear temporal logic,
logical consequence, inference rules, consecutions, admissible rules.

1 Introduction

Temporal logics were applied in study of many problems concerning computing
and reasoning (cf. Manna and Pnueli [21, 22], Pnueli [26], Clark E. et al., [4],
Goldblatt [11]). Linear temporal logic (LTL) has been quite successful in dealing
with applications to systems specifications and verification (cf. [26, 19]), with
model checking (cf. [2, 4]). Also temporal logic is a natural logic for hardware
verification (cf. Cyrluk, Natendran [5]); temporal logic has numerous applications
to safety, liveness and fairness (cf. Emerson [7]), to various problems arising in
computing (cf. Eds. Barringer, Fisher, Gabbay and Gough, [1, 3]).

An effective automata-theoretic approach to LTL based at automata on in-
finite worlds, was found by M.Vardi [39, 6]. This allows to show decidability of
LTL via algorithms for satisfiability problem. Techniques for the model checking
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c© Springer-Verlag Berlin Heidelberg 2006



Linear Temporal Logic 323

of knowledge and time was presented, for instance, in (Hoek, Wooldridge [13]).
It would be not an exaggeration to say that one of prime questions concern-
ing temporal logics is the question about decidability (cf. [18]). In our paper
we study the question about decidability of linear temporal logics, but in more
general form, - decidability w.r.t. admissible logical consecutions.

We consider the linear temporal logic LT LU,B

N, N−1(Z) which is an expansion
of the standard LTL by new operations: B (before) and N−1 (previous). So,
LT LU,B

N, N−1(Z) has temporal operations N (next), U (until), N−1 (previous)
and B (before). Main problem we are focused on is description of logical con-
sequence in LT LU,B

N, N−1(Z) via admissible logical consecutions (inference rules).
This approach puts in the base the notion of logical consecution, inference rule,
correct sequent. Usage of inference rules gives an opportunity to describe subtle
properties of models which are problematic to be expressed by formulas. A good
example is the Gabbay’s irreflexivity rule (cf. [9]) (ir) := ¬(p → �p) → ϕ / ϕ
(where p does not occur in the formula ϕ). This rule is actually saying that any
element of a model, where ϕ is not valid, should be irreflexive; it was imple-
mented in [9] for the proof of the completeness theorem. Admissible rules form
the greatest class of rules which are compatible with the set of the theorems
(valid formulas) of a given logic, therefore we are interested to recognize which
rules (consecutions) are admissible.

Admissible consecutions have been investigated reasonably deeply for numer-
ous modal and superintuitionistic logics. The history could be dated since Harvey
Friedman’s question (1975,[8]) about existence of algorithms which could distin-
guish rules admissible in the intuitionistic propositional logic IPC, and since Har-
rop’s examples [14] of rules admissible but not derivable in standard Hilbert-style
axiomatic systems for IPC. In the middle of 70-th, G. Mints [25] found strong suf-
ficient conditions for derivability in IPC admissible rules in special form. H. Fried-
man’s question was answered affirmatively by V. Rybakov (1984, [28]) and later
S. Ghilardi [10] found another solution. Since then, the questions concerning ad-
missible rules (decidability, description of bases, inheritance, structural complete-
ness, etc.) were investigated profoundly, but primary only for transitive modal and
superintuitionistic logics (cf. [10, 15, 16, 29, 30, 31, 32, 33, 34, 35, 36, 37]). In our
paper we make an attempt to find an approach to the linear temporal logics
LT LU,B

N, N−1(Z). The obtained results are briefly described in the abstract above.

2 Notation, Preliminaries

Linear temporal logic (LTL in the sequel) has the language including Boolean
logical operations and the temporal operations Next and Until. Formulas of
LTL are built from a set Prop of atomic propositions and are closed under the
application of Boolean operations, the unary operation N (next) and the binary
operation U (until). We also will consider the following counterpart operations
to N and U: N−1 (previous) and B (before), so for any wffs ϕ and ψ, N−1ϕ
and ϕBψ are also wffs. The semantics for formulas of this language, which we
suggest, is based on the set of all integer numbers with the standard linear
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order. The basic Kripke-Hinttikka structure (model) for our logic is the following
tuple Z := 〈Z,≤, Next, Prev, V 〉, where Z is the set of integer numbers with
the standard linear order ≤. The relations Next and Prev are also standard:
a Next b ⇔ b = n + 1, a Prev b ⇔ b = a− 1, and V is a valuation of a subset
S of Prop, which assigns truth values to elements of S. The computational
interpretation of Z is as follows. The elements of Z are states, ≤ is the transition
relation (which is linear in our case), and V can be interpreted as labeling of the
states with atomic propositions. If we refer to Z as the Kripke frame, we mean
the frame Z without valuations. For Z, the truth values can be extended from
propositions of S to arbitrary formulas constructed from these propositions as
follows:

∀p ∈ Prop, ∀a ∈ Z, (Z, a) p ⇔ a ∈ V (p);

(Z, a) ϕ ∧ ψ ⇔(Z, a) ϕ and (Z, a) ψ;

(Z, a) ¬ϕ ⇔ not[(Z, a) ϕ];

(Z, a) Nϕ ⇔[(a Next b)⇒(Z, b) ϕ];

(Z, a) N−1ϕ ⇔[(a Prev b)⇒(Z, b) ϕ];

(Z, a) ϕUψ ⇔∃b[(a ≤ b) ∧ (Z, b) ψ)] ∧ ∀c[(a ≤ c < b)⇒(Z, c) ϕ];

(Z, a) ϕBψ ⇔∃b[(b ≤ a) ∧ (Z, b) ψ)] ∧ ∀c[(b ≤ c < a)⇒(Z, c) ϕ];

We can define all standard temporal and modal operations using U and B.
For instance, Fϕ, – ϕ holds eventually (in terms of modal logic, – ϕ is possible
– �+ϕ), can be described as trueUϕ. Gϕ, – ϕ holds henceforth –, can be de-
fined as ¬F¬ϕ. trueBϕ says that ϕ was true at least once in past, so we can
use trueBϕ to express temporal operation Pϕ. And Hϕ – ϕ has always been, –
may be described as ¬P¬ϕ. We can describe within this language various prop-
erties of transition systems and Kripke structures. For instance, the formula
G(¬request∨ (request B grant)) says that whenever a request is made it holds
continuously until it is eventually granted.

Definition 1. For a Kripke-Hinttikka structureZ := 〈Z,≤, Next, Prev, V 〉 and
a formula ϕ in the language of LT LU,B

N, N−1(Z), we say that ϕ is satisfiable in

Z (denotation – Z Satϕ) if there is a state b of Z (b ∈ Z) where ϕ is true:
(Z, b) V ϕ. A formula ϕ is valid in Z (denotation – Z ϕ) if, for any element
b of Z (b ∈ Z), ϕ is true at b. A formula of LT LU,B

N, N−1(Z) is satisfiable iff there
is a Kripke structure based on Z where ϕ is satisfiable.

Definition 2. The linear temporal logic LT LU,B

N, N−1(Z) is the set of all formulas
in the described language which are valid in any Kripke structure based on the
frame Z.
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In the sequel we will also use the standard Kripke semantics for multi-modal
logics which consists of arbitrary Kripke structures and Kripke frames. For in-
stance, if we consider a Kripke structure M := 〈M,≤, Next, Prev, V 〉, M could
be any set, and ≤, Next and Prev are some binary relations on M . The truth
values of formulas (in the language of LTL) in such Kripke structures can be
defined similar to above. We will explain later for which Kripke structures this
approach works. The aims of our research are:

(i) To develop a new technique for satisfiability problem in LT LU,B

N, N−1(Z),
to get efficient algorithms solving satisfiability. These algorithms will be based
on verification of validity for consecutions in special finite models of size linear
in the size of consecutions.

(ii) To study logical consequence in LT LU,B

N, N−1(Z) in terms of logical con-
secutions, admissible inference rules. To construct algorithms distinguishing ad-
missible in LT LU,B

N, N−1(Z) consecutions.
Firstly, we describe what we do towards problem (i) and then we will turn

to (ii). How we could get an algorithm checking satisfiability in LT LU,B

N, N−1(Z)?
The structures based on Z are infinite, the language of LT LU,B

N, N−1(Z) with U
(until) and B (before) is enough expressible, so we cannot answer this question
immediately. Earlier (in [38]), we studied the satisfiability problem for the tem-
poral Tomorrow/Yesterday logic TYL, which is based on all finite intervals of
integer numbers, but has no operations U and B. In was established (Theorem
2 [38]) that for a satisfiable formula ϕ there is a model for ϕ of a size linear from
ϕ. In the current paper, we cannot use directly the approach from [38] because
our Kripke structures are infinite and because of presence both operations U
(until) and B (before). The obtained result from the our current paper is

Theorem 1. Small Models Theorem. A formula ϕ is satisfiable in LT LU,B

N, N−1(Z)
iff there is a special finite Kripke structure M, where ϕ is satisfiable, and the
size of M is double exponential in the length of ϕ.

This result follows from technique of the next sections where the structure of
M will be specified. So, comparing to TYL, the situation is worse, the bound
is double exponential but not linear. Anyway, we reduce the satisfiability to
checking truth of consecutions on models of double exponential size in testing
formula, so we get

Corollary 1. The linear temporal logic LT LU,B

N, N−1(Z) is decidable.

3 Logical Consecutions in Temporal Logic

The basic problem we are dealing here is how to characterize that a formula (a
statement) is a logical consequence of a given collection of formulas (statements).
A consecution, (or, synonymously, – a rule) c is an expression

c :=
ϕ1(x1, ..., xn), ..., ϕm(x1, ..., xn)

ψ(x1, ..., xn)
,

where ϕ1(x1, ..., xn), . . . , ϕm(x1, ..., xn) and ψ(x1, ..., xn) are some formulas.
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The formula ψ(x1, ..., xn) is the conclusion of c, formulas ϕj(x1, ..., xn) are the
premises of c. Consecutions are supposed to describe the logical consequences,
an informal meaning of a consecution is: the conclusion logically follows from
the premises. The questions what logically follows means is crucial and has no
evident and unique answer. We consider and compare below some approaches.
Let F be a Kripke frame (e.g. our linear frame Z), with a valuation V of all
variables from a consecution c := ϕ1, . . . ϕn/ψ.

Definition 3. The consecution c is said to be valid in the Kripke structure
〈F , V 〉 (we will use notation 〈F , V 〉 c, or F V c) if (F V

∧
1≤i≤m ϕi) ⇒

(F V ψ). Otherwise we say c is refuted in F , or refuted in F by V , and
write F�� V c.

A consecution c is valid in a frame F (notation F c) if, for any valuation
V , F V c. A consecution c := ϕ1, . . . ϕn/ψ is valid in a logic L(K) generated
by a class of frames K if ∀F ∈ K(F c). For many logics L, if c is valid for L
w.r.t. a class K generating L, c will be also valid in all L-Kripke frames. Note
that this definition of valid consecutions equivalent to the notion of valid modal
sequent from [17], where a theory of sequent-axiomatic classes is developed. Also
the notion of valid consecutions can be reduced to validity of formulas in the
extension of the language with universal modality (cf. Goranko and Passy, [12]).
Based on these results, some relevant results of validity of consecutions can be
derived. This is easy to accept that valid consecutions correctly describe logical
consequence (since, in particular, L(K) is closed w.r.t. valid consecutions). But
a reasonable question is whether we could restrict ourselves by only such conse-
cutions studying a given logic L(K). Lorenzen (1955) [20] proposed to consider
so called admissible consecutions, the definition is as follows. Given a logic L,
FormL is the set of all formulas in the language of L.

Definition 4. A consecution

c :=
ϕ(x1, . . . , xn), . . . , ϕm(x1, . . . , xn)

ψ(x1, . . . , xn)
,

is said to be admissible for a logic L if, ∀α1 ∈ FormL, . . . ,∀αn ∈ FormL,∧
1≤i≤m[ϕi(α1, . . . , αn) ∈ L] =⇒ [ψ(α1, . . . , αn) ∈ L].

Thus, for any admissible consecution, any instance into the premises making all
of them theorems of L also makes the conclusion to be a theorem. It is most
strong type of structural logical consecutions: a consecution c is admissible in L
iff L, as the set of its own theorems, is closed with respect to c. It is evident
that any valid consecution is admissible. The converse is not always true. Before
to discuss it, we would like to describe another sort of consecutions: derivable
consecutions.

For a logic L with a fixed axiomatic system AxL and a given consecution
cs := ϕ1, . . . , ϕn/ψ, cs is said to be derivable if ϕ1, . . . , ϕn �AxL ψ (i.e. if we can
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derive ψ from ϕ1, . . . , ϕn in the given axiomatic system AxL). The derivable con-
secutions are safely correct. But it could happen, that, for a logic L, with a given
axiomatic system, a formula ψ is not derivable from the premises ϕ1, ..., ϕm, but
still the rule cs := ϕ1, ..., ϕm/ψ is admissible: cs derives L-provable conclusions
from L-provable premises. Derivable consecution must be valid, but again not
obligatory admissible. The earliest example of a consecution which is admissible
in the intuitionistic propositional logic (IPC, in sequel) but not derivable in the
Heyting axiomatic system for IPC is the Harrop’s rule (1960, [14]):

r :=
¬x→ y ∨ z

(¬x→ y) ∨ (¬x→ z)
.

That is, ¬x → y ∨ z �� IPC(¬x → y) ∨ (¬x → z), were �IPC is the notation
for derivability in the Heyting axiomatic system for IPC. But, for any α, β and
γ, if �IPC ¬α → β ∨ γ, then �IPC (¬α → β) ∨ (¬α → γ). G.Mints (1976, [25])
found another nice consecution

(x→ y)→ x ∨ y

((x→ y)→ x) ∨ ((x→ y)→ z)
,

which is not derivable but admissible in IPC. The Lemmon-Scott rule (cf. [33])

�(�(���p→ �p) → (�p ∨ �¬�p))
���p ∨ �¬�p

is admissible but not derivable in the standard axiomatizations for modal logics
S4, S4.1, Grz.

Notice that, for the case of the temporal linear logic LT LU,B

N, N−1(Z) , there
are consecutions which are invalid (in particular, they are not derivable rules for
any possible axiomatic system for LT LU,B

N, N−1(Z) where postulated inference rules
preserve the truth values of formulas in the Kripke frame Z), which, nevertheless,
are admissible.

For instance, the consecution

c1 :=
��(trueUx) ∧ ��(trueU¬x)

y

is admissible but invalid in LT LU,B

N, N−1(Z). Therefore, consecutions admissible
in LT LU,B

N, N−1(Z) are stronger than just valid ones. Also the connection with
satisfiability is evident: ϕ is satisfiable in a logic L iff p→ p/¬ϕ is not admissible
for L.

4 Algorithm Recognizing Admissibility in LT LU,B

N, N−1(Z)

We describe below all necessary mathematical constructions involved in our tech-
nique and circumscribe the sequence of statements which allow us to construct
the deciding algorithm for the logicLT LU,B

N, N−1(Z). A Kripke structureM is said
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to be definable if any state c ∈M is definable in M, i.e. there is a formula φa
which in true inM only at the element a. Given a Kripke structureM := 〈F , V 〉
based upon a Kripke frame F and a new valuation V1 in F of a set of proposi-
tional letters qi. The valuation V1 is definable inM if, for any qi, V1(qi) = V (φi)
for some formula φi

Definition 5. Given a logic L and a Kripke structure M with a valuation de-
fined for a set of letters p1, . . . , pk. M is said to be k-characterizing for L if
the following holds. For any formula ϕ(p1, . . . , pk) built using letters p1, . . . , pk,
ϕ(p1, . . . , pk) ∈ L iff M ϕ(p1, . . . , pk).

Lemma 1. (cf., for instance, [33]) A consecution cs is not admissible in a logic
L iff, for any sequence of k-characterizing models, there are a number n and
an n-characterizing model ChL(n) from this sequence such that the frame of
ChL(n) refutes cs by a certain definable in ChL(n) valuation.

Being based at this lemma, in order to describe consecutions cs admissible in
LT LU,B

N, N−1(Z) we need a sequence of k-characterizing for LT LU,B

N, N−1(Z) models
with some good properties. Take the all Kripke structures Zi, i ∈ I, all of which
are based on the frame Z, with all possible valuations V of letters p1, . . . , pk.
Take the disjoint union

⊔
i∈I Zi of all such non-isomorphic Kripke structures.

We denote this Kripke structure by Chk(LT LU,B

N, N−1(Z)).

Lemma 2. The structure Chk(LT LU,B

N, N−1(Z)) is k-characterizing for the logic
LT LU,B

N, N−1(Z).

Lemma 3. The Kripke structure Chk(LT LU,B

N, N−1(Z)) is not definable.

Therefore we cannot directly implement technique from [38] to describe ad-
missible in the logic LT LU,B

N, N−1(Z) consecutions. Next instrument we need is a
reduction of consecutions to equivalent reduced normal forms. A consecution c
is said to have the reduced normal form if c = εc/x1 where

εc :=
∨

1≤j≤m

(
∧

1≤i,k≤n,i�=k

[xk(j,i,0)
i ∧ (Nxi)k(j,i,1) ∧ (N−1xi)k(j,i,2)∧

(xiUxk)k(j,i,k,3) ∧ (xiBxk)k(j,i,k,4)]),

and xs are certain variables, k(j, i, z), k(j, i, k, z) ∈ {0, 1} and, for any formula α
above, α0 := α, α1 := ¬α.

Definition 6. Given a consecution cnf in the reduced normal form, cnf is said
to be a normal reduced form for a consecution c iff, for any temporal logic
L, c is admissible in L iff cnf is so.

Using the ideas of proofs for Lemma 3.1.3 and Theorem 3.1.11 from [33] we can
derive
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Theorem 2. There exists a double exponential algorithm which, for any given
consecution c, constructs its normal reduced form cnf .

To describe further the construction of our algorithm distinguishing consecutions
admissible in LT LU,B

N, N−1(Z), we need the following notations and results.

Definition 7. Let two Kripke structures K1 := 〈K1, R1, Next1, P rev1, V1〉 and
K2 := 〈K2, R2, Next2, P rev2, V2〉 with designated elements trm (terminal) of
K1 and ent (entry) of K2 be given. The sequential concatenation K1 and K2
by (trm, ent) is the structure
K := 〈K,R,Next, Prev, V 〉, where K := K1 ∪K2,

V (p) := V1(p) ∪ V2(p) for all p;Next := Next1 ∪Next2 ∪ {(trm, ent)},
P rev := Prev1 ∪ Prev2 ∪ {(ent, term)},
R := R1 ∪R2 ∪ {(a, b) | a ∈ K1, b ∈ K2}.

We will denote K by K1 ⊕trm,ent K2 .

Similarly we define the sequential concatenation of frames. For n,m ∈ Z,
[n,m] is the Kripke frame based on all natural numbers situated between n and
m with standard ≤ and Next and Prev. If there us a valuation of a set of letters
in [n,m], we refer to [n,m] as a Kripke structure. For any n,m ∈ Z with n < m,
C[n,m] is the 3-modal Kripke frame, where the base set of C[n,m] is [n,m], and
the relations NextC[n,m], PrevC[n,m], and RC[n,m] are as follows.

mNextC[n,m]n, ∀k, n ≤ k < m⇒kNextC[n,m]k + 1;

nPrevC[n,m]m, ∀k, n < k ≤ m⇒kPrevC[n,m]k − 1;

∀a, b ∈ [n,m], aRC[n,m]b ⇔ ∃k(aNextkC[n,m]b).

If there is a valuation of a set of letters on C[n,m], we refer to C[n,m] as
a Kripke structure. This definition is a bit confusing for readers which only
experienced with standard multi-modal Kripke structure. This is because C[n,m]
resembles the time cluster, but actually it is not - to care about U and B we
have to fix the direction in this quasi-cluster, so we choose clockwise. But as
soon as the direction is fixed and RC[n,m] works in accordance with NextC[n,m]
and PrevC[n,m], we can define the truth values of formulas (in the language of
LT LU,B

N, N−1(Z)) in C[n,m] in the standard manner.
We also need the following notations and results. For any consecution cnf in

normal reduced form, Pr(cnf ) = {ϕi | i ∈ I} is the set of all disjunctive members
of the premise of cnf . Sub(cnf ) is the set of all subformulas of cnf . For any Kripke
frame F and any valuation V of the set of propositional letters of a formula ϕ,
the expression (F V ϕ) is the abbreviation for ∀a ∈ F((F , a) V ϕ).

Lemma 4. For any Kripke frame F with a valuation V , where

F V

∨
Pr(csnf ),

for any a ∈ M, there is a unique disjunct D from Pr(cnf ) such that (F , a) VD.
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In the sequel we will denote this unique disjunct by D
csnf ,V
F (a).

Lemma 5. If a consecution cnf in the normal reduced form is not admissible in
LT LU,B

N, N−1(Z) then, there are integer numbers k, n,m ∈ Z, where −k < −1, 3 <
n, n+ 1 < m, and there exists a finite Kripke structure Kcnf := 〈Fcnf , V1〉 which
refutes cnf by the valuation V1, where

(a) Fcnf := C[−k, 0]⊕0,1 [1, n]⊕n,n+1 C[n + 1,m],
(b) D

cnf ,V1
Fcnf

(−k) = D
cnf ,V1
Fcnf

(1); D
cnf ,V1
Fcnf

(n) = D
cnf ,V1
Fcnf

(m); ,
(c) k, n and m are linearly computable from the size of cnf .

The 3-modal frame 1 is the frame based at the single element set {a1} where
a1Next a1, a1Prev a1 and a1 ≤ a1. Again we can define truth values of formulas
in the language of LT LU,B

N, N−1(Z) in 1 in the standard manner.

Lemma 6. If a consecution cnf in the normal reduced form is not admissible
in LT LU,B

N, N−1(Z) then there exists a valuation V0 of letters of cnf in the frame
1 where

1 V0

∨
{ϕi | ϕi ∈ Pr(cnf )}

Lemma 7. If a consecution cnf in normal reduced form satisfies the conclusions
of Lemma 5 and Lemma 6 then cnf is not admissible in LT LU,B

N, N−1(Z).

Based on Theorem 2, Lemmas 5, 6 and 7 we derive

Theorem 3. There is an algorithm recognizing consecutions admissible in the
linear temporal logic LT LU,B

N, N−1(Z). In particular, this algorithm solves the sat-
isfiability problem for LT LU,B

N, N−1(Z).

To comment the complexity of the deciding algorithm, for any consecution c
we first transform c into the reduced normal form cnf (complexity is double
exponential, cf. Theorem 2). Then we verify conditions of Lemmas 5 and 6 in
the models Kcnf := 〈Fcnf , V1〉 which size is linear in the size of cnf . So, we have
to perform the algorithm of verification the validity for consecutions on models
in size linear from cnf .

Conclusion, Future Work: We investigated the linear temporal logic
LT LU,B

N, N−1(Z) which extends the standard logic LTL by operations B (before)
and N−1 (previous). The prime questions which we been focused were (i) prob-
lem of satisfiability in LT LU,B

N, N−1(Z) and (ii) problem of description of logi-
cal consequence in LT LU,B

N, N−1(Z) via admissible logical consecutions (inference
rules). A reduction of consecutions and formulas of LT LU,B

N, N−1(Z) to simple con-
secutions in formulas of temporal degree 1 is suggested. Based on technique of
Kripke structures we find necessary and sufficient conditions for consecutions
to be not admissible in LT LU,B

N, N−1(Z). These conditions lead to an algorithm
which recognizes admissible consecutions through verification of validity of con-
secutions in Kripke structures of size linear in the reduced normal forms of the
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initial consecutions. The obtained results extend previous research of the author
concerning transitive modal logics (cf. [29, 30, 31, 32, 33, 34, 35, 36, 37] where tech-
nique for construction of algorithms recognizing admissible rules via models with
special structure was worked out. The paper Ghilardi [10] and others his papers
provide another technique to prove decidability of the modal logic S4 and in-
tuitionistic logic IPC w.r.t. admissibility via properties of projective formulas.
This technique also led to work out some approach for construction of explicit
bases for admissible rules in transitive modal logics, as it is done, e.g. in Jerabek
[16]. But our technique based on finite models with special structure, semantic
one, woks nicely for construction of explicit bases as well, as it is demonstrated
in Rybakov [37], where an explicit bases for rules of S4 is found. Our research in
the current paper extends the area of admissible rules to linear temporal logics,
but we are working here only with algorithms recognizing admissible rules.

The technique developed in this paper can be applied for other similar linear
temporal logics. We studied only one natural, maybe most intuitive, linear tempo-
ral logic. However there are other linear temporal logics similar to LT LU,B

N, N−1(Z),
but with other logical operations or based at frames different from Z, which do
not yet obey the obtained technique. We plan to study these questions with an
attempt to approach the problems and to find deciding algorithms, to construct
explicit bases for admissible consecutions.
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20. Lorenzen P. Einführung in die operative Logik und Mathematik. - Berlin-Göttingen,
Heidelberg, Springer-Verlag, 1955.

21. Manna Z, Pnueli A. Temporal Verification of Reactive Systems: Safety, - Springer-
Verlag, 1995.

22. Manna Z., Pnueli A. The Temporal Logic of Reactive and Concurrent Systems:
Specification. - Springer-Verlag, 1992.

23. Nikolaj Bjorner, Anca Browne, Michael Colon, Bernd Finkbeiner, Zohar Manna,
Henny Sipma, Tomas Uribe. Verifying Temporal Properties of Reactive Systems:
A Step Tutorial. - In Formal Methods in System Design, vol 16, pp 227-270. 2000

24. Manna Z., Sipma H. Alternating the Temporal Picture for Safety. - In Proc. 27th
Intl. Colloq. Aut. Lang. Prog.(ICALP 2000). LNCS 1853, Springer-Verlag, pp.
429-450.

25. Mints G.E. Derivability of Admissible Rules.- J. of Soviet Mathematics, V. 6, 1976,
No. 4, 417 - 421.

26. Pnueli A. The Temporal Logic of Programs.- In Proc. of the 18th Annual Symp.
on Foundations of Computer Science, 46 - 57, IEEE, 1977.

27. Pnueli A., Kesten Y. A deductive proof system for CTL∗.- In Proc. 13th Conference
on Concurrency Theory, volume 2421 of Lecture Notes in Computer Science, pages
24-40, Brno, Czech Republic, August 2002.

28. Rybakov V.V. A Criterion for Admissibility of Rules in the Modal System S4 and
the Intuitionistic Logic. - Algebra and Logic, V.23 (1984), No 5, 369 - 384 (Engl.
Translation).

29. Rybakov V.V. The Bases for Admissible Rules of Logics S4 and Int.- Algebra and
Logic, V.24, 1985, 55-68 (English translation).

30. Rybakov V.V. Rules of Inference with Parameters for Intuitionistic logic.- Journal
of Symbolic Logic, Vol. 57, No. 3, 1992, pp. 912 - 923.

31. Rybakov V.V. Hereditarily Structurally Complete Modal Logics.- Journal of Sym-
bolic Logic, Vol. 60, No.1, 1995, pp. 266 - 288.



Linear Temporal Logic 333

32. Rybakov V.V. Modal Logics Preserving Admissible for S4 Inference Rules. - In
theProceedings of the conference CSL’94. LNCS, No.993 (1995), Springer-Verlag,
512 - 526.

33. Rybakov V.V. Admissible Logical Inference Rules. - Studies in Logic and the
Found. of Mathematics, Vol. 136, Elsevier Sci. Publ., North-Holland, New-York-
Amsterdam, 1997, 617 pp.

34. Rybakov V.V. Quasi-characteristic Inference Rules. - In Book: Eds: S.Adian,
A.Nerode, LNCS, Vol. 1234, , Springer, 1997, pp. 333 - 342.

35. Rybakov V.V., Kiyatkin V.R., Oner T., On Finite Model Property For Admissible
Rules. - Mathematical Logic Quarterly, Vol.45, No 4, 1999, pp. 505-520.

36. Rybakov V.V. Terziler M., Rimazki V. Basis in Semi-Reduced Form for the Admis-
sible Rules of the Intuitionistic Logic IPC.- Mathematical Logic Quarterly, Vol.46,
No. 2 (2000), pp. 207 - 218.

37. Rybakov V.V. Construction of an Explicit Basis for Rules Admissible in Modal
System S4. - Mathematical Logic Quarterly, Vol. 47, No. 4 (2001), pp. 441 - 451.

38. Rybakov V.V. Logical Consecutions in Intransitive Temporal Linear Logic of Finite
Intervals. Journal of Logic Computation, (Oxford Press, London), Vol. 15 No. 5
(2005) pp. 633 -657.

39. Vardi M. An automata-theoretic approach to linear temporal logic.- In the Book:
Proceedings of the Banff Workshop on Knowledge Acquisition (1994), (Banff’94).



On the Frequency of Letters in Morphic
Sequences

Kalle Saari


Department of Mathematics and Turku Centre for Computer Science,
University of Turku, 20014 Turku, Finland

kasaar@utu.fi

Abstract. A necessary and sufficient criterion for the existence and
value of the frequency of a letter in a morphic sequence is given. This
is done using a certain incidence matrix associated with the morphic
sequence. The characterization gives rise to a simple if-and-only-if
condition that all letter frequencies exist.

Keywords: Morphic sequences, HD0L sequences, Frequency of letters,
Incidence matrix, Simple generator.

1 Introduction

Consider an infinite sequence w that consists of finitely many different symbols,
or letters. Let w be a finite prefix of w, and let |w| denote its length. Suppose
the letter 1 occurs in w. Denoting the number of occurrences of 1 in w by |w|1,
we define the frequency of the letter 1 in w to be the ratio

|w|1
|w| .

Doing this to every finite prefix of w, we obtain an infinite sequence of ratios
which may or may not converge. In case it does converge, we define the limit to
be the frequency of the letter 1 in w, and we denote it by φ1. Hence,

φ1 = lim
|w|→∞

|w|1
|w|

if the limit exists. In the literature this type of frequency is often called asymp-
totic or natural frequency.

The sequences we focus here are so-called morphic sequences (see the defin-
ition below), which in theory of dynamical systems are known as substitution
sequences and in theory of L-systems as HD0L words. We are interested in the
existence of the frequency of a letter in a morphic sequence. Michel [6, 7] proved
that if a morphic sequence is primitive, then the frequencies of all letters in it
exists. He also provided an explicit formula to determine the frequency of each
� Supported by the Finnish Academy under grant 206039.
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letter. There is a recent result by Peter [9] giving a sufficient and necessary con-
dition for the existence of the frequency of a letter in an automatic sequence.
If a sequence is binary and a fixed point of a nonidentity morphism, then the
frequency of both letters exist [12]. Until now, however, no simple general charac-
terization for the existence of the letter frequencies was known. Our main result
is a solution to this problem.

We give a necessary and sufficient condition when the frequency of a given
letter in a morphic sequence exists. The condition is given with the help of the
incidence matrix of a so-called simple generating morphism of the sequence,
and it also provides an explicit formula for the frequency. Using the result, we
formulate a simple if-and-only-if criterion for the existence of the frequencies of
all letters. We also show that the frequency of all letters exists in any sequence
generated by a morphism with polynomial growth.

The notion of frequency is naturally extended to factors, i. e., blocks of letters
occurring in a sequence. This more general situation has been studied especially
in symbolic dynamics, where frequency is considered as a shift invariant proba-
bility measure associated with the given sequence, see [11]. Some nice results on
this topic can be found in [3, 4].

2 Definitions and Notations

In this section we fix the terminology used in the paper. Let Σ∗ be the free
monoid over the finite alphabet Σ, and let ε denote its identity element. The
map ϕ : Σ∗ → Δ∗ is a morphism if ϕ(uv) = ϕ(u)ϕ(v) for all u, v ∈ Σ∗. If
furthermore ϕ(a) ∈ Δ for all a ∈ Σ, then ϕ is called a coding. The incidence
matrix M(ϕ) associated with ϕ is defined to be

M(ϕ) = (md,a)d∈Δ,a∈Σ , md,a = |ϕ(a)|d.

To make this definition unambiguous, we assume that the alphabets Σ,Δ are
ordered. Especially if Σ = Δ, then the ith column and the ith row of M(ϕ)
corresponds to the same letter. We let Ma = (md,a)d∈Δ denote the column of
M(ϕ) that corresponds to the letter a ∈ Σ.

Let M be a nonnegative square matrix. Let J = diag
(
J1, . . . , Jk

)
be the Jor-

dan form of M (see [5]), where J1, . . . , Jk are the Jordan blocks of size m1, . . . ,mk

associated with the eigenvalues λ1, . . . , λk of M , respectively; that is,

Ji =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

λi 1 0 · · · 0

0 λi 1 · · ·
...

...
. . . . . . . . . 0

...
...

. . . . . . 1
0 · · · · · · 0 λi

⎞⎟⎟⎟⎟⎟⎟⎟⎠
mi×mi

. (1)

Let r denote the Perron–Frobenius eigenvalue of M (see [8]). Besides being an
eigenvalue of M , it is also the maximum of absolute values of all eigenvalues of
M . We say that Ji is the dominating Jordan block of J if
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(i) λi = r and
(ii) if λj = r, then mj ≤ mi;

in other words, there are no larger Jordan blocks in J associated with r.
Let μ∗ : Σ∗ → Σ∗ be a morphism. It is primitive, if there exists an integer

k ≥ 1 such that, for all a, b ∈ Σ, the letter b occurs in μk(a). If the letter
a ∈ Σ satisfies the identity μk(a) = ε for some integer k ≥ 1, it is called mortal.
Now suppose that μ(0) = 0u for a letter 0 ∈ Σ and for some word u ∈ Σ∗

that contains a non-mortal letter. This ensures that μi(0) is a proper prefix of
μi+1(0) for all i ≥ 0. Then we say that μ is prolongable on 0. Iterating μ on 0,
we obtain a sequence of iterates 0, μ(0), μ2(0), μ3(0), . . . that converges to the
infinite sequence

μω(0) := 0uμ(u)μ2(u)μ3(u) · · · .

Such a sequence is called a pure morphic sequence. If τ : Σ∗ → Γ ∗ is a coding,
then w := τ(μω(0)) is called a morphic sequence. The sequence w is primitive
is μ is primitive.

The incidence matrix M(μ) associated with μ : Σ∗ → Σ∗ is a nonnegative
square matrix with the property M(μn) = M(μ)n. We denote the Perron–
Frobenius eigenvalue of M(μ) by r(μ) and the Jordan form of M(μ) by J(μ).

We say that the morphism μ : Σ∗ → Σ∗ is a simple generator of the sequence
w = τ(μω(0)) if

(S1) each letter of Σ occurs in μ(0), and
(S2) if λ is an eigenvalue of M(μ) and |λ| = r(μ), then λ = r(μ).

See [5] for general concepts and results of matrix theory, and [8] for theory
on nonnegative matrices. For further information about morphisms and morphic
sequences, we refer to [1].

3 Lemmata

In this section we gather some necessary tools to prove the main result of the
paper. The following lemma by Frobenius is proved in [8, Theorem III 1.1]:

Lemma 1. Let A be an irreducible square matrix with the Perron–Frobenius
eigenvalue r, and suppose it has exactly h eigenvalues of modulus r; we denote
them by λ1, λ2, . . . , λh. Then the eigenvalues λ1, λ2, . . . , λh are the distinct hth
roots of rh.

Lemma 2. Any morphic sequence has a simple generator.

Proof. Let w = τ(μω(0)) be a morphic sequence, where μ : Σ∗ → Σ∗. We con-
struct a simple generator of w by modifying μ. Let Σ′ ⊆ Σ be the set of letters
occurring in μω(0). Then μ

(
Σ′) ⊆ Σ′∗. Since μ is prolongable on 0, there exists

an integer k ≥ 1 such that all the letters of Σ′ occur in μk(0). The matrix M(μ)
is similar to a matrix of the form
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M(μ) ∼

⎛⎜⎜⎜⎝
A11 0 . . . 0
B21 A22 . . . 0
...

. . . . . .
...

Bn1 Bn2 . . . Ann

⎞⎟⎟⎟⎠ ,

where every entry Aii on the diagonal in an irreducible square matrix, and the
entries above them are 0. Let hi be the integer in Lemma 1 that corresponds
to Aii, and set h = lcm(h1, h2, . . . , hn), the least common multiple of hi s. It
follows that all the eigenvalues λ of M(μ) with |λ| = r(μ) satisfy the equality
λh = r(μ)h.

We define the morphism μ′ : Σ′∗ → Σ′∗ from the condition μ′(a) = μhk(a)
for all a ∈ Σ′ and claim that μ′ is a simple generator of w:

First, it is clear that w = τ(μ′ω(0)). Secondly, (S1) is satisfied since μk(0) is
a prefix of μhk(0), and so all the letters of Σ′ occur in μ′(0). Now suppose that
λ is an eigenvalue of M(μ′). Since M(μ′) = M(μ)hk, we see that

det
(
M(μ′)− λI

)
= det

(
M(μ)− ω1I

)
· · ·det

(
M(μ)− ωhkI

)
= 0,

where ωi s are the hkth roots of λ. Thus λ is an eigenvalue of M(μ′) if and only
if some of its hkth roots, say wi, is an eigenvalue of M(μ). Using this observation
in the case when λ = r(μ′), we obtain r(μ′) = r(μ)hk. If λ �= r(μ′) and |λ| =
r(μ′), then since λ = ωhk

i and ωh
i = r(μ)h, we obtain λ = r(μ)hk = r(μ′), a

contradiction. Hence μ′ satisfies also (S2), and so it is a simple generator of w.
This concludes the proof.

From now on, we assume that w = τ(μω(0)) is a morphic sequence, where
μ : Σ∗ → Σ∗ is a simple generator, τ : Σ∗ → Γ ∗ is a coding, and 0 ∈ Σ. We omit
redundant use of parenthesis and denote τμn(x) = τ(μn(x)) for x ∈ Σ∗.

The matrix E(μ) defined in the next lemma plays an essential role in our
further considerations. Recall that the rank of a matrix is the size of a maximal
set of linearly independent columns of the matrix.

Lemma 3. Let p + 1 be the size of the dominating Jordan block in J(μ). Then
the limit

E(μ) := lim
n−→∞

M(μ)n

npr(μ)n

exists. Furthermore, it has the following properties:

– The rank of E(μ) equals the number of occurrences of the dominating Jordan
block in J(μ).

– For all letters a, b ∈ Σ,

|μn(a)|b = eb,an
prn + O(np−1rn),

where eb,a is the entry of E(μ) in the place (b, a).
– The column E0 = (ea,0)a∈Σ is nonzero.
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Proof. We denote r = r(μ) and let t be the number of occurrences of the domi-
nating Jordan block in J(μ) =

(
J1, . . . , Jk

)
, where Ji is the Jordan block as in

(1). It is easily verified that

Jni =

⎛⎜⎜⎜⎝
λni

(
n
1

)
λn−1
i · · ·

(
n

mi−1

)
λn−mi+1
i

0 λni · · ·
(

n
mi−2

)
λn−mi+2
i

...
...

. . .
...

0 0 · · · λni

⎞⎟⎟⎟⎠ (2)

for all n ≥ 0. We also note that(
n

p

)
rn−p = αnprn + O(np−1rn), (3)

where α = (p! rp)−1 > 0. Since μ is a simple generator, the equality |λi| = r
implies λi = r, and thus if either λi �= r or j < p, then(

n

j

)
λn−j
i = O(np−1rn). (4)

It follows that the limit
D := lim

n→∞
J(μ)n

nprn

exists, and moreover, each occurrence of the dominating Jordan block contributes
exactly one positive entry, namely (p!rp)−1, in D; all the other entries equal 0.
Since the positive entries lie in different columns, the rank of D equals t.

The identity M(μ)n = PJ(μ)nP−1 implies that

lim
n→∞

M(μ)n

nprn
= PDP−1, (5)

which is, as the limit of a sequence of nonnegative matrices, a nonnegative ma-
trix. We define E(μ) = (ea,b)a,b∈Σ to be this limit. Because E(μ) is similar to
D, the rank of E(μ) equals that of D, that is, t.

Since M(μ)n = PJ(μ)nP−1 and J(μ)n = diag
(
Jn1 , . . . , J

n
k

)
, it follows from

(2) that for all letters a, b ∈ Σ, there exist constants ci,ja,b, where 1 ≤ i ≤ k, 0 ≤
j < mi such that

|μn(a)|b =
∑

1≤i≤k

∑
0≤j<mi

ci,ja,b

(
n

j

)
λn−j
i . (6)

Without loss of generality, we may assume that the J1, J2, . . . , Jt are the domi-
nating Jordan blocks in J(μ). Then

|μn(a)|b =
∑

1≤i≤t

ci,pa,b

(
n

p

)
rn−p +

∑
1≤i≤t

∑
0≤j<p

ci,ja,b

(
n

j

)
rn−j

+
∑
t<i≤k

∑
0≤j<mi

ci,ja,b

(
n

j

)
λn−j
i . (7)
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Now it follows from (3), (4), and (7) that

|μn(a)|b = βb,an
prn + O(np−1rn), (8)

where βb,a = α
(∑

1≤i≤t c
i,p
a,b

)
.

On the other hand, Equation (5) implies

|μn(a)|b = eb,an
prn + o(nprn).

This and (8) gives βb,a = eb,a, and so |μn(a)|b = eb,an
prn + O(np−1rn).

As the rank of E(μ) equals t ≥ 1, there is a nonzero column in E(μ), say Ea,
where a ∈ Σ. Hence γa :=

∑
b∈Σ eb,a > 0. Now |μn(a)| = γan

prn + o(nprn), and
because the letter a occurs in μ(0), we see that

|μn+1(0)|
(n + 1)prn+1 ≥

|μn(a)|
(n + 1)prn+1 =

γan
prn + o

(
nprn

)
(n + 1)prn+1 −→ γa

1
r
> 0

as n −→ ∞. Since |μn(0)| = γ0n
prn + o(nprn), where γ0 =

∑
b∈Σ eb,0, it follows

that E0 cannot be a zero column.

From this lemma we can conclude:

Corollary 1. Let p + 1 be the size of the dominating Jordan block in J(μ).
Denote W (τ, μ) := M(τ)E(μ), where E(μ) is as in Lemma 3. Then

– For all letters a ∈ Σ, g ∈ Γ ,

|τμn(a)|g = wg,an
prn + O(np−1rn),

where wg,a is the entry of W (τ, μ) in the place (g, a).
– The column W0 is nonzero.

The factorization of any finite prefix of w presented in the next lemma pro-
vides us with an important tool.

Lemma 4. Let G ≥ 1 be an integer. We define Mj = maxa∈Σ
{
|τμj(a)|

}
. The

following holds for any letter a ∈ Σ and integer n ≥ 1: If w is a prefix of τμn(a),
then w has a factorization of the form

w = τμn1(u1)τμn2 (u2) · · · τμnr (ur)z,

where r ≥ 0, n > n1 > n2 > · · · > nr ≥ G, ui ∈ Σ∗ and |ui| ≤ M1 for
i = 1, . . . , r, and z ∈ Σ∗, |z| ≤MG.

Proof. We prove the claim by induction on n ≥ 1. If n ≤ G, then for all a ∈ Σ,
|w| ≤ |τμn(a)| ≤MG, so we may choose r = 0 and z = w. Suppose then that the
claim holds for all 1 ≤ n ≤ k, where k ≥ G, and for all a ∈ Σ, and let n = k+1.

Write μ(a) = b1b2 · · · bt, where bi ∈ Σ. If t = 0, then w = τμn(a) = ε, so
assume t ≥ 1. Now w = τμk(b1b2 · · · bs)w′ for some 0 ≤ s < t and some prefix
w′ of τμk(bs+1). By the induction assumption,

w′ = τμn1 (u1)τμn2(u2) · · · τμnr (ur)z,
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where r ≥ 0, k > n1 > n2 > · · · > nr ≥ G, ui ∈ Σ∗ and |ui| ≤ M1 for
i = 1, . . . , r, and |z| ≤MG. Denote u0 = b1b2 · · · bs, so that

w = τμk(u0)τμn1 (u1)τμn2 (u2) · · · τμnr (ur)z.

Since n > k and |u0| ≤M1, we see that this factorization is of the correct form.

A proof of the next well-known lemma can be found in [2].

Lemma 5 (Abel’s summation formula). Let (an)n≥1 be a sequence of com-
plex numbers. Let f be a complex valued continuously differentiable function for
x ≥ 1. We define

A(x) =
∑

1≤n≤x

an.

Then ∑
1≤n≤x

anf(n) = A(x)f(x) −
∫ x

1
A(t)f ′(t)dt.

We use Abel’s summation formula to prove the following lemma.

Lemma 6. Let r > 1 be a real number, and let q be any integer. Then∑
1≤n≤x

nqrn =
r

r − 1
xqrx + o(xqrx).

Proof. Denote A(x) =
∑

1≤n≤x r
n, and let f(x) = xq. Observe that A(x) ≤ rx+1

r−1 .
Also, ∫ x

1
tq−1rtdt =

(−1)q−1(q − 1)!
(ln r)q

[q−1∑
i=0

(−1)i(ln r)i

i!
tirt

]x
1

= o(xqrx),

which implies ∫ x

1
A(t)tq−1dt = o(xqrx).

Now application of Lemma 5 shows that∑
1≤n≤x

nqrn = r
rx − 1
r − 1

xq − q

∫ x

1
A(t)tq−1dt =

r

r − 1
xqrx + o(xqrx)

4 Main Results

Having established the necessary tools in the previous section, we are ready to
present the main results of this paper.

Theorem 1. Let w = τμω(0) be a morphic sequence and μ be its simple gener-
ator. If r(μ) = 1 (that is, |μn(0)| has polynomial growth rate) then the frequency
of every letter in w exists.
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Proof. It is enough to show that the frequencies of all letters in μω(0) exist. Let
1 ∈ Σ, and let E(μ) and p be as in Lemma 3. Since r(μ) = 1, Lemma 3 implies
that

|μn(0)| = γ0n
p + O

(
np−1), (9)

where γ0 =
∑

b∈Σ eb,0 > 0. Moreover,

φ1 := lim
n→∞

|μn(0)|1
|μn(0)| =

e1,0∑
b∈Σ eb,0

.

We claim that the frequency of the letter 1 exists and equals φ1.
Denote f(n) = |μn+1(0)|−|μn(0)|. Equation (9) implies that f(n)=o

(
|μn(0)|

)
.

Let δ > 0 be a real number. Let G ≥ 1 be an integer such that∣∣∣ |μn(0)|1
|μn(0)| − φ1

∣∣∣ < δ

for all n ≥ G. Let w be a prefix of μω(0) of length |μn(0)| ≤ |w| < |μn+1(0)| for
some n ≥ G. Then

∣∣∣ |w|1|w| − φ1

∣∣∣ ≤ max

{∣∣∣ |w|1|μn(0)| − φ1

∣∣∣, ∣∣∣ |w|1
|μn+1(0)| − φ1

∣∣∣}

≤ max

{∣∣∣ |μn(0)|1
|μn(0)| − φ1

∣∣∣ +
f(n)
|μn(0)| ,

∣∣∣ |μn+1(0)|1
|μn+1(0)| − φ1

∣∣∣ +
f(n)

|μn+1(0)|

}

< max

{
δ +

f(n)
|μn(0)| , δ +

f(n)
|μn+1(0)|

}
−→ δ

as |w| → ∞. Since δ can be chosen arbitrarily close to 0, it follows that

lim
|w|→∞

|w|1
|w| = φ1,

which concludes the proof.

The following theorem is our main result.

Theorem 2. Let w = τμω(0) be a morphic sequence, where μ : Σ∗ → Σ∗ is a
simple generator and τ : Σ∗ → Γ ∗. Denote W (τ, μ) = M(τ)E(μ). The frequency
of the letter 1 ∈ Γ in w exists if and only if

w1,a∑
g∈Γ wg,a

=
w1,0∑
g∈Γ wg,0

(10)

for all nonzero columns Wa of W (τ, μ). If it exists, the frequency is the ratio
in (10).
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Proof. We denote r = r(μ). Let us first assume that the Equation (10) holds for
all nonzero columns. According to Theorem 1, we may assume that r > 1. Let
A ⊆ Σ denote the set of the letters a ∈ Σ such that Wa is nonzero, that is,

A =
{
a ∈ Σ :

∑
g∈Γ

wg,a > 0
}
.

Denote B = Σ \A. First we will show that the contribution of the letters of B
in w is “sufficiently” small, so that their behavior when iterated do not affect
the existence of the frequency.

By Corollary 1,
|τμn(0)| = γ0n

prn + O
(
np−1rn

)
, (11)

where γ0 =
∑

g∈Γ wg,0 > 0, and furthermore for all b ∈ B,

|τμn(b)| = O
(
np−1rn

)
.

Thus there exists a real number α > 0 such that |τμn(b)| ≤ αnp−1rn for all
n ≥ 1 and all b ∈ B. Since r > 1, it follows from Lemma 6 that

n∑
i=1

∑
b∈B

|τμi(b)| ≤ α|B|
n∑
i=1

ip−1ri = o(nprn).

Hence by Equation (11),

n∑
i=1

∑
b∈B

|τμi(b)| = o
(
|τμn−1(0)|

)
. (12)

Now we are ready to show that the frequency of the letter 1 in w exists and
equals

φ1 :=
w1,0∑
g∈Γ wg,0

.

Corollary 1 implies that, for all a ∈ A,

|τμn(a)|1
|τμn(a)| −→

w1,a∑
g∈Γ wg,a

as n −→ ∞, and by the assumption, this limit equals φ1.
Let δ > 0. Let G ≥ 1 be an integer such that∣∣|τμn(a)|1 − φ1|τμn(a)|

∣∣ < δ|τμn(a)|

for all n ≥ G and all a ∈ A.
Let w be a prefix of w of length |τμn−1(0)| < |w| ≤ |τμn(0)| for some n ≥ G,

and let
w = τμn1(u1)τμn2 (u2) · · · τμnr (ur)z,

be the factorization as in Lemma 4. Then n > n1 > n2 > · · · > nr ≥ G,
|ui| ≤ M1 for i = 1, . . . , r, and |z| ≤ MG. Let x

(i)
1 x

(i)
2 · · ·x(i)

si , where x
(i)
j ∈ A,
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denote the subword of ui obtained by erasing all the occurrences of letters of B.
Similarly, let y

(i)
1 y

(i)
2 · · · y(i)

ti , where y
(i)
j ∈ B, denote the subword of ui obtained

by erasing all the occurrences of letters of A. Note that ti ≤M1 for i = 1, 2, . . . , r.
Then

∣∣|w|1 − φ1|w|
∣∣ ≤ r∑

i=1

si∑
j=1

∣∣|τμni (x(i)
j )|1 − φ1|τμni(x(i)

j )|
∣∣

+
r∑

i=1

ti∑
j=1

∣∣|τμni(y(i)
j )|1 − φ1|τμni(y(i)

j )|
∣∣ +

∣∣|z|1 − φ1|z|
∣∣

<

r∑
i=1

si∑
j=1

δ|τμni(x(i)
j )|+

r∑
i=1

ti∑
j=1

|τμni(y(i)
j )|+ |z|

≤ δ|w|+ M1

n∑
k=1

∑
b∈B

|τμk(b)|+ MG.

The previous inequality and a combination of (12) and |τμn−1(0)| < |w| gives

∣∣ |w|1
|w| − φ1

∣∣ < δ + M1

∑n
k=1

∑
b∈B |τμk(b)|
|w| +

MG

|w| −→ δ,

as |w| −→ ∞. Since δ > 0 was arbitrarily chosen, this implies that

lim
|w|→∞

|w|1
|w| −→ φ1.

Hence the frequency of the letter 1 exists and equals the attested value.
Conversely, assume that the frequency of the letter 1 exists. Denote the fre-

quency by φ1, which then has to equal

lim
n→∞

|τμn(0)|1
|τμn(0)| =

w1,0∑
g∈Γ wg,0

.

To derive a contradiction, suppose there exists a letter c ∈ Σ such that the
column Wc is nonzero and

w1,c∑
g∈Γ wg,c

�= w1,0∑
g∈Γ wg,0

.

Denoting the ratio on the left by ρ1, we have ρ1 �= φ1. Since the morphism μ
is a simple generator, the letter c occurs in μ(0), and we can write μ(0) = ucv,
where u, v ∈ Σ∗. Here u �= ε because c �= 0. By Corollary 1,

|τμn(u)|1 = αu n
prn + o

(
nprn

)
, |τμn(u)| = γu n

prn + o
(
nprn

)
,

|τμn(c)|1 = αc n
prn + o

(
nprn

)
, |τμn(c)| = γc n

prn + o
(
nprn

)
,
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where

αu =
|u|∑
i=1

w1,ui , γu =
|u|∑
i=1

∑
g∈Γ

wg,ui ,

αc = w1,c, γc =
∑
g∈Γ

wg,c.

Here the symbol ui denotes the ith letter of u. In particular, u1 = 0, and since
W0 is nonzero, we see that γu > 0. Similarly, γc > 0 since Wc is nonzero.

Since both u and uc are nonempty prefixes of μ(0), it follows that

αu
γu

= lim
n→∞

|τμn(u)|1
|τμn(u)| = φ1

and

αu + αc
γu + γc

= lim
n→∞

|τμn(u)|1 + |τμn(c)|1
|τμn(u)| + |τμn(c)| = lim

n→∞
|τμn(uc)|1
|τμn(uc)| = φ1,

so that αu/γu = αc/γc. But

αc
γc

=
w1,c∑
g∈Γ wg,c

= ρ1,

and consequently φ1 = ρ1, a contradiction. This concludes the proof.

We finish by stating two if-and-only-if condition as to whether the frequencies
of all letters in a morphic sequence exist.

Corollary 2. Let w = τμω(0) be a morphic sequence and μ its simple generator.
The frequencies of all letters in w exist if and only if the rank of W (τ, μ) equals 1.

Proof. By Theorem 2, the frequency of all letters exist if and only if

w1,a∑
g∈Γ wg,a

=
w1,0∑
g∈Γ wg,0

for all letters a ∈ Σ for which Wa is nonzero and for all 1 ∈ Γ . This is true if
and only if

Wa =

∑
g∈Γ wg,0∑
g∈Γ wg,a

W0

for all nonzero columns Wa. Finally, this is equivalent to the condition that the
rank of W (τ, μ) is 1 (note that W0 is nonzero).

Corollary 3. Let w = μω(0) be a pure morphic sequence and μ its simple gen-
erator. Then the frequency of all letters in w exists if and only if the number of
occurrences of the dominating Jordan block in J(μ) equals 1.

Proof. Since now W (μ) = E(μ), the claim follows from Lemma 3 and Corol-
lary 2.
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Functional Equations in Shostak Theories

Sergey P. Shlepakov

Moscow State University, Russia

1 Introduction

We consider Shostak theories introduced in [1]. The class of Shostak theories
consists of decidable first order equality theories, specified by two algorithms:
a canoniser and a solver. A canoniser calculates the normal form of a term.
A solver tests whether an equality can be reduced to an equivalent substitution
and constructs this substitution when it exists. The examples of Shostak theories
are linear arithmetics of integers and rational numbers, theories of lists, arrays,
ets. ([2]).

In [1] the combinations of Shostak theories were considered and it was pro-
posed to combine the solvers of components into a joint solver for the combi-
nation of theories. It was shown later ([3]) that this is impossible for arbitrary
Shostak theories, so some special cases should be considered. One of the most
discussed case ([4], [5]) is the combination of a Shostak theory in a signature Ω
with a pure theory of equality in a signature Ω′, Ω ∩ Ω′ = ∅. This is the case
under consideration.

It can be expressed in some other way. Let us consider the second order
language in the same signature Ω, i.e. we extend the language by second order
functional variables G = {gi}. A set of equations in combined theory became the
system of second order equations in Shostak theory. This formulation naturally
leads to a different notion of a solution: the corresponding substitution must act
on second order variables too.

We express the values for second order functional variables by consistent in-
finite substitutions. We propose an algorithm, that determines whether a system
of equations has a solution in this sense (a unifier), and returns the finite codes
for the functions that constitute the solution. We also propose an algorithm that
computes the values of such a function given its code and its arguments. It is
shown that the solution θ constructed by the first algorithm is the most general
one. Namely, every unifier of the system has the form λθ for some substitution
λ. We also prove that the unifiability of a system of second order equations is
equivalent to its satisfiability in the standard term model for the second or-
der language. Finally we apply this approach to the validity problem for Horn
sentences with second order variables.

Let Ω be a signature that consists of function symbols fi and constants cj .
Let V ar be a countable set of first order variables. By Tm(1) we denote the set
of all (first order) terms constructed from Ω and V ar.

For a vector of terms t̄ = (t1, . . . , tn) and a map σ : Tm(1) → Tm(1) let
σt̄ = (σt1, . . . , σtn).

D. Grigoriev, J. Harrison, and E.A. Hirsch (Eds.): CSR 2006, LNCS 3967, pp. 346–351, 2006.
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A substitution is a map σ : Tm(1) → Tm(1) such that σcj = cj and σfi(t̄) =
fi(σt̄) hold for all t̄. In general, the set

Dom(σ) = { x ∈ V ar | σx �= x }

for a substitution σ may be infinite. A substitution σ is called finite, if Dom(σ)
is finite. We write σ = [ti/xi] if σxi = ti and the sequence {xi} enumerates
Dom(σ). A finite substitution ε = [ti/xi] can be represented by the formula∧
xi∈Dom(ε)(xi = ti) that will be denoted by the same letter ε when it does not

lead to ambiguity.
For σ = [ti/xi] let V ar(σ) = Dom(σ) ∪

⋃
i V ar(ti).

2 Shostak Theories

The definition of Shostak theory involves two algoriths: canoniser and solver.

Definition 1. A canoniser π is a computable map of Tm(1) to Tm(1) such that
1) πx = x,
2) V ar(πt) ⊆ V ar(t),
3) πσ = πσπ,
4) πt = f(t1, . . . , tn) ⇒ πti = ti,
5) πf(t̄) = πf(πt̄).

Here x is a variable, f ∈ Ω, t, ti ∈ Tm(1) and σ is a substitution.

With a canoniser π we associate the first order equality theory Tπ (in the signa-
ture Ω) with axioms t = πt, t ∈ Tm(1).

Lemma 1. Let a, b be a terms. Tπ � a = b iff πa = πb.

For a finite set W ⊂ V ar and a fomula ϕ let (∃W )ϕ denote the formula (∃x̄)ϕ,
where x̄ is the list of all variables from W .

Definition 2. Let a, b ∈ Tm(1) and U ⊂ V ar(1) be an infinite decidable set of
variables such that V ar(a, b)∩U = ∅. A solver is a procedure solve(U, a = b) with
the following properties. It returns ⊥ when Tπ �� (∃V ar(a=b))a = b. Otherwise it
returns a finite idempotent substitution ε, such that:

1) Dom(ε) ⊆ V ar(a = b),
2) W = V ar(ε) \ V ar(a = b) ⊆ U ,
3) Tπ � (∃W ) ε↔ a = b.

The last condition means that ε is a solution of the equation a = b. We admit
parametric solutions too and U provides “fresh” variable identifiers for them.

A Shostak theory is a theory of the form Tπ for some canoniser π that has a
solver solve ([2]).

Example 1. (Convex theory of lists [2]). The signature consists of a function
symbols car and cdr, that return the head and the tail of the list, and a binary
function symbol cons, that constructs the list given its head and tail.
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The canoniser π: apply the following reduction rules

cons(car(x), cdr(x)) → x, car(cons(x, y)) → x, cdr(cons(x, y)) → y

while it is possible. (The result does not depend on the order of the reductions.)
The solver works as follows. Let the equation be car(x) = cdr(y) and x, y /∈

U , u ∈ U . It is provable in Tπ that

car(x) = cdr(y) ⇔ ∃u (x = cons(cdr(y), u)),

so solve(U, car(x) = cdr(y)) returns [cons(cdr(y), u)/x]. Note that the equation
has no idempotent solution ε with V ar(ε) ⊆ {x, y}.

The standard variable elimination method extends the solver procedure to
the case of a finite system of first order equations S = {ai = bi}. The substitution
returned by solve(U, S) will also have the properties similar to 1-3 above. We
show that this solution will be the most general one in the following sence.

A unifier for the first order system S = {ai = bi} is a finite idempotent
substitution σ such that πσai = πσbi. A most general unifier for S with respect
to U is a unifier σ for S such that for any unifier ε for S holds πεt = πσεσt for
some substitution σε and all terms t with V ar(1)(t) ∩ U = ∅.

Theorem 1. Let U ⊂ V ar be infinite and U ∩ V ar(S) = ∅. If Tπ � (∃V ar(S))S
then there exists a most general unifier for S w.r.t. U .

3 The Second Order Language

Let Ω be a signature, V ar(1) be a set of first order variables, G = { g1, g2, . . . }
be a set of second order function variables. The set of second order terms is
defined by the following grammar

Tm(2) ::= V ar(1) | ci | fi(Tm(2), . . . , Tm(2)) | gi(Tm(2), . . . , Tm(2)).

Any term from the set V ar(2) = V ar(1) ∪ { gi(t̄) } is called a solvable ([5]).
A second order solvable is a solvable of the form gi(t̄). Let T+ be a set of all
solvables that are subterms of terms from T ⊂ Tm(2).

We say that the map π : Tm(2) → Tm(2) is functionally consistent if πt̄1 =
πt̄2 implies πf(t̄1) = πf(t̄2) and πg(t̄1) = πg(t̄2) for all f ∈ Ω, g ∈ G.

The notion of substitution remains the same as for the first order case. Let
α be any map of Tm(2) to Tm(2). We say that a substitution σ is α-consistent,
if ασg(t̄) = ασg(αt̄) holds for every second order solvable g(t̄).

4 The Canoniser for Tm(2)

Let λ : Tm(2) → Tm(1) be an infinite invertible substitution that replaces all
solvables (of the forms gi(t̄) and xi ∈ V ar(1)) by the first order variables. We
also suppose that λ and λ−1 are computable. Let π be a canoniser.
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Lemma 2. A map κ : Tm(2) → Tm(2) and a substitution μ such that κt =
λ−1πλμt, μ = { g(κt̄1)/g(t̄1) | g(t̄1) ∈ V ar(2) } do exist and are unique.

Lemma 3. Let t1, t2 ∈ Tm(1). Then πt1 = πt2 ⇔ κt1 = κt2.

Theorem 2. The map κ has the following properties (similar to the properties
1–5 of a canoniser):

1) κx = x, for x ∈ V ar(1);
2) V ar(1)(κt) ⊆ V ar(1)(t), here V ar(1)(t) = V ar(t) ∩ V ar(1);
3) κσt = κσκt for any κ-consistent substitution σ;
4) if κt = f(t1, . . . , tn), then κti = ti;
5) κf(t̄) = κf(κt̄).

Thus, the computable map κ has essentially the same properties as a canoniser
for the first order term. Moreover, the equivalence relation on Tm(1)

induced by κ coincides with one induced by π. We will say that κ is a generalised
canoniser.

5 Solutions for Second Order Equation Systems

Let S = { ai = bi }, ai, bi ∈ Tm(2) be a finite system of second order equations.
Then {λai = λbi } is a first order system, so we can use the first order solver
to solve it: solve(λU, {λai = λbi }) = [ti/vi]. We may try to define the second
order solver as follows:

solve(2)(U, S) = [λ−1ti/λ
−1vi] = σ.

The substitution σ satisfies the system: κσai = κσbi. It is idempotent and
Dom(σ) ⊆ V ar(S). But at the same time this solve(2) cannot guarantee the
functional consistency condition. For example, it can return a substitution σ =
[1/g(x), 2/x, 3/g(2)] for which κσx = κσ2, but κσg(x) �= κσg(2). Moreover,
solve(2) returns finite substitutions whereas a nontrivial functionally consistent
substitution must be infinite. Below we provide a better way to solve the second
order equation systems.

Definition 3. Let S = { ai = bi }, ai, bi ∈ Tm(2) be a finite system of second
order equations. A unifier of S is an idempotent functionally consistent and κ-
consistent substitution ρ such that κρai = κρbi.

Let U ⊂ V ar(1) and (V ar(S))+ ∩ U = ∅. A weak most general unifier of
S with respect to U (weak mgu of S w.r.t. U) is a unifier ρ such that for any
unifier ρ1 of S there exists substitution ρ2 for which κρ1t = κρ2ρt holds for all
terms t with (V ar(t))+ ∩ U = ∅.

A week mgu ρ of S w.r.t. U is called stable if μρ is a weak mgu of S w.r.t.
U too.



350 S.P. Shlepakov

6 The Construction of a Unifier

We construct a unifier for S in two steps. At first we construct some finite
substitution. Then we extend it using the extension procedure specified below.
The result will be an inifinite substitution that will be a stable weak mgu for S.
Now we introduce the extension procedure.

Let W ⊂ V ar(2) be finite. We construct an inifinite functionally consistent
substitution σ̄ for which σv = σ̄v holds when v ∈W .

A substitution σ is called 〈κ,W 〉-consistent if for all gk(t̄1), gk(t̄2) ∈ W

κσt̄1 = κσt̄2 ⇒ σgk(t̄1) = σgk(t̄2),
κt̄1 = κt̄2 ⇒ σgk(t̄1) = σgk(t̄2).

Lemma 4. Let W ⊂ V ar(2) be finite, W = W+, σ be a 〈κ,W 〉-consistent
substitution, and (V ar(σ))+ ⊆W . Then

1) there exists unique substituition σ̄ such that
σ̄x = σx, x ∈ V ar(1),

σ̄gk(t̄) =

⎧⎨⎩
σgk(t̄), gk(t̄) ∈ W ;
σgk(t̄1), gk(t̄) /∈ W and ∃gk(t̄1) ∈ W : κσ̄t̄ = κσ̄t̄1;
gk(κσ̄t̄), gk(t̄) /∈ W and ¬∃gk(t̄1) ∈ W : κσ̄t̄ = κσ̄t̄1;

2) σ̄ is κ-consistent;
3) σv = σ̄v for every v ∈W ;
4) if σ is idempotent, then σ̄ is an idempotent and functionally consistent

substitution;
5) if σ is idempotent and θ is an idempotent, functionally consistent and

κ-consistent substitution such that θ|W = σ|W , then κθ = κθσ̄.

Let U ⊂ V ar(2) be an infinite decidable set of variables. Now we introduce the
unification algorithm unify(U, S) for finite systems S = { ai = bi }, ai, bi ∈
Tm(2) with U ∩ (V ar(S))+ = ∅. It tests the unifiability of S and in the positive
case returns some finite substitution which can be used as a finite core of a
unifier.

1. Let i = 0, S0 = κS.
2. If solve(2)(U, Si) = ⊥ then terminate and return ⊥. Else set σi =

solve(2)(U, Si).
3. If there exists a solvables gk(t̄1), gk(t̄2) ∈ (V ar(κS))+ such that κσi t̄1 =

κσi t̄2, but κσigk(t̄1) �= κσigk(t̄2), then set Si+1 = Si ∪ {gk(t̄1) = gk(t̄2)},
i = i + 1, and goto step 2. If there is no such solvables, goto step 4.

4. Terminate with the result σ = [κtj/vj] where [tj/vj ] = σi.

Theorem 3. 1) unify(U, S) always terminates.
2) If S has no unifier then unify(U, S) returns ⊥.
3) If S has a unifier then unify(U, S) returns a substitution σ such that

V ar(σ) \ V ar(κS) ⊂ U .
4) If S has a unifier then the resulting substitution σ is 〈κ,W 〉-consistent for

W = (V ar(κS))+ ∪ V ar(1)(σ) and σ̄ is a stable weak mgu for S w.r.t. U .
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7 The Standard Term Model

Here we define a standart term model I2
κ for the second order theory and show

that a system of equations is unifiable iff it is satisfiable in this model. We also
construct an operator mod which provides the validity test for Horn clauses.

Definition 4. Let Ω be a signature and G be a set of second oder variables.
The standart term model I2

κ (for the second order language) is the model with
domain D2

κ = { κt | t ∈ Tm(2) }. The constants and the function symbols from
Ω are interpreted as follows: cI

2
κ

j = κcj , f
I2

κ

j (t̄) = κfj(t̄).

Definition 5. A system of equations S = {ai = bi}, ai, bi ∈ Tm(2) is satisfiable
in a model I if I |= (∃V ar(S))S.

Theorem 4. A system of equations S = {ai = bi}, ai, bi ∈ Tm(2) is satisfiable
in the standard term model I2

κ iff S has a unifier.

Now we introduce a computable operation modU and demonstrate how it can
be used for testing the validity of Horn clauses in the standard term model. Let
a unifiable system of equations S = {ai = bi}, ai, bi ∈ Tm(2) and an infinite
decidable set U ⊂ V ar(2) be fixed and V ar(S)+ ∩U = ∅. Suppose ζ be a stable
weak mgu of S w.r.t. U (for example, the week mgu from Theorem 3).

Definition 6. t modU S = κζt.

Theorem 5. Let a, b ∈ Tm(2) and V ar(a, b) ∩ U = ∅.

I2
κ |= (S → a = b) ⇔ a modU S = b modU S.
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Abstract. For two strings a, b of lengths m, n respectively, the longest
common subsequence (LCS) problem consists in comparing a and b by
computing the length of their LCS. In this paper, we define a gener-
alisation, called “the all semi-local LCS problem”, where each string is
compared against all substrings of the other string, and all prefixes of
each string are compared against all suffixes of the other string. An ex-
plicit representation of the output lengths is of size Θ (m+n)2 . We show
that the output can be represented implicitly by a geometric data struc-
ture of size O(m + n), allowing efficient queries of the individual output
lengths. The currently best all string-substring LCS algorithm by Alves
et al. can be adapted to produce the output in this form. We also develop
the first all semi-local LCS algorithm, running in time o(mn) when m
and n are reasonably close. Compared to a number of previous results,
our approach presents an improvement in algorithm functionality, output
representation efficiency, and/or running time.

1 Introduction

Given two strings a, b of lengths m, n respectively, the longest common subse-
quence (LCS) problem consists in comparing a and b by computing the length
of their LCS. In this paper, we define a generalisation, called “the all semi-local
LCS problem”, where each string is compared against all substrings of the other
string, and all prefixes of each string are compared against all suffixes of the
other string. The all semi-local LCS problem arises naturally in the context of
LCS computations on substrings. It is closely related to local sequence alignment
(see e.g. [7, 9]) and to approximate string matching (see e.g. [6, 15]).

A standard approach to string comparison is representing the problem as a
dag (directed acyclic graph) of size Θ(mn) on an m×n grid of nodes. The basic
LCS problem, as well as its many generalisations, can be solved by dynamic
programming on this dag in time O(mn) (see e.g. [6, 7, 15, 9]). It is well-known
(see e.g. [13, 1] and references therein) that all essential information in the grid
dag can in fact be represented by a data structure of size O(m + n). In this
paper, we expose a rather surprising (and to the best of our knowledge, previ-
ously unnoticed) connection between this linear-size representation of the string
comparison dag, and a standard computational geometry problem known as
dominance counting.
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If the output lengths of the all semi-local LCS problem are represented explic-
itly, the total size of the output is Θ

(
(m+n)2

)
, corresponding to m2+n2 possible

substrings and 2mn possible prefix-suffix pairs. To reduce the storage require-
ments, we allow the output lengths to be represented implicitly by a smaller data
structure that allows efficient retrieval of individual output values. Using previ-
ously known linear-size representations of the string comparison dag, retrieval
of an individual output length typically requires scanning of at least a constant
fraction of the representing data structure, and therefore takes time O(m + n).
By exploiting the geometry connection, we show that the output lengths can be
represented by a set of m + n grid points. Individual output lengths can be ob-
tained from this representation by dominance counting queries. This leads to a
data structure of size O(m+n), that allows to query an individual output length
in time O

( log(m+n)
log log(m+n)

)
, using a recent result by JaJa, Mortensen and Shi [8].

The described approach presents a substantial improvement in query efficiency
over previous approaches.

It has long been known [14, 5] that the (global) LCS problem can be solved
in subquadratic1 time O

(
mn

log(m+n)

)
when m and n are reasonably close. Alves

et al. [1], based on an idea of Schmidt [17], proposed an all string-substring (i.e.
restricted semi-local) LCS algorithm that runs in time O(mn). In this paper,
we propose the first all semi-local LCS algorithm, which runs in subquadratic
time O

(
mn

log(m+n)1/2

)
when m and n are reasonably close. This improves on [1]

simultaneously in algorithm functionality, output representation efficiency, and
running time.

2 Previous Work

Although our generic definition of the all semi-local LCS problem is new, several
algorithms dealing with similar problems involving multiple substring compari-
son have been proposed before. The standard dynamic programming approach
can be regarded as comparing all prefixes of each string against all prefixes of the
other string. Papers [17, 11, 1] present several variations on the theme of compar-
ing substrings (prefixes, suffixes) of two strings. In [12, 10], the two input strings
are revealed character by character. Every new character can be either appended
or prepended to the input string. Therefore, the computation is performed es-
sentially on substrings of subsequent inputs. In [13], multiple strings sharing a
common substring are compared against a common target string. A common
feature in many of these algorithms is the use of linear-sized string comparison
dag representation, and a suitable merging procedure that “stitches together”
the representations of neighbouring dag blocks to obtain a representation for
the blocks’ union. As a consequence, such algorithms could be adapted to work
with our new, potentially more efficient geometric representation, without any
increase in asymptotic time or memory requirements.

1 The term “subquadratic” here and in the paper’s title refers to the case m = n.
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3 Problem Statement and Notation

We consider strings of characters from a fixed finite alphabet, denoting string
concatenation by juxtaposition. Given a string, we distinguish between its con-
tiguous substrings, and not necessarily contiguous subsequences. Special cases of
a substring are a prefix and a suffix of a string. For two strings a = α1α2 . . . αm
and b = β1β2 . . . βn of lengths m, n respectively, the longest common subsequence
(LCS) problem consists in computing the LCS length of a and b.

We consider a generalisation of the LCS problem, which we call the all semi-
local LCS problem. It consists in computing the LCS lengths on substrings of a
and b as follows:

• the all string-substring LCS problem: a against every substring of b;
• the all prefix-suffix LCS problem: every prefix of a against every suffix of b;
• symmetrically, the all substring-string LCS problem and the all suffix-prefix

LCS problem, defined as above but with the roles of a and b exchanged.

It turns out that by considering this combination of problems rather than each
problem separately, the algorithms can be greatly simplified.

A traditional distinction, especially in computational biology, is between
global (full string against full string) and local (all substrings against all sub-
strings) comparison. Our problem lies in between, hence the term “semi-local”.
Many string comparison algorithms output either a single optimal comparison
score across all local comparisons, or a number of local comparison scores that
are “sufficiently close” to the globally optimal. In contrast with this approach,
we require to output all the locally optimal comparison scores.

In addition to standard integer indices Z = {. . . ,−2,−1, 0, 1, 2, . . .}, we use
odd half-integer2 indices Ẑ = {. . . ,− 5

2 ,−
3
2 ,−

1
2 ,

1
2 ,

3
2 ,

5
2 , . . .}. For two numbers i,

j, we write i 	 j if j − i ∈ {0, 1}, and i 
 j if j − i = 1. We denote

[i : j] = {i, i+ 1, . . . , j − 1, j}
〈i : j〉 =

{
i + 1

2 , i + 3
2 , . . . , j −

3
2 , j −

1
2

}
4 Problem Analysis

It is well-known that an instance of the LCS problem can be represented by a
dag (directed acyclic graph) on an m×n grid of nodes, where character matches
correspond to edges of weight 1, and gaps to edges of weight 0. To describe our
algorithms, we need a slightly extended version of this representation, where the
representing dag is embedded in an infinite grid dag.

Definition 1. Let m,n ∈ N. A grid dag G is a weighted dag, defined on the set
of nodes vi,j, i ∈ [0 : m], j ∈ [0 : n]. For all i ∈ [1 : m], j ∈ [1 : n]:

2 It would be possible to reformulate all our results using only integers. However, using
odd half-integers helps to make the exposition simpler and more elegant.
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• horizontal edge vi,j−1 → vi,j and vertical edge vi−1,j → vi,j are both always
present in G and have weight 0;

• diagonal edge vi−1,j−1 → vi,j may or may not be present in G; if present, it
has weight 1.

Given an instance of the all semi-local LCS problem, its corresponding grid dag
is an m × n grid dag, where the diagonal edge vi−1,j−1 → vi,j is present, iff
αi = βj .

Common string-substring, suffix-prefix, prefix-suffix, and substring-string sub-
sequences correspond, respectively, to paths of the following form in the grid dag:

v0,j � vm,j′ vi,0 � vm,j′ v0,j � vi′,n vi,0 � vi′,n (1)

where i, i′ ∈ [0 : m], j, j′ ∈ [0 : n]. The length of each subsequence is equal to the
weight of its corresponding path. The solution to the all semi-local LCS problem
is equivalent to finding the weight of a maximum-weight path of each of the four
types (1) between every possible pair of endpoints. (Since the graph is acyclic,
this is also equivalent to finding the weight of the corresponding minimum-weight
path in a grid dag where all the weights are negated.)

Definition 2. Given an m × n grid dag G, its extension G+ is an infinite
weighted dag, defined on the set of nodes vi,j, i, j ∈ Z and containing G as a
subgraph. For all i, j ∈ Z:

• horizontal edge vi,j−1 → vi,j and vertical edge vi−1,j → vi,j are both always
present in G+ and have weight 0;

• when i ∈ [1 : m], j ∈ [1 : n], diagonal edge vi−1,j−1 → vi,j is present in G+

iff it is present in G; if present, it has weight 1;
• otherwise, diagonal edge vi−1,j−1 → vi,j is always present in G+ and has

weight 1.

An infinite dag that is an extension of some (finite) grid dag will be called an
extended grid dag. When dag G+ is the extension of dag G, we will say that G
is the core of G+. Relative to G+, we will call the nodes of G core nodes.

By using the extended grid dag representation, the four path types (1) can
be reduced to a single type, corresponding to the all string-substring (or, sym-
metrically, substring-string) LCS problem on an extended set of indices.

Definition 3. Given an m×n grid dag G, its extended horizontal (respectively,
vertical) score matrix is an infinite matrix defined by

A(i, j) = maxweight(v0,i � vm,j) i, j ∈ Z (2)
A∗(i, j) = maxweight(vi,0 � vj,n) i, j ∈ Z (3)

where the maximum is taken across all paths between the given endpoints in the
extension G+. If i = j, we have A(i, j) = 0. By convention, if j < i, then we let
A(i, j) = j − i < 0.
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The maximum path weights for each of the four path types (1) can be ob-
tained from the extended horizontal score matrix (2) as follows:

maxweight(v0,j � vm,j′) = A(j, j′)
maxweight(vi,0 � vm,j′ ) = A(−i, j′)− i

maxweight(v0,j � vi′,n) = A(j,m + n− i′)−m + i′

maxweight(vi,0 � vi′,n) = A(−i,m + n− i′)−m− i + i′

where i, i′ ∈ [0 : m], j, j′ ∈ [0 : n], and the maximum is taken across all paths
between the given endpoints. The same maximum path weights can be obtained
analogously from the extended vertical score matrix (3).

For most of this section, we will concentrate on the properties of extended
horizontal score matrices, referring to them simply as “extended score matrices”.
By symmetry, extended vertical score matrices will have analogous properties.
We assume i, j ∈ Z, unless indicated otherwise.

Theorem 1. An extended score matrix has the following properties:

A(i, j) 	 A(i− 1, j); (4)
A(i, j) 	 A(i, j + 1); (5)
if A(i, j + 1) 
 A(i− 1, j + 1), then A(i, j) 
 A(i− 1, j); (6)
if A(i− 1, j) 
 A(i− 1, j + 1), then A(i, j) 
 A(i, j + 1). (7)

Proof. A path v0,i−1 � vm,j can be obtained by first following a horizontal edge
of weight 0: v0,i−1 → v0,i � vm,j . Therefore, A(i, j) ≤ A(i− 1, j). On the other
hand, any path v0,i−1 � vm,j consists of a subpath v0,i−1 � vl,i of weight at
most 1, followed by a subpath vl,i � vm,j . Therefore, A(i, j) ≥ A(i − 1, j) − 1.
We thus have (4) and, by symmetry, (5).

A crossing pair of paths v0,i � vm,j and v0,i−1 � vm,j+1 can be rearranged
into a non-crossing pair of paths v0,i−1 � vm,j and v0,i � vm,j+1. Therefore, we
have the Monge property:

A(i, j) + A(i− 1, j + 1) ≤ A(i− 1, j) + A(i, j + 1)

Rearranging the terms

A(i− 1, j + 1)−A(i, j + 1) ≤ A(i− 1, j)−A(i, j)

and applying (4), we obtain (6) and, by symmetry, (7). !�
The properties of Theorem 1 are symmetric with respect to i and n− j. Alves et
al. [1] introduce the same properties but do not make the most of their symmetry.
We aim to exploit symmetry to the full.

Corollary 1. An extended score matrix has the following properties:

if A(i, j) 
 A(i− 1, j), then A(i, j′) 
 A(i− 1, j′) for all j′ ≤ j;
if A(i, j) = A(i− 1, j), then A(i, j′) = A(i− 1, j′) for all j′ ≥ j;

if A(i, j) 
 A(i, j + 1), then A(i′, j) 
 A(i′, j + 1) for all i′ ≥ i;
if A(i, j) = A(i, j + 1), then A(i′, j) = A(i′, j + 1) for all i′ ≤ i.
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Proof. These are the well-known properties of matrix A and its transpose AT

being totally monotone. In both pairs, the properties are each other’s contrapos-
itive, and follow immediately from Theorem 1. !�

Informally, Corollary 1 says that the inequality between the corresponding el-
ements in two successive rows (respectively, columns) “propagates to the left
(respectively, downwards)”, and the equality “propagates to the right (respec-
tively, upwards)”. Recall that by convention, A(i, j) = j − i for all index pairs
j < i. Therefore, we always have an inequality between the corresponding ele-
ments in successive rows or columns in the lower triangular part of matrix A. If
we fix i and scan the set of indices j from j = −∞ to j = +∞, an inequality
may change to an equality at most once. We call such a value of j critical for i.
Symmetrically, if we fix j and scan the set of indices i from i = +∞ to j = −∞,
an inequality may change to an equality at most once, and we can identify values
of i that are critical for j. Crucially, for all pairs (i, j), index i will be critical
for j if and only if index j is critical for i. This property lies at the core of our
method, which is based on the following definition.

Definition 4. An odd half-integer point (i, j) ∈ Ẑ2 is called A-critical, if

A
(
i + 1

2 , j −
1
2

)

 A

(
i− 1

2 , j −
1
2

)
= A

(
i + 1

2 , j + 1
2

)
= A

(
i− 1

2 , j + 1
2

)
In particular, point (i, j) is never A-critical for i > j. When i = j, point (i, j) is
A-critical iff A

(
i− 1

2 , j + 1
2

)
= 0.

Corollary 2. Let i, j ∈ Ẑ2. For each i (respectively, j), there exists at most one
j (respectively, i) such that the point (i, j) is A-critical.

Proof. By Corollary 1 and Definition 4. !�

We will represent an extended score matrix by its set of critical points. Such a
representation is based on the following simple geometric concept.

Definition 5. Point (i0, j0) dominates3 point (i, j), if i0 < i and j < j0.

Informally, the dominated point is “below and to the left” of the dominating
point in the score matrix4. The following theorem shows that the geometric rep-
resentation of a score matrix is unique, and gives a simple formula for recovering
matrix elements.

Theorem 2. For an arbitrary integer point (i0, j0) ∈ Z2, let dA(i0, j0) denote
the number of (odd half-integer) A-critical points it dominates. We have

A(i0, j0) = j0 − i0 − dA(i0, j0)

3 The standard definition of dominance requires i < i0 instead of i0 < i. Our definition
is more convenient in the context of the LCS problem.

4 Note that these concepts of “below” and “left” are relative to the score matrix, and
have no connection to the “vertical” and “horizontal” directions in the grid dag.
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Proof. Induction on j0 − i0. Denote d = dA(i0, j0).

Induction base. Suppose i0 ≥ j0. Then d = 0 and A(i0, j0) = j0 − i0.
Inductive step. Suppose i0 < j0. Let d′ denote the number of critical points in
〈i0 : n〉×〈0 : j0−1〉. By the inductive hypothesis, A(i0, j0−1) = j0−1− i0−d′.
We have two cases:

1. There is a critical point (i, j0− 1
2 ) for some i ∈ 〈i0 : n〉. Then d = d′ + 1 and

A(i0, j0) = A(i0, j0 − 1) = j0 − i0 − d by Corollary 1.
2. There is no such critical point. Then d = d′ and A(i0, j0) = A(i0, j0−1)+1 =

j0 − i0 − d by Corollary 1.

In both cases, the theorem statement holds for A(i0, j0). !�

Recall that outside the core, the structure of an extended grid graph is trivial:
all possible diagonal edges are present in the non-core subgraph. This gives rise
to an additional property: when i < −m or j > m + n, point (i, j) is A-critical
iff j − i = m. We will call such A-critical points trivial. It is easy to see that
an A-critical point (i, j) is non-trivial, iff either both v0,i− 1

2
and v0,i+ 1

2
, or both

vm,j− 1
2

and vm,j+ 1
2
, are core nodes.

Corollary 3. There are exactly m + n non-trivial A-critical points.

Proof. We have A(−m,m + n) = m. On the other hand, A(−m,m + n) =
2m+ n− dA(−m,m+ n) by Theorem 2. Hence, the total number of non-trivial
A-critical points is dA(−m,m + n) = m + n. !�

Since only non-trivial critical points need to be represented explicitly, Theo-
rem 2 allows a representation of an extended score matrix by a data structure
of size O(m + n). There is a close connection between this representation and
the canonical structure of general Monge matrices (see e.g. [4]).

Informally, Theorem 2 says that the value A(i0, j0) is determined by the
number of A-critical points dominated by (i0, j0). This number can be obtained
by scanning the set of all non-trivial critical points in time O(m+ n). However,
much more efficient methods exist when preprocessing of the critical point set is
allowed.

The dominance relation between points is a well-studied topic in computa-
tional geometry. The following theorems are derived from two relevant geometric
results, one classical and one recent.

Theorem 3. For an extended score matrix A, there exists a data structure which

• has size O
(
(m + n) log(m + n)

)
;

• can be built in time O
(
(m + n) log(m + n)

)
, given the set of all non-trivial

A-critical points;
• allows to query an individual element of A in time O

(
log(m + n)2

)
.

Proof. The structure in question is a 2D range tree [3] (see also [16]), built
on the set of non-trivial critical points. There are m + n non-trivial critical
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points, hence the total number of nodes in the tree is O
(
(m + n) log(m + n)

)
.

A dominance query on the set of non-trivial critical points can be answered
by accessing O

(
log(m + n)2

)
of the nodes. A dominance query on the set of

trivial critical points can be answered by a simple constant-time index calculation
(note that the result of such a query can only be non-zero when the query
point lies outside the core subgraph of the extended grid dag). The sum of
the two dominance queries above provides the total number of critical points
dominated by the query point (i0, j0). The value A(i0, j0) can now be obtained
by Theorem 2. !�

Theorem 4. For an extended score matrix A, there exists a data structure which

• has size O(m + n);
• allows to query an individual element of A in time O

( log(m+n)
log log(m+n)

)
.

Proof. As above, but the range tree is replaced by the asymptotically more
efficient data structure of [8]. !�

While the data structure used in Theorem 4 provides better asymptotics, the
range tree used in Theorem 3 is simpler, requires a less powerful computation
model, and is more likely to be practical.

We conclude this section by formulating yet another previously unexploited
symmetry of the all semi-local LCS problem, which will also become a key ingre-
dient of our algorithm. This time, we consider both the horizontal score matrix A
as in (2), and the vertical score matrix A∗ as in (3). We show a simple one-to-one
correspondence between the geometric representations of A and A∗, allowing us
to switch easily between these representations.

Theorem 5. Point (i, j) is A-critical, iff point (−i,m+ n− j) is A∗-critical.

Proof. Straightforward case analysis based on Definition 4. !�

5 The Algorithm

We now describe an efficient algorithm for the all semi-local LCS problem. We
follow a divide-and-conquer approach, which refines the framework for the string-
substring LCS problem developed in [17, 1].

Strings a, b are recursively partitioned into substrings. Without loss of gen-
erality, consider a partitioning a = a1a2 into a concatenation of two substrings
of length m1, m2, where m1 + m2 = m. Let A, B, C denote the extended
score matrices for the all semi-local LCS problems comparing respectively a1,
a2, a against b. In every recursive call our goal is, given matrices A, B, to com-
pute matrix C efficiently. We call this procedure merging. Trivially, merging can
be performed in time O

(
(m + n)3

)
by standard matrix multiplication over the

(max,+)-semiring. By exploiting the Monge property of the matrices, the time
complexity of merging can be easily reduced to O

(
(m + n)2

)
, which is optimal

if the matrices are represented explicitly. We show that a further reduction in
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the time complexity of merging is possible, by using the data representation and
algorithmic ideas introduced in Section 4.

By Theorem 2, matrices A, B, C can each be represented by the sets of
respectively m1 + n, m2 + n, m + n non-trivial critical points. Alves et al. [1]
use a similar representation; however, for their algorithm, n critical points per
matrix are sufficient. They describe a merging procedure for the special case
m1 = 1 (or m2 = 1), that runs in time O(n). On the basis of this procedure,
they develop a string-substring LCS algorithm that runs in time O(mn), and
produces a data structure of size O(n), which can be easily converted into the
critical point set for the output matrix. By adding a post-processing phase based
on Theorems 3, 4, this algorithm can be adapted to produce a query-efficient
output data structure.

Our new algorithm is based on a novel merging procedure, which works for
arbitrary values m1, m2.

Lemma 1. Given subproblems with extended score matrices A, B, C as de-
scribed above, the sets of A- and B-critical points can be merged into the set of
C-critical points in time O

(
m + n1.5

)
and memory O(m + n).

Proof. Our goal is to compute the set of all non-trivial C-critical points. Without
loss of generality, we may assume that 2m1 = 2m2 = m, and that n is a power of
2 (otherwise, appropriate padding can be applied to the input). We will compute
non-trivial C-critical points in two stages:

1. points (i, k) ∈ 〈−m,−m
2 〉 × 〈0,

m
2 + n〉 ∪ 〈−m

2 , n〉 × 〈
m
2 + n,m + n〉;

2. points (i, k) ∈ 〈−m
2 , n〉 × 〈0,

m
2 + n〉.

It is easy to see that every non-trivial C-critical point (i, j) is computed in either
the first or the second stage. Informally, each C-critical point in the first stage is
obtained as a direct combination of an A-critical and a B-critical point, exactly
one of which is trivial. All A-critical and B-critical points remaining in the
second stage are non-trivial, and determine collectively the remaining C-critical
points. However, in the second stage the direct one-to-one relationship between
C-critical points and pairs of A- and B-critical points need not hold.

We now give a formal description of both stages of the algorithm.

First stage. Let i ∈ 〈−m,−m
2 〉, j = i+ m

2 . Recall that (i, j) is a trivial A-critical
point. It is straightforward to check that for all k, (i, k) is C-critical, iff (j, k)
is B-critical. Therefore, all m/2 C-critical points in 〈−m,−m

2 〉 × 〈0,
m
2 + n〉 can

be found in time O(m+n). Analogously, all m/2 C-critical points in 〈−m
2 , n〉×

〈m2 +n,m+n〉 can also be found in time O(m+n). The overall memory cost of
the first stage is O(m + n).

Second stage. First, we simplify the problem by eliminating all half-integer in-
dices that correspond to critical points considered in the first stage. We then
proceed by partitioning the resulting square index range recursively into regular
half-sized square blocks. For each block, we establish the number of C-critical
points contained in it, and perform the recursive partitioning of the block as
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long as this number is greater than 0. (The details are omitted due to space
restrictions. They will appear in the full version of the paper.)

In summary, the first stage takes time and memory O(m + n). The second
stage takes time and memory O(m+ n) for index elimination and renumbering,
and then time O(n1.5) and memory O(n) for the recursion. Therefore, we have
the total time and memory cost as claimed. !�

From now on, we assume without loss of generality that n ≤ m. We will also
assume that m and n are reasonably close, so that (logm)c ≤ n for some constant
c, specified separately for each algorithm. First, we describe a simple algorithm
running in overall time O(mn), and then we modify it to achieve running time
o(mn).

Algorithm 1 (All semi-local LCS, basic version).
Input: strings a, b of length m, n, respectively; we assume logm ≤ n ≤ m.
Output: extended score matrix on strings a, b, represented by m+n non-trivial
critical points.
Description. The computation proceeds recursively, partitioning the longer of
the two current strings into a concatenation of two strings of equal length (within
±1 if string length is odd). Given a current partitioning, the corresponding
sets of critical points are merged by Lemma 1. Note that we now have two
nested recursions: the main recursion of the algorithm, and the inner recursion
of Lemma 1.

In the process of main recursion, the algorithm may (and typically will, as
long as the current values of m and n are sufficiently close) alternate between
partitioning string a and string b. Therefore, we will need to convert the geo-
metric representation of a horizontal score matrix into a vertical one, and vice
versa. This can be easily achieved by Theorem 5.

The base of the main recursion is m = n = 1.
Cost analysis. Consider the main recursion tree. The computational work in
the top log(m/n) levels of the tree is at most log(m/n)·O(m)+(m/n)·O(n1.5) =
O(mn). The computational work in the remaining 2 logn levels of the tree is
dominated by the bottom level, which consists of O(mn) instances of merging
score matrices of size O(1). Therefore, the total computation cost is O(mn).

The main recursion tree can be evaluated depth-first, so that the overall
memory cost is dominated by the top level of the main recursion, running in
memory O(n). !�

The above algorithm can now be easily modified to achieve the claimed sub-
quadratic running time, using an idea originating in [2] and subsequently applied
to string comparison by [14].

Algorithm 2 (All semi-local LCS, full version).
Input, output: as in Algorithm 1; we assume (logm)5/2 ≤ n ≤ m.
Description. Consider an all semi-local LCS problem on strings of size t =
1
2 · logσ m, where σ is the size of the alphabet. All possible instances of this
problem are precomputed by Algorithm 1 (or by the algorithm of [1]). After
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that, the computation proceeds as in Algorithm 1. However, the main recursion
is cut off at the level where block size reaches t, and the precomputed values are
used as the recursion base.
Cost analysis. In the precomputation stage, there are σ2t problem instances,
each of which costs O(t2). Therefore, the total cost of the precomputation is
σ2t ·O(t2) = 1

4 ·m(logσ m)2 = O
(

mn
log1/2(m+n)

)
.

Consider the main recursion tree. The computational work in the top log(m/n)
levels of the tree is at most log(m/n) · O(m) + (m/n) · O(n1.5) = O

(
mn

log1.5 m

)
+

O
(

mn
log5/4 m

)
= o

(
mn

log1/2(m+n)

)
. The computational work in the remaining 2 log(n/t)

levels of the tree is dominated by the cut-off level, which consists of O(mn/t2)
instances of merging score matrices of size O(t). Therefore, the total computa-
tion cost is mn/t2 ·O(t1.5) = O

(
mn
t1/2

)
= O

(
mn

log1/2(m+n)

)
. !�

6 Conclusions

We have presented a new approach to the all semi-local LCS problem. Our
approach results in a significantly improved output representation, and yields the
first subquadratic algorithm for the problem, with running time O

(
mn

log1/2(m+n)

)
when m and n are reasonably close.

An immediate open question is whether the time efficiency of our algorithm
can be improved even further, e.g. to match the (global) LCS algorithms of [14, 5]
with running time O

(
mn

log(m+n)

)
. Currently, our algorithm assumes constant al-

phabet size; it may be possible to remove this assumption by the technique
of [5].

Another interesting question is whether our algorithm can be adapted to more
general string comparison. The edit distance problem concerns a minimum-cost
transformation between two strings, with given costs for character insertion,
deletion and substitution. The LCS problem is equivalent to the edit distance
problem with insertion/deletion cost 1 and substitution cost 2 or greater. By a
constant-factor blow-up of the grid dag, our algorithm can solve the all semi-
local edit distances problem, where the insertion, deletion and substitution edit
costs are any constant rationals. It remains an open question whether this can
be extended to arbitrary real costs, or to sequence alignment with non-linear
gap penalties.

Finally, our technique appears general enough to be able to find applications
beyond semi-local comparison. In particular, could it be applied in some form to
the biologically important case of fully local (i.e. every substring against every
substring) comparison?
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Deficiency Function
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Abstract. Let x be a binary string of length n. Consider the set Px

of all pairs of integers (a, b) such that the randomness deficiency of x
in a finite set S of Kolmogorov complexity at most a is at most b. The
paper [4] proves that there is no algorithm that for every given x upper
semicomputes the minimal deficiency function βx(a) = min{b | (a, b) ∈
Px} with precision n/ log4 n. We strengthen this result in two respects.
First, we improve the precision to n/4. Second, we show that there is no
algorithm that for every given x enumerates a set at distance at most
n/4 from Px, which is easier than to upper semicompute the minimal
deficiency function of x with the same accuracy.

1 Introduction

We first recall the basic notions of Kolmogorov complexity and randomness
deficiency. Let Ξ = {0, 1}∗ be the set of all binary strings. The length of x ∈ Ξ
is denoted by l(x). A decompressor is a partial computable function D mapping
Ξ ×Ξ to Ξ.

The complexity of x conditional to y with respect to D is defined as

KD(x|y) = min {l(p) | D(p, y) = x}

(the minimum of the empty set is defined as +∞). A decompressor U is called
universal if for every other decompressor D there is c such that for all x, y ∈ Ξ
it holds KU (x|y) ≤ KD(x|y) + c. Fix a universal decompressor and define the
Kolmogorov complexity of a binary string x conditional to a binary string y
by K(x|y) = KU (x|y). This definition and a proof of existence of universal
decompressors was given in [2], see also the textbook [3]. The (unconditional)
Kolmogorov complexity of x is defined as K(x) = K(x|empty string).

In this paper we need to define Kolmogorov complexity also for finite subsets
of Ξ. To this end fix a computable injective mapping S �→ [S] of the set of finite
subsets of Ξ to Ξ and let K(S) = K([S]). The Kolmogorov complexity of x
conditional to a set S is defined as K(x|S) = K(x|[S]).

� The work was supported by the RFBR grant 06-01-00122-a and NSH grant
358.2003.1.

D. Grigoriev, J. Harrison, and E.A. Hirsch (Eds.): CSR 2006, LNCS 3967, pp. 364–368, 2006.
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The randomness deficiency of x in a finite set S ⊂ Ξ (where x ∈ S) was
defined by Kolmogorov as

δ(x|S) = log |S| −K(x|S).

The randomness deficiency measures how unlikely looks the hypothesis “x was
obtained by a random sampling in S”. For example, if someone claims that he
has tossed a fair coin n = 1000 times and the result is x1 = 00 . . .0 (n tails) or
x2 = 0101 . . .01 we will hardly believe him. The randomness deficiency of both
strings x1, x2 in the set S = {0, 1}n is close to n, as both K(x1|S) and K(x2|S)
are small. However the string x3 with no regularities (K(x3|n) is close to n) does
not look that suspicious and we have δ(x3|S) ≈ n− n = 0.

2 Our Results and Related Works

In the algorithmic statistics initiated by Kolmogorov and developed in [1, 4] we
want for given data x ∈ Ξ and given complexity level α to find an explanation
for x, that is, to find a finite set S � x of complexity at most α such that the
randomness deficiency of x in S is small. The minimal randomness deficiency
function of x measures the best randomness deficiency we can achieve at each
complexity level α:

βx(α) = min
S
{δ(x|S) : S � x, K(S) ≤ α}

The profile of x is defined as

P (x) = {〈a, b〉 | ∃S : S � x, K(S) ≤ a, δ(x|S) ≤ b}

The profile of x is determined uniquely by the minimal randomness deficiency
function and vice versa.

Fix α. How can we find a set S � x with small δ(x|S)? The following idea
is inspired by the Maximal likelihood principle. Find a set S � x of complexity
at most α of minimal possible cardinality. Following this idea, Kolmogorov has
defined the structure function of x:

hx(α) = min
S
{log |S| : S � x, K(S) ≤ α}

The paper [4] proves that this method indeed works: every set S � x of com-
plexity at most K(S) ≤ α of minimal cardinality (among sets of complexity
at most α) minimizes also the randomness deficiency of x in sets of complex-
ity at most α − O(log n), where n = l(x). Formally, write f(n) = O(g(n)) if
|f(n)| ≤ cg(n) + C, where c ia an absolute constant and C depends on the uni-
versal decompressor in the definition of K(x|y). The paper [4] proves that for
some function δ′ = O(log n) and for every x of length n and set S � x with
K(S) ≤ α + δ′ it holds:

δ(x|S) < log |S|+ K(S)−K(x) + δ′ (1)
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βx(α) > hx(α + δ′) + α−K(x)− δ′. (2)

The first inequality implies that if S witnesses hx(α + δ′) = i then δ(x|S) ≤
i+α−K(x)+2δ′. The second inequality implies that βx(α) > i+α−K(x)− δ′

thus δ(x|S) is only 3δ′ apart from βx(α).
This result implies that the set

Q(x) = {〈a, b + a−K(x)〉 | ∃S : S � x, K(S) ≤ a, log |S| ≤ b}

is O(log n) close to the profile of x (we say that P is ε close to Q if for all
(a, b) ∈ P there is (a′, b′) ∈ Q with |a−a′| ≤ ε, |b−b′| ≤ ε, and vice versa). Note
that there is a (non-halting) algorithm A that given x and K(x) enumerates the
set Q(x) (prints all the pairs in Q(x)). A natural question is whether there is
an algorithm that enumerates a set which is O(log n) close to P (x) given only
x (and not K(x))? The main result of the present paper is the negative answer
to this question (Theorem 1 below): given only x it is impossible to enumerate
a set that is n/4−O(log n) close to P (x).

A result from [4] states that the minimal deficiency function βx(α) is not
upper-semicomputable with accuracy n/ log4 n. This means that there is no (non-
halting) algorithm that given x and α enumerates a set A of naturals such
that βx(α) < minA < βx(α) + n/ log4 n. Note that this result does not imply
anything about approximating the profile of x. Indeed, as it is proven in [4],
the function βx(α) can decrease much (say by n/2) when α increases only a
little (by O(log n)). Therefore there is no simple way to transform an algorithm
approximating the set P (x) to an algorithm upper semicomputing βx: a set
Q can approximate P (x) but the set {b | (a, b) ∈ Q} can be far apart from
{b | (a, b) ∈ P (x)} (for some a).

Our second result shows that it is impossible to approximate the value of
βx(α) in a point α that is not very close to 0 or n. Let α(n) be a computable
function such that n/10 < α(n) < 9n/10 (say). Then there is no algorithm that
given x and α enumerates a set A whose minimal element is at distance at most
n/30 from a point in the range [βx(α(n));βx(α(n) − n/30)]. This follows from
Theorem 2 below.

3 Theorems and Proofs

Theorem 1. There is a function δ = O(log n) with the following property.
There is no algorithm that for every string x of length n enumerates a set of
pairs of naturals P ′ = P ′(x) that is n/4− δ close to P (x).

Proof. We first prove that there is no algorithm enumerating a set P ′ that is
n/6− δ close to P (x). Then using the inequality (2), we show how to modify the
proof to obtain the theorem. Assume that there is an algorithm that for every
given x enumerates a set P ′ at distance n/6− δ from P (x), where the value of δ
will be chosen later. Then run the following algorithm A. Its input is the length n
and the number of finite subsets of Ξ of Kolmogorov complexity at most n/3−δ.



Non-approximability of the Randomness Deficiency Function 367

We first enumerate finite subsets of Ξ of complexity at most n/3 − δ until we
find the given number of them. Then we find all the strings x of length n that
do not belong to any set of complexity at most n/3− δ and cardinality at most
22n/3. Then for every such x we run the algorithm enumerating a set P ′(x) at
distance at most n/6− δ from P (x). If for some x we find a pair 〈a′, b′〉 ∈ P ′(x)
with a′ < n/6, b′ < n/6, we halt and output that x. (End of algorithm A.)

We claim that (1) the algorithm will eventually halt and (2) the complexity of
the output string x is more than n/3. The claim (1) means that there is a string
x that does not belong to any set of complexity at most n/3− δ and cardinality
at most 22n/3 such that the set P ′(x) has a pair 〈a′, b′〉 with a′ ≤ n/6, b′ < n/6.
Indeed let x be a string of length n with K(x|n) ≥ n (simple counting shows
that there is such x). If x belonged to a set S of complexity at most n/3 − δ
and cardinality at most 22n/3 then we could describe x by its index in S and by
S. The total length of this description would be n/3− δ + 2n/3 + O(log n) (we
need extra O(log n) bits to separate the description of S from the binary index
of x in S). If δ is large enough the total length of this description would be less
than n. For S equal to the set of all strings of length n we have

δ(x|S) = log |S| −K(x|S) ≤ n−K(x|n) + O(1) ≤ O(1).

This proves that the profile of x has the pair 〈O(1), O(1)〉 and the set P ′(x) the
pair 〈a′, b′〉 with a′ ≤ n/6− δ + O(1) < n/6, b′ ≤ n/6− δ + O(1) < n/6.

To prove the claim (2) note that the profile of the x output by A has the pair
(a, b) with a, b < n/3 − δ. That is, there is a set S � x of complexity at most
n/3 − δ with δ(x|S) ≤ n/3 − δ. As x is outside all sets of complexity at most
n/3− δ and cardinality at most 22n/3, we know that log |S| ≥ 2n/3 Therefore

K(x) ≥ K(x|S)−O(1) = log |S| − δ(x|S)−O(1) ≥ 2n/3− n/3 + δ −O(1)
= n/3 + δ −O(1).

Thus we have shown that the algorithm outputs a string x of complexity at least
n/3 + δ − O(1) on input of complexity at most n/3 − δ + O(log n). For large
enough δ = O(log n) this is a contradiction.

Let us prove now the theorem in the original formulation. Consider the same
algorithm as above but this time look for a string outside sets of complexity at
most n/2−δ and cardinality at most 2n/2 such that P ′(x) has a pair 〈a′, b′〉 with
a′ < n/4, b′ < n/4. Just as above, we can prove that the algorithm terminates.
To lower bound the complexity of its output x we use the inequality (2) for
α = n/2− δ − δ′. We have:

K(x) ≥ hx(α+ δ′) +α− δ′− βx(α) ≥ n/2 + n/2− δ− 2δ′−n/2 + δ = n/2− 2δ′

Thus the algorithm on the input of complexity n/2 − δ + O(log n) outputs a
string x of complexity at least n/2 − 2δ′. Recall that δ′ = O(log n). Hence for
some δ = O(log n) we obtain a contradiction. !�

The next theorem is proved by essentially the same arguments.
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Theorem 2. There is a function δ = O(log n) with the following property. Then
there is no algorithm that for every n, every string x of length n and every α and
ε such that 2ε ≤ α ≤ n − 2ε− δ enumerate a set T = T (x) of natural numbers
whose minimal element is in the range

βx(α) < minT < βx(α− ε) + ε.

Proof. Assume that such algorithm and ε, α exist. Consider the following al-
gorithm A. As input it receives n and the number of all finite subsets of Ξ of
complexity at most α+δ′, where δ′ is the function from (2). We find all x outside
sets of complexity at most α + δ′ and cardinality at most 2n−α−ε−δ′

. For every
such x we enumerate the set T (x), and when we find an x with minT (x) < ε we
halt and output that x. The complexity of that x is at least

hx(α + δ′) + α− δ′ − βx(α) > n− 2ε− δ′.

As the input has complexity at most α+δ′+O(logn) we obtain α+δ′+O(logn) >
n − 2ε − δ′. For some δ = O(log n) this inequality contradicts the condition
α < n− 2ε− δ.

It remains to show that there is x of length n outside all sets of complexity
at most α + δ′ and cardinality at most 2n−α−δ′−ε with minT (x) < ε. As in
the previous theorem consider an x with K(x|n) ≥ n. It is outside all sets of
complexity at most α + δ′ and cardinality at most 2n−α−δ′−ε, as otherwise we
could describe it in n − ε + O(log n) < n bits. As the randomness deficiency of
x in the set S of all strings of length n is O(1) we have βx(α − ε) = O(1) thus
minT (x) < βx(α− ε) + ε ≤ ε. !�
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Abstract. Logic of proofs LP, introduced by S. Artemov, originally de-
signed for describing properties of formal proofs, now became a basis for
the theory of knowledge with justification. So far, in epistemic systems
with justification the corresponding “evidence part”, even for multi-agent
systems, consisted of a single explicit evidence logic. In this paper we in-
troduce logics describing two interacting explicit evidence systems. We
find an appropriate formalization of the intended semantics and prove
the completeness of these logics with respect to both symbolic and arith-
metical models. Also, we find the forgetful projections for the logics with
two proof predicates which are extensions of the bimodal logic S42.

1 Introduction

The Logic of Proofs LP introduced by S. Artemov in 1995 (see the detailed
description in [1, 2]) was originally designed to express in logic the notion of
a proof. It is formulated in the propositional language enriched by new atoms
[[t]]F with the intended meaning “t is a proof of F”. Proofs are represented by
proof terms constructed from proof variables and proof constants by means of
three elementary computable operations: binary ·, + and unary ! specified by
the axioms

[[t]](A→ B)→ ([[s]]A→ [[t · s]]B) application
[[t]]A→ [[t + s]]A, [[s]]A→ [[t + s]]A nondeterministic choice
[[t]]A→ [[!t]][[t]]A positive proof checker

LP is axiomatized over propositional calculus by the above axioms and the prin-
ciple

[[t]]A→ A weak reflexivity

The rules of inference are modus ponens and axiom necessitation rule. The latter
allows to specify proof constants as proofs of the concrete axioms

[[a]]A
, where a is an axiom constant, A is an axiom of LP.

The intended semantics for LP is given by formal proofs in Peano Arithnmetic
PA: proof variables are interpreted by codes of PA-derivations, [[t]]F stands for

D. Grigoriev, J. Harrison, and E.A. Hirsch (Eds.): CSR 2006, LNCS 3967, pp. 369–380, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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the arithmetical proof predicate “t is a proof of F”. It is proven in [2] that
LP is arithmetically complete with respect to the class of all proof systems.
Furthermore, LP suffices to realize Gödel’s provability logic S4 and thus provides
S4 and intuitionistic logic with the exact provability semantics.

In [3] it was suggested to treat [[t]]F as a new type of knowledge operator
called evidence–based knowledge with the meaning “t is an evidence for F .”
Evidence based knowledge (EBK ) systems are obtained by augmenting a multi–
agent logic of knowledge with a system of evidence assertions [[t]]F . Three main
cases of EBK–systems were introduced in [3] in which the base knowledge logic
is Tn, S4n or S5n. The evidence part for all of them consists of a single logic of
proofs LP.

In this paper we study multiple interacting EBK–systems, namely, we study
logics that describe the behavior of two reasoning agents P1 and P2 which some-
how communicate to each other. For simplicity, let us think about a reasoning
agent as a proof system, then evidences are proofs in this system. We develop
a language with two proof operators [[·]]1(·) and [[·]]2(·) representing proof predi-
cates for P1 and P2. In general, proofs of these two systems are distinct, so proof
terms for a proof system Pi (i = 1, 2) are constructed from its own atomic proofs
represented by proof variables pik and proof constants cik. We suppose that both
P1 and P2 has all the power of LP, so we reserve a copy of LP–operations ×i,
+i and !i for application, nondeterministic choice and positive proof checker in
Pi (i = 1, 2).

For the minimal logic of two proof systems denoted by LP2 we assume that
there is no communication between them, except that all axioms are common
knowledge, so we extend the axiom necessitation rule and allow it to derive all
the formulas

[[ck1
j1

]]k1 [[c
k2
j2

]]k2 . . . [[c
kn

jn
]]knA, where all ki ∈ {1, 2}, A is an axiom.

Going further, we may assume that the two systems P1 and P2 are allowed to
communicate, that is, one of the proof systems is able to derive something about
the other one. We study two types of communications.

Proof checking. We assume that P2 can verify all proofs of P1 and introduce
a unary operation !21 specified by the axiom

[[t]]1A→ [[!21t]]2[[t]]1A.

Further, we can consider the case when both P1 and P2 are able to verify
each other, then we add the dual operation !12 with the specification

[[t]]2A→ [[!12t]]1[[t]]2A.

The resulting logics are denoted by LP2
! and LP2

!! respectively.
Proof embedding. Here we suppose that all proofs of P1 can be converted to

P2–proofs; this is done by the operation ↑21 specified by the principle

[[t]]1A→ [[↑21 t]]2A.
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If P1 can also imitate P2–proof, we add a converse operation ↑12 with the
specification

[[t]]2A→ [[↑12 t]]1A.

We denote the resulting logics by LP2
↑ and LP2

�.

In this paper for all the logics L mentioned above we do the following:

– describe symbolic semantics and prove completeness of L;
– find the forgetful projection of L, i.e. a bimodal logic obtained from L by

replacing all occurrences of [[t]]i by �i for i = 1, 2;
– describe arithmetical interpretation and prove completeness of L.

The structure of the paper is the following. In section 2 we give a precise
description of the language and the logics we are dealing with. In section 3 the
modal counterparts of all the described logics are found. It turned out that the
forgetful projections of LP2

! and LP2
!! coincide with the projections of LP2

↑ and
LP2

� respectively. Section 4 is devoted to symbolic and arithmetical semantics.

2 Explicit Evidence Logics for Two Agents: Definitions

Definition 1. The minimal language L of the bimodal explicit evidence logic is
denoted by LP2. It contains

– propositional variables SVar = {S1, S2, . . .};
– two disjoint sets of proof variables PVar i = {pi1, pi2, . . .} and two disjoint sets

of proof constants {ci1, ci2, . . .} where i = 1, 2;
– two copies of every operation on proofs from LP: binary ×1, +1, ×2, +2 and

unary !1 and !2;
– Boolean connectives and two operational symbols [[·]]1(·) and [[·]]2(·) of the

type proof→ (proposition→ proposition)

We also consider extensions of L. The first option is to add one or both of the
unary functional symbols !21 and !12; we denote the result by LP2

! , LP2
!! respectively.

Another option is to add one or both of the unary functional symbols ↑21 and ↑12;
the result is denoted by LP2

↑, LP2
� respectively.

For every language L from the definition above we define two sets of terms
Tmi(L), (i = 1, 2). For L = LP2 the set Tmi(L) consists of all terms constructed
from variables and constants labelled with sup-i by operations labelled by i.
Namely, for i = 1, 2, every proof variable pij or proof constant cij is an element
of Tmi(L) and if t, s ∈ Tmi(L), then t×i s, t+i s and !it belong to Tmi(L) too.
For the extensions of the minimal language we add the following clauses to the
definition of terms

– for L = LP2
! , if t ∈ Tm1(L) then !21t ∈ Tm2(L);

– for L = LP2
!!, if t ∈ Tm1(L) then !21t ∈ Tm2(L) and if t ∈ Tm2(L) then

!12t ∈ Tm1(L);
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– for L = LP2
↑, if t ∈ Tm1(L) then ↑21 t ∈ Tm2(L);

– for L = LP2
�, if t ∈ Tm1(L) then ↑21 t ∈ Tm2(L) and if t ∈ Tm2(L) then

↑12 t ∈ Tm1(L).

Formulas of the language L are constructed from sentence variables by boolean
connectives and according to the rule: for i = 1, 2 if t ∈ Tmi(L) and F is a
formula of L then [[t]]iF is a formula of L too. The set of all formulas is denoted
by Fm(L). Formulas of the form and [[t]]iF are called q-atomic, the set of such
formulas is denoted by QFmi(L). We write QFm(L) for QFm1(L) ∪QFm2(L).

Operations on proofs are specified by the following formulas (t, s are terms,
A, B are formulas):

Ax(×i) [[t]]i(A→ B)→ ([[s]]iA→ [[t×i s]]iB)
Ax(+i) [[t]]iA→ [[t +i s]]iA, [[s]]iA→ [[t +i s]]iA
Ax(!i) [[t]]iA→ [[!it]]i[[t]]iA
Ax(!21) [[t]]1A→ [[!21t]]2[[t]]1A
Ax(!12) [[t]]2A→ [[!12t]]1[[t]]2A
Ax(↑21) [[t]]1A→ [[↑21 t]]2A
Ax(↑12) [[t]]2A→ [[↑12 t]]1A

Definition 2. For every language L from Definition 1 we define the correspond-
ing bimodal logic of proofs L. It is axiomatized by the following schemas:

A0 classical propositional axioms
A1 [[t]]iA→ A, i = 1, 2
A2. . . axioms for all operations of L.

The rules of inference are modus ponens and axiom necessitation rule

[[ck1
j1

]]k1 [[c
k2
j2

]]k2 . . . [[c
kn

jn
]]knA, where all ki ∈ {1, 2}, A is an axiom.

Informally speaking, the language LP2 describes the structure which contains
objects of three types: propositions represented by formulas, proofs1 and proofs2
represented by proof terms. We suppose that there are two proof systems P1 and
P2; the system Pi tries to find t ∈ proofsi for A ∈ propositions. The structure is
supplied with two proof predicates [[t]]1A and [[t]]2A, which correspond to P1 and
P2. Both proof predicates are supposed to be recursive. For every p ∈ proofsi
the set of propositions proved by p in Pi is finite and the function that maps
proofs to the corresponding sets is total recursive.

Both proof systems P1 and P2 are supplied with operations on proofs taken
from LP, thus, they are capable of internalizing there own proofs. The mini-
mal language LP2 corresponds to the situation when two proof systems do not
communicate. The only information about P1 which is available to P2 and vise
versa is transferred via the axiom necessitation rule. For example, the second
proof system knows that !1 is a proof checker of the first one since we can derive
[[c2]]2([[t]]1A → [[!t]]1[[t]]1A). Externally we can prove that something is provable
in P1 iff it is provable in P2, that is, the following two assertions are equivalent:
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there exists a term t ∈ Tm1(LP2) such that LP2 � [[t]]1A
and

there exists a term s ∈ Tm2(LP2) such that LP2 � [[s]]2A

However, this fact cannot be derived in LP2, that is, there is no term t ∈
Tm2(LP2) such that LP2 � [[p1]]1S → [[t]]2S (this fact easily can be proven using
symbolic semantics from section 4). So, neither P1 nor P2 is able to formalize or
proof the equivalence just mentioned.

The communication between the two proof systems becomes possible in the
extensions of LP2. In LP2

! and LP2
↑ it is one-way: P2 can derive some facts about

P1. In LP2
!! in LP2

� information can be transferred symmetrically both-ways.
Operations !21 and !12 are proof checkers. LP2

! corresponds to the case when P2 is
able to check proofs of P1; in LP2

!! we suppose that both of Pi can proof-check
each other. Operations ↑21 or ↑12 appear if one of the systems can prove everything
that the other one can.

Operations !21 and ↑21 can imitate each other in the following sense.

Lemma 1. 1. For every term t ∈ Tm1(LP2
! ) and formula F ∈ Fm(LP2

! ), there
is a term s ∈ Tm2(LP2

! ) such that LP2
! � [[t]]1F → [[s]]2F .

2. For every term t ∈ Tm1(LP2
↑) and formula F ∈ Fm(LP2

↑), there is a term
s ∈ Tm2(LP2

↑0 such that LP2
↑ � [[t]]1F → [[s]]2[[t]]1F .

Proof. 1. Derive in LP2
! 2. Derive in LP2

↑
[[t]]1F → [[!21t]]2[[t]]1F [[t]]1F → [[!1t]]1[[t]]1F
[[c2]]2([[t]]1F → F ) [[!1t]]1[[t]]1F → [[↑21!1t]]2[[t]]1F
[[t]]1F → [[c2 ×2 (!21t)]]2F [[t]]1F → [[↑21 (!1t)]]2[[t]]1F

take s = c2 ×2 (!21t) take s =↑21 (!1t).

Lemma 2 (Internalization property). Let L be one of the logics from De-
finition 2. If L � F , then for i = 1, 2 there exists a term ti constructed from
constants with the help of operations ×i and !i such that L � [[ti]]iF .

Proof. Standard induction on derivation of F .

Lemma 3. Let L be one of the logics from definition 2. For i = 1, 2 let δi be a
∧,∨–combination of q-atoms from QFmi(L). Let δ stand for a ∧,∨–combination
of q-atoms from QFm1(L) ∪QFm2(L).

1. There exists a term ti such that L � δi → [[ti]]iδi.
2. If L contains either !21 or ↑21 then there exists a term t ∈ Tm2(L) such that

L � δ → [[t]]2δ.
3. If L contains either !12 or ↑12 then there exists a term t ∈ Tm1(L) such that

L � δ → [[t]]1δ.

Proof. 1. Induction on the construction of δi. If δi = [[t]]iF then apply Ax(!i) to
obtain L � δi → [[!it]]iδi. If δi = αi ∧ βi or δi = αi ∨ βi then, by the induction
hypothesis, there exist terms u and v such that L � αi → [[u]]iαi and L � βi →
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[[v]]iβi. By the axiom necessitation rule, L � [[ci]]i(αi → (βi → (αi ∧ βi)). Using
Ax(×i), we derive

L � αi ∧ βi → [[ci ×i u×i v]]i(αi ∧ βi).

By axiom necessitation we also have L � [[ci1]]i(αi → αi ∨ βi) and L � [[ci2]]i(βi →
αi ∨ βi). Hence L � αi → [[ci1 ×i u]]i(αi ∨ βi) and L � βi → [[ci2 ×i v]]i(αi ∨ βi).
Therefore L � αi ∨ βi → [[(ci1 ×i u) +i (ci2 ×i v)]]i(αi ∨ βi).

2. The induction step is similar to the previous case. For the induction base
now we should consider two options [[t]]1F and [[s]]2F instead of one. The second
option is treated similarly with the previous case. For δ = [[t]]1F we have LP2

! �
[[t]]1F → [[!21t]]2[[t]]1F . In LP2

↑ we reason as follows: LP2
↑ � [[t]]1F → [[!1t]]1[[t]]1F

and LP2
↑ � [[!1t]]1δ1,2 → [[↑21!1t]]δ1,2. Hence LP2

↑ � δ1,2 → [[↑21!1t]]δ1,2.
3. Similar to 2.

3 Realization of Bimodal Logics

In [2] it is proven that LP is able to realize all derivations in the modal logic S4,
namely, if A is a theorem of S4 then there is an assignment of LP–terms to all
occurrences of �’s in A such that the resulting formula is a theorem in LP. In
this section we describe the modal counterparts of the logics LP2, LP2

! and LP2
↑.

We need the bimodal logic S42 and its extension S42
mon. S42 is given by the

following axioms and rules of inference: for i = 1, 2,

A1 propositional tautologies
A2 �iA→ A
A3 �i(A→ B) → (�iA→ �iB)
A4 �iA→ �i�iA
R1 Modus Ponens: A,A→ B � B
R2 Necessitation: if � A then � �iA.

S42
mon is an extension of S42 by the principle

A5 �1F → �2F.

We prove that the analog of the realization theorem for S4 and LP holds for
the following pairs of logics: S42 and LP2, S42

mon and LP2
! , S42

mon and LP2
↑. We

need the following definition.

Definition 3. Let L be one of the languages from definition 1. Suppose that A is
a formula with two modalities. A realization of A in the language L is a formula
Ar ∈ Fm(L) which is obtained from A by substitution of terms from Tmi(L) for
all occurrences of �i in A. A realization is normal if all negative occurrences of
modalities are assigned proof variables.

Theorem 1. 1. S42 � A iff there exists a normal realization r in the language
LP2 such that LP2 � Ar.

2. For L ∈ {LP2
! , LP2

↑}, S42
mon � A iff there exists a normal realization r in

the language L such that L � Ar.
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The proof of this theorem goes along the lines of the proof of realization of
S4 in LP (sf. [2]). First of all, we need the normalized Gentzen-style versions
of S42 and S42

mon. Sequential calculus for S42, denoted by GS42, has the same
axioms and rules as sequential calculus for classical propositional logic plus four
modal rules (two for each modality):

(Left�i)
A,Γ ⇒ Δ

�iA,Γ ⇒ Δ
(Right�i)

�iΓ ⇒ A

�iΓ ⇒ �iA
(i = 1, 2).

In the Gentzen-style version of S42
mon denoted by GS42

mon the rule (Right�2) is
replaced by a stronger version

�1Γ1,�2Γ2 ⇒ A

�1Γ1,�2Γ2 ⇒ �2A
.

Theorem 2. For a logic L ∈ {S42, S42
mon} the following connection between L

and its Gentzen-style version G holds:

G � Γ ⇒ Δ iff L �
∧

Γ →
∨

Δ.

Theorem 3. Any logic G ∈ {GS42, GS42
mon} enjoys cut-elimination: if G �

Γ ⇒ Δ then Γ ⇒ Δ can be derived in G without using of the Cut-rule.

Lemma 4. 1. GS42 � Γ ⇒ Δ iff there exists a normal realization r such that
LP2 � (

∧
Γ →

∨
Δ)r.

2. For L ∈ {LP2
! , LP2

↑}, GS42
mon � Γ ⇒ Δ iff there exists a normal realization

r in the language L such that L � (
∧
Γ →

∨
Δ)r.

Proof. Similar to the proof of the realization theorem for LP. Goes by induction
on the cut-free proof of Γ ⇒ Δ. Uses Internalization and δ-completeness.

4 Symbolic and Arithmetical Semantics

Models of multi-agent logics of explicit knowledge below are natural generaliza-
tions of Mkrtychev models for LP (cf. [6]).

Definition 4. Let L be any language from definition 1. An L–model M =
(#, v) consists of two objects

– # is a mapping from proof terms of L to sets of formulas of L, called an
evidence function;

– v is a truth evaluation of sentence variables.

For every functional symbol from L the evidence function # should satisfy the
corresponding closure condition from the list given below: suppose that t, s are
in Tmi(L), i = 1, 2
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– if (A→ B) ∈ #(t), A ∈ #(s) then B ∈ #(t×i s);
– if A ∈ #(t) then A ∈ #(t +i s) and A ∈ #(s +i t);
– if A ∈ #(t) then [[t]]iA ∈ #(!it);
– if A ∈ #(u) and u ∈ Tm1(L) then [[u]]1A ∈ #(!21u);
– if A ∈ #(v) and v ∈ Tm2(L) then [[v]]2A ∈ #(!12v);
– if A ∈ #(u) and u ∈ Tm1(L) then A ∈ #(↑21 u);
– if A ∈ #(v) and v ∈ Tm2(L) then A ∈ #(↑12 v).

Definition of the truth relation M |= A is inductive: for propositional variables
M |= S iff v(S) = true, |= commutes with Boolean connectives and for ti ∈ Tmi

M |= [[t]]iA � A ∈ #(t) and M |= A.

A model M = (#, v) is called finitely generated (or f.g. for short) if

– for every term t the set #(t) is finite; the set {p ∈ PVar | #(p) �= ∅} is finite;
– the set of terms, for which the converse of the conditions on the evidence

function does not hold, is finite;
– the set {S ∈ SVar | v(S) = true} is finite.

Definition 5. For any logic L from definition 2 a constant specification CS
is any finite set of formulas derived by the axiom necessitation rule. We say
that L � A meeting CS if all axiom necessitation rules in the derivation of A
introduce formulas from CS. We say that an L–model M meets CS if M |=
(
∧

CS ).

Theorem 4. Let L be any logic from definition 2.
1. If L � A meeting CS then for every L-model M meeting CS one has

M |= A.
2. If L �� A meeting CS then there exists a f.g. L-model M meeting CS such

that M �|= A.

Proof. We give the sketch of the proof for L = LP2; for the remaining systems the
proof differs in saturation and completion algorithms (see below) to which the
cases corresponding to the additional operations should be added. It is enough
to consider the case CS = ∅; the general case can be reduces to this one by the
deduction theorem which holds in all logics L. We omit all the proofs of technical
lemmas.

Soundness can be easily proven by induction on the derivation of A. In or-
der to prove completeness suppose that LP2 �� A. We will construct a finitely
generated model M = (#, v ) such that M �|= A.

Step 1: Saturation algorithm. It constructs a finite set of formulas Sat(A)
which is called an adequate set. We need the following definition: the complexity
of a proof term t denoted by |t| is the length of the longest branch in the tree
representing this term. The saturation algorithm works as follows:

1. Initialization. Put Sat0(A) := SubFm(A). Calculate the maximal complexity
of terms which occur in A; let N denote the result.
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2. For every l = 1, . . . , N + 1 we calculate the set Sat l(A) as follows.
– Initially Sat l(A) := Sat l−1(A).
– if [[t]]i(A→ B), [[s]]iA ∈ Sat l−1(A) then extend Sat l(A) by [[t×i s]]iB;
– if [[t]]iA ∈ Sat l−1(A) and |s| ≤ l then extend Sat l(A) by [[t +i s]]iA and

[[s +i t]]iA;
– if [[t]]iA ∈ Sat l−1(A) then extend Sat l(A) by [[!it]]i[[t]]iA.

3. Put Sat(A) := SatN+1(A).

Lemma 5. (Properties of adequate sets.) For every l = 0, . . . , N + 1,

1. Sat l(A) is closed under subformulas, that is, SubFm(Sat l(A)) ⊆ Sat l(A).
2. If G ∈ Sat l+1(A) \ Sat l(A) then G has the form [[t]]E and |t| ≥ l + 1.
3. If [[t]]i(F → G), [[s]]iF ∈ Sat(A) and |t×i s| ≤ N then [[t×i s]]iG ∈ Sat(A).

If [[t]]iG ∈ Sat(A) and |t +i s| ≤ N , then [[t +i s]]iG, [[s +i t]]iG ∈ Sat(A).
If [[t]]iG ∈ Sat(A) and |!it| ≤ N then [[!it]]i[[t]]iG ∈ Sat(A).

Proof. Joint induction on l.

Step 2. Now we describe a translation of the language LP2 into the pure propo-
sitional language. For every q-atom [[t]]iB ∈ Sat(A) we reserve a fresh propo-
sitional variable St,i,B. For every formula G whose all q-atomic subformulas
belong to Sat(A) by G′ we denote the result of substitution of all outermost
occurrences of q-atomic subformulas in G by the corresponding propositional
variables. Namely, we define G′ by induction on the construction of G in the
following way: for propositional variables S′ � S; (·)′ commutes with boolean
connectives and ([[t]]iB)′ � St,i,B.

Let Ax(A) stand for the conjunction of all substitutional instances of axioms
A1–A4 whose all q-atomic subformulas are from Sat(A). Put Ap � (Ax(A) →
A)′. Since LP2 �� A we conclude that Ap is not provable in propositional logic
(otherwise after the reverse substitution of [[t]]iB for St,i,B in the derivation of Ap

in propositional calculus we get LP2 � Ax(A) → A, hence LP2 � A). Therefore,
there exists an evaluation w of propositional letters from Ap by (true, false) such
that w(Ap) = false. Define

Γ0 � {B ∈ Sat(A) | w(B′) = true},
Δ0 � {B ∈ Sat(A) | w(B′) = false}.

Lemma 6. The sets Γ0 and Δ0 has the following properties:

1. Γ0 ∩Δ0 = ∅.
2. If [[t]]E ∈ Γ0 then E ∈ Γ0.
3. If [[t]]i(F → G), [[s]]iF ∈ Γ0 and |t×i s| ≤ N then [[t×i s]]iG ∈ Γ0.

If [[t]]iG ∈ Γ0 and |t +i s| ≤ N then [[t +i s]]iG ∈ Γ0 and [[s +i t]]iG ∈ Γ0.
If [[t]]iG ∈ Γ0 and |!it| ≤ N then [[!it]]i[[t]]iG ∈ Γ0.

Step 3. Completion algorithm. It goes through infinite number of iterations;
the l-th iteration produces the set Γl which is finite. Start with Γ0. For every
l = 1, 2, . . . on the l-th iteration construct the set Γl as follows
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– Initially Γl := Γl−1.
– if [[t]]i(A→ B), [[s]]iA ∈ Γl−1 then extend Γl by [[t×i s]]B;
– if [[t]]iA ∈ Γl−1 and |s| ≤ l then extend Γl by [[t +i s]]iA and [[s +i t]]iA;
– if [[t]]iA ∈ Γl−1 then extend Γl by [[!it]]i[[t]]lA;
– Go to the next l.

Put Γ :=
⋃
l Γl.

Lemma 7. For every l = 0, 1, 2, . . .,

1. The set Γl is finite and Γl ∩Δ = ∅
2. If E ∈ Γl+1 \ Γl then E is of the form [[t]]G and |t| ≥ N + l + 1.
3. Γl ∪Δ0 is closed under subformulas, that is, SubFm(Γl ∪Δ) ⊆ Γl ∪Δ.
4. If [[t]]i(F → G), [[s]]iF ∈ Γ then [[t×is]]iG ∈ Γ . If [[t]]iG ∈ Γ then [[t+is]]iG ∈

Γ and [[s +i t]]iG ∈ Γ . If [[t]]iG ∈ Γ then [[!it]]i[[t]]iG ∈ Γ .
5. For every term t the set I(t) = {E | [[t]]E ∈ Γ} is finite and the function

t �→ I(t) is primitive recursive.

Proof. Induction on l.

Step 4. For every t ∈ Tmi and S ∈ SVar put

#(t) � {E | [[t]]E ∈ Γ} v(S) � w(S).

Lemma 8. For every formula G one has

G ∈ Γ ⇒M |= G;
G ∈ Δ⇒M �|= G.

Proof. Induction on G. We use lemma 7.

From lemmas 8 and 7 it follows that M is a finitely generated model for LP2.
Since w(A′) = false we conclude A ∈ Δ, hence M �|= A. This completes the
proof of the theorem.

Corollary 1. LP2 is decidable.

Epistemic semantics for LP2 is given by the following natural generalization of
Fitting models (cf. [4]). For any language L from definition 1 one could define a
Fitting model as follows. An L–model M = (W,R1, R2, E , v) has the following
parameters

– a nonempty set of possible worlds W ;
– two reflexive transitive accessibility relations on W denoted by R1, R2

– an evidence function E which maps W × Tm(L) to sets of formulas of L,
– for every x ∈ W a truth evaluation v(x) maps propositional variables to
{true, false}.
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We require that for every node x ∈ W the restriction of E to x satisfies all the
conditions for # and E is monotone in the following sense: for i = 1, 2 if xRiy
and t ∈ Tmi(L) then E(x, t) ⊆ E(y, t).

The truth relation for every node x ∈ W is defined in the standard way; we
put M, x |= [[t]]iF iff F ∈ E(x, t) andM, y |= F for every y ∈W such that xRiy.

Note that a model in the sense of definition 4 is a Fitting model, namely, take
W a singleton set and R1, R2 total relations on W . It is easy to prove that all
the logics considered in this paper are sound and complete with respect to the
models just described. In particular, the completeness with respect to Fitting
semantics follows from Theorem 4 and the fact that aforementioned Mkrychev
models are singleton versions of the corresponding Fitting models.

Now let us describe the interpretation of bimodal logics of proofs in Peano
Arithmetic PA (the definition of PA and related topics can be found in [7]).

Definition 6. A normal proof predicate Prf is an arithmetical provably Δ1
formula satisfying the following conditions:
1) for every arithmetical formula ϕ PA � ϕ iff there exists a natural number n

such that Prf (n, 9ϕ:);
2) for every n the set Th(n) � {ϕ | Prf (n, 9ϕ:)} is finite and the function

n �→ Th(n) is total recursive;
3) for every finite set of arithmetical theorems Γ there exists a natural number

n such that Γ ⊆ Th(n).

Lemma 9. Let L be a language from definition 1. For every pair of normal
proof predicates Prf 1, Prf 2 and every operation of L there exist a total recursive
function which satisfies the corresponding axiom. For example, there exists a
function appi such that for all natural numbers k, n for all arithmetical sentences
ϕ, ψ

PA � Prf i(k, 9ϕ→ ψ:)→ (Prf i(n, 9ϕ:) → Prf i(appi(k, n), 9ψ:))

Definition 7. Let L be one of the languages from definition 2. An arithmeti-
cal interpretation ∗ = (Prf 1,Prf 2, (·)∗) for the language L has the following
parameters:

– two normal proof predicate Prf 1 and Prf 2;
– total recursive functions for operations of L which satisfy lemma 9
– an evaluation (·)∗ that assigns natural numbers to proof variables and arith-

metical sentences to propositional variables.

Arithmetical evaluation (·)∗ can be extended to all LP2 terms and formulas in
the following way. It commutes with the Boolean connectives and

([[t]]iA)∗ � ∃x (i = i ∧ x = 9A∗: ∧ Prf i(t
∗, x)).

Note that PA � ([[p]]A)∗ ↔ Prf (p∗, 9A∗:). The reasons why we interpret the proof
predicates in the more sophisticated way is that it makes the following problem
decidable: being given Prf i, an arithmetical formula ϕ and an L-formula F ,
decide whether there exists (·)∗, such that F ∗ = ϕ. If such ∗ exists then it is
unique.
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Theorem 5. [ Arithmetical soundness and completeness]
For every LP2 formula A the following three propositions are equivalent:

1) LP2 � A;
2) for every interpretation ∗, PA � A∗;
3) for every interpretation ∗, A∗ is true.
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Abstract. We present an algorithm for deciding polarized higher-order subtyp-
ing without bounded quantification. Constructors are identified not only modulo
β, but also η. We give a direct proof of completeness, without constructing a
model or establishing a strong normalization theorem. Inductive and coinductive
types are enriched with a notion of size and the subtyping calculus is extended to
account for the arising inclusions between the sized types.

1 Introduction

Polarized kinding and subtyping has recently received interest in two contexts. First, in
the analysis of container types in object-oriented programming languages [12]. If ListA
is a functional (meaning: read-only) collection of objects of type A and A is a subtype
(subclass) of B then ListA should be a subtype of ListB. However, for read-write
collections, as for instance Array, such a subtyping relation is unsound1, hence these
two collection constructors must be kept apart. The conventional modeling language
for object types, System Fω≤, does not distinguish List and Array in their kind—both
map types to types, thus, have kind ∗ → ∗. To record subtyping properties in the kind
of constructors, polarities were added by Cardelli, Pierce, Steffen [25], and Duggan and

Compagnoni [12]. Now, the type constructor List gets kind ∗ +→ ∗, meaning that it is a
monotone (or covariant) type-valued function, whereas Array gets kind ∗ ◦→ ∗, meaning
that Array is neither co- nor contravariant or its variance is unknown to the type system.

Another application of polarized kinding is normalizing languages2 with recursive
datatypes. It is well-known that if a data type definition has a negative recursive occur-
rence, a looping term can be constructed by just using the constructors and destructors
of this data type, without actually requiring recursion on the level of programs [21].
Negative occurrences can be excluded by polarized kinding [2]—a recursive type μF

is only admitted if F : ∗ +→ ∗.
A promising way to formulate a normalizing language is by using sized types.

Hughes, Pareto, and Sabry [19] have presented such a language, which can be used,
e. g., as a basis for embedded programming. It features sized first-order parametric data

� Research supported by the coordination action TYPES (510996) and thematic network Applied
Semantics II (IST-2001-38957) of the European Union and the project Cover of the Swedish
Foundation of Strategic Research (SSF).

1 Nevertheless, such a subtyping rule has been added for arrays in Java.
2 In a normalizing language, each program is terminating.

D. Grigoriev, J. Harrison, and E.A. Hirsch (Eds.): CSR 2006, LNCS 3967, pp. 381–392, 2006.
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types, where the size parameter induces a natural subtyping relation. Independently,
Barthe et. al. [6] have arrived at a similar system, which is intended as the core of a
theorem prover language. Both systems, however, fail to treat higher-order and hetero-
geneous (or nested) data types which have received growing interest in the functional
programming community [5, 7, 18, 22, 3].

In order to extend the sized type system to such higher-order constructions, we
need to handle polarized higher-order subtyping! Steffen [25] has already defined the
necessary concepts and an algorithm that decides this kind of subtyping. But because
he features also bounded quantification, his completeness proof for the algorithm is
long and complicated. In this article, I present a different subtyping algorithm, without
bounded quantification, but instead fitted to the needs of sized types, and prove it sound
and complete in a rather straightforward manner.

Main technical contribution. I define a polarized higher-order subtyping algorithm
which respects not only β but also η-equality and computes the normal form of the
considered type constructors incrementally. A novelty is the succinct and direct proof
of completeness, which relies neither on a normalization theorem nor a model construc-
tion. Instead, a lexicographic induction on kinds and derivations is used.

Organization. In Section 2, we recapitulate the polarized version of Fω defined in a
previous article [2] and extend it by declarative subtyping. A subtyping algorithm is
added and proven sound in Section 3. In Section 4, we prove completeness of the algo-
rithmic equality. The extension to sized types is presented in Section 5, and we close
with a discussion of related work.

Preliminaries. The reader should be familiar with higher-order polymorphism and sub-
typing. Pierce’s book [23] provides an excellent introduction.

Judgements. In the following, we summarize the inductively defined judgements in this
article.

Γ � F : κ constructor F has kind κ in context Γ
Γ � F = F ′ : κ F and F ′ of kind κ are βη-equal
Γ � F ≤ F ′ : κ F is a higher-order subtype of F ′

F ↘W F has weak head normal form W
Γ �a W ≤q W ′ : κ algorithmic subtyping

When we write D :: J , we mean that judgement J has derivationD. Then, |D| denotes
the height of this derivation.

2 Polarized System Fω

In this section, we present a polarized version of Fω. This is essentially Fixω [2] without
fixed-points, but with the additional polarity .. A technical difference is that Fixω uses
Church-style (kind-annotated) constructors whereas we use Curry-style (domain-free)
constructors. However, all result of this paper apply also to the Church style.
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p, q ∈ Pol p ≤ q pq

p, q ::= ◦ non-variant

| + covariant

| − contravariant

| � invariant

�

+

���
−

			

◦
���� 





◦ + − �
◦ ◦ ◦ ◦ �
+ ◦ + − �
− ◦ − + �
� � � � �

Fig. 1. Polarities: definition, ordering, composition

2.1 Polarities

We aim to distinguish constructors with regard to their monotonicity or variance. For
instance, the product constructor × is monotone or covariant in both of its arguments.
If one enlarges the type A or B, more terms inhabit A × B. The opposite behavior
is called antitone or contravariant. Two more scenarios are possible: the value F A
does not change when we modify A. Then F is called constant or invariant. Finally,
a function F might not exhibit a uniform behavior, it might grow or shrink with its
argument, or we just do not know how F behaves. This is the general case, we call it
non-variant. Each of the behaviors is called a polarity and abbreviated by one of the
four symbols displayed in Fig. 1.

The polarities are related: Since “non-variant” just means we do not have any in-
formation about the function, and we can always disregard our knowledge about vari-
ance, each function is non-variant. The inclusion order between the four sets of in-, co-,
contra-, and non-variant functions induces a partial information order ≤ on Pol. The
smaller a set is, the more information it carries. Hence ◦ ≤ p, p ≤ ., and p ≤ p for all
p. This makes Pol a bounded 4-element lattice as visualized in Fig. 1.

Polarity of composed functions. Let F,G be two functions such that the composition
F ◦G is well-defined. If F has polarity p and G has polarity q, we denote the polarity of
the composed function F ◦G by pq. It is clear that polarity composition is monotone:
if one gets more information about F or G, certainly one cannot have less information
aboutF ◦G. Then, if one of the functions is constant, so is their composition. Otherwise,
if one of them is non-variant, the same holds for the composition. In the remaining
cases, the composition is covariant if F and G have the same variance, otherwise it
is contravariant. This yields the multiplication table in Fig. 1. Polarity composition,
as function composition, is associative. It is even commutative, but not a priori, since
function composition is not commutative.

Inverse application of polarities. If f(y) = py is the function which composes a polar-
ity with p, what would be its inverse g(x) = p−1x? It is possible to define g in such a
way that f and g form a Galois connection, i.e.,

p−1x ≤ y ⇐⇒ x ≤ py.

It is not hard to see that +−1x = x,−−1x = −x,.−1x = ◦, ◦−1◦ = ◦ and ◦−1x′ = .
(for x′ �= ◦). As for every Galois connection, it holds that p−1py ≤ y and x ≤ pp−1x,
and both f and g are monotone.
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2.2 Kinds, Constructors, and Kinding

Fig. 2 lists kinds, which are generated by the base kind ∗ of types and polarized function
space, and by (type) constructors, which are untyped lambda-terms over some construc-
tor constants C. As usual, λXF binds variable X in F . We identify constructors under
α-equivalence, i. e., under renaming of bound variables. FV(F ) shall denote the set of
free variables of constructor F .

The rank rk(κ) ∈ N of a kind κ is defined recursively by rk(∗) = 0 and rk(pκ →
κ′) = max(rk(κ) + 1, rk(κ′)).

Polarized contexts. A polarized context Γ fixes a polarity p and a kind κ for each free
variable X of a constructor F . If p = +, then X may only appear positively in F ; this
ensures that λXF is a monotone function. Similarly, if p = −, then X may only occur
negatively, and if p = ◦, then X may appear in both positive and negative positions.
A variable labeled with . may only appear in arguments of an invariant function. The
domain dom(Γ ) is the set of constructor variables Γ mentions. As usual, each variable
can appear in the context only once.

We say context Γ ′ is more liberal than context Γ , written Γ ′ ≤ Γ , iff

(X :pκ) ∈ Γ implies (X :p′κ) ∈ Γ ′ for some p′ ≤ p.

In particular, Γ ′ may declare more variables than Γ and assign weaker polarities to
them. The intuition is that all constructors which are well-kinded in Γ are also well-
kinded in a more permissive context Γ ′.

The application pΓ of a polarity p to a contextΓ is defined as pointwise application,
i. e., if (X : qκ) ∈ Γ , then (X : (pq)κ) ∈ pΓ . Inverse application p−1Γ is defined
analogously. Together, they form a Galois connection, i. e., for all Γ and Γ ′,

p−1Γ ≤ Γ ′ ⇐⇒ Γ ≤ pΓ ′.

Kinding. We introduce a judgement Γ � F : κ which combines the usual notions of
well-kindedness and positive and negative occurrences of type variables. A candidate
for the application rule is

Γ � F : pκ→ κ′ Γ ′ � G : κ
Γ � F G : κ′ Γ ≤ pΓ ′.

The side condition is motivated by polarity composition. Consider the case that X �∈
FV(F ). If G is viewed as a function of X , then F G is the composition of F and G.
Now if G is q-variant in X , then F G is pq-variant in X . This means that all q-variant
variables of Γ ′ must appear in Γ with a polarity of at most pq. Now if X ∈ FV(F ), it
could be that it is actually declared in Γ with a polarity smaller than pq. Also, variables
which are not free in G are not affected by the application F G, hence they can carry
the same polarity in F G as in F . Together this motivates the condition Γ ≤ pΓ ′.

Since p−1Γ is the most liberal context which satisfies the side condition, we can
safely replace Γ ′ by p−1Γ in the above rule. Hence, we arrive at the kinding rules
as given in Fig. 2. Although these rules are not fully deterministic, they can easily be
turned into a bidirectional kind checking algorithm for constructors in β-normal form.
Kinding enjoys the usual properties of weakening, strengthening, and substitution.



Polarized Subtyping for Sized Types 385

Syntactic categories.

X, Y, Z (type) constructor variable

C ::= → | ∀κ (type) constructor constant

A, B, F, G, H, I, J ::= C | X | λXF | F G (type) constructor

κ ::= ∗ | pκ → κ′ kind

Γ ::= � | Γ, X :pκ polarized context

The signature Σ assigns kinds to constants (κ
p→ κ′ means pκ → κ′).

→ : ∗ −→ ∗ +→ ∗ function space

∀κ : (κ ◦→ ∗) +→ ∗ quantification

Kinding Γ � F : κ.

KIND-C
C :κ ∈ Σ

Γ � C : κ
KIND-VAR

X :pκ ∈ Γ p ≤ +
Γ � X : κ

KIND-λ
Γ, X :pκ � F : κ′

Γ � λXF : pκ → κ′ KIND-APP
Γ � F : pκ → κ′ p−1Γ � G : κ

Γ � F G : κ′

Polarized equality Γ � F = F ′ : κ: Symmetry (EQ-SYM), transitivity (EQ-TRANS), and:

EQ-β
Γ, X :pκ � F : κ′ p−1Γ � G : κ

Γ � (λXF ) G = [G/X]F : κ′ EQ-η
Γ � F : pκ → κ′

Γ � (λX. FX) = F : pκ → κ′

EQ-� Γ � F : �κ → κ′ �−1Γ � G : κ �−1Γ � G′ : κ

Γ � F G = F G′ : κ′

EQ-VAR
X :pκ ∈ Γ p ≤ +

Γ � X = X : κ
EQ-λ

Γ, X :pκ � F = F ′ : κ′

Γ � λXF = λXF ′ : pκ → κ′

EQ-C
C :κ ∈ Σ

Γ � C = C : κ
EQ-APP

Γ � F = F ′ : pκ → κ′ p−1Γ � G = G′ : κ

Γ � F G = F ′ G′ : κ′

Polarized subtyping Γ � F ≤ F ′ : κ: Transitivity (LEQ-TRANS) and:

LEQ-REFL
Γ � F = F ′ : κ

Γ � F ≤ F ′ : κ
LEQ-ANTISYM

Γ � F ≤ F ′ : κ Γ � F ′ ≤ F : κ

Γ � F = F ′ : κ

LEQ-λ
Γ, X :pκ � F ≤ F ′ : κ′

Γ � λXF ≤ λXF ′ : pκ → κ′ LEQ-APP
Γ � F ≤ F ′ : pκ → κ′ p−1Γ � G : κ

Γ � F G ≤ F ′ G : κ′

LEQ-APP+
Γ � F : +κ → κ′ Γ � G ≤ G′ : κ

Γ � F G ≤ F G′ : κ′

LEQ-APP− Γ � F : −κ → κ′ −Γ � G′ ≤ G : κ

Γ � F G ≤ F G′ : κ′

Fig. 2. Fω: Kinds and constructors
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2.3 Equality and Subtyping

Constructor equality is given by judgement Γ � F = F ′ : κ. In contrast to most
presentations of System Fω , we consider constructors equivalent modulo β (EQ-β) and
η (EQ-η), see Fig. 2. There is a third axiom, EQ-., that states that invariant functions F
yield equal results if applied to arbitrary constructorsG,G′ of the right kind. This axiom
can only be formulated for kinded equality; it is already present in Steffen’s thesis [25,
p. 74, rule E-APP◦]. A rule for reflexivity is not included since it is admissible.

Simultaneously with equality, we define higher-order polarized subtypingΓ � F ≤
F ′ : κ (see Fig. 2). Rule LEQ-REFL includes the subtyping axioms for variables and
constants as special cases. Reflexivity and transitivity together ensure that subtyping is
compatible with equality. The antisymmetry rule LEQ-ANTISYM potentially enlarges
our notion of equality.

There are two kinds of congruence rules for application: one kind states that if
functions F and F ′ are in the subtyping relation, so are their values F G and F ′G
at a certain argument G. The other kind of rules concern the opposite case: If F is a
function and two arguments G and G′ are in a subtyping relation, so are the values F G
and F G′ of the function at these arguments. However, such a relation can only exist if
F is covariant or contravariant, or, of course, invariant.

3 Algorithmic Polarized Subtyping

In this section, we present an algorithm for deciding whether two well-kinded construc-
tors are equal or related by subtyping. The algorithm is an adaption of Coquand’s βη-
equality test [11] to the needs of subtyping and polarities. The idea is to first weak-head
normalize the constructors under consideration and then compare their head symbols.
If they are related, one continues to recursively compare the subcomponents, otherwise,
subtyping fails. First, we define weak head evaluation (see Fig. 3).

For the subtyping algorithm, note that at any point during subtyping checking we
may require kinding information. For example, consider checking X G ≤ X G′. If X
is covariant, we need to continue with G ≤ G′, but if X is contravariant, the next step
would be checking G′ ≤ G. Hence, the algorithm needs both context Γ and kind κ
of the two considered constructors as additional input. The general form of algorithmic
subtyping Γ �a F ≤q F ′ : κ is defined as F ↘ W and F ′ ↘ W ′ and Γ �a W ≤q

W ′ : κ, where the last judgement is defined in Fig. 3. The polarity q codes the relation
that we seek to establish betweenW andW ′: If q = ◦, we expect them to be equal, if q =
+, we expect W ≤W ′, and if q = −, then the other way round. Finally if q = ., then
W and W ′ need not be related, and the algorithm succeeds immediately (rule AL-.). If
rule AL-. is given priority over the other rules, then the relation above is deterministic
and can be directly implemented as an algorithm (apply the rules backwards).

Theorem 1 (Soundness of algorithmic subtyping). Let Γ � F, F ′ : κ.

1. If F ↘ W then Γ � F = W : κ.
2. If Γ �a F ≤◦ F ′ : κ then Γ � F = F ′ : κ.
3. If Γ �a F ≤+ F ′ : κ then Γ � F ≤ F ′ : κ.
4. If Γ �a F ≤− F ′ : κ then Γ � F ′ ≤ F : κ.
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Weak head normal forms W ∈ Val.

Ne � N ::= C | X | N G neutral constructors
Val � W ::= N | λXF weak head values

Weak head evaluation F ↘ W (big-step call-by-name operational semantics).

EVAL-C
C ↘ C

EVAL-VAR
X ↘ X

EVAL-LAM
λXF ↘ λXF

EVAL-APP-NE
F ↘ N

F G ↘ N G
EVAL-APP-β

F ↘ λXF ′ [G/X]F ′ ↘ W

F G ↘ W

Algorithmic subtyping.

Γ �a F ≤q F ′ : κ ⇐⇒ F ↘ W and F ′ ↘ W ′ and Γ �a W ≤q W ′ : κ,

Algorithmic subtyping Γ �a W ≤q W ′ : κ for weak head values.

AL-�
Γ �a W ≤� W ′ : κ

AL-VAR
(X :pκ) ∈ Γ p ≤ +

Γ �a X ≤q X : κ
AL-λ

Γ, X :pκ �a F ≤q F ′ : κ′

Γ �a λXF ≤q λXF ′ : pκ → κ′

AL-C
(C :κ) ∈ Σ

Γ �a C ≤q C : κ
AL-APP-NE

Γ �a N ≤q N ′ : pκ → κ′ p−1Γ �a G ≤pq G′ : κ

Γ �a N G ≤q N ′ G′ : κ′

X �∈ FV(N) : AL-η-L
Γ, X :pκ �a F ≤q N X : κ′

Γ �a λXF ≤q N : pκ → κ′ AL-η-R
Γ, X :pκ �a N X ≤q F : κ′

Γ �a N ≤q λXF : pκ → κ′

Fig. 3. Algorithmic subtyping

4 Completeness

While soundness of the algorithmic subtyping/equality is easy to show, the opposite
direction, completeness, is usually hard and requires either the construction of a model
[10, 17] or strong normalization for constructors [24, 25, 16]. We will require neither.

Algorithmic subtyping is cut-free in a twofold sense: First, a rule for transitivity is
missing (this is the cut on the level of subtyping). Its admissibility can often be shown
directly by induction on the derivations [24, 10]—so also in our case. The second kind
of cut is on the level of kinds: Kinds can be viewed as propositions in minimal logic
and constructors as their proof terms, and an application which introduces a redex is a
cut in natural deduction. Algorithmic subtyping lacks a general rule for application; its
admissibility corresponds to the property of normalization or cut admissibility, resp. We
manage to show the admissibility of application directly by a lexicographic induction
of the kind of the argument part and the derivation length of the function part. This way,
we save ourselves considerable work, and completeness is relatively straightforward.

Lemma 1 (Weakening). If D :: Γ �a F ≤q F ′ : κ and both Γ ′ ≤ Γ and q ≤ q′ then
D′ :: Γ ′ �a F ≤q′

F ′ : κ and derivation D′ has the same height as D.
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Lemma 2 (Swap). If Γ �a F ≤q F ′ : κ then Γ �a F ′ ≤−q F : κ.

Antisymmetry of algorithmic subtyping is straightforward in our case since our judge-
ment is deterministic—it is more difficult in the presence of bounded quantification [9].

Lemma 3 (Antisymmetry). If Γ �a F ≤q F ′ : κ and Γ �a F ≤q′
F ′ : κ then

Γ �a F ≤min{q,q′} F ′ : κ.

Lemma 4 (Transitivity). If Γ �a F1 ≤q F2 : κ and Γ �a F2 ≤q′
F3 : κ then

Γ �a F1 ≤max(q,q′) F3 : κ.

Transitivity is basically proven by induction on the sum of the lengths of the two given
derivations. For the η-rules to go through we need strengthen the induction hypothesis
a bit; alternatively, one can use a different measure [16].

The next lemma states that the η-rules can be extended beyond neutral constructors.
It can be proven directly:

Lemma 5 (Generalizing the η-rules).
If Γ, Y :pκ �a F Y ≤q F ′ : κ′ and Y �∈ FV(F ) then Γ �a F ≤q λY F ′ : pκ→ κ′. If
Γ, Y :pκ �a F ′ ≤q F Y : κ′ and Y �∈ FV(F ) then Γ �a λY F ′ ≤q F : pκ→ κ′.

Now we come to the main lemma:

Lemma 6 (Substitution and application). Let Γ ≤ pΔ and Δ �a G ≤pq G′ : κ.

1. If D :: Γ,X :pκ �a F ≤q F ′ : κ′ then Γ �a H ≤q H ′ : κ′ for H ≡ [G/X ]F and
H ′ ≡ [G′/X ]F ′ and either both H and H ′ are neutral or rk(κ′) ≤ rk(κ).

2. If D :: Γ �a F ≤q F ′ : pκ→ κ′ then Γ �a F G ≤q F ′G′ : κ′.

Both propositions are proven simultaneously by lexicographic induction on (rk(κ), |D|).
This works because the constructor language is essentially the simply-typed λ-calculus
(STL), which has a small proof-theoretical strength. The idea is taken from Joachimski
and Matthes’ proof of weak normalization for the STL [20] which I have formalized in
Twelf [1]. The argument goes probably back to Anne Troelstra, it is implicit in Girard’s
combinatorial weak normalization proof [13, Ch. 4.3] and has been reused by Watkins
et. al. [26] and Adams [4, p. 65ff] to define a logical framework based solely on normal
terms.

Theorem 2 (Completeness).

1. If D :: Γ � F : κ then Γ �a F ≤q F : κ.
2. If D :: Γ � F = F ′ : κ then Γ �a F ≤◦ F ′ : κ.
3. If D :: Γ � F ≤ F ′ : κ then Γ �a F ≤+ F ′ : κ.

Proof. Simultaneously by induction on D. In the difficult cases of β-reduction and
application, use Lemma 6. In case of EQ-η, use Lemma 5. In the cases of transitivity
and antisymmetry, use Lemmata 4 and 3. For LEQ-REFL, apply Lemma 1.

Now we have a sound and complete subtyping algorithm, but we have nothing yet to
get it started. Since there are no subtyping assumptions or basic subtyping relations
(like Nat ≤ Real), two constructors related by subtyping are already equal. In the next
section, we will extend the subtyping relation to make it more meaningful.
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5 Extension to Sized Types

We introduce a new base kind ord. Kinds that do not mention ord are called pure kinds
from here and denoted by κ∗. The signature is extended as described in Fig. 4. The first
argument to μκ and νκ shall be written as superscript.

In this signature we can, for instance, model lists of length < n as ListaA :=
μa∗λX. 1 + A × X where a = s (s . . . (s 0)) (n times s). Streams that have a depth of
at least n are represented as StreamaA := νa∗λX.A ×X . The type List∞A contains
lists of arbitrary length, and Stream∞A productive streams (which never run out of
elements). We call such types with an ordinal index sized. Naturally, lists are covariant
in their size argument and streams are contravariant (each stream which produces at
least n + 1 elements produces of course also at least n elements).

Barthe et. al. [6] define a calculus λ̂ with sized inductive and coinductive types in
which all recursive functions are terminating and all streams are productive. Their sizes

Extension of the signature Σ:

+ : ∗ +→ ∗ +→ ∗ disjoint sum

× : ∗ +→ ∗ +→ ∗ cartesian product

μκ∗ : ord +→ (κ∗
+→ κ∗)

+→ κ∗ inductive types

νκ∗ : ord −→ (κ∗
+→ κ∗)

+→ κ∗ coinductive types

1 : ∗ unit type

0 : ord ordinal zero

s : ord +→ ord successor

∞ : ord infinity

Extension of equality and subtyping.

EQ-∞
Γ � s∞ = ∞ : ord

LEQ-0
Γ � a : ord

Γ � 0 ≤ a : ord
LEQ-S

Γ � a : ord
Γ � a ≤ s a : ord

LEQ-∞ Γ � a : ord
Γ � a ≤ ∞ : ord

Weak head normal forms.

Ne � N ::= C | X | N G | s N (C �∈ {s,∞}) neutral constructors
Val � W ::= N | λXF | s | ∞ weak head values

Extension of weak head evaluation and algorithmic subtyping.

EVAL-S
F ↘ s G ↘ ∞

F G ↘ ∞ EVAL-APP-S
F ↘ s G ↘ N

F G ↘ s N

AL-0-L
Γ �a 0 ≤+ W : ord

AL-0-R
Γ �a W ≤− 0 : ord

AL-∞-R
Γ �a W ≤+ ∞ : ord

AL-∞-L
Γ �a ∞ ≤− W : ord

AL-S-R
Γ � N1 ≤+ N2

Γ �a N1 ≤+ s N2 : ord
N1 �≡ s N AL-S-L

Γ � N1 ≤− N2

Γ �a s N1 ≤− N2 : ord
N2 �≡ s N

Fig. 4. Extensions for sized types
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are given by stage expressions which can be modelled by constructors of kind ord in
our setting. Sized data types are introduced by a set of data constructors—we can define
them using μ and ν. The normalization property is ensured by a restricted typing rule
for recursion; in our notation it reads

ı : ord, f : μı∗F → Gı � e : μs ı∗ F → G (s ı) F : ∗ +→ ∗ G : ord +→ ∗
(letrec f = e) : ∀ordλı. μı∗F → Gı

.

Similarly, corecursive functions are introduced by

ı : ord, f : G ı→ νı∗F � e : G (s ı)→ νs ı
∗ F F : ∗ +→ ∗ G : ord −→ ∗

(coletrec f = e) : ∀ordλı.G ı→ νı∗F
.

We have reduced the stage expressions of λ̂ to just constructors of a special kind and
model the inclusion between sized types of different stages simply by variance. Lifting
the restriction of λ̂ that type constructors must be monotone in all arguments comes at
no cost in our formulation: We can define the type of A-labeled, B-branching trees as

TreeaAB = μa∗λX. 1 + A× (B → X), where now Tree : ord +→ ∗ +→ ∗ −→ ∗.
Higher-order subtyping becomes really necessary when we allow higher-kinded

inductive types. These are necessary to model heterogeneous (also called nested) data-

types, as for instance powerlists: PList := λa. μa+∗→∗λXλA.A + X (A×A) : ord +→
∗ +→ ∗. More examples for such datatypes can be found in the literature [22, 5, 7, 18, 3].

Having the machinery of higher-order subtyping running, the extensions needed for
sized types are minimal. They are summarized in Fig. 4

Theorem 3. Algorithmic subtyping for the extended system is still sound and complete.

6 Conclusion and Related Work

We have presented algorithmic subtyping for polarized Fω , without bounded quantifi-
cation, but with rules for η-equality. The algorithm is economic since computes the
β-normal form incrementally, just enough to continue with the subtyping test. Due to
the trick with the lexicographic induction on kinds and derivations, its completeness
proof is quite short compared to completeness proofs of related systems in the literature
[25, 10]. However, it is unclear whether the proof scales to bounded quantification—
this is worthwhile investigating in the future. Another extension is subkinding induced
by the polarities [25], but no big difficulties are to be expected from this side.

Related work. The inspiration for the algorithmic subtyping judgement presented here
came from Coquand’s βη-conversion algorithm [11] and the idea for the crucial substi-
tution and application lemma (6) from Joachimski and Matthes’ proof of weak normal-
ization for the simply-typed λ-calculus [20]. Both Coquand’s algorithm and Joachimski
and Matthes’ characterization of weakly normalizing terms bear strong resemblances to
Goguen’s typed operational semantics [14, 15].

Our algorithmic subtyping is closely related to Compagnoni and Goguen’s weak-
head subtyping [8, 9, 10], however, they are additionally dealing with bounded quantifi-
cation and require neutral constructors to be fully β-normalized. They do not, however,
treat η-equality and polarities.
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Pierce and Steffen [24] show decidability of higher-order subtyping with bounded
quantification. Their calculus of strong cut-free subtyping likens our subtyping algo-
rithm, only that they fully β-normalize the compared constructors and do not treat η.
Steffen [25] extends this work to polarities; in his first formulation, kinding and subtyp-
ing are mutually dependent. He resolves this issue by introducing a judgement for vari-
able occurrence. Matthes and I [2] have independently of Steffen developed a polarized
version of Fω which unifies variable occurrence and kinding through polarized contexts.
Duggan and Compagnoni investigate subtyping for polarized object type constructors
[12]. The system is similar to Steffen’s, albeit has no constructor-level λ-abstraction,
hence there is no need to care for η.
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Neural-Network Based Physical Fields
Modeling Techniques

Konstantin Bournayev

Belgorod Shukhov State Technological University

Abstract. The possibility of solving elliptic and parabolic partial differ-
ential equations by using cellular neural networks with specific structure is
investigated. The method of solving varialble coefficients parabolic PDEs
is proposed. Issues of cellular neural network stability are examined.

1 The Problem

Physical fields models are widely used in practical tasks. The problem of non-
destructive construction diagnostic or the process of the hydrodynamic shock
wave expansion in could be taken as an examples. Strictly speaking, almost all
problems related to the thermal conductivity, diffusion, convection and electro-
magnetism use more or less approximate stationary or non-stationary physical
field model.

By physics definition field is an assignment of a quantity to every point in
space (or more generally, spacetime). The stationary fields — like those describ-
ing the process of diffusion, laminar fluid flow or electromagnetic field around
stationary charged object — may be described by elliptic Laplace/Poisson equa-
tions, while the non-stationary fields — for example, describing shock waves
or thermal impulses — may be described by parabolic parabolic differential
equations (PDEs).

Let us take a sample region Ω ⊂ En , where Γ is a boundary of Ω. An
arbitrary statical field in this region may be defined by an elliptic PDE (using
the Laplace operator):

ΔF = g (1)

and a set of boundary conditions. The most often met boundary condition type
may be described with the following equations:

F (x)|Γ = ν(x) (2)

∂F (x)
∂n

∣∣∣∣ = ν(x) (3)

where n is a vector normal to region boundary.
Often he region Ω have “uncomfortable”, in partucular, non-rectanle shape.
In its turn, the model of non-stationery field may be described the similar

way. In addition to boundary conditions mentioned above, the time-dependent
conditions should be taken into account in this case.

D. Grigoriev, J. Harrison, and E.A. Hirsch (Eds.): CSR 2006, LNCS 3967, pp. 393–402, 2006.
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Note that domain the problem is being solved on can be either infinite of fi-
nite and can have an arbitrary shape. Such boundary value problems could be
extremely resource-consuming. As most real objects are non-homogeneous and
anisotropic, their models will result in PDEs with variable coefficients, which make
solution process even more complex. In is almost impossible to solve such prob-
lems without software and hardware specifically designed for these particular
tasks.

2 Existing Approaches

Existing methods of solving the described problem can be divided into two
groups: analytical and numeric ones.

Analytical methods provide the exact analytical solution. On the other side,
they cannot be applied to the arbitrary task, as these methods impose may con-
straints on the type of boundary conditions and/or region shape. In rare cases
the problem can be transformed to the form required by the particular analytic
method using the artificial approaches, but this transformation cannot be per-
formed in generic case. Thus, application of analytic methods to the practical
problems is almost impossible.

The second group is numerical methods. The common approach used by nu-
merical methods is the replacing of the continuous problem by a discrete prob-
lem, usually by estimating the values of the decision function in the finite set of
discretization nodes. The most widely used numerical methods of solving PDEs
are the finite differences method and finite elements method. Other numerical
methods — like particle-in-cell method and its derivatives — have the smaller
area of application and are specific to concrete tasks. Also, many particular
implementations of these methods impose constraints on the region shape and
boundary condition types.

In spite of the fact the there’s a whole range of more or less task-specific
numeric methods, most of them come to giant systems of algebraic equations,
containing thousands of variables and taking a vast amount of computational
resources to be solved. The solution of typical task having the discretization mesh
may take up to several hours on the modern average-class workstation; the would
require the specialized hardware. Besides, an issue of parallelizing calculations
is raised. As most equation system solution algorithms are non-parallel in their
nature, thus this issue is of vital importance. There are some techniques allowing
to parallelize such kind of calculations, but unfortunately they usually scale bad
and may be applied only to specific matrix types. Therefore, there’s a need
in development and/or enhancement of methods permitting to solve the PDEs
which would use the existing processing powers more effectively.

Several last years brought publications referring to neural networks as an ap-
proach to boundary-value problems solution, nevertheless, these publications are
not numerous and describe only several particular problems. The question of in-
terrelationships between the net topology and solution precision is explored
insufficiently. Also, no concrete designs of hardware or software neural network
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implementations were described. This leads to conclusion that the theory of solv-
ing PDEs with the help of neural networks is still an actual unresolved problem.

At the moment, a three main techniques of solving PDEs with the help of
neural networks may be marked out.

The first one uses the approach similar to the FEM, in particular, the PDE
solution approximation with the set of simple basis functions, like a linear B-
splines. These splines can be derived by the superposition of piecewise linear
activation functions. Thus, the solution of a differential equation using linear
B-splines can be directly mapped on the architecture of a feedforward neural
network. Unfortunately, this method scales bad, as the number of nodes in the
network depends on the number of basis functions; thus, as the size of discretiza-
tion grid grows, the network size grows too, making the process of learning slow
and ineffective for large grids. The same problem arise for the multidimensional
problems. [1, 2]

The second approach bases on the fact that the the solution of a linear system
of algebraic equations may be mapped onto the architecture of a Hopfield neural
network. The minimization of the network’s energy function gives the solutions
of the mapped system. Thus, after the PDE’s domain have been discretized,
the resulting algebraic system could be solved using the neural network. Unfor-
tunately, this approach is characterized by a long net learning time; the nets
are problem-specific, so the network cannot be applied to another task after it
learned to solve one. [3, 4]

The third one is closely related to analytical methods; it provides the dif-
ferentiable solution using the neural-networks of specific structure. Unlike two
approaches described above, this one provides the approximate analytical so-
lution in form of superposition of two functions, one of which — satisfies the
boundary conditions and another — is reduced to zero on the region’s boundary
and partially defined by the neural network . The neural network is a standard
three-layer perceptron; the learning set is a set of apriori-known points of the
problem solution. This method is rather fast by itself, but the proposed method
of building the non neural-network-defined part of composite solution requires
the rectangular shape of the PDE domain, which is not possible for all prac-
tical tasks. Besides, the process of perceptron learning requires the presence of
more rough numerical solution of the problem, assuming that one of the classical
methods should be used together with proposed. [5]

Also, besides the mentioned publications, publications examining the pos-
sibility of cellular (or “locally connected”) neural networks application to the
mathematical problems solution, in particular, for solving linear algebraic equa-
tion systems and PDEs. Nevertheless, no concrete theories or algorithms were
offered in these works. [6, 7]

3 The Proposed Approach

A hypothesis is made that an technique exists allowing to build a cellular neural
network for a arbitrary boundary-value problem; the stable state of the network
may be directly mapped to the problem solution.
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Fig. 1. A simple two-dimensional cellular network structure

In general case a cellular neural network is a multidimensional (possibly irreg-
ular) mesh, containing neurons in the mesh nodes. Unlike most other network
topologies, neurons are connected only to their neighbors, contained in some
area with small radius value. Most links are bidirectional; the neuron activation
functions are simple, often linear. The advantage of this structure compared to
other widely used network topologies is its simplicity and small number of links;
this reduces the volume of computation resources required by the network, sim-
plifies the parallelization of the calculation process and make the neural networks
hardware implementation simple, cheaper and more reliable.

This approach is inspired by approach used in analog computers; on the other
side, anaolog computer have a limited area of use. The proposed methodic should
permit using modern widely-available digital electronic devices with similar me-
thodics while retaining all analog modelling merits.

The proposed approach assumes that every solution domain discretization
node is mapped to one network neuron. The neuron output value is treated
as an approximate value of the PDE solution in mapped node. As number of
links depends linearly on the neurons count, combinatorial explosion will not
take place as the number of nodes increase. Provided that link weights will be
chosen so that summary output of all neurons remains constant in case the
network contains no neurons representing the boundary conditions, it can be
proved that the cellular-network based model correctly represents the behavior
of the physical systems, in particular, the law of energy conservation.

4 Solving Elliptic PDE Boundary-Value Problems

Let’s examine the possibility of solving the elliptic PDEs with the cellular neural
networks containing the only one layer. The structure of the network may be
described by the following rules and definitions:
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– the network is a n-dimensional rectangular grid; every neuron is mapped to
discretization mesh node in the solution domain Ω;

– L(X) is a number of neuron having an n-dimensional coordinate vector X;
– fi is an output value of the i-th neuron;
– designate the number of neuron preceding the i-th neuron by the j-th coor-

dinate as P (i, j), and the following one — as S(i, j).
– assign the feedback link the weight wii = b, where b ∈ (0, 1) is an user-

defined coefficient; it can be proved that the value of b will not affect the
network stable state;

– assign all other links the weight

wij =
{ 1−b

2n , i ∈ N(j)
0

(4)

where N is a set of all neighbors of i-th neuron, n — a number of dimension
of domain Ω;

– all neurons not representing boundary conditions use simplest linear activa-
tion functions f(x) = x

– boundary conditions having the form F (x)|Γ = ν(x) are represented by
neurons having constant activation functions

fi(x) = ν(xi) = νi = const (5)

– boundary conditions having the form ∂F (x)
∂n

∣∣∣
Γ

are represented by neurons
having linear activation functions

fi(x) = x + ν(xi) = x+ νi (6)

Note that the well-posed problem would have
∮
Γ

∂F (x)
∂n = 0, thus we may

assume
∑

i νi = 0

Note that network stable state will satisfy the following equation:

fi = wiifi +
∑

j∈N(i)

(wjifi) = wiifi +
n∑

d=1

(
w(P (i,d)i)fP (i,d) + wS(i,d),ifS(i,d)

)
, ∀i

(7)
To prove that output values in stable state will satisfy the finite-difference

form of the elliptic PDE transform this equation:

cfi = bfi +
n∑

d=1

(
1− b

2n
fP (i,d) +

1− b

2n
fS(i,d)

)
(8)

nfi =
n∑

d=1

(
fP (i,d) + fS(i,d)

2

)
(9)

n∑
d=1

(
fP (i,d) − 2fi + fS(i,d)

2

)
≈ ΔF = 0 (10)
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It is obvious that the last equation is equivalent to the simplest second-order
finite-difference representation of the Laplace equation.

This result can be easily generalized on the higher-precision finite difference
approximation using the network having the radius of the “neighborhood area”
greater than 1. Note that the radius affects both approximation precision and
network complexity, thus increasing the need in computational resources.

Let’s examine the network stability issue. Network may not converge to the
stable state due the following two reasons: positive feedbacks causing the neuron
output values to grow indefinitely or network oscillation. Output values of the
network is limited due the following reasons:

– if no boundary-conditions given (network corresponds to the fully isolated
system) then the summary output is constant:

N∑
j=1

f
(t+1)
i =

N∑
j=1

N∑
i=1

f
(t)
i wij =

N∑
i=1

N∑
j=1

f
(t)
i wij =

N∑
i=1

f
(t)
i = const (11)

– network containing boundary conditions of type ∂F (x)
∂n |Γ = ν(x):

N∑
j=1

f
(t+1)
j =

N∑
j=1

(
N∑
i=1

(
f

(t)
i wij

)
+ νj

)
=

N∑
i=1

N∑
j=1

f
(t)
i wij +

∑
i

νi (12)

using the restriction on the sum of νi, the following expression could be
written:

N∑
i=1

N∑
j=1

f
(t)
i wij +

∑
j

νj =
N∑
i=0

N∑
j=1

f
(t)
i wij = const (13)

– network containing boundary conditions of type F (x)|Γ = ν(x) (k desig-
nates the number of “internal” neurons, which do not define the boundary
conditions).

k∑
i=1

f
(t+1)
i =

k∑
i=1

⎛⎝⎛⎝ k∑
j=1

wjif
(t)
j

⎞⎠ +

⎛⎝ N∑
j=k+1

wjif
(t)
i

⎞⎠⎞⎠ = (14)

k∑
i=1

k∑
j=1

wjif
(t)
j + C =

k∑
j=1

(
k∑
i=1

wji

)
f

(t)
j + C

Designate
∑k

i=1 wji as αi; note that as K < N , then ∀i : αi < 1. Hence the
system converges to the state

∑N
i=1 (1− αi)F

(t)
i = C.

Let’s show that network cannot oscillate: prove that no set of sequential states
A1, . . . , An exists such as :

Ai+1 = T (Ai), ∀i ∈ (1, n− 1), A1 = T (An) (15)
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(T stands for one network state change; in our case when neurons have linear
activation functions T (X) = WX + G)

If the set A1, . . . , An exists, then⎧⎨⎩A1 = WAn + G
. . .
An = WAn−1 + G

(16)

Consequently:

A1 = WnA1 +

(
n−1∑
i=0

W i

)
G (17)

and

(E −Wn)A1 =

(
n−1∑
i=0

W i

)
G (18)

Note that with chosen link weights the equality Wn = E never comes true.
Then, solving the simple matrix equation , we come to

A1 =

(∑n−1
i=1 W i

)
G

(E −W )
∑n−1

i=0 W i
=

G

1−W
(19)

But in this case the following expression will be true:

A2 = WA1 + G = W
G

1−W
+ G =

G

1−W
= A1 (20)

resulting in A1 = Ai, ∀i. Thus, no set of distinct states A1, . . . , An exists.
Hence, a conclusion can be made that the stable condition of the net is ac-

cessible, single and does match the approximate finite-difference approximation
of the PDE problem.

5 Solving Parabolic PDE Boundary-Value Problems

The structure of the network may be described by the following rules and defi-
nitions:

– the network consists of several layers; every layer is a n-dimensional rec-
tangular grid; every neuron is mapped to discretization mesh node in the
solution domain Ω;

– L(X) is a number of neuron having an n-dimensional coordinate vector X
in a layer t;

– values fi, P (i, j) and S(i, j) have the same meaning as for elliptic PDEs;
– variable coefficient values k(X, t) are referred as kL(X,t);
– an auxiliary value is introduced:

k̂L(X,t) =
τ

h2

n∑
i=1

(
2kL(P (X,i),t)

kL(P (X,i),t) + kL(X,t)
+

2kL(S(X,i),t)

kL(S(X,i),t) + kL(X,t)

)
(21)

note that if k = const, k̂ = τ
h2 2n
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– assign the feedback link the weight

wii = b− 1− b

kik̂i
(22)

where b ∈ (0, 1) is an user-defined coefficient;
– assign all other links between neurons inside the same layer the weight

wij =

{
1−b

k̂j

2ki

kj+ki
, i ∈ N(j)
0

(23)

– assign links between layers the weight:

wij =

{
wL(X,i),L(Y ,i+1) = 0, X �= Y ,

wL(X,i),L(Y ,i+1) = 1−b

kL(X,i)k̂L(X,i)

(24)

– neuron activation functions are selected using the same rules as for elliptic
PDE.

Note that network stable state will satisfy the following equation:

cfL(X,t) = wL(X,t),L(X,t)fL(X,t) + (25)

+
n∑
i=1

(
wL(P (X,i),t),L(X,t)fL(P (X,i),t) + wL(S(X,i),t),L(X,t)fL(S(X,i),t)

)
+

+wL(X,t−1),L(X,t)fL(X,t−1)

Under the condition k = const the selected model satisfies the finite-difference
approximation of the parabolic PDE with constant coefficients. The proof is
simple; the equation describing the stable state can be transformed the following
way:

cccfL(X,t) =
(
b− 1− b

2kn(τ/h2)

)
fL(X,t) + (26)

+
1− b

2n(τ/h2)

n∑
i=1

(
fL(P (X,i),t) + fL(S(X,i),t)

)
+

1− b

2kn(τ/h2)
fLX, t− 1(

2kn
τ

h2 (1− b) + (1− b)
)
fL(X,t) = (27)

= k(1− b)
n∑
i=1

(
fL(P (X,i),t) + fS(P (X,i),t) + (1− b)fL(X,t−1)

)
fL(X,t) − fL(X,t−1) = k

( τ

h2

) n∑
i=1

(
fL(P (X,i),t) − 2fL(X,t) + fL(S(X,i),t)

)
(28)

the latter expression is obviously equivalent to the finite-difference form.
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Under the condition k �= const the selected model satisfies the finite-difference
approximation of the parabolic PDE with variable coefficients. In this case the
stable state equation will take the following form:

cccfL(X,t) =
(
b− 1− b

kk̂

)
fL(X,t) + (29)

+
1− b

k̂

n∑
i=1

(
2kL(P (X,i),t)

kL(X,t) + kL(P (X,i),t)
+

2kL(S(X,i),t)

kL(X,t) + kL(S(X,i),t)

)
+

1− b

kk̂
fL(X,t−1)

After similar transformation it comes to:

fL(X,t) − fL(X,t−1) = kk̂fL(X,t) + (30)

+kL(X,t)

n∑
i=1

(
2kL(P (X,i),t)

kL(X,t) + kL(P (X,i),t)
fL(P (X,i),t)+

+
2kL(S(X,i),t)

kL(X,t) + kL(S(X,i),t)
fL(S(X,i),t)+

)
After regrouping items it take the form equivalent to finite-difference repre-

sentation:

fL(X,t) − fL(X,t−1) =
n∑
i=1

(
2kL(X,t)kL(P (X,i),t)

kL(X,t) + kL(P (X,i),t)

(
fL(P (X,i),t) − fL(X,t)

)
+(31)

2kL(X,t)kL(S(X,i),t)

kL(X,t) + kL(S(X,i),t)

(
fL(S(X,i),t) − fL(X,t)

)
+
)

The proof of network stability is analogous to the presented in the section
devoted to elliptic PDEs.

6 Conclusion

Hence, a conclusion can be made that it is possible to build a neural network
which does not require learning and is able to get the approximate numeric
solution of boundary-value elliptic or parabolic PDE problem on the arbitrary
finite domain in a finite time. The precision of such solution is comparable to
the solutions base on widely used numerical method, while neural-network-based
approach allows to use parallel calculations more effectively.
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Abstract. Constrained total variation minimization and related con-
vex optimization problems have applications in many areas of image
processing and computer vision such as image reconstruction, enhance-
ment, noise removal, and segmentation. We propose a new method to
approximately solve this problem. Numerical experiments show that this
method gets close to the globally optimal solution, and is 15-100 times
faster for typical images than a state-of-the-art interior point method.
Our method’s denoising performance is comparable to that of a state-
of-the-art noise removal method of [4]. Our work extends our previously
published algorithm for solving the constrained total variation minimiza-
tion problem for 1D signals [13] which was shown to produce the globally
optimal solution exactly in O(N log N) time where N is the number of
data points.

1 Problem Statement

Suppose the observed data f is a noisy measurement of an unknown image g:

f = g + w,

where w is zero-mean additive white noise with variance σ2. It was proposed in
[16] to recover an estimate ĝ of g by solving the following problem of constrained
minimization of the total variation (TV):

ĝ = arg min
g: ‖f−g‖≤σ

TV(g). (1)

A number of more effective noise removal paradigms have since been devel-
oped [15,10]. However, problem (1) and related variational and PDE-based meth-
ods have been successfully used in a variety of other application areas such as
tomographic reconstruction [8, 17], deblurring [3, 6, 12, 20], and segmentation
[14, 9]. This motivates continued interest in problem (1) as well as the need to
develop fast algorithms for solving it.
� This work was supported in part by the National Science Foundation (NSF) through

CAREER award CCR-0093105 and through grant IIS-0329156.
�� Corresponding author.

D. Grigoriev, J. Harrison, and E.A. Hirsch (Eds.): CSR 2006, LNCS 3967, pp. 403–414, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



404 X. Dong and I. Pollak

The original formulation of [16] treated continuous-space images for which
the total variation is defined as follows:

TV(g) =
∫
|∇g|.

A numerical procedure was developed in [16] based on discretizing the corre-
sponding Euler-Lagrange equations. Since then, many other numerical schemes
have been proposed to approximately solve this and related optimization
problems [3, 4, 5, 6, 11, 12, 14, 19, 20].

We consider a discrete formulation of the problem in which f and g are both im-
ages defined on an undirected graph G = (N ,L) whereN is a set of nodes (pixels)
and L is the set of links which define the neighborhood structure of the graph. We
use the following definition of the total variation for such discrete images:

TV(g)
�
=

∑
{m,n}∈L

|gm − gn|. (2)

The norm we use in Eq. (1) is the %2 norm:

‖f − g‖ =
√∑

n∈N
(fn − gn)2.

The optimization problem (1) can then be cast as a second-order cone program
(SOCP), i.e., the minimization of a linear function over a Cartesian product of
quadratic cones [2, 1, 18]. The globally optimal solution to this SOCP problem
can be obtained with interior point methods whose computational complexity
is O(N2 log ε−1) where N = |N | is the number of pixels, and ε is a precision
parameter [18, 11].

The main contribution of the present paper is the development of a subopti-
mal algorithm which we empirically show to be about 15-100 times faster than
a state-of-the-art interior point method, for typical natural images. This algo-
rithm is also empirically shown to achieve values of TV(x) which are quite close
to the globally optimal ones achieved by SOCP. Moreover, the images recovered
by the new method and via SOCP are visually very similar. We also experi-
mentally evaluate our algorithm’s performance as a denoising method, using the
algorithm of [4] as a benchmark. We show that the two algorithms perform com-
parably. A specialization of this algorithm to 1D discrete signals was proposed
and analyzed in [13]. This specialization was shown to exactly solve problem
(1) in 1D, in O(N logN) time, and with O(N) memory complexity. Its variants
which have the same complexity were shown in [13] to exactly solve two related
discrete 1D problems, specifically, the Lagrangian version of problem (1) and the
minimization of ‖f − g‖ subject to a constraint on TV(g).

We note in addition that, if the graph G is a regular rectangular grid, then
each pixel n can be represented by its horizontal and vertical coordinates i and
j. In this case, another possible discretization of the TV is:

TV′(g)
�
=

∑
i,j

√
(gi+1,j − gi,j)2 + (gi,j+1 − gi,j)2. (3)
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With this definition of the discrete TV, the optimization problem (1) can also
be cast as an SOCP problem, as shown in [11]. It can therefore also be solved
using interior point methods for SOCP.

2 Notation

We define a real-valued image on an arbitrary finite set N of points as any
function which assigns a real number to every point in N . For the algorithm
described in Section 3, it is important to define adjacency relationships on the
points in N , and therefore we assume that N is the set of nodes of an undirected
graph G = (N ,L) where the set L of links consists of unordered pairs of distinct
nodes. If {m,n} is a link, we say that the nodes m and n are neighbors. For
example, G could be a finite 2D rectangular grid where each node has four
neighbors: east, west, north, and south, as in Fig. 1. We say that R ⊂ N is a
connected set if, for any two nodes m,n ∈ R, there exists a path between m and
n which lies entirely within R—i.e., if there exists a sequence of links of the form
{m,m1}, {m1,m2}, . . ., {mk−1,mk}, {mk, n} with m1,m2, . . . ,mk ∈ R.

If N = |N | is the total number of nodes, then an image u onN can be thought
of as an N -dimensional vector: u ∈ RN . We say that a set S = {R1, . . . , RI} is
a segmentation of an image u if:
– every Ri is a connected set of nodes;
– the image intensity within every Ri is constant, um = un for all m,n ∈ Ri

for i = 1, . . . , I;
– R1, . . . , RI are pairwise disjoint sets whose union is N .

We then say that Ri is a region of S. When convenient, we also say in this
case that Ri is a region of u. For example, two segmentations of the image in
Fig. 1(a) are shown in Figs. 1(b,c). We use μR to denote the common intensity
within region R and |R| to denote the number of pixels in R.

Given a segmentation S of an image u, two regions R,R′ ∈ S are called
neighbors if there exist two nodes m ∈ R, n ∈ R′ which are neighbors, i.e., such
that {m,n} ∈ L. The multiplicity λR,R′ of two neighbor regions R and R′ is the

1 2 3 4

5 6 7 8

9 10 11 12

13 15 1614
R3

R1

R2

1 2 3 4

5 6 7 8

9 10 11 12

13 15 1614

R′1

R′2

R′4

R′5

R′3

(a) (b) (c)

Fig. 1. (a) Image u. (b) Segmentation S . (c) Segmentation S ′.
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length of the boundary between them—i.e., the number of links {m,n} such that
m ∈ R and n ∈ R′. We let nbr-prsS be the set of all pairs of neighbor regions
in S, and we let nbrsS(R) be the set of all regions in S that are neighbors of a
region R ∈ S. For example, in the segmentation S of Fig. 1(b), each region is a
neighbor of the other two, and the multiplicities are λR1,R2 = 3, λR1,R3 = 3, and
λR2,R3 = 2. In the segmentation S′ of Fig. 1(c), nbrsS′(R′

1) = {R′
2, R

′
4, R

′
5}.

3 Algorithm Description

We define a dynamical system which generates a family of images {u(t)}∞t=0,
parameterized by a time parameter t. We suppose that the initial data for this
system is the observed noisy image, u(t = 0) = f . We let S(t) be the seg-
mentation of u(t) such that μR(t) �= μR′(t) for any pair of neighbor regions
R,R′ ∈ S(t). The output of our algorithm is the image u(t∗) at such time t∗

that ‖f − u(t∗)‖ = σ. The basic reason for the fact that our algorithm is fast is
that it does not explicitly compute the solution u(t) for any t �= t∗. The basic
reason for the fact that it achieves values of the TV which are close to globally
optimal ones, is the fact that the underlying dynamical system is based on the
gradient descent for the TV, as we presently explain. The remainder of the sec-
tion is devoted to the description of the dynamical system and our algorithm for
computing u(t∗).

We first rewrite Eq. (2) for any image u(t), as follows, using the notation
introduced in the previous section:

TV(u(t)) =
∑

{R,R′}∈nbr-prsS(t)

λR,R′ · |μR(t)− μR′(t)|.

It is shown in [9] that if the gradient is taken in the space of all images which
are piecewise constant on S(t), then the gradient descent for the TV is given by

μ̇R(t) =
1
|R|

∑
R′∈nbrsS(t)(R)

λR,R′ · sgn(μR′ (t)− μR(t)), (4)

where μR(t) denotes the intensity within region R of image u(t). This equation
is valid as long as S(t) = const, i.e., as long as μR(t) �= μR′(t) for every pair
of neighbor regions R and R′. As soon as μR(t) and μR′(t) become equal for
some pair of neighbor regions R and R′, their respective rates of evolution μ̇R(t)
and μ̇R′(t) become undefined since the right-hand side of Eq. (4) undergoes a
discontinuity in this case. To handle this scenario, we supplement Eq. (4) with
the following rule.

Region merging: How and when. Suppose that for some time instant t =
τR,R′ we have: R,R′ ∈ S(τ−R,R′ ) and μR(τ−R,R′) = μR′(τ−R,R′). Then we merge R
and R′ into a new region R ∪R′, with the same intensity:

S(τ+
R,R′ ) = S(τ−R,R′ )\{R,R′} ∪ {R ∪R′},

μR∪R′(τ+
R,R′) = μR(τ−R,R′ ) = μR′(τ−R,R′ ).
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In addition, as shown through numerical experiments in the next section,
it may sometimes be beneficial to split a region into two different regions. We
postpone until later the discussion of when our algorithm decides to split a
region. Once it does, region splitting occurs as follows.

Region splitting: How. Splitting of region R into R′ and R\R′ at some time
instant t = τR means that new regions R′ and R\R′ are formed, and that they
have the same intensity as R:

S(τ+
R ) = S(τ−R )\{R} ∪ {R,R\R′},

μR′(τ+
R ) = μR\R′ (τ+

R ) = μR(τ−R )

Time instants when regions are merged and split are called event times. Given
a time T and the corresponding segmentation S(T ), we define the birth time bR

for every region R ∈ S(T ) as bR
�
= sup{t < T : R �∈ S(t)}. Similarly the death

time dR of R is defined as dR
�
= inf{t > T : R �∈ S(t)} Note that bR can be

either zero, or a time instant when two regions get merged to form R, or a time
instant when R is formed as a result of splitting another region into two; dR
can be either a time instant when R is merged with a neighbor to form another
region, or a time instant when R is split into two other regions.

Let

βR =
∑

R′∈nbrsS(bR)(R)

λR,R′ · sgn(μR′ (b+R)− μR(b+R)), (5)

vR = βR/|R|. (6)

Note that our split and merge rules are such that the intensity of every pixel is
a continuous function of t. The continuity property means that the righthand
side of Eq. (4) is constant for bR < t < dR, and is equal to vR:

μ̇R(t) = vR for bR < t < dR. (7)

For each region R ∈ S(t), we therefore have:

μR(t) = μR(bR) + (t− bR) · vR, for bR < t < dR. (8)

Let ū0
R

�
=

1
|R|

∑
n∈R

fn be the average of the initial data f over the set R. For the

regions R with bR = 0, we have μR(bR) = ū0
R, and therefore the following holds:

μR(t) = ū0
R + t · vR, for bR < t < dR. (9)

In order for our algorithm to be fast, it is important that Eq. (9) hold not only
for regions with bR = 0, but also for all other regions, at all times t. Proposition 1
below relies on this property. It is straightforward to show that, if this equation
holds for every region for all times t < τR,R′ , and if regions R and R′ get merged
at the time instant t = τR,R′ , then Eq. (9) will also hold for the new region R∪R′.
We are now finally in a position to state our strategy for splitting regions.
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Region splitting: When. We use two criteria to determine whether a region
R is to be split into two regions R′ and R\R′. First, we check whether this split
is consistent with the dynamics (8)—in other words, we check that R and R\R′

will not be merged back together immediately after they are split. Second, we
determine if there exists a time instant τR at which a split can be performed in
such a way that, on the one hand, the intensity of every pixel is a continuous
function of time, and, on the other hand, Eq. (9) is satisfied for the new regions.
Note that, since there are O(2|R|) possible two-way splits of R, searching over
all possible splits is not computationally feasible. Instead, we only search over
a small number of possible splits, namely, only horizontal and vertical splits
that result in at least one of R′, R\R′ being a rectangle. This can be efficiently
accomplished through an algorithm that walks around the boundary of R.

We now describe the termination of the algorithm. It is based on the following
proposition, which can be proved using Eq. (9).

Proposition 1. Let α(t) = ‖u(t) − u(0)‖2. Then, for t ∈ [0,∞), α(t) is a
monotonically increasing function of time, which changes continuously from 0
to ‖u(0) − u(0)‖2 where u(0) is the constant image whose every pixel is equal
to the average intensity of the initial data u(0). It is a differentiable function of
time except at the times of merges and splits, and its rate of change is:

α̇(t) = 2t
∑

R∈S(t)

β2
R

|R| .

The algorithm starts by checking whether ‖f − f̄‖2 ≤ σ2. If this is true, we stop
the algorithm and use f̄ as the output. Otherwise, we initialize α(0) = 0. Given
α(τl) at the current event time τl, we use the following equation, which is derived
from Proposition 1, to calculate α(τl+1) at the next event time τl+l:

α(τl+1) = α(τl) + (τ2
l+1 − τ2

l )
∑

R∈S(τl)

β2
R

|R| .

The algorithm keeps running until α(τl+1) > σ2 for a certain l. Then our algo-
rithm’s termination time t∗ can be calculated as follows:

t∗ =

√√√√τ2
l +

σ2 − α(τl)∑
R∈S(τl)

β2
R

|R|
.

We then use Eq. (9) to calculate μR(t∗) for each R ∈ S(t∗), and output u(t∗).
Putting everything together, we have the following outline of the algorithm.

1. Initialize
If f̄ satisfies the constraint, output f̄ and terminate. Otherwise, initialize
t0 to be zero, u(t0) to be the data f , the initial segmentation to consist
of singleton regions, and the neighborhood structure to be the standard
four-neighbor grid. Initialize the parameters |R|, bR, βR, μR(t0), and λR,R′

according to the definitions above.
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2. Find Potential Merge Times
Assuming that the intensity μR(t) of every region evolves according to Eq. (9),
find, for every pair of neighbor regions R and R′, the time τR,R′ which is the
earliest time when these two regions have equal intensities.

3. Construct the Event Heap
Store all potential merge events on a binary min-heap [7] sorted according
to the merge times.

4. Merge, Split, or Stop
Extract the root event from the heap. Calculate α(τ) where τ is the event
time. If α(τ) ≥ σ, go to Step 7.
if the event is a merge event

merge;
if the event is a split event

split;
5. Update the Heap

Decide whether the newly formed regions may be split. If so, add the cor-
responding split events to the event heap. Add the merge events for the
newly formed regions to the event heap. Remove all the events involving the
discarded regions from the heap.

6. Iterate
Go to Step 4.

7. Output
Calculate t∗; calculate and output u(t∗).

4 Comparison to SOCP

Given a noise-free image g with dynamic range [0, 1], we generate noisy im-
ages f by adding white Gaussian noise with standard deviation σ ranging from
0.01 to 0.30. The correct value of σ is used in the simulations both for our
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Fig. 2. (a) Noise-free “peppers” image. (b) Percentage difference between the TV for
our split-and-merge algorithm and the optimal TV obtained via SOCP, for many dif-
ferent input PSNR levels (solid line); percentage difference between the TV for our
merge only algorithm and the optimal TV (dashdot).



410 X. Dong and I. Pollak

5 10 15 20 25 30 35 40

100

150

200

250

300

350

Input PSNR (dBs)

R
un

ni
ng

 T
im

e 
(s

ec
on

ds
)

same TV as Our Algorithm
same TV as Merge−Only Algorithm

5 10 15 20 25 30 35 40
0

1

2

3

4

5

6

7

8

Input PSNR (dBs)

T
im

e 
(s

ec
on

ds
)

Our Algorithm
Merge−Only Algorithm

(a) (b)

Fig. 3. (a) Running time for SOCP; (b) running time for our algorithms
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Fig. 4. (a) Output PSNR as a function of the input PSNR. (b) Output PSNR difference
between our algorithm and SOCP.

algorithm and for the SOCP-based algorithm. We use the MOSEK software as
the solver for SOCP. It implements a state-of-the-art interior point method [2].
Running the comparative experiments on 12 different natural images yields very
similar results; we only provide the results for one image, “peppers,” shown in
Fig. 2(a).

SOCP solver converges to the globally optimal solution whereas this is not
necessarily the case for our algorithm. Fig. 2(b) shows how close our algorithm
gets to the globally optimal value for the total variation, for a range of typical in-
put PSNRs.1 As shown in the figure, our split-and-merge algorithm (solid lines)
essentially finds the globally optimal solution at high PSNRs and is within 7% of
the globally optimal solution at low PSNRs. Note also that the merge-only ver-
sion of our algorithm (dashed lines) is about a factor of three farther from the op-
timal total variation than the split-and-merge algorithm. While the optimization

1 The definition we use for PSNR for a noise-free image g and a distorted image ĝ is:

PSNR = 10 log
(max g)2 · N

‖ĝ − g‖2
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σ = 0.05 (PSNR = 26.0dB) σ = 0.15 (PSNR = 16.5dB) σ = 0.25 (PSNR = 12.0dB)

Fig. 5. Denoising for the peppers image. First row: noisy images. Second row: restored
via our split-and-merge algorithm. Third row: restored via our merge-only algorithm.
Fourth row: restored via SOCP.

performance of the split-and-merge algorithm is very similar to that of the SOCP,
their running times are drastically different. In order to make the comparison of
the running times as fair to the SOCP method as possible, we only calculate its
running time to get to the total variation achieved by our algorithm, rather than
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the running time until convergence.2 As Fig. 3 shows, the running time for our
split-and-merge algorithm is 15 to 100 times lower than that for the interior point
method. Note also that the merge-only version of our algorithm is about twice as
fast as the split-and-merge, and that a similar comparison to SOCP shows that
the merge-only algorithm is 30 to 150 times faster than the SOCP method.

The visual appearance of the output images and the corresponding PSNRs
is very similar for the split-and-merge algorithm and the SOCP interior point
method. The output PSNR is displayed in Fig. 4(a) as a function of the input
PSNR. The PSNR differences displayed in Fig. 4(b) reveal virtually identical per-
formance at high input PSNRs and fairly small differences at low input PSNRs.
Moreover, the visual quality of the output images is very similar, as evidenced
by Fig. 5. The visual quality of the output images for the merge-only algorithm
is very similar as well; however, these images have lower PSNRs, especially for
low input PSNRs.

5 Comparison to a Related Image Denoising Method [4]

The algorithm developed in [4] is an iterative algorithm to solve the optimiza-
tion problem (1) where the total variation is defined by Eq. (3). The algorithm
converges to the unique solution of (1). Since the algorithm in [4] and our split-
and-merge algorithm address different optimization problems, we compare their
noise removal performance. Specifically, we compare the running times of these
two algorithms when they reach the same PSNR.

(a) (b) (c)

Fig. 6. (a) Noise-free “airplane” image. (b) Noisy “airplane” image with σ = 0.05
(PSNR = 26.0dB). (c) Noisy “airplane” image with σ = 0.15 (PSNR = 16.5dB).

The setup of our experiments is similar to the previous section. The noise-free
images have the dynamic range [0, 1]. The noisy images are generated by adding
white Gaussian noise with various standard deviations σ. The correct value of σ
is assumed to be known in the simulations. We first apply our split-and-merge
algorithm to noisy images and calculate the running times and the PSNRs of
2 Note also that presolving and matrix reordering are not counted towards the running

time of SOCP since these procedures are reusable for images with the same size [11].
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Fig. 7. Running times for our split-and-merge algorithm (solid lines) and the algorithm
of [4] (dashed lines) to reach the same levels of PSNR

the denoised images. We then rerun each simulation using the algorithm of [4],
until the same PSNR is obtained. The results for two images, for a range of
input PSNRs, are shown in Fig. 7. For the “peppers” image, the algorithm
of [4] is faster than our algorithm, by a factor of 4-33. For the “airplane” image,
the two algorithms perform similarly at high PSNRs whereas our algorithm is
up to about 6 times faster at low PSNRs. Since our algorithm is a multiscale
segmentation process which works with flat regions, it is better adapted to images
such as “airplane” which have large homogeneous regions.
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Abstract. Queries over streaming data offer the potential to provide timely in-
formation for modern database applications, such as sensor networks and web
services. Isoline-based visualization of streaming data has the potential to be of
great use in such applications. Dynamic (real-time) isoline extraction from the
streaming data is needed in order to fully harvest that potential, allowing the users
to see in real time the patterns and trends – both spatial and temporal – inherent
in such data. This is the goal of this paper.

Our approach to isoline extraction is based on data terrains, triangulated ir-
regular networks (TINs) where the coordinates of the vertices corresponds to
locations of data sources, and the height corresponds to their readings. We dy-
namically maintain such a data terrain for the streaming data. Furthermore, we
dynamically maintain an isoline (contour) map over this dynamic data network.
The user has the option of continuously viewing either the current shaded trian-
gulation of the data terrain, or the current isoline map, or an overlay of both.

For large networks, we assume that complete recomputation of either the data
terrain or the isoline map at every epoch is impractical. If n is the number of
data sources in the network, time complexity per epoch should be O(log n) to
achieve real-time performance. To achieve this time complexity, our algorithms
are based on efficient dynamic data structures that are continuously updated rather
than recomputed. Specifically, we use a doubly-balanced interval tree, a new data
structure where both the tree and the edge sets of each node are balanced.

As far as we know, no one has applied TINs for data terrain visualization
before this work. Our dynamic isoline computation algorithm is also new. Exper-
imental results confirm both the efficiency and the scalability of our approach.

1 Introduction

Queries over streaming data offer the potential to provide timely information for mod-
ern database applications, such as sensor networks and web services. Isoline-based vi-
sualization of streaming data has the potential to be of great use in such applications.
Isoline (contour) maps is particularly informative if the streaming data values are related
to phenomena that tend to be continuous for any given location, such as temperature,
pressure or rainfall in a sensor network.

Dynamic (real-time) isoline extraction from the streaming data is needed in order
to allow the users to see in real time the patterns and trends – both spatial and temporal
– inherent in such data. Such isoline extraction is the goal of this paper.
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Our approach to isoline extraction is based on data terrains, triangulated irregular
networks (TINs) where the (x, y)-coordinates of the vertices corresponds to locations
of data sources, and the z-coordinate corresponds to their readings. Efficient algorithms,
especially when implemented in hardware, allow for fast shading of TINs, which are
three-dimensional. By combining shading with user-driven rotation and zooming, data
terrains provide a very user-friendly way to visualize data networks.

While the rendering of static TINs is a well-researched problem, we are concerned
with dynamic networks, where data sources may change their readings over time; they
may also join the network, or leave the network. We dynamically maintain a data terrain
for the streaming data from such a network of data sources.

Furthermore, we dynamically maintain an isoline (contour) map over this dynamic
data network. Isolines consist of points of equal value; they are most commonly used
to map mountainous geography. The isoline map can be displayed in isolation, or over-
layed on the underlying TIN, providing the user with a visualization that is both highly
descriptive and very intuitive.

For large networks, we assume that complete recomputation of either the data ter-
rain or the isoline map at every epoch is impractical. If n is the number of data sources
in the network, time complexity per epoch should be O(log n) to achieve real-time
performance. To achieve this time complexity, our algorithms are based on efficient
dynamic data structures that are continuously updated rather than recomputed. Specifi-
cally, we use a doubly-balanced interval tree, a new data structure where both the tree
and the edge sets of each node are balanced.

Dynamic isoline maps have been proposed before in the context of sensor net-
works [7, 11]. However, as far as we know, no one has applied TINs for this purpose
before this work. Our dynamic isoline computation algorithm is also new. As a result,
earlier approaches produce isoline maps that are in both more costly and less accurate.

We have implemented the data structures and algorithms proposed in the paper.
The user has the option of continuously viewing either the current shaded triangulation,
or the current isoline map, or an overlay of both. Experimental results, simulating a
large network of randomly distributed data sources, confirm both the efficiency and the
scalability of our approach.

Overview. We describe data terrains in section 2, and discuss the algorithms for their
computation and dynamic maintenance. In section 3, we give an algorithm for comput-
ing isoline maps over the data terrain, as well as their dynamic maintenance. In section
4 we present our implementation of isoline-based visualization. Related work is dis-
cussed in section 5, and we conclude in section 6.

2 Data Terrains

Our notion of a data terrain is closely related to the notion of a geographic terrain, com-
monly used in Geographic Information Systems (GIS). Geographic terrains represent
elevations of sites and are static.

There are two main approaches to represent terrains in GIS. One is Digital Elevation
Models (DEM), representing it as gridded data within some predefined intervals, which
is volume-based and regular. DEMs are typically used in raster surface models. Due to
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the regularity of DEMs, they are not appropriate for networks of streaming data sources,
whose locations are not assumed to be regular. The other representation is Triangulated
Irregular Networks (TIN). The vertices of a TIN, sometimes called sites, are distributed
irregularly and stored with their location (x, y) as well as their height value z as vector
data (x, y, z); TINs are typically used in vector data models. For a detailed survey of
terrain algorithms, including TINs, see [17].

In this paper, we chose to use TINs to represent the state of a data network. TINs
are good for visualization, because they can be efficiently shaded to highlight the 3D
aspects of the data. The (x, y) coordinates of the TIN’s vertices corresponds to the
locations of data sources, and the z coordinates corresponds to their current value (that
is being visualized). We refer to this representation as data terrains.

We initially construct the data terrain with the typical algorithm for TIN construc-
tion, as in [8, 9] in O(n log n) time. Since the construction of TIN is only dependent on
the location of its sites, the topology of the TIN does not change with the change of the
data values. The only possibility for a TIN to change is when a new data source joins
the network, or when some data source leaves the network, e.g. due to power loss. In
the following, we describe the algorithm for updating the TIN when this happens.

Insertion. When a new data source is added to the network, we need to add the cor-
responding vertex to the data terrain. It would be the same algorithm as when building
a new data terrain, since it is an incremental algorithm. As discussed in [9], the worst
case of the time performance for site insertion could be O(n). Note that we assume that
data sources are not inserted often, much less frequently than their values are updated,
giving us amortized performance of O(log n) for this operation.

Deletion. When a data source leaves the network, we need a local updating algorithm
to maintain our dynamic TIN. Basically, this is the inverse of the incremental insertion
algorithm, but in practice there are a variety of specific considerations. [10] first de-
scribed a deletion algorithm in detail, but unfortunately, it had mistakes. The algorithm
was corrected in [5], and further improved in [14]. The performance for deletion algo-
rithm is O(k log k) where k is the number of neighbors of the polygon incident the
vertex to be deleted. Figure 1 illustrates how one site is removed from a TIN.

Efficient algorithms, especially when implemented in hardware, allow for fast shad-
ing of data terrains. By combining shading with user-driven rotation and zooming, data
terrains provide a very user-friendly way to visualize data networks.

Fig. 1. Deleting one site from TIN: (a) before deletion; (b) after deletion
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3 Dynamic Isoline Extraction

In this section, we describe how to extract an isoline map from a data terrain for a
dynamic data network.

3.1 Interval Tree

One naive way to extract an isoline map at a given height h directly from the data terrain
is to traverse all the triangles in the data terrain, intersect each one with the plane z = h,
and return all the resulting segments. O(n) time is needed for this brute-force approach,
where n is the number of sites. We use interval trees [6] to obtain a more efficient
solution. For every edge in the TIN, this tree contains an interval corresponding to the
edge’s z-span.

Interval trees are special binary trees; besides the key which is called a split value,
each node also contains an interval list. Given the set of intervals for the z-spans of a
TIN’s edges, an (unbalanced) interval tree is constructed as follows.

1. Choose a split value s for the root. This value may be determined by the first in-
serted interval. For example, if (a, b) is the first inserted interval, then the split value
will be (a + b)/2.

2. Use s to partition the intervals into three subsets, Ileft, I, Iright. Any interval (a, b)
is in I if a ≤ s ≤ b; it is in Ileft if b < s; and it is in Iright if a > s.

3. Store the intervals in I at the root; they are organized into two sorted lists. One is
the left list, where all the intervals are sorted in increasing order of a; the other is
the right list, where all the intervals are sorted by decreasing order of b.

4. Recurse on Ileft and Iright, creating the left and right subtrees, respectively.

Next, we doubly balance the tree; we use AV L trees [1] for this purpose. The first
AVL tree is for the interval tree itself, the other is for the edge lists stored at the nodes
of the interval tree. This enables us to provide quick updates to the tree (section 3.2).

Figure 2 gives an example of a TIN, composed of 7 sites and 19 edges, and the cor-
responding interval tree. More details can be found in [16], which uses an interval tree
as the data structure to conveniently retrieve isoline segments. But they only consider
static TIN, while we will give an algorithm for dynamic TIN in section 3.2.

We now describe the algorithm for using an interval tree T to create an isoline at
value v. It is a recursive algorithm that begins with the root node. Let the split value
be s. If v < s then we will do the following two things. First search the left list of the
root, and then search the left subtree of the root recursively. If v > s then we will do
the similar two things. First search the right list of the root, and then search the right
subtree of the root recursively. We stop at the leaf node.

We finish by describing the details of the algorithm for querying the matched edge
list in the left list or right list of the interval node, mentioned briefly before. Recall
that we stored the edge list as an AV L tree. Take the left list as an example, we only
consider the left evaluation of the smaller point of the edge. Let it be the key k of the
AV L node. We search the AV L tree recursively. If v < k, then we search the left
subtree recursively. If v > k, which means that all the edges in the left subtree are the
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Fig. 2. An example of a TIN and the corresponding balanced interval tree

matched edges, output them and search the right subtree recursively. Querying the right
list of the interval node is symmetric.

Note that an interval tree can also be constructed for triangles, rather than edges, of
the TIN, since a z-span can just as easily be defined for triangles. We can quickly find
those triangles that intersect with the plane z = h, and avoid considering others. One
such algorithm is given in [16].

In our work, we found it more convenient to use edges to compute isolines from
the TIN instead of triangles. Note that this kind of substitution does not affect the ef-
ficiency, because of the following fact: if there are n vertices in the TIN, the number
of edges and the number of triangles are each O(n) [13]. Let nb denote the number of
sites on the boundary of the TIN, and ni be the number of sites in the interior; the total
number of sites is n = nb + ni. The number of edges is ne = 2nb + 3(ni − 1) <= 3n.
The number of triangles, let be nt, would be nt = 2n − 6 when n > 3. Therefore,
both the edge-based and the triangle-based interval trees allow for a more efficient
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algorithm to get the isolines from TIN than the naive one described at the beginning
of the section.

3.2 Dynamic Interval Tree

In our setting, the data values at the sources change as time passes. Since our interval
tree is built up on the edges of the TIN, and the z-span of the edge is dependent on
the values at the sites adjacent to the edge, a change in these values will necessitate a
change to the interval tree.

We begin with a built TIN and a constructed interval tree, as described above. In the
following, we give a detailed description of the algorithm to update the tree after some
data source s changes its value from v0 to v.

1. We use the TIN to find all edges incident with the data source s. Since the TIN
contains an incidence list L for each vertex, we can find these edges in constant
time O(1).

2. For every edge e in the list L, we need to update its position in the interval tree.
Suppose that the original z-span for e is ze, and the new one is z′e.

3. Run a binary search from the root to find the node x which contains the interval ze.
This is done in O(log n) time.

4. Delete ze from both the right and the left lists of x. Since both of these lists are
implemented as a standard AVL tree, the performance is O(log n).

5. Look for the node y that should contain z′e, that is, its split value overlaps z′e. First,
check whether z′e overlaps with the split value of x, in which case we need look
no further. Otherwise, begin searching from the root of the tree, comparing z′e with
the split value of the node, until we find the node whose split value overlaps z′e or
reach a leaf. The time for this is in O(log n).

6. If we found y, then insert z′e into the right and the left lists of y. Both lists are
implemented with AVL trees, and the size of each list is at most the total number
of the edges in the TIN. So this insert should be in O(log n).

7. If we have reached a leaf without finding y, we insert a new leaf into the interval
tree to store the new interval. Its interval lists will contain just z′e, and its split value
will be the midpoint of z′e; this is in O(1).

Recall that we are using balanced (AVL) trees both for the interval tree, and for
the interval lists within each node of the interval tree. To keep the trees balanced, all
insertions and deletions are followed by a rebalance operation. There exists the rebal-
ance algorithm for AVL trees in O(log n) time [19], and it is easy to see that double
balancing does not increase the time complexity. An alternative method is relaxed AVL
tree [12]. Instead of rebalancing the tree at every update, we relax the restriction and
accumulate a greater difference is heights before we need to adjust the height of the
AVL tree.

Figure 3 illustrates an update to the interval tree of Figure 2 when the reading of
data source s changes from 136.3 to 170.4. Note that all edges incident on s need to be
checked. In this figure, we need to update the position of intervals f, h, l,m, n in the
interval tree.
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Fig. 3. An update to the interval tree

This tree is highly unbalanced; it is a snapshot after the insertion but before rebal-
ancing. Figure 4 shows the result after balancing the interval tree. To insert n into the
interval tree, we needed to insert a new node to store n. After rebalancing, there are no
intervals in the node whose split value is 74.35; this decreases the height of the interval
tree by 1, so we delete this node. The time complexity of this algorithm is O(log n).

Note that our algorithm, while sometimes adding new nodes (with singleton interval
lists), does not delete old nodes when their interval lists become empty. We determined
experimentally that there was no benefit in doing so. Since the data readings move up
and down (rather than monotonically increasing or decreasing), the empty node is very
likely to be used up at some point; it turns out that keeping it around for this eventuality
is more time efficient than deleting it right away.

To complete the performance analysis of the interval tree update algorithm, we need
to know how many edges are incident on a given site s, since each of these k edges
needs to be updated separately. It can be proved that k is never more than 6. We already
know the number of edges is ne <= 3n, where n is the number of sites, one per data
source. Since each edge is incident on two sites, clearly we have: k = 2∗ne

n <= 6. We
confirmed this experimentally, measuring the average of k; we found that it was never
more than 6, not growing as the number of sites increased. Therefore, we assume that k
is O(1).

For each edge, we took its z-span interval from its old position and found an ap-
propriate new position to insert the interval, rebalancing when needed. Each of these
operations is in O(log n) time. Therefore, the overall algorithm is O(log n).
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4 Performance

4.1 Assumptions

Our visualization algorithm relies on continuously updating the TIN and the corre-
sponding interval tree. The updates are triggered by changes to data values, insertions
(new data sources), or deletions (loss of a data source). We use the amortized approach
to complexity analysis, assuming that changes to data values happen much more often
than either insertions or deletions.

4.2 Experiments

Our implementation of the visualization of data terrain uses OpenGL [15], a software
interface to graphics hardware. In our simulation, we used GNU C++ with OpenGL
library under Linux platform to render the data terrain and isoline maps. We imple-
mented isoline extraction from data terrains using the algorithm described above. In
our experiment, we started by generating the initial data terrain from the initial values
at data sources, using the algorithm in section 2. Then we constructed our interval tree
using the algorithm in section 3.

For the initial values of our data, we used the actual data which describes the ter-
rain around the University of Connecticut. As shown in figure 5, we simulated a net-
work of 257 data sources deployed around UConn which were in the region (0, 0) −
(9600, 10115). The data readings were the local height at that coordinate, which ranged
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Fig. 5. Data terrain of UConn. (a) before change; (b) after change.

Fig. 6. Isolines from TIN, (a) before and (b) after change

from 0 to 420 (feet). Figure 5 shows the shaded data terrain (a) before and (b) after a
site n lower left quadrant changed its value, from 350 to 149.49. One can clearly see
the difference in the shape of the two data terrains.

Our data stream consisted of changes to the readings of one site (chosen at ran-
dom) at a time. As we processed the stream, we updated the TIN and the interval trees.
Figure 6 illustrates how the isolines can be affected by a change to the reading at a
single site. It shows the TIN overlayed with the isolines; the thick line represents the
isoline value 200, and the thin line represents the isoline value 300. When we change
the reading at one site (colored as black) from 350 in (a) to 149.49 in (b), it is apparent
how the isolines changes accordingly.

We measured the performance of our update algorithms described in sections 2
and 3, plotting time performance against the number of data sources in the network,
n. We varied n from 50 to 2500 in 50 unit intervals: {50, 100, 150, . . . , 2450, 2500}.
Given n data sources distributed randomly in a region (0, 0)−(300, 300), we chose one
at random and changed its reading, updating everything. We repeated this 100 times,
getting the cumulative time for each n in microseconds. Figure 7 (a) shows the plot we
obtained from our experiments.
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Fig. 7. Time performance vs. number of sites, (a) without and (b) with the logarithmic trendline

The logarithmic trendline through this plot has the function y = 9.5973(ln x) −
24.691, and the value of .964 for R2 as shown in Figure 7 (b) . This value of R2 shows
that there is a 96.4% reliability of the relationship between the plot and the trendline.
From this picture, we can see that our algorithm is logarithmic and scalable. This con-
firms our analysis in section 3.

5 Related Work

The visualization of data terrains involves much knowledge in computer graphics. A
good review of rendering techniques such as transformations, shading, interpolation,
texture mapping, ray tracing, etc., as well as the mathematics theory behind it, can be
found in [18, 2]. One of the popular rendering libraries is OpenGL. It is said to be
industry standard; it is stable, reliable, portable, extensible, scalable and easy to use.
Documents are available from http://www.opengl.org. [15], written by the OpenGL
Architecture Review Board, is the most authoritative one. In our simulation, we used
GNU C++ with OpenGL under Linux to render our data terrain and our isoline map.

Interval tree first was propose by Edelsbrunner [6] to efficiently retrieve intervals
of real lines that contain a given query value. Cignoni et. al. [4] uses interval tree as
the data structure to extract isosurfaces. Chiang [3] describes how to extract isosurface
from volumetric data using interval tree.

Van Kreveld [16] uses the interval tree as the data structure to extract isolines from
TINs by associating each triangle with the intervals of the elevation it spans. There
are several differences between that algorithm and ours. Their intervals are based on
z-spans of triangles rather than edges. They do not use balanced trees as we do. Their
algorithm is not dynamic (the update operations are not defined). Finally, as far as we
know, their algorithm was never implemented.

To our knowledge, no one has described an algorithm to extract isolines efficiently
and dynamically from data terrains as we have done. Related work in the sensor net-
work community has tried to extract isolines directly from sensor readings, using in-
network protocols. For example, in [11], an isobar computation from sensor networks
is performed as a form of aggregation. This work assumes that every sensor is in a
rectangular grid and merge these grids in-network. The communication between the
sensors is based on a tree. The general process is that each sensor gets the isobar map
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from its children, combines its own information, and sends the isobar map up to its par-
ent. Finally, the root aggregates the isobar maps. So they need some polygon operations
such as intersect and union; the time complexity is O(n log n), where n is the number
of edges in the polygon. Whenever there are some sensors changing their reading, we
need to compute the isobar again, so this approach is not efficient in a dynamic real-time
setting.

6 Conclusions

Isoline-based visualization of streaming data has the potential to be of great use in
modern database applications, such as sensor networks and web services. This paper
was concerned with dynamic (real-time) isoline extraction from the streaming data, so
as to allowing the users to see in real time the patterns and trends – both spatial and
temporal – inherent in such data.

Our approach to isoline extraction was based on data terrains, triangulated irregular
networks (TINs) where the coordinates of the vertices corresponds to locations of data
sources, and the height corresponds to their readings. We dynamically maintained such
a data terrain for the streaming data. Furthermore, we dynamically maintained an isoline
(contour) map over this dynamic data network.

For large networks, we assumed that complete recomputation of either the data ter-
rain or the isoline map at every epoch is impractical. If n is the number of data sources
in the network, time complexity per epoch should be O(log n) to achieve real-time
performance. To achieve this time complexity, our algorithms are based on efficient
dynamic data structures that are continuously updated rather than recomputed. Specifi-
cally, we used a doubly-balanced interval tree, a new data structure where both the tree
and the edge sets of each node are balanced.

As far as we know, no one has applied TINs for data terrain visualization before
this work. Our dynamic isoline computation algorithm is also new. Experimental results
confirm both the efficiency and the scalability of our approach. All our implementation
was in GNU C++ with OpenGL library under Linux.
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Abstract. Defending against denial-of-service(DoS) attacks is one of the hard-
est security problems on the Internet today. One difficulty to thwart these at-
tacks is totrace the source of the attacks because they often use incorrect, or 
spoofed IP source addresses to disguise the true origin Traceback mechanisms 
are a critical part of the defense against IP spoofing and DoS attacks, as well as 
being of forensic value to law enforcement. Currently proposed IP traceback 
mechanisms are inadequate to address the traceback. problem for the following 
reasons: they require DoS victims to gather thousands of packets to reconstruct 
a single attack path; they do not scale to large scale Distributed DoS attacks; 
and they do not support incremental deployment. This study suggests to find the 
attack origin through MAC address marking of the attack origin. It is based on 
an IP trace algorithm, called Marking Algorithm. It modifies the Marking Algo-
rithm so that we can convey the MAC address of the intervening routers, and as 
a result it can trace the exact IP address of the original attacker. To improve the 
detection time, our algorithm also contains a technique to improve the packet 
arrival rate. By adjusting marking probability according to the distance from  
the packet origin, we were able to decrease the number of needed packets to 
traceback the IP address. 

1   Introduction 

The most typical form of the malicious internet attacks interfering with company 
activities is DoS(Denial-of-Service) attack. DoS attack causes damages to prevent the 
victim system from conducting normal service and make the system down by sending 
infinite malicious packets to systems using more than one attacking system. Likewise 
DoS attack can not only temporarily cause denial of service after simply paralyzing 
server but also terribly cause the complete loss of credit which can be the most impor-
tant part of internet service for internet service providers or corporate. Because there 
are no suitable measures to cope with the attacks, there just is no other way except 
reactivating paralyzed server or blocking attacks with IDS(Intrusion Detection Sys-
tem). If attacker's correct location cannot be found further attacks may be attempted 
and in this way it will be exposed to potential risks.  

In an effort to detect location of attacker, IP traceback was approached through 
studies but because attacker spoofs its own IP there has been limit in tracing back IP. 
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Attackers can hide its location spoofing the IP employing the point that unlike other 
attack forms DoS attack does not require creditable connection between the attack 
system and the victim system and even packet having spoofed IP has enough effect on 
DoS attack.  

Accordingly other than the technique to use source IP address recorded at packet, 
technique to detect attacker's location should be studied and marking type IP trace-
back technique was proposed as an alternative measure. It detects the attack path by 
having every router on network mark its own IP address to packet passing through the 
router and using information on the victim system. This can detect to the first router 
where packet passes through out of the victim place but the disadvantage is that it 
cannot find the source location of the practical attack.  

Therefore in the study we understand how to find attack path in current marking 
type IP traceback techniques and furthermore propose how to detect the true attack 
source with MAC address by marking MAC address of attack source.  

For this each router marks the MAC address of front end together with its own IP 
address and it is proposed as follows; mechanism to perform integrity test on MAC 
address just as the integrity test performed on IP address in the victim system, and 
minimize the number of packets needed to find out attack path, which was revealed as 
weakness.  

This paper is composed of the following parts. We review background information 
and highlight the main challenges of the IP traceback approach in section 2. In  
Section 3, we give an overview of address fragmentation techniques for the purposes 
of packet marking for internet traceback. Section 4 shows the experimental results and 
in final chapter 5 conclusion and prospects for further study are described. 

2   Related Works 

This section briefly introduces several previously proposed techniques to IP trace 
back the origins of attack. The importance of IP traceback has prompted many re-
searchers to work on this topic [1], [2], [3], [5], [6], [7], [9], [10], [11]. We review 
these efforts in chronological order.  

Burch and Cheswick introduce the concept of network traceback. They identify at-
tack paths by selectively flooding network links and monitoring the changes caused in 
attack traffic [3]. 

Savage et al. propose the Fragment Marking Scheme(FMS) for IP traceback [10]. 
They suggest that routers probabilistically mark the 16 bit IP identification field, and 
that the receiver reconstructs the IP addresses of routers on the attack path using these 
markings. Bellovin et al. develop iTrace [2]. In iTrace, routers probabilistically send a 
message to either the source or destination IP address of a packet, indicating the IP 
address of the router. This approach does not alter packets in-flight and victims can 
also detect attackers that use reflectors to hide their presence [8], however, it does 
generate additional traffic. 

Goodrich presents a marking scheme that marks nodes instead of links into packets 
[5]. Because this approach does not use a distance field, it has issues with attack graph 
reconstruction and does not scale to a large number of attackers. 
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Dean et al. suggest algebraic traceback, an algorithm to encode a router’s IP ad-
dress as a polynomial in the IP identification field [4]. We show in the next subsection 
that it does not scale to large number of attackers. Adler presents a theoretical analysis 
of traceback, presenting a one-bit marking scheme [1]. This work is primarily of  
theoretical interest, and does not scale to large numbers of attackers. 

Snoeren et al. propose SPIE, a mechanism using router state to track the path of a 
single packet [10]. The main advantage of SPIE is that it enables a victim to trace 
back a single packet by querying the router state of upstream routers, however, it does 
require routers to keep a large amount of state. Li et al. have further developed their 
approach, lowering the required router state, at the expense of a large communication 
overhead for traceback [7]. 

In this mechanism, referred to as Fragment Marking Scheme, router marks that 
packet appointed as given probability, p or less, not all the packet, passes through the 
router. Namely it marks the router IP to source field for additional data to show path of 
packet which is selected with probability of p or less at each router and distance infor-
mation, the number of hops is set to 0. When the probability to select the packet at the 
next router through which the packet passes is p or more, the last router marked at  
the packet is the IP of the router. The record on both the source and last IP undergoes 
the following; when passing through the next router, if probability is p or more, the 
number of hops is added by the number of routers passed through from the source 
router and if less than p, this record is disregarded and source is recorded again. This 
series of processes are reliable to find out the source of the real packet although modi-
fication is made to the source address where packet was generated on purpose by in-
creasing the random rate. This mechanism has come from the idea that the part to re-
cord the data is the identification field marking the packet's identity for the separation 
of packet's IP header and the rate to use the part is statistically 0.25%. 

In current marking algorithm, router data is sent to identification field of packet's IP 
header, router data is sent in slice and marking process at router is processed as prob-
ability by sampling basis. In order for router to mark its IP address to packet, identifi-
cation field(16 bit) of IP header is used.  

Using the router's IP address, R and bit algorithm to the IP address 64 bit R is cre-
ated by bitinterleaving the hash(R) value and o(displacement data, the random num-
ber)th slice is loaded to packet after the value is divided into 8 slices. So distance 
data, the slice of IP address, and the displacement data indicating the slice's location 
are marked. The packets marking the IP address of passed router are composed by 
distance data at the victim system and if the IP address obtained from the combination 
is found to be right router's IP address, it will be recorded to path tree. So attack path 
can be the path tree composed through the above described processes.  

Current marking algorithm to the first router of attack path can be found . Although 
attack paths are found and using the paths measures can be devised to cope with DoS 
attack, source of attack cannot be found. To the first router through which packet 
passed it is possible to trace but there is no way to trace attack source here. Also due 
to the algorithm's characteristic that the first data is lost(marking the router of new 
router) in the middle by each router till packet arrives victim systems, it is relatively 
low for packet having the first router data to arrive to the victim system. The more the 
number of hops from attacker to the victim system, the smaller the arrival rate of  
the packet. 
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3   Low-Cost Mechanism to Correctly Detect Attack Source 

Router's location is marked by marking the router's IP address to packet in existing 
marking algorithms, but because only the router data on path(IP address) is included 
in packet, it is traceable only to the first router on path. Hence it is not possible to 
trace the location of attack source in the existing mechanisms.  

In this paper we intend to mark not only router's IP address but also the MAC address 
of front end(the previous router or attack source). While there is advantage in marking 
MAC address there also is problem. The problem is that it can send 32 bit IP address 
and 48 bit MAC address in same way. In case of IP address, making 32 bit hash value, 
64 bit is made adding the hash value to the existing IP address, transmission is per-
formed in 8 slices and integrity can be checked in reverse process. But in case that 
transmission is done in 8 slices after making 48 bit MAC address into 64 bit, each router 
should process two stages of marking its IP address and the front end's MAC address 
and one router leads to consuming two distance data to discern each stage. Because of 
this the number of hops to be traced back is limited to 16 which is the half in the exist-
ing mechanism and which is a great obstacle to the original aim to trace attack source. 
In this way new mechanism is required to allow to mark MAC address and at the same 
time not to decrease the traceback scope under current mechanism.  

To load router's IP and MAC address data together to identification field as in 
marking algorithm, check the integrity on the two data in the victim system, and 
maintain the number of hops of attack path that was possible to trace in current 
mechanism, this paper proposes that IP and MAC addresses are transmitted in slices 
after making the addresses into combination of 56 bit slices. Here mechanism to 
check the integrity should be added in making 56 bit combination. For this identifica-
tion field of IP header is to be recombined. Proposed recombination technique is to 
combine 16 bit of identification field into 3 bit displacement data field, 6 bit distance 
data field, and 7 bit slice data field. This can be illustrated as Fig 1. 

0 2 3 8 9 15

Offset
information

Distance
information

Fragment information

 

Fig. 1. Identification field configuration of proposed IP header 

Mechanism to create IP slice and MAC slice to be loaded to slice data field of IP 
header identification field and check the integrity is proposed as follows.  

3.1   Create Slice Combination 

Unlike in current marking algorithms that 64 bit IP-slice combination is made by 
adding hash 32 bit to 32 bit IP address. in this paper 56 bit IP-slice combination is 
composed and technique to check the integrity of IP address is also to be included. 56 
bit IP-slice combination is composed by adding 24 bit hash value to 32 bit IP address. 
An example is shown on Fig 2 to illustrate the technique. Algorithm 1 to show proc-
ess to create IP-slice combination is described with example of Fig 2. 
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165 246 38 130

7 8 15 16 23 24 310

A B C D
 

Fig. 2. IP address example 

Algorithm 1. IP-slice combination creation algorithm. 
Input : 32 bit IP address, Output: 56 bit IP-slice combination. 

− 1) Divide 32 bit IP address(R) into 4 parts and call it A, B, C, D  each. 
− 2) Perform XOR( ⊕ ) over the former two 8 bits(A, B) and the latter two 8 bits(C, D) 

and make two new 8 bits(E, F) and then perform XOR  to the two(E, F), create one 
new 8 bit and the value is called G.  

BAE ⊕=  
DCF ⊕=  
FEG ⊕=  

24 bit(H) is created by combining newly created three 8 bits. 
GFEH ++=  

− 3) 56 bit is created adding 32 bit R and the new 24 bit H.(Separating 4 bit at R and 3 
bit at H from the front, adding the two makes 7 bit. Repeat the process 8 times then 
56 bit R’ is created.) Here the process to create the 56 bit R’ is defined as BitInter-
leave1. Divide the created R’ into 8 slices and load them to packet according to 
probability. 

In the victim system a complete IP address is combined after recombination over 8 
packets having the same value of distance data, and here it should be checked whether 
the combined IP address is correct or incorrect mixed with other slice in the pro- 
cess. Algorithm 2, the checking stage, is the reverse process of the above proposed 
Algorithm 1. 

Algorithm 2. Integrity Check Algorithm of IP address. 
Input: 56 bit IP-slice combination, Output: 32 bit IP address. 

− 1) BitDeinterleave and combine the 5, 6, 7 multiple bit of 56 bit's IP-slice combina-
tion(R’) and make 24 bit and this is called H. 

− 2) Divide this 24 bit by 3 and call E, F, G each and where FEG ⊕=' , perform 
process 3. Where FEG ⊕≠ , delete R’ and re-preform with new slice combina-
tion from process 1. 

− 3) Combine created three 8 bits and call it H. 
GFEH ++=  

− 4) Here 32 bit excluding R’ at H becomes IP address. 
− 5) Divide R’ by 4 and perform XOR over the former two 8 bits(A, B) and the later 

two 8 bits (C, D) each. After making two new 8 bits(E’, F’) perform XOR over 
these two 8 bits, create one new 8 bit and call the value G’. 
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BAE ⊕='  
DCF ⊕='  
FEG ⊕='  

− 6) After combining three newly created 8 bits create 24 bit(H’). 
'''' GFEH ++=  

Where 'HH ≠ , accept the R’ is correctly transmitted combined value in correct or-
der, and where 'HH ≠ , delete R’ and perform from process 1 with new combination 
slice. 

3.2   Create IP-Slice Combination and Check the Integrity 

As each router on attack path marks its own IP address to packet, if it marks the MAC 
address of front end also, it needs to check the integrity of the transmitted MAC ad-
dress as the integrity of IP address transmitted to packet is checked in the victim sys-
tem. In addition by having the intermediate router mark the MAC address of the front 
end, practically each router consumes two distance data(its own IP address - distance 
data 0, MAC address of the front end - distance data 1). This causes a new problem of 
decreasing the number of traceable hops under the current mechanism to the half.  

To fill out this problem, in this study adjusting the configuration of identification 
field and making distance data field 6 bit, the number of traceable hops can be main-
tained as in current marking algorithm by composing slice data field with 7 bit. Also 
the problem of decreasing slice data field by 1 bit was settled by proposing a tech-
nique to check integrity after adjusting the existing 64 bit slice combination into 56 
bit. Fig 3 is an example to illustrate this technique. 

00     :     15

470

A CB

2B     :     01 0C     :     DF

15 16 31 32

 

Fig. 3. MAC address example 

Algorithm 3, an algorithm to show the process to create MAC-Slice combination, 
explains the process with the example of Fig 3. 

Algorithm 3. MAC-slice combination creation. 
Input: 48 bit MAC address, Output: 56 bit MAC-slice combination. 

− 1) Divide 48 bit MAC address (M) by 6, make it 6 parts, and call it A, B, C, D, E, F 
each.  

− 2) XOR each 8 bit, create new 8 bit and call this value G. 

FDCBAG ⊕⊕⊕⊕=  

− 3) BitInterleave each bit of new 8 bit, G, to the 7th multiple place of MAC address, 
create 56 bit, M. Here define the process of creating M as BitInterleave2. 
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Divide the created M by 8 slices, and load them to packet according to probability. 
In the victim system, complete MAC address is combined through recombination 
process over 8 packets having the same distance data. Here it should be checked 
whether the combined MAC address is right or wrong mixed with other slice in the 
middle. Algorithm 4 is reverse process of the above proposed Algorithm 3. 

Algorithm 4. Integrity check algorithm of MAC address. 
Input: 56 bit MAC-slice combination, Output: 48 bit MAC address. 

− 1) BitDeinterleave2 the 7th multiple digit bit from M’ of combined 56 bit, make 8 
bit after combination, and call it G.  

− 2) Divide 48 bit (MAC address, M’) excluding bits obtained from BitDeinterleave2 
in 1) by 6 parts and call it  A, B, C, D, E, F each. 

− 3) Compare result value of FEDCBA ⊕⊕⊕⊕⊕ with G. 
− 4) Where GFEDCBA =⊕⊕⊕⊕⊕ , accept it as combined value in right order 

through correct transmission.  
 Where GFEDCBA ≠⊕⊕⊕⊕⊕ , delete it since M is not right value. 

3.3   Technique to Use Function to Weighing Probability p 

Fig 4 shows that router data saved at packet is newly created or changed in the course 
that packet starts sending after router's marking its data to the packet at router R1 and 
arrives to Router R5 thru each router and also shows each packet discerned by router 
data saved at such packet. In Fig 4 d0 deletes the previous data loaded on packet at 
router and newly marks its own IP address, d1 performs XOR and marks its IP ad-
dress to the former router's data loaded on packet, and values after d2 just increase and 
send packet's distance data only with the former data maintained. 

Fig 4 shows that router data saved at packet is newly created or changed in the 
course that packet starts sending after router's marking its data to the packet at router 
R1 and arrives to Router R5 thru each router and also shows each packet discerned by 
router data saved at such packet. In Fig 4 d0 deletes the previous data loaded on 
packet at router and newly marks its own IP address, d1 performs XOR and marks its 
IP address to the former router's data loaded on packet, and values after d2 just in-
crease and send packet's distance data only with the former data maintained. 

R1 R2 R3 R4 R5

x < p

x > p

d0 d0 d0 d0 d0

d1 d1 d1 d1

d2 d2
d2

d3 d3

d4  

Fig. 4. Packet flow and data in marking algorithm 
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In Fig 4 arrow means to send to the next router applying probability p, for example 
if probability p applies to d0 of R1, the value is d0 and d1 of R2. Here if applying prob-
ability produces random number and x<p, follow process(1) in Fig 4, if packet  
distance data is 0 and x>p, follow process(2), and if greater than 0 and x>p, follow 
process(3) 

It can be described in the following equation. 

pdRdR ×= ][][ 0102  (1) 

)1(][][ 0112 pdRdR −×=  (2) 

In current mechanism, probability p is fixed at every router. Now by giving weight 
to the probability by distance, data loss and arrival rate is to be improved. It is help-
less to lose data owned whenever passing through router but it is necessary to mini-
mize time to spend in finding attack path by having packet with distant data arrive at 
the victim system as much as possible.  

Value to indicate the number of packets arriving at each router, X, is defined below. 

Definition. Where number of hops is n, the number of packets arriving at router with 

packet, whose distance is i, is expressed in 1+n
iX  

Also function j to probability p is defined in the following equation to weigh by 
distance data.  

2)1(
1

×+= iif  (i=distance) (3) 

With the two above definitions value to hop can be expressed in the equation below.  

Where n=0, 

0
0
0

1
0 fXX ⋅=  

)1( 0
0
0

1
1 fXX −⋅=  

Where n=1, 

1
1
10

1
0

2
0 fXfXX ⋅+⋅=  

)1( 0
1
0

2
1 fXX −⋅=  

)1( 1
1
1

2
2 fXX −⋅=  

. 
. 
. 

Combining above equations it can be expressed in the following function equations. 

n
n
n

nnn fXfXfXX ⋅⋅+⋅=+ ...1100
1

0  (4) 

11
1

−−
+ ⋅= i

n
i

n
i fXX  for i=1, … , n+1 (5) 
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Without setting the probability fixed as expressed above, if weighing by packet's 
distance data, whenever passing through router the packet's arrival rate with the pre-
vious data, which was greatly diminished, will be largely improved. In chapter 4 the 
test results on the improvement of packet arrival rate and the decrease of deviation 
will be presented. 

4   Performance Evaluation and Test Results 

Fig 5 shows the flow of packets arriving from attack source A to the victim system V 
through intermediate routers R3, R4, R5 using the proposed algorithm. Intermediate 
routers mark their IP addresses and MAC address of the front end to packet passing 
through it. Unlike the existing marking algorithms because it should mark MAC ad-
dress as well router should generate random number y and if y<0, distance data is 0 
and it marks its IP address, and if y 0, the distance data is 1 and performs XOR and 
marks MAC address of the front end and the IP address. 

With slices of the packets accepted from Fig 5, after combining table by slice with 
the same distance data and combining slices with the same distance data it can be 
shown by distance data. Performing XOR over slice combination(R5) of the first 
node(distance data 0) and slice combination(R5 ⊕ M4) of the second node(distance 
data 1), the result can be found as follows.  

R5 ⊕ ( R5 ⊕ M4) = M4 
And performing XOR slice combination(R5) of the first node(distance data 0) and 

slice combination(R5 ⊕ R4) of the third node(distance data 2), the result can be found 
as follows.  

R5 ⊕ ( R5 ⊕ R4) = R4 

A R3 R4 R5 V

x<p
    y<0.5
        d=0, R3
    y 0.5
        d=1, R3 XOR M4

x>p
  .
  .
  .

x<p
    y<0.5
        d=0, R4
    y 0.5
        d=1, R4 XOR M3

x>p
    d=2, R4 XOR R3
    d=3, R3 XOR M3
    .
    .
    .

x<p
    y<0.5
        d=0, R4
    y 0.5
        d=1, R5 XOR M4

x>p
    d=2, R5 XOR R4
    d=3, R4 XOR M3
    d=4, R4 XOR R3
    d=5, R3 XOR MA
    .
    .
    .

    d=0, R5
    d=1, R5 XOR M4
    d=3, R5 XOR R4
    d=3, R4 XOR M3
    d=4, R3 XOR R3
    d=4, R3 XOR
MA
    .
    .
    .

 

Fig. 5. Detection of attack source using proposed algorithm 

Through the above two processes IP address and MAC address of router R4 can be 
obtained. Applying the mentioned processes to each node of Table 1 will give IP 
address and MAC address of each router on attack path, and finally the MAC address 
of attack source too. Mechanism to weigh router's probability p by packet's distance 
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data was proposed above. To confirm whether equation 4 is optimized or not, function 
equation to probability p is changed to the following function having two coefficients 
a, b.  

baiif += 1  (i=distance data, 0,0 ba ≥ ) (6) 

As Hop increases the arrival rate of packet arriving to remote router diminishes to 
half each. With some distance data, packet's arrival rate is changed by the following 
equation. 

iiR
2

100=  (i=distance  data) (7) 

To sum up this, it can be found the more hops increase and the bigger distance data 
gets, the dramatically smaller packet arrival rate. As shown in the results packet arri-
val rate has been improved by flexibly weighing p by distance data rather than by 
fixing the probability p. 

With equation 6, conversing the coefficient not exceeding 0 a 10, 1 b 10, calcu-
late the deviation of packet arrival rate arriving to router. 

Table 1 shows the deviation of packet arrival rate where hop=31, and the deviation 
increases proportionally to the two coefficients a, b excluding two cases where a=0 or 
b=1. 

Table 1. Table 4. Packet's arrival rate by hop(p flexible) 

a          b 1 2 3 … 5 6 
0 17.399264 9.71602 7.26184 … 2.96899 2.66695 
1 17.399264 3.99885 2.61227 … 3.22738 3.55309 
2 17.399264 1.97575 2.48060 … 5.36424 5.69557 
3 17.399264 2.73581 3.86648 … 6.89371 7.19553 
4 17.399264 3.69190 5.00034 … 8.00487 8.28221 
5 17.399264 4.45516 5.87619 … 8.84917 9.10777 
6 17.399264 5.05487 6.55819 … 9.51436 9.75853 
7 17.399264 5.53446 7.10851 … 10.05332 10.68621 
8 17.399264 5.92565 7.55987 … 10.49975 10.73368 
9 17.399264 6.25043 7.93658 … 10.87615 11.09287 

10 17.399264 6.52423 8.25569 … 11.19818 11.40900 

5   Conclusion 

Defending against denial-of-service(DoS) attacks is one of the hardest security prob-
lems on the Internet today. One difficulty to thwart these attacks is totrace the source 
of the attacks because they often use incorrect, or spoofed IP source addresses to 
disguise the true origin Traceback mechanisms are a critical part of the defense 
against IP spoofing and DoS attacks, as well as being of forensic value to law en-
forcement. Currently proposed IP traceback mechanisms are inadequate to address the 
traceback. problem for the following reasons: they require DoS victims to gather 
thousands of packets to reconstruct a single attack path; they do not scale to large 
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scale Distributed DoS attacks; and they do not support incremental deployment. This 
study suggests to find the attack origin through MAC address marking of the attack 
origin. It is based on an IP trace algorithm, called Marking Algorithm. It modifies the 
Marking Algorithm so that we can convey the MAC address of the intervening 
routers, and as a result it can trace the exact IP address of the original attacker. To 
improve the detection time, our algorithm also contains a technique to improve the 
packet arrival rate. By adjusting marking probability according to the distance from 
the packet origin, we were able to decrease the number of needed packets to traceback 
the IP address. 
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Abstract. In this study, we compare the performance of well-known neural 
networks, namely, back-propagation (BP) algorithm, Neuro-Fuzzy network and 
Support Vector Machine (SVM) using the standard three database sets: Wis-
consin breast cancer, Iris and wine data. Since such database have been useful 
for evaluating performance of a group of machine learning algorithms, a series 
of experiments have been carried out for three algorithms using the cross vali-
dation method. Results suggest that SVM outperforms the others and the 
Neuro-Fuzzy network is better than the BP algorithm for this data set.  

1   Introduction 

Although machine learning has a long history, recently it becomes an important re-
search topic, partly because it has been used extensively in medical area. In particular, 
a group of machine learning algorithms have been used in classifying the diseases and 
symptoms. There are many algorithms available for such purpose. Among them, three 
machine learning algorithms are used extensively: artificial neural network, Neuro-
Fuzzy network and SVM. However, a group of researchers prefer one algorithm to 
others, and the other group dose so the other algorithm. It appears that the preference 
is subjective. Given such situation, we have thought that it could be worth to com-
pare the performances of those algorithms. The present study aims to evaluate such 
algorithms using the standard database sets, available in the public domain.  

The rest of this paper is organized as follows. Section 2 introduces the structure 
and training method of the artificial neural network and Section 3 describes the struc-
ture of the Neuro-Fuzzy network. In section 4, the basic principles of SVM such as 
maximum margin, optimization and slack variable are described. Experimental results 
and discussion are given in Section 5 and some conclusions and discussion are given 
in Section 6. 

2   Artificial Neural Networks 

The BackPropagation (BP) algorithm, a gradient descent method for training the 
weights in a multilayer neural network, is a specific technique for the training of  
neural network [1]. The backpropagation process consists of two passes through the 
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different layers of the network, a forward pass and a backward pass. In the forward 
pass, an input vector is applied to the input nodes of the network, and its effect propa-
gates through the network layer by layer. Finally, a set of output is produced as the 
actual response of the network. During the forward pass, the network weights are all 
fixed. During the backward pass, on the other hand, the network weights are all ad-
justed in accordance with the error-correction rule. Specifically, the actual response of 
the network is subtracted from a desired output to produce an error signal. This error 
signal is the propagated backward through the network, against the direction of synap-
tic connections. The network weights are adjusted to make the actual response of  
the network move close to the desired response. Fig. 1 shows a diagram of typical 
multilayer neural network. 

 

Fig. 1. Diagram for an Artificial Neural Network  

3   Neuro-Fuzzy Network 

Self-Adaptive Neuro-Fuzzy Inference System (SANFIS) is capable of self-adapting 
and self-organizing its internal structure to acquire a parsimonious rule-base for inter-
preting the embedded knowledge of a system from the given training data set [2]. 
SANFIS can have three types of IF-THEN rule structures as shown in Fig. 2, 

Rule j : IF 1x is 1
jA  and … and  nx  is j

nA , 

THEN 1y  is 1
jf  and … and my  is j

mf . 
(1) 

Where 

0 1 1

                                 (type I)

                                 (type II) 

   (type III)

j
k

j j
k k

j j j
k k nk n

B

f

b b x b x

θ=

+ + +

 (2) 

where 1,2, ,j J= , ( 1,2, , )ix i n= ,and ( 1,2, , )ky k m=  are the input and out- 

put variables, respectively, and j
iA  are the input fuzzy term sets. j

kB , j
kθ ,  

and 0 1 1
j j j
k k nk nb b x b x+ + +  are output fuzzy  term  sets  (type I),  singleton  constituents  
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         (a)                                                (b)                                             (c) 

Fig. 2. Structures of SANFIS (a) SANFIS I, (b) SANFIS II, and (c) SANFIS III 

(type II), and function of linear combination of input variables (type III, TSK model), 
respectively. Fig. 2 shows generic structures of SANFIS type I, type II, and type III, 
respectively. 

The SANFIS learning algorithm consists of two components: 1) an MCA cluster-
ing algorithm that identifies a parsimonious internal structure in the sense that the 
number of clusters (fuzzy rules) is equal (or close) to the true number of clusters in a 
given training data set, and 2) a fast recursive linear/nonlinear least-squares optimiza-
tion algorithm that is utilized to accelerate the learning convergence and fine tune the 
link weights of the whole system to achieve a better performance. 

4   Support Vector Machines 

4.1   Linear Separable Case 

The fundamental idea of SVM is to construct a hyperplane as the decision line, which 
separates the positive (+1) classes from the negative (-1) ones with the largest margin 
[1, 3, 9]. In a binary classification problem, let us consider the training sam-

ple ( ){ }
1

,
N

i i i
d

=
x , where ix  is the input pattern for the i-th sample and id  is the corre-

sponding desired response (target output) with subset { }1, 1d ∈ − + . The equation of a 

hyperplane that does the separation is 

0T b+ =w x  (3) 

where x  is an input vector, w  is an adjustable weight vector, and b  is a bias. Fig. 3 
shows an optimal hyper plane for the linearly separable case and margin, γ . The aim 

of the SVM classifier is to maximize the margin. 
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Fig. 3 An optimal hyperplane for the linearly separable case with the maximum margin and slack 
variables, iξ  

The margin, distance of the nearest point to the typical hyper plane, equals to 
1/ w . So, the problem turns into a quadratic programming: 

( )

21
minimize     

2
. . 1 , 1,2,3, ,i is t y b i N⋅ + ≥ =

w

w x
 (4) 

Problems of this kind are dealt with by introducing Lagrange multipliers 
0, 1, ,i i nα ≥ =  and a Lagrangian 

( )( )2

1

1
( , , ) 1

2

n

i i i
i

L b y bα
=

= − ⋅ + −w w w xα  (5) 

The Lagrangian L  has to be minimized with respect to the variables w  and b  and 
maximized with respect to the dual variables iα  (in other words, a saddle point has to 

be found). The statement that at the saddle point, the derivatives of L  with respect to 
the variables must vanish, 

( , , ) 0  and ( , , ) 0  L b L b
b

∂ ∂= =
∂ ∂

w w
w

α α  (6) 

Leads to 

1 1

0  and   
n n

i i i i i
i i

y yα α
= =

= =w x  (7) 

By substituting Eq. 7 into the Lagrangian (Eq. 5), one eliminates the variables w   
and b , arriving at the so-called dual quadratic optimization problem, which is the 
problem that one usually solves in practice: 
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1 , 1

1

1
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2

subject to 0, 1, , , 0

n n
T

i i j i j i j
i i j

n

i i i
i

y y

i n y

α
α α α

α α

= =

=

−

≥ = =

x x

 (8) 

Thus, by solving the problem, one obtains the optimized solution. 

1

n

i i i
i

yα∗ ∗

=

=w x  (9) 

i ib y∗ ∗= − ⋅w x  (10) 

The decision function of classification is 

1

( ) sgn ( )
n

i i i
i

f x y bα ∗ ∗

=

= ⋅ +x x  (11) 

4.2   Nonlinearly Separable Case 

In practice, a separating hyperplane may not exist because the outliers as shown in 

Fig. 3. In that case, it can be an over-fitting problem. Slack variable iξ  is introduced 

to relax such situation and it gives a certain tolerance as follows: 

( ) 1 , 1, 2,3, ,i i iy b i Nξ⋅ + ≥ − =w x  (12) 

A classifier that generalizes well is then found by controlling both the weight vec-
tor and the sum of the slack variables iξi  minimize the cost function: 

2

1

1
( , )

2

n

i
i

Cξ ξ
=

Φ = +w w  (13) 

where C is a user-specified positive parameter. Using the method of Lagrange multi-
pliers and proceeding in a manner similar to that described above, we may lead to the 
problem of maximizing (Eq. 8), subject to the constraints 

1

0 , 1, , , and   0
n

i i i
i

C i n yα α
=

≤ ≤ = =  (14) 

This way, the influence of the outliers gets limited. 
The other important property of SVM is that it can use diverse kernels in dealing 

with the input vectors. The kernels have non-linear decision boundaries, it is possible 
to separate the positive set from the negative one in the complex cases as shown in 
Fig. 4.  
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ϕ

 

Fig. 4. Nonlinear mapping from the input space to the feature space 

Let ( )ϕ ⋅  denote a nonlinear transformation from the input space to the feature space 

and m  denote the dimension of the feature space. Given such a nonlinear transforma-
tion, we may define a hyperplane as follows: 

1

( ) 0
m

j j
j

bϕ
=

+ =w x  (15) 

We may simplify matters by writing 

0

( ) 0
m

j j
j

ϕ
=

=w x  (16) 

where it is assumed that 0 ( ) 1ϕ =x  for all x , so that 0w  denotes the bias b . Adapting 

Eq. 7 to this case, we may write 

1

( )
n

i i i
i

yα ϕ
=

=w x  (17) 

Substituting Eq. 17 in Eq. 16, we may define the decision surface computed in the 
feature space as: 

1

( ) ( ) 0
n

T
i i i

i

yα ϕ ϕ
=

=x x  (18) 

The term ( ) ( )T
iϕ ϕx x  represents the inner product of two vectors induced in the fea-

ture space by the input vector x  and the input pattern ix  pertaining to the i-th exam-

ple. We may therefore introduce the inner-product kernel denoted by ( , )iK x x  and 

defined by 

( , ) ( ) ( )T
i iK ϕ ϕ=x x x x  (19) 

The optimal hyperplane is now defined by 

1

( , ) 0
n

i i i
i

y Kα
=

=x x  (20) 
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Generally, several kernels such as polynomial, Gaussian and sigmoid kernels are used 
for applications. 

5   Experiment and Performance Comparison 

We have compared the performance of the neural network method, the Neuro-Fuzzy 
method and the SVM method using three well known data sets in the classification 
task - the iris data, the Wisconsin breast cancer data, and the wine classification data. 
These three data sets are available from the University of California, Irvine, via an 
anonymous ftp [5]. 

5.1   Iris Data 

The Fisher-Anderson iris data consist of four input parameters, sepal length (sl), sepal 
width (sw), petal length (pl), and petal width (pw), on 150 specimens of iris plant. 
Three species of iris are involved, Iris Sestosa, Iris Versiolor and Iris Virginica, and 
each species contains 50 instances. To compare the three methods, we randomly split 
the data into training set (50% of the data) and a test set (50%). The data set was nor-
malized to the range [-1, 1]. We used the public domain implementation of libSVM 
[4] and predefined kernel, linear kernel, polynomial kernel, and radial basis function 

kernel. It has two type of SVM: C-SVM and Nu-SVM. And, the slack iξ  variable  

is implemented as the C value. For instance, when C is infinite, iξ  equals to zero. 

The experiment was accomplished 10 times and average results are shown in table 1. 
Table 1 indicates that the best result was obtained when C-SVM is combined with the 
RBF kernel. Performance of SANFIS was lower that that of SVM, and BP was the 
worst.  

Table 1. Performance comparison for the Iris data 

C-SVM Type 
Kernel C = 1 C = 1000 

Nu-SVM SANFIS BP 

Linear 96.459% 96.459% 96.188% 
Polynomial 97.622% 98.556% 91.263% 

RBF 95.776% 98.658% 95.916% 

97.20 ~ 
97.47% 

[2] 
95.33% 

5.2   Breast Cancer Data 

The Wisconsin Breast Cancer Diagnostic data consist of nine input parameters, clump 
thickness, uniformity of cell size, uniformity of cell shape, marginal adhesion, single 
epithelial cell size, bare nuclei, bland chromatin, normal nucleoli, and mitoses, on 699 
patterns. Two output classes are adopted, benign and malignant. 458 patterns are in 
the benign class and the other 241 patterns are in the malignant class. We used ‘0’ 
value for missed values contained in 16 patterns. As prior experiment of the iris data, 
we randomly split the data into training set (50% of the data) and a test set (50%).  
The data was normalized to the range [-1, 1]. Result  suggests  that  RBF is better  than  
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Table 2. Performance comparison for the breast cancer data 

C-SVM Type 
Kernel C = 1 C = 1000 

Nu-SVM SANFIS BP 

Linear 96.859% 97.475% 94.703% 
Polynomial 97.474% 99.667% 96.369% 

RBF 97.155% 100% 96.317% 

96.07 ~ 
96.30% 

[2] 
96.28% 

the other SVM kernels as shown in table 2. And performances of SANFIS and BP 
were similar and yet lower than that of SVM. 

5.3   Wine Classification Data 

The wine classification data set contains 178 wines that are brewed in the same region 
of Italy but derived from three different cultivars. Each data consist of 13 parameters, 
alcohol, malic acid, ash, alkalinity of ash, magnesium, total phenols, flavonoids, non-
flavonoid phenols, proanthocyanins, color intensity, hue, OD280/OD315 of diluted 
wines and praline. The data set was classified three classes. As prior experiments, we 
randomly split the data into training set (50% of the data) and a test set (50%). The 
data was normalized to the range [-1, 1]. Result summarized in table 3 shows that 
SVMs again outperform the other neural networks.  

Table 3. Performance comparison for the wine data 

C-SVM Type 
Kernel C = 1 C = 1000 

Nu-SVM SANFIS BP 

Linear 98.461% 100% 96.375% 
Polynomial 96.946% 100% 97.399% 

RBF 98.437% 100% 97.776% 

98.876% 
[2] 

90.44% 

6   Conclusions and Discussion 

The present paper compares the performance of well-known machine learning algo-
rithms, namely, back-propagation (BP) algorithm, Neuro-Fuzzy network and Support 
Vector Machine (SVM) using the standard database sets: Wisconsin breast cancer, 
Iris and wine data. Our results suggest that SVM outperforms the others and the 
Neuro-Fuzzy network is better than the BP algorithm. Given the fact that BP typically 
consists of three layers and the Neuro-Fuzzy network has multi-layer, it is surprising 
that the performance of SVM is better than the others, since an SVM is a two-layer 
network, suggesting that the number of layers is not a crucial factor. Our experience 
also indicates that SVM converges reliably compared to the other algorithms. There-
fore, we conclude that the learning principle of an algorithm is important than the 
structure of it.  
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Abstract. This paper presents an improved multi-objective diversity
control oriented genetic algorithm (MODCGA-II). The performance com-
parison between the MODCGA-II, a non-dominated sorting genetic
algorithm II (NSGA-II) and an improved strength Pareto evol-
utionary algorithm (SPEA-II) is carried out where different two- and
three-objective benchmark problems with specific multi-objective charac-
teristics are used. The results indicate that the two-objective MODCGA-
II solutions are better than the solutions generated by the NSGA-II and
SPEA-II in terms of the closeness to the true Pareto optimal solutions
and the uniformity of solution distribution along the Pareto front. In
contrast, the NSGA-II in overall produces the best solutions in three-
objective problems. As a result, the limitation of the proposed algorithm
is identified.

1 Introduction

It is undeniable that a major factor that contributes to the success of genetic
algorithms is the parallel search mechanism embedded in the algorithm itself.
However, this does not prevent the occurrence of premature convergence in the
situation when the similarity among individuals in the population becomes too
high. As a result, the prevention of a premature convergence must also be con-
sidered during the genetic algorithm design. One of the direct approaches for
achieving the necessary prevention is to maintain population diversity [1].

Various strategies can be used to maintain or increase the population diversity.
Nonetheless, a modification on the selection operation has received much atten-
tion. For instance, Mori et al. [2] has introduced a notion of thermodynamical
genetic algorithm where the survival of individuals is regulated by means of mon-
itoring the free energy within the population. The modification on the selection
operation can also be done in the cross-generational sense [3, 4, 5]. Whitley [3]
has proposed a GENITOR system where offspring generated by standard oper-
ators are chosen for replacing parents based upon the ranks of the individuals.
In contrast to Whitley [3], Eshelman [4] recommends the application of mating
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restriction while Shimodaira [5] suggests the use of variable-rate mutation as a
means to create offspring. Then a cross-generational survival selection is carried
out using a standard fitness-based selection technique in both cases.

In addition to the early works described above, another genetic algorithm
that utilises standard crossover and mutation operators has been specifically
developed by Shimodaira [6] to handle the issue of population diversity; this al-
gorithm is called a diversity control oriented genetic algorithm or DCGA. During
the cross-generational survival selection in the DCGA, duplicated individuals in
the merged population containing both parent and offspring individuals are first
eliminated. The remaining individuals are then sorted according to their fitness
values in descending order. Following that the best individual from the remaining
individuals is determined and kept for passing onto the next generation. Then
either a cross-generational deterministic survival selection (CDSS) method or a
cross-generational probabilistic survival selection (CPSS) method is applied in
the top-down fashion to the remaining non-elite individuals in the sorted array.
In the case of the CDSS, the remaining non-elite individuals with high fitness
values will have a higher chance of being selected since they reside in the top
part of the array and hence have a higher selection priority than individuals
with low fitness values. In contrast, a survival probability value is assigned to
each non-elite individual according to its similarity to the best individual in the
case of the CPSS. If the genomic structure of the individual interested is very
close to that of the best individual, the survival probability assigned to this in-
dividual will be close to zero. On the other hand, if the chromosome structure
of this individual is quite different from that of the best individual, its survival
probability will be close to one. Each individual will then be selected according
to the assigned survival probability where the survival selection of the sorted
non-elite individuals is still carried out in the top-down manner. The DCGA has
been successfully benchmarked in various continuous test problems [7].

With a minor modification, the DCGA can also be used in multi-objective
optimisation. One possible approach for achieving this is to integrate the DCGA
with other genetic algorithms that are specifically designed for multi-objective
optimisation such as a multi-objective genetic algorithm or MOGA [8]. Such ap-
proach has been investigated by Sangkawelert and Chaiyaratana [9] where the
inclusion of cross-generational survival selection with the multi-objective genetic
algorithm is equivalent to the use of elitism, which is proven to be crucial to the
success of various multi-objective algorithms including a non-dominated sorting
genetic algorithm II or NSGA-II [10] and an improved strength Pareto evolution-
ary algorithm or SPEA-II [11]. In addition, the similarity measurement between
the non-elite individual and the elite individual required by the diversity con-
trol operator is still carried out in the genotypic space. The resulting combined
algorithm, which can be uniquely referred to as a multi-objective diversity con-
trol oriented genetic algorithm or MODCGA has been successfully tested using a
two-objective benchmark suite [12]. Although some insights into the behaviour of
the MODCGA have been gained, further studies can be made. In multi-objective
optimisation the trade-off surface, which is the direct result from the spread of
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solutions, is generally defined in objective space. This means that diversity con-
trol can also be achieved by considering the similarity between objective vectors
of the individuals. Moreover, in the initial study the multi-objective benchmark
problems contain only two objectives. The performance study where benchmark
problems contain a higher number of objectives [13] should also be investigated.

The organisation of this paper is as follows. In section 2, the explanation
of the improved multi-objective diversity control oriented genetic algorithm or
MODCGA-II is given. In section 3, the multi-objective benchmark problems and
performance evaluation criteria are explained. Next, the multi-objective bench-
marking results of the MODCGA-II, NSGA-II and SPEA-II are illustrated and
discussed in section 4. Finally, the conclusions are drawn in section 5.

2 MODCGA-II

The MODCGA-II functions by seeking to optimise the components of a vector-
valued objective function where the desired solutions are members of the Pareto
optimal set. A solution is said to be Pareto optimal if no improvement can be
achieved in one objective that does not lead to degradation in at least one of the
remaining objectives. Hence, one solution is better than or dominates another
solution if and only if there is an improvement in at least one objective without
the sacrifice in the other objectives. Similar to the MOGA [8], the rank of an
individual is given by the number of solutions in the set that dominate the can-
didate individual. Non-dominated individuals will posses the highest rank while
dominated individuals will have lower ranks. However, the comparison will be
made among individuals in the merged population, which is the result from com-
bining parent and offspring populations together. Since the best individuals in
the multi-objective context are the non-dominated individuals, when the CPSS
method is used there will be more than one survival probability value that can
be assigned to each dominated individual. In this study, the lowest value in the
probability value set is chosen for each dominated individual. After the survival
selection routine is completed and the fitness values have been interpolated onto
the individuals according to their ranks, standard genetic operations including
fitness sharing [8], fitness-based selection, crossover and mutation can then be
applied to the population. In this work, the similarity measurement will be con-
ducted in objective space; two advantages are gained through this modification.
Firstly, since the aim of multi-objective optimisation is to obtain multiple solu-
tions at which together produce a trade-off objective surface that represents a
Pareto front, diversity control in objective space would directly enforce this aim.
Secondly, a diversity control operator that is designed for use in objective space
would be independent of the chromosome encoding scheme utilised. With the
modification described above, in the CPSS scheme the survival probability (ps)
will be given by

ps = {(1− c)d/dmax + c}α (1)

where d is the distance between the interested individual and a non-dominated
individual in objective space, dmax is the maximum distance between two
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individuals in the population, c is the shape coefficient and α is the exponent
coefficient. The formula in equation (1) is adapted from the original genotypic
operator [6].

In addition to the modification on the diversity control operation, the use
of a preserved non-dominated solution archive is included in the MODCGA-II.
Basically, the parent individuals will be picked from a population which includes
both individuals obtained after the diversity control and that from the archive.
Each time that a new population is created after the diversity control operation,
non-dominated solutions within the archive will be updated. If the solution that
survives the diversity control operation is neither dominated by any solutions
in the archive nor a duplicate of a solution in the archive, then this solution
will be added to the archive. At the same time, if the solution that survives
the diversity control operation dominates any existing solution in the archive,
the dominated solution will be expunged from the archive. In order to maintain
the diversity within the preserved non-dominated solution archive, k -nearest
neighbour clustering technique [11] is used to regulate the size of the archive.

3 Multi-objective Problems and Performance Criteria

The MODCGA-II will be benchmarked using six optimisation test cases devel-
oped by Deb et al. [13]. The problems DTLZ1–DTLZ6 are scalable minimisation
problems with n decision variables and m objectives. In this paper, two-objective
problems with 11 decision variables and three-objective problems with 12 deci-
sion variables are investigated. DTLZ1 has a linear Pareto front and contains
multiple local fronts. DTLZ2 has a spherical Pareto front. DTLZ3 and DTLZ4
also have spherical Pareto fronts where DTLZ3 contains multiple local fronts
while the DTLZ4 solutions are non-uniformly distributed in the search space.
DTLZ5 has a curve Pareto front. DTLZ6 also has a curve Pareto front but the
problem contains multiple local fronts.

Zitzler et al. [12] suggest that to assess the optimality of non-dominated so-
lutions identified by a multi-objective optimisation algorithm, these solutions
should be compared among themselves and with the true Pareto optimal solu-
tions. Two corresponding measurement criteria are considered: the average dis-
tance between the non-dominated solutions to the Pareto optimal solutions (M1)
and the distribution of the non-dominated solutions (M2). These criteria are
calculated from the objective vectors of the solutions obtained. A low M1 value
implies that the solutions are close to the true Pareto optimal solutions. In ad-
dition, when two solution sets have similar M1 indices, the set with a higher M2
value would have a better distribution.

4 Results and Discussions

In this section, the results from using the MODCGA-II to solve test problems
DTLZ1–DTLZ6 will be presented. The results will be benchmarked against that
obtained from the non-dominated sorting genetic algorithm II or NSGA-II [10]



Evolutionary Multi-objective Optimisation by Diversity Control 451

and the improved strength Pareto evolutionary algorithm or SPEA-II [11] where
the executable codes for the implementation of both algorithms are obtained
directly from A Platform and Programming Language Independent Interface for
Search Algorithms (PISA) web site (http://www.tik.ee.ethz.ch/pisa). Both
CDSS and CPSS techniques are utilised in the implementation of the MODCGA-
II. The diversity control study will be conducted with other genetic parameters
remain fixed throughout the trial. The parameter setting for the MODCGA-II,
NSGA-II and SPEA-II that is used in all problems is displayed in Table 1.

Table 1. Parameter setting for the MODCGA-II, NSGA-II and SPEA-II

Parameter Value and Setting

Chromosome coding Real-value representation
Fitness sharing Triangular sharing function (MODCGA-II only)
Fitness assignment Linear fitness interpolation (MODCGA-II only)
Selection method Stochastic universal sampling (MODCGA-II) or

tournament selection (NSGA-II and SPEA-II)
Crossover method SBX recombination with probability = 1.0 [14]
Mutation method Variable-wise polynomial mutation with probability

= 1/number of decision variables [14]
Population size 100
Archive size 100 (MODCGA-II and SPEA-II only)
Number of generations 300 (MODCGA-II) or 600 (NSGA-II and SPEA-II)
Number of repeated runs 30

Five values of the shape coefficient (c)—0.00, 0.25, 0.50, 0.75 and 1.00—and six
values of the exponent coefficient (α)—0.00, 0.20, 0.40, 0.60, 0.80 and 1.00—are
used to create 30 different diversity control settings for the MODCGA-II. From
equation (1), the settings of c = 1.00 and α = 0.00 are for the implementation of
the CDSS technique since the survival probability of each dominated individual
is equal to one. For each setting, the MODCGA-II runs for the DTLZ1–DTLZ6
problems with two and three objectives are repeated 30 times. The M1 and M2
performance indices from each run are subsequently obtained and the average
values of the two indices calculated from all two-objective problems and that
from all three-objective problems are displayed in the form of contour plots in
Fig. 1. The M2 index is calculated using the neighbourhood parameter σ = 0.488
where the parameter is set using the extent of the true Pareto front in the ob-
jective space as the guideline. In addition, the M2 index has been normalised
by the maximum attainable number of non-dominated individuals from a single
run. From Fig. 1, it is noticeable that diversity control settings considered have
a small effect in three-objective problems while a significant performance vari-
ation can be detected in two-objective problems. For the case of two-objective
problems, the region where the M1 index has a small value coincides with the
area where the M2 index is small. At the same time the region where the M1
index is high is also in the vicinity of the area where the M2 index has a large
value. In a successful multi-objective search, the M1 index should be as small
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as possible. Although a large M2 index usually signifies a good solution distrib-
ution, the interpretation of the M2 result must always be done while taken the
M1 index into consideration. This is because in the case where the solutions are
further away from the true Pareto optimal solutions, the obtained value of the
M2 index is generally high since each solution would also be far apart from one
another. In other words, the M2 index has a lesser priority than the M1 index
and should be considered only when the obtained values of the M1 index from
two different algorithms or algorithm settings are close to one another. Using
the above argument, multiple settings of the c and α values in Fig. 1 can be
used to achieve low M1 indices. In the current investigation, the setting where
c = 0.75 and α = 0.2 is chosen as the candidate setting that represents the
diversity control that leads to a low M1 value.

The search performance of the MODCGA-II with c = 0.75 and α = 0.2 will
be compared with that from the NSGA-II and SPEA-II. As stated in Table 1,
each algorithm run will be repeated 30 times where the M1 and normalised M2
indices are subsequently calculated for each repeated run. The performance of
the MODCGA-II, NSGA-II and SPEA-II in terms of the average and standard
deviation of the M1 and normalised M2 indices on the two-objective and three-
objective DTLZ1–DTLZ6 problems is summarised in Tables 2 and 3, respec-
tively. In Tables 2 and 3, the neighbourhood parameter (σ) for the calculation
of M2 indices for all test problems is also set to 0.488.

Table 2. Summary of the MODCGA-II, NSGA-II and SPEA-II performances on the
two-objective DTLZ1–DTLZ6 problems

Problem Index MODCGA-II NSGA-II SPEA-II

Average S.D. Average S.D. Average S.D.

DTLZ1 M1 3.1157 4.7837 11.9186 5.1490 12.9616 5.2649
M2 0.4326 0.2942 0.6391 0.0474 0.7810 0.0547

DTLZ2 M1 0.0030 0.0008 0.0148 0.0088 0.0190 0.0096
M2 0.5039 0.0439 0.5672 0.0310 0.5053 0.0494

DTLZ3 M1 22.2335 18.1880 78.6069 24.8055 88.4823 22.4487
M2 0.5642 0.3941 0.6119 0.0814 0.7463 0.0745

DTLZ4 M1 0.0023 0.0018 0.0238 0.0138 0.0252 0.0104
M2 0.3353 0.2111 0.2871 0.2353 0.3457 0.2417

DTLZ5 M1 0.0030 0.0006 0.0148 0.0088 0.0175 0.0079
M2 0.4972 0.0495 0.5672 0.0310 0.5026 0.0501

DTLZ6 M1 1.0199 0.3685 6.4295 0.3509 6.4986 0.3355
M2 0.8044 0.0603 0.7157 0.0493 0.8946 0.0166

Firstly, consider the results from the two-objective test problems, which are
displayed in Table 2. In terms of the average distance from the non-dominated
solutions identified to the true Pareto front or the M1 criterion, the MODCGA-
II posses the highest performance in all six test problems. Nonetheless, the
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Fig. 1. Average values of M1 and M2 indices from all multi-objective problems for each
diversity control setting (a) M1 index from two-objective problems (b) M2 index from
two-objective problems (c) M1 index from three-objective problems (d) M2 index from
three-objective problems

MODCGA-II is unable to identify the true Pareto optimal solutions in the
DTLZ3 and DTLZ6 problems. These two problems are difficult to solve in the
sense that they contains multiple local Pareto fronts. Although the DTLZ1 prob-
lem also contains numerous local Pareto fronts, the majority of results from all 30
MODCGA-II runs indicate that the MODCGA-II is capable solving this prob-
lem. This means that the shape of Pareto front in two-objective problems can also
affect the algorithm performance since the DTLZ1 problem has a straight-line
Pareto front while the DTLZ3 and DTLZ6 problems have curve Pareto fronts.
The M1 index also reveals that the performance of NSGA-II and SPEA-II are
very similar in all six problems. Since the M1 indices from both algorithms are



454 P. Kulvanit et al.

Table 3. Summary of the MODCGA-II, NSGA-II and SPEA-II performances on the
three-objective DTLZ1–DTLZ6 problems

Problem Index MODCGA-II NSGA-II SPEA-II

Average S.D. Average S.D. Average S.D.

DTLZ1 M1 24.8583 8.3026 7.3259 3.1478 12.2895 3.9570
M2 0.9923 0.0130 0.8762 0.0900 0.4542 0.0283

DTLZ2 M1 0.0473 0.0069 0.0119 0.0095 0.0120 0.0069
M2 0.7281 0.0395 0.6776 0.0262 0.3502 0.0227

DTLZ3 M1 282.8405 73.2361 67.5248 18.6048 89.5977 31.0686
M2 1.0000 0.0000 0.8333 0.0880 0.4575 0.0229

DTLZ4 M1 0.0519 0.0240 0.0192 0.0097 0.0257 0.0153
M2 0.7229 0.0724 0.4371 0.1772 0.2714 0.0941

DTLZ5 M1 0.0088 0.0024 0.0138 0.0119 0.0197 0.0088
M2 0.4916 0.0527 0.4061 0.0733 0.2080 0.0346

DTLZ6 M1 3.9762 0.7985 5.8548 0.3046 6.3882 0.3039
M2 0.9847 0.0119 0.9842 0.0014 0.4999 0.0005

quite close, a further inspection on the M2 indices can be easily made. Again, the
M2 indices from the NSGA-II and SPEA-II are also very close to one another.
This leads to the conclusion that for the two-objective problems, the capability
of both the NSGA-II and SPEA-II is pretty much the same.

Moving onto the results from the three-objective test problems, which are
displayed in Table 3. In terms of the M1 criterion, the NSGA-II posses the
highest performance in the DTLZ1–DTLZ4 problems while the MODCGA-II is
the best algorithm for the DTLZ5 and DTLZ6 problems. However, the DTLZ1,
DTLZ3 and DTLZ6 problems cannot be solved using either the MODCGA-II or
NSGA-II. These three problems contain multiple local Pareto front and hence
can be classified as difficult problems. It is also noticeable that in contrast to the
two-objective case, the shape of the Pareto front has no effect on the algorithm’s
ability to identify the correct solutions. By comparing the two-objective results
with the three-objective results, it can be seen that there is deterioration in
performances in the MODCGA-II and SPEA-II while the performance of the
NSGA-II remains unchanged. The deterioration of the SPEA-II performance
is detectable only in terms of the solution distribution (M2 index) and not in
terms of the closeness of solutions to the true Pareto front (M1 index). As a
result, the SPEA-II solutions now have a worse distribution than that from the
NSGA-II while the solutions from both algorithms are at a similar distance
from the true Pareto front. On the other hand, the performance degradation
in the MODCGA-II is highest when the problem involves multiple local Pareto
fronts. Nonetheless, even with the performance reduction, the MODCGA-II is
still better than the NSGA-II at solving the DTLZ5 and DTLZ6 problems where
the Pareto fronts can be visually displayed as two-dimensional curves. However,
the difference in the search performances of the two algorithms in the DTLZ5
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and DTLZ6 problems is not as evident as that in the DTLZ1–DTLZ4 problems.
The M2 indices confirm that the distributions of solutions from the MODCGA-II
and NSGA-II are very similar in the last two problems. Using both performance
indices and algorithm performance deterioration, it can be concluded that in
overall the best algorithm for the three-objective test problems is the NSGA-II.

5 Conclusions

In this paper, an improved multi-objective diversity control oriented genetic al-
gorithm or MODCGA-II is presented. The proposed algorithm differs from the
original MODCGA [9] in the sense that the MODCGA-II performs diversity
control via similarity measurement in objective space, which makes the diversity
control operation becomes independent from the chromosome encoding scheme,
and the use of a preserved non-dominated solution archive is also included. The
MODCGA-II has been successfully tested on six scalable multi-objective bench-
mark problems [13]. The criteria used to assess the algorithm performance in-
clude the closeness of non-dominated solutions to the true Pareto front and the
distribution of the solutions across the front [12]. The analysis indicates that
the MODCGA-II with the CPSS technique where c = 0.75 and α = 0.20 can
produce non-dominated solutions that are better than that generated by the
non-dominated sorting genetic algorithm II or NSGA-II [10] and the improved
strength Pareto evolutionary algorithm or SPEA-II [11] in two-objective bench-
mark problems. On the other hand, when the number of objectives increases to
three, the MODCGA-II performance is worse than that of the NSGA-II and the
limitation of the proposed algorithm is hence identified.
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Abstract. The depth information in the face represents personal features in de-
tail. In particular, the surface curvatures extracted from the face contain the 
most important personal facial information. The principal component analysis 
using the surface curvature reduces the data dimensions with less degradation of 
original information, and the proposed 3D face recognition algorithm collabo-
rated into them. The recognition for the eigenface referred from the maximum 
and minimum curvatures is performed. To classify the faces, the cascade archi-
tectures of fuzzy neural networks, which can guarantee a high recognition rate 
as well as parsimonious knowledge base, are considered. Experimental results 
on a 46 person data set of 3D images demonstrate the effectiveness of the  
proposed method. 

1   Introduction 

Today’s computer environments are changing because of the development of intelli-
gent interface and multimedia. To recognize the user automatically, people have re-
searched various recognition methods using biometric information – fingerprint, face, 
iris, voice, vein, etc [1]. In a biometric identification system, the face recognition is a 
challenging area of research, next to fingerprinting, because it is a no-touch style. For 
visible spectrum imaging, there have been many studies reported in literature [2]. But 
the method has been found to be limited in their application. It is influenced by light-
ing illuminance and encounters difficulties when the face is angled away from the 
camera. These factors cause low recognition. To solve these problems a computer 
company has developed a 3D face recognition system [2][3]. To obtain a 3D face, this 
method uses stereo matching, laser scanner, etc. Stereo matching extracts 3D informa-
tion from the disparity of 2 pictures which are taken by 2 cameras. Even though it can 
extract 3D information from near and far away, it has many difficulties in practical 
use because of its low precision. 3D laser scanners extract more accurate depth infor-
mation about the face, and because it uses a filter and a laser, it has the advantage of 
not being influence by the lighting illuminance when it is angled away from the cam-
era. A laser scanner can measure the distance, therefore, a 3D face image can be  
reduced by a scaling effect that is caused by the distance between the face and the 
camera [4][5]. 
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Broadly speaking the two ways to establish recognition employs the face feature 
based approach and the area based approach [5-8]. A feature based approach uses fea-
ture vectors which are extracted from within the image as a recognition parameter. An 
area based approach extracts a special area from the face and recognizes it using the 
relationship and minimum sum of squared difference. Face recognition research usu-
ally uses 2 dimensional images. Recently, the 3D system becomes cheaper, smaller 
and faster to process than it used to be. Thus the use of 3D face image is now being 
more readily researched [3][9-12]. Many researchers have used 3D face recognition 
using differential geometry tools for the computation of curvature [9]. Hiromi et al. 
[10] treated 3D shape recognition problem of rigid free-form surfaces. Each face in 
the input images and model database is represented as an Extended Gaussian Image 
(EGI), constructed by mapping principal curvatures and their directions. Gordon [11] 
presented a study of face recognition based on depth and curvature features. To find 
face specific descriptors, he used the curvatures of the face. Comparison of the two 
faces was made based on the relationship between the spacing of the features. Lee and 
Milios [13] extracted the convex regions of the face by segmenting the range of the 
images based on the sign of the mean and Gaussian curvature at each point. For each 
of these convex regions, the Extended Gaussian Image (EGI) was extracted and then 
used to match the facial features of the two face images. 

One of the most successful techniques of face recognition as statistical method is 
principal component analysis (PCA), and specifically eigenfaces [14][15]. In this pa-
per, we introduce a novel face recognition for eigenfaces using the curvature that well 
presenting personal characteristics and reducing dimensional spaces. Moreover, the 
normalized facial images are considered to improve the recognition rate. 

Neural networks (NNs) have been successfully applied to face recognition problems 
[16]. However, the complexity of the NNs increases exponentially with the parameter 
values, i.e. input number, output number, hidden neuron number, etc., and becomes 
unmanageable [17]. To overcome this curse of dimensionality, the cascade architec-
tures of fuzzy neural networks (CAFNNs), constructed by the memetic algorithms  
(hybrid genetic algorithms) [18], are applied to this problem. 

2   Face Normalization 

The nose is protruded shape and located in the middle of the face. So it can be used as 
the reference point, firstly we tried to find the nose tip using the iterative selection 
method, after extraction of the face from the 3D face image [20]. And in face recogni-
tion, we have to consider the obtained face posture. Face recognition systems suffer 
drastic losses in performance when the face is not correctly oriented. The normalization 
process proposed here is a sequential procedure that aims to put the face shapes in a 
standard spatial position. The processing sequence is panning, rotation and tilting [21].  

3   Surface Curvatures 

For each data point on the facial surface, the principal, Gaussian and mean curvatures 
are calculated and the signs of those (positive, negative and zero) are used to deter-
mine the surface type at every point. The z(x, y) image represents a surface where the 
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individual Z-values are surface depth information. Here, x and y is the two spatial co-
ordinates. We now closely follow the formalism introduced by Peet and Sahota [19], 
and specify any point on the surface by its position vector: 

kyxzyjxiyxR ),(),( ++=  (1) 

The first fundamental form of the surface is the expression for the element of arc 
length of curves on the surface which pass through the point under consideration. It is 
given by: 
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The second fundamental form arises from the curvature of these curves at the point of 
interest and in the given direction: 
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Casting the above expression into matrix form with; 
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the two fundamental forms become: 
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Then the curvature of the surface in the direction defined by V is given by: 
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Extreme values of k are given by the solution to the eigenvalue problem: 
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which gives the following expressions for k1 and k2, the minimum and maximum cur-
vatures, respectively: 

{ 2
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(12) 
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Here we have ignored the directional information related to k1 and k2, and chosen k2 to 
be the larger of the two. For the present work, however, this has not been done. The 
two quantities, k1 and k2, are invariant under rigid motions of the surface. This is a de-
sirable property for us since the cell nuclei have no predefined orientation on the slide 
(the x – y plane). 

The Gaussian curvature K and the mean curvature M is defined by 

21kkK =  ,  ( ) 2/21kkM =  (14) 

which gives k1 and k2, the minimum and maximum curvatures, respectively. It turns 
out that the principal curvatures, k1 and k2, and Gaussian are best suited to the detailed 
characterization for the facial surface, as illustrated in Fig. 1. For the simple facet 
model of second order polynomial of the form, i.e. an 3x3 window implementation in 
our range images, the local region around the surface is approximated by a quadric 
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and the practical calculation of principal and Gaussian curvatures is extremely simple. 

       
(a)                          (b)                      (c)                        (d)                   (e)                  (f) 

Fig. 1. Six possible surface type according to the sign of principal curvatures for the face sur-
face; (a) concave (pit), (b) convex (peak), (c) convex saddle, (d) concave saddle, (e) minimal 
surface, (f) plane 

4    Eigenface 

4.1   Computing Eigenfaces [14] 

Consider face images of size N x N, extracted contour line value. These images can 
be thought as a vector of dimension N2, or a point in N2 – dimensional space. A set of 
images, therefore, corresponds to a set of points in this high dimensional space. Since 
facial images are similar in structure, these points will not be randomly distributed, 
and therefore can be described by a lower dimensional subspace. Principal component 
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analysis gives the basis vectors for this subspace. Each basis vector is of length N2, 
and is the eigenvector of covariance matrix corresponding to the original face images. 
Let 

1Γ , 
2Γ , … , 

MΓ  be the training set of face images. The average face is defined by 

=

Γ=Ψ
M

n
nM 1

1  (16) 

Each face differs from the average face by the vector Ψ−Γ=Φ ni
. The covariance 
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has a dimension of N2 x N2 . Determining the eigenvectors of C for typical size of N 
is intractable task. Once the eigenfaces are created, identification becomes a pattern 
recognition task. Fortunately, we determine the eigenvectors by solving an M x M 
matrix instead. 

4.2   Identification 

The eigenfaces span an M-dimensional subspace of the original N2 image space. The 
M significant eigenvectors are chosen as those with the largest corresponding eigen-
values. A test face image Γ  is projected into face space by the following operation: 

)( Ψ−Γ= T
nn uω , for n=1, …, M, where 

nu  is the eigenvectors for C. The weights 
nω  

from a vector ] . . .  [ '21 M
T ωωω=Ω  which describes the contribution of each eigenface 

in representing the input face image. This vector can then be used to fit the test image 
to a predefined face class. A simple technique is to use the Euclidian distance 

nn Ω−Ω=ε , where 
nΩ  describes the nth face class. In this paper, we used the cas-

cade architectures of fuzzy neural networks to compare with the distance as described 
next chapter. 

5   Cascade Architectures of Fuzzy Neural Networks (CAFNNs) 

As originally introduced in [17], the structure of CAFNNs is the cascade combination 
of the logic processors (LPs) which consist of fuzzy neurons. The LP, described in 
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Fig. 2. Architecture of the LP regarded as a generic processing unit 
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Fig. 2, is a basic two-level construct formed by a collection of “h” AND neurons 
whose results of computing are then processed by a single OR neuron located in the 
output layer. Because of the location of the AND neurons, we will be referring to 
them as a hidden layer of the LP. 

LPs are basic functional modules of the network that are combined into a cascaded 
structure. The essence of this architecture is to stack the LPs one on another. This re-
sults in a certain sequence of input variables. To assure that the resulting network is 
homogeneous, we use LPs with only two inputs, as shown in Fig. 3. In this sense, 
with “n” input variables, we end up with (n-1) LPs being used in the network. Each 
LP is fully described by a set of the connections (V and w). To emphasize the  
cascade-type of architecture of the network, we index each LP by referring to its con-
nections as V[ii] and w[ii] with “ii’ being an index of the LP in the cascade sequence. 

1x

2x

nx

1LP

2−nLP

1−nLP

1z variablesteIntermedia

 

Fig. 3. A cascaded network realized as a nested collection of LPs 

The sequence of relevant input subset and the connections were optimized by me-
metic algorithms in [18] to construct parsimonious knowledge base, but accurate one. 
As illustrated in [18], the memetic algorithms are more effective than the optimization 
scenario in [17]. Therefore, the optimization scenario in [18] will be considered in  
this approach. For more details about CAFNNs and its optimization, please refer to 
[17][18]. 

To apply the CAFNNs to classification problems, the output (class) should be 
fuzzified as binary. For example, if we assume that there are 5 classes (5 persons) in 
the data sets, the number of output crisp set should be 5 that are distributed uniformly. 
If the person belongs to the 2nd-class, the Boolean output can be discretized as “0 1 0 
0 0”. In this classification problem, the winner-take-all method is used to decide the 
class of the testing data set. This means that the testing data are classified as the class 
which has the biggest membership degree. 

6   Experimental Results 

In this study, we used a 3D laser scanner made by a 4D culture to obtain a 3D face 
image. First, a laser line beam was used to strip the face for 3 seconds, thereby obtain-
ing a laser profile image, that is, 180 pieces and no glasses. The obtained image size 
was extracted by using the extraction algorithm of line of center, which is 640 x 480. 
Next, calibration was performed in order to process the height value, resampling and 
interpolation. Finally, the 3D face images for this experiment were extracted, at 



 3D Facial Recognition Using Eigenface and Cascade Fuzzy Neural Networks 463 

320x320. A database is used to compare the different strategies and is composed of 92 
images (two images of 46 persons). Of the two pictures available, the second photos 
were taken at a time interval of 30 minutes. 

From these 3D face images, finding the nose tip point, using contour line threshold 
values (for which the fiducial point is nose tip), we extract images around the nose 
area. To perform recognition experiments for extracted area we first need to create 
two sets of images, i.e. training and testing. For each of the two views, 46 normal-
expression images were used as the training set. Training images were used to ge-
nerate an orthogonal basis, as described in section 3, into which each 3D image in 
training data set is projected in section 4. Testing images are a set of 3D images  
extracted local area we wish to identify. 

Table 1. The comparison of the recognition rate (%) 

  Best1 Best5 Best10 Best15 

CAFNN( normalized) 64.5 78.4 89.6 95.9 

CAFNN 56.2 73.9 85.2 90.5 

k1 

k-NN 42.9 57.1 66.7 66.7 

CAFNN (normalized) 68.1 86.4 90.1 96.3 

CAFNN 63.7 80.3 85.8 90.1 

k2 

k-NN 61.9 78.5 83.3 88.1 
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(a)                                                                      (b) 

Fig. 4. The recognition results for each recognition method: (a) k1, (b) k2 

Once the data sets have been extracted with the aid of eigenface, the development 
procedure of the CAFNNs should be followed for the face recognition. The used pa-
rameter values are the same as [18]. Since a genetic algorithm is a stochastic optimiza-
tion method, ten times independent simulations were performed to compare the results 
with the conventional classification methods, as described in Table 1 and Fig. 4. In  
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Table 1 and Fig. 4, the results of the CAFNN are averaged over ten times independent 
simulations, and subsequently compared with the results of the conventional method 
(k-nearest neighborhood: k-NN). Also, the normalized facial images were considered 
to generate the curvature-based data set. As can be seen from Table 1 and Fig. 4, the 
recognition rate is improved by using normalized facial images. 

7   Conclusions 

The surface curvatures extracted from the face contain the most important personal 
facial information. We have introduced, in this paper, a new practical implementation 
of a person verification system using the local shape of 3D face images based on ei-
genfaces and CAFNNs. The underlying motivations for our approach originate from 
the observation that the curvature of face has different characteristic for each person. 
We found the exact nose tip point by using an iterative selection method. The low-
dimensional eigenfaces represented were robust for the local area of the face. The 
normalized facial images were also considered to improve the recognition rate. To 
classify the faces, the CAFNNs were used. The CAFNNs have reduced the dimen-
sionality problem by selecting the most relevant input subspaces too. Experimental 
results on a group of face images (92 images) demonstrated that our approach  
produces excellent recognition results for the local eigenfaces. 

From the experimental results, we proved that the process of face recognition may 
use low dimension, less parameters, calculations and less same person images (used 
only two) than earlier suggested. We consider that there are many future experiments 
that could be done to extend this study. 
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Abstract. The approximation capability of fuzzy systems heavily de-
pends on the shapes of the chosen fuzzy membership functions. When
fuzzy systems are applied in adaptive control, computational complexity
and generalization capability are another two important indexes we must
consider. Inspired by the conclusion drawn by S.Mitaim and B.Kosko
and wavelet analysis and SVM, the scaling kernel-based fuzzy system
SKFS(Scaling Kernel-based Fuzzy System) is presented as a new simpli-
fied fuzzy system in this paper, based on Sinc x membership functions.
SKFS can approximate any function in L2(R), with much less computa-
tional complexity than classical fuzzy systems. Compared with another
simplified fuzzy system GKFS(Gaussian Kernel-based Fuzzy System) us-
ing Gaussian membership functions, SKFS has a better approximation
and generalization capabilities, especially in the coexistence of linearity
and nonlinearity. Therefore, SKFS is very suitable for fuzzy control. Fi-
nally, several experiment results are used to demonstrate the effectiveness
of the new simplified fuzzy system SKFS.

1 Introduction

In the last decade, fuzzy system has been successfully applied in many fields,
such as fuzzy modeling, function approximation, pattern recognition and adap-
tive control[13]. Classical fuzzy systems and their numerous variations were pro-
posed [6,13]. The basic reason for the success of fuzzy system originates from the
fact that it can effectively integrate data with expert knowledge in the unified
framework, and furthermore, it is also a universal approximator[6,10,12,14], that
is to say, it can approximate any continuous function with any given accuracy.

Generally speaking, a fuzzy system consists of 4 main parts: fuzzification, a
rule base, an inference engine and a defuzzifier. When applying fuzzy systems to
fuzzy modeling and adaptive control, the computational complexity is an impor-
tant factor we often have to consider, so we hope to build such a fuzzy system
that it can not only be computed with less complexity, but also hold the property
of a universal approximator. In [4,13], based on Gaussian membership functions
and the famous TSK fuzzy-rule forms, the authors presented a simplified fuzzy
system (We call it GKFS here). A remarkable feature of such a fuzzy system
is that it avoids defuzzification computation, therefore, the fuzzy system can
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be computed more quickly than the corresponding classical fuzzy system, and
moreover, we can prove that the fuzzy system still keeps a universal approxima-
tor based on Weirstone theorem, and so it is comparatively suitable for fuzzy
modeling and adaptive control.

Although the universal approximation is kept theoretically, due to the coexis-
tence of linearity and nonlinearity such as piecewise functions in fuzzy adaptive
control, GKFS and current fuzzy systems sometimes become inefficient. Thus, a
challenging problem appears whether we can design such a fuzzy system that it
can effectively approximate any function in L2(R) with the same computational
complexity as GKFS.

In [11,12], based on the experimental results obtained from more than 100
different types of membership functions, B.Kosko and B.M.Novakovic claimed
that the classical fuzzy system with Sinc x(or the corresponding cosx type)
membership functions has better approximation capability than fuzzy system
with other types of membership functions. In [12], the authors wrote: “frequent
winning status of the sinc set in the simulations shows that: This seems to be
the first time anyone has used the sinc function as a fuzzy set and yet such
sets may well have improved the performance of many real fuzzy systems.” and
“the success of the sinc set and the hyperbolic-tangent bell curve further suggest
that the familiar Gaussian or Cauchy or other familiar unimodal curves will not
emerge as optimal set functions in other searches.” In fact, it is well known that
sinc x is a scaling kernel function in wavelet analysis, and this fact implies that
we may perhaps build another new kind of simplified fuzzy system with the help
of the Sinc x functions.

In this paper, we will present a new Scaling Kernel-based fuzzy system (SKFS),
and this new fuzzy system preserves the advantage of the less computational
complexity like GKFS, however, SKFS can universally approximate any func-
tion and have better approximation and generalization capabilities. Such merits
of SKFS make it more feasible than the simplified fuzzy system GKFS.

This paper is organized as follows. In Section 2, we propose the Scaling Kernel-
based fuzzy system (SKFS) and build the link between wavelet analysis, SVM
and SKFS. The learning algorithms of SKFS are discussed in Section 3. Exper-
imental results are demonstrated in Section 4. Section 5 concludes this paper.

2 Scaling Kernel-Based Fuzzy System SKFS

In [4,13], the authors proposed the simplified fuzzy system GKFS independently.
GKFS takes the TSK fuzzy-rule forms as follows.

Ri : if x1 is Ai1 , . . . , xn is Ain then yi = pi0 + pi1x1 + . . . + pinxn (1)

where x1, x2, . . . , xn are input variables of the fuzzy system, yi is the output
variable of the ith fuzzy rule, i = 1, 2, . . . ,M (M is the total number of fuzzy
rules).The Gaussian membership function Aij is defined as

Aij(xj) = e
−(

xj−mij
σij

)2
(2)



468 X. Liu et al.

where j = 1, 2, . . . , n, mij , σij are free adjustable parameters. Obviously yi is
the linear combination of input variables x1, x2, . . . , xn and pi0, pi1, . . . , pin are
the corresponding coefficients.

GKFS does not use the defuzzification computation, and it directly defines
its output as

y =
M∑
i=1

yi

n∏
j=1

Aij(xj) (3)

We call (3) the simplified fuzzy system GKFS (Gaussian Kernel-based fuzzy
system). The authors[4,13] have proved that GKFS is also a universal approxi-
mator. It should be pointed out that the output of the corresponding TSK fuzzy
system is

y′ =
M∑
i=1

yi

n∏
j=1

Aij(xj)/
M∑
i=1

n∏
j=1

Aij(xj) (4)

where (4) uses the defuzzification procedure. Obviously, (3) has much less com-
putational complexity than (4).

Recently, based on the experimental results obtained from more than 100
different types of membership functions, B.Kosko et al claimed Sinc x is the
type of membership function that could make the corresponding classical fuzzy
system have the best approximation capability. Inspired by this conclusion, we
redefine the membership function Aij of of (2) as the form of Sinc x, i.e.

Aij(xj) = sin(bij(xj −mij))/(bij(xj −mij)) (5)

where b,mij are free parameters, so, the corresponding (3) immediately draws
a new version of the simplified fuzzy system and we call it Scaling Kernel-based
fuzzy system(SKFS), owing to the fact that Sinc x is often used as the scaling
kernel function in wavelet analysis. Note, as pointed out in [12], Sinc x can
sometimes take negative values, so when we use this membership function, we
may use a flag to guarantee that the denominator of the corresponding Sinc x is
a positive value.

Accordingly, whether SKFS is a universal approximator or not will directly
affect its applicable value. In fact, (5) is a scaling function, which plays an
important role in wavelet analysis[1,2,7]. Thus we can study SKFS with the help
of wavelet analysis, and then obtain the stronger approximation result, i.e. it
can universally approximate any function in L2(R).

Remark. Many researchers have revealed the equivalent and complementary
relationships among neural networks, fuzzy system and wavelet analysis. In [7],
Y.Yu and S.Tan discussed the complementary and equivalence relationships be-
tween fuzzy system and wavelet neural network through B-spline functions. Al-
though the study for SKFS here is related to these fruitful results of other schol-
ars, it is different. The principle difference lies in that we introduce the concept
of scaling functions of wavelet analysis instead of B-Spline functions and avoid
computing defuzzification simultaneously. Thus, SKFS can universally approxi-
mate any function with much less computational complexity.
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In wavelet analysis, scaling space, scaling functions, sub-wavelet space and
sub-wavelet function are very important concepts[2]. When dimension n is large
enough, the square and integral space L2(R) is approximately equal to VN .
So we can decompose L2(R) space as follows: L2(R) = VN = VN−1

⊕
WN−1 =

VN−2
⊕

WN−2
⊕

WN−1 = . . . = V−∞
⊕

W−∞
⊕

. . .
⊕

W−1
⊕

W0
⊕

W1
⊕

. . .⊕
WN−2

⊕
WN−1.

Hence, if we take the scaling functions in VN space as the basis functions,
in terms of the properties of scaling functions, we can derive a complete base
VN through translation operations. Thus, any function in this space can be
represented as the linear combination of scaling functions. In other words, the
linear combination of a complete base can approximate any function in this space
within any given accuracy.

If we denote the 1-dimentional scaling function as φ(x), then a special form
of the separable multi-dimensional scaling function can be written as

φ(x) =
n∏
i=1

φ(xi) (6)

where x = (x1, x2, . . . , xn) ∈ Rn,and each 1-dimensional scaling function satisfies∫ ∞

−∞
φ(x)dx = 1 (7)

So we can construct such a scaling kernel function as

K(x, x′) =
n∏
i=1

φ(xi − x′i) (8)

If we take φ(x) = Sinc(x) = sin(bx)/bx, then the corresponding scaling kernel
function is

K(x, x′) =
n∏
i=1

sin(bi(xi − x′i)/bi(xi − x′i) (9)

where b is an adjustable parameter. In fact, the scaling kernel function (9) is
a multi-dimensional scaling function with translation terms. So, according to
wavelet analysis[8], if we take

f(x) =
M∑
i=1

ωiK(x,mi) =
M∑
i=1

ωi

n∏
j=1

sin(bi(xj −mij)/bi(xj −mij) (10)

then we can surely build such a f(x) that it can approximate any function in
L2(R) space within any given accuracy.

If we substitute yi = pi0 for yi = pi0 + pi1x1 + . . . + pinxn in SKFS, then we
obtain SKFS0. Easily, we can derive the output of SKFS0 as

y =
M∑
i=1

pi0

n∏
j=1

Aij(xj) =
M∑
i=1

pi0

n∏
j=1

sin(bij(xj −mij)/bij(xj −mij) (11)
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Obviously, SKFS0 is a special case of SKFS. Comparing (10) with (11), in
terms of wavelet analysis, if M is large enough, then SKFS0 can universally
approximate any function in L2(R) space. That is to say, we derive the following
Theorem 1.

Theorem 1. Scaling kernel-based fuzzy system SKFS0 is a universal approxi-
mator for any function in L2(R).

Theorem 1 means the equivalence between SKFS0 and the corresponding wavelet
analysis and thus SKFS0 preserves the multiresolution capability of wavelet
analysis. This capability will lead SKFS0 to better approximation accuracy.

In fact, SKFS fuzzy system is an extension of SKFS0 based on TSK model by
substituting pi0 with pi0 + pi1x1 + . . . + pinxn. Similar to [4,5], we immediately
have the following Theorem 2.

Theorem 2. Scaling kernel-based fuzzy system SKFS is a universal approxima-
tor for any function in L2(R).

In terms of [4,5], we can easily know that SKFS has better approximation ca-
pability than SKFS0 since SKFS has the higher order sugeno consequents than
SKFS0.

Similarly, in terms of [10], both SKFS and SKFS0 are smooth approximators
for any continuous function in L2(R).

Comparing with the simplified fuzzy system GKFS , the new SKFS has the
following merits:

• SKFS can universally approximate any function in L2(R) while GKFS can
only universally approximate any continuous function.
• The computation of the membership functions of Sinc x and exp is relatively

easy and simple, and their corresponding simplified fuzzy system structures are
the same. But, as pointed out by B.Kosko et al, the Sinc x membership function
will bring better approximation capability, and our experimental results here
will support the B.Kosko‘s conclusion again.
• From another point of view, if we set M = K, mij = x l

i , bij = b, where K
is the total number of samples, x l

i denotes the ith component of the lth sample,
then then SKFS0’s output, i.e. (11) can be written as (12), i.e.

y =
K∑
i=1

pi0

n∏
j=1

sin(b(xj − xj))/b(xj − xj) (12)

In terms of [8], (12) becomes a scaling kernel function support vector machines,
since Sinc(x) can satisfy the second condition of support vector kernels[8]. As
well, for GKFS, if we take Ri : if x1 is Ai1, . . . , xn is Ain then yi = pi0, where
i = 1, 2, . . . ,K, and

Aij(xj) = e−(
xj−x l

j
σ )2 (13)
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the output of the corresponding GKFS is

y =
K∑
i=1

yi

n∏
j=1

e−(
xj−x l

j
σ )2 (14)

Similarly, in terms of [8,9], (14) turns into a Gaussian kernel function support
vector machine. Because Gaussian kernel function only satisfies Mercer condi-
tion, the Gaussian kernel function support vector machine represented by (14)
can not approximate any function in L2(R) space (Note: Weirstone theorem only
guarantees that (14) can universally approximate any continuous function). How-
ever, based on the theory of support vector machine and wavelet analysis, (12)
can approximate any function in L2(R). So, to some extent, the above discus-
sions have explained the reasons that SKFS has better approximation capability
than GKFS. Our experiments will also verify this assertion.

3 SKFS’s Learning Algorithm

With the gradient method, we can derive the learning algorithm of SKFS. Sup-
pose we have K samples: (x l

1 , x
l
2 , . . . , x

l
n; y l), where l = 1, 2, . . . ,K, x l

1 , x
l
2 , . . . , x

l
n

is the inputs of the lth sample, y l is the real output of the lth sample.
We define the error function as

el =
1
2
(y l − y l)2 (15)

where yl is the output of the fuzzy system SKFS, then, the update equations of
mij(t) and pij(t) are as follows.

mij(t + 1) = mij(t)− α
∂el
∂mij

(16)

pij(t + 1) = pij(t)− α
∂el
∂pij

(17)

bij(t + 1) = bij(t)− α
∂el
∂bij

(18)

where

∂el

∂mij
= (yl − ȳl) ∂yl

∂mij
= (yl − ȳl)ȳi

∂
n

j=1
Aij(x̄l

j)

∂mij

= (yl − ȳl)ȳiAi1(x̄l1)Ai2(x̄l2)...Aij−1(x̄lj−1)(x̄
l
n)×

∂
(b(x̄j −mij))
b(x̄j −mij)

∂mij
Aij+1(x̄lj+1)...Ain

= (yl − ȳl)ȳi
n∏

j=1
Aij(x̄lj)

[
1

x̄j−mij
− b× ctg(b(x̄lj −mij))

]
(19)

and

∂el

∂pi0
= (yl − ȳl) ∂yl

∂pi0
= (yl − ȳl)

∂(
M

i=1
ȳi

n

j=1
Aij(x̄l

j))

∂pi0

= (yl − ȳl)
n∏

j=1
Aij(x̄lj)

(20)
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∂el

∂pij
= (yl − ȳl) ∂yl

∂pij
= (yl − ȳl)

∂(
M

i=1
ȳi

n

j=1
Aij(x̄l

j))

∂pij

= (yl − ȳl)x̄lj
n∏

j=1
Aij(x̄lj)

(21)

and

∂el

∂bij
= (yl − ȳl) ∂yl

∂bij
= (yl − ȳl)ȳi

∂
n

j=1
Aij(x̄l

j)

∂bij

= (yl − ȳl)ȳi
n∏

j=1
Aij(x̄lj)

[
(x̄j −mij)× ctg(bij(x̄lj −mij))− 1

bij

] (22)

Where α is the learning rate, i = 1, 2, . . . ,M ( is the number of rules used),
j = 1, 2, . . . , n.

Similarly, we can also derive the update equations of GKFS, which are omitted
for simplicity.

4 Experimental Results

In this section, we take several benchmark examples[1,2,3] to test the approxi-
mation and/or generalization performance of SKFS and compare it with GKFS.

In order to compare the performance of GKFS with SKFS, we take the mea-
sure in[1,2] as the performance index

Ji =

√√√√√√√√
K∑
l=1

(ŷl − ydl )2

K∑
l=1

(ydl − ȳ)2
with ȳ =

1
K

K∑
l=1

ydl (23)

where K is the total numbers of samples, ydl denotes the SKFS or GKFS’s
predicted/desired output of the lth sample, ŷl denotes the real output of the lth

sample .

Example 1. Approximation of Piecewise Function: The piecewise function is con-
tinuous and analyzable. And we use this function to compare the performances
of SKFS and GKFS when they are used to approximate a function in the coex-
istence of linearity and nonlinearity. The piecewise function is defined as follows:

f(x) =

⎧⎨⎩
−2.186x− 12.864 −10 ≤ x < −2

4.246x −2 ≤ x < 0
10e−0.05x−0.5 sin[(0.03x+ 0.7)x] 0 ≤ x ≤ 10

(24)

In this example, we sampled 200 points distributed randomly over [-10,10]
as the training data, another 200 points as the checking data. Table 1 shows
the better approximation/generalization performances of SKFS according to the
performance index defined above.
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Table 1. Comparison of SKFS and GKFS for Example 1

Method Iterative Number Performance Index J performance Index J
Numbers of Parameters in training case in checking case

SKFS 3000 2 0.051207 0.070493
GKFS 4000 2 0.109445 0.289166

From Table 1 we can easily find that SKFS has better approximation /gen-
eralization performance than that of GKFS. One of the main reasons is that
SKFS borrows the multiresolution capability of the scaling functions and wavelet
analysis to reach better performance while GKFS cannot.

Example 2. Predicting Chaotic Time Series: A benchmark problem is to predict
future values of Mackey-Glass time series, which is a differential delay equation
defined as follows.

ẋ(t) =
0.2x(t− τ)

1 + x10(t− τ)
− 0.1x(t) (25)

This is a non-periodic and non-convergent time series that is very sensitive to
initial conditions, let τ = 17 and x(0) = 1.2.(We assume x(t) = 0,where t < 0 )

Similar to Jang[15], we extracted 1000 input-output data pairs xd, yd from
the Mackey-Glass time series(where τ = 17 and x(0) = 1.2 with the following
format:

xd = [x(t − 18), x(t− 12), x(t− 6), x(t)], yd = x(t + 6) (26)

where t = 118 to 1117. Also, we use the first 500 pairs as the training samples,
while the remaining 500 pairs as the checking samples.

Table 2 shows the comparison of approximation/generalization performance
of SKFS and GKFS.

Table 2. Comparison of SKFS and GKFS for Example 2

Method Iterative Number Performance Index J performance Index J
Numbers of Parameters in training case in checking case

SKFS 1000 3 0.125460 0.132116
GKFS 1000 3 0.140374 0.149399

In summary, the above experimental results demonstrate that SKFS has
better approximation and generalization capabilities than GKFS. Since SKFS
has the same simple structure as GKFS, so it is much more suitable for fuzzy
adaptive control.

5 Conclusions and Future Work

In this paper, inspired by B.Kosko et al, we have presented a new simplified
fuzzy system SKFS. Because SKFS avoids the defuzzification computation, it’s
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computational complexity is lower than other similar fuzzy systems. Numerical
examples also demonstrated the better approximation accuracy of SKFS.

Some open problems await us to explore in the future. For example, we can
integrate SKFS with adaptive control to study the stability of control system.
Another interesting problem worthy to be further studied is how to combine
SKFS with CMAC(Cerebellar Model Articulation Controller) neural network to
build a new scaling kernel-based fuzzy CMAC.
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1 Introduction

The design of parallel programs and parallel programming languages is a trade-
off. On one hand the programs should be efficient. But the efficiency should not
come at the price of non portability and unpredictability of performances. The
portability of code is needed to allow code reuse on a wide variety of architectures
and to allow the existence of legacy code. The predictability of performances is
needed to guarantee that the efficiency will always be achieved, whatever is the
used architecture.

Another very important characteristic of parallel programs is the complexity
of their semantics. Deadlocks and indeterminism often hinder the practical use
of parallelism by a large number of users. To avoid these undesirable properties,
a trade-off has to be made between the expressiveness of the language and its
structure which could decrease the expressiveness.

Bulk Synchronous Parallelism [22,20] (BSP) is a model of computation which
offers a high degree of abstraction like PRAM models but yet a realistic cost
model based on a structured parallelism: deadlocks are avoided and indetermin-
ism is limited to very specific cases in the BSPlib library [13]. BSP programs are
portable across many parallel architectures.

Over the past decade, Bulk Synchronous Parallelism (and the Coarse-Grained
Multicomputer or CGM which can be seen as a special case of the BSP model)
have been used for a large variety of applications. It is to notice that “A com-
parison of the proceedings of the eminent conference in the field, the ACM
Symposium on Parallel Algorithms and Architectures, between the late eighties
and the time from the mid nineties to today reveals a startling change in re-
search focus. Today, the majority of research in parallel algorithms is within the
coarse-grained, BSP style, domain” [8].

Our research aims at combining the BSP model with functional programming.
We obtained the Bulk Synchronous Parallel ML language (BSML) based on a
confluent extension of the λ-calculus. Thus BSML is deadlock free and deter-
ministic. Being a high-level language, programs are easier to write, to reuse and
to compose. It is even possible to certify the correctness of BSML programs [9]
with the help of the Coq proof assistant [2]. The performance prediction of BSML

D. Grigoriev, J. Harrison, and E.A. Hirsch (Eds.): CSR 2006, LNCS 3967, pp. 475–486, 2006.
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programs is possible. BSML has been extended in many ways throughout the
years and the papers related to this research are available at http://bsml.free.fr.

One direction for the extension of BSML was to offer new primitives for the
programming of divide-and-conquer Bulk Synchronous Parallel algorithms. Two
new primitives have been designed :

– the parallel superposition [17,10] which creates two parallel threads whose
communication and synchronization phases are fused ;

– the parallel juxtaposition [16] which divides the parallel machine in two
independent sub-machines while preserving the Bulk Synchronous Parallel
model.

[16] presents the programming model of BSML with juxtaposition. This model
presents a global view to the programmer, easier to understand than what actu-
ally happens when a BSML program is run on a parallel machine. Nevertheless to
implement BSML with juxtaposition we need a distributed semantics (section 3)
which specifies the execution model i.e. what actually happens on a parallel
machine. Using this specification we implemented (section 4) the juxtaposition
using the parallel superposition and imperative features.

We begin the paper with an overview of BSML with juxtaposition (section 2).
Related work and conclusions end the paper (sections 5 and 6).

2 Bulk Synchronous Parallel ML with Juxtaposition: An
Overview

There is currently no implementation of a full BSML language but rather a
partial implementation as a library for Objective Caml language [14,6]. BSML
follows the Bulk Synchronous Parallel (BSP) model which offers a model of
architecture, a model of execution and a cost model.

A BSP computer contains a set of uniform processor-memory pairs, a com-
munication network allowing inter-processor delivery of messages and a global
synchronization unit which executes collective requests for a synchronization
barrier (for the sake of conciseness, we refer to [3] for more details). In this
model, a parallel computation is divided in super-steps, at the end of which a
the routing of the messages and barrier synchronization are performed. Hereafter
all requests for data which have been posted during a preceding super-step are
fulfilled.

The performance of the machine is characterized by 3 parameters expressed
as multiples of the local processing speed r: p is the number of processor-memory
pairs, l is the time required for a global synchronization and g is the time for
collectively delivering a 1-relation (communication phase where every processor
receives/sends at most one word). The network can deliver an h-relation in time
g × h for any arity h. The execution time of a super-step is thus the sum of the
maximal local processing time, of the data delivery time and of the global syn-
chronization time. The execution time of a program is the sum of the execution
time of its super-steps.
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BSML does not rely on SPMD programming. Programs are usual “sequential”
Objective Caml programs but work on a parallel data structure. Some of the
advantages is a simpler semantics and a better readability: the execution order
follows (or at least the results is such as the execution order seems to follow) the
reading order.

The core of the BSMLlib library is based on the following elements:

bsp p: unit→int
mkpar: (int →α ) →α par
apply: (α →β ) par →α par →β par
type α option = None | Some of α
put: (int→α option) par →(int→α option) par
proj: α option par →int →α option

It gives access to the BSP parameters of the underling architecture. In partic-
ular, bsp p() is p, the static number of processes. There is an abstract polymor-
phic type α par which represents the type of p-wide parallel vectors of objects
of type α one per process. The nesting of par types is prohibited. Our type
system enforces this restriction [11].

The BSML parallel constructs operate on parallel vectors. Those parallel vec-
tors are created by mkpar so that (mkpar f) stores (f i) on process i for i
between 0 and (p−1). We usually write f as fun pid→e to show that the expres-
sion e may be different on each processor. This expression e is said to be local.
The expression (mkpar f) is a parallel object and it is said to be global.

A BSP algorithm is expressed as a combination of asynchronous local com-
putations and phases of global communication with global synchronization.

Asynchronous phases are programmed with mkpar and apply. The expres-
sion (apply (mkpar f) (mkpar e)) stores ((f i)(e i)) on process i.

Let consider the following expression:

let vf = mkpar(fun i→(+) i) and vv = mkpar(fun i→2∗i+1) in
apply vf vv

The two parallel vectors are respectively equivalent to:

fun x→x+0 fun x→x+1 · · · fun x→x+(p−1) and 0 3 · · · 2× (p− 1) + 1

The expression apply vf vv is then evaluated to:

0 4 · · · 2× (p− 1) + 2

Readers familiar with BSPlib [13] will observe that we ignore the distinc-
tion between a communication request and its realization at the barrier. The
communication and synchronization phases are expressed by put. Consider the
expression:

put(mkpar(fun i→fsi)) (1)

To send a value v from process j to process i, the function fsj at process j must be
such that (fsj i) evaluates to Some v. To send no value from process j to process
i, (fsj i) must evaluate to None. Expression (1) evaluates to a parallel vector
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containing a function fdi of delivered messages on every process. At process i,
(fdi j) evaluates to None if process j sent no message to process i or evaluates
to Some v if process j sent the value v to the process i.

BSML also contains a synchronous projection operation proj whose detailed
presentation is omitted here. It is necessary of express algorithms like:

Repeat Parallel Iteration Until Max of local errors < ε

The projection should not be evaluated inside the scope of a mkpar. This is
enforced by our type system [11].

To evaluate two parallel programs on the same machine, one can partition it
into two sub-machines and evaluate each program independently on each par-
tition. Nevertheless in this case the BSP cost model is lost since for example a
global synchronization of each sub-machine would no more cost L. To preserve
the BSP model, which is the best solution [12], synchronization barriers need
to remain global for the whole machine. In a first definition of parallel com-
position [15], it was possible to compose two programs whose evaluations need
the same number of super-steps. It is of course restrictive and the programmer
was responsible to write programs which fulfill this constraint. A new version
called parallel juxtaposition removes this constraint [16]. It is the version that
we present in this paper.

Consider the expression (juxta m E1 E2). It means that the m first processors
will evaluate E1 and the others will evaluate E2. From the point of view of E1 the
network will have m processors named 0, . . . , m−1. From the point of view of E2
the network will have p−m processors (where p is the number of processors of
the current network) named 0, . . . , (p−m− 1) (processor m is renamed 0, etc.).
The value of bsp p() is also changed. Otherwise the evaluation of the expressions
is the same, on each sub-machine, than without parallel juxtaposition, but the
evaluation of put and at need the whole machine for the global synchronization.
A problem occurs when the evaluation of E1 and the evaluation of E2 need
a different number of super-steps. That is why a new primitive is necessary.
The sync primitive is a loop of synchronization barrier calls. It loops until a
synchronization barrier call is made by sync on the whole machine.

In case of the evaluation of E1 needs one more super-step than the evaluation
of E2, the evaluation of (sync (juxta m E1 E2)) can be described as follows:

– at the beginning, each synchronization barrier request for the evaluation of
E1 matches a synchronization barrier request for the evaluation of E2;

– then the evaluation of E2 ends. E2 requests one more synchronization barrier
for its last super-step. The second sub-machine has finished the evaluation
of E2 so it evaluates sync: the synchronization barrier request of sync will
match the request of the first sub-machine;

– each sub-machine has finished the evaluation of its expressions and they both
request a synchronization barrier from a sync. As this request concerns the
whole machine the evaluation of sync ends.

Evaluation result of a parallel juxtaposition is a parallel vector:

(juxta m 〈 v0 , . . . , vm−1 〉 〈 v′
0 , . . . , v′

p−1−m 〉) = 〈v0, . . . , vm−1, v
′
0, . . . , v

′
p−1−m〉
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From the functional point of view, the sync function is identity.
In the BSML library, the fact that Objective Caml is a language with a weak

call-by-value evaluation strategy must be taken into account. To avoid the eval-
uation of the two last arguments of the function juxta and the argument of the
function sync, these arguments should be functions:

juxta: int →(unit →α par) →(unit →α par) →α par
sync: (unit→α par) →α par

The following example is a divide-and-conquer version of the scan program
which is defined by scan ⊕ 〈 v0 , . . . , vp−1 〉 = 〈 v0 , . . . , v0 ⊕ v1 ⊕ . . .⊕ vp−1 〉
where ⊕ is an associative binary operation.

let rec scan op vec =
if bsp p()=1 then vec
else
let mid=bsp p()/2 in
let vec’=juxta mid (fun ()→scan op vec) (fun ()→scan op vec) in
let msg vec=apply (mkpar(fun i v→
if i=mid−1
then fun dst→ if dst>=mid then Some v else None
else fun dst→ None)) vec

and parop=parfun2(fun x y→match x with None→y|Some v→op v y)in
parop (apply(put(msg vec’))(mkpar(fun i→mid−1))) vec’

The juxtaposition divides the network into two parts the scan is recursively
applied to each part. The value held by the last processor of the first part is
broadcast to all the processors of the second part, then this value and the value
held locally are combined by the operator op on each processor of the second
part.

To use this function at top-level, it must be put into a sync primitive:
(sync (fun () →scan (+) this))

3 Distributed Semantics

High level semantics corresponds to the programming model. Distributed seman-
tics corresponds to the execution model. In the former, all the parallel operations
seem synchronous, even those which do not need communication. In the latter,
the operations without communication are asynchronous and the operations with
communications are synchronous.

The distributed evaluation can be defined in two steps:

1. local reduction (performed by one process) ;
2. global reduction of distributed terms which allows the evaluation of commu-

nications.
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3.1 Syntax

We consider here only a small subset of the Ocaml language with our parallel
primitives. We first consider the flat part of the language, i.e. without parallel
juxtaposition :

e ::= x (variable)
| c (constant)
| bsp p BSP parameter p
| (fun x → e) (abstraction)
| op (operator)
| (e e) (application)
| (let x = e in e) (binding)
| (if e then e else e) (conditional)
| (mkpar e) (parallel vector)
| (apply e e) (parallel application)
| (get e e) (communication primitive)
| (if e at e then e else e) (global conditional)
| 〈e〉 (enumerated parallel vector)
| (sync e′) (sync primitive)

The use of the juxtaposition is only allowed in the scope of a sync primitive :

e′ ::= x | c | bsp p | (fun x → e′) | op | (e′ e′) | (let x = e′ in e′)
| (if e′ then e′ else e′) | (mkpar e′) | (apply e′ e′) | (get e′ e′)
| (if e′ at e′ then e′ else e′) | 〈e′〉 | (juxta m e′ e′) | ‖e′‖

For the sake of conciseness, we use the get and if at constructs instead of the
more general put and proj functions. There is no fundamental differences, but
the semantics is simpler. We also omit in the remaining of the paper to dis-
tinguish expressions e and e′. Most of the rules are valid for both. We also
omit a simple type system (with explicit typing of variables with two possi-
ble annotations: local or global) which allows to avoid the nesting of parallel
values.

The user is not supposed to write enumerated parallel vectors 〈e〉. These
expressions are created during the evaluation of a mkpar expressions. ‖e′‖
indicates that the expression e is a branch of a juxtaposition.

Values are given by the following grammar :
v ::= (fun x → e) | c | op | 〈v〉

3.2 Local Reduction

The distributed evaluation is an SPMD semantics. Each processor will evaluate
one copy of the BSML program. As long as the expression is not an expression
which requires communications, the evaluation can proceed asynchronously on
each processor.

When the juxtaposition primitive is used two sub-machines are considered.
For a given process it means that the process identifier and the number of pro-
cesses can change. Nevertheless these values are constant for the actual parallel
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machine. Thus we choose to put these parameters on the arrow. −→i
p is the

local reduction at processor whose absolute process identifier is i on a parallel
machine of p processors. The absolute process identifier of the first process and
number of processes of the sub-machine a process belong to are stored in two
stacks : E f and Ep.

The location reduction is a relation on tuples of one expression, and two stacks.
It is defined by the rules of figure 1 (the set of rules for predefined sequential
operators is omitted1) plus the following contexts and context rule :

Γ := [] | (Γ e) | (v Γ ) | (let x = Γ in e) | (if Γ then e else e)
| (mkpar Γ ) | (apply Γ e) | (apply v Γ ) | (get Γ e) | (get v Γ )
| (if e at Γ then e else e) | (if Γ at v then e else e)
| (juxta Γ e e) | 〈Γ 〉 | ‖Γ‖ | (sync Γ )

(
e1 E f

1, E
p
1

)
−→i

p

(
e2, E f

2, E
p
2

)(
Γ (e1), E f

1, E
p
1

)
−→i

p

(
Γ (e2), E f

2, E
p
2

) (2)

The four first rules of figure 1 are usual rules of a functional language.
Rule (7) returns the head of the stack of number of processors. For the stacks
we use “::” for adding a value to the stack. The function h is defined by h(v ::
E) = v. If the stack is empty, then if it is the E f then the hd function returns
0, if it is the Ep stack the hd function return the value if p given by the −→i

p

arrow.
The two next rules formalize the informal semantics of the BSML primitives

mkpar and apply, but as opposed as section 2, we consider here only what
happens at process i. For example for rule (8), the processor i has (in the current
sub-machine) the process identifier i− h(E f). Thus for it evaluating mkpar f is
evaluating (f (i− h(E f))).

The three last rules are devoted to the juxtaposition :

– the two first are used to choose which branch is evaluated by the given
processor, depending on its identifier. New values of the process identifier of
the first processor and the number of processor of the sub-machine are push
on top of the respective stacks.

– the last one is used to restore the values of the process identifier of the first
processor and the number of processor of the larger machine at the end of
the evaluation of the branch.

3.3 Global Reduction

The global reduction → concerns the whole parallel machine. A distributed ex-
pression is thus p tuples manipulated by the local reduction. We use the following
syntax for distributed expressions :

〈
(e0, E f

0, E
p
0 ) , . . . , (ep−1, E f

p−1, E
p
p−1)

〉
1 This set includes rules for the fix operator used for recursion.
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((fun x → e) v), E f, Ep −→i
p ( e[x ← v], E f, Ep ) (3)

(let x = v in e), E f, Ep −→i
p ( e[x ← v], E f, Ep ) (4)

(if true then e1 else e2), E f, Ep −→i
p ( e1, E f, Ep ) (5)

(if false then e1 else e2), E f, Ep −→i
p ( e1, E f, Ep ) (6)

bsp p, E f, Ep −→i
p ( h(Ep), E f, Ep ) (7)

(mkpar v), E f, Ep −→i
p ( (v (i − h(E f))), E f, Ep ) (8)

(apply 〈v1〉 〈v2〉), E f, Ep −→i
p ( 〈(v1 v2)〉, E f, Ep ) (9)

(juxta m e1 e2), E f, Ep −→i
p

‖e1‖, h(E f) :: E f, m :: Ep

if 0 ≤ m < h(Ep)
and (i − h(E f)) < m

(10)

(juxta m e1 e2), E f, Ep −→i
p

‖e2‖, (h(E f)+m) :: E f, (h(Ep)−m) :: Ep

if 0 ≤ m < h(Ep)
and (i − h(E f)) ≥ m

(11)

‖v‖, f :: E f, p′ :: Ep −→i
p v, E f, Ep (12)

Fig. 1. Local reduction

The first rule takes into account the local reduction :

(ei, E f, Ep) −→i
p (e′i, E ′f

i , E ′p
i )

. . . , (ei, E f
i , Ep

i ) , . . . → . . . , (e′i, E ′f
i , E ′p

i ) , . . .
(13)

The second one is used for communications and synchronisation. The p pro-
cessors are partitioned into 1 ≤ k ≤ p parts, each part containing one of more
successive processor. Two processors belongs to the same part n (1 ≤ n ≤ k) if
the values at the top of their E f stacks are equal. In this case they also have the
same value on top of Ep which we note pn.

We note (en,i, E f
n,i, E

p
n,i) the process i in the nth part. This processor has pro-

cess identifier i + h(E f) in the whole parallel machine. We want the reduction :〈
(e1,0, E f

1,0, E
p
1,0), . . . , (e1,p1−1, E f

1,p1−1, E
p
1,p1−1),

(e2,0, E f
2,0, E

p
2,0), . . . , (ek,pk−1, E f

k,pk−1, E
p
k,pk−1)

〉
→〈

(e′1,0, E ′
f
1,0, E ′

p
1,0), . . . , (e

′
1,p0−1, E ′

f
1,p0−1, E ′

p
1,p0−1),

(e′2,0, E ′
f
2,0, E ′

p
2,0), . . . , (e′k,pk−1, E ′

f
k,pk−1, E ′

p
k,pk−1)

〉
We have either :

– all processors are evaluating a sync, i.e. ∀n.∀i.(1 ≤ n ≤ k)&(0 ≤ i < pn) ⇒
en,i = Γ (sync vn,i) then ∀n.∀i.(1 ≤ n ≤ k)&(0 ≤ i < pn) ⇒ e′n,i = Γ (vn,i)

– at least one part is evaluating a primitive of communication. For each part we
have to evaluate the corresponding primitive. For all n such that 1 ≤ n ≤ k,
we have either :



Bulk Synchronous Parallel ML 483

get:

{
we have ∀i.0 ≤ i < pn ⇒ en,i = Γ (get 〈vi〉 〈ni〉)
then ∀i.0 ≤ i < pn ⇒ e′n,i = Γ (〈vni〉)

if at: we have ∀i.0 ≤ i < pn ⇒ en,i = Γ (if 〈vi〉 at 〈m〉 then e1
i else e2

i )
then:
• if 0 ≤ m < pn and vm = true then ∀i.0 ≤ i < pn ⇒ e′n,i = Γ (e1

i ).
• if 0 ≤ m < pn and vm = false then ∀i.0 ≤ i < pn ⇒ e′n,i = Γ (e2

i ).

sync:

{
we have ∀i.0 ≤ i < pn ⇒ en,i = Γ (sync vi)
then ∀i.0 ≤ i < pn ⇒ e′n,i = Γ (sync vi)

Theorem 1. → is confluent.

4 Implementation

The semantics given in the previous section is a specification for a distributed
SPMD implementation. The current implementation of BSML is modular [18].
The module of primitives is a function which takes as argument a module of
lower-level communications. Several such modules are provided and built on top
of MPI, PVM, PUB, and also directly TCP/IP.

There are two implementations of the parallel juxtaposition. One which needs
to extend the lower-level module interface. This solution adds very little sequen-
tial computation overhead. The drawback is that each lower-level module should
be modified.

The second one implements the juxtaposition using the superposition. The
advantage is that the implementation of the superposition is independent from
the lower-level module. Moreover the implementation of the juxtaposition using
the superposition is quite simple. and it is moreover very close to the semantics.
This implementation adds more useless sequential computations, but there is no
need for the sync additional synchronization barrier.

The superposition [16] allows two parallel expressions to be concurrently eval-
uated by two parallel threads running on the whole parallel machine. The re-
sults is a pair of parallel vectors of size p. The outline of the implementation
of juxta m e1 e2 is as follows, where two stacks – one for the current number
of processors p of the current machine and one for the number (in the previ-
ous machine) of the first processor f of the current machine – are used. The
implementation o evaluate :

1. check if m is not greater than the number of processors
2. push the current values of f and p on the stacks
3. superpose the following expressions:

(a) set p to m and evaluate e1()
(b) set f to m + f and p to p−m and evaluate e2()
the pair (va,vb) of parallel vectors is obtained

4. restore the values of f and p by popping them from the stacks
5. return a parallel vector in which:

– the m first values come from va (from index f to f + m− 1)
– the p−m next values come from vb (from index f + m to f + p− 1)
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Fig. 2. Experiments with the scan programs

We did some experiments with the scan program shown in section 2. We run
it on parallel vectors of polynomial, the operation being the addition. The tests
were done on a 10 nodes Pentium IV cluster with Giga-bit Ethernet network
(figure 2).

We compared the version with juxtaposition which requires log p super-steps
with a direct version without superposition in 1 super-step. In the latter case,
p polynomials are received by the last processor. In the former case, at each
step, a processor receives at most 2 polynomial. As the polynomial are quite big,
the log p version performs better than the direct version. Of course for smaller
polynomials the direct version is better. It also depends on the BSP parameters
of the parallel machine.

5 Related Work

[21] presents another way to divide-and-conquer in the framework of an object-
oriented language. There is no formal semantics and no implementation from
now on. The proposed operation is similar to the parallel superposition, several
BSP threads use the whole network. The same author advocates in [19] a new
extension of the BSP model in order to ease the programming of divide-and-
conquer BSP algorithms. It adds another level to the BSP model with new
parameters to describe the parallel machine.

[23] is an algorithmic skeletons language based on the BSP model and offers
divide-and-conquer skeletons. Nevertheless, the cost model is not really the BSP
model but the D-BSP model [7] which allows subset synchronization. We follow
[12] to reject such a possibility.

In the BSPlib library [13] subset synchronization is not allowed as explained
in [20]. The PUB library [4] is another implementation of the BSPlib standard
proposal. It offers additional features with respect to the standard which follows
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the BSP* model [1] and the D-BSP model [7]. Minimum spanning trees nested
BSP algorithms [5] have been implemented using these features.

6 Conclusion and Future Work

We have presented a distributed semantics – which formalizes the execution
model – and an implementation of the parallel juxtaposition primitive for Bulk
Synchronous Parallel ML. This primitive allows to write parallel divide-and-
conquer BSP algorithms.

The programming model, and its formalization, of BSML with juxtaposition
has been presented in a previous paper [16]. We need now to prove that the
programming model and the execution model are equivalent i.e. that their for-
malizations are equivalent semantics.

The parallel juxtaposition is in fact an imperative extension of BSML. It has
for example a side effect on the number bsp p() of processors of the current
parallel machine. Thus the method presented in [9] used to prove the correct-
ness of BSML programs with the Coq proof assistant cannot be used. Another
direction of research is thus to provide a transformation from a program with
parallel juxtaposition to an equivalent pure functional program without parallel
juxtaposition. The equivalence is in this case a semantic equivalence, the perfor-
mance of the two programs being different. This transformation should also be
proved correct. The correctness of the original program can then be ensured by
proving, using Coq, the correctness of the transformed pure functional program.
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setting. In L. Bougé et al., eds., Euro-Par’96, LNCS 1123–1124, Springer, 1996.

8. F. Dehne. Special issue on coarse-grained parallel algorithms. Algorithmica, 14:
173–421, 1999.

9. F. Gava. Formal Proofs of Functional BSP Programs. Parallel Processing Letters,
13(3):365–376, 2003.

10. F. Gava. Approches fonctionnelles de la programmation parallèle et des méta-
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Abstract. Dijkstra’s algorithm is arguably the most popular computational 
solution to finding single source shortest paths. Increasing complexity of road 
networks, however, has posed serious performance challenge. While heuristic 
procedures based on geometric constructs of the networks would appear to 
improve performance, the fallacy of depreciated accuracy has been an obstacle to 
the wider application of heuristics in the search for shortest paths. The authors 
presented a shortest path algorithm that employs limited search heuristics guided 
by spatial arrangement of networks. The algorithm was tested for its efficiency 
and accuracy in finding one-to-one and one-to-all shortest paths among 
systematically sampled nodes on a selection of real-world networks of various 
complexity and connectivity. Our algorithm was shown to outperform other 
theoretically optimal solutions to the shortest path problem and with only little 
accuracy lost. More importantly, the confidence and accuracy levels were both 
controllable and predictable. 

Keywords: shortest path algorithm, road network, heuristic. 

1   Introduction 

A variety of the shortest path algorithm has been presented and implemented in the past 
decades. Literature [1][2][3] made detailed evaluation and comparison of those most 
popular shortest path algorithms. It was argued that no single algorithm consistently 
outperformed all others over the various classes of simulated networks[2]. Their 
analyses used randomly generated networks whose connectivity patterns rarely 
reflected the situation faced by transportation analysts [4]. Moreover, the results of 
finding the shortest paths between two nearby locations from a transportation network 
of sparse connection, the theoretical worse-case scenario for the shortest path 
algorithm, usually mismatched the computational efficiency in practice [2][5]. 
Literature [6] conducted a lot of experiments with the most popular shortest path 
algorithms on a lot of real road networks and identified some algorithms they argued 
most suitable for road networks.  

Shortest path algorithms traditionally concerned topological or phase characteristics 
of a network and neglect the spatial or proximity characteristics. Such a viewpoint has 
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resulted in a looping and radial approach to path searching which cannot prevent 
redundant searching even in situations when the destination nodes have been located. 
Some researchers have argued that the locational information (i.e. relative positions) of 
nodes can be employed in heuristics to inform the searching process [4][7][8]. 
Heuristics have been widely used in optimum path algorithms [7][8][9][10]. 

Most heuristics such as A* algorithm utilized local controlling strategies to guide the 
node search until the destination was found. They were efficient in locating 
approximately optimal one-to-one shortest paths. The localized approach could not 
handle one-to-some or some-to-one shortest path problems because of inability to treat 
many nodes simultaneously. 

Our method makes use of geographical proximity in a transport network in our 
search heuristics. We would argue that the optimal path algorithms and heuristic 
strategies can be integrated to make a trade-off between efficiency and theoretical 
exactness of shortest paths, which is especially important for large-scale web 
applications or real time vehicular path finding. This paper discusses the search 
heuristics built upon geographic proximity between spatial objects and highlights 
advantages of the integration. Our method was tested for its efficiency and accuracy in 
solving shortest paths, using ten real-world networks of different complexity and 
connectedness.   

2   Real-World Networks in the Study 

We downloaded from the Internet ten real-world networks in the United States (Table 1) 
representing road structures of varied complexity (http://www.fhwa.dot.gov/ and 
http://www.bts.gov). The networks were arranged in order of complexity (as indicated 
by increasing number of nodes and arcs from top to bottom in Table 1) and the density 
of network data at both ends was illustrated in Figure 1. All but the last two network 
data in Table 1 (Alabama, Georgia, Pennsylvania, New York, Texas, California, 
 

Table 1. Characteristics of real-world networks in the study 

Network 
data 

Number  
of nodes 

Number 
of arcs 

Arc/Node 
ratio 

Max arc 
length 

Mean arc 
length 

STDEV of 
 arc length 

Alabama 952 1482 1.557 0.5960 0.1071 0.1102 

Georgia 2308 3692 1.600 0.4783 0.0703 0.0793 

Pennsylvania 2640 4183 1.584 0.6987 0.0551 0.0732 

New York 3579 5693 1.591 0.7063 0.0476 0.0643 

Texas 3812 6340 1.663 1.402 0.0858 0.1383 

California 5636 9361 1.661 1.5300 0.0414 0.0911 

Northeast USA 14009 19788 1.413 1.114 0.0558 0.0799 

All of USA 26322 44077 1.675 2.3320 0.1429 0.1674 

Utah Detailed 72558 100533 1.386 0.6953 0.0127 0.0159 

Alabama Detailed 154517 199656 1.292 0.1936 0.0074 0.0069 
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(a) A screen shot of Alabama highways           (b) A screen shot of Alabama roadways 
     with 952 nodes                                                  with 154,517 nodes 

Fig. 1. Network data of different complexity 

northeast USA, and all of USA) contained state and inter-state highways. The last two 
network data included street networks in Utah and Alabama respectively. The network 
data were stored in ArcGIS shapefile format and recorded as pairs of longitude and 
latitude readings in decimal degrees. 

The network data were edited to topological correctness by removing pseudo nodes 
and resolving connectivity. They were then transformed and and exported into our 
custom-built ASCII files to store geometrical and topological information on arcs and 
nodes. 

3   Search Heuristics Based Upon Geographic Proximity 

An ellipse based strategy is utilized to limit the searching within a local area generated 
with the source and destination nodes. Detailed description of the strategy can be found 
in [11][12]. The approximate maximum distance or cost MD for traveling on a road 
network can be determined if the origin and the destination can be identified. A zone 
can then be defined to limit the search for a solution. Nodes that lied beyond the limit 
would not be considered in the search for the shortest path solution. Given that the 
Euclidean distance from a node N to the origin S and to the destination T is |SN| and |NT| 
respectively, as in Figure 2, the limiting condition can be defined as |SN|+|NT| ≤ MD. 
The critical points of N and N' will circumscribe an ellipse focused at S and T with a 
major axis of MD [12]. The key to the approach was to fix a reasonable major axis MD, 
representing the maximum endurable cost to transverse a pair of points. Because the 
cost factor between two nodes was considered to vary proportionally with distance, the 
maximum endurable cost could be derived from node locations. 

3.1   Correlation Between Shortest Path and Euclidean Distance in Road Networks 

First, 1000 sample nodes were extracted systematically from each network to 
reconstitute sets A and B, each containing 500 nodes. In the case of Alabama, all 952 
nodes were used (Table 1). Every node in A or B would be regarded in turn as origins 
and destinations between which the shortest paths must be determined. In other words, 
a total of 500x500 shortest paths (or 476x476 for Alabama) would be required for each 



490 F. Lu and P.-C. Lai 

 

Minimum Bounding
Rectangle (MBR)

Bounding Ellipse

 

Fig. 2. Establishing the limit of a search area for the shortest path 

network. A systematical sampling method makes sure that both of the sampled origin 
and destination nodes are evenly distributed in the networks, and thereby make the 
statistical analysis on the samples more representative. 

Suppose that the Euclidean distance between the node pair was eab and the shortest 
path distance was pab, a set R of ratios rab = pab/eab could be computed for each sample 
set. The ratio r compares the shortest path against the Euclidean distance. In general, we 
could establish a real number  as the threshold value for the elements in R at a stated 
confidence level. A  value at 95 percent would imply 95 percent confidence that the 
shortest path for a pair of nodes could be found within the extent built with the  value. 
A larger  would occur if the network exhibited connectivity disrupted by terrain 
features, such as physical presence of rivers or mountain ranges.  

A plot of the shortest path against the Euclidean distances for sample nodes in the ten 
networks was illustrated in Figure 3. Our computation for the shortest paths used 
Dijkstra’s algorithm implemented with a quad-heap structure. Given that the shortest 
distance between a node pair could never be shorter than their Euclidean distance, we 
could infer that a concentration of points along the 45˚ trend line would indicate a close 
to perfect match between the two distances. Conversely, dispersal from the 45˚ trend 
line would imply the presence of longer and meandering shortest paths indicating the 
lack of direct connectivity between pairs of points. 

The  values in our study were derived statistically at 95 percent confidence level 
and the 95 percent line for each network (y =  · x) was also shown in Figure 3. The  
values ranged from 1.238 (Texas) to 1.585 (Utah detailed) which appeared quite 
consistent across the networks. Texas highway network embedded with uniformly 
distributed nodes and radial roads yielded the smallest  thus signifying more compact 
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Fig. 3. The τ values at 95 percent confidence level for each road network 

connectivity. In contrast, Utah detailed network had the largest  as evident from the 
presence of physical separation by mountain ranges. The relationship between r, , and 
the networks will be explored further after the mathematical explanation below. 

3.2   Numerical Premise  

Using  as a product coefficient, we could derive the major axis MD for the ellipse that 
encircled a pair of origin and destination nodes. However, the computationally 
intensive node-in-ellipse search would offset benefits brought about by limiting the 
search extent, particularly when the destination and the origin were further apart. To 
make up for the computational deficiency of ellipses, we proposed the use of a 
minimum bounding rectangle (MBR) to limit our search. The use of MBR was 
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computationally superior to the ellipse method, and provided an enlarged searching 
extent which would enhance the possiblility finding a solution in one round of search. 

Table 2 presented the average r-values against the 95 percent τ threshold of the ten 
networks. Other than California and Utah Detailed, the τ thresholds were less than 120 
percent of average r-values. We would attribute a larger τ for California because of its 
elongated shape and Utah Detailed for its disrupted landscape. In other words, there is 
great likelihood (i.e. at least 95 percent of the time) that we could locate the shortest 
paths (SP) between any node pairs within the bounding ellipse. Our attempt to compare 
success-rates of the elliptical versus rectangular search limits showed that the MBR is 
superior to the ellipse; the former had fewer SPs beyond bound.  

Table 2. τ values and comparison between elliptical and rectangular search areas 

Network data  
(based on 1000 
sampled nodes 

 in each network) 

Average 
ratio 

rab = pab/eab 

Threshold  
 (at 95 % 

confidence) 

Number of 
SP beyond 
the ellipse 

Number of 
SP beyond 
the MBR 

Real 
confidence 
with ellipse  
search (%) 

Real 
confidence  
with MBR 
search (%) 

Alabama 1.201 1.379 1588 840 99.30 99.63 

Georgia 1.162 1.286 1013 619 99.59 99.75 

Pennsylvania 1.179 1.393 761 453 99.70 99.82 

New York 1.191 1.375 750 406 99.70 99.84 

Texas 1.128 1.238 1220 369 99.51 99.85 

California 1.170 1.426 1163 802 99.53 99.68 

Northeast USA 1.166 1.334 438 250 99.82 99.90 

All of USA 1.139 1.267 226 109 99.91 99.96 

Utah Detailed 1.308 1.585 717 405 99.71 99.84 

Alabama Detailed 1.209 1.334 822 549 99.67 99.78 

Average 1.185 1.362 - - 99.64 99.81 

Although the 95 percent τ threshold was set to limit the searching area (generally as 
depicted in Figure 4a), our empirical findings proved that the use of either the ellipse or 
the MBR to limit a search area in the computation of shortest paths was better than 95 
percent. We computed evenly distributed 500*500 (476*476 for Alabama) shortest 
paths using the Dijkstra’s algorithm implemented with quad-heap. We then computed 
the number and percentage of shortest paths that could be located within the ellipse (as 
in Figure 4b) and within the MBR (as in Figure 4c). The numbers of shortest paths that 
went beyond the ellipse or the MBR were then derived. 

The last two columns in Table 2 recorded that more than 99 percent of the shortest  
paths (average 99.64 percent for ellipse and 99.81 percent for MBR) could be identified 
within the limited search areas. Figures 4b and  4c  explained  why. rpq  in  Figure 4b  was  
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(a) General case where 
 SP < major axis of ellipse 

(b) SP > major axis but solution 
 still lies within the ellipse 

(c) SP falls outside the ellipse 
but within the MBR 

Fig. 4. Comparing shortest path and search areas limited by ellipse and the MBR 

10.49 percent bigger than the 95 percent τ threshold but the shortest path remained 
within the ellipse. Figure 4c showed that the ratio rxy exceeded τ by 28.49 percent but 
the shortest path was still within the MBR. The higher confidence levels in both cases 
meant that the limited search was extremely effective because solutions to shortest 
paths (including cases similar to Figures 4b and 4c) could be found 99 percent of the 
time in one round of search. In other words, only a very small percentage of the shortest 
paths (an average of 0.36 percent for ellipse and 0.19 percent for MBR) would be found 
beyond the search areas. These special cases would occur when no path between a pair 
of nodes exists within the search limits and such a condition would, in turn, invoke an 
additional routine to conduct a liberal search for the shortest path. 

3.3   Establishing Accuracy and Computational Efficiency  

While our method seemed effective, it was still possible that some near-shortest (or 
optimum) paths found within the limit of the ellipse or MBR might not be the real 
shortest paths. We therefore repeated the experiment using the same set of data to 
undertake a liberal computation for the shortest paths without limiting the search area. 
The corresponding results were listed in Table 3 which showed that very few shortest 
paths (i.e. an average of 0.074 percent) would be mis-calculated when MBR was used 
to limit the search area. It also showed that the use of MBR would result in locating 
near-shortest paths with slightly longer lengths (i.e. an average of 7.65 percent longer 
than the actual shortest paths). The results were encouraging as they indicated that the 
MBR would not cause excessive loss in the computational accuracy except in the case 
of California whose network was deficient in connectivity. Our next task was to assess 
the computational efficiency in locating shortest paths with and without the use of 
MBR to limit the search area. 

Assuming that all sample nodes in our networks were distributed uniformly 
throughout, a liberal search for the shortest path would begin at the source and spread 
radially outward until all node pairs were processed. Our schematic showed that the 
search area limited with MBR and the radial search would overlap and possess an area 
ratio to the circle as πτττ
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τ <2, the area ratio will less than 0.747. We recorded the computational time for 
resolving the  one-to-one  shortest  paths  with  the  1000  sample  nodes  (all  952  nodes 
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Table 3. Possibility for finding SPs beyond the MBR but with near-SPs found within it 

Network 
data 

Number of shortest paths beyond 
the MBR but with near-shortest 
paths found within its bounds 

Possibility (%) 
Difference in 

mean path 
lengths (%) 

Alabama 159 0.070 13.60 

Georgia 269 0.108 6.94 

Pennsylvania 172 0.069 9.10 

New York 53 0.021 8.06 

Texas 151 0.060 3.29 

California 517 0.207 17.74 

Northeast USA 193 0.077 7.46 

All of USA 175 0.070 6.28 

Utah Detailed 74 0.030 1.50 

Alabama Detailed 66 0.026 2.56 

Average - 0.074 7.65 

Table 4. Computational efficiency between limited search with MBR and liberal search 

Network 
data 

Average CPU time for 
one-to-one SP calculation 

with MBR search (s) 

Average CPU time for 
one-to-one SP calculation 

with liberal search (s) 

Time saving  
with MBR 
search (%) 

Alabama 0.00020 0.00028 29.25 

Georgia 0.00045 0.00068 34.41 

Pennsylvania 0.00062 0.00074 16.44 

New York 0.00077 0.00102 24.18 

Texas 0.00072 0.00115 37.64 

California 0.00150 0.00177 15.35 

Northeast USA 0.00423 0.00630 32.83 

All of USA 0.00941 0.01416 33.51 

Utah Detailed 0.02850 0.03737 23.74 

Alabama Detailed 0.05543 0.08624 35.73 

Average - - 26.68 
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for Alabama) using the MBR to limit the search area on the one hand and by means of 
liberal search on the other. Total 250,000 shortest paths were calculated for each 
network (226,576 paths for Alabama). The results were listed in Table 4. It showed that 
the computational times with MBR were shorter than those of liberal search on all 
counts. Indeed, an average 26.68 percent saving in computational time was realized 
with only minimal loss in accuracy (i.e. 0.074 percent of the optimum paths would be 
7.65 percent longer than the actual shortest paths on average, as shown in Table 3). 

3.4   Special Considerations  

It should be noted that networks with different spatial configurations would yield 
different results. Figure 5 showed three city road networks of unique spatial 
arrangement: (a) a strongly connected network without dangles or dead-end roads; (b) a 
network containing many cul-de-sacs; and (c) a network comprising of some 
sub-networks connected at several junctures across a river. 

Samples of 500*500 node pairs were extracted from each of the networks in Figure 5 
and the statistics for shortest path computation were summarized in Table 5. Table 5  
 

 

(a) strong connected                        (b) with cul-de-sac (c) separated by a river  

Fig. 5. Special cases for shortest path heuristics 

Table 5. Efficiency comparison of ellipse MBR and free search for SPs on city road networks 

City road 
networks 

Average 
ratio 

rab = pab/eab 

Threshold  
 (at 95 %  

confidence) 

Average 
computational 
time for MBR 

search (s) 

Average 
computational  
time for liberal  

search (s) 

Time 
saving  

with MBR  
search (%) 

Network A 
(4892 nodes, 
7924 arcs) 

1.275 1.441 0.00108 0.00155 30.32 

Network B 
(11893 nodes, 
16689 arcs) 

1.308 1.584 0.00359 0.00476 24.58 

Network C 
(12803 nodes, 
18107 arcs) 

1.381 2.019 0.00493 0.00537 8.28 
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(such as  > 2 in Figure 5c) was not as good as earlier results. While the MBR in showed 
that the performance of MBR search for networks with larger  thresholds comparison 
with the liberal search method managed to yield time saving in this case, the margin of 
difference was relatively small. This observation alerted the need for some adjustments 
in our approach for cases with sub-networks as in Figure 5c. For example, 
decomposition by graph method using the divide-and-conquer strategy to solve for the 
shortest paths would be appropriate when the source and destination nodes were in 
separate sub-networks. The MBR heuristic would still apply in the search for shortest 
paths for node pairs within the same sub-network. 

4   Conclusion 

The single-source shortest path algorithm, as one of the most natural problems in 
network optimization, has generated much research from a variety of disciplines such 
as computer science, logistics, and geographical information systems. Among the many 
algorithms presented, the Dijkstra’s algorithm was by far the most mature and robust in 
practice, especially for one-to-one or one-to-some solutions to the shortest paths. We 
have argued that the theoretically optimal solution and heuristic strategies could be 
integrated to offer a reasonable trade-off between computational efficiency and 
accuracy, which would benefit the realization of shortest path solutions for large-scale 
web applications or real-time vehicular navigation.  

The geographical proximity of road networks provides excellent heuristics to guide 
the search for one-to-one or one-to-some shortest paths. Such a heuristic can greatly 
limit the search extent for a quick solution. The MBR method we put forth in this paper 
allows users to resolve the shortest paths for a stated confidence and in less time. The 
MBR is also superior to the ellipse in resolving the shortest paths. While a higher 
confidence level would bring about reduced efficiency, our experiment at 95 percent 
confidence showed better than 95 percent performance. In fact, 99.81 percent of 
one-to-one shortest paths could be found within the MBR along with 26.68 percent 
time saving on average, with little loss in accuracy as reflected by an average of only 
0.074 percent of the optimal paths exceeding 7.65 percent of the lengths of the actual 
shortest paths. 

In short, the MBR heuristics provides an attractive alternative to finding one-to-one 
or one-to-some (some-to-one) shortest paths in less time and with little loss in accuracy. 
Employing the heuristics with a stated confidence makes the approach holistic. We 
believe that further integration with local heuristics, such as decomposition by graph 
method, would render the search for shortest paths more efficient and practical. 
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Abstract. It is increasingly popular to adopt DSM systems to maximize
parallelism beyond the limits of SMP. Wherein, a proper cache coherence
scheme should be efficient at the memory overhead for maintaining the
directories because of its significant impact on overall performance of the
system. In this paper, we propose a new hybrid directory scheme which
reduces the memory overhead of the directory and improves the memory
access time by using our new hybrid directory scheme. We evaluate the
performance of our proposed scheme by running six applications on an
execution-driven simulator (RSIM). The simulation results show that the
performance of a system with hybrid directory can achieve close to that
of a multiprocessor with bit-vector directory.

1 Introduction

In implementing Distributed-Shared Memory (DSM) systems, it is rather diffi-
cult to maintain cache coherence efficiently, which not only determines the cor-
rectness of the system, but also has a significant impact on system performance.
A variety of mechanisms have been proposed for solving the cache coherence
problem.

Snooping protocol [1] is a popular cache coherence protocol which is designed
based on a shared bus connecting the processors. But bus is a kind of broad-
cast medium, its scalability is limited. When the number of processors increases
beyond 32, the shared bus becomes a bottleneck for such situations.

Directory-based protocols were proposed for medium-scale and large-scale
multiprocessors [2, 3]. Its basic idea is keeping a directory entry for each mem-
ory line, all of which consist of the state of the memory line and a sharing code
indicating the processors that contain a copy of the line in their local caches.
By examining a directory entry, a processor can determine the other processors
sharing the memory line that it wishes to read, write or send invalidate messages
to as required. Directory- based protocols scale better than snooping protocols
because they do not rely on a shared bus to exchange coherence information.
Many commercial multiprocessor systems implement directory-based coherence
such as SGI Origin 2000 [4] and SGI Origin 3000[5].
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Directory maintains information on the sharing of cache lines in the sys-
tem. Directory organization defines the storage structure that makes up the
directory and the nature of the information stored within it. The memory over-
head of directory has significant impact on the system performance and the
choice of the directory structure is important for implementing high performance
systems.

In this paper, we propose a new directory organization combining bit-vector
scheme with limited pointers scheme. There are two directories in a nodes local
memory, one is organized as the limited pointers scheme that keeps a directory
entry for each memory line and the other is organized as bit-vector scheme that
has only a few entries, not all memory lines have associated entry.

The rest of the paper is organized as followings. The next section gives an
overview of the related work. In the third section, we introduce the hybrid di-
rectory scheme. The fourth section shows the performance evaluation and the
simulation results. Finally we conclude this paper in section 5.

2 Related Work

In this section, we will briefly review some directory-based cache coherence
schemes, most of these schemes attempt to address the issue of memory overhead
of the directory.

In bit-vector scheme [3], for each memory line in main memory, the bit-vector
protocol keeps a directory entry for that line, and in each entry every processor
or node has a presence bit associated with each memory block indicating whether
they have a copy of the block. Because of the huge memory overhead, the bit-
vector directory is mainly used in small number of multiprocessors.

In the limited pointers directory scheme [6], the directory entry uses L pointers
for the first L nodes caching the block and each pointer represents a nodes ID.
When a request of read miss arrives at the home node and the directory finds
that no more free pointer is available in the associated entry to record the node
sending the request, this situation is called directory entry overflow. To tackle
this problem, a pointer will be randomly selected and freed by sending invalidate
message to the node that it represents. Under this situation, system performance
may be poor.

Acacio from Spain proposed multilayer clustering as an effective approach
[7] to reduce the directory-entry width. The evaluation results for 64 processors
shows that this approach can drastically reduce the memory overhead, while
suffering performance degradation similar to previous compressed schemes.

Tree-based cache coherence protocol [8] was proposed by Chang from Texas
A&M University, which was a hybrid of the limited directory and the linked list
scheme. By utilizing a limited number of pointers in the directory, the proposed
scheme connects the nodes caching a shared block in a tree fashion. In addi-
tion to the low communication overhead, the proposed scheme also contains the
advantages of the existing bit-map and tree-based linked list protocols, namely,
scalable memory requirement and logarithmic invalidation latency.
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3 Hybrid Directory

By comparing several directory-based schemes (bit-vector, coarse vector and
limited pointers), we have learned that these schemes all have advantages and
disadvantages, some have large memory overhead, and some have lower time-
efficiency or result in many meaningless messages.

For large-scale multiprocessors, some of these directory-based schemes can
work well, but for very large-scale systems, they will limit the scalability of
the system and do not scale well. To achieve higher performance in cc-NUMA
systems, a new directory organization must be put forward.

We can decrease the memory overhead of the directory in two ways: one is
reducing the directory width as is adopted in coarse vector and limited pointers;
the other is reducing the directory height as is used in sparse directory.

In practice, the average number of the copy of the memory line is small.
Research has shown that when the proportion of the shared read is less than
70more than 5 nodes local cache contain the given memory line between two
writes [9]. According to this, we propose a new hybrid directory scheme that
combines the bit- vector scheme and the limited-pointers scheme.

Fig. 1. The Organization of Hybrid Directory

Figure 1 depicts the hybrid organization of limited pointers and bit-vectors
directories.

In our proposal, each node must maintain two kinds of directories:

1. The first-level directory using bit-vector scheme is organized as a cache, it
only contains small number of entries and can be implemented in SRAM.
Every directory entry consists of a presence bit vector and the tag infor-
mation indicating whether it is hit or not. Because the main access manner
of the directory is read- modify-write (RMW), we adopt write-back policy
for directory cache. One item in the first-level directory writes back to the
second-level directory only when it is replaced.
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2. The limited pointers scheme is used in the second-level directory and the
memory blocks all have a corresponding item in the directory. Every di-
rectory entry consists of a state bit and a presence bit vector, indicating
the state of directory entry and the sharing information of the block copy
respectively.

4 Performance Evaluation

4.1 Simulation Methodology

To evaluate the performance impact of hybrid directory on the application per-
formance of CC-NUMA multiprocessors, we use a modified version of the Rice
Simulator for ILP Multiprocessors (RSIM) which is an execution driven simula-
tor for shared memory multiprocessors. Table 1 gives some main parameters of
the simulated system in our simulation.

We have selected several numerical applications to investigate the performance
benifits of our proposed scheme. These applications are QS and SOR from RSIM,
Water from SPLASH benchmark suite [10] and FFT, Radix and LU from
SPLASH-2 benchmark suite [11]. The input date sizes are shown in Table 2.

Table 1. Simulation parameters

The Simulated System (64 Processors)
Processor Memory

Speed 200MHz Interleaving 4
Issue 4 Access Time 18 cycles

Cache Network
L1 Cache 16KB, Direct-mapped Topology 2D Mesh
Access Time 1 cycle Router Cycle 3
L2 Cache 64KB, 4-way set associative Flit Length 8B
Access Time 5 cycles Flit Delay 4 cycles
Block Size 64B Link Width 64B

Internal Bus
Bus Cycle 3 Bus Width 32b

Hybrid Directory
1- level Access Time 8 cycles 2-level Access Time 20 cycles

Table 2. Applications Workload

Applications Size
QS 16384
SOR 12864
Water 512 molecules
FFT 65536
Radix 524288 keys
LU 256256, block size = 8
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4.2 Base Simulation Results

In this subsection, we present and analyze the results obtained by simulations
running on two kinds of systems: base and two-level directory. We choose 64
processors for our modeled system, and the base system does not use the hybrid
directory. For the first level directory (directory cache), there are 1K items which
use direct-mapped policy and every entry has 6 pointers in the sencond level
directory.

Figure 2 shows the improvements on execution time for each application by
using the hybrid directory scheme. As it was expected, some degradation occurs
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when the hybrid directory is used and the degradation depends on the sharing
patterns of these applications at a certain extent. The degradation for some
appliactions is very small and can be negligible (the slowdown for FFT is only
0.35% and 0.61% for SOR). QS achieves the hightest reduction in execution time
(12.9% slowdown). On the other hand, the performance of Water, LU and Radix
are also degraded but not so significantly (1.03%, 1.32% and 3.57%, respectively).

In order to determine the effect of set associative on application performance,
we vary the set associative of the directory cache from 1-way (direct-mapped)
to 4-way and compare the performance. Figure 3 shows the impact of the set
associative on the overall execution time. As the set associative is increased, we
find that for most of the applications, the execution time decreases except SOR
and Water. The set associative has obvious effect on the application performance
for Radix, but for other applications, the performance with 2-way set associative
is similar to that with 4-way set associative.

5 Conclusions

In this paper, we presented a new hybrid directory scheme which combines the
bit- vector scheme (organized as a directory cache) and the limited-pointers
scheme, to reduce the directory memory overhead and improve the performance
of CC-NUMA multiprocessors.

We evaluate the performance of our proposed scheme by running six appli-
cations on a modified version of the Rice Simulator for ILP Multiprocessors
(RSIM). The simulation results show that the performance of a system with
hybrid directory can achieve close to that of a multiprocessor with bit-vector
directory, even more better for some of the six applications.
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Abstract. Present paper is aimed to work out efficient algorithm of
multi-chain manipulator path planning in 3D space with static polyg-
onal obstacles. The resulting solution is based on navigational maps
approach. Using this approach, manipulator features are considered as in-
tellectual agent, and reachability information is stored in compact form.
This enables fast adaptation to arbitrary parameters of manipulator and
workspace. The paper describes two algorithms: (i) a local walkthrough
with obstacle avoidance, and (ii) incremental navigational map building,
performed at running stage. Both algorithms make an extensive use of
the specific features of the problem. Working simultaneously, they al-
low real-time manipulator path planning, as well as self-learning in idle
mode. Algorithms are implemented as a demonstration program.

1 Introduction and Acknowledgements

The problem of navigation, being currently very popular in robotics, is tradi-
tionally related to artificial intelligence. In most cases, human can easily figure
out a path of a rigid body or a system of rigid bodies, with presence of obstacles,
while computers solve this problem much more difficultly [1].

The particular problem that we are facing is the path planning of multi-chain
manipulator, moving in an ambient space with static obstacles. Human cannot
easily imagine manipulator motion (due to large amount of degrees of freedom
and heavy robot’s shape inconsistency). So, in this case the computer can take
precedence over a human.

This paper describes an approach based on navigational maps, which has
never been used for manipulator path plainning. The research process was
supervised by S. Zhukov, and I am very grateful for his insights and guidance.

2 Problem Definition

2.1 Terminology

We define workspace (WS) as a 3-dimensional space with static polygonal ob-
stacles, and N-linked robot manipulator as a construction of N polygonal links,
joined in chain, each rotating around an axis fixed in the coordinate system

D. Grigoriev, J. Harrison, and E.A. Hirsch (Eds.): CSR 2006, LNCS 3967, pp. 505–513, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Fig. 1. A screenshot of a demonstration program

of the “parent” link. The rotation axis of the first link is fixed in workspace
coordinate system. Each of manipulator’s links has one degree of freedom.

We define configuration of our manipulator as a tuple of values in range [0, 2π),
which completely determines manipulator’s position. Thus, a configuration space
(CS) is [0, 2π)N . We call the configuration acceptable if each of the manipulator
links have no collision with static obstacles and with each other (except the
neighbor links).

2.2 Informal Problem Definition

The main purpose of our work is to create a prototype of a navigational system,
intended to execute a multiple path planning queries. For fast adaptation, we
prohibit long preprocessing of WS, but accept learning, i.e. saving intermediate
results, obtained during the execution, for to handle the consequent queries
faster. Well trained navigational system does all the necessary computations
close to real-time.

Our problem is a rough simplification of a real robot navigation problem: (a)
we ignore any kind of kinematical constraints (so instead of a physical problem
we have pure geometrical one), and (b) we do not provide optimal trajectory.

While manipulator’s position is flexible, obstacles are fixed. When any obsta-
cle changes its position, navigational system might reset all collected data.

2.3 Formal Problem Definition

Our task is to prototype a teachable navigation system for execution of multiple
path planning queries (i.e. building trajectories). System might to:

– Provide fast adaptation to arbitrary parameters of manipulator and work-
space

– Accumulate intermediate computational results
– Do self-learning in “idle mode”
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Path planning query looks like this: given configurations θstart and θgoal,
build a continuous function θ(t), satisfying the following conditions:

– θ(0) = θstart
– θ(t0) = θgoal
– For any t in [0, t0], θ(t) is acceptable manipulator configuration.

3 Navigational Map

3.1 Principles

Given approach is based on navigational maps proposed by Zhukov [2], and we
will use terminology from his paper. In the sequel we denote by intellectual
agent a moving robot; by a walkthrough algorithm the one used by agent for
walking to current (local) target, by an accessibility zone a set of configurations,
joint by some criterion of accessibility; by the accessibility graph the one con-
structed by accessibility relation on zones; by navigational map a combination
of walkthrough algorithm and accessibility graph.

Fig. 2. Simple navigational map (for 2D point considered as an intellectual agent.
Wlkthrough algorithm is “go straight”. Accessibility graph contains 5 nodes.

In our problem, by an agent configuration we denote the set of numbers in
[0, 2π), representing manipulator’s links rotation angles. So, every node in ac-
cessibility graph represents some unique manipulator configuration. The edge
between two nodes is present if and only if a (local) walkthrough between their
configurations is possible. The accessibility graph is not oriented, since a walk-
through algorithm is symmetric by definition.

The planning query is formed as a pair of configurations: starting and target.
The task is to find the trajectory (path in CS) between them.

3.2 Path Planning

When starting and target manipulator positions are given, they are associated
with some nodes of the existing navigational map by a virtual walkthrough. If
no nodes are associated with position, it will be added to map as is.

While there is no path on navigational map between nodes associated with
starting and ending points, the map is updated, as shown in the previous para-
graph. That process can loop to infinity, for example if in fact there is no any
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path! We cannot confidently detect the absence of the path, as it is theoretically
unsolvable problem. We can only interrupt the process after some time limit.

As the path on the accessibility graph is found, it is easy to construct ma-
nipulator’s trajectory from it. The trajectory, obtained by a local walkthrough
from starting configuration to the one of associated map node, is appended to
the chain of trajectories of walkthroughs between map nodes, till the one as-
sociated with target configuration, and finally from the last node to the target
configuration.

3.3 Building of the Navigational Map

Presented approach is designed for building navigational map on the fly – that
means, than no navigational map is given at the very beginning, and it has to be
constructed during path planning. Obviously, the algorithm has to be focused
on given query, i.e. to build only those parts of navigational map that can help
one to complete current planning task. Of course some heuristics should be used.
There is some similarity to the widely used A* path planning algorithm. Its main
idea is first to explore the areas that will most likely lead us to success. However,
presented algorithm can work in idle mode (without planning query). In both
modes (idle and focused), map building is incremental (and all obtained results
are to be used during the execution of future queries).

Navigational map building procedure takes into consideration a very impor-
tant manipulator’s feature - its “modularity”, i.e. the dependency of each ma-
nipulator’s link on all previous links and independence on all the subsequent
links. Simultaneously with construction of navigational map for given (say N-
linked) manipulator, the navigational maps for 1-,2-,...(N-1)- linked manipulators
are constructed. Those “reduced” manipulators are obtained from given one by
removing links “from top to down”, with preservation of links closer to manip-
ulator’s base. As the map building is incremental and performed “on the fly”,
all maps except the first are empty after initialization. The first map (for the
one-link manipulator) is constructed trivially, in a very short time.

The increment of navigational map starts only when the existing map does
not succeed to complete current query. The increment of the N-th map is per-
formed by analyzing the (N-1)-th map, and can invoke its increment, which can
stimulate the increment if (N-2)-th map, and so on. The first trivial map never
gets updated.

4 Local Walkthrough Algorithm

4.1 Idea

It is well understandable that the simplier walkthrough algorithm we have, the
more complex navigational map we have to build, and vice versa. Zhukov [2] has
noticed that the quite simple walkthrough algorithm is the best choice in the
sense of overall performance: big navigational map is more preferable than slow
and unpredictable walkthrough procedure. So, we also use the very light one,
without backtracking and complicated heuristics.
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4.2 Description of Algorithm

Algorithm of an adaptive coordinate descent is developed as a simplified (and
very undemanding to resources) analog of GoCDT [2] for manipulator. Algo-
rithm is based on the principle of getting manipulator position to the desired
one by coordinate descent method [3], with adaptive step selection and with-
out back-offs. On each iteration only one manipulator’s chain is rotated – the
chain whose rotation angle has the biggest difference with desired one. The step
(angle increment) changes adaptively, depending on collision detection: if the
collision after changing angle with current step occurs, we decrease the step un-
til given threshold. If no step in any direction can be done, walkthrough fails.
Since AdapticeCD is not symmetric, the walkthrough algorithm is taken as com-
bination of 2 walkthroughs (to and from the goal position), and considered to
be successful if either of them succeeded.

Algorithm 1. Local walkthrough algorithm
AdaptiveCD (goal state[])

scale ← 1
old path length ← ∞
iter ← 0
while scale > σ0 and iter < max iters do

path length← distance to goal configuration
if |path length − old path length| > δ0 then

scale ← min(1, scale ∗ 2) {increase step}
else {have not come nearer}

scale ← scale/2 {decrease step}
end if
if path length < threshold then

return true{goal reached}
end if
for i from 1 to N do {by all chains}

delta[i] ← (goal state[i] − current state[i]) ∗ scale
if rotation of i-th link by angle delta[i] causes collision then

delta[i] ← 0
end if

end for
i max ← index of maximal absolute value in delta
Rotate link i max by angle delta[i max]
old path length ← path length
iter ← iter + 1

end while
return false {step value ot iterations exhausted; goal not reached}

The max iters limitation is not obligatory, because algorithm definitely stops
after at most ∑N

i=1(|goal state[i]− start state[i]|)
δ0
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Fig. 3. AdaptiveCD algorithm illustration (for 2-dimensional manipulator)

iterations. The artificial constraint of iterations amount is supplied for saving
computation time (as it is said before, the walkthrough should not be a “bot-
tleneck” of the whole navigation process). We use σ0 = 0.125 and max iters =
30, and AdaptiveCD usually succeeds after 5-10 iterations, or fails after 10-15
iterations.

5 Incremental Update of the Navigational Map

5.1 Basic Principles

Firstly, it is necessary to mention that was described above: navigational map
update procedure can work in “focused mode” to complete current query, as
well as randomly improve navigational map for future use. One procedure’s call
increases the amount of nodes by 1.

We denote by virtual edge a pair of nodes of the accessibility graph, which are
not connected, but can possibly be connected. Focused map update is based on
finding the virtual edge, which is most perspective for connecting the “start” and
“goal” connected components of the accessibility graph. Our algorithm selects
the best virtual edge as the shortest one, adjacent to some vertex from the “start”
or “goal” component. Once the best virtual edge is selected, procedure tries to
generate new node “closer” to it. We use Euclid metrics of distance between
nodes in CS. Another metrics can be found in [4].

Fig. 4. A navigational map for point in 2-dimensional space can be represented by part
of the visibility graph. Dashed lines denote edges of accessibility graph, pointed line
denotes virtual edge.
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5.2 Manipulator-Specific Features

For the update of k-th navigational map, one node from (k-1)-th navigational
map is selected. Before it is selected, the update of (k-1)-th map can be initiated.
Let us call opening the procedure of generation nodes k-th map nodes from (k-
1)-th map nodes. So, the node selected from previous map is opened. Each node

Algorithm 2. Updating k-th navigatiohal map
UpdateNavigMap (k)

while time frame not exhausted do
node ← FindOrCreate(k - 1)
if node = nil then

return false {no unrevealed nodes}
end if
if OpenNode(node) = true then

return true
end if

end while

Algorithm 3. Finding the unrevealed node to open (or create new) in k-th
navigational map
FindOrCreate (k)

if no unrevealed nodes then
if k < 2 or UpdateNavigMap(k) = false then

return nil
end if

end if
if k > 1 and Random(0, 1) > 0.5 then

UpdateNavigMap(k)
end if
node ← optimal unrevealed node
return node

Algorithm 4. Opening node
OpenNode(node)

newnodes ← list of new nodes, generated from node
if newnodes = ∅ then

return false
end if
for each node in newnodes do

add node to navigational map
if k = N then {for “main” map only}

Perform virtual walkthrough from node to all the components of the accessibility
graph; add the new edges on success

end if
end for
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Open node

Update map

Update map

Open node Success

Find path

Fig. 5. A simplified example of navigational maps for 3-linked 2-dimensional manipu-
lator, and the workflow of path planning procedure

Table 1. Minimal, maximal and average time taken by path planning procedure. Two
tables are represening two independent environments (i.e. geometrical parameters of
the manipulator and static obstacles.)

N tmin tmax t |V | N tmin tmax t |V |
4 0.16 3.41 0.66 27 4 0.17 6.46 2.20 40
5 0.26 18.12 2.54 43 5 0.26 7.64 2.35 46
6 0.89 360.4 38.51 209 6 0.92 380.5 43.18 350

can be opened only once. The “opening” procedure copies all (k-1) angle values
from the selected node to each of the generated nodes. Thus, the position of
the first (k-1) manipulator links is unchanged. The angles, which determine a
position of k-th manipulator link, are selected in some discrete subset of [0, 2π),
according to collision conditions.

6 Results and Conclusion

All described algorithms were implemented as a demonstration program, which
visualizes manipulator path planning on a very complex (for this problem) obsta-
cles. After a short period of learning (a few queries) path planning is performed
in real time. But, the tests are showing that the increase of manipulator’s links
amount causes exponential growth of the navigational map.

The presented technique is powerful and can be more extended more by many
features such as moving obstacles, building optimal (by some real-conditioned
criteria [5]) trajectory, navigational map reduction without loss of accessibility
information, and more.
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Abstract. Since operating systems (OSs) file systems are designed for a
wide variety of applications, their performance may become suboptimal
when the workload has a large proportion of certain atypical applications,
such as a database management system (DBMS). Consequently most
DBMS manufacturers have implemented their own file manager relegat-
ing the OS file system. This paper describes a novel page replacement
strategy (Least Likely to Use) for buffer management in DBMSs, which
takes advantage of very valuable information from the DBMS query plan-
ner. This strategy was implemented on an experimental DBMS and com-
pared with other replacement strategies (LRU, Q2 and LIRS) which are
used in OSs and DBMSs. The experimental results show that the pro-
posed strategy yields an improvement in response time for most types of
queries and attains a maximum of 97-284% improvement for some cases.

1 Introduction

In the setting of a modern operating system (OS) a database management system
(DBMS) is treated like a normal application program, which may deteriorate
DBMS performance. This is due to the pagination of its code and data by the
OS memory management system, which is designed for general purposes and so
its algorithms pursue to satisfy a wide variety of applications[12].

It is known in the database (DB) community that buffer management plays
a key role in providing an efficient access to data resident on disk and optimal
use of main memory [2]. Since for a DBMS it is possible to know the access
pattern to data when processing queries, then there is more certainty in deciding
which data to keep in main memory and which replacement policy to use, thus
resulting in a much lower response time [2]. If the DBMS query optimizer and
the buffer manager worked together and not independently, the query optimizer
could provide useful information to the buffer manager; since for most queries it
can determine the data access sequence for answering the query [7], and therefore
hand it over to the buffer manager for taking advantage of this information.
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Since accessing a DB page in disk is much slower that accessing a DB page
in the buffer, the main goal of a DBMS buffer manager is to minimize page I/O.
For this reason devising better page replacement algorithms is very important
for the overall performance of DBMSs [6]. Despite the development of many
replacement policies, it is expected that more will be proposed or the existing
ones will be improved [2, 11]; however, without prefetching its benefits can be
limited [3].

The goal of this investigation is to demonstrate that the approach proposed
in this work (Least Likely to Use) improves the performance of DBMSs buffer
manager. This investigation has four features that set it apart from the rest:

• The evaluation was carried out implementing several algorithms (including
ours) on an experimental DBMS, instead of using simulation.

• By using implementation we were able to focus our evaluation on the ul-
timate performance criterion: response time; as opposed to the evaluations
carried out in other investigations which use page hit ratio.

• The experiments were designed to evaluate the algorithms performance for
different types of queries.

• The proposed approach combines and synchronizes a new page replacement
algorithm and prefetching.

It has been claimed that implementation-based evaluation yields more realistic
results [11]. One of the reasons is that when using simulation one might inadver-
tently ignore implementation details that are essential for the DBMS to generate
correct query results. If the overlooked detail requires much processing time in
a real implementation, then the simulation results will not be realistic since the
ignored time might offset any potential time gain. Conversely, when implemen-
tation based evaluation is used, one cannot miss any essential detail, for other-
wise query results will not be correct. For example, we were able to carry out
experiments involving queries whose processing needs database indexes, whose
simulation is extremely difficult to carry out.

2 Related Works

A large number of works on replacement policies have been carried out to date
(most in the OS area and much fewer in the DBMS area). This section in-
cludes a brief description of five of the most relevant replacement algorithms,
two of which (2Q and LIRS) were selected for comparison against our proposed
algorithm. Unfortunately there exist too few works that integrate and synchro-
nize prefetching and buffer management, which is of great importance for the
performance of the entire system.

In [10] a new page replacement algorithm, Time of Next Reference Predictor
(TNRP), is proposed, which is based on predicting the time each page will be
referenced again and thus replacing the page with the largest predicted time
for its next reference. According to the tests conducted, they claim that their
algorithm outperforms LRU, by up to 25-30% in some cases and over 100% in
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one of the cases. The best performance was obtained when the number of page
frames is 4 as compared with 8 and 16, which were also used in their tests. A
major difference between this work and ours is that they used simulation for
evaluation, while we implemented the algorithms, which yields more realistic
results. Like most work on replacement policies their algorithm was designed for
OSs, while ours is for DBMSs.

In [9] the authors that devised 2Q mention that it performs similarly as
LRU/2 (in fact, usually slightly better). Additionally, they affirm that 2Q yields
an average improvement of 5-10% in hit ratio with respect to LRU for a large
variety of applications and buffer sizes, with little or no tuning needed. However,
in [8] its authors state that two pre-determined 2Q parameters (which control
the sizes of the A1in y A1out queues) need to be carefully tuned and are sensitive
to the workload type. 2Q was selected for comparison vs. our algorithm (LLU),
and the comparative results are presented in section 5.

In [8] a replacement algorithm was proposed, called LIRS, which has a com-
plexity similar to that of LRU, using the distance between the last and the
penultimate page reference to estimate the probability of the page being refer-
enced again. The authors divide the referenced blocks into two sets (like 2Q), one
of them with 1% of the buffer size (suggested by the authors), which contains
the pages that have been accessed again. According to tests conducted by the
authors, they claim that LIRS has better performance than LRU and 2Q. LIRS
was also selected for comparison, and the comparative results are presented in
section 5.

In [4] prefetching is used to assist caching by predicting future memory refer-
ences. The authors present a new mechanism which does not require additional
tables or training time for predicting the data access pattern. In their project
only data are prefetched, and one of the problems consists of discerning between
address and data for carrying out prefetching. In our project prefetching is com-
bined with buffer replacement policies using information provided by the query
optimizer.

3 Architecture of the DBMS Used for Testing Algorithms

Currently there exists an experimental distributed database management system
(called SiMBaDD), developed by us. In order to test the proposed replacement
algorithm, SiMBaDD was used for implementing on it the buffer management
module (Figure 1). The reason for selecting this DBMS is that the source code
is available and it was easier for us to add and modify software modules.

It is important to point out that the Buffer Manager includes sub-modules for
different page replacement algorithms (LRU, 2Q, LIRS and LLU), which permits
to evaluate the DBMS performance using any given replacement algorithm. It
is worth mentioning that the DBMS allows processing queries using indexes,
which permits to conduct experiments for cases 3, 5, 6, 7 and 8, described in
subsection 4.1.
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Fig. 1. Architecture experimental distributed database management system

4 Description of the LLU Page Replacement Policy

The Least Likely to Use (LLU) page replacement policy uses two parameters:
usage value and replacement policy mark. The usage value is an estimation of
the probability of a given page to be used again. The usage value of any page
lays in the range from 0 to 10, where 0 indicates that the page will not be used,
10 specifies that it will be used again, and an intermediate value means that
there is a chance that it will be used. The usage policy mark is set (to MRU or
APU) according to the most convenient replacement policy for the type of the
query that requested the page (according to the query classification described in
subsection 4.1).

Upon reception of a query, the DBMS performs a lexical and syntactic parsing
of the query (SQL Statement Analyzer module). Then if the query is correctly
formulated, it is interpreted for selecting the table rows that satisfy the search
condition (Row Selector module). Finally the DBMS formats the final results of
the query (Result Generator module). In the original version of the DBMS, the
Row Selector module requested table rows directly to the OS as needed, without
intervention of the Buffer Manager and Data Prefetching modules (boxes with
crisscross filling), which were added in the new version.

One of the main components of the proposed architecture is the Data Access
Pattern Analyzer, which is in charge of identifying the type of query in order to
determine the data access pattern and the ad-hoc replacement policy for such
query (using the algorithm described in section 4.1). This permits to prefetch
rows (Data Prefetching module) and to select the most convenient rows for
replacement (Buffer Manager module), and consequently, to achieve the desired
speed up. When the Buffer Manager receives a row request, the Row Searcher
sub-module (Figure 2) finds out if the row is located in disk or main memory. If
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Fig. 2. Buffer Manager module

the row is in main memory, it requests the row to the RAM Reader, otherwise
it requests the row to the Disk Reader, which loads the row into main memory.
Afterwards, the requested row is delivered to the Row Selector.

The LLU policy takes first into consideration the replacement of the page
with the lowest usage value. When there exist several pages with the same lowest
usage value, the victim page is selected according to the usage policy mark; e.g.,
the most recently used page is selected among all the pages with an MRU mark
and the same lowest usage value.

Each time a page is transferred from disk to main memory, the Buffer Man-
ager assigns to it a usage value and a replacement policy mark, which are based
on information supplied by the Data Access Pattern Analyzer. Whenever a page
has to be replaced, the Buffer Manger will use the LLU replacement policy,
described in previous paragraphs. The LLU policy selects the page that is least
likely to be used again. This decision is based primarily on the usage value of
the candidate pages and secondarily on the policy mark.

4.1 Query Classification for Deciding LLU Parameters and
Prefetching

One of the most important modules of the proposed architecture is the Data
Access Pattern Analyzer, whose task consists of determining when and what data
to prefetch and what data to replace when processing a SELECT statement of
SQL, by using the information provided by the query optimizer. The following
paragraphs describe how to decide whether to use prefetching and to determine
the usage value and the most convenient replacement policy (replacement policy
mark) for each case of the SELECT statement.
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1. Query involving one table, without WHERE clause (with and with-
out index). Since the information of all the table rows has to be delivered,
it is convenient to use prefetching to move to main memory the rows (stored
in pages) that will be used in the near future. This speeds up data access
because the system anticipates row loading so that they will already be in
main memory when they are required. For this case it is convenient to use
the APU (Any Previously Used) replacement algorithm, because the rows
already read will not be used again and therefore it is immaterial which row
to remove. (Note: in this case the usage value of the rows is set to 0.)

2. Query involving only one table, with simple WHERE clause with-
out index. When the column appearing in the WHERE clause does not
have an index, it is necessary to check each table row to determine if it satis-
fies the search condition (WHERE clause); therefore this case is treated just
as case 1.

3. Query involving only one table, with simple WHERE clause with
index. First it is necessary to determine if it is convenient to use the index,
if so the nodes of the index tree are loaded as they are needed. In this case it
is not possible to benefit from prefetching, because in order to prefetch any
tree node it is necessary to know its address. However it would be convenient
to prefetch the root node, since this node is indispensable to initiate the
search. Once the leaf node sought is found, it is possible to access the table
row (page). Subsequently, the adjacent nodes of the leaf (to the left or right)
have to be read as long as the WHERE clause is satisfied (e.g., column >
value), which as a result may deliver one, several or no rows. It is convenient
to use the MRU (Most Recently Used) replacement algorithm for the tree
nodes, in order to keep in the buffer the first accessed nodes (those closest
to the root), which are most likely to be used by another query. The APU
replacement algorithm can be used for managing pages that contain table
rows. (Note: since once a certain row is used it could happen that some other
row in the same page could be requested later, thus the usage value of the
page is set to 5.)

4. Query involving only one table, with complex WHERE clause
without index. When there is no index all the table rows have to be in-
spected for finding those that fulfill the search condition; therefore this case
is treated exactly as case 1.

5. Query involving only one table, with complex WHERE clause with
index. The WHERE clause has to be decomposed into sub-queries, and if
some of these has an index it is used as long as it is useful; if there exist sev-
eral indices, it is necessary to make an analysis to select the most beneficial.
If there exists an index and it is convenient to use it, the process contin-
ues just as in case 3. It is necessary to note that the rows retrieved using
the index have to be checked to find out if they fulfill the other conditions
(sub-queries). If no index can be used, this case will be treated just as
case 1.

6. Query involving two tables, without WHERE clause (with and
without index). Since a cartesian product has to be performed, an index is
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not useful for this. For performing the cartesian product one of the tables has
to be read sequentially only once, thus the rows already read will not be used
again and therefore it is advisable to use the APU replacement algorithm.
Concurrently, the rows of the other table are read sequentially, but these
rows have to be accessed a number of times proportional to the cardinality
of the first table; in this case it is convenient to use the MRU (most recently
used) replacement algorithm, which according to the literature is the most
efficient for improving the response time in joins. (Note: in this case the
usage value of the first table rows is set to 0, while for the second table rows
is set to 10.)

7. Query involving two tables, with simple WHERE clause (with and
without index). It is convenient to create an index for the small table (the
table with the smallest cardinality) if it has no useful index; in parallel the
rows of the large table (with the largest cardinality) have to be prefetched;
this is because accessing these rows using prefetching is faster than accessing
them using an index. If the operator appearing in the clause is >, > =, <,
< = or =, the process must proceed as follows: read a row of the large
table, next obtain the data of the column that participates in the WHERE
clause, then using this data look for the first leaf in the index tree of the
small table that satisfies the WHERE clause similarly to case 3; from this
leaf scan to the left or right for finding the tree leaves that satisfy the clause
according to the operator type; this process must be carried out for each
row of the large table. The replacement algorithm that should be used for
the pages that contain rows of the small table is APU, because they have
the same probability of being accessed again; while for the large table the
APU algorithm should be used, since each of these rows will not be used
again. (Note: in this case the usage value of the small table rows is set to 5,
while for the rows of the large table is set to 0.) If the operator were <>,
the process would proceed similarly to case 6.

8. Query involving two tables, with complex WHERE clause (with
and without index). The query has to be decomposed into sub-queries,
treating this case just as the previous one. It is necessary to mention that
for some clauses a cartesian product has to be performed, so this case should
be treated exactly as case 6.

9. Query involving three or more tables (with and without WHERE
clause and with and without index). First two tables have to be pro-
cessed, then the resulting table and one of the remaining tables are processed
similarly, and so on for the rest of the tables. Each pair of tables should be
processed as described in cases 6, 7 or 8 depending on the existence or
inexistence of a WHERE clause, a simple clause or a complex clause.

5 Experimental Results

The replacement policy proposed in this work was compared with the tradi-
tional LRU replacement policy, as well as newer policies such as 2Q and LIRS.
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The reasons for selecting 2Q and LIRS for comparison is that the first was
designed specifically for DBMSs and the second has a good performance with
respect to other policies according to its authors’ claims. All of the policies were
implemented on the DBMS, whose architecture is depicted in Figure 1. In par-
ticular 2Q and LIRS were implemented according the descriptions given in [9]
and [8].

The DBMS used for conducting the experiments was implemented in stan-
dard C and runs on the Fedora version of the Linux operating system. The data
and queries used for tests were obtained from the Open Source Database Bench-
mark [1]. The four tables used in the experiments (tenpct, uniques, updates and
hundred) have 100,000 rows each and occupy approximately 15MB in hard disk.
The experiments were conducted on a computer with a Centrino CPU at 1.6
MHz with 512 MB of main memory.

Table 1 shows the results of the tests conducted for queries of type 2 (using
prefetching). For each replacement policy a series of runs were carried out for each
of three different buffer sizes: 1,000, 2,000 and 3,000 pages (with 4,096KB each
page). Each series consisted of 10-12 runs, and for each series the average query
processing time (expressed in seconds) was recorded and shown in the table.

Table 1. Case 2: query involving one table, with simple WHERE clause without index

Number
of Pages

LRU LIRS 2Q LLU

1000 3.348 2.849 2.034 1.166
2000 4.323 2.192 2.802 1.008
3000 4.850 1.583 3.428 0.979

Table 2. Case 3: query involving one table, with simple WHERE clause with index

Number
of Pages

LRU LIRS 2Q LLU

1000 0.678 0.617 0.629 0.657
2000 0.660 0.653 0.678 0.672
3000 0.636 0.653 0.656 0.648

Table 2 presents the results obtained for queries of type 3 (using prefetching).
In this case LLU is outperformed sometimes by LIRS and sometimes by LRU;
notice, however, that the difference in performance is small. Table 3 presents
the results for case 7, which show that the LLU replacement policy yields an
average improvement of 284%, 140% and 97% in response time with respect to
LRU, LIRS and 2Q respectively. Additionally, the last four columns of Table 3
show the results without prefetching for all the algorithms; as expected, the use
of prefetching generally reduces the response time for all the algorithms.
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Table 3. Case 7: Query involving two tables, with simple WHERE clause

Number
of Pages

With Prefetching Without Prefetching

LRU LIRS 2Q LLU LRU LIRS 2Q LLU
1000 24.758 27.204 27.227 13.420 49.268 15.422 31.754 17.394
2000 64.447 46.825 26.542 15.394 71.007 30.928 35.179 15.189
3000 76.435 29.296 31.127 14.283 44.483 31.665 48.984 17.905

Experiments similar to the previous ones were conducted for cases 1, 4, 5,
6 and 8. For case 6 smaller tables were used because the cartesian product of
100,000-rows tables took too much time and disk space. No experiments were
carried out for case 9 since it is similar to cases 6, 7 and 8.

As expected, the performance of each policy varies from case to case, such
that it happens that for one case one policy may outperform another, while for
another case the latter may outperform the first. It is worth mentioning that in
all cases except two (cases 3 and 5) LLU outperformed all the other policies.

6 Final Remarks

In the area of optimization of access strategies there exist some open research
issues. Though much work has been carried out for attempting to obtain or
predict the access pattern to data, mainly in the OS area, which is useful for a
mixture of a wide variety of applications; however, improving the prediction of
the access pattern for a mixture of applications is a difficult task. Fortunately,
predicting the access pattern in DBMSs can be more precise, since the computer
works with a limited number of operation types and the page reference patterns
exhibited by most of these operations are regular and predictable.

The proposed algorithm (LLU) takes advantage of this behavior, and in order
to assess its performance it was evaluated with respect to algorithms that have
been used or proposed for OSs and DBMSs, such as LRU, Q2 and LIRS. The
results showed that for most cases LLU outperforms the other algorithms.

This investigation has several features that set it apart from the rest: the
evaluation was carried out by implementing different replacement algorithms on
an experimental DBMS, the criteria used for comparing algorithms was response
time, and the experiments were designed to evaluate the algorithms performance
for different types of queries. It has been claimed that implementation-based
evaluation yields more realistic results, since when using simulation one might
overlook details that are essential for the DBMS to generate correct query results.

It is important to remark that the replacement algorithms by themselves are
not enough, since they have to be combined and synchronized with prefetching
to improve their performance [3], as it has been shown for OSs, which constitutes
a complex problem [5]. To date several investigators are aiming their research at
combining two or more techniques to improve the performance of data manage-
ment. However, few researchers have intimately synchronized prefetching with
buffer management.
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Abstract. Visualization of large-scale data inherently requires dimensionality 
reduction to 1D, 2D, or 3D space. Autoassociative neural networks with 
bottleneck layer are commonly used as a nonlinear dimensionality reduction 
technique. However, many real-world problems suffer from incomplete data 
sets, i.e. some values may be missing. Common methods dealing with missing 
data include deletion of all cases with missing values from the data set or 
replacement with mean or “normal” values for specific variables. Such methods 
are appropriate when just a few values are missing. But in the case when a 
substantial portion of data is missing, these methods may significantly bias the 
results of modeling. To overcome this difficulty, we propose a modified 
learning procedure for the autoassociative neural network that directly takes 
into account missing values. The outputs of the trained network may be used for 
substitution of the missing values in the original data set. 

1   Introduction 

When a scientist or an engineer faces a new problem, the first steps towards its 
solution are to understand what is given and which aspects of this are most important. 
Since humans perceive most of the information in the course of their life in a visual 
form, it is preferable to present this new problem also in some kind of visual form: 
directly or through some analogy, i.e. visualize it. It is quite easy to visualize 
structures or logical relationships by means of flow charts and block diagrams. But 
when we come to data sets describing quantitative characteristics of objects or their 
relationships, the problems of dealing with high dimensionality arises. 

People inherently are ably to think only in 1D, 2D, and 3D spaces. On the other hand, 
most real-world scientific and engineering problems deal with tens to thousands of 
dimensions. Thus, presenting (visualizing) high-dimensional data in a low-dimensional 
space requires dimensionality reduction. It is a technique intended to cut the number of 
dimensions while preserving maximum useful information in the data set. 

Some of well-known dimensionality reduction methods are the following: 

− principal component analysis (PCA) [4, 9]; 
− principal curves [3, 5]; 
− multidimensional scaling [7, 11]; 
− autoassociative (bottleneck) artificial neural networks (AANN) [6, 8]. 
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These and many other methods work seamlessly on complete data sets, when all 
numerical values are present, but most of them cannot be applied to data sets with 
missing values. The essence of the problem lies in the mathematics: for the formulas 
to be computed, all included variables must take some exact numerical values. When 
the value is missing, the formula cannot be computed at all, or it must be modified to 
omit this value. When missing values are positioned randomly in the data set, 
formulas cannot be modified to handle all possible situations, thus a way is sought to 
fill the missing values with some numerical values. 

There are several simple methods to fill missing values: 

1. When the number of samples with missing measurements is very small, discard 
these whole samples. 

2. Replace missing values with mean or some “normal” (tolerable) value for this 
parameter. 

3. If it is appropriate for the problem at hand, interpolate the value from the 
neighboring cells. 
These methods have common drawbacks: 

1. Missing data replacement (imputation) leads to biased estimates. 
2. When the “restored” data set is presented to a dimensionality reduction algorithm, 

it does not “know” which values are true and which are replaced, and thus they 
have the same ranking in terms of their information load. On the other hand, 
dimensionality reduction implies information loss, so it is preferable to keep as 
much as possible information from the true data and completely ignore all missing 
data. 

Thus it is desirable to develop an algorithm that would explicitly handle missing 
data, eliminating the abovementioned drawbacks. For PCA such an algorithm exists, 
it is a well-known expectation maximization (EM) algorithm [10]. However, PCA 
provides only linear projection, and more efficient results can be obtained by 
employing nonlinear dimensionality reduction techniques. 

Autoassociative (bottleneck) neural networks can be seen as a generalization of 
PCA to the nonlinear case. It is proven [1, 2] that if only linear activation functions 
are used and the network is optimally trained, it performs exactly the same projection 
as PCA. In this paper, we propose modifications to standard learning procedures for 
AANN, which allow direct handling of missing data, extract most information from 
the present data, and estimate missing values from the low-dimensional representation 
of the data set. 

The paper is organized as follows: section 2 gives a short overview of standard 
AANN architecture and learning algorithms; in section 3, the proposed modifications 
are presented; section 4 supports theoretical findings with experimental evidence; and 
finally, conclusions are made on the basis of the obtained results. 

The following notation is adopted: 

X – N×D matrix containing the data set, where 
N – number of samples, 
D – original (high) dimensionality of the data; 

( )x k – k-th row of X, i.e. one sample; 
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( )y k – low-dimensional representation of ( )x k ; 

( )x̂ k – reconstruction of ( )x k , obtained from ( )y k . 

2   Autoassociative Neural Networks 

AANN is a kind of feedforward neural network with multiple hidden layers. 
Depending on the architecture and activation functions used, AANN can perform 
linear or nonlinear mapping. General AANN architecture is presented in fig. 1.  

 high-dimensional
input 

( )x k  
low-dimensional 

representation 

( )y k  

high-dimensional 
reconstruction 

( )x̂ k  

MLP1                         +                         MLP2  

Fig. 1. General AANN architecture 

It consists of input and output layers (with linear activation functions) with the 
number of neurons equal to the original dimensionality of the data. The first and the 
third hidden layers (with nonlinear activation functions) contain equal number of 
neurons, which is chosen according to the problem at hand. The second hidden layer 
(with linear activation functions) is the “bottleneck” layer, whose number of neurons 
is equal to the target low dimensionality. The outputs of the network are extracted 
from this layer. Such a network can be considered as two parts: input and the first two 
hidden layers form a multilayer perceptron (MLP1) with one hidden layer that 
performs nonlinear mapping ( ) ( )x k y k ; the second and third hidden layers with 

the output layer form the second multilayer perceptron (MLP2) that solves the reverse 
problem of reconstructing the original data ( ) ( )ˆy k x k . The idea is to “squeeze” 

high-dimensional data through a low-dimensional “bottleneck” (the second hidden 
layer) so that the reconstruction ( )x̂ k  is as close to the original data ( )x k  as 
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possible, i.e. maximum of information is retained. Thus the network inputs are also 
used as the learning targets. 

To achieve this goal, the network is trained in the supervised mode with respect to 
the following criterion 

( ) ( ) 2

1

ˆ
N

k

E x k x k
=

= − . (1) 

If only linear mapping is required, the first and the third hidden layers (with 
nonlinear activation functions) are unnecessary, and the general architecture can be 
simplified (fig. 2). 

 high-dimensional
input 

( )x k  
low-dimensional 

representation 

( )y k  

high-dimensional
reconstruction 

( )x̂ k  

 

Fig. 2. Simplified AANN architecture for linear mapping 

AANN can be trained with any learning algorithm suitable for feedforward neural 
networks. Most of them are based on the backpropagation procedure to calculate error 
gradients for hidden layers. Since for our further consideration, the choice of a 
particular learning algorithm does not matter, we will not focus on this issue. 

3   Modified Learning Procedure 

Now consider the case of missing values. The goal is to eliminate their influence on 
the network output and weights update. 

The network outputs are formed by feeding forward the inputs through the network 
layers. The only layer that directly receives the inputs ( )x k  is the first hidden layer. 

The weighted inputs are accumulated to form the neurons’ activations as follows 
D

j ji i
i 1

a w x
=

=  (2) 
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where ia – activation of the j-th neuron, ix – the i-th input, jiw – the corresponding 

synaptic weight. 
If the input is missing, it is natural to exclude the corresponding term from 

summation, which is equivalent to setting the corresponding ix  to zero. In this way, 

the missing value does not influence the sum (the neuron activation), hence, the 
neuron output, hence, the network output. 

The network learning is basically an optimization procedure performed with 
respect to criterion (1). Ideally, the absolute value of E can drop to 0 if the network 
perfectly reconstructs its inputs. In reality it is always above 0, and the goal of 
learning is to minimize it by adjusting the synaptic weights of the network. 
Obviously, higher errors at particular network outputs lead to bigger adjustment of 
weights. On the contrary, zero errors lead to no adjustment. Thus, to eliminate the 
influence of missing values on the network learning, it is necessary to zero out errors 
at those outputs, where the target values are missing. 

Such a modification to weight update scheme has a very important advantage: it is 
equivalent to weighting output errors with 1 (when the target is present) and 0 (when 
the target is missing), thus shifting the learning “attention” only to real data and 
completely discarding missing values. Hence, maximum retention of useful 
information from the data set is achieved in the course of dimensionality reduction. 

When the learning procedure converges, the outputs of the network may be used to 
replace the corresponding missing values in the data set. If the task of missing value 
restoration is the primary one, the outputs of the network, where the target values are 
missing, may be fed back to the corresponding inputs. This will lead to an iterative 
process of missing value reconstruction. 

Thus, the proposed modifications can be summarized in the following two rules: 

1. Replace missing inputs with zeros. 
2. Replace learning errors with zeros where targets are missing.  

4   Experimental Results 

The proposed approach was applied to real-world problems of biomedical data 
visualization. The first data set contains blood tests (35 parameters) for 26 patients 
taken before and after treatment (total of 52 samples). Dimensionality reduction is 
performed from 35D to 2D. To compare different algorithms, 20% of data is 
randomly discarded, so we have both full and incomplete data sets.  

The reference visualization is obtained by applying standard PCA to the full data 
set (fig. 3). Each line represents one patient, the end with a solid circle corresponds to 
the blood test taken before treatment, and the end with an empty circle corresponds to 
the blood test taken after treatment. 

The incomplete data set is visualized using three different approaches: fig. 4 – 
missing data is replaced with mean values for the corresponding parameter and then 
standard PCA is applied; fig. 5 – EM algorithm is applied directly to the incomplete 
data set; fig. 6 – the proposed modified AANN method is applied directly to the 
incomplete data set. Linear AANN (35-2-35 architecture) was used, because we are 
comparing to linear PCA methods. 
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Fig. 3. Visualization of complete data set 

 

Fig. 4. Visualization of incomplete data set with PCA (missing values are replaced by means) 
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Fig. 5. Visualization of incomplete data set with PCA using EM algorithm 

 

Fig. 6. Visualization of incomplete data set with the proposed approach 
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Visual analysis of the obtained visualizations reveals the following: 

1. Replacing missing data with means leaded to a severe distortion of the data cloud 
shape and interrelations between data points. This could lead to wrong conclusions 
if this visualization was used for decision making or express diagnostics. 

2. EM algorithm performed much better than the previous method. The overall shape 
is only slightly distorted, but interrelations between data points are still wrong in 
many cases and are closer to the result of the previous method than to the 
reference. 

3. The proposed approach yielded the best visualization in terms of its closeness to 
the reference PCA visualization of the complete data set. The shape is preserved 
almost precisely and data points interrelations are only slightly distorted. 

The second data set helps demonstrate the full power of the proposed approach. It 
contains results of 135 biomedical tests for 202 cases. The hard part is that 70% of 
data is missing because only a part of the total number of tests was performed for 
each particular case. Two visualizations were obtained: linear (fig. 7), using 135-2-
135 AANN architecture; and nonlinear (fig. 8), using 135-25-2-25-135 AANN 
architecture. The nonlinear visualization offered a much better insight into the data, 
clearly showing two clusters, which are not visible in the linear visualization but are 
indeed present in the data. 

 

Fig. 7. Linear visualization of the second data set (70% of missing values) 
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Fig. 8. Nonlinear visualization of the second data set (70% of missing values) 

5   Conclusions 

In this paper, we proposed modifications to AANN learning procedures that allow 
direct handling of data sets with missing values. One of its most important advantages 
for dimensionality reduction is the ability to preserve most of information from the 
present data while completely ignoring missing values that is very useful when a 
substantial portion of a data set is missing. This approach can be used for both linear 
and nonlinear dimensionality reduction and does not depend on the network 
architecture and learning algorithm, i.e. any supervised learning can be applied, any 
type of neural network can be used that performs weighted summation of inputs. The 
proposed approach can be easily generalized to other types of feedforward neural 
networks that are trained by supervised learning algorithms. 

Comparison of experimental results have shown the superiority of the proposed 
method over other approaches to missing data handling, in particular, replacement of 
missing values by mean values, and the expectation maximization algorithm. 
Nonlinear visualization can offer additional insights that was demonstrated on the 
second incomplete data set. 
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Abstract. This survey examines research in the area of race detection tech-
niques. Diverse flavors of on-the-fly, ahead-of-time and post-mortem techniques 
are covered. This survey tries to present advantages and limitations exhibited by 
different race detection techniques. 

1   Introduction 

A race condition occurs when shared data is read and written by different processes 
without prior synchronization. To use shared resources correctly, parallel prog-
ramming requires mechanisms for determining when a program is free from race 
conditions, and for assisting programmers in locating race conditions when they 
occur. Accurate locating requires that only those races that are direct manifestations 
of program bugs be reported, and not those that may be artifacts of other races or 
imprecise run-time traces. The common techniques for detection are based on 
dynamic or static analysis of programs. Compared to static analysis, dynamic analysis 
has the advantage that noise and undecideability is less of concern: by definition, an 
executed path is possible and at runtime all values can be determined. However, 
dynamic analysis has a cost in terms of time overhead and space, and does not 
consider unrealized paths as well. In contrast, static techniques can analyze programs 
regardless of their input, execution path and all flows through a program. There has 
been a lot of research carried out defining different techniques and building tools for 
race detection. As mentioned above, tools are based on either dynamic or static 
analysis. Some tools show better detection performance but high overhead in terms of 
time and space, other tools need user annotations and mechanisms to reduce the 
number of spuriously detected races. Tools based on static analysis sometimes lack 
accurate control- or data-flow information. Some tools also need precise points-to 
analysis as well. 

2   Background 

Since the detection of race condition in parallel programs is notoriously difficult, a large 
community has focused on this issue. In fact, it is quite difficult to detect such problems 
by manually testing the programs. Additionally, most of the existing concurrent 
software systems are written in C. Therefore, the need of an efficient mechanism for 
detecting parallel program anomalies is always present. As a consequence of detection 
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difficulties the tools for automatic detection are extremely valuable. Hence, there has 
been a substantial amount of past work in building tools for analysis and detection of 
data races [1, 2, 3, 4]. These tools are either based on verification of access event 
ordering or verifying a lock discipline [22]. This means, if there is no unordered 
access to a shared variable such that at least one access is writing, the program is free 
from race conflicts. Similarly, if the accesses to shared variables in a program obey a 
locking discipline, then program is race free. In the traditional manner, the research 
can be categorized as on-the-fly, ahead-of-time, and post-mortem techniques. These 
techniques exhibit different strengths for race detection in programs. The ahead-of-
time approaches encompass those detection techniques that apply static analysis and 
compile-time heuristics while on-the-fly approaches are dynamic in nature. The post-
mortem techniques are a combination of static and dynamic techniques. The next 
sections provide an overview of techniques in each of these categories. Section 3 will 
discuss on-the-fly techniques and section 4 focuses on ahead-of-time techniques. 
Finally, section 5 presents the post-mortem based analysis techniques for race 
detection. At the end, we will summarize our study of different race detection 
techniques. 

3   On-the-Fly Race Detection Techniques 

On-the-fly race detection techniques are based on dynamic program analysis. 
Therefore, on-the-fly analyses operate at run time, visit only feasible paths, and have 
accurate views of the values of shared data and of other resource state. However, due 
to their dynamic nature, they impose a heavy computational overhead, making it time-
consuming to run test cases and impossible on programs that have strict timing 
requirements. The term high overhead means that, while, in theory, on-the-fly tools 
can compute arbitrarily precise information, in practice they are limited to what can 
be computed efficiently both in time and space. Additionally, it is very difficult or 
even impossible to elicit race conditions by on-the-fly techniques, due to the non-
determinism introduced by schedulers [20]. Furthermore, their reliance on invasive 
instrumentation typically precludes their use on low-level code such as OS kernels, 
device drivers and complex embedded systems. Finally, on-the-fly tools can find 
errors only on executed paths, which depend on input to the system. This not only 
makes dynamic analysis difficult but also sometimes impossible. Therefore, it is 
desirable to have a detection mechanism that can find races on a certain input with a 
single program execution, i.e., has the Single Input, Single Execution (SISE) property 
[21]. Nevertheless, the SISE property can be violated for programs that have internal 
non-determinism [22]. Thus, the complete test of such system is generally not 
possible. Unfortunately, the number of feasible paths can grow exponentially with the 
size of code [2]. This means that, in practice, testing can only exercise a tiny fraction 
of all feasible paths, leaving large systems with a residue of errors that could take 
weeks of execution to manifest. In some systems it is even worse, i.e., in a operating 
system some code might never run. The bulk of such code resides in device drivers, 
and only a small fraction of these drivers can be tested at a typical site, since there are 
usually a small number of installed devices.  
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One of the well known dynamic data race detectors is eraser [3], which uses binary 
rewriting techniques to monitor every shared-memory reference and to verify that 
consistent locking behavior is observed. The core idea of eraser is the “Lockset 
algorithm”. For each shared variable, eraser maintains a set of candidate locks that 
protected it for all reads and writes as the program executes. Before any access to 
shared memory by a thread, eraser checks if it has obtained the required lockset. If the 
lockset becomes empty, it indicates that there is no lock to protect the variable and a 
warning will be given. To handle the situation when the above general discipline is 
violated but the situation is free from data races, such as variable initialization, shared 
read on data, single-writer, multiple-reader locks, the lockset algorithm is modified 
and extended. Eraser goes slightly beyond the work of Dinning and Schonberg [21], 
which is based on the traditional happens-before mechanism. The happens-before 
relation was originally defined by Lamport [6] and determines where conflicting 
memory accesses from different threads are separated by synchronization events. 
Unfortunately, happens-before is difficult to implement efficiently because it requires 
per-thread information about the concurrent access to shared-memory locations. Most 
importantly, the effectiveness of tools based on happens-before is highly dependent 
on the interleaving produced by the scheduler. Therefore, eraser’s approach of 
enforcing a locking discipline is simpler and more thorough at catching races than the 
approach based on happens-before. Eraser is limited in that it can only process mutex 
synchronization operations. It fails when other synchronization primitives are built on 
top of it. Eraser takes an unmodified program binary as input and adds 
instrumentation to produce a new binary that is functionally identical, but includes 
calls to eraser. This makes the applications typically slow down by a factor of 10 to 
30. Furthermore, the modifications can change the order in which threads are 
scheduled and can affect behavior of time sensitive applications.  

Christoph and Gross’s object race detection [22] greatly improves on eraser’s 
performance by applying escape analysis to filter out non-data race statements. Object 
race detection extends eraser’s ownership model and detects data races at the object 
level instead of at the level of each memory location. The design goal is to carry out 
expensive lock set operations for only those object which are shared. The overhead 
ranges from 16% to 129% which is obviously better than with eraser. However, their 
coarse granularity of data race detection leads to the reporting of many data races 
which are not true, i.e., the reported races do not indicate unordered concurrent access 
to shared state. Choi et al. present a novel approach to dynamic data race detection 
which is both more efficient and more precise than previously described object race 
detection with a runtime overhead in the range of 13% to 42% [4]. The key idea is the 
weaker-than relation, which is used to identify memory accesses that are provably 
redundant from the view point of data race detection. Another source of reduction in 
overhead is that this approach does not report all access pairs that participate in data 
races, but instead guarantees that at least one access is reported for each distinct 
memory location involved in a data race. This approach results in runtime overhead 
ranging from 13% to 42%, which is well below the runtime overhead of previous 
approaches with comparable precision. This performance improvement is the result of 
a unique combination of complementary static and dynamic optimisation techniques. 
The static analysis phase is used to compute a conservative set of statements that are 
identified as potentially participating in data races. Then these statements are used to 
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detect on-the-fly data races. Several optimisations are applied to identify and discard 
redundant access events that do not contain new information. However, the weaker-
than relation makes it difficult to handle the situation where the ownership state 
changes dynamically.   

Another solution to locate race conditions dynamically in explicitly parallel 
message-passing programs is discussed in [9]. The authors classify races into two 
categories, namely non-artifact and possible artifact races that are caused by former 
ones. They argue that only races guaranteed to be non-artifact should be reported. 
Additionally, they argue that accurate detection using a pure on-the-fly algorithm 
requires space proportional to the length of the execution, an impractical requirement 
for long program runs. To address this problem, they present a two-pass on-the-fly 
algorithm that requires space independent of the execution length. The first pass is an 
approximation of an on-the-fly algorithm that determines whether any races occurred, 
but does not pinpoint their locations. More specifically, it locates the second message 
that races (first participator in a race) towards the racing receive (second participator) 
in each process, but does not locate the racing receive. The second pass is a re-
execution on the program on the same input. It performs an accurate detection of non-
artifact races. The authors claim that space usage does not grow with the length of the 
execution, and, even though the non-deterministic re-execution may differ from the 
original run, non-artifacts are still guaranteed to be detected. The hybrid 2-pass 
technique has been implemented under PVM 3.3.6 on an Ethernet-connected network 
of Sparc-Station 10s. Several message-passing programs were compiled with a library 
that performs the pass I (race detection) and pass II (race location). Experiment data 
show that about 50% of possible non-artifact races can only be labeled “Tangled,” 
because the race checking system is unable to determine whether the races are non-
artifact. In most cases the average slowdown was under 3%, which is an advantage. 
The other benefit of the algorithm is accurately reported non-artifact races.  However, 
the instrumentation process of the mechanism requires re-compilation of the program. 
Furthermore, the 2-pass algorithm only locates the “first” non-artifact race in  
each process during each run. To locate subsequent non-artifact races, the “first” non-
artifact race needs to be fixed and the program needs to be re-executed.  

In the chain of on-the-fly techniques, Choi and Min present a mechanism called 
race frontier to debug data races in the execution of parallel programs [18]. The key 
idea is to identify a set of detected data races whose execution histories, including 
undetected race events preceding them, can be reproduced. The presented technique 
shows how to extend the mechanism from the case of two processes and a single 
shared variable to handle the general case of an arbitrary number of shared variables. 
Generally, dynamic race detection requires keeping the history of all accesses that 
have a potential for a data race, incurring potentially unbounded space and time 
overhead. A solution to this problem is to limit the number of entries in the access 
history of each shared variable and only report the latest entries involved in a data 
race. However, the reported data race is not guaranteed to occur when the program is 
re-executed. In their approach, Choi and Min ensure the reproduction of not only the 
detected data race but also of all the data races that were undetected because of the 
limited entries kept in the access history. The effect is the same as reproducing 
complete data race histories from the abridged data race history collected during 
program execution, allowing well-known methods for debugging sequential programs 
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to be applied during re-execution. The race frontier is developed as an extension of 
Partial Order Execution Graphs (POEG) [19]. The PEOG is based on Lamport’s 
happens-before relationship captured by imposing a partial memory access order on 
the operations (read or write) performed in the execution instance (event). However, 
the mechanism cannot locate the exact position of an unprotected (unreported) data 
race, which may be the cause of a following detected (reported) data race. 
Additionally, no experimental results have been reported. 

4   Ahead-of-Time Race Detection Techniques 

On the other end of the spectrum are static techniques. The static techniques have less 
precise local information; still they can provide significant advantages for large code 
bases. Unlike a dynamic approach, a static technique does not require code execution. 
As a consequence it is very advantageous for operating systems where a large part of 
code never executes. Static approaches immediately find races in obscure code paths 
that are difficult to reach with testing. The static techniques exhibiting linear nature 
can also do analysis impractical at runtime. Many static techniques are based on 
strong type checking. Boyapati and Rinard have introduced a new static type system 
for multithreaded programs to prevent both data races and deadlocks [11]. Their 
research is based on the premise that well-typed programs are guaranteed to be free of 
these kinds of errors. The proposed type system allows programmers to specify the 
locking discipline in their programs in the form of type declarations. The system also 
allows programmers to partition the locks into a fixed number of equivalence classes, 
and to use a recursive tree-based data structure to describe the partial order among the 
equivalence classes. Additionally, the system allows mutations to the data structure 
that change the partial order at runtime; the type checker statically verifies that the 
mutations do not introduce cycles in the partial order, and that the changing of  
the partial order does not lead to deadlocks. The system uses a variant of ownership 
types to prevent data races and deadlocks. Ownership types provide a statically 
enforceable way of specifying object encapsulation. Moreover, ownership types are 
useful for preventing data races and deadlocks because the lock that protects an object 
can also protect its encapsulated objects. The system has been implemented as a 
JVM-compatible prototype, which translates well-typed programs into byte codes that 
can run on regular JVMs. The implementation handles all features of the Java 
programming language. Besides the efficiency and effectiveness, the system has some 
limitations; it only supports Java programs. Furthermore, it requires proper type 
annotations, either inferred by the type systems or manually inserted by programmers 
in source code. To support such kinds of type systems, a specially designed compiler 
or mid-layer translator is needed. 

Flanagen and Qadeer [10] presented an idea based on the observation that the 
absence of race conditions is neither necessary nor sufficient to ensure the absence of 
errors due to unexpected thread interactions. They propose a stronger non-interference 
property, namely the atomicity of code blocks, and they present a type system for 
specifying and verifying such atomicity properties. The type system allows statement 
blocks and functions to be annotated with the key word atomic. The type system 
guarantees that for any arbitrary interleaved program execution there is a corresponding 
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execution with equivalent behavior in which the instructions of each atomic block 
executed by a thread are not interleaved with instructions from other threads. This 
property allows programmers to reason about the behavior of well-typed programs at 
a higher level of abstraction, where each atomic block is executed “in one step,” thus 
significantly simplifying both formal and informal reasoning.  The idea is formalized 
in terms of CAT, a small, imperative, multithreaded language with high-order 
functions. The proof of the correctness of the type system is based on the reduction 
theorem of Cohen and Lamport. The benefits of the type system are illustrated with an 
application to the java.util.Vector library class. The advantage of this mechanism is 
that by reducing atomic code blocks into “single step” the work of reasoning about 
the interactions between threads can be greatly reduced. However, the static type 
system needs to be used together with other race detection tools, and cannot guarantee 
the absence of synchronization errors such as race conditions by itself. Additionally, it 
requires the use of a special programming language, or the modification of current 
language tools to implement such a type system.  

Another static analysis system for detecting race conditions in Java programs is 
discussed in [1]. The analysis supports the lock-based synchronization discipline by 
tracking the protecting lock for each shared field in the program and verifies that the 
appropriate lock is held whenever a shared field is accessed. The reasoning and 
performed checks are expressed as an extension of a race-free Java type system. The 
extended type system is capable of capturing many common synchronization patterns, 
which includes classes with internal synchronization, classes that require client-side 
synchronization, and thread-local classes. Mechanisms are provided for escaping the 
type system in places where it proves to be too restrictive, or where a particular race 
condition is considered benign. The implementation is done as a race condition 
checker, called rccjava. It has been tested on a variety of java programs totaling over 
40,000 lines of code. The additional type of information required by rccjava is 
embedded in Java comments to preserve compatibility with existing Java tools. 
rccjava relies on the programmer to manually insert annotations into source code, 
which incurs a burden of about 20 additional type annotations per 1000 lines of  
code. A number of races have been found in the standard Java libraries and other 
tested programs. This system presents an effective model of static race analysis, 
which has been integrated with other techniques such as race detection in large 
programs [7]. The system is a better candidate for real-time race detection than using 
event ordering due to its efficiency in time and space. However, it requires the 
programmer to manually insert annotations. Additionally, it needs to access the source 
codes of tested programs. There is no time and space performance data available.  

An extended rccjava approach is defined by Flanagen and Freud in [7]. They have 
improved rccjava to be used on large and realistic programs, including an annotation 
inference system and a user interface to help programmers understand warnings 
generated by the tool. To achieve practical analysis of large programs, an annotation 
assistant, called Houdini/rcc based on the Houdini annotation inference architecture 
[8], was developed to automatically insert annotations into analyzed programs. 
Additionally a number of techniques were added to reduce false alarms caused by the 
automatic annotations. The improved rccjava provides meaningful information about 
potential races to programmers through a simple interface. Furthermore, it can cluster 
race conditions together according to their probable cause so that related race 
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conditions can be dealt with as a single unit.  Still, rccjava is limited mainly to 
support lock-based synchronization operations. Additional annotation rules need to be 
added to deal with other types of synchronization idioms. The tool needs to access the 
source code of Java programs. Furthermore, some techniques used to reduce false 
alarms generated by the annotation interference system are unsound due to the 
employed approximations. 

Other well known static race detection approaches are the Warlock tool [14] for 
finding races in C programs, the Extended Static Checking [15] (ESC) and ESC/Java 
[16] tools for Modula-3 and Java respectively, which use theorem proving to find 
errors.  Burrows and Leino [17] have since extended ESC/Java to check for stronger 
properties than only reporting unprotected variables accesses. Unfortunately, because 
of lack of precision at compile time, both Warlock and ESC make heavy use of 
annotations to inject knowledge into the analysis and to reduce the number of false 
positives. Anecdotally this caused problems when applying Warlock to large code 
bases; sophisticated code requires many annotations just to suppress spurious errors. 

Engler and Ashcraft define another static tool, RacerX, based on the lockset 
approach [3]. RacerX uses flow sensitive, inter-procedural analysis to detect both race 
conditions and deadlocks. It aggressively infers checking information such as which 
locks protect which operations, which code contexts are multithreaded, and which 
shared accesses are dangerous. It tracks a set of code features which it uses to sort 
errors from most to least severe. At a high level, checking a system with RacerX 
involves targeting to system-specific locking functions and extracting a control-flow 
graph from the checked system, which is used for further analysis to find races and 
deadlocks. RacerX uses novel techniques such as multithreading inference and belief 
analysis [23] to counter the impact of analysis mistakes. The tool requires 2-14 
minutes to analyze a 1.8 million line system. The tool has been applied to Linux, 
FreeBSD and a large commercial code base and has found serious errors in all of 
them. Nevertheless, the tool has several limitations. Firstly, it lacks good pointer 
analysis; secondly, it does only simple function pointer resolution. Finally, [3] notes 
speed limitations for the analysis of OS code with a propensity for functions invoking 
huge code parts, each time with different locks. 

5   Post-mortem Race Detection Techniques 

Post-mortem techniques [5] analyze log or trace data after the program has executed 
in a manner similar to dynamic techniques. The post-mortem techniques are the 
combination of static and dynamic techniques. While post-mortem analyses can affect 
performance less than dynamic analyses, they suffer from the same limitation as 
dynamic techniques in that they can only find errors along executed paths. The 
solutions based on the post-mortem techniques collect information at compile time, 
and then analyze the re-execution of the program based on the collected information. 
A system which uses post-mortem techniques for cyclic debugging of non-
deterministic parallel programs was presented by Ronse and Bosschere [12]. The 
system, RecPlay, traces a program execution and stores the information in trace files; 
then this information is used to guide a faithful re-execution. It runs a race detector as 
watchdog during replay without changing the behavior of the execution. RecPlay can 
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only correctly replay programs that are free of data races. Once the data race occurs, 
the replayed execution stops and the user is notified. After that, there is no guarantee 
for a correct re-execution. To detect the data race, during recording phase the tool 
only records the synchronization operations by storing the timestamp increments in 
each thread. During race detection time (replay time), RecPlay traces data access 
operations by collecting memory reference information; then it detects conflicting 
memory references in concurrent segments by using a logical vector clock and clock 
snooping. Finally, it identifies the instructions that cause the data race. The data race 
detection is based on the happens-before relation. Several programs running on 
Solaris have been tested by RecPlay. The RecPlay is completely independent of any 
compiler or programming language, and it does not require recompilation or re-
linking. However, as it is based on the happens-before relation, it can only detect data 
races that appear in a particular execution. Additionally, the average overhead for 
replay is 91% and automatic race detection slows down the program execution about 
36 times. Further, the solution only runs on Solaris.  

Another record replay tool for Java, Déjà Vu, which provides deterministic replay of 
a program’s execution, was presented by Choi and Srinivasan [13]. The mechanism 
introduces the concept of logical thread schedule, which is a sequence of intervals of 
critical events wherein each interval corresponds to the critical and non-critical events 
executing consecutively in a specific thread. Déjà Vu is independent of the underlying 
thread scheduler (either an operating system or a user-level thread scheduler). It 
records all critical events, i.e., all synchronization events and the shared variable 
accesses by capturing logical thread schedule intervals. To identify the schedule 
intervals, one single global clock and a local clock for each thread are used. All critical 
events are traced by updating the global clock and assigning the global lock value to 
the local clock. When the thread is scheduled out, the global clock continues to tick 
and the local clock pauses. At the start of a replay, Déjà Vu reads the thread schedule 
information from a file created at the end of the recording. When a thread is created 
and starts its execution, it receives an ordered list of its logical thread schedule 
intervals. When a critical event execution is reached, it will wait until the global clock 
value becomes the same as the local value (read from record file). After execution, it 
will update the global clock. To implement the record/replay mechanism, Sun 
Microsystems’ Java Virtual Machine has been modified. Several programs such as 
Chaos and MTD have been tested by using Déjà Vu. The observed execution time 
overhead is from 17% to 87%. Its implementation by modifying JVM instead of the 
operating system makes it a portable tool for Java applications across different 
platforms. The techniques of handling Java synchronization operations can be 
extended to general multithreaded programming systems with similar 
synchronization primitives. However, Déjà Vu only can deterministically replay the 
non-deterministic execution behavior due to thread and related concurrent constructs 
such as synchronization primitives. Window events, input/outputs, and system calls 
have not been taken care of. Actually, this is a common dilemma existing  
in record/replay systems: replaying a faithful execution requires recording as  
many non-deterministic events as possible; but on the other hand, recording all kinds 
of non-deterministic events is an extremely challenging task, sometimes may be 
infeasible and may incur intolerable overhead during the recording phase. 
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6   Summary 

We have discussed several race detection techniques having the flavor of on-the-fly, 
ahead-of-time and post-mortem approaches. We notice that the majority of existing 
research use either static or dynamic approaches underneath. Further, some 
techniques have been developed by hybridization of static and dynamic approaches. 
This study described advantages and limitation of different techniques. The 
techniques which are dynamic in nature have the advantage of visiting only feasible 
paths and have accurate views of interactions. However, they impose high overhead 
in terms of time and space. Additionally, on-the-fly mechanisms face difficulties in 
race detection if the program contains internal non-determinism. In contrast, static 
techniques have no limitation in terms of time and space. They can provide significant 
advantages for large code bases. Static techniques can also analyze those program 
parts which might never execute. The only constraint could be the lack of precise 
information. Therefore, static techniques require algorithms to reduce the reported 
false-positives [2]. The hybrid techniques combine the best part of static and dynamic 
techniques, but still lack performance due to large program traces. Lastly, the post-
mortem techniques can only find errors along executed paths. In conclusion, we 
expect to see significant development in the area of race detection as programs are 
increasingly based on multithreaded design. 
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Abstract. Four knowledge sharing techniques based on fuzzy-Q learn-
ing are investigated in this paper. These knowledge sharing techniques
are ‘Shared Memory’, ‘Adaptive Weighted Strategy Sharing’, ‘Explo-
ration Guided Method’, and ‘Greatest Mass Method’. Different robot
expertness measures are applied to these knowledge sharing techniques
in order to improve learning performance. We proposed a new robot
expertness measure based on regret evaluation. The regret takes uncer-
tainty bounds of two best actions, i.e. greedy action and the second
best action, into account. Simulations were performed to compare the
effectiveness of the three expertness measures i.e. expertness based on
accumulated rewards, on average move and on regret measure, when ap-
plied to different sharing techniques. Our proposed measure resulted in
better performance than the other expertness measures. Analysis and
comparison of different knowledge sharing techniques are also provided
herein.

1 Introduction

Reinforcement learning notoriously requires a long learning period, particularly
when applied with a complicated task. Additionally, it is difficult for a robot to
explore huge state and action spaces in a short time. To alleviate these problems,
multiple mobile robots have been served to learn a task by exploring different
part of state and action spaces simultaneously. During the learning period, they
may share the knowledge they have learnt. Unfortunately, most reinforcement
learning techniques require auxiliary methods to integrate external knowledge
sources into the robot’s knowledge. In general, knowledge gained from one robot
could be different from that of the others, even if the robots have the same
mechanism and learn the same task. This happens because the robots have
different experiences and properties. Therefore, knowledge sharing among robots
is one of the most challenging topics in robotic research.

Knowledge sharing among reinforcement learning robots has been extensively
studied in order to utilize and gain benefit from multiple knowledge sources. The
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robot may use external knowledge sources gained from other robots or human
to improve the robot’s learning performances. Moreover it can use previously
learned knowledge for speeding up learning in the new task. Previous research of
knowledge sharing can be classified into two groups: direct and indirect methods.

1. Direct Method
The Direct method focuses on directly integrating all available sources of shared
knowledge into robot’s knowledge. Various techniques were proposed. They are
the ‘Policy Averaging’ [1] which all policies are averaged into the new knowl-
edge. The ‘Weighted Strategy Sharing: WSS’ [2], [3], [4] is the method in which
weights were assigned to all knowledge sources according to the robot expertise
or compatibility of agent state spaces [5] and then summed into the new knowl-
edge. The ‘Same-policy’ [1] is the method in which all agents used and updated
the same policy.
2. Indirect Method
In the indirect method, external knowledge sources will be used to guide robot’s
decision making. These external knowledge will not be integrated into robot’s
learning directly. Most works used shared knowledge to bias action selection.
The robot selects an action according to the resulting probabilities. Techniques
in this group are Skill Advice Guided Exploration (SAGE)’ [6], [7], ‘Supervised
Reinforcement Learning (SRL)’ [8] etc.

To study knowledge sharing among real robots, the following problems are
taken into consideration. They are continuous state and action spaces, gener-
alization, learning time constraints, uncertainty and the imprecision of sensing
and actuation in real robots [9]. A fuzzy Q-learning method is a promising tech-
nique due to its abilities to deal with most problems and also nonlinearities and
unknown dynamics of the system. Therefore, sharing knowledge among fuzzy
Q-learning robots is our interest. Shared knowledge becomes state-action values
in each fuzzy rule. Additionally, robot expertness measures are investigated and
used to improve learning performance of several knowledge sharing techniques.
In the next section, knowledge sharing algorithms studied in this paper will be
presented.

2 Knowledge Sharing Techniques

Knowledge sharing techniques investigated in this paper can be summarized as
follows.

2.1 Shared Memory: SM

This technique is inspired from the ‘Same-policy’ technique [1]. After interaction
with an environment, the robots use and update the same set of state-action
values. Since all robots have the same brain, each individual robot’s experi-
ences directly affects the overall robots’ decision making. For learning a task
with n robots, action values will be updated n times in each iteration. Learning
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should be faster than individual learning since n robots explore various states
simultaneously.

2.2 Adaptive Weighted Strategy Sharing: Adaptive WSS

This strategy is developed from the Weighted Strategy Sharing (WSS) method
proposed by Ahmadabadi’s team [2], [3], [4]. In the WSS method, learning is
composed of two phases: individual learning and cooperative learning phases. For
the individual learning phase, all learners will learn a task separately. At a certain
period, named cooperative time, learning will be switched to the cooperative
learning phase which allows the robots to share the learned state-action values,
Q(s, a). In this phase, the action values of all robots will be weighted and summed
as the new knowledge for every robot as shown in Eq. 1

Qnew(s, a) =
n∑

m=1

WmQm(s, a), (1)

where Qnew(s, a) is a new set of state-action values initialized for all n sharing
robots. Superscript m indicates the mth robot’s. Wm is weight calculated from
robots’ expertise as presented in Eq. 2

Wm =
expertnessm
n∑

p=1

expertnessp

, (m = 1, . . . , n) (2)

where expertnessm is the mth robot expertness value. Therefore, at the end
of cooperative learning phase, all robots have homogeneous set of state-action
values. The individual learning phase will then continue thereafter. These phases
will switch back and forth at every cooperative time. The cooperative time is
set at every predefined end of learning trials. In [10], we have shown that the
WSS method does not support asynchronous knowledge sharing among robots.
The adaptive version was proposed to solve such problem and it showed that
learning performance could be improved if weights were properly assigned. For
the Adaptive WSS, each robot learns a task independently and it is able to
make a decision whether to share knowledge with the other n − 1 robots by
itself. The robot is presumed to perceive all the other robots’ knowledge and
their expertness values at any time t. At the end of robot learning trial, the
robot will assign weights to all sources of shared knowledge as computed from
Eq. 2. Difference between the robot’s weight, Wi, and that of the other robots,
Wj where j ∈

j �=i
n − 1 will be employed to determine probability of sharing as

shown in Fig. 1.
In Fig. 1, two thresholds Th1 and Th2 will be set. In this paper, they are

0.1 and 0.5 respectively. If the difference is less than Th1, sharing will not be
occurred. In contrary, if the difference is higher than Th2, sharing will be arisen
with probability 1. Doing in this manner, each robot is able to determine which
robot should the knowledge be obtained from. Once the sharing robots have been
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Fig. 1. Sharing probability

determined, a new knowledge can be obtained from Eq. 1. After the sharing is
performed, all sharing robots will have the same level of expertise. Therefore the
new expertness value for all sharing robots can be computed from an average
of the sharing robot expertness values. The robot will update its knowledge
and its expertness value immediately while the other sharing robots which are
learning a task will keep their new knowledge and their expertness value in their
memories. Once a robot’s learning trial is finished, they will be employed for the
next learning trial.

2.3 Exploration Guided Method: EGM

From the above techniques, other robots’ experiences directly affect the robot’s
state-action values. What the robot has learned may be drastically changed by
the other robots’ knowledge. This may cause loss of useful information which has
been learned from the robots’ past experiences [11], [12]. One of the powerful
techniques, which allows integrating external knowledge sources into a reinforce-
ment learning agent, is the use of the SAGE framework [6], [7]. In this method-
ology, action selection probabilities of advice policies and that of the robot were
weighted and summed. The robot selected an action according to a resulting
probability mass function (PMF). In their papers, weights were determined from
two indices, i.e. exploration cost and impatience measurement. Unfortunately,
there was no clarification on how to set suitable parameters in each task. In this
paper, an algorithm named Exploration Guided Method (EGM) developed from
the SAGE framework will be presented. At a given state s, PMF over actions
of the mth knowledge source, Prm(s, a), will be generated for all n available
knowledge sources. These action selection PMFs will be weighted and summed
as shown below

f(s, a) =
n∑

m=1

WmPrm(s, a), (3)

where Wm is weight for the mth knowledge source which can be calculated from
Eq. 2. The resulting PMF f(s, a) will then be mapped into action selection PMF,
Pr(s, a) as follows:

Pr(s, a) =
f(s, a)∑

a′∈A
f(s, a′)

. (4)
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The robot will select an action according to the action selection PMF as pre-
sented in Eq. 4. In this paper, the action selection probabilities in each fuzzy
rule will be formed. For each rule, the local action will then be selected by the
use of ε-greedy method.

2.4 Greatest Mass Method: GMM

The greatest mass method was presented by [13]. The original work studied
the learning algorithm based on a modular architecture. Each module learned
different subtasks. At a given state s, an arbitrator would select an action, a,
which maximized a summation of state-action values, being estimated from all
n modules as:

a = arg max
a′∈A

(
Q1(s, a′) + Q2(s, a′) + · · ·+ Qn(s, a′)

)
. (5)

In Eq. 5, the selected action is the one that gets a common agreement from
all modules to receive the highest return after taking such action. To apply the
greatest mass method to our study, each module represents individual source of
shared knowledge. The robots are forced to learn the same task. At a certain
state s, a chosen action is the one which maximizes the resulting PMF calculated
from Eq. 3. Therefore, the taken action is selected from

a = arg max
a′∈A

( n∑
m=1

WmPrm(s, a′)
)
. (6)

3 Measure of Expertness

From the techniques presented above, weights play an important role in knowl-
edge sharing among robots. Weight will be used not only to determine whether
the knowledge from the sources should be used but also how much the knowledge
from the source should contribute to the new knowledge. The weight can be de-
termined from the robot expertness measure which indicates the performance of
its current policy. Two approaches of expertness measures previously proposed
by Ahmadabadi’s team were the measure based on accumulated rewards and on
average move. For the first approach, two values are examined. They are the
Normal (Nrm) and the Gradient (G). The Nrm takes accumulated rewards re-
ceived since learning begins into account. Therefore, it can be biased from long
history of experiences. The G is used to alleviate this problem. It takes accumu-
lated rewards since each individual learning phase has begun. However, both the
Nrm and the G suffer when they have negative value. The higher negative value
could have two possible meanings, either it has sufficiently learned to indicate
which actions should not be executed or it is exploring improper actions. In the
second case, the use of these measures can degrade the robot learning perfor-
mance. In this paper, the G value will be only applied with the technique that
the cooperative time is explicitly determined, i.e. the Adaptive WSS. The Nrm
value will be employed with the EGM and GMM based techniques.
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Another expertness measure is the Average Move (AM). The AM takes an
average number of moves that the robot executed before achieving the goal into
consideration. The lower number of moves that the robot has done, the higher
expertness value is. However, when the robot randomly explores an environment,
the AM cannot be used to represent the robot expertness measure.

In this paper, we proposed a new measure of expertise based on regret eval-
uation. The regret measure is formed from the uncertainty bounds of the two
best actions, i.e. the greedy action and the second best action. Bounds of both
actions will be compared. If the lower limit of the bound of the greedy action is
higher than the upper limit of the bound of the second best action, it is more
likely that the greedy action is the best action. The regret measure given state
s at time t + 1 is calculated from

regret(st+1) = −(lb(Q(st+1, a1))− ub(Q(st+1, a2))), (7)

where lb(Q(st+1, a1)) is the lower limit of estimated state-action value given
state s at time t + 1 of the greedy action. ub(Q(st+1, a2)) is the upper limit
of approximated state-action value given state s at time t + 1 of the second
best action. They are approximated from past state-action values sampled from
time t− k + 1 to t as: {QT (sT , a)}tT=t−k+1 = {Qt−k+1(st−k+1, a), . . . , Qt(st, a)}
where k is a number of samples. Normal distribution in each state-action value
is assumed. Mapping the regret measure into the expertise value given state s
at time t can be defined as follows:

expertnessm(st) = 1− 1
1 + exp(−b ∗ regret(st))

. (8)

From Eq. 8, the regret value is mapped into a flipped sigmoid function ranges be-
tween [0 1]. b is slope of the mapped function. The large negative regret measure
causes the expertness value to approach one.

4 Simulation

Thirteen techniques were used to test the performance of our proposed regret
measure within the scope of two problems: knowledge sharing among robots that
learn a task from scratch and that relearn the transferred knowledge. Each robot
learns its task by the use of Fuzzy Q-learning technique following unmodified
version presented in [9]. The tested techniques are 1.)‘SP’; Separate learning or
learning without sharing knowledge. 2.) ‘SM’: Shared Memory. 3.) ‘AdpWSS’:
Adaptive WSS with G expertness measure 4.) ‘AdpWSSAM’: Adaptive WSS
with AM measure 5.) ‘AdpWSSR’: Adaptive WSS with regret evaluation 6.)
‘EGM’: Exploration Guided Method without weight assignment 7.) ‘EGMN’:
EGM with Nrm measure 8.) ‘EGMAM’: EGM + AM 9.) ‘EGMR’: EGM + regret
10.) ‘GMM’: Greatest Mass Method without weight assignment 11.) ‘GMMN’:
GMM + Nrm 12.) ‘GMMAM’: GMM + AM 13.) ‘GMMR’: GMM + regret.

For the first problem, an intelligent goal capturing behaviour is simulated.
The goal will avoid being captured once it realizes that the distance between the
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goal and the robot is smaller than 30 cm and the orientation of the goal w.r.t the
robot is in between -45◦ and 45◦. The goal will run in a perpendicular direction
to the robot’s heading direction. 1000 trials are tested for a single run. Learning
rate is varied from 0.1 to 0.3 for the first nine techniques and from 0.01 to 0.2
for the left ones. The best results are selected and compared.

For the second problem, two robots relearn knowledge gained from static ob-
stacle avoidance to dynamic obstacle avoidance behaviour. Two robots learn to
approach a goal which has two opponents move in opposite direction. Learning
rate is varied from 0.05 to 0.5 for all techniques. The best results are selected
and compared. The discount factor for both problems is 0.9. Parameters were
tuned for each algorithm by hand as presented in [10]. The accumulated reward
averaged over trial and collision rate in each run are recorded. Their average
value over 50 runs are used to compare the learning performance as in the pre-
vious problem. From the simulation results, accumulated rewards and collision
rates of these behaviours are summarized in Tables 1 and 2. Robots’ path and
accumulated rewards averaged over trial of the first and the second problems are
shown in Figs. 2 and 3 respectively.

In Fig. 2(a), two robots learn to capture their goals in separated environment.
The robots are presented by the bigger circles with lines indicated their heading
direction. In Fig. 3(a), two robots learn to move to the goal while avoiding
collision with dynamic obstacles in the same environment. Two opponents move
in opposite direction presented by arrow lines as to obstruct the robots. The
robots have to avoid both opponent robots and their teammate.

The performance of knowledge sharing is indicated by the accumulated re-
wards as presented in Figs. 2(b) and 3(b). In these figures, the best learning rate
is presented after the algorithm’s name. For example, SP:0.05 indicates the sep-
arate learning with the best learning rate is set at 0.05. The simulation results
showed that, the AdpWSSR gave the best performance for the first problem.
In the second problem, the EGMR is the best one. As seen in Figs. 2(b) and
3(b), the SM was better than the AdpWSS and the AdpWSSAM. However the
SM converged to suboptimal accumulated rewards in both problems. For the
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Fig. 2. Intelligent goal capturing (a) robots’ path (b) accumulated rewards
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Fig. 3. Dynamic obstacle avoidance (a) robots’ path (b) accumulated rewards

GMM based methods, the GMMR gave the best performances compared to the
other GMM based techniques in the first problem. In the second problem, the
GMM outperformed the other GMM based techniques. Additionally, from the
simulation results, the separate learning outperformed various knowledge shar-
ing techniques in the second problem once learning rate is set as small value.
In the simulations, the best learning rate for the SP is 0.05. Small learning rate
implies that the state-action values were gradually changed. Therefore, knowl-
edge gained from static obstacle avoidance behaviour was good and it required
slow adjustment to form the dynamic obstacle avoidance behaviour. It is worth
noting that after knowledge sharing was begun, the average of robots’ learning
performance of the AdpWSS based algorithm was slightly decreased. This was
not surprised since the robot’s knowledge was averaged with the others’ shared
knowledge.

5 Discussion

As seen in the simulation results, our proposed measure gave the best results
compared to the other measures when applied to the majority of knowledge
sharing algorithms. Each knowledge sharing technique has different advantages
and disadvantages which can be summarized as follows:

For the SM technique, n robots have the same brain. They use and update
the same memory. The learning is fast since action values will be updated n times
in each iteration. Additionally, it is simple for implementation and it requires
less storage memory compared to the other investigated knowledge sharing tech-
niques. However, its problem arises when learning is encountering certain local
minimum. It is difficult for the robots to get out from the situation. This hap-
pens because the robots use the same decision making policy. It is difficult to
achieve different solutions from the group’s judgment. Moreover, it is difficult to
integrate other forms of shared knowledge source into the robots’ knowledge.

In the Adaptive WSS based algorithm, it uses weighted average of each knowl-
edge source. To see advantages of this algorithm, simple examples are given as
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(a) (b)

Fig. 4. Two simple examples of the Adaptive WSS mechanism

shown in Figs. 4(a) and 4(b). In those figures, q is a parameter vector used for
state-action value approximation. E(q) represents approximation error. q∗k is lo-
cal optimum estimated value at the k optimum point. Learning is performed in
the manner of minimizing error. Two robots’ current knowledge are presented by
two white circles. Once knowledge is shared, the new knowledge will be generated
and can be shown by the black circle.

In Fig. 4(a), there exist three optimum points. Once sharing is arisen, the
new knowledge moved out of the local optimum points to the global one. In
Fig. 4(b), the new knowledge can also move out of the local minimum point
corresponding to the q∗5 to the next lower point. In those examples, we can
see that the Adaptive WSS and the WSS can improve learning performance by
changing the minimum points or disturbing the robots’ knowledge to move out
of the local optimums. However, all sources of shared knowledge must have the
same state-action representation.

For the EGM based method, it does not integrate the shared knowledge into
the robot’s knowledge directly. This allows simple integrating external knowledge
sources which may have different representation. However, there are various ways

Table 1. Simulation results (Intelligent Goal Capturing)

Table 1.1 General methods Table 1.2 The AdpWSS based methods

Methods Accum. Rewards. Methods Accum. Rewards.
SP 61.6995 AdpWSS 62.4671
SM 66.1877 AdpWSSAM 63.9752

AdpWSSR 70.3805

Table 1.3 The EGM based methods Table 1.4 The GMM based methods

Methods Accum. Rewards. Methods Accum. Rewards.
EGM 67.8646 GMM 53.8878
EGMN 66.5634 GMMN 53.5770
EGMAM 69.0422 GMMAM 51.2447
EGMR 69.5178 GMMR 57.2711
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Table 2. Simulation results (Relearning)

Table 2.1 General methods Table 2.2 The AdpWSS based methods

Methods Accum. Rewards. Coll. rate Methods Accum. Rewards. Coll. rate
SP 63.9507 0.0956 AdpWSS 54.3682 0.1022
SM 57.9447 0.0985 AdpWSSAM 53.9923 0.1032

AdpWSSR 57.5093 0.0913

Table 2.3 The EGM based methods Table 2.4 The GMM based methods

Methods Accum. Rewards. Coll. rate Methods Accum. Rewards. Coll. rate
EGM 70.8249 0.0940 GMM 60.7095 0.0428
EGMN 69.8329 0.0947 GMMN 51.1320 0.0447
EGMAM 70.6941 0.0942 GMMAM 50.6641 0.0443
EGMR 70.8393 0.0945 GMMR 50.0231 0.0446

of generating probability mass function. One may suffer from the difficulty of
temperature setting if the Boltzmann distribution is used.

In the last technique, the GMM was slightly better than the separate learn-
ing. This happens because there is no exploration in this algorithm. The action
is selected from the maximum of resulting PMFs. No exploration causes the ro-
bots to get stuck by taking suboptimal actions. Though the low collision rate
was observed, the simulation showed that the robots rarely moved through the
obstacles to the goal. They decided to move out of the field instead for avoiding
the collision.

6 Conclusion

In this paper, various knowledge sharing algorithms on fuzzy-Q learning archi-
tecture were studied. A new expertness measure based on regret evaluation was
proposed. Simulation results showed that our proposed measure applying with
the investigated algorithms gave the best performances comparing to the use
of other previously proposed measures. The expertness measure based on regret
evaluation better represents the robot expertise compared to the other measures.
Additionally, it can be applied with variety of knowledge sharing algorithms.
Among the investigated knowledge sharing techniques, the AdpWSSR gave the
best performance when knowledge was shared among the robots that learn a
task from scratch. The EGMR gave the best performance when the knowledge
sharing was performed among robots that relearn the transferred knowledge.
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Abstract. Symbolic Trajectory Evaluation (STE) is a formal verification tech-
nique for hardware. The current STE semantics is not faithful to the proving
power of existing STE tools, which obscures the STE theory unnecessarily. In
this paper, we present a new closure semantics for STE which does match the
proving power of STE model-checkers, and makes STE easier to understand.

1 Introduction

The rapid growth in hardware complexity has lead to a need for formal verification
of hardware designs to prevent bugs from entering the final silicon. Model-checking
is a verification method in which a model of a system is checked against a property,
describing the desired behaviour of the system over time. An exhaustive search through
the model determines whether the property holds or not. Today, all major hardware
companies use model-checkers in order to reduce the number of bugs in their designs.

Symbolic Trajectory Evaluation (STE) [8] is a model-checking technique for hard-
ware. STE uses abstraction, meaning that details of the circuit behaviour are removed
from the circuit model. This improves the capacity limits of the method, but has as
down-side that certain properties cannot be proved if the wrong abstraction is cho-
sen. To be able to reason about STE verification without having to bother with the
implementation details of STE model-checkers a semantics for STE is used. Unfortu-
nately, as we argue in this paper, the semantics currently described in the STE-literature
is not faithful to the proving power of STE model-checking algorithms, that is, STE
model-checkers can actually prove more properties than the STE-semantics predicts.
Therefore, in this paper, we give an alternative semantics for STE, called the closure se-
mantics. The closure semantics is faithful to the proving power of STE model-checkers
and makes understanding STE easier.

Introduction to STE. STE is a model-checking technique based on simulation. STE
combines three-valued simulation (using the standard values 0 and 1 together with the
extra value X, “don’t know”) with symbolic simulation (using symbolic expressions to
drive inputs). STE is able to verify properties of circuits containing large data paths
that are beyond the reach of traditional symbolic model checking [1, 7, 8]. Most imple-
mentations of STE use a canonical representation of propositional logic formulas called
Binary Decision Diagrams (BDDs) to represent values of nodes during simulation.

Consider the circuit the in Fig. 2. In the figure, p, q, r, s, u, v, and out are node names.
The nodes are connected via logical gates and wires. The only gates in this circuit are
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x ¬x

0 1
1 0
X X

x y x & y

0 0 0
0 1 0
1 0 0
1 1 1
X 0 0
0 X 0
X 1 X
1 X X
X X X

x y x + y

0 0 0
0 1 1
1 0 1
1 1 1
X 0 X
0 X X
X 1 1
1 X 1
X X X

Fig. 1. Three-valued extensions of the gates Fig. 2. An example circuit

AND-gates, depicted by the symbol &. The circuit implements a 4-ary AND-gate by
means of three 2-ary AND-gates.

In STE, circuit specifications are assertions of the form A =⇒ C. Here, A is called
the antecedent and C the consequent. For example, an STE-assertion for the circuit in
Fig. 2 is:

(p is a) and (s is ¬a) =⇒ (out is 0) (1)

Here a is a symbolic variable, which can take on the value 0 or 1, and p, s and out are
node names. The assertion states that when node p has value a, and node s has value
¬a, then node out must have value 0.

STE Model-Checking. An STE-model checker performs a three-valued symbolic sim-
ulation run of the circuit. The antecedent of the assertion drives the simulation by pro-
viding symbolic values of nodes, the consequent specifies the conditions that should
result. When an antecedent does not specify a value for a particular input, this input
receives value X.

During simulation, values of nodes are represented by symbolic three-valued expres-
sions. Three-valued symbolic expressions are expressions that given a valuation of the
symbolic variables to Boolean values evaluate to 0,1 or X, using the truth-tables in Fig-
ure 1. Usually, STE-model checking algorithms implement these three-valued symbolic
expressions canonically by a pair of BDDs using a dual-rail encoding, which represents
a three-valued value by two Boolean values.

Example 1. For assertion (1) three-valued symbolic simulation works as follows. The
antecedent specifies that node p has symbolic value a, so the simulated value for this
node is a. Furthermore, the antecedent specifies that node s has symbolic value ¬a, so
the simulated value for this node is ¬a. However, the antecedent does not specify the
value of input nodes q and r, therefore these nodes receive the unknown value X in the
simulation. As node u is the output of the AND-gate with inputs p and q, this node
receives value (a&X). In a similar fashion, node v receives the value (X&¬a). Finally,
node out is the output of the AND-gate with inputs u and v, so node out is represented
by the expression ((a & X) & (X & ¬a)), which is simplified to the expression 0.

During simulation, the STE model-checker checks, for each node in the consequent,
whether its simulated value meets the required value, as specified by the consequent. In
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this case, the simulated value of node out is 0, and the required value is 0. Therefore,
the property is proved. !�

STE Abstractions. The power of STE comes from its use of abstraction. Three ab-
stractions are used: (1) the value X can be used to abstract from a specific Boolean
value of a circuit node, (2) in the simulation, information is only propagated forwards
through the circuit (i.e. from inputs to outputs of gates) and through time (i.e. from time
t to time t+1), (3) the circuit model does not contain an initial state for registers, in ef-
fect removing the concept of reachable states. Below, (1) and (2) are discussed in more
detail.

Three-Valued Abstraction. The three-valued abstraction is induced by the antecedent
of the assertion; when the antecedent does not specify a value for a certain node, the
value of the node is abstracted away by using the unknown value X. Because of this
abstraction, the values of circuit nodes during simulation can be represented by BDDs
in terms of the symbolic variables occurring in the assertion.

For instance, in the example above, the values of node q and r were abstracted away
from, and only one BDD-variable was needed to perform the verification. Without ab-
straction two more variables would have been needed to represent the values of nodes
p and q. Of course, for this example the efficiency gain is not very impressive. But for
many applications the three-valued abstraction is essential.

Fig. 3. A multiplexer

For instance, consider the verification of the correct be-
haviour of the read action of a memory of 216 memory lo-
cations of each 8 bits. In conventional BDD-based model
checking, BDDs with 219 BDD-variables are needed for
this verification, this leads immediately to a BDD-blow up,
making verification impossible. In STE, however, it is pos-
sible to only use variables for the address and the contents of
the memory location being read, and to abstract away from
the values in all other memory locations. Therefore, in STE
based verification of the property, the BDDs contain only
24 variables, and verification goes through without running
out of memory.

The drawback of this abstraction is the information loss inherent to the use of three-
valued logic. This information loss is illustrated in the following example.

Example 2. Consider the circuit given in Fig. 3. The circuit consists of two AND-gates
and an OR-gate, depicted by≥ 1. The circuit implements a multiplexer: if set is 1, input
in1 is routed to the output out, if set is 0, input in2.

An STE-assertion for this circuit is:

(in1 is a) and (in2 is a) =⇒ (out is a) (2)

The assertion states that when nodes in1 and in2 both have value a, then node out
has value a as well. It is easy to see that this assertion is true when no abstraction is
used. However, the reader can verify that symbolic three-valued simulation calculates
the expression (a & X) + (¬X & a) for node out, which is simplified to a & X. This
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expression is not equivalent to required value a: when a = 1 the simulated expression
has value X. Therefore, the property is not proved by STE.

Such an information loss can be repaired by introducing extra symbolic variables. In
this case, by driving input node set by a symbolic variable b. This yields the following
assertion.

(in1 is a) and (in2 is a) and (set is b) =⇒ (out is a) (3)

For this assertion, three-valued symbolic simulation calculates the expression
(a & b) + (¬b & a) for node out, which is simplified to a. !�

Forwards Abstraction. The STE-simulator performs forwards simulation. That means
that information is only propagated forwards through the circuit (i.e. from inputs to out-
puts of gates) and through time (i.e. from time t to time t + 1).

Example 3. Consider the following assertion for the multiplexer circuit.

p is 1 =⇒ set is 1 (4)

It is easy to see that the assertion is true when no abstraction is used: if the output of
AND-gate has value 1 then both of the inputs to the gate should have value 1 as well.
This assertion can, however, not be proved with STE.

Symbolic three-valued simulation proceeds as follows: The assertion does not con-
tain any assumptions on the node set, it will therefore receive value X in the simulation.
Node p receives value 1 in the simulation, but as this node is the output of AND-gate
with node set as input, this does not influence the value of node set. Therefore, after
simulation, node set has value X and not the required value 1. !�

Fig. 4. A memory cell

p = in AND set
q = ¬set AND reg
reg′ = p OR q

Fig. 5. Its netlist

Semantics for STE. The above examples illustrate that
it is non-trivial to decide whether an assertion can be
proved with an STE-model checker. In the examples, de-
tailed knowledge about the implementation of STE-model
checkers was used to do so.

To be able to reason about STE verification, without hav-
ing to bother with the implementation details of STE model-
checkers a semantics for STE is used. A semantics for STE
consists of a formal theory that decides whether an STE-
assertion is true or false for a particular circuit. Ideally, such
a semantics deems a property to be true if-and-only-if the
property can be proved by an STE-model checker. So the se-
mantics should, for instance, state that assertions (1) and (3)
are true, but that assertions (2) and (4) are false. A seman-
tics for STE was first described in [8] by Seger and Bryant.
Later, a simplified and easier to understand semantics was
given in [4] by Melham and Jones. Unfortunately, neither
of these semantics matches the proving power of currently
available STE model checkers. The problem is that they
cannot deal with combinational properties (properties ranging over one single point
in time). All such properties are deemed to be false by the semantics. Of course, STE
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model-checkers can deal with such properties. For example, the STE model-checker in
Intel’s in-house verification toolkit Forte [3] easily proves assertions (1) and (3). How-
ever, the current semantics deems these properties to be false. This situation makes it
harder to understand STE, and we believe it to be both unnecessary and undesirable.

Contribution. In this paper, we introduce a new semantics for STE, called the closure
semantics, that is faithful to the proving power of STE algorithms. We believe this
semantics makes STE easier to understand and provides a solid basis for STE-theory.

2 Y-Semantics

n s(n)
in 1
set 1
other X

n Y (s)(n)
reg 1
other X

Fig. 6. Example
states

In this section we describe the semantics commonly given in the
STE-literature [8, 4, 2] which we, in this paper, informally call the Y-
semantics. Furthermore, we explain why this semantics is not faith-
ful to the proving power of STE model-checkers. Before doing so,
we first introduce the concept of states.

Values and States. For technical reasons, besides the three values
0, 1 and X we have already discussed, a fourth value T (called the
over-constrained value) is used in STE simulation. The value T rep-
resents a clash; it is the resulting value of a node that is required
to have both the value 0 and 1 during simulation. The three-valued
gate-definitions in Fig. 1 are extended to deal with this fourth value
in such a way that whenever at least one of their inputs is T, their output is also T.

A circuit state, written s : State, is a function from the set of nodes of circuit to the
values {0, 1,X,T}. For instance, consider the memory cell circuit in Fig. 4. The state s
in Fig. 6 gives value 1 to nodes in and set and value X to all other nodes.

Next-State Functions. In the Y-semantics, circuits are modelled by their next-state
functions, written Y : State → State. Given a circuit state, a next-state function
calculates the state of the circuit in the next moment in time.

Example 4. Consider the memory cell circuit given in Fig. 4. The circuit consists of
two AND-gates, an OR-gate, and a delay element, depicted by the letter D. The delay-
element has output node reg and input node reg′. The value of the output of the delay
element at time t + 1 is the value of its input at time t. A next state function for the
memory cell given in Fig. 4 is:

n Y (s)(n)
in X
set X
p X
q X
reg′ X
reg (s(in) & s(set)) + (¬s(set) & s(reg))

Note that the next-state function yields the unknown value X for all nodes that depend
on the values of the input nodes. The reason is that the next-state function cannot predict
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the value of the input nodes, it predicts only the values of nodes that depend on the
previous values of other nodes. For example, when given state s (given in Fig. 6), the
next-state function yields the state Y (s) (also given in Fig. 6) for the next moment in
time in which only node reg has value 1 and all other nodes have value X. The intuition
is that when at time t nodes in and set have value 1, then at time t + 1 node reg is
required to have value 1 as well. !�

We argue that using next-state functions is problematic in defining a proper semantics
for STE. The problem is that next-state functions only express a relation between nodes
in successive points in time, while ignoring the relation between nodes in the circuit at
the same time point. Therefore, a semantics based on next-state functions cannot deal
with assertions that express a relation between circuit nodes at the same time-point.

Before making this statement more precise, we formally define the Y-semantics. But
first, we introduce the concepts of sequences, trajectories, and assertions.

Sequences. A sequence σ : N → State is a function from a point in time to a circuit
state, describing the behaviour of a circuit over time. The set of all sequences σ is
written Seq. A three-valued sequence is a sequence that does not assign the value T to
any node at any time.

Trajectories. Given a circuit, a trajectory of the circuit is a sequence that meets the
constraints of the circuit c, taking the STE-abstractions into account. In the Y-semantics,
trajectories are defined in terms of next-state functions.

To define trajectories, we first need to introduce the information order ≤ on the
values 0, 1,X, and T. The unknown value X contains the least information, so X ≤ 0,
X ≤ 1, X ≤ T, while 0 and 1 are incomparable. The over-constrained value T contains
most information, so 0 ≤ T and 1 ≤ T. If v ≤ w it is said that v is weaker than w. The
information order ≤ is extended to states as follows: state s1 is weaker than state s2,
written s1 ≤ s2, iff. for every node n, s1(n) ≤ s2(n).

Given a circuit c with a next-state function Y . A sequence τ is a Y-trajectory of Y
iff for all t ∈ N:

Y (τ(t)) ≤ τ(t + 1)

The intuition behind this definition is that in a trajectory all information that can be
derived from time t should be propagated to time t + 1.

Example 5. For the next-state function given in Example 4, the following sequence is
a trajectory:

n t = 0 t = 1 t > 1
in 1 X X
set 1 X X
reg X 1 X
p X X X
other X X X

Notice that although the nodes in and set have value 1 at time 0, node p does not re-
ceive value 1. The reason is that in Y-trajectories there is no propagation of information
between nodes at the same point; information is only propagated from a time point to
the next time point.
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STE-Assertions. have the form A =⇒ C. Here A and C are formulas in Trajectory
Evaluation Logic (TEL). The only variables in the logic are time-independent Boolean
variables taken from the set V of symbolic variables. The language is given by the
following grammar:

f ::= n is 0 | n is 1 | f1 and f2 | P → f | Nf

where n is a circuit node and P is a Boolean propositional formula over the set of sym-
bolic variables V . The operator is is used to make a statement about the Boolean value
of a particular node in the circuit, and is conjunction,→ is used to make conditional
statements, and N is the next time operator. Note that symbolic variables only occur
in the Boolean propositional expressions on the left-hand side of an implication. The
notation n is P , where P is a Boolean symbolic expression over the set of symbolic
variables V , is used to abbreviate the formula: (¬P → n is 0) and (P → n is 1).

The meaning of a TEL formula is defined by a satisfaction relation that relates val-
uations of the symbolic variables and sequences to TEL formulas. Here, the following
notation is used: The time shifting operator σ1 is defined by σ1(t)(n) = σ(t + 1)(n).
Standard propositional satisfiability is denoted by |=Prop. Satisfaction of a trajectory
evaluation logic formula f , by a sequence σ ∈ Seq, and a valuation φ : V → {0, 1}
(written φ, σ |= f ) is defined by

φ, σ |= n is b ≡ σ(0)(n) = b , b ∈ {0, 1}
φ, σ |= f1 and f2 ≡ φ, σ |= f1 and φ, σ |= f2
φ, σ |= P → f ≡ φ |=Prop P implies φ, σ |= f
φ, σ |= Nf ≡ φ, σ1 |= f

Y-Semantics. The Y-semantics is defined as follows: A circuit with next-state function
Y satisfies a trajectory assertion A =⇒ C iff for every valuation φ : V → {0, 1} of the
symbolic variables and for every three-valued trajectory τ of Y , it holds that

φ, τ |= A ⇒ φ, τ |= C.

The following example illustrates that the Y-semantics cannot be used to reason about
STE assertions that specify a combinational property of a circuit.

Example 6. Consider the following STE assertion for the memory cell:

(in is 1) and (set is 1) =⇒ (p is 1)

This assertion does not hold in the Y-semantics. The trajectory given in Example 5 is
a counter example. Of course, this simple combinational property can be proved by an
STE model-checker. !�

3 Closure Semantics

The previous section showed that the Y-semantics is not faithful to the proving power
of STE model checkers. The problem lies in the next-state function which only propa-
gates information from one time-point to the next, and thereby ignores propagation of
information between nodes in the same time-point.
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In this section we introduce a new semantics for STE called the closure semantics.
In this semantics, closure functions are used as circuit models. The idea is that a closure
function, written F : State → State takes as input a state of the circuit, and calculates
all information about the circuit state at the same point in time that can be derived by
propagating the information in the input state in a forwards fashion. Later, trajectories
are defined using closure functions.

Before we can give an example of a closure function, we need to define the least
upper bound operator. The least-upper bound operator, written � , given two values
taken out of {0, 1,X,T} calculates their least upper bound w.r.t. the information order
≤. So, for instance 0 � X = 0, X � 1 = 1, but also T � 0 = T and T � X = T, and in
particular 0 � 1 = T.

n F (s)(n)
p s(p)
q s(q)
r (s(p) & s(q)) � s(r)

Fig. 7. Closure function
for the AND-gate

Example 7. The closure function for a circuit consisting of a
single AND-gate with inputs p and q, and output r is given in
Fig. 7. Here, The least upper bound operator in the expression
for F (s)(r) combines the value of r in the given state s, and
the value for r that can be derived from the values of p and q,
being s(p) & s(q).

A state s : {p, q, r} → V can be written as a vector
s(p), s(q), s(r). For example, the state that assigns the value 1 to p and q and the value
X to node r is written as 11X. Applying the closure function to the state 11X yields 111.
The reason is that when both inputs to the AND-gate have value 1, then by forwards
propagation of information, also the output has value 1. Applying the closure function
to state 1XX yields 1XX. The reason is that the output of the AND-gate is unknown
when one input has value 1 and the other value X. The forwards nature of simulation
becomes clear when the closure function is applied to state XX1, resulting in XX1. Al-
though the inputs to the AND-gate must have value 1 when the output of the gate has
value 1, this cannot be derived by forwards propagation.

A final example shows how the over-constrained value T can arise. Applying the
closure function to state 0X1 yields 0XT. The reason is that the input state gives node
r value 1 and node p value 0. From p having value 0 it can be derived by forwards
propagation that r has value 0, therefore r receives the over-constrained value T. !�

n F (s)(n)
in s(in)
set s(set)
p (s(in) & s(set)) � s(p)
q (¬s(set) & s(reg)) � s(q)
reg′ (F (s)(p) + F (s)(q)) � s(reg′)
reg s(reg)

Fig. 8. Closure function for the memory
cell

Before we describe how a closure function for
an arbitrary circuit can be defined, we define
the concept of netlists for describing circuits.
Here, a netlist is an acyclic list of definitions
describing the relations between the values of
the nodes. For example, the netlist of the mem-
ory cell circuit in Fig. 4 is given in Fig. 5.
Inverters are not modelled explicitly in our
netlists, instead they occur implicitly for each
mention of the negation operator ¬ on the in-
puts of the gates. Delay elements are not mentioned explicitly in the netlist either.
Instead, for a delay element with output node n in the circuit, the input of the delay
element is node n′ which is mentioned in the netlist. So, from the netlist in Fig. 5 it can
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be derived that the node reg is the output of a delay element with input reg′. For simplic-
ity, we only allow AND-gates and OR-gates in netlists. It is, however, straightforward
to extend this notion of netlists to include more operations.

Given the netlist of a circuit c, the induced closure function for the circuit, written
Fc, can easily be constructed by interpreting each definition in the netlist as a three-
valued gate. Given a state s, for every circuit input n, the value of the node is given
by s(n) Also, for every output n of a delay element, the value of the node is given by
s(n). Otherwise, if n is the output of an AND-gate with input nodes p and q, and values
for p and q are already calculated, the value of node n is the least upper bound of s(n)
and the three-valued conjunction of the values for p and q. In a similar way, values for
the outputs of OR-gates are defined. This definition is well-defined because netlists are
acyclic by definition.

n s1(n)
in 1
set 1
other X

n F (s1)(n)
in 1
set 1
p 1
q 0
reg′ 1
reg X

n s2(n)
p 1
other X

n F (s2)(n)
p 1
reg′ 1
other X

Fig. 9. Example states

Example 8. The induced closure function for the
memory cell circuit in Fig. 4 is given in Fig. 8. Con-
sider the state s1 given in Fig. 9. Applying the clo-
sure function to this state yields the state F (s1).
Node p receives value 1 as it is the output of an
AND-gate with inputs in and set which both have
value 1 in the input state. In the same way, node q
receives value 0. Node reg′ receives value 1, because
it is the output of an OR-gate with input nodes p and
q. Finally, node reg receives value X as its value de-
pends on the previous value of node reg′, its value
cannot be determined from the current values of the
other nodes.

When an internal node is given a value in the input state, the least upper bound of
this value and the value derived by forwards propagation is used. For instance, driving
only node p with value 1 yields state s2 given in Fig. 9. Applying the closure function
to this state yields state F (s2). Note that there is no backwards information flow: the
closure function does not demand that nodes set and in have value 1, though they are
the input nodes to an AND-gate whose output node has received value 1. !�

Closure functions should meet several requirements:

– Closure functions are required to be monotonic, that is, for all states s1, s2: s1 ≤ s2
implies F (s1) ≤ F (s2). This means that a more specified input state cannot lead
to a less specified result. The reason is that given a more specified input state, more
information about the state of the circuit can be derived.

– Closure functions are required to be idempotent, that is, for every state s: F (F (s))
= F (s). This means that repeated application of the closure function has the same
result as applying the function once. The reason is that the closure function should
derive all information about the circuit state in one go.

– Finally, we require that closure functions are extensive, that is, for every state s:
s ≤ F (s). This means that the application of a closure function to a circuit state
should yield a state as least as specified as the input state. The reason is that the
closure function is required not to loose any information.
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n σ(0) σ(1) σ(t), t > 1
in 1 X X
set 1 0 X
other X X X

Fig. 10. Sequence σ

n F→(σ)(0) F→(σ)(1) F→(σ)(2) F→(σ)(t), t > 2
in 1 X X X
set 1 0 X X
p 1 0 X X
q 0 1 X X
reg′ 1 1 X X
reg X 1 1 X

Fig. 11. Sequence F→(σ)

The induced closure function for a circuit is by construction monotonic, idempotent and
extensive.

Closure over Time. In STE, a circuit is simulated over multiple time steps. During
simulation, information is propagated forwards through the circuit and through time,
from each time step t to time step t + 1.

To model this forwards propagation of information through time, a closure function
over time, notation F→ : Seq → Seq, is used. Given a sequence, the closure function
over time calculates all information that be can derived from that sequence by forwards
propagation. Recall that for every delay element with output n the input to the delay
element is node n′. Therefore, the value of node n′ at time t is propagated to node n at
time t + 1 in the forwards closure function over time.

Below, the closure function over time is defined as a function of a closure function.
First, an example is given.

Example 9. For the memory cell, consider the closure function given in Fig. 8, and
the sequence σ, given in Fig. 10. The sequence F→(σ) at time 0 depends only on the
sequence σ at time 0, and is computed by applying the closure function F to σ(0). See
Fig. 11.

The sequence F→(σ) gives node reg′ value 1 at time 0. Node reg′ is the input to the
delay element with output node reg. The value 1 should be propagated from reg′ at time
0, to reg at time 1. Therefore, when calculating the state F→(σ)(1), the node values
given by the state σ(1) and the value of node reg propagated from the value of node
reg′ at time 0 are combined. Let us call the state that combines these node values σ′(1):

σ′(1)(reg) = σ(1)(reg) � F→(σ)(0)(reg′)
σ′(1)(n) = σ(1)(n) , n �= reg

In this case σ′(1) is given by: σ′(1)(set) = 0, σ′(1)(reg) = 1, and σ′(1)(n) = X for
each other node n. Applying the forwards closure F to σ′(1) yields state F→(σ)(1)
given in Fig. 11. The value of F→(σ)(2) is given by applying F to σ′(2), where
σ′(2) is calculated in a similar fashion as σ′(1), and is given by: σ′(2)(reg) = 1,
and σ′(2)(n) = X for all other nodes n. Repeating this procedure gives the complete
sequence F→(σ) given in Fig. 11. !�
Given a closure function F for a circuit with has a set of outputs of delay-elements S,
the closure function over time, written F→ : Seq→ Seq, is inductively defined by:

F→(σ)(0) = F (σ(0))
F→(σ)(t + 1) = F (σ′(t + 1))
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where

σ′(t + 1)(n) =
{
σ(t + 1)(n) � F→(σ)(t)(n′), n ∈ S
σ(t + 1)(n), otherwise

The function F→ inherits the properties of being monotonic, idempotent and extensive
from F .

Trajectories. A trajectory is defined as a sequence in which no more information can
be derived by forwards propagation. That is, a sequence τ is a trajectory of a closure
function when it is a fixed-point of the closure function over time. So, a sequence τ is a
trajectory of F iff τ = F→(τ).

Closure Semantics of STE. Using the definition of trajectories of a circuit, we can now
define the closure semantics. A circuit c with closure function F satisfies a trajectory
assertion A =⇒ C iff for every valuation φ : V → {0, 1} of the symbolic variables,
and for every three-valued trajectory τ of F , it holds that:

φ, τ |= A ⇒ φ, τ |= C.

Example 10. The reader can verify that assertions (1) and (3), given in the introduction
in the paper, are true in this semantics, but assertions (2) and (4) are false.

For instance, for assertion (1), a case distinction can be made on the value of the
symbolic variable a. If φ(a) = 0 then in every trajectory τ that satisfies A, node p has
value 0, so by forwards propagation also node out has value 0, so the trajectory also
satisfies C. By similar reasoning it can be derived that for φ(a) = 1, every trajectory
that satisfies A also satisfies C.

For assertion (2), a counter-example is the trajectory that gives both in1 and in2 value
1, and all other nodes value X. !�

Cautious Semantics. In our proposed semantics, as well as in the Y-semantics, an as-
sertion can be true even if for a particular valuation φ of the symbolic variables there are
no three-valued trajectories of the circuit that satisfy the antecedent. This is illustrated
in the example below.

Example 11. For an AND-gate with inputs in1 and in2, and output out, the assertion

(out is 1) and (in1 is a) and (in2 is b) =⇒ (in1 is 1) and (in2 is 1)

is true in the closure semantics. For valuations that give at least one of the symbolic
variables a and b the value 0, there are no three-valued trajectories that meet the an-
tecedent: there are no three-valued trajectories in which at least one of the inputs of
the AND-gate (nodes in1 and in2) has value 0, while the output (node out) has value
1. Only for the valuation that gives both the symbolic variables value 1, there exists
a three-valued trajectory that satisfies the antecedent. As this trajectory satisfies the
consequent as well, the assertion is true in the closure semantics. !�

The default approach taken in Intel’s in-house verification toolkit Forte is to demand
that for each valuation of the symbolic variables there exists at least one three-valued
trajectory that satisfies the antecedent. In order to warn the user of a possible mistake,
Forte reports an ‘antecedent-failure’ when the top-value T is required to satisfy the
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antecedent. We have formalised this approach in the cautious closure semantics of STE.
A circuit with closure function F cautiously satisfies a trajectory assertion A =⇒ C
iff both F satisfies A =⇒ C and for every valuation φ of the symbolic variables there
exists a three-valued trajectory τ such that φ, τ |= A.

4 Conclusion

We have introduced a new semantics for STE, called the closure semantics, that is
faithful to the proving power of STE algorithms. We believe this semantics makes STE
easier to understand and provides a solid basis for STE-theory.

The semantics presented here is closely related to BDD-based model-checking al-
gorithms for STE. In such algorithms, a simulator calculates a weakest trajectory sat-
isfying the antecedent. The theory of STE guarantees that only this trajectory need be
considered to check whether an STE-assertions holds. The calculation done by the sim-
ulator is essentially the same as the calculation done by the closure function of the
circuit; the difference is that the simulator works on symbolic values, whereas closure
functions work on scalar values.

In a recent paper [6] we have presented a new SAT-based algorithm for STE, together
with a stability semantics for STE. The stability semantics describes a set of constraints
on sequences such that the constraints are satisfiable if-and-only-if the sequence is a
trajectory. These constraints can be directly translated to SAT-clauses. The stability se-
mantics is equivalent to the closure semantics [5]. But, as the stability semantics is more
closely related to SAT-based STE model-checkers, the closure semantics presented in
this paper is better suited for explaining BDD-based STE.
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Abstract. Many studies have shown that the imbalance of network channel  
traffic is of critical effect on the overall performance of multicomputer systems. 
In this paper, we analytically model the traffic rate crossing the network  
channels of a hypercube network under different working conditions. The effect 
of different parameters on the shaping of non-uniformity and traffic imbalance 
over network channels, are considered and analytical models for each case are 
proposed. 

1   Introduction 

The routing algorithm indicates the next channel to be used at each intermediate 
node. That channel may be selected from a set of possible choices and according to 
the size of this set, the routing algorithm may be divided into three categories: deter-
ministic, partially adaptive, and fully adaptive [6, 16]. 

Deterministic routing assigns a single path to each source and destination node (the 
size of the mentioned set is one in this category) resulting in a simple router imple-
mentation. However, under deterministic routing, a message cannot use alternative 
paths to avoid congested channels along its route and therefore the low network per-
formance is inevitable. The XY and e-cube routing algorithms are the most known 
routing algorithm of this category in meshes and hypercubes [5]. 

Fully adaptive routing has been suggested to overcome this limitation by enabling 
messages to explore all available paths (the above mentioned set has its maximum 
possible size) and consequently offers the potential for making better use of network 
resources. But these algorithms imply more router complexity for deadlock-freedom. 
An example of a fully adaptive routing algorithm is Duato's [7] routing algorithm. 
Hop-based routing [3] and Linder-Harden's [13] algorithm are also adaptive routing 
algorithms proposed for the mesh and hypercube networks. 

Partially adaptive routing algorithms try to combine the advantages of the two other 
categories to produce a routing with limited adaptivity and establish a balance between 
performance and router complexity. They allow selecting a path from a subset of all 
possible paths. In fact, these algorithms limit the size of the set of possible choices. 
Turn model based algorithms and planar adaptive routing algorithm are the most im-
portant partially adaptive algorithms for the mesh and hypercube networks [8]. 

The performance of the network is mainly determined by the three characteristics 
of interconnection networks mentioned above (topology, switching method, and rout-
ing algorithm). However, traffic distribution of the workload is another important 
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factor in determining the overall performance of the system. Although this factor is 
not considered a network characteristic and is determined by the applications being 
executed on the machine, it has great impact on performance. The three abovemen-
tioned factors are also influential on the traffic pattern [16]. 

Numerous studies have shown that with load balanced channel traffic greater net-
work performance can be expected. This infers that overall performance is also af-
fected by traffic pattern [14]. In this paper, we analytically model the effect of some 
important factors that cause imbalance in the channel traffic rates. This study focuses 
on the hypercube network for the sake of presentation and derives some analytic mod-
els to predict traffic in the network. In particular we model the effect of destination 
address distribution and routing algorithm on network channel traffic. 

2   Preliminaries  

This section describes the network and node structure in a hypercube along with  
e-cube [6] deterministic routing algorithm with virtual channels. 

A n-dimensional hypercube can be modeled as a graph Hn (V, E), with the node set 
V (Hn) and edge set E (Hn), where |V|=2n and |E|=n2n nodes. The 2n nodes are dis-
tinctly addressed by n-bit binary numbers, with values from 0 to 2n -1. Each node has 
link at n dimensions, ranging from 1 (lowest dimension) to n (highest dimension), 
connecting to n neighbours. An edge connecting nodes  X= xnxn-1… x1  and Y= ynyn-

1… y1  is said to be at dimension j or to the jth dimensional edge if their binary ad-
dresses  xnxn-1… x1  and  ynyn-1… y1 differ at bit position j only, i.e. xj ≠  yj. An edge in 
Hn can also be represented by an n-character string with one hyphen (-) and n-1 binary 
symbols {0, 1}. For example in a H4, the string 00-1 denotes the edge connecting 
nodes 0001 and 0011. 

Each node consists of a processing element (PE) and router. The PE contains a 
processor and some local memory. The router has (n+1) input and (n+1) output chan-
nels. A node is connected to its neighbouring nodes through n inputs and n output 
channels. The remaining channels are used by the PE to inject/eject messages to/from 
the network respectively. Messages generated by the PE are transferred to the router 
through the injection channel. Messages at the destination are transferred to the local 
PE through the ejection channel. The router contains flit buffers for incoming virtual 
channels. The input and output channels are connected by a (n+1)-way crossbar 
switch which can simultaneously connect multiple input to multiple output channels 
in the absence of channel contention [2]. 

Many routing algorithms have been proposed for hypercubes. Given a message 
with source and destination addresses x= xnxn-1… x1  and  y= ynyn-1… y1 in an n-
dimensional hypercube,  the current router (the router which message is in) chooses 
the next channel to be taken by the message as follows. If the current router address 
C= cncn-1… c1, the router calculate bit pattern yCB ⊕=  (bit-wise exclusive-or of C 

and y) the set of channels which can be used to take the message closer to the destina-
tion node, are those positions in the pattern B which are "1" [6]. 

Choosing one of them in a fixed manner (say the first least significant "1"), the 
routing algorithm will be deterministic and referred to as e-cube routing [1]. Choosing 
a subset of this set will result in partially adaptive routing. For example, p-cube [8] 
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divides this set into two subsets: one set including those positions that are "0" in C 
and "1" in y, and the other set including those positions that are "1" in C and "0" in y. 
According to e-cube routing, a message in its first step can take any of channels be-
longing to the first set and when all channels in the first set are all passed, it can 
choose any of the channels in the second set. Choosing any channel from the main set 
in any order can result in a fully adaptive routing algorithm. Linder-Harden’s, 
Duato’s, and hop-based routing algorithms are examples of fully adaptive routing 
algorithms.  However, making the algorithm deadlock free requires some careful 
consideration in order to avoid cyclic dependencies which may result in deadlock. We 
usually use virtual channels to develop such deadlock avoidance treatments. 

3   Traffic Pattern and Load Distribution 

Uniform Traffic Pattern Analysis: With uniform network traffic, all network nodes 
(except the source node) can be the destination of a message with equal probability. In 
this case, the number of nodes which are i hops away from a given node in an  
n-dimensional hypercube is ( )n

i
. Given that a uniform message can be destined to the 

other network nodes with equal probability, the probability that a uniform message 
generated at a given source node makes i hops to reach its destination, 

iuP ,  can be 

given by [1, 4] 

1−
=

N

i
n

P
iu

. (1) 

where N is the number of nodes in the network N=2n. The average number of hops 
that a uniform message makes across the network is given by [16] 

=
=

n

i
uu i

iPd
1

. (2) 

Now, we can estimate the message arrival rate over each channel as [15] 

u u
channel

N d d

nN n

λ λλ = = . (3) 

Note that the above rate is valid if the routing algorithm can distribute the traffic 
evenly over network channels. The e-cube deterministic routing and the fully adaptive  
 

Algorithm e-cube for n-cube;

Input: Current node C=cncn-1…c1 and
  Destination node D=dndn-1…d1

Output: Output channel number

{ if C=D then return n+1;
;S C D=

i = first_one (S);
return i;}

Algorithm p-cube for n-cube;

Input: Current node C=cncn-1…c1 and
Destination node D=dndn-1…d1

Output: Output channel number
{ if C=D then return n+1;

;S C D=

if S=0 then ;S C D=

i = random_one (S);
Return i;}

Algorithm adaptive routing for n-cube;

Input: Current node C=cncn-1…c1 and
Destination node D=dndn-1…d1

Output: Output channel number

{ if C=D then return n+1;
;S C D=

i = random_one (S);
Return i;}

(a) (b) (c)  

Fig. 1. Different routing algorithms in the nD hypercube; a) Deterministic, b) Partially adap-
tive, c) Fully adaptive 
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routing algorithms shown in Figure 1 can balance the traffic over network channels 
[1, 9, 10, 11, 12] while p-cube partially adaptive routing algorithm can not [6] as will 
be shown in the next section. 

3.1   Non-uniform Traffic Pattern Analysis 

The model used here to create non-uniform traffic pattern has been widely used in the 
literature. According to this model a node can partly create non-uniform traffic. To 
this end, we consider each node to generate non-uniform traffic with a probability of 
x, where 0 1x≤ ≤ , and creates messages with uniform destination distribution with a 
probability 1-x. Thus, x = 0 corresponds to a uniform traffic while x=1 indicates a 
complete non-uniform traffic defined by the non-uniform traffic generator used [16]. 

In what follows, we consider traffic analysis for three different popular traffic pat-
terns used in the literature: hotspot, bit-reversal, and matrix-transpose. 

 
Hotspot traffic pattern: According to the hotspot traffic distribution a node can create 
a message to the hotspot node with rate h [14].  It is easy to see that a node may create 
an i-hop hotspot node with the probability of 

1ih

n

i
P

N
=

−
. 

(4) 

Thus, the average number of hops that a hotspot message may traverse in the net-
work is equal to that for the uniform traffic. Therefore, hotspot traffic does not change 
the average distance a message (hotspot or uniform) may take to reach its destination. 
However, it can make unbalanced traffic over network channel as the channels closer 
to the hotspot node will receive more messages than others. 

Consider a channel that is j hops, ,1 nj ≤≤ away from the hot-spot node. The prob-

ability that a hot-spot message has used this channel during its network journey can 
be derived as follows. Consider the set J of all the channels located j hops away from 
the hotspot node. The number of source nodes for which an element of J can act as an 
intermediate channel to reach the hotspot node is ( )−

=
−

1

0

j

k

n
kN . Since there are 

−
+−

1

  
)1(

j

n
jn  such intermediate channels (or elements in the set J), the hotspot mes-

sage arrival rate at a channel located j hops away from the hotspot node is given be 
1

0

,   
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(5) 

The overall message arrival rate including hotspot and uniform messages can be 
then given by 

,(1 )
j jchannel channel h channelhλ λ λ= − + . (6) 

where 
channelλ  is given by equation (3). 

.
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Bit-reversal traffic pattern: Many applications, such as FFT, may produce bit-
reversal non-uniform traffic pattern in the network [6, 16]. According to this traffic 
pattern, a source node 

nxxx 21
 sends message to node =)( 21 nxxxB 11 xxx nn −

. Let 

us now calculate the probability, 
i

Pβ , that a generated bit-reversal message makes i 

hops to cross the network. 
Let nxxxx 21=  be the source address and nxxxx ''')( 21=  be the destination 

address for the bit-reversal message. When n is even every single bit difference be-
tween the first half parts of the source and destination addresses, 

2/21 nxxx  and 

2/21 ''' nxxx , results in another bit difference in the next halves, nnn xxx 12/2/ +  and 

nnn xxx ''' 12/2/ + . Thus, the probability that a bit-reversal message makes i hops, 

where i is odd, is zero. Let us calculate the number of possible ways that the source 
and destination nodes of the bit-reversal message are located i hops away from each 
other (i= 0, 2, 4, …, n). To do so, we can simply consider the first half of the address 
patterns of the source and destination nodes and calculate the number of possible 
combinations that 

2/21 nxxx  and 
2/21 ''' nxxx  are different in j  bit positions for j= 

0, 1, 2,…, n/2. A bit in the address 
2/21 nxxx with its corresponding bit in the address 

2/21 ''' nxxx  make up four combinations, 00, 01, 10 and 11. In two combinations, 00 

and 11, those two bits are equal while in the other two combinations, 01 and 10, they 
are different. Therefore, the number of possible combinations that 

2/21 nxxx  and 

2/21 ''' nxxx  are different in exactly j bits is ( ) jjnn
j 22 2/2/ −  (j= 0, 1, 2, …, n/2), and 

consequently the number of possible combinations that 
nxxx 21
 and 

nxxx ''' 21
 are 

different in exactly i bits (i= 0, 2, 4, …, n) is given by 

==
−

2

2

22222

2

222
n

i

niinn

ii
nβ  (i= 0, 2, 4, …, n). (7) 

When n is odd we can apply the above derivation for the bit patterns 

nnn xxxxx 12/)1(2/)1(21 ++−  and nnn xxxxx ''''' 12/)1(2/)1(21 ++− . Note 

that the bit 2/)1( +nx  in x is equal to the bit 2/)1(' +nx  in )(x . Therefore, the number 

of combinations where the bit patterns x and )(x  are different in i bits (given by 

equation 4) is doubled considering the two possible values 0 and 1 for 2/)1( +nx  when 

n is odd. Combining these two cases (odd and even n) will result in a general equation 
for the number of possible combination that x and )(xΒ are different in exactly i bits 

(i= 0, 1,…, n) as 

( )
=

+

otherwise             0

even is iif2 )2mod(
22

2

nnn

i

i
nβ

   . (8) 

Thus, the probability that a bit-reversal message makes i hops to reach its destina-
tion can be written as 
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0,                 otherwise
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The average number of hops that a bit-reversal message makes across the network 
is given by 

=
− =

n

i
reversedbit i

iPd
1

β . (10) 

Using a similar model to combine hotspot and uniform traffic, we can assume that the 
generation rate of bit-reversal messages at a node is β  and thus the rate for generat-

ing uniform messages is 1- β .  Therefore, the average distance that a message takes in 

the network can be given as 

ureversedbit ddd )1( βββ −+= − . (11) 

Matrix-transpose traffic pattern: Many applications, such as matrix problems and 
signal processing, may produce matrix-transpose non-uniform traffic pattern in the 
network [6, 16]. According to this traffic pattern a source node nxxx 21  sends mes-

sages to node =)( 21 nxxxB 12/12/ +nnn xxxx (when n is even) or 

12/)1(12/)1( +−− nnn xxxx  (when n is odd). Let us now calculate the probability, 

i
Pβ , that a generated bit-reversal message makes i hops to cross the network. 

Let us now calculate the probability, 
imP , that a newly-generated matrix-transpose 

message makes i hops to cross the network. Examining the address patterns generated 
by matrix-transpose permutations reveals that this probability has to be calculated in 
different ways for odd and even values of n (the dimensionality of the hypercube). Let 

nxxxx 21=  be  the  source  address and nxxxxM ''')( 21=  be the destination 

address for a matrix-transpose message. When n is even, every single bit difference 
between the first n/2 bit positions of the source and destination addresses, 

2/21 nxxx  and 2/21 ''' nxxx , results in another bit difference in the remaining 

n/2 bit positions of addresses, nnn xxx 22/12/ ++ and nnn xxx ''' 22/12/ ++ . There-

fore, the probability that a matrix-transpose message makes i hops is zero when i is 
odd. Let us determine the number of possible cases where the source and destination 
of a matrix-transpose message are located i hops away from each other (i= 0, 2, 4, …, 
n). This can be done by simply considering only the first n/2 bit positions in the 
source and destination addresses, and thus enumerating the number of combinations 
where 2/21 nxxx  and 2/21 ''' nxxx  are different in exactly j bit positions (j= 0, 

1, 2, …, n/2). Any bit in the address pattern 2/21 nxxx  with the corresponding bit 

in the pattern 2/21 ''' nxxx  make up four combinations, which are 00, 01, 10 and 

11. In two combinations, 00 and 11, those two bits are equal while in the other two 
combinations, 01 and 10, they are different.  

.
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Therefore, the number of possible combinations that result in the patterns 

2/21 nxxx  and 2/21 ''' nxxx  being different in exactly j bits is ( ) jjnn
j 22 2/2/ −  

(j= 0, 1, 2, …, n/2). So, the number of possible combinations where nxxx 21  and 

nxxx ''' 21  are different in exactly i bits (i= 0, 2, 4, …, n) is given by 

==
−

2

2

22222

2

222,

n

i

niinn

ii evenmn ,  i= 0, 2, 4, …, n. (12) 

Consider the case where n is odd. Examining the address patterns of the source 

nxxx 21  and destination nxxx ''' 21  generated by the matrix-transpose permu-

tation shows that finding the number of combinations where these address patterns are 
different in exactly i bits (i= 0, 1, 2, …, n) is equivalent to the problem of finding the 
number of ways that i bits can be placed on a "fictive" circle such that no two adjacent 
bits on the circle be equal. It is can easily be checked that when i is odd there is no 
way to place i bits on the circle where no two adjacent bits are equal. When i is even, 
two configurations meet the desired condition. These i bits can be selected from n bits 

in ( )n
i  different combinations resulting in a total of 

=
i
n

n oddmi
2,

,    i= 0, 2, 4, …, n-1. (13) 

combinations where the address patterns nxxx 21  and nxxx ''' 21  are different 

exactly in i bits. Combining equations (4) and (5) gives a general equation for the 
number of possible combinations that result in the address patterns nxxx 21  and 

nxxx ''' 21  being different in exactly i bits (i= 0, 1,…, n) as 
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Thus, the probability that a matrix-transpose message makes i hops to reach its des-
tination can be written as 
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The average number of hops that a matrix-transpose message makes across the 
network is given by 

.

.
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=
− =

n

i
mtransposematrix i

iPd
1

. (16) 

Again assuming that the generation rate of bit-reversal messages at a node is m and 
thus the rate for generating uniform messages is 1-m.  Therefore, the average distance 
that a message takes in the network can be given as 

utransposematrixm dmmdd )1( −+= −
. (17) 

4   The Effect Routing Algorithm 

In this section, we show that even with uniform traffic pattern a routing algorithm 
may result in unbalanced traffic rate over network channels. With uniform traffic and 
the use of e-cube or fully adaptive routing the message arrival rate over network  
channels is balanced. 

Let us now analyze the traffic rate over network channels when p-cube partially 
adaptive routing is used. The way in which this algorithm partitions channels and uses 
them in two steps, causes traffic load to become heavier in some corners of the net-
work. 

Assume the source node x and destination node y as shown below. Let us now cal-
culate the probability that a message passes node a when going from x to y. It is easy 
to see that the number of combinations to have t bits of l zero bits equal to one is 

given by ( )l
t . Out of these combinations only one pattern corresponds to node a as 

shown below. 
 
 
 
 
 
 
 

 
Thus, the probability to pass node a when traversing the network from node x to 

node y is given by 

1
a

x y
P

l

t

→
=

 

(18) 

Assuming a hypercube, Hn, with p-cube routing, we now calculate the traffic arri-

val rate, ,a bλ< > , over channel >< ba, , where 
mmn

a 111000
−

= , and 
11

111000
+−−

=
mmn

b . 

Note that all possible source and destination nodes, x and y, for which a and b are 
passed have the address form shown below 

 
 

111001111000

11111111100000

11101111000000

l

t

y

a

x

.
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So, if x and y can be a source and destination node with a possible path between 

them including channel <a, b>, the k-th bit of x must be 0 while it is 1 in y.  Note that 
bits 1, 2, …, k-1 in x can not be 1, otherwise channel <a, b> can not be passed. This is 
because if bit t, t < k, in x be 1, then the t-th bit in y can not be 1 as this does not result 
in passing channel <a, b>; also the t-th bit in y can not be 0, since we are still in the 
first phase of routing (note that still k-th bit has not changed) and again channel <a, 
b> can not be passed. 

Also note that none of the two corresponding bits in x and y in the last m-bit part 
can be 0 at the same time, otherwise channel <a, b> can not be passed. 

Considering the above conditions we can see that x and y have the following attrib-
utes: 
- i bits in the first (k-1)-bit part of y are equal to 1, 
- j bits in the last m-bit part of x equals 0 while they are 1 in y, 
- the remaining m-j bits of the last m-bit part are either 1 in x and 0 in y, or 1 in 

both x and y. 
It is easy to see that the number of cases for which x and y fulfill the above condi-

tions is given by ( )( ) 11
  2 −−− jmm

j
k
i

. The probability that a message from x to y passes node 

a along its path is given by equation (18) as ( )11/ i j
j
+ + , and the probability that it 

passes channel <a, b> after node a is equal to ( )1/ 1i + . Thus, the probability that a 

message from x to y passes channel <a, b> can be given by 

,

1
1

( 1)
a b

x y
P

i j
i

j

< >
→

=
+ +

+

 

(19) 

Recalling that the message generation rate of each node, e.g. node x, is λ , and that 
a message can be destined to any other 2 1n mN += −  nodes, and summing up all the 
possible combination of i's and j's (in above discussion), we can calculate the message 
arrival rate over channel <a, b> as 

( ) ( )
( )

11

,
0 0

2

2 1 ( 1)

n m m jn m m
i j

a b n i j
i j ii j

λλ
− −− −

< > +
= =

=
− + +

. (20) 

Using a similar analysis, we can derive an expression to calculate the traffic arrival 
rate on channel >< ba, , where 

mmn

a 111000
−

= , and 
11

111000
−+−

=
mmn

b , as 

.

00 00 0 0 01 11
n m

x

00 00 0 1 11 11a

00 00 1 1 11 11b

** ** 1 1 1* **y

a pattern
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those zero 

bits in x
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( ) ( )
( )

1 11

,
0 0

2

2 1 ( 1)

n m m jn m m
i j

a b n i j
i j ii j

λλ
− − −− −

< > +
= =

=
− + +

. (21) 

5   Discussions 

In this section, we utilize the analytical expressions derived in previous sections. The 
network configuration used for our analysis is a 10-dimensional hypercube, for the 
sake of our presentation. Nodes generate messages using a Poisson model with an 
average message generation of 0.01λ = . However, the conclusions made for each case 
are valid for other network configurations and message generation rates at each node. 

Figure 2 shows the message arrival rate over different channels of a 10-D hypercube 
for different hotspot traffic portions h = 0 (defining a pure uniform traffic), 0.2, 0.4, 
0.6, 0.8 and 1.0 (corresponding to pure hotspot traffic). The obvious non-uniformity in 
message arrival rate over network channels (as can be seen in the figure) may result in 
significant performance degradation compared to the uniform traffic. As shown in this 
figure, the closer the channel is to the hotspot node, the higher the message arrival rate 
is. However, the arrival rate over the channel located one hop away from the hotspot 
node is extremely higher than the rest of channels (those located some hops away from 
the hotspot node). In addition, the message arrival rates for channels located 3 hops 
away, or more, from the hotspot node are of little difference. 

Channel message arrival rate in a 10-cube with hotspot traffic pattern
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Fig. 2. The message arrival rate over different channels in a 10-cube for different hotspot rates 

Figure 3 shows the average number of hops that a message takes in different sized 
hypercubes under different bit-reversal traffic portions β = 0 (as the representative of 

pure uniform traffic pattern), 0.2, 0.4, 0.6, 0.8, 1.0 (as the pure bit-reversal traffic) 
when 0.01λ = . It can be seen in this figure that the average path length decreases in  
proportion with the increase in the bit-reversal traffic ratio β . The average path 

length, however, increases when network size (n) increases for different bit-reversal 
traffic portions β . 

In Figure 4, the average number of hops that a message takes in different sized hy-
percubes under different matrix-transpose traffic portions m = 0 (as the represent-
tative of pure uniform traffic pattern), 0.2, 0.4, 0.6, 0.8, 1.0 (defining a pure  
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matrix-transpose traffic) is shown when 0.01λ = . It can be seen in the figure, the 
average path length decreases proportionally when the matrix-transpose traffic portion 
increases. The interesting thing about the effect of matrix-transpose traffic pattern is 
the effect of network dimensionality. 

It can be seen from the figure than for low matrix-transpose rates the average path 
length increases when network size increase. The opposite, however, is observed for 
high matrix-transpose traffic rates where the average path length decreases when 
network dimensionality increases. This is different from that observed under the  
bit-reversal traffic pattern. 

Figure 5 shows the message arrival rate over network channels in the 10-D hyper-
cube when 0.01λ =  and P-cube routing algorithm is used for uniform traffic pattern. 
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Fig. 3. The average path length messages 
take in a 10-cube for different bit-reversal 
traffic rates 
 

0

1

2

3

4

5

6

7

n=4 n=5 n=6 n=7 n=8 n=9 n=10 n=11 n=12

Networkdimensionality

A
ve

ra
ge

pa
th

le
ng

th

m=0.0 m=0.2 m=0.4
m=0.6 m=0.8 m=1.0

 

Fig. 4. The average path length messages  
take in a 10-cube for different matrix-transpose 
traffic rates 

 

Fig. 5. The message arrival rate on different channels in a 10-cube using p-cube routing; a) 
negative channels, b) positive channels 
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As can be seen in the figure, although the traffic pattern used is uniform, the mes-
sage arrival rates over different channels are very different. For the sake of compari-
son, the white bar shows the rate when e-cube or full-adaptive routing algorithms are 
used. In that case, the traffic rate over network channels is distributed evenly. The 
address pattern of nodes indicating the channel) is small and it gradually increases 
when the channel weight increases. This continues until the channel Hamming weight 
is approximately 8 (or 9) after which there is a little decrease again on channel arrival 
rate. Note that each bar represents the message arrival rate over a group of channels 
with equal Hamming weight. 

6   Conclusions 

The performance of an interconnection network mainly depends on the distribution of 
channel traffic. In most studies, it is shown when the traffic is evenly distributed over 
network channels that performance increases. There are many sources of network 
channel load imbalance, including network topology (which is solely dependent on 
the definition of the network), message destination address traffic pattern, and the 
routing algorithm employed. 

In this paper, we have analytically studied the characteristics of network channel 
load and have derived some mathematical expression for predicting the traffic arrival 
rate over different network channels. We considered the effect of different well-
known traffic patterns including uniform, hotspot, matrix-transpose, and bit-reversal 
traffic patterns on channel traffic rate. In addition, we have analyzed p-cube routing (a 
partially adaptive routing algorithm in hypercubes) and have shown that even under 
uniform traffic, the traffic load on different channels may vary. 
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Abstract. In this paper, we envision a solution for the problem of capturing an 
intruder in one of the most popular interconnection topologies, namely the 
pyramid. A set of agents collaborate to capture a hostile intruder in the network. 
While the agents can move in the network one hop at a time, the intruder is 
assumed to be arbitrarily fast, i.e. it can traverse any number of nodes 
contiguously as far as there are no agents in those nodes. Here we consider a 
new version of the problem where each agent can replicate new agents when 
needed, i.e. the algorithm starts with a single agent and new agents are created 
on demand. In particular, we propose two different algorithms on the pyramid 
network and we will later discuss about the merits of each algorithm based on 
some performance criteria. 

1   Introduction 

In networked environments that support software migration, a possible threat is the 
existence of a hostile software agent called the intruder that can move from node to 
node and possibly perform harmful attacks to its host. The intruder can be any kind of 
malicious software, ranging from viruses and spywares to malfunctioning programs. 
To cope with the intruder, some special mobile agents, i.e. the searcher agents are 
deployed in the network. They normally start from a homebase and move within the 
network according to a predefined strategy to find and neutralize the intruder. On the 
other hand, the intruder moves arbitrarily fast, and it is aware of the position of other 
agents, thus if feasible, it finds an escape path. The intruder is captured when it cannot 
find any undefended neighboring node to escape to. We consider that the agents (both 
types) only reside at nodes, not links, and they do not jump through the network; i.e. 
they can only move from their current position to a neighboring node through the link 
between the two nodes. 

The concept of Intrusion Detection is extensively studied in the past [1], [2], [3], 
[4], [5], [17], and [18]. Most of the previous works have assumed that in the 
beginning, all the searcher agents are present at the homebase, and they move to other 
nodes whenever needed [5]. In our model, however, the searcher agents are capable of 
replicating other agents, thus the agents are created on demand at run-time. Moreover, 
the searcher agents though collaborative are completely autonomous. While the recent 
assumptions are quite realistic in the software world, they decrease the overall steps 
taken by the agents and hence the network traffic. In the above problem, it is crucial 
to define an optimal strategy with respect to both the number of steps taken to find the 
intruder and the number of agents needed. 
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The described scenario is also known as the contiguous search problem in which 
agents cannot be removed from the network, and clear links must form a connected 
sub-network at any time, providing safety of movements [2]. This new problem is 
NP-complete in general [16]. 

In fact, intrusion detection is a variant of the more general problem of Graph 
Searching, which is well studied in the discrete mathematics [6], [7], [8], [9], and 
[10]. The graph search algorithms studied in the literature vary in the agents’ level of 
environmental information. In most of the models, it is assumed that the agents, i.e. 
the searchers and the intruder, have a comprehensive knowledge of their environment 
and can see and act according to the movement of other participants. This model is 
known as the basic pursuit-evasion model with complete information or BPE for 
short [9]. 

In order to narrow the gap between our model and the problem in the real world, 
we discuss the worst case where the collaborative agents are only aware of the 
topology of the network, and are blind in the sense that they can see neither the 
intruder nor the other collaborators. Intruder on the other hand, is assumed to be 
arbitrarily fast and can track the movement of the searchers and is intelligent enough 
to select the best possible move in order to evade the searchers. Although the intruder 
is able to cause damage to its host, it cannot imperil the other agents. 

Beside network security, the graph-searching problem has many other applications, 
including pursuit-evasion problems in a labyrinth, decontamination problems in a 
system of tunnels, and mobile computing problems in which agents or robots are 
looking for a hostile intruder. Moreover, the graph-searching problem also arises in 
VLSI design through its equivalence with the gate-matrix layout problem [2].  

In this paper, we demonstrate two different cleaning strategies applied to one of the 
most common interconnection topologies namely the pyramid. The pyramid has been 
one of the most important network topologies as it has been used as both hardware 
architecture and software structure for parallel and network-based computing, image 
processing and machine vision [12], [13], [14], and [15]. 

2   Definitions and Notations 

2.1   The Pyramid 

A pyramid network (or a pyramid for short) is a hierarchical structure based on 
meshes. An a × b mesh (Fig. 4a in the appendix), Ma,b, is a set of nodes 

,
( ) {( , ) | 1 ,1 }

a b
V M x y x a y b= ≤ ≤ ≤ ≤  where nodes 

1 1
( , )x y  and

2 2
( , )x y  are 

connected by an edge iff 
1 2 1 2

| | | | 1x x y y− + − =  [11].  

A pyramid of n levels (Fig. 4b in the appendix), denoted as 
n

P , consists of  a set of 

nodes ( ) {( , , ) | 0 ,1 , 2 }k

n
V P k x y k n x y= ≤ ≤ ≤ ≤ . A node ( )( , , )

n
k x y V P∈  is 

said to be a node at level k. All the nodes in level k form a 2 2k k×  mesh, 
2 2k kM

×
, 

which with a slight abuse of notation, we denote as kM . Hence, there are 
1

0
4 (4 1) / 3

n k n

k
N +

=
= = −  nodes in 

n
P . A node ( )( , , )

n
k x y V P∈  is connected, 
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within the mesh at level k, to four nodes ( , 1, )k x y−  if x>1, ( , , 1)k x y −  if y>1, 

( , 1, )k x y+  if x<2k, ( , , 1)k x y +  if y<2k. It is also connected to nodes 

( 1, 2 1, 2 )k x y+ − , ( 1, 2 , 2 1)k x y+ − , ( 1, 2 1, 2 1)k x y+ − − ,  and ( 1, 2 , 2 )k x y+  

for 0 k n≤ <  in the next level, 1k + , and to node 11

2 2
( 1, 1, 1)yxk −−− + +  in level 

1k −  [11]. We use term k-neighbor to refer to every neighbor of a node u=(ku,xu,yu) 
that has the same x and y value than u but a k value equal to ku+1 or ku−1. In a similar 

manner we use terms x-neighbor and y-neighbor. The apex node in 
n

P  is the node 

(0,1,1) which can alternatively be denoted as 
n

P . The corner nodes of 
n

P  are  

(n,1,1), (n,2n,1),  (n,2n, 2n)  and (n,1,2n) or 
n

P , 
n

P , 
n

P , and 
n

P , respectively. 

2.2   Basic Graph Searching Definitions 

Given a pyramid network that accommodates an intruder in one of its nodes, the 
problem is to find a strategy according to which the network reaches a state that all of 
nodes are clean. 

At any instant of time, any node u in the pyramid could be: 

• Contaminated, when capable of harboring an intruder, 
• Guarded, when an agent resides at node u, 
• Clean, when all neighboring nodes are clean or guarded, and an agent has already 

passed node u. 

On the other hand, during each search step, a searcher agent is capable of doing 
one the following actions: 

• It can move to any of its neighboring nodes. 
• It can wait until a specific condition is met. 
• The agent can produce a new searcher agent and inject it to a neighboring node. 

Simultaneously, a searcher agent can sense the state of neighboring nodes, i.e. if 
they are clean/defended or contaminated. To achieve this capability, we consider a 
tiny memory space in every node (almost equal to the degree of that node) as a 
bulletin board where information about neighbors is stored. In addition, when a 
searcher clears a node, it sends a single bit message to all neighboring nodes to 
indicate the new state of the current node. The above consideration obviates the 
necessity of a synchronizer to pace the agents while cleaning the network. 

Definition 1. The search number of a graph G according to a model M for searching 
G is the smallest k such that k searchers can capture any intruder lurked in G using 

model M, and is denoted as ( )
M

sn G k= . 

Definition 2 [16]. A search strategy is a sequence of search steps that will clear an 
initially contaminated graph. 

According to definition 1, a search strategy uses optimal amount of agents for a 
given graph G if it needs only snM(G) searcher agents for capturing an intruder in 
graph G. Throughout this paper, we use the terms strategy and algorithm, 
interchangeably. 
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Definition 3 [5]. A node search strategy is called contiguous and monotone where: 
1. the removal of agents is not allowed, 
2. at any step of the search strategy, the set of clean nodes forms a connected 

subnetwork, 
3. a clean node cannot be recontaminated. 

 
The following notations will be used throughout the paper. 

• Gt :    a graph G referred to at time instant t. 
• |G| :  size (or order) of a graph G (this notation is also used to denote the size of a 

set G). 
• 

Gd ( , )u v : distance between two vertices u and v, in G, i.e. the length of a shortest 

path between the nodes u and v of G. 
• diam( )G : diameter of a graph G, i.e. the maximum 

Gd ( , )u v  for all u and v in G. 

• { }1 2,  ,...,  G G G G
kA a a a= : the set of searcher agents 

1 2
,  , ...,  G G G

k
a a a  employed to 

decontaminate a graph G. 

• G

tC :  the set of clean nodes in a graph Gt. 

• G
tI : the set of nodes in a graph Gt that are not clean (i.e. can accommodate the 

intruder), \G G

t t t
I G C= . 

Definition 4. The Clean Territory of a graph Gt is an induced subgraph G
tCT ,  where 

G

tC  induces G
tCT  in Gt. 

As the clean nodes do not get contaminated again and the agents can only move to 
their neighboring nodes, one may simply infer that in a contiguous and monotone 

node search strategy the clean territory, G
tCT , is a connected graph at any instant of 

time. 

Definition 5. The Intruder Territory of a graph Gt is the induced subgraph G

t
IT , 

where ( )GI t  induces G

t
IT  in Gt. 

To hinder the intruder from recontaminating the clean territory, any efficient 
algorithm should move the agents in such a way that they form an impenetrable 
frontier at any intermediate stage. 

Definition 6.  The Battle Front of a graph Gt is the set of nodes like v, in the clean 
territory, that has a neighboring node in the intruder territory. It is denoted as 

{ }| , : , ( )G G G

t t t t
BF v v C u I u v E G= ∈ ∃ ∈ < >∈ . 

In order to decontaminate a network we need a strategy that is able to neutralize the 
intruder after a finite number of steps. Thus, a more formal definition of strategy is 
given below. 

Definition 7. A strategy for capturing an intruder in a graph G, when given an 
intruder and the initial searcher at any two arbitrary nodes, is capable of cleaning the 
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network after a finite number of steps, T;  i.e. : , G

t
T t T CT G∃ ∀ ≥ = , where t=i is 

the time instant of the ith step. 
Here we define the lower limit of the steps taken during any algorithm A applied to an 
arbitrary graph G that starts from a single vertex and must span all vertices of G. 
Using the following lemma and definition we can evaluate optimality of our 
algorithms. 

Lemma 1. Let A be an arbitrary algorithm that must be applied to a given graph G 
and must span all of its vertices starting from a single vertex. The lower limit of the 
steps taken during algorithm A is equal to ( )diam G . 

Proof. Since the farthest distance between any two vertices in a graph like G is equal 
to its diameter, thus for spanning all nodes of G one must take ( )diam G  steps to 

reach the farthest node from the initial vertex, when following shortest paths in G. 

Definition 8. Any spanning algorithm A applied to a given graph G is said to be 
execution-time-optimal if its execution time complexity is some linear order of 

( )diam G . 

3   Straight Chain Movement (SCM) Strategy 

In this section, we propose our first strategy for capturing the intruder in the pyramid, 
which comprises of two phases: 

1. creating straight chains or arrays of searcher agents in each level of the pyramid 
graph, and 

2. moving the chains in a manner that no clear node becomes recontaminated. 

3.1   Creating Chains 

In this phase, we make a chain of searcher agents in the x dimension, with y=1, for 
every mesh of the pyramid. Without loss of generality, we assume that in the 

beginning there is just a single searcher agent residing at node 
n

P =(n,1,1). Since the 

diameter of the pyramid is 2n, if the searcher agent was elsewhere in the pyramid, we 
could move it with at most 2n moves to the desired location. 

In the first step, t=1, the initial agent an,1 spawns a new agent an-1,1 and injects it 
into the neighboring corner node of the upper level mesh, i.e. (n−1,1,1). In time 
instant t=2, agent an-1,1 creates a new agent an-2,1 and sends it to the neighboring node 
(n−2,1,1). 

From time instant t=2 up to t=2n+n−n=2n, any agent an,t-1 creates a new agent an,t 
and sends it to the neighboring node (n,t,1). The same procedure is done in the upper 
level mesh from t=3 up to t=2n-1+n−(n−1)= 2n-1+1. Thus, as a general rule, when agent 
ak,1 enters the mesh of level k>0, in the first step, t=n−k+1, it creates a new agent and 
sends it to the mesh at level k−1, and then from t=n−k+2 up to t=2k+n−k, any agent 
ak,t+k−n−1 creates a new agent ak,t+k−n  and sends it to node (k, t+k−n,1). In this way, the 
apex node will have a resident searcher agent after t=k. 
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Lemma 2. The whole chain making phase takes 2n steps, and a total amount of 
1

0
2 2 1

n i n

i

+

=
= −  agents will be created. 

Fig. 1 demonstrates steps taken during the chain making phase in P4. 
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Fig. 1. Creating Chains in xk-plane, with y=1 

3.2   Moving Chains 

The chains created in the previous phase, together form the battle front. In this phase, 
no new agents are created and we only move the battlefront along y direction, in such 
a way that the intruder would not be able to penetrate the already cleaned territory. 
The agents are identical and autonomous. All the agents behave according to the 
following simple rule: 

• If all k-neighbor nodes of the current node are clean, move to the next y-neighbor 
node that is contaminated. 

• Otherwise wait. 

The chains are initially at nodes with y=1. Each chain at any level k moves for the 
first time at t=n−k+1. Then, it moves again every 2n−k steps. The total amount of steps 
needed to accomplish this phase is 2n−1, which we derive formally in the following 
lemma. 

Lemma 3. The chain-moving phase takes 2n−1 steps on an n level pyramid to 
complete. 

Proof. Each chain in any level k will move for the last time at t=n−k+1+(2k−2)×2n−k. 
The maximum value for the given formula is achieved when k=n. Thus, the whole 
chain-moving phase takes 2n−1 steps. 

Fig. 2 demonstrates the order in which chains are moved in P4. 
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Fig. 2. Moving chains along dimension y 

3.3   Complexity of the SCM Strategy 

Theorem 1. The total number of agents needed to clean an n-level pyramid using the 

SCM strategy is 2n+1−1, or ( )n
O P , which is better than any linear algorithm with 

respect to the order of the pyramid. 
Proof. Since, no agent is created in the second phase, the total number of agents 
needed is equal to the amount of agents created in the first phase. Thus, according to 
lemma 2 we need 2n+1−1 agents. 

Theorem 2. Cleaning the whole pyramid takes exactly 3×2n−1, or roughly 

( )n
O P , steps using the SCM strategy. 

Proof. According to lemmas 2 and 3, the first and second phases take 2n and 2n+1−1 
steps, respectively.  Thus, the whole strategy will need roughly 3×2n steps to clean the 
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network. On the other hand, the pyramid has an order of roughly 4n+1/3. Therefore, 

the complexity of the algorithm is about ( )n
O P  , or exactly 3×2n−1. 

We now prove that the proposed strategy is correct in the sense of contiguity and 
monotony assumptions given in definition 3. 

Theorem 3. During the SCM strategy, no node will be recontaminated, and after 
3×2n−1 steps the whole network will be clean. 

Proof. The pyramid topology, in the kx-plane (or alternatively ky-plane), is like a 
complete binary tree having the apex node as the root where every two successive 
nodes in the same level are connected. The intuition behind the SCM strategy is to 
construct the mentioned semi complete binary tree graph in kx-plane where y=1, and 
then pivoting the tree along dimension y, with the apex node being the pivot point. In 
this way, obviously there would be no way out for the intruder in any intermediate 
stage. In addition, according to theorem 2 the network will be clean after 3×2n−1 
steps. 

Lemma 4. During the SCM strategy, when the agent at a node u=(ku,xu,yu) migrates to 
node (ku,xu,yu+1), all k-neighbors of u and all its y-neighbors with y<yu are clean. 

Regarding the proof of theorem 3, the set of clean nodes forms a connected 
subnetwork at any step of the search strategy. On the other hand, according to lemma 4, 
the algorithm moves the agents in such a way that the clean territory is always expan-
ding toward y=2n; hence, no node can be recontaminated. In addition, the proposed 
strategy does not allow removing of agents from the network. Therefore, one can 
derive the following theorem. 

Theorem 4. The SCM strategy is contiguous and monotonic. 

4   Hierarchical Migration (HM) Strategy 

4.1   The Algorithm 

The SCM strategy proposes an algorithm for capturing the intruder with an acceptable 
amount of searcher agents. However, the number of agents is not the sole effective 
factor in determining the performance of an algorithm for capturing an intruder. The 
other factors may encompass the total number of steps that the algorithm takes to 
complete, i.e. execution time and the total number of walks, which determines the 
traffic of agents on the network. Our second strategy tries to minimize the execution 
time of the algorithm but this swiftness is provided at the cost of more agents in the 
network. The Hierarchical Migration strategy for capturing the intruder in the 
pyramid is very fast, since it takes only 4n steps. However, it needs more agents than 
the previous algorithm. It begins with an initial agent located at the apex node. The 
initial agent replicates three agents and injects them into 3 nodes out of the 4 
contaminated lower level neighbors. Later, the initial agent moves to the remaining 
contaminated lower level neighbor. If every agent does the same, the network will be 
cleared after a finite number of steps. The whole algorithm can be summarized into 
the following steps. Each agent at a node like (k,x,y) does the following. 
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1. create a new agent and inject it to node (k+1,2x−1,2y−1), 
2. create a new agent and inject it to node (k+1,2x−1,2y), 
3. create a new agent and inject it to node (k+1,2x,2y), 
4. Move to node (k+1,2x,2y−1). 

Fig. 3 demonstrates the order in which nodes are cleaned in P4. 

1 4

2 3

5 82 5

6 73 4

3 6 4 7

4 5 5 6

7 8 8 96 7 7 8

6 9 7 105 8 6 9

9 106 78 95 6

8 115 87 104 5

8 9 9 105 6 6 7

7 10 8 114 7 5 8

10 117 87 84 5

9 126 96 93 6

0

x

ky

The apex 

The number near each node represents 
time of the search step resulting an 
agent present at that node. 
Nodes with even x value and odd y
value are the nodes that the agents in 
higher level mesh migrate to. Each of 
the other nodes receives a cloned 
version of a higher level agent. 
Links in k dimension are not shown. 

 

Fig. 3. Hierarchical Migration 

4.2   Complexity of the HM Strategy 

Theorem 5. The total number of agents needed to clean an n-level pyramid using the 

HM strategy is 22n, or ( )
n

O P , which is of linear order with respect to the order of 

the pyramid. 

Proof. The intuition behind the algorithm is to decontaminate the pyramid level by 
level, where for decontaminating a mesh of level k we need 2k×2k agents one for each 
node. Thus, to decontaminate the last level pyramid, 22n agents are essential, which is 
of the same order than the size of the pyramid, (4n+1−1)/3. 

Theorem 6. Cleaning the whole pyramid takes exactly 4n, or roughly ( )log nO P , 

steps using the HM strategy. 
Proof. Since every agent present at level k involves in four search steps, and agents act 
independently and in parallel, thus it takes four steps for migrating from level k to k+1. 
Hence, it takes 4n steps to reach the last level mesh, which is of the logarithmic order. 

Theorem 7. The HM strategy is execution-time-optimal. 

Proof. Since the algorithm is of complexity ( )log nO P , which is of linear order of 

network diameter, according to definition 8 it is execution-time-optimal. 
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Lemma 5. During the HM strategy, when the agent at node u=(k,x,y) migrates to node 
(k+1,2x,2y−1), all neighbors of u at  level k−1 are clean. 

Regarding the proof of theorem 5, the set of clean nodes forms a connected 
subnetwork at any step of the search strategy. On the other hand, according to lemma 
5, the algorithm creates and moves the agents in such a way that the clean territory is 
always expanding downward, i.e. toward the base k=n; hence, no node can be 
recontaminated. In addition, the proposed strategy does not allow removing of agents 
from the network. Therefore, one can derive the following theorem. 

Theorem 8. The HM strategy is contiguous and monotonic. 

5   Conclusions 

In this paper, we proposed two classes of algorithms for capturing an intruder in the 
pyramid interconnection network, namely the Straight Chain Movement (SCM) and 
Hierarchical Migration (HM). The SCM method is interesting in the sense that it uses 
a very low amount of agents for capturing the intruder in the graph, yet it may take 
much time to do so. The HM strategy, on the other hand, presents an execution-time-
optimal algorithm, which is of linear order of network diameter. 

The results of this paper are interesting in the sense that they can be generalized in 
order to be employed in similar hierarchical interconnection topologies. For example, 
the HM strategy can be easily adapted to a model of client server systems, where 
some clients are attached to a server and the server itself is a member of a network of 
servers which itself is controlled and managed by an ultimate server. 
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Appendix 
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                        (a)                                                                           (b) 
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(1,6) 

(1,7) 

(1,8) 

 

Fig. 4. Mesh and Pyramid topologies; a) An 8x5 Mesh, b) A Pyramid of level 2 
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Abstract. A novel speech enhancement method based on empirical
mode decomposition is proposed. The method is a fully data driven
approach. Noisy speech signal is decomposed adaptively into oscilla-
tory components called Intrinsic Mode Functions (IMFs) using a process
called sifting. The empirical mode decomposition denoising involves
thresholding each IMFs. A nonlinear function is introduced for ampli-
tude thresholding. And then reconstructs the estimated speech signal
using the processed IMFs. The experimental results show significant im-
provement in output SNR and quality as compared to recently reported
results.

1 Introduction

In short-wave channel communication there is a great deal of interferential noise
exist-ing in the surrounding environment, transmitting media, electronic com-
munication device and other speakers’ sound, etc. common in most practical
situations. In general, the addition of noise reduces intelligibility and degrades
the performance of digital voice processors used for applications such as speech
compression and recognition. Therefore, the problem of removing the uncorre-
lated noise component from the noisy speech signal, i.e., speech enhancement,
has received considerable attention. In speech communication over the short-
wave channel the purpose is to elevate the objective quality of speech signal
and the intelligibility of noisy speech in order to reduce the listener fatigue.
There have been numerous studies on the enhancement of the noisy speech sig-
nal. Many different types of speech enhancement algorithms have been proposed
and tested [1, 2, 3, 4, 6]. Spectral subtraction is a traditional method of speech
enhancement [6]. The major drawback of this method is the remaining musical
noise. Additionally a drawback of speech enhancement methods is the distortion
of the useful signal. The resolution is the compromise between signal distortion
and residual noise. Though this problem is well known, the study results in-
dicate that both of these cannot be minimized simultaneously. Minimum mean
square error (MMSE) [3] estimates on speech spectrum have been proposed. And
Ephraimand Van Trees proposed a signal-subspace-based spectral domain algo-
rithm, which controls the energy of residual noise in a certain threshold while
minimizing the signal distortion. Hence the probability of noise perception can

D. Grigoriev, J. Harrison, and E.A. Hirsch (Eds.): CSR 2006, LNCS 3967, pp. 591–599, 2006.
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be minimized. The drawback of this method is that it deals only with white
noise. EMD theory is the newly developed time-frequency analysis technology
and is especially of interest in non-stationary signals such as water, sonar, seismic
signal, etc [7, 8, 9, 10].

EMD is a technique that has been designed primarily for obtaining AM-FM
type representations in the case of signal, which are oscillatory (possibly non-
stationary or generated by a non-linear system), in automatic, full data-driven
way. Summarily, the main point of EMD is to consider oscillatory signals at the
level of their local oscillations and to formalize the idea that: ”signal=fast oscil-
lations superimposed to slow oscillations,” and to iterate on the slow oscillations
component considered as a new signal.

The application of EMD has many important problems, the first one is end
effect [7] and the second is the IMF criterion [7].

In this paper, a novel stop criterion was used to IMF criterion. And regression
support vector machine was used to solve the end effect problem. At last, the
new technique is utilized to decompose speech signals. A soft thresholding is
used to denoise every de-composed component. And then reconstruct signal to
achieve speech enhancement.

2 Empirical Mode Decomposition

The empirical mode decomposition(EMD) was first introduced by Huang et al.
[7]. The principle of this technique is to decompose adaptively a given signal into
oscillating components. These components are called intrinsic mode functions
(IMFs) and are obtained from the signal by means of an algorithm, called sifting.
It is a fully data driven method.

2.1 The Algorithm of EMD

The algorithm to create IMFs is elegant and simple. Firstly, the local extremes
in the time series data X(t) are identified, and then all the local maxims are
connected by a cubic spline line UX(t), known as the upper envelope of the data
set. Then, we repeat the procedure for the local minima to produce the lower
envelope, LX(t).

Their mean m1(t) is given by:

m1(t) =
LX(t) + UX(t)

2
(1)

It is a running mean. We note that both envelopes should cover by construc-
tion all the data between them.

Then we subtract the running mean m1(t), from the original data X(t), and
we get the first component, h1(t), i.e.:

h1(t) = X(t)−m1(t) (2)
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To check if h1(t) is an IMF, we demand the following conditions: (i)h1(t)
should be free of riding waves i.e. The rest component should not display under-
shots or over-shots riding on the data and producing local extremes without zero
crossing. (ii) To display symmetry of the upper and lower envelops with respect
to zero. (iii) Obviously the number of zero crossing and extremes should be the
same in both functions.

The sifting process has to be repeated as many times as it is required to
reduce the extracted signal to an IMF. In the subsequent sifting process steps,
h1(t) is treated as the data, then:

h11(t) = h1(t)−m11(t) (3)

If the function h11(t) does not satisfy criteria (i)-(iii), then the sifting process
continues up to k times, h1k, until some acceptable tolerance is reached:

h1k(t) = h1(k−1)(t)−m1k(t) (4)

The resulting time series is the first IMF, and then it is designated as C1(t) =
h1k. The first IMF component from the data contains the highest oscillation
frequencies found in the original data X(t).

The first IMF is subtracted from the original data, and this difference, is
called a residue r1(t) by:

r1(t) = X(t)− C1(t) (5)

The residue r1(t) is taken as if it was the original data and we apply to it again
the sifting process. The process of finding more intrinsic modes Cj(t) continues
until the last mode is found. The final residue will be a constant or a monotonic
function; in this last case it will be the general trend of the data.

X(t) =
n∑

j=1

Cj(t)− rn(t) (6)

Thus, one achieves a decomposition of the data into n-empirical IMF modes,
plus a residue, rn(t), which can be either the mean trend or a constant. We must
point out that this method do not requires a mean or zero reference, and only
needs the locations of the local extremes.

2.2 Maximum Power Entropy Used to IMF Stop Criterion

EMD decomposes the signal according to the signal itself and the number of the
IMFs is finite. IMFs reflect the intrinsic and reality information of the analyzed
signal. Therefore, EMD method is a self-adaptive signal-processing method that
is suitable for the analysis of non-linear and non-stationary process.

But if the decomposition is not correct, Each IMF component does not re-
flect the real physical processing. In addition, to obtain the IMF components
with EMD method, it is necessary to confirm the IMF criterion. Because EMD
method is a ‘sifting’ process, to decompose one IMF component needs many
times ‘sifting’.
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In this paper, we take the EMD as a system. And the aim of ‘sifting’ is to
make the system stationary. If the entropy is the same between the sifting, we
take the sifting processing should to be stopped.

Before sifting we take the system state is random. And the entropy is:

Hc[p(x), X ] = −
∫ ∞

−∞
p(x) log2 p(x)dx

= −
∫ ∞

−∞
p(x) log2

1√
2πσ2

e−
(x−m)2

2σ2 dx

= −
∫ ∞

−∞
p(x)(− log2

√
2πσ2)dx +

∫ ∞

−∞
p(x)(log2 e)[

(x−m)2

2σ2 ]

= log2

√
2πσ2 +

1
2

log2 e

=
1
2

log2(2πeσ
2) (7)

After the sifting the system entropy is:

Hc[q(x), X ] = −
∫ ∞

−∞
q(x) log2 q(x)dx

=
∫ ∞

−∞
q(x) log2[

1
q(x)

· p(x)
p(x)

]dx

= −
∫ ∞

−∞
q(x) log2 p(x)dx +

∫ ∞

−∞
q(x) log2[

p(x)
q(x)

]dx

≤ 1
2

log2(2πeσ
2) = Hc[p(x), X ] (8)

Now we can use the difference entropy to decision whether the sifting process-
ing should to be stopped.

Ip,q = Hc[p(x), X ]−Hc[q(x), X ]

=
1
2

log2(2πeP )− 1
2

log2(2πeP )

=
1
2

log2
P

P
(9)

2.3 Regression Support Vector Machine Used to End Effect

To solve the end effects of EMD, the regression support vector machines are used
to predict the signals before the signal is decomposed by EMD method.

Regression Support Vector Machines (SVRs) [11] are non-parametric predic-
tors designed to provide good generalization performance even on small training
sets. A SVM maps (through f) input (real-valued) feature vectors (x ∈ X with
labels y ∈ Y ) into a (much) higher dimensional feature space (z ∈ Z) through
some nonlinear mapping (something that captures the nonlinearity of the true
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decision boundary). In a feature space, we can classify the labeled feature vectors
(zi, yi) using hyper-planes:

yi[< zi, w > +b] ≥ ε (10)

And minimize the functional ϕ(w) = 1
2 < w,w >. The solution to this

quadratic program can be obtained from the saddle point of the Lagrangian:

L(w, b, α) =
1
2
< w,w > −Σαi(yi[< zi, w >]− ε) (11)

w∗ = Σyiα
∗
i zi, α

∗
i ≥ 0 (12)

The input feature vectors that have positive α∗
i are called Support Vectors

S = {zi|α∗
i > 0} and because of the Karush-Kuhn-Tucker optimality conditions,

the optimal weight can be expressed in terms of the Support Vectors alone.
This determination of w fixes the optimal separating hyper-plane. The above

step has the daunting task of transforming all the input raw features xi into the
corresponding zi and carrying out the computations in the higher dimensional
space Z. This can be avoided by finding a symmetric and positive semi-definite
function call the Kernel function between pairs of x ∈ X and z ∈ Z.

K : X ×X → R,K(a, b) = K(b, a), a, b ∈ X (13)

Then, by a theorem of Mercer, a transformation f : X → Z is induced for
which,

K(a, b) =< f(a), f(b) > (14)

Then the above Lagrangian optimization problem gets transformed to the
maximization of the following function:

W (α) = Σαi −
1
2
ΣαiαjyiyjK(xi, xj) (15)

w∗ = Σyiα
∗
i zi, α

∗
i ≥ 0 (16)

The set of hyper-planes considered in the higher dimensional space Z have a
small estimated VC dimension. That is the main reason for the good generaliza-
tion performance of SVRs.

3 Speech Enhancement Based on EMD

The objective of this research is to extract the clean speech x(n) from degraded
speech y(n) by a new soft thresholding criterion.

y(n) = x(n) + w(n) (17)

Where w(n) is an additive noise.
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Because the EMD transform satisfy to addition principle. So we can obtain
the following equal.

imfi(n) = imfxi(n) + imfwi(n) (18)

Where imfi(n), imfxi(n) and imfwi(n) are the ith IMF of y(n), x(n) and w(n)
respectively.

Let imf̂i(n) be an estimation of imfxi(n) based on the observation noisy
speech signal imfi(n). And then we can use the imf̂i(n) to reconstruct the
speech signal. The following is the method that how to estimate imf̂i(n) using
soft threshold.

Transform domain speech enhancement methods used amplitude subtraction
based soft thresholding defined by:

imf̂i(n) =

{
sgn(imfi(n))[imfi(n)− λi

exp( imfi(n)−λi
N )

], | imfi(n) |< λi

0, else.
(19)

Where the parameter λi is

λi =
3σ̂i

log(i + 1)
(20)

σ̂i is the standard deviation of the imfi(n)

σ̂i = (
1

N − 1

N∑
j=1

(imfi(j)− imfi)2)1/2 (21)

Where imfi is the mean of imfi(n)

imfi =
1
N

N∑
j=1

imfi(j) (22)

Note that the noise is traditionally characterized by high frequency. The energy
will often be concentrated on the high frequency temporal modes(the first IMFs)
and decrease towards the coarser ones.

The relationship between SNR, the level of IMF with σ̂i of an arbitrarily
selected speech and a noise of the noise-92 database is shown in Fig.1. It is
apparent from Fig.1 that alone with the increase of SNR or decomposed layer
of IMF, the standard deviation σ̂i make no difference to decrease. So σ̂i is an
effective and adaptive threshold.

At last, we can construct the denoised speech signal

x̂i(n) =
k∑

j=1

imf̂i(n) + rn(n) (23)
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Fig. 1. The relationship between layer, SNR and σ̂i

4 Experiments and Analysis

4.1 The Source of Experiment Data

The experiment data come from two parts. The first one is standard noise data-
base and speech database. It is used to test the proposed method using different
noise types and different SNRs. The second come from real short-wave speech
signal records on the spot.

4.2 The Results of Experiments and Analysis

Using the noise database NOISEX-92, different type noise are added to the same
pure speech signal. The enhanced SNR is shown in table 1. Because the different
of noise, the enhancement effect are different. From the table 1, we can see the
proposed method can effectively reduce the pink and white noise. For the babble
noise the proposed method performs not so well.

The second database comes from the real records on the spot, which include
many kinds of languages such as China, English, Japanese and so on. Each signal
length of 8 frequency bands is 5 minutes, and the sample rate is 11025Hz.Because
we can not get the clean speech signal, in this part we use subjective score for the
proposed method. Two methods are used to test. The first one is the proposed
method, and the other is the classical method spectral subtraction.

Table 1. The enhancement results of different noise with different SNR

Noise Pink Factory Airforce Babble White
-5 3.1 1.7 1.3 -1.2 5.2
0 9.2 5.4 4.5 2.5 12.7
5 15.2 11.9 11.2 8.2 18.0
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Table 2. The tests result of real short-wave speech signal

Frequency band Proposed method SS
1 4.2 3.1
2 4.6 3.3
3 4.5 3.2
4 3.7 2.1
5 5 4.2
6 4.8 4.4
7 3.4 2.1
8 4.9 4.7

From table 2, we can see the proposed method can efficiently remove the
noise. Because the different noise is in different frequency band, the effects of
enhancement are different also. In some band the enhancement effects of the
proposed method performed over the traditional method SS. And in the other
frequency band the enhancement effects almost equal to the method SS. But it
is worth to point out that the proposed method didn’t produce music noise.

5 Conclusions

In this paper, a novel method for speech enhancement was proposed. The en-
hancement scheme based on EMD is simple and full data-driven. It is fully
automated de-noising approach. The primary experiments show that the pro-
posed method can efficiently remove the non-stationary noise. It is important
for the short-wave communication, because it can elevate the objective quality of
speech signal and the intelligibility of noisy speech in order to reduce the listener
fatigue.
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Abstract. We present a method to convert the construction of binary decision
diagrams (BDDs) into extended resolution proofs. Besides in proof checking,
proofs are fundamental to many applications and our results allow the use of
BDDs instead—or in combination with—established proof generation techniques,
based for instance on clause learning. We have implemented a proof generator for
propositional logic formulae in conjunctive normal form, called EBDDRES. We
present details of our implementation and also report on experimental results. To
our knowledge this is the first step towards a practical application of extended
resolution.

1 Introduction

Propositional logic decision procedures [1, 2, 3, 4, 5, 6] lie at the heart of many appli-
cations in hard- and software verification, artificial intelligence and automatic theorem
proving [7, 8, 9, 10, 11, 12]. They have been used to successfully solve problems of con-
siderable size. In many practical applications, however, it is not sufficient to obtain a
yes/no answer from the decision procedure. Either a model, representing a sample so-
lution, or a justification, why the formula possesses none is required. So, e.g. in declar-
ative modeling or product configuration [9, 10] an inconsistent specification given by
a customer corresponds to an unsatisfiable problem instance. To guide the customer in
correcting his specification a justification why it was erroneous can be of great help.
In the context of model checking proofs are used, e.g., for abstraction refinement [11],
or approximative image computations through interpolants [13]. In general, proofs are
also important for certification through proof checking [14].

Using BDDs for SAT is an active research area [15, 16, 17, 18, 19, 20]. It turns out
that BDD [21] and search based techniques [2] are complementary [22, 23]. There are
instances for which one works better than the other. Therefore, combinations have been
proposed [16, 17, 20] to obtain the benefits of both, usually in the form of using BDDs
for preprocessing. However, in all these approaches where BDDs have been used, proof
generation has not been possible so far.

In our approach, conjunction is the only BDD operation considered to date. There-
fore our solver is far less powerful than more sophisticated BDD-based SAT solvers
[15, 16, 17, 18, 19, 20]. In particular, we currently cannot handle existential quantifica-
tion. However, our focus is on proof generation, which none of the other approaches
currently supports. We also conjecture that similar ideas as presented in this paper can
be used to produce proofs for BDD-based existential quantification and other BDD
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operations. This will eventually allow us to generate proofs for all the mentioned
approaches.

We have chosen extended resolution as a formalism to express our proofs, as it is
on the one hand a very powerful proof system equivalent in strength to extended Frege
systems [24], and on the other hand similar to the well-known resolution calculus [25].
Despite its strength, it still offers simple proof checking: after adding a check to avoid
cyclical definitions, an ordinary proof checker for resolution can be used.

Starting with [26], extended resolution has been mainly a subject of theoretical stud-
ies [27, 24]. In practical applications it did not play an important role so far. This may be
due to the fact that direct generation of (short) extended resolution proofs is very hard,
as there is not much guidance on how to use the extension rule. However, when “proofs”
are generated by another means (by BDD computations in our case), extended resolu-
tion turns out to be a convenient formalism to concisely express proofs. We expect that
a wide spectrum of different propositional decision procedures can be integrated into a
common proof language and proof verification system using extended resolution.

The rest of this paper is organized as follows: First, we give short introductions
to extended resolution and BDDs. Then we present our method to construct extended
resolution proofs out of BDD constructions. Thereafter, we portray details of our im-
plementation EBDDRES and show experimental results obtained with it. Finally, we
conclude and give possible directions for future work.

2 Theoretical Background

In this paper we are mainly dealing with propositional logic formulae in conjunctive
normal form (CNF). A formula F (over a set of variables V ) in CNF is a conjunction
of clauses, where each clause is a disjunction of literals. A literal is either a variable or
its negation. We use capital letters (C,D, . . . ) to denote clauses and small-case letters
to denote variables (a, b, c, . . . x, y, . . . ) and literals (l, l1, l2, . . . ). Instead of writing a
clause C = (l1 ∨ · · · ∨ lk) as a disjunction, we alternatively write it as a set of literals,
i.e. as {l1, . . . , lk}, or in an abbreviated form as (l1 . . . lk). For a literal l, we write l̄ for
its complement, i.e x̄ = ¬x and ¬x = x for a variable x.

2.1 Extended Resolution

Extended resolution (ER) was proposed by Tseitin [26] as an extension of the resolution
calculus [25]. The resolution calculus consists of a single inference rule,1

C∪̇{l} {l̄}∪̇D
C ∪D

and is used to refute propositional logic formulae in CNF. Here C and D are arbi-
trary clauses and l is a literal. A refutation proof is achieved, when the empty clause
(denoted by �) can be derived by a series of resolution rule applications. Extended

1 By ∪̇ we denote the disjoint union operation, i.e. A∪̇B is the same as A∪B with the additional
restriction that A ∩ B = ∅.
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resolution adds an extension rule to the resolution calculus, which allows introduction
of definitions (in the form of additional clauses) and new (defined) variables into the
proof. The additional clauses must stem out of the CNF conversion of definitions of the
form x ↔ F , where F is an arbitrary formula and x is a new variable, i.e. a variable
neither occurring in the formula we want to refute or in previous definitions nor in F .
In this paper—besides introducing two variables for the Boolean constants—we only
define new variables for if-then-else (ITE) constructs written as x ? a : b (for variables
x, a, b), which is an abbreviation for (x → a) ∧ (¬x → b). So introduction of a new
variable w as an abbreviation for ITE(x, a, b) = x ? a : b is reflected by the rule

(w̄x̄a)(w̄xb)(wx̄ā)(wxb̄)

which has no premises, and introduces four new clauses at once for the given instance
of the ITE construct. We have used the abbreviated notation for clauses here that leaves
out disjunction symbols. Concatenation of clauses is assumed to denote the conjunction
of these. It should also be noted that the extended clause set produced by applications
of the extension rule is only equisatisfiable to the original clause set, but not equivalent.

The interest in extended resolution stems from the fact that no super-polynomial
lower bound is known for extended resolution [24] and that it is comparable in strength
to the most powerful proof systems (extended Frege) for propositional logic [24]. This
also means that for formulae which are hard for resolution (e.g. Haken’s pigeon-hole
formulae [28]) short ER proofs exist [27]. Moreover, as it is an extension of the resolu-
tion calculus, ER is a natural candidate for a common proof system integrating different
propositional decision procedures like the resolution-based DPLL algorithm [1, 2] .

2.2 Binary Decision Diagrams

Binary Decision Diagrams (BDDs) were proposed by Bryant [21] to compactly repre-
sent Boolean functions as DAGs (directed acyclic graphs). In their most common form
as reduced ordered BDDs (that we also adhere to in this paper) they offer the advantage
that each Boolean function is uniquely represented by a BDD, and thus all semantically
equivalent formulae share the same BDD. BDDs are based on the Shannon expansion

f = ITE (x, f1, f0) = (x→ f1) ∧ (¬x→ f0) ,

decomposing f into its co-factors f0 and f1 (w.r.t variable x). The co-factor f0 (resp.
f1) is obtained by setting variable x to false (resp. true) in formula f and subsequent
simplification. By repeatedly applying Shannon expansion to a formula selecting split-
ting variables according to a global variable ordering until no more variables are left
(ending in terminal nodes 0 and 1), its BDD representation is obtained (resembling a
decision tree). Merging equivalent nodes (i.e. same variable and co-factors) and delet-
ing nodes with coinciding co-factors results in reduced ordered BDDs. Fig. 1 shows the
BDD representation of formula f = x ∨ (y ∧ ¬z).

To generate BDDs for (complex) formulae, instead of performing Shannon decom-
position and building them top-down, they are typically built bottom-up starting with
basic BDDs for variables or literals, and then constructing more complex BDDs by
using BDD operations (e.g., BDD-and, BDD-or) for logical connectives. As we will
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Algorithm 1. BDD-and(a, b)
1: if a = 0 or b = 0 then return 0
2: if a = 1 then return b else if b = 1 then return a
3: (x, a0, a1) = decompose(a); (y, b0, b1) = decompose(b)
4: if x < y then return new-node(y, BDD-and(a, b0), BDD-and(a, b1))
5: if x = y then return new-node(x, BDD-and(a0, b0), BDD-and(a1, b1))
6: if x > y then return new-node(x, BDD-and(a0, b), BDD-and(a1, b))

1

x

y

z

0 1

1

1
0

0

0

Fig. 1. BDD representation of formula x ∨ (y ∧ ¬z) using variable ordering x > y > z

need it in due course, we give the BDD-and algorithm explicitly (Algorithm 1). Here,
decompose breaks down a non-terminal BDD node into its constituent components, i.e.
its variable and cofactors. The function new-node constructs a new BDD node if it is
not already present, and otherwise returns the already existent node. The comparisons
in steps 4 to 6 are based on the global BDD variable order.

3 Proof Construction

We assume that we are given a formula F in CNF for which we want to construct an
ER proof that shows unsatisfiability of F (i.e., we show that ¬F is a tautology). Instead
of trying to derive such a proof directly in the ER calculus—which could be quite hard,
as there are myriads of ways to introduce new definitions—we first construct a BDD
equivalent to formula F and then extract an ER proof out of this BDD construction.
The BDD for formula F is built gradually (bottom-up) by conjunctively adding more
and more clauses to an initial BDD representing the Boolean constant true.

Starting with an ordered set of clauses S = (C1, . . . , Cm) for formula FS = C1 ∧
· · · ∧ Cm (which we want to proof unsatisfiable), we thus first build a BDD ci for each
clause Ci. Then we construct intermediate BDDs hi corresponding to partial conjunc-
tions C1 ∧ · · · ∧ Ci, until, by computing hm, we have reached a BDD for the whole
formula. These intermediate BDDs can be computed recursively by the equations

h2 ↔ c1 ∧ c2 and hi ↔ hi−1 ∧ ci for 3 ≤ i ≤ m .

If hm is the BDD consisting only of the 0-node, we know that formula FS is unsatisfi-
able and we can start building an ER proof.

The method to construct the ER proof works by first introducing new propositional
variables (thus ER is required), one for each node of each BDD that occurs during the
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construction process, i.e. for all ci and hi. New variables are introduced based on the
Shannon expansion of a BDD node: for an internal node f containing variable x and
having child nodes f1 and f0, a new variable (which we also call f ), defined by

f ↔ (x ? f1 : f0) (f̄ x̄f1)(f̄xf0)(fx̄f̄1)(fxf̄0)

is introduced. We have also given the clausal representation of the definition on the
right. Terminal nodes are represented by additional variables n0 and n1 defined by

n0 ↔ 0 (n̄0) and n1 ↔ 1 (n1) .

Note that introducing new variables in this way does not produce cyclic definitions,
as the BDDs themselves are acyclic. So by introducing variables bottom-up from the
leaves of the BDD up to the top node, we have an admissible ordering for applying the
extension rule.

With these definitions, we can give an outline of the ER proof we want to generate. It
consists of three parts: first, we derive unit clauses (ci) for the variables corresponding
to the top BDD nodes of each clause. Then out of the recursive runs of each BDD-
and-operation we build proofs for the conjunctions hi−1 ∧ ci ↔ hi (in fact, only the
implication from left to right is required). And finally, we combine these parts into a
proof for hm. If hm is the variable representing the zero node, i.e. hm = n0, we can
derive the empty clause by another single resolution step with the defining clause for
n0. We thus have to generate ER proofs for all of the following:

S � ci for all 1 ≤ i ≤ m (ER-1)

S � c1 ∧ c2 → h2 (ER-2a)

S � hi−1 ∧ ci → hi for all 3 ≤ i ≤ m (ER-2b)

S � hm (ER-3)

For a proof of (ER-1) for some i assume that clause D = Ci consists of the literals
(l1, . . . , lk). We assume literals to be ordered decreasingly according to the BDD’s
global variable ordering. Then the newly introduced variables for the nodes of the BDD
representation of clause D are dj ↔ (lj ? n1 : dj+1) if lj is positive, and dj ↔
(l̄j ? dj+1 : n1) if lj is negative. We identify dk+1 with n0, and ci with d1 here.
These definitions induce—among others—the clauses (dj l̄jn̄1) and (dj lj d̄j+1) for all
1 ≤ i ≤ k. We therefore obtain the following ER proof for (d1): First, we derive
(dkl1 . . . lk−1n̄1) by resolving (l1 . . . lk) with (dk l̄kn̄1). Then, iteratively for j = k
down to j = 2, we derive (dj−1l1 . . . lj−2n̄1) from (dj l1 . . . lj−1n̄1) by

(dj l1 . . . lj−1n̄1) (dj−1lj−1d̄j)
(dj−1l1 . . . lj−1n̄1) (dj−1 l̄j−1n̄1)

(dj−1l1 . . . lj−2n̄1)

And finally, we derive the desired (d1) by resolving (d1n̄1) with (n1).
For (ER-2a) and (ER-2b), assume that we want to generate a proof for the general

implication f ∧ g → h (i.e. for the clause (f̄ ḡh)), where we have h computed as the
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conjunction of f and g by the BDD-and operation. Definitions for the BDD nodes resp.
variables are given by the Shannon expansion of f , g and h as

f ↔ (x ? f1 : f0) (f̄ x̄f1)(f̄xf0)(fx̄f̄1)(fxf̄0)
g ↔ (x ? g1 : g0) (ḡx̄g1)(ḡxg0)(gx̄ḡ1)(gxḡ0)
h ↔ (x ? h1 : h0) (h̄x̄h1)(h̄xh0)(hx̄h̄1)(hxh̄0) .

We can now recursively construct an ER proof for the implication f ∧ g → h, where in
the recursion step we assume that proofs for both f0 ∧ g0 → h0 and f1 ∧ g1 → h1 are
already given. We thus obtain:

(hxh̄0)

(ḡxg0)
(f̄xf0)

...
(f̄0ḡ0h0)

(f̄xḡ0h0)

(f̄ ḡxh0)
(f̄ ḡhx)

...
(f̄1ḡ1h1) (f̄ x̄f1)

(f̄ x̄ḡ1h1) (ḡx̄g1)

(f̄ ḡx̄h1) (hx̄h̄1)
(f̄ ḡhx̄)

(f̄ ḡh)

The recursive process stops when we arrive at the leave nodes resp. the base case
of the recursive BDD-and algorithm. This algorithm stops, if either of its arguments
is a Boolean constant, or when both arguments are the same. In each case we obtain
tautological clauses, like e.g. (n̄0ḡn0) for f being the 0-BDD, or (f̄ f) for computing
the conjunction of two identical arguments. We call this a trivial step of the BDD-and
algorithm. Moreover, we may stop the recursion, if f implies g (or vice versa), as we
then have generated the tautological clause (f̄ gf). This case we call a redundant step
of the algorithm. We will show below how such tautological clauses can be avoided or
eliminated in the ER proof.

For a proof of (ER-3) we just have to combine parts one and two: We can resolve the
derived unit clauses (c1) and (c2) with the implication (c̄1c̄2h2) to produce a proof of
(h2), and then continue iteratively using (ER-2b) to derive further unit clauses (hi) for
all 3 ≤ i ≤ m. Finally, (hm) is resolved with (n̄0) to produce the empty clause. This
completes the whole ER proof for unsatisfiability of FS .

3.1 Avoiding Tautological Clauses

The proofs (ER-2a) and (ER-2b) presented above may contain tautological clauses that
are introduced by equivalent BDD nodes. So if, e.g., f0 = h0, the recursive proof step
starts with a tautological clause in the left branch. We now give a detailed construction
that avoids such clauses completely, starting with some definitions:

Definition 1 (Line, Step). A triplet of BDD nodes (f, g, h) such that h is the BDD
node representing f ∧ g is called a (BDD-and) step. A step is called trivial if f or g are
Boolean constants or if f = g. A non-trivial step is also called a (cache) line. Steps and
lines are also identified with clauses, where a line (f, g, h) corresponds to the clause
(f̄ ḡh). We identify nodes with ER variables here.
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Definition 2 (Redundancy). A line L = (f, g, h) is called redundant if f = h or
g = h, otherwise it is called irredundant. The notion of redundancy also carries over
to the clause (f̄ ḡh) corresponding to line L.

When we have reached an irredundant step (f̄ ḡh), we can check whether the co-factor
clauses of the assumptions (f̄0ḡ0h0) and (f̄1ḡ1h1) of the step are redundant. If this is
the case, the proof has to be simplified and recursion stops (in all but one case) at the
redundant step. We now give simplified proofs that contain no tautological clauses for
the recursion step of the proofs (ER-2a) and (ER-2b). In what follows, we call the sub-
proof of (f̄ ḡhx) out of (f̄0ḡ0h0) the left branch and the sub-proof of (f̄ ḡhx̄) out of
(f̄1ḡ1h1) the right branch of the recursive proof step.

R1. If f0 = h0, we obtain a proof for the left branch (and analogously for g0 = h0
and for f1 = h1 or g1 = h1 on the right branch) by resolving (hxh̄0) and (f̄xf0)
to produce (f̄hx). Although we have proved a stronger claim on the left branch in
this case, it cannot happen that g also disappears on the right branch, as this would
only be possible if f1 = h1. But then f = h would also hold and the step (f̄ ḡh)
would already be redundant, contradicting our assumption.

T1. If f0 = g0 (this is not a tautological case, however) then h0 = f0 = g0 also holds,
so that we arrive at the case above (and similarly for f1 = g1). We can even choose
which of the definitions (either for f or for g) we want to use.

T2. If f0 = 1 we obtain h0 = g0 and we can use the proof given under (R1) for the left
branch (similar for g0 = 1, f1 = 1, and g1 = 1). If f0 = 0, we can use the definition
(f̄xn0) of f and (n̄0) of 0 to derive the stronger (f̄x). It cannot happen that f1 = 0
at the same time (as then the step would be trivial), so the only possibility where
we are really left with a stronger clause than the desired (f̄ ḡh) occurs when f0 = 0
and g1 = 0 (or f1 = g0 = 0). Then we have h = 0 and we can derive (f̄ ḡ). In this
case we just proceed as in case (H0) below.

H0. If h = 0 we let h0 = h1 = 0 and recursively generate sub-proofs skipping the
definition of h by rule (X1) below.

H1. The case h = 1 could only happen if f = g = 1 would also hold. But then the step
would be redundant. If h0 = 1 we derive the stronger (hx) by resolving (hxn̄1)
with (n1), and similar for h1 = 1. It cannot happen that we have h0 = h1 = 1 at
the same time, as this would imply h = 1. Thus, on the other branch we always
obtain a clause including f̄ and ḡ and therefore the finally resulting clause is always
(f̄ ḡh).

X1. If the decision variable x does not occur in one or several of the BDDs f , g, or h
(i.e., for example, if f = f0 = f1) the respective resolution step(s) involving f̄ , ḡ,
or h, can just be skipped.

Note that in all degenerate cases besides cases (T2) (only for f0 = g1 = 0 or
f1 = g0 = 0) and (H0) the proof stops immediately and no recursive descent towards
the leaves of the BDD is necessary. If the last proof step in any of the sub-proofs of (ER-
2a) or (ER-2b) results in a redundant step, the proof of part (ER-3) contains tautological
clauses and must be simplified. So assume in (ER-2a) that the last step is redundant, i.e.
in (c̄1c̄2h2) either c1 = h2 or c2 = h2 holds. In both cases the BDD-and computation
is not needed and we can skip the resolution proof for h2 and use clause c1 or c2,
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whichever is equivalent to h2, in the subsequent proof. The same holds for (ER-2b), if
the last proof step is redundant and we thus have hi−1 = hi or ci = hi. Again, we can
drop the BDD-and computation and skip the resolution proof for hi out of hi−1 and ci,
but instead using hi−1 or ci directly.

A further reduction in proof size could be achieved by simplifying definitions in-
troduced for BDD nodes with constants 0 and 1 as co-factors. So instead of using
f ↔ (x ? n1 : f0) as definition for a node f with constant 1 as its first co-factor,
we could use the simplified definition f ↔ (x̄ → f0) which would result in only three
simpler clauses (f̄xf0), (fx̄), and (f f̄0).

4 Implementation and Experimental Results

We have implemented our approach in the SAT solver EBDDRES. It takes as input a
CNF in DIMACS format and computes the conjunction of the clauses after transforming
them into BDDs. The result is either the constant zero BDD, in which case the formula is
unsatisfiable, or a non-zero BDD. In the latter case a satisfying assignment is generated
by traversing a path from the root of the final BDD to the constant one leaf.

In addition to solving the SAT problem, a proof trace can be generated. If the formula
is unsatisfiable the empty clause is derived. Otherwise a unit clause can be deduced. It
contains a single variable which represents the root node of the final BDD. The trace
format is similar to the trace format used for ZCHAFF [14] or MINISAT [6]. In partic-
ular, we do not dump individual resolution steps, but combine piecewise regular input
resolution steps into chains, called trivial resolution steps in [29]. Each chain has a set
of antecedent clauses and one resolvent. The antecedents are treated as input clauses
in the regular input resolution proof of the resolvent. Our trace checker is able to in-
fer the correct resolution order for the antecedents by unit propagation after assuming
the negation of the resolvent clause. Original clauses and those used for defining new
variables in the extended resolution proof are marked by an empty list of antecedents.
Note that a proof checker for the ordinary resolution calculus is sufficient for extended
resolution proofs, too, as all definitional clauses produced by the extension rule can
be added initially, and then only applications of the resolution rule are required to be
checked.

The ASCII version of the trace format itself is almost identical to the DIMACS
format and since the traces generated by EBDDRES are quite large we also have a
compact binary version, comparable to the one used by MINISAT. Currently the trans-
lation from the default ASCII format into the binary format is only possible through an
external tool. Due to this current limitation we were not able to generate binary traces
where the ASCII trace was of size 1GB or more.

For the experiments we used a cluster of Pentium IV 3.0 GHz PCs with 2GB main
memory running Debian Sarge Linux. The time limit was set to 1000 seconds, the
memory limit to 1GB main memory and no size limit on the generated traces was im-
posed. Besides the pigeon hole instances (ph*) we used combinatorial benchmarks from
[22, 30], more specifically mutilated checker board (mutcb*) and Urquhart formulae
(urq*), FPGA routing (fpga*), and one suite of structural instances from [31], which
represent equivalence checking problems for adder circuits (add*). The latter suite of
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Table 1. Comparison of trace generation with MINISAT and with EBDDRES

MINISAT EBDDRES
solve trace solve trace trace size bdd recursive bdd and-steps trace

resources size resources gen. ASCII binary nodes all triv. lines red. core chk
sec MB MB sec MB sec MB MB ×103 ×103 ×103 ×103 ×103 ×103 sec

ph7 0 0 0 0 0 0 1 0 3 20 10 10 0 10 0
ph8 0 4 1 0 3 0 3 1 15 67 34 33 0 33 0
ph9 6 4 11 0 3 0 3 1 8 90 45 45 0 45 0

ph10 44 4 63 1 17 1 30 10 136 538 270 269 1 268 1
ph11 887 6 929 1 13 1 21 8 35 670 335 334 1 333 1
ph12 * - - 2 28 1 33 12 31 1150 575 574 1 573 1
ph13 * - - 10 102 8 260 92 850 5230 2615 2614 2 2612 8
ph14 * - - 10 111 7 204 74 166 6554 3278 3276 2 3274 7

mutcb9 0 4 0 0 5 0 5 2 27 141 71 70 22 48 0
mutcb10 0 4 1 0 8 0 11 4 58 311 156 155 49 106 0
mutcb11 1 4 4 1 17 1 31 10 153 818 409 409 129 280 1
mutcb12 8 4 22 2 33 2 69 22 320 1763 882 881 282 600 2
mutcb13 113 5 244 6 102 5 181 61 817 4453 2227 2226 707 1519 5
mutcb14 490 8 972 14 250 10 393 132 1694 9446 4724 4723 1515 3208 10
mutcb15 * - - 36 498 25 1009 * 4191 23119 11560 11559 3690 7868 25
mutcb16 * - - - * - - - - - - - - -

urq35 96 4 218 2 28 1 37 13 24 1216 608 608 0 608 1
urq45 * - - - * - - - - - - - - - -

fpga108 0 0 6 47 4 135 47 186 4087 2044 2043 3 2040 4
fpga109 0 0 3 44 2 70 24 83 2218 1109 1109 1 1108 2

fpga1211 0 0 54 874 38 1214 * 1312 33783 16892 16891 41 16850 38
add16 0 0 0 0 4 0 6 2 30 100 51 50 1 49 0
add32 0 0 0 1 9 1 24 8 122 445 223 222 4 217 1
add64 0 4 0 12 146 9 338 112 1393 5892 2948 2944 19 2925 9

add128 0 4 0 - * - - - - - - - - - -

The first column lists the name of the instance. Columns 2-4 contain the data for MINISAT,
first the time taken to solve the instance including the time to produce the trace, then the memory
used, and in column 4 the size of the generated trace. The data for EBDDRES takes up the rest of
the table. It is split into a more general part in columns 5-9 on the left. The right part provides more
detailed statistics in columns 10-15. The first column in the general part of EBDDRES shows the
time taken to solve the instance with EBDDRES including the time to generate and dump the
trace. The latter is shown separately in column 7. The memory used by EBDDRES, column 6, is
linearly related to the number of generated BDD nodes in column 10 and the number of generated
cache lines in column 13. The number of recursive steps of the BDD-and operation occurs in
column 11. Among these steps many trivial base cases occur (column 12) and the number of
cache lines in column 13 is simply the number of non trivial steps. Among the cache lines several
redundant lines occur (column 14) in which the result is equal to one of the arguments. The core
consists of irredundant cache lines necessary for the proof. Their number is listed in the next to
last column (column 15). The last column (column 16) shows the time taken by the trace checker
to validate the proof generated by EBDDRES. The * denotes either time out (>1000 seconds) or
out of memory (>1GB main memory).

benchmarks is supposed to be very easy for BDDs with variable quantification, which
is not implemented in EBDDRES. Starting with ZCHAFF [4], these benchmarks also
became easy for search based solvers.

As expected, the experimental data in Tab. 1 shows that even our simplistic approach
in conjoining BDDs to solve SAT, is able to outperform MINISAT on certain hard com-
binatorial instances in the ph* and mutcb* family. In contrast to the simplified expo-
sition in Sec. 3 a tree shaped computation turns out to be more efficient for almost all



Extended Resolution Proofs for Conjoining BDDs 609

benchmarks. Only for one benchmark family (mutcb*) we used the linear combination.
The results of Sec. 3 transfer to the more general case easily.

For comparison we used the latest version 1.14 of MINISAT, with proof generation
capabilities. MINISAT in essence was the fastest SAT solver in the SAT’05 SAT solver
competition. MINISAT in combination with the preprocessor SATELITE [32] was even
faster in the competition, but we could not use SATELITE, because it cannot generate
proofs. The binary trace format of EBDDRES (see column 9 of Tab. 1) is comparable—
though not identical—to the trace format of MINISAT. EBDDRES was able to pro-
duce smaller traces for certain instances. Since for EBDDRES the traces grow almost
linear in the number of steps, we expect much smaller traces for more sophisticated
BDD-based SAT approaches.

Similar to related approaches, EBDDRES does not use dynamic variable ordering
but relies on the choice of a good initial static order instead. We experimented with
various static ordering algorithms. Only for the add* family of benchmarks it turns out
that the variable order generated by our implementation of the FORCE algorithm of
[33] yields better results. For all other families we used the original ordering. It is given
by the order of the variable indices in the DIMACS file. Improvements on running times
and trace size will most likely not be possible from better variable ordering algorithms.
But we expect an improvement through clustering of BDDs and elimination of variables
through existential quantification.

In general, whether BDD-based methods or SAT solvers behave superior turned out
to be highly problem dependent, as other empirical studies also suggest [18, 19, 22].

5 Conclusion and Future Work

Resolution proofs are used in many practical applications for proof checking, debug-
ging, core extraction, abstraction refinement, and interpolation. This paper presents and
evaluates a practical method to obtain extended resolution proofs for conjoining BDDs
in SAT solving. Our results enable the use of BDDs for these purposes instead—or in
combination with—already established methods based on DPLL with clause learning.

As future work the ideas presented in this paper need to be extended to other BDD
operations besides conjunction, particularly to existential quantification. We also con-
jecture that equivalence reasoning and, more generally, Gaussian elimination over GF(2),
can easily be handled in the same way.

Finally we want to thank Eugene Goldberg for very fruitful discussions about the
connection between extended resolution and BDDs.
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A Example Extended Resolution Proof

To further illustrate proof generation and avoidance of tautological clauses, we give an
example showing construction of part (ER-2a) of the ER proof. Let S = (C,D) be an
ordered clause set with C = (ab) and D = (āb). The defining equations for the BDDs
for C and D then are (using variable ordering b > a)

c↔ (b ? n1 : c0) d↔ (b ? n1 : d0)
c0 ↔ (a ? n1 : n0) d0 ↔ (a ? n0 : n1)

and the resulting BDD h2 denoting the conjunction of C and D is given by h2 ↔
(b ? n1 : n0). So the first part of our ER proof consists of introducing five new variables
c, c0, d, d0 and h2 together with their defining clauses by five applications of the exten-
sion rule. Then the resolution part follows. The last recursive step to derive c∧ d→ h2
looks like this:

(h2bn̄0)

(d̄bd0)
(c̄bc0)

...
(c̄0d̄0n0)

(c̄bd̄0n0)

(c̄d̄bn0)
(c̄d̄h2b)

(n̄1n̄1n1) (c̄b̄n1)
(c̄b̄n̄1n1) (d̄b̄n1)

(c̄d̄b̄n1) (h2b̄n̄1)
(c̄d̄h2b̄)

(c̄d̄h2)

When we apply the rules stated above to avoid tautological clauses (three times rule
(R1)), the whole proof for c ∧ d→ h2 reduces to the following:

(h2bn̄0)
(d̄bd0)

(c̄bc0)
(c̄0an0) (d̄0ān0)

(c̄0d̄0n0)

(c̄bd̄0n0)
(c̄d̄bn0)

(c̄d̄h2b)
(c̄b̄n1) (h2b̄n̄1)

(c̄h2b̄)

(c̄d̄h2)
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Abstract. Difference Systems of Sets (DSS) are combinatorial structures that
are used in code synchronization. A DSS is optimal if the associated code has
minimum redundancy for the given block length n, alphabet size q, and error-
correcting capacity ρ. An algorithm is described for finding optimal DSS that
admit prescribed symmetries defined by automorphisms of the cyclic group of
order n, together with optimal DSS found by this algorithm.

Keywords: code synchronization, comma-free code, cyclic difference set,
multiplier.

1 Introduction

Difference systems of sets are used for the construction of comma-free codes to resolve
the code synchronization problem. We consider the following situation of transmitting
data over a channel, where the data being sent is thought as a stream of symbols from a
finite alphabet Fq = {0, 1, ..., q−1}. The data stream consists of consecutive messages,
each message being a sequence of n consecutive symbols:

. . . x1 . . . xn︸ ︷︷ ︸ y1 . . . yn︸ ︷︷ ︸ . . . ,
where x = x1...xn and y = y1...yn are two consecutive messages. The code syn-
chronization problem is how to decode a message correctly without any additional in-
formation concerning the position of word synchronization points (i.e., the position of
commas separating words).

A q-ary code of length n is a subset of the set Fn
q of all words of length n over

Fq = {0, 1, ..., q − 1}. If q is a prime power, we often identify Fq with a finite field of
order q. A linear q-ary code (q a prime power), is a linear subspace of Fn

q .
Define the ith overlap of x = x1...xn and y = y1...yn as

Ti(x,y) = xi+1...xny1...yi, 1 ≤ i ≤ n− 1.

It is clear that a code C ⊆ Fn
q can resolve the synchronization problem if any overlap of

two codewords from C, which may be identical, is not a codeword. A comma-free code
is a code that satisfies this requirement. The comma-free index ρ(C) of a code C ⊆ Fn

q

is defined as
ρ(C) = min d(z, Ti(x, y)),

D. Grigoriev, J. Harrison, and E.A. Hirsch (Eds.): CSR 2006, LNCS 3967, pp. 612–618, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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where the minimum is taken over all x, y, z ∈ C and all i = 1, ..., n − 1, and d is
the Hamming distance between words in Fn

q . The comma-free index ρ(C) allows one
to distinguish a code word from an overlap of two code words provided that at most
1ρ(C)/22 errors have occurred in the given code word [5].

A difference system of sets (DSS) with parameters (n, τ0, . . . , τq−1, ρ) is a collec-
tion of q disjoint subsets Qi ⊆ {1, . . . , n}, |Qi| = τi, 0 ≤ i ≤ q − 1, such that the
multi-set

M = {a− b (mod n) | a ∈ Qi, b ∈ Qj , i �= j} (1)

contains every number i, (1 ≤ i ≤ n − 1), at least ρ times. A DSS is perfect if every
number i, (1 ≤ i ≤ n − 1) appears exactly ρ times in the multi-set of differences (1).
A DSS is regular if all subsets Qi are of the same size: τ0 = τ1 = . . . = τq−1 = m.
We use the notation (n,m, q, ρ) for a regular DSS on n points with q subsets of size m.
DSS were introduced in [7], [8] as a tool for the construction of comma-free codes with
prescribed comma-free index obtained as cosets of linear codes. Since the zero vector
belongs to any linear code, the comma-free index of a linear code is zero. However,
it is possible to find codes with comma-free index ρ > 0 being cosets of linear codes
by utilizing difference systems of sets. Given a DSS, {Q0, . . . , Qq−1}, with parameters
(n, τ0, . . . , τq−1, ρ), one can define a linear q-ary code C ⊆ Fn

q of dimension n− r and
redundancy r, where

r =
q−1∑
i=0

|Qi|, (2)

whose information positions are indexed by the numbers not contained in any of the
sets Q0, . . . , Qq−1, and having all r redundancy symbols equal to zero. Replacing in
each vector x ∈ C the positions indexed by Qi with the symbol i (0 ≤ i ≤ q − 1),
yields a coset C′ of C with comma-free index at least ρ [7].

The redundancy of a code counts the number of positions added for error detection
and correction. Thus, it is desirable that the redundancy is as small as possible.

Let rq(n, ρ) denote the minimum redundancy (2) of a DSS with parameters n, q,
and ρ. A DSS is called optimal if it has minimum redundancy for the given parameters.
Levenshtein [7] proved the following lower bound on rq(n, ρ):

rq(n, ρ) ≥

√
qρ(n− 1)
q − 1

, (3)

with equality if and only if the DSS is perfect and regular.
Wang [13] proved a tighter lower bound on rq(n, ρ) as follows.

Theorem 1.

rq(n, ρ) ≥

⎧⎨⎩
√

qρ(n−1)
q−1 + 1 if

√
qρ(n−1)
q−1 is a square-free integer;√

qρ(n−1)
q−1 otherwise,

(4)

with equality if and only if the DSS is perfect and the difference between the sizes of any
two distinct Qi and Qj is not greater than one.
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A cyclic (n, k, λ) difference set D = {x1, x2, ..., xk} is a collection of k residues
modulo n, such that for any residue α �≡ 0 (mod n) the congruence

xi − xj ≡ α (mod n)

has exactly λ solution pairs (xi, xj) with xi, xj ∈ D.
If D = {x1, x2, ..., xk} is a cyclic difference set with parameters (n, k, λ), then the

collection of all singletons, {{x1}, ..., {xk}}, is a perfect regular DSS with parameters
(n,m = 1, q = k, ρ = λ). Hence, difference systems of sets are a generalization of
cyclic difference sets. Various constructions of DSS obtained by using general parti-
tions of cyclic difference sets are given in Tonchev [10], [11], and Mutoh and Tonchev
[9]. Cummings [4] gave another construction method for DSS and two sufficient con-
ditions for a systematic code to be comma-free. Although these papers give explicit
constructions of several infinite families of optimal DSS, no general method is known
for finding optimal DSS and the value of rq(n, ρ) for given parameters n, q, ρ, except
in the case when q = 2 and ρ = 1 or 2.

In [12], we described a general algorithm for finding optimal DSS with given pa-
rameters n, q, ρ based on searching through all partitions of Zn into q disjoint parts.
Since this algorithm tests all (up to some obvious isomorphisms) possibilities, the ex-
pense of computation increases exponentially with linear increase of the values of the
parameters.

In this paper, we present a restricted algorithm for finding optimal DSS that admit
prescribed symmetries defined by automorphisms of the cyclic group of order n, known
as multipliers (Section 2). Examples of optimal DSS found by this algorithm are given
in Section 3.

2 An Algorithm for Finding DSS Fixed by a Multiplier

If D is a cyclic difference set and s is an integer, the set D + s = {x + s (mod n) |
x ∈ D} is called a cyclic shift of D.

Suppose t and n are relatively prime. If tD = D + s for some integer s, then t is
called a multiplier of D.

Multipliers play an important role in the theory of cyclic difference sets. It is known
that if D is a cyclic (n, k, λ) difference set then every prime number t > λ that divides
k − λ and does not divide n is a multiplier of D [6].

In this Section, we describe an algorithm for finding optimal DSS obtained as q-
partitions that are fixed by some multiplier.

For any pair of positive relatively prime integers n and p with p < n, the map

fp : α −→ pα (mod n), α ∈ Zn (5)

partitions the group Zn into pairwise disjoint sets called orbits of Zn under fp.
If a DSS with parameter n is preserved by a map fp, where p is a positive integer

such that p < n and gcd(p, n) = 1, then p is called a multiplier of the DSS.

Example 1. Let n = 19 and p = 7. The positive integers modulo 19 are partitioned into
the following seven orbits under the multiplier p = 7:

{0}, {1, 7, 11}, {2, 14, 3}, {4, 9, 6}, {5, 16, 17}, {8, 18, 12}, {10, 13, 15}. (6)
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The three sets {1, 7, 11}, {2, 14, 3}, {8, 18, 12} form a perfect and optimal DSS with
q = 3, ρ = 3, and r = 9. Another optimal DSS with the same parameters is {1, 2, 4},
{7, 14, 9}, {11, 3, 6}. Both DSS are preserved by the map

f7 : α −→ 7α (mod 19).

Thus, p = 7 is a multiplier of these two DSS.

Let S ⊂ Zn be a cyclic (n, k, λ) difference set and p be a multiplier of S, that is,
S is preserved by the map fp : i −→ pi (mod n). Then fp partitions S into disjoint
orbits. Our algorithm 2.1 is designed to find optimal DSS being a union of such orbits.
The external function GENORBITS(S, n, p) generates all orbits partitioning S under the
map fp. The return value of GENORBITS(S, n, p) are the number of orbits, stored in
size, and an array of all orbits, where orbits[i] is the ith orbit for 0 ≤ i ≤ size− 1.

This algorithm takes a set S and two integers n and p as inputs, whereS is preserved
under the map fp. The algorithm tests all possible partitions such that

⋃q−1
i=0 Qi =⋃size−1

j=0 orbits[j], to find an optimal DSS.

Algorithm 2.1. SEARCHDSS(S, n, p, q)

procedure RECSEARCH(t)
if t = size

then
{

if {Qi} is a DSS
then return (1)

else for i← 0 to q − 1

do

⎧⎨⎩Qi ← Qi

⋃
orbits[t]

if RECSEARCH(t + 1) = 1
then return (1)

main
size, orbits← GENORBITS(S, n, p)
if size < q

then return (0)
Q0 ← orbits[0]
return (RECSEARCH(1))

A slight modification of the algorithm 2.1 applies to partitions of Zn preserved by
a given multiplier. Note that the set of all nonzero integers modulo n is a trivial cyclic
(n, n− 1, n− 2) difference set. Instead of checking all partitions of Zn, algorithm 2.2
tests all cases where Qi is one orbit or a union of several orbits under some map fp.
Now the input parameters are n, S = Zn and a positive integer p, where n and p are
relatively prime and p < n.

Some optimal DSS found by this algorithm are given in next section. The source
code of a program written in Mathematica implementing this algorithm is available at
www.math.mtu.edu/∼hwang.
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Algorithm 2.2. SEARCHDSS2(S, n, p, q)

procedure RECSEARCH2(t)
if {Qi} is a DSS

then return (1)
for i← 0 to q − 1

do

⎧⎨⎩
Qi ← Qi

⋃
orbits[t]

if RECSEARCH2(t + 1) = 1
then return (1)

main
size, orbits← GENORBITS(S, n, p)
if size < q

then return (0)
for i← 0 to size− q

do
{
Q0 ← orbits[i]
return (RECSEARCH2(i + 1))

3 Some Optimal DSS with Multipliers

As an illustration of our algorithm, we list below optimal DSS found by using multipli-
ers.

The first few examples are DSS obtained from cyclic difference sets fixed by a
multiplier. We used the list of cyclic difference sets given in [1]. Note that if λ = 1, the
only perfect DSS is the collection of singletons Q0 = {x1}, . . . , Qk−1 = {xk}.

– n = 15, q = 3, ρ = 2, p = 2, PG(3, 2)
{0;1,2,4,8;5,10}

– n = 31, q = 3, ρ = 5, p = 2, QR
{1, 2, 4, 8, 16; 5, 10, 20, 9, 18; 7, 14, 28, 25, 19}

– n = 43, q = 3, ρ = 7, p = 11, QR
{1, 11, 35, 41, 21, 16, 4; 6, 23, 38, 31, 40, 10, 24;9, 13, 14, 25, 17, 15, 36}

– n = 85, q = 3, ρ = 2, p = 2, PG(3, 4)
{0;1, 2, 4, 8, 16, 32, 64, 43, 7, 14, 28, 56, 27, 54, 23, 46;17, 34, 68, 51}

– n = 156, q = 3, ρ = 2, p = 5, PG(3, 5)
{0, 1, 5, 25, 125, 11, 55, 119, 127, 28, 140, 76, 68, 46, 74, 58, 134, 86, 118, 122, 142, 87,
123, 147, 111; 13, 65, 91, 143, 117; 39}

– n = 103, q = 3, ρ = 17, p = 13, QR
{1, 13, 66, 34, 30, 81, 23, 93, 76, 61, 72, 9, 14, 79, 100, 64, 8;
2, 26, 29, 68, 60, 59, 46, 83, 49, 19, 41, 18, 28, 55, 97, 25, 16;
4, 52, 58, 33, 17, 15, 92, 63, 98, 38, 82, 36, 56, 7, 91, 50, 32}

– n = 127, q = 3, ρ = 21, p = 2, QR
{1, 2, 4, 8, 16, 32, 64, 19, 38, 76, 25, 50, 100, 73, 47, 94, 61, 122, 117, 107, 87; 9, 18, 36,
72, 17, 34, 68, 11, 22, 44, 88, 49, 98, 69, 21, 42, 84, 41, 82, 37, 74; 13, 26, 52, 104, 81, 35,
70, 15, 30, 60, 120, 113, 99, 71, 31, 62, 124, 121, 115, 103, 79}
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– n = 127, q = 9, ρ = 28, p = 2, QR
{1, 2, 4, 8, 16, 32, 64; 9, 18, 36, 72, 17, 34, 68; 11, 22, 44, 88, 49, 98, 69; 13, 26, 52, 104,
81, 35, 70; 15, 30, 60, 120, 113, 99, 71; 19, 38, 76, 25, 50, 100, 73; 21, 42, 84, 41, 82, 37,
74; 31, 62, 124, 121, 115, 103, 79; 47, 94, 61, 122, 117, 107, 87}

– n = 585, q = 3, ρ = 2, p = 2, PG(3, 8)
{0; 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 439, 293, 5, 10, 20, 40, 80, 160, 320, 55, 110, 220,
440, 295, 17, 34, 68, 136, 272, 544, 503, 421, 257, 514, 443, 301, 39, 78, 156, 312, 43, 86,
172, 344, 103, 206, 412, 239, 478, 371, 157, 314, 123, 246, 492, 399, 213, 426, 267, 534,
483, 381, 177, 354; 65, 130, 260, 520, 455, 325, 195, 390}

– n = 151, q = 5, ρ = 30, p = 2, QR
{1, 2, 4, 8, 16, 32, 64, 128, 105, 59, 118, 85, 19, 38, 76;
5, 10, 20, 40, 80, 9, 18, 36, 72, 144, 137, 123, 95, 39, 78;
11, 22, 44, 88, 25, 50, 100, 49, 98, 45, 90, 29, 58, 116, 81;
17, 34, 68, 136, 121, 91, 31, 62, 124, 97, 43, 86, 21, 42, 84;
37, 74, 148, 145, 139, 127, 103, 55, 110, 69, 138, 125, 99, 47, 94}

– n = 199, q = 5, ρ = 30, p = 2, QR
{1, 5, 25, 125, 28, 140, 103, 117, 187, 139, 98, 92, 62, 111, 157, 188, 144, 123, 18, 90, 52,
61, 106, 132, 63, 116, 182, 114, 172, 64, 121, 8, 40;
2, 10, 50, 51, 56, 81, 7, 35, 175, 79, 196, 184, 124, 23, 115, 177, 89, 47, 36, 180, 104, 122,
13, 65, 126, 33, 165, 29, 145, 128, 43, 16, 80;
4, 20, 100, 102, 112, 162, 14, 70, 151, 158, 193, 169, 49, 46, 31, 155, 178, 94, 72, 161, 9,
45, 26, 130, 53, 66, 131, 58, 91, 57, 86, 32, 160}

The next examples are optimal DSS found by partitioning the whole cyclic group
Zn (or the trivial (n, n− 1, n− 2) cyclic difference set) with a given multiplier p.

– n = 31, q = 4, ρ = 6, p = 2 :
{0; 1, 2, 4, 8, 16; 5, 10, 20, 9, 18; 7, 14, 28, 25, 19}

– n = 43, q = 4, ρ = 8, p = 11 :
{ 0; 2, 22, 27, 39, 42, 32, 8; 3, 33, 19, 37, 20, 5, 12; 7, 34, 30, 29, 18, 26, 28 }

– n = 127, q = 2, ρ = 16, p = 2 :
{ 0, 1, 2, 4, 8, 16, 32, 64, 3, 6, 12, 24, 48, 96, 65, 9, 18, 36, 72, 17, 34, 68, 19, 38, 76, 25, 50,
100, 73, 21, 42, 84, 41, 82, 37, 74; 5, 10, 20, 40, 80, 33, 66, 7, 14, 28, 56, 112, 97, 67, 11,
22, 44, 88, 49, 98, 69, 13, 26, 52, 104, 81, 35, 70, 47, 94, 61, 122, 117, 107, 87, 55, 110, 93,
59, 118, 109, 91 }
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Abstract. Wireless local area networks (WLANs) are quickly becom-
ing ubiquitous in our every day life. The increasing demand for ubiq-
uitous services imposes more security threats to communications due
to open mediums in wireless networks. The further widespread deploy-
ment of WLANs, however, depends on whether secure networking can be
achieved. We propose a simple scheme for implementing authentication
based on the One-Time Password (OTP) mechanism. The authentica-
tion protocol is proposed to solve the weak authentication and security
flaw problem of the WEP in 802.11 WLAN. Further we have simulated
the implementation of proposed scheme and EAP-OTP and analyzed the
performance in terms of different performance metrics such as response
time and authentication delay.

1 Introduction

Wireless local area networks (WLANs) are quickly becoming ubiquitous in our
every day life. Users are adopting the technology to save the time, cost, and
mess of running wire in providing high speed network access. Specifically, the
IEEE 802.11 [1] WLAN, popularly known as Wireless Fidelity (Wi-Fi) has
grown steadily in popularity since its inception and is now well positioned to
complement much more complex and costly technologies such as the Third
Generation (3G).

The freedom and mobility that WLANs promise also present some serious
security challenges. WLANs are not limited by network jacks nor are they lim-
ited by geography. WLANs provide unprecedented flexibility in that an area not
originally intended as a collaborative workspace can accommodate a large num-
ber of wireless clients. The further widespread deployment of WLANs, however,
depends on whether secure networking can be achieved.

2 Security in Wireless LAN

In the IEEE 802.11 Wireless LANs, [2] security measures such as Wired Equiv-
alent Privacy (WEP) and shared Authentication scheme have been originally
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employed. However, the new security protocols such as Wi-Fi Protected Access
(WPA) and IEEE 802.11i protocols have been established that replace WEP
and provide real security. [3]

2.1 Wired Equivalent Privacy

WEP offers an integrated security mechanism that is aimed at providing the
same level of security experienced in wired networks. WEP is based on the RC4
symmetric stream cipher and uses static, pre-shared, 40 bit or 104 bit keys on
client and access point. [4]

Several WEP key vulnerabilities are due to many reasons such as use of static
WEP keys, use of 40-bit or 128-bit RC4 keys for the WEP and vulnerable 24-bit
Initialization Vector (IV). [5]

2.2 Authentication

The current Wireless LAN standard includes two forms of authentication: open
system and shared key. The open system authentication is a null authentication
process where the client knowing Service Set Identifier (SSID) always successfully
authenticates with the AP. The second authentication method utilizes a shared
key with a challenge and a response. Actually, shared-key authentication uses
WEP encryption and therefore can be used only on products that implement
WEP.

2.3 Wi-Fi Protected Access

The WPA protocol, backed by the Wi-Fi Alliance, is considered as a temporary
solution to the weakness of WEP. WPA is designed to secure all versions of 802.11
devices, including multi-band and multi-mode. Its authentication is based on the
802.1x authentication protocol that was developed for wired networks, as well
as Extensible Authentication Protocol (EAP). WPA is forward-compatible with
the 802.11i specification.

WPA offers two primary security enhancements over WEP: Enhanced data
encryption through Temporal Key Integrity Protocol (TKIP) and Enterprise-
level user authentication via IEEE 802.1x. [6]

2.4 IEEE 802.11i Protocol

The 802.11i is a standard for WLANs that provides improved encryption for
networks that use the IEEE 802.11 standards. To reach that purpose, the IEEE
802.11i Task Group has defined a new protocol called, Robust Security Network
(RSN). [7] The 802.11i standard was officially ratified by the IEEE in June 2004.
As anticipated by most Wi-Fi manufacturers, the IEEE 802.11i protocol is the
ultimate security mechanism for IEEE 802.11 WLANs, which is known as WPA
version 2 (WPA2). [6]

The 802.11i protocol consists of three protocols, organized into two layers.
On the bottom layer are TKIP and CCMP (Counter Mode with Cipher Block
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Chaining Message Authentication Code Protocol) - an AES (Advanced Encryp-
tion Standard) based protocol. [8] While TKIP is optional in 802.11i, CCMP
is mandatory for anyone implementing 802.11i. Above the TKIP and CCMP
is the 802.1x protocol, which provides user-level authentication and encryption
key distribution. However, AES requires a dedicated chip, and this may mean
hardware upgrades for most existing Wi-Fi networks.

3 One Time Password System

One form of attack on network computing systems is eavesdropping on network
connections to obtain authentication information such as the login IDs and pass-
word of legitimate users. Once this information is captured, it can be used at a
later time to gain access to the system. One-time Password (OTP) system [9]
designed to counter this type of attack, called a replay attack.

A sequence of OTP produced by applying the secure hash function multiple
times gives to the output of the initial step (called S). That is, the first OTP
to be used is produced by passing S through the secure hash function a number
of times (N) specified by the user. The next OTP to be used is generated by
passing S through the secure hash function N-1 times. An eavesdropper who
has monitored the transmission of OTP would not be able to generate the next
required password because doing so would mean inverting the hash function.

The OTP improves security by limiting the danger of eavesdropping and
replay attacks that have been used against simple password system. The use of
the OTP system only provides protections against passive eavesdropping and
replay attacks. It does not provide for the privacy of transmitted data, and
it does not provide protection against active attacks. The success of the OTP
system to protect host system is dependent on the non-invert (one-way) of the
secure hash functions used.

4 Design of Authentication Scheme

There is a desire to increase the security and performance of authentication
mechanisms due to strong user authentication, protection of user credentials,
mutual authentication and generation of session keys. As demand for strong
user authentication grows, OTP-based authentications tend to become more
common.

We propose a simple scheme for implementing authentication mechanism
based on the hash function. The authentication protocol is proposed to solve
the weak authentication and security flaw problem of WEP in 802.11 WLAN.

4.1 Overviews

In this scheme, the AP receives the password which is processed from the client
and the server’s original password exclusive-OR (XOR) the stream bits, in order
to defend malice attack. The server examines client’s password, stream bits and
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transmits new stream bits to the client for next authentication by privacy-key
cryptography. The AP computes simple hash function, and compares the hash
value between the client and the server. If the result is true, the AP sends
authentication success frame to the client. Then the client responds for update
client’s database. Then the client sends One-time Password (OTP) to the AP.
The key exchange between the client and the AP generates a session key. Finally,
the client refreshes secret key of the WEP in IEEE 802.11, to defend replay
attack.

4.2 Rationale

In order to prevent client and AP in this protocol from several attack meth-
ods. The techniques include per-packet authentication and encryption, etc are
adopted. This scheme can be used for defending malice attack by verification of
the client’s password and defending replay attack by refreshing secret key.

4.3 Working Principle

There are four phases in proposed authentication scheme, which are as follows:

1. Phase 0: Discovery phase;
2. Phase 1: OTP Authentication phase;
3. Phase 2: Secure key exchange phase; and
4. Phase 3: Refreshing OTP phase.

The conversation phases and relationship between the parties is shown in
Fig 1.

Fig. 1. Conversation Overviews

Phase 0: Discovery Phase

In the discovery phase (phase 0), the client and AP locate each other and dis-
cover each other’s capabilities. IEEE 802.11 provides integrated discovery sup-
port utilizing Beacon frames, allowing the client (known as the station or STA)
to determine the Media Access Control (MAC) address and capabilities of Access
Point or AP.
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Phase 1: OTP Authentication Phase

The authentication phase (phase 1) begins once the client and AP discover each
other. This phase always includes OTP authentication. In this phase, the client
authenticates itself as a legal member for a particular AP. The steps are shown
as the follows:

Step 1: The AP send Request message.
Step 2: The client will then send {IDC‖YC‖H(IDC , A)}. Where IDC is

client’s identity; YC = aRC mod q; RC is random number produced by a client;
H() is one way hash function; A = PWC ⊕ SB; PWC is client’s password; and
SB is stream bits generated by the server to share with the client.

Step 3: After receiving {IDC‖YC‖H(IDC , A)} from the client, the AP sends
{IDA‖IDC} to the server. Where IDA is AP’s Identity.

Step 4: Depending on IDC , the server examines PWC , SB, and client’s pri-
vacy key (KC) from user’s database, and generates a new stream bits (SBN ) and
A. The IDC and SBN are encrypted with KC producing EKC (IDC‖SBN). Then
EKC (IDC‖SBN), IDC , and A are encrypted by server with symmetric cryp-
tosystem to get EAS(IDC‖A‖EKC (IDC‖SBN)). Then {IDA‖EAS(IDC‖A‖
EKC (IDC‖SBN))} is send to the AP.

Step 5: Upon receiving {IDA‖EAS(IDC‖A‖EKC (IDC‖SBN))} from the
server, then the AP computes and verifies H(IDC , A) between the client and the
server. If true, it will send authentication success frame {IDC‖YA‖EKC (IDC‖
SBN )} to the client. Where YA = aRA mod q; RA is random number produced
by AP. YA will be used for key exchange in later steps.

Step 6: The client accomplishes authentication procedure, then it sends {IDC

‖H(SBN)} to the server through the AP to update client’s database in the
server.

Step 7: The client and the AP apply YA or YC to generate a session key (K),
then the client sends {IDC‖EK(otp‖ctr‖IDC)} to the AP. Where otp is the
client’s one time password shared with the AP; and ctr is the counter of otp.

Step 8: The AP responds with {IDC‖H(otp, ctr)} to the client.
It should be noted the counter is a positive integer and will decrease by one

once the otp is changed. When it decreases to zero, the client should reinitialize
his otp.

Phase 2: Secure Key Exchange Phase

The Secure key exchange phase (phase 2), begins after the completion of OTP
authentication. In practice, the phase 2 is used to negotiate a new secret key
between the client and the AP. Similar to the authentication phase, a MAC is
added to each packet and then is encrypted together, and the receiver should
check the MAC. The steps of the protocol are as shown in the following:

Step 1: The client sends {IDC‖EK(otpI+1‖H(otpI , ctr, IDC))} to AP. It
should be noted that H(optI+1) is equal to otpI and K is session key by OTP
authentication phase (phase 1).
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Step 2: The AP checks the MAC and IDC by checking if H(optI+1) is equal
to otpI . If this is true, the client is a legal member. It will replace otpI by optI+1
and decrease the counter by 1. And AP transmits H(otpI , ctr) to client.

Step 3: The client checks Hash value and decreases the counter by 1.
By these three steps, the client and the AP can achieve the goal of mutual

authentication. In this phase, both the client and the AP have the same new
secret key of WEP just for this session.

Phase 3: Refreshing OTP Phases
When the counter decreases to zero, the client should change its One-time Pass-
word, otherwise the AP has the right to prohibit the client from using its services.
The steps of the protocol are shown in the following:

Step 1: The client sends its {IDC‖EK(otpI+1‖otpN‖ctrN , H(otpI+1, otpN ,
ctrN , IDC))} to AP, where H(otpI+1) is equal to otpI , otpN is its new One-
time Password, ctrN is a new counter for this new password (otpN ) and K is
session key by authentication phase.

Step 2: The AP verifies the MAC and otpI+1 (check H(otpI+1) is equal to
otpI). If this is true, the client is a legal member, and AP replaces the otpI by
otpN and resets the ctr to ctrN . Then the AP sends {IDC‖H(otpI , ctr)} to the
client.

Step 3: The client checks his ID and the Hash value.

4.4 Security Analysis

The proposed authentication mechanism is analyzed:

Malice attack Protection - In this scheme, the AP receives the password which
is processed from the client and the server’s original password exclusive-OR
(XOR) the stream bits, in order to defend malice attack.

Mutual Authentication - This scheme provides mutual authentication. Strong
mutual authentication can prevent user from being impersonated.

Replay Protection - This scheme is inherently designed to avoid replay attacks
by choosing One-time Password is that it refreshes secret key of the WEP
in IEEE 802.11 anytime. Because of refresh OTP, the lifetime of the share
key can be extended.

Confidentiality - Each the element of the key exchange is protected by a shared
secret that provides high confidentiality.

5 Related Works

Lamport [10] proposed a One-time password/hash-chaining technique, which has
been used in many applications. S/KEY [11] is an authentication system that
uses one-time passwords. The S/KEY system is designed to provide users with
one-time passwords which can be used to control user access to remote hosts.
One-time Password (OTP) system [9] designed to provide protections against
passive eavesdropping and replay attacks.
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The IETF RFC 3748 [12] has defined that with Extensible Authentication
Protocol (EAP), OTP method can be used. Further the Internet draft [13] defines
the One-time Password (OTP) method, which provide one-way authentication
but not key generation. As a result, the OTP method is only appropriate for
use on networks where physical security can be assumed. This method is not
suitable for using in wireless IP networks, or over the Internet, unless the EAP
conversation is protected.

6 Simulation Model

In order to evaluate the performance of the proposed authentication scheme in
Wireless LAN, we have simulated several scenarios in wireless network using
OPNET Modeler, [14] which a discrete event-driven simulator tool capable of
modeling both wireless and wireline network.

6.1 Scenario

For analyzing the effect of proposed authentication scheme in WLAN, we have
designed experimental model.

The experimental model for evaluating proposed authentication mechanism
in Wireless LAN is depicted in Fig. 2. In this model, it consists of wireless clients,
Access Point (AP), authentication server and main FTP server.

The main FTP server is capable of providing file transfer service. File transfer
service can be provided to wireless clients in a wireless network. The wireless
network consists of various wireless users using IEEE 802.11b devices. For the
experimental purpose, two scenarios have been designed. First one with the
implementation of proposed authentication scheme in wireless network whereas
second with implementation of EAP-OTP in wireless network. The Network An-
alyzer is used to capture network statistics and the measurements were collected
from the server.

Fig. 2. Simulation Model
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6.2 Assumptions

We have implemented the proposed authentication mechanism and the EAP-
OTP in our experiment.

For the wireless users, we have considered IEEE 802.11b as our WLAN pro-
tocol. And the transmission speed is 11 Mbps between the AP and the clients.

For the experimental evaluation, we have assumed the various performance
metrics in order to analyze the effect of proposed authentication scheme and the
EAP-OTP. We have considered following performance metrics:

– Response Time: the total time required for traffic to travel between two
points. It includes connection establishment, security negotiation time as
well as the actual data transfer time.

– Authentication Delay: the time involved in an authentication phase of a
given protocol.

6.3 Results and Analysis

In order to investigate the performance of proposed and EAP-OTP authentica-
tion schemes in wireless 802.11 network, we have analyzed different aspects of
experimental results obtained. Particularly we have investigated the impact of
proposed authentication scheme and EAP-OTP in Wireless IP network on the
response time and authentication delay.

Fig. 3 illustrates the mean response time of FTP traffic for different numbers
of wireless clients for two scenarios - first scenario is proposed authentication
scheme and second is EAP-OTP. It can be seen that the response time in second
scenarios has slightly lower than that of first one.

The Authentication delays for different numbers of wireless clients in both
scenarios - proposed scheme and EAP-OTP are depicted in Fig. 4. On analyzing
two scenarios of the experiment, it can be seen that the Authentication delay
for proposed is reduced than that for EAP-OTP.

Fig. 3. Response Time
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Fig. 4. Authentication Delay

7 Conclusion and Future Work

In this paper we have shown the major security measures in wireless LAN and
drawback of the WEP in IEEE 802.11b. We propose authentication scheme for
Wireless IP network. Proposed authentication scheme has advantage that it
makes the simpler computational complexity with sufficient security. The con-
cept of refresh password is proposed to renew the secret key of the WEP in IEEE
802.11. Moreover, it will be convenient for a user to register once to a server for
roaming every AP.

We have simulated the experimental scenarios for implementation of pro-
posed scheme and for implementation of EAP-OTP. We have analyzed the
results of the experimental analysis of the authentication schemes used in Wire-
less IP network. Performance analysis of two different authentication methods
over wireless IP network was investigated in order to view its impact on per-
formance measurements such as response time and authentication delay. In
terms of authentication delay, proposed authentication scheme shows better
performance.

As the properties of authentication protocols are extremely subtle, informal
reasoning might not be sufficient. Thus the use of rigorous and formal analyt-
ical techniques is desirable for understanding the capabilities of the authenti-
cation scheme. The most popular approach to analyze authentication protocols
is through the use of logic. The one of known logics is the BAN logic [15] [16],
named after its inventors M. Burrows, M. Abadi, and R. Needham. The BAN
logic maps initial knowledge states and assumptions into formulas in the logic.
The predefined postulates, initial states, assumptions and protocols steps lead
to reasoning into final beliefs that can then be used to verify the design objec-
tive. In the future work, we will formulate a formal analysis of authentication
mechanism using one-time password protocol for IEEE 802.11 wireless network
using BAN logic.
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Abstract. This paper drew up a personalized recommender system
model combined the text categorization with the pagerank. The doc-
ument or the page was considered in two sides: the content of the doc-
ument and the domain it belonged to. The features were extracted in
order to form the feature vector, which would be used in computing the
difference between the documents or keywords with the user’s interests
and the given domain. It set up the structure of four block levels in infor-
mation management of a website. The link information was downloaded
in the domain block level, which is the top level of the structure. In the
host block level, the links were divided into two parts, the inter-link and
the intra-link. All links were setup with different weights. The stationary
eigenvector of the link matrix was calculated. The final order of docu-
ments was determined by the vector distance and the eigenvector of the
link matrix.

1 Introduction

Applying the peer-to-peer architectural paradigm to Web search engines has
recently become a subject of intensive research. Whereas proposals have been
made for the decomposition of content-based retrieval techniques, such as classi-
cal text-based vector space retrieval or latent semantic indexing, it is much less
clear of how to decompose the computation for ranking methods based on the
link structure of the Web.

As a user, in order to find, collect and maintenance the information, which
maybe useful for the specific aims, s/he have to pay more time, money and
attention on the retrieval course.

There are many search engines, such as Yahoo, Google, etc. to help the
user to search and collect the information from the Internet. The features of
the Internet, such as mass, semi-structure, have become drawbacks in using the
information widely in Internet.[1]
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In order to make the information retrieval system more efficient, the artificial
intelligence (AI) technologies have been suggested to use. The IR models can be
divided into two items, the one is based on the large scales machine learning,
and another is based on the intelligent personalization.

For the user interested in the special domain, for example, the computer
science or architectonics, it may be a good way to support the results by using
intelligent personalization.

This paper describes the architecture of information retrieval model based
on the intelligent personalization. The aim is to provide the information related
to the given domain. The model receives the request of user, interprets it, selects
and filters the information from Internet and local database according to the
profile of the user. The user profile is maintained according to the feedback of
the user. The pagerank values of documents are computed before they are stored.

This paper is organized as follows: Section 2 introduces the basic concept
of TFIDF and the Pagerank. Section 3 describes the architecture of the new
system. Section 4 discusses the process of re-ranking. Section 5 introduces the
query process. Section 6 discusses the shortcoming and the room for improvement
of the system, and section 7 gives the conclusion.

2 Basic Concept

2.1 TFIDF and Text Categorization

TFIDF (Term Frequency / Inverse Document Frequency) is the most common
weighting method used to describe documents in the Vector Space Model (VSM),
particularly in IR problems. Regarding text categorization, this weighting func-
tion has been particularly related to two important machine learning methods:
kNN (k-nearest neighbor) and SVM(Support Vector Machine). The TFIDF func-
tion weights each vector component (each of them relating to a word of the
vocabulary) of each document on the following basis.

Assuming vector d̃ = (d(1), d(2), ..., d|F |) represents the document d in a vector
space. It is obviously that documents with similar content have similar vector.
Each dimension of the vector space represents a word selected by the feature
selection.

The values of the vector elements d(i)(i ∈ (0, |F |)) for a document d are
calculated as a combination of the statistics TF (w, d) and DF (w) (document
frequency).

TF (w, d) is the number of word occurred in document d. DF (w) is the num-
ber of documents in which the word w occurred at least once time. The IDF (w)
can be calculated as

IDF (w) = log
Nall

DF (w)
.

Where Nall is the total number of documents. Obviously, the IDF (w) were low
if w occurred in many documents and it were the highest if w occurred in only
one.
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The value d(i) of feature wi for the document d is then calculated as

d(i) = TF (wi, d)× IDF (wi).

d(i) is called the weight of word wi in document d. [9-12]
The TFIDF algorithm learns a class model by combining document vectors

into a prototype vector C̃ for every class C ∈ Ç. Prototype vectors are generated
by adding the document vectors of all documents in the class.

C̃ =
∑
d∈C

d̃.

This model can be used to classify a new document d′. d′ can be represented
by a vector d̃′ . And the cosine distance between the prototype vector of each
class and d̃′ is calculated. The d′ is belonged to the class with which the cosine
distance has the highest value.

HTFIDF (d′) = argmaxcos(d̃′, C̃).

Where HTFIDF (d′) is the category to which the algorithm assigns document d′.

HTFIDF (d′) = argmax(
d̃′ · C̃

‖d̃′‖ · ‖C̃‖
) = argmax(

|F |∑
i=1

[d′(i) · C(i)]√
|F |∑
i=1

[d′(i)]2 ·

√
|F |∑
i=1

[C(i)]2
).

2.2 Pagerank

For a search engine, after finding all documents using the query terms, or related
to the query terms by semantic meaning, the result, which maybe a large num-
ber of web pages, should be managed in order to make this list clearly. Many
search engines sort this list by some ranking criterion. One popular way to create
this ranking is to exploit the additional information inherent in the web due to
its hyper linking structure. Thus, link analysis becomes the means to ranking.
One successful and well publicized link-based ranking system is PageRank, the
ranking system used by the Google search engine.

The Google search engine is based on the popular PageRank algorithm first
introduced by Brin and Page in Ref.[6]. The algorithm can be described as:

Let u be the web page. Then let Fu be the set of pages u points to and Bu

be the set of pages that point to u. Let Nu be the number of links from u and
let c be a factor used for normalization (so that the total rank of all web pages
is constant).

R(u) = c
∑
v∈Bu

R(v)
Nv

.

This algorithm displays that the pagerank of page u comes from the pages
that point to it, and u also transfers its pagerank to the pages which it points to.
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Considering the pages and the links as a graph G = P (Page, Link), we can
describe the graph by using the adjacency matrix. The entries of the matrix, for
example pij , can be defined as:

pij =
{

1 Link i→ j exists
0 Otherwise.

Here i, j ∈ (1, n) and n is a number of web pages. Because the total probability
from one page to others can be considered 1, the rows, which correspond to pages
with a non-zero number of out-links deg(i) > 0, can be made row-stochastic (row
entries non-negative and sum to 1) by setting pij = pij/deg(i). That means if the
page u has m out-links, the probability of following each of out-links is 1/m. We
assume all the m out-links from page u have the similar probability. Actually,
there is difference among them, and one link maybe more important than others.
We can assume the probability list,

{w1, w2, · · · , wm;
m∑
i=1

wi = 1}.

which can promise the pagerank more precise.
If we considered the property of the adjacency matrix, we could find the

adjacency matrix correspond to a Markov chain.
According to the Chapman-Kolmogorov Equations, for the Markov chains,

we can get

pn+m
ij =

∞∑
k=0

pnikp
m
kj (n,m ≥ 0, ∀i,∀j)

If we let P (n) denote the matrix of n− step transition probabilities pnij , then
we can asserts that

P (n+m) = P (n) · P (m);

P (2) = P (1) · P (1) = P · P = P 2;

P (n) = P (n−1+1) = P (n−1) · P (1) = Pn−1 · P = Pn.

That is, the n − step transition matrix can be obtained by multiplying the
matrix P by itself n times.

The case discussed above is ideal. For a real adjacency matrix P , in fact,
there are many special pages without any out-link from them, which are called
dangling page. Any other pages can reach the dangling page in n(n ≥ 1) steps,
but it is impossible to get out. The dangling page is called absorbing state. In
the adjacency matrix, the row, corresponding to the dangling page is all zeros.
Thus, the matrix P is not a row-stochastic. It should be deal with in order to
meet the requirement of the row-stochastic.

One way to overcome this difficulty is to slightly change the transition ma-
trix P . We can replace the rows, all of the zeros, with v = (1/n)eT , where eT is
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the row vector of all 1s and n is the number of pages of P contains. The P will
be changed to P ′ = P + d · vT . Where

d =
{

1 if deg(i) = 0
0 Otherwise.

is the dangling page indictor. If there were a page without any out-link from it,
we could assume it can link to every other pages in P with the same probability.
After that there is not row with all 0s in matrix P ′. P ′ is row-stochastic. [26]

Because P ′ corresponds to the stochastic transition matrix over the graph
G, Pagerank can be viewed as the stationary probability distribution over pages
induced by a random walk on the web. The pagerank can be defined as a limiting
solution of the iterative process:

x
(k+1)
j =

∑
i

P ′
ijx

(k)
i =

∑
i→j

x
(k)
i /deg(i).

Because of the existing of zero entries in the matrix P ′, it cannot be insure
the existence of the stationary vector. The problem comes from that the P ′ may
be reducible.

In order to solve the problem, P ′ should be modified by adding the connection
between every pair of pages.

Q = P ′′ = cP ′ + (1 − c)evT , e = (1, 1, · · · , 1)T .

Where c is called dangling factor, and c ∈ (0, 1) . In most of the references, the
c is set [0.85,1).

After that, it can be consider that all of the pages are connected (Strong
connection). From one of the pages, the random surfer can reach every other
page in the web. The Q is irreducible. For Q

(k)
ii > 0, (i, k ∈ [1, n]) , the Q is

aperiodic.
Above all, the matrix Q is row-stochastic, irreducible and aperiodic. The

Perron-Frobenius theorem guarantees the equation x(k+1) = QTx(k) (for the
eigensystem QTx = x ) converges to the principal eigenvector with eigenvalue 1,
and there is a real, positive, and the biggest eigenvector.

3 Architecture of the System

The goal of this system is to help the users to find the information on Inter-
net easily and quickly. It requests the system should process the information
resource independently, gather the information the users are interested in, filter
the repeating one, wipe off the useless one, and store them to the local database.
This system should be feasible, friendly, adaptable, and transplantable.

The system would not take the place of Yahoo or Google, it will be an en-
trance of personalized search engine. With the interaction between the user and
the system, it will gather the personalized information of the user. Fig.1 shows
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Fig. 1. The architecture of the system

the architecture of the system. The architecture is composed of five components,
local database, and a user profile base. The architecture of the system is de-
scribed in details as follows:[4]

(1) Man-Machine Communication component (MM): this component serves
as the communication interface between the user and the system. The user inputs
the keywords or other kinds of the requests to the system and receives the results
from the interface.

(2) Query Interpret component (QI): this component enhances the user’s
query based on the user profile. Due to the difference of the knowledge and the
domain, not all of the users can express his/her request exactly. As an informa-
tion retrieval system, it should decide what kinds of sources should to be queried,
how to modify the query expression the user has submitted in order to utilize
the underlying search engines more, and how to order the feedback results.

(3) Retrieval component (RE): this component sends the requests and gets
the information from Internet and the local database. There are two expectations
in information retrieval, the precision and the recall. The precision shows the
degree of the feedback results case to the user’s needs. The recall shows the
percentage of the feedback results to the total records, which are related to the
user’s needs. The results from the Internet maybe more general and the results
from the local database maybe more accurate. In this system, the output list
will be combined by the two kinds of results.

(4) Filtering component (FI): this component filters the raw data from the
RE based on the user profile. The feedback results from the Internet are the raw
data according to the keywords and query expression. They cannot meet the
user’s needs satisfactorily. This component filters the results according to the
domains or the subjects the user interested. The related data of user’s feature
and the domain have been stored in the User Profile Base.
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(5) Analysis & Synthesis component (AS): this component uses the filtered
information to enhance decision making, uses data mining techniques and the
user profile to analyze and synthesize the information retrieved.

(6) User Profile Base (UPB): a knowledge base for the users. There are two
kinds of forms.

– The one is the holistic user profiles for all the users of a system; this concep-
tual profile base can either be distributed across the system or stored in a
central location, the holistic user profile consists of a personal profile, a func-
tional area profile, a current project profile, an organizational environment
profile, and a client-type profile.

– Another is the storing feature or the visiting model of the specifically kind of
the user. The initial data are set by manual. When the user visits the Inter-
net, the historical pages are recorded and downloaded. The system extracts
the information from the pages, extracts the class keywords, and constructs
the vector of every page. The distance between the page vector and the do-
main vector is calculated. According to the distance, the user’s personalize
model is built. This model will be refined based on the feedbacks the user
interested.

(7) Local Database (LD): it stores the data, which have been downloaded
from the Internet according to the historical pages. Most of the knowledge on
Internet are non-structure or semi-structure. They are different from the data
stored in the local relational database. Most of the non-structure and semi-
structure data are organized as the natural language model. Those data should
be converted before they are stored to the relational database, after that, they
can be shared and utilized effectively.

4 Re-ranking the Pages

In this section, we introduce two kinds of calculation used in this system. The
first is the similarity computing of the vector, and the second is the pagerank
re-computing.

4.1 Extracting Keywords

In our system, we should select the keywords from the given domain. In the tra-
ditional algorithm of text categorization or recommender system, all the terms
(words) are considered, and the importance of each term is decided by the num-
bers of it appeared in the documents. But actually, some terms in a given domain
maybe more important than the others.

The Ref.[9][15] introduces a new weighting method based on statistical esti-
mation of the importance of a word for a specific categorization problem. This
method also has the benefit to make feature selection implicit, since useless
features for the categorization problem considered get a very small weight. Ex-
tensive experiments reported in the paper shows that this new weighting method
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improves significantly the classification accuracy as measured on many catego-
rization tasks.

In our system, the method can be described as selecting the top−n keywords
from the paper set, which have been categorized in manual, by calculating the
weight of every word.

We donated the keywords list with the vector:

D̃i = {(kj , wj), j ∈ (1,m)}, i ∈ (1, n)

Where n is the numbers of domains, m is the numbers of keywords in a given
domain, (kj , wj) is the keyword and its weight in the given domain, and D̃i is
the vector of the domain Di. The detail can be found in the Ref.[16].

Similarly, we denote the document d with the vector d̃:

d̃i = {(kj , wj), j ∈ (1,m)}, i ∈ (1, n)

Where n is the numbers of documents, m is the numbers of keywords in a given
domain, (kj , wj) is the keyword and its weight in the given document, and d̃i is
the vector of the document di.

In the next section, we will replace the domain D, the document d with the
corresponding vector D̃ and d̃.

4.2 Downloading Links

According the log file of the server, we can get the visiting queue. In this section,
we will download the links between the pages in domain level. In Fig.2, we
divide the information management into 4 block levels. They are, 1st: pages;
2nd: Directories. Such as http : //liawww.epfl.ch/Research; 3rd: Host. Such as
http : //liawww.epfl.ch; 4th: Domain. Such as http : //www.epfl.ch.

������

��	
�

��
���

��	���
�

Fig. 2. Levels of Information Management

The Ref.[14] points out that in order to get the best performance, the block
level should be set at host. We download the links in domain level in order to
calculate the pagerank in host level. We should set up a crawl to download the
links. The Ref.[17] showed how to set up and manage the crawls.
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4.3 Setting Up the Link Matrix

In section 2.2, we introduce the calculating of pagerank, which is used by Google.
In the algorithm, the entry pij = 1 when the link i → j exists. The

Ref.[5][7-8][13-14]drew the methods to improve the effects of calculating.
In our system, we consider the host as a block level. The out-links can be

divided two parts: the intra-links and the inter-links. The former one mean that
the pages linked to and from are belonged to the same host. Otherwise they are
belonged to the latter one.

The weight of two kinds out-link are different. We assume the total weight of
all out-link pages is 1. All the intra-links share the 3/4 weight, and all inter-links
share the 1/4 weight. The link matrix P will be changed to:

pij =

⎧⎨⎩
3

4∗dig(intra) i, j ∈ Hm;
1

4∗dig(inter) i ∈ Hm, j ∈ Hn,m �= n;
0 Otherwise.

The P should be dealt with just fellow the steps discussed above to P ′′(or Q)
in order to promise Q(k) converge and have a real, positive and the biggest
eigenvector.

4.4 Re-ranking

In the local database, there are: (1)the pages downloaded from the website ac-
cording to the log file, (2) the vectors of the pages and the domains, (3)the
relating link information of the website. There are two lists, (1)the order of the
pages, which related to the difference between domain’s and page’s vector , and
(2)the importance (or probability) of the pages in the given domain.

In this section, we combine the list(1) and (2) in order to adjust the order of
the pages stored in local database.

score(d) = α ∗ sim(d̃, D̃) + (1− α) ∗ PR(d).

Where d is the page stored in local database, α ∈ (0, 1) is the adjust factor,
PR(d) is the Pagerank of d, and sim(d̃, D̃) is the difference between the page d

and the domain D̃.
The result of the computation is a new order list of the pages, which will be

stored in local database, too.

5 Query Process

In this section, we introduce the query process.

(1) Extracting the domain vectors
We use the Open Directory Cluster as the reference. We assume there are m

domains. For each domain, we select n papers related to the domain in order to
obtain the vector D̃i(i ∈ (1,m)) of given domain. Obviously, the work should be
done once only.
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(2) Login
This system will be an entrance of personalized search engine. If the user

wanted to apply the service, he should register and submit the basic information
of himself. The system will create a new user profile in order to record the habit
of the new user. If the use wanted not to register, he could visit the Internet
freely.

(3) Submitting the keywords
Just as the description in Fig.1, the MM component receives the keywords

k and modifies them according to the user’s profile. It will do nothing when
the user entered the system in the first time. The QI component will submit the
keywords to the search engine directly. But in the other times, the QI component
will compute the two kinds of difference:

– between k and the domain vector D̃i. The m nearest neighbors have the
most probability of the keywords belonged to. Assuming the domain list is
Dca = {D̃k1, D̃k2, · · · D̃kl, (kl ≤ m)} .

– between k and the document vectors d̃i, d̃i ∈ D̃i(D̃i ∈ Dca).

The RE component will list all the top − n pages of every domain D̃i(D̃i ∈
Dca) stored in local database. Meanwhile, the RE will send the keywords to the
search engine.

All of the results (pages, documents) will be order by the FI component in
order to output. The user can select the pages he was interested in, and the log
file will record it simultaneity.

(4) Maintaining the Use Profile and Local database
After the user logout, the system will download the link information of the

domain (Show in Fig.2) and the pages, which the user has visited. All of the
computation will be done by the AS component, and the local database and
user profile will be maintained.

6 Shortcoming and Room for Improvement

There are two sides need to be improved, the feature extraction and the pagerank
computation.

In our system, we use the traditional algorithm to extract the features of the
document and the domain. The feature is the word appeared in the document.
Just as we know, in a given document. There are many words have a more
importance or have a bigger weight than others do. In this algorithm, we do not
consider this condition.

We simulate the pagerank algorithm just as the Google did. Different from
the real computation, we centralize the pagerank among the domain, the 4th

block level. We hardly consider the influence from and to other domains. It
makes the warp from the real one. This model may not respond to the real
importance from the link view.

For the pagerank computing, two questions are put forward in Ref.[5]. One
is that a page may correlative with the given subject, but might not contain
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the keywords of query. It makes the page failed to be select by the query. The
other question is that some websites might contain a lot of hyperlinks or had a
high pagerank, but it might be less correlative with the keywords. The Google
claimed that the second problem had been solved. But we have not found the
report about how to do that in recent papers.

For the SVM method, it is effective when the pages have one kind of schema.
There are many kinds of mass, business information in Internet, and they are
arranged in another way different from those pages of science and technology.
For those pages, another method should be developed, which includes the infor-
mation analysis, storing and issuing, too.

7 Conclusion

This paper discussed the disadvantages, which could not provide the personalized
service, of the current search engines. It drew up a new personalization model,
which combine the text categorization with pagerank computation.

The keywords of the given domain and the documents were extracted in order
to form the vectors, which will be used in text categorization. The links of the
domain, which in the top of the block level of a website, were downloaded. The
model changed the weight of the link in order to distinguish the intra-links and
the inter-links of a host. The pagerank was computed, and it was combined with
vector difference to form the order list of the page in the given domain.

In the last paragraph, it pointed out that there were some problems should
be solved in order to make the retrieval results more veraciously.
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Abstract. In the embedded domain, not only performance, but also
memory and energy are important concerns. A dual instruction set ARM
processor, which supports a reduced Thumb instruction set with a smaller
instruction length in addition to a full instruction set, provides an op-
portunity for a flexible tradeoff between these requirements. For a given
program, typically the Thumb code is smaller than the ARM code, but
slower than the latter, because a program compiled into the Thumb in-
struction set executes a larger number of instructions than the same
program compiled into the ARM instruction set. Motivated by this ob-
servation, we propose a new Multi-objective Ant Colony Optimization
(MOACO) algorithm that can be used to enable a flexible tradeoff be-
tween the code size and execution time of a program by using the two
instruction sets selectively for different parts of a program. Our proposed
approach determines the instruction set to be used for each function us-
ing a subset selection technique, and the execution time is the total one
based on the profiling analyses of the dynamic behavior of a program.
The experimental results show that our proposed technique can be ef-
fectively used to make the tradeoff between a program’s code size and
execution time and can provide much flexibility in code generation for
dual instruction set processors in general.

1 Introduction

Embedded systems often have some conflicting requirements such as high perfor-
mance, small volume, low energy consumption, and low price, etc. Subsequently,
compilers for embedded processors have to meet multiple conflicting objectives
for the generated embedded code.

A dual instruction set processor such as ARM/Thumb offers a challenge in
code generation while allows an opportunity for a tradeoff between the code size
and execution time of a program. The ARM processor core [1] is a leading proces-
sor design for the embedded domain. In addition to support the 32 bit ARM full
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instruction set, these processors also support a 16 bit Thumb reduced instruc-
tion set. A Thumb instruction has a smaller bit width than an ARM instruction,
but a single full instruction can perform more operations than a single reduced
instruction. By using the Thumb instruction set it is possible to obtain signifi-
cant reductions in code size in comparison to the corresponding ARM code, but
at the expense of a significant increase in the number of instructions executed
by the program. In general, a program compiled into the Thumb instruction set
runs slower than its ARM instruction set counterpart.

This motivates us to exploit the tradeoff between the code size and the execu-
tion time of a program when generating code for embedded systems. Some work
has been done around the code generation for dual instruction set processors.
However, most related research effort has focused on only one optimization ob-
jective, lacking the flexibility of making the tradeoff among multiple conflicting
objectives.

Computing multi-objective optimal solutions is more complex than that for
a single objective problem and is computationally intractable for those NP-hard
code optimization problems. In practice, we are usually satisfied with “good” so-
lutions. In the last 20 years, a new kind of approximate algorithm has emerged
which can provide high quality solutions to combinatorial problems in short com-
putation time. These methods are nowadays commonly called as meta-heuristics.
In addition to single-solution search algorithms such as Simulated Annealing
(SA) [2], Tabu search (TS) [3], there is a growing interest in population-based
meta-heuristics. Those meta-heuristics include evolutionary algorithms (EA: Ge-
netic Algorithms (GA) [4], Evolution Strategies (ES)[5], Genetic Programming
(GP)[6], etc.), and so on. The ability of these population-based algorithms to
find multiple optimal solutions in one single simulation run makes them unique
in solving multi-objective optimization problems.

Ant Colony Optimization (ACO) is a meta-heuristic inspired by the short-
est path searching behavior of various ant species. It has been applied success-
fully to solve various combinatorial optimization problems (for an overview see
Dorigo and Di Caro [7]). Recently, some researchers have designed ACO algo-
rithms to deal with multi-objective problems (MOACO algorithms) (see [8] for
an overview) [9][10][11].

In this paper, we propose a simple MOACO algorithm as a baseline to show
the effectiveness of MOACO algorithms to solve the complex multi-objective
optimization problem, that is, to optimize simultaneously the code size and
execution time of a program for a dual instruction set processor. Note that the
goal is not to design powerful ACO algorithms that often use several pheromone
matrixes or ant colonies [8][9][10][11]. We will design these algorithms to get
better results in the future. Another contribution of this paper is to stimulate
much more research on the problem of code generation for embedded systems
satisfying simultaneously conflicting objectives such as performance, size and
energy. Although these objectives are considered in the embedded domain, there
is so little research to treat them as multi-objective optimization problems.
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The rest of this paper is organized as follows. In the next section, we give
an overview of related work. In section 3, we give a formal description of our
problem and then detail a new MOACO algorithm for the selection of ARM and
Thumb instructions. Section 4 presents experimental results, with conclusions
left for section 5.

2 Relate Works

Halambi et al. [12] developed a method to reduce the code size significantly by
generating mixed instruction set code. The technique groups consecutive instruc-
tions that can be translated into the reduced instruction, and decides whether
to actually translate them based on the estimation of the size of the resulting
code.

Krishnaswamy and Gupta [13] proposed several heuristics for a function-level
coarse-grained approach, with the emphasis on enhancing the instruction cache
performance in terms of execution time and energy consumption. In addition,
they provided a fine-grained approach, which is shown to be only comparable to
the coarse-grained approach due to the overhead of mode switch instructions.

Sheayun Lee, et al. [14] proposed an approach to determine the instruction
set to be used for each basic block of a program using a path-based profitability
analysis, so that the execution time of a program is minimized while the code
size constraint is satisfied.

Largely, all the techniques mentioned above belong to single objective opti-
mization problems, and could not meet the flexibility requirement of the code
generation for embedded processors.

3 Compilation for ARM/Thumb Processors

This section details the proposed techniques for compiling a given program
for ARM/Thumb processors. We give a formal description of the problem in
section 3.1. Section 3.2 details our proposed MOACO algorithm.

3.1 Problem Description

A program can be represented by a function call graph G =< V,E >, where V is
the set of functions and E is a set of ordered pairs of elements of V called edges
representing the control flow of the program. We assume that the number of
functions of a program isn, V = {vi|i = 1, 2, · · · , n}, and E = {eij =< vi, vj > |
there is a control flow from vi to vj}. Let sARMvi

and sThumb
vi

denote the code size
of a function vi compiled into the ARM and Thumb instruction sets respectively.
Let tARMvi

and tThumb
vi

denote the execution time of vi compiled into the ARM
and Thumb instruction sets respectively.

We associate a decision variable xiwith each vi,

xi =
{

1 if vi compiled into ARM instruction set
0 if vi compiled into Thumb instruction set (1)
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Now we estimate the total code size and total execution time of a program.
First, we calculate the code size. Let overheadsi be the size cost of mode switch
instructions between vi and the parents of it. Then the total code size of a
program can be obtained by summing the size of each function and its associated
size overhead:

Sizeprogram =
∑
i

(sARMvi
· xi + sThumb

vi
· (1 − xi) + overheadsi ) (2)

overheadsi = cs · (
⋃
j

((xj + xi) mod 2)), ∃eji ∈ E (3)

where cs denotes the size cost of instructions for a single mode switch.
Second, we calculate the total execution time of a program. We assume that

the number of parents of vi is k, vi1 , vi2 , · · · , vikare the parents of vi, the times
viis called by its parents are ci1 , ci2 , · · · , cik respectively, and that the decision
variables associated with its parents are xi1 , xi2 , xik respectively. Then the total
execution time of a program can be obtained by summing the execution time of
each function and its associated time overhead:

T imeprogram =
∑
i

(
k∑

j=1

((tARMvi
· xi + tThumb

vi
(1− xi) + overheadtij ) · cij )) (4)

overheadtij = ct · ((xij + xi) mod 2) (5)

where overheadtij is the execution time overhead of mode switch instructions
between the parent vij and vi, ct denotes the execution time cost of instructions
for a single mode switch.

In summary, the problem can be formulated as:

minimize Sizeprogram,
minimize T imeprogram,

MinSize ≤ Sizeprogram ≤MaxSize,
MinT ime ≤ T imeprogram ≤MaxT ime

(6)

Note that although we are to solve a multi-objective optimization problem, if
we consider the mode switching overhead the coefficients of problem constraints
and objective functions are computed dynamically, because the instruction set
assignment of a function affects the assignment of its adjacent functions.

3.2 Our Elitist Multi-objective Ant Algorithm for ARM

Given a program, we can obtain its function call graph G =< V,E >, where V
is a function set whose elements are now called nodes, i.e., functions. Elements
of E are edges. Then we associate a 0-1 variable with each node, and when the
variable is 1 then we compile the corresponding function to ARM code, 0 for
Thumb code. This is a SS problem: the set of objects is the set of functions; the
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goal is to find the subset of functions that must be compiled to ARM code so
that the performance and code size are optimal. We refer to such a problem as
an ARM-SS problem.

Informally, our new MOARM-Ant-SS (Multi-objective ARM Ant-SS) algo-
rithm works as follows: each of ants successively generates a subset (i.e., a feasi-
ble solution to the ARM-SS) through the repeated selection of nodes. All subsets
are initially empty. The first node is chosen randomly; subsequent nodes are cho-
sen within a set Candidates that contains all feasible nodes with respect to the
nodes the ant has chosen so far using a probabilistic state transition rule. Once
all ants have constructed a feasible subset, all current solutions are compared
with a non-dominated set of solutions since the beginning of the run. The best
solutions of the current set and old elite set are selected into the new elite set
and worse ones are removed. Only the ants whose solutions are the best in the
elite set can modify pheromone information by applying a global updating rule:
some pheromone is evaporated, and some is added.

Pheromone and Heuristic Factor Definition. Pheromone and heuristic in-
formation are two important factors that influence ants’ decision making proces-
sion. When ant k who has already selected the subset of nodes Sk selects a node
oi ∈ Candidates,

1. The pheromone factor τ(oi, Sk) evaluates the learned desirability of adding
node oi to subset Sk, corresponding to the quantity of pheromone on the
considered node, i.e., τ(oi, Sk) = τ(oi).

2. The heuristic factor η(oi, Sk) evaluates the promise of node oi based on
information local to the ant, i.e., the subset Skit has built so far. We prefer
the node (function) which consumes more execution time and less code size to
be selected (compiled to ARM code). So we need time factor ηtime(oi, Sk) =

ti

/∑
i

ti and code size factor ηsize(oi, Sk) = 1
sizei/

i

sizei
.

MOARM-Ant-SS State Transition Rule. In MOARM-Ant-SS the state
transition rule is as follows: ant k who has already selected the subset of nodes
Sk selects node oi ∈ Candidates by applying the rule given by Eq. (7)

o =

{
arg max

oi∈Candidates
{[τ(oi, Sk)]α[ηtime(oi, Sk)]λβ [ηsize(oi, Sk)](1−λ)β} if q ≤ q0

X
(7)

where λ = i/nbAnts, nbAnts is the number of ants, α and β are two parameters
that determine the relative importance of pheromone and heuristic factors; q is
a random number uniformly distributed in [0 .. 1], q0 is a parameter, and X is a
random variable selected according to the probability distribution given in Eq.
(8). The parameter q0 determines the relative importance of exploitation versus
exploration: every time ant k having subset Sk has to choose the next node oi,
it samples a random number 0 ≤ q ≤ 1. If q ≤ q0 then best nodes (according to
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Eq. (7)) are chosen (exploitation), otherwise a node is chosen according to Eq.
(8) (biased exploration).

p(oi, Sk) =
[τ(oi, Sk)]α · [ηsize(oi, Sk)]λβ · [ηtime(oi, Sk)](1−λ)β∑

oi∈Candidates [τ(oi, Sk)]α · [ηsize(oi, Sk)]λβ · [ηtime(oi, Sk)](1−λ)β

(8)

Pheromone Updating Rule. MOARM-Ant-SS globally updates the phero-
mone trail with each solution of the elite set since the beginning run. Pheromone
evaporation is simulated by multiplying the quantity of pheromone on each
pheromone node by a persistence rate ρ. Then a quantity δτ of pheromone is
added. The pheromone updating rule is given by Eq. (9)

τ(o) ← τ(o) · ρ +
∑
j

δτj (o) (9)

δτj(o) =
{
c/(Tj · SIZEj) if o ∈subset constructed by elitest ant j
0 otherwise (10)

0 ≤ η ≤ 1 is the pheromone persistence rate, ant j is the one who has constructed
one of the global non-dominated subsets, c is a constant,Tj is the execution time
of the corresponding program, and SIZEj the code size. Less time and space
consumed, more pheromone added.

The algorithm follows the MAX-MIN Ant system [15]: we explicitly impose
lower and upper bounds τmin and τmax on pheromone trails (with 0 < τmin <
τmax). These bounds restrict differences between the pheromone on nodes, which
encourages wider exploration.

The pseudo-code of MOARM-Ant-SS algorithm is as follows.

MOARM-Ant-SS Algorithm
Input: an ARM-SS problem(S, ftime, fsize),

a set of parameters {α, β, ρ, τmin, τmax, q0, nbAnts}.
Output: a feasible near-optimal subset of nodes S′.
1. Initialize the pheromone trail τ(o) associated with each o ∈ S to τmax,

EliteSet = Φ.
2. Repeat
3. for each ant k ∈ {1, . . . , nbAnts}, construct a subset Sk as follows:
4. randomly choose a first node oi ∈ S
5. Sk ← {oi}
6. Candidates← {oj ∈ S|(Sk ∪ {oj}) satisfying constraits }
7. while Candidates �= ∅ do
8. choose an node oi ∈ Candidates with state transition rule
9. Sk ← Sk ∪ {oi}

10. remove oi from Candidates
11. remove from Candidates every object ojsuch that
12. (Sk ∪ {oj})violating any constraint
13. end while
14. end for
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15. CurrentSet = {S1, · · · , SnbAnts}
16. select the non-dominated solutions forEliteSetfrom

(CurrentSet ∪ EliteSet)
17. for each o ∈ S, update the pheromone trail τ(o) as follows:
18. τ(o) ← τ(o) · ρ + δτ (o)
19. if τ(o) < τminthenτ(o) ← τmin
20. if τ(o) > τmaxthenτ(o) ← τmax
21. end for
22. Until maximum number of cycles reached or acceptable solution found
23. return the best solution found since the beginning

4 Implementation and Results

In this section, we describe our implementation of the proposed technique tar-
geted for the ARM7TDMI dual instruction set processor, present the experimen-
tal results to show the effectiveness of the approach and give some discussions.

We retargeted MachineSUIF [16] compiler to ARM architectures. HALT, the
Harvard Atom-Like Tool, which works by instrumentation, is used to study pro-
gram behavior and the performance of computer hardware. We extended HALT
to profile the benchmarks, and use it to gather the execution count of each
function of a program. The code size is estimated directly from the instruction
sequence of each function, compiled into ARM and Thumb instructions respec-
tively. The execution time of each function is approximated by the instruction
count of that function.

To validate the effectiveness of our approach, we implemented the proposed
technique and performed a set of experiments. The benchmark programs are from
the SNU-RT benchmark suite [17], which is a collection of application programs
for real-time embedded systems. The benchmarks have no library calls, and all
the functions needed are implemented in the source code.

To compare our proposed techniques with heuristic methods, we applied our
selective code transformation to the set of benchmarks, generating different ver-
sions of code for each program. We assume that f1, f2, · · · , fn are the functions
of a benchmark program, and n is the number of the functions. Let SARM

fi

and SThumb
fi

denote the code size of fi compiled into the ARM and Thumb
instruction sets respectively. Then we can get the minimal and maximal code
size of the whole program:MinTotal =

∑
i

min{SARM
fi

, SThumb
fi

}, MaxTotal =∑
i

max{SARM
fi

, SThumb
fi

}. Total code size budgetsize = MaxTotal−MinTotal.

We set the code size budget to 0, 10% , 20% , · · · , 100% of size, then add these
to MinTotal to get different code size constraints.

Figure 1 summarizes the experimental results for our Ant algorithm. For
each application, we display average results over 10 trials. In all experiments,
the numeric parameters are set to the following values: nbAnts=30, α=1, β=3,
q0=0.9, ρ=0.99, τmin=0.01, and τmax=6. The results verify that there exists a
clear tradeoff between the code size and performance of programs, and that our
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(a) fft1 (b) fft1k

(c) fir (d) fir2

Fig. 1. Code size and execution time for benchmark programs. The execution time
decreases while code size increases gradually.

approach can effectively exploit this tradeoff. With the increase of the code size,
the execution time decreases and the phenomenon differs from one benchmark
to another. For all the benchmark programs, the execution time decreased sig-
nificantly even for a modest increase in the code size. This is because the fabs
functions are executed heavily and are transformed to ARM code at early stage.

For the fft1 benchmark program, based on the heuristic method, when size
budget arrives at 10% of size (corresponding to size constraint of 8458.3 Bytes),
fabs function can be transformed into ARM code. When size budget arrives at
60% of size (size constraint of 8759.8 Bytes), sin function is added into the
set of functions that can be transformed into ARM code. When size budget
is size × 90%(size constraint of 8940.7 Bytes), fft1 function added. And when
given total size budget, all functions can be transformed into ARM code. All
these changes can be seen apparently from Figure 1 as several obvious decrease
in execution time. Relative to the heuristic method, our techniques can make
better tradeoff between code size and execution time. For example, given size
budget of size× 10%, log function can also be add to ARM set, in addition to
fabs function.

The tradeoff between code size and execution time of benchmark fft1k is sim-
ilar to fft1 benchmark, except that the execution time reduction of fft1k is not
remarkable at first, due to fabs function not transformed into ARM code firstly.
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Fig. 2. Compared to the heuristic method, proposed Ant algorithm can find solutions
consuming less execution time given the same code size constraints

The execution time of benchmark lms deceases smoothly with the increase
of code size, because the functions of it are added gradually to the set of ARM
code with the increase of code size.

Similar to benchmark lms, the execution time of benchmark fir decreases al-
most linearly with the increase of code size. But when size budget arrives at
size× 50%, almost all functions (excluding main function) are added to the set
of ARM code. For different code size budget (0, 10% , 20% , · · · , 100% of size),
we compared our techniques with a simple heuristic method that favor the func-
tions called more heavily. For all the benchmark programs, given the same code
size constraint, our proposed techniques can often find solutions requiring less
execution time than the heuristic method does. The relative maximal reduction
in execution time of our algorithm compared to the heuristic method is 16.8%,
and the average reduction in execution time is 9.2%.

5 Summary

Code generation for embedded systems is complex having to meet multiple con-
flicting requirements. Rapid growing applications of meta-heuristics to NP-hard
combinatorial optimization problems inspire us to introduce meta-heuristics to
compiler optimization for embedded domain.



650 S. Wu and S. Li

We have presented an MOACO algorithm to enable a flexible tradeoff between
code size and execution time of a program by generating mixed instruction set
code for a dual instruction set processor. We have also proposed an approach to
estimate the total execution time of a program by profiling analyses of the dy-
namic behavior of the program. The proposed techniques have been implemented
for the ARM/Thumb dual instruction set processor, and their effectiveness has
been demonstrated by experiments on a set of benchmark programs.

There are several research directions in the future. First, compared to the
coarse grained function level instruction selection, basic block level or even in-
struction level selection algorithms may get better results. Second, we will deal
with hybrid approaches by combining an ACO algorithm with a local search
heuristic. And more powerful MOACO algorithms will be designed which should
give better results. Third, we will also consider other objectives (energy, etc.)
and design approaches to find multi-objective Pareto-optimal set to provide much
more flexibility in compiler optimization for embedded domain. Finally, we will
also focus on developing an efficient register allocation algorithm for dual in-
struction set processors, since the quality of the code produced by a compiler is
always influenced by the phase coupling of the compiler.
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Abstract. Developing an effective flow control algorithm to avoid con-
gestion is a hot topic in computer network society. This paper gives a
mathematical model for general network at first, then discrete control
theory is proposed as a key tool to design a new flow control algorithm
for congestion avoidance in high speed network, the proposed algorithm
assures the stability of network system. The simulation results show that
the proposed method can adjust the sending rate and queue level in buffer
rapidly and effectively. Moreover the method is easy to implement and
apply to high speed computer network.

1 Introduction

High-speed computer networks are generally store-and-forward backbone net-
works consisting of switching nodes and communication links based on a certain
topology. All the links and all the nodes are characterized by their own ca-
pacities for packet transmission and packet storing, respectively. A node which
reaches its maximum storing capacity due to the saturation of its processors
or one or more of its outgoing transmission links is called congested. Some of
the packets, arriving at a congested node, cannot be accepted and have to be
retransmitted at a later instance. This would lead to a deterioration of the net-
work’s throughput and delay performance or even the worst situation–network
collapse. Therefore, congestion control is an important problem arising from the
networks management.The flow control scheme can adjust the sending packets
rate in source host, which can effectively avoid the traffic congestion. Therefore,
the proper flow control scheme is a direct way to be executed.

Many complex systems such as computer network can be expounded by con-
trol theory. Hence, an increasing amount of research is devoted to merging control
theory into flow control. The first introduction that applied control theory to
flow control appeared in ATM network. Fendick, Bonomi and Yin et al. pro-
posed ABR traffic control from 1992 to 1995 [1,2,3]. In these schemes, if the
queue length in a switch is greater than a threshold, then a binary digit is set in
the control management cell. However, they suffer serious problems of stability,
exhibit oscillatory dynamics, and require large amount of buffer in order to avoid
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c© Springer-Verlag Berlin Heidelberg 2006



A New Flow Control Algorithm for High Speed Computer Network 653

cell loss. As a consequence, explicit rate algorithms have been largely considered
and investigated. See Jain(1996) for an excellent survey[5]. Most of the existing
explicit rate schemes lack of two fundamental parts in the feedback control de-
sign:(1) the analysis of the closed-loop network dynamics; (2) the interaction with
VBR traffic. In the paper of Jain et al., an explicit rate algorithm was proposed,
which basically computes input rates dividing the measured available bandwidth
by the number of active connections [4]. In Zhao et al. [6], the control design
problem is formulated as a standard disturbance rejection problem where the
available bandwidth acts as a disturbance for the system. In Basar and Srikant
[7], the problem is formulated as a stochastic control problem where the distur-
bance is modeled as an autoregressive process. The node has to estimate this
process using recursive least squares. In mascolo [8], Smith’s principle is exploited
to derive a controller in case a FIFO buffering is maintained at output links.

For all of the above works, the designed control algorithm is based on contin-
uous time system theory. But as we know, the discrete time control is effective
in computer control system and easy to put into execution. Hence, this paper
will design a discrete control algorithm to satisfy practical control requirements.

2 Mathematical Model of General Network

In this section, we will develop the mathematical model of a general network
that employs a store and forward packet switching service, that is, packets enter
the network from the source edge nodes, are then stored and forwarded along a
sequence of intermediate nodes and communication links, finally reaching their
destination nodes. Figure 1 depicts a store and forward packet switching network.

In Fig.1, Si(i = 0, . . . , n) denotes source node, Di(i = 0, . . . , n) denotes desti-
nation node, B denotes bottleneck node, u0i(i = 0, . . . , n) denotes sending rate,
qi(i = 0, . . . , n) denotes buffer queue level.

One approach to the buffer size is to use variable-size buffers. The advan-
tage here is better memory utilization, at the price of more complicated buffer
management. Another possibility is to dedicate a single large circular buffer per

q0

…

qn

B 

S0  u00

Sn  u0n

D0

Dn

…

Fig. 1. Store and forward packet switching network
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connection. This system also makes good use of memory, provided that all con-
nections are heavily loaded but is poor if some connections are lightly loaded. As
easy of buffer management, it make brief of problem. Moreover, per-flow buffer-
ing is also auspicated for Internet routers in order to ensure QoS [9, 10]. For
these considerations, we adopt the second buffers management. We assume all
connections are heavily loaded and divided available bandwidth in average.

From above discussion, we can analyze this problem with a connection case.
Consider a flow reaches destination node from anyone of n source nodes along a
sequence of several intermediate nodes. The nodes in the path of the connection
are numbered 1, 2, 3, · · · , n, and the source node is numbered 0. The time taken
to get service at each node is finite and deterministic. The source sending rate
is denoted by u0i(i = 1, 2, . . . , n) and the intermediate nodes service rate is
ui(i = 1, 2, . . . , n). We define

ub = min(ui | 0 ≤ k ≤ n) (1)

to be the bottleneck service rate.
We will hence work in discrete time mode, so continuous time parameter t is

replaced by the step index k. One step corresponds to one round-trip (RTT).
In bottleneck node, the service rate is close [11], hence we consider ub(k) =
ub(k + 1) as a constant. At the time marked ’NOW’, which is the end of the
kth epoch, all the packets sent in epoch k-1 have been acknowledged. So the
only unacknowledged packets are those sent in the kth epoch itself, and this is
the same as the number of outstanding packets. This can be approximated by
the sending rate u0(k) multiplied by the sending interval RTT(k). Therefore we
have model of this problem:

qb(k + 1) = qb(k) + u0(k)RTT(k)− ub(k)RTT(k) (2)

qb(k) is buffer queue length at kth epoch.

3 Design Discrete Controller

Consider the input is the sending rate of source node and the output is the bot-
tleneck queue level. Figure 2 depicts the system control principle. In Fig.2, Si(i =
0, . . . , n) denotes source node, Di(i = 0, . . . , n) denotes destination node, B de-
notes bottleneck node, u0i(i = 0, . . . , n) denotes sending rate, qi(i = 0, . . . , n)
denotes buffer queue level.controlleri(i = 0, . . . , n) will be designed to control
network system.

Taking the Z transformation of (2), we get

zqb(z) = qb(z) + u0(z)RTT(z)− ub(z)RTT(z) (3)

For each connection, TCP maintains available, RTT, that is the best current
estimate of round-trip time to the destination in question. When a segment is
sent, a timer is started, both to see how long the acknowledgment takes and
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Fig. 2. The system control principle

to trigger a retransmission if it takes too long. If the acknowledgment gets back
before the timer expires, TCP measures how long the acknowledgment took, Say,
M . It then updates RTT according to the formula [12]:

RTT(k) = αRTT(k − 1) + (1 − α)M (4)

where is a smoothing factor that determines how much weight is given to the
old value. Typically α =7/8 [12].

Taking the Z transformation of (4), we get

RTT(z) = αz−1RTT(z) + (1− α)M (5)

Substituting (5)into (3), we obtain

(z − 1)qb(z) = [u0(z)− ub(z)]
M

8− 7z−1 (6)

Substituting u0(z) = ub(z) + λ(z) into (6), we get

(z − 1)qb(z) = λ(z)
M

8− 7z−1 (7)

Letλ(z) = f(z)× R(z)(f(z) is undetermined Z rational fraction function, R(z)
is step function), transform (7) as :

(z − 1)qb(z) =
Mf(z)R(z)
8− 7z−1 (8)

We can get system transfer function:

G(z) =
qb(z)
R(z)

=
Mf(z)

(z − 1)(8− 7z−1)
(9)

Let
f(z) =

c(z − 1)(8z − 7)
(z + a)(z + b)

(10)
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Then
G(z) =

Mcz

(z + a)(z + b)
(11)

M is a available constant, c is constant parameter. According to liner control
theory, the system is stable only if |a| < 1, |b| < 1.

The system has high transient performance only if a, b value is around orig-
inal point. Transient performance means that the controller can track output
variation in shortest time.

According to Z transformation theorem, the system steady step error is:

qb(∞) = lim
z→1

(z − 1)qb(z) = lim
z→1

Mcz2

(z + a)(z + b)
=

4
5
Q (12)

Q is distributive maximum buffer in per connection and buffer has margin with
4/5 representation, which does not discard packets when burden flow occur.

We get

c =
4Q(1 + a)(1 + b)

5M
(13)

Due to

λ(z) =
c(z − 1)(8z − 7)
(z + a)(z + b)

× z

z − 1
(14)

(z/(z − 1) is Z transformation of step function)
Then

u0(z) =
c(z − 1)(8z − 7)
(z + a)(z + b)

× z

z − 1
+ ub(z) (15)

Simplifying (15), we obtain

u0(z) =
cz(8z − 7)

(z + a)(z + b)
+ ub(z) (16)

Factorizing (16), we obtain

u0(z) = ub(z) + cz(
a1

z + a
+

a2

z + b
) (17)

So
a1 =

−7− 8a
b− a

(18)

a2 =
−7− 8b
a− b

(19)

Substituting (13), (18), (19) into (17), we obtain

u0(k) = ub(k) +
4Q(1 + a)(1 + b)

5M
+ [
−7− 8a
b− a

(−a)k +
−7− 8b
a− b

(−b)k] (20)

u0(k) is control algorithm of sending rate.
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4 Numerical Experiments

Variant graphical chart correspond with variant system parameters (see as
tab.1).

The simulation results are as follows:
Figure 3 is the simulation results of a = −0.2, b = −0.1, k = 0.8; Fig.4 is the

simulation results of a = −0.5, b = −0.1, k = 0.8.
From simulation results, we can see that the nearer to original point of a, b,

the shorter of the settling time, so a, b should be chosen carefully. It is shown
from the simulation results that high system performance is guaranteed even if
the parameters vary, due to the effect of the control law. The queue length in
the buffer is little affected by the varying parameters and the queue length can
be quickly adjusted to a given value. The settling time depends on a, b.

Table 1. The table of variant system parameters

line shape ub(k)(packets/ms) M(ms) Q(packets)
solid line 14.5 10 1000

Thick dotted line 20 7.5 1000
thin dotted line 27 5 1000
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Fig. 3. The simulation results of a = −0.2, b = −0.1, k = 0.8
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Fig. 4. The simulation results of a = −0.5, b = −0.1, k = 0.8

5 Conclusion

With network communication rapid development, the requirement of network
performance also rises time after time. Congestion control plays an important
role in network performance. This paper proposes a new flow control scheme
based on discrete control theory and analysis stability and feasibility of the sys-
tem. It is shown from the simulation results that this control algorithm can
adjust the sending rate and queue in buffer rapidly and effectively. Moreover the
queue length in the buffer is little affected by the varying parameters and
the queue length can be quickly adjusted to a given value.
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Abstract. This paper firstly provides an short introduction to least
square support vector machine (LSSVM), a new class of kernel-based
techniques introduced in statistical learning theory and structural risk
minimization, then designs a training algorithm for LSSVM, and uses
LSSVM to model and control nonlinear systems. Simulation experiments
are performed and indicate that the proposed method provides satisfac-
tory performance with excellent generalization property and achieves su-
perior modeling performance to the conventional method based on neural
networks, at same time achieves favourable control performance.

1 Introduction

In the last decade, neural networks have proven to be a powerful methodology
in a wide range of fields and applications [1, 2]. Reliable training methods have
been de-veloped mainly thanks to interdisciplinary studies and insights from
several fields including statistics, systems and control theory, signal processing,
information theory and others. Despite many of these advances, there still re-
main a number of weak points such as: difficult to choose the number of hidden
units, overfitting problem, existence of many local minima solutions, and so on.
In order to overcome those hard problems, Major breakthroughs are obtained
at this point with a new class of neural networks called support vector machine
(SVM), developed within the area of statistical learning theory and structural
risk minimization [3, 4]. SVM has many advantages, such as nonexistence of
curse of dimensionality, possessing good generalization per-formance and so on.
As an interesting variant of the standard support vector machines, least squares
support vector machines (LSSVM) have been proposed by Suykens and Van-
dewalle[5, 6] for solving pattern recognition and nonlinear function estimation
problems. Standard SVM formulation is modified in the sense of ridge regression
and taking equality instead of inequality constraints in the problem formulation.
As a result one solves a linear system instead of a QP problem, so LSSVM is
easy to training. In this paper we will discuss modeling and controlling nonlinear
system with LSSVM.

This paper is organized as follows: In section 2 we give a short introduction
to LSSVM regression. A Training algorithm is designed for LSSVM in section 3.
In section 4 we present the modeling-control scheme with LSSVM. In section 5
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we give a numerical experiments to check the performance of proposed modeling
and control method. Finally In section 6, a conclusion is drawn.

2 An Overview of LSSVM Regression

Usually a typical regression problem is defined as follows: Suppose a set of ob-
servation data generated from an unknown probability distributionP (x, y),X =
{(x1, y1), . . . , (xl, yl)}, with xi ⊂ Rn, yi ⊂ R, and a class of functions F = {f |
f : Rn → R}, then the basic problem is to find function f ⊂ F that minimizes
a risk functional:

R[f ] =
∫

L(y − f(x))dP (x, y) (1)

L(·) is a loss function, it indicates how differences between y and f(x) should
be penalized. As P (x, y) is unknown one cannot evaluate R[f ] directly but only
compute the empirical risk:

Remp =
1
l

l∑
i=1

L(yi − f(xi)) (2)

and try to bound the risk R[f ] by Remp + Rgen where Rgen is the metric of
complexity to function used to approximate the data given [4].

For a nonlinear regression problem, firstly we may transfer it into a linear re-
gression problem, this can be achieved by a nonlinear map from input space into
a high dimensional feature space and constructing a linear regression function
there. That is:

f(x) = wTφ(x) + b (3)

We would like to find the function with the following risk function[4]:

Rreg =
1
2
‖w‖2 + C ×Remp[f ] (4)

Here ‖w‖2 is a term which characterizes the function complexity of f(·) . We
introduce a square loss function, and get empirical risk :

Remp =
1
2

l∑
i=1

(yi − f(xi))2 (5)

C is a constant determine the trade-off between empirical risk and model
complexity. Minimizing the (4) captures the main insight of statistical learning
theory, stating that in order to obtain a small expected risk, one need to control
both training error and model complexity, i.e. explain the data with a simple
model. According to Structural Risk Minimization, the regression problem (3)
can transfer to the following optimal problem [6]:

min
w,b,e

J(w, e) =
1
2
wTw +

C

2

l∑
i=1

e2
i (6)
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subject to constraints:

yi = wTφ(xi) + b + ei, i = 1, . . . , l

Using Lagrange function and dual theory, we can get dual optimization problem
of (6): [

0 e1T

e1 Q + C−1I

] [
b
α

]
=

[
0
y

]
(7)

Where
y = (y1, . . . , yl)T , e1 = (1, · · · , 1)T , α = (α1, . . . , αl)T

Qij = φ(xi)Tφ(xj) = k(xi, xj), i, j = 1, . . . , l

The nonlinear regression function (the output of LSSVM) can be formulated
by:

y(x) =
l∑

i=1

αik(x, xi) + b (8)

k(x, xi) is a symmetric function which satisfies Mercer conditions. Some useful
kernels are as following:
(1) polynomial kernel of order p: k(x, x∗) = (1 + xTx∗)p

(2) RBF-kernel: k(x, x∗) = exp(− ‖x−x∗‖2
2

2σ2 )
(3) hyperbolic kernel: k(x, x∗) = tanh(βxTx∗ + κ)

3 A Training Algorithm for LSSVM

In this section we will give a simple training algorithm for LSSVM, Before de-
scribing the algorithm in detail, the special case of the Sherman-Woodbury For-
mula [7] in linear algebra, which is the key formula in the algorithm, is first
introduced.

If G is a matrix partitioned as a bordered matrix as shown below:

G =
[
A u
uT α

]
Where A is a n× n matrix, u is a n× 1 column vector, and α is scalar, then

G−1 =
[
B q
qT z

]
(9)

Where
B = A−1 + zA−1uuTA−1

q = −zA−1u

z =
1

α− uTA−1u
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Now suppose a new input training vector (xnew , ynew) is available,
Equation (7) becomes:⎡⎣ 0 e1T v1

e1 Q + C−1I V2
v1 V T

2 v3

⎤⎦⎡⎣ b
α

αnew

⎤⎦ =

⎡⎣ 0
y

ynew

⎤⎦
Where v1 = k(x1, xnew) , V2 = [k(x2, xnew), . . . , k(xn, xnew)]T is a (n − 1) × 1
column vector,v3 = k(xnew , xnew) + 1/C.

It is important to notice that the square matrix on the left side now can be
partitioned into a bordered matrix as follows:

Anew =

⎡⎣ 0 e1T v1
e1 Q + C−1I V2
v1 V T

2 v3

⎤⎦ =
[
Aold s
sT β

]
Where

Aold =
[

0 e1T

e1 Q + C−1I

]
s =

[
v1 V T

2
]T

β = v2

Applying formula (9), the inverse of the new square matrix Anew can be
expressed in terms of the inverse of the old square matrix Aold and the column
vector s , as depicted below:

A−1
new =

[
B q
qT Q + C−1I

]
(10)

Where
B = A−1

old + zA−1
oldss

TA−1
old

q = −zA−1
olds

z =
1

β − sTA−1
olds

In other words, the inverse of the new square matrix Anew can be computed
via the above formulas efficiently, without any matrix inversion. Once obtaining
the inverse of Anew , the new optimum b, α, αnew are given by:⎡⎣ b

α
αnew

⎤⎦ = A−1
new

⎡⎣ 0
y

ynew

⎤⎦ =
[
B q
qT z

]⎡⎣ 0
y

ynew

⎤⎦ (11)

A summary of this training algorithm, namely the algorithm for finding pa-
rameters value b and α can be summarized by:

(1) Initialization: n = 2;
(2) Calculate A−1

2 , b, α;
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(3) Get new data (xnew , ynew)and compute A−1
new with formula(10);

(4) Compute b, α, αnew with formula (11), then α =
[

α
αnew

]
;

(5) If there are more input training samples, then A−1
old = A−1

new , goto step(3),
otherwise, output b, α , quit.

4 Modeling and Control Framework with LSSVM

In this section we will use the LSSVM regression algorithm described pre-
viously to: (1) model a nonlinear dynamical system (design of the modeling
LSSVM-block), (2) generate the control input to the nonlinear plant (design of
the control-block). Here we use a typical modeling + control framework[8], as
sketched in the Fig.1.

Fig. 1. A modeling-control framework with LSSVM

Where, t is the actual output of a plant, t̂ is the output of the LSSVM. ê
is the error between the output of the plant and the output of the LSSVM, it
is the identification error, and depends on the approximation capability of the
LSSVM itself. r is the reference input of the plant. e is the control error. u is
the control signal to the plant. The control aim is to minimize error e ,i.e. make
the output of plant t to follow reference input r.

Note that the actual plant is suppose to be unknown, we must design LSSVM
block to model the plant’s dynamical behavior according to it’s input-output
data sets. In general, the output of a discrete time system at the time k + 1 can
be represented as a function of n previous samples of the output itself and m
previous samples of the input signal (NARMAX model). The relationship is:

t(k + 1) = f(t(k), . . . , t(k − n + 1), u(k), . . . , u(k −m + 1)) = f(x(k))

x(k) = [t(k), . . . , t(k − n + 1), u(k), . . . , u(k −m + 1)]T

Where x ∈ Rm+n. At the time k + 1, the LSSVM gives an estimate of t(k + 1),
called t̂(k + 1):
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t̂(k + 1) = f̂(x(k), w)

In order to design the LSSVM block (namely solving the parameter vector
w), firstly we must build a training set Z, as follow:

[t(n− 1), . . . , t(0), u(n− 1), . . . , u(n−m), t(n)] = (x1, t1)

[t(n), . . . , t(1), u(n), . . . , u(n−m + 1), t(n + 1)] = (x2, t2)

[t(n + 1), . . . , t(2), u(n + 1), . . . , u(n−m + 2), t(n + 2)] = (x3, t3)

·
·
·

and so on.
We can use the above data set to train LSSVM. Due to its good generalization

performance, the trained LSSVM can characterize the dynamical behavior of the
unknown plant.

Then we begin to design the control-block. The job of the controller is to
provide the control signal u in such a way to minimize the control error e on the
basis of the LSSVM-block. The idea is quite simple and based on the following
criteria [8]. A cost J measuring the quadratic error between the reference and
the output of the LSSVM is defined as:

J(k + 1) =
1
2
e(k + 1)2 =

1
2
[r(k + 1)− t̂(k + 1)]2

The goal is to minimize J by finding a simple control law for u. Here we adopt
gradient descent algorithm, as follow:

u(k + 1) = u(k)− μ
∂J(k + 1)
∂u(k)

where μ is the control descent step to be properly set in order to avoid undesired
oscillations. If a RBF kernel is supposed to be used, according to formula (8), it
is possible to obtain:

t̂(k + 1) =
l∑

i=1

αi exp(−‖x(k)− xi‖22
2σ2 ) + b

J(k + 1) =
1
2
[r(k + 1)− t̂(k + 1)]2

=
1
2
[r(k + 1)−

l∑
i=1

αi exp(−‖x(k)− xi‖22
2σ2 )− b]2

∂J(k + 1)
∂u(k)

=
∂J(k + 1)
∂t̂(k + 1)

× ∂t̂(k + 1)
∂u(k)
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=
1
σ2 e(k + 1)

l∑
i=1

αi(u(k)− xi,n+1) exp(−‖x(k)− xi‖22
2σ2 )

u(k+1) = u(k)−μ
∂J(k + 1)
∂u(k)

= u(k)− μ

σ2 e(k + 1)
l∑

i=1

αi(u(k)− xi,n+1) exp(−‖x(k)− xi‖22
2σ2 ) (12)

where xi,n+1 denotes the component n + 1 of the vector xi.
In general, nonlinear control systems like the one described in this section

theoretically analyzing stability is a difficult thing, experientially as long as the
following conditions hold true: (1) the LSSVM-block converges to the actual
physical systems; (2) the control law stabilizes the LSSVM-block, we can say the
controlled system is stable, so we can choose suitable parameter μ to stabilize
controlled system by computer simulation analysis.

5 Numerical Results

In this section we will take a concrete example to illustrate proposed control
method. The plant under consideration is a spring-mass-damper system with a
hardening spring:

ÿ(t) + ẏ(t) + y(t) + y3(t) = u(t)

we begin by generating 100 data dot (u(k), y(k)). The data set is then split
into two portions: one for training and one for testing.
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Fig. 2. Training and testing data set

Since it is a second order plant, we will use two past outputs and two past
control signals as regressors, namely:

x(k) = [y(k), y(k − 1), u(k), u(k − 1)]T

t(k) = y(k + 1)
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Then we can train LSSVM-block by {x(k), t(k)} . We give out LSSVM’s de-
sign parameter as follow: σ = 3, C = 150. In order to show the performance
of LSSVM, we use both LSSVM and RBF neural network to model the above
plant. The following table illustrates training and testing error of both LSSVM
and NN:

As shown in Tab.1, we can see that the performance of LSSVM is superior
to the performance of RBF NN method, LSSVM method possesses the best
generalization ability.

Figure 3 illustrate LSSVM’s training samples and testing samples fitting qual-
ity in the case of 50 training samples, 50 testing samples, we can see that trained
LSSVM-block can exactly model the plant’s dynamical behavior.

Table 1. The simulation error of LSSVM and RBF NN

training err testing err training err testing err
training sets testing sets

of LSSVM of LSSVM of RBF NN RBF NN
20 20 0.0406 0.1494 6.5143e-015 0.3305
30 30 0.0391 0.1050 5.7547e-014 0.3880
40 40 0.0478 0.0882 4.7945e-014 0.1094
50 50 0.0470 0.0698 9.0175e-014 0.1635
60 40 0.0440 0.0654 1.6850e-013 0.1021
70 30 0.0419 0.0975 3.0721e-013 0.1454
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Fig. 3. LSSVM training and testing results
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Fig. 4. Reference input and controlled plant output

After the LSSVM-block has been designed, we set up the controller by formula
(12). We get parameter μ = 0.7 , and carry out numerical experiment. The
simulation result is as follow:

In the Fig.4, the segmenting straight line is reference output, the other line
is the actual output of plant. From the obtained simulation results, we deduce
that the method based on LSSVM can model and control a nonlinear unknown
system efficiently.

6 Conclusion

In this paper we introduce the use of least square support vector machines for
solving nonlinear systems’ modeling and control problems. An introduction to
LSSVM is given at first, then gives its training algorithm, and uses it to build
a modeling-control framework to control a nonlinear system, the numerical ex-
periment has shown the efficiency of the LSSVM based modeling and control
method.
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Abstract. Regular expression pattern matching is widely used in com-
putational biology. Searching through a database of sequences for a motif
(a simple regular expression), or its variations is an important interactive
process which requires fast motif-matching algorithms. In this paper, we
explore and evaluate various representations of the database of sequences
using suffix trees for two types of query problems for a given regular ex-
pression: 1) Find the first match, and 2) Find all matches. Answering
Problem 1 increases the level and effectiveness of interactive motif ex-
ploration. We propose a framework in which Problem 1 can be solved
in a faster manner than existing solutions while not slowing down the
solution of Problem 2. We apply several heuristics both at the level of
suffix tree creation resulting in modified tree representations, and at the
regular expression matching level in which we search subtrees in a given
predefined order by simulating a deterministic finite automaton that we
create from the given regular expression. The focus of our work is to
develop a method for faster retrieval of PROSITE motif (a restricted
regular expression) matches from a protein sequence database. We show
empirically the effectiveness of our solution using several real protein
data sets.

Keywords: regular expression matching, motif search, suffix tree,
PROSITE pattern, heuristic, preprocessing.

1 Introduction

Motifs are short amino acid sequence patterns which describe families and do-
mains of proteins. PROSITE motifs are represented in the form of regular ex-
pressions that do not use Kleene closure. The use of motifs to determine the
function(s) of proteins is one of the most important tools of sequence analy-
sis [5]. The number of protein sequences stored in public databases such as
SWISS-PROT [4] has been growing immensely and searching for a motif match
in such databases can be very slow (many minutes to hours) if we exhaus-
tively search the database [3]. When we explore a motif we may need to re-
peat the search process for many variations of the description of the motif to see
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the effect of modifications on the motif and the matching sequences interactively.
This requires finding the matching sequences very fast (in seconds) if there is
one.

In this paper we develop a method which finds all the matches. Our emphasis
is finding the first match very quickly to improve the response time, and the
interactivity. We create an ordered index of the protein sequences which allows
us to answer queries about an existing match faster than previous solutions, and
to answer queries about all matches as fast as other existing solutions. We show
empirically the effectiveness of our solution using several real protein data sets.

Bieganski et al. [3] create a generalized suffix tree from a given database
of protein sequences, and then use this tree to find matches to a given motif.
They create an equivalent deterministic finite automaton from a given regular
expression. They combine the depth-first traversal with the simulation of the au-
tomaton on the labels of the tree edges to find matches (strings accepted by the
automaton). They implement this method into a tool, namely MotifExplorer.
They show experimentally that the performance of MotifExplorer is superior
to grep, the regular expression pattern matching utility of UNIX, which essen-
tially creates a non-deterministic finite automaton and searches for the pattern
in the entire database sequentially. They report that on average MotifExplorer
is 16 times faster. Their results show that in 95% of the motif queries, a gen-
eralized suffix tree proves to be a better choice than an unprocessed sequence
database.

In this paper we modify the suffix-tree approach in [3]. We study the ef-
fectiveness of several heuristics for speeding up the motif search. We recognize
the importance of subtree leaf count and use it in pattern matching with suffix
trees. First, we consider the sibling nodes in descending order of their corre-
sponding subtree leaf-counts. Secondly and separately, we consider the sibling
nodes in descending order of label-lengths on the incoming edges. We study
combinations of these two approaches. We also consider a height and branching
factor constrained tree in which nodes satisfy certain constraints on leaf-counts.
We preprocess the generalized suffix tree to obtain such a tree, which we call
a weight-balanced semi-suffix tree. A similar tree is useful in answering certain
dictionary queries [2]. We use these trees in developing several heuristic algo-
rithms. We implement, and test them on real protein sequences, and motifs.
We report which heuristics yield a speed-up on answering the decision problem
using these heuristics. We note that using the leaf-counts ordering is the most
effective factor in the improved results. We observe that in 88.4% of the cases
in our tests, our heuristic-based methods perform much better than the method
presented in [3].

We include pointers for basic definitions and properties of regular expressions,
finite automata, and suffix trees in Section 2. In Section 3 we first summarize
related work on protein motif searching that uses generalized suffix trees, and
then we explain in Subsection 3.1 various orderings we study for suffix trees. We
present our heuristic algorithms on ordered trees, and results in Section 4. We
conclude in Section 5.
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2 Background

Given a text T , and regular expression R, a classical solution for finding in T
matches for R is to construct an equivalent finite automaton (FA) M for R
and simulate M on symbols in T , and report whenever a final state in M is
entered [1].

Instead of simulating M on the sequences in a given database we use the
approach proposed by Bieganski et. al [3] and we simulate M on the labels of
the suffix tree that we create from the database.

Suffix trees are data structures that are useful for various problems which
involve finding substrings in a given string. For example finding a pattern (sub-
string) of length m takes O(m) time. Gusfield [8] provides a comprehensive study
and analysis of suffix trees.

A suffix tree for a string s is a rooted directed tree in which each path between
the root and a leaf represents a unique suffix of a given input string. Each non-
leaf (or internal) node, except the root, has more than one children, and each
edge is labelled with a non-empty substring of S. All edges out of a node have
distinct first characters of their labels.

From the definition, we can see that a suffix tree on s will contain exactly
n leaves. A character $ /∈ Σ(s) is usually appended to s to guarantee that a
suffix tree exists for every string and that each suffix will end in a leaf, and not
in the middle of an edge. This adds an extra suffix to the tree - $. The label of
a tree node v is the in-order concatenation of the edge labels on the path from
the root of the tree to v. The string − depth of v is the number of characters
in that label. A path may end in the middle of an edge. Every suffix is denoted
by s[i..n] where i is the position in the string where the suffix starts. The label

Fig. 1. The generalized suffix tree of the strings S1 = shishe, S2 = sushi, S3 = shose
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length can be restrained by the so called edge-label compression in which every
edge label is represented by the pair (x, y), where x is the starting position of
the suffix in the string and y is the ending position of the suffix. This allows a
suffix tree to be created in O(n) space.

Sometimes we would like to represent a set of strings rather than one string
by a suffix tree. In such a case, we would need a generalized suffix tree (GST).
From here on in this paper, a suffix tree would imply a generalized suffix tree.
A generalized suffix tree for strings S1, S2, ..., Sn can be built in O(| S1 | + | S2 |
+...+ | Sn |) time using Ukkonen’s algorithm [11]. Figure 1 shows a suffix tree
for the strings shishe, sushi, shose. The table in the figure shows the edge-label
compression. There are two differences in the representation of a generalized
suffix tree as compared to a suffix tree to reflect the extra information that it
contains. First of all, each edge label is represented by three numbers (i, x, y)
where i is the index of the sequence Si under consideration, and (x, y) are the
beginning and ending positions of the edge label in Si. The second difference is
that each leaf node contains a multiple of distinct pairs (Si, j) of numbers where
Si is a string whose suffix Si[j..n] is represented by the path from the root to the
leaf, and where n = |Si|. We will refer to the set of sequences as the database of
sequences.

3 Protein Motif Matching

Protein sequences are sequences from the alphabet of 20 amino acids. Proteins
are grouped into families and domains depending on their functional attributes
and evolutionary ancestry. The proteins which belong to a certain family usually
have some sequence similarities which have been conserved during evolution. A
conserved region is like a signature for a protein family or domain, and it distin-
guishes the members of one family from all other unrelated proteins. These signa-
tures are useful for finding the function of an unknown, newly sequenced protein,
especially when alignment techniques do not produce any results. PROSITE is
an established database which contains information about such signatures [5],
and it is connected with SWISS-PROT which is a database for protein anno-
tation [4]. There are different ways to describe the conserved regions in protein
sequences, and protein motifs are such pattern descriptors. The use of protein
sequence patterns (or motifs) to determine the function(s) of proteins is one of
the most important tools of sequence analysis [5].

Typically, motifs span 10 to 30 amino acid residues. Motifs are restricted
regular expressions (RRE) which do not contain the Kleene closure operator ∗.
The symbol ‘x’ is used for a position where any amino acid is accepted. Ambi-
guities are indicated by listing the acceptable amino acids for a given position,
between square brackets ‘[ ]’, or by listing between a pair of curly brackets ‘{ }
’ the amino acids that are not accepted at a given position. Each element in a
pattern is separated from its neighbor by a ‘-’. Repetition of an element of the
pattern can be indicated by following that element with a numerical value or, if
it is a gap (‘x’), by a numerical range between parentheses. For example, x(3)
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corresponds to x-x-x, and x(2,4) corresponds to x-x or x-x-x or x-x-x-x. When a
pattern is restricted to either the N- or C-terminal of a sequence, that pattern
either starts with a ‘<’ symbol or respectively ends with a ‘>’ symbol.

For example, a so-called P-loop motif is represented in PROSITE as [AG]-
x(4)-G-K-[ST] (PROSITE entry PS00017), which means that the first position
of the motif can be occupied by either Alanine or Glycine, the second, third,
fourth, and fifth positions can be occupied by any amino acid residue, and the
sixth and seventh positions have to be Glycine and Lysine, respectively, followed
by either Serine or Threonine.

We take a protein motif and compare it to a set of protein sequences. We
convert the motif to a regular expression which in turn we convert to an equiv-
alent deterministic FA (DFA). We consider in the motif matching frame the
following two problems:

Problem 1. Given a set of n protein sequences S = {S1,S2,...,Sn}, and a
motif M , if M matches a substring in any Si ∈ S then return that substring,
otherwise, return NULL.
Problem 2. Given a set of n protein sequences S = {S1,S2,...,Sn}, and a
motif M , return all substrings of Si∈S for i=[1..n] which match M .

Currently, the motif matching supported by the PROSITE database website
[5] does not preprocess the protein sequence database. It runs a Perl script
called ps scan against the sequences in the database SWISS-PROT. The script
provides a very comprehensive output [6].

Bieganski et al. [3] were the first to propose matching the PROSITE motifs
against a preprocessed database, in particular a sequence database represented
as a generalized suffix tree. Their tool MotifExplorer represents the motif as a
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Fig. 2. An example of applying TreeF indMatches to the suffix tree of the strings
S1 = shishe, S2 = sushi, S3 = shose for regular expression (s|h)h(i|o)s
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DFA and simulates it on a preprocessed protein sequence database. We modify
and use their approach.

First we develop an algorithm for Problem 2. We create a GST with root
r from the sequence database. We construct a DFA M whose start state is q0
from a given motif. Our pattern matching algorithm TreeF indMatches(M, r, q0)
solves Problem 2 by simulating the automaton M on the labels of the tree edges
in depth-first manner starting at state q0. In order to solve Problem 1, we use a
modified version of the algorithm that stops whenever it finds a match (if there
is one). Figure 2 shows applying TreeF indMatches to the tree in Figure 1 for
regular expression (s|h)h(i|o)s. The first column shows the parts of the tree in
the order that they are traversed, the second column shows whether there exists
a transition in the finite automaton for each symbol under consideration. The
third column displays all the matches found.

We study motif search not only in an ordinary generalized suffix tree as
in [3] but also in other similar data structures which are ordered by various
parameters. We study the effect of these data structures, and as we report in
Section 4 compared to the method used in [3] we achieve much faster results in
88.4% of the cases in our tests in answering Problem 1.

3.1 In Ordered Suffix Trees

We first create a generalized suffix tree T from the sequences in a given database.
Then we preprocess T to create a new tree S using various criteria: ordering by
leaf count, ordering by incoming edge-label length, bounding the balance of the
tree. We explain the motivation for each of these trees. In Section 4 we report
the effectiveness of these trees.

Ordered by Leaf Count. Let pv,i be the probability that a match will be
found in subtree Ti of node v. After this node has been reached in the pattern
matching process, the expected number of branches (i.e. edges) out of v that
will be explored in the pattern matching is bexp =

∑n
i=1 ipv,i. Since subtrees are

always explored left to right, if we order the subtrees in decreasing order of their
associated probabilities, we will minimize bexp for v when looking for one match.
When we look for all matches, the branch search will be exhaustive independent
of the processing order of the subtrees.

We assume that a given pattern appears in every sequence suffix with equal
probability. This is a realistic assumption if input patterns are uniformly se-
lected from the universe of suffixes in the database. Under this assumption, the
leaf count of subtree Ti can be used in approximating the probability pv,i. We
compute and associate pv,i with every subtree root node v using the formula
pv,i = nv,i

nv
where nv,i is the number of leaves in Ti, and nv is the number of

leaves in the tree rooted at v. We sort the children of each node in the tree by
their leaf count in breadth-first manner. If there is a partial match in the label
of the first edge, the chances that there is a full match in the subtree are the
highest. Otherwise, we eliminate the biggest subtree from the pattern matching
process.
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Ordered by Incoming Edge Label Length. Nodes in suffix trees distinguish
between string depth (corresponding number of characters on the path from the
root to that node) and depth (number of nodes on that path). All children of a
node have the same tree depth but they may have different string depths. When
we order the tree by leaf count, there is a hidden assumption that the string
depth of all the subtree roots are the same. However, this is often not the case
because edges coming out of a node can have different label lengths. Exploring
a subtree of many short edges first (short in term of edge label length) may
be more costly than matching one with longer edges. Therefore, for subtrees
with the same probability of finding a match, we would like to explore the one
with the longest edge first. We preprocess T by sorting the nodes at each level
in descending order in their incoming edge label length. The preprocessed tree
is represented by S. We also try sorting the nodes at each level in ascending
order in their incoming edge label length. We note that short-label length may
indicate a large leaf-count. Therefore, there is a tradeoff between the potentials
of descending leaf-count heuristic, and descending label-length heuristic.

Weight-Balanced Semi-suffix Trees. Leaf count is central to the idea of
creating weight-balanced trees [10]. We preprocess a suffix tree T to create a
new suffix tree S with bounded branching factor and height as shown in Figure 3
(Arslan [2] creates a similar tree for a different problem). We call the new tree
semi−suffix since it is based on a suffix tree but a few edges out of a node can
start with the same character. Subtrees Ti are created recursively based on an
observation that there exists a node v in any generalized suffix tree T such that
n

2|Σ| ≤ nv ≤ n
2 for alphabet Σ [2]. Let Npi denote the number of words with prefix

pi. We create subtrees Ti in increasing order in i. The subtree Ti is selected such
that the root of the subtree Ti has leaf-count Npi that satisfies Ni

|2Σ| ≤ Npi ≤ Ni

2

where Ni = n −
∑i−1

j=1 Npj . If there are k subtrees created this way then Ni is
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Fig. 3. The resulting weight-balanced semi-suffix tree. The intervals next to the nodes
are the range of leaf-counts for these nodes. Σ denotes the alphabet for the suffixes.
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also the total number of leaves in subtrees from Ti to Tk, i.e. Ni =
∑k

j=iNpj for
all i, 1 < i ≤ k, and N1 = n. The following are true for the tree S: 1) The height
h is ≤ log2 n, 2) The branching factor b is ≤ log2|Σ|/(|2Σ|−1) n.

4 Implementation and Tests

For building the generalized suffix tree, we have used a suffix tree library libstree
version 0.4 [9] which builds a tree using Ukkonen’s algorithm and represents the
edges coming out of a node as a linked list. Each edge has references to its right
sibling, to its source node and destination node. Each node has a reference to
its incoming edge and to the edge which connects it with its leftmost child. This
allows depth-first iteration, breadth-first iteration, and bottom-up iteration of
the nodes in the tree. Based on the tree produced by the library, we have created
the ordered trees discussed in the previous section.

For building the DFA, we have used a regular expression parsing program
written by Amer Gerzic [7]. We have modified the pattern matching to suit our
needs for finding matches in a suffix tree according to our regular expression
matching algorithm TreeF indMatches.

We aim to test whether ordering the tree will affect the performance of the
pattern matching search. We create a GST from a sample of protein sequences,
and preprocess the GST to create 8 types of suffix trees. For each motif, we
create an DFA and simulate it on each tree, and count the number of characters
processed in the simulation. Under the assumption that the tree can fit in main
memory, the character count is a good estimator for the performance of the tree.
For the current state of the SWISS-PROT 43.6 database, a suffix tree on the
database is approximately 1Gb.

We create and use in our tests the following types of trees:

1. Original - generalized suffix tree with no ordering of nodes.
2. Weight-balanced - weight-balanced semi-suffix tree (see Figure 3).
3. Asc. Label (Desc. Leaf) - GST in which the subtrees of each node are in

ascending order of incoming edge label length (conflict resolution: highest
leaf count first).

4. Desc. Leaf (Asc. Label) - GST in which the subtrees of each node are in
descending order of leaf count (conflict resolution: shortest incoming-edge
labels first).

5. Desc. Leaf (Desc. Label) - GST in which the subtrees of each node are in
descending order of leaf count (conflict resolution: longest incoming-edge
labels first).

6. Desc. (Leaf*Label) - GST in which the subtrees of each node are in descend-
ing order of (incoming edge label length)*(leaf count).

7. Desc. Label - GST in which the subtrees of each node are in descending
order of incoming-edge label length (no conflict resolution).

8. Asc. Label - GST in which the subtrees of each node are in ascending order
of incoming-edge label length (no conflict resolution).
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We consider 20 samples of randomly selected protein sequences from SWISS-
PROT 43.6. Each sample contains 30 sequences. We run 730 of the PROSITE
motifs (all the PROSITE motifs except those that contain x(n,m), {} or >)
against the unordered and ordered suffix trees created from the samples. The
average length of the 600 protein sequences is 340 characters (amino acids) (More
details about the parameters used in the tests, and the test results can be ob-
tained by contacting the authors).

We find the part that the pattern matching will cover for each tree by count-
ing the number of characters processed (simulated on the DFA) until a match
is found. When there is no match, the ordering of the leaves does not reduce
the number of characters read, and the characters processed are the same as in
Problem 2 (finding all matches). Therefore, we do not include in the discussion
the cases when there is no match.

Figure 4 shows the distribution of the number of characters processed for all
cases when a match is found (Problem 1 is answered) in our tests. For example
we see in the figure that in more than 70 cases, approximately 23 characters are
processed when we use the weight-balanced tree. Most of the 730 motifs that
we tested do not have matches in our samples since we built the tree from a
fraction of the whole database. In 88.4% of the cases in which there is a match,
the weight-balanced tree (Tree 2) performs better than the original tree (Tree 1).
We designed our tests such that each case represents a sample in which a certain
motif has a match. Figure 5 shows the distribution of the speedup of the weight-
balanced tree over the original tree for all cases. In the figure we number bins

Fig. 4. The distribution of number of characters processed in answering Problem 1:
Weight-balanced tree versus original tree
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Fig. 5. Histogram of speedup of weight-balanced tree over original tree

such that bin i represents a speedup factor (i.e. the factor by which our method
is faster over the ordinary suffix tree method) between factors i− 1 and i. Bin 2
corresponds to a speedup factor between 1 and 2. All the cases when the weight-
balanced tree is faster are included in the bins 2 and higher. In 11.6% of the
cases our heuristic algorithm did not help with the performance. They are at
bin 1 indicating a slowdown (speedup factor is between 0 and 1). The smallest
speedup factor we observed in our tests was 0.14.

Empirically, trees 2, 3, 4, 5 and 6 have very similar behavior. To save space we
do not include histograms for the performance of each tree. They are very much
similar to figures 4 and 5. In all of them, the decreasing order of subtree leaf
count plays a role which proves that this is the important factor in the ordering.
The median for the number of characters processed is 62 for the original tree. It
is 16 for trees 2, 3, 4, 5, 6. The average number of characters processed for all
ordered and unordered trees is between 393.6 and 406.9 characters in answering
Problem 1 when there is a match. In most of the cases the answer was found
very quickly. For 11.6% of the motifs, it took very long to answer Problem 1
(observed worst-case for the number of processed characters in these cases: 2070
for unprocessed tree, and 4241 for an ordered tree). They increased the averages.

The leaf count heuristic aims to minimize the time to find a match by di-
recting the search to a subtree with the highest leaf-count where the probability
for a match is the highest under a uniform distribution of matches. One may
argue that the time required to find a match should increase as the leaf-counts
increase. Although this may be factor, it is insignificant for most of the cases as
our experiments shows the superior performance of the leaf-count heuristic.
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Ordering only by edge-label length (Trees 7 and 8) does not yield to better re-
sults. The experiments show that these orderings mimic the original, unordered
tree behavior closely. On average, traversing the leaves in ascending order of
label lengths is slightly better than processing them in descending order of label
lengths. In the median case, it reads 30% less characters than the tree ordered
in descending label length. A plausible explanation for the better performance
of the tree ordered in ascending label length is that short label length is a
sign that more suffixes have been inserted in the subtree of that edge, there-
fore, the probability to find a match is higher. In general we believe that what
contributes to the speedup is not the length of the path but the fact that on
average, it is more likely to find a match in a path with shorter labels/high
leaf count. For the motifs that had matches in our samples, the motif length
was on average 9.6. The length alone is not a good search heuristic. For ex-
ample, in motif [DNSTAGC]-[GSTAPIMVQH]-x-x-G-[DE]-S-G-[GS]-[SAPHV]-
[LIVMFYWH]-[LIVMFYSTANQH], the length, 12, does not indicate a large
variety of possible matches.

For Problem 2, we find the part that the pattern matching will cover in
each tree by counting the number of characters read until all matches are found.
Our results confirm the results of Bieganski et al. [3] that using a generalized
suffix tree can speed up the search for motif matches when compared to an
unprocessed database. Using weight-balanced semi-suffix tree compared to an
unprocessed generalized suffix tree slowed down answering Problem 2 by 1% on
average in our tests. We explain this “delay” with the higher branching factor,
and common prefixes on the edge-labels in the weight-balanced semi-suffix tree.
Ordering the nodes by leaf count or label length does not affect the solution
of Problem 2 as compared to the original tree. Therefore, we do not observe a
speedup when solving Problem 2 as compared to an unordered tree.

The effectiveness of leaf-count as an estimator for probability of a match
under uniform distribution suggests the following branch-and-bound algorithm:
Start at the root with an empty priority queue. For each node v visited calculate
for each branch from v a key which is the number of leaves that are reached
from this branch divided by the number of leaves at the subtree rooted at v, and
enqueue this number. Continue next at the node with the largest key, until a
match is found. This algorithm branches to the node where the match probabil-
ity is the highest, and the probabilities are updated dynamically as the search
proceeds.

5 Conclusion

In this paper, we explore and evaluate alternative representations of a database
of sequences for two types of query problems for a given regular expression: 1)
Find the first match (if there is one), and 2) Find all the matches. We propose a
framework in which both problems can be addressed. We represent the database
of sequences as a generalized suffix tree, and obtain new data structures based
on this tree. We show empirically that when solving the first problem, we can
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achieve a speedup for most of the test cases after ordering the nodes in the
generalized suffix tree in a meaningful manner. The experiments suggest that
the most important factor is to process the subtrees in the decreasing order of
leaf count at each node level. This framework addresses the second problem in
a similar manner as the existing suffix-tree method [3]. The framework allows
probabilistic analysis which could be a topic of future work.
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