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Preface

The International Symposium on Computer Science in Russia (CSR 2006) was
held on June 8-12, 2006 in St. Petersburg, Russia, hosted by the Steklov Institute
of Mathematics at St. Petersburg. It was the first event in a planned series of
regular international meetings that are united by their location (Russia).

The symposium was composed of two tracks: Theory and Applications/Tech-
nology. The opening lecture was given by Stephen A. Cook and ten other
invited plenary lectures were given by Boaz Barak, Gerard Berry, Bob Colwell,
Byron Cook, Melvin Fitting, Russell Impagliazzo, Michael Kaminski, Michael
Kishinevsky, Pascal Koiran, and Omer Reingold. This volume contains the ac-
cepted papers of both tracks and also some of the abstracts of the invited speak-
ers. The scope of the proposed topics for the symposium was quite broad and
covered basically all areas of computer science and its applications. We received
279 papers in total, the contributors being from 45 countries. The Program
Committee of the Theory Track selected 35 papers out of 121 submissions. The
Program Committee of the Applications/Technology Track selected 29 papers
out of 158 submissions.

Two workshops were co-located with CSR, 2006:

— Workshop on Words and Automata (WOWA 2006);
— Tutorial on Automata-Based Programming.

The reviewing process was organized using the EasyChair conference system,
thanks to Andrei Voronkov.
We are grateful to our sponsors:

— The U.S. Civilian Research & Development Foundation;
— Russian Foundation for Basic Research.

We also thank the local Organizing Committee: Dmitry Karpov, Arist Ko-
jevnikov, Alexander Kulikov, Yury Lifshits, Sergey Nikolenko, Svetlana Obraztso-
va, Alexei Pastor, and, in particular, Elena Novikova.

March 2006 Dima Grigoriev
John R. Harrison
Edward A. Hirsch



Organization

Program Committee

Theory Track

Sergei Artemov Graduate Center CUNY, USA
Paul Beame University of Washington, USA
Michael Ben-Or The Hebrew University, Israel
Andrei Bulatov Simon Fraser University, Canada
Peter Biirgisser Paderborn, Germany
Felipe Cucker City University of Hong Kong, China
Evgeny Dantsin Roosevelt University, USA
Volker Diekert Stuttgart, Germany
Dima Grigoriev (Chair) CNRS, IRMAR, Rennes, France
Yuri Gurevich Microsoft Research, USA
Johann A. Makowsky Technion — Israel Institute of Technology, Israel
Yuri Matiyasevich Steklov Institute/St. Petersburg, Russia
Peter Bro Miltersen Aarhus, Denmark
Grigori Mints Stanford, USA
Pavel Pudlak Prague, Czech Republic
Prabhakar Raghavan Verity Inc., USA
Alexander Razborov IAS, USA and Steklov Institute/Moscow, Russia
Michael E. Saks Rutgers, USA
Alexander Shen LIF CNRS, France and Moscow, Russia
Amin Shokrollahi EPF Lausanne, Switzerland
Anatol Slissenko Paris-12, France
Mikhail Volkov Ural State University, Russia

Applications and Technology Track

Boris Babayan Intel, Russia
Robert T. Bauer PSU, USA
Matthias Blume Toyota Technological Institute, USA
Walter Daelemans Antwerpen, Belgium
Vassil Dimitrov Calgary, Canada
Richard Fateman Berkeley, USA
Dina Goldin University of Connecticut, USA
John R. Harrison (Chair) Intel, USA
John Mashey Techviser, USA
Bertrand Meyer ETH Zurich, Switzerland and Eiffel Software, USA
Fedor Novikov St. Petersburg State Polytechnical University, Russia

Michael Parks Sun Microsystems, USA



VIII Organization

Andreas Reuter
Mary Sheeran
Elena Troubitsyna
Miroslav Velev
Sergey Zhukov

Conference Chair

Edward A. Hirsch

European Media Laboratory, Germany
Chalmers University of Technology, Sweden
Abo Akademi University, Finland

Carnegie Mellon University, USA

Transas, Russia

Steklov Institute/St. Petersburg, Russia

Steering Committee for CSR Conferences

Anna Frid
Edward A. Hirsch
Juhani Karhumaéki
Mikhail Volkov

Referees

Emrah Acar

Noga Alon

Jean-Paul Allouche
Eugene Asarin
Maxim Babenko
Laurent Bartholdi
Reuven Bar-Yehuda
Daniele Beauquier
Magnus Bjork
Johannes Borgstroem
Ahmed Bouajjani
Mihai Budiu
Eduardo Camponogara
Olivier Carton
Hsun-Hsien Chang
Swarat Chaudhuri
Alessandra Cherubini
David Chung

Joélle Cohen

Richard Cole
Stephen A. Cook
Matteo Corti
Maxime Crochemore
Stefan Dantchev

Sobolev Institute/Novosibirsk, Russia
Steklov Institute/St. Petersburg, Russia

Turku, Finland

Ural State University, Russia

Junxiong Deng
Amer Diwan
Niklas Een
Robert Elsaesser
Henning Fernau
Eldar Fischer
Morten Fjeld
Lance Fortnow
Tan Foster

Anna Frid
Joaquim Gabarro
Healfdene Goguen
Raphael Hauser
Rogardt Heldal
Ulrich Hertrampf
John Hughes
Piotr Indyk

Alon Itai

David Janin
Michael Kaminski
Graham Kemp
Barbara Konig
Teresa Krick
Manfred Kufleitner



Oliver Kullmann
Daniel Larsson

Dan Li

Yury Lifshits

Alexei Lisitsa

Anders Logg

Markus Lohrey

Martin Lotz

Sus Lundgren

Sergio Maffeis

David McAllester
Burkhard Monien

S. Muthu Muthukrishnan
Lorenz Minder

Anca Muscholl
Francesco Zappa Nardelli
Bengt Nordstrom

Dirk Nowotka,

Matti Nykénen
Christos Papadimitriou
Holger Petersen
Rossella Petreschi
Franck Pommereau
Chung Keung Poon
Harald Raecke

Deva Ramanan

Sponsors

Organization

Dror Rawitz

Jan Reimann
Angelo Restificar
Sgren Riis

Philip Ruemmer
Igor Rystsov
Viktor Sabelfeld
Ashish Sabharwal
Arseny Shur
Terence Sim

Jan Smith

Niklas Sorensson
Arne Storjohann
Karsten Tiemann
Michael Tiomkin
Siegbert Tiga
Paul Vitanyi
Nicolai Vorobjov
Vladimir Vovk
Vladimir Vyugin
Chao Wang
Zhenghong Wang
Alexander Wolpert
Hideki Yamasaki
Martin Ziegler
Silvano Dal Zilio Uri Zwick

The U.S. Civilian Research & Development Foundation.

Russian Foundation for Basic Research.

IX



Table of Contents

Invited Papers

Non-black-box Techniques in Cryptography
Boaz Barak . ... ... ...

Complexity of Polynomial Multiplication over Finite Fields
Michael Kaminski ... ... ... et

Synchronous Elastic Circuits
Mike Kishinevsky, Jordi Cortadella, Bill Grundmann, Sava Krstic,
John O°Leary ...... ..o

Theory Track

SZK Proofs for Black-Box Group Problems
V. Arvind, Bireswar Das ......... ... i

Canonical Decomposition of a Regular Factorial Language
S. V. Avgustinovich, A.E. Frid ........ ... . . .. . . ..

Acyclic Bidirected and Skew-Symmetric Graphs: Algorithms and
Structure
Maxim A. Babenko . ... .. ... ...

Inductive Type Schemas as Functors
Freiric Barral, Sergei Soloviev .. ...... ... .. .. . . ...

Unfolding Synthesis of Asynchronous Automata
Nicolas Baudru, Rémi Morin ........... ...

Conjugacy and Equivalence of Weighted Automata and Functional
Transducers
Marie-Pierre Béal, Sylvain Lombardy, Jacques Sakarovitch ..........

Applications of the Linear Matroid Parity Algorithm to Approximating
Steiner Trees
Piotr Berman, Martin Firer, Alexander Zelikovsky . ................

Tuples of Disjoint NP-Sets
Olaf Beyersdorff ... ..o



XII Table of Contents

Constructive Equivalence Relations on Computable Probability
Measures
Laurent BIenvenu . .. ... ..o

Planar Dimer Tilings
Olivier Bodini, Thomas Fernique ......... .. .. .. .. .. i ..

The Complexity of Equality Constraint Languages
Manuel Bodirsky, Jan Kdra .......... ... 0.,

Window Subsequence Problems for Compressed Texts
Patrick Cégielski, Irene Guessarian, Yury Lifshits,
Yuri Matiyasevich . ..... ...

Efficient Algorithms in Zero-Characteristic for a New Model of
Representation of Algebraic Varieties
Alexander L. Chistou .. ... ...

Relativisation Provides Natural Separations for Resolution-Based Proof
Systems
Stefan Dantchev .. ... ...

Bounded-Degree Forbidden Patterns Problems Are Constraint
Satisfaction Problems
Stefan Dantchev, Florent Madelaine . ......... ... ...,

Isolation and Reducibility Properties and the Collapse Result
Sergey M. Dudakov ....... ... ..

Incremental Branching Programs
Anna Gal, Michal Koucky, Pierre McKenzie ......................

Logic of Proofs for Bounded Arithmetic
Evan GOoTis ...

On a Maximal NFA Without Mergible States
Igor Grunsky, Oleksiy Kurganskyy,
Igor Potapov ... ...

Expressiveness of Metric Modalities for Continuous Time
Yoram Hirshfeld, Alezander Rabinovich ............... ... . .....

Extending Dijkstra’s Algorithm to Maximize the Shortest Path by
Node-Wise Limited Arc Interdiction
Leonid Khachiyan, Viadimir Gurvich, Jihui Zhao ............ ... ...



Table of Contents XIII

Weighted Logics for Traces
Ingmar Meinecke ........ ... 235

On Nonforgetting Restarting Automata That Are Deterministic and/or
Monotone
Hartmut Messerschmidt, Friedrich Otto......... ... .. ... ... ... ... 247

Unwinding a Non-effective Cut Elimination Proof
Grigort Mints .. ... 259

Enumerate and Expand: Improved Algorithms for Connected Vertex
Cover and Tree Cover
Daniel Molle, Stefan Richter, Peter Rossmanith ............. ... ... 270

Shannon Entropy vs. Kolmogorov Complexity
An. Muchnik, N. Vereshchagin .......... ... oo, 281

Language Equations with Symmetric Difference
Alexander OKhotin .. ... .. ... e 292

On Primitive Recursive Realizabilities
Valery Plisko . .. .. oo 304

Evidence Reconstruction of Epistemic Modal Logic S5
Natalia Rubtsova . ........ ... i 313

Linear Temporal Logic with Until and Before on Integer Numbers,
Deciding Algorithms
V.o Rybakov ... ..o 322

On the Frequency of Letters in Morphic Sequences
Kalle Saari .. ... .. 334

Functional Equations in Shostak Theories
Sergey P. Shlepakov ... .. ... .. 346

All Semi-local Longest Common Subsequences in Subquadratic Time
Alexander Tiskin . ... ... ... e 352

Non-approximability of the Randomness Deficiency Function
Michael A. USLINOU ... ..o e 364

Multi-agent Explicit Knowledge
Tatiana Yavorskaya (Sidon) ......... ... o i i, 369



XIV Table of Contents

Applications and Technology Track

Polarized Subtyping for Sized Types
Andreas Abel . ... ... 381

Neural-Network Based Physical Fields Modeling Techniques
Konstantin Bournayev . .........c.. . 393

Approximate Methods for Constrained Total Variation Minimization
Xiaogang Dong, Ilya Pollak ....... .. .. . ... . . .. .. . . ... .... 403

Dynamic Isoline Extraction for Visualization of Streaming Data
Dina Goldin, Huayan Gao ......... ... ... 415

Improved Technique of IP Address Fragmentation Strategies for DoS
Attack Traceback
Byung-Ryong Kim, Ki-Chang Kim ....... ... .. ... . .. ... 427

Performance Comparison Between Backpropagation, Neuro-Fuzzy
Network, and SVM
Yong-Guk Kim, Min-Soo Jang, Kyoung-Sic Cho, Gwi-Tae Park ..... 438

Evolutionary Multi-objective Optimisation by Diversity Control
Pasan Kulvanit, Theera Piroonratana, Nachol Chaiyaratana,
Djitt Laowattana . ............ . . 447

3D Facial Recognition Using Eigenface and Cascade Fuzzy Neural
Networks: Normalized Facial Image Approach
Yeung-Hak Lee, Chang-Wook Han ........ ... ... ... i, 457

A New Scaling Kernel-Based Fuzzy System with Low Computational
Complexity
Xiaojun Liu, Jie Yang, Hongbin Shen, Xiangyang Wang ............ 466

Bulk Synchronous Parallel ML: Semantics and Implementation of the
Parallel Juxtaposition
F. Loulergue, R. Benheddi, F. Gava, D. Louis-Régis................ 475

A Shortest Path Algorithm Based on Limited Search Heuristics
Feng Lu, Poh-Chin Lai ....... ... .. 487

A New Hybrid Directory Scheme for Shared Memory Multi-processors
Guoteng Pan, Lunguo Xie, Qiang Dou, Erhua He .................. 498

Manipulator Path Planning in 3-Dimensional Space
Dmitry Pavlov. . ... 505



Table of Contents

Least Likely to Use: A New Page Replacement Strategy for Improving
Database Management System Response Time

Rodolfo A. Pazos R., Joaquin Pérez O., José A. Martinez F.,

Juan J. Gonzdlez B., Mirna P. Ponce F...........................

Nonlinear Visualization of Incomplete Data Sets
Sergiy Popovu . ... ..

A Review of Race Detection Mechanisms
Aoun Raza ... ... .. e

Fuzzy-Q Knowledge Sharing Techniques with Expertness Measures:
Comparison and Analysis

Panrasee Ritthipravat, Thavida Maneewarn, Jeremy Wyatt,

Dyjitt Laowattana . . .. ..ot

Explaining Symbolic Trajectory Evaluation by Giving It a Faithful
Semantics
Jan-Willem Roorda, Koen Claessen ............. ... . oo,

Analytic Modeling of Channel Traffic in n-Cubes
Hamid Sarbazi-Azad, Hamid Mahini, Ahmad Patooghy..............

Capturing an Intruder in the Pyramid
Pooya Shareghi, Navid Imani, Hamid Sarbazi-Azad . ................

Speech Enhancement in Short-Wave Channel Based on Empirical Mode
Decomposition
Li-Ran Shen, Qing-Bo Yin, Xue-Yao Li, Hui-Qiang Wang ..........

Extended Resolution Proofs for Conjoining BDDs
Carsten Sinz, Armin Biere . ...

Optimal Difference Systems of Sets with Multipliers
Vladimir D. Tonchev, Hao Wang ....... ... ... ... .. i,

Authentication Mechanism Using One-Time Password for 802.11
Wireless LAN
Binod Vaidya, SangDuck Lee, Jae-Kyun Han, SeungJo Han .........

Optimizing Personalized Retrieval System Based on Web Ranking
Hao-ming Wang, Ye Guo, Bo-qin Feng ...........................

Instruction Selection for ARM/Thumb Processors Based on a
Multi-objective Ant Algorithm
Shengning Wu, Stkun Li ... ...

XV



XVI Table of Contents

A New Flow Control Algorithm for High Speed Computer Network
Haoran Zhang, Peng Sun ......... ... . . ..

Nonlinear Systems Modeling and Control Using Support Vector
Machine Technique
Haoran Zhang, Xiaodong Wang . ...... ... ...

Fast Motif Search in Protein Sequence Databases
Elena Zheleva, Abdullah N. Arslan ........... ... . ...,

Author Index . ... ...



Non-black-box Techniques in Cryptography

Boaz Barak

Princeton University

Abstract. In cryptography we typically prove the security of a scheme
by reducing the task of breaking the scheme to some hard computational
problem. This reduction usually done in a black-box fashion. By this we
mean that there is an algorithm that can solve the hard problem given
any black-box for breaking the scheme.

This lecture concerns exceptions to this rule: that is, schemes that are
proven secure using a non-black-box reduction, that actually uses the
code of a scheme-breaking attacker to construct a problem-solving algo-
rithm. It turns out that such reductions can be used to obtain schemes
with better properties that were known before. In fact, in some cases
these non-black-box reductions can be obtain goals that were proven
to be impossible to achieve when restricting to black-box reductions. In
particular, we will present constructions of zero-knowledge protocols that
are proven secure under various compositions [1, 2, 3].

We’ll also discuss some of the limitations and open questions regarding
non-black-box security proofs.

References

1. Barak, B.: How to go beyond the black-box simulation barrier. In: Proc. 42nd
FOCS, IEEE (2001) 106-115

2. Pass, R.: Bounded-concurrent secure multi-party computation with a dishonest
majority. In: Proc. 36th STOC, ACM (2004) 232241

3. Barak, B., Sahai, A.: How to play almost any mental game over the net - concurrent
composition using super-polynomial simulation. In: Proc. 46th FOCS, IEEE (2005)
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Complexity of Polynomial Multiplication
over Finite Fields

Michael Kaminski

Department of Computer Science,
Technion — Israel Institute of Technology,
Haifa 32000, Israel

kaminski@cs.technion.ac.il

_ 1)2
Abstract. We prove the (3 + (g > n — o(n) lower bound on
q5 + (q _ 1)3 ( )

the quadratic complexity of multiplication of two degree-n polynomials
over a g-element field. The proof is based on a novel combination of two
known techniques. One technique is the analysis of Hankel matrices rep-
resenting bilinear forms defined by linear combinations of the coefficients
of the polynomial product. The other technique is a counting argument
from the coding theory.

D. Grigoriev, J. Harrison, and E.A. Hirsch (Eds.): CSR 2006, LNCS 3967, p. 2, 2006.
© Springer-Verlag Berlin Heidelberg 2006



Synchronous Elastic Circuits

Mike Kishinevsky', Jordi Cortadella?, Bill Grundmann®,
Sava Krsti¢!, and John O’Leary!

1 Strategic CAD Labs, Intel Corporation, Hillshoro, Oregon, USA
2 Universitat Politecnica de Catalunya, Barcelona, Spain

Synchronous elastic circuits (also known as latency-insensitive and latency-
tolerant) behave independently of the latencies of computations and communi-
cation channels. For example, the three sequences

X = (1,%,%,2,%,5,3,..0 Y = (2,%,0,% 1,%4,...) Z=(%3,%,2,% % 6,%7,...)

are an acceptable behavior of an elastic adder with input channels X,Y and
output channel Z, where the absence of transfer on a particular channel at
a given cycle is indicated by =. Indeed, the associated transfer subsequences
(obtained by deleting the *’s) make up a behavior of an ordinary (non-elastic)
adder:

X'=(1,2,5,3,...) Y'=(2,0,1,4,..) Z' =(3,2,6,7,...)

Current interest in elasticity is motivated by the difficulties with timing and
communication in large synchronous designs in nanoscale technologies. The time
discretization imposed by synchronicity forces to take early decisions that often
complicate changes at the latest stages of the design or efficient design scaling.
In modern technologies, calculating the number of cycles required to transmit
data from a sender to a receiver is a problem that often cannot be solved until
the final layout has been generated. Elastic circuits promise novel methods for
microarchitectural design that can use variable latency components and tolerate
static and dynamic changes in communication latencies, while still employing
standard synchronous design tools and methods.

We will first present a simple elastic protocol, called SELF (Synchronous
Elastic Flow) and describes methods for an efficient implementation of elastic
systems and for the conversion of regular synchronous designs into an elastic
form. Every elastic circuit £ implements the behavior of an associated standard
(non-elastic) circuit C, as in the adder example above. For each wire X of C,
there are three in &: the data wire Dx, and the single-bit control wires Vx and
Sx (valid and stop). This triple of wires is a channel of £. A transfer along the
channel occurs when Vx = 1 and Sx = 0, thus requiring cooperation of the pro-
ducer and the consumer. [CKGO06] provides more details on the implementation
of SELF.

We will next review theoretical foundations of SELF. Our main result states
that (under favorable circumstances) “the network of elasticizations is an elasti-
cization of the given network”: if we have elastic circuits &1, .. ., &, implementing

D. Grigoriev, J. Harrison, and E.A. Hirsch (Eds.): CSR 2006, LNCS 3967, pp. 3-5, 2006.
© Springer-Verlag Berlin Heidelberg 2006



4 M. Kishinevsky et al.

standard circuits Cy, . ..,C, and if C is a standard network obtained by connect-
ing some wires of the circuits C;, then connecting the corresponding channels
(wire triples) of the elastic circuits & will produce a new elastic circuit which
implements C. As a special case, we prove the characteristic property of elas-
tic circuits: plugging an empty elastic buffer in a channel of an elastic network
produces an equivalent elastic network. The details of the theory can be found
in [KCKOO06].

Related Work

Some researchers advocate for the modularity and efficiency of asynchronous
circuits to devise a beter methodology for complex digital systems. However,
asynchronous circuits require a significantly different design style and the CAD
support for such circuits is still in its prehistory.

Our work addresses the following question: is there an efficient scheme that
combines the modularity of asynchronous systems with the simplicity of syn-
chronous implementations?

Other authors have been working towards this direction. Latency-insensitive
(LI) schemes [CMSV01] were proposed to separate communication from compu-
tation and make the systems insensitive to the latencies of the computational
units and channels. The implementation of LI systems is synchronous [CSV02,
CNO1] and uses relay stations at the interfaces between computational units.

In a different scenario, synchronous interlocked pipelines [JKBT02] were pro-
posed to achieve fine-grained local handshaking at the level of stages. The
implementation is conceptually similar to a discretized version of traditional
asynchronous pipelines with request/acknowledge handshake signals.

A de-synchronization [HDGC04,BCK*04] approach automatically transforms
synchronous specifications into asynchronous implementations by replacing the
clock network with an asynchronous controller. The success of this paradigm
will depend on the attitude of designers towards accepting asynchrony in their
design flow.

References
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C. Sotiriou. Handshake protocols for de-synchronization. In Proc. In-
ternational Symposium on Advanced Research in Asynchronous Circuits
and Systems, pages 149-158. IEEE Computer Society Press, April 2004.

[CKGO6) J. Cortadella, M. Kishinevsky, and B. Grundmann. SELF: Specification
and design of a synchronous elastic architecture for DSM systems. In
TAU’2006: Handouts of the International Workshop on Timing Issues in
the Specification and Synthesis of Digital Systems, February 2006. Avail-
able at www.1lsi.upc.edu/"jordicf/gavina/BIB/reports/self tr.pdf.

[CMSVO01] L. Carloni, K.L. McMillan, and A.L. Sangiovanni-Vincentelli. Theory of
latency-insensitive design. IEEE Transactions on Computer-Aided Design,
20(9):1059-1076, September 2001.
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SZK Proofs for Black-Box Group Problems*

V. Arvind and Bireswar Das

Institute of Mathematical Sciences,
C.I.T Campus, Chennai 600 113, India

{arvind, bireswar}@imsc.res.in

Abstract. In this paper we classify several group-theoretic computa-
tional problems into the classes PZK and SZK (problems with per-
fect /statistical zero-knowledge proofs respectively). Prior to this, these
problems were known to be in AM N coAM. As PZK C SZK C AM N
coAM, we have a tighter upper bound for these problems.

1 Introduction

Motivated by cryptography, zero knowledge proof systems were introduced by
Goldwasser et al [9]. These are a special kind of interactive proof systems in
which the verifier gets no information other than the validity of the assertion
claimed by the prover. The notion of zero knowledge is formalized by stipulating
the existence of a randomized polynomial time simulator for a given protocol. For
a given input, the simulator outputs strings following a probability distribution
indistinguishable from the verifier’s view of the interaction between prover and
verifier for that input. Indistinguishability can be further qualified, leading to
different notions of zero knowledge. The protocol is perfect zero knowledge if
the simulator’s distribution is identical to the verifier’s view for all inputs. It
is statistical zero knowledge if the two distributions have negligible statistical
difference. The more liberal notion is computational indistinguishability where
the two distributions cannot be distinguished by polynomial-size circuits.

Natural problems like Graph Isomorphism (GRAPH-ISO) and Quadratic
Residuosity, their complements, a version of the discrete log problem are all
known to have perfect zero-knowledge protocols. Some of these protocols have
found cryptographic applications. For example, the Fiat-Shamir-Feige identifi-
cation scheme is based on the ZK protocol for quadratic residuosity.

Our focus is complexity-theoretic in the present paper. As a complexity class
SZK is intriguing. It is closed under complement and is contained in AMNcoAM.
It is open if SZK is coincides with AM N coAM. One approach to studying SZK
is to explore for new natural problems that it contains. In [13, 8], investigating
SZK, it is shown that two natural promise problems, Statistical Difference (SD)
and Entropy Difference (ED) are complete for SZK. We use this to exhibit sev-
eral natural group-theoretic problems in SZK and PZK. These are well-studied
problems and known to be in NP N coAM or in AM N coAM |2, 5].

* Part of the work done was during visits to Berlin supported by a DST-DAAD project.

D. Grigoriev, J. Harrison, and E.A. Hirsch (Eds.): CSR 2006, LNCS 3967, pp. 6-17, 2006.
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SZK Proofs for Black-Box Group Problems 7

In this paper we put several group-theoretic problems for permutation groups
in PZK, and for general black-box groups in SZK. We give a unified argument,
showing that an appropriately defined group equivalence problem is reducible to
Statistical Difference. One problem that requires a different technique is solvable
permutation group isomorphism.

2 Preliminaries

Definition 1 (Statistical Difference). Let X and Y be two distributions
on a finite set S. The statistical difference between X and Y is SD(X,Y) =
é ZSES |Pr(X =s)— Pr(Y =s)|.

A distribution X on S is e-uniform if Iél (1—e)<PriX=s< Iél (I4+¢e). IfX
is e-uniform on S then SD(X, Ug) < €/2, where Usg is the uniform distribution
on S. We next define SZK.

Definition 2. [6] An interactive proof system (P, V) for a language L is statis-
tical zero-knowledge (i.e. L is in SZK) if for every randomized polynomial-time
interactive machine V*, there is a probabilistic polynomial-time algorithm M*
such that for x € L and all k, M*(x, 1) outputs fail with probability at most é
and M* has the following property: let m*(x,1%) be the random variable for the
distribution of M*(x,1%) conditioned on M*(x,1%) #fail. Let (P, V)(z,1%) be
the message distribution between P and V. Then SD(m*(z, 1), (P, V)(x, 1¥)) <
o( ;col<1> ). Additionally, the protocol is perfect zero-knowledge (L € PZK) if this
statistical difference is 0 for all x and k.

A boolean circuit X : {0,1}"™ — {0, 1}"™ induces a distribution on {0, 1}" by the
evaluation X (z), where x € {0,1}™ is picked uniformly at random. We use X to
denote this distribution encoded by circuit X. For 0 < a < § < 1, we define the
promise problem SD%? = (SD%’B, SD%’B): the input is two distributions X and
Y given by circuits, and has “yes instances” SD$” = {(X,Y) | SD(X,Y) < a}
and “no instances” SD?V"H ={(X,Y) | SD(X,Y) > 3}. We recall some important
results from [13, 14].

Theorem 1 (Sahai-Vadhan). [13] The class SZK is closed under complement,
and SDY/32/3 g complete for SZK. Furthermore, SD' is in PZK.

We recall some basic group theory. The action of a group G on a set X is
defined by a map o : X x G — X such that for all x € X (i) a(z,id) = z,
i.e., the identity id € G fixes each x € X, and (ii) a(a(x,91),92) = a(x, g192)
for g1,92 € G,. We write 29 instead of a(z,g) when the group action is clear
from the context. The orbit of x € X under G action, denoted z@, is the set,
{yly € X,y = 29 for some g € G}. Notice X is partitioned into orbits.

Let G be a permutation group, i.e., G < S,. Each 7 € G maps i € [n]
to 4™, which is the natural action of G' on [n]. The subgroup G® of G < S,
that fixes each of {1,...,i} is a pointwise stabilizer subgroup. Thus, we have a
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tower of subgroups G = G(© > G > G? > ... > @D = {jd}. Notice that
[GG=D) . G < n. Let R; be a set of complete and distinct coset representatives
of G in GG~ for each i. Then |J!;' R; generates G and is known as a strong
generating set for G.

The subgroup generated by {ryz~ly~! | z,y € G} is the commutator sub-
group G’ of G. Recall that G’ is the unique smallest normal subgroup of G such
that G/G’ is commutative. The derived series of G is G> G > G’ > ---. We
say G is solvable if this series terminates in {id}. There are polynomial-time
algorithms to compute the derived series and to test solvability for permutation
groups G given by generating sets (see e.g. [11]). A composition series of G is a
tower of subgroups {id} = G1 G2 <+ <Gy, = G such that G;/Gi41 is simple
for each i. Recall that G is solvable iff G;/G;+1 is cyclic of prime order for each
i in any composition series for G.

3 Group Problems in PZK

We now show that various permutation group problems (not known to be in
P) are in PZK. Examples are Coset Intersection, Double Coset Membership,
Conjugate Subgroups etc. We define these problems below (see [11] for details).
These are problems known to be harder than GRAPH-ISO. We show they are
in PZK by a general result. We define a generic problem Permutation Group
Equivalence PGE and show it is polynomial-time many-one reducible to SD%!.
Since SD”! € PZK it follows that PGE € PZK. The problem PGE is generic in
the sense that all considered permutation group problems (except group isomor-
phism) are polynomial-time many-one reducible to GE and hence are in PZK.
Permutation group isomorphism requires a different approach. In fact, in this
paper we show only for solvable groups that this problem is in PZK.

Definition 3. Permutation Group Equivalence PGE has inputs of the form
(z,y,T,7), where T C S, and z,y € {0,1}", for m = n®M. Let G = (T).
The map T : G x S — S is a polynomial-time computable group action of G
on S, for some S C {0,1}™. More precisely, given g € G and s € S, the image
s9 = 71(g,8) is polynomial-time computable. The PGE problem is the promise
problem: given (x,y,T,T) such that x,y € {0,1}™ with the promise that T de-
fines a group action of G = (T') on some S C {0,1}™ with x,y € S, the problem
is to decide if T(g,x) = 9 =y for some g € G.

Theorem 2. PGE is polynomial-time many-one reducible to SD?.

Proof. Let (z,y,T,7) be an input instance of PGE such that z,y € S and
S C {0,1}™. Define two circuits X, 7, Xy : {0,1}* — {0,1}™, where k is
polynomial in n to be fixed later. In the sequel we assume that it is possible
to uniformly pick a random element from the set [i] for each positive integer 4
given in unary. The circuit X, o on input a random string r € {0, 1}* will use r
to randomly sample an element from the group G = (T'). This is a polynomial-
time procedure based on the Schreier-Sims algorithm for computing a strong
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generating set U;:ll R; for G, where R; is a complete set of distinct coset repre-
sentatives of G in G~V for each i. Then we can sample from G uniformly at
random by picking z; € R; uniformly at random and computing their product
gr = Z1T2 -+ - Tp—1. The circuit X, 7 then outputs 9. By construction, z9" is
uniformly distributed in the G-orbit of z. Likewise the other circuit X, r will
output a uniformly distributed element of the G-orbit of y. Since G defines a
group action on S, the two orbits are either disjoint or identical. In particular,
the orbits are identical if and only if x = y9 for some g € G. Thus, the statistical
difference between X, 7 and X, 7 is 0 or 1 depending on whether x = y9 for
some g € G or not. This proves the theorem.

We show that several permutation group problems are reducible to PGE. There
is a table of reductions for permutation group problems in Luks’ article [11].
It suffices to show that the following two “hardest” problems from that table
are reducible to PGE (apart from permutation group isomorphism which we
consider in the next section).

The Subspace Transporter Problem SUBSP-TRANS has input consisting of a
subgroup G of S, given by generating set T', a representation 7 : G — GL(F"),
and subspaces Wy, Wy C F* given by spanning sets. The question is whether
W7 = W, for some g € G. Here the size ¢ of the finite field is a constant. Notice
here that by WY is meant the image of the subspace Wi under the matrix 7(g).

The Conjugacy of Groups Problem CONJ-GROUP has inputs consisting of
three permutation groups G, Hy, Hs in S,,, given by generating sets. The question
is whether there is a g € G such that H{ = Hy (where H{ = g~ 'Hg).

Lemma 1.

(a) Let Fy be a fived finite field. Given as input X C ¥y, there is a polynomial-
time algorithm A that computes a canonical basis B of the subspace W
spanned by X. The output is canonical in the following sense: if A is given
as input any spanning set of W, the output of A will be B.

(b) Given as input X C S, there is a polynomial-time algorithm A that com-
putes a canonical generating set B of the subgroup G generated by X. The
output is canonical in the sense that A will output B, given any generating
set X' of G as input.

Proof. First we prove (a). Order the elements of F, lexicographically. First, we
search for the least i such that there is a vector (vi,...,v,) € W with v; = 1
(Notice that vy, ...v;—1 have to be zero for all elements of W). For this we can
use a polynomial-time algorithm for testing feasibility of linear equations over
F,. Having found ¢, we search for the least v;11 € F, such that v; = 1. Since ¢
is a constant we can do this search with a constant number of similar feasibility
tests. After finding the least v;11 we fix it and search similarly for the least
vi+2 and so on. Continuing thus, we can compute the lex least nonzero element
u; in W. Next, in order to find a basis we look for the least index j > i such
that there is a nonzero vector (vi,...,v,) € W with vy = v = ... =v;_1 =0
and v; = 1 again by O(n) feasibility tests. After finding j, we can again pick
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the lex least nonzero vector uz with the property that the jth index is least
nonzero coordinate in ug. Continuing in this manner, we will clearly obtain a
basis {u1,uz,...,ux} of W. By our construction this basis is canonical.

Now we prove (b). The algorithm A will compute a strong generating set
from X for the group G using the Schreier-Sims algorithm [11]. Then using the
fact that the lex least element of a coset H (where z and H are from S,,) can
be computed in polynomial time [1] we can replace each coset representative in
the strong generating set by a lex least coset representative. This generating set
is canonical by construction.

Theorem 3. The problems SUBSP-TRANS and CONJ-GROUP are polynomial-
time many-one reducible to PGE.

Proof. We first consider SUBSP-TRANS. Let (T, S1, S, 7) be an input. Let G =
(T') and S1,S2 C F}' be spanning sets of W1 and W respectively. The repre-
sentation is given by 7 : G — GL(F*). The reduction from SUBSP-TRANS
to PGE maps (T, 51, 52, 7) to (z,y,T,7) where z and y are the canonical bases
for W7 and W5 respectively, in the sense of lemma 1. The set S in Definition 3
corresponds to the set of canonical bases of all possible subspaces of Fy". The
group action 7 is the algorithm that given B € S and g € G, first computes the
set of vectors 7(g)(B). Next, using the algorithm in Lemma 1, 7 computes the
canonical basis of subspace spanned by 7 (g)(B).

The reduction is similar for CONJ-GROUP. Let (7,51, S2) be an instance of
CONJ-GROUP, where T, S; and S; generate G, Hy, and Hs respectively. The
reduction maps (7T, S1, S2) to (z,y,T,7) where x and y are the canonical strong
generating sets for Hy and Hs respectively in the sense of Lemma 1. The set S
in Definition 3 is the set of canonical strong generating sets for all subgroups of
Sy. The group action 7 is the algorithm that given B € S and g € G, applies
the algorithm A in lemma 1 to compute the canonical generating set for the
subgroup generated by {g~lxg | x € B}.

Corollary 1. The problems of Set Transporter, Coset Intersection, Double
Coset Membership, Double Coset Equality, Conjugacy of Elements, Vector Trans-
porter etc are all in PZK as they are polynomial time many-one reducible to
SUBSP-TRANS or CONJ-GROUP.

3.1 Group Nonequivalence and PZK in Liberal Sense

We now consider the complement problems. To the best of our knowledge, it
is open if SD%! € PZK. However, for this part we need the following liberal
definition of PZK [9], because only such PZK protocols are known for even
problems like GRAPH-NONISO and Quadratic Nonresiduosity.

An interactive protocol (P, V) is perfect zero knowledge in the liberal sense
if for every probabilistic polynomial time interactive machine V* there exists an
expected polynomial-time algorithm M* such that for every x € L the random
variable (P, V*)(z) and M*(x) are identically distributed. Notice that in this de-
finition [9] the simulator is required to be an ezpected polynomial time algorithm
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that always outputs some legal transcript. The definition we used in Section 3
is more stringent.

Similar to the proof that GRAPH-NONISO € PZK in liberal sense, we can
show that Permutation Group Nonequivalence PGE is in PZK in the liberal
sense. Combined with Theorem 3 we have the following.

Theorem 4. PGE is in PZK in liberal sense. As a consequence, the comple-
ment of the following problems are all in PZK in liberal sense: Set Transporter,
Coset Intersection, Double Coset Membership, Double Coset Equality, Conju-
gacy of Elements, Vector Transporter.

4 Solvable Permutation Group Isomorphism is in PZK

In this section we consider permutation group isomorphism PERM-ISO: given two
subgroups (S), (T') < S,, the problem is to test if (S) and (T') are isomorphic.

Remark. PERM-ISO is in NP N coAM [11]. It is harder than GRAPH-ISO [11]
and seems different in structure from GRAPH-ISO or PGE. Like PGE if we try to
formulate PERM-ISO using group action we notice that isomorphisms between
groups are not permutations on small domains (unlike PGE). Thus, we do not
know how to prove certain complexity-theoretic statements for PERM-ISO that
hold for GRAPH-ISO. E.g. we do not know if it is in SPP or even low for PP [10],
although GRAPH-ISO is in SPP [1]. Indeed, we do not know if PERM-ISO is
in SZK. However, in this section we show that PERM-ISO for solvable groups is
reducible to SD®! and is hence in PZK.

Definition 4. Let X be a finite set of symbols and FG(X) be the free group
generated by X. A pair (X, R) is a presentation of a group G where X is a
finite set of symbols and R is a set of words over X U X! where each w € R
defines the equation w = 1. The presentation (X, R) defines G in the sense
that G = FG(X)/N, where N s the normal closure in FG(X) of the subgroup
generated by R. The size of (X, R) is || X[ + >, crlw|. Call (X,R) a short
presentation of the finite group G if the size of (X, R) is (log|G|)°M.

It is an important conjecture [4] that all finite groups have short presentations.
It is known to be true for large classes of groups. In particular, it is easy to prove
that solvable finite groups have short presentations.

Notice that two groups are isomorphic if and only if they have the same set
of presentations. Our reduction of solvable permutation group isomorphism to
SD%! will use this fact. Specifically, to reduce solvable PERM-ISO to SD%! we
give a randomized algorithm A that takes as input the generating set of a solvable
group G < S, and outputs a short presentation for G. We can consider A(G)
as a circuit with random bits as input and a short presentation for G as output.
Clearly, if G 2 H then the circuits A(G) and A(H) will output distributions
with disjoint support. On the other hand, if G = H, the circuits A(G) and A(H)
will compute identical probability distributions on the short presentations (for
G and H).
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We describe A in two phases. In the first phase A computes a random com-
position series for the input solvable group G = (T') following some distribution.
In the second phase, A will deterministically compute a short presentation for
G using this composition series. An ingredient for A is a polynomial-time sam-
pling procedure from L\ N where L < S, and N < L are subgroups given by
generating sets. We describe this algorithm.

Lemma 2 (Sampling Lemma). Let L < S,, and N < L, where both L and N
are given by generating sets. There is a polynomial-time algorithm that samples
from L\ N uniformly at random (with no failure probability ).

Proof. Let L = (S) and N = (T). Recall that applying the Schreier-Sims al-
gorithm we can compute a strong generating set for L in polynomial time.
More precisely, we can compute distinct coset representatives R; for L() in
LU=V for 1 < i < n— 1, where L is the subgroup of L that fixes each of
1,2,...,i. Notice that |R;|] < n for each i. Thus, we have the tower of sub-
groups L = LO > > > ph-1) -1

We can use the strong generating set | J R; to sample uniformly at random
from L as explained in proof of Theorem 2. This sampling procedure can be
easily modified to sample uniformly from L\ {1}.

We will build on this idea, using some standard group-theoretic algorithms
from [11] to sample uniformly from L \ N. Since N < L each set NL() is a
subgroup of L. Furthermore, for each ¢

INZE=D| _[Le=v]
<

) < ) <n-—i+1.
INLO| L]

Thus, L = NLO > NLO) > > NL(=1) — N is also a subgroup tower
with each adjacent pair of subgroups of small index. Furthermore, R; also forms
coset representatives for NL(*) in NLU~Y . However, R; may not be all distinct
coset representatives. Since we have the generating set for NL() (the union of T
and the generating set for L(Y)) we can find the distinct coset representatives in
polynomial time by using membership tests in NL(®, using the fact that x,y €
R; are not distinct coset representatives for NL(*) in NLG=1 iff gy~ € NLO®),
Let S; C R; be the distinct coset representatives for each i. Let [|.S;|| = m; for
each 7. We can ignore the indices 4 for which S; has only the identity element.

Now, each gN € L/N is uniquely expressible as gN = (g1 N) -+ (gn—1N) =
g1 'gnleu gi € Sz

Partition the nontrivial elements of L/N into sets V; = {g;---gn—1N | g; €
S; and g; # 1}. Clearly, L/N \ {IN} = J-;' V;. Furthermore, let ||Vi| = (m; —
1) H;l;llﬂ m; = N; for each i. We can sample uniformly from V; by uniformly
picking ¢g; € S; \ {1} and ¢g; €r S;, j =i+ 1,...,n — 1. Thus, we can sample
uniformly from L/N by first picking ¢ with probability IL| /]I\\[;V\Ifl and then
sampling uniformly from V;. Finally, to sample from L \ N, notice that after
picking the tuple (gi,...,gn—1) while sampling from V; we can pick x € N
(by first building a strong generating set for N). Clearly, g = ¢; - gn—12, is
uniformly distributed in L\ N.
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We now describe algorithm A. Suppose S is the input to A, where G = (S)
is a solvable group. In Phase 1, A first computes the derived series of G (in
deterministic polynomial time [11]).

Next, A(G) refines the derived series for G into a random composition series
by inserting a chain of normal subgroups between consecutive groups of the
series. It suffices to describe this refinement for G’ <« G, where G’ = G,,,_1 and
G = G,,. We can refine each G; <1 G;41 similarly.

Suppose |G/G'|| = p{'ps? - -p;"t =m, p1 < pa < --- < p;. Using standard
algorithms from [11] we can compute m in polynomial time. As m is smooth (all
p; < n) we can also factorize m in polynomial time to find the p;. We will use
the ordering of the p;.

Let G’ = (T). Since G/G’ is abelian, the p;-Sylow subgroup of G/G" is L/G’
where L is generated by the union of T and {gm/p‘f‘l | g € S}. Notice that
G' < L < G. Applying Lemma 2, A can sample uniformly an z € L\ G'. As
|L/G'|| = p{*, the order of G’ is p} for some t # 0. This ¢ is easily computed
by repeated powering. Clearly, zP1 G’ is of order p;. Let 21 = 2”1 and define
Ny = (T'U{x1}). Clearly, G’ is normal in Ny and ||N1/G’|| = p;. Since G/G’ is
abelian it follows that G/ <Ny < L < G.

We now repeat the above process for the pair of groups N; and L. Using
Lemma 2 we randomly pick z € L\ Ny find the order p; of N7 in G/N; and set
To = 2”1, This will give us the subgroup N» generated by Ny and zo. Thus,
we get the refinement G’ << N1 < Na < L < G, where {Ny/N1} = p;. Continuing
thus, in o steps we obtain the refinement G' <Ny <A No <--- <INy, =L <AG.

Now, let M /G’ be the pa-Sylow subgroup of G/G’. We can find a generating
set for M as before. Notice that L < M L < G. Thus, applying the above process
we can randomly refine the series L << M L into a composition series where each
adjacent pair of groups has index ps. Continuing thus, A refines G’ < G into a
random composition series between G and G’. This process can be applied to
each pair G; <tG;11 in the derived series. To obtain a random composition series
for G.

After phase 1, the computed composition series for G is described by a
sequence (x1,xa,- -, Ty,) of elements from G, where the composition series is
id <Q(x1) Q(z1,22) <+ < (X1, T2, , Ty = G.

Observe that if ¢ : G — H is an isomorphism and if id = Go <G < --+ <
Gno1<Gp =Gandid=Hy<Hy<---<1H,,_1 < H,, = H are the derived
series of G and H respectively, then ¢ must isomorphically map G; to H; for
each i. Furthermore, if (21, z2, -+, z,,) describes a composition series for G then
(d(x1), p(x2), -+, d(xm)) describes a composition series for H. Let X; denote
the random variable according to which z; is picked in the above description for
G. Similarly, let Y; denote the random variable for the group H. It is easy to see
that Pr[X;, = z1] = Pr[Y1 = ¢(x1)]. Now,

PriX;=a; 1<i<m]=Pr(Xy =a1]- [[ PriX = 2| X; = 25,1 < j <.
=2
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Notice that to construct x;41 the algorithm refines (z1,z2,- -, z;) < G;, where
G is the appropriate group in the derived series. Now, if the algorithm finds
o(x1), d(x2),- -, d(x;) as the first ¢ components of the composition series for H,
then the next element y; is obtained by refining (¢(x1), ¢(z2), - -, ¢(z;)) < Hj,
where ¢ : Gj — Hj is an isomorphism. Thus, it is easy to see that for i > 2
also we have

PriXi=u; | Xj =2; 1< j <i]=Pr[Y; = ¢(;) | Y; = d(z;) 1 < j <.

It follows that Pr(X; =x; 1<i<m| = PrlY; =¢(z;) 1 <i<m].

In the second phase, the algorithm A computes a short presentation for G
from its composition series given by (z1,x2,---,Zm). Let p1 = [{x1)], p; =
[(z1,x2, -, z)|/|{x1, 22, -, x;j—1)| for 7 > 1. Let the primes in this order be
D1,D2, "+, Pm (Dot necessarily distinct). Notice that each g € G can uniquely be

expressed as g = xfg,xfﬁf{, ez 0<l; <pi— L

A will compute the short presentation inductively. The cyclic subgroup (1)
has the representation (X7, R;) where X; = {a1} and Ry = {o}'}. We as-
sume inductively that (1,9, -, ;) has the presentation (X;, R;) where X; =
{aj, g, -, a;}. We let X; 11 = X; U{a;y1}. In order to define R;;1 we notice

that x;41(x1, -, z;) = (x1, -, z;)Ti41 and achfll € {(x1,x2, -, x;). Thus, the

K3

new relations are: a}{\' = wiy1, uip1 € (v1,22,--,2;), and Vj, 1 < j < 4,
TjTit1l = Ti41Wit1,5, where Wi4-1,5 S <331, 0 .TZ>

To find w;y1 notice that if x € (x1,x2, -, 2;) then x belongs to one of
the cosets z] (x1, 22, -, xi—1), j = 0,---,p; — 1. To find the exact coset A can
do membership tests x;jx € (x1, 22, -+, x;—1) for each j. As all the primes p; are
small, this is a polynomial-time step. By repeating the same for (x1, za, - -, x;_1),
(x1,2,- -+, @i—2), -+, (x1) the algorithm will be able to find u;11 = xil st
The corresponding relation will be af{" = ali.. ol The algorithm can com-
pute w;41,; and the corresponding relation similarly. Now, R;11 is just R; union
the new relations. The number of relations T'(7) for (x1,x2, -, x;) follows the
recurrence relation T'(i + 1) = T(¢) + i+ 1, T(1) = 1. So, the number of re-
lation is O(m?). But m = O(log|G|). Hence the presentation is of polynomial

length (more precisely it is O(m?)). Suppose ¢ : G — H is an isomorphism

and (z1,- -+, 2,,) describes a composition series for G. Then (¢(x1), -+, (Tm))
describes a composition series for H.
We notice that the composition series for G described by (z1,:--,zy,) for

G and the composition series for H described by (¢(z1),- -, ¢(x,)) yield the
same presentation. This can be seen by observing that the process of obtaining
Uit1 and w415 is identical in both the cases. Thus, when G = H it follows that
the distributions produced by A(G) and A(H) will be identical. On the other
hand, if G 2 H, A(G) and A(H) will have disjoint support. We have proved the
following.

Theorem 5. The problem of isomorphism testing of solvable permutation groups
is polynomial time many-one reducible to SD®' and is hence in PZK.
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5 Black Box Group Problems

We next consider analogous problems over black-box groups [2, 5]. The black-box
group model essentially abstracts away the internal structure of the group into
a “black-box” oracle that does the group operations. In order to give uniform
zero-knowledge protocols we generalize PGE to black-box groups: the Group
Equivalence Problem GE. The key difference from the results of Section 3 is
that while permutation groups can be uniformly sampled by a polynomial-time
algorithm, there is no polynomial-time uniform sampling algorithm for black-
box groups. However, the following seminal result of Babai for almost uniform
sampling from black-box groups suffices to show that the considered black-box
group problems are in SZK.

Theorem 6. [3] There is a randomized algorithm that takes as input a generator
set for a black-box group G and an € > 0 and in time polynomial in log |G|
and log(1/€) it outputs a random element r of G such that for any g € G,
(1-¢€)/|G| < Probjr=g] < (1+4¢€)/|G|.

As the distribution produced by the above algorithm is only e-uniform, it turns
out that we can only show that the black-box group problems are in SZK.

Theorem 7. GE is reducible to SD 3! (relative to the black box group oracle B).

Proof. The proof is similar to Theorem 2. We reduce GE to SD**! for some small
€1. Let (¢, z,y,T,7) where elements of {0,1}? represents group elements, T is
the set of generating elements of group G and 7 is a polynomial time routine
that computes the group action and has access to the group oracle B. The
reduction maps (g, x,y, T, 7) to the pair of circuits (X1, X2), both having access
to the black box group oracle B. The circuit X; samples g € G using Babai’s
algorithm. If the algorithm fails the circuit sets g to be any fixed element of G.
Then it produces x9. The circuit X5 is similarly defined for y. As in Theorem 2,
we can argue that if  and y are not in the same G-orbit the statistical difference
between the two circuits will be 1. But if they are in the same orbit then we
can verify that the statistical difference is less than a chosen small number ¢;.
We can make €; close to the e specified by Theorem 6 by repeating Babai’s
algorithm and thus reducing the error introduced due to failure. As ¢ is inverse
exponential, we can make €; less than é

Theorem 8. GE is in SZK? (where SZK® stands for SZK in which both prover
and verifier have access to the group oracle B).

Proof. Tt suffice to observe that the proof [13] that SD'/*%® € SZK relativizes
and that SD'/ is trivially reducible to SD'/3:%/3,

As a corollary we also get that several problems considered in [2] and some gen-
eralization of permutation group problems are in SZK?. This partially answers
an open question posed in [2] whether the considered problems are in SZK. How-
ever, we do not know if the order verification problem and group isomorphism
for black-box groups are in SZK, although they are in AM N coAM.
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Corollary 2. Black box group membership testing, Disjointness of double cosets,
Disjointness of subcosets, Group factorization etc are in SZKP.

Proof. Let (¢,z,T) be an instance of black box group membership testing prob-
lem, where ¢ is the length of the strings encoding group elements, T generates
the group G. To reduce it to GE we notice that € G if and only if some
element ¢t € T and « are in the same G-orbit where the G action is just right
multiplication, i.e., z9 = gz.

Let (g, s,t, A, B) be an instance of double coset disjointness, where H = (A),
K = (B) and the problem is to decide if HsK and HtK are disjoint. Here we
notice that HsK N HtK # ¢ iff s and t are in the same H x K-orbit where the
action is defined by z("%) = h=12k.

Disjointness of double coset and group factorization are equivalent because
HsNKt£¢iff HNKts ' £ ¢ iff ts~' € KH.

Let (¢,z, A, B) be an instance of Group factorization, where G = (A), H =
(B). The problem is to decide if z € GH. We notice that x € GH iff x and the
identity element e are in the same G x H-orbit. The group action is defined as
2(9:h) = g~ 1z,

6 SZK Proof with Efficient Provers

An important question is whether we can design SZK protocols with efficient
provers for all problems in SZK. A notion of efficient provers, considered useful
for problems in SZKNNP, is where the prover has to be a randomized algorithm
that has access to an NP witness for an instance x of a language in SZK N NP.
This question is studied in [12] where it is shown that SD'/2! has such an
SZK protocol. Consequently, any problem polynomial-time many-one reducible
to SD/?! also has such efficient provers.

As a consequence of Theorem 7 where we show that Group Equivalence for
black-box groups is reducible to SDY31 it follows from Corollary 2 and the
above-mentioned result of [12] that all NP problems considered in Section 5
have SZK protocols with efficient provers.

Theorem 9. Black box group membership testing, Double coset membership,
Subcoset intersection, Group factorization etc are in NP N SZK? and have SZK
protocols with efficient provers.

7 Concluding Remarks

In this paper we show that SZK (and PZK) contains a host of natural com-
putational black-box problems (respectively permutation group problems). As
complexity classes SZK and PZK are quite intriguing. We do not known anything
beyond the containment PZK C SZK C AM N coAM and the closure of SZK
under complement. In this context it is interesting to note that all considered
permutation group problems (except solvable group isomorphism) are known to
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be low for PP: we can put PGE in SPP using the methods of [1,10]. Could it
be that the class PZK (or even SZK) is low for PP? We make a final remark in
this context. The SZK-complete problem Entropy Difference (ED) is complete
even for “nearly flat” distributions, where “flatness” is a technical measure of
closeness to the uniform distribution [14]. If we consider ED with the stronger
promise that the two input distributions are uniform on their support then we
can prove that the problem is low for PP.

Acknowledgment. For comments and discussions during visits supported by
a DST-DAAD project we thank Johannes Kébler.
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Abstract. We consider decompositions of factorial languages to con-
catenations of factorial languages and prove that if the factorial language
is regular, then so are the factors of its canonical decomposition.

1 Introduction and the Main Statement

In this paper we consider concatenation of languages, that is, equalities of the
form L = XY = {ay|z € X,y € Y}, where L, X, Y € X* for some finite alphabet
2. In general, a language L € X* can be decomposed to a concatenation of other
languages in many ways. Even a finite language on the unary alphabet can admit
several decompositions: for example,

A +a*+a®+a") (A +a®) = (A +a® +a*)>

As it is shown by Salomaa and Yu [5], the situation may be even more so-
phisticated than in this easy example. Another result demonstrating non-trivial
properties of concatenation of languages has been obtained by Kunc [3] who has
disproved a long-standing conjecture by Conway [2]. Conversely to the intuition,
if Y is the maximal language such that XY = Y X for a given X, then Y can
be not recursively enumerable even if X is finite.

In order to find a situation where the properties of the concatenation would
be more predictable, the authors restricted themselves to considering factorial
languages, where the word “factorial” means that the language is closed under
taking a factor of an element, that is, that for all v € L the equality v = sut
implies u € L; here s,u,t € X* are arbitrary (possibly empty) words called a
prefix, a factor and a suffix of v, respectively.

Note that a factorial language can also have several essentially different de-
compositions to factorial languages: e. g., 0*1* = 0*(1* + 0*) = (0* 4+ 1*)1*.
However, as the authors show in [1], we can always choose a canonical decompo-
sition of a factorial language, which is unique. More precisely, a decomposition
L=X;---X,, where L and all X; are factorial languages, is called canonical if

— Each of X; is indecomposable, which means that X; = YZ implies X; =Y
or X; = Z,;

* The work is supported by RFBR grants 03-01-00796 and 05-01-00364.

D. Grigoriev, J. Harrison, and E.A. Hirsch (Eds.): CSR 2006, LNCS 3967, pp. 18-22, 2006.
© Springer-Verlag Berlin Heidelberg 2006
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— The decomposition is minimal, that is, for each ¢ and for all X! C X; we
have L # X1+ X; 1 X! Xi41 -+ X

Theorem 1 ([1]). A canonical decomposition of a factorial language exists and
1§ UNIQUE.

The theorem is proved in a non-constructive way: in particular, we just assume
that we can check if a language is decomposable. So, the methods of the proof
could not be used for solving the following problem, first stated by Yu. L. Ershov:

Suppose that L is regular. Are all factors of its canonical decomposition
also regular?

Regular factorial languages have been studied, e. g., by Shur [6]. Note that
in general, some factors of a decomposition of a factorial language can be not
regular.

Ezxample 1. The regular language 0*1*2* admits a decomposition
0*1*2* = F({0"1"2"}) - 2*.
Here
F{0"1"2"}) = 0*1* + 12" + {0F1"2™|n, k,m € N, k,m < n}
is the factorial closure of the language {0™1"2"|n € N}; clearly, it is not regular.

After Conway’s conjecture had been disproved, we could not bring ourselves
to forecast the answer to Ershov’s question. But fortunately, the answer turns out
to be positive and not difficult to prove. So, in this note we prove the following

Theorem 2. All factors of the canonical decomposition of a regular factorial
language are regular.

2 Proof

The main part of the proof is contained in the following

Lemma 1. Let L, Xq,...,X, be factorial languages, where L is reqular and
L=X;---X,. Then there exist regular factorial languages Y1, ..., Y, such that
Y,CX; fori=1,....nand L=Yy---Y,.

PROOF. Let A = A(L) be an automaton recognizing L. Without loss of generality
and following the notation of e. g. [4], we assume that all transitions of A(L)
are labelled with symbols of the alphabet X of the language L. Also, since L
is factorial, we may assume that all the states of A(L) are initial and terminal,
so that A(L) =< Q,E, X, Q,Q >, where @ is a finite set of states and F C
Q x Q x X; here e = (p,r,a) € E is a transition with the source p and the
destination r, labelled with a. A computation in A is a sequence of transitions
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e1,..., ek such that the sourse of ¢; is the destination of e; 1 for all 4 > 1. Since
all states in A are initial and terminal, all computations in it are successful,
which means that their labels are always words of L. In its turn, L is the set of
labels of all (successful) computations in A.

For each i = 1,...,n let us define the subset F; C E as follows: e € Ej; if
and only if all computations in A(L) whose last transition is e are labelled with
words from X - - - X; but among them there is a transition labelled with a word
not belonging to X; --- X;_1 . Note that each transition of E belongs to exactly
one of the sets E;, so E = E1 UE>U...UE, is a partition of E.

Let Y; be the language recognized by the automaton A; =< Q, E;, X, Q,Q >.
By the construction, each of the languages Y; is regular and factorial. We should
only show that L =Y7---Y,, and Y; C X; for all i.

Let us consider a computation eq, ..., e, in A labelled with a word ay - - - a,,, €
L and prove that if e; € Ey and e; € Ej for ¢ < j, then k <. Indeed, e; € Ej,
means in particular that there exists a computation fi,..., fi,e; in A labelled
with a word by ---bsa; which does not belong to Xi--- X;_1. But since the
language X1 --- X3—_1 is factorial, the label by - --bsa; - - - a; of the computation

fi,..., fe.€i, ..., e;, which is clearly a computation in A, also does not belong
to X1 -+ Xg_1. We see that | > k, which was to be proved.
So, in the computation ey,...,e,, we observe a (possibly empty) group of

transitions from F; labelled with a word from Y7, followed by a (possibly empty)
group of transitions from Fs labelled with a word from Ys, etc., so ay - - a,, €
Y1 ---Y,. Since the word a;---a,, € L was chosen arbitrarily, we have L C
Y, Y.

Now let us consider an arbitrary computation gy, ..., gx in A; labelled with
a word c; ---cx € Y; and prove that cq - - - ¢ € X;. This will mean that Y; C X;
for all i. Indeed, g; € E; implies that some computation hq,...,h;, g1 in A is
labelled with a word dq ---die1 € (X1 -+ X;)\(X1--- X;-1). Let dy - - -d; be its
longest prefix from X; -+ X;_1; here 0 < j < [. Now let us consider the com-
putation hi,...,h;, 91,- .- gk, which is also a computation in A, and its label
di---dicy---c,p € Xq1---X; since gx € E;. The longest prefix of dy ---djcy -+ - ¢
which belongs to X --- X;_q is still dy - - - d; since X --- X;_1 is a factorial lan-
guage. Hence dji1---dmc1---cr € Xi; since X, is factorial, the suffix ¢ --- ¢y
also lies in it. We have proved that Y; C X;.

Thus, Y7---Y, C X;---X,, = L. Together with the inclusion L C Y7 ---Y,,
proved above, this gives L = Y7 - - - Y,, which proves the lemma. O

PROOF OF THEOREM 2. Let us apply Lemma 1 to the canonical decomposition
L =X, ---X, of aregular language L. If we had Y; C X; for some i, this would
contradict to the minimality of the decomposition L = X;--- X,. So, Y¥; = X;
for all 4, and thus all languages X; are regular, which was to be proved. O

3 Discussion and Examples

Note that Lemma 1 itself does not necessarily give a minimal (and all the more
canonical) decomposition.
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Fig.1. A (non-minimal) automaton A recognizing the language 0 1

1 [ ]

; )

A1 A2
Fig. 2. Automata A; and A»

Example 2. The automaton A from Fig. 1 recognizes the language L = 0*1*.
However, if we decompose it starting from the decomposition L = (0* 4+ 1*)1*,
this decomposition will not be reduced, and we will have Y7 = 0* + 1%, Y5 = 1*
(see Fig. 2).

Here and below, we do not mark initial and terminal states of automata since
we presume that all states are initial and terminal.

In the above proof, we walked the transitions from left to right. Symmetrically, we
could walk from right to left and define the sets E! C E as the set of all transitions
e such that all computations in A(L) whose first transition is e are labelled with
words from X - - - X,,, but among them there is a transition labelled with a word
not belonging to X;41---X,. These two proofs are equivalent, but they may
lead to different automata Aq,..., A, and even to different decompositions.

Ezxample 3. If we consider the language L from the previous example and start
with the automaton from Fig. 1 and the decomposition L = (0* + 1*)1*, but
follow the “right to left” proof, then we get the automata from Fig. 3. They give
Y/ = 0* and Y2 = 1*, which correspond to the canonical decomposition of L.

It also follows from the proof of the theorem that if a regular factorial lan-
guage L is decomposable, then the factors of its canonical decompositions can
be recognized by sub-automata of any automaton A recognizing L. The study of
all possible partitions of A to transition-disjoint sub-automata will necessarily
lead to the canonical decomposition of L, so finding a canonical decomposition
of a regular factorial language is decidable.

Moreover, the non-deterministic state complexity of each of the factors of the
canonical decomposition thus clearly cannot exceed the non-deterministic state
complexity of the initial language. We can also note that for factorial languages,
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Al A2

Fig. 3. Automata A; and A,

deterministic automata do not seem to be the most convenient tool for a study.
It is more natural to consider automata with all the states being initial and
terminal, as we did here.
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Abstract. Bidirected graphs (a sort of nonstandard graphs introduced
by Edmonds and Johnson) provide a natural generalization to the no-
tions of directed and undirected graphs. By a weakly acyclic bidirected
graph we mean such a graph having no simple cycles. We call a bidi-
rected graph strongly acyclic if it has no cycles (even non-simple). We
present (generalizing results of Gabow, Kaplan, and Tarjan) a modifi-
cation of the depth-first search algorithm that checks (in linear time) if
a given bidirected graph is weakly acyclic (in case of negative answer
a simple cycle is constructed). We use the notion of skew-symmetric
graphs (the latter give another, somewhat more convenient graph lan-
guage which is essentially equivalent to the language of bidirected
graphs). We also give structural results for the class of weakly acyclic
bidirected and skew-symmetric graphs explaining how one can construct
any such graph starting from strongly acyclic instances and, vice versa,
how one can decompose a weakly acyclic graph into strongly acyclic
“parts”. Finally, we extend acyclicity test to build (in linear time) such
a decomposition.

1 Introduction

The notion of bidirected graphs was introduced by Edmonds and Johnson [3]
in connection with one important class of integer linear programs generalizing
problems on flows and matchings; for a survey, see also [9].

Recall that in a bidirected graph G three types of edges are allowed: (i) a usual
directed edge, or an arc, that leaves one node and enters another one; (ii) an
edge from both of its ends; or (iii) an edge to both of its ends. When both ends
of edge coincide, the edge becomes a loop.

In what follows we use notation Vi (resp. Eg) to denote the set of nodes
(resp. edges) of an undirected or bidirected graph G. When G is directed we
speak of arcs rather than edges and write Ag in place of Fg.

A walk in a bidirected graph G is an alternating sequence P = (s = vg, 1,
U1,...,ek, U = t) of nodes and edges such that each edge e; connects nodes
v;—1 and v;, and for ¢ = 1,...,k — 1, the edges ¢e;,e,41 form a transit pair at

* Supported by RFBR grants 03-01-00475 and NSh 358.2003.1.
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v;, which means that one of e;, ;41 enters and the other leaves v;. Note that e;
may enter s and e may leave t; nevertheless, we refer to P as a walk from s to
t, or an s—t walk. P is a cycle if vg = v and the pair ey, ex is transit at vg; a
cycle is usually considered up to cyclic shifts. Observe that an s—s walk is not
necessarily a cycle.

Ifvi#vjforalll <i¢<j<kandl<i¢<j<k, then walk P is called node-
simple (note that the endpoints of a node-simple walk need not be distinct). A
walk is called edge-simple if all its edges are different.

Let X be an arbitrary subset of nodes of G. One can modify G as follows:
for each node v € X and each edge e incident with v, reverse the direction of
e at v. This transformation preserves the set of walks in G and thus does not
change the graph in essence. We call two bidirected graphs G1, Gy equivalent if
one can obtain G2 from G by applying a number of described transformations.

A bidirected graph is called weakly (node- or edge-) acyclic if it has no (node-
or edge-) simple cycles. These two notions of acyclicity are closely connected.
Given a bidirected graph G one can do the following: (i) replace each node v € Vg
by a pair of nodes v1, ve; (ii) for each node v € Vi add an edge leaving vy
and entering vo; (iii) for each edge ¢ € Eg connecting nodes u,v € Vg add
an edge connecting u; and v;, where ¢ = 1 if e enters u; i = 2 otherwise;
similarly for j and v. This procedure yields a weakly edge-acyclic graph iff the
original graph is weakly node-acyclic.The converse reduction from edge-acyclicity
to node-acyclicity is also possible: (i) replace each node v € Vi by a pair of nodes
v1, vo; (ii) for each edge e € Eg connecting nodes u,v € Vi add a node w, and
four edges connecting u;, v; with w, (i = 1, 2); edges u;w. should enter w,; edges
wev; should leave we; the direction of these edges at u; (resp. v;) should coincide
with the direction of e at u (resp. v).

In what follows we shall only study the notion of weak edge-acyclicity.
Hence, we drop the prefix “edge” for brevity when speaking of weakly acyclic
graphs. If a bidirected graph has no (even non-simple) cycles we call it strongly
acyclic.

One possible application of the weak acyclicity test is described in [4]. Let
G be an undirected graph and M be a perfect matching in G (that is, a set of
edges such that: (i) no two edges in M share a common node; (ii) for each node v
there is a matching edge incident with v). The problem is to check if M is the
unique perfect matching in G. To this aim we transform G into the bidirected
graph G by assigning directions to edges as follows: every edge e € M leaves
both its endpoints, every edge e € Eg \ M enters both its endpoints. One easily
checks that the definition of matching implies that every edge-simple cycle in
G is also node-simple. Moreover, each such simple cycle in G gives rise to an
alternating circuit in G with respect to M (a circuit of even length consisting of
an alternating sequence of edges belonging to M and Eg \ M). And conversely,
every alternating circuit in G with respect to M generates a node-simple cycle
in G. It is well known (see [8]) that M is unique iff there is no alternating circuit
with respect to it. Hence, the required reduction follows.
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2 Skew-Symmetric Graphs

This section contains terminology and some basic facts concerning skew-symmet-
ric graphs and explains the correspondence between these and bidirected graphs.
For a more detailed survey on skew-symmetric graphs, see, e.g., [10,6,7,1].

A skew-symmetric graph is a digraph G endowed with two bijections oy, og
such that: oy is an involution on the nodes (i.e., oy (v) # v and oy (oy (v)) = v
for each node v), 04 is an involution on the arcs, and for each arc e from u to
v, og(e) is an arc from oy (v) to oy (u). For brevity, we combine the mappings
oy,04 into one mapping o on Vg U Ag and call o the symmetry (rather than
skew-symmetry) of G. For a node (arc) z, its symmetric node (arc) o(z) is also
called the mate of x, and we will often use notation with primes for mates,
denoting o(z) by z’.

Observe that if G contains an arc e from a node v to its mate v’, then ¢’ is
also an arc from v to v’ (so the number of arcs of G from v to v’ is even and
these parallel arcs are partitioned into pairs of mates).

By a path (circuit) in G we mean a node-simple directed walk (cycle), un-
less explicitly stated otherwise. The symmetry o is extended in a natural way
to walks, cycles, paths, circuits, and other objects in G. In particular, two
walks or cycles are symmetric to each other if the elements of one of them
are symmetric to those of the other and go in the reverse order: for a walk
P = (vg,a1,v1,...,a, V), the symmetric walk o(P) is (v}, a), vj_q,---,al, v5).
One easily shows that G cannot contain self-symmetric circuits (cf. [7]). We call
a set of nodes X self-symmetric if X' = X.

Following terminology in [6], an arc-simple walk in G is called regular if it
contains no pair of symmetric arcs (while symmetric nodes in it are allowed).
Hence, we may speak of regular paths and regular circuits.

Next we explain the correspondence between skew-symmetric and bidirected
graphs (cf. [7, Sec. 2], [1]). For sets X, A, B, we use notation X = AU B when
X = AUB and ANB = (). Given a skew-symmetric graph G, choose an arbitrary
partition 7 = {V3,Va} of Vi such that V5 is symmetric to V4. Then G and 7
determine the bidirected graph G with node set V3 whose edges correspond to
the pairs of symmetric arcs in G. More precisely, arc mates a,a’ of G generate
one edge e of G connecting nodes u,v € V; such that: (i) e goes from wu to v if
one of a,a’ goes from u to v (and the other goes from v’ to w’ in V3); (ii) e leaves
both w, v if one of a,a’ goes from u to v’ (and the other from v to u'); (iii) e
enters both u, v if one of a,a’ goes from u’ to v (and the other from v" to u). In
particular, e is a loop if a,a’ connect a pair of symmetric nodes.

Conversely, a bidirected graph G with node set V' determines a skew-sym-
metric graph G with symmetry o as follows. Take a copy o(v) of each element
v of V, forming the set V' := {o(v) |veV}. Nowset Vg :=V U V', For each
edge e of G connecting nodes v and v, assign two “symmetric” arcs a,a’ in G so
as to satisfy (i)-(iii) above (where v’ = o(u) and v = o(v)).

Also there is a correspondence between walks in G and pairs of symmetric
walks in G. More precisely, let 7 be the natural mapping of Vg U Ag to Vi, U E
(obtained by identifying the pairs of symmetric nodes and arcs). Each walk P =
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(vo, a1, v1,...,ak,vg) in G induces the sequence 7(P) := (7(vo), 7(a1), 7(v1), ...,
T(ag), 7(vg)) of nodes and edges in G. One can easily check that 7(P) is a walk
in G and 7(P) = 7(P’). Moreover, for any walk P in G there are exactly two
preimages 7~ 1(P) — these are certain symmetric walks P, P’ in G satisfying
7(P)=71(P') = P.

Let us call a skew-symmetric graph strongly acyclic if it has no directed
cycles. Each cycle in G generates a pair of symmetric cycles in G and vice versa.
To obtain a similar result for the notion of weak acyclicity in bidirected graphs,
suppose G is not weakly acyclic and consider an edge-simple cycle C' in G having
the smallest number of edges. Then C generates a pair of symmetric cycles C, C’
in G (as described above). Cycles C, C’ are circuits since otherwise one can
shortcut them and obtain (by applying 7) a shorter edge-simple cycle in G.
Moreover, C' and C" are regular (or, equivalently, arc-disjoint). Indeed, suppose
C contains both arcs a and o’ for some a € Ag. Hence C traverses the edge
7(a) at least twice, contradicting the assumption. Conversely, let C' be a regular
circuit in G. Trivially C := 7(C) is an edge-simple cycle in G. These observations
motivate the following definition: we call a skew-symmetric graph weakly acyclic
if is has no regular circuits.

For a given set of nodes X in a directed graph G we use notation G[X] to
denote the directed subgraph induced by X. In case G is skew-symmetric and
X’ = X the symmetry on G induces the symmetry on G[X].

An easy part of our task is to describe the set of strongly acyclic skew-
symmetric graphs. The following theorem gives the complete characterization of
such graphs. (Due to lack of space we do not include proofs here; these proofs
will be given in the full version of the paper.)

Theorem 1. A skew-symmetric graph G is strongly acyclic iff there exists a
partition ZUZ' of Vg, such that the induced (standard directed) subgraphs G[Z],
G[Z'] are acyclic and no arc goes from Z to Z'.

Corollary 1. A bidirected graph G is strongly acyclic iff G is equivalent to a
bidirected graph that only has directed edges forming an acyclic graph and edges
leaving both endpoints.

3 Separators and Decompositions

In this section we try to answer the following question: given a skew-symmetric
weakly acyclic graph what kind of a natural certificate can be given to prove the
absence of regular circuits (or, equivalently, regular cycles) in it?

Our first answer is as follows. Let G be a skew-symmetric graph. Suppose
Vi is partitioned into four sets A, B,Z,Z’ such that: (i) A and B are self-
symmetric and nonempty; (ii) exactly one pair of symmetric arcs connects A
and B; (iii) G[A4] and G[B] are weakly acyclic; (iv) no arc leaves Z, no arc enters
Z'. If these properties are satisfied we call (4, B,Z) a weak separator for G
(see Fig. 1(a)).



Acyclic Bidirected and Skew-Symmetric Graphs 27

) ) ) )
- o -
a b
WL

A fl B A B

a b

- O o
— — — —
(a) Weak separator. (b) Strong separator.

Fig. 1. Separators. Solid arcs should occur exactly once, dashed arcs may occur arbi-
trary number of times (including zero).

Theorem 2. Fvery weakly acyclic skew-symmetric graph G is either strongly
acyclic or admits a weak separator (A, B, Z). Conversely, if (A, B,Z) is a weak
separator for G, then G is weakly acyclic.

Thus, given a weakly acyclic graph G one can apply Theorem 2 to split Vg
into four parts. The subgraphs G[A], G[B] are again weakly acyclic, so we can
apply the same argument to them, etc. This recursive process (which produces
two subgraphs on each steps) stops when current subgraph becomes strongly
acyclic. In such case, Theorem 1 provides us with the required certificate.

Motivated by this observation we introduce the notion of a weak acyclic de-
composition of G. By this decomposition we mean a binary tree D constructed
as follows. The nodes of D correspond to self-symmetric subsets of Vi (in what
follows, we make no distinction between nodes in D and these subsets). The root
of D is the whole node set V. Any leaf X in D is a self-symmetric subset that
induces a strongly acyclic subgraph G[X]; we attach a partition X = Z U Z’
as in Theorem 1 to X. Consider any non-leaf node X in D. It induces the sub-
graph G[X] that is not strongly acyclic. Applying Theorem 2 we get a partition
of X into subsets A, B, Z,Z' and attach it to X; the children of X are defined
to be A and B.

An appealing special case arises when we restrict our attention to the class of
strongly connected (in standard sense) skew-symmetric graphs, that is, graphs
where each two nodes are connected by a (not necessarily regular) path. We need
to introduce two additional definitions. Given a skew-symmetric graph H and a
node s in it we call H s-connected if every node in H lies on a (not necessarily
regular) s—s’ path. Suppose the node set of a skew-symmetric graph G admits a
partition (A4, B) such that: (i) A and B are self-symmetric; (ii) exactly one pair
of symmetric arcs {a'b,b'a} connects A and B (a,a’ € A, b,b’ € B); (iil) G[A] is
weakly acyclic and a-connected, G[B] is weakly acyclic and b-connected. Then
we call (A, B) a strong separator for G (see Fig. 1(b) for an example).

Now we describe a decomposition of an arbitrary weakly acyclic skew-sym-
metric graph in terms of strongly connected components (hence, providing an-
other answer to the question posed at the beginning of the section).
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Fig. 2. Decomposition of a weakly acyclic skew-symmetric graph G. Dashed arcs may
occur arbitrary number of times (including zero). Subgraphs G[Z], G[Z ] are acyclic,
subgraphs G[B;] are strongly connected and weakly acyclic.

Theorem 3. A skew-symmetric graph G is weakly acyclic iff there exists a par-
tition of Vg into sets Z,Z' , By,...,By such that: (i) (standard directed) sub-
graphs G[Z], G|Z'] are acyclic; (ii) sets B; are self-symmetric, subgraphs G[B;]
are strongly connected and weakly acyclic; (i) no arc connects distinct sets B;
and Bj; (iv) no arc leaves Z, no arc enters Z'.

Theorem 4. A skew-symmetric graph B is strongly connected and weakly acyc-
lic iff it admits a strong separator (A, B).

An example of such decomposition is presented in Fig. 2. For k = 0 the
decomposition in Theorem 3 coincides with such in Theorem 1.

Consider an arbitrary weakly acyclic skew-symmetric graph G. Add auxiliary
nodes {s,s'} and arcs {sv,v's'}, v € Vg \ {s,s'} thus making G s-connected.
Similarly to its weak counterpart, a strong acyclic decomposition of G is a tree D
constructed as follows. The nodes of D correspond to self-symmetric subsets of
Ve. Each such subset A induces the a-connected graph G[A] for some a € A.
The root of D is the whole node set V. Consider a node A of D. Applying
Theorem 3 one gets a partition of A into subsets Z, Z’, By, ..., Bx and attaches
it to A. Each of B; is strongly connected and thus Theorem 4 applies. Hence,
we can further decompose each of B; into X; UY; (X! = X, Y/ = Y;) with
the only pair of symmetric arcs {z}y;, yiz;} (z; € X, y; € Y;) connecting X
and Y;. The induced subgraphs G[X;] (resp. G[Y;]) are z;-connected (resp. y;-
connected). We define the children of A to be X1,Y1,..., Xk, Ys. Clearly, leaf
nodes of D correspond to certain strongly acyclic subgraphs.

4 Algorithms

We need some additional notation. For a set of nodes X denote the set of arcs
entering (resp. leaving) X by 6 (X) (resp. §°U*(X)). Denote the set of arcs having
both endpoints in X by ~(X).
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(a) Bud 7 in graph G together with a (b) Graph G/t together with a shaded
shaded path P. path P.

Fig. 3. Buds, trimming, and path restoration. Base and antibase nodes b,b are marked.
Path P is a preimage of P.

Let V; be a symmetric set of nodes in a skew-symmetric graph G; a, €
8(V,). Let v, denote the head of a,. Suppose every node in V, is reachable
from v, by a regular path in G[V;]. Then we call 7 = (V;,a,) a bud. (Note that
our definition of bud is weaker than the corresponding one in [6].) The arc a,
(resp. node v, ) is called the base arc (resp. base node) of 7, arc a’. (resp. node v..)
is called the antibase arc (resp. the antibase node) of 7. For an arbitrary bud 7 we
denote its set of nodes by V;, base arc by a,, and base node by v,. An example
of bud is given in Fig. 3(a).

Consider an arbitrary bud 7 in a skew-symmetric graph G. By trimming T we
mean the following transformation of G: (i) all nodes in V; \ {v,, v} } and arcs in
v(V,) are removed from G (ii) all arcs in §™(V; )\ {a,} are transformed into arcs
entering v/ (the tails of these arcs are not changed); (iii) all arcs in §°"*(V;)\{a’}
are transformed into arcs leaving v, (the heads of these arcs are not changed).
The resulting graph (which is obviously skew-symmetric) is denoted by G/7.
Thus, each arc of the original graph G not belonging to v(V;) has its image in
the trimmed graph G/7. Fig. 3 gives an example of bud trimming.

Let P be a regular path in G/7. One can lift this path to G as follows: if P
does not contain neither a,, nor a, leave P as it is. Otherwise, consider the case
when P contains a, (the symmetric case is analogous). Split P into two parts:
the part P; from the beginning of P to v, and the part P, from v, to the end of
P. Let a be the first arc of P,. The arc a leaves v, in G/7 and thus corresponds
to some arc a leaving V; in G (a # al). Let u € V; be the tail of a in G and
Q be a regular v.—u path in G[V;] (existence of @ follows from the definition of
bud). Consider the path P := P; 0@ o Py (here U oV denotes the path obtained
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by concatenating U and V). One can easily show that P is regular. We call P a
preimage of P (under trimming G by 7). Clearly, P is not unique. An example
of such path restoration is shown in Fig. 3: the shaded path P on the left picture
corresponds to the shaded path P on the right picture.

Given a skew-symmetric graph G we check if it is weakly acyclic as follows (we
refer to this algorithm as AcycrLiCITY-TEST). For technical reasons we require
G to obey the following two properties:

(i) Degree property: for any node v in G at most one arc enters v or at most
one arc leaves v.

(ii) Loop property: G must not contain parallel arcs connecting symmetric nodes
(these arcs correspond to loops in bidirected graphs).

Degree property implies that a regular walk in G' cannot contain a pair of
symmetric nodes (loosely speaking, the notions of node- and arc-regularity coin-
cide for G). This property can be satisfied by applying the reductions described
in Section 1. It can be easily shown that degree and loop properties are preserved
by trimmings.

Our algorithm adopts ideas from [4] to the case of skew-symmetric graphs.
The algorithm is a variation of both depth-first-search (DFS) procedure (see [2])
and regular reachability algorithm (see [6]). It has, however, two essential differ-
ences. Firstly, unlike standard DFS, which is carried out in a static graph, our
algorithm changes G by trimming some buds. Secondly, unlike regular reachabil-
ity algorithm, we do not trim a bud as soon as we discover it. Rather, trimming
is postponed up to the moment when it can be done “safely”.

Let H be a current graph. Each pair of symmetric nodes in G is mapped to
a certain pair of symmetric nodes in H. This mapping is defined by induction
on the number of trimmings performed so far. Initially this mapping is identity.
When a bud 7 is trimmed and nodes V; \ {v,,v.} are removed, the mapping is
changed so as to send the pairs of removed nodes to {v,, v.}. Given this mapping,
we may also speak of the preimage X of any self-symmetric node set X in H.

The algorithm recursively grows a directed forest F. At every moment this
forest has no symmetric nodes (or, equivalently, does not intersect the symmetric
forest F’). Thus, every path in such forest is regular. The algorithm assigns
colors to nodes. There are five possible colors: white, gray, black, antigray, and
antiblack. White color assigned to v means that v is not yet discovered. Since
the algorithm processes nodes in pairs, if v is white then so is v’. Other four
colors also occur in pairs: if v is gray then v’ is antigray, if v is black then v’ is
antiblack (and vice versa). All nodes outside both F' and F’ are white, nodes in
I are black or gray, nodes in F’ are antiblack or antigray.

At any given moment the algorithm implicitly maintains a regular path start-
ing from a root of F'. As in usual DFS, this path can be extracted by examining
the recursion stack. The nodes on this path are gray, the symmetric nodes are
antigray. No other node is gray or antigray. Black color denotes nodes which
are already completely processed by the algorithm; the mates of such nodes are
antiblack.
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The core of the algorithm is the following recursive procedure. It has two
arguments — a node u and optionally an arc ¢ entering u (¢ may be omitted
when u is a root node for a new tree in F'). Firstly, the procedure marks u as
gray and adds u to F' (together with ¢ if ¢ is given). Secondly, it scans all arcs
leaving u. Let a be such arc, v be its head. Several cases are possible (if no case
applies, then a is skipped and next arc is fetched and examined):

(i) Clircuit case: If v is gray, then there exists a regular circuit in the current
graph (it can be obtained by adding the arc a to the gray v—u path in F).
The procedure halts reporting the existence of a regular circuit in G (which
is constructed from C in a postprocessing stage, see below).

(ii) Recursion case: If v is white, the recursive call with parameters (v, uv) is
made.

(iil) Trimming case: If v is antiblack, the procedure constructs a certain bud
in the current graph and trims it as follows. One can show that each time
trimming case occurs the node v’ is an ancestor of u in F'. Let P denote the
corresponding u—v’ path. Let a, be the (unique) arc of F' entering u (u has
at least two outgoing arcs and hence cannot the a root of F'| see below).
Let H denote the current graph. Finally, let V. be the union of node sets
of P and P’. One can easily show that 7 = (V;,a,) is a bud in H (buds
formed by a pair of symmetric regular paths are called elementary in [6]).
The procedure trims 7 and replaces H by H/7. The forest F' is updated
by removing nodes in V; \ {u,v'} and arcs in v(V;). All other arcs of F
are replaced by their images under trimming by 7. Since a, belongs to F,
it follows that the structure of forest is preserved. Note that trimming can
produce new (previously unexisting) arcs leaving w.

When all arcs leaving u are fetched and processed the procedure marks u as
black, u’ as antiblack and exits.

AcycriciTy-TEST initially makes all nodes white. Then, it looks for symmet-
ric pairs of white nodes in G. Consider such a pair {v,v'} and assume, without
loss of generality, that out-degree of v is at most 1. Invoke the above-described
procedure at v (passing no arc) and proceed to the next pair.

If all recursive calls complete normally, we claim that the initial graph is
weakly acyclic. Otherwise, some recursive call halts yielding a regular circuit C'
in a current graph. During the postprocessing stage we consider the sequence of
the trimmed buds in the reverse order and undo the corresponding trimmings.
Each time we undo a trimming of a certain bud 7 we also replace C' by its
preimage (as described in Section 3). At each such step the regularity of C is
preserved, thus at the end of postprocessing we obtain a regular circuit in the
original graph, as required.

It can be shown that this algorithm is correct and can be implemented to
run in linear time.

Now we address the problem of building a weak acyclic decomposition. We
solve it by a modified version of ACYCLICITY-TEST which we call DECOMPOSE.
Let G be a skew-symmetric graph with a designated node s. Suppose we are
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Fig. 4. A barrier. Solid arcs should occur exactly once, dashed arcs may occur arbitrary
number of times (including zero).

given a collection of buds 7q,...,7 in G together with node sets S and M.
Additionally, suppose the following properties hold: (i) {S,S’, M, V..., V.. }
is a partition of Vi with s € S; (ii) no arc goes from S to S’ U M; (iii) no arc
connects distinct sets V-, and V7, ; (iv) no arc connects V;, and M; (v) the arc e,
is the only one going from S to V;,. Then we call the tuple B = (S, M;m,...,7%)
an s—s' barrier ([6], see Fig. 4 for an example).

Let us introduce one more weak acyclicity certificate (which is needed for
technical reasons) and show how to construct a weak decomposition from it.
Let B = (S,M;7,...,7) be a barrier in G. Put G :== G/ni/... /7, W =
S UA{vr,...,vr,}. We call B acyclic if the following conditions are satisfied:
(i) subgraphs G[M], G[V,,],...,G[V;,] are weakly acyclic. (ii) the (standard di-
rected) subgraph G[W] is acyclic.

Suppose we are given an acyclic barrier B of G with M = (). Additionally, sup-
pose that weak acyclic decompositions of G[V,] are also given. A weak acyclic de-
composition of G can be obtained as follows. Consider the graph G and the set W
as in definition of an acyclic barrier. Order the nodes in W topologically: W =
{wn,...,wyp}; for i > jnoarcin G goes from w; to w;. Also, assume that buds 7;
are numbered according to the ordering of the corresponding base nodes v, in W.
Let these base nodes separate the sequence wy,...,w, into parts Zi,..., Zx11
(some of them may be empty). In other words, let {Z;} be the collection of
sequences of nodes such that wi,...,w, = Z1,vr,Z2,..., Zk, Vs, Zg+1. Addi-
tionally, put A; := (Z1UZ]) UV, U...UV,,_, U(Z; UZ!). Obviously, sets A;
are self-symmetric, Ai+1 = Vig. The graph G[A4,] is strongly acyclic (this readily
follows from Theorem 1 by putting Z := Z;). One can show that for each i > 2
the triple (A;_1,V,, ,,Z;) is a weak separator for G[4;]. Using known decom-
positions of G[V,] these separators can be combined into a decomposition of G.
An example is depicted in Fig. 5.

Buds that are trimmed by the algorithm are identified in a current graph but
can also be regarded as buds in the original graph G. Namely, let H be a current
graph and 7 be a bud in H. One can see that (V,,a,), where a, (resp. V) is
the preimage of a, (resp. V), is a bud in G. This bud will be denoted by 7.
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Fig. 5. Constructing a weak decomposition from an acyclic barrier. Solid arcs should
occur exactly once, dashed arcs may occur arbitrary number of times (including zero).
Not all possible dashed arcs are shown.

Observe that the node sets of preimages 7 of buds 7 trimmed by ACYCLICITY-
TEST are distinct sets forming a laminar family in Vg. At any moment the
current graph H can be obtained from G by trimming the set of inclusion-wise
maximal buds (which were discovered up to that moment). For each such bud 7
we maintain an acyclic v/-barrier B with the empty M-part.

Nodes in H can be of two possible kinds: simple and complezx. Simple nodes
are nodes that were not touched by trimmings, that is, they do not belong to
any of V; sets for all trimmed buds 7. Complex nodes are base and antibase
nodes of maximal trimmed buds.

The following key properties of ACYCLICITY-TEST can be shown: (i) the
(standard directed) subgraph induced by the set of black nodes is acyclic; (ii)
no arc goes from black node to gray, white or antiblack node.

DECOMPOSE consists of two phases: traversal and postprocessing. During
the first phase we invoke ACYCLICITY-TEST modified as follows. Suppose the
algorithm trims a bud 7 in H. First, suppose that the node v, was simple prior
to that trimming. We construct B” as follows. Let B be the set of black simple
nodes in V;, 71,...,T, be the preimages (in G) of trimmed buds corresponding
to base nodes in V;. Putting B := (BU{v.},0;71,...,7k) we obtain a required
acyclic barrier for 7.

Situation gets more involved when v, is a complex node (hence, the algorithm
performs several trimmings at this node). Define B as above. Let ¢ be the
already trimmed inclusion-wise maximal bud at v,. Consider a barrier B =
(Q,0;¢1,...,6;). We put B™ := (QUB;0; ¢1,...,¢1,71,...,Tk). It can be shown
that B7 is a required acyclic barrier for 7.

When traversal of G is complete the algorithm builds a final acyclic barrier
in G. Observe that at that moment all nodes are black or antiblack. The set of
simple black nodes B* in the final graph and the inclusion-wise maximal trimmed
buds 7%, ..., 7} induce the acyclic barrier B* := (B*,0;77,...,7;) in G. During
the postprocessing phase the algorithm constructs the desired decomposition of
G from acyclic barriers recursively as indicated above.
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Abstract. Parametric inductive types can be seen as functions taking
type parameters as arguments and returning the instantiated inductive
types. Given functions between parameters one can construct a function
between the instantiated inductive types representing the change of pa-
rameters along these functions. It is well known that it is not a functor
w.r.t. intensional equality based on standard reductions. We investigate
a simple type system with inductive types and iteration and show by
modular rewriting techniques that new reductions can be safely added
to make this construction a functor, while the decidability of the inter-
nal conversion relation based on the strong normalization and confluence
properties is preserved. Possible applications: new categorical and com-
putational structures on A-calculus, certified computation.

1 Introduction

This paper is part of a larger project where we consider how some new compu-
tational rules may be incorporated in a A-calculus with inductive types.

One of the main difficulties in applications of computer assisted reasoning
based on A-calculus is that the representation of real computations is very indi-
rect, it is in fact complex coding, satisfactory for theoretical results but lacking
the directness and transparency required for efficient applications. Extensions
of typed systems using "real-life" inductive types like natural numbers, lists,
and trees, with corresponding constructors and iteration/recursion operators are
helpful but not sufficient.

Symbolic computation, for example, often includes the transformations of
symbolic expressions that were never studied from the point of view of properties
of the corresponding rewriting system. The importance of the problem of certified
computation, symbolic or numerical (i.e., computation together with the proof
of its correctness) was emphasized several years ago (cf. [2]) but since it was
studied in a very limited number of cases.

The possibility used in most proof-assistants is to obtain a proof-term repre-
senting the proof of equality of two terms representing computations. This term
should be carried everywhere, and this turns out to be very cumbersome and
inefficient.
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One of the reasons is that the reduction system incorporated in the under-
lying typed A-calculus is very restrictive. Thus even very simple equalities used
routinely very often require the proof-term corresponding to this equality to be
carried with it. It may require quite complex manipulations if the equality is
used within another computation.

Our approach is based on extensions of reduction systems preserving good
properties of the system as a whole, such as strong normalization (SN) and
Church-Rosser property (CR).

In this paper we address the problem of rules representing the func
toriality of the schemas of inductive types. We show that the corresponding
extensions of the A-calculus remain SN and CR. As result, the categorical com-
putations using functoriality can be safely incorporated in "an intensional way"
into proof-assistants. This will considerably lighten the proofs used in certified
computations.

Notice, that there are well known categorical structures defined on certain
systems of simply-typed A-calculus, for example, cartesian closed structure on
the calculus with surjective pairing and terminal object. These structures have
numerous applications. Our approach will permit to "lift" them to corresponding
classes of parametrized inductive types and obtain new categorical models and
computational structures.

Details of proofs can be found on the web: http://www.tcs.informatik.
uni-muenchen.de/ barral/doc/Proofs.pdf

2 Systems of Inductive Types

Given functions between parameters of inductive types with the same schema,
one can construct by iteration the function between these types representing
the change of parameters along these functions (it can be seen as a generalized
Map function for arbitrary inductive types). The "minimal" system to study
this "generalized Map" is the system of inductive types equipped with itera-
tion. We shall consider only inductive types satisfying the condition of strict
positivity.

2.1 Types and Schemas

We will use the appropriate vector notation for finite lists of syntactic expres-
sions. Within more complex type and term expressions it is to be unfolded as
follows:

- P —mou=0|pP—=p—o .
— AT tu=t|dzA\T .t .

ts u=t] (ts)s

— f777o g?_”J = )\ﬁ.f(g?)

We assume that the countable sets TVar of type variables and Const of construc-
tors are given.
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Definition 1 (Types). We define simultaneously

— the grammar of types:

-

Tyspou=p—o|pa(c: kyz(a)).

—_—
where a € TVar, ¢ C Const, k4w () are constructor types over a.

— and the set KT—> w(a) of constructor types over a with type parameters
-

p7o(weassume ¢FV(p,7)):

s
KT z(@) 3 hy z(a) =7 — (0 = a)icicn — a
with oy -0, = 0.

The types with — as main symbol are called arrow or functional types, those
with the binding symbol p are called inductive types.
T

In the above definition " and (@'; — «) stand for the types of the arguments
of a constructor. The types of the form p are called parametric operators, those
of the form & — « are called recursive operators, (O-recursive if & is empty
and 1-recursive otherwise)

We assume that the constructors are uniquely determined by their inductive
type and that the constructors within an inductive type are different.

The types of constructors defined above verify the so-called strict positivity
condition.

Note, that we have fixed a particular order of arguments of a constructor (first
parametric and then recursive), It doesn’t influence significantly the expressivity
of the system and simplifies the presentation.

A constructor type x(a) has always the form 7 — «. We shall write £~ ()

for the list of types 7. For i = pa (¢ : k5 (), we will write ¢ : k5 z(a) € p

N
if cx : hy w (@) €Eci kg z(a)

Definition 2 (Schema of inductive type) Given a list of variables ¥ for

inductive type constructors, type variables T, b Ja (with a € T U 9) and a
constructor type k_ - (o), we define the schema of inductive type S by
— —_
S— 5 (k) u=palk : k- 5 (a))

s i

Each inductive type pa (c: x5 & (a)) is obtained by instantiation of the con-
— —
structor variables k and type parameters 7, # of a schema of the inductive

—_—
type pa(k : ki y(a)).

The schemas considered in the following example represent all types of con-
structors of inductive types relevant to our study. The same inductive types will
be used later to illustrate main technical ideas of this paper.

Example 1. N = pa(ky : a, ke : a — «a) (schema of the type of natural num-
bers); L, = pa(ky : a,ky : m — o — ) (schema of lists over p);
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Tro=upalks:a,ky:m— (0 — a) — a) (B-branching tree).

Instantiations of these schemas may be N = N(0,s) = pa(0 : a,s : a —
a (natural numbers), N = N(0',s") (a “copy” of N), L(N') = Ly/(nil, cons)
(lists over N' with standard names of constructors), T(N,N) = Ty n(leaf, node)
(infinitely branching tree over N), Ty n/(leaf’, node’) etc.

Sometimes, when the names of parameters are not relevant, we may omit
them altogether.

2.2 Terms

The terms of our systems are those of the simply typed A-calculus extgnded by
constructor constants from Const and iteration operators (iterators) ( ¢ )7 for
all inductive types p and 7 (u stands for the source and 7 for the target type).

Definition 3 (Terms). The set of terms A is generated by the following gram-
mar:
_
Astu=a| Xt | () |ce | (D7

with x € Var, ¢ € Const and 7, C Ty.

Definition 4 (Typing). the typing relation is defined by

(x,p) e’ Izx:pkr:o I'ts:p I'kr:p—o
I'Fx:p I'tXaPor:p—o I'trs:o

I'Fcpr i p
e
pe(c: ﬁﬁ;(a)) =u '+t &?77(7)
F}—(]?D”’T:u—w'

Example 2. Let u=N,L(p), T(p,0), and T be the “target-type” in the last rule.
The types of iterator terms T (step types) must be:

-7 and T — 7 in case of N;
-T and p — T — T in case of lists L(p);
-7 and p— (0 — 7) — 7 in case of trees T(p, o).

Their particularly simple form is due to the use of iteration (as opposed to
primitive recursion where the step type should contain type for the argument of
the constructor as well).

2.3 Reductions

Simultaneous substitution of terms 5 to variables 7 in a term ¢, t{¥/7} is
defined by structural induction as usual:
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o{%/7) x otherwise

(Am%)_}{? v} o= )\mTt{é/ } where ¢ 3 and z ¢ FV(s)
(t ){S/_’} —t{ Nz uSas

TV {7 )7} = (7 fw e

Note that we can always ensure the condition of the second clause by a-conversion
(variable condition).

_ {si if 2 = y; with 4 the smallest index s.t. y; € ¥

Definition 5 (S-reduction). We define the relation of [-reduction by the fol-
lowing rule:

(B8)  (A2™ 1) ur—p t{*/s}

Definition 6 (n-expansion). We define the relation of n-expansion by the fol-
lowing rule:
) t —y X"t

where t : T — v, t is not an abstraction, v & FV(t).

Usual restriction concerning applicative position is incorporated in the definition
of one-step reduction below.
We define two t-reductions ; first the traditional one:

e —
Definition 7 (i-reduction). Let u = pa(c: vy z(a)), ¢y : iy z(a) € p, and
= — — .
k="7p — (0 — Q)1<icn — @ over a in fi. Gwen atermc, p 1, where P (with

pi of type p;) denotes parameter arguments and 7 (with ; of type Ti—p)n
-5

recursive arguments, and the terms T of step type K?’y(T), the t-reduction is
defined by:

W (V@ TT) et B (F)T or) = 6 B AT (1) (7)) -
This reduction may create (3-redexes. Obvious redexes may appear due to the
composition at the right part of the term and if iteration terms are abstractions.
If abstracted variables corresponding to 1-recursive arguments are in applicative
position inside this also may produce subsequent §-redexes. Good news is that
this “cascade” of G-reductions will stop short because the types of arguments of
r; and of arguments of variables corresponding to 1-recursive arguments inside
iteration terms are always inductive, not arrow types.

Since our system is equipped with n-expansion, one can always expand
1-recursive variables inside iteration terms as a pre-condition and then define a
modified (-reduction carrying out all these administrative G-reductions in one step.

Specialization of iteration terms and modified substitution:

Definition 8. Let §/ = yUlHT7 ,y;’l"*T we define inductively the set of terms
Tt(y) where these variables always appear applied to mazimal number of argu-
ments

THY) otu= (g ) |z | et | 8| (F) | e £
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Definition 9. Modified simultaneous substitution of composition of W and T

(with w; : p; — 7,75 2 07 — i) int, t(m/?), is defined recursively on Tt(y):
— =
yi t (**7/7) = u(rt(¥* /7)) essential case
o)
(Az.t) (597 )7} := X2.t(5%7 /7)) where z € 3 and z € FV(wet)
(tt <uor/7> — t<uor 7>t<uor/7>
— T
(E)er/m) == (/7))
— -
cy t <uor/7> — th<uor/7>
(At the third line a-conversion may be needed.)
—_—
Definition 10 (:2-reduction). Let p = pa(c: ry z(a)), ¢k @ iy (@) €

p, and Kk = p — (o — Qa)igi<n — @ over « in u. Let a term cLp T be
given, where p (p; of type p;) denote parameter arguments and 7 (r; of type
@i — ) the n recursive arguments of cj respectively. Let the terms T be the
terms of step-type (iteration terms) with ty be fully n-expanded externally, i.e.,

—
i T, —T

.
ty = \xPy i7" s, and, moreover s € Tt(y:

7i7T). Under these conditions the
12-reduction is defined by:

_— _ —_—
(.. .7>\?7.8k7 .. D(Ck??) —, Sk{p/?}<qtb'r/?>

Example 3 (multiplication by 2). Although primitive recursion is encodable
in our system, for sake of simplicity we present here a function directly encodable
using iteration, the multiplication by 2 of natural numbers:
x2 = (0, Az.s(sx))
the associated 12-reduction for the term st is:
(x2)st —,2 s(s((x2)t))

the selection of even branches in a tree can be defined as:

sel2 = (leaf, Axy.node z (Az.y((x2)2)))
the associated 12-reduction for the term nodet f is:

sel2(nodet f) —,2 nodet (A\z.sel2(f((x2)z)))

The "true" reduction relation of our system is defined now via contextual clo-

sure. The usual restriction on applicative position in n-expansion is incorporated
here.
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Definition 11 (One-step Reduction). The One-step reduction — g 1is de-
fined as the smallest relation such that:

r—pr s —ps r—npr r—npr 7y v
r—pr rs —prs A\e.r —p Az’ rs —pr's
!
t—npgt

q?7t7?D R q?atla ?D

R can be for example B, n, t, 2.

The transitive, resp. transitive symmetric, closure of — g will be written —>J1§,

resp. —, The R-derivations (sequences of terms such that two successive terms
are in a one step reduction relation — g) will be denoted by d, e.... The expres-
sion t —p will denote an infinite derivation beginning at t.

2.4 General Results
Theorem 1. fne is convergent (cf [3]).

The alternative ¢-reduction is proved convergent using the fact that it is a (par-
ticularly simple) embedding (i.e., a reduction preserving encoding of a system
within another).

Theorem 2. 1. B2 is embeddable in Bne,
2. B2 is convergent.

2.5 Inductive Type Schemas as Functors

We define the category Z whose class of objects Zy is the set of Inductive Types
1 and the class of arrows Z; is the set of terms A of types p — p (where p and
p' are inductive types) defined inductively as follows:

Tida,d w=Xt"z|(t)]aocd

Definition 12 (Instantiation of schemas). We define the function Cpg for
each schema of inductive type taking as arguments the constructor names ¢ and

inductive types P, @ € Iy and returning the corresponding instantiated inductive
type S{< 77 )% 7.7}

Cpg : Const! | x 71714171 7
(€,7,79) = =8{

‘ : ‘ - = : : 7 .= 7
If moreover, given inductive types p', o' there exists terms inZy, f : p — p’,
— —
and f' : o — T, we define the function Cpé taking these terms and the
relabeling function l: ¢ — ¢ as arguments by:

- —
t

— — = —
Cpé(lv fuf/) = (] D : Cpg(?vﬁv?) - Cpg(l(c), Pl, OJ)
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where T = t1y . tn, Uck) = ¢, and

N
[

-, —= . ;
ly = )\xpriHv *Ck O:v(f))‘z ‘yoz(f) :

where the function o, (fx) which returns a B-reduced form of frx is defined re-
cursively:

_
With the notation of the definition above and given constructor names ¢”, types
— —

o, oi , relabelling functions I’ :

g : 0" — & € I, the following equalities are provable:

e 7 — 7
¢ — c’, and terms g : p — p” € I; and

— - 5 —
Cps(l,7,9)oCps(, f,f)=Cps(l'ol,go f, f og)

—

Cps(id, id, id)

This means that with respect to an extensional model the pair (Cpg,Cpé)
defines a functor. This result is well known, and a categorical proof (of a gen-
eralization of this result) can be found for example in Varmo Vene’s doctoral
thesis ([4]). However, these equalities do not hold w.r.t. the conversion relation.
We shall extend the reduction relation in order to obtain a functor w.r.t. the
conversion relation while preserving confluence and strong normalization of the
underlying rewrite system.

In the following we will lighten the notation and omit all unnecessary ma-
terial. In spirit of category theory we will write Cpg instead of Cpg7 Cpé and
often just Cp when Cp will be clear from context. In the same way we will not
write the relabelling functions which we will not consider as part of the calculus.

Definition 13 (y-reductions).

Cp(7, 9 )(Cp(F, [)t) —. Cp(go J,f o gt

Example 4. The function sel2 of the previous example can be written as
Cpr(id, x2). The xo-reduction states that selecting even branches from a tree
where one as already selected even branches should reduce to selecting the even
branches of the even branches of this tree.

Cpy(id, x2)(Cpp(id, x2)t) —, Cpyp(id, X2 0 x2)t

And now, to prove that Cpp(id, x2)(Cpp(id, x2)t) = Cpp(id, x4)t, one only
has to prove x2o x2 = x4.
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3 Main Theorems

3.1 Adjournment

Definition 14 (Adjournment). Given two reduction relations S and R, we
say that S is adjournable w.r.t. R in a derivation d, if

d=1 —)S—)RiRsé Je =1t —)RiRS

If S is adjournable w.r.t. to R for derivation d, then we say that S is adjournable

w.r.t. to R (cf. [1]).

Remark 1. S is adjournable w.r.t. R in particular in the case: S; R C R; RUS.
The notion of adjournability is traditionally expressed with this weaker condition
(where d is not taken into account).

Lemma 1 (Adjournment). If R and S are strongly normalizing and S is
adjournable w.r.t. to R then RS is strongly normalizing.

3.2 Convergence of Bnuxo

Theorem 3 (Strong normalization of 8nix,). The xo-reduction is strongly
normalizing and adjournable with respect to Pni-reduction.

By Newman lemma, a strongly normalizing and locally confluent system is con-
fluent, so we need only to check local confluence.

Theorem 4 (Confluence). The A-calculus with Bnuy.-reduction is locally con-
fluent.
3.3 Pre-adjusted Adjournment

Definition 15 (insertability). Given two reduction relation R, T, with T C
R, T is said to be insertable in R if there exists a relation S on the support of
R with T C S and the two following conditions hold:

SH(R\T) € RT; 87! STHRCTHS
74 Rt 74 T*

X N

% %

AN o N s

Lemma 2 (insertion). Given two reduction relations R,T such that T is in-
sertable in R and T is strongly normalizing. If there exists an infinite derivation
d from t and an object t' with t —7 t’, then there exists an infinite derivation d’'
from t'.
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Definition 16 (Conditional Adjournment). Let R, S be reduction relations,
an infinite derivation d =t — g— p—prg beginning with t and P a predicate
on the objects. Then S is adjournable w.r.t. R in d under condition P, if

d=t —’S—>R£’RS /\'P(t) =de=t —>R£’RS .

S is adjournable w.r.t. R under condition P, if S is adjournable w.r.t. R in d
under condition P for all d.

Definition 17 (realization). Let T be a reduction relation and P a predicate
on the objects. T realizes P fort if 3t',t =5 ¢ AP(t'). T realizes P if T realizes
P for all objects.

Lemma 3 (pre-adjusted adjournment). Given reductions relations R, S,T
with S,T C R, S is adjournable with respect to R under condition P and T is
insertable in R, strongly normalizing and realizes P, then S is adjournable w.r.t.
R.

Definition 18 (unrestricted 7n-expansion 7). we define the rewrite rule for
unrestricted n-expansion n by:

t—y Al itz ift:p—o

The one step reduction reduction relation —,, is defined as the contextual clo-
sure of

Lemma 4 (weak condition for insertability). In the definition of the inser-
tability, if the relation S is the transitive reflexive closure of a reduction relation
T', we establish some sufficient condition for T to be insertable. Given reduction
relations R,T,T’, if the relation T' verifies

T'"% R\T C R R\T;R*;(T"" ) AT, T C R*;(T""")"
then it T is insertable:
(T R\T; R (T 1) AT )5 R T (T )
Proof. cf [3]

Lemma 5. n-expansion is insertable.

3.4 Convergence of Bnuy

The difficult case is an overlap with (-reduction, trying to adjourn directly:

Cp; g(nodepx) —, nodepx — gy, nodep’ x

results in first applying a t-contraction and then a yjq-contraction:
Cp (nodepz) —, nodex Az.yz{P/z}(CPu i**/y)
= nodep Az.Cpy; —(22)
— s Nodep Az.xz
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And there is no way to close the fork with the initial sequence. We need to
incorporate some 7-expansion in the first sequence before being able to apply
the adjournment lemma.

Theorem 5 (Strong Normalization).

1. xiq-reduction is strongly normalizing,

2. Xiq-reduction is adjournable with respect to Bnix. under the condition that
1-recursive arguments T =111y of a constructor c?? of type u are
fully eta-erpansed externally, i.e. r; =i = N7 .(r}Z)".

Theorem 6 (Confluence). Gnux is locally confluent.

4 Conclusion

We have designed a system where the reduction relation ensures the functorial
laws w.r.t. intensional equality for certain classes of categories of inductive types.

The extension of this result to primitive recursion or to more general induc-
tive types satisfying the monotonicity condition seems to be more difficult, but
feasible.

An interesting task is to handle more categorical properties as studied by
Vene [4] or Wadler [5].

Another motivating goal is to incorporate directly (and in a more efficient
way) certain computations into proof-assistants based on type theory.
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