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Abstract. We consider models of P systems using time either as the
output of a computation or as a means of synchronizing the hugely com-
plex processes that take place in a cell. In the first part of the paper,
we introduce and study the properties of “timed symport/antiport sys-
tems”. In the second part we introduce several new features for P sys-
tems: the association/deassociation of molecules (modeling for example
the protein-protein interactions), ion channel rules and gene activation
rules. We show that such timed systems are universal. We also prove
several properties concerning these systems.

1 Introduction

We continue the work on symport/antiport P systems [7], [8], [15] using a new
paradigm: time as the output of a computation. In recent years, several ap-
proaches have been undertaken considering time as part of a biological system’s
way of “computing”. We can mention here the work of W. Maass: he considered
a new way to compute with spiking neurons [12]. His model was based on the
observation that if considering only the frequency of the neuron’s firing signal
as a computational framework for the brain, then the brain itself would be very
slow computing using only 2-3 spikes per neuron in 150 ms. It is clear that other
information is transmitted through these spikes of the neurons. Maass considered
a new idea (that seems to be supported experimentally): that also the temporal
pattern of the spikes emitted by a neuron is important for the actual message
sent. Another feature studied by Maass is that during the “computation”, the
actual state of a neuron depends on the previous states that the neuron has
passed through; maybe even from the birth of the organism. In the current pa-
per we will define significant “configurations” for the system, using similar ideas
as in [12] in the sense that for a cell it is important whether it passes through a
few “important” configurations.

We also note that in the last year two papers considered the properties of
systems in which the rules can take different amounts of time to be completed.
Following this idea, in [5] and [14], the authors study the case when the time
required for “executing” rules in a system may change sometimes even unpre-
dictably. In such a setting it is an interesting question whether the cell can behave
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in a similar fashion for different times associated with rules; then several such
systems with timed rules are studied. In other words, the authors considered the
“time-free” devices; such systems will perform the same steps irrespective of the
different time lengths associated with each rule in the system. We will follow a
similar idea of timing each rule in such a system and propose a new model of P
systems in Section 3, but we devise the new model to be closer to cell biology
and useful from a cell-simulation point of view: our definition will consider the
case when each rule has a specified duration for the reaction they model (which
can be determined experimentally).

In this paper, we consider another way of outputting the result of the com-
putation of a P system. The idea originates in [18] as Problem W; the novelty is
that instead of the “standard” way to output, like the multiplicities of objects
found at the end at the computation in a distinguished membrane as it was de-
fined in the model from [15], it seems more “natural” to consider certain events
(i.e., configurations) that may occur during a computation and to relate the
output of such a computation with the time interval between such distinguished
configurations. Our system will compute a set of numbers like in the case of
“normal” symport/antiport [15], but the benefit of the current setting is that
the computation and the observance of the output are now close to the biology
and to the tools used for cell biology. The model of the “timed” P system that
we investigate here is the symport/antiport P system. This has been a popular
model that has been accepted by the research community immediately after its
introduction. Symport/antiport systems are now a very successful model for P
systems due to their simplicity and the fact that they observe the basic phys-
ical law of matter conservation (the system computes by communication: the
objects are not created nor destroyed, but rather only moved in the system).
Here, we are studying another way of viewing the output of such a system; the
motivation comes from the fact that cells can become fluorescent if, for example,
some types of proteins with fluorescence properties are present in the cells. Such
a fluorescent “configuration” of a cell will be the configuration that starts the
clock used for the output. Even more interesting (making our definition a very
natural way of viewing the output of a system) is the fact that there are tools
currently used by researchers in cell biology that can detect the fluorescence of
each cell individually. The procedure is performed by a device which can check
one cell at a time for fluorescence and can automatically decide to put the cell in
either the test-tube containing the fluorescent cells or in the test-tube contain-
ing the non-fluorescent cells. The procedure does not destroy the cells, meaning
that the same process can be performed repeatedly for a given cell computation.
Such an automated technique for viewing the output of a computation using
cells is highly desirable since it holds the promise of fast readouts of the com-
putations (in contrast with manual “readouts” that could take several days, see
for example the well-known Adleman’s experiment, [1]).

The main idea of the new definition is that one has a colony of cells; each
cell in the colony having the same (nondeterministic) program that performs
a computation. There is a configuration of the system that gives the cell a
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fluorescence, property that can be detected by devices such as fluorescence acti-
vated cell sorters, in short FACS. Such a device takes the input test-tube (that
contains our colony of cells) and splits it into cells that are not fluorescent yet
and cells that are fluorescent. The cells that become fluorescent at some time t
(i.e. are detected to be fluorescent for the first time) will have a timer associated
to their test-tube that starts “ticking”, and will be continuously checked whether
they are still in the fluorescent state or not. We will consider the moment that
a cell is no longer fluorescent as the moment when we receive the “stop clock”
signal, and the system outputs the value computed by the cell to be the time
interval when the cell was fluorescent and the instant when it is no longer fluores-
cent. In this way, by using a FACS one can obtain the output of the computation
of such a P system automatically (we consider that it is a easy task to design a
system which feeds back the fluorescent test-tube(s) into the FACS incrementing
a counter/timer at each feedback, and writing on some medium the content of
the counter if a cell was detected to be no longer fluorescent). In other words, we
will “output” the duration in the number of “clock cycles” during which the cell
was fluorescent. Such a system could output the computation of an entire colony
of cells, not only the computation of a single cell. This gives another order of
parallelism to our setting which is another strongly desirable feature.

2 Timed Symport/Antiport Systems

We will use a modified definition than the one in [15]; instead of specifying the
output region where the result of the computation will be “stored” in a halting
computation, we specify two relations Cstart and Cstop (which are computable
by multicounter machines) that need to be satisfied by the multisets of objects
in the membrane structure at two different times during the computation.

�

�

�

�

�

�

�

�

�

�

�

	�
�

�
	



�

�




�

�


�
�

�
�



�

�



�

�


�
�

���

�
�
��

�
�

���

membrane

��	

skin elementary membranemembrane

region 

�
��������

�
�

���

1 2

3

4
5

6

7

8

9

Fig. 1. A membrane structure



Counting Time in Computing with Cells 115

An important observation is the fact that we will not require the cell to “stop
working” when reaching the result; i.e. we will not require the strong restriction
that the system reach a halting configuration for a computation to have a result.

Before progressing further we give some basic notions used in the remainder
of the paper; the language theory notions used but not described are standard,
and can be found in any of the many monographs available, for instance, in [19].

A membrane structure is pictorially represented by a Venn diagram (like the
one in Figure 1), and it will be represented here by a string of matching paren-
theses. For instance, the membrane structure from Figure 1 can be represented
by [1[2 ]2[3 ]3[4[5 ]5[6[8 ]8[9 ]9]6[7 ]7]4]1.

A multiset over a set X is a mapping M : X −→ N. Here we always use
multisets over finite sets X (that is, X will be an alphabet). A multiset with a
finite support can be represented by a string over X ; the number of occurrences
of a symbol a ∈ X in a string x ∈ X∗ represents the multiplicity of a in the
multiset represented by x. Clearly, all permutations of a string represent the
same multiset, and the empty multiset is represented by the empty string, λ.

We will use symport/antiport rules1; mathematically, we can capture the idea
of symport by considering rules of the form (ab, in) and (ab, out) associated with
a membrane, and stating that the objects a, b can enter, respectively, exit the
membrane together. For antiport we consider rules of the form (a, out; b, in),
stating that a exits and at the same time b enters the membrane.

Based on rules of this types, we modify the definition from [15] to introduce
the model of a timed symport/antiport system as a construct,

Π = (V, μ, w1, . . . , wm, E, R1, . . . , Rm, Cstart, Cstop), where :

– V = {a1, ..., ak} is an alphabet (its elements are called objects);
– μ is a membrane structure consisting of m membranes, with the membranes

(and hence the regions) bijectively labeled with 1, 2, . . . , m; m is called the
degree of Π ;

– wi, 1 ≤ i ≤ m, are strings over V representing multisets of objects associated
with the regions 1, 2, . . . , m of μ, present in the system at the beginning of
a computation;

– E ⊆ V is the set of objects that are continuously available in the environment
in arbitrarily many copies;

– R1, . . . , Rm are finite sets of symport and antiport rules over the alphabet
V associated with the membranes 1, 2, . . . , m of μ;

– At any time during the computation, a configuration of Π can be repre-
sented by a tuple α in Nmk, where the (i, j) component corresponds to the
multiplicity of symbol aj in membrane i.

– Cstart and Cstop are recursive subsets of Nmk (i.e., they are Turing machine
computable or, equivalently, computable by multicounter machines).

1 The definitions have their roots in the biological observation that many times two
chemicals pass at the same time through a membrane, with the help of each other,
either in the same direction, or in opposite directions; in the first case we say that we
have a symport, in the second case we have an antiport (we refer to [2] for details).
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For a symport rule (x, in) or (x, out), we say that |x| is the weight of the rule.
The weight of an antiport rule (x, out; y, in) is max{|x|, |y|}. The rules from a set
Ri are used with respect to membrane i as explained above. In the case of (x, in),
the multiset of objects x enters the region defined by the membrane, from the
surrounding region, which is the environment when the rule is associated with the
skin membrane. In the case of (x, out), the objects specified by x are sent out of
membrane i, into the surrounding region; in the case of the skin membrane, this
is the environment. The use of a rule (x, out; y, in) means expelling the objects
specified by x from membrane i at the same time with bringing the objects
specified by y into membrane i. The objects from E (in the environment) are
supposed to appear in arbitrarily many copies since we only move objects from
a membrane to another membrane and do not create new objects in the system,
we need a supply of objects in order to compute with arbitrarily large multisets.
The rules are used in the non-deterministic maximally parallel manner specific
to P systems with symbol objects: in each step, a maximally parallel multiset of
rules is used.

In this way, we obtain transitions between the configurations of the system.
A configuration is described by the m-tuple of multisets of objects present in
the m regions of the system, as well as the multiset of objects from V − E
which were sent out of the system during the computation. It is important to
note that such objects appear only in a finite number of copies in the initial
configuration and can enter the system again (knowing the initial configuration
and the current configuration in the membrane system, one can know precisely
what “extra” objects are present in the environment). On the other hand, it
is not necessary to take care of the objects from E which leave the system
because they appear in arbitrarily many copies in the environment as defined
before (the environment is supposed to be inexhaustible, irrespective how many
copies of an object from E are introduced into the system, still arbitrarily many
remain in the environment). The initial configuration is α0 = (w1, . . . , wm). Note
that (w1, ..., wm) = (s11, s12, ..., s1k, ...sm1, sm2, ...smk), i.e., a tuple in Nmk. A
sequence of transitions is called a computation.

Let us now describe the way this systems “outputs” the result of its compu-
tation: when the system enters some configuration α satisfying Cstart, we start
a counter t that is incremented each time the simport/antiport rules are applied
in the nondeterministic parallel manner. At some point, when the system enters
some configuration β satisfying Cstop, we stop incrementing t, and the value of t
represents the output of the computation2. If the system never reaches a config-
uration in Cstart or in Cstop, then we consider the computation unsuccessful, no
output is associated with the computation of the system in that case. The set of all
such t’s (computed as described) is denoted by N(Π). The family of all sets N(Π)
computed by systems Π of degree at most m ≥ 1, using symport rules of weight at
most p and antiport rules of weight at most q, is denoted by NTPm(symp, antiq)
(we use here similar notations with the definitions from [15]).

2 By convention, in the case when a configuration α is reached that satisfies both Cstart

and Cstop, then we consider that the system has computed the value 0.
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We emphasize the implicit fact in the definition of Π , that we assume that
Cstart and Cstop are recursive. Some interesting cases are when Cstart and Cstop:

– are exactly Nmk (i.e., they are trivial, as they consist of all the tuples);
– are computable by deterministic multicounter machines (i.e., recursive);
– are Presburger relations.

Details about P systems with symport/antiport rules can be found in [15];
a complete formalization of the syntax and the semantics of these systems
is provided in [17] where reachability of symport/antiport configurations was
discussed.

After defining the new way of considering the time of a computation performed
by such a system it is a natural question to ask whether the new definition is
powerful enough so that it can carry out universal computation. First we men-
tion a recent result for a very special case where Cstart consists only of the initial
configuration of the system, and Cstop consists of all halting configurations. For
this case, it was shown in [6] that the set of all times (i.e., intervals between the
initial configuration and halting configurations) is recursive making such systems
not universal. In light of this result, the proof of universality for our system be-
comes an interesting contrast. We note that the result in [6] is also in surprising
contrast to various results in the literature, where most of the P systems defined
so far have been proven to be powerful enough to be universal. We expected to
obtain a universality result using similar techniques used for proving the uni-
versality of “regular” symport/antiport P systems, and indeed, as the following
theorem shows, we are able to prove the universality of timed symport/antiport
systems with 3 membranes and symport/antiport rules of minimal weight, as
well as universality of one membrane and antiport of weight 2.

Theorem 1. Using minimal restrictions3 on the multiplicities of the objects for
the Cstart, Cstop rules we have NRE = NTPm(symr, antit), for (m, r, t) ∈
{(1, 0, 2), (3, 1, 1)}.

Proof. We use a modification of the construction described in [20] and used for
proving NRE′ = NOP3(sym1, anti1). It is worth noting that the result from
[20] is computing NRE′ = NRE − {0, 1, 2, 3, 4}, thus the best result for regular
symport/antiport is still considered to be the one from [9] where it was shown
that NRE = NOP4(sym1, anti1). With the help of the timed symport/antiport
we will prove that three membranes and minimal symport/antiport are universal
by computing exactly NRE.

We will give in the following our construction following the ideas from [20]
and [8]. We consider a counter automaton [13] a construct M = (Q, C, R, q0, f)

3 By minimal restrictions on multiplicities we mean the fact that for each object
and each membrane, the Cstart, Cstop rules will impose either a fixed multiplicity
(for example 5) or not impose any restrictions for the object. For example Cstart

containing s2,3 = 5 means that the third object has to appear in exactly 5 copies in
membrane 2. On the other hand, by s6,2 = i, i ≥ 0 we mean that the second object
can have any multiplicity in the membrane 6.
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where C is the set of n + 1 counters denoted by c0, . . . , cn and c0 is the output
counter of the automaton. We will construct a timed symport/antiport system
Π that generates the set of numbers L(M) as follows:

Π = (V, [1[2[3 ]3]2]1, w1, w2, w3, E, R1, R2, R3, Cstart, Cstop), where:

V = {I1, I1, I2, I3, I4, ∞1, ∞2, ∞3, ∞4, P, t, t′, t′′, t, t′, t′′} ∪ {ci, 0i |
0 ≤ i ≤ n} ∪ {qr, qr′ | (q → r, X) ∈ R for X ∈ {i+, i−, i = 0, λ}},

w1 = I1I1, I2I3∞1∞2∞2
4, w2 = ∞1∞2∞2

3tP0001 . . . 0n, w3 = t′,

E = {qr, qr′ | (q → r, X) ∈ R for X ∈ {i+, i−, = 0, λ}} ∪ {I4, t
′
, t

′′}
∪ {ci | 0 ≤ i ≤ n},

Ri = Rini
i ∪ Rsim

i ∪ Rtimer
i , for 1 ≤ i ≤ 3 where Rτ

i ,

where τ ∈ {ini, sim, timer} are defined as in the following:
Rini

1 = {(qr′, in; I1, out) | (q → r, X) ∈ R, X ∈ {i+, i−, = 0, λ}} ∪ {(I1, in)}
∪ {(cj , in; I1, out) | 0 ≤ j ≤ n} ∪ {(I4, in; I1, out), (I1, in), (I3, out)},

Rini
2 = {((qr′, in; I2, out) | (q → r, X) ∈ R, for an operation X} ∪ {(I2, in),

(I3, in; ∞2, out), (I4, in; I3, out), (I1, in; I4, out), (∞4, in; ∞4, out),
(I1, in; I5, out), (∞4, in; I4, out), (∞1, in; ∞1, out), (∞2, in; ∞2, out)},

Rini
3 = {(qr′, in; I3, out) | (q → r, X) ∈ R, for some X} ∪ {(I3, in),

(∞3, in; I3, out), (I1, in; I5, out), (I2, in; I1, out), (∞3, in; ∞3, out)},

Rsim
1 = {(q0q, in; I5, out), (rs, in; qr′, out) | q0, q, r, s ∈ Q and (q0 → q, X),

(q → r, Y ), (r → s, Z) ∈ R for some counter operations X, Y, Z},

Rsim
2 = {(rs, in), (ci, in; rs′, out) | for (r → s, i+) ∈ R} ∪ {(rs, in; ci, out),

(rs′, out) | (r → s, i−) ∈ R} ∪ {(rs, in), (rs′, out) | (r → s, λ) ∈ R}
∪ {(rs, in; 0i, out), (0i, in; ci, out), (0i, in; rs′, out) | (r → s, i = 0) ∈ R},

Rsim
3 = {(rs, in; rs′, out) | (r → s, X) ∈ R, for a counter operation X},

Rtimer
1 = {(t, in; qf ′, out) | for f the final state}

∪ {(t′, in; t, out), (t′′, in; t′, out), (t′′, in; t′′, out)},

Rtimer
2 = {(t, in; t, out), (t′, in; t′, out), (t′′, in)},

Rtimer
3 = {(t, in; t′, out), (t′, in), (t′′, in), (P, in; t′, out), (c0, in; t′, out),

(c0, in, t
′′
, out)}.

We will give the rules in Cstart and Cstop in the following format: for each
membrane i we will give a rule rα

i , α ∈ {start, stop} associated with that
membrane as a sequence of letters each having their multiplicity expressed as
the exponent; they will give the exact multiplicities of the objects needed to
reach the respective configuration. If an object is not “mentioned” for such a
rule associated with a membrane, then we assume that there is no restriction
on the multiplicity of that object in that membrane to satisfy the rule Cα. If an
object has no exponent, then we assume it has to appear in the configuration
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exactly one time (i.e. it is considered to have exponent 1). We are now ready to
give the start and stop rules for configurations:

Cstart : rstart
1 = ∞1∞2

2∞2
4; rstart

2 = ∞1∞2
3t

′′; rstart
3 = c0

0tP t
′
.

Cstop : rstop
1 = rstop

3 = λ; rstop
2 = c0

0.

We will explain briefly the work of the system: from the initial configuration Π
will go through three phases of the computation; in the first phase (Initialization)
the system will bring in from the environment an arbitrary number of objects
qr′4 and cj that will be used later in the simulation phase. Most of the rules are
defined for the initialization phase; such a big number of rules was needed to
ensure that only if the system is following a “correct” path in the computation
a result is produced. The next phase is the actual simulation of the counter
automaton (with the use of the objects brought in the system in the previous
phase); the two major phases mentioned before are similar to the proofs from
[3], [11], [4], [9], [20], the reader can see a detailed explanation of the usage of the
rules from Rini

i and Rsim
i in [20]. We now pass to describing the final stage of the

simulation, the actual output of the contents for the counter c0 using the time
between a configuration α satisfying the rule Cstart and another configuration β
satisfying the rules from Cstop.

It is easy to see (for more details we refer to [20]) that, only in the case of
a successful simulation, the repartition of the objects in the system will satisfy
the rule Cend sim : r1 = ∞1∞2

2∞2
4F, r2 = ∞1∞2

3tP, r3 = t′ where F ∈ {qf ′ |
q ∈ Q}, configuration that has also the property that in membrane 2 there are
i copies of the object c0 where i is the actual result of the computation.

It is clear that we need to go from Cstart to Cstop in exactly i steps. To do
this, we perform a few steps of “pre-work” by bringing in the second membrane
t
′ and then also t

′′, that will move the objects c0 into membrane 3 one copy for
each maximally parallel application of the rules.

Let us describe the “flow” of time in the system starting the end of the
simulation phase (the object qf ′ reaches membrane 1). In that moment qf ′

is replaced with t in the membrane 1 by the rule (t, in; qf ′, out) ∈ R1 and
then t enters membrane 2 and sends out in membrane 1 t: (t, in; t, out) ∈ R2.
At the next step two rules can be applied: (t′, in; t, out) in membrane 1 and
(t, in; t′, out) in membrane 3. Next t

′ moves into membrane 2 while t′ reaches
membrane 1: (t′, in; t′, out) ∈ R2 so that at the next step t

′ finally arrives in
membrane 3 by (t′, in) ∈ R3. During this last step t′ is replaced by the rule
t′′: (t′′, in; t′, out) ∈ R1 applicable in membrane 1. Since t

′ is used to move the
c0 objects from membrane 2 into membrane 3, it can start doing this by using
the rule (c0, in; t′, out) ∈ R3, but this would mean that the system would never
reach a configuration satisfying Cstart since at least one copy of c0 would be
present in membrane 3 and would never be removed. Instead, we can use the
rule (P, in; t′, out) ∈ R3 and bring in membrane 3 the symbol P 5 so that t

′′ can
4 We note that qr′ is a single object “keeping track” of two different states q, r ∈ Q.
5 The symbol P is used as a padding symbol.
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finally come in membrane 2 and start the timer (the rule Cstart is satisfied by
the current configuration). One can note that both t

′ and t
′′ can move exactly

one copy of c0 from membrane 2 into membrane 3, and then re-enter membrane
3 so that they can perform this work once more at the next step. Since one copy
is moved for each step, the number of steps from Cstart and Cstop is exactly the
multiplicity of the symbol c0 in membrane 2. This in fact means that we proved
that NRE = NTP3(sym1, anti1). In the following we prove the second part of
the theorem, that one membrane and antiport of size two and no symport are
enough for universality:

To prove that NRE = NTP1(sym0, anti2), we follow the constructions from
[8] or [7] where a similar result for “regular” simport/antiport P systems was
obtained. The unique membrane will start with the start state as its only ob-
ject in the initial configuration, and the work of the counter automaton can be
simulated using the antiport rules in the following way:

For a rule (p → q, λ) ∈ R we will have in our timed P system the rule
(q, in; p, out); for an increment instruction on the counter ci: (p → q, i+) we will
add the following antiport rule to R1: (qci, in; p, out). The decrement instruc-
tion can only be applied if the counter is non zero, (p → q, i−) is simulated by
(q, in; pci, out). Finally, (p → q, i = 0) is simulated by the rules (q′i, in; p, out);
(∞, in; ici, out), (q′′, in; q′, out), and (q, in; q′′i, out) in three steps: first we re-
place p by q′ and i, then i checks whether the register i is empty or not; if
nonempty, the special marker ∞ is brought in and the computation cannot con-
tinue; but in the case when the register was empty the computation can continue
by expelling the two symbols q′′ and i together to bring in the next state q.

It is clear now that the register machine is simulated in this way only by using
antiport rules of weight 26. When the final state appears as the current state of
the simulation it is time to start “counting” the result; the rule Cstart can be
defined as rstart

1 = ∞0f . The rule (f, in; fc0, out) will expel one symbol c0 at
a time, thus if we define the rule Cstop ro be rstop

1 = fc0
0 we will have exactly

i steps between Cstart and Cstop, where i is the multiplicity of the symbol c0
(i.e. the contents of the output register) in the system. Following the previous
discussion the equality NRE = NTP1(sym0, anti2) was shown, which completes
the proof. 	

We will consider next other properties of the newly defined model of P systems
with time, such as the possibility of simulating timed systems by using normal
symport/antiport systems. We will also consider the case when the start/stop
configurations do not have any constrains on the object multiplicities, etc.

2.1 Other Results for Timed Simport/Antiport Systems

The following result shows that a timed system can be simulated by a “time-less”
system of the same type.
6 The result can be strengthened in the following way: the construction works even if

we only use antiport rules of dimensions (1, 2) or (2, 1) by adding to the only two
rules of dimension (1, 1) some padding symbols. For example the rule (q′′, in; q′, out)
can be padded with the extra symbol P in this way (q′′P, in; q′, out).
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Theorem 2. For every timed symport/antiport system Π we can effectively con-
struct a (regular) symport/antiport system Π ′ which computes N(Π).

Proof. We start with a timed symport/antiport system Π and proceed to show
how to compute N(Π). Assume that Π has m membranes and an alphabet V
with k symbols. Let α0 be the initial configuration of Π . Let Mstart and Mstop

be deterministic multicounter machines which compute the relations Cstart and
Cstop, respectively.

Our procedure will be implemented on a nondeterministic multicounter (or
register) machine M . M will have a set C of mk counters. There is a special
counter, called T , which will be the timer. We also need counters to simulate
Mstart and Mstop. In addition, there are other counters, called D counters, whose
use will be explained later. Initially, all the counters are zero.

1. M starts by storing the initial configuration α0 in the set of counters C.
(Since the initial configuration is fixed, this can be incorporated in the finite-
state control of M).

2. M nondeterministically selects a maximally parallel multiset of rules applica-
ble to the configuration represented in C, collectively storing the “changes”
in the multiplicities of the symbols in the different membranes resulting from
the application of the rules in the auxiliary set of counters D. We will explain
the details of how this is done later.

3. Using D, M updates C, and resets the counters in D to zeros.
4. M nondeterministically guesses to either go back to step 2 or proceed to the

next step.
5. (When M enters this step, it is guessing that the configuration α represented

in the C counters is in Cstart). M simulates Mstart and checks that α is
indeed in Cstart. If so, M proceeds to the next step; otherwise, M halts in a
non-accepting state.

6. As in step 2, M nondeterministically selects a maximally parallel multiset of
rules applicable to the configuration represented in C, storing the changes in
the multiplicities of the symbols in the different membranes resulting from
the step in in the auxiliary set of counters D.

7. Using D, M updates C, resets the counters in D to zeros, and increments
the counter T by 1.

8. M nondeterministically guesses to either go back to step 6 or proceed to the
next step.

9. M simulates Mstop to check that the configuration β represented in the C
counters is in Cstop. If so, M halts in an accepting state; else it halts in a
non-accepting state. (Clearly, when M halts in an accepting state, the value
of counter T is the number of steps Π took to reach configuration β from α).

Since steps 6-9 are similar to steps 2-5, we just describe the details of how M
carries out step 2.

For every membrane i and the (unique) membrane j enclosing it, define two
sets of counters: The first set consists of counters d(i,j,a1), ..., d(i,j,ak), and they
will keep track of the multiplicities of the objects that are moved from membrane
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i to membrane j as a result of the application of the rules in membrane i (as
described below). The other set of counters d(j,i,a1), ..., d(j,i,ak) will keep track
of the multiplicities of objects that are moved from membrane j to membrane
i. These sets of counters will be called D counters. At the start of step 2, the
D counters are reset to zero. Let Q be the set of all rules in the membrane
structure.

(a) M nondeterministically picks a rule r in Q. Note that r belongs to a unique
membrane, say i. First assume that i �= 1 (i.e., not the skin membrane).

(b) Clearly, r is of the form (u, out; v, in), where u or v, but not both, can be λ
(the null string).

(c) Let j be the membrane directly enclosing membrane i. M checks if r is
applicable by examining the contents of the counters in C corresponding to
the symbols in membrane i and the contents of the counters corresponding to
the symbols in membrane j, decrementing these counters appropriately, and
then updating the D counters for the pair (i, j) as a result of the application
of rule r. M then goes to step (a).
If r is not applicable, then M deletes r from Q. If Q is not empty, M goes
to the step (a); otherwise, M has applied a maximal set of rules, and the
counters in D can now be used to update the values of the counters in C.

For the case i = 1, the enclosing membrane is the environment, which has an
abundance of each symbol and, hence, M does not have to keep track of the
multiplicities of the symbols in the environment. Note also that multiplicity of
each symbol in V −E is bounded and its distribution in the membranes and the
environment (although is changing during the computation) can be recorded in
the finite-state control of M .

From the discussion above and the fact that a multicounter machine can
effectively be simulated by a symport/antiport system, the theorem follows. 	


For the trivial case when there are no constraints on the multiplicities of the
objects in the membranes, we have:

Theorem 3. For every timed symport/antiport system Π, with Cstart = Cstop

= Nmk, N(Π) is recursive.

Proof. The idea is the following. Given n, to determine if n is in N(Π), simulate
all computation paths of Π starting from its initial configuration (note that,
in general, there may be several paths because the system is nondeterministic).
Use a separate counter for each path to count the number of maximally parallel
steps in each path. If there is a path with n steps, then n is in N(Π). If each
path leads to a halting configuration before n steps, then n is not in N(Π). 	


Now, from Theorem 1, N(Π) is recursive for a timed symport/antiport sys-
tem even when Cstart and Cstop are very simple cases of Presburger relations.
However, from Theorem 3, if Cstart and Cstop are the trivial relations, N(Π)
is recursive. It follows that the only cases when N(Π) would be recursive is
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when Π and Cstart and Cstop are restricted. An interesting case is when Π is
a timed symport/antiport system which operates in such a way that no symbol
is exported into the environment (thus there are no rules of the form (u, out)
and (u, out; v, in) in the skin membrane). Call this system a restricted sym-
port/antiport system. This type of (un-timed) system was studied in [17]. We
can show the following (due to the space restrictions we leave the proof to the
reader).

Theorem 4. Let Π be a restricted timed symport/antiport system and Cstart

and Cstop be Presburger relations. Then N(Π) can be accepted by a determin-
istic polynomial-time multicounter machine. (This means that the multicounter
machine, when given n, can decide whether or not n is in N(Π) in time poly-
nomial in n).

3 A P System Model of Timed Rules and Combinatorial
Gene Expression

The goal of this section is to define a P system model that is close to the biology of
the cell and, at the same time, keep some of the features of the P systems so that
it can be studied with the now widely used mathematical tools for P systems.
With a similar goal in mind we have recently defined a successful model in [15]
which has been adopted as one of the natural/biological models of P systems by
the research community; the model has become one of the major paradigms in
the field.

We now extend the model proposed in [15] with several new ideas: differ-
ent reactions can take different amounts of time; objects in the system can
bind/dissociate according to their physical properties (3D shape, polarities); the
cell contains its genetic material, enabling it to produce new objects according
to the blueprints provided in genes.

Another interesting modeling effort in the direction of defining more realistic,
i.e. more bio-compatible P systems was reported recently in the membrane com-
puting annual conference, where two papers [5], [14] were suggesting approaches
to make the P systems “time independent”. Both the authors take in consider-
ation rules in the P system that can take various amounts of time, in contrast
with the other definitions of P systems that are modeling the rules as taking
each 1 clock-cycle.

Our proposed model is different from the model in [5] or [14] by the fact
that we will have in the system the idea of binding two molecules together. We
are also interested in models that “behave” as close as possible to reality, in
contrast with the aforementioned papers that were focussing on finding systems
“time independent”; i.e. systems that have the same output even though the
time associated with a rule is changing.

Another novelty of our proposed model is the introduction of the genetic ma-
terial: one of the regions of the P system will be labeled nucleus, and will contain,
among other things, the genes of that cell. As far as we know, there are no other
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P system models that are describing the interactions between various molecules
in the system and genes; especially gene activation process, gene activators, gene
repressors, etc.

The genes will be denoted by G1, G2, G3, . . . , Gn, and they will be ei-
ther activated or de-activated. Since it is still an ongoing debate in the biology
community about how exactly is the mRNA built from an activated gene, we
chose to model the process in the following way: genes are by default deacti-
vated, they become activated only when some specific activator molecules bind
to a gene. In that moment the gene is activated, and the mRNA is produced
and sent to cytoplasm to be translated into several copies of the protein. After
all this process takes place, we consider that the gene becomes deactivated and
some of its activator molecules (or all) have left the nucleus. If more activator
molecules are/were present in the nucleus, then at the next clock-cycle they can
start binding to the gene, and the gene is activated once more.

The model will contain the activator rules as well as repressor rules for each
gene plus, when activated, the gene will be able to produce new objects in the
system.

Definition 1. A genetic P system is a construct Π = (V, μ, G, wcyt, wER,
wnucleus, Rcyt, RER, Rnucleus), where

– V is the alphabet of Π representing the set of all possible molecules that can
appear in the system.

– μ gives the membrane structure of the system; the plasma membrane (labeled
cyt) contains two different sub-regions labeled with ER (for endoplasmic retic-
ulum) and nucleus. In standard membrane systems notation μ is written as
μ = [cyt[ER ]ER [nucleus ]nucleus]cyt.

– G is the set of genes for the cell.
– wcyt, wER, wnucleus are words over V that represent the initial multiplicities

of the objects in their corresponding regions in the system. Please note that
in the initial configuration we assume all the objects in the system to be “un-
bound” with any other object. We will call from now on as objects/molecules
elements from V and also complexes of bound together elements from V .
They will be written in the form 〈XY Z〉 when X, Y, Z ∈ V ; thus 〈XY Z〉
is a single object in the system.

– Rcyt, RER, Rnucleus are finite sets of rules associated with each of the three
regions defined by the P system. We will describe in the following the types
of rules that can be found in each of the three sets of rules.

The rules are of four different categories: general rules (g1, g2, g3), cytoplasm
rules (c1, c2), endoplasmic reticulum rules (e1, e2, e3, e4) and nucleus rules (n1,
n2, n3).

The general rules are specifying the types of rules that can appear in any
region of the cell; they model the binding/unbinding of molecules (g1, g2) and
the catalytic reactions from the cell (g3).

The cytoplasm rules can only be applied in cytoplasm; they are modeling the
creation of new proteins from mRNA by the ribosomes (c1) and the destruction
of proteins by the proteases (c2).
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In the endoplasmic reticulum (ER) we have rules that model the movement of
objects between CYT and ER. We model the work of ion channels (e1), uniport
(e2), symport/antiport (e3/e4).

The last type of rules are the ones that can only appear in nucleus, they model
the work of activators/repressors binding to genes (n1, n2) and the transcription
of a gene followed by the expel of the mRNA into the cytoplasm (n3) so that
the protein-building mechanism (c1) can start.

The general rules in the cytoplasm, endoplasmic reticulum and nucleus will
have the forms:

g1. association (binding) rules: 〈X〉 + 〈Y 〉 →t 〈XY 〉 where X, Y ∈ V + and t
specifies the number of clock-cycles it takes for the binding to take place
for the specified molecules. It must be stressed the fact that the product
〈XY 〉 is the same with the product 〈Y X〉; we will write the products in the
lexicographic order.

g2. dissociation (unbinding) rules: 〈XY 〉 →t 〈X〉 + 〈Y 〉 where X, Y ∈ V + and t
specifies the number of clock-cycles required for the unbinding operation.

g3. catalysis rules: 〈X〉 + 〈Y 〉 →t 〈X〉 + 〈Z〉 where X, Y, Z ∈ V + and t speci-
fies the number of clock-cycles required for the enzyme 〈X〉 to perform the
catalysis.

We will apply the previous rules in a nondeterministically parallel manner with
the only remark that the binding rules have higher priority than other rules such
as the catalatic rules, ion channel rules, etc.; in this way the model accounts
(among other things) for the allosteric changes of enzymes.

The following types of rules will be associated only with the cytoplasm:

c1. creation of proteins by the ribosome: 〈An〉 →t 〈An−1〉+〈A〉l, where l ∈ {here,
in-ER, in-nucleus} for all 1 ≤ n, and A1 = A.

c2. destruction of objects: 〈PYu〉 →t 〈P 〉, where P, Yu ∈ V + and P is a protease
and Yu is a protein marked for destruction by ubiquitin.

The following types of rules will be associated only with the endoplasmic retic-
ulum:

e1. ion channels: 〈Ion〉 →t1 〈Ion〉, 〈Ion〉 →t2 〈Ion〉, 〈Ion〉 + 〈X〉 →t3 〈IonX〉,
〈IonX〉 →t4 〈Ion〉 + 〈X〉in/out where Ion, Ion, X ∈ V . The rules defined
for the ion channels take in consideration the fact that the channels have a
periodical transition between the on and off configurations.

e2. uniport: 〈Uni〉+〈X〉 →t 〈Uni〉+〈X〉out, or 〈Uni〉+〈X〉cyt →t 〈Uni〉+〈X〉in,
where Uni, X ∈ V and 〈X〉cyt means that the object X is in that moment
in the cytoplasm.

e3. symport: 〈Sim〉+〈XY 〉 →t 〈Sim〉+〈X〉out+〈Y 〉out, or 〈Sim〉+〈XY 〉cyt →t

〈Sim〉 + 〈X〉in + 〈Y 〉in, where Sim, X, Y ∈ V and 〈XY 〉cyt means that the
objects are in the cytoplasm.

e4. antiport: 〈Anti〉+〈X〉+〈Y 〉cyt →t 〈Anti〉+〈X〉out+〈Y 〉in where we have that
Anti, X, Y ∈ V and the subscript cyt specifies that the respective molecule
is in the cytoplasm.
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The following types of rules will be associated only with the nucleus:

n1. activator/repressor binding to a gene: 〈A〉 + 〈Gi〉 →t 〈AGi〉 for A ∈ V + and
Gi ∈ G.

n2. more activators binding to the gene Gi: 〈A〉 + 〈BGi〉 →t 〈ABGi〉 for A, B ∈
V + and Gi ∈ G.

n3. gene activation and mRNA move to cytoplasm: 〈XGi〉 →t 〈Y Gi〉 + 〈Ak〉out,
where X, Y ∈ V ∗, A ∈ V , Y ⊆ X and k is the number of copies of the
protein A (codified in the mRNA) that will be produced by the ribosomes
in the cytoplasm.

One can note that the system is defined flexibly enough so that much more
biological processes can be expressed using the given rules. For example, the
phosphorylation reaction can be expressed with several objects in V using the
catalytic reaction of the type g3: 〈X〉+ 〈Y 〉 →t 〈X〉+ 〈Yp〉 and can be continued
for several steps: 〈X〉 + 〈Yp〉 →t′ 〈X〉 + 〈Ypp〉 by using other type g3 rules.

Remark. We assume that a complex of objects (several objects are bound to-
gether after a repeated use of rules of type g1) is working as a whole; thus if
we have the complex object 〈ABC〉, then a rule defined only for 〈AB〉 cannot
be applied to 〈ABC〉. This is due to the fact that the 3D shape of the complex
〈AB〉 can be changed dramatically by the binding with 〈C〉.

We note that the previous remark helps the rules n1, n2 simulate also the
work of the gene regulation repressors, since the gene cannot be activated if the
repressor is bound to it.

The rule allows for modeling the enzymatic regulation that takes place in cells:
if the enzyme 〈A〉 is catalyzing the reaction from 〈X〉 into 〈Y 〉 at some rate of
3 clock-cycles, we can write it as a rule of type g3: 〈A〉 + 〈X〉 →3 〈A〉 + 〈Y 〉.
Now, let us assume that the cell decides to down-regulate the enzyme to a ten
times slower speed by using the molecule 〈B〉. In this case we would model
the reactions using a binding rule 〈A〉 + 〈B〉 →2 〈AB〉, and a catalytic rule
〈AB〉 + 〈X〉 →30 〈AB〉 + 〈Y 〉.

We now briefly discuss the different types of output for the new model. The
first type of output of the system could be associated with the number of times
each rule of the type n3 is applied for each of the genes contained in a predefined
string w ∈ G∗ in a given amount of time. In other words, we are interested in
a specific number of genes, and we are looking at how many times these genes
have been activated. The system in this case can compute a vector of integer
values; the number of components and the order of the components being given
by the word w.

Another type of “termination” for the computation for such a system could
be viewed as a combination of activated genes at a given moment as well as
minimal multiplicities for several molecules in each component of the system.
Such a configuration could be viewed as a “final state” of the machinery. In that
moment one could use the first idea of the output of the system; i.e. counting
the number of activations for particular genes.
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Yet another idea is to consider as we have done for timed symport/antiport
systems in Section 2 the time that passed between two distinguished configu-
rations as the the result of the computation. This method of considering the
computation of the system seems quite flexible and elegant. It does not require
a cell to “accumulate” a large quantity of a specific molecule that would encode
the output.

4 Final Remarks

In this paper, we considered (as in the previous papers that have been mentioned)
time as an “active” participant in a computation. We also reviewed two known
models – one using spiking neurons and the other, the time independent P
systems. We then defined and obtained several results concerning some new
models – the timed P system, P system with timed rules, and gene expression
models. For the newly introduced timed P systems we improved or matched
two of the best known results for “regular” symport/antiport P systems. We
are currently working on proving the remaining two results (NTP3(sim2, anti0)
and NTP2(sim3, anti0)). It is worth noting that the new feature of outputting
the result using time is more flexible than the previously considered methods,
thus the previous results could be even improved by using completely different
techniques that take advantage of the flexibility of the time as a framework of
outputting the result of a computation.
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5. M. Cavaliere, Towards Asynchronous P Systems, Pre-proceedings of the Fifth Work-
shop on Membrane Computing (WMC5), Milano (Italy), June 14-16, 2004, 161–173.
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