
Simple Operations for Gene Assembly

Tero Harju1,4, Ion Petre2,3,4,
Vladimir Rogojin3,4, and Grzegorz Rozenberg5,6

1 Department of Mathematics, University of Turku,
Turku 20014, Finland

harju@utu.fi
2 Academy of Finland

3 Department of Computer Science, Åbo Akademi University,
Turku 20520, Finland

ipetre@abo.fi, vrogojin@abo.fi
4 Turku Centre for Computer Science,

Turku 20520, Finland
5 Leiden Institute for Advanced Computer Science, Leiden University,

Niels Bohrweg 1, 2333 CA Leiden, The Netherlands
6 Department of Computer Science, University of Colorado at Boulder,

Boulder, Co 80309-0347, USA
rozenber@liacs.nl

Abstract. The intramolecular model for gene assembly in ciliates con-
siders three operations, ld, hi, and dlad that can assemble any gene pat-
tern through folding and recombination: the molecule is folded so that
two occurrences of a pointer (short nucleotide sequence) get aligned and
then the sequence is rearranged through recombination of pointers. In
general, the sequence rearranged by one operation can be arbitrarily
long and consist of many coding and non-coding blocks. We consider in
this paper some simpler variants of the three operations, where only one
coding block is rearranged at a time. We characterize in this paper the
gene patterns that can be assembled through these variants. Our char-
acterization is in terms of signed permutations and dependency graphs.
Interestingly, we show that simple assemblies possess rather involved
properties: a gene pattern may have both successful and unsuccessful
assemblies and also more than one successful assembling strategy.

1 Introduction

The ciliates have a very unusual way of organizing their genomic sequences. In
the macronucleus, the somatic nucleus of the cell, each gene is a contiguous DNA
sequence. Genes are generally placed on their own very short DNA molecules.
In the micronucleus, the germline nucleus of the cell, the same gene is broken
into pieces called MDSs (macronuclear destined sequences) that are separated
by noncoding blocks called IESs (internally eliminated sequences). Moreover, the
order of MDSs is shuffled, with some of the MDSs being inverted. The structure
is particularly complex in a family of ciliates called Stichotrichs – we concen-
trate in this paper on this family. During the process of sexual reproduction,

A. Carbone and N.A. Pierce (Eds.): DNA11, LNCS 3892, pp. 96–111, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Simple Operations for Gene Assembly 97

ciliates destroy the old macronuclei and transform a micronucleus into a new
macronucleus. In this process, ciliates must assemble all genes by placing in the
orthodox order all MDSs. To this aim they are using pointers, short nucleotide
sequences that identify each MDS. Thus, each MDS M begins with a pointer
that is exactly repeated in the end of the MDS preceding M in the orthodox
order. The ciliates use the pointers to splice together all MDSs in the correct
order.

The intramolecular model for gene assembly, introduced in [9] and [27] consists
of three operations: ld, hi, and dlad. In each of these operations, the molecule folds
on itself so that two or more pointers get aligned and through recombination
two or more MDSs get combined into a bigger composite MDS. The process
continues until all MDSs have been assembled. For details related to ciliates and
gene assembly we refer to [15], [20], [21], [22], [23], [24], [25], [26] and for details
related to the intramolecular model and its mathematical formalizations we refer
to [3], [4], [7], [8], [11], [12], [13], [28], [29], as well as to the recent monograph [5].
For a different intermolecular model we refer to [17], [18], [19].

In general there are no restrictions on the number of nucleotides between
the two pointers that should be aligned in a certain fold. However, all available
experimental data is consistent with restricted versions of our operations, in
which between two aligned pointers there is never more than one MDS, see [5]
and [6]. We propose in this paper a mathematical model for simple variants of
ld, hi, and dlad. The model, in terms of signed permutations, is used to answer
the following question: which gene patterns can be assembled by the simple
operations? As it turns out, the question is difficult: the simple assembly is
a non-deterministic process, with more than one strategy possible for certain
patterns and in some cases, with both successful and unsuccessful assemblies.
We completely answer the question in terms of sorting signed permutations.
Here, a signed permutation represents the sequence of MDSs in a gene pattern,
including their orientation.

There is rich literature on sorting (signed and unsigned) permutations, both
in connection to their applications to computational biology in topics such as
genomic rearrangements or genomic distances, but also as a classical topic in
discrete mathematics, see, e.g., [1], [2], [10], [16].

2 Mathematical Preliminaries

For an alphabet Σ we denote by Σ∗ the set of all finite strings over Σ. For a
string u we denote dom(u) the set of letters occurring in u. We denote by Λ the
empty string. For strings u, v over Σ, we say that u is a substring of v, denoted
u ≤ v, if v = xuy, for some strings x, y. We say that u is a subsequence of
v, denoted u ≤s v, if u = a1a2 . . . am, ai ∈ Σ and v = v0a1v1a2 . . . amvm, for
some strings vi, 0 ≤ i ≤ m, over Σ. For some A ⊆ Σ we define the morphism
φA : Σ∗ → A∗ as follows: φA(ai) = ai, if ai ∈ A and φA(ai) = Λ if ai ∈ Σ \ A.
For any u ∈ Σ∗, we denote u|A = φA(u). We say that the relative positions of
letters from set A ⊆ Σ are the same in strings u, v ∈ Σ∗ if and only if u|A = v|A.

98 T. Harju et al.

Let Σn = {1, 2, . . . , n} and let Σn = {1, 2, . . . , n} be a signed copy of Σn. For
any i ∈ Σn we say that i is a unsigned letter, while i is a signed letter. Let ‖.‖ be
the morphism from (Σn ∪ Σn)∗ to Σ∗

n that unsigns the letters: for all a ∈ Σn,
‖a‖ = ‖a‖ = a. For a string u over Σn ∪ Σn, u = a1a2 . . . am, ai ∈ Σn ∪ Σn, for
all 1 ≤ i ≤ m, we denote its inversion by u = am . . . a2a1, where a = a, for all
a ∈ Σn.

Consider a bijective mapping (called permutation) π : Δ → Δ over an alphabet
Δ = {a1, a2, . . . , al} with the order relation ai ≤ aj for all i ≤ j. We often
identify π with the string π(a1)π(a2) . . . π(al). The domain of π, denoted dom(π),
is Δ. We say that π is (cyclically) sorted if π = ak ak+1 . . . al a1 a2 . . . ak−1, for
some 1 ≤ k ≤ l.

A signed permutation over Δ is a string ψ over Δ∪Δ such that ‖ψ‖ is a permu-
tation over Δ. We say that ψ is (cyclically) sorted if ψ = ak ak+1 . . . al a1 a2 . . .
ak−1 or ψ = ak−1 . . . a2 a1 al . . . ak+1 ak, for some 1 ≤ k ≤ l. Equivalently, ψ is
sorted if either ψ, or ψ is a sorted unsigned permutation. In the former case we
say that ψ is sorted in the orthodox order, while in the latter case we say that ψ
is sorted in the inverted order.

3 The Intramolecular Model

Three molecular operations, ld, hi, dlad were conjectured in [9] and [27] for gene
assembly. We only show here the folding and the recombinations taking place
in each case, referring for more details to [5]. It is important to note that all
foldings are aligned by pointers, some relatively short nucleotide sequences at the
intersection of MDSs and IESs. The pointer at the end of an MDS M coincides (as
a nucleotide sequence) with the pointer in the beginning of the MDS following M
in the assembled gene.

3.1 Simple Operations

Note that all three operations ld, hi, dlad are intramolecular, that is, a single
molecule folds on itself to rearrange its coding blocks. Thus, since ld excises one
circular molecule, that circular molecule can only contain noncoding blocks (or,
in a special case, contain the entire gene, see [5] for details on boundary ld): we
say that ld must always be simple in a successful assembly. As such, the effect
of ld is that it combines two consecutive MDSs into a bigger composite MDS.
E.g., consider that MiMi+1 is part of the molecule, i.e., MDS Mi+1 succeeds Mi

being separated by one IES I. Thus, pointer i + 1 has two occurrences that
flank I. Then ld makes a fold as in Fig. 1 aligned by pointer i + 1, excises IES I
as a circular molecule and combines Mi and Mi+1 into a longer coding block.

In the case of hi and dlad, the rearranged sequences may be arbitrarily
large. E.g., the actin I gene in S.nova has the following sequence of MDSs:
M3M4M6M5M7M9M2M1M8, where MDS M2 is inverted. Here, pointer 3 has
two occurrences: one in the beginning of M3 and one, inverted, in the end of
M2. Thus, hi is applicable to this sequence with the hairpin aligned on pointer 3,
even though five MDSs separate the two occurrences of pointer 3. Similarly, dlad

Simple Operations for Gene Assembly 99

ld(i) ld(ii) ld(iii) hi(i) hi(ii) hi(iii)

dlad(i) dlad(ii) dlad(iii)

Fig. 1. Illustration of the ld, hi, dlad molecular operation showing in each case: (i) the
folding, (ii) the recombination, and (iii) the result

is applicable to the MDS sequence M2M8M6M5M1M7M3M10M9M4, with the
double loops aligned on pointers 3 and 5. Here the first two occurrences of point-
ers 3, 5 are separated by two MDSs (M8 and M6) and their second occurrences
are separated by four MDSs (M3, M10, M9, M4).

As it turns out, all available experimental data is consistent with applications
of so-called “simple” hi and dlad: particular instances of hi and dlad where the
folds and thus, the rearranged sequences contain only one MDS. We define the
simple operations in the following.

An application of the hi-operation on pointer p is simple if the part of the
molecule that separates the two copies of p in an inverted repeat contains only
one MDS (and one IES). We have here two cases, depending on whether the first
occurrence of p is incoming or outgoing. The two possibilities are illustrated in
Fig. 2, where the MDSs are indicated by rectangles and their flanking pointers
are shown.

p q p r
δ1 δ2

q p r p
δ1 δ2

Fig. 2. The MDS/IES structures where the simple hi-rule is applicable. Between the
two MDSs there is only one IES.

p q r1 p q r2

δ1 δ2 δ3

r1 p q r2 p q
δ1 δ2 δ3

Fig. 3. The MDS/IES structures where the simple dlad-rule is applicable. Straight line
denotes one IES.

100 T. Harju et al.

An application of dlad on pointers p, q is simple if the sequence between the
first occurrences of p, q and the sequence between the second occurrences of p, q
consist of either one MDS or one IES. We have again two cases, depending on
whether the first occurrence of p is incoming or outgoing. The two possibilities
are illustrated in Fig. 3.

One immediate property of simple operations is that they are not universal,
i.e., there are sequences of MDSs that cannot be assembled by simple operations.
One such example is the sequence (2, b)(4, e)(3, 4)(2, 3). Indeed, neither ld, nor
simple hi, nor simple dlad is applicable to this sequence.

4 Gene Assembly as a Sorting of Signed Permutations

The gene structure of a ciliate can be represented as a signed permutation, de-
noting the sequence and orientation of each MDS, while omitting all IESs. E.g.,
the signed permutation associated to gene actin I in S.nova is 3 4 6 5 7 9 21 8. The
rearrangements made by ld, hi, dlad at the molecular level leading to bigger com-
posite MDSs have a correspondent on permutations in combining two already
sorted blocks into a longer sorted block. Assembling a gene is equivalent in terms
of permutations to sorting the permutation associated to the micronuclear gene
as detailed below.

When formalizing the gene assembly as a sorting of permutations we effec-
tively ignore the operation ld observing that once such an operation becomes
applicable to a gene pattern, it can be applied at any later step of the assembly,
see [3] and [7] for a formal proof. In particular, we can assume that all ld oper-
ations are applied in the last stage of the assembly, once all MDSs are sorted in
the correct order. In this way, the process of gene assembly can indeed be de-
scribed as a process of sorting the associated signed permutation, i.e., arranging
the MDSs in the proper order, be that orthodox or inverted.

The simple hi is formalized on permutations through operation sh. For each
p ≥ 1, shp is defined as follows:

shp(x (p + 1) p y) = x (p + 1) p y, shp(x p (p − 1) y) = x p (p − 1) y,
shp(x (p − 1) p y) = x (p − 1) p y, shp(x p (p + 1) y) = x p (p + 1) y,

where x, y are signed strings over Σn. We denote Sh = {shi | 1 ≤ i ≤ n}.
The simple dlad is formalized on permutations through operation sd. For

each p, 2 ≤ p ≤ n − 1, sdp is defined as follows:

sdp(x p y (p − 1) (p + 1) z) = x y (p − 1) p (p + 1) z,

sdp(x (p − 1) (p + 1) y p z) = x (p − 1) p (p + 1) y z,

where x, y, z are signed strings over Σn. We also define sdp as follows:

sdp(x (p + 1) (p − 1) y p z) = x (p + 1) p (p − 1) y z,

sdp(x p y (p + 1) (p − 1) z) = x y (p + 1) p (p − 1) z,

where x, y, z are signed strings over Σn. We denote Sd = {sdi, sdi | 1 ≤ i ≤ n}.

Simple Operations for Gene Assembly 101

We say that a signed permutation π over the set of integers Σn is sortable if
there are operations φ1, . . . , φk ∈ Sh ∪Sd such that (φ1 ◦ . . . ◦ φk)(π) is a sorted
permutation. In this case Φ = φ1 ◦ . . .◦φk is a sorting strategy for π. Permutation
π is Sh-sortable if φ1, . . . , φk ∈ Sh and π is Sd-sortable if φ1, . . . , φk ∈ Sd. We say
that φi is part of Φ and also that φi is used in Φ before φj for all 1 ≤ j < i ≤ k.

Example 1. (i) Permutation π1 = 3 4 5 6 1 2 is sortable and a sorting strategy is
sh1(sh5(sh4(π1))) = 3 4 5 6 1 2. Permutation π′

1 = 3 4 5 6 12 is unsortable.
Indeed, no sh operations and no sd operation is applicable to π′

1.
(ii) Permutation π2 = 1 3 4 2 5 is sortable and has only one sorting strategy:

sh5(sd2(π2)) = 1 2 3 4 5.
(iii) There exist permutations with several successful strategies, even leading

to different sorted permutations. One such permutation is π3 = 3 5 1 2 4.
Indeed, sd3(π3) = 5 1 2 3 4. At the same time, sd4(π3) = 3 4 5 1 2.

(iv) The simple operations yield a nondeterministic process: there are per-
mutations having both successful and unsuccessful sorting strategies. One
such permutation is π4 = 1 3 5 7 9 2 4 6 8. Note that sd3(sd5(sd7(π4))) =
1 9 2 3 4 5 6 7 8 is a unsortable permutation. However, π4 can be sorted, e.g.,
by the following strategy: sd2(sd4(sd6(sd8(π4)))) = 1 2 3 4 5 6 7 8 9.

(v) Permutation π5 = 1 3 5 2 4 has both successful and unsuccessful sorting
strategies. Indeed, sd3(π5) = 1 5 2 3 4, a unsortable permutation. However,
sd2(sd4(π5)) = 1 2 3 4 5 is sorted.

(vi) Applying a cyclic shift to a permutation may render it unsortable. Indeed,
permutation 2 1 4 3 5 is sortable, while 5 2 1 4 3 is not.

(vii) Consider the signed permutation π7 = 1 11 3 9 5 7 2 4 13 6 15 8 10 12 14 16.
Operation sd may be applied to π7 on integers 3, 6, 9, 11, 13, and 15 . Doing
that however leads to a unsortable permutation:

sd3(sd6(sd9(sd11(sd13(sd15(π7)))))) = 1 5 6 7 2 3 4 8 9 10 11 12 13 14 15 16.

However, omitting sd3 from the above composition leads to a sorting strategy
for π7: let

π′
7 = sd6(sd9(sd11(sd13(sd15(π7))))) = 1 3 5 6 7 2 4 8 9 10 11 12 13 14 15 16.

Then sd2(sd4(π′
7)) is a sorted permutation.

Lemma 1. Let π be a signed permutation over Σn and i ∈ Σn ∪ Σn. Then we
have the following properties:

(i) If sdi is applicable to π, then sdi is applicable to π and sdi(π) = sdi(π).
(ii) If shi, where i is unsigned, is applicable to π, then shi−1 or shi+1 is applicable

to π and shi(π) = shi−1(π) or shi(π) = shi+1(π).

5 Sh-Sortable Permutations

We characterize in this section all signed permutations that can be sorted using
only the Sh operations. As it turns out, their form is easy to describe since the Sh
operations do not change the relative positions of the letters in the permutation.

102 T. Harju et al.

The following result characterizes all Sh-sortable signed permutations.

Theorem 1. A signed permutation π = p1 . . . pn, pi ∈ Σn ∪ Σn, is sh-sortable
if and only if

(i) ‖π‖ = k (k + 1) . . . n 1 . . . (k − 1), for some 1 ≤ k ≤ n and there are i, j,
1 ≤ i ≤ k − 1, k ≤ j ≤ n such that pi and pj are unsigned letters, or

(ii) ‖π‖ = (k − 1) . . . 1 n . . . (k + 1) k, for some 1 ≤ k ≤ n and there are i, j,
1 ≤ i ≤ k − 1, k ≤ j ≤ n such that pi and pj are signed letters.

In Case (i), π sorts to k (k + 1) . . . n 1 . . . (k − 1), while in Case (ii), π sorts to
(k − 1) . . . 1n . . . (k + 1) k.

Example 2. (i) Permutation π1 = 56 78 1 23 4 is Sh sortable and an Sh-sorting
for π1 is sh4(sh3(sh1(sh8(sh5(sh6(π1)))))) = 5 6 7 8 1 2 3 4. Note that sh5 can
be applied only after sh6 and also, sh4 can be applied only after sh3.

(ii) Permutation π2 = 56 781 2 3 4 is unsortable, since we cannot unsign 1, 2, 3
and 4.

6 Sd-Sortable Permutations

We characterize in this section the Sd-sortable permutations. A crucial role in
our result is played by the dependency graph of a signed permutation.

6.1 The Dependency Graph

This is in general a directed graph with self-loops: there may be edges from a
node to itself. The dependency graph describes for a permutation π the order in
which Sd-operations can be applied to π.

For a permutation π over Σn we define its dependency graph as the directed
graph Gπ = (Σn, E), where (i, j) ∈ E, 1 ≤ i ≤ n, 2 ≤ j ≤ n − 1, if and only if
(j − 1)i(j + 1) ≤s π. Also, if (j + 1)(j − 1) ≤s π, then (j, j) ∈ E. Intuitively, the
edge (i, j) represents that the rule sdj may be applied in a sorting strategy for π
only after rule sdi has been applied. A loop (i, i) represents that sdi can never
be used in a sorting strategy for π. Note that Gπ may also have a loop on node
i if (i − 1)i(i + 1) ≤s π.

Example 3. (i) The graph associated to permutation π1 = 1 4 3 6 5 7 2 is shown
in Fig. 4(a). It can be seen, e.g., that sd3 can never be applied in a sorting
strategy for π and because of edge (3, 5), neither can sd5. Also, the graph
suggests that sd6 should be applied before sd4 and this one before sd2. Indeed,
sd2(sd4(sd6(π))) = 1 2 3 4 5 6 7.

(ii) The graph associated to permutation π2 = 1 4 3 2 5 is shown in Fig. 4(b).
Thus, the graph has a cycle with nodes 2 and 4. Indeed, to apply sd2 in a
strategy for π2, sd4 should be applied first and the other way around.

Simple Operations for Gene Assembly 103

6 5

7 4

1 32

a)

4

1 32

5

b)

Fig. 4. Dependency graphs (a) associated to π1 = 14 3 6 5 7 2 and (b) associated to
π2 = 14 3 2 5

Lemma 2. Let π be a unsigned permutation over Σn and Gπ = (Σn, E) its
dependency graph.

(i) There exists no sorting strategy Φ for π such that sdi and sdi+1 are both
used in Φ, for some 1 ≤ i ≤ n − 1.

(ii) If sdj is used in a sorting strategy for π and (i, j) ∈ E, for some i, j ∈ Σn,
then sdi is also used, before sdj, in the same sorting strategy.

(iii) If there is a path from i to j in Gπ, then in any strategy where sdj is used,
sdi is also used, before sdj.

(iv) If Gπ has a cycle containing i ∈ Σn, then sdi cannot be applied in any
sorting strategy of π.

(v) There is no strategy where sd1 and sdn can be applied.

6.2 The Characterization

We characterize in this subsection the Sd-sortable permutations. We first give
an example.

Example 4. Consider the dependency graph Gπ for π = 1 11 3 9 5 7 2 4 13 6 15 8 10
12 14 16, shown in Fig. 5. Based on Lemma 2 and Gπ we build a sorting strategy
Φ for π. We label all nodes i for which sdi is used in Φ by M and the other nodes
by U . Nodes labelled by M are shown with a white background in Fig. 5, while
nodes labelled by U are shown with black one.

By Lemma 2(iv)(v) operations sd1, sd8, sd10 and sd16 cannot be applied in
any strategy of π. Thus, 1, 8, 10, 16 ∈ U . Now, to apply operation sd2, since we
have edge (11, 2) in the dependency graph Gπ, it follows by Lemma 2(ii) that
sd11 must be applied in the same strategy as sd2. Thus, 2, 11 ∈ M . According to
Lemma 2(i) we cannot apply sd2 and sd3 in the same strategy, thus we label 3
by U . To use sd4, since edge (9, 4) is present in the dependency graph, we need
to label both 4 and 9 by M . It follows then by Lemma 2(i) that 5 ∈ U . Then 6
can be labelled by M and then, necessarily, 7 ∈ U . Note now, that if 12 ∈ M ,
since (3, 12) is an edge in Gπ, then by Lemma 2(ii), 3 ∈ M , which contradicts
our labelling of 3. Thus, 12 ∈ U . Then 13 can be labelled by M and necessarily,
14 ∈ U . Also, 15 can now be labelled by M .

In this way we obtain M = {2, 4, 6, 9, 11, 13, 15} and U = {1, 3, 5, 7, 8, 10, 12,
14, 16}. Note that, since elements in U do not change their relative positions in
the strategy Φ we are building, π|U has to be sorted: π|U = 1 3 5 7 8 10 12 14 16.

104 T. Harju et al.

13

12

2

4
5

9

10

16
1

3

1114

6

7

15

8

Fig. 5. The dependency graph associated to π = 1 11 3 9 5 7 2 4 13 6 15 8 10 12 14 16

Our strategy Φ is now a composition of operations sdi, with i ∈ M . The
dependency graph shows the order in which these operations must be applied,
i.e., sd2 can be applied only after sd11 and sd4 can be applied only after sd9. In
this way, we can sort π by applying the following sorting strategy:

(sd2 ◦ sd4 ◦ sd7 ◦ sd15 ◦ sd13 ◦ sd11 ◦ sd9)(π) = 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16.

Clearly, our choice of M and U is not unique. For instance, we may have M =
{2, 4, 7, 9, 11, 13, 15} and U = {1, 3, 5, 6, 8, 10, 12, 14, 16} as shown in Fig. 6. The
strategy will be in this case sd2 ◦ sd4 ◦ sd6 ◦ sd15 ◦ sd13 ◦ sd11 ◦ sd9.

13

12

2

4
5

9

10

16
1

3

1114

6

7

15

8

Fig. 6. The dependency graph associated to π = 1 11 3 9 5 7 2 4 13 6 15 8 10 12 14 16

Simple Operations for Gene Assembly 105

The following result characterizes all Sd-sortable permutations.

Theorem 2. Let π be a unsigned permutation. Then π is Sd-sortable if and
only if there exists a partition {1, 2, . . . , n} = M ∪ U , such that the following
conditions are satisfied:

(i) π|U is sorted;
(ii) Nodes of M induce an acyclic dependency subgraph;
(iii) If k → l is a dependency of π and l ∈ M , then k ∈ M ;
(iv) For any k ∈ M , (k − 1)(k + 1) ≤s π;
(v) For any k ∈ M , (k − 1), (k + 1) ∈ U .

Example 5. Consider permutation π = 1 3 8 10 5 7 2 9 11 4 6 12. Its dependency
graph is shown in Fig. 7. Based only on this graph and using Theorem 2 we
deduce a sorting strategy for π.

9

4

3

11

5

108

2

6
7

12

1

Fig. 7. The dependency graph associated to π = 13 8 10 5 7 2 9 11 4 6 12

It follows from Theorem 2(ii) that 7, 11 ∈ U . Then it follows from Theo-
rem 2(iii) that 3 ∈ U and from Theorem 2(v) that 1, 12 ∈ U . Since 1, 3 ∈ U , it
follows from Theorem 2(i) that 2 ∈ M . Also, since 3, 7, 11 ∈ U , it follows from
Theorem 2(i) that 4, 6, 8, 10 ∈ M and so, by Theorem 2(v), 5, 9 ∈ U . We have
now a complete labelling of Gπ :

M = {2, 4, 6, 8, 10}, U = {1, 3, 5, 7, 9, 11, 12}

Permutation π may be sorted now by a composition of operations sdi with
i ∈ M .

The dependency graph imposes the following order of operations: sd4 after
sd8 and sd10, sd8 after sd2. The other operations can be applied in any order.
For instance, we can sort π in the following way:

(sd4 ◦ sd8 ◦ sd2 ◦ sd10 ◦ sd6)(π) = 1 2 3 4 5 6 7 8 9 10 11 12,

but also,

(sd6 ◦ sd4 ◦ sd8 ◦ sd2 ◦ sd10)(π) == 1 2 3 4 5 6 7 8 9 10 11 12.

106 T. Harju et al.

7 {Sd, Sh}-Sortable Permutations

We characterize in this section all signed permutations that can be sorted using
our operations. First we give some examples.

Example 6. (i) Signed permutations π1 = 2 1 4 35 and π2 = 1 5 24 3 6 are not
{Sd, Sh}-sortable. Indeed, just sh3 can be applied to π1, but it does not sort
it, and no operation can be applied to π2.

(ii) Signed permutations π3 = 9 2 1011 1 5 3 7 46 8 and π4 = 5 4 38 2 1 9 7 6 are
{Sd, Sh}-sortable:

(sh11 ◦ sh10 ◦ sd2 ◦ sd5 ◦ sh4 ◦ sd7)(π3) = 9 10 11 1 2 3 4 5 6 7 8

and
(sh4 ◦ sh2 ◦ sh3 ◦ sh3 ◦ sd8 ◦ sh6)(π4) = 5 4 3 2 1 9 8 7 6.

Theorem 3. No permutation π can be sorted both to an orthodox permutation
and to an inverted one.

The following result gives a duality property of sorting signed permutations.

Lemma 3. A signed permutation π is sortable to an orthodox permutation πo

if and only if its inversion π is sortable to the inverted permutation πo.

The following result is an immediate consequence of Theorem 3 and of Lemma 3.

Corollary 1. A permutation π is sortable if and only if either π or π is sortable
to an orthodox permutation.

Consider in the following only permutations π that are sortable to an orthodox
form. Let H be the set of all signed letters in π and let ΦH be a composition of
sh-operations applied on all integers in H . Let D ⊆ {1, 2, . . . , n} \ H and ΦD a
composition of sd-operations applied on all integers in D. The dependency graph
Γπ,ΦH ,ΦD (or just ΓΦH ,ΦD when there is no risk of confusion) generated by ΦH ,
ΦD is the following:

– If j ∈ D (sdj is in ΦD) and (j−1)i(j+1) ≤s ‖π‖, then edge (‖i‖, j) ∈ ΓΦH ,ΦD .
Also, if (j − 1) ∈ H , then edge (j − 1, j) ∈ ΓΦH ,ΦD and if j + 1 ∈ H , then
edge (j + 1, j) ∈ ΓΦH ,ΦD .

– If i ∈ H (shi is in ΦH), then we have the following two cases:
– If shi is of the form (i − 1)i → (i − 1)i, then (i − 1)i ≤s ‖π‖. For any j,

if (i − 1)ji ≤s ‖π‖, then (‖j‖, i) ∈ ΓΦH ,ΦD ;
– If shi is of the form i(i + 1) → i(i + 1), then i(i + 1) ≤s ‖π‖. For any j,

if ij(i + 1) ≤s ‖π‖, then (‖j‖, i) ∈ ΓΦH ,ΦD .

Example 7. Consider π = 6 8 10 1 9 37 4 2 5. Clearly, H = {3, 5}. Assume we
apply Sd operations on 2, 7 and 9, thus D = {2, 7, 9}. Let us build the dependency
graph G = Γπ,ΦH ,ΦD , shown in Fig. 8.

We mark by dashed the nodes in H , by white the nodes in D and we mark by
black the rest of vertices. For each vertex i fromG we have the following edges (j, i):

Simple Operations for Gene Assembly 107

– Node 1: we do not have edges (j, 1), since 1 /∈ H and 1 /∈ D;
– Node 2: 2 ∈ D, 3 ∈ H , thus (3, 2) ∈ G. Since 1 9 3 ≤s π, we have also

(9, 2) ∈ G;
– Node 3: 3 ∈ H , 3 7 4 ≤s ‖π‖, thus (7, 3) ∈ G;
– Node 4: 4 /∈ H and 4 /∈ D, thus we have no edges (j, 4);
– Node 5: 5 ∈ H and 4 2 5 ≤s ‖π‖, thus (2, 5) ∈ G;
– Node 6: 6 /∈ H and 6 /∈ D, thus we have no edges (j, 6);
– Node 7: 7 ∈ D, 6 8 ≤ π, thus we have no edges (j, 7);
– Node 8: 8 /∈ H and 8 /∈ D, thus we have no edges (j, 8);
– Node 9: 9 ∈ D, 8 10 ≤ π, thus we have no edges (j, 9);
– Node 10: 10 /∈ H and 10 /∈ D, thus we have no edges (j, 10).

7

����
����
����
����
����
����

����
����
����
����
����
����

3

9 2

1

4

6

8

10

���
���
���
���
���
���

���
���
���
���
���
���

5

Fig. 8. The dependency graph associated to π = 68 10 1 9 3 7 4 2 5

Lemma 4. Let π be an Sh ∪Sd-sortable permutation over Σn and Φ a sorting
strategy for π. Let ΓΦ be the dependency graph associated to π and Φ. Let φi = sdi

if i is unsigned in π and φi = shi if i is signed in π, for i ∈ Σn. Then we have
the following properties:

(i) If there is a path from i to j in ΓΦ and Φj is used in Φ, then φi is applied
before φj in strategy Φ.

(ii) The dependency graph ΓΦ is acyclic.

The following theorem gives the main result of this section.

Theorem 4. A permutation π is {Sh, Sd}-sortable to an orthodox form if and
only if there is a partition {1, 2, . . . , n} = D ∪ H ∪ U such that the following
conditions are satisfied:

(i) H is the set of all signed letters in π;
(ii) H sorts π |H∪U to an orthodox form with a strategy ΦH ;
(iii) D sorts ‖π‖ with a strategy ΦD;
(iv) The subgraph of ΓΦH ,ΦD induced by H ∪ D is acyclic.

108 T. Harju et al.

����
����
����
����
����
����
����

����
����
����
����
����
����
����

5

16

���
���
���
���
���
���
���

���
���
���
���
���
���
���

2

4 3

Fig. 9. The dependency graph associated to π = 24 3 5 6 1

Example 8. Let π = 2 4 3 56 1. We build a sorting strategy for π based on The-
orem 4. Consider H = {2, 5}. Clearly, ‖π‖ = 2 4 3 5 6 1 is sorted by applying sd4.
Then let D = {4} and U = {1, 3, 6}. We verify now conditions of Theorem 4.
Consider π |H∪U= 235 6 1. Then sh2(sh5(π |H∪U)) = 2 3 5 6 1, a (circularly)
sorted string. The graph Γsh2 ◦ sh5,sd4 is shown in Fig. 9, where nodes in H are
marked by dashed, nodes in D are marked by white and nodes in U are marked
by black. Clearly, H ∪ D induces an acyclic subgraph in Γsh2 ◦ sh5,sd4 . Thus, by
Theorem 4, π is sortable and a sorting strategy should be obtained by combining
sh2 ◦ sh5 and sd4 as indicated by the graph. Since (4, 2) is an edge in the graph,
it follows that sd4 must be applied before sh2. Also, since (5, 4) is an edge, it
follows that sh5 must be applied before sd4. Consequently, sh2 ◦ sd4 ◦ sh5 must
be a sorting strategy for π. Indeed, sh2(sd4(sh5(π))) = 2 3 4 5 6 1, a (circularly)
sorted permutation.

Example 9. Let π = 2 1 4 3 7 59 6 8 1011. We build a sorting strategy for π
based on Theorem 4. Clearly, H = {5, 10}. The unsigned permutation ‖π‖ =
2 1 4 3 7 5 9 6 8 10 11 can be sorted by sd2 ◦ sd4 ◦ sd9 ◦ sd7, thus D = {2, 4, 7, 9}.
Set U = {1, 3, 6, 8, 11}. The dependency graph G associated to π and H ∪ U is
shown in Fig. 10. Clearly, permutation π|H∪U = 1 3 56 8 1011 can be sorted to
cyclically sorted permutation 1 3 5 6 8 10 11 by applying sh5 and sh10. Also, H∪D

2

1

4

7

���
���
���
���
���

���
���
���
���
���

5

9

8

3

6

���
���
���
���
���
���

���
���
���
���
���
���

10

11

Fig. 10. The dependency graph associated to π = 21 4 3 7 5 9 6 8 10 11

Simple Operations for Gene Assembly 109

induces an acyclic subgraph in G. It follows then that π is sortable. Indeed, a
sorting strategy, as suggested by G, is sd2 ◦ sd4 ◦ sd7 ◦ sh5 ◦ sd9 ◦ sh10. Another
sorting strategy is sd2 ◦ sd4 ◦ sh5 ◦ sd9 ◦ sd7 ◦ sh10.

8 Discussion

We consider in this paper a mathematical model for the so called simple op-
erations for gene assembly in ciliates. The model we consider here is in terms
of signed permutations, but the model can also be expressed in terms of signed
double-occurrence strings, see [14].

Modelling in terms of signed permutations is possible by ignoring the molecu-
lar operation Ld that combines two consecutive gene blocks into a bigger block. In
this way, the process of combining the sequence of successive coding blocks into
one assembled gene becomes the process of sorting the initial sequence of blocks.

It is important to note now that in the molecular model we discus in this
paper, each operation affects one single gene block that gets incorporated into a
bigger block together with one (in case of Sh) or two (in case of Sd) other blocks.
In our mathematical model however, a gene block that was already assembled
from several initial blocks is represented as a sorted substring. For that reason,
although the molecular operations only displace one block, our model should
allow the moving of longer sorted substrings. A mathematical theory in this
sense looks challenging. We consider in this paper the simplified variant where
our formal operations can only move one block (one letter of the alphabet) at a
time. Note however that the general case may in fact be reduced to this simpler
variant in the following way: in each step of the sorting, we map our alphabet
into a smaller one by denoting each sorted substring by a single letter such that
the new string has no sorted substrings of length at least two (this mimics of
course the molecular operation Ld).

Deciding whether a given permutation is Sh ∪Sd-sortable is of course trivial:
simply test all possible sorting strategies. The problem of doing this efficiently,
perhaps based on Theorems 2 and 4 remains open.

Acknowledgments. The authors were supported by the European Union
project MolCoNet, IST-2001-32008. T. Harju gratefully acknowledges support
by Academy of Finland, project 39802. I. Petre gratefully acknowledges sup-
port by Academy of Finland, projects 203667 and 108421, V. Rogojin gratefully
acknowledges support by Academy of Finland, project 203667. G. Rozenberg
gratefully acknowledges support by NSF grant 0121422.

References

1. Berman, P., and Hannenhalli, S., Fast sorting by reversals. Combinatorial Pattern
Matching, Lecture Notes in Comput. Sci. 1072 (1996) 168–185.

2. Caprara, A., Sorting by reversals is difficult. In S. Istrail, P. Pevzner and M. Wa-
terman (eds.) Proceedings of the 1st Annual International Conference on Compu-
tational Molecular Biology (1997) pp. 75–83.

110 T. Harju et al.

3. Ehrenfeucht, A., Harju, T., Petre, I., Prescott, D. M., and Rozenberg, G., Formal
systems for gene assembly in ciliates. Theoret. Comput. Sci. 292 (2003) 199–219.

4. Ehrenfeucht, A., Harju, T., Petre, I., and Rozenberg, G., Characterizing the mi-
cronuclear gene patterns in ciliates. Theory of Comput. Syst. 35 (2002) 501–519.

5. Ehrenfeucht, A., Harju, T., Petre, I., Prescott, D. M., and Rozenberg, G., Compu-
tation in Living Cells: Gene Assembly in Ciliates, Springer (2003).

6. Ehrenfeucht, A., Petre, I., Prescott, D. M., and Rozenberg, G., Universal and simple
operations for gene assembly in ciliates. In: V. Mitrana and C. Martin-Vide (eds.)
Words, Sequences, Languages: Where Computer Science, Biology and Linguistics
Meet, Kluwer Academic, Dortrecht, (2001) pp. 329–342.

7. Ehrenfeucht, A., Petre, I., Prescott, D. M., and Rozenberg, G., String and graph
reduction systems for gene assembly in ciliates. Math. Structures Comput. Sci. 12
(2001) 113–134.

8. Ehrenfeucht, A., Petre, I., Prescott, D. M., and Rozenberg, G., Circularity and
other invariants of gene assembly in cliates. In: M. Ito, Gh. Păun and S. Yu (eds.)
Words, semigroups, and transductions, World Scientific, Singapore, (2001) pp.
81–97.

9. Ehrenfeucht, A., Prescott, D. M., and Rozenberg, G., Computational aspects of
gene (un)scrambling in ciliates. In: L. F. Landweber, E. Winfree (eds.) Evolution
as Computation, Springer, Berlin, Heidelberg, New York (2001) pp. 216–256.

10. Hannenhalli, S., and Pevzner, P. A., Transforming cabbage into turnip (Polynomial
algorithm for sorting signed permutations by reversals). In: Proceedings of the 27th
Annual ACM Symposium on Theory of Computing (1995) pp. 178–189.

11. Harju, T., Petre, I., Li, C. and Rozenberg, G., Parallelism in gene assembly. In:
Proceedings of DNA-based computers 10, Springer, to appear, 2005.

12. Harju, T., Petre, I., and Rozenberg, G., Gene assembly in ciliates: molecular oper-
ations. In: G.Paun, G. Rozenberg, A.Salomaa (Eds.) Current Trends in Theoretical
Computer Science, (2004).

13. Harju, T., Petre, I., and Rozenberg, G., Gene assembly in ciliates: formal frame-
works. In: G.Paun, G. Rozenberg, A.Salomaa (Eds.) Current Trends in Theoretical
Computer Science, (2004).

14. Harju, T., Petre, I., and Rozenberg, G., Modelling simple operations for
gene assembly, submitted, (2005). Also as a TUCS technical report TR697,
http://www.tucs.fi.

15. Jahn, C. L., and Klobutcher, L. A., Genome remodeilng in ciliated protozoa. Ann.
Rev. Microbiol. 56 (2000), 489–520.

16. Kaplan, H., Shamir, R., and Tarjan, R. E., A faster and simpler algorithm for
sorting signed permutations by reversals. SIAM J. Comput. 29 (1999) 880–892.

17. Kari, L., and Landweber, L. F., Computational power of gene rearrangement. In:
E. Winfree and D. K. Gifford (eds.) Proceedings of DNA Bases Computers, V
American Mathematical Society (1999) pp. 207–216.

18. Landweber, L. F., and Kari, L., The evolution of cellular computing: Nature’s
solution to a computational problem. In: Proceedings of the 4th DIMACS Meeting
on DNA-Based Computers, Philadelphia, PA (1998) pp. 3–15.

19. Landweber, L. F., and Kari, L., Universal molecular computation in ciliates. In:
L. F. Landweber and E. Winfree (eds.) Evolution as Computation, Springer, Berlin
Heidelberg New York (2002).

20. Prescott, D. M., Cells: Principles of Molecular Structure and Function, Jones and
Barlett, Boston (1988).

21. Prescott, D. M., Cutting, splicing, reordering, and elimination of DNA sequences
in hypotrichous ciliates. BioEssays 14 (1992) 317–324.

Simple Operations for Gene Assembly 111

22. Prescott, D. M., The unusual organization and processing of genomic DNA in
hypotrichous ciliates. Trends in Genet. 8 (1992) 439–445.

23. Prescott, D. M., The DNA of ciliated protozoa. Microbiol. Rev. 58(2) (1994)
233–267.

24. Prescott, D. M., The evolutionary scrambling and developmental unscabling of
germlike genes in hypotrichous ciliates. Nucl. Acids Res. 27 (1999), 1243 – 1250.

25. Prescott, D. M., Genome gymnastics: unique modes of DNA evolution and pro-
cessing in ciliates. Nat. Rev. Genet. 1(3) (2000) 191–198.

26. Prescott, D. M., and DuBois, M., Internal eliminated segments (IESs) of Oxytrichi-
dae. J. Eukariot. Microbiol. 43 (1996) 432–441.

27. Prescott, D. M., Ehrenfeucht, A., and Rozenberg, G., Molecular operations
for DNA processing in hypotrichous ciliates. Europ. J. Protistology 37 (2001)
241–260.

28. Prescott, D. M., and Rozenberg, G., How ciliates manipulate their own DNA – A
splendid example of natural computing. Natural Computing 1 (2002) 165–183.

29. Prescott, D. M., and Rozenberg, G., Encrypted genes and their reassembly in
ciliates. In: M. Amos (ed.) Cellular Computing, Oxford University Press, Oxford
(2003).

	Introduction
	Mathematical Preliminaries
	The Intramolecular Model
	Simple Operations

	Gene Assembly as a Sorting of Signed Permutations
	Sh-Sortable Permutations
	Sd-Sortable Permutations
	The Dependency Graph
	The Characterization

	{Sd, Sh}-Sortable Permutations
	Discussion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

