
Sensitivity and Capacity of Microarray
Encodings

Max H. Garzon, Vinhthuy Phan,
Kiran C. Bobba, and Raghuver Kontham

Computer Science, The University of Memphis,
Memphis, TN 38152-3240, USA

{mgarzon, vphan, kbobba, rkontham}@memphis.edu

Abstract. Encoding and processing information in DNA-, RNA- and
other biomolecule-based devices is an important topic in DNA-based
computing with potentially important applications to fields such as
bioinformatics, and, conceivably, microbiology and genetics. New
methods to encode large data sets compactly on DNA chips has been
recently proposed in (Garzon & Deaton, 2004) [18]. The method
consists of shredding the data into short oligonucleotides and pouring
it over a DNA chip with spots populated by copies of a basis set of
noncrosshybridizing strands. In this paper, we provide an analysis of the
sensitivity, robustness, and capacity of the encodings. First, we provide
preliminary experimental evidence of the degree of variability of the
representation and show that it can be made robust despite reaction
conditions and the uncertainty of the hybridization chemistry in vitro.
Based on these simulations, we provide an empirical estimate of the
capacity of the representation to store information. Second, we present
a new theoretical model to analyze and estimate the sensitivity and
capacity of a given DNA chip for information discrimination. Finally,
we briefly discuss some potential applications, such as genomic analysis,
classification problems, and data mining of massive amounts of data
in abiotic form without the onerous cost of massive synthesis of DNA
strands.

Keywords: Data representation, Gibbs energy, h-distance, fault-tolerant
computing, DNA chips, microarrays, genomic analysis, data mining, clas-
sification and discrimination.

1 Introduction

Biomolecular computing (BMC) was originally motivated by computational and
engineering purposes. This endeavour would not be possible without some type of
representation of data and information, directly or indirectly, onto biomolecules,
both as input and as output in a computation. Virtually every application of
DNA computing maps data to appropriate sequences to achieve intended reac-
tions, reaction products, and yields. DNA molecules usually process information
by intramolecular and (more often) intermolecular reactions, usually hybridiza-
tion in DNA-based computing. The problem of data and information encoding
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on DNA bears an increasing interest for both biological and non-biological ap-
plications.

Most of prior work in this area has been restricted to the so-called word design
problem, or even the encoding problem (Garzon et al., 1997) [10]. In this paper,
however, we address a fairly distinct issue, herein called the representation prob-
lem. The problem is to find a systematic (i.e., application independent) procedure
to map both symbolic (abiotic) and nonsymbolic (e.g., biological) information
onto biomolecules for massively parallel processing in wet test tubes for real
world problems. Mapping of non-biological information for processing in vitro is
an enormous challenge. Even the easier direct readout problem, i.e., converting
genomic data into electronic form for conventional analysis, is an expensive and
time-consuming process in bioinformatics (Mount, 2001) [19]. Moreover, the re-
sults of these analyses are usually only available in manual form that cannot be
directly applied to feedback on the carriers of genomic information.

Three properties are deemed critical for eventual success of a mapping algo-
rithm/protocol. It must be (Blain and Garzon, 2004)[3]:

– Universal
Any kind of symbolic data/pattern can be mapped, in principle, to DNA.
Otherwise the mapping will restrict the kind of information mapped, and the
processing capabilities in DNA form may be too peculiar or too constrained
to be useful in arbitrary applications.

– Scalable
Mapping can only be justified in massive quantities that cannot be processed
by conventional means. Therefore it must be scalable to the tera-bytes and
higher orders it will eventually encounter. Currently, no cost-effective tech-
niques exist for transferring these volumes by manual addition and extraction
of patterns one by one. Ordinary symbolwise transductions require manu-
ally manufacturing the corresponding DNA strands, an impossible task with
current technology.

– Automatic and high-speed
Manual mapping (e.g., by synthesis of individual strands) is also very costly
timewise. An effective strategy must be automatable (from and back to the
user) and eventually orders of magnitude faster than processing of the data
in silico.

The purpose of this paper is to provide an analysis of a new approach recently
proposed to represent data (Garzon & Deaton, 2004)[18, 8] that is readily imple-
mentable in practice on the well developed technology of DNA chips (Steckel,
2003) [21]. The method has the potential to represent in appropriately chosen
DNA olignucleotides massive amounts of arbitrary data in the order of tera- and
peta-byte scales for efficient and biotechnologically feasible processing. Direct
encoding into DNA strands (Garzon et al., 2003d) [18], (Baum, 1995) [1] is not
a very efficient method for storage or processing of such massive amounts of data
not already given in DNA form because of the enormous implicit cost of DNA
synthesis to produce the encoding sequences, even if their composition were avail-
able. The more indirect, but more efficient, approach is reviewed in Section 2,
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assuming the existence of a large basis of noncrosshybridizing DNA molecules,
as provided by good codeword sets recently obtained through several sources
(Deaton et al., 2002a; Garzon et Al, 2003) [7, 2]. The method appears at first
sight to be plagued by the uncertainty and fuzzyness inherent in the reactions
among biomolecular ensembles. In Section 2.2, we establish that these concerns
are not justified by establishing, somewhat surprisingly, that it is possible to
factor out noise and map symbolic data in a very “linear” fashion with respect
to the properties of concatenation and set multiplicity on the symbolic side, and
hybridization and amplification on the biochemical side. We further provide a
preliminary experimental assessment of the sensitivity of the representation for
problems such as recognition, discrimination, and classification. In Section 3, we
also provide a theoretical analysis of the sensitivity and potential capacity of
the method. Finally, in Section 4 we briefly discuss some advantages and po-
tential applications, such as genomic analysis, classification problems, and data
mining of massive amounts of data in abiotic form, as well as some problematic
issues that require further study for wide implementation and application of the
method.

2 Encoding Data and Information in DNA Spaces

The obvious method to encode data on DNA, namely a one-one mapping of al-
phabet symbols (e.g., bits) or words (e.g., bytes or English words in a dictionary)
to DNA fragments could possibly be used to encode symbolic data (strings) in
DNA single strands. Longer texts can be mapped homomorphically by ligation
of these segments to represent larger concatenations of symbolic text. A funda-
mental problem with this approach is that abiotic data would appear to require
massive synthesis of DNA strands of the order of the amount of data to be en-
coded. Current lab methods may produce massive amounts of DNA copies of
the same species, but not of too many diverse species selected and assembled
in very specific structures such as English sentences in a corpus of data (e.g., a
textbook), or records in a large data warehouse. Even if the requisite number of
species were available, the mapping between the data and the DNA strands is
hard to establish and maintain, as the species get transformed by the reactions
they must get involved in and they must be translated back to humanly usable
expression.

An alternative more effective representation using recently available large sets
of noncrohybridizying oligonucleotides obtainable in vitro (Chen et. al., 2005;
Bi et. al, 2003) [4, 2] has been suggested in (Garzon and Deaton, 2004) [18]. We
repeat next the basic definitions to make this paper self-contained. This method
can be regarded as a new implementation of the idea in (Head et al., 1999; 2001)
[16, 15] of aqueous computing for writing on DNA molecules, although through a
simpler set of operations (only hybridization.) Since binary strings can be easily
mapped to a four letter alphabet, we will simply assume that the data are given
in DNA form over {a, c, g, t}. Representations using sets with crosshybridization
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present are usually ambiguous and cannot be reliably used. More details on this
point can be can be found in (Garzon and Deaton, 2004) [17, 18].

2.1 Representation Using a Non-crosshybridizing Basis

Let B be a set of DNA molecules (the encoding basis, or “stations” in Head’s
terminology (Head et al., 1999) [15], here not necessarily bi-stable), which is
assumed to be finite and noncrosshybridizying according to some model of hy-
bridization, denoted |∗, ∗| (for example, the Gibbs energy, or the h-distance in
(Garzon et al, 1997) [10, 9]). We will also assume that we are provided some
parameter coding for the stringency of reaction conditions τ (for example, a
threshold on the Gibbs energy or the h-distance) under which hybridization will
take place. For simplicity, it is further assumed that the length of the strands
in B is a fixed integer n, and that B contains no hairpins. For example, if the
h-distance is the hybridization criterion and τ = 0, two strands x, y can only
hybridize if they are perfectly complementary (i.e., h(x, y) ≤ 0), so a maximal
such set B can be obtained by selecting one strand from every (non-palindromic)
pair of Watson-Crick complementary strands; but if, on the othr hand, τ = n,
the mildest hybridization condition, any two strands can hybridize, so a maxi-
mal set B consists of only one strand of length n, to which every other strand
may hybridize without further restrictions. Let m = |B| be the cardinality of B.
The basis strands will also be referred as probes. For easy visualization, we will
assume in the illustrating examples below that m is a perfect square m = 36
and that the base set of probess has been affixed onto a DNA chip.

Given a string x (ordinarily much longer than the probe length n and even
perhaps the number of probes m), x is said to be h-dependent on B is there is
some concatenation c of elements of B that will hybridize to x under stringency τ ,
i.e., such that |x, c| ≤ τ . Shredding x to the corresponding fragments according
to the components of c in B leads to the following slightly weaker but more
manageable definition. The signature of x with respect to B is a vector X of
dimension m that is obtained as follows. Shredding x to |x|/n fragments of size
n or less, Xi is the number f of fragments of x that are within threshold τ from
a strand i in B, i.e., such that |f, i| < τ . The value Xi will thus be referred to
as a pixel at probe spot i. The input strands x will also be referred as targets.

The only difference between a DNA-memory device and a DNA microarray is
that the spots on the microarray consist of carefully chosen non-crosshybridizing
DNA basis oligonucleotides rather than entire genes. Signatures can, however, be
just as easily easily implemented in practice using currently available microarray
technology.

For practical applications, a number of questions arise about this representa-
tion. First, the vector X may appear not to be well-defined, since it is clear that
its expression depends on the various ways to find matching segments c in the
input target x, the basis strands, and their concentrations. To start with, the
number r of strands per spot, here called the resolution, can be varied at will and
so change the intensity of each pixel and the resolution ability of the represen-
tation to distiguish various inputs. To avoid some of these techincal difficulties,
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we will assume a relatively low resolution (r = 6 in the experiments below and
r = 1 in the theoretical analysis of capacity.) On DNA chips, this resolution
can be as high as the concentration (number of strands) of the basis strands (in
solution), or as large as the number of strands per spot (on a chip.) More seri-
ously, however, is the inherent uncertainty in hybridization reactions that make
a signature dependent on the specific reaction conditions used in an experiment
to “compute” it. From previous results in (Garzon and Deaton, 2004) [18], it is
known that this problem disappears if a noncrosshybridizing set of high quality
is used for the basis set. Experimentally, the signal to noise-ratio (precisely de-
fined below) in the signature (given by the pixelwise ratio of signature signal to
standard deviation of the same variable over all runs of the experiment) appears
to be maximum. The hybridization likelihood between any pair of strands in a
noncrosshybridizing set is minimized or even eliminated (by setting an appro-
priate stringency condition τ), regardless of the strands involved, the essential
reason being that a given fragment will can then only hybridize to at most one
probe. By assuming that either the test tube is small or that the reaction time
is long enough that all possible hybridizations are exhausted within the experi-
ment’s time regardless of “kinetic bottlenecks”, the basic problem thus becomes
that of determining the set of possible signatures one may obtain by shredding
the input in different ways, or even by using on different basis set.

In order to shed light on these questions, we performed a series of experi-
ments with six target plasmids (described below) and three basis sets of differ-
ent noncrosshybridizing qualities. The first set, H40, was obtained by randomly
generating 40−mers and filtering out strands that whose h-distance is less than
a given threshold (τ = 19% of the shorter strands.) The second set, Ark, was
obtained bottom up, by concatenating pairs of 20−mers randomly chosen from
a set of 20−mers obtained by similar filtering and adding the resultant strand
to the current membes of the set if its h-distance is greater than or equal to τ .
The original set of 20−mers was obtained by using a more sophisticated genetic
algorithm search using a Gibbs energy model (Deaton et al., 2002) [6] as fitness
function. The third set, Hyb, was obtained by concatenating 40−mers from H40
and 20−mers from Ark and again adding the resultant strand to the set if its
h-distance is greater than or equal to threshold h-distance (τ = 29.) The non-
crosshybridizing quality of these sets is high, as measured by the pairwise Gibbs
energy of strands in the sets shown in Fig. 1.

Once the basis set and the reactions conditions have been optimized, the most
important question remains, i.e., how unique is the signature for a given target
x? To gain some insights into this question, six(6) large plasmids of lengths
varying between 2.9K and 3.2K bps were chosen for targets and shredded into
fragments of size 35 bps or less. Regarding the protocols as a stochastic process,
experiments were conducted in simulation to obtain their signatures on a basis
B as described above. Each experiment was run 10 times in a tested simulation
environment, Edna (Garzon and Blain, 2004) [17] and (Garzon and Rose, 2004)
[13]. As expected, we obtained a range of different signatures on different runs.
Therefore, to make this concept precise, it is necessary to re-define a signature
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Fig. 1. Noncrosshybridization quality of a selection of three basis sets H40 (left col-
umn), Ark (middle column), and Hyb (right column) measured by the combinato-
rial h-distance (Garzon et al, 1997) [10] (the top row), and, the Gibbs energy model
of (Deaton et al., 2002) [6] (bottom row). Their quality is high since lighter colors
represent pairs far apart in hybridization distance or Gibbs energy (which is shown
normalized to a comparable scale), i.e. lower hybridization affinity.

as a sphere in a high-dimensional euclidean space of dimension m (the number of
spots on the microarray, i..e, number of noncrosshybridizng strands in the basis
set.) The center of this sphere (below called the ideal point signature) is the
componentwise average in mD-euclidean space of the outcomes of all possible
point signatures obtained in running an experiment to find the signature. The
radius of the sphere will be some measure of the variability of the all possible
point signatures obtained in a given set of conditions. Here we use the average
euclidean distance (i.e., the L2-average) of all possible point signatures to the
ideal signature.

With this definition of a signature as a sphere in mD-Euclidean space of
radius given by the average distance from the ideal point signature, the problem
of translating arbitrary data is resolved. We will refer to this sphere as the volume
signature to distinguish it from the point signatures in the original definition.
Examples can be seen in Fig. 5 (left). Fixing a basis set B, every target x
determines a unique (volume) signature.

2.2 Sensitivity and Robustness of the DNA-Chip Representation

The critical question now about the signature of a given target x is the amount
of information it contains, particularly to what extent it determines the target
x uniquely, or, at least, whether it can distinguish it from other input targets.
In this section we address these questions.

How much information about the target x does its volume signature provide?
A comparison can be made using the so-called chipwise SNR (Signal-to-Noise
Ratio) defined as follows. For each pixel Xi, SNRi defined as the ratio of the
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Fig. 2. Signal to Noise ratios (SNR) in six experiments with plasmids genomes over
three sets H40 (top left), Ark (top right), Hyb (bottom) of various noncrosshybridiza-
tion qualities

pixel’s average value divided by the standard deviation of the same random
variable Xi. The SNR of the target x (with respect to a given basis) is given
by ratio of the L2-average of the pixelwise signals divided by the L2-average of
pixelwise standard deviations. Fig. 2 shows the chipwise SNR comparison for all
plasmids used in the experiments. The SNRs for the chosen plasmids are shown
in Fig. 2. Some of them can be clearly distinguishable even if we just look at
their SNRs alone, although it is too raw an average to expect full distinction
among all plasmids. Nonetheless, the SNR gives a sense of the sensitivity of this
representation.

There are other factors determining the radius of a volume signature that
impact the variability of the representation. It is clear that slicing the input x into
different fragments might change its volume radically, and that, conversely, re-
assembling the fragments in a different order may yields the same representation
for a different input x′. How much does the representation depend on the lengths
of the shredding x into pieces? The results described next provide an intuition
on how Euclidean spheres radii change in representation signatures across a
range of plasmid sizes (2.9K to 3.2K). Again, all experiments for sensitivity
were performed ten times. Only results on the H40 probe set are shown below.

Fig. 3 shows the variations in the signature’s radius obtained by varying the
lengths of the the fragments shredding the target x. The radius increased for
smaller fragments (15-25bp) compared to the original fragment size (25-35bp.)
This increase is to be expected because more fragments are availability for hy-
bridization, which results in higher signal and proportionately higher variability.
The higher the standard deviation the bigger the radius of euclidean sphere.
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Fig. 3. Volume signature variability for original fragments of 25 − 35bps (top left);
small fragments of 15 − 25bps (top right); and large fragments of 35 − 45bp (bottom).
Larger fragments yield a crisper signature (smaller radius) while shorter fragments
yield fuzzier signatures (larger radius).

The converse argument can be given to explain the decrease in radius with
large fragments (35-45bp).

Further experiments were performed to determine the sensitivity of the signa-
ture through contamination of targets in several ways. The contamination will
be referred to as “noise.” The noise introduced into original plasmids was of
three types. The results described next provide a quantitative idea of the change
expected in sensitivity of the signatures for plasmid 1. The target plasmid 1 was
varied by introducing three types of noise:

– Substitution: Plasmids fragments are replaced by other random fragments of
equal length;

– Addition: Random fragments were inserted in the plasmid;
– Reduction: Random fragments were removed from the plasmid.

Fig. 4 shows the variations in signatures of the resulting plasmid targets. The
signatures’ radii do not change much with substitution noise regardless of the
amount substituted. However, the radii increased with increase in noise in the
case of added noise and radii decreased with increased reduction noise. This
behavior is similar for small and large fragments. This is additional evidence of
sensitivity of the volume signature to changes in the length of and number of
target fragments.

In order to determine the robustness of the representation, i.e., how much
change must be made to a target for it to produce a different volume signature,
we used the so-called overlap of volume signatures. This measure attempts to
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Fig. 4. Volume signature variability for target basis H40 for noise that has been sub-
stituted (top left), added (top right) or reduced (bottom). Volume signatures are also
sensitive to changes in the length of and number of residues in the probe. However, the
radii vary in proportion to noise. This behavior is similar for small and large fragments.

Fig. 5. The ideal representation of plasmid 1 (left). The overlap between two represen-
tations (spheres) is the excess (or defect) of the distance between ideal representations
and the sum of the radii of the individual signatures. If the overlap is positive, the
volume signatures do not intersect (middle), while they will if the overlap is negative
(right).

capture the displacement in the ideal representation from its original parent
with various types of noise, as shown in Fig. 5. Overlap is the difference between
the distance between ideal representation and the sum of the average radii of
their volume signatures. Fig. 6 shows the euclidean distances traveled from the
ideal signature by variation of plasmid 1. Increasing substitution noise smoothly
shifts the ideal signature but maintains overlap up to 60%. Only at 70% does
the volume signature become nearly disjoint. With added noise, the threshold
for the same phenomenon is about 90% noise, and with reduced noise it is about
60% noise. An overlap distance of −1 can be considered enough for two spheres
to separate. So, it can be concluded that representations are sensitive to noise
from Fig. 6 as the distance to original ones increase with increase in noise.
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Fig. 6. Volume signatures are robust. It requires 70% for substitution noise (top left)
and reduction noise (bottom) for a probe to become closer to others away from itself,
while it remains closest to the original even with 90% added (top right) straneous
fragments.

Fig. 7. Overlaps of volume signatures of noisy variations of plasmid 1 to its original
volume signature. Substitution noise of 70% (top left) is required for the volume sig-
nature to become nearly disjoint. With added noise (top right), the threshold for the
same phenomenon is about 90% noise. With reduced noise (bottom), the threshold it is
about 60% noise. An overlap distance of −1 can be considered enough for two spheres
to separate. Thus, representations are fairly insensitive to a small amounts of noise,
while remaining sensitive to larger changes.

Fig. 7 shows a further analysis of the same experiment by considering the
distances of the noisy plasmid 1 to the ideal signature of all six plasmids. The
most interesting threshold is the amount of noise required for varying plasmid 1
to become closer to another plasmid than to its original. That number is 70% for
substitution noise and reduction noise, but the noisy plasmids remain closest to
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the original even under 90% added straneous fragments. This is is a remarkable
robustness.

3 Theoretical Analysis of Sensitivity and Capacity of
DNA-Based Chips

We now provide an abstraction of the concept of a signature in order to provide
a theoretical model to estimate the capacity of DNA chips under optimal con-
ditions. First, due to the fact that, under realistic conditions, it is infeasible to
expose very long uncut copies of an input sequence to the chip, we assumed in
the definition of signature that the targets are shredded by restriction enzymes
into manageable fragments before they are exposed to the chip. To simplify the
analysis in the theoretical model, however, we will assume that no shredding of
targets will be carried out.

To justify this assumption, we observe that we can disregard all basis strands
that are Watson-Crick complementary to the cleaving restriction sites used for
shredding since hybridizations of targets to basis strands in the vicinity of the
restriction sites will not be happen. Therefore, we can eliminate shredding if
we guarantee that the basis set contains no restriction site used by shredding
enzymes and still get an identical signature for the same target. Second, we
will assume that basis strands float freely in solution instead of being affixed
to a chip, which is justified given the nonhybridization property of the basis
set. Third, we will also assume that a fixed concentration of basis strand and
targets is placed in the tube. Thus, target strands are exposed, in principle, to
hybridization of all basis strands at many places, and, consequently, many copies
of the same basis strand may hybridize to several parts of the input sequence.
Thus, even though target sequences can be arbitrarily long, there can only be
a bounded number of point signatures, and so different targets may yield the
same point signature. Under these assumptions, the volume signature produced
by an uncut input target is essentially the same as the one produced by the the
original definition above.

In this model, the chip capacity (i.e., the number of distinguishable target
signatures) becomes a function of σ, i.e., the total number of copies of all basis
strands that hybridize to a target.. Realistically, when σ varies slightly, so does
its capacity. Given a set B = {i1, i2, · · · , ik} of basis strands and a target sequence
X , its signature is xB = (x1, x2, · · · , xm), where xi is the number of times basis
oligo i hybridizes to (different parts) of X . Under these conditions, input targets
X and Y are indistinguishable if and only if xB = yB, i.e. xi = yi, for all
1 ≤ i ≤ m.

The basis B used to create a DNA chip relates to the capacity of the chip
in interesting ways. We observed that the arguments in (Phan & Garzon, 2004)
[20] show that the memory capacity of the noncrosshybridizing basis B is large
if (a) its oligo distribution as substrings of the input sequences is as far from
uniform as possible; and, (b) they cover the input targets as much as possible.
Specifically, we found that
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Proposition 1. The probability of two different input sequences being indistin-
guishable from each other is

P (XB = YB|X �= Y ) =

(
σ

x1,x2,···,xk

)

kσ
≤ 2σH(P )

kσ
=

1
2σ(log2 k−H(P )) (1)

where
∑k

i=1 xi =
∑k

i=1 yi = σ, and H(P ) = −xi

σ

∑k
i=1

xi

σ , the Shannon entropy
of the distribution of B in X (and Y ).

In other words, the capacity of the chip based on B is small if one of two
conditions are true:
(1) σ is small, or (2) the distribution of the bases as substrings of the inputs
sequences approaches random (i.e. H(P ) approaches log2 k). When B covers the
input sequences completely, every substring of an input of the same length as
the |si|′s hybridizes to one of the bases, and consequently σ ≈ |X|

|i| , where |i|
is the length of basis oligo i. Conversely, when B covers the input sequences
sparsely, σ � |X|

|i| and the probability of two different input sequences being
indistinguishable increases.

Using these arguments, we can also provide a theoretical estimate of the
capacity of the DNA chip for volume signatures as defined above. The limit of
a DNA chip’s capacity is the number of distinguishable signatures that the chip
can possibly produce. Since the total number of occurrences of each basis strand
(xi’s) in X adds up to σ, we have the following conditions:

∀i, (xi ≥ 0), and x1 + x2 + · · · + xk = σ (2)

Using an elementary combinatorial argument, we can show that

Proposition 2. The optimal capacity a DNA chip is
(
σ+m−1

m−1

)
, if defined as the

maximum number of distinguishable point signatures.

As mentioned above, it is not the case that exposing an input target a number
of times will get an identical signature each time. In the current mode, where
the chip is not affixed but in solution, this sensitivity to distinguish input is
decreased. because the signatures of different but similar input sequences are
likely indistinguishable. The sensivity of the chip can be collectively captured
by two parameters r and rσ, regardless of the sources of noise. The capacity
of the chip is estimated indirectly via the size of a maximal set, called C, in
signature space. This set C can be thought of as a maximal collection of centers
of non-intersecting spheres with a fixed radius r. Hence, the sphere of radius
r specifically captures the uncertainty of telling signatures of similar sequences
apart; sequences whose signatures are within a radius r are not distinguishable.
The other parameter, rσ captures the fact that due to noise or other factors,
even when the bases cover well input sequences, the number of basis strands
hybridized to these inputs may not always be exactly σ. Hence, we assume that
the total number of basis strands hybridized to the input sequences vary from
σ − rσ to σ + rσ. On these considerations, we have established the following
estimate, where the set V consists of the signatures of all input targets that the
chip could distinguish under the sensitivity parameter r.
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Theorem 1. The maximal set C of signatures that are distinguishable on a
DNA-based (m, σ, r)-chip is of size |C| bounded by

|V |
v(2r + 1)

≤ |C| ≤ |V |
v(r)

(3)

A full proof is omitted. Briefly, these bounds are obtained by determining the
upper and lower bounds of a maximal code, in a similar fashion as the Hamming
and Gilbert-Varshamov bounds, respectively. Intuitively, the input sequences in
V include those whose signatures fall inside the hyperplane in equation 2 and
those input sequences whose signatures fall within a distance r of the hyperplane.

Lemma 1

|V | =
(

σ + m − 1
m − 1

)
+

rσ∑

i=1

2
(

σ + i + m − 1
m − 1

)

|V | is, however, not the same as |C|; i.e. it is not the capacity of the chip because
two signatures within a distance of r from each other are not disintiguishable.
To estimate |C|, we need to know, v(r), the number of signatures inside a sphere
of radius r.

Lemma 2

v(r) = 1 +
r∑

e=1

min{e,k}∑

i=1

2i

(
k

i

)(
e − i − 1

i − 1

)

Proof. A full proof is omitted for space reasons. Briefly, the sum accounts for all
points at distance exactly e from a center, for 0 ≤ e ≤ r. 	


4 Conclusions and Future Work

This paper gives experimental (in simulation) and theoretical analyzes of a re-
cenly proposed method (Garzon and Deaton, 2004) [18] to represent abiotic
information onto DNA molecules in order to make processing data at massive
scales efficient and scalable. The mapping is readily implementable with current
microarray technology (Stekel, 2003) [21], bypasses synthesis of all but a few
strands, and it’s promising for the tera- and peta-byte scopes volumes required
for a meaningful applications (more below.) Furthermore, we quantify the sen-
sitivity of the representations and show that it can be made robust despite the
uncertainty of the hybridization chemistry. Third, we show a theoretical analy-
sis of the capacity of this type of representation to code information, as well as
an information-theoretic estimate of the number of distinguishable targets that
can be representated on a given chip under reaction conditions characterized by
hybridization stringency parameters.

A direct application of this method in bioinformatics is a new approach to ge-
nomic analysis that increases the signal-to-noise ratio in microarrays commonly
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used in bioinformatics. The method yields higher resolution and accuracy in
the analysis of genomica data, and only requires some processing in what can
be termed an “orthogonalization” procedure to the given set of targets/genes
before placing them on the microarrays. These advantages may be critical for
problems such as classification problems (disease/healthy data). More details
can be found in (Garzon et al., 2005) [12].

Further applications can be expected in the analysis and data mining of abi-
otic data, whose representation is automatically defined with respect to a given
basis set B. Given a noncrosshybridizing basis and adequate thresholds on the
stringency of reaction condition and acceptable levels of variability of the repre-
sentation (i.e., the capacity to distinguish inputs through their representations),
the signatures of arbitrary inputs are completely determined and require no pre-
computation or synthesis of any DNA strands, other than the basis strands. In
other words, this method provides a universal and scalable method to represent
data of any type. For example, because of the superposition (linearity) prop-
erty (module the variability implicit in the representation), a corpus of English
text can be automatically encoded just by finding representations for the words
in the basic vocabulary (words) in the corpus. Thereafter, the representation
of a previously unknown piece of text can be inferred by superposition of the
component words. There is evidence that these representations can be used for
semantic processing of text corpora in lieu of the original text [11]. Given the
newly available large basis sets [4, 5, 6] in the order of megasets, device with the
ability to process data for information extraction appear now within reach in a
relatively short time.
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