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Abstract. An algorithm that could be implemented at a molecular level
for solving the satisfiability of Boolean expressions is presented.

This algorithm, based on properties of specific sets of natural num-
bers, does not require an extraction phase for the read out of the solution.

1 Introduction

Adleman’s solution of an instance of the direct Hamiltonian path problem with
the implementation of an algorithm at a molecular level [1] has been of inspira-
tion for many to pursue other algorithms that can be implemented in the same
way to solve instances of hard computational problems.

A problem is said to be hard if it cannot be solved by a deterministic Tur-
ing machine with a polynomial time algorithm in function of its input [8, 14].
For many of this kind of problems the number of possible solutions increases
exponentially in function to the size of the input.

The algorithm described in [1] is related to the research of all Hamiltonian
paths in a graph. The algorithm proposed by Adleman can be simplified in
a two-phase process: first a library of DNA molecules encoding the input of
the problem is created and is put in a test tube such that the DNA molecules
can, under appropriate conditions, anneal and ligate, then the DNA molecules
encoding solutions to the problem are extracted from the test tube.

During annealing and ligation other, ‘new’, DNA molecules, different from
the ones present in the input library, can be created. Because of the massive
parallelism and the nondeterminism of the annealing process the creation of
the ‘new’ DNA molecules is quite fast and can lead to DNA molecules encoding
solutions for the considered instance of the problem. As the name suggests during
the extraction phase the solutions are extracted from the pool.

It should be clear that this kind of algorithms does not guarantee that a
solution will be created even if it could. This because the annealing between
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complementary single stranded DNA molecules is a genuinely nondeterministic
operation. Anyhow even if present in the pool a solution could not be detected
during the extraction phase. More than error prone this last phase can be quite
laborious and expensive.

Algorithms based on this two-phase process are common in Molecular Com-
puting [2, 4, 6, 11, 12, 13, 16, 17, 20].

In Section 3 we describe how a specific creation of the input library of DNA
molecules can be used to implement an algorithm without an extraction phase
for satisfiability of Boolean expression (SAT), a hard computational problem,
stated as decision problem (a problem remains hard if it is stated as decision,
enumeration or research problem [14]). The presented algorithm is based on
specific sets of natural numbers defined in Section 2.

The first algorithm for DNA computing without an extraction phase has been
introduced in [10]. Here the authors define LOD (Length Only Discrimination),
that is the concept of not having an extraction phase, and give an experimental
result on a small instance of Hamiltonian path problem (HPP). In [19] another
algorithm for HPP based on LOD is presented. In Section 5.2 we indicate the
elements of novelty of our algorithms compared to the ones already present in
the literature.

We did not implement in a biological laboratory the algorithm presented in
Section 3, anyhow the biochemical specifications related to the creation of the
input library of DNA molecules and to the implementation of the presented
algorithms are sketched in Section 4.

2 Unique-Sum Sets

In this section we define unique-sum sets used in the algorithm presented by us
in Section 3. Moreover we give some examples, we indicate some properties and
results related to these sets, and we define a family of unique-sum sets.

Let N be the set of natural numbers.

Definition 1 (unique-sum set, ordered unique-sum set). Let G = {n1, ...,
np} be a set of different positive integers, and s =

∑p
i=1 ni the sum of the

elements of G. G is said to be a unique-sum set if the equation
∑p

i=1 cini =
s, ci ∈ N ∪ {0}, has only the solution ci = 1, i ∈ {1, . . . , n}.

A unique-sum set G = {n1, . . . , np} is an ordered unique-sum set if ni < ni+1
for 1 ≤ i ≤ p − 1.

In what follows we will only consider ordered unique-sum sets.
An example of a unique-sum set is G = {4, 6, 7}, 4+6+7 = 17 and 17 cannot

be written in a different way as a non-negative integer linear combination of the
elements in G. An example of a set that is not a unique-sum set is G′ = {3, 4, 5},
3 + 4 + 5 = 12 = 4 + 4 + 4 = 3 + 3 + 3 + 3.

The concept of unique-sum set resembles that of subset-sum-distinct set (see
e.g. [3]), but there one requires that for any two distinct finite subsets G1, G2 ⊆ G
the sum of all elements of G1 is distinct from the sum of all elements of G2.
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Lemma 1. Given a unique-sum set G = {n1, . . . , np}, any proper subset of G
is a unique-sum set.

Lemma 2. Let k be a positive integer, and kG = {k · n1, . . . , k · np}. If G is a
unique-sum set, then kG is also a unique-sum set.

Definition 2 (maximal unique-sum set). Given a unique-sum set G = {n1,
..., np}, it is maximal if there exists no positive integer np+1 /∈ G, such that
G ∪ {np+1} is a unique-sum set.

It is easy to check that G = {2, 3} is a maximal unique-sum set, but G = {4, 6}
is not, since {4, 6, 7} is a unique-sum set too.

Now we describe a method to verify if a set is a unique-sum set. It is based
on generating functions (see [15]). We consider the function

FG(x) =
p∏

i=1

(1 − xni)−1.

Using the identity (1−x)−1 = 1+x+x2+x3+ . . . , x ∈ R, |x| < 1, we can rewrite
FG(x) as a power series, having rational integers as coefficients, in the following
form: FG(x) = P0 + P1x + P2x

2 + . . . + Pkxk + . . . , and, by construction, the
coefficient of xk is the number of solutions of the equation

p∑

i=1

cini = k, ci ∈ N ∪ {0}.

Therefore G is unique-sum set, if and only if Ps = 1, where s =
∑p

i=1 ni. We do
not have to use infinite expansions, since we are interested in the value of Ps.
The coefficient of xs in

p∏

i=1

(1 + xni + x2ni + . . . + x
[ s

ni
]ni)

is exactly Ps, where [·] denotes the integer part of the rational number s
ni

. Let us
see two examples. Let G = {8, 12, 14, 15}, thus s = 49 and we have to compute
the coefficient of x49 in FG(x) = (1 − x8)−1(1 − x12)−1(1 − x14)−1(1 − x15)−1 =
f1(x)f2(x)f3(x)f4(x), where

f1(x) = 1 + x8 + x16 + x24 + x32 + x40 + x48,

f2(x) = 1 + x12 + x24 + x36 + x48,

f3(x) = 1 + x14 + x28 + x42,

f4(x) = 1 + x15 + x30 + x45.

It turns out to be 1, thus G is a unique-sum set. Let G = {8, 12, 14, 15, 19}, thus
s = 68 and we have to compute the coefficient of x68 in FG(x) = (1 − x8)−1(1 −
x12)−1(1 − x14)−1(1 − x15)−1(1 − x19)−1 = f1(x)f2(x)f3(x)f4(x)f5(x), where
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f1(x) = 1 + x8 + x16 + x24 + x32 + x40 + x48 + x56 + x64,

f2(x) = 1 + x12 + x24 + x36 + x48 + x60,

f3(x) = 1 + x14 + x28 + x42 + x56,

f4(x) = 1 + x15 + x30 + x45 + x60,

f5(x) = 1 + x19 + x38 + x57.

It turns out to be 12, thus G is not a unique-sum set.
Now we will deal with the construction of unique-sum sets. Given a set of

different positive integers G = {n1, . . . , np}, such that gcd(n1, . . . , np) = 1, it is
known (see e.g. [5]) that for suitable large integer M, the equation

p∑

i=1

cini = M, ci ∈ N ∪ {0}, (1)

has at least one solution. Let us denote by ΦG the greatest positive integer for
which (1) is not solvable. Wilf [18] gave an algorithm to compute ΦG efficiently.
We can use this constant to find possible extensions of a given unique-sum set
(in the case when gcd(n1, . . . , np) = 1), or to prove that it is maximal. First
suppose that gcd(n1, . . . , np) = 1, then we can compute ΦG using the algorithm
described in [18]. By the definition of ΦG we know that if there exists an integer
np+1 such that G∪{np+1} is a unique-sum set, then np+1 ≤ ΦG. Thus we have to
check only finitely many sets using the method mentioned previously. We have
checked that the set G = {8, 12, 14, 15} is a unique-sum set. In this case ΦG = 33,
but there is no positive integer k ≤ 33 such that G ∪ {k} is a unique-sum set,
therefore G is maximal. If gcd(n1, . . . , np) = d > 1 and the new element np+1 is
such that gcd(n1, . . . , np, np+1) = d′ > 1, then we still can succeed, since 1

d′ G has
to be a unique-sum set. In the remaining case, when gcd(n1, . . . , np) = d > 1 and
gcd(n1, . . . , np, np+1) = 1, we show an example. Let G = {4, 6} and n3 is odd,
then s = n3 + 10 is also odd, thus if we have a solution of 4x1 + 6x2 + n3x3 = s,
then x3 > 0. We obtain that 4x1+6x2+n3(x3−1) = 10, that is x1 = x2 = x3 = 1
if n3 > 6. In this way we obtained infinitely many unique-sum sets in the form
{4, 6, 2k + 1}, k > 2.

Now we give a family of sets. Let Gk = ∪k
m=1{2k − 2k−m}, the sum of the

elements of Gk is sk = (k − 1)2k + 1. The first sets in this family are:

G1 = {1},

G2 = {2, 3},

G3 = {4, 6, 7},

G4 = {8, 12, 14, 15},

G5 = {16, 24, 28, 30, 31},

G6 = {32, 48, 56, 60, 62, 63},

Theorem 1. For all k ∈ N the set Gk is a unique-sum set.

The proofs of Lemma 1, Lemma 2 and Theorem 1, the proof that each element in
the family of sets previously given is the unique-sum set having the smallest sum
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in function of the number of elements and other properties and results related
to unique-sum sets can be found in [7].

3 An Algorithm for the Satisfiability of Boolean
Expressions

The satisfiability of Boolean expressions (SAT) problem can be formulated as:
given a Boolean expression φ with variables X = {x1, . . . , xn}, is there an as-
signment A : X → {T, F} such that A satisfies φ?

If the Boolean expression φ is given by a conjunction of clauses C1∧C2∧. . .∧Cp

(where ‘∧’ is the logical AND operator) each being a disjunction of at most k
literals (a literal is a variable xi or its negation ¬xi, for 1 ≤ i ≤ n), then the
problem is called k-SAT.

In [11] the author demonstrates that 3-SAT is well suited to take advantage of
the massive parallelism present in molecular computation. At the present time
SAT is probably the problem with the most number of algorithms implemented
[12, 20, 16, 4] or implementable [11, 9, 13] at a molecular level.

Let φ be an instance for k-SAT having n variables and p clauses, let L =
{l1, l2, . . . , lq} (q ≤ 2n), an ordered set of literals satisfying at least one clause
of φ such that if li, ¬li ∈ L for 1 ≤ i ≤ q, then li = lj, ¬li = lj+1 for a
1 ≤ j ≤ q − 1. Moreover let C = {C1, . . . , Cp} the set of clauses present in φ,
and let G = {n1, . . . , np+2} be a unique-sum set having sum sG.

The input library of molecules is composed by:

edges: Each pair (li, lj), i ≤ j, li �= ¬lj , 1 ≤ i, j ≤ q, of literals in L is encoded
by an ordered (from 5’ to 3’) single stranded DNA molecule composed by
the 8-mer sli (encoding li) followed by the 8-mer slj (encoding lj). It is
important to notice now that these pairs define a partial order in L. The
order is partial and not total as there is no pair for a literal and its negation
if both literals are present in L.

Moreover there are going to be two additional 8-mer single stranded DNA
molecules: sb and se.

For each literal l ∈ L there will be ordered (from 5’ to 3’) single stranded
DNA molecules composed by the 8-mer sb followed by the 8-mer sl and
single stranded DNA molecules composed by the 8-mer sl followed by the
8-mer se.

All the sl, l ∈ L, sb and se are different sequences of nucleotides.
vertices: We associate to each clause Cj ∈ C a unique number nk ∈ G. We

will consider Cj associated to nj+1 for 1 ≤ j ≤ p. For each literal l in L
there will be a set of ordered (from 5’ to 3’) partially double DNA molecules
composed by: a single stranded 8-mer s̄l complementary to sl; a double
stranded (nj+1 −16)-mer for each clause Cj , 1 ≤ j ≤ p satisfied by l; a single
stranded 8-mer s̄l complementary to sl.

begin: Ordered (from 5’ to 3’) partially double DNA molecules composed by: a
single stranded 8-mer s̄b complementary to sb followed by a double stranded
(n1 − 8)-mer.
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end: Ordered (from 5’ to 3’) partially double DNA molecules composed by:
a double stranded (np+2 − 8)-mer followed by a single stranded 8-mer s̄e

complementary to se.

The following example is meant to clarify the above. Let the Boolean expres-
sion φ = C1 ∧ C2 ∧ C3 = (x1 ∨ x2 ∨ x3) ∧ (¬x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ ¬x2 ∨ x3)
be an instance of 3-SAT. An ordered set of literals of φ satisfying at least one
clause is L = {x1, ¬x1, x2, ¬x2, x3, ¬x3} = {l1, l2, l3, l4, l5, l6}, while the set of
clauses of φ is C = {C1, C2, C3}.

The set of single stranded DNA molecules encoding edges is depicted in
Figure 1.

sl1 sl1

5’- -3’(l1, l1):
sl3 sl3

5’- -3’(l3, l3):
sl5 sl5

5’- -3’(l5, l5):
sl1 sl3

5’- -3’(l1, l3):

sl2 sl2

5’- -3’(l2, l2):
sl4 sl4

5’- -3’(l4, l4):
sl6 sl6

5’- -3’(l6, l6):

5’- -3’

sb sl2

5’- -3’

sb sl3

5’- -3’

sb sl1

5’- -3’

sb sl4

5’- -3’

sl3 se

5’- -3’

sl4 se

sl1 sl4

(l1, l4): 5’- -3’

sl1 sl5

(l1, l5): 5’- -3’ 5’- -3’

sb sl5sl1 sl6

(l1, l6): 5’- -3’

sl2 sl3

(l2, l3): 5’- -3’

sl2 sl4

(l2, l4): 5’- -3’ 5’- -3’

sb sl6

5’- -3’

sl1 se

5’- -3’

sl2 se

5’- -3’

sl2 sl6

(l2, l6):5’- -3’

sl2 sl5

(l2, l5):

5’- -3’(l3, l6):

sl3 sl6

5’- -3’(l3, l5):

sl3 sl5

5’- -3’

sl4 sl5

(l4, l5): 5’- -3’(l4, l6):

sl4 sl6

5’- -3’

sl5 se

5’- -3’

sl6 se

Fig. 1. Encoding of edges for the example of 3-SAT

Let us consider now the unique-sum set G = {16, 24, 28, 30, 31}, having sum
sG = 129. We associate 24 to C1, 28 to C2 and 30 to C3. The literals l1 and l3
both satisfy only C1; the literals l2 and l4 both satisfy C2 and C3; the literal
l5 satisfies C1 and C3; the literal l6 satisfies C2. Considering this we give now
the lengths of the double stranded DNA molecules present in the encodings of
vertices. As C1 is associated to 24, then the double stranded DNA molecule is
8-bp (result of 24-16); as C2 is associated to 28, then the double stranded DNA
molecule is 12-bp (result of 28-16); as C3 is associated to 30, then the double
stranded DNA molecule is 14-bp (result of 30-16). The double stranded DNA
molecule present in the encoding of begin is 8-bp (result of 16-8), while the one
present in the encoding of end is 23-bp (result of 31-8). These molecules are
depicted in Figure 2.
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5’-

s̄l2

3’-

-3’

-5’

s̄l212-mer 14-mer

3’-

s̄l4

-5’

s̄l4

-3’5’-

14-mer

3’-

s̄l2

-5’

s̄l2

-3’5’-

14-mer

3’-

s̄l5

-5’

s̄l5

-3’5’-

5’-

s̄l1

3’-

-3’

-5’

s̄l18-mer

5’-

s̄l3

3’-

-3’

-5’

s̄l38-mer

5’-

s̄l4

3’-

-3’

-5’

s̄l412-mer

5’-

s̄l5

3’-

-3’

-5’

s̄l58-mer

5’-

s̄l6

3’-

-3’

-5’

s̄l612-mer

5’-

3’-

-3’

-5’

23-mers̄e8-mer

-5’

s̄b

-3’5’-

3’-

Fig. 2. Encoding of vertices for the example of 3-SAT

The described encoding for this example can be visualised as the graph de-
picted in Figure 3, where Ci(lj) indicates that the clause Ci is satisfied by the
literal lj (for 1 ≤ i ≤ 3, 1 ≤ j ≤ 6). In this graph black dots indicate hubs: they
have been introduced to decrease the number of arrows present in the graph and
make it more readable, hubs have no relation with the encoding described by us.
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endbegin

Fig. 3. Graph related to the example of 3-SAT

The annealing and ligation of the library of molecules is likely to form DNA
molecules sG-bp long only if there is an assignment A satisfying φ. Considering
the graph depicted in Figure 3 such molecules can be visualised as paths starting
at begin and ending at end and passing by nodes encoding clauses satisfied by
literals where the encoding of each clause is present only once. Examples of such
paths are: begin−C1(l1)−C2(l4)−C3(l5)−end, begin−C2(l4)−C3(l4)−C1(l5)−
end.

If a resulting molecule is sG-bp long, then it will start with a sequence encod-
ing begin and it will end with a sequence encoding the end, the intermediate
part will be composed by encodings of vertices (clauses satisfied by literals)
annealed and ligated to edges. This intermediate part cannot contain both the
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encoding of a clause satisfied by a literal l and the encoding of a clause satisfied
by a literal ¬l, for l ∈ L. Moreover in the intermediate part the encoding of a
clause can be present only once.

Any assignment A satisfying φ can be encoded (by the annealing and ligation
of the molecules in the input library) in a double stranded DNA molecule sG-bp
long.

The presence of such a molecule can be detected by one run of gel elec-
trophoresis independent of the size of the instance of the problem.

For a Boolean formula φ, instance of k-SAT, with p clauses and n variables
(so at most 2n literals), in the worst case (all literals are present in a clause and
each literal satisfies each clause) the input library of molecules is composed by:

2n DNA molecules encoding edges of the form (li, li);
2n

∑n−1
i=1 (2n−2i) DNA molecules encoding edges of the form (li, lj), i > j, li �=

¬lj , 1 ≤ i, j ≤ 2n;
4n DNA molecules encoding edges of the form (b, l) and (l, e) for l ∈ L;
2np (each of the 2n literals can satisfy each of the p clauses) DNA molecules

encoding vertices;
1 DNA molecule encoding begin;
1 DNA molecule encoding end.

In the following section we describe how the initial library of DNA molecules
can be created.

4 Biochemical Specifications

As presented in the previous section unique-sum sets allow the creation of al-
gorithms where part of the instance of the problem is encoded in the length of
partially double DNA molecules. The actual sequence of the double part of these
molecules is then of only minor importance. This fact can be exploited in the
efficient production of these molecules.

Each element of the family of unique-sum sets presented in Section 2 can be
written as Gk = {2k−1, 2k−1+2k−2, 2k−1+2k−2+2k−3, . . . , 2k−1+2k−2+· · ·+20}.
If moreover we consider that 2h = 2h−1 + 2h−1, then it is possible to devise an
efficient algorithm for the creation of long double stranded DNA molecules by
controlled concatenation of two shorter ones. Only the short (≤ 8-bp) DNA
molecules need to be chemically synthesised.

The concatenation of two molecules requires tight control of the reaction as
a simple ligation of molecules in solution will also produce many longer multi-
mers. One way to perform controlled reactions is making the ends of the double
stranded DNA molecules unavailable for ligation.

The following steps will create a specific concatenation of two generic double
stranded DNA molecules A and B:

1. attach one end of A to a solid support. For example, use a 5’ biotin label
and streptavidin coated beads;

2. ensure the free 5’ end is phosphorylated;
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3. remove phosphates from B by alkaline phosphatase treatment;
4. mix and ligate;
5. remove all unbound molecules;
6. remove the molecules from the beads. This can be accomplished by simple

endonuclease digestion if a DNA linker is used between the biotin label and
molecule A;

7. if necessary, PCR (with or without biotynilated primers) can be used as an
amplification procedure.

This procedure ensures that only one copy of molecule B can be attached to
the immobilized A. However, some small chances of error still exist. For example,
two molecules A can be ligated, creating a tether between two beads. Another
possibility is incomplete ligation, i.e. some molecules A may not be ligated to B.
Such errors are inevitable, but the chances can be minimized by optimization of
laboratory protocols. If measurable quantities of erroneous molecules are formed,
the correct molecules can be purified by preparative gel electrophoresis.

Very small molecules (≤ 8-bp) can be added in an alternative way, using an
extra sequence which is recognized by a type IIs restriction endonuclease. The
sequence recognized by the restriction enzyme should be concatenated only at the
two ends of the double stranded DNA molecule. The rest of the DNA molecule
could be easily constructed so not to contain the restriction site. For example, one
base pair can be added by ligation to 5’ NNNNNNGACTC, and subsequent digestion
with MlyI (New England Biolabs). This enzyme recognises the sequence 5’ GAGTC
and produces a blunt cut five bp to the 3’ end. The result is 5’ N, or any one base
pair added. A similar technique can be used to produce different single stranded
extensions necessary for programmable ligation. The enzyme used should then
produce a staggered cut outside its recognition sequence. Using this method,
the only molecules that need to be synthesized chemically are the 2 original 8
nucleotide strands and in total 6 oligonucleotides for adding 1, 2, or 4-bp.

The following example should clarify the strategy outlined above. Let us imag-
ine that we want to create DNA molecules long as the elements in the unique-sum
set G6 = {32, 48, 56, 60, 62, 63}. Let us also consider that the two ends of each
molecule have to be single stranded (each 8 bases long) while the rest of the
molecule has to be double stranded. So, considering the elements in G6, the part
of the molecules that is double stranded has to be as long as the elements of the
set G′

6 = {16, 32, 40, 44, 46, 47} = {8 + 8, 16 + 16, 32 + 8, 40 + 4, 44 + 2, 46 + 1}.

1. synthesize a molecule 8-bp long (such a molecule is stable enough and long
enough to be ligated);

2. generate a molecule 16-bp long (element of G′
6) concatenating two molecules

8-bp long;
3. generate a molecule 32-bp long (element of G′

6) concatenating two molecules
16-bp long;

4. generate a molecule 40-bp long (element of G′
6) concatenating a molecule

32-bp long with one 8-bp long;
5. generate a molecule 44-bp long (element of G′

6) concatenating a molecule
40-bp long with one 4-bp long;
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6. generate a molecule 46-bp long (element of G′
6) concatenating a molecule

44-bp long with one 2-bp long;
7. generate a molecule 47-bp long (element of G′

6) concatenating a molecule
46-bp long with one 1-bp long.

The single stranded molecules used in the algorithm presented in Section
3 need to be chemically synthesized and concatenated to the two sides of the
double stranded DNA molecules.

5 Discussions

5.1 Biological

Experimental implementation of the algorithm presented in Section 3 is subject
to some constraints. Thermodynamics dictates a certain minimum length for the
DNA molecules present in the input library. DNA molecules of only a few bp do
not anneal at room temperature: if, for example the unique-sum set G3 = {4, 6, 7}
is considered for the encoding, then all members of the set should be multiplied by
a constant to yield to DNA molecules long enough to be stable. The set obtained
by the multiplication is ensured to be a unique-sum set by Lemma 2.

Length separation by electrophoresis imposes an upper limit on the size of
the DNA molecules associated to the elements of a unique-sum set considered
for encoding an instance of a problem. DNA electrophoresis has a maximum
resolution of about 0.1%: discriminating between DNA fragments that have a
difference in length of 1-bp per 1000 is realistic using large polyacrylamide gels
or capillary electrophoresis. This limitation is due to current technology and not
on DNA itself. Let us consider the set G7, having sum sG7 = 769, indicated
in Section 2. The number 768 = 12·64 can be obtained as sum of elements
in G7. The difference between sG7 and 768 represents the 0.13% of sG7 . Similar
computation for G8 gives a value of 0.05% of its sum, already below the maximal
resolution of the just described DNA electrophoresis.

We can envisage three possibilities to overcome this limit in the implementa-
tion of algorithms based on unique-sum sets:

1. other families of unique-sum sets may be found having a bigger difference
between the sum of the set and the smaller or bigger number that can be
obtained summing elements in the set;

2. different algorithms based on unique-sum sets can be devised;
3. the technology of DNA analysis can be improved so to increase the resolution.

The algorithm devised for the decision problem presented in Section 3 can be
easily modified for research problems. If the presence of a solution is detected
by gel electrophoresis, the precise sequence of it (telling in the case of SAT the
sequence of clauses satisfied by a literal) can be found by DNA sequencing,
multiplex PCR or restriction analysis. The analysis techniques themselves also
entail some sequence design considerations.
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5.2 Algorithmic

The creation of algorithms in DNA computing without an extraction phase is
not new. Length-only discrimination (LOD) was introduced in [10] where the
authors present experimental confirmations of this technique.

In [10] the algorithm giving the length of the molecules encoding the vertices
is: “... if we need to find n different lengths, then starting with an arbitrary
number for the lengths of the first vertex, we can produce the sequence of length
with desired properties by making a gap between the lengths of the ith and the
(i + 1)th vertices be (n + i).”. So, if for instance we want to find the lengths of
the molecules for a graph with 9 vertices we have:

1: k, k ∈ N

2: (k) + 9 + 1 = k + 10
3: (k + 10) + 9 + 2 = k + 2 · 9 + 3 = k + 21
4: (k + 21) + 9 + 3 = k + 3 · 9 + 6 = k + 33
5: (k + 33) + 9 + 4 = k + 4 · 9 + 10 = k + 46
6: (k + 46) + 9 + 5 = k + 5 · 9 + 15 = k + 60
7: (k + 60) + 9 + 6 = k + 6 · 9 + 21 = k + 75
8: (k + 75) + 9 + 7 = k + 7 · 9 + 28 = k + 91
9: (k + 91) + 9 + 8 = k + 8 · 9 + 36 = k + 108

So we obtain the set K9 = {k, k + 10, k + 21, k + 33, k + 46, k + 60, k + 75, k +
91, k + 108} having sum sK9 = 9k + 444 (so we are considering the coefficients
f1 =< 1, 1, 1, 1, 1, 1, 1 >, notice that the sum of these coefficients is 9). But this
sum can also be written as k+3(k+10)+(k+33)+3(k+91)+(k+108)which means
that it can be obtained also by the coefficients f2 =< 1, 3, 0, 1, 0, 0, 0, 3, 1 >
(notice that also the sum of these coefficients is 9). So, if in this example we
consider that the initial vertex (having no incoming edges and only one out-
going edge) is associated to 1, that the final vertex (having only one incom-
ing edge and no outgoing edges) is associated to 9, and that the rest of the
graph is totally connected, then 1-2-8-2-8-4-2-8-9 would be interpreted as an
Hamiltonian path (while it is not). This implies that the just presented algo-
rithm to generate sets of numbers for algorithms based on LOD is not always
valid.

The fact that the two sets of coefficients have both sum 9 is essential as also
molecules encoding edges are present. In [10] edges are encoded such that the
relative molecules are: “...longer than any vertex encoding.”. This implies that
any two sets of coefficients (as the ones indicated in the above) having the same
sum would bring to accepted solutions (this would not be the case if the sets
of coefficients had different sums as the associated DNA molecules would have
different lengths). This affirmation is wrong if we consider f2.

The other sets of coefficients for K9 having the same properties of f2 are:
f3 =< 1, 2, 0, 0, 1, 2, 2, 0, 1 >, f4 =< 1, 0, 2, 2, 1, 0, 0, 2, 1 >, f5 =< 1, 0, 0, 0, 6, 1, 0,
0, 1 >. These sets of coefficients can be used to find other sets of coefficients for
Kn, n ≥ 10, that is for sets obtained by the algorithm described in [10].
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Let us list the elements found by the algorithm described in [10] from the
second to the eighth for a set with n ≥ 9 elements:

2: k + n + 1
3: k + 2n + 3
4: k + 3n + 6
5: k + 4n + 10
6: k + 5n + 15
7: k + 6n + 21
8: k + 7n + 28

The sum of these elements is 7k + 28n + 84 but this sum can also be obtained
by 2(k + 2n + 3) + 2(k + 3n + 6) + k + 4n + 10 + 2(k + 7n + 28) (we just used
the set of coefficients f2 but we could have used also f3, f4 or f5).

This means that for n = 10 the set of coefficients < 1, 0, 2, 2, 1, 0, 0, 2, 1, 1 >
(having sum 10) gives the sum sK10 ; for n = 11 the set of coefficients <
1, 0, 2, 2, 1, 0, 0, 2, 1, 1, 1 > (having sum 11) gives the sum sK11 , etc..

The just given description does not render all the sets of coefficients for sets
with n ≥ 10 elements. For instance other sets of coefficients giving the sum sK10

are < 1, 3, 0, 1, 0, 0, 1, 1, 2, 1 >, < 1, 2, 0, 1, 0, 0, 4, 1, 0, 1 >, etc..
In [19] the authors describe algorithms based on LOD. Also in this paper sets

with a unique sum are considered. The elements of such sets G = {n1, . . . , np}
are defined as follows:

{
n1 = 1
nk = knk−1 + 1 −

∑k−1
i=1 ni

The numbers in these sets grow (from n1 to np) as p!. It is possible to see this if we
express nk as a function of nk−1. We have that nk−1 = (k−1)nk−2+1−

∑k−2
i=1 ni,

so nk = knk−1 +1−
∑k−1

i=1 ni = k(k − 1)nk−2 + k − k
∑k−2

i=1 ni +1−
∑k−1

i=1 ni. So
np = p(p − 1)(p − 2) . . . 1 − x where x is a polynomial in ni (1 ≤ i ≤ p − 1). This
implies that the sum of a set with p elements grows as p!, while the sum of a set
with p elements in the family of sets given in Section 2 grows as an exponential
(power of 2).

As proved in [7] the family of unique-sum sets given in Section 2 is the one
giving unique-sum sets with the smallest sum in relation to the number of el-
ements in the set. So given a unique-sum set G′ with n elements its sum sG′

cannot be smaller than sG the sum of the smallest set with n elements in the
family presented in Section 2. A consequence of this is that the algorithm for
SAT we presented is not of practical use because of the exponential increase in
length of the DNA molecules needed to encode large instances of the considered
problem.

The presented research is a starting point in creating algorithms that can be
implemented at a molecular level based on properties of specific sets of num-
bers. Some natural continuations of this research are identified by the following
questions:
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Is it possible to relax the definition of unique-sum set (to, for instance, sets
whose sum can be obtained with only a constant number of non-negative
linear combinations of the elements in the set) and create algorithms im-
plementable at a molecular level that can take advantage of this relaxed
definition?

Are there other kind of sets that can be considered when we take in account
the specific problem we want to solve and the way the algorithm is devised?
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