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Abstract. The stichotrichous ciliates have attracted the attention of
both biologists and computer scientists due to the unique genetic mech-
anism of gene descrambling. It has been suggested that it would perhaps
be possible to co-opt this genetic process and use it to perform arbitrary
computations in vivo. Motivated by this idea, we study here some basic
properties and the computational power of a formalization inspired by
the template-guided recombination model of gene descrambling proposed
by Ehrenfeucht, Prescott and Rozenberg. We demonstrate that the com-
putational power of a system based on template-guided recombination
is quite limited. We then extend template-guided recombination systems
with the addition of “deletion contexts” and show that such systems have
strictly greater computational power than splicing systems [1, 2].

1 Introduction

The stichotrichous ciliates are a family of single-celled organisms that have come
to be studied by both biologists and computer scientists due to the curious
mechanism of gene scrambling. Every stichotrichous ciliate has both a functional
macronucleus, which performs the “day-to-day” genetic chores of the cell, and
an inert micronucleus. Although stichotrichs reproduce asexually, they do also
conjugate to exchange genetic material. This hopefully increases the genetic
diversity and strength of both organisms involved in conjugation.

The micronucleus contains germline DNA which becomes important during
the process of conjugation between two cells. Specifically, when two ciliate cells
conjugate, they destroy their macronuclei and exchange haploid micronuclear
genomes. Each cell then builds a new functional macronucleus from the genetic
material stored in the micronucleus.
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The interest in this process from a computational point of view comes from
the fact that the genes in the micronucleus are stored in a scrambled order.
Specifically, the micronuclear gene consists of fragments of the macronuclear
gene in some permuted order. That is, if we denote a functional macronuclear
gene with the string “1-2-3-4-5”, then the equivalent gene in the micronucleus
may appear as “2-ε1-4- ε2-1-ε3-3-ε4-5”, where the ε’s represent so-called inter-
nally eliminated sequences (or IES’s) which are removed from the macronuclear
version of the gene. Each sequence, 1 through 5, is referred to as a macronuclear
destined sequence (or MDS).

The cell must thus have some mechanism to de-scramble these fragments in
order to create a functional gene which is capable of generating a protein. For
more information on the biological process of gene de-scrambling, we refer to [3].

Several models for how this de-scrambling process takes place have been pro-
posed in the literature. There are two primary theoretical models which have
been investigated: the Kari-Landweber model [4, 5] which consists of a binary
inter- and intra-molecular recombination operation and the Ehrenfeucht, Harju,
Petre, Prescott and Rozenberg model [6, 7, 8] which consists of three unary op-
erations inspired by intramolecular DNA recombination.

Recently, a new model has been proposed by Prescott, Ehrenfeucht and
Rozenberg [9] based on the recombination of DNA strands guided by templates.

The basic action of the model is to take two DNA segments and splice them
together via a template intermediary, if the form of the segments matches the
form of the template. Consider DNA segments of the form uαβd and eβγv where
u, v, α, β, d, e, γ are subsequences of a DNA strand. If we wish to splice these two
strands together, we require a template of the form ᾱβ̄1β̄2γ̄ where ᾱ denotes
a DNA sequence which is complementary to α and β = β1β2. Specifically, the
ᾱβ̄1 in the template will bind to the αβ1 in the first strand and β̄2γ̄ will bind
to the β2γ in the second strand. The molecules then recombine according to the
biochemistry of DNA and we are left with d and e being cleaved and removed,
a new copy of the template ᾱβ̄γ̄ and the product of our recombination: uαβγv.
For more details on this operation, we refer to [9].

It has been suggested that the in vivo computational process of gene descram-
bling may be able to be controlled in such a way that it would be possible to
perform an arbitrary computation with a ciliate. Taking this as our motivation,
in this paper we present a generalized version of the template-guided recombina-
tion operation and study the basic properties and computational power of both
non-iterated and iterated versions. We conclude that, even in the iterated case,
the computational power is quite limited and propose a straightforward exten-
sion to a model which is strictly more computationally powerful than splicing
systems.

The paper is organized as follows; Section 2 of the paper will present formal
language theoretic prerequisites and notation. In section 3 we consider the basic
closure properties and the computational power of the template-guided recom-
bination operation. We then contrast this by recalling results on an iterated
version of this operation. The limited computational power of both the iterated
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and non-iterated versions leads us to study a context-aware extension of the op-
eration, which proves strictly more powerful than splicing systems, in Section 4.
We present our conclusions in section 5.

2 Preliminaries

We refer to [10] for language theory preliminaries. Let Σ be a finite alphabet. We
denote, by Σ∗ and Σ+, the sets of all words and non-empty words, respectively,
over Σ and the empty word by λ. A language L is any subset of Σ∗. Let x ∈ Σ∗.
We let |x| denote the length of x. For n ∈ N0, let Σ≤n = {w ∈ Σ∗ | |w| ≤ n},
Σ≥n = {w ∈ Σ∗ | |w| ≥ n} and Σn = {w ∈ Σ∗ | |w| = n}. A homomorphism
h : X∗ → Y ∗ is termed a coding if |h(a)| = 1 for each a ∈ X and h is termed
a weak coding if |h(a)| ≤ 1 for each a ∈ X . Let L, R ⊆ Σ∗. We denote by
R−1L = {z ∈ Σ∗ | yz ∈ L for some y ∈ R} and LR−1 = {z ∈ Σ∗ | zy ∈
L for some y ∈ R}.

We denote the family of finite languages by FIN, regular languages by REG,
linear languages by LIN, context-free languages by CF, context-sensitive lan-
guages by CS and recursively enumerable languages by RE.

A trio is a non-trivial language family closed under λ-free homomorphism,
inverse homomorphism and intersection with regular sets. It is known that every
trio is closed under λ-free a-transductions1 and inverse gsm mappings. An AFL
is a trio closed under arbitrary union, concatenation and +. A full trio2 is a trio
closed under arbitrary homomorphism. It is known that every full trio is closed
under arbitrary a-transductions and hence arbitrary gsm mappings. A full semi-
AFL is a full trio closed under union. A full AFL is a full trio closed under
arbitrary union, concatenation and Kleene ∗. It can be seen that REG,CF and
RE are full AFL’s, LIN is a full semi-AFL not closed under concatenation or
∗, and CS is an AFL not closed under arbitrary homomorphism. We refer to
[11, 12] for the theory of AFL’s.

3 Template-Guided Recombination

We will first formally define the template-guided recombination operation as it
appears in [13, 14].

Definition 1. A template-guided recombination system (or TGR system) is a
four tuple � = (T, Σ, n1, n2) where Σ is a finite alphabet, T ⊆ Σ∗ is the template
language, n1 ∈ N is the minimum MDS length and n2 ∈ N is the minimum
pointer length.

For a TGR system � = (T, Σ, n1, n2) and a language L ⊆ Σ∗, we define
�(L) = {w ∈ Σ∗ | (x, y) �t w for some x, y ∈ L, t ∈ T } where (x, y) �t w if
and only if x = uαβd, y = eβγv, t = αβγ, w = uαβγv, u, v, d, e ∈ Σ∗, α, γ ∈
Σ≥n1 , β ∈ Σ≥n2 .
1 An a-transducer is also referred to as a rational transducer.
2 A full trio is also referred to as a cone.
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Let L1, L2 be language families and n1, n2 ∈ N. We write �(L1, L2, n1, n2) =
{�(L) | L ∈ L1, � = (T, Σ, n1, n2) a TGR system, T ∈ L2} and �(L1, L2) =⋃

n1,n2∈N
�(L1, L2, n1, n2)

We remark here that while the operation of template-guided recombination bears
a superficial resemblance to the splicing operation introduced by Head [1] and
extended by Paun, et. al. [2], the operations are, in fact, distinct. While TGR
systems are in most cases less computationally powerful than comparable splicing
systems, they are often more succinct in terms of the descriptional complexity of
a system generating a particular language. Moreover, we will show in this paper
that a contextual extension of TGR systems is strictly more computationally
powerful than the inherently contextual splicing systems. Further details on the
relationship between splicing systems and TGR systems can be found in [13].

Remark 1. In [9], a constant C is defined such that |α|, |γ| > C in order to
ensure the formation of sufficiently strong chemical bonds. Likewise, [9] also
defines constants D and E such that D < |β| < E. The definition, as above,
and also the results in this paper, are general enough to cover any such D and
C. In addition, the constant E, as defined above, is shown to be irrelevant in
the next proposition. It was noted in [9] that the smallest pointer sequence
known was of length 3, although recently, a pointer sequence was discovered
experimentally which was only of length one [15]. Also, we believe that the
smallest MDS sequence discovered to date is nine nucleotides long [16]. In any
case, the notation above is general enough to work for any such constants. We
also note that the notation above will work when the two operands x and y
in Definition 1 are either the same or when they are not. It has been seen
experimentally that two MDS’s can be on two different loci but still recombine
successfully.

The following proposition, from [13] states that we can always assume that the
β subword of a template is of the minimum length, n2.

Proposition 1. Let � = (T, Σ, n1, n2) be a TGR system and let x, y ∈ Σ∗ and
t ∈ T . Then (x, y) �t w if and only if x = uαβd, y = eβγv, t = αβγ, w =
uαβγv, u, v, d, e ∈ Σ∗, α, γ ∈ Σ≥n1 , β ∈ Σn2 .

In the sequel, we shall thus assume, without loss of generality, that β is of
length n2.

We now consider new results regarding the power of template-guided recombi-
nation when restricted to a single application of the operation. This is important
to the basic theoretical understanding of how the operation functions relative
to traditional theoretical computer science. We omit proofs here due to space
considerations.

First, we show that, under some weak restrictions, closure under intersection
follows from closure under template-guided recombination.

Lemma 1. Let L1 be a language family closed under left and right concatenation
and quotient with a single symbol and under union with singleton languages and
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let L2 be a language family closed under left and right concatenation with a single
symbol such that �(L1, L2, n1, n2) ⊆ L1 for some n1, n2 ∈ N. The intersection
of a language from L1 with a language from L2 belongs to L1.

Since Σ∗ is in every language family containing REG and Σ∗ ∩ T = T , we
obtain:

Corollary 1. Let L1 be a language family such that REG ⊆ L1, L1 is closed
under left and right concatenation and quotient with a symbol and union with
singleton languages and let L2 be a language family closed under left and right
concatenation with a symbol such that �(L1, L2, n1, n2) ⊆ L1 for some n1, n2 ∈
N. Then L2 ⊆ L1.

We now continue the characterization of template-guided recombination in terms
of AFL theory. We see that, under some restrictions, closure under concatenation
follows from closure under template-guided recombination.

Lemma 2. Let L1 be a language family closed under limited erasing homomor-
phism, union, left and right concatenation by a symbol and let L2 be a language
family containing the singleton languages such that �(L1, L2, n1, n2) ⊆ L1 for
some n1, n2 ∈ N. Then L1 is closed under concatenation.

We now show that we can simulate template-guided recombination with a few
standard operations.

Lemma 3. Let L1 be closed under marked concatenation3, intersection with
regular languages and inverse gsm mappings. Let L2 be closed under inverse
gsm mappings and intersection with regular languages. Let L ∈ L1, T ∈ L2 and
let � = (T, Σ, n1, n2) be a TGR system. Then there exists L′ ∈ L1, T

′ ∈ L2 and
a weak coding homomorphism h such that �(L) = h(L′ ∩ T ′).

Since every trio is closed under inverse gsm mappings, we get the following:

Corollary 2. Let L1 be a concatenation closed full trio and let L2 be either a trio
or L2 ⊆ REG. If L1 is closed under intersection with L2 then �(L1, L2) ⊆ L1.

We combine the lemmata above to obtain the following result:

Proposition 2. Let L1 be a full semi-AFL and L2 be a trio or L2 = FIN. Then
�(L1, L2) ⊆ L1 if and only if L1 is closed under concatenation and L1 is closed
under intersection with L2.

Since every full semi-AFL is closed under intersection with regular languages, it
now follows that for a full semi-AFL, closure under catenation is necessary and
sufficient to show closure under template-guided recombination with regular and
finite languages.

Corollary 3. For every full semi-AFL L, �(L,REG) ⊆ L and �(L,FIN) ⊆ L
if and only if it is closed under concatenation.
3 The marked concatenation of L1, L2 is L1aL2 where a is a new symbol.
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Likewise, the next result concerning the closure of intersection-closed full semi-
AFLs now follows since every intersection-closed full semi-AFL is closed under
concatenation.

Corollary 4. For every intersection-closed full semi-AFL L, �(L, L) ⊆ L.

The above results are sufficient to characterize the closure properties of the
families of finite, regular, linear and context-free families. We now show that the
family of context-sensitive languages is not even closed under template-guided
recombination with singleton languages.

Proposition 3. �(CS,FIN, n1, n2) 	⊆ CS for any n1, n2 ∈ N.

Now, we can completely fill in a table (see Table 1) with the families of languages
in the Chomsky hierarchy, the finite languages and the linear languages. A

√

represents closure of L1 under template-guided recombination with templates
from L2 and a blank represents non-closure. The results hold for any minimum
pointer and MDS length.

Table 1. �(L1, L2) ⊆ L1?

L1 | L2 FIN REG LIN CF CS RE
FIN

√ √ √ √ √ √

REG
√ √

LIN
CF

√ √

CS
RE

√ √ √ √ √ √

In a biological system it is natural to investigate iterated application of oper-
ations as bio-operations are the product of the stochastic biochemical reactions
of enzymes, catalysts and substrates in solution. We now recall results on an
iterated version of the template-guided recombination operation.

We begin with the definition iterated template-guided recombination from [14]:
Let � = (T, Σ, n1, n2) be a TGR system and let L ⊆ Σ∗. Then we generalize

� to an iterated operation �∗(L) as follows:

�0(L) = L,

�n+1(L) = �n(L) ∪ �(�n(L)), n ≥ 0

�∗(L) =
∞⋃

n=0

�n(L).

Let L1, L2 be language families and n1, n2 ∈ N. We define �∗(L1, L2, n1, n2) =
{�∗(L) | L ∈ L1, � = (T, Σ, n1, n2) a TGR system, T ∈ L2} and let �∗(L1, L2) =⋃

n1,n2∈N
�∗(L1, L2, n1, n2).

We now give a short example of an iterated template-guided recombination
system.
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Example 1. Let L = {an1an2} and let � = (T, Σ, n1, n2) be a TGR system
where Σ = {a}, T = {an1an2an1} and n1, n2 ∈ N. Then �∗(L) = {an1+n2} ∪
{a2n1+n2a∗}. For the case n1 = n2 = 1, �(L) = aa+.

It is also known from [13] that the closure of a language family under iterated
template-guided recombination contains the original language family.

Lemma 4. Let L1, L2 be language families and let n1, n2 ∈ N. Then L1 ⊆
�∗(L1, L2, n1, n2).

We have considered the basic properties of the iterated version of template-
guided recombination in [14] and we recall here the definition of a useful template
from that paper.

Intuitively, a template word is useful if it can be used as a template to produce
any word, not necessarily new. The full formal definition is found in [14]. This
notion turns out to be quite important as is shown by the following two results.

We see that every full AFL is closed under iterated template-guided recom-
bination with useful templates from the same full AFL.

Theorem 1. Let L be a full AFL, � = (T, Σ, n1, n2) a TGR system and let
L, T ∈ L, L ⊆ Σ∗ and assume that � is useful on L. Then �∗(L) ∈ L.

In addition, when the template sets are regular, the useful subset, Tu say, of the
template language T on any language L has a very simple structure relative to T .

Proposition 4. Let � = (T, Σ, n1, n2) be a TGR system, let L ⊆ Σ∗ and let Tu

be the useful subset of T on L. If T is a regular language, it follows that Tu is
also regular.

The language L in the proposition above does not have any restrictions placed
on it. It need not even be recursively enumerable. The proof does not, however,
provide an effective construction for Tu.

A consequence of Theorem 1, Proposition 4 and the fact that the family of
regular languages is the smallest full AFL allows us to show the following key
result.

Theorem 2. Let L be a full AFL and let n1, n2 ∈ N. Then

�∗(L,REG, n1, n2) = L.

This shows that the operation, as defined, provides very little computational
power, regardless of the minimum pointer and MDS length. Indeed, even when
we start with regular initial and template languages, we cannot generate any
non-regular languages. This is not surprising biologically, however, as one might
expect the cell to make use of the least complex computational process to ac-
complish a given task.

In the next section we show that adding even a small amount of context-
sensitiveness to template-guided recombination results in a large increase in
computational power.
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4 Extension of TGR by Deletion Contexts

As defined above, the operation of template-guided recombination is able to
achieve very limited computational power. Even the iterated version is able only
to generate regular languages starting from a regular initial language and using
a regular set of templates. This is in contrast to the fact that extended splicing
systems are able to generate arbitrary recursively enumerable languages starting
from regular splicing rules and a finite set of axioms[17]. It is often the case
that small alterations to an operation can lead to a huge increase in generative
capacity. In this section, we add a feature to this operation in order to achieve
more power. It should be stated immediately that it is not clear how realistic this
extension is in a biological setting. While the extension presented is certainly not
biologically impossible, neither do we have experimental evidence to support it.
Despite this, it serves as an aide to the study of what properties should likely
be present in order to obtain more general computation.

We begin by defining a more general version of the template-guided recom-
bination operation. Indeed, the new notation allows for extra deletion contexts,
beyond the β pointer. The previously studied operation is a special case where all
deletion contexts are of length zero. We cannot assume, with this more general
notation that the symbol β is always of the minimum pointer length.

Definition 2. A contextual template-guided recombination system (or shortly,
a CTGR system) is a four tuple � = (T, Σ, n1, n2) where Σ is a finite alphabet,
# is a symbol not in Σ, T ⊆ Σ∗#Σ∗#Σ∗ is the template language, n1 ∈ N is
the minimum MDS length and n2 ∈ N is the minimum pointer length.

For a CTGR system � = (T, Σ, n1, n2) and a language L ⊆ Σ∗, we define
�(L) = {w ∈ Σ∗ | (x, y) �c

t w for some x, y ∈ L, t ∈ T } where (x, y) �c
t w if

and only if x = uαβd1d, y = ee1βγv, t = e1#αβγ#d1, w = uαβγv, u, v, d, e ∈
Σ∗, α, γ ∈ Σ≥n1 , β ∈ Σ≥n2 .

For k ∈ N0 ∪ {∞}, we denote �(L1, L2[k], n1, n2) = {�(L) | L ∈ L1, � =
(T, Σ, n1, n2) a CTGR system, T ∈ L2, T ⊆ Σ≤k#Σ∗#Σ≤k} and �(L1, L2) =
{�(L1, L2[∞], n1, n2) | n1, n2 ∈ N}.
We then get template-guided recombination as a special case where the contexts
are of length zero. Next, we see that if we add in even one symbol of deletion
context, we increase the power significantly.

Lemma 5. Let Σ be an alphabet, Σ1 = Σ ∪{a1, a2, a3, a4, a5}, (all new symbols
disjoint from Σ), L a language family closed under left and right concatenation
with symbols and L1∪aL2 ∈ L for L1, L2 ∈ L, a a new symbol. Then there exists
L ∈ L, T ∈ Σ1#Σ∗

1#Σ1, T ∈ REG0 and a CTGR system � = (T, Σ1, 1, 1) such
that L1 ∩ L2 = (a4a1a2)−1(�(L))(a3a1a5)−1 and �(L) ∈ �(L,REG0[1], 1, 1).

As corollary, we obtain that �(LIN,REG0[1], 1, 1) is equal to RE after applying
an intersection with a regular language and a homomorphism.

Corollary 5. Let Σ be an alphabet, L ∈ RE, L ⊆ Σ∗. Then there exists an alpha-
bet Σ1, a homomorphism h from Σ∗

1 to Σ∗, languages R, T ∈ REG0, a language
L′ ∈ LIN and a CTGR system � = (T, Σ1, 1, 1) such that h(�(L′) ∩ R) = L.
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Thus, even though �(L1,REG) ⊆ S(L1,REG)4 for every L1 (see [13]) and
S(L1,REG) ⊆ L1 for every concatenation closed full trio L1 (see [2]), we see
that when we add in even one symbol of deletion contexts, �(L1,REG) 	⊆
S(L1,REG) in many cases, for example when L1 is the family of context-free
languages. Consequently, template-guided recombination with deletion contexts
can generate more powerful languages than splicing systems.

Lemma 6. Let L1, L2 be language families, both closed under inverse gsm map-
pings and intersection with regular languages, let L ∈ L1, T ∈ L2 and let
� = (T, Σ, n1, n2) be a CTGR system. Then there exists L1, L2 ∈ L1, T

′ ∈ L2
and a weak coding homomorphism h such that �(L) = h(L1 ∩ L2 ∩ T ′).

Corollary 6. Let L1 be an intersection-closed full trio closed under intersection
with L2, which is either closed under inverse gsm mappings and intersection with
regular languages or L2 ⊆ REG. Then �(L1, L2) ⊆ L1.

Proposition 5. Let L1 be a full semi-AFL and let REG0 ⊆ L2 be closed under
inverse gsm mappings and intersection with regular languages. Then �(L1, L2) ⊆
L1 if and only if L1 is closed under intersection with L1 and L2.

We would also like to study the iterated version of this more general operation.
Let � = (T, Σ, n1, n2) be a CTGR system and let L ⊆ Σ∗, T ⊆ Σ∗#Σ∗#Σ∗.
We generalize � to an iterated operation �∗(L) in the natural way:

�0(L) = L,

�n+1(L) = �n(L) ∪ �(�n(L)), n ≥ 0

�∗(L) =
∞⋃

n=0

�n(L).

In the following, we show that we are able to generate arbitrary recursively
enumerable languages using iterated contextual template-guided recombination
with regular templates and a finite initial language and applying an intersection
with a terminal alphabet and a coding. The following proof follows the well
known “simulate-rotate” proof technique from splicing systems [2]. We apply
the final coding homomorphism in the proof in order to stop the β symbol in the
definition from “compressing” small amounts of information in an undesirable
fashion. It is not clear if the coding is strictly necessary, however it is very
simple: mapping three separate symbols onto one for each symbol. We only
require deletion contexts of length two.

Proposition 6. Let L′ ⊆ Σ∗ be an arbitrary recursively enumerable language.
Then there exist alphabets Σ, W , a regular template language T , a CTGR system
� = (T, W, 1, 1), a finite language L ⊆ W ∗, and a coding homomorphism h from
Σ

∗
to Σ∗ such that h(�∗(L) ∩ Σ

∗
) = L′.

We have thus demonstrated that an arbitrary recursively enumerable language
can be generated by a CTGR system with a finite initial language and a
4 Where S(L1,REG) denotes non-iterated splicing systems with an initial language

in L1 and splicing rules in REG.
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regular template language up to a coding homomorphism and intersection with
a terminal alphabet.

5 Conclusions

We have considered the basic properties and computational power of an opera-
tion inspired by the template-guided recombination model of gene descrambling
in stichotrichous ciliates. Specifically, we began by investigating the properties of
a non-iterated version of template-guided recombination systems, contributing to
their theoretical understanding. We characterized closure properties of families
of languages under template-guided recombination in terms of other basic opera-
tions and demonstrated that every intersection-closed full semi-AFL is closed un-
der template-guided recombination with templates from the same full semi-AFL.

We then recalled the properties of iterated template-guided recombination
systems. The principal result here shows the limited power of template-guided
recombination by demonstrating that every full AFL is closed under iterated
template-guided recombination with regular templates. This implies that the
computational power of any system based on this operation will be quite limited.
Indeed, if one enforces the “reasonable” restriction that template and initial lan-
guages must be regular, one does not gain any increase in computational power.
This motivates the question of what minimal extension would be required to in-
crease the generative capacity beyond the regular languages while still restricting
the initial and template languages to be, at most, regular.

We addressed this question by showing that the tight restriction on compu-
tational power can be lifted by adding a small degree of context-awareness to
a TGR system. We have demonstrated that we are able to generate arbitrary
recursively enumerable languages using contextual iterated template-guided re-
combination with regular templates, a finite initial language and applying an
intersection with a terminal alphabet and a coding.

It may be preferable, from the point of view of biocomputing, to show a
result which demonstrates the simple template-guided recombination systems to
be capable of universal computation; however, from the point of view of judging
the closeness of this formalization to the biological process which it models, the
opposite may be true. Given that a cell has access to only finite resources, and
has serious constraints on the length of time in which the descrambling process
must be completed, it seems reasonable that the process must be relatively
computationally simple.

We have also shown in this paper that by adding a small amount of context-
awareness to a TGR system, we are able to easily generate arbitrary recursively
enumerable languages. While this result may be more theoretically satisfying, we
caution that the “deletion contexts” required to derive such a result are not present
in the biological model given in [9], though they are not biologically impossible. Too
little is currently known about the molecular biology of ciliates to make definitive
statements; however,we feel that, in the context of formalizing a biological process,
a result indicating limited computational power is perhaps preferable.
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The simplicity and elegance of template-guided recombination combined with
the ubiquity of template-mediated events in biological systems, shows that the
operation warrants further investigation both as a possible model of a biological
process and as a purely abstract operation.
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