
Recognizing DNA Splicing

Matteo Cavaliere1, Nataša Jonoska2, and Peter Leupold3

1 Department of Computer Science and Artificial Intelligence,
University of Sevilla,

Avda. Reina Mercedes s/n, 41012 Sevilla, Spain
martew@inwind.it

2 Department of Mathematics,
University of South Florida, Tampa, FL 33620, USA

jonoska@math.usf.edu
3 Research Group on Mathematical Linguistics,

Rovira i Virgili University,
Pl. Imperial Tàrraco 1, 43005 Tarragona, Spain

klauspeter.leupold@estudiants.urv.es

Abstract. Motivated by recent techniques developed for observing evo-
lutionary dynamics of a single DNA molecule, we introduce a formal
model for accepting an observed behavior of a splicing system. The main
idea is to input a marked DNA strand into a test tube together with
certain restriction enzymes and, possibly, with other DNA strands. Un-
der the action of the enzymes, the marked DNA strand starts to evolve
by splicing with other DNA strands. The evolution of the marked DNA
strand is “observed” by an outside observer and the input DNA strand is
“accepted” if its (observed) evolution follows a certain expected pattern.
We prove that using finite splicing system (finite set of rules and finite
set of axioms), universal computation is attainable with simple observing
and accepting devices made of finite state automata.

1 Introduction: (Bio)Accepting Devices

Recently, several techniques for observing the dynamics of a single DNA molecule
and in general of a single biomolecule have been developed. Some of these come
from the study of protein dynamics and interactions in living cells. For instance,
a well established methodology is the FRAP, fluorescent recovery after photo-
bleaching, [13]; other known methodologies are FRET, [11], fluorescence res-
onance energy transfer and FCS, [19], fluorescent correlation spectroscopy. A
survey on the techniques to observe dynamics of biomolecules, with their advan-
tages and disadvantages, can be found in [14]. Usually these techniques can be
used to observe only three different colors in fluorescent microscope, but it is
possible to obtain more colors by multiplexing, as suggested by [12].

A totally new way to mark (and then, to observe) single DNA molecules
is represented by quantum dots; by using this technique it is possible to tag
individual DNA molecules; in other words they can be used like fluorescent
biological labels, as suggested by [3], [8]. A very recent review on the use of
quantum dots in vivo imaging can be found in [16].

A. Carbone and N.A. Pierce (Eds.): DNA11, LNCS 3892, pp. 12–26, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Recognizing DNA Splicing 13

In many techniques presented in [14], studying of the dynamics of DNA
strands is divided in two separate phases: the registration of the dynamics (on a
special support like channels of data) and then the investigation of the collected
data. Hence, the model that is introduced in this paper uses “observer” and
“decider” as two independent devices.

The theoretical model is used to construct accepting devices using DNA op-
erations. The evolution/observation strategy was initially introduced in a formal
computing model inspired by the functioning of living cells, known as membrane
systems [5].

Since then, the evolution/observation idea has been [2], [4], [6]. considered
in different formal models of biological systems. In all these developments, the
underlying idea is that a generative device is constructed by using two systems: a
mathematical model of a biological system that “lives” (evolves) and an observer
that watches the entire evolution of this system and translates it into a readable
output.

Thus the main idea of this approach is that the computation is made by
observing the entire life of a biological system. Differently from the previously
mentioned works, in [7] the evolution/observation strategy has been used to
construct an accepting device. There, it has been suggested that it is possible
to imagine any biological system as an accepting device. This is achieved by
taking a model of a biological system, introducing an input to such a system and
observing its evolution. If the evolution of the system is of an expected type, (for
example follows a regular predetermined pattern) the input is accepted by the
(bio)system, otherwise it can be considered rejected.

An external observer is fundamental in extracting a more abstract, formal
behavior from the evolution of the biological system. A decider is the machine
that checks whether the behavior of the biological system is of the expected type.

Splicing systems belong to a formal model of recombination of double stranded
DNA molecules (for simplicity we call them DNA strands) under the action
of a ligase and restriction enzymes (endonucleases), [10]. The main purpose of
this paper is to illustrate the accepting strategy of oberver/decider to splicing
systems. For the motivations and background on splicing systems we refer to the
original paper [10] or to the corresponding chapter in [18].

In [4] an observer was associated to splicing systems to construct a generative
device. Here we construct an accepting device by joining a decider to the observer
of the splicing system. We call such a system Splicing Recognizer (in short, SR).
A schematic view of the model is depicted in Figure 1.

The SR works in the following way. An input marked DNA strand (repre-
sented by a string w) is inserted in a test tube. Due to the presence of restric-
tion enzymes, the input strand changes, as it starts to recombine with other
DNA strands present in the test tube. A sequence of intermediate marked DNA
strands is generated. This constitutes the evolution of the input marked DNA
strand. Schematically this is presented with the sequence of w, w′, w′′, w′′′ in
Figure 1.

14 M. Cavaliere, N. Jonoska, and P. Leupold

The external observer associates to each intermediate marked strand a certain
label taken from a finite set of possible labels. It writes these labels onto an
output tape in their chronological order. In Figure 1 this corresponds to the
string a1a2a3a4. This string represents a code of the obtained evolution. When
the marked strand becomes of a certain predetermined “type” the observation
stops.

observer

1a 2a 3a 4a

4a3a2a1a

input marked
string

evolution
step

(splice)

observer observer observer

decider
YES

NO

w

w(accepted)

w(rejected)

w

compile

symbol
output

w’ w’’ w’’’

Fig. 1. The splicing/observer architecture

At this point the decider checks if the entire evolution of the input marked
DNA strand described by the string a1a2a3a4 has followed a certain pattern, i.e.
if it is in a certain language. If this is true, the input string w is accepted by the
SR; otherwise it is considered to be rejected.

This paper shows that using this strategy, it is possible to obtain very powerful
accepting systems even when very simple components are used.

For instance, we show that having just a finite state automaton as observer
of the evolution of a finite splicing system (with a finite set of splicing rules)
is already enough to simulate a Turing machine. This is a remarkable jump in
acceptance power since it is well known that a finite splicing system by itself can
generate only a subclass of the class of regular languages. The results are not
surprising, since by putting extra control with the decider, the computational
power of the whole system increases. Similar results, but in the generative sense,
were obtained without the decider in [4] but these required a special observation
of a right-most evolution, which is not the case with the results presented here.

Recognizing DNA Splicing 15

2 Splicing Recognizer: Definition

In what follows we use basic concepts from formal language theory. For more
details on this subject the reader should consult the standard books in the area,
for instance, [20], [21].

Briefly, we fix the notations used here. We denote a finite set (the alphabet)
by V , the set of words over V by V ∗. By REG, CF , CS, and RE we denote
the classes of languages generated by regular, context-free, context-sensitive, and
unrestricted grammars respectively.

2.1 Splicing with a Marked String

As underlying biological system we consider a splicing system (more precisely
an H scheme, following the terminology used in [18]). As discussed in the Intro-
duction, the splicing system used has the particular feature that, at any time,
exactly one string of the produced language is marked.

First we recall some basic notions concerning splicing systems. However, in
what follows, we suppose the reader is already familiar with this subject, as for
instance, presented in [18].

Consider an alphabet V (splicing alphabet) and two special symbols # and $
not in V . A splicing rule (over V) is a string of the form u1#u2$u3#u4, where
u1, u2, u3, u4 ∈ V ∗.

For a splicing rule r = u1#u2$u3#u4 and strings x, y, z1, z2 ∈ V ∗ we write
(x, y) =⇒r (z1, z2) iff x = x1u1u2x2, y = y1u3u4y2, z1 = x1u1u4y2, z2 =
y1u3u2x2. We refer to z1 (z2) as the first (second) string obtained by applying
the splicing rule r.

An H scheme is a pair σ = (V, R) where V is an alphabet, and R ⊆ V ∗#V ∗$V ∗

#V ∗ is a set of splicing rules. For a given H scheme σ = (V, R) and a lan-
guage L ⊆ V ∗ we define σ(L) = {z1, z2 ∈ V ∗ | (x, y) =⇒r (z1, z2), for some
x, y ∈ L, r ∈ R}.

When restriction enzymes (and a ligase) are present in a test tube, they do
not stop acting after one cut and paste operation, but they act iteratively.

Given a initial language L ⊆ V ∗ and an H scheme σ = (V, R) we define the
iterated splicing as: σ0(L) = L, σi+1(L) = σi(L) ∪ σ(σi(L)), i ≥ 0.

In this work, as previously discussed, we are interested in observing the evo-
lution of a specific marked string introduced, at the beginning, in the initial
language L and called input marked string.

Given an initial language L, an input marked string w ∈ L, a target marked
language Lt and an H scheme σ, the scheme defines a sequence of marked strings
that represents the evolution of the input marked string w, according to the
splicing rules defined in σ (for simplicity we suppose w /∈ Lt). The sequence of
marked strings, 〈w0 = w, w1, · · · , wk〉, for k ≥ 1 and wk ∈ Lt, is constructed
in the following iterative way (wi is the marked string associated to the set
σi(L), 0 ≤ i ≤ k).

Each new marked string is obtained by splicing the old marked string, until a
marked string wk from the target marked language Lt is reached or the marked
string cannot be spliced.

16 M. Cavaliere, N. Jonoska, and P. Leupold

The first string of the sequence is the input marked string, w0 = w.
If wi ∈ Lt, i ≥ 1, then the sequence ends (the marked string is among the

ones of the target marked language).
If there is no x ∈ σi(L), i ≥ 0, such that (wi, x) =⇒r (z1, z2) or (x, wi) =⇒r

(z1, z2) for some r ∈ R, then the sequence ends (the marked string cannot be
spliced).

If x, y ∈ σi(L), i ≥ 0, with wi = x (or wi = y) and there exists a rule r ∈ R
such that (x, y) =⇒r (z1, z2), then wi+1 = z1. In this case, if the marked string
can be subject to more than one splicing rule, producing different strings, the
choice of the next marked string is done in a non-deterministic way. Notice that
we always consider the first string produced as the new marked one.

Because the update of a marked string is made in a non-deterministic way,
given an input marked string w, an initial language L, a target marked language
Lt, and an H scheme σ, it is possible to get different sequences of intermediate
marked strings. The collection of all these sequences is denoted by σ(w, L, Lt).

For a splicing rule r = u1#u2$u3#u4 we denote by rad(r) the length of the
longest string u1, u2, u3, u4; we say that this is the radius of r. The radius of an
H scheme is the maximal radius of its rules.

In what follows, we denote by FINHk
the class of H schemes with radius at

most k and using finite set of splicing rules.

2.2 Observer

For the observer as described in the Introduction we need a device mapping
arbitrarily long strings, into just one singular symbol. As in earlier work [6] we
use a special variant of finite automata with some feature known from Moore
machines: the set of states is labelled with the symbols of an output alphabet
Σ. Any computation of the automaton produces as output the label of the state
it halts in (we are not interested in accepting / not accepting computations
and therefore also not interested in the presence of final states); because the
observation of a certain string should always lead to a fixed result, we consider
here only deterministic and complete automata.

Formalizing this, a monadic transducer is a tuple O = (Z, V, Σ, z0, δ, l) with
state set Z, input alphabet V , initial state z0 ∈ Z, and a complete deterministic
transition function δ as known from conventional finite automata; further there
is the output alphabet Σ and a labelling function l : Z 	→ Σ. The output of the
monadic transducer is the label of the state it stops in. For a string w ∈ V ∗ and
a transducer O we then write O(w) for this output; for a sequence 〈w1, . . . , wn〉
of n ≥ 1 strings over V ∗ we write O(w1, . . . , wn) for the string O(w1) · · · O(wn).

For simplicity, in what follows, we present only the mappings that the ob-
servers define, without giving detailed implementations for them.

2.3 Decider

As deciders we require devices accepting a certain language over the output
alphabet Σ of the corresponding observer as just introduced. For this we do not
need any new type of device but can rely on conventional finite automata with

Recognizing DNA Splicing 17

input alphabet Σ. The output of the decider D, for a word w ∈ Σ∗ in input, is
denoted by D(w). It consists of a simple yes or no.

2.4 Splicing Recognizer

Putting together the components just defined in the way informally described
in the Introduction, a splicing recognizer (in short SR) is a quintuple Ω =
(σ, O, D, L, Lt); σ = (V, R) is an H scheme, O is an observer (Z, V, Σ, z0, δ, l), D
is a decider with input alphabet Σ, L and Lt are finite languages, respectively,
the initial and the target marked language for σ.

The language accepted by SR Ω is the set of all words w ∈ V ∗ for which there
exists a sequence s ∈ σ(w, L, Lt) such that D(O(s)) = yes; formally

L(Ω) := {w ∈ V ∗ | ∃s ∈ σ(w, L, Lt)[D(O(s)) = yes]}.

3 A Short Example

It is well-known in the splicing literature that the family of languages generated
by splicing systems using only a finite set of splicing rules and a finite initial
language is strictly included in the family of regular languages [18]. In the fol-
lowing example we show that an SR composed by such an H scheme with a finite
set of rules, finite initial language, finite target marked language and finite state
automata as observer and decider, can recognize non regular languages. This
example is just a hint towards the fact that the combination splicing system-
observer-decider can be powerful even when the single components are simple.

In particular, we construct an SR recognizing the language {ola
nbnor | n ≥ 0}

that is known to be non-regular. The SR Ω = (σ, O, D, L, Lt) is defined as fol-
lows: the H scheme is σ = (V, R), with V = {ol, or, a, b, a′, b′, X1, Y1, X2, Y2}
and R = {r1 : #bor$X2#b′or, r2 : ola

′#Y2$ola#, r3 : #b′or$X1#or, r4 :
ol#Y1$ola

′#}. The initial language is L = {X2b
′or, ola

′Y2, X1or, Y1ol}. The tar-
get marked language is Lt = {olor}.

The observer Ohas input alphabetV and output alphabetΣ = {l0, l1, l2, l3, ⊥}.
The mapping it implements is:

O(w) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

l0 if w ∈ ol(a∗b∗)or,
l1 if w ∈ ol(a∗b∗b′)or,
l2 if w ∈ ol(a′a∗b∗b′)or,
l3 if w ∈ ol(a′a∗b∗)or ,
⊥ else.

The decider D is a finite state automaton, with input alphabet Σ, that gives
a positive answer exactly if a word belongs to the regular language l0(l1l2l3l0)∗.

The observer checks that the splicing rules are applied in the order r1, r2,
r3, r4, and this corresponds to remove, in an alternating way, a b from the right
and an a from the left of the input marked string. In this way, at least one of
the evolutions of the input marked string is of the kind accepted by the decider

18 M. Cavaliere, N. Jonoska, and P. Leupold

if, and only if, the input marked string is in the language {ola
nbnor | n ≥ 0}.

Notice that, at each step, the marked string present is spliced only with one of
the strings present in the initial language.

To clarify the working of the SR Ω we show the acceptance of the input
marked string w0 = olaabbor. For simplicity, we only show the evolution of the
input marked string and the output of the observer, step by step.

– Step 0: input marked string w0 = olaabbor; O(w0) = l0;
– Step 1: apply rule r1; new marked string w1 = olaabb′or; O(w1) = l1;
– Step 2: apply rule r2; new marked string w2 = ola

′abb′or; O(w2) = l2;
– Step 3: apply rule r3; new marked string w3 = ola

′abor; O(w3) = l3;
– Step 4: apply rule r4; new marked string w4 = olabor; O(w4) = l0;
– Step 5: apply rule r1; new marked string w5 = olab′or; O(w5) = l1;
– Step 6: apply rule r2; new marked string w6 = ola

′b′or; O(w6) = l2;
– Step 7: apply rule r3; new marked string w7 = ola

′or; O(w7) = l3;
– Step 8: apply rule r4; new marked string (in the target marked language)

w8 = olor; O(w8) = l0.

Obviously the entire observed evolution l0l1l2l3l0l1l2l3l0 is of the kind ac-
cepted by the decider D, so the string w0 is accepted by the SR Ω.

4 Preliminary Results

An SR can accept even non context-free languages as stated in the following
theorem. The trick used here consists in the rotation of the input marked string,
during its evolution. The regular observer can control that this kind of rotation
is done in a correct way.

Theorem 1. There is a SR Ω such that L(Ω) is a non context-free, context-
sensitive language. Moreover, the splicing scheme of Ω can be taken to be of
radius ≤ 3.

Proof. We construct an SR Ω accepting the non context-free language {olwor |
w ∈ {a, b, c}+, #a(w) = #b(w) = #c(w)}.

The SR Ω = (σ, O, D, L, Lt) is defined as follows: the H scheme is σ = (V, R),
with V = {a, b, c, ol, or, X1, X2, X3, X4, X5, X6, Xa, X ′

a, Xb, X
′
b, Xc, X

′
c}. The set

of splicing rules of R is divided in two groups, according to their use.
The first group consists of the rules used to rotate the marked string.

r1 : {d#or$X1#Xaor | d ∈ {a, b, c}},
r2 : {#dXeor$X2#XdXeor, | e, d ∈ {a, b, c}, e = d, }
r3 : {olX

′
e#X3$ol#d, | e, d ∈ {a, b, c}}

r4 : {#XdXeor$X4#Xeor, | e, d ∈ {a, b, c}, e = d}
r5 : {ole#X5$olX

′
e# | e ∈ {a, b, c}}.

The second group of splicing rules is used to remove a symbol a, b, or c from
the marked string.

Recognizing DNA Splicing 19

r6 : #aXaor$X6#Xbor,
r7 : #bXbor$X6#Xcor,
r8 : #cXcor$X6#Xaor.

The initial language of the SR is L = {X1Xeor, olX
′
eX3, X4Xeor, oleX5 | e ∈

{a, b, c}} ∪ {X2XdXeor | d, e ∈ {a, b, c}, e = d} ∪ {X6Xbor, X6Xcor, X6Xaor}.
Notice the language is finite. The target marked language is Lt = {olXaor}.

The observer O has input alphabet V and output alphabet Σ = {l0, ⊥} ∪
{le,1, le,2, le,3, le,4 | e ∈ {a, b, c}}.

The mapping implemented by the observer is

O(w) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

l0 if w ∈ ol{a, b, c}+or,
le,1 if w ∈ ol{a, b, c}+Xeor, e ∈ {a, b, c}
le,2 if w ∈ ol{a, b, c}∗XdXeor, e, d ∈ {a, b, c}
le,3 if w ∈ olX

′
d{a, b, c}∗XdXeor, e, d ∈ {a, b, c}

le,4 if w ∈ olX
′
d{a, b, c}∗Xeor, e, d ∈ {a, b, c}

λ if w ∈ {olXaor}
⊥ else.

The decider D is a finite state automaton, with input alphabet Σ, that gives
a positive answer exactly if and only if, a word belongs to the regular language
l0(la,1(la,2la,3la,4la,1)∗lb,1(lb,2lb,3lb,4lb,1)∗lc,1(lc,2lc,3lc,4lc,1)∗)+.

At the beginning of the computation the input marked string is of the kind
ol{a, b, c}+or and it is mapped by the observer to l0. If the input marked string is
not of this type, then the observer outputs something different from l0, and the
entire evolution is not accepted by the decider D. In the first step, the splicing
rule d#or$X1#Xaor from r1 is used, and in this way a new marked string of
the type ol{a, b, c}+Xaor is obtained and mapped by the observer to la,1. The
introduced symbol Xa indicates that we want to search (and then to remove) a
symbol a from the obtained marked string. This searching is done by rotating
the marked string, until a symbol a becomes the symbol immediate to the left
of Xa. The rotation of the string is done by using the splicing rules given in the
first group.

A rotation of the string consists in moving the symbol immediately to the
left of Xa, to the right of ol; one rotation is done by applying, in a consecutive
way, a rule from r2, from r3, from r4 and finally from r5 (the precise rules
to apply depend on the symbol to move during the rotation). The sequence of
marked strings obtained during a rotation is mapped by the observer to the string
la,2la,3la,4la,1. The ∗ present in the regular expression describing the decider
language, indicates the possibility to have 0, or more consecutive rotations before
a symbol a comes to be the symbol immediately to the left of Xa.

The observer checks that each rotation is made in a correct way; that is, the
symbol removed from the left of Xa by using a rule from r4, is exactly the same
symbol introduced to the right of ol, by using the corresponding rule in r3. This
condition is checked in the fourth line of the observer mapping; if this regular
condition is not respected, then the observer outputs ⊥ and the entire evolution
of the input marked string is not accepted by the decider D.

20 M. Cavaliere, N. Jonoska, and P. Leupold

Once a symbol a becomes the symbol immediately to the left of Xa, and the
rotations can stop, then it is deleted by using the splicing rule r6. When rule r6
is applied, the new marked string obtained is of the kind ol{a, b, c}+Xbor that is
mapped by the observer to lb,1; the inserted symbol Xb, indicates that now we
search the symbol b.

In an analogous way, by using consecutive rotations, a symbol b is placed
immediately to the left of Xb and then is removed by using rule r7. In this case,
the sequence of marked strings obtained during each rotation is mapped by the
observer to lb,2lb,3lb,4lb,1. Once rule r7 is applied, the new marked string obtained
is of the kind ol{a, b, c}+Xcor and is mapped by the observer to lc,1.

Again analogously, the symbol c is searched for and then deleted by using rule
r8; in this case, the sequence of marked strings obtained during each rotation
is mapped by the observer to the string lc,2lc,3lc,4lc,1. At this point the entire
process can be iterated. By searching and removing a new symbol a, and then
again a b, and again a c, until the marked string olXaor, from the target language
is reached (the string obtained when all symbols a, b and c, have been deleted
from the input marked string). Notice that at each step the current marked
string is spliced with a string from the initial language.

This explanation shows that all strings from the language {ol{a, b, c}+or |
#a = #b = #c} can indeed be accepted by Ω. The fact that only such strings
can be accepted is guaranteed by the particular form of sequences accepted by
the decider in combination with the very specific form of the observed strings
leading to such a sequence. �

5 Universality

Following the idea used in the proof of Theorem 1, it is possible to prove that
SRs are universal. In informal words this means that it is possible to simulate an
accepting Turing machine by observing, with a very simple observer, the evolution
of a very simple splicing system.

The universality is not unexpected since, H systems with observer and de-
cider are similar to splicing systems with regular target languages, known to be
universal, [17].

Theorem 2. For each RE language L over the alphabet A there exists an SR Ω
using a splicing scheme σ ∈ FINH4 , such that Ω accepts the language {o′lwo′r |
w ∈ L}, with o′l, o

′
r /∈ A.

Proof. Any SR of the specified type can be simulated by a Turing machine. Thus
we only show that, for any Turing machine, there can be constructed an equiva-
lent SR system Ω composed of a splicing system using a finite set of rules, a finite
initial language and target marked language and by an observer and a decider
that are finite state machines. In this proof we use off-line Turing machines with
only a single combined input/working tape. The set δ of transitions is composed
of elements of the form Q×A → Q×A×{+, −}, where Q is the set of states, A
the tape alphabet, and + or − denotes a move to the right or left, respectively.

Recognizing DNA Splicing 21

An input word is accepted, if and only if, the Turing machine stops in a state
that belongs to F ⊂ Q of final states. Without loss of generality, we suppose
that the machine M accepts the input, if and only if it reaches a configuration
where the tape is entirely empty, and M is in a state that belongs to F . The
initial state of M is q0 ∈ Q. The special letter � ∈ A denotes an empty tape cell.

We construct an SR Ω simulating M . Before giving the formal details, we
outline the basic idea of the proof. The input string to the Turing machine is
inserted as input marked string to the SR Ω, delimited by two external markers
o′l, o

′
r. This does not restrict the generality of the theorem, because these two

symbols could be added to any input string in two initalizing steps by the SR.
However, we want to spare ourselves the technical details of this.

Initially, an arbitrary number of empty tape cells � is added to the left and
to the right of the input marked string. When this phase is terminated, some
new markers ol and or are added to the left and right of the produced marked
string; starting from this step, the transitions of the Turing machine M are sim-
ulated on the current marked string; the marked string contains, at any time,
the content of the tape of M , the current state and the position of the head
of M over the tape. To read the entire tape of M the marked string is rotated
using a procedure very similar to the one described in the proof of Theorem 1;
like there, the observer can check that the rotations are done in a correct way.
The computation of Ω stops when the target marked string is reached, that is
when a marked string representing an empty tape is reached.

Formally, the SR Ω = (σ, O, D, L, Lt) is constructed in the following way.
The H scheme σ = (V, R) has alphabet V = {or, ol, o

′
r, o

′
l, X1, X2, · · · , X12} ∪

A′ ∪ {Xe, X
′
e | e ∈ A′} where A′ = A ∪ (A × Q).

The splicing rules present in R are divided in groups, according to their use.

Initialization
r1 : {o′l(a, q0)#X1$o′la#, a ∈ (A − {�})};
r2 : {#o′r$X2#�o′r};
r3 : {o′l�#X3$o′l#};
r4 : {#o′r$X4#or};
r5 : {ol#X5$o′l#};

Rotations
r6 : {a#eor$X6#Xeor, e ∈ A′, a ∈ A};
r7 : {olX

′
e#X7$ol#f, e, f ∈ A′};

r8 : {a#Xeor$X8#or , e ∈ A′, a ∈ A};
r9 : {ole#X9$olX

′
e#f, e, f ∈ A′};

Transitions
r10 : {#(a, q1)bor$X10#c(b, q2)or,
q1, q2 ∈ Q, a, b, c ∈ A, (q1, a) → (q2, c, +) ∈ δ };
r11 : {#b(a, q1)dor$X11#(b, q2)cdor,
q1, q2 ∈ Q, a, b, c, d ∈ A, (q1, a) → (q2, c, −) ∈ δ};

22 M. Cavaliere, N. Jonoska, and P. Leupold

Halting phase
r12 : {ol#$X12#or}.

The initial language L is the finite language containing the strings used
by the mentioned splicing rules; in particular, L = {o′l(a, q0)X1 | a ∈ (A −
{�})}∪{X2o

′
r, o

′
l�X3, X4or, olX5, X8or, X12or}∪{X6Xeor, olX

′
eX7, oleX9 | e ∈

A′} ∪ {X10c(b, q2)or | q2 ∈ Q, c, b ∈ A} ∪ {X11(b, q2)cdor | b, c, d ∈ A, q2 ∈ Q}.
The target marked language is Lt = {olor}. The observer has input alphabet

V and output alphabet Σ = {l0, l1, · · · , l8, lf , ⊥}.
The mapping implemented by the observer is

O(w) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

l0 if w ∈ o′l(A − {�})+o′r,
l1 if w ∈ o′l(a, q0)(A − {�})∗o′r, a ∈ (A − {�}),
l2 if w ∈ o′l(A

′ − {�})+(�)+o′r,
l3 if w ∈ o′l(�)+(A′ − {�})+(�)+o′r,
l4 if w ∈ {o′lw

′or | w′ ∈ (�)∗(A′ − {�})+(�)∗, length(w′) ≥ 3},
l5 if w ∈ (ol(A′)+or − {w | w ∈ E}),
l6 if w ∈ ol(A′)∗Xeor, e ∈ A′,
l7 if w ∈ olX

′
e(A

′)∗Xeor, e ∈ A′,
l8 if w ∈ olX

′
e(A′)∗or, e ∈ A′,

lf if w ∈ E,
⊥ else.

where E = ol(�)∗(�, q)(�)+or ∪ ol(�)+(�, q)(�)∗or ∪ ol(�)+(�, q)(�)+or,
q ∈ Q.

The decider is a finite state automaton, with input alphabet Σ that accepts
the regular language E1 ∪ E2, where E1 = l0l1(l2)+(l3)∗l4(l5 ∪ l5l5)(l6l7l8(l5 ∪
l5l5))∗lf and E2 = l0l1l4(l5 ∪ l5l5)(l6l7l8(l5 ∪ l5l5))∗lf .

The main point of the proof is to show that, given an input marked string w,
at least one of its (observed) evolutions is of the type accepted by the decider if,
and only if, the string w is accepted by the Turing machine M .

We now describe the (observed) evolution of a correct input marked string;
from this, we believe it will be clear that non correct strings will not have an evo-
lution of the kind accepted by the decider, and, therefore will not be accepted by
the SR Ω. The reader can compare the observed evolution of the input marked
string with the language accepted by the decider.

Actually we introduce in the system Ω not the string w but a string of the
type o′lwo′r where o′l, o

′
r are left and right delimiters. In general the input marked

string will be of the type o′l(A − {�})+o′r and is mapped by the observer to l0.
The pairs in Q × A are used to indicate in the string the state and the position
of the head of M . Initially the head is positioned on the leftmost symbol of the
input marked string, starting in state q0 (by using a rule in r1); the obtained
marked string is of the kind o′l(a, q0)(A − {�})∗o′r, a ∈ (A − {�}) mapped to l1
by the observer.

Then empty cells � are added to the right and to the left of the marked string
using rules in r2 and in r3, respectively. The marked string obtained at the end

Recognizing DNA Splicing 23

of this phase will be of the kind o′l(�)+(A′ − {�})+(�)+o′r mapped to l3 by the
observer. This phase is optional, and therefore the language of the decider is
described by the union of E1 where the adding of spaces is used and E2, where
no spaces are added, i.e., l2 and l3 are missing.

Then, by using rules in r4 and in r5 the delimiters o′l and o′r are changed into
ol and or, respectively. When a rule in r4 is applied, the marked string obtained
is of the kind o′lw

′or, w
′ ∈ (�)∗(A′ − {�})+(�)∗ mapped to l4 if the size of the

string w′ (possibly, including empty cells) is at least of 3 symbols; this condition
is useful during the following phases of rotations and does not imply a loss of
generality.

When a rule in r5 is applied, also o′l is removed and the marked string ob-
tained is mapped to l5 by the observer. This means that the symbol indicating
the head of M , (a, q1), is exactly one symbol away from or, then a splicing rule
in r10 or in r11 is applied. The one symbol left between the symbol representing
the head and the delimiter or is useful in case of the simulation of a right-moving
transition. The rule sets r10 and r11correspond to transitions moving right and
left, respectively.

Once a transition is simulated, the obtained marked string is again of the
type mapped to l5 by the observer (this is why it is possible to have in the
language of the decider the substring l5l5). At any rate it is not possible to
have immediately another transition after a transition, because the symbol cor-
responding to the head of M is moved. At least one rotation must be first
executed.

In case the symbol representing the head of M is not exactly one symbol
away from or, then the marked string is rotated until this condition is not true
any more. The rotation of one symbol in the string (i.e., moving the symbol
present to the left of or, to the immediate right of ol) is done by applying, in
this order, splicing rules from r6, r7, r8 and from r9. The marked strings ob-
tained during this phase are mapped by the observer to l6, l7, l8 and finally
l5. At the end of a rotation a transition can be simulated; more consecutive
rotations can be done until the necessary condition to simulate a transition is
reached. This explains why (l6l7l8(l5 ∪ l5l5))∗ forms part of the decider lan-
guage.

When, after a transition, the marked string obtained represents the empty
tape of M , then the computation of the SR stops. The marked strings repre-
senting an empty tape are the ones in the language E and they are mapped
by the observer to lf . After the observer has output lf , the splicing rule in r12
can be applied and the unique string in the target marked language olor can
be reached. If the rule in r12 is applied before the observer outputs lf , then the
entire evolution is not accepted by the decider. Notice that during the entire
computation the marked string can be spliced only with a string from the initial
language.

From the above explanation, it follows that an input marked string written
in the form o′lwo′r is accepted by Ω, if and only if, w is accepted by the Turing
machine M . �

24 M. Cavaliere, N. Jonoska, and P. Leupold

6 Concluding Remarks

We have presented another approach to compute by using DNA molecules (and
in general, biological systems), using the idea of evolution and observation.

The paper shows that observing an evolution of only one marked DNA strand
by means of a simple observer and decider can be a powerful tool which the-
oretically is sufficient to simulate a Turing machine. The components involved
are rather simple (finite splicing and finite state automata), that the computa-
tional power seems to stem mainly from the ability to observe, in real-time, the
changes (the dynamics) of a particular (marked) DNA strand, under the action
of restriction enzymes.

The proposed approach suggests several problems, if this were to be imple-
mented in practice.

For instance, the process of observation as defined here is non-deterministic;
meaning, the marked DNA strand inputed is accepted if, at least one of its
observed evolution follows an expected pattern, while there might be several
possible evolutions of this DNA strand since there might be several different
ways to splice the strand. From a practical point of view this would require
several copies of the same input DNA strand, each copy marked with a different
“color”. The observer should follow, separately, the evolution of each one of
these strands. This theoretically requires an unbounded number of copies of
DNA strands, each one marked with a different color. In practice, however, using
many marked copies may increase the chance to obtain the needed evolutions.

A possible way to implement this might be the use of the multiplexing tech-
nique introduced in [12] used to mark several molecules, each one with a different
“color”. Another way may be marking the strands with quantum dots, [3]. How-
ever, none of these techniques have been used for observing splicing and the
problems that may arise during the implementation may be numerous.

Further theoretical investigations may provide better solutions if it can be
shown that by increasing the complexity of the observer and the decider a
(“more”) deterministic way of generating the splicing evolutions can be em-
ployed. We recall that in the model presented here the observers and deciders
are with very low computational power, i.e. finite state automata.

Another problem that needs to be taken care of if implementing an SR is the
real-time observation: in the model presented here it is supposed that the ob-
server is able to catch, in the molecular soup, every single change of the marked
DNA strand. In practice, it is very questionable whether every step of the evo-
lution can be observed. It should be assumed that only some particular types
of changes, within a certain time-interval can be observed (see [14]). Therefore
another variant of SR needs to be, at least theoretically, investigated in which an
observer with “realistic” limitations on the ability of observation is considered.
For instance the observer might be able to watch only a window or a scattered
subword of the entire evolution.

On the other hand, universal computational power has been obtained here by
using an H scheme of radius 4. We conjecture that it is possible to decrease the

Recognizing DNA Splicing 25

radius, hence the question arises of what is the minimum radius that provides
universal computation.

It remains also to investigate SRs using simpler and more restricted variants
of H schemes, like the ones with simple splicing, [15] and semi-simple splicing
rules, [9]. Notice that from a pure theoretical point of view, observer and decider
could be joined in an unique finite state automaton, which may provide a better
framework for theoretical investigation. In this paper we prefer to leave the two
“devices” of observer and decider separated since this situation can be envisioned
to be closer to reality.

Moreover, we can interpret a given H scheme with an observer as a device
computing a function, by considering as input the input marked string, and as
output its (observed) evolution. What kind of functions can be computed in this
way?

These are only a few of the possible directions of investigation that the pre-
sented approach suggests. We believe that some of these directions will provide
useful results for using recombinant DNA for computing.

Acknowledgments

The authors want to thank Peter R. Cook for providing extremely useful ref-
erences. M. Cavaliere and P. Leupold are supported by the FPU grant of the
Spanish Ministry of Science and Education. N. Jonoska has been supported in
part by NSF Grants CCF #0432009 and EIA#0086015.

References

1. L.M. Adleman, Molecular Computation of Solutions to Combinatorial Problems,
Science 226, 1994, pp. 1021–1024.

2. A. Alhazov, M. Cavaliere, Computing by Observing Bio-Systems: the Case of
Sticker Systems, Proceedings of DNA 10 - Tenth International Meeting on DNA
Computing, Lecture Notes in Computer Science 3384 (C. Ferretti, G. Mauri, C.
Zandron eds.), Springer, 2005, pp. 1–13.

3. M. Bruchez, M. Moronne, P. Gin, S. Weiss, A.P. Alavisatos, Semiconductor
Nanocrystals as Fluorescent Biological Labels, Science, 281, 1998, pp. 2013-2016.

4. M. Cavaliere, N. Jonoska, (Computing by) Observing Splicing Systems.
Manuscript 2004.

5. M. Cavaliere, P. Leupold, Evolution and Observation – A New Way to Look at
Membrane Systems, Membrane Computing, Lecture Notes in Computer Science
2933 (C. Mart́ın-Vide, G. Mauri, Gh. Păun, G. Rozenberg, A. Salomaa eds.),
Springer, 2004, pp. 70–88.

6. M. Cavaliere, P. Leupold, Evolution and Observation — A Non-Standard Way
to Generate Formal Languages, Theoretical Computer Science 321, 2004, pp.
233-248.

7. M. Cavaliere, P. Leupold, Evolution and Observation — A Non-Standard Way to
Accept Formal Languages. Proceedings of MCU 2004, Machines, Computations
and Universality, Lecture Notes in Computer Science 3354 (M. Margenstern ed.),
Springer, 2005, pp. 152–162.

26 M. Cavaliere, N. Jonoska, and P. Leupold

8. W.C.W. Chan, S. Nie, Quantum Dot Bioconjugates for Ultrasensitive Nonisotopic
Detection, Science 281, 1998, pp. 2016-2018.

9. E. Goode, D. Pixton, Semi-Simple Splicing Systems, Where Mathematics, Com-
puter Science, Linguistics and Biology Meet, (C. Martin-Vı́de, V. Mitrana eds.),
Kluwer Academic Publisher, 2001, pp. 343 – 352.

10. T. Head, Formal Language Theory and DNA: An Analysis of the Generative
Capacity of Specific Recombinant Behaviors, Bulletin of Mathematical Biology
49, 1987, pp. 737-759.

11. T.M. Jovin, D.J. Arndt-Jovin, in Cell Structure and Function by Microspectroflu-
orimetry, (E. Kohen, J.S. Ploem, J.G. Hirschberg, eds.), Academic, Orlando,
Florida, pp. 99–117.

12. J.M. Levsky, S.M. Shenoy, R.C. Pezo, R.H. Singer, Single-Cell Gene Expression
Profiling, Science 297, 2002, pp. 836–40.

13. J. Lippincott-Schwartz et al., in Green Fluorescent Proteins, (K. Sullivan, S. Kay,
eds.), Academic, San Diego, 1999, pp. 261-291.

14. J. Lippincott-Schwartz, E. Snapp, A. Kenworthy, Studying Protein Dynamics in
Living Cells, Nature Rev. Mol. Cell. Biol., 2, 2001, pp. 444–456.

15. A. Mateescu, Gh. Păun, G. Rozenberg, A. Salomaa, Simple Splicing Systems,
Discrete Applied Mathematics, 84, 1998, pp. 145–163.

16. X. Michalet, F.F. Pinaud, L.A. Bentolila, J.M. Tsay, S. Doose, J.J. Li, G. Sun-
daresan, A.M. Wu, S.S. Gambhir, S. Weiss, Quantum Dots for Live Cells, in Vivo
Imaging and Diagnostic, Science, 307, 2005, www.sciencemag.org.

17. Gh. Păun, Splicing systems with targets are computationally universal, Informa-
tion Processing Letters, 59 (1996), pp. 129-133.

18. Gh. Păun, G. Rozenberg, A. Salomaa, DNA Computing - New Computing
Paradigms, Springer-Verlag, Berlin, 1998.

19. R. Rigler, E.S. Elson, Fluorescent Correlation Spectroscopy, Springer, New-York,
2001.

20. G. Rozenberg, A. Salomaa (eds.), Handbook of Formal Languages. Springer-
Verlag, Berlin, 1997.

21. A. Salomaa, Formal Languages, Academic Press, New York, 1973.

	Introduction: (Bio)Accepting Devices
	Splicing Recognizer: Definition
	Splicing with a Marked String
	Observer
	Decider
	Splicing Recognizer

	A Short Example
	Preliminary Results
	Universality
	Concluding Remarks

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

