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Abstract. We introduce dynamical probabilistic P systems, a variant
where probabilities associated to the rules change during the evolution
of the system, as a new approach to the analysis and simulation of the
behavior of complex systems. We define the notions for the analysis of
the dynamics of these systems and we show an application for the in-
vestigation of the properties of the Brusselator (a simple scheme for the
Belousov-Zhabothinskii reaction).

1 Introduction

P systems [8] are a class of distributed and parallel computing devices, inspired
by the structure and the functioning of cells. The basic model consists of a cell-
like membrane structure, composed by several compartments where multisets
of objects evolve according to given rules, in a nondeterministic and maximally
parallel manner. A computation device is obtained starting from an initial con-
figuration and letting the system evolve. In the following, we assume that the
reader is familiar with the basic notions and the terminology underlying P sys-
tems. We refer, for details, to [9]. Updated information about P systems can be
found at http://psystems.disco.unimib.it/.

Many research studies around P systems concentrates on computational power
aspects. In this paper, we propose a new approach for the investigation and the
application of P systems, which consists in interpreting them as tools for the
description and the analysis of the dynamical behavior of complex systems. A
similar approach is considered also in [3,10,12], where different methods are
used to investigate several biological and chemical processes, among which one
can find the Belousov-Zhabothinskii reaction. As said, membrane systems are
inspired from the functioning of the cell, hence it is natural to consider them for
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modelling different cellular processes and natural living systems, with the final
goal of producing new tools and acquiring useful information for the scientists
(mainly, biologists) working on the modelled system. Some first steps in this
direction have already been made, see [4] for various applications.

Since we are interested in describing the evolution of a complex system, and
since changes of many different conditions can have direct influence on the reac-
tion parameters and behavior, the basic non-deterministic model of P systems
is not suitable to describe these kind of processes. Indeed, many efforts have
been recently done to introduce the notion of probability in P systems. The first
definition of a probabilistic P system appeared in [7], where probabilities are
assigned to evolution rules, an initial probability distribution is defined in each
region, and vectors related to each rule specify which rules can be applied at the
next step. Though, two assumptions are made which seem quite unnatural from
a biological point of view: priority relations among rules are used and, above all,
probability values are initially assigned and never change during a computation,
which corresponds to a static nature of the system. In [6] some more proposals
for approaching probabilistic P systems are suggested: priority relations are no
more formally considered, though they are implicitly included in computations,
since one does not consider a stochastic application of rules. Lately, P systems
with probabilistic rules have been also applied for the investigation of cellular
phenomena and structures, such as respiration and photosynthesis processes in
[2], mechanosensitive channels in [1].

In order to overcome the limitations outlined above, we propose a new version
of probabilistic P systems, where probability values are dynamically assigned
to evolution rules, according to the form of the current multiset. Moreover,
the application of rules is stochastic (we will talk about evolution instead of
computation).

The paper is structured as follows. In Section 2 we give the formal definition of
dynamical probabilistic P systems, in Section 3 we introduce some notions which
will then be used to analyze, via software tools, the behavior of such systems. In
Section 4 we show an application to the Brusselator, a well known and simplified
theoretical scheme which describes the Belousov-Zhabotinskii reaction (BZ, in
short). Finally, in Section 5 we present the conclusion and give some perspective
for future work.

2 Dynamical Probabilistic P Systems

In this section we give the definition of a probabilistic P system, where the
probabilities associated to the rules vary during the evolution of the system. The
method for evaluating probabilities and the way the system works are explained
in details. Then, we extend the definition to consider families of P systems of this
type, whose members differ among each other for the choice of some parameters,
but not for the main structure.

We assume the reader to be familiar with the basic notions and notations of
P systems [9]. Some prerequisites about multisets are here recalled.
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Let V be an alphabet, we denote by V ∗ the set of all strings over V , by λ the
empty string, and by V + = V ∗\{λ} the set of non-empty strings. A multiset over
V is a map M : V → N, where M(a) is the multiplicity of any symbol a ∈ V ,
N is the set of natural numbers. A multiset M over V = {a1, . . . , al} can be
explicitly represented by the string x = a

M(a1)
1 a

M(a2)
2 . . . a

M(al)
l , for all ai ∈ V

such that M(ai) �= 0, and by all its possible permutations. By interpreting a
multiset in the corresponding form of a string x, we can denote by |x| its length
and by |x|a the number of occurrences of a symbol a in x. The set of symbols
from V occurring in x is denoted by alph(x). Moreover, to every string x ∈ V ∗

we can associate the Parikh vector ΨV (x) = (|x|a1 , |x|a2 , . . . , |x|al
).

Definition 1. A dynamical probabilistic P system (DPP, in short) of degree n
is a construct Π = (V, O, µ, M0, . . . , Mn−1, R0, . . . , Rn−1, E, I) where:

– V is the alphabet of the system, O ⊆ V is the set of analyzed symbols ;
– µ is a membrane structure consisting of n membranes labelled with the

numbers 0, . . . , n − 1. The skin membrane is labelled with 0;
– Mi, i = 0, . . . , n−1, is the multiset over V initially present inside membrane i;
– Ri, i = 0, . . . , n − 1, is a finite set of evolution rules associated with mem-

brane i. An evolution rule is of the form r : u
k−→ v, where u is a multiset

over V , v is a string over V × ({here, out} ∪ {inj | 1 ≤ j ≤ n − 1}) and
k ∈ R

+ is a constant associated to the rule;
– E = {VE , ME, RE} is called the environment, it consists of an alphabet

VE ⊆ V , a feeding multiset ME over VE and a finite set of feeding rules RE

of the type r : u → (v, in0), for u, v multisets over VE ;
– I ⊆ {0, . . . , n − 1} ∪ {∞} is the set of labels of the analyzed regions (the

label ∞ corresponds to the environment).

The alphabet O and the set I specify which symbols and regions (environment
included) are of peculiar importance in Π , namely those elements whose evolu-
tion will be actually analyzed and simulated.

Definition 2. Let Π be a DPP. We call the parameters of Π the set P consisting
of: (1) the multisets M0, . . . , Mn−1, ME initially present in µ and in E, (2) the
constants associated to all rules in R0, . . . , Rn−1.

Note that the alphabets V, O, VE , the membrane structure µ, the form of the
rules in R0, . . . , Rn−1, RE and the set I of analyzed regions do not belong to
the set of parameters of Π . We call these components the main structure of Π .
We can now extend Definition 1 and consider a family of DPPs, where the main
structure is equal for all members of the family, while the parameters can change
from member to member.

Definition 3. A family of DPPs is defined as F = {(Π, Pi) | Π is a DPP and
Pi is the set of parameters of Π, i ≥ 1}.

Hence, given any two elements (Π, P1), (Π, P2) ∈ F , it holds P1 �= P2 for the
choice of (all or some) values in P1 and P2. For instance, one can choose to



Analysis and Simulation of Dynamics in Probabilistic P Systems 239

analyze the same DPP with some different settings of initial conditions, such
as different initial multisets and/or different rule constants (this can be useful
when not all of them are previously known) and/or different feeding multisets.

In the following, we will talk about the evolution, not computation, of a DPP,
since we are not interested in generating languages but in simulating biological
or chemical systems. The family F describes a general model of the biological
or chemical system of interest and, for any choice of the parameters, we can
investigate the evolution of the corresponding fixed DPP.

A fixed initial configuration of Π depends on the choice of P , hence it con-
sists of the multisets initially present inside the membrane structure, the chosen
rule constants and the feeding multiset, which is given as an input to the skin
membrane from the environment at each step of the evolution by applying the
feeding rules. Different strategies in the feeding process can be used: for instance,
one can use the feeding rules to keep at a constant value the concentrations of
chemicals involved in a certain reaction (see Section 4 for an application of this
strategy to the BZ), or to increase the concentrations of substances mimicking
the biological transport from the extracellular space. We assume that, as long
as the system evolves, the environment contains as many symbols as they are
needed to continuously feed the system.

At each step of the evolution, all applicable rules are simultaneously applied
and all occurrences of the left-hand sides of the rules are consumed, hence the
parallelism is maximal at both levels of objects and of rules. For simplicity, in this
paper we assume that the system evolves according to a universal clock, that is,
all membranes and the application of all rules are synchronized. The applied rules
are chosen according to the probability values dynamically assigned to them;
the rules with the highest normalized probability value will be more frequently
tossed. In simulations, the tossing process is obtained by means of a random
number generator, as described below. If some rules compete for objects and
have the same probability values, then objects are nondeterministically assigned
to those rules.

The probability associated to each rule in any set Ri, i = 0, . . . , n − 1, is a
function of its constant and of the current multiset occurring in membrane i,
and it is evaluated as follows. Let V = {a1, . . . , al}, Mi be the multiset inside
membrane i, r : u

k−→ v a rule in Ri; let u = aα1
1 . . . aαs

s , alph(u) = {a1, . . . , as}
and H = {1, . . . , s}. To obtain the actual normalized probability pi of applying r
with respect to all other rules that are applicable in membrane i at the same step,
we need to evaluate the non-normalized probability p̃i(r) of r, which depends on
the constant associated to r and on the left-hand side of r, namely:

p̃i(r) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0 if Mi(ah) < αh for some h ∈ H

k ·
∏

h∈H

Mi(ah)!
αh!(Mi(ah) − αh)!

if Mi(ah) ≥ αh for all h ∈ H
(1)
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that is, whenever the current multiset inside membrane i contains all occur-
rences of all symbols appearing in the left-hand side of rule r (second case in
Equation (1)), then p̃i(r) is dynamically defined according to the current mul-
tiset inside membrane i: we choose αh copies of each symbol ah among all its
Mi(ah) copies currently available in the membrane itself. In other words, we
consider all possible distinct combinations of the symbols appearing in alph(u).
Thus, p̃i(r) corresponds to the probability of having a collision among reactant
objects, which are considered undistinguishable.

If Ri = {r1, . . . , rm}, the normalized probability of any rule rj is

pi(rj) =
p̃i(rj)

∑m
j=1 p̃i(rj)

. (2)

In the simulations, the parallel application of the rules is done by splitting one
parallel step into several sequential sub-steps. It is possible to separate each single
parallel step into two stages, exploiting the fact that the probability distribution
and the applicability of the rules are functions only of the left-hand side of the
rules and their constants. In the first stage objects are assigned to rules by means
of a random number generator, while in the second one the multiset is updated
using a stored trace of the rules previously tossed. It should be pointed out
that, during the first stage, the probability distribution of the rules has to be
kept constant, otherwise the application of the rules would become sequential.
A detailed description of he simulation algorithm will appear elsewhere.

Remark 1. A different probability distribution over rules could be obtained by
using the classical rate law of Chemistry, though the approach used in Equation
(1) is more accurate from the combinatorial point of view (see also [5], where a
similar approach is considered). Indeed, at high concentrations (multiplicities)
the two approaches are undistinguishable, but at lower ones our choice is prefer-
able since it accounts for the exact number of all possible tuples of evolving
objects.

3 Analysis of the Dynamics in DPP

In this section we introduce some notions that will be used for the analysis
of the behavior of a DPP via software tools, whose complete description and
functioning will appear in a forthcoming paper. The final goal is to introduce
an appropriate definition of the phase space, thus creating a bridge between P
systems and well known tools from the Physics of dynamical systems. Usually,
the evolution of a physical system is completely determined by means of the
motion equations, a set of differential equations inferred by the system properties.
In the case of P systems this role should be accomplished by the evolution rules,
which create a one-to-one mapping between the application of each rule and the
relative displacement of the system in the phase space.

First of all, to keep trace of the system evolution we extend the definition of
the alphabet V = {a1, . . . , al} of Π by introducing the parameter time, that is,
we define the space ˜V := V × N = V × {time}.
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Definition 4. Let M = {aα1
1 . . . aαl

l } be a multiset over V , where αi ≥ 0 for all
h = 1, . . . , l. We call a t-multiset the structure M = {aα1

1 , . . . , aαl

l , t} ∈ ˜V .

By abuse of notation, we will denote both the multiset over V and the t-multiset
in ˜V with the same symbol M , being it clear when one considers also the time
component or not. To represent a t-multiset in the space ˜V we define its position
relatively to the t-multiset O = {0, . . . , 0} of ˜V (the first l components of O are
the null multiplicities of the symbols from V ). We need also to extend the notion
of Parikh vector to the space ˜V as Ψ

�V (M) = (α1, . . . , αl, t). This is necessary if
we want to distinguish among two multisets having the same total numbers of
symbols but different multiplicities for (at least) one symbol from V .

Definition 5. The position of a t-multiset M ∈ ˜V is the vector
−→
M = Ψ

�V (M).
The vector

−→
O = Ψ

�V (O) is called the origin of ˜V .

From Definition 5 it follows that the positions of t-multisets
−→
O and

−→
M are

vectors in the space N
l+1. The next step is to introduce a scalar product in

N
l, to naturally define the notion of distance between t-multisets, thus giving

the structure of an euclidean space to N
l. By convention, in the following we

will always denote the components of a generic position
−→
M i as the l + 1-tuple

(αi,1, αi,2, . . . , αi,l, ti).

Definition 6. Let
−→
M i,

−→
M j be two positions in N

l × N. The distance between
−→
M i,

−→
M j is a function d : N

l+1 × N
l+1 −→ R

+ defined as

d2(
−→
Mi,

−→
Mj) =

m
∑

k=1

(αi,k − αj,k)2 . (3)

Note that the two positions
−→
M i,

−→
M j in Definition 6 need not to be necessarily one

the evolution of the other (that is, the multiset inside the same membrane taken
into different time steps). In fact, given a family F of DPP and two positions
−→
M i,

−→
M j , the following cases may hold: (i)

−→
M i,

−→
M j occur in distinct time steps,

in the same membrane of the same DPP with equal setting P ; (ii)
−→
M i,

−→
M j

occur in distinct or equal time steps, in different membranes of the same DPP
with equal setting P ; (iii)

−→
M i,

−→
M j occur in distinct or equal time steps, in the

same membrane of the same DPP with different settings P1, P2; (iv)
−→
M i,

−→
M j

occur in distinct or equal time steps, in different membranes of the same DPP
with different settings P1, P2. That is, we might be interested in looking at the
multiset occurring inside a membrane during its evolution, or comparing two
multisets of different membranes of the same DPP (in equal or different time
steps), or else two multisets inside the same (or even a different) membrane but
analyzed in two different evolutions of the family of the DPP. In each of the
four cases, the distance gives information about “how far” the states in the two
trajectories are (that is, the t-multisets in the two evolutions).
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In particular, given any couple of positions
−→
M i,

−→
M j of the same DPP (for the

same or different set of fixed parameters P), we can say that they are simultane-
ous if they exist at the same time step. This concept can be useful mainly when
one considers a membrane structure with degree n > 1, where many multisets
are co-evolving.

Definition 7. Let
−→
M i,

−→
M j be two positions in N

l+1. The displacement between
−→
M i,

−→
M j is a function −→u : N

l+1 × N
l+1 −→ Z

l defined as

−→u (
−→
Mi,

−→
Mj) = (αi,1 − αj,1, . . . , αi,l − αj,l) . (4)

Note that the displacement can be either a positive or negative value, and it tells
how the system “moves”; in details, it tells how the multiplicities in the positions−→
M j differ from those in

−→
M i. Hence, it gives more information than the distance,

since it also considers the direction of the variation. Indeed, it is also possible
to construct the versor û : N

l+1 × N
l+1 −→ R

l of the displacement which only
gives the information about the direction of −→u :

û(
−→
Mi,

−→
Mj) =

(

αi,1 − αj,1

d(
−→
Mi,

−→
Mj)

, . . . ,
αi,l − αj,l

d(
−→
Mi,

−→
Mj)

)

. (5)

Note that −→u = û · d, by definition.
The last step before arriving to the definition of the phase space consists in

defining the velocity, which carries on the information about the time the dis-
placement between two t-multisets (in the same DPP, with equal initial settings)
needs to take place. That is, it tells how fast the evolution from one state of the
DPP to the other is.

Definition 8. Let
−→
Mi,

−→
Mj be two positions with ti �= tj occurring inside the

same membrane of a DPP (for a fixed choice of the parameters). The average
velocity between

−→
Mi,

−→
Mj is a function −→v : N

l+1 × N
l+1 −→ R

l defined as

−→v (
−→
Mi,

−→
Mj) =

(

αi,1 − αj,1

ti − tj
, . . . ,

αi,l − αj,l

ti − tj

)

. (6)

When ti−tj = 1, which is the minimal time increment allowed in P systems, then
the average velocity −→v (

−→
Mi,

−→
Mj) becomes the “instantaneous” velocity between

time steps tj and ti = tj + 1, that we denote by −→v (
−→
Mj). Note that if

−→
Mi is

the position evolved from
−→
Mj in the same membrane, then the instantaneous

velocity gives the variation of that multiset in a single time step.
We are now ready to define the phase space for a DPP, which is constructed

as the cartesian product of the phase spaces of all membranes in the DPP. Let−→
M i = (α1, . . . , αl, t) be the position of the t-multiset inside membrane i at time
t, and let −→v (

−→
M i) = (v1, . . . , vl) be its instantaneous velocity.

Definition 9. We call a phase point of
−→
M i the vector −→ϕt

i = (α1, . . . , αl, v1, . . . ,
vl) ∈ N

l × R
l, for any fixed t ∈ N.
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The phase point represents the state of membrane i at any given time t. The
evolution of the multiset in membrane i can be described by the phase curve,
which is a function −→ϕ i : N −→ N

l × R
l such that −→ϕ i(t) = −→ϕt

i.
The space Φi ⊆ N

l × R
l is the set of all the points −→ϕt

i corresponding to an
evolution of the multiset inside any membrane.

Definition 10. Let Π be a DPP of degree n, for some n ≥ 1. The space Φi ⊆
N

l × R
l is called the phase space of the membrane i, ΦE ⊆ N

l × R
l is the phase

space of the environment. The space ΦΠ = Φ0 ×· · ·×Φn−1 ×ΦE ⊆ (Nl ×R
l)n+1

is called the phase space of the DPP.

Hence, the phase space of a DPP describes the evolution of the whole system,
with respect to both the change of all multisets and the passing of time. Actually,
in analyzing the behavior of a given DPP, we will be interested in considering only
the phase space restricted to the regions specified in the set I (see Definition 1).
Similarly, only the evolution of symbols from O will be analyzed for the multisets
present in the regions appearing in I.

4 Case Study: The Belousov-Zhabotinskii Reaction

The BZ chemical reaction is considered the prototype oscillator and exhibits an
extraordinary variety of temporal and spatial phenomena. Its oscillating behav-
ior is one of the most widely studied, both theoretically and experimentally, thus
making this reaction a suitable workbench for the capabilities of DPP. Its basic
mechanism consists in the oxidation of malonic acid, in acid medium, by bromate
ions and catalyzed by cerium, which has two states. The sustained periodic oscil-
lations are observed in the cerium ions. The Brusselator is a simplified theoretical
scheme introduced in [11] to explain the nonlinear oscillating behavior, and after
that was carefully studied in, e.g., [13]. Despite the fact that it is physically un-
realistic, as it involves a trimolecular state, it is recognized to be the skeleton for
the explanation of the oscillating behavior in chemical reactions. Moreover, it has
a very simple description: A

k1−→ X, B+X
k2−→ Y +D, 2X+Y

k3−→ 3X, X
k4−→ E.

In this section we describe the Brusselator in terms of DPP and we show
the analysis and some results obtained from the simulations. Indeed, in order
to describe a chemical or a biological system evolving over time, a kind of rule
able to react to the variation of occurrences of symbols (that is, concentra-
tions of substances) is needed. For this purpose, we believe that the dynam-
ical probabilistic rules are really suitable, so we consider the DPP defined as
ΠBZ = (V, O, µ, M0, R0, EBZ , 0) where

– V = {A, B, X, Y }, O = {X, Y };
– µ = [0 ]0;
– M0 = {Am1Bm2Xm3Y m4};
– R0 consists of the rules
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r1 : A
k1−→ X

r2 : BX
k2−→ Y

r3 : XXY
k3−→ XXX

r4 : X
k4−→ λ

for some k1, . . . , k4 ∈ R
+;

– the environment EBZ is given by the alphabet {A,B}, the multiset MEBZ =
{An1 , Bn2}, for some n1, n2 ∈ N, and the feeding rules REBZ = {r5 : A −→
(A, in0), r6 : B −→ (B, in0)}.

Note that, with respect to the original equations in the Brusselator, we choose
not to consider the chemicals D and E since they are not relevant for the
system evolution. According to Definition 2, the set of parameters of ΠBZ is
PBZ = {m1, . . . , m4, k1, . . . , k4, n1, n2}. A family FBZ can be given by consider-
ing different values for the elements in PBZ .
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Fig. 1. Quasi-periodic cycle

The simulations based on the DPP approach have shown all the dynam-
ical behaviors which characterize the continuously stirred BZ (see for exam-
ple [3,5,13]); here we present the quasi periodic oscillations (in Figure 1, for
Pqp

BZ={100, 100, 1000, 2000, 50, 0.5, 5 · 10−5, 5, 100, 100}) and the attractor (in
Figure 2, for Patt

BZ = {100, 100, 1000, 2000, 1, 1, 1, 1, 100, 100}). A fading tran-
sition from one to the other is possible by tuning the parameters in PBZ . Since
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Fig. 2. Attractor

in the literature about the Brusselator the phase plane has been widely identified
with the X-Y plane, our attention is focused on the dynamic of these symbols. A
first characterization of the system dynamic can be obtained by looking directly
to the temporal evolution of the two variables: Fig.1.(a) and Fig.2.(a) allow to
discriminate the quasi periodic oscillation of the first case from the attracted
dynamic of the second one. Fig.1.(b) and Fig.2.(b) show the phase space of
membrane 0: in the first case we obtain a limit cycle, in the second case only the
initial multiset (point at right-up corner) and the attractor (point at left-bottom
corner) can be displayed. Fig.1.(c) and Fig.2.(c) show the evolution of multiplic-
ities of X and Y ; the projection on X − Y plane of these pictures obviously
correspond to Fig.1.(b), Fig.2.(b), respectively. Finally, Fig.1.(d) and Fig.2.(d)
show the spectra: in the first case, the spectrum shows the highest peak, corre-
sponding to the principal oscillation frequency, and some other harmonics, plus
the stochastic contribute which is spread all over the other frequencies; in the
second case (where the Y axis is in logarithmic scale), the spectrum corresponds
to a δ of Dirac centered in the 0 frequency (the height of δ is equal to the mean
value of the multiplicities of X and Y ), since this is the Fourier transform of a
constant (in time) signal.

Remark 2. To make clear the definitions of Section 3, we give some examples by
extracting three t-multisets from the simulated evolution of (ΠBZ , Pqp

BZ). Chosen
the t-multisets M39 = {100, 100, 1921, 1029, 39}, M40 = {100, 100, 2701, 262, 40},
M53 = {100, 100, 109, 1055, 53}, their positions are

−→
M39 = (100, 100, 1921, 1029,
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39),
−→
M40 = (100, 100, 2701, 262, 40),

−→
M53 = (100, 100, 109, 1055, 53). The dis-

tance between M53 and M39 is d(
−→
M53,

−→
M39) = (0 + 0 + (−1812)2 + 262)1/2 ≈

1812.19, while the displacement is −→u (
−→
M53,

−→
M39) = (0, 0, −1812, 26). The ver-

sor associated to this displacement is û(
−→
M53,

−→
M39) = (0, 0, − 1812

1812.19 , 26
1812.19 ) ≈

(0, 0, −0.99, 0.0014), which says that the predominant direction of the motion
is along the X axes (that is, the highest variation occurs for the multiplici-
ties of the symbol X). The average velocity −→v (

−→
M53,

−→
M39) = (0, 0, − 1812

14 , 26
14 ) ≈

(0, 0, −129.43, 1.86) is quite different from the instantaneous one, which is
−→v (

−→
M39) = (0, 0, 780, −767) (evaluated between time steps 39 and 40).

5 Conclusions and Future Work

In this paper we introduced dynamical probabilistic P systems as a new ap-
proach for describing and analyzing complex biological or chemical processes.
We also sketched some novel definitions, such as timed-multisets, the position
and displacement of a multiset, the phase space of a P system, which are needed
for the investigations of dynamical properties of the system of interest.

In particular, we applied such system to the analysis of well-known Belousov-
Zhabotinskii reaction, showing that we can simulate the behavior of chemical
oscillator reactions. Indeed, the interaction of two or more oscillating systems
is of interest for many biological processes and systems, as it constitutes an
important factor to keep alive an organism or a complex system constituted by
several sub-components of different types.

The future work will consist in a further deep investigation of our model, both
from a theoretical and an experimental point of view, e.g., by considering also
non-synchronized evolutions, as well as in its use for the analysis of complex cel-
lular processes. For instance, we are currently applying dynamical probabilistic
P systems and the tools here introduced to the analysis of the role of protein
p53 in cell growth arrest and apoptosis.
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