
Linearizer and Doubler: Two Mappings to Unify
Molecular Computing Models Based on DNA

Complementarity

Kaoru Onodera1 and Takashi Yokomori2

1 Mathematics Major, Graduate School of Education, Waseda University,
1-6-1 Nishiwaseda, Shinjyuku-ku, Tokyo 169-8050, Japan

kaoru@akane.waseda.jp
2 Department of Mathematics, Faculty of Education and Integrated Arts

and Sciences, Waseda University, 1-6-1 Nishiwaseda, Shinjyuku-ku,
Tokyo 169-8050, Japan
yokomori@waseda.jp

Abstract. Two specific mappings called doubler fd and linearizer f�

are introduced to bridge two domains of languages. That is, fd maps
string languages into (double-stranded) molecular languages, while f�

transforms in the other way around. Using these mappings, we give new
characterizations for the families of sticker languages and of Watson-
Crick languages, which leads to not only a unified view of the two families
of languages but also a clarified view of the computational capability of
the DNA complementarity. One of the results implies that any recursively
enumerable language can be expressed as the projective image of fd(L)
for a minimal linear language L.

1 Introduction

In the late 1990’s history of theoretical research on molecular computing models,
sticker systems have been proposed to model the behaviors of biomolecules with
sticky ends and to investigate the computational capability of those molecules
based on the biomolecular property of DNA complementary. On the other hand,
almost in parallel a new type of machine model called Watson-Crick automaton
was introduced and studied, which is taken as a finite state machine working
on double-stranded molecules (rather than linear strings). Similarly, a sticker
system was introduced as one of the generative systems by using the DNA com-
plementarity. The above two systems have a great deal of potential to provide
the promising models for DNA computings. One can find a huge amount of inter-
esting results on a variety of families of these systems and automata in, e.g., [3].

The present paper concerns a new approach to unifying a great variety of
these models of computation based on DNA complementarity. The purpose of
this paper is twofold : One is to explore the computational power of annealing
operations between complementary molecules in terms of notions in formal lan-
guage theory. The other is to clarify the current (chaotic) landscape of a variety
of existing computational models based on DNA complementarity, by providing
a unified view of those models.

A. Carbone and N.A. Pierce (Eds.): DNA11, LNCS 3892, pp. 224–235, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Linearizer and Doubler: Two Mappings to Unify Molecular Computing Models 225

For our purpose, we introduce two specific mappings “doubler fd” and
“linearizer f�” that can bridge the two worlds of string languages and of double-
stranded molecular languages. Using these mappings, we will give new character-
izations for the families of sticker languages and of Watson-Crick languages. For
example, through the mapping fd, we show that the difference between sticker
systems and Watson-Crick automata is essentially reduced to the one between
minimal linear and regular grammars, respectively.

2 Preliminaries

We assume the reader to be familiar with the rudiments on Watson-Crick finite
automata and sticker systems as well as basic notions in formal language theory
(see, e.g., [3, 4]).

For an alphabet V , ρ ⊆ V ×V is a symmetric relation. We denote an element

(x1, x2) ∈ V ∗ × V ∗ by
(

x1
x2

)
. Instead of using a notation V ∗ × V ∗, we often

use
(

V ∗

V ∗

)
. For elements

(
x1
y1

)
,
(

x2
y2

)
∈

(
V ∗

V ∗

)
, by

(
x1
y1

)(
x2
y2

)
, we represent a

double stranded molecule (x1x2, y1y2) ∈ V ∗ × V ∗.

Let
[
V
V

]
ρ

= {
(

a
b

)
| a, b ∈ V, (a, b) ∈ ρ} and WKρ(V ) =

[
V
V

]∗

ρ

(the set of

all complete double stranded molecules over V including
(

ε
ε

)
).

For an element
(

a1
b1

)(
a2
b2

)
· · ·

(
an

bn

)
∈ WKρ(V ), we also write in the form[

w1
w2

]
, where w1 = a1a2 · · · an, w2 = b1b2 · · · bn.

We define a set of incomplete molecules over V : Wρ(V ) = Lρ(V ) ∪ Rρ(V ) ∪
LRρ(V ), where

Lρ(V ) = { x1 y1
y2

,
y1

x2 y2
| x1, x2 ∈ V ∗,

[
y1
y2

]
∈

[
V
V

]∗

ρ

},

Rρ(V ) = { y1 z1
y2

,
y1
y2 z2

| z1, z2 ∈ V ∗,
[
y1
y2

]
∈

[
V
V

]∗

ρ

},

LRρ(V ) = { x1 y1 z1
y2

,
y1

x2 y2 z2
,
x1 y1

y2 z2
,

y1 z1
x2 y2

|

x1, x2, z1, z2 ∈ V ∗,
[
y1
y2

]
∈

[
V
V

]+

ρ

}.

Elements in Wρ(V ) are called bricks.

[Sticker systems]
A sticker system is a 4-tuple γ = (V, ρ, A, D), where V is a finite set of symbols,
ρ ⊆ V × V is the complementary relation on V , A ⊆ LRρ(V ) is a finite set of
axioms, and D is a finite set of elements in Wρ(V ) × Wρ(V ).



226 K. Onodera and T. Yokomori

For γ = (V, ρ, A, D) and α, β ∈ Wρ(V ), we write α
dπ=⇒γ β (or simply α =⇒ β)

if and only if β = uαv, for some dπ : (u, v) ∈ D. That is, for example, in a
graphical representation, it means

dπ :
(

u3 u2
ū2 u1

,
v2 v3

v1 v̄2

)
= (u, v) and

α = ū1 α1 v̄1
ᾱ1

dπ=⇒ u3 u2 ū1 α1 v̄1 v2 v3
ū2 u1 ᾱ1 v1 v̄2

= β,

where u1, u2, v1, v2 and ū1, ū2, v̄1, v̄2 are complementary, respectively.
For any other types of bricks for dπ in γ, we similarly define dπ=⇒γ . We denote

by =⇒∗ the reflexive and transitive closure of =⇒.
A set of molecules generated by γ called molecular language is defined by

LM(γ) = {w ∈ WKρ(V ) | x1 =⇒∗ w, x1 ∈ A}.

Furthermore, a (string) language L(γ) generated by γ is a coding image of
LM(γ), i.e., the set of all upper components of the molecular language LM(γ).
The classes of molecular languages and of string languages generated by γ are
denoted by SLm and SL, respectively.

[Watson-Crick finite automata]
A Watson-Crick finite automaton (abb. WK-automaton) is defined by the tuple

M = (V, ρ, Q, q0, F, δ).

V is an (input) alphabet, Q is a finite set of states, V and Q are disjoint alphabets.
ρ ⊆ V × V is a symmetric relation. q0 is the initial state in Q. F ⊆ Q is the

set of final states. δ : Q ×
(

V ∗

V ∗

)
→ P(Q) is a transition mapping such that

δ(q,
(

x
y

)
) �= φ only for finitely many triples (s, x, y) ∈ Q×V ∗ ×V ∗, where P(Q)

is the set of all possible subsets of Q.

A transition in a WK-automaton can be defined as follows: For
(

x1
x2

)
,

(
u1
u2

)
,(

y1
y2

)
∈

(
V ∗

V ∗

)
with

[
x1u1y1
x2u2y2

]
∈ WKρ(V ), and q1, q2 ∈ Q, we write

(
x1
x2

)
q1

(
u1
u2

)(
y1
y2

)
=⇒M

(
x1
x2

)(
u1
u2

)
q2

(
y1
y2

)

if and only if δ(q1,

(
u1
u2

)
) � q2. We denote by =⇒∗

M the reflexive and transitive

closure of the relation =⇒M . If there is no confusion, we use =⇒ instead of
=⇒M .



Linearizer and Doubler: Two Mappings to Unify Molecular Computing Models 227

A molecular language and a (string) language over V recognized by M are
defined by

LM(M) = {
[
w1
w2

]
∈ WKρ(V ) | q0

[
w1
w2

]
=⇒∗

M

[
w1
w2

]
qf , qf ∈ F}

and L(M) is the set of all upper components of the molecular language LM(M).
A WK-automaton M = (V, ρ, Q, q0, F, δ) is 1-limited if for any transition

δ(q1,

(
x1
x2

)
) � q2, |x1x2| = 1 holds.

Let WKm and 1WKm be the classes of molecular languages recognized by
WK-automata and 1-limited WK-automata, resp. Further, WK and 1WK de-
note their corresponding string language classes.

Theorem 1. ([3]) WKm = 1WKm (and WK = 1WK).

[External contextual grammars ([2])]
An external contextual grammar is a construct G = (V, A, C), where V is an
alphabet, A (⊆ V ∗) is a finite set of axioms, C is a finite set of elements in
V ∗ × V ∗. For α, β ∈ V ∗, we write α =⇒G β if β = uαv, for some (u, v) ∈ C.

An external contextual language generated by G is

L(G) = {w ∈ V ∗ | x1 =⇒∗
G w, x1 ∈ A}.

Let EC be the class of external contextual languages.

Theorem 2. ([2]) It holds that EC = MLIN (the class of minimal linear
languages).

[Twin-shuffle languages and their extensions]
Let V and V̄ = {ā | a ∈ V } be alphabets. A twin-shuffle language over V is
defined as

TS(V ) =
⋃

x∈V ∗

x 	⊥ x̄, where

x �⊥ y = {x1y1 · · · xnyn | x = x1 · · · xn, y = y1 · · · yn, n ≥ 1, 1 ≤ i ≤ n, xi, yi ∈ V ∗}.

Consider alphabets V , V̄ and V ′, where V ∩ V ′ = φ and V̄ ∩ V ′ = φ. We
define an extended twin-shuffle language over V and V ′ as follows :

ETS(V, V ′) = {x1y1 · · · xnyn | n ≥ 1, for 1 ≤ i ≤ n, xi ∈ TS(V ), yi ∈ V ′∗}.

3 Two Specific Mappings: Linearizer and Doubler

In order to materialize our goal of providing an unified view of WK-automata
and sticker systems, we newly introduce two specific mappings : one is a mapping



228 K. Onodera and T. Yokomori

that linearizes a given molecular language (consisting of elements in Wρ(V )) into
its coded form of string language, and the other is the one that, given a string
language, transforms into its double stranded version of molecular language.

[Linearizer mapping: f�]
In this paper, for an alphabet V let V̄ = {ā | a ∈ V }, and we assume that
ρ ⊆ V × V̄ is a complementary symmetric relation and for any a ∈ V , (a, ā) ∈ ρ
and ¯̄a = a. We first define a mapping f� to transform double strands into strings.

Let Σ = V ∪ V̄ , then we introduce new notations : for a ∈ Σ,
(

a
ε

)
= â,(

ε
a

)
= ǎ,

(
a
ā

)
= ã. Further, let Σ̂ = {â | a ∈ Σ}, Σ̌ = {ǎ | a ∈ Σ}, Σ̃ = {ã |

a ∈ Σ}. Now, we define the linearizer mapping f�:

f� : Wρ(V )∗ → (Σ̂ ∪ Σ̌)∗ Σ̃+ (Σ̂ ∪ Σ̌)∗ ∪ (Σ̂ ∪ Σ̌)∗,

which transforms double strands over Σ to single strands over Σ̂ ∪ Σ̌ ∪ Σ̃.

For example, for double strands u =
u1 u2

ū2 u3
(resp. u =

u2 u3
u1 ū2

), our

intention is that f�(u) = û1ũ2ǔ3, (resp. f�(u) = ǔ1ũ2û3).

Formally, for a double strand
(

x1
x2

)[
y1
y2

](
z1
z2

)
, we define f�(

(
x1
x2

)[
y1
y2

](
z1
z2

)
) =

xỹ1z, where x =
{

x̂1 if x2 = ε,
x̌2 if x1 = ε,

z =
{

ẑ1 if z2 = ε,
ž2 if z1 = ε.

For a double strand
(

a
ε

)
= â with a ∈ V , a double strand

(
ε
ā

)
= ˇ̄a is comple-

mentary, in the sense that
(

a
ε

)(
ε
ā

)
=

(
a
ā

)
. Therefore, for â in Σ̂ and ǎ in Σ̌, we

consider a complementary relation defined by ψ as follows: ψ(â) = b̌, ψ(ǎ) = b̂,
where (a, b) ∈ ρ, i.e., b = ā. In Σ̂ and Σ̌, we consider this complementary relation
defined by ψ.

Thus, a twin-shuffle language TS(Σ̂) is defined as follows:

TS(Σ̂) =
⋃

x∈Σ̂∗

x 	⊥ ψ(x).

[Doubler mapping: fd]
Conversely, we want to reconstruct a double strand from a string over Σ̂∪Σ̌∪Σ̃.

Consider a string y=y1ay2 ∈ (Σ̂∪Σ̌)∗ with length n. For an alphabet Σ̂, we
say that a symbol a is Σ̂-occurrence at position i of y with 1≤ i≤n if |y1|Σ̂ = i−1
and a is in Σ̂, where |x|V is the number of symbols in V in the string x.

Let y be a string in TS(Σ̂) with length 2m ≥ 2. Consider a complete double
strand of length m which satisfies the following conditions:

– if a ∈ Σ is the i-th symbol with 1 ≤ i ≤ m in the upper strand, then â is
Σ̂-occurrence at position i of y.



Linearizer and Doubler: Two Mappings to Unify Molecular Computing Models 229

– if a ∈ Σ is the i-th symbol with 1 ≤ i ≤ m in the lower strand, then ǎ is
Σ̌-occurrence at position i of y.

fd(y) =
a1 · · · āi · · · am

ā1 · · · ai · · · ām
y = ˇ̄a1 â1 · · · ǎi · · · · · · ˆ̄ai · · · âm ˇ̄am

The double strand thus obtained is called the doubler of y and denoted by

fd(y). In particular, for ε we define fd(ε) =
[
ε
ε

]
. Note that for a string y /∈

TS(Σ̂), fd(y) is undefined. Then, fd(x) =
[

ε
ε

]
implies that x = ε.

For example, for strings âˆ̄bĉˇ̄ab̌ˇ̄c, âˇ̄aˆ̄bĉb̌ˇ̄c, ˇ̄aâˆ̄bb̌ˇ̄cĉ, in (Σ̂ ∪ Σ̌)∗,

fd(âˆ̄bĉˇ̄ab̌ˇ̄c) = fd(âˇ̄aˆ̄bĉb̌ˇ̄c) = fd(ˇ̄aâˆ̄bb̌ˇ̄cĉ) =
[

ab̄c
ābc̄

]
.

Lemma 1. For a string w in (Σ̂ ∪ Σ̌)∗, fd(w) is a complete double strand if
and only if w is in TS(Σ̂).

We now want to extend the mapping fd so as to apply to strings in ETS(Σ̂, Σ̃).
Let y = x1x2 · · · x2n be a string in ETS(Σ̂, Σ̃), where n ≥ 1, and for 1 ≤ i ≤

n, x2i−1 ∈ TS(Σ̂), x2i ∈ Σ̃∗. Then, a doubler mapping fd is extended in the
following manner.

– For a string x2i = ũ2i in Σ̃∗, fd(x2i) is a complete double strand
[
u2i

ū2i

]
.

– For a string x2i−1 in TS(Σ̂), fd(x2i−1) is the same one as already defined.

In a graphical representation, this means the following :

fd(y) = fd(x1)fd(ũ2) · · · fd(x2n−1)fd(ũ2n) = fd(x1)
u2

ū2
· · · fd(x2n−1)

u2n

ū2n

Note that for a string y /∈ ETS(Σ̂, Σ̃), fd(y) is undefined.
For example, for strings âˆ̄bˇ̄ab̌c̃d̂ď, âˇ̄aˆ̄bĉb̌ˇ̄cd̃, ã˜̄bc̃d̃ in (Σ̂ ∪ Σ̌ ∪ Σ̃)∗,

fd(âˆ̄bˇ̄ab̌c̃d̂ď) = fd(âˇ̄aˆ̄bĉb̌ˇ̄cd̃) = fd(ã˜̄bc̃d̃) =
[
ab̄cd
ābc̄d̄

]
.

Note 1. fd is different from �p ( in [5] ) in that �p has no Σ̃ for its alphabet, and
fd has more flexibility of y than �p to build up a double strand fd(y).

Lemma 2. For a string w in (Σ̂ ∪ Σ̌ ∪ Σ̃)∗, fd(w) is a complete double strand
if and only if w is in ETS(Σ̂, Σ̃).

4 Characterization Results in Terms of Doubler

In this section, by using the doubler mapping fd, we characterize languages rec-
ognized by a Watson-Crick finite automaton and generated by a sticker system.



230 K. Onodera and T. Yokomori

4.1 WK Molecular Languages Are fd(Regular Languages)

Lemma 3. For a Watson-Crick finite automaton MW , there exists a finite au-
tomaton M such that LM(MW ) = fd(L(M)) = {fd(w) | w ∈ L(M)}.
Proof. We may consider a 1-limited WK-automaton MW = (Σ, ρ, Q, q0,F, δW ).
Then, construct a finite automaton M = (Σ̂ ∪ Σ̌, Q, q0, F, δ) derived from MW

as follows: For δW (qi, x) � qj in MW , construct δ(qi, f�(x)) � qj in M .

It suffices to show that
[
z1
z2

]
is in LM(MW ) if and only if there exists a string

w ∈ L(M) such that fd(w) =
[
z1
z2

]
.

Assume that
[
z1
z2

]
is in LM(MW ) and there exists a transition,

(
u1 · · · ui

v1 · · · vi

)
qi

(
ui+1
vi+1

)(
ui+2 · · · un

vi+2 · · · vn

)
=⇒MW

(
u1 · · · ui

v1 · · · vi

)(
ui+1
vi+1

)
qi+1

(
ui+2 · · · un

vi+2 · · · vn

)
,

where n ≥ 1,
[
u1 · · · un

v1 · · · vn

]
=

[
z1
z2

]
, 0 ≤ i ≤ n, and

(
uj

vj

)
∈

(
Σ
ε

)
∪

(
ε
Σ

)
, for

1 ≤ j ≤ n, and qn ∈ F .
From the way of constructing δ, for each 0 ≤ i ≤ n, there exists a transition

δ(qi, bi+1) � qi+1 in M , where bi+1 = f�(
(

ui+1
vi+1

)
). Then, there exists a transition

δ(q0, b1 · · · bn) � qn in M .

Since
[
z1
z2

]
is the complete double strand, the i-th symbol in the upper strand

and the i-th symbol in the lower strand are complementary. Therefore, for the
string w = b1 · · · bn, Σ̂-occurrence at position i of w and Σ̌-occurrence at position
i of w are complementary. Then, it holds that b1 · · · bn ∈ û1 · · · ûn 	⊥ v̌1 · · · v̌n,

which leads to that fd(b1 · · · bn) =
[
z1
z2

]
.

Conversely, assume that a string w is in L(M) such that fd(w) =
[
z1
z2

]
.

Let w = b1 · · · b2n, where n ≥ 1, for 1 ≤ i ≤ 2n, bi ∈ Σ̂ ∪Σ̌, then from Lemma
1, w is in TS(Σ̂). Let w ∈ û1 · · · ûn 	⊥ v̌1 · · · v̌n.

There exists a transition δ(q0, b1 · · · b2n) � q2n with q2n ∈ F . From the way of
constructing δ, for a transition δ(qi, bi+1) � qi+1 in M , there exists a transition
δW (qi, b

′
i+1) � qi+1, where 0 ≤ i ≤ 2n − 1, bi+1 = f�(b′i+1).

Then, there exists a transition in MW , q0

(
u1 · · · un

v1 · · · vn

)
=⇒∗

MW

(
u1 · · ·un

v1 · · · vn

)
qf ,

where qf is in F . Since w is in TS(Σ̂), for each 1 ≤ i ≤ n, ui and vi are

complementary, which means that
[
u1 · · · un

v1 · · · vn

]
∈ WKρ(V ). �	

Lemma 4. For a finite automaton M = (Σ̂ ∪ Σ̌, Q, q0, F, δ), there ex-
ists a Watson-Crick finite automaton MW = (Σ, ρ, Q, q0, F, δW ) such that
LM(MW ) = fd(L(M)) = {fd(w) | w ∈ L(M)}.



Linearizer and Doubler: Two Mappings to Unify Molecular Computing Models 231

Proof (sketch). For a finite automaton M = (Σ̂ ∪ Σ̌, Q, q0, F, δ), construct a
WK-automaton MW = (Σ, ρ, Q, q0, F, δW ) as follows:

For a transition δ(qi, â) � qj in M , construct δW (qi,

(
a
ε

)
) � qj in MW .

For a transition δ(qi, ǎ) � qj in M , construct δW (qi,

(
ε
a

)
) � qj in MW .

It suffices to show that a complete double strand
[
z1
z2

]
is in LM(MW ) if

and only if there exists a string w ∈ L(M) such that fd(w) =
[
z1
z2

]
, which is

proved in a manner similar to the above lemma. Thus, we can prove the equation
LM(MW ) = {fd(w) | w ∈ L(M)}. �	

From Lemmas 3 and 4, we have the following theorem.

Theorem 3. A molecular language L is in WKm if and only if there exists a
regular language R such that L = fd(R).

4.2 Sticker Molecular Languages Are fd(Minimal Linear Languages)

We slightly extend fd to f ′
d as follows : For w = xyz in (Σ̂ ∪ Σ̌ ∪ Σ̃)∗ such that

only fd(y) is well-defined and x, z are in Σ̂∗ ∪ Σ̌∗, define f ′
d(w) = x′fd(y)z′,

where x′ (z′) represents that x (z) forms an “upper stand” if x (z) is in Σ̂∗ or
“lower one” otherwise.

Lemma 5. For a sticker system γW , there exists an external contextual gram-
mar G such that LM(γW ) = fd(L(G)) = {fd(w) | w ∈ L(G)}.

Proof. For a sticker system γW = (Σ, ρ, AW , DW ), we define an external con-
textual grammar G = (Σ̂ ∪ Σ̌ ∪ Σ̃, A, C) derived from γW as follows:

For (u, v) in DW , construct (f�(u), f�(v)) in C. Let A = {f�(α) | α ∈ AW }.

It suffices to show that for any α′ =
(

α′
1

α′
2

)
in LRρ(Σ), there exists a com-

putation
(

α′
1

α′
2

)
=⇒n

γW

[
z1
z2

]
if and only if there exists a computation α′′ =⇒n

G z,

where f ′
d(α

′′) = α′ and fd(z) =
[
z1
z2

]
.

We will prove this by the induction on n.
Base step : (n = 0) It trivially holds. Induction step : There exists a computation

�
α′

1

α′
2

�
=⇒γW

�
u
u′

��
α′

1

α′
2

��
v
v′

�
=⇒n

γW

�
z1

z2

�

iff (by inductive hypothesis and the way of constructing C) there uniquely exist

(f�(
(

u
u′

)
), f�(

(
v
v′

)
)) in C such that



232 K. Onodera and T. Yokomori

f�(α′) =⇒G f�(
(

u
u′

)
)f�(α′)f�(

(
v
v′

)
) = w and w =⇒n

G z,

where f ′
d(w) =

(
u
u′

)(
α′

1
α′

2

)(
v
v′

)
and fd(z) =

[
z1
z2

]

iff there exists

f�(α′) =⇒G f�(
(

u
u′

)
)f�(α′)f�(

(
v
v′

)
) =⇒n

G z, and fd(z) =
[
z1
z2

]
.

Considering α′ = α ∈ AW , we have that

α=⇒n
γW

[
z1
z2

]
if and only if f�(α) =⇒n

G z, where fd(z) =
[
z1
z2

]
. �	

An external contextual grammar G = (Σ̂ ∪ Σ̌ ∪ Σ̃, A, C) is said to be restricted
if (1) for any (u, v) in C, u and v are in (Σ̂ ∪ Σ̌)∗ Σ̃+ (Σ̂ ∪ Σ̌)∗ ∪ (Σ̂ ∪ Σ̌)∗,
and (2) A ⊂ (Σ̂ ∪ Σ̌)∗ Σ̃+ (Σ̂ ∪ Σ̌)∗.

Let r-EC be the class of languages generated by restricted external contextual
grammars.

Lemma 6. For a given restricted external contextual grammar G = (Σ̂ ∪ Σ̌ ∪
Σ̃, A, C), there exists a sticker system γW = (Σ, ρ, AW , DW ) such that LM(γW )
= {fd(w) | w ∈ L(G)}.

Proof (sketch). For a given G above, we construct a sticker system γW = (Σ, ρ,
AW , DW ) as follows : For (x, y) in C, construct (f ′

d(x), f ′
d(y)) in DW . Let AW =

{f ′
d(α) | α ∈ A}.

We can prove that
[
z1
z2

]
is in LM(γW ) if and only if there exists a string

w ∈ L(G) such that fd(w) =
[
z1
z2

]
, in a manner similar to the above lemma,

which implies the equation LM(γW ) = {fd(w) | w ∈ L(G)}. �	

From Lemmas 5 and 6, we have the following theorem.

Theorem 4. A molecular language L is in SLm if and only if there exists an
external contextual language R in r-EC such that L = fd(R).

4.3 Characterizing Recursively Enumerable Languages by fd

Based on the doubler mapping fd and a projection, we first introduce a mapping
fpr. For the projection prT : V ∗

2 → T ∗, we define fpr : (Σ̂ ∪ Σ̌ ∪ Σ̃)∗ → T ∗

as follows: fpr(w) = prT (x), where fd(w) =
[

x
x′

]
for some x′ ∈ Σ∗. Then,

using the class EC and fpr, we have the following characterization of recursively
enumerable languages.



Linearizer and Doubler: Two Mappings to Unify Molecular Computing Models 233

Theorem 5. For a recursively enumerable language L, there exists an external
contextual grammar G such that fpr(L(G)) = L.

Proof. It is well known that for any recursively enumerable language L ⊆ T ∗,
there exist two ε-free morphisms h1, h2, a regular language R, and a projection
prT such that L = prT (h1(EQ(h1, h2))∩R). Let M = (Q, Γ2, δ, q0, F ) be a finite
automaton such that L(M) = R. Let h1, h2 : V ∗

1 → V ∗
2 .

We construct an external contextual grammar G = (Σ̂ ∪ Σ̌ ∪ Σ̃, A, C):

1. Let (wa, uava) be in C, where ua = b̂1 · · · b̂n, with h1(a) = b1 · · · bn,
va = ˇ̄c1 · · · ˇ̄cm, with h2(a) = c1 · · · cm,

for any q1 in Q, wa = q̂n+1#̃ˇ̄qn q̂n#̃ˇ̄qn−1 · · · q̂3#̃ˇ̄q2 q̂2#̃ˇ̄q1,
if δ(qi, bi) � qi+1 for each 1 ≤ i ≤ n, qn+1 /∈ F ,

wa = q̃n+1#̃ˇ̄qn q̂n#̃ˇ̄qn−1 · · · q̂3#̃ˇ̄q2 q̂2#̃ˇ̄q1,
if δ(qi, bi) � qi+1 for each 1 ≤ i ≤ n, qn+1 ∈ F .

The strings ua, va are used to check the equality for the homomorphisms h1

and h2. The string wa corresponds to the brick qn+1 #qn# · · · q3#q2#
#̄q̄n#̄q̄n−1 · · · #̄q̄2#̄ q̄1

which is used to check whether a string is in R = L(M).

2. Let Σ = ΓQ ∪ Γ2 ∪ Γ# for ΓQ = Q ∪ Q̄, Γ2 = V2 ∪ V̄2, Γ# = {#, #̄} and let
A = {q̂0#̃}.

We will show the equality fpr(L(G)) = L. Assume that w is in fpr(L(G)), then
there exists a string w′ in L(G) such that fpr(w′) = w. From the definition of C,
w′ = w1q̂0#̃w2, where w1 ∈ (Γ̂Q ∪ Γ̌Q ∪ {#̃})∗, w2 ∈ (Γ̂2 ∪ Γ̌2)∗. Since fpr(w′) is
defined, w′ is in ETS(Σ̂, Σ̃). Further, w1 ∈ ETS(Γ̂Q, Γ̃Q∪{#̃}), w2 ∈ TS(Γ̂2).
Then, there must exist a string z = a1 · · · am ∈ Γ ∗

1 which satisfies the following
two conditions : for h1(z) = b1 · · · bm′ with m′ ≥ 1,

– w1 = q̃m′#̃ˇ̄qm′−1 q̂m′−1#̃ˇ̄qm′−2 · · · q̂2#̃ˇ̄q1 q̂1#̃ˇ̄q0, where for 0 ≤ i ≤ m′ − 1,
δ(qi, bi+1) � qi+1, qm′ ∈ F . This implies that b1 · · · bm′ is in R.

– w2 ∈ b̂1 · · · b̂m′ 	⊥ ˇ̄b1 · · · ˇ̄bm′ This implies that h1(z) = h2(z).

Therefore, b1 · · · bm′ is in h1(EQ(h1, h2)) ∩ R, then from the definition of fpr,
fpr(w′) = prT (b1 · · · bm′) ∈ L.

Conversely, assume that w is in L. Then, there exists a string z such that
z ∈ h1(EQ(h1, h2)), z ∈ R and prT (z) = w. Then, there exists a string z′ =
a1 · · · am such that z′ ∈ EQ(h1, h2) and h1(z′) = h1(a1) · · · h1(am) = b1 · · · bm′ =
h2(a1) · · · h2(am) for m′ ≥ 1.

For z′, there exists a derivation q̂0#̃ =⇒∗
G w1q̂0#̃w2 in G such that w2 =

ĥ1(a1)ȟ2(a1) · · · ĥ1(am)ȟ2(am), where ĥ1(ai) = b̂i1 · · · b̂ik for h1(ai) = bi1 · · · bik,
ȟ2(ai) = ˇ̄ci1 · · · ˇ̄ci� for h2(ai) = ci1 · · · ci�. Then, w2 ∈ b̂1 · · · b̂m′ 	⊥ ˇ̄b1 · · · ˇ̄bm′ .

At the same time, since δ(q0, z) � qf with qf ∈ F , from the way of constructing
C, w1 = q̃m′#̃ˇ̄qm′−1 q̂m′−1#̃ˇ̄qm′−2 · · · q̂2#̃ˇ̄q1 q̂1#̃ˇ̄q0, where for 0 ≤ i ≤ m′ − 1,
δ(qi, bi+1) � qi+1, qm′ ∈ F . Therefore, w1q̂0#̃w2 is in ETS(Σ̂, Σ̃). Then, from
the definition of fpr, we have fpr(w1q̂0#̃w2) = w. �	



234 K. Onodera and T. Yokomori

4.4 WK Molecular Languages Are Proj(Sticker Molecular
Languages)

Let us define a double-strand projection (abb. d-projection) d-pr on double

strands as follows : For z in
[
V1∪V2
V1∪V2

]
, d-pr(z)=z if z is in

[
V1
V1

]
and d-pr(z)=

[
ε
ε

]

otherwise.

Lemma 7. For any Watson-Crick finite automaton M , there exists a sticker
system γ such that LM(M) = d-pr(LM(γ)).

Proof. (sketch) From Theorem 1, we may consider a 1-limited WK-
automaton M = (Σ, ρ, Q, q0, F, δ). Based on M , construct a sticker system
γ = (Σ∪ΓQ∪Γ#, ρQ, A, D) as follows : ΓQ = Q ∪ Q̄, Γ# = {#, #̄}. For a transi-

tion δ(qi,

(
x1
x2

)
)�qj in M with qj /∈ F , construct (

(
qj

ε

)[
#
#̄

](
ε
q̄i

)
,

(
x1
x2

)
) in D.

For a transition δ(qi,

(
x1
x2

)
) � qf with qf ∈ F , construct (

[
qf

q̄f

][
#
#̄

](
ε
q̄i

)
,

(
x1
x2

)
)

in D. Finally, let A = {
(

q0 #
ε #̄

)
}. Consider a d-projection d-pr on the alphabet[

Σ
Σ̄

]
. From the way of constructing γ, by the induction on the length of a

computation, we can prove that for qf ∈ F , q0

(
w1
w2

)
=⇒∗

M

(
w1
w2

)
qf if and

only if there exists a computation
(

q0 #
ε #̄

)
=⇒∗

γ

[
qf

q̄f

][
z1
z2

][
#
#̄

](
w1
w2

)
, where

[
z1
z2

]
∈

[
#Q
#̄Q̄

]+

. Finally, from the definition of d-pr, it holds that a complete

double strand
[
w1
w2

]
is in LM(M) if and only if there exists a complete double

strand
[
qf

q̄f

][
z1
z2

][
#
#̄

][
w1
w2

]
∈LM(γ) such that d-pr(

[
qf

q̄f

][
z1
z2

][
#
#̄

][
w1
w2

]
)=

[
w1
w2

]
. �	

Fig. 1. Landscape of Double-Decker Families of Languages



Linearizer and Doubler: Two Mappings to Unify Molecular Computing Models 235

5 Conclusion

By introducing two specific mappings called “doubler fd” and “linearizer f�”,
we have given new characterization results for the families of sticker languages
and of Watson-Crick languages which lead to not only an unified view of the
two families of languages but also a clarified view of the computational capabil-
ity of the DNA complementarity. From Theorems 1 and 5, we have the result
RE = fpr(MLIN ), which seems shed some new insights into computations in
comparison to the existing ones such as RE = dgsm(SL) or RE = coding(WK)
(in [3]).

Acknowledgements

This work is supported in part by Grant-in-Aid for Scientific Research on Pri-
ority Area no.14085205, Ministry of Education, Culture, Sports, Science and
Technology of Japan.

References

1. Hoogeboom, H.J. and Vugt, N.V. : Fair sticker languages, Acta Informatica, 37,
213–225 (2000).

2. Păun, Gh. : Marcus contextual grammar. Kluwer Academic Publishers (1997).
3. Păun, Gh., Rozenberg, G. and Salomaa, A. : DNA Computing. New Computing

Paradigms., Springer (1998).
4. Rozenberg, G. and Salomaa, A. (Eds.) : Handbook of Formal Languages, Springer

(1997).
5. Salomaa, A. : Turing, Watson-Crick and Lindenmayer : Aspects of DNA Comple-

mentarity, In Unconventional Models of Computation, Auckland, Springer, 94–107
(1998).

6. Sakakibara, Y. and Kobayashi, S. : Sticker systems with complex structures. Soft
Computing, 5, 114–120 (2001).

7. Vliet, R. van, Hoogeboon, H.J. and Rozenberg, G. : Combinatorial Aspects of Mini-
mal DNA Expressions, Pre-proc. In Tenth International Meeting on DNA Comput-
ing, Univ. of Milano-Bicocca, Italy, 84–96 (2004).


	Introduction
	Preliminaries
	Two Specific Mappings: Linearizer and Doubler
	Characterization Results in Terms of Doubler
	WK Molecular Languages Are $f_d$(Regular Languages)
	Sticker Molecular Languages Are $f_d$(Minimal Linear Languages)
	Characterizing Recursively Enumerable Languages by $f_d$
	WK Molecular Languages Are Proj(Sticker Molecular Languages)

	Conclusion


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




