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Abstract. We present a novel framework to develop a programmable
and autonomous in vivo computer using E. coli, and implement in vivo
finite-state automata based on the framework by employing the protein-
synthesis mechanism of E. coli. Our fundamental idea to develop a pro-
grammable and autonomous finite-state automata on E. coli is that we
first encode an input string into one plasmid, encode state-transition
functions into the other plasmid, and introduce those two plasmids into
an E. coli cell by electroporation. Second, we execute a protein-synthesis
process in E. coli combined with four-base codon techniques to simulate a
computation (accepting) process of finite automata, which has been pro-
posed for in vitro translation-based computations in [8]. This approach
enables us to develop a programmable in vivo computer by simply replac-
ing a plasmid encoding a state-transition function with others. Further,
our in vivo finite automata are autonomous because the protein-synthesis
process is autonomously executed in the living E. coli cell. We show some
successful experiments to run an in vivo finite-state automaton on E. coli.

1 Introduction

The finite-state automata (machines) are the most basic computational model in
Chomsky hierarchy and are the start point to build universal DNA computers.
Several works have attempted to develop finite automata in vitro. However,
there have been no experimental research works which attempt to build a finite
automaton in vivo.

We have previously proposed a method using the protein-synthesis mechanism
combined with four-base codon techniques to simulate a computation (accepting)
process of finite automata in vitro [8] (a codon is normally a triplet of base, and
different base triplets encode different amino acids in protein). The proposed
method is quite promising and has several advanced features such as the protein-
synthesis process is very accurate and overcomes mis-hybridization problem in
the self-assembly computation and further offers an autonomous computation.
Our aim was to extend this novel principle into a living system, by employing
the in vivo protein-synthesis mechanism of E. coli. This in vivo computation
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possesses the following two novel features, not found in any previous biomolecular
computer. First, an in vivo finite automaton is implemented in a living E. coli
cell; it does not mean that it is executed simply by an incubation at a certain
temperature. Second, this automaton increases in number very rapidly according
to the bacterial growth; one bacterial cell can multiply to over a million cells
overnight. The present study explores the feasibility of in vivo computation.

The main feature of our in vivo computer based on E. coli is that we first
encode an input string into one plasmid, encode state-transition functions into
the other plasmid, and transform E. coli cells with these two plasmids by elec-
troporation. Second, we execute a protein-synthesis process in E. coli combined
with four-base codon techniques to simulate a computation (accepting) process
of finite automata, which has been proposed for in vitro translation-based com-
putations in [8]. The successful computations are detected by observing the ex-
pressions of a reporter gene linked to mRNA encoding an input data. Therefore,
when an encoded finite automaton accepts an encoded input string, the reporter
gene, lacZ, is expressed and hence we observe a blue color. When the automaton
rejects the input string, the reporter gene is not expressed and hence we observe
no blue color. Our in vivo computer system based on E. coli is illustrated in
Fig. 1.

plasmid encoding 
input string

plasmid encoding Ser tRNA
reading AGGU 

E. coli

LacZ expression

colony exhibits a blue 
color = accept

incubation
= computation

LacZ no expression

transformation

colony exhibits no 
color = reject

Fig. 1. The framework of our in vivo computer system based on E. coli

Thus, our E. coli-based computer enables us to develop a programmable and
autonomous computer. To our knowledge, this is the first experimental develop-
ment of in vivo computer and has succeeded to execute an finite-state automaton
on E. coli.
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2 Methods

2.1 A Framework of Programmable and Autonomous In Vivo
Computer on E. coli

Two important issues on developing DNA-based computers are programmable
and autonomous . We realize these two mechanisms by using the main features
of our in vivo computer based on E. coli.

Programmable: The programmable means that a program is stored as a data
(i.e., stored program computer) and any computation can be accomplished by
just choosing a stored program. In DNA-based computers, it requires that a
program is encoded into a molecule different from the main and fixed units of
DNA computer, a molecule encoding programs can be stored and changed, and
a change of molecules encoding programs accomplishes any computations.

The main features of our in vivo computer enable us to develop a pro-
grammable in vivo computer. We simply replace a plasmid encoding a state-
transition function with other plasmid encoding a different state-transition
function, and the E. coli cell transformed a new plasmid computes a different
finite automaton.

Autonomous: The autonomous DNA computers mean that once we set a pro-
gram and an input data and start a computation, the entire computational
process is carried out without any operations from the outside. Our in vivo fi-
nite automata are autonomous in the sense that the protein-synthesis process
which corresponds to a computation (accepting) process of an encoded finite
automata is autonomously executed in a living E. coli cell and require no labo-
ratory operations from the outside.

2.2 Simulating Computation Process of Finite Automata Using
Four-Base Codons and Protein-Synthesis Mechanism

Sakakibara and Hohsaka [8] have proposed a method using the protein-synthesis
mechanism combined with four-base codon techniques to simulate a computation
(accepting) process of finite automata. An important objective of this paper is
to execute the proposed method on E. coli in order to improve the efficiency of
the method and further develop a programmable in vivo computer. We describe
the proposed method using an example of simple finite automaton, illustrated
in Fig. 3, which is of two states {s0, s1}, defined on one symbol ‘1’, and accepts
input strings with even numbers of symbol 1 and rejects input strings with odd
numbers of 1s.

The input symbol ‘1’ is encoded to the four-base subsequence AGGU and an
input string is encoded into an mRNA by concatenating AGGU and A alternately
and adding AAUAAC at the 3’-end. This one-nucleotide A in between AGGU is used
to encode two states {s0, s1}, which is a same technique presented in [9]. For
example, a string “111” is encoded into an mRNA:

AGGU
︸ ︷︷ ︸

1

A AGGU
︸ ︷︷ ︸

1

A AGGU
︸ ︷︷ ︸

1

AAAUAAC.
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plasmid encoding 
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Fig. 2. A programmable and autonomous in vivo computer system based on E. coli

s0 s1
1

1

Fig. 3. A simple finite automaton of two states {s0, s1}, defined on one symbol ‘1’,
and accepting input strings with even numbers of symbol 1 and rejecting input strings
with odd numbers of 1s

(This encoding will be replaced with other four-base encoding in real labora-
tory experiments because of the translation efficiency.) The four-base anticodon
(3’)UCCA(5’) of tRNA encodes the transition rule s0

1−→ s1, that is a transition
from state s0 to state s1 with input symbol 1, and the combination of two three-
base anticodons (3’)UUC(5’) and (3’)CAU(5’) encodes the rule s1

1−→ s0. Further,
the encoding mRNA is linked to lacZ-coding RNA subsequence as a reporter
gene for the detection of successful computations. Together with these encod-
ings and tRNAs containing four-base anticodon (3’)UCCA(5’), if a given mRNA
encodes an input string with odd numbers of symbol 1 , an execution of the in
vivo protein-synthesis system stops at the stop codon, which implies that the
finite automaton does not accept the input string, and if a given mRNA encodes
even numbers of 1s, the translation goes through the entire mRNA and the de-
tection of acceptance is found by the blue signal of lacZ. Examples of accepting
processes are shown in Fig. 4: (Upper) For an mRNA encoding a string “1111”,
the translation successfully goes through the entire mRNA and translates the
reporter gene of lacZ which emits the blue signal. (Lower) For an mRNA encod-
ing a string “111”, the translation stops at the stop codon UAA, does not reach
to the lacZ region and produces no blue signal.
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A G G U A A G G U A A G G U A A G G U A A A U A A C lacZmRNA

tRNAs
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1 1 1 1
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A G G U A A G G U A A G G U A A A U A A C lacZ
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Stop codon

1 1 1
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Fig. 4. Examples of accepting processes: (Upper) For an mRNA encoding a string
“1111”, the translation successfully goes through the mRNA and translates the reporter
gene of lacZ emitting the blue signal. (Lower) For an mRNA encoding a string “111”,
the translation stops at the stop codon UAG, does not reach to the lacZ region and
produces no blue signal.

If the competitive three-base anticodon (3’)UCC(5’) comes faster than the
four-base anticodon (3’)UCCA(5’), the incorrect translation (computation) im-
mediately stops at the following stop codon UAA.

2.3 Designing Laboratory Protocols Using E. coli

In order to practically execute the laboratory experiments for our in vivo finite
automata described in the previous sections, we have designed the following
details of laboratory protocol. For the translation efficiency, we use tRNA with
“UCCU” four-base anticodon in place of “UCCA”.

(1) Construction of plasmid for tRNA with UCCU anticodon. The
gene encoding a serine-inserting frameshift suppressor tRNA (designated as FS-
Sup tRNA) [6] was generated by polymerase chain reaction (PCR) with four
synthetic oligomers shown in Table 1. This PCR was performed using Pyrobest
DNA polymerase (Takara Shuzo, Kyoto, Japan) and Gene Amp PCR System
2700 (ABI). The PCR product, after treated with MicroSpin Columns (QIA-
GEN), was digested with BamHI and Eco52I, and was then ligated into the corre-
sponding sites of a derivative of pACYC184, by using Ligation kit ver.1 (Takara),
to create plasmid pFSSuptRNA. This derivative of pACYC184 contains the lpp
promoter before the BamHI site and the rrnC terminator after the Eco52I site.
The use of these promoter and terminator for expressing tRNA in E. coli has
been reported in [7]. E. coli MV1184 ElectroCells (Takara a) was transformed
by electroporation with pFSSuptRNA and incubated in SOC medium at 37oC.
The cells were then transferred onto LB Lennox plates (Nacarai) containing chlo-
ramphenicol (Wako) of 25 μg/ml to be inoculated at 37oC overnight. To extract
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Oligomer (i)

(ii) (iii)

(iv)

BamHI tRNA with UCCU anticodon rrnC terminator Eco52I

Fig. 5. Construction of FSSup tRNA with UCCU anticodon

Table 1. Oligomers for frameshift suppressor tRNA

Oligomer Sequence
(i) (5’) CACACAGGATCCCCGTGGAGAGATGC (3’)

(ii) (5’) GGATCCCCGTGGAGAGATGCCGGAGCGGCTGAACGGACCGGTCTTCCT

AAACCGGAGTAGGGGCAAC (3’)

(iii) (5’) GCTTTCGCTAAGGATCGTCGACTTTGGCGGAGAGAGGGGGATTTGAAC

CCCCGGTAGAGTTGCCCCTACTCCGGTTTAG (3’)

(iv) (5’) CACACACGGCCGTAAAAAAAATCCTTAGCTTTCGCTAAGGATCGTCG (3’)

the plasmid, the cells from one colony were transplanted to LB Lennox medium
of 1.5 ml containing chloramphenicol 25 μg/ml and cultured overnight at 37oC.
Plasmid DNA from the cells was extracted by using QIAprep Spin Miniprep
kit (Qiagen). Finally, the sequence of the FSSup tRNA gene was confirmed by
sequencing using the standard dideoxy method.

(2) Plasmid carrying an encoded input string. DNA fragment carrying
an encoded input string was made by annealing two oligomers, phosphorylated
by T4 polynucleotide kinase (Toyobo), in an H buffer (Toyobo) with a thermal
program of 95oC 2 mim followed by slow cooling to room temperature. The
obtained fragment had overhanging bases at either end to be ligated into the
PstI-XbaI sites pUC19 (Takara) (See Fig. 6). Amplification and sequence con-
firmation of this plasmid, pUC19 with the encoded input string, was performed
as described in (1) except for a use of ampicillin (Nacarai) of 50 μg/ml in place
of chloramphenicol.

(3) Cell preparation for electroporation. E. coli MV1184 with pFSSup-
tRNA was cultured overnight in LB Lennox (3ml). This overnight culture was

(v)

(vi)

PstI sticky end XbaI sticky end

Fig. 6. Encoded input string
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Table 2. Oligomers for an encoded input string

Oligomer Sequence
(v) (5’) GCAGGTA · · · AGGTA

� �� �

AGGTA×n

AATAACACT (3’)

(vi) (5’) CTAGAGTGTTATTTACCT · · · TACCT
� �� �

TACCT×n

GCTGCA (3’)

added to LB Lennox (150 ml) containing chloramphenicol 25 μg/ml, and inocu-
lated at 37oC until OD595 becomes 0.6 ∼ 0.8. The fresh culture, thus prepared,
was cooled on ice. Then, the culture was centrifuged at 5,000Xg for 15 min at
4oC, and then the supernatant was discarded and the pellet was re-suspended
in cold water. This step of cell wash was repeated. The pellet thus obtained was
suspended in 10 % glycerol, and was then centrifuged at 5,000Xg for 15 min at
4oC. After discarding the supernatant, the pellet was suspended in 10 % glycerol
again. This cell suspension was applied to flash freezing with liquid nitrogen for
store at −80oC.

E.coli MV1184 with pACYC184 instead of pFSSuptRNA was similarly
treated for preparing cells for electroporation. MV1184 with pACYC184 was
used for a control experiment.

(4) Calculation. The cells prepared in (3) were transformed with the plasmids
carrying an encoded input string by electroporation. The transformed cells were
added together with IPTG and X-Gal onto LB Lennox plates containing chlo-
ramphenicol of 25 μg/ml and ampicillin of 50 μg/ml. The cells were grown at
37oC overnight.

3 Experiments

We have done some laboratory experiments by following the laboratory protocols
presented in Section 2.3 to execute the finite automaton shown in Fig. 3, which
is of two states {s0, s1}, defined on one symbol ’1’, and accepts input strings
with even numbers of symbol 1 and rejects input strings with odd numbers of 1s.

We tested our method for six input strings, “1”, “11”, “111”, “1111”, “11111”,
and “111111”, to see whether the method correctly accepts the input string “11”,
“1111”, “111111”, and rejects the strings “1”, “111”, “11111”.

The results are shown in Fig. 7. Blue-colored colonies which indicates the
expression of lacZ reporter gene have been observed only in the plates for the
input strings 11, 1111, and 111111. Therefore, our in vivo finite automaton has
succeeded to correctly compute the six input strings, that is, it correctly accepts
the input strings 11, 1111, 111111 of even numbers of symbol ’1’ and correctly
rejects 1, 111, 11111 of odd number of 1s. To our knowledge, this is the first
experimental development of in vivo computer and has succeeded to execute an
finite-state automaton on E. coli.
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(-)

(-)

(+)

(-)

(-)

(-)

“1” “11” “111”

(+)

(-)

(-)

(-)

(+)

(-)

“1111” “11111” “111111”

Fig. 7. Computation by the E. coli cells with plasmids of the input strings: 1, 11,
111, 1111, 11111, 111111. In each panel, the upper plate (part of a LB plate) shows
the result in the presence of the suppressor tRNA with UCCU anticodon in the cell,
while the lower plate shows the result of control experiment with no suppressor tRNA
expressed. The signs (+) and (-) indicate the theoretical values about the expressions
of lacZ reporter gene: (+) means that the cultured E. coli cells must express lacZ
theoretically, and (-) means it must not express. Circles indicate the blue-colored colony
expressing lacZ . Therefore, our in vivo finite automaton has correctly computed the
six input strings, that is, it correctly accepts the input strings 11, 1111, 111111 of even
numbers of symbol ’1’ and correctly rejects 1, 111, 11111 of odd number of 1s.

4 General Theory to Implement Finite Automata Using
n-Base Codons

A general theory to implement any kinds of finite automata and any input strings
on any alphabet is described as follows.

First, in theory, we assume that n-base codons (for arbitrary n = 3, 4, 5, . . .),
tRNAs containing the complementary n-base anticodons, and the in vivo protein-
synthesis mechanism are available.

Next, we implement a finite automaton using n-base codons and some specific
encodings. Let M = (Q, Σ, δ, q0, F ) be a (deterministic) finite automaton, where
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Q is a finite set of states numbered from 0 to k, Σ is an alphabet of input
symbols, δ is a state-transition function such that δ : Q × Σ −→ Q, q0 is the
initial state, and F is a set of final states.

For the alphabet Σ, we encode each symbol a in Σ into a DNA subsequence,
denoted e(a), of fixed length. For an input string w on Σ, we encode w =
x1x2 · · · xm into the following DNA subsequence, denoted e(w):

e(x1) AA . . . A
︸ ︷︷ ︸

k times

e(x2) AA . . .A
︸ ︷︷ ︸

k times

. . . e(xm) AA . . . A
︸ ︷︷ ︸

k times

For the state-transition function from state qi to state qj with input symbol
a ∈ Σ, we encode δ(qi, a) = qj into tRNA containing the following anticodon:

(3′) UU . . . U
︸ ︷︷ ︸

i times

c(e(a)) UU . . . U
︸ ︷︷ ︸

k−j times

(5′)

where c(y) denotes the complementary sequence of y. Thus, we represent each
state in Q by the length of DNA sequence. This is the same technique presented
in [9]. Finally, we add some specific DNA subsequence containing stop codons at
the 3’-end of the encoding sequence e(w). This is for the in vivo protein-synthesis
system to stop a translation if the finite automaton does not accept an input
string.

It would be easy to see that the protein-synthesis mechanism of E. coli with
these specific encodings of the input string and tRNAs containing the anticodons
encoding the state-transition function will simulate the computation process of
a target finite automaton.

In practice, several four-base anticodons such as AUCU, GGGA and GAUC are
executable [6] and some five-base anticodons [1] have been proved in laboratory
experiments.

5 Discussions

The presented experiments of our in vivo finite automata based on E. coli pro-
pose a kind of population computations in the following two senses: (1) While
a computation by one single E. coli cell is not effective and accurate, a colony
consisting of a large number of E. coli cells provides a reliable computation. (2)
Since one bacterial cell can multiply to over a million cells overnight, our in vivo
computation framework offers a massively parallel computation. Further, our in
vivo finite automata have a quite distinguished feature that an in vivo finite
automaton is implemented in a living E. coli cell; it is not implemented simply
by an incubation at a certain temperature.
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