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Abstract. Distributed H systems and several variants of distributed H
systems have been studied extensively [1, 2, 3, 4]. This paper is an ef-
fort in the direction of obtaining efficient distributed systems. To this
end, a universality result using 2 components is obtained using two-level
distributed H systems. This is an improvement over the existing univer-
sality result with 3 components. Further, we propose lazy communicating
distributed H systems (LCDH systems), a variant of communicating dis-
tributed H systems, with lesser communication. A universality result is
obtained with this variant, using only 2 components. This improves the
universality result RE = CDH3 by reducing the number of components
as well as the communication between components.

1 Introduction

Communicating distributed H (CDH) systems were introduced in [1] as efficient
extensions of splicing systems. In CDH systems, parts of the model which are
able to work independently can be separated, and the result can be obtained by
synthesizing the partial results produced by the individual parts. However, the
communication in CDH systems is rather inefficient since they allow transport
of possibly the entire contents of each component in every step. Distributed H
systems [2, 3, 4] have been studied extensively, with different means of communi-
cation, one of them being two-level distributed H systems. These systems do not
allow communication between components in the sense of CDH systems, and so
are more efficient.

In this paper, we concentrate on two-level distributed H systems and CDH
systems. We introduce lazy CDH systems as a variant of CDH systems, wherein,
some components are classified as lazy, depending on the way they communicate.
The idea of having lazy components is to reduce the number of strings that can
be considered for communication in every step. We also obtain an unexpected
improved universality result for two-level distributed H systems (without any
laziness conditions), as well as a universality result for lazy CDH systems, both
in 2 components, which show that with better means of communication, the
number of components can be reduced. In the following subsection, we give
some basic definitions and notions of formal language theory used in this paper;
more details can be found in [4].
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1.1 Prerequisites and Basic Definitions

An alphabet is a finite nonempty set of symbols. For an alphabet V , we denote
by V ∗ the set of strings of symbols over V . The empty string is denoted by λ. V ∗

is the free monoid generated by V under the operation of concatenation. (The
unit element of this monoid is λ). Each subset of V ∗ is called a language over V .

Let x ∈ V ∗. If x = x1x2, for some x1, x2 ∈ V ∗, then x1 is called a prefix of x
and x2 is called a suffix of x. If x = x1x2x3, for some x1, x2, x3 ∈ V ∗, then x2 is
called a substring of x. The length of a string x is denoted by |x|. The number
of occurrences of a symbol a in x denoted |x|a.

Consider an alphabet V and two special symbols #, $ /∈ V . A splicing rule
over V is a string u1#u2$u3#u4 where u1, u2, u3, u4 ∈ V ∗. For a splicing rule
r = u1#u2$u3#u4, the result of splicing two strings x = x1u1u2x2, y = y1u3u4y2
is defined as (x, y) |=r (z, w) where z = x1u1u4y2, w = y1u3u2x2.

An H scheme is a pair σ = (V, R) where V is an alphabet and R ⊆
V ∗#V ∗$V ∗#V ∗ is a set of splicing rules. For an H scheme σ = (V, R), and
a language L, the set obtained by using the splicing operation on L is denoted
by σ2(L) = {z ∈ V ∗ | (x, y) |=r (z, w) or (x, y) |=r (w, z)}, for some x, y ∈ L, and
r ∈ R. σi

2(L) is defined inductively: σ0
2(L) = L, σi+1

2 (L) = σi
2(L)∪σ2(σi

2(L)), i ≥
0. Hence, σ∗

2(L) =
⋃

i≥0 σi
2(L).

An extended H system is a quadruple γ = (V, T, A, R) where T ⊆ V is the
terminal alphabet, R is the set of splicing rules and A is the set of axioms. Thus,
γ has an underlying H scheme σ = (V, R), augmented with a subset of V and a
set of axioms. The language generated by γ is defined as L(γ) = σ∗

2(A) ∩ T ∗.
The power of extended H systems as well as some extensions of H systems

have been studied extensively in the literature. In this paper, we are interested
in two such extensions viz., communicating distributed H systems and two level
H systems. We give the definitions of these systems in sections 2 and 3.

We denote by RE the family of recursively enumerable languages. A
recursively enumerable language can be generated by a type-0 grammar
G = (N, T, S, P ) where N is a set of non-terminals, T ⊆ N is the set of terminal
symbols, S is the start symbol, and P consists of productions of the form
u → v, u, v ∈ (N ∪ T )∗, |u|N > 0.

Notation: In the following sections, a splicing rule is represented by x#y$a#b.
However, while explaining the functionality of such a rule in the proofs, we
represent them by (x|y, a|b) |= (xb, ay).

2 Two-Level Distributed H Systems

Two-level distributed H systems were introduced in [2], [3]. In [2], two-level
distributed systems were considered in the non-separated form, whereas in [3],
separated systems were considered.

A two-level (non-separated) communicating distributed H system of degree
n, n ≥ 1 is a construct Γ = (V, T, (w1, A1, I1, E1), . . . (wn, An, In, En)), where
V is the alphabet, T ⊆ V is the terminal alphabet, wi ∈ V ∗, Ai ⊆ V ∗, and
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Ii, Ei ⊆ V ∗#V ∗$V ∗#V ∗, for symbols #, $ not in V . All sets Ai, Ii, Ei, 1 ≤ i ≤ n
are finite; (wi, Ai, Ii, Ei) is the ith component of the system; wi is the active
axiom, Ai is the set of passive axioms, Ii and Ei are the sets of internal and
external splicing rules respectively.

The contents of a component i is described by a pair (xi, Mi), where xi ∈ V ∗

is the active string and Mi ⊆ V ∗ is the set of passive strings. An n-tuple π =
[(x1, M1), . . . , (xn, Mn)] is called a configuration of the system. For 1 ≤ i ≤ n
and a given configuration π as above, we define μ(xi, π) = external if there are
r ∈ Ei and xj , j 	= i such that (xi, xj) |=r (u, v) for some u, v ∈ V ∗. Otherwise,
μ(xi, π) is internal.

For two configurations π, π′ as above, we write π ⇒int π′ if the following
conditions hold: (i) for all i, 1 ≤ i ≤ n, we have μ(xi, π) = internal, (ii) for each
i, 1 ≤ i ≤ n, either (xi, z) |=r (x′

i, z
′) for some z ∈ Mi, z

′ ∈ V ∗, r ∈ Ii, and
M ′

i = Mi ∪ {z′}, or (iii) no rule r ∈ Ii can be applied to (xi, z), for any z ∈ Mi,
and then (x′

i, M
′
i) = (xi, Mi).

The relation ⇒ext defines an external splicing, and ⇒int defines an internal
splicing. In both cases, splicing is performed in parallel and all components not
able to use a splicing rule do not change their contents. External splicing has
priority over internal splicing and all operations have as their first term an active
string; the first string obtained by splicing becomes the new active string of the
component and the second string becomes an element of the set of passive strings
of that component.

The language generated by a two-level distributed H system Γ is defined by
L(Γ ) = {w ∈ T ∗ | [(w1, A1), . . . , (wn, An)] ⇒∗ [(x1, M1), . . . , (xn, Mn)]}, for
w = x1, xi ∈ V ∗, 2 ≤ i ≤ n, and Mi ⊆ V ∗, 1 ≤ i ≤ n. LDHn denotes the
family of languages generated by two level distributed H systems with utmost
n components. If in the above, we consider all the sets Ei to be the same, i.e,
if Ei = E, for all 1 ≤ i ≤ n, then we get a separated two-level distributed H
system. The family of languages generated by separated two-level distributed
H systems with n components is denoted by SLDHn. When no restriction is
imposed on the number of components, n is replaced by ∗. In the following, we
improve the universality result in [3, 4].

Theorem 1. RE = SLDHn = LDHn for all n ≥ 2.

Proof. The idea behind the proof is very close to the one used in [3] and the proof
is much simpler. Consider a type-0 grammar G = (N, T, S, P ). We construct the
SLDH system Γ = (V, T, (w1, A1, I1), (w2, A2, I2), E) with

V = N ∪ T ∪ {X, Z, Zs, Zl, Zr, C1, C2},

w1 = SXXC1,

A1 = {ZvXZs | u → v ∈ P}
∪ {ZXXαZl , ZαXXZr | α ∈ N ∪ T}

I1 = {#uXZ$Z#vXZs | u → v ∈ P}
(Replacing u by v simulating u → v. Zs is introduced after replacement)
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∪ {#αXZ$Z#XXαZl | α ∈ N ∪ T}
(shifting α to the right of X. Zl is introduced after the right shift)

∪ {#XZ$Z#αXXZr | α ∈ N ∪ T},

(shifting α to the left of X. Zr is introduced after the left shift)

w2 = C2Z,

A2 = {ZsZ, ZlZ, ZZr},

I2 = {C2#Zs$Zs#Z, C2#Zl$Zl#Z, C2#Zr$Zr#Z},

(Changing Zs, Zl, Zr back to Z to start a new simulation)

E consists of the rules

E1. X#X$C2#Z, C2#Z$X#X,

(First step while simulating a rule u → v, or while shifting)

E2. X#Zs$C2#X, C2#X$X#Zs,

(Replace Zs by a string ending in C1 in w1; replace the suffix of w2 by Zs)

E3. XXα#Zl$C2X#, C2#X$XXα#Zl, α ∈ N ∪ T,

(Replace Zl by a string ending in C1 in w1; replace the suffix of w2 by Zl)

E4. αXX#Zr$C2Xα#, C2#Xα$αXX#Zr , α ∈ N ∪ T,

(Replace Zr by a string ending in C1 in w1; replace the suffix of w2 by Zr)

E5. #XXC1$C2Z#.

(To terminate, cut off the symbols XXC1 from the right)

Component 1 simulates rules of P and also shifts symbols to the right and left
of the marker XX . Component 2 saves the suffix of the active string w1 that
is cut while simulation and shifting, and also checks that the shifting done in
component 1 is correct.

To start with, we have w1 = SXXC1, w2 = C2Z. In general, assume that
w1 = z1uXXz2C1, w2 = C2Z, where u = u′a, where a ∈ V, u ∈ V ∗. (initially,
z1u

′ = λ, a = S, z2 = λ).
Case 1: Simulation of a rule u → v ∈ P . To begin, E1 is the only applicable rule.
E1 is applied in parallel to both components.

1. E1 ⇒ w1 = z1uXZ, C2Xz2C1 ∈ M1, w2 = C2Xz2C1, z1uXZ ∈ M2. In the
next step, no external rules are applicable, since w1 does not contain XX or
XZs or XXC1. Note that E1 cuts the suffix Xz2C1 of w1 and appends it
to w2; it also cuts the suffix Z of w2 and appends it to w1.

2. Use the internal rule (z1|uXZ, Z|vXZs) |= (z1vXZs, ZuXZ) in component
1 obtaining w1 = z1vXZs, w2 = C2Xz2C1, to simulate u → v. Component
2 is idle. In the next step, only E2 is applicable, and it acts in parallel on
both components.

3. Now, E2 ⇒ w1 = z1vXXz2C1, w2 = C2Zs, re adjoining the suffix z2C1 to
w1. No external rules are applicable in the next step since w2 	= C2X, C2Z.

4. To get back to C2Z, use the internal rule (C2|Zs, Zs|Z) |= (C2Z, ZsZs) in
component 2 (component 1 is idle) giving w1 = z1vXXz2C1, w2 = C2Z .
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Case 1 handles w1 = z1uXXz2C1, when there is a rule u → v ∈ P . Assume now
that for u = u′a, there exists no rule in P for a, but there exists u′ → v′ ∈ P . To
simulate u′ → v′ as above, we need u′ to be adjacent to XX in w1. To obtain
this, we need to shift a to the right of XX obtaining z1u

′XXaz2C1. Case 2
handles this situation.
Case 2: Transforming w1 = z1u

′aXXz2C1 into z1u
′XXaz2C1, given w2 = C2Z.

1. To begin, only E1 is applicable in both components. E1 ⇒ w1 =
zu′aXZ, C2Xz′C1 ∈ M1, w2 = C2Xz′C1, zu′aXZ ∈ M2. In the next step,
no external rules are applicable since w1 does not contain XX, XZs, XC1.

2. By assumption (since there is no rule in P for a), we choose any of the two in-
ternal rules (different from the one chosen in case 1, step 2). Component 2 will
remain idle in this step. Using (zu′|aXZ, Z|XXaZl) |= (zu′XXaZl, ZaXZ)
in component 1, we obtain w1 = zu′XXaZl, and w2 = C2Xz′C1. E3 is only
applicable in the next step, and it acts in parallel on both components.

3. Now, E3 ⇒ w1 = zu′XXaz′C1, C2XZl ∈ M1, w2 = C2Zl, zu′XXaXz′C1 ∈
M2, shifting a to the right of XX in w1. In the next step, no external rules
are applicable, since w2 	= C2X, C2Z.

4. To get back to C2Z, use the internal rule (C2|Zl, Zl|Z) |= (C2Z, ZlZl) in
component 2 (component 1 remains idle) giving w1 = z1u

′XXaz2C1, w2 =
C2Z .

After cases 1 and 2, one more situation needs to be handled. Assume that we
have w1 = z1XXaz2C1, with rules z1a → z ∈ P , and no rules in P for any
substring of z1. Clearly, case 2 is not useful, and to simulate a rule as in case1,
we need z1a to the left of XX . To do this, the a should be shifted to the left of
XX obtaining w1 = z1aXXz2C1.
Case 3: Transforming w1 = z1XXaz2C1 into z1aXXz2C1, given w2 = C2Z.

1. As in the above cases, we start with E1. E1 ⇒ w1 = z1XZ, C2Xaz′1C1 ∈
M1, w2 = C2Xaz′1C1, z1XZ ∈ M2. No external rules are applicable in the
next step.

2. We can choose an internal rule in component 1 involving Zl or Zr, lets choose
the one with Zr. Using (z1|XZ, Z|αXXZr) |= (z1αXXZr, ZXZ), α ∈ N ∪T
in component 1, we obtain w1 = z1αXXZr. Component 2 is idle, and hence
w2 = C2Xaz′1C1. E4 is only applicable in the next step to both components.

3. E4 ⇒ w1 = z1aXXz′1C1, C2XaZr ∈ M1, w2 = C2Zr, z1aXXXaz′1C1 ∈ M2,
shifting a to the left of XX . Note that E4 can be applied only if α = a
in the previous step. No external rules are applicable in the next step since
w2 = C2Zr.

4. Using the internal rule (C2|Zr, Zr|Z) |= (C2Z, ZrZr) in component 2 (com-
ponent 1 being idle), we obtain w1 = z1aXXz′1C1, w2 = C2Z.

Now, any of the three cases can be iterated. To terminate, we have only one
choice: to remove the substring XX of w1 which facilitates simulation of rules
or shifting. This is done by using E5, when all symbols are to the left of XX .
This will cut off from the active string wXXC1 in component 1, the tail XXC1,
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leaving w as the active string. Now, no more rules can be applied to w. If w ∈ T ∗,
it gets listed in the language, otherwise, nothing is computed. �


Note the almost symmetric nature of the external rules in the above theorem. It
helps in applying the external rules simultaneously in both components, with no
waiting. Even when applying internal rules, there is a minimal wait of exactly
one step for the other component.

3 Communicating Distributed H (CDH) Systems

CDH systems have been explored extensively in [1, 3, 5, 6], obtaining universal-
ity results with arbitrarily many components, six components, three components
and nine components respectively. In the following section, we briefly recall the
basics of CDH systems [4] and introduce the concept of laziness into CDH sys-
tems. We then consider an example and prove that universality can be obtained
with 2 components.

A CDH system is a construct Γ = (V, T, (A1, R1, V1), . . . , (An, Rn, Vn)), where
V is an alphabet, T ⊆ V , Ai are finite languages over V , Ri are finite sets of
splicing rules over V , and Vi ⊆ V, 1 ≤ i ≤ n. Each triple (Ai, Ri, Vi), 1 ≤ i ≤ n,
is called a component of Γ ; Ai, Ri, Vi are the sets of axioms, the sets of splicing
rules, and the selector of the component i, respectively. Let B = V ∗ −

⋃n
i=1 V ∗

i .
The pair σ(i) = (V, Ri) is the underlying H scheme associated to the component
i of the system.

An n−tuple (L1, L2, . . . , Ln), Li ⊆ V ∗, is called a configuration of the sys-
tem. The initial configuration of the system is (A1, . . . , An). For two config-
urations (L1, . . . , Ln), (L′

1, . . . , L
′
n), we define (L1, . . . , Ln) ⇒ (L′

1, . . . , L
′
n) iff

L′
i =

⋃n
j=1(σ

(j)
2

∗
(Lj) ∩ V ∗

i ) ∪ (σ(i)
2

∗
(Li) ∩ B), for each i, 1 ≤ i ≤ n.

In words, the contents of each component are spliced according to the set of
rules (we pass from Li to σ

(i)
2

∗
(Li)) and the result is redistributed among the

n components according to the selectors V1, . . . , Vn; the part which cannot be
redistributed remains in the component. As no conditions are imposed on the
alphabets Vi, when a string in σ

(j)
2

∗
(Lj) belongs to several languages V ∗

i , then
copies of the string will be distributed to all components i with this property.

The language generated by Γ is defined as L(Γ ) = {w ∈ T ∗ | w ∈
L1 for L1, . . . , Ln ⊆ V ∗ such that (A1, . . . , An) ⇒∗ (L1, . . . , Ln)}. The fam-
ily of languages generated by communicating distributed H systems of degree
utmost n, n ≥ 1 is denoted by CDHn. When n is not specified, then we replace
n by ∗.

3.1 Introducing Laziness

Let Γ be a CDHn system. We now define three kinds of strings viz., active,
passive and inactive based on Γ as follows:
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1. A string w ∈ σ
(i)
2

∗
(Li) is said to be active if there exists (i) a splicing rule

(w′
2#w′′

2$a#b) in Ri, (ii) a string xaby in σ
(i)
2

∗
(Li), and (iii) a substring

w′
2w

′′
2 of w. Note that we can also describe w having ab as a substring such

that there exists a string xw′
2w

′′
2y in σ

(i)
2

∗
(Li). Clearly, if w is an active

string, it can be spliced using rules of Ri to obtain further strings.
2. A string w ∈ σ

(i)
2

∗
(Li) is said to be passive if for all splicing rules

(w′
2#w′′

2$a#b) in Ri, such that w′
2w

′′
2 (or ab) is a substring of w, there does

not exist any string xaby (or x1w
′
2w

′′
2x2) in σ

(i)
2

∗
(Li).

3. A string w ∈ σ
(i)
2

∗
(Li) is said to be inactive if for all splicing rules

(w′
2#w′′

2$a#b) in Ri, w does not contain w′
2w

′′
2 or ab as a substring.

A lazy communicating distributed H system is a construct

Γ = (V, T, (A1, R1, V1, γ1), . . . , (An, Rn, Vn, γn)),

where V is an alphabet, T ⊆ V , Ai are finite languages over V , Ri are finite sets of
splicing rules over V , and Vi ⊆ V, 1 ≤ i ≤ n. Each tuple (Ai, Ri, Vi, γi), 1 ≤ i ≤ n,
is called a component of Γ ; Ai, Ri, Vi are the sets of axioms, the sets of splicing
rules, and the selector of the component i, respectively; γi is a parameter taking
values l or e, depending on whether the component is lazy or eager; T is the
terminal alphabet of the system. Let B = V ∗ −

⋃n
i=1 V ∗

i .
There are two kinds of components : lazy components and eager components.

The two kinds of components differ in the way they communicate : eager com-
ponents behave the same way as the components in a CDH system, whereas lazy
components communicate only their inactive strings, provided they pass the
necessary filters.

The pair σ(i) = (V, Ri) is the underlying H scheme associated to the compo-
nent i of the system.

An n−tuple (L1, L2, . . . , Ln), Li ⊆ V ∗, is called a configuration of the sys-
tem. Li is also called the contents of component i. The initial configuration of
the system is (A1, . . . , An). For two configurations (L1, . . . , Ln), (L′

1, . . . , L
′
n), we

define (L1, . . . , Ln) ⇒ (L′
1, . . . , L

′
n) iff

1. L′
i =

⋃n
j=1(Sj ∩ V ∗

i ) ∪ (σ(i)
2

∗
(Li) ∩ B), for each eager i, 1 ≤ i ≤ n,

and Sj = σ
(j)
2

∗
(Lj) if j is eager, and Sj ⊆ σ

(j)
2

∗
(Lj) is the set consisting of

all inactive strings of σ
(j)
2

∗
(Lj), if j is lazy.

2. L′
j =

⋃n
i=1(Si ∩ V ∗

j ) ∪ (Sj ∩ B) ∪ (Lj\Sj) for each lazy j, 1 ≤ j ≤ n,

and Si = σ
(i)
2

∗
(Li) if i is eager, and Sj ⊆ σ

(j)
2

∗
(Lj) is the set of inactive

strings of σ
(j)
2

∗
(Lj), if j is lazy.

In words, the contents of a component i are spliced according to the associated
set of rules, and,

– If i is eager, the result is redistributed among the n components according
to the selectors V1, . . . , Vn; the part which cannot be redistributed (which
does not belong to some V ∗

i , 1 ≤ i ≤ n) remains in the component.
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– If i is lazy, the subset of σ
(i)
2

∗
(Li) consisting of the inactive strings of

σ
(i)
2

∗
(Li) is redistributed among the n components according to the selectors

V1, . . . , Vn, and the part of the subset which cannot be redistributed remains
in the component.

The language generated by Γ is defined by L(Γ ) = {w ∈ T ∗ | w ∈
L1 for some L1, . . . , Ln ⊆ V ∗ such that (A1, . . . , An) ⇒∗ (L1, . . . , Ln)}.

We denote by LCDHn the family of languages generated by lazy communi-
cating distributed H systems of degree utmost n, n ≥ 1. When n is not specified,
we replace n by ∗.

Note that an LCDH system with all components eager is the same as a CDH
system. Let us consider an example.

Example 1. Consider the system Γ

({a, b, c, X, Y, Z, Z′, F1, F2, F}, {a, b, c}, (A1, R1, V1, e), (A2, R2, V2, l), (A3, R3, V3, l)),

A1 = {XY, aX}, R1 = {a#X$X#Y, c#F$#aY, c#F$aY #}, V1 = T ∪ {F},

A2 = {bZ, Z′Z′}, R2 = {a#Y $#bZ, ab#Z$Z′#Z′}, V2 = T ∪ {Y },

A3 = {F1cF1, F2, FF}, R3 = {b#Z′$F1#cF1, c#F1$#F2, c#F2$F#F},

V3 = T ∪ {Z′}.

No communication between components is possible before any splicing, since
A1 ∩V ∗

j = ∅, j = 2, 3; strings of A2 are passive; FF ∈ A3 is passive, and the rest
of A3 is active. Hence, splicing is possible only in the first and third components;
(a|X, X |Y ) |= (aY, XX) in the first component and (F1c|F1, |F2) |= (F1cF2, F1)
in the third component. The string aY is communicated from component 1 to
component 2, and in component 3, the string F1 is a candidate for communi-
cation, since it is inactive. However, F1 /∈ V ∗

i , i = 1, 2, 3, and hence remains in
component 3.

In component 2, the string aY is spliced according to the rule (a|Y, |bZ) |=
(abZ, Y ) and in component 3, the new splicings are (F1c|F2, F |F ) |= (F1cF, FF2)
or (F1c|F1, F1c|F2) |= (F1cF2, F1cF1). The string abZ in component 2 is ac-
tive, whereas Y is inactive. Similarly, in component 3, the string F1cF is in-
active. Therefore, Y, F1cF are candidates for communication in components
2,3. However, since Y /∈ V1, V3, F1cF /∈ V ∗

1 , V ∗
2 , V ∗

3 , Y remains in component
2 and F1cF in component 3. Continuing with abZ in component 2, we ob-
tain (ab|Z, Z ′|Z ′) |= (abZ ′, Z ′Z) or (a|Y, a|bZ) |= (abZ, aY ). Now the strings
abZ ′, Z ′Z are inactive and therefore are candidates for communication. Of the
two, abZ ′ is sent to component 3, while Z ′Z remains in component 2.

In component 3, abZ ′ is spliced as (ab|Z ′, F1|cF1) |= (abcF1, F1Z
′). Now, F1Z

′

is inactive; however since it does not belong to any V ∗
i , it remains in component

3. The string abcF1 is spliced as (abc|F1, |F2) |= (abcF2, F1). Now, abcF2 is active,
and F1 is inactive. F1 remains in component 3 since it fails all filters, and we
splice abcF2. Some possible splicings are (F1c|F1, abc|F2) |= (F1cF2, abcF1) or
(abc|F1, abc|F2) |= (abcF2, abcF1) or (abc|F2, F |F ) |= (abcF, FF2). All strings
except abcF are active, and abcF is communicated to component 1.
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In component 1, we have either the option of appending an aY to abc and
thus continuing, or using (abc|F, aY |) |= (abc, aY F ). The string abc remains
in component 1, and a copy is sent to components 2 and 3. Clearly, L(Γ ) =
{(abc)n | n ≥ 1}.

Theorem 2. RE = LCDH2

Proof. Consider a type-0 grammar G = (N, T, S, P ). Let N ∪ T ∪ {B} =
{D1, . . . , Dm}, where B is a new symbol. Since N, T 	= ∅, m ≥ 3. Construct
the LCDH system Γ = (V, T, (A1, R1, V1, e), (A2, R2, V2, l)), with

V = N ∪ T ∪ {X, Y, Z, Z′, E1, E2, Xi, Yi, X
′
2j , Y

′
2j | −1 ≤ i ≤ 2m, 1 ≤ j ≤ m},

A1 = {XBSY } ∪ {ZvY | u → v ∈ P} ∪ {ZX ′
2iY

′
2i | 1 ≤ i ≤ m} ∪ {E1E2, XZ0, Z0Y }

∪ {X2iZ, ZY2i | 1 ≤ i ≤ m}, and R1 consists of the following rules:

Simulating rules of P :

1. #uY $Z#vY, u → v ∈ P,

Rotation : For 1 ≤ i, j, k ≤ m,

2. Dj#DiY $ZX ′
2i#Y ′

2i,

3. X#DjDk$ZX ′
2iDi#Y,

4. #XY $Z#X ′
2iDiDj ,

Updation of Indices (Odd to even) :

5. X2j+1#Di$X2j#Z, 0 ≤ j ≤ m, 1 ≤ i ≤ m,

6. Di#Y2j+1$Z#Y2j , 0 ≤ j ≤ m, 1 ≤ i ≤ m,

Going back to end markers X, Y, from X0, Y0

7. X0#Dj$X#Z0, 1 ≤ j ≤ m,

8. Dj#Y0$Z0#Y, 1 ≤ j ≤ m,

Possible Termination : For Dj , Dk ∈ T, 1 ≤ j, k ≤ m,

9. Dj#BY $E1#E2,

10. X#Dk$E1#BY,

11. E1#Dk$#E1E2,

12. Dj#E2$E1E1E2#,

V1 = N ∪ T ∪ {B, X, Y, X0, Y0} ∪ {X2i+1, Y2i+1 | 0 ≤ i ≤ m − 1},

A2 = {X2iZ
′, Z′Y2i, Z

′Y2i−1, X2i−1Z
′, X−1Z

′, Z′Y−1}, 0 ≤ i ≤ m, and

R2 consists of rules

Initialize : For 1 ≤ i, j ≤ m,

13. X ′
2i#Di$X2i#Z′,

14. Dj#Y ′
2i$Z′#Y2i,

Updation of Indices (Even to odd) : For 1 ≤ i, j ≤ m,

15. X2i#Dj$X2i−1$Z′,

16. Dj#Y2i$Z′#Y2i−1,

Removal of X0, Y0 : For 1 ≤ j ≤ m,

17. X0#Dj$X−1#Z′,
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18. Dj#Y0$Z′#Y−1.

V2 = N ∪ T ∪ {B, X2i, Y2i, X
′
2j , Y

′
2j | 0 ≤ i ≤ m, 1 ≤ j ≤ m}

Let us examine the work of Γ . The underlying idea is to rotate and simulate. We
start from the string XBSY in component 1, and in component 2, there are no
rules that can be applied with respect to strings in A2. However since all strings
in A2 are passive, and since none of the strings in A1 pass the filter V2, there is
no communication before any splicing. In the first component, we can simulate
rules of P by using the rule 1, replacing suffixes. Since the new strings obtained
as a result of rule 1 do not pass the filter V2, and since there are no inactive
strings in component 2, there is no communication between the components.

This can go on as long as rule 1 is applied. If we choose to rotate a sym-
bol at any point of time, then we choose rule 2, giving (Xw|DiY, ZX ′

2i|Y ′
2i) |=

(XwY ′
2i, ZX ′

2iDiY ). Both of these strings /∈ V ∗
2 , and hence cannot be com-

municated to component 2. We can choose next, (X |Dj, ZX ′
2iDi|Y ) |=

(XY, ZX ′
2iDiDjw1Y

′
2i), provided w = Djw1. The two new strings obtained

here also /∈ V ∗
2 and hence we continue in component 1. We can now use

(|XY, Z|X ′
2iDiDj) |= (X ′

2iDiDjw1Y
′
2i, ZXY ), and in this step, the string

X ′
2iDiDjw1Y

′
2i is communicated to component 2. No string from component

2 is communicated to component 1.
In the next step, in component 2, we can use rules 13 or 14 to X ′

2iDiDjw1Y
′
2i,

resulting in (X ′
2iZ

′, X2iDiDjw1Y
′
2i) or (X ′

2iDiDjw1Y2i, Z
′Y ′

2i). The strings
X ′

2iZ
′, Z ′Y ′

2i in component 2 are inactive, and so are considered for communi-
cation. However, since they do not pass V1, they remain in component 2. The
strings X ′

2iDiDjw1Y2i or X2iDiDjw1Y
′
2i are active and so are not considered

for communication. We can apply rule 14 or 15 to X2iDiDjw1Y
′
2i and rule 13

or 16 to X ′
2iDiDjw1Y2i. In either case, we ultimately obtain the inactive string

X2i−1DiwY2i−1. Since X2i−1DiwY2i−1 ∈ V ∗
1 , it is sent to component 1.

Let w′ = Diw. In component 1, rules 5 and 6 are applicable to
X2i−1w

′Y2i−1. If we choose rule 5 first, we obtain (X2i−1|Di, X2i−2|Z) |=
(X2i−1Z, X2i−2w

′Y2i−1). Both these strings cannot be communicated to com-
ponent 2, since they do not pass the filter. We continue with rule 6 to obtain
(Dk|Y2i−1, Z|Y2i−2) |= (X2i−2w

′Y2i−2, ZY2i−1). We would obtain the same set
of strings even if rule 6 is applied first. The string X2i−2w

′Y2i−2 obtained after
application of rules 5,6 is communicated to component 2, since it passes the filter.

In component 2, we now decrement the end markers using rules 15, 16.
Observe that until both are used, we cannot communicate the intermediate
string (X2i−2w

′Y2i−3 or X2i−3w
′Y2i−2), since it is active. The other strings

obtained as a result of rules 15,16 are X2i−2Z
′, Z ′Y2i−2, which cannot be

communicated even though they are inactive, since they are not over V ∗
1 .

Continuing like this, a string X1w
′Y1 is communicated to component 1.

Now, using rules 5,6 as before we decrement X1, Y1 to X0, Y0. Note that before
decrementing both X1 and Y1, we cannot communicate to component 2, since
V2 does not contain X2i+1, Y2i+1, i ≥ 0. However, when we have X0w

′Y0
in component 1, since V1, V2 contain X0, Y0, the string is communicated to
component 2, and a copy is retained in component 1.
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In component 1, the X0 is replaced by X and Y0 by Y by rules 7 and 8. Observe
that the intermediate strings obtained (with X, Y0 and X0, Y as the end markers)
cannot be communicated to component 2, since X, Y /∈ V2. But, we can start an-
other simulation in component 1 using Xw′Y . Simultaneously, in component 2,
rules 17,18 are applicable to X0w

′Y0. We do not consider the intermediate strings
for communication since they are active. But, even after application of 17,18,
the string we obtain, viz., X−1w

′Y−1 cannot be communicated, since it is not
over V1.

Note that, the first time a rotation is done in component 1, the indices of the
end markers will be the same, since rule 3 can be applied only after applying
rule 2, thus obtaining the correct string ZX ′

2iDiY . However, this is not the case
for subsequent rotations. (since all strings ZX ′

2iDiY produced in previous steps
will be available). In general, it is possible to obtain a string X ′

2iw
′Y ′

2j , i 	= j
in component 1. We communicate this string to component 2, and, after a
sequence of communications, we will end up with a string X0w

′Y2l, l > 0 or
X2kw′Y0, k > 0. Let us examine how to handle this case.

Let us assume that we have the string X2kw′Y0 in component 1. Obviously,
this is obtained after application of rules 5,6 in the two previous steps. This
string is communicated to component 2 since it passes the filter V2, without
retaining a copy in component 1 ( X2kw′Y0 /∈ V ∗

1 ). In component 2, rules 15,18
are applicable. This leads us to the intermediate strings X2k−1w

′Y0 (15 applied
first) or X2kw′Y−1 (18 applied first). In either case, both strings are active. We
end up, in either case with X2k−1w

′Y−1, which is inactive. But however, this
string belongs to neither V ∗

1 nor V ∗
2 and so, remains in component 2, without

contributing to the output.
Thus, we can continue a simulation iff we end up with X0w

′′Y0 in component
1, in which case, the copy sent to component 2 remains stuck there, but the
copy in component 1 is useful by replacing X0 by X and Y0 by Y .

Let us now examine how a string over terminals can be generated, contribut-
ing to L(Γ ). Assume that we have in component 1, a string XwBY . We can
choose to either rotate B using rule 2, or eliminate B using rule 9. Let us see
what happens if rule 9 is chosen. We obtain (Xw|BY, E1|E2) |= (XwE2, E1BY ).
Both these strings cannot be communicated, since they fail to pass the filter V2.
We can continue with rule 10, (X |Dk, E1|BY ) |= (XBY, E1Dkw′E2), provided
w = Dkw′. Now, rule 11, (E1|Dk, |E1E2) |= (E1E1E2, Dkw′E2) is used to
remove E1. This is followed by application of rule 12 removing E2 and obtaining
Dkw′. The only information we have about this string is that if w′ = w1Dj or
w = Dkw1Dj , then Dk, Dj ∈ T . However, if this string is not over terminals, then
it does not contribute to the language and is hence “lost”. Thus, only terminal
strings obtained starting from XBSY , which are rotated correctly every time
(so that X0wY0 is obtained in component 1) can contribute to the language. �


Remark 1. To see how the above system communicates less, we will examine
what happens if component 2 was eager in the above result. As long as no rota-
tion takes place (for the first time) in component 1, there is no communication
between components, irrespective of the nature of the individual components.
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The number of strings communicated between components is the same (if compo-
nent 2 is eager or lazy) even after rotation, in case, rotation takes place correctly,
yielding X0wY0 in component 1. Now assume that rotation goes wrong, giving
X0wY2k or X2lwY0, k, l > 0 in component 1. Either of these strings will be com-
municated to component 2. If component 2 was eager, then if rule 15 or 16 is
chosen first, we get a string X2l−1wY0 or X0wY2k−1, which will be communicated
to component 1, leading to wrong results. That means an extra communication
is made, which also leads to wrong results in case component 2 was eager. But if
component 2 is lazy, this communication will not be made, and the results also
do not go wrong. The same is the case if X0, Y0 are not replaced in subsequent
steps in component 1, when having X0wY0. (X0w

′Y ′
2i can be obtained in com-

ponent 1, which will be communicated to component 2. Component 2 if eager,
can then communicate X0w

′Y2i−1 to component 1, and things go wrong).

4 Conclusion

We have improved the universality result of two-level distributed H systems,
and conjecture that the result obtained is optimal. Likewise, by introducing
laziness, we have proved that a better characterization of RE can be obtained,
as compared to the result CDH3 = RE [5]. The power of LCDH2, with both
components being lazy, is open.
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