
Efficient Algorithm for
Testing Structure Freeness of

Finite Set of Biomolecular Sequences

Atsushi Kijima and Satoshi Kobayashi

Graduate School of University of Electro-Communications,
1-5-1, Chofugaoka, Chofu, Tokyo 182-8585, Japan

kijiman@comp.cs.uec.ac.jp, satoshi@cs.uec.ac.jp

Abstract. In this paper we will focus on the structure freeness test
problem of finite sets of sequences. The result is an extension of An-
dronescu’s algorithm which can be applied to the sequence design of
various DNA computing experiments. We will first give a general algo-
rithm for this problem which runs in O(n5) time. Then, we will give
an evaluation method for sequence design system, which requires O(n5)
time for precomputation, and O(n4) time and O(n5) space for each eval-
uation of sequence sets. The authors believe that this result will give an
important progress of efficient sequence design systems.

1 Introduction

Since Adleman’s novel biological experiment for solving directed Hamiltonian
path problem by DNA molecules was reported([1]), DNA computing paradigm
has emerged and progressed while communicating with related fields, such as
DNA nanotechnology([19], [15], [7]), biotechnology([5]), etc. One of the most im-
portant problems in DNA computing experiments include the design of structure
free biomolecular sequences which can avoid unwanted secondary structure([6],
[8]). In order to develop a sequence design system, we need to devise an efficient
algorithm to test the structure freeness of a given set of biomolecular sequences.

Concerning sequence design for DNA computing, there have been many inter-
esting and important works which propose some variants of Hamming distance
over biomolecular sequences. And these metrics are used for the evaluation of the
sequences([3], [12], [10], etc.). Comparing those Hamming distance approaches,
Condon, et al. mathematically formulated a structure freeness test problem of
biomolecular sequences at the secondary structure level([8], [2]). This problem is
closely related to the prediction problem of RNA secondary structures([9], [11],
[16], [20]), and is important in that its efficient algorithms can be applied to the
evaluation of sequence sets in sequence design systems.

Andronescu, et al., proposed an O(m2n3) time algorithm for testing the struc-
ture freeness of a sequence set S1 · · ·Sk, where each Si is a finite set of sequences
of length li, n =

∑k
i=1 li, and m = max{|Si| | i = 1, ..., k}([2]). Kobayashi,

et al., gave an O(m6n6) time algorithm for testing the structure freeness of a
sequence set S+, where S is a finite set of sequences of length n and m = |S|

A. Carbone and N.A. Pierce (Eds.): DNA11, LNCS 3892, pp. 171–180, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

172 A. Kijima and S. Kobayashi

([14]). Furthermore, Kobayashi devised an O(n8) time algorithm for testing the
structure freeness of a regular set of sequences, where n is the number of vertices
of graphs for representing the set([13]). (Note that Condon proposed to use a
graph for representing a regular set of sequences.)

In spite of this progress in evaluation methods, we still need more efficient
algorithms in order to develop an efficient sequence design system. In this paper,
we will focus on the structure freeness test problem of finite sets of sequences.
The obtained result is an extension of Andronescu’s algorithm and can be applied
to the sequence design of various DNA computing experiments. We will first give
a general algorithm for this problem which runs in O(n5) time. Then, we will
give an evaluation method for sequence design system, which requires O(n5)
time for precomputation, and O(n4) time and O(n5) space for each evaluation
of sequence sets. The authors believe that this result will give an important
progress of efficient sequence design systems.

2 Preliminaries

Σ is an alphabet {A, C, G, T} or {A, C, G, U}. A symbol in Σ is called a base. A
string over Σ represents a DNA or RNA strand with 5′ → 3′ direction. Consider
a string α over Σ. By |α| we denote the length of α. For a finite set X , by |X |
we denote the number of elements of X . For an integer i such that 1 ≤ i ≤ |α|,
by α[i] we denote the ith base of α.

2.1 Secondary Structure

We will partly follow the terminologies and notations used in ([17]). We intro-
duce a relation θ ⊆ Σ × Σ defined by θ = {(A, T), . . ., (T, G)} for representing
Watson-Crick and non-Watson-Crick base pairs of a DNA strand. For the case
of an RNA strand, the symbol T is replaced by U. By (i, j) we denote a hy-
drogen bond between the ith base and the jth base of a string α. A hydrogen
bond is also called a base pair. A base pair (i, j) of a string α can be formed
only if (α[i], α[j]) ∈ θ holds. Without loss of generality, we may assume that
i < j for a base pair (i, j). A finite set of base pairs of string α is called a
secondary structure of α. A string α with its secondary structure T is called a
structured string and denoted by α(T). For representing the ith base in α(T),
we often use the integer i.

In this paper, we consider secondary structures T such that there exist no
base pairs (i, j), (k, l) ∈ T satisfying i < k < j < l. In the sequel, we assume
that every secondary structure is pseudo-knot free.

For a base pair (i, j) ∈ α(T) and a base r in α(T), we say that (i, j) surrounds
r if i < r < j holds. For a base pair (p, q) ∈ T , we say that (i, j) surrounds (p, q)
if i < p < q < j holds. A base pair (p, q) or an unpaired base r is said to be
accessible from (i, j), if it is surrounded by (i, j) and is not surrounded by any
base pair (k, l) such that (k, l) is surrounded by (i, j). If (p, q) is accessible from
(i, j), we write (p, q) < (i, j).

Efficient Algorithm for Testing Structure Freeness of Finite Set 173

For each base pair bp = (i, j) ∈ T , we define a cycle c(bp) as a substructure
consisting of the base pair (i, j) together with any base pairs (p1, q1), (p2, q2), . . . ,
(pk−1, qk−1) ∈ T accessible from (i, j) and any unpaired bases accessible from
(i, j). If a cycle c(bp) contains k base pairs including the base pair (i, j), it is
said to be k-cycle. In case k = 1, we often call it a hairpin. In case k = 2, it is
called internal loop. In case k > 2, it is called multiple loop. In these definitions,
the base pair (i, j) is called a closing base pair of the cycle. (See Fig. 1).

5’

3’

5’

3’

i

j

i

j

p

q

1-Cycle 2-Cycle

i

j

p
1

q
1

p
2

q
2

3-Cycle

(hairpin) (internal loop) (multiple loop)

5’

3’

Fig. 1. Secondary Structure

In case of (1, |α|) �∈ T , the substructure of α(T) consisting of the base pair
(i, j) such that (i, j) is not surrounded by any (p, q) ∈ T ((i, j) �= (p, q)) and
the unpaired bases such that they are not surrounded by (i, j) is called a free
end structure of α(T). We do not consider a free end structure because of space
constraint.

The loop length of a 1-cycle c with a base pair (i, j) is defined as j − i+1. For
a 2-cycle c with base pairs (i, j), (p, q) ((p, q) < (i, j)), we define loop length of c
as p − i + j − q + 2 and define loop length mismatch of c as |(p − i) − (j − q)|.

By ↑ α ↓ we denote a 1-cycle consisting of a string α with a base pair between
α[1] and α[|α|]. By ↑ α β ↓ we denote 2-cycle consisting of strings α and β with
two base pairs between α[1] and β[|β|] and between α[|α|] and β[1].

3 Free Energy of Secondary Structure

In this paper, we use following simplified functions to assign free energy values
to each substructures. We use these simplifications only for the clarity of the
algorithm. Experimental evidence is used to determine such free energy values.

1. The free energy E(c) of a 1-cycle c with a base pair (i, j) is dependent on
the base pair (i, j) and its loop length l:

E(c) = f1(α[i], α[j]) + g1(l) . (1)

2. The free energy E(c) of a 2-cycle c with two base pair (i, j), (p, q)((p, q) <
(i, j)) is dependent on the base pairs (i, j), (p, q), its loop length l and its
loop length mismatch d:

E(c) = f2(α[i], α[j], α[p], α[q]) + g2(l) + g3(d) . (2)

174 A. Kijima and S. Kobayashi

3. The free energy E(c) of a k-cycle c (k > 2) with a closing base pair (i, j)
and the base pairs (p1, q1), (p2, q2), . . . , (pk−1, qk−1) accessible from (i, j) is
dependent on the base pairs (i, j), (pl, ql) (l = 1, . . . , k − 1), the number nb

(= k) of base pairs in c and the number nu of unpaired bases in c:

E(c) = m1(α[i], α[j])+
k∑

l=1

(m1(α[ql], α[pl]))+Mb ∗nb +Mu ∗nu +CM . (3)

In these definitions, the functions f1, g1, f2, g2, g3, m1 and the constants Mb,
Mu,CM are experimentally obtained. We assume that Mb, Mu, CM are non-
negative. For each function gi (i = 1, 2, 3), we assume that gi is weakly mono-
tonically increasing1.

We assume that all the above functions are computable in constant time.
Let c1, . . . , ck be the cycles contained in α(T). Then, the free energy E(α(T))

of α(T) is given by following:

E(α(T)) =
k∑

i=1

E(ci) . (4)

4 Structure Freeness of Finite Regular Set

We will consider the problem of testing whether a given finite regular set of
strings is structure free or not. The problem is formally defined in the following
way:

Let R be a regular language over Σ. Then, we say that R is structure free
with threshold D if for any structured string α(T) such that α ∈ R and T is
pseudo-knot free, it holds that E(α(T)) ≥ D. We have interests in deciding for
given R, whether or not R is structure free with threshold D. In Sect. 6, we will
give a polynomial time algorithm for solving this problem in the case that R is
finite.

For specifying a regular language R, we use a labeled directed graph with
initial and final vertices. Let M = (V, E, σ, I, F), where V is a finite set of
vertices, E is a subset of V ×V , σ is a label function from V to Σ, and I, F ∈ V .
For p, q ∈ V and x ∈ Σ∗, we write p

x→ q if there is a path with labels x from
p to q in M . Note that x contains the labels σ(p) and σ(q). We write p → q if
p

x→ q for some x ∈ Σ∗. A string α is accepted by M if p
α→ q for some p ∈ I and

q ∈ F . This graph representation could be regarded as a Moore type machine
with no edge labels. Thus, a set of strings is regular iff it is accepted by a graph
M . A graph M is said to be trimmed if every vertex is reachable from an initial
vertex and has a path to a final vertex.

In this paper, we have interests in testing structure freeness of a finite regular
set. Note that a set of strings is finite iff it is accepted by a trimmed and acyclic
graph.
1 This assumption can be extended so that gi(l) is weakly monotonically increasing

within the range l > Li for some constant Li. Because of space constraint, we use
the simplified assumption.

Efficient Algorithm for Testing Structure Freeness of Finite Set 175

5 Minimum Free Energy of Substructure

Let R be a finite regular language over Σ and M = (V, E, σ, I, F) be a trimmed
and acyclic graph accepting R.

We can topologically sort vertices in V in O(|V | + |E|) time. By an integer
i, we denote the ith vertex in the topological order. Let α(T) be a structured
string such that α ∈ R and T is pseudo-knot free.

Definition 1. For i, j, p, q ∈ V , we define:

(1) minH(i, j) = min
{
E(↑ x ↓) | i

x→ j
}

,

(2) minI(i, j, p, q) = min
{
E(↑ x y ↓ | i

x→ p, q
y→ j, p → q

}
.

For each i, j, p, q ∈ V such that there is no ↑ x ↓ or ↑ x y ↓ , the value of
minH(i, j) or minI(i, j, p, q) is defined as +∞.

For each pair of vertices i, j, we define Len(i)(j) as a set of the length |x| such
that i

x→ j. For a given graph M , we compute the array Len by the algorithm
shown in Fig. 2, where every vertices are sorted in the topological order.

Make-Len(M)
begin

for i, j ∈ V do Len(i)(j) := φ; end
for (i, j) ∈ E do Len(i)(j) := {2}; end
for d = 2 to |V | − 1 do

for i = 1 to |V | − d do
j := i + d;
Len(i)(j) := Len(i)(j) ∪

�
i<k<j
(k,j)∈E

{x + 1 | x ∈ Len(i)(k)};

end
end

end

Fig. 2. The algorithm Make-Len

Since a given graph M is acyclic, for any i, j ∈ V , |Len(i)(j)| ≤ |V | holds.
So, we can compute an array Len in O(|V |2|E|) time.

By Definition 1 and by using the array Len, we get the following Proposition 1.

Proposition 1. For i, j, p, q ∈ V , we define:

(1) minH(i, j) = min
{
f1

(
σ(i), σ(j)

)
+ g1(l) | l ∈ Len(i)(j)

}

(2) minI(i, j, p, q) = min { f2(σ(i), σ(j), σ(p), σ(q))+
g2(l1 + l2) + g3(|l1 − l2|) | l1 ∈ Len(i)(p), l2 ∈ Len(q)(j)} .

In case of Len(i, j) = φ for some i, j ∈ V , we define minH(i, j) = +∞. In
case of Len(i, j) = φ or Len(p, q) = φ for some i, j, p, q ∈ V , we also define
minI(i, j, p, q) = +∞.

Note that the number of elements of a set {(x+y, |x−y|) | x ∈ Len(i)(p), y ∈
Len(q)(j)} is O(|V |2) for i, j, p, q ∈ V .

176 A. Kijima and S. Kobayashi

5.1 Minimum Free Energy of Internal Loop

By Proposition 1, it takes O(|V |6) time to compute minI(i, j, p, q) for all i, j, p, q
∈ V . We can compute minI(i, j, p, q) more efficiently by computing an array
SX,Y , SX,Y defined as follows:

Definition 2. Let X and Y be finite sets of positive integers. We define SX,Y

as follows:

SX,Y =
{
(x, min{y ∈ Y | x ≤ y}) | x ∈ X

}
.

Note that we can compute SX,Y in O(|X | + |Y |) time by using the algorithm
shown in Fig. 3, and the number of elements of SX,Y is O(|X | + |Y |).

In order to apply SX,Y to computing minimum free energy of strings, we
define SX,Y as follows:

SX,Y =
{
(x, y) | (x, y) ∈ SX,Y

}
∪

{
(x, y) | (y, x) ∈ SY,X

}
. (5)

Theorem 1. For i, j, p, q ∈ V , we can compute minI(i, j, p, q) in the following
way:
minI(i, j, p, q) = min { f2(σ(i), σ(j), σ(p), σ(q)) + g2(x + y) + g3(|x − y|) |

(x, y) ∈ SLen(i)(p),Len(q)(j), Len(p)(q) �= φ
}

.

Proof. Let X = Len(i)(q) and Y = Len(q)(j). It suffices to show that for any
(x, y) ∈ X × Y , there exists (x′, y′) ∈ SX,Y such that g2(x + y) + g3(|x − y|) ≥
g2(x′ + y′) + g3(|x′ − y′|).

Make-S(X, Y)
begin

SX,Y := φ
i := |X|;
j := |Y |;
y0 = −∞;
while i ≥ 1 and j ≥ 1 do

if xi ≤ yj then
while xi ≤ yj and yj−1 < xi and i ≥ 1 do

SX,Y := SX,Y ∪ (xi, yj);
i := i − 1;

end
j := j − 1;

else
i := i − 1;

end
end
return SX,Y ;

end

Fig. 3. The algorithm Make-S

Efficient Algorithm for Testing Structure Freeness of Finite Set 177

We consider two cases:

(1) In case of x ≤ y, let x′ = x and y′ = min{y′′ ∈ Y | x ≤ y′′}. Note that
(x′, y′) ∈ SX,Y . We have x = x′ ≤ y′ ≤ y. Then, we have x′ + y′ ≤ x + y
and 0 ≤ y′ − x′ ≤ y − x. Since functions g2 and g3 are weakly monotonically
increasing, we have g2(x′+y′) ≤ g2(x+y) and g3(y′−x′) ≤ g3(y−x). Therefore,
we can compute minimum free energy minI(i, j, p, q) by using SX,Y .
(2) In case of x > y, let x′ = min{x′′ ∈ X | y ≤ x′′} and y′ = y. Note that
(y′, x′) ∈ SY,X . In the same way above, we can also say that we can compute
minI(i, j, p, q) by using SY,X .

We can compute minI by using SX,Y or SY,X in both cases (1) and (2).
Therefore, we can compute minI by using SX,Y .
�

Theorem 2. For each i, j, p, q ∈ V , minI(i, j, p, q) can be computed in O(|V |)
time.

Proof. Since for any i, j ∈ |V |, the number of elements of Len(i)(j) is less than or
equal to |V |, the number of elements in SLen(i)(p),Len(q)(j) and SLen(q)(j),Len(i)(p)

are O(|V |). Therefore, the number of elements of SLen(i)(p),Len(q)(j) is O(|V |).

�

In real applications of RNA secondary structure prediction([11], [20]), the loop
length of internal loops is assumed to be bounded by some constant in order to
make the prediction algorithms more efficient. This assumption also enables us
to compute minI(i, j, p, q) in constant time for each i, j, p, q ∈ V .

6 Algorithm for Testing Structure Freeness

We will give the algorithm SFT-FS for testing the structure freeness of a given
finite set of strings represented by a graph M = (V, E, σ, I, F). Let an integer i
represent the ith element of V in topological order. The algorithm is shown in
Fig. 4, where a(i, j) = m1(σ(i), σ(j)) is the energy contribution of a base pair in
a multiple loop.

Our algorithm is based on the dynamic programming approach used in various
RNA secondary structure prediction algorithms([11], [20], [17], etc.). While a
base adjacent to another base can be determined uniquely for a strand, it does
not hold for a set of strands. We consider all possible bases adjacent to a base.
Correctness of the algorithm is informally understood as follows:

Let R be a finite set of strings and M be a graph accepting R. Let α ∈ R
be a structured strand α(T) with the minimum free energy E(α(T)) such that

i
α→ j for some i ∈ I, j ∈ F . For some p, q ∈ V such that p

β→ q, if β is a
substring of α, β has the minimum free energy E(β(T̂)) among all substrands

in R such that p
β→ q, where T̂ ⊆ T . Otherwise there exist p

β′

→ q such that
E(β′(T ′)) < E(β(T̂)) and T ′ ⊆ T . Then, we can replace β in α to β′ and
have E(α′(T ′′)) < E(α(T)), which contradicts the minimality of the free energy
E(α(T)). The algorithm computes such minimum free energy from smaller to

178 A. Kijima and S. Kobayashi

Init(M)
begin

Topological-Sort(M) ;
compute Len(i)(j) for all i, j ∈ V by calling Make-Len(M) ;
compute SLen(i)(p),Len(q)(j)

by calling Make-S(Len(i)(p), Len(q)(j)) for all i, j, p, q ∈ V ;
compute minH(i, j), minI(i, j, p, q) for all i, j, p, q ∈ V ;

end

SFT-FS(M)
begin

Init(M);
for d = 1 to |V | − 1 do

for i = 1 to |V | − d do
j = i + d;

(I) C[i, j] = min

���
��

minH(i, j) ,
min i<p<q<j

�
minI(i, j, p, q) + C[p, q]

�
,

min i<i′<j′<j

(i,i′),(j′,j)∈E

�
FM [i′, j′] + a(i, j)

�
.

(II) F [i, j] = min

�
C[i, j] ,
min i<k<k′<j

(k,k′)∈E

�
FM [i, k] + FM [k′, j]

�
.

(III) FM [i, j] = min

�������
������

Mb + C[i, j] ,
min i<i′<j

(i,i′)∈E

�
Mc + FM [i′, j]

�
,

min i<j′<j
(j′,j)∈E

�
Mc + FM [i, j′]

�
,

min i<k<k′<j
(k,k′)∈E

�
FM [i, k] + FM [k′, j]

�
.

end
end
if there exist F [i, j] < threshold D for some i ∈ I, j ∈ F return ‘No’;
else return ‘Yes’;

end

Fig. 4. The algorithm SFT-FS

larger substructures with the recurrences (I)–(III) applied to topologically sorted
vertices.

We can run Init(M) in O(|V |5) time, SFT-FS(M) in O(|V |4) time, and it
costs O(|V |5) time in total. By using the constant upper bound assumption on
loop length in Sect. 5.1, we can run Init(M) in O(|V |4) time.

7 Application to Strand Design

Our algorithm requires more time in Init(M) than SFT-FS(M). Once the ini-
tialization Init(M) is done, we can evaluate strands more efficiently. Even
if we change a label function σ for a vertex, it is not necessary to compute
SLen(i)(p),Len(q)(j) again. Furthermore, we can compute minI(i, j, p, q) for all
possibilities of label function σ which has four possibilities σ(i) = A, σ(i) = C,

Efficient Algorithm for Testing Structure Freeness of Finite Set 179

σ(i) = G or σ(i) = T for a vertex i. Then, time to compute minI is O(|V |5).
These observations lead us to a method for strand design shown in Fig. 5. In
this search algorithm, we can evaluate a set of strings R.

Strand-Design(M)
begin

Init(M) with all possibilities of label function;

while SFT-FS(M) returns ’No’ do
change a label of a randomly selected vertex;

end
return M ;

end

Fig. 5. Random strand design algorithm

In this Strand-Design(M), a random search is used for finding a structure
free set of sequences. In real applications to sequence design, we should use
more sophisticated search strategies, such as stochastic local search([18]), genetic
algorithm([4]), etc.

8 Conclusion

We give an efficient algorithm for testing the structure freeness of a finite set
of strands. We also give a method for strand design generating a finite set of
structure free strands. Our future works will include the improvement of the
algorithm for computing minI and the implementation of the strand design
system based on the results presented in this paper.

References

1. L. Adleman, Molecular Computation of Solutions to Combinatorial Problems. Sci-
ence, vol.266, pp.1021-1024, 1994.

2. M. Andronescu, D. Dees, L. Slaybaugh, Y. Zhao, A. Condon, B. Cohen, and
S. Skiena, Algorithms for Testing That Sets of DNA Words Concatenate with-
out Secondary Structure. Proc. of The 9th International Meeting on DNA Based
Computers, LNCS, vol.2568, pp.182-195, 2003.

3. M. Arita and S. Kobayashi, DNA sequence design using templates. New Generation
Computing, vol.20, pp.263-277, 2002.

4. M. Arita, A. Nishikawa, M. Hagiya, K. Komiya, H. Gouzu, and K. Sakamoto,
Improving sequence design for DNA computing. Proc. of Genetic and Evolutionary
Computation Conference 2000, pp.875-882, 2000.

5. Y. Benenson, B. Gil, U. Ben-Dor, R. Adar, E. Shapiro, An autonomous molecular
computer for logical control of gene expression. Nature, vol.429, pp.423-429, 2004.

6. A. Brenneman and A. E. Condon, Strand Design for Bio-Molecular Computation.
Theoretical Computer Science, vol.287, pp.39-58, 2002.

180 A. Kijima and S. Kobayashi

7. A. Carbone and N. C. Seeman, Circuits and programmable self-assembling DNA
structures. Proc. Natl. Acad. Sci. USA, vol.99, pp.12577-12582, 2002.

8. A. E. Condon, Problems on RNA Secondary Structure Prediction and Design. Proc.
of ICALP’2003, Lecture Notes in Computer Science, vol.2719, pp.22-32, 2003.

9. R. M. Dirks, N. A. Pierce, An algorithm for computing nucleic acid base-pairing
probabilities including pseudoknots. Journal of Computational Chemistry, vol.25,
pp.1295-1304, 2004.

10. A. G. D’yachkov, A. J. Macula, W. K. Pogozelski, T. E. Renz, V. V. Rykov,
D. C. Torney, A weighted insertion-deletion stacked pair thermodynamic metric for
DNA codes. Preliminary Proc. of Tenth International Meeting on DNA Computing,
pp.142-151, 2004.

11. I. L. Hofacker, W. Fontana, P. F. Stadler, L. S. Bonhoeffer, M. Tacker, and P. Schus-
ter, Fast Folding and Comparison of RNA Secondary Structures (The Vienna RNA
Package). Monatshefte für Chemie, vol.125, pp.167-188, 1994.

12. L. Kari, S. Konstantinidis, and P. Sośık, Bond-free languages: formalizations, max-
imality and construction methods. Preliminary Proc. of Tenth International Meet-
ing on DNA Computing, pp.16-25, 2004.

13. S. Kobayashi, Testing structure freeness of regular sets of biomolecular sequence.
Preliminary Proc. of Tenth International Meeting on DNA Computing, pp.395-404,
2004.

14. S. Kobayashi, T. Yokomori, and Y. Sakakibara, An Algorithm for Testing Structure
Freeness of Biomolecular Sequences. Aspects of Molecular Computing — Essays
dedicated to Tom Head on the occasion of his 70th birthday, Springer-Verlag, LNCS,
vol.2950, pp.266-277, 2004.

15. C. Mao, T. H. LaBean, J. H. Reif, and N. C. Seeman, Logical computation us-
ing algorithmic self-assembly of DNA triple-crossover molecules. Nature, vol.407,
pp.493-496, 2000.

16. J. S. McCaskill, The equilibrium partition function and base pair binding proba-
bilities for RNA secondary structure. Biopolymers, vol.29, pp.1105-1119, 1990.

17. D. Sankoff, J. B. Kruskal, S. Mainville, and R. J. Cedergen, Fast Algorithms to
Determine RNA Secondary Structures Containing Multiple Loops. Time Warps,
String Edits, and Macromolecules : The Theory and Practice of Sequence Compar-
ison, D. Sankoff and J. Kruskal, Editors, Chapter 3, pp.93-120, 1983.

18. D. C. Tulpan, H. H. Hoos, and A. E. Condon, Stochastic local search algorithms for
DNA word design. Proc. 8th International Workshop on DNA-Based Computers,
LNCS 2568, pp.229-241, 2002.

19. E. Winfree, F. Liu, L. A. Wenzler, and N. C. Seeman, Design self-assembly of
two-dimensional DNA crystals. Nature, vol.394, pp.539-544, 1998.

20. M. Zuker, On finding all suboptimal foldings of an RNA molecule. Science, vol.244,
pp.48-52, 1989.

	Introduction
	Preliminaries
	Secondary Structure

	Free Energy of Secondary Structure
	Structure Freeness of Finite Regular Set
	Minimum Free Energy of Substructure
	Minimum Free Energy of Internal Loop

	Algorithm for Testing Structure Freeness
	Application to Strand Design
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

